
Lecture Notes in Computer Science 1709
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Jeannette M. Wing JimWoodcock
Jim Davies (Eds.)

FM’99 –
Formal Methods

World Congress on Formal Methods
in the Development of Computing Systems
Toulouse, France, September 20-24, 1999
Proceedings, Volume II

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Jeannette M. Wing
Carnegie Mellon University, Computer Science Department
5000 Forbes Avenue, Pittsburgh, PA 15213, USA
E-mail: wing@cs.cmu.edu

JimWoodcock
Jim Davies
Oxford University Computing Laboratory
Software Engineering Programme
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
E-mail: {jim.woodcock,jim.davies}@comlab.ox.ac.uk

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Formal methods : proceedings / FM ’99,World Congress on Formal Methods in the
Development of Computing Systems, Toulouse, France, September 20 - 24, 1999 /
Jeannette M. Wing . . . (ed.). - Berlin ; Heidelberg ; NewYork ; Barcelona ;
Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer

Vol. 2. - (1999)
(Lecture notes in computer science ; Vol. 1709)
ISBN 3-540-66588-9

CR Subject Classification (1998): F.3, D.2, F.4.1, D.3, D.1, C.2, C.3, I.2.3, B, J.2

ISSN 0302-9743
ISBN 3-540-66588-9 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10705018 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Preface

Formal methods are coming of age. Mathematical techniques and tools are now
regarded as an important part of the development process in a wide range of
industrial and governmental organisations. A transfer of technology into the
mainstream of systems development is slowly, but surely, taking place.

FM’99, the First World Congress on Formal Methods in the Development
of Computing Systems, is a result, and a measure, of this new-found maturity.
It brings an impressive array of industrial and applications-oriented papers that
show how formal methods have been used to tackle real problems.

These proceedings are a record of the technical symposium of FM’99 : along-
side the papers describing applications of formal methods, you will find technical
reports, papers, and abstracts detailing new advances in formal techniques, from
mathematical foundations to practical tools.

The World Congress is the successor to the four Formal Methods Europe
Symposia, which in turn succeeded the four VDM Europe Symposia. This suc-
cession reflects an increasing openness within the international community of
researchers and practitioners: papers were submitted covering a wide variety of
formal methods and application areas.

The programme committee reflects the Congress’s international nature, with
a membership of 84 leading researchers from 38 different countries. The commit-
tee was divided into 19 tracks, each with its own chair to oversee the reviewing
process. Our collective task was a difficult one: there were 259 high-quality sub-
missions from 35 different countries.

Each paper was reviewed within a track, the track chairs resolved conflicts
between reviewers, and the recommendations of each track chair were consid-
ered by the executive programme committee. This resulted in 92 papers being
accepted, along with 15 abstracts describing work in progress and industrial
applications.

We thank all those members of the programme and organising committees
for their hard work, carried out under necessarily short deadlines. Thanks are
due also to our able administrators, Maureen York and Anna Curtis; they did
an excellent job and they deserve our gratitude for their contribution.

Finally, thanks to all those who submitted papers and attended the Congress:
it is your hard work that has made it such a timely and important event.

July 1999 Jeannette Wing
Jim Woodcock

Jim Davies

Technical Tracks

The tracks that structure the technical symposium may be divided into three
groups. First, there are application areas:

• Avionics • Safety
• Co-design • Security
• Open information systems • Telecommunications

Second, there are processes and techniques:

• Composition and synthesis • Object orientation
• Integration • Program verification
• Model checking • Refinement
• Software architecture • Testing

Finally, there are groups of users and researchers:

• European Association for
Theoretical Computer Science

• European Theory and
Practice of Software

• Foundations of System
Specification

• Algebraic Methods in
Software Technology

• Formal Description of
Programming Concepts

• OBJ / CafeOBJ /
Maude

• Abstract State Machines • The B method

Our five distinguished invited speakers are Tony Hoare of the University of Ox-
ford, Cliff Jones of the University of Manchester, Amir Pnueli of the Weizmann
Institute, Joseph Sifakis of Verimag, John Rushby of SRI International, and
Michael Jackson, independent consultant.

Symposium Committee

Keijiro Araki, Japan
Egidio Astesiano, Italy
Albert Benveniste, France
Didier Bert, France
Dines Bjørner, Denmark
Robin Bloomfield, UK
Dominique Bolignano, France
Egon Börger, Italy
Jonathan Bowen, UK
Wilfried Brauer, Germany
Ed Brinksma, NL
Manfred Broy, Germany
Andrew Butterfield, Ireland
Jacques Cazin, France
Edmund Clarke, USA
Dan Craigen, Canada
Jorge Cuéllar, Germany
Aristides Dasso, Argentina
Jim Davies, UK
Tim Denvir, UK
Jin Song Dong, Singapore
Steve Dunne, UK
Hartmut Ehrig, Germany
John Fitzgerald, UK
Laure Pauline Fotso, Cameroon
Birgitte Fröhlich, Austria
Kokichi Futatsugi, Japan
David Garlan, USA
Marie-Claude Gaudel, France
Chris George, Macau
David Gries, USA
Henri Habrias, France
Armando Haeberer, Brazil
Nicolas Halbwachs, France
Kirsten Mark Hansen, Denmark
Anne Haxthausen, Denmark
Ian Hayes, Australia
Rick Hehner, Canada
Valérie Issarny, France
Rene Jacquart, France
Randolph Johnson, USA
Bengt Jonsson, Sweden
Leonid Kalinichenko, Russia
Kanchana Kanchanasut, Thailand

Kyo Chul Kang, Korea
Marite Kirikova, Latvia
Derrick Kourie, South Africa
Souleymane Koussoube, Burkina Faso
Reino Kurki-Suonio, Finland
Axel van Lamsweerde, Belgium
Jean-Claude Laprie, France
Peter Gorm Larsen, Denmark
Shaoying Liu, Japan
Peter Lucas, Austria
Micheal Mac an Airchinnigh, Ireland
Tom Maibaum, UK
Zohar Manna, USA
Lynn Marshall, Canada
Kees Middelburg, NL
Markus Montigel, Austria
Peter Mosses, Denmark
Friederike Nickl, Germany
Nikolai Nikitchenko, Ukraine
Roger Noussi, Gabon
Ernst-Rüdiger Olderog, Germany
José Nuno Oliveira, Portugal
Fernando Orejas, Spain
Paritosh Pandya, India
Jan Peleska, Germany
Frantisek Plásil, Czech Republic
Igor Pŕıvara, Slovakia
Hans Rischel, Denmark
Ken Robinson, Australia
Teodor Rus, USA
Augusto Sampaio, Brazil
Georgy Satchock, Belarus
Kaisa Sere, Finland
Natarajan Shankar, USA
Joseph Sifakis, France
Doug Smith, USA
Radu Soricut, Rumania
Andrzej Tarlecki, Poland
T.H. Tse, Hong Kong
Bogdan Warinski, Rumania
Jeannette Wing, USA
Jim Woodcock, UK
Pamela Zave, USA
Zhou Chaochen, Macau

VIII Congress Organisation

Congress General Chair
Dines Bjørner

Programme Committee Co-chairs
Jeannette Wing and Jim Woodcock

Organisation Committee Chair
Rene Jacquart

Local Organisation and Publicity
Jacques Cazin

Congress Public Relations Officer
Jonathan Bowen

Congress Sponsors

AMAST
Aérospatiale Airbus
Alcatel Space
CCIT
CEPIS
CNES
CNRS
Cap Gemini
Carnegie-Mellon University
Conseil Regional Midi-Pyrenees
DGA
EATCS
ESA
ETAPS
European Union
FACS
FME

France Telecom
IFIP
INRIA
IPSJ
IRIT
JSSST
LAAS
Mairie de Toulouse
Matra Marconi Space
ONERA
Technical University of Delft
Technical University of Denmark
Technical University of Graz
Translimina
University of Oxford
University of Reading

Table of Contents IX

Table of Contents

Foundations of System Specification (IFIP WG 1.3)

From Informal Requirements to COOP: A Concurrent Automata
Approach . 939

P. Poizat, C. Choppy, and J.-C. Royer

A Framework for Defining Object-Calculi . 963
F. Lang, P. Lescanne, and L. Liquori

European Theory and Practice of Software (ETAPS)

A Translation of Statecharts to Esterel . 983
S. A. Seshia, R. K. Shyamasundar, A. K. Bhattacharjee, and
S. D. Dhodapkar

An Operational Semantics for Timed RAISE .1008
X. Yong and C. George

Data Abstraction for CSP-OZ .1028
H. Wehrheim

Systems Development Using Z Generics .1048
F. Polack and S. Stepney

A Brief Summary of VSPEC .1068
P. Alexander, M. Rangarajan, and P. Baraona

Enhancing the Pre- and Postcondition Technique for More Expressive
Specifications .1087

G. T. Leavens and A. L. Baker

Program Verification

On Excusable and Inexcusable Failures .1107
M. Müller-Olm and A. Wolf

Interfacing Program Construction and Verification .1128
R. Verhoeven and R. Backhouse

Software Verification Based on Linear Programming1147
S. Dellacherie, S. Devulder, and J.-L. Lambert

X Table of Contents

Integration of Notation and Techniques

Sensors and Actuators in TCOZ .1166
B. Mahony and J. S. Dong

The UniForM Workbench, a Universal Development Environment for
Formal Methods .1186

B. Krieg-Brückner, J. Peleska, E.-R. Olderog, and A. Baer

Integrating Formal Description Techniques .1206
B. Schätz and F. Huber

Formal Description of Programming Concepts (IFIP WG 2.2)

A More Complete TLA .1226
S. Merz

Formal Justification of the Rely-Guarantee Paradigm for Shared-Variable
Concurrency: A Semantic Approach .1245

F. S. de Boer, U. Hannemann, and W.-P. de Roever

Relating Z and First-Order Logic .1266
A. Martin

Open Information Systems

Formal Modeling of the Enterprise JavaBeansTM Component Integration
Framework .1281

J. P. Sousa and D. Garlan

Developing Components in the Presence of Re-entrance1301
L. Mikhajlov, E. Sekerinski, and L. Laibinis

Communication and Synchronisation Using Interaction Objects1321
H. B. M. Jonkers

Modelling Microsoft COM Using π-Calculus .1343
L. M. G. Feijs

Co-design

Validation of Mixed Signal-Alpha Real-Time Systems through Affine
Calculus on Clock Synchronisation Constraints .1364

I. M. Smarandache, T. Gautier, and P. Le Guernic

Table of Contents XI

Combining Theorem Proving and Continuous Models in Synchronous
Design .1384

S. Nadjm-Tehrani and O. Åkerlund

ParTS: A Partitioning Transformation System .1400
J. Iyoda, A. Sampaio, and L. Silva

A Behavioral Model for Co-design .1420
J. He

Refinement

A Weakest Precondition Semantics for an Object-Oriented Language of
Refinement .1439

A. Cavalcanti and D. A. Naumann

Reasoning About Interactive Systems .1460
R. Back, A. Mikhajlova, and J. von Wright

Non-atomic Refinement in Z .1477
J. Derrick and E. Boiten

Refinement Semantics and Loop Rules .1497
E. C. R. Hehner and A. M. Gravell

Safety

Lessons from the Application of Formal Methods to the Design of a
Storm Surge Barrier Control System .1511

M. Chaudron, J. Tretmans, and K. Wijbrans

The Value of Verification: Positive Experience of Industrial Proof1527
S. King, J. Hammond, R. Chapman, and A. Pryor

Formal Development and Verification of a Distributed Railway Control
System .1546

A. E. Haxthausen and J. Peleska

Safety Analysis in Formal Specification .1564
K. Sere and E. Troubitsyna

Formal Specification and Validation of a Vital Communication Protocol . .1584
A. Cimatti, P. L. Pieraccini, R. Sebastiani, P. Traverso, and
A. Villafiorita

Incremental Design of a Power Transformer Station Controller Using a
Controller Synthesis Methodology .1605

H. Marchand and M. Samaan

XII Table of Contents

OBJ/Cafe OBJ/Maude

Verifying Behavioural Specifications in CafeOBJ Environment1625
A. Mori and K. Futatsugi

Component-Based Algebraic Specification and Verification in CafeOBJ . . .1644
R. Diaconescu, K. Futatsugi, and S. Iida

Using Algebraic Specification Techniques in Development of
Object-Oriented Frameworks .1664

S. Nakajima

Maude as a Formal Meta-tool .1684
M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Stehr

Hiding More of Hidden Algebra .1704
J. Goguen and G. Roşu

Abstract State Machines (ASM) and Algebraic Methods in Software
Technology (AMAST)

A Termination Detection Algorithm: Specification and Verification1720
R. Eschbach

Logspace Reducibility via Abstract State Machines .1738
E. Grädel and M. Spielmann

Formal Methods for Extensions to CAS .1758
M. N. Dunstan, T. Kelsey, U. Martin, and S. Linton

An Algebraic Framework for Higher-Order Modules .1778
R. Jiménez and F. Orejas

Avionics

Applying Formal Proof Techniques to Avionics Software: A Pragmatic
Approach .1798

F. Randimbivololona, J. Souyris, P. Baudin, A. Pacalet, J. Raguideau,
and D. Schoen

Secure Synthesis of Code: A Process Improvement Experiment1816
P. Garbett, J. P. Parkes, M. Shackleton, and S. Anderson

Cronos: A Separate Compilation Toolset for Modular Esterel
Applications .1836

O. Hainque, L. Pautet, Y. Le Biannic, and É. Nassor

Table of Contents XIII

Works-in-Progress

Tool Support for Production Use of Formal Techniques1854
J. C. Knight, P. T. Fletcher, and B. R. Hicks

Modeling Aircraft Mission Computer Task Rates .1855
J. S. Dong, B. P. Mahony, and N. Fulton

A Study of Collaborative Work: Answers to a Test on Formal
Specification in B .1856

H. Habrias, P. Poizat, and J.-Y. Lafaye

Archived Design Steps in Temporal Logic .1858
P. Kellomäki and T. Mikkonen

A PVS-Based Approach for Teaching Constructing Correct Iterations1859
M. Lévy and L. Trilling

A Minimal Framework for Specification Theory .1861
B. Baumgarten

A Model of Specification-Based Testing of Interactive Systems1862
I. MacColl and D. Carrington

Algebraic Aspects of the Mapping between Abstract Syntax Notation
One and CORBA IDL .1863

R. Ocică and D. Ionescu

Retrenchment .1864
R. Banach and M. Poppleton

Proof Preservation in Component Generalization .1866
A. M. Moreira

Industrial Experience

Formal Modelling and Simulation of Train Control Systems Using
Petri Nets .1867

M. Meyer zu Hörste and E. Schnieder

Formal Specification of a Voice Communication System Used in Air
Traffic Control .1868

J. Hörl and B. K. Aichernig

Model-Checking the Architectural Design of a Fail-Safe Communication
System for Railway Interlocking Systems .1869

B. Buth and M. Schrönen

XIV Table of Contents

Analyzing the Requirements of an Access Control Using VDMTools
and PVS .1870

G. Droschl

Cache Coherence Verification with TLA+ .1871
H. Akhiani, D. Doligez, P. Harter, L. Lamport, J. Scheid, M. Tuttle,
and Y. Yu

Author Index .1873

Table of Contents, Volume I XV

Table of Contents, Volume I

Invited Papers

Theories of Programming: Top-Down and Bottom-Up Meeting in the
Middle . 1

C. A. R. Hoare

Scientific Decisions which Characterise VDM . 28
C. B. Jones

Mechanized Formal Methods: Where Next? . 48
J. Rushby

Integration, the Price of Success . 52
J. Sifakis

The Role of Formalism in Method . 56
M. Jackson

Integration into the Development Process

Formal Design for Automatic Coding and Testing: The ESSI/SPACES
Project . 57

E. Conquet and J.-L. Marty

A Business Process Design Language . 76
H. Eertink, W. Janssen, P. O. Luttighuis, W. Teeuw, and C. Vissers

Software Architecture

Refinement of Pipe-and-Filter Architectures . 96
J. Philipps and B. Rumpe

A Formalization of Software Architecture . 116
J. Herbert, B. Dutertre, R. Riemenschneider, and V. Stavridou

European Association for Theoretical Computer Science (EATCS)

Component and Interface Refinement in Closed-System Specifications 134
R. Kurki-Suonio

Semantics of First Order Parametric Specifications . 155
D. Pavlović

XVI Table of Contents, Volume I

Model Checking

A Perfecto Verification: Combining Model Checking with Deductive
Analysis to Verify Real-Life Software . 173

Y. Kesten, A. Klein, A. Pnueli, and G. Raanan

Error Detection with Directed Symbolic Model Checking 195
F. Reffel and S. Edelkamp

Formal Modeling and Analysis of Hybrid Systems: A Case Study in
Multi-robot Coordination . 212

R. Alur, J. Esposito, M. Kim, V. Kumar, and I. Lee

On-the-Fly Controller Synthesis for Discrete and Dense-Time Systems . . . 233
S. Tripakis and K. Altisen

On-the-Fly Verification of Linear Temporal Logic . 253
J.-M. Couvreur

Symbolic Model Checking with Fewer Fixpoint Computations 272
D. Déharbe and A. M. Moreira

Formula Based Abstractions of Transition Systems for Real-Time Model
Checking . 289

R. Barbuti, N. De Francesco, A. Santone, and G. Vaglini

IF: An Intermediate Representation and Validation Environment for
Timed Asynchronous Systems . 307

M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and
L. Mounier

Automatic Verification of Pointer Data-Structure Systems for All
Numbers of Processes . 328

F. Wang

The B Method

The Use of the B Formal Method for the Design and the Validation of
the Transaction Mechanism for Smart Card Applications 348

D. Sabatier and P. Lartigue

Météor: A Successful Application of B in a Large Project 369
P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier

Formal Development of Databases in ASSO and B . 388
B. Matthews and E. Locuratolo

Table of Contents, Volume I XVII

Interpreting the B-Method in the Refinement Calculus 411
Y. Rouzaud

Compositional Symmetric Sharing in B . 431
M. Büchi and R. Back

Structural Embeddings: Mechanization with Method 452
C. Muñoz and J. Rushby

The Safe Machine: A New Specification Construct for B 472
S. Dunne

csp2B: A Practical Approach to Combining CSP and B 490
M. Butler

Test Criteria Definition for B Models . 509
S. Behnia and H. Waeselynck

Composition and Synthesis

Bunches for Object-Oriented, Concurrent, and Real-Time Specification . . . 530
R. F. Paige and E. C. R. Hehner

Applications of Structural Synthesis of Programs . 551
E. Tyugu, M. Matskin, and J. Penjam

Towards a Compositional Approach to the Design and Verification of
Distributed Systems . 570

M. Charpentier and K. M. Chandy

Telecommunications

Formal Modeling in a Commercial Setting: A Case Study 590
A. Wong and M. Chechik

KVEST: Automated Generation of Test Suites from Formal Specifications 608
I. Burdonov, A. Kossatchev, A. Petrenko, and D. Galter

Feature Interaction Detection Using Testing and Model-Checking
Experience Report . 622

L. du Bousquet

Emma: Developing an Industrial Reachability Analyser for SDL 642
N. Husberg and T. Manner

Correction Proof of the Standardized Algorithm for ABR Conformance . . 662
J.-F. Monin and F. Klay

XVIII Table of Contents, Volume I

Verifying a Distributed Database Lookup Manager Written in Erlang 682
T. Arts and M. Dam

Security

Secure Interoperation of Secure Distributed Databases 701
F. Gilham, R. A. Riemenschneider, and V. Stavridou

A Formal Security Model for Microprocessor Hardware 718
V. Lotz, V. Kessler, and G. Walter

Abstraction and Testing . 738
S. Schneider

Formal Analysis of a Secure Communication Channel: Secure Core-Email
Protocol . 758

D. Zhou and S.-K. Chin

Probabilistic Polynomial-Time Equivalence and Security Analysis 776
P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov

A Uniform Approach for the Definition of Security Properties 794
R. Focardi and F. Martinelli

Group Principals and the Formalization of Anonymity 814
P. F. Syverson and S. G. Stubblebine

Object-Orientation

Developing BON as an Industrial-Strength Formal Method 834
R. F. Paige and J. S. Ostroff

On the Expressive Power of OCL . 854
L. Mandel and M. V. Cengarle

A Systematic Approach to Transform OMT Diagrams to a B Specification 875
E. Meyer and J. Souquières

Testing

Verifying Consistency and Validity of Formal Specifications by Testing . . . 896
S. Liu

A GSM-MAP Protocol Experiment Using Passive Testing 915
M. Tabourier, A. Cavalli, and M. Ionescu

Author Index . 935

From Informal Requirements to COOP:

A Concurrent Automata Approach

Pascal Poizat1, Christine Choppy2, and Jean-Claude Royer1

1 IRIN, Université de Nantes & Ecole Centrale
2 rue de la Houssinière, B.P. 92208, F-44322 Nantes cedex 3, France

{Poizat, Royer}@irin.univ-nantes.fr
http://www.sciences.univ-nantes.fr/info/perso/permanents/poizat/

phone: +33 2 51 12 58 22 — fax: +33 2 51 12 58 12
2 LIPN, Institut Galilée - Université Paris XIII,

Avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France
Christine.Choppy@lipn.univ-paris13.fr

Abstract. Methods are needed to help using formal specifications in
a practical way. We herein present a method for the development of
mixed systems, i.e. systems with both a static and a dynamic part. Our
method helps the specifier providing means to structure the system in
terms of communicating subcomponents and to give the sequential com-
ponents using a semi-automatic concurrent automata generation with
associated algebraic data types. These components and the whole sys-
tem may be verified using common set of tools for transition systems
or algebraic specifications. Furthermore, our method is equipped with
object oriented code generation in Java, to be used for prototyping con-
cerns. In this paper, we present our method on a small example: a transit
node component in a communication network.

Keywords: Concurrent systems, specification method, automata, object
oriented (Java) code generation.

Stream: Foundations and Methodology
Mini-Track: FoSS (Foundations of Software Specifications)

1 Introduction

The use of formal specifications is now widely accepted in software develop-
ment. Formal specifications are mainly useful to provide an abstract, rigorous
and complete description of a system. They are also essential to prove prop-
erties, to prototype the system and to generate tests. The need for a method
that helps and guides the specifier is another well-known fact. A last point is
the need for mixed specifications: i.e. specifications able to describe both the dy-
namic (process control) and the static aspects (data types). We think that mixed
specifications also enable, at a specification level, to have a clear separation of
concerns between these two aspects of systems that should be orthogonal as

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 939–962, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

940 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

advocated (at the implementation level) by recent Concurrent Object Oriented
Programming (COOP) research.

We herein present a method based on LOTOS [7, 20] and SDL1 [11] expe-
riences [25, 24]. Our method was first presented in [26] and is here elaborated
in terms of agenda and extended to Java code generation. We chose to describe
our method in terms of the agenda concept [17, 16] because it describes a list of
activities for solving a task in software engineering, and is developed to provide
guidance and support for the application of formal specification techniques. Our
method mixes constraint-oriented and state oriented specification styles [33] and
produces a modular description with a dynamic behaviour and its associated
data type.

The dynamic behaviour extraction is based on a guarded automaton that
is progressively and rigorously built from requirements. Type information and
operation preconditions are used to define states and transitions. The dynamic
behaviour is computed from the automaton using some standard patterns. The
last improvement is the assisted computation of the functional part. Our method
reuses a technique [3] which allows one to get an abstract data type from an au-
tomaton. This technique extracts a signature and generators from the automa-
ton. Furthermore, the automaton drives the axiom writing so that the specifier
has only to provide the axioms right hand sides.

Our method is extended here to code generation. Code generation is a really
useful tool from a practical point of view. It allows to generate from a speci-
fication a prototype which may be used as the basis for the future system, to
validate client requirements or to test the system. We use Java [15] as a target
language for the static part and we focus on the dialect ActiveJava [1] for the
dynamic part.

The paper is structured as follows. We briefly present the case study: a transit
node case in a telecommunications network [5]. In Section 3, the general process
of our method is given. Section 4 is devoted to code generation, namely it consists
in two subsections: the static generation part in Java and the dynamic generation
part in ActiveJava. The conclusion summarizes the main points of our method.

2 Case-Study Presentation

This case study was adapted within the VTT project [5] from one defined in the
RACE project 2039 (SPECS : Specification Environment for Communication
Software). It consists of a simple transit node where messages arrive, are routed,
and leave the node. The informal specification reads as follows:

clause 1 The system to be specified consists of a transit node with: one Control
Port-In, one Control Port-Out, N Data Ports-In, N Data Ports-Out, M Routes
Through. The limits of N and M are not specified.

1 Both are used for the specification of distributed systems and are mixed specification
languages.

From Informal Requirements to COOP: A Concurrent Automata Approach 941

clause 2 (a) Each port is serialized. (b) All ports are concurrent to all others.
The ports should be specified as separate, concurrent entities. (c) Messages
arrive from the environment only when a Port-In is able to treat them.

clause 3 The node is “fair”. All messages are equally likely to be treated, when
a selection must be made,

clause 4 and all data messages will eventually transit the node, or become
faulty.

clause 5 Initial State : one Control Port-In, one Control Port-Out.

clause 6 The Control Port-In accepts and treats the following three messages:

(a) Add-Data-Port-In-&-Out(n) gives the node knowledge of a new Port-In(n)
and a new Port-Out(n). The node commences to accept and treat messages
sent to the Port-In, as indicated below on Data Port-In.

(b) Add-Route(m,ni) , associates route m with Data-Port-Out(ni).
(c) Send-Faults routes some messages in the faulty collection, if any, to Control

Port-Out. The order in which the faulty messages are transmitted is not
specified.

clause 7 A Data Port-In accepts only messages of the type : Route(m).Data.

(a) The Port-In routes the message, unchanged, to any one (non determinate)
of the open Data Ports-Out associated with route m. If no such port exists,
the message is put in the faulty collection.

(b) (Note that a Data Port-Out is serialized – the message has to be buffered
until the Data Port-Out can process it).

(c) The message becomes a faulty message if its transit time through the node
(from initial receipt by a Data Port-In to transmission by a Data Port-Out)
is greater than a constant time T.

clause 8 Data Ports-Out and Control Port-Out accept messages of any type
and will transmit the message out of the node. Messages may leave the node in
any order.

clause 9 All faulty messages are eventually placed in the faulty collection where
they stay until a Send-Faults command message causes them to be routed to
Control Port-Out.

clause 10 Faulty messages are (a) messages on the Control Port-In that are
not one of the three commands listed, (b) messages on a Data Port-In that
indicate an unknown route, or (c) messages whose transit time through the
node is greater than T.

942 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

clause 11 (a) Messages that exceed the transit time of T become faulty as soon
as the time T is exceeded.
(b) It is permissible for a faulty message not to be routed to Control Port-Out
by a Send-Faults command (because, for example, it has just become faulty, but
has not yet been placed in a faulty message collection),
(c) but all faulty messages must eventually be sent to Control Port-Out with a
succession of Send-Faults commands.

clause 12 It may be assumed that a source of time (time-of-day or a signal each
time interval) is available in the environment and need not be modeled within
the specification.

3 A New Specification Method

Overall Presentation

1 informal
description

2 concurrent
activity

3 sequential
components

4 data
types

Fig. 1. The step dependencies at the overall level

Our method is composed of four steps for obtaining the specification (cf. Fig.
1): the informal description of the system to be specified, the concurrent
activity description, the sequential component descriptions by an automa-
ton, the data type specifications. Two validation steps may also be associated
to the specification steps but they are not detailed here. Each step is described
below with a proper agenda and is briefly described. A more complete presenta-
tion of our method may be found in [25] and the whole application to the case
study in [24].

Step 1: Informal description (Fig. 2)

step expression / schema validation conditions

1.1: system functionalities Fi: text
◦ no redundancy

1.2: system constraints Ci: text ◦ consistency

1.3: system data Di: sort

Fig. 2. Informal description agenda

The aim of this first step is to sketch out the system characteristics.

From Informal Requirements to COOP: A Concurrent Automata Approach 943

Step 1.1: Description of the system functionalities. In this substep all
possible operations are inventoried, given a name (Fi in Fig. 2) and described.
For instance, in our example, some operations are given by clauses 6 and 7:

– at the Control Port In: the reception of a command message (in cmde)
– at the Data Ports In: the reception of a data message (in data).

Step 1.2: System constraints description. The system constraints relative
to orders, operations ordering, size limits, . . . are expressed here and should be
consistent, i.e. without contradiction.

Step 1.3: System data description. The point of view is very abstract here.
The system data are given a name (and a sort name).

The transit node data are a list of open ports numbers (clause 6a), a list of
routes (clauses 6b and 7a) and a list of faulty messages (clauses 4, 6c, 7a and 9).

Step 2: Concurrent activity

In this step the components that are executed in parallel are identified. Each
one is modeled by a process. The process decomposition into subprocesses is
inspired by the constraint-oriented and the resource-oriented specification styles
[32, 33]. For each process there is a control part (dynamic part). Moreover, a
data type (static part) may be associated with sequential processes and a variable
of this type used as a formal parameter for the process. This unifies with the
object-oriented encapsulation concept used later on. This step is decomposed
in the following way: 2.1 communications, 2.2 decomposition and distribution,
2.3 parallel composition. As shown in Fig. 3, the substeps 2.2 and 2.3 may be
iterated.

2.32.22.1

Fig. 3. Step dependencies for the concurrent activity

Step 2.1: Communications.

step 2.1.1: communication ports and data. The components interactions are
modeled by communications on formal ports that represent the component ser-
vices. Both communication ports and data are given by the informal description
(step 1) or a previous decomposition (step 2).

944 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

step expression / schema validation conditions

2.1.1: communication
ports and data Di ...

...

... ...Fi

PROCESS

: sort

◦ no omission: the Fi and Di

from 1.1 and 1.3 are all taken
into account

2.1.2: communications
typing

Fi: ?xj:sj !xk:sk

◦ no omission: the Fi from 1.1
are all taken into account
◦ emission sorts are available

Fig. 4. Communications agenda

step 2.1.2: communications typing. The data that are either emitted (denoted by
!x:T) or received (denoted by ?x:T) on the ports are typed. The communication
typing is used to describe the processes interface, and also to specify the static
part.

A validation criteria is to make sure that the emission sorts of a process are
“available”. A sort s is available for a process when:

– either it is directly available, that is predefined and imported, defined within
the process, or received by the process

– or there exists an imported operation f: d∗ → s such that all sorts in d∗

are available. Since the data specification is achieved at step 4 this criteria
validation may not be completed at this level.

We use a type Msg as an abstraction to represent the different messages in
the transit node:

– reception of a command message: in cmde : ?m:Msg
– reception of a data message: in data : !id:PortNumber ?m:Msg ?r:

RouteNumber
– emission of a list of faulty messages: out cmde : !l:List[Msg]
– emission of a data message: out data : !m:Msg

Step 2.2: Decomposition and distribution. The process decomposition into
subprocesses is done using pieces of information (constraints) from the informal
description (or a previous decomposition), using the data and/or functionalities.
The decomposition may be done in such a way that already specified components
may be reused.

Clause 1 leads to consider four components in the transit node: the Control
Port In (CPI), the Data Ports In (DPI), the Control Port Out (CPO) and the
Data Ports Out (DPO). The CPI manages the declared routes and the open
ports (clause 6). The DPI needs access to information about which ports are
related to which routes (clause 2a). Given the pieces of information collected
from the preceding steps, the system may be represented as in Fig. 6 (see also
Fig. 8).

From Informal Requirements to COOP: A Concurrent Automata Approach 945

step expression / schema validation conditions

2.2.1: data distribution Di ...

...
a

Dj ...

...
b

... ...

: sort : sort

PROCESS PROCESS

Fk

◦ all data should be dis-
tributed in the subpro-
cesses (cf. 2.1.1)

2.2.2: functionalities dis-
tribution

Di ...

...
a

Dj ...

...
b

c

: sort : sort

PROCESS

PROCESS PROCESS

k
F
m

n Fl Fn

F

F

◦ functionalities and re-
lated data
◦ all functionalities should
be distributed in the sub-
processes (cf. 2.1.1)

Fig. 5. Decomposition and distribution agenda

Control Port In Data Port In

out_data !m:Msg

?m:Msg ?r:RouteNumber
in_data !id:PortNumberin_cmde ?m:Msg

ports : List[PortNumber]
routes : List[Route] faulties : List[Msg]

Control Port Out
out_cmde !l:List[Msg]

Data Port Out

Fig. 6. Transit node external view (from Step 2.2)

Step 2.3: Parallel composition (Fig. 7). Processes composition often fol-
lows already known patterns, such as the synchronization schemata or the ar-
chitectural styles given in [21, 18, 31]. Therefore we suggest to use a library of
“composition schemata” that may be extended as needed. The specification of
the subprocesses parallel composition may be derived from the set of the compo-
sition schemata using language specific features such as LOTOS operators [25]
or SDL block structure and channels [24].

The process composition may lead to create new (internal) communications
and possibly new data that have to be specified. Let us note that the process
parallel composition is a way to express some constraints between the processes.
Thus, clause 2b leads to a constraint on the parallel composition between the
different ports. In order to take this into account, the DPI (resp. DPO) should
be rather composed by interleaving than by synchronization.

Faulty messages. They are saved in the CPO collection (clause 9). They are
(clause 10) either incorrect command messages (wrong cmde, received by the
CPI), or data messages with an unknown route (wrong route, received by a
DPI), or obsolete messages (timeout, from a DPO).
Information on routes. The DPI needs information on the transit node routes
(whether a route is declared, and what are its associated ports). These pieces of
information are held by the CPI, and will be transmitted to the DPI through

946 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

step expression / schema validation conditions

2.3.1: composition
schema choice PROCESS

Di: sort

c

...

...
a

: sortDj ...

...

PROCESS
b

PROCESS

2.3.2: schema applica-
tion (cf. steps 2.2 and
2.3.1)

Di ...

...
a

Dj ...

...
b

c
PROCESS

: sort : sort

PROCESS PROCESS

F
k

F
m

Fn Fl

◦ relations between the
process constraints and
the constraints obtained
through the subprocesses
composition

Fig. 7. Parallel composition agenda

question/answer communications between the DPI and the CPI (ask route and
reply route).

Message routing. When the data message route is correct, the message is routed
(correct communication) by the DPI to one of the corresponding DPOs (clause
7a).

New ports. When the CPI receives the Add-Data-Port-In-&-Out command, it
creates the corresponding ports (clause 6). In our modelization, this is taken into
account by the fact that the Data Ports are enabled (enable communication)
by the CPI on reception of this command.

New data. New data may arise from decomposition (or recomposition). Here,
the DPOs are serialized (clause 7b) and have a buffer for messages. The Data
Ports have an identifier used in enabling and routing communications.

Step 2 was iterated until obtaining the Fig. 8 schema. In the sequel, we shall
focus on the DPI communication typing which is the following:
correct : !ident:PortNumber !m:Msg ask route : !r:RouteNumber
wrong route : !m:Msg enable : !ident:PortNumber
reply route : !r:RouteNumber ?l:List[PortNumber]
in data : !id:PortNumber ?m:Msg ?r:RouteNumber

Step 3: Sequential components (Fig. 9)

Each sequential component is described by a guarded finite state automaton.

From Informal Requirements to COOP: A Concurrent Automata Approach 947

i : PortNumber

in_data !id:PortNumber
?m:Msg ?r:RouteNumber

out_data !m:Msgout_cmde !l:List[Msg]

in_cmde ?m:Msg

CPI

routes : List[Route]

ports : List[PortNumber]

CPO

faulties : List[Msg]

s
e
n
d
_
f
a
u
l
t

w
r
o
n
g
_
c
m
d
e

DPI

DPO

ask_route

reply_route

timeout

wrong_route

enable

e
n
a
b
l
e

c
o
r
r
e
c
t

i : PortNumber

l : List[Msg]

Fig. 8. Transit node internal view (from Step 2.3)

Steps 3.1 to 3.4: Conditions. The ports are put in four disjoint sets depending
on whether they modify (C and CC) or not (O and OC) the state of the process
and whether they are conditioned (CC and OC) or not (C and O). The names
stand for Constructor (C), Conditioned Constructor (CC), Observer (O) and
Conditioned Observer (OC).

The term “condition” refers to preconditions required for a communication
to take place, and also to conditions that affect the behaviour when a commu-
nication takes place.

It should be checked that all conditions mentioned in step 1.2 are taken into
account. However, some of them will be taken into account when dealing with
the parallel composition of processes (step 2.3).

Applying the steps 3.1 and 3.2 to the DPI leads to identify the following
conditions: enabled (the port is enabled), received (a message is received and
not yet routed), requested (routing information was requested), answered (the
answer on routing information is received), and routeErr2 (routing error).

For instance, the wrong route operation in CC has the following conditions:
enabled ∧ received ∧ requested ∧ answered ∧ ¬routeErr.

Relationships between conditions are expressed by formulas (` φi(Cj)). The
relationship formula have to be consistent and may lead to simplify some con-
ditions (possibly eliminating some).

In the DPI example, we have: answered ⇒ requested, requested ⇒ re-
ceived, received ⇒ enabled. This is consistent and leads to: answered ∧
¬routeErr when applied to the condition on wrong route.

Steps 3.5 to 3.7: States retrieval. Whether a process may perform a service
(through a communication on a port) depends on which abstract state the pro-
cess is in. The states are thus retrieved by composition of the communications
conditions (these conditions were identified in steps 3.2 to 3.4, and a truth table
is constructed in 3.5). The formulas (φi(Cj)) expressing relationships between

2 The routeErr condition bears on the value of the variable l of reply route after the
communication took place (see the communication typing at the end of step 2).

948 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

step expression / schema validation conditions

3.1: obtaining ports of O,
OC, C, CC

O, OC, C, CC ◦ disjoint sets

3.2: conditions on ports of
OC or CC
category: precondition or
behaviour

Fi : Cj(category) ◦ 1.2 (cf also 2.3)

3.3: relationships between
conditions

` φi(Cj)
`λ consistency:
` ∧iφi(Cj)

3.4: simplification of condi-
tions

`λ simplifications

3.5: creating the conditions
table

...
iC... interpretation reference

3.6: elimination of impossi-
ble cases

...
iC... interpretation reference

`λ φi(Cj) (3.3)

3.7: states
Ei =< ..., v(Cj), ... >

v(Cj) ∈ {T, F}

3.8: operations precondi-
tions

Pk =< ..., v(Cj), ... >
v(Cj) ∈ {T, F,∀}

`λ consistency of pre-
conditions w.r.t. φi(Cj)
` correction w.r.t. 3.2

3.9: operations postcondi-
tions

Qk =< ..., Φi(C’j), ... > C’ : C + new conditions

3.10: relationships between
conditions

` φi(C’j)

`λ consistency:
` ∧iφi(C’j)
`λ consistency of
postconditions w.r.t.
φi(C’j)

3.11: computing the transi-
tions

T = f(E ,P ,Q)

3.12: choice of an initial
state from possible (Oi) and
impossible (Oj) operations

Einit

`λ consistency of
∧iPOi ∧j ¬POj

`λ only one initial state
3.13: automaton simplifica-
tions

` equivalences

3.14: translating the au-
tomaton to the target lan-
guage

` automaton / specifi-
cation

3.15: simplifying the speci-
fication

` correct simplifica-
tions

Fig. 9. Sequential components agenda

From Informal Requirements to COOP: A Concurrent Automata Approach 949

these conditions are used to eliminate incoherent states (3.6). Table 1 gives the
DPI coherent states.

Table 1. State conditions table for the Data Port In

enabled received requested answered routeERR state

T T T T T IR (Incorrect Route)
T T T T F CR (Correct Route)
T T T F F WA (Waiting for Answer)
T T F F F RfR (Ready for Request)
T F F F F RfI (Ready for Input)
F F F F F NA (Not Authorized)

Steps 3.8 to 3.11: Transitions retrieval. To retrieve the transitions, we
shall define each operation in terms of possible source states (preconditions)
and corresponding target states (postconditions). Therefore, preconditions (P ,
3.8) and postconditions (Q, 3.9) are expressed in terms of the conditions values,
respectively before and after the communications take place. The case where the
condition value is not relevant is denoted by ∀, and = denotes the case where the
value is not modified after the communication. Verifications and simplifications
may be achieved on both preconditions and postconditions [25].

Examples of preconditions and postconditions for some DPI operations are
given below with the following notation: en for enabled, rec for received, req
for requested, rep for answered, and rerr for routeErr.

ask route en rec req rep rerr
P T T ∀ F ∀
Q = = T = =

reply route en rec req rep rerr
P T T T F ∀
Q = = = T l=[]

There are generally critical cases [25] and some postconditions may not be
expressed using only state conditions. It is thus necessary to use new conditions
to check whether the process data type is in a critical state. Informally, critical
state conditions act as transition guards to avoid infinite state automata.

Operationally to retrieve the transitions, and for each operation:
– start from a given state e (a condition boolean tuple)
– if this tuple yields the operation precondition, find the tuple for the corre-

sponding postcondition and the associated state f
– there is therefore a transition from e to f
– start over with another state.

Some improvements of this operational method are given in [25]. This automatic
method leads to deal with cases that might not have been detected otherwise,
as the critical cases.

Step 3.12: Initial state. In order to determine the initial state, it is necessary
to identify the services (associated to some ports) the process should give or not
in that state (constraints). It is a requirement based choice. The potential initial

950 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

states are found from the ports preconditions and the state table. If no initial
state is found, this means that the specifier gave inconsistent constraints for it.
In order to be able to generate code, a single initial state is needed. When several
potential initial states are found, it possible to choose one of them arbitrarily or
by adding some constraint on the services. The DPI automaton is given in Fig.
10.

RfI

WARfR

enable

i
n
_
d
a
t
a

enable

r
e
p
l
y
-
r
o
u
t
e

[
l
<
>
[
]
]

wrong_route

ask_route

r
e
p
l
y
_
r
o
u
t
e

[
l
=
[
]
]

enableinit(id)
NA IR

<F,F,F,F,F> <V,F,F,F,F>

<V,V,F,F,F> <V,V,V,F,F>

<V,V,V,V,V>

enable
ask_route

enable

<V,V,V,V,F>

CR

correct

enable

Fig. 10. Data Port In automaton

Steps 3.13 to 3.15: Simplifications and translation. It is possible to trans-
late the automaton to various specification languages by applying translation
schemata. This technique was applied to LOTOS [25] and to SDL [24]. When-
ever the translation is not optimal, some simplifications may possibly be applied
[25, 24]. The automaton may also be simplified before the translation, for in-
stance by hierarchical grouping of states achieved using the conditions [24].

Step 4: Data types

The last step is the specification of the abstract data types associated to each
process, and of the data types used within the processes. As regards the data
types associated to each process, the work achieved in the preceding steps yields
most of the signature (cf. [25] from a description of the automatic processing).
Thus, the operations names and profiles are retrieved automatically from the
communication typing, and from the conditions identified upon building the
automata. Let us note that with each communication m, one or several algebraic
operations may be associated (Fig. 11).

Some additional operations may be needed to express the axioms. Most of
the axioms are written in a “constructive” style which requires to identify the
generators. [3] describes a method to retrieve the data type associated to an au-
tomaton and to compute a minimal set of operations necessary to reach all states.

From Informal Requirements to COOP: A Concurrent Automata Approach 951

for emissions:
m !e:T m-c : DPI → DPI

m-o : DPI → T
for receptions:

m ?e:T m-c : DPI × T → DPI
m-o : DPI → T (optional)

Fig. 11. Correspondence between communications and algebraic operations

In our example, this set is init, enable, in data, ask route, reply route.
[3] uses Ω-derivation [6] to write the axioms (conditional equations). In order
to extract the axioms describing the properties of the operation op(dpi:DPI),
the states where this operation is allowed should be identified together with the
generators to reach these states, thus yielding the premises and the axioms left
hand sides.

Part of this automatic processing is shown here for the axioms of the cor-
rect c operation, the internal operation associated with the correct transition.
The premises express conditions on the source states and on the l variable.

% correct-c : DPI -> DPI

CR(dpi) => correct-c(enable-c(dpi)) = correct-c(dpi)

WA(dpi) /\ not(l=[]) => correct-c(reply-route-c(ask-route-c(dpi),l)) =

correct-c(reply-route-c(dpi,l))

WA(dpi) /\ not(l=[]) => correct-c(reply-route-c(enable-c(dpi),l)) =

correct-c(reply-route-c(dpi,l))

RfR(dpi) /\ not(l=[]) =>

correct-c(reply-route-c(ask-route-c(enable-c(dpi)),l)) =

correct-c(reply-route-c(ask-route-c(dpi),l))

RfI(dpi) /\ not(l=[]) =>

correct-c(reply-route-c(ask-route-c(in-data-c(dpi,m,r)),l)) = dpi

The algebraic specification may then be used for proving properties needed
for the specification verification and validation.

4 Code Generation

Once we get a formal specification it is not necessarily executable. Often the
dynamic part is executable because it is based on operational models (state
transition diagrams). This is not always true for the static part (algebraic ab-
stract data type).

We will illustrate assisted code generation in Java, however the method is
suitable for other object-oriented languages.

The general method is depicted on Fig. 12 and is split in two parts: the static
part (on the right of Fig. 12) and the dynamic part (on the left of Fig. 12).

4.1 Static Part Generation

Java classes are generated for each abstract data type in the specification, and
this process is achieved by four intermediate steps (cf. Fig. 12). The translations

952 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

Java Code

Formal Specification

Guarded Automaton and Compositions Algebraic Abstract Data Types

Executable Specifications

Specification Refinement

Choice of a Hierarchy

Single Generator Specifications

Object Translation

Formal Class Design

Automatic Translation

Static Classes (pure Java)Active Classes (ActiveJava)

Controller structures

Sequential components

encapsulated Static Parts

Active Classes

Fig. 12. Object code generation scheme

are partly automatic, for instance to get a simpler or a more efficient result may
require some specifier (or programmer) interaction. The first step is to obtain an
executable specification (possibly through refinements). Then, code generation
is decomposed into (i) the choice of a hierarchy for representing the specification
generators, (ii) the translation into formal classes (i.e. abstractions of classes
in object-oriented languages), from which (iii) a generation in a given language
(e.g. Java) may be done.

Executable Specification. The “constructive” style adopted for the specifica-
tions associated with the automatons is likely to yield executable specifications
(e.g. through rewriting, where tools, e.g. [14], may be used to check the con-
vergence). However, other specification modules may be introduced (e.g. for the
data managed by the processes) with other specification styles (e.g. observational
style). A refinement process (abstract implementation [12]) is then needed to add
elements for executability such as algorithmic choices, etc.

Single Generator Specifications. In object-oriented languages, classes have
a single generation operation called for instance “new” (or the class name), while
algebraic specifications allow several generators. The problem addressed here is
how to represent these generators within classes, or more precisely how to trans-
form (e.g. by abstract implementation) the original algebraic specifications into
single generator specifications from which classes may be derived. We propose

From Informal Requirements to COOP: A Concurrent Automata Approach 953

several solutions to this issue. A first solution is to associate to the several gen-
erators of the algebraic specification a single generator with a “switch” (to each
original generator), we refer to this solution as the “flat organization”. Another
solution is to use the associated class as an interface to subclasses, where each
subclass is associated to one generator of the original specification, this will be
denoted as the “two level hierarchy organization”. Then, of course, it is possible
to mix these two solutions as appropriate.

Several frameworks are available for abstract implementation [12], a first
sketch is to follow the general framework of Hoare’s representation [19]. It con-
sists into defining an abstraction function, to prove it is an onto function and to
prove the implementation of operations. These aspects are not detailed here.

In the following, we present the alternative organizations for single generator
specifications. When the abstract data type has only one generator we directly
apply the simple representation described below to get a class.

Flat Organization. In this organization, a specification module with several
generators is transformed into a single generator specification module with a
“switch” to each original generator. For example, in the DPI specification mod-
ule, the generators are init, enable, in data, ask route, reply route. We de-
fine SwitchDPI = {init, enable, in data, ask route, reply route} and the sin-
gle generator newSDPI (SDPI stands for Switch DPI) with the profile newSDPI

: Switch PortNumber Msg RouteNumber List SDPI -> SDPI (note that this profile
may be easily computed from the DPI generators profiles). The abstraction func-
tion Abs is defined as usual, e.g.:
Abs(newSDPI(reply route, Bport, Bmsg, Broute, Z, T)) == reply route c(T, Z)...
Terms beginning by B are don’t care values. We also introduce selectors associ-
ated to relevant arguments occurring in the single generator, e.g.:
switch(newSDPI(S, X, Y, R, Z, T)) = S

(S = reply route ∧ WA(T)) => selRoutes(newSDPI(S, X, Y, R, Z, T)) = Z...

The axioms are then transformed within this framework to complete the speci-
fication.

Two Level Hierarchy Organization. In this approach, several specification mod-
ules are associated with the original specification module: one module that is
just an interface to modules that introduce (each) one of the original generators
together with the appropriate subsort. Clearly, this approach may yield seman-
tics issues (depending on the framework adopted), and may not be as practical
and straightforward as the previous one. However, in some cases the specification
style may be more legible.

Mixed Organization. Of course between these two previous extrema there are
many other ways to transform the type depending of the chosen hierarchy. We
studied in [2] how to get a better hierarchy and we presented a general process for
it. However some important problems remain: metrics to define a best hierarchy
and problems linked with inheritance of properties.

954 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

In case of abstract data types with less than five generators, the flat organi-
zation is acceptable but with more complex ones this will not be the case.

Another way to solve this problem is to introduce a kind of inheritance or
subsort (OBJ subsort) in the method. This problem is known to be difficult in
itself and rather complex with concurrent systems.

Formal Class Design: The Model. This model [4] defines the notion of
formal class as an abstraction of a concrete class in languages like C++, Eiffel,
Java or Smalltalk. A formal class is an algebraic specification (as abstract data
type) with an object-orientation. This general model is functional and unifies the
major concepts of object-oriented programming. It can be used both to build
formal specifications and to design a system. An abstract operational semantics
[4] was given to this model using conditional term rewriting [10].

Figure 13 shows a formal class example associated to the SDPI specification
module obtained with the flat organization.

FCDPI

field selectors
switch : FCDPI −→ Switch

ident : FCDPI −→ PortNumber

requires: switch(Self) = init

selRoutes : FCDPI −→ List

requires: switch(Self) = reply route ∧ WA(previous(Self))

...

methods
correct c : FCDPI −→ FCDPI

;; correct c : internal operation associated to a correct route
(switch(Self) = enable ∧ CR(previous(Self))) =>

correct c(Self) = correct c(previous(Self))

(switch(Self) = reply route ∧ switch(previous(Self)) = ask route

∧ WA(previous(Self)) ∧ is empty(list(Self))) =>

correct c(Self) = correct c(new(reply route, Bport, Bmsg, Broute,

selRoutes(Self), previous(previous(Self))))

...

Fig. 13. Formal Class FCDPI

The translation into (purely functional) Java code is straightforward. A for-
mal class is translated to an interface (corresponding to the signature) and an
implementation class. We use abstract methods and classes when needed (de-
pending on the chosen organization). The structure is represented by private
instance variables. Fields selectors are coded by a public accessor to the corre-
sponding instance variable with a condition corresponding to the precondition.

From Informal Requirements to COOP: A Concurrent Automata Approach 955

A tool to generate Java classes is not available yet, but experimental tools have
been done for Eiffel and Smalltalk.

Formal Class Design: A Simple Representation. The simple representa-
tion allows one to translate a single generator type into a formal class, denoted by
FCADT. This generator will be the newFCADT instantiation function of the object
model. We must identify selectors, i.e. operations seli such that seli(new(X1,
..., Xn)) = Xi. These field selectors yield the instance variables of the class.
We assume that the specification (axioms and preconditions) has no variable
named Self. A term is said to be in a receiver position if it appears at first
position in an operation different from the generator. If a variable appears in a
receiver position in the left conclusion term then it will be replaced by Self. In
our model this variable denotes the object receiver. An important translation
rule is to replace newSADT(e1, ..., en) by V with V : FCADT. This leads to a
set of equations: seli(V) = ei.

1. This rule is applied on every newSADT occurrence in a receiver position in
the left conclusion term, where V is named Self. If ei is a variable then it
is replaced by seli(Self) in axioms. If ei is neither a variable nor a don’t
care term, the equation seli(Self) = ei is added to the axiom condition.

2. This rule is applied on all other occurrences in the left conclusion term with
any variable other than Self.

This representation was processed over the single generator specification
SDPI and the result is the above formal class (Fig. 13).

4.2 Dynamic Part Generation

This part deals with the code generation for the dynamic part in an object
oriented language. The language we aim at is ActiveJava [1], a Java dialect
(pre-processed into pure Java) based on ATOM [23].

The ActiveJava model defines abstract states, state predicates, methods ac-
tivation conditions and state notification. Its main advantages are that: (i) its
syntax is defined as a Java extension, (ii) it permits to model both inter and intra-
object concurrency, and (iii) it supports both asynchronous and synchronous
message passing. ActiveJava presents a good adequation between reusability of
components (through separation of concerns into a dynamic and a static part)
and expressivity.

The dynamic part generation is build upon (i) coding subsystems structura-
tion and LOTOS-like communication semantics, (ii) coding sequential automata,
and (iii) integrating dynamic and static parts.

Structuration and Communication Semantics. LOTOS communication
semantics is more strict than the ActiveJava (object oriented) one. For this
purpose and for better structuration matters, we choose to model each subsystem

956 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

structuration with a controller. This approach is close to Coordinated Roles
[22] and aims at the same properties: a better structuration and reusability of
composition patterns.

The system specification is taken as a tree with sequential components at the
leaves and controllers at the nodes where the LOTOS structuring mechanisms
are encoded. The subtrees under a given controller will be called its sons. Struc-
turation for the transit node is given in Fig. 14 where coordinators are drawn
as square boxes and sequential components as round boxes. This is another
representation of Fig. 8.

enable, correct, wrong_route]
[in_data, ask_route, reply_route, ...

CPI CPO

Control Ports Data Ports |[correct]|

Transit Node

|||||| DPOSDPIS

DPI 1 DPI n DPO 1 DPO n...

Fig. 14. Sketch of structuration and coordinators of the transit node

We have three main communication mechanisms for structuration: interleav-
ing, synchronization and hidden synchronization.

Common mechanisms. The communication is achieved in three phases as shown
in Fig. 15. In the run phase, controllers dispatch calls to a run method to their
non waiting sons. Thus, in Fig. 15-1, C sends a run method to P but not to E.
When these calls reach non controller components (i.e. the leaves, as P in Fig.
15-1) or controller with all sons blocked, then the second phase, return phase
begins.

In this return phase, sons return the communications they are ready to get
involved with in a runnable list: a list of tuples containing the communication
name and its arguments, with values for emission arguments and a special indica-
tor () for reception arguments. P returns [(‘‘m’’, ,4),(‘‘n’’,3)] to assess
it is ready for a m or n communication (Fig. 15-2). The controller then computes
a common intersection of the runnable lists and sends it up. Here, n from P does
not match with anything from E whereas two m elements match to make the
intersection that C sends upwards. Since some E and P runnable lists elements
are in the common intersection, E and P are called participants. Elements with
the same communication name have to match in the same way LOTOS offers
match. Matching cases are given in Table. 2. All other cases mismatch.

The second phase ends when there is no intersection (this yields a blocking
status) or at the root where a final intersection in computed. The controller
where the second phase ends is called temporary root.

In the third phase (Fig. 15-3), the temporary root sends down the message
corresponding to the final intersection it has previously computed. This message
has to be unique, and non determinism (whether a received value has not been
bound or there is communication non determinism) is solved by the temporary

From Informal Requirements to COOP: A Concurrent Automata Approach 957

Table 2. Matching elements and intersections

element 1 element 2 common intersection

(“m”, :T) (“m”,value:T) (“m”,value:T)
(“m”,value:T) (“m”, :T) (“m”,value:T)
(“m”,value:T) (“m”,value:T) (“m”,value:T) – same values
(“m”, :T) (“m”, :T) (“m”, :T)

root controller [27]. Controllers send the message only to participants (both P
and E for C) and then erase their table entry. Non participant sons are left
waiting. To end, the temporary root controller relaunches the first phase by
sending again the run method to its non waiting sons.

("m",3,_)

P : [("m",_,4),
("n",3)]

waiting on

3. Application Phase

C.run()

P.run()

P [m,n]

C |[m,n]|
E : ("m",3,_)
P: ?

E |[m]| P [m,n]

C |[m,n]|
E : ("m",3,_)

m ?x !4 [] n !3

E |[m]|

[("m",3,4)]

[("m",_,4), ("n",3)]

P.m(3,4)

C |[m,n]|

P [m,n]

C.m(3,4)

E: ?
P: ?

temporary
root

E |[m]|

E.m(3,4)

2. Return Phase1. Run Phase

Fig. 15. A communication scheme example

Interleaving. As soon as a controller receives a non synchronized element in a
runnable list, it transmits it up.

Synchronization. When two sons are composed in order to synchronize on a
given method, their parent controller will transmit the corresponding element in
runnable lists only if it has received this element in both sons runnable lists.

Hidden synchronization. In the return phase, when the runnable lists reach a
node, elements referring to hidden messages are not returned upwards but are
kept at this node level. When only hidden messages reach a controller which
has to block them, this controller acts as the temporary root controller. If there
are also non hidden messages, the controller chooses whether to transmit them
upwards or to act as the temporary root (this choice simulates non determinism).

958 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

Coding the Automata in ActiveJava. The precondition and postcondition
tables are used to code the automaton. But this has to be slightly modified to
take into account run message receptions. The schema given in Fig. 16 is applied
to each state.

m1

m2

A

B

C

b) with run

m1

m2

B

C

A
run

a) without run

Fig. 16. Adding run in the automata

Operation preconditions are defined as “activation conditions” in ActiveJava.
Optionally, condition variables may be set (postconditions) in the “post actions”
methods of ActiveJava. In the class constructor, initial values for the conditions
are set according to the automaton initial state. Fig. 17 illustrates this on a part
of the DPI example.

active class DPI(CPI cpi, FC fc, DPO dpo) {

boolean v_a, v_r, v_d, v_rep, v_rerr;

PortNumberList received_l; ...

abstract state definitions {a as is_a(); ...}

activations conditions {

reply_route(RouteNumber r, PortNumberList l)

with reply_route_precondition(); ...}

synchronization actions {

reply_route(RouteNumber r, PortNumberList l) with

post_actions reply_route_postcondition(); ...}

implement synchronization {

boolean is_a() {return v_a;}

...

boolean reply_route_precondition() {

return v_a==TRUE && v_r==TRUE && v_d==TRUE && v_rep==FALSE;}

...

void reply_route_postcondition() {

v_rep=TRUE; v_rerr=received_l.isEmpty();}

...

}}

Fig. 17. (Part of) Active Class for DPI

From Informal Requirements to COOP: A Concurrent Automata Approach 959

Integrating the Static and the Dynamic Parts The integration of the
static and the dynamic part is done using encapsulation of a static class instance
into the dynamic class with static methods called into dynamic methods bodies
(Fig. 18). Observers are called in the run method to compute some of the run
list elements arguments. Statics methods are also called in each corresponding
dynamic method.

import StaticClass;

active class DynamicClass {

StaticClass nested;

< ActiveClass part >

public methods {

public DynamicClass(< arguments >) {

nested = new StaticClass(< arguments >);

< dynamic initialization (initial state) >

}

public RunnableList run() {

// uses nested.observers return values in runnable list

}

public void otherMethod(< arguments >) {

nested.otherMethod(< arguments >);

}}}

Fig. 18. Integration of static and dynamic parts

5 Conclusion

While there are good motivations for the use of formal specifications in soft-
ware development, the lack of methods may restrict it to “few experts”. There
are several points which may cause problems: the use of formal notation, the
structure of the system, the proofs of properties and the code generation (or
refinement for others) are some of the most important. In this paper, we address
a specification method for systems where both concurrency and data types is-
sues have to be taken into account. One important feature is the help provided
to the user: help to build dynamic behaviours, help to decompose the system,
help to extract the data types and help to generate code. Our method takes
advantage of both the constraint and state oriented approaches that are used
for LOTOS or SDL specifications. The system is described in terms of parallel
components with well defined external interfaces (the gates and communication
typing). The behaviour of the component is described by a sequential process as-
sociated with an internal data type. The study of the communications and their
effect on this data type allows one to build, in a semi-automatic way, an automa-
ton describing the process internal behaviour. The automaton is then translated

960 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

into a specification language (LOTOS or SDL). The data type is extracted by a
semi-automatic method from this automaton.

The components and the whole system may then be verified using common
set of tools for transition systems [13] or algebraic specifications [14].

Our specification method is equipped with a prototype generation. Object-
oriented languages are another major phenomenon in software engineering. One
cannot ignore the qualities of such code, however writing such code may be a
hard task. We choose to generate Java code but our method may be applied
to other object oriented languages. This code generation is mainly automatic
and modular. We plan to experiment code generation on other frameworks for
concurrent object oriented programming such as [8].

One future research direction is the extension of this approach to other spec-
ification languages, like Raise [30] or Object-Z [28]. Other connected areas of
research are about object-oriented analysis and design methods. We currently
work on the use of UML [29] diagrams to improve system architecture and to
validate the automaton behaviour (with communication diagrams for instance).
Therefore, we plan to provide our specification model with inheritance, more
complete communication (experimenting new controller semantics) and struc-
turation mechanisms as in related models [9].

References

[1] Luis A. Álvarez, Juan M. Murillo, Fernando Sánchez, and Juan Hernández. Ac-
tiveJava, un modelo de programación concurrente orientado a objeto. In III Jor-
nadas de Ingeneŕıa del Software, Murcia, Spain, 1998.

[2] Pascal André. Méthodes formelles et à objets pour le développement du logiciel :
Etudes et propositions. PhD Thesis, Université de Rennes I (Institut de Recherche
en Informatique de Nantes), Juillet 1995.

[3] Pascal André and Jean-Claude Royer. How To Easily Extract an Abstract Data
Type From a Dynamic Description. Research Report 159, Institut de Recherche
en Informatique de Nantes, September 1997.

[4] Pascal André, Dan Chiorean, and Jean-Claude Royer. The formal class model.
In Joint Modular Languages Conference, pages 59–78, Ulm, Germany, 1994. GI,
SIG and BCS.

[5] M. Bidoit, C. Choppy, and F. Voisin. Validation d’une spécification algébrique
du “Transit-node” par prototypage et démonstration de théorèmes. Chapitre
du Rapport final de l’Opération VTT, Validation et vérification de propriétés
Temporelles et de Types de données (commune aux PRC PAOIA et C3), LaBRI,
Bordeaux, 1994.

[6] Michel Bidoit. Types abstraits algébriques : spécifications structurées
et présentations gracieuses. In Colloque AFCET, Les mathématiques de
l’informatique, pages 347–357, Mars 1982.

[7] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification
Language LOTOS. Computer Networks and ISDN Systems, 14(1):25–29, January
1988.

[8] D. Caromel and J. Vayssière. A Java Framework for Seamless Sequential, Multi-
threaded, and Distributed Programming. In ACM Workshop “Java for High-

From Informal Requirements to COOP: A Concurrent Automata Approach 961

Performance Network Computing”, pages 141–150, Stanford University, Palo Alto,
California, 1998.

[9] Eva Coscia and Gianna Reggio. JTN: A Java-Targeted Graphic Formal Notation
for Reactive and Concurrent Systems. In Jean-Pierre Finance, editor, Fundamen-
tal Approaches to Software Engineering (FASE’99), volume 1577 of Lecture Notes
in Computer Science, pages 77–97. Springer-Verlag, 1999.

[10] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite Systems, volume B of
Handbook of Theoretical Computer Science, chapter 6, pages 243–320. Elsevier,
1990. Jan Van Leeuwen, Editor.

[11] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL : Formal Object-
oriented Language for Communicating Systems. Prentice-Hall, 1997.

[12] M. Navarro F. Orejas and A. Sanchez. Implementation and behavioural equiv-
alence: a survey. In M. Bidoit and C. Choppy (Eds.), editors, Recent Trends in
data Type Specification, volume 655 of Lecture Notes in Computer Science, pages
93–125. Springer-Verlag, August 1993.

[13] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent
Mounier, and Mihaela Sighireanu. CADP: A Protocol Validation and Verification
Toolbox. In 8th Conference on Computer-Aided Verification, pages 437–440, New
Brunswick, New Jersey, USA, 1996.

[14] S. Garland and J. Guttag. An overview of LP, the Larch Prover. In Proc. of the
Third International Conference on Rewriting Techniques and Applications, volume
355 of Lecture Notes in Computer Science, pages 137–151. Springer-Verlag, 1989.

[15] Gosling, Joy, and Steele. The Java Language Specification. Addison Wesley, 1996.
[16] Wolfgang Grieskamp, Maritta Heisel, and Heiko Dörr. Specifying Embedded Sys-

tems with Statecharts and Z: An Agenda for Cyclic Software Components. In
Egidio Astesiano, editor, FASE’98, volume 1382 of Lecture Notes in Computer
Science, pages 88–106. Springer-Verlag, 1998.

[17] Maritta Heisel. Agendas – A Concept to Guide Software Development Activities.
In R. N. Horspool, editor, Proceedings Systems Implementation 2000, pages 19–32.
Chapman & Hall, 1998.

[18] Maritta Heisel and Nicole Lévy. Using LOTOS Patterns to Characterize Ar-
chitectural Styles. In Michel Bidoit and Max Dauchet, editors, TAPSOFT’97
(FASE’97), volume 1214 of Lecture Notes in Computer Science, pages 818–832,
1997.

[19] C.A.R. Hoare. Proof of Correctness of Data Representations. Acta Informatica,
1:271–281, 1972.

[20] ISO/IEC. LOTOS: A Formal Description Technique based on the Temporal
Ordering of Observational Behaviour. ISO/IEC 8807, International Organization
for Standardization, 1989.

[21] Thomas Lambolais, Nicole Lévy, and Jeanine Souquières. Assistance au
développement de spécifications de protocoles de communication. In AFADL’97
Approches Formelles dans l’Assistance au Développement de Logiciel, pages 73–84,
1997.

[22] Juan M. Murillo, Juan Hernández, Fernando Sánchez, and Luis A. Álvarez. Coor-
dinated Roles: Promoting Re-usability of Coordinated Active Objects Using Event
Notification Protocols. In Paolo Ciancarini and Alexander L. Wolf, editors, Third
International Conference, COORDINATION’99, volume 1594 of Lecture Notes in
Computer Science, Amsterdam, The Nederlands, April 1999. Springer-Verlag.

[23] M. Papathomas, J. Hernàndez, J. M. Murillo, and F. Sànchez. Inheritance and ex-
pressive power in concurrent object-oriented programming. In LMO’97 Langages
et Modèles à Objets, pages 45–60, 1997.

962 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

[24] Pascal Poizat, Christine Choppy, and Jean-Claude Royer. Un support
méthodologique pour la spécification de systèmes “mixtes”. Research Report
180, Institut de Recherche en Informatique de Nantes, Novembre 1998. /pa-
pers/rr180.ps.gz in Poizat’s web page.

[25] Pascal Poizat, Christine Choppy, and Jean-Claude Royer. Une nouvelle méthode
pour la spécification en LOTOS. Research Report 170, Institut de Recherche en
Informatique de Nantes, Février 1998. /papers/rr170.ps.gz in Poizat’s web page.

[26] Pascal Poizat, Christine Choppy, and Jean-Claude Royer. Concurrency and Data
Types: A Specification Method. An Example with LOTOS. In J. Fiadeiro, editor,
Recent Trends in Algebraic Development Techniques, Selected Papers of the 13th
International Workshop on Algebraic Development Techniques WADT’98, volume
1589 of Lecture Notes in Computer Science, pages 276–291, Lisbon, Portugal,
1999. Springer-Verlag.

[27] Pascal Poizat, Christine Choppy, and Jean-Claude Royer. From Informal Require-
ments to Object Oriented Code using Structured Concurrent Sequential Commu-
nicating Automata. Research Report, Institut de Recherche en Informatique de
Nantes, 1999.

[28] Graeme Smith. A Fully-Abstract Semantics of Classes for Object-Z. Formal
Aspects of Computing, 7(E):30–65, 1995.

[29] Rational Software and al. Unified Modeling Language, Version 1.1. Technical
report, Rational Software Corp, http://www.rational.com/uml, September 1997.

[30] The Raise Method Group. The RAISE Development Method. The Practitioner
Series. Prentice-Hall, 1995.

[31] K. Turner. Relating architecture and specification. Computer Networks and ISDN
Systems, 29(4):437–456, 1997.

[32] Kenneth J. Turner, editor. Using Formal Description Techniques, An introduction
to Estelle, Lotos and SDL. Wiley, 1993.

[33] C.A. Vissers, G. Scollo, M. Van Sinderen, and E. Brinksma. Specification styles
in distributed systems design and verification. Theoretical Computer Science,
(89):179–206, 1991.

A Framework for Defining Object-Calculi
Extended Abstract

Frédéric Lang, Pierre Lescanne, and Luigi Liquori

École Normale Supérieure de Lyon
Laboratoire de l’Informatique du Parallélisme

46, Allée d’Italie, F–69364 Lyon Cedex 07, FRANCE
E-mail: {flang,plescann,lliquori}@ens-lyon.fr

Abstract. In this paper, we give a general framework for the foundation of an
operational (small step) semantics of object-based languages with an emphasis
on functional and imperative issues. The framework allows classifying very nat-
urally many object-based calculi according to their main implementation tech-
niques of inheritance, namely delegation and embedding, and their particular
strategies. This distinction comes easily from a choice in the rules. Our frame-
work is founded on two previous works: λObj+, a version of the Lambda Calcu-
lus of Objects of Fischer, Honsell, and Mitchell, for the object aspects, and λσa

w

of Benaissa, Lescanne, and Rose, for the description of the operational semantics
and sharing. The former is the formalization of a small delegation-based language
which contains both lambda calculus and object primitives to create, update, and
send messages to objects, while the latter is designed to provide a generic de-
scription of functional language implementations and is based on a calculus of
explicit substitution extended with addresses to deal with memory management.
The framework is presented as a set of modules, each of which captures a par-
ticular aspect of object-calculi (functional vs. imperative, delegation vs. embed-
ding, and any combination of them). Above all, it introduces and illustrates a
new promising approach to formally reason about the operational semantics of
languages with (possibly) mutable states.

Keywords. Design of functional and imperative object-oriented languages, oper-
ational semantics, implementation issues, memory management.

1 Introduction

An (operational) semantics for a programming language is aimed to help the program-
mer and the designer of a compiler to better understand her (his) work and possibly
to prove mathematically that what she (he) does is correct. For instance, the designers
of Java proposed a description of an operational semantics of the Java Virtual Ma-
chine [16], but unfortunately its informal character does not fulfill the above aim. In
this paper, we set the foundation for a formal description of the operational seman-
tics (small step) of object-based languages. One main characteristic of our framework,
called λObj+a, is that it induces an easy classification of the object-based languages
and their semantics, making a clear distinction between functional and imperative lan-
guages. Moreover, the present formal system is generic, which means that it presents

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 963–982, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

964 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

many semantics in one framework which can be instantiated to conform to specific
wishes. For this, it proposes a set of several modules, each of which captures a partic-
ular aspect of object-calculi (functional vs. imperative1, delegation vs. embedding, and
any combination of them). Genericity comes also from a total independence from the
strategy, the latter being sometimes crucial when dealing with imperative semantics.

The framework λObj+a describes both static and dynamic aspects of object-oriented
languages. Static aspects are the concepts related to the program, namely its syntax,
including variable scoping, and above all its type system. The type system (not pre-
sented in this paper for obvious lack of space) avoids the unfortunate run-time er-
ror message-not-understood, obtained when one sends a message, say m, to
an object which has no m in its protocol. Dynamic aspects are related to its behavior
at run-time i.e., its operational semantics, also known as the implementation choices.
In addition, this paper introduces in the world of the formal operational semantics of
object-based languages, the concepts of addresses and simultaneous rewriting, which
differ from the classical match and replace technique of rewriting.

“Road Map”. Section 2 sets the context of the framework λObj+a. Section 3 addresses
mostly the implementation aspects of object-based languages. Section 4 introduces an-
cestors of λObj+a, namely λObj+, a slightly modified version of the Lambda Calculus
of Objects, and λσa

w, a weak lambda-calculus with explicit substitution and addresses.
Section 5 is the real core of the paper as it details the notion of simultaneous rewriting,
and presents λObj+a through its four modules L, C, F, and I. Section 6 gives some
examples motivating our framework. Finally, Section 7 compares our framework with
some related works.

A richer version of this paper (containing some open problems) can be found in [14].

2 The Context of λObj+a

The framework λObj+a is founded on an object-based calculus, enriched with explicit
substitution and addresses. We explain this in the current section.

2.1 Object-Based Calculi

The last few years have addressed the foundation of object-oriented languages. The
main goal of this research was twofold: to understand the operational behaviour of
object-oriented languages and to build safe and flexible type systems which analyze
the program text before execution. In addition (and not in contrast) to the traditional
class-based view, where classes are seen as the primitive notion to build object in-
stances, recent years have seen the development of the, so called, object-based (or
prototype-based) languages. Object-based languages can be either viewed as a novel
object-oriented style of programming (such as in Self [22], Obliq [6], Kevo [19], Cecil

1 The terminology “functional” and ”imperative” seems to be more or less classical in the scien-
tific object-oriented community. However, we could use “calculi of non-mutable (resp. muta-
ble) objects” as synonymous for functional (resp. imperative) calculi.

A Framework for Defining Object-Calculi 965

[7], O-{1,2,3} [1]) or simply as a way to implement the more traditional class-based
languages. In object-based languages there is no notion of class: the inheritance takes
place at the object level. Objects are built “from scratch” or by inheriting the methods
and fields from other objects (sometimes called prototypes). Most of the theoretical pa-
pers on object-based calculi address the study of functional object-calculi; nevertheless,
it is well-known that object-oriented programming is inherently “imperative” since it is
based on a notion of “mutable state”. However, those papers are not a simple exer-
cise of style, since, as stated in [1, 5], it may happen that a type system designed for
a functional calculus can be “well fitted” for an imperative one. Among the proposals
firmly setting the theoretical foundation of object-oriented languages, two of them have
spurred on an intense research.

The Object Calculus of Abadi and Cardelli [1], is a calculus of typed objects of fixed
size in order to give an account of a standard notion of subtyping. The operations al-
lowed on objects are method invocation and method update. The calculus is computa-
tionally complete since the lambda calculus can be encoded via suitable objects. The
calculus has both functional and imperative versions, the latter being obtained by sim-
ply modifying (with the help of a strategy and suitable data structures) the dynamic
semantics of the former. Classes can be implemented using the well-known record-
of-premethods approach: a class A is an object which has a method called new creat-
ing an instance a of the class and a set of “premethods” which become real methods
when embedded (i.e., installed) into a. Class inheritance can be treated by “reusing”
the premethods of the superclass.

The Lambda Calculus of Objects λObj of Fisher, Honsell, and Mitchell [11] is an un-
typed lambda calculus enriched with object primitives. Objects are untyped and a new
object can be created by modifying and/or extending an existing prototype object. The
result is a new object which inherits all the methods and fields of the prototype. This
calculus is also (trivially) computationally complete, since the lambda calculus is built
in the calculus itself. Classes can also be implemented in λObj: in a simplified view,
a class A has a method new which first creates an instance b of the superclass B of A
and then adds (or updates) this instance with all the fields/methods declared in A. In [5],
an imperative version of λObj featuring an encapsulation mechanism obtained via ab-
stract data types, was introduced. In [9], a modified version of λObj, called λObj+ (see
Subsection 4.1), was introduced together with a more powerful type system.

2.2 Explicit Substitution Calculi and Addresses

Explicit Substitution Calculi (see for instance [2, 15]) were invented in order to give
a finer description of operational semantics of the functional programming languages.
Roughly speaking, an explicit substitution calculus fully includes the meta substitution
operation as part of the syntax, adding suitable rewriting rules to deal with it. These
calculi give a good description of implementations by modeling the concept of closure,
but do not give an account of the sharing needed in lazy functional languages imple-
mentations. In [8], a weak lambda-calculus of explicit substitution, called λσw, was

966 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

introduced; here weak means a calculus in which one can not compute inside abstrac-
tions. In [4], an extension of λσw , called λσa

w , was presented (see Subsection 4.2); this
calculus added the notion of address and simultaneous rewriting, introduced by Rose
in his thesis [18]. Addresses are global annotations on terms, which allow to handle
sharing of arguments.

2.3 The Framework

The framework λObj+a is founded on λObj+ for the object aspects, to which we add
addresses and explicit substitution, following the lines of λσa

w . The reason why we are
interested in addresses in the context of an object-based calculus is not only their ability
to express sharing of arguments, as in lazy languages, but much more because objects
are typical structures which need to be shared in a memory, independently of the chosen
strategy.

The framework λObj+a deals also with graphs. As a positive consequence of having
addresses, the technique of “stack and store” used to design static and dynamic features
of imperative languages [10, 20, 24, 1, 5] is substituted in our framework by a technique
of graphs (directed and possibly cyclic) which can undergo destructive updates through
mutation of objects. This makes our framework more abstract, as it involves no par-
ticular structure for computing. Moreover it provides a small step semantics of object
mutation. This is in fact a generalization of Wadsworth’s graph reduction technique of
implementation of functional languages [23, 21], which, by essence, forbids destructive
updates. Moreover, our graphs are represented as special terms, called addressed terms,
exploiting the idea of simultaneous rewriting, already mentioned in [18, 4], and slightly
generalized in this paper (see [13]).

The framework λObj+a is much more than a simple calculus. One of the conse-
quences of this abstraction is that λObj+a allows to define many calculi. A specific
calculus is therefore a combination of modules plus a suitable strategy. Hence, what
makes our approach original are the following features: genericity, independence of the
strategy, and capture of both dynamic and static aspects of a given language. Thanks
to these features, our framework handles in a unified way and with a large flexibil-
ity, functional and imperative object-oriented languages, using both embedding- and
delegation-based inheritance techniques, and many different evaluation strategies.

3 Implementation of Object-Based Languages

While issues related to the soundness of the various type systems of object-calculi are
widely studied in the literature, a few papers address how to build formally a general
framework to study and implement inheritance in the setting of object-based calculi.
Among the two main categories of object-based calculi (i.e., functional and imperative
ones, or with non-mutable and with mutable objects) there are two different techniques
of implementation of inheritance, namely the embedding-based and the delegation-
based ones, studied in this section.

The following schematic example will be useful to understand how inheritance can
be implemented using the embedding-based and the delegation-based techniques.

A Framework for Defining Object-Calculi 967

Example 1. Consider the following (untyped) definition of a “pixel” prototype.

object pixel is
x:=0; y:=0; onoff:=true;
set(a,b,c){((self.x:=a).y:=b).onoff:=c}

end

Consider the following piece of code.

let p=clone(pixel) in
let q=p.set(a,b,c):={((self.x:=self.x*a).y:=self.y*b).onoff:=c}
in let r=q.switch():={self.onoff:=not(self.onoff)}

where := denotes both a method override and an object extension.

In the following we discuss the two models of implementation of inheritance and we
highlight the differences between functional versus imperative models of object-calculi.
Before we start, we explain (rather informally) the semantics of the clone operator,
present in many real object-oriented programming languages.

3.1 The clone Operator

The semantics of the clone operator changes depending on the delegation-based or
embedding-based technique of inheritance, and is orthogonal to the functional or im-
perative features of the framework. In delegation-based inheritance, a clone operation
produces a “shallow” copy of the prototype i.e., another object-identity which shares
the same object-structure as the prototype itself. On the contrary, in embedding-based
inheritance, a clone operation produces a “hard copy” of the prototype, with a proper
object-identity and a proper object-structure obtained by “shallowing” and “refreshing”
the object-structure of the prototype. This difference will be clear in the next subsec-
tions which show possible implementations of the program of Example 1.

3.2 Functional Object-Calculi

As known, functional calculi lack a notion of mutable state. Although people feel that
object-calculi have only little sense in functional setting, we will show in this paper
that they are worth studying and that it may be possible to include an object calculus in
a pure functional language, like Haskell [17], with much of the interesting features of
objects.

Delegation-based Inheritance. The main notion is this of object since there are no
classes. Some objects are taken as prototypical in order to build other objects. An “up-
date” operation (indicated in the example as :=) can either override or extend an ob-
ject with some fields or methods. A functional update always produces another object,
which owns a proper “object-identity” (i.e., a memory location containing a reference
to the object-structure, represented as a small square in figures). The result of an update
is a “new” object, with a proper object-identity, which shares all the methods of the
prototype except the one affected by the update operation. A clone operator builds
another object with a proper object-identity which shares the structure of the proto-
type. By looking at Figure 1, one sees how Example 1 can be implemented using a
delegation-based technique.

968 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

r

y 0

x 0

empty

ppixel

switch

set

set

code of set

new code of set

code of switch

onoff true

q

Fig. 1. Functional Delegation-based Inheritance.

r

pixel

switch

set

p

set

y 0

x 0

empty

y 0

x 0

empty

q

set

code of set
code of set

onoff true

code of switch

new code of set

true onoff

Fig. 2. Functional Embedding-based Inheritance.

Embedding-based Inheritance. In embedding-based inheritance a new object is built by
a “hard copy” of the prototype; in fact, clone really builds another object with a proper
object-identity and a proper copy of the object-structure of the prototype. By looking at
Figure 2 one can see how Example 1 can be implemented using an embedding-based
technique.

3.3 Imperative Object-Calculi

Imperative object-calculi have been shown to be fundamental in describing implemen-
tations of class-based languages like Smalltalk and Java. They are also essential as
foundations of object-based programming languages like Obliq and Self. The main goal
when one tries to define the semantics of an imperative object-based language is to say
how an object can be modified while maintaining its object-identity. Particular atten-
tion must be paid to this when dealing with object extension. This makes the semantics

A Framework for Defining Object-Calculi 969

p.set(a,b,c):=
q

r

clone(pixel)
q.switch():+ ...

...

onoff

y 0

x 0

set

p

switch

code of switch

new code of set

set

empty

pixel

true

code of set

Fig. 3. Imperative Delegation-based Inheritance.

q

r

clone(pixel)

q.switch():+ ...

p.set(a,b,c):= ...

x 0

y 0

onoff true

set

code of set

x 0

y 0

onoff true

set

code of set

p

code of switch

set

new code of set

emptyempty

pixel

switch

Fig. 4. Imperative Embedding-based Inheritance.

of the imperative update operation subtle because of side effects. Figure 3 shows the
implementation of Example 1 with delegation-based inheritance, and Figure 4 with
embedding-based inheritance. Dashed lines represent pointers due to the evaluation of
some expression indicated as annotation. Each dashed line cancels the others i.e., there
is only one dashed line at each moment. In both cases, observe how the override of the
set method and the addition of the switch method change the object structure of p
(later on also called q,r) without changing its object-identity.

4 Some Ancestors of λObj+a

In this section we give a gentle introduction to calculi which inspired our framework,
namely λObj+and λσa

w.

970 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

Syntax.

M, N ::= λx.M |MN | x | c (Lambda Calculus)

| 〈 〉 | 〈M ← m = N〉 |M ⇐ m (Objects)

| Sel(M, m, N) (Auxiliary)

Operational Semantics.

(λx.M)N →M{N/x} (Beta)

M ⇐ m→ Sel(M, m, M) (Select)

Sel(〈M ← m = N〉, m, P)→ NP (Success)

Sel(〈M ← n = N〉, m, P)→ Sel(M, m, P) m 6= n (Next)

Fig. 5. The Lambda Calculus of Objects with Self-inflicted Extension λObj+.

4.1 The Lambda Calculus of Objects with Self-Extension λObj+

The calculus λObj+ [9] is a calculus in the style of λObj. The type system of λObj+

allows to type the, so called, “self-inflicted extensions” i.e., the capability of objects to
extend themselves upon receiving a message. The syntax and the operational semantics
are defined in Figure 5. Observe that the (Beta) rule is given using the meta substitution
(denoted by {N/x}), as opposed to the explicit substitution used in λObj+a. The main
difference between the syntax of λObj+ and that of λObj [11] lies in the use of a single
operator ← for building an object from an existing prototype. If the object M con-
tains m, then← denotes an object override, otherwise← denotes an object extension.
The principal operation on objects is method invocation, whose reduction is defined by
the (Select) rule. Sending a message m to an object M containing a method m reduces
to Sel(M, m, M). The arguments of Sel in Sel(M, m, P) have the following intuitive
meaning (in reverse order):

– P is the receiver (or recipient) of the message;
– m is the message we want to send to the receiver of the message;
– M is (or reduces to) a proper sub-object of the receiver of the message.

By looking at the last two rewrite rules, one may note that the Sel function “scans”
the recipient of the message until it finds the definition of the method we want to use.
When it finds the body of the method, it applies this body to the recipient of the message.

Example 2 (An object with “self-inflicted extension”). Consider the object self ext
defined as follows: self ext

4
= 〈〈 〉 ← add n = λself.〈self ← n = λs.1〉〉. If we

send the message add n to self ext, then we get the following computation:

self ext⇐ add n −→ Sel(self ext, add n, self ext)
−→ (λself.〈self← n = λs.1〉) self ext

−→ 〈self ext← n = λs.1〉,

A Framework for Defining Object-Calculi 971

Terms.

M, N ::= λx.M |MN | x | c (Lambda Calculus)

U, V, Ea ::= M [s]a | (UV)a (Evaluation Contexts)

s ::= U/x; s | id (Substitution)

where a ranges over an infinite set of addresses.

Rules.

(
(λx.M)[s]b U

)a →M [U/x; s]a (B)

(MN)[s]a → (M [s]b N [s]c)a b, c fresh (App)

x[Eb/x; s]a → Eb (FVarG)

x[Eb/x; s]a → Ea (FVarE)

x[U/y; s]a → x[s]a x 6≡ y (RVar)

Fig. 6. The Weak Lambda Calculus with Explicit Substitution and Addresses λσa
w .

resulting in the method n being added to self ext. On the other hand, if we send
the message add n twice to self ext instead, the method n is only overridden with
the same body; hence we obtain an object which is “operationally equivalent” to the
previous one.

4.2 The Weak Lambda Calculus with Explicit Substitution and Addresses λσa
w

We introduce the weak lambda calculus with explicit substitution and addresses λσa
w

[4], where for the sake of simplicity, and in the style of Rose [18], we replace de Bruijn
indexes with variable names. By “weak”, we mean a lambda calculus in which reduc-
tions may not occur under abstractions, as standard in many programming languages.
The syntax and the rules of this calculus are given in Figure 6. The explicit substitution
gives an account of the concept of closure, while addresses give an account of sharing.
Both are essential in efficient implementations of functional languages.

There are three levels of expressions. The first level is static. It gives the syntax of
programs code (terms written M, N, . . .), and it contains no address. The second and
third levels are dynamic. They contain addresses and they are the level of evaluation
contexts, and the level of substitutions. Evaluation contexts (terms written U, V, . . .)
model states of abstract machines. An evaluation context contains the temporary struc-
ture needed to compute the result of an operation. It denotes a term closed by a list of
bindings also called substitution. There is an evaluation context associated with each
construct of the language. Addresses (denoted by a, b, . . .) label evaluation contexts.
Intuitively, an address a models a reference to a unique term graph which is denoted

972 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

as a standard term by simply unraveling it. The sharing information is kept through
addresses, as superscripts of terms. This leads to two associated notions, namely ad-
missible terms and simultaneous rewriting. An admissible term is a term in which there
is not two different subterms at the same address. In the following, we only deal with
admissible terms. A simultaneous rewriting (see also Subsection 5.1) means that, if a
subterm U at address a is reduced to a term V , then all the subterms at the same ad-
dress a are reduced in the same step to V . In other words, the simultaneous rewriting is
a rewriting relation meant to preserve admissibility.

To be seen as a program i.e., to enable a computation, a closed lambda term M
must be given a substitution s (also called environment), initially the empty substitu-
tion id, and a location a to form an evaluation context called addressed closure M [s]a.
The environment s is the list of bindings of the variables free in M . To reduce terms,
environments have to be distributed inside applications (App) until reaching a function
or a variable. Hence, applications of weak lambda terms are also evaluation contexts.
In this step of distributing the environment, “fresh” addresses are provided to evalua-
tion contexts. A fresh address is an address unused in the global term. Intuitively, the
address of an evaluation context is the address where the result of the computation will
be stored. Since in a closure M [s]a, the terms in s are also addressed terms, it follows
that the duplication of s in (App) induces duplications of lists of pointers. Not only a
duplication does not loose sharing, but it increases it.

When an abstraction is reached by a substitution, one gets a redex ((λx.M)[s]b U)a

(provided there is an argument U), hence one can apply the rule (B). This redex is
reduced locally i.e., U is not propagated to the occurrences of x, but the environment is
just enlarged with the new pair U/x. Moreover, the result of the reduction is put at the
same location as this of the redex in the left hand side, namely a. As a matter of fact,
the result of the rewriting step is shared by all the subterms that occur at address a.

When a variable x is reached, and the environment scanned by several steps of
rule (RVar), x has eventually to be replaced by the evaluation context it refers to. The
calculus λσa

w proposes two rules to do this, namely (FVarG), and (FVarE). The reason
is that a choice has to be made on the address where to “store” the right hand side: it
may be either the address of the evaluation context bound to x (FVarG), or the address
of the main evaluation context (FVarE). In the first case, a redirection of the pointer
which refers to the address a is performed toward the address b (where the term E lies),
whereas in the latter case a copy of the part of the term E from address b to address a
is made. In both cases, the result of the rewriting step is shared.

In the case of a copy, further sharing between the original node and the copied node
will not be possible, but this has no influence on efficiency if the copied node denoted a
value i.e., a term of the form (λx.M)[s]a or c[s]a, because there may be no more further
reductions on them.

A detailed discussion on this choice of rules can be found in [3, 4].

Example 3. The term ((V U)a U)b where U ≡ ((λx.x)[id]c true[id]d)e and V is any
evaluation context, may reduce in one step by rule (B) of Figure 6 to

((V x[true[id]d/x; id]e)a x[true[id]d/x; id]e)b,

A Framework for Defining Object-Calculi 973

but not to e.g., ((V x[true[id]d/x; id]e)a ((λx.x)[id]c true[id]d)e)b since the two distinct
underlined subterms have a same address, namely e.

If we set V to (λy.λz.y)[id]f , then the computation may proceed as follows:

(((λy.λz.y)[id]f x[true[id]d/x; id]e)a x[true[id]d/x; id]e)b

∗−→ y[x[true[id]d/x; id]e/z; x[true[id]d/x; id]e/y; id]b (B+B)

→ y[x[true[id]d/x; id]e/y; id]b (RVar)

→ x[true[id]d/x; id]e (FVarG)

→ true[id]e, (FVarE)

where we chose to use both (FVarG) and (FVarE) for the sake of illustration.

All along this paper, we use the helpful intuition that an address corresponds to a
location in a physical memory. However, we warn the reader that this intuition may
be error prone. Access and allocation in a physical memory are expensive and often
avoidable. Since a fresh address is given to every new evaluation context, the reader
may think that we are not aware of this cost and have in mind an implementation which
overuse locations. In fact, addresses capture more than locations. This has been shown
in [12] where the states of an environment machine (with code, environment, stacks,
and heap) are translated into λσa

w. This translation showed that many addresses are
artificial i.e., do not have a physical reality in the heap, but correspond to components
of states. It was also shown that the abstraction of sharing with addresses fits well with
the environment machine, because it captures the strategy of the machine. The moral is
that everything which could have a physical location, in a particular implementation,
has an address in the framework.

5 The Syntax and the Operational Semantics of λObj+a

This section presents our framework. It is split into separated modules, namely L for
the lambda calculus, C for the common operations on objects, F for the functional
object part, and I for the imperative object part. All these modules can be combined,
giving the whole λObj+a. The union of modules L, C, and F can be understood as the
the functional fragment of λObj+a. As described in Figure 7, we find in λObj+a the
same levels as in λσa

w , plus a dynamic level of internal structures of objects (or simply
object-structures).

To the static level, we add some constructs: constructors of objects, method invo-
cations, and explicit duplicators. There are operations to modify objects: the functional
update, denoted by←, and the imperative update, denoted by←: . An informal seman-
tics of these operators has been given in Section 3. As in [9], these operators can be
understood as extension as well as override operators, since an extension is handled
as a particular case of an override. One has also two imperative primitives for “copy-
ing” objects: shallow(x) is an operator which gives a new object-identity to the object
pointed by x but still shares the same object-structure as the object x itself; refresh(x)

974 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

Code

M, N ::= λx.M | MN | x | c (Lambda Calculus)

| M ⇐ m (Message Sending)

| 〈 〉 (Object Initialization)

| 〈M ← m = N〉 | 〈M ←: m = N〉 (Object Updates)

| shallow(x) | refresh(x) (Duplication Primitives)

where x ranges over variables, c ranges over constants and m ranges over methods.

Evaluation Contexts

U, V ::= M [s]a (Closure)

| (UV)a (Application)

| (U ⇐ m)a (Message Sending)

| 〈U ← m = V 〉a | 〈U ←: m = V 〉a (Object Updates)

| dOea | •a (Objects)

| Sela
(
O, m, U

)
(Lookup)

where a ranges over an infinite set of addresses.

Object-structures

O ::= 〈 〉a | 〈O ← m = V 〉a | •a (Internal Objects)

| copy(O)a (Duplicator)

Environments

s ::= U/x; s | id (Substitution)

Fig. 7. The Syntax of λObj+a.

A Framework for Defining Object-Calculi 975

is a kind of dual to shallow(x) as it makes a “hard copy” of the object-structure of x,
and reassigns this structure to x. Therefore, the object-identity of x is not affected.

Similarly, some constructs are added as evaluation contexts. The evaluation con-
text dOea represents an object whose internal object-structure is O and whose object-
identity is d ea. In other words, the address a plays the rôle of an entry point of the
object-structure O. An expression like Sela(O, m, dOeb) is an evaluation context (at
address a). It looks up in the object-structure O of the receiver (represented by an eval-
uation context dOeb), gets the method body and applies it to the receiver itself. The
term •a is a back pointer [18], its rôle is explained in Subsection 5.5 when we deal with
the cyclic aspects of objects i.e., the possibility to create “loops in the store”. Only •a
can occur inside a term having the same address a, therefore generalizing our informal
notion of admissible term and simultaneous rewriting.

Internal objects O model the object-structures in memory. They are permanent
structures which may only be accessed through the address of an object (denoted by
a in dOea), and are never destroyed nor modified (but by the garbage collector, if there
is one). Our calculus being inherently delegation-based, objects are implemented as
linked lists (of fields/methods). Embedding-based inheritance can however be simulated
thanks to the refresh(x) and shallow(x) operators. In particular, refresh(x) is defined
in terms of an auxiliary operator called copy(O) which makes a copy of the object-
structure. Again, because of imperative traits, object-structures can contain occurrences
of •a.

5.1 The Simultaneous Rewriting

Simultaneous rewriting [18, 3] is a key concept in this paper and we would like to warn
the reader not to take it as just a slight variant of the usual term rewriting. Actually, due
mostly to imperative features introduced in module I, simultaneous rewriting goes much
beyond the classical match and replace paradigm of the traditional first order rewriting
and must be defined extremely carefully in order to preserve:

Horizontal Admissibility, i.e., all the subterms at the same address should be equal
and rewritten together, as shown in Example 3.

Vertical Admissibility, i.e., a term can contain its own address a as the address of one
of its proper subterms, only if this subterm is a •a. This ensures that back-pointers
for terms at address a are only denoted by the term •a.

Roughly speaking, in order to maintain these requirements the definition proceeds as
follows to rewrite a term U into V .

1. Match a subterm of U at address say a with a left hand side of a rule, compute the
corresponding right hand side and create the new fresh addresses (if required), then
replace all the subterms of U at address a with the obtained right hand side.

2. Replace some subterms by back-pointers (a fold operation), or some back-pointers
by particular terms (an unfold operation), following some specific techniques (see
[13]), so that the result is a vertically admissible term.

976 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

Instantiation

〈 〉[s]a → d〈 〉bea b fresh (OI)

Message Sending

(M ⇐ m)[s]a → (M [s]b ⇐ m)a b fresh (CP)
(dOeb ⇐ m

)a → Sela
(
O, m, dOeb) (SE)

Sela
(〈O ← m = V 〉b, m, U

)→ (V U)a (SU)

Sela
(〈O ← n = V 〉b, m, U

)→ Sela
(
O, m, U

)
(NE)

Fig. 8. The Common Object Module C.

5.2 The Module L

The module L is the calculus λσa
w, and needs no comments.

5.3 The Common Object Module C

The Common Object module is shown in Figure 8. It handles object instantiation and
message sending. Object instantiation is characterized by the rule (OI) where an empty
object is given an object-identity. More sophisticated objects may then be obtained by
functional or imperative update. Message sending is formalized by the four remain-
ing rules. The rule (CP) which propagates a given substitution into the receiver of the
message; apply this rule means to “install” the evaluation context needed to actually
proceed. The meaning of the remaining rules is quite intuitive: (SE) performs message
sending, while (SU), and (NE) perform the method-lookup. We can observe here the
similarity with the operational semantics of λObj+.

Functional Update

〈M ← m = N〉[s]a → 〈M [s]b ← m = N [s]c〉a b, c fresh (FP)

〈dOeb ← m = V 〉a → d〈O ← m = V 〉cea c fresh (FC)

Fig. 9. The Functional Object Module F.

A Framework for Defining Object-Calculi 977

5.4 The Functional Object Module F

The Functional Object module gives the operational semantics of a calculus of non mu-
table objects. It contains only two rules (Figure 9). Rule (FP) “pre-computes” the func-
tional update, installing the evaluation context needed to actually proceed. Rule (FC)
describes the actual update of an object of identity b. The update is not made in place
and no mutation is performed, but the result is a new object (with a different object-
identity). This is why we call this operator “functional” or “non mutating”.

Imperative Update

〈M ←: m = N〉[s]a → 〈M [s]b ←: m = N [s]c〉a b, c fresh (IP)

〈dOeb ←: m = V 〉a → d〈O ← m = V 〉ceb c fresh (IC)

Cloning Primitives

shallow(x)[U/y; s]a → shallow(x)[s]a x 6≡ y (VS)

shallow(x)[dOeb/x; s]a → dOea (SC)

refresh(x)[U/y; s]a → refresh(x)[s]a x 6≡ y (RS)

refresh(x)[dOeb/x; s]a → dcopy(O)ceb c fresh (RE)

copy(〈 〉b)a → 〈 〉a (CE)

copy(〈O ← m = V 〉b)a → 〈copy(O)c ← m = V 〉a c fresh (CO)

Fig. 10. The Imperative Object Module I.

5.5 The Imperative Object Module I

The Imperative Object module (Figure 10) contains rules for the mutation of objects
(imperative update) and cloning primitives. Imperative update is formalized in a way
close to the functional update. Rules (IP) and (IC) are much like (FP) and (FC); they
differ in address management and they are self-explaining. Indeed let us look at the
address b in rule (IC). In the left hand side, b is the identity of an object dOe, when in
the right hand side it is the identity of the whole object modified by the rule. Since b may
be shared from anywhere in the context of evaluation, this modification is observable
non locally, hence a mutation is performed.

It is worth to note that the rule (IC) may create cycles and therefore back pointers.
Intuitively, when we deal with imperative traits, we can create non admissible terms
because of cyclic references. Every reference to dOeb in V must be replaced by •b to
avoid d〈O ← m = V 〉eb to contain itself.

978 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

The primitives for cloning are shallow(x) and refresh(x).

– A shallow(x) creates an object-identity for an object, but x and shallow(x) share
the same object-structure. The rule (SC) can be seen as the imperative counterpart
of the rule (FVarE) of module L in case Eb ≡ dOeb, for a given b.

– A refresh(x) creates for x a new object-structure isomorphic to the previous one.
A refresh(x) calls, through the rule (RE), an auxiliary operator named copy. A
copy(O) recursively performs a copy of the linked list, via the rules (CE), and
(CO).

An intuitive representation of the behaviour of those operators is given in Figure 11.

6 Understanding λObj+a

6.1 Examples of Terms

Example 4. The term 〈d〈 〉aeb ←: m = (λself.x)[d〈 〉aeb/x; id]c〉d does not reduce to

d〈〈 〉a ← m = (λself.x)[d〈 〉aeb/x; id]c〉deb

(which is a non admissible term) but instead to

〈d〈 〉a ← m = (λself.x)[•b/x; id]c〉deb.

It is crucial to note that the sense of the two terms is essentially different, since the latter
expresses a loop in the store whereas the former does not mean anything consistent,
since two semantically distinct subterms have the same address b.

Example 5. The term 〈d〈〈 〉a ← m = M [•d/x; id]b〉ced ← n = N [id]e〉f does not re-
duce to

d〈〈〈 〉a ← m = M [•d/x; id]b〉c ← n = N [id]e〉gef

(which is not admissible) but instead to

d〈〈〈 〉a ← m = M [d •c ed/x; id]b〉c ← n = N [id]e〉gef .

In this last term, the back pointer •d has been unfolded following the definition of
simultaneous rewriting i.e., replaced by the term it refers to, namely d •c ed (c is still
in the context of the subterm, and therefore •c is not unfolded). This unfolding is due
to the removal of the surrounding address d, which otherwise could lead to a loss of
information on the shape of the term associated to the address d.

A Framework for Defining Object-Calculi 979

6.2 Examples of Derivations

Example 6. Let self ext be the term defined in Example 2, and N denote the subterm
λself.〈self← n = λs.1〉.

(self ext⇐ add n)[id]a ∗−→ (〈〈 〉[id]d ← add n = N [id]c〉b ⇐ add n)a (1)

→ (〈d〈 〉eed ← add n = N [id]c〉b ⇐ add n)a (2)

→ (d 〈〈 〉e ← add n = N [id]c〉f︸ ︷︷ ︸
O

eb ⇐ add n)a (3)

→ Sela(O, add n, dOeb) (4)

→ ((λself.〈self← n = λs.1〉)[id]c dOeb)a (5)

→ 〈self← n = λs.1〉[dOeb/self; id]a (6)

∗−→ 〈dOeb ← n = λs.1[dOeb/self; id]g〉a (7)

→ d〈O ← n = λs.1[dOeb/self; id]g〉hea (8)

In (1,2), two steps are performed to distribute the environment inside the expression by
rules (CP) and (FP), then the empty object is given an object-structure and an object
identity (OI). In (3), this new object is functionally extended (FC), hence it shares the
structure of the former object but has a different object-identity. In (4,5), two steps are
performed to look-up the method add n (rules (NE) and (SU)). Step (6) is an application
of (B). In (7), the environment is distributed inside the functional extension (FP), and
then self is replaced by the object it refers (FVarG). Step (8) is simply an application
of rule (FC) i.e., the proceeding of a functional extension. The final term contains some
sharing, as the object-structure denoted by O and rooted at address b occurs twice.

Example 7. We give a similar example, where a functional update is replaced by an
imperative one. Let self ext′ denote the term 〈〈 〉 ← add n = N ′〉, where N ′ is
λself.〈self←: n = λs.1〉.

(self ext′ ⇐ add n)[id]a ∗−→ (d 〈〈 〉e ← add n = N ′[id]c〉f︸ ︷︷ ︸
O′

eb ⇐ add n)a (1)

∗−→ 〈dO′eb ←: n = λs.1[dO′eb/self; id]g〉a (2)

→ d〈O′ ← n = λs.1[•b/self; id]g〉heb (3)

The first steps (1,2) are similar to the first steps (1 to 7) of the previous example. In (3),
the imperative extension is performed (IC), and a subterm replaced by •b to denote the
loop to the root, since the object in the environment has the same identity as the object
the environment belongs to.

980 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

6.3 Functional vs. Imperative (Non Mutable vs. Mutable)

The functional module F can be simulated by the imperative one I. This can be simply
done by combining the shallow(x) operation with an imperative update. Indeed, a func-
tional object obtained by inheriting the properties of a prototype can be encoded by a
shallow followed by an imperative method update. This proves the fact that F ⊆ I. The
encoding of 〈M ← m = N〉 is (λx.〈shallow(x)←: m = N〉)M .

6.4 Cloning

It is possible, using the Imperative Object module, to define a clone operation. The clone
used in Figures 2 and 4, whose intuitive semantics is illustrated in Figure 11, is defined
as follows: clone(x) 4

= (refresh◦ shallow)(x) 4
= (λy.refresh(y)) shallow(x). The clone

used in Figures 1 and 3, instead, is defined as follows: clone(x) 4
= shallow(x).

(1)

(2)

(1)

(2)

y = shallow

a

b

c

d

clone

clone

(x)= refresh(y)

(x)

y

x

(x)

Fig. 11. The embedding-based clone(x) Operator.

Since λObj+ is inherently delegation-based, it follows that an embedding-based
technique of inheritance can be encoded using the Imperative Object module I. Other
interesting operators can be defined by combining the different features of λObj+a.

7 Related Work

– The framework λObj+a generalizes a novel technique to implement programming
languages: we call this technique address-based. Addresses are attached to ev-
ery entities of our framework. The graph-based implementation technique à la
Wadsworth, as well as others, can be subsumed within our framework. A type sys-
tem can be defined quite easily by adding in the “context soup” also the type of
addresses. As such, a type soundness result can be proved relatively simply, if we
compare it with the traditional approaches of stack (a function from variables to
results) and store (a function from store locations to “closures”). It is worth to note
that the choice of the target calculus (an object based one) is not important; the
address-based technique can be used, in principle, to implement other calculi, but
it fits well to object-calculi.

A Framework for Defining Object-Calculi 981

– The framework λObj+a performs an imperative object extension: an imperative
(mutable) object is a “functional (non-mutable) internal object-structure” pointed
by an object-identity. To extend an imperative object means to functionally extend
its object-structure while keeping its object-identity. Note that the same mechanism
is used to implement method override.

Among the many imperative object calculi presented in the literature, the closest are
the one described in [1] (Chapter 10-11), and [5]. The first is the ςimp calculus of Abadi
and Cardelli, while the second is the imperative version of λObj of Fisher, Honsell, and
Mitchell. Both calculi use a stack and store technique to present the semantics of the
calculus and to prove type soundness. Both calculi have an imperative override that (in
contrast to our approach) substitutes the old body of a field/method with the new one.
Both calculi adopt a call-by-value strategy. In addition, the calculus presented in [5]
have a functional object extension. The divergence from those calculi is shown in the
following table, where s&s stands for stack and store, addr. for address-based, and c.b.v.
for call-by-value:

model override extension self-infliction strategies
[1] s&s imperative no no c.b.v.
[5] s&s imperative functional no c.b.v.

λObj+a addr. funct./imp. funct./imp. yes many

Less specifically, a work is in progress [13] to formalize in a general setting all the
notions of sharing, cycles, and mutation, mentioned in this paper.

8 Conclusions

We have defined λObj+a, a framework for object calculi which is intended to give a firm
foundation for the operational semantics of object oriented languages. Future works will
focus on specific calculi as combination of modules and strategies e.g., the functional
fragment with embedding and call-by-need, or the imperative fragment with delegation
and call-by-value. It should also be interesting to study specific aspects like typing,
strategies (see [14]) and distribution of objects across networks. Other useful extensions
of this framework should be studied, such as providing an imperative override of fields
in the style of [1, 5] i.e., a field look up and replacement. To this aim, a distinction has to
be made between fields (and may be more generally procedures or functions that do not
have a self-reference) and methods. The formalism used to describe λObj+a provides
the suited tools for such an extension.

Acknowledgement. The authors are grateful to Zine-El-Abidine Benaissa, Furio Hon-
sell, and Kristoffer Høgsbro Rose for their useful comments on this work.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
[2] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of

Functional Programming, 1(4):375–416, 1991.

982 Frédéric Lang, Pierre Lescanne, and Luigi Liquori

[3] Z.-E.-A. Benaissa. Les calculs de substitutions explicites comme fondement de
l’implantation des langages fonctionnels. PhD thesis, Université Henri Poincaré Nancy 1,
1997. In french.

[4] Z.-E.-A. Benaissa, K.H. Rose, and P. Lescanne. Modeling sharing and recursion for weak
reduction strategies using explicit substitution. In Proc. of PLILP, number 1140 in Lecture
Notes in Computer Science, pages 393–407. Springer-Verlag, 1996.

[5] V. Bono and K. Fisher. An imperative first-order calculus with object extension. In Proc.
of ECOOP, volume 1445 of Lecture Notes in Computer Science, pages 462–497. Springer-
Verlag, 1998.

[6] L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27–59, 1995.
[7] C. Chambers. The Cecil language specification, and rationale. Technical Report 93-03-05,

University of Washington, Department of Computer Science and Engineering, 1993.
[8] P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties of weak and strong calculi

of explicit substitutions. Journal of the ACM, 43(2):362–397, 1996.
[9] P. Di Gianantonio, F. Honsell, and L. Liquori. A lambda calculus of objects with self-

inflicted extension. In Proc. of OOPSLA, pages 166–178. The ACM Press, 1998.
[10] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control

and state. Theoretical Computer Science, 102, 1992.
[11] K. Fisher, F. Honsell, and J. C. Mitchell. A lambda calculus of objects and method special-

ization. Nordic Journal of Computing, 1(1):3–37, 1994.
[12] F. Lang. Modèles de la β-réduction pour les implantations. PhD thesis, École Normale

Supérieure de Lyon, 1998. In french.
[13] F. Lang, D. Dougherty, P. Lescanne, and K. H. Rose. Addressed term rewriting systems.

Research Report RR 1999-30, Laboratoire de l’Informatique du Parallélisme, École Nor-
male Supérieure de Lyon, 1999.

[14] F. Lang, P. Lescanne, and L. Liquori. A framework for defining object calculi. Research Re-
port RR 1998-51, Laboratoire de l’Informatique du Parallélisme, École Normale Supérieure
de Lyon, 1998.

[15] P. Lescanne. From λσ to λυ, a journey through calculi of explicit substitutions. In Proc. of
POPL, pages 60–69, 1994.

[16] T. Lindholm and F. Yellin. The Java Virtual Machine specification. Addison-Wesley Pub-
lishing Company, 1996.

[17] J. Peterson, K. Hammond, L. Augustsson, B. Boutel, W. Burton, J. Fasel, A. Gordon,
J. Hughes, P. Hudak, T. Johnsson, M. Jones, E. Meijer, S. Peyton Jones, A. Reid, and
P. Wadler. Haskell 1.4, a non strict purely functional language, 1997.

[18] K. H. Rose. Operational reduction models for functional programming languages. PhD
thesis, DIKU, København, 1996.

[19] A. Tailvalsaari. Kevo, a prototype-based object-oriented language based on concatenation
and modules operations. Technical Report LACIR 92-02, University of Victoria, 1992.

[20] M. Tofte. Type inference for polymorphic references. Information and Computation,
89(1):1–34, 1990.

[21] D. A. Turner. A new implementation technique for applicative languages. Software Prac-
tice and Experience, 9:31–49, 1979.

[22] D. Ungar and B. Smith, R. Self: the power of simplicity. In Proc. of OOPSLA, pages
227–241. The ACM Press, 1987.

[23] C. P. Wadsworth. Semantics and pragmatics of the lambda calculus. PhD thesis, Oxford,
1971.

[24] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38–94, 1994.

A Translation of Statecharts to Esterel

S.A. Seshia1?, R.K. Shyamasundar1, A.K. Bhattacharjee2, and
S.D. Dhodapkar2

1 School of Technology & Computer Science,
Tata Institute of Fundamental Research, Mumbai 400 005, India

shyam@tcs.tifr.res.in
2 Reactor Control Division, Bhabha Atomic Research Centre, Mumbai 400 025, India

{anup,sdd}@magnum.barc.ernet.in

Abstract. Statecharts and Esterel are two formalisms that have been
widely used in the development of reactive systems. Statecharts are a
powerful graphical formalism for system specification. Esterel is a rich
synchronous programming language with supporting tools for formal
verification. In this paper, we propose a translation of Statecharts to
Esterel and discuss such an implementation. A characteristic feature
of the translation is that deterministic Statechart programs can be ef-
fectively translated to Esterel and hence, the tools of verification of
Esterel can be used for verifying Statechart programs as well. The
translation serves as a diagnostic tool for checking nondeterminism. The
translation is syntax-directed and is applicable for synchronous and asyn-
chronous (referred to as the superstep model) models. In the paper, we
shall describe the main algorithms for translation and implementation
and illustrate the same with examples. We have built a prototype sys-
tem based on the translation. It has the advantages of the visual power
usually liked by engineers reflected in Statecharts and of a language that
has a good semantic and implementation basis such as Esterel that can
be gainfully exploited in the design of reliable reactive systems.

1 Introduction

Significant amount of research has been done in the last decade in the design
and development of reactive systems. The class of synchronous languages and
various visual formalisms are two approaches that have been widely used in the
study of reactive systems. The family of synchronous languages has based on
perfect synchrony hypothesis which can be interpreted to mean that the program
reacts rapidly enough to perceive all the external events in a suitable order and
produces the output reactions before reacting to a new input event set. Embed-
ded controllers can be abstracted in this way. Some of the prominent languages
of the family include Esterel, Lustre, Signal etc. These languages are also be-
ing used widely in industry. Significant advantages of the family of synchronous

? Current address:School of Computer Science, Carnegie Mellon University, Pitts-
burgh,PA 15217, USA, email: Sanjit.Seshia@cs.cmu.edu

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 983–1007, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

984 S.A. Seshia et al.

languages include the availability of idealized primitives for concurrency, com-
munication and preemption, a clean rigorous semantics, a powerful programming
environment with the capability of formal verification. The advantages of these
languages are nicely paraphrased by Gerard Berry, the inventor of Esterel, as
follows: What you prove is what you execute.

Statecharts is a visual formalism which can be seen as a generalization of the
conventional finite automata to include features such as hierarchy, orthogonality
and broadcast communication between system components. Being a formalism
rather than a language, there is no unique semantics in the various implemen-
tations and further Statechart specifications can be nondeterministic. For these
reasons, even though there are powerful programming environments for Stat-
echarts such as Statemate1 (which includes simulators), environments lack
formal verification tools.

Textual and graphical formalisms have their own intrinsic merits and demer-
its. For instance consider the following reactive system design:

Consider the specification of control flow (switching of tasks) among var-
ious computing tasks and interrupt service tasks in a control software.
The computing tasks switch from one to another in cyclic fashion and
are shown as substates of compute proc. The interrupt service tasks
are entered as a result of the occurrence of interrupt events. The his-
tory notation has been used to indicate that on return from interrupt
tasks, the system returns to last executing compute task (except when
event 100 ms occurs, the control returns to compute task hpt). The
event wdt int occurs on system failure and it can be verified that when
wdt isr is entered, the system will toggle between states wdt isr and
nmi isr, which is the intended behavior.

Such systems can be specified using graphical formalisms easily. The statechart
for the above system is shown in Figure 1. Arguing the formal correctness from
such descriptions, however, is not easy. Our work is concerned with methods that
will combine advantages of using graphical formalisms for the design of reactive
systems with that of using formal verification tools in textual formalisms.

In this paper, we study a method of translating Statechart formalisms into
Esterel with the idea that the powerful verification tools and code optimiza-
tion tools of Esterel can be applied for Statechart programs. Our aim has
been to provide a clean formally verifiable code for Statechart programs rather
than yet another attempt to define the semantics of Statecharts. For this reason,
we stick to using the Statemate semantics (refer [7]), which is an industrial
strength version of Statecharts. It must be noted that Esterel is deterministic
and hence, our study will confine to the deterministic class of Statecharts. How-
ever, it may be noted that the translation procedure will detect the underlying
nondeterminism if any.

We discuss algorithms of translation and discuss the implementations and
also compare our study with respect to other similar translations of Statecharts.
1 Statemate is a registered trademark of I-Logix Inc.

A Translation of Statecharts to Esterel 985

H

H

compute_proc

control_proc

hpt

nt sc dt1

dt2

rti_isr nmi_isr

net_isr wdt_isr

e_nmi

rti_int

e_hpt/s_dt1

s_dt1/e_dt1

e_dt1/s_dt2

s_dt2/e_dt2e_dt2

net_int/e_net_int

e_net_int

wdt_int

wdt_int
wdt_int

not_100ms

100ms

s_nt/e_nt

e_nt

nmi

Root

Fig. 1. Example of Switching Interrupts

The main advantage of our translation is that the code generated is verifiable
and also, Esterel optimizers can used for efficient code generation. We are
currently in the process of evaluating the quality of code generated vis-a-vis
other Statechart code generators.

The rest of the paper is organized as follows: Section 2 briefly introduces
Statecharts, Esterel and the Statemate semantics. In section 3, we discuss
how we abstract out the essential details of the Statechart and the core ideas in
the translation process, along with illustrative examples. Section 4 sums up the
work along with comparisons to other works.

2 Background

2.1 Statecharts

In this section, we present a brief overview of Statecharts (see [6] for complete
details). Statechart shown in Figure 2 (derived from the example in [6]) is used
for illustrative purposes.

Components of a Statechart:
States: These are of three types: basic states, and states and or states. Basic

States are those states which do not contain any other state, e.g. lap is a basic
state.

An Or-state is a compound state containing two or more other states. To
be in a Or-state is to be in one of its component states. In this paper, we will

986 S.A. Seshia et al.

zero

reg.

lap

on

off

H*

stopwatch

watch

regular

alarm

a

a

b
d (in off)

dd
(in on) b b

nonzero

mode state

 a

Fig. 2. Statechart of stopwatch
within a wristwatch - with deep
history

 watch

stopwatch alarm regular

 zero non-zero

 mode state

 reg lap on off

Fig. 3. AND-OR tree represen-
tation of the Statechart of wrist-
watch

use Or-State synonymously with XOR-state, i.e. we can be in only one of the
component states at a given time. An example of an Or-state in Figure 2 is
stopwatch.

An And-state is also a compound state and staying in an And-state implies
staying in each one of its substates. These are provided to model concurrency.
The substates of an And-state may contain transitions which may be executed
simultaneously. nonzero shown in Figure 2 is an And-state.
Transitions: A Transition in the Statechart is a five-tuple (source, target,
event, action, condition). The arrow on the Statechart goes from source to
target and is labelled as e[C]/a, meaning that event e triggered the transition
when condition C was valid and action a was carried out when the transition
was taken. In general, a could be a list of actions to be taken.
History and Defaults: Statecharts incorporates the idea of a history state in
a OR-State. The history state keeps track of the substate most recently visited.
This is denoted by H in a Or-state, as in the or-state stopwatch in Figure 2. A
default state, marked by a shaded circle, is a substate of an or-state such that if
a transition is made to the or-state and no other condition (e.g. enter-by-history
) is specified, then that substate must be entered by default. e.g. regular is the
default substate for the watch. In Figure 2, we have a deep-history state, which
means that a transition to that state implies being in the maximal most recent
set of basic substates. This can be represented by history states in each one of
the Or-substates.

2.2 Statemate

The informal semantics of the Statemate version of Statecharts is provided
through rules describing the semantics of a step. The main rules are listed below.
For detailed discussions, the reader is referred to [7].

A Translation of Statecharts to Esterel 987

1. Reactions to external/internal events and changes that occur in a step can
be sensed only after completion of the step.

2. Events are “live” for the duration of the step following the one in which they
occur only.

3. Calculations in a step are based on the situation at the beginning of the step
4. If two transitions are in conflict, then priority is given to that transition

whose scope is higher in the hierarchy. The scope as defined in [7] is: The
scope of a transition tr is the lowest Or-state in the hierarchy of states that is
a proper common ancestor of all sources or targets of tr, including nonbasic
states that are explicit sources or targets of transition arrows appearing in
tr.

5. Each step follows the Basic Step Algorithm as described in [7].

2.3 Esterel

The basic object of Esterel without value passing (referred to as Pure Es-
terel) is the signal. Signals are used for communication with the environment
as well as for internal communication.

The programming unit is the module. A module has an interface that defines
its input and output signals and a body that is an executable statement:

module M:
input I1, I2;
output 01, 02;
input relations
statement

end module

Input relations can be used to restrict input events and a typical exclusion rela-
tion is declared as

relation I1 # I2;

Such a relation states that input events cannot contain I1 and I2 together. That
is, it is an assertion on the behavior of the asynchronous environment.

At execution time, a module is activated by repeatedly giving it an input
event consisting of a possibly empty set of input signals assumed to be present
and satisfying the input relations. The module reacts by executing its body and
outputs the emitted output signals. We assume that the reaction is instantaneous
or perfectly synchronous in the sense that the outputs are produced in no time.
Hence, all necessary computations are also done in no time. In Pure Esterel
these computations are either signal emissions or control transmissions between
statements; in full Esterel they can be value computations and variable up-
dates as well. The only statements that consume time are the ones explicitly
requested to do so. The reaction is also required to be deterministic: for any
state of the program and any input event, there is exactly one possible output
event. In perfectly synchronous languages, a reaction is also called an instant.
There is one predefined signal, the tick , which represents the activation clock of
the reactive program.

988 S.A. Seshia et al.

Statements: Esterel has two kinds of statements: the kernel statements, and
the derived statements (those that can be expanded by macro-expansions) to
make the language user-friendly. The list of kernel statements is:

nothing

halt

emit S

stat1; stat2

loop stat end

present S then stat1 else stat2 end

do stat watching S

stat1 || stat2

trap T in stat end

exit T

signal S in stat end

Kernel statements are imperative in nature, and most of them are classical in
appearance. The trap-exit constructs form an exception mechanism fully com-
patible with parallelism. Traps are lexically scoped. The local signal declaration
“signal in stat end” declares a lexically scoped signal S that can be used for
internal broadcast communication within stat. The then and else parts are
optional in a present statement. If omitted, they are supposed to be nothing.
Informal semantics of the kernel constructs are given in Appendix C.

3 The Translation

A Statechart basically denotes a network of automata with hierarchy and other
properties. The crux of the translation lies in

(A) Extracting the hierarchy of states and transitions,
(B) Resolving the conflict in the transitions as per the Statemate semantics,
(C) Generating the code corresponding to the transitions between states,
(D) Generating code that models system state between transitions, and,
(E) Generating code that supports communication via events and actions.

In the following, we shall highlight the underlying issues of representation,
resolution of conflicts and code generation. Note that we refer to signals in the
Statechart as actions or events , while those in Esterel are referred to simply
as signals . We first present the underlying ideas and the full code generation
algorithm is presented at the end.

3.1 AND-OR Tree Representation of Statecharts

The Statechart can be represented as an AND-OR tree: being in an AND-node
meaning that the system is in each of its child nodes, while being in an OR-node
means that we are in exactly one of its child nodes. Such a representation allows
us to express the hierarchy of states of the Statecharts in a convenient manner

A Translation of Statecharts to Esterel 989

to trace the path of arbitrary transitions. This also allows us to resolve conflicts
between enabled transitions, by calculating the scope(refer to section 2.2).

For purposes of code generation, we actually use an annotated representation
of AND-OR tree described in the following section. An AND-OR tree represen-
tation of the Statechart of Figure 2 is shown in Figure 3.

Annotated AND-OR Tree Representation: The annotated AND-OR tree
keeps track of information about the Statechart pertinent for the translation,
such as (i) the states and their types, (ii) hierarchy of States, and (iii) Transitions
between states, which includes Entry and Exit points for each transition & Inner
states that need to be hidden (signals suppressed) during a transition that exits
a state.
Each node A of the AND-OR tree is represented as a seven-tuple2:

(Name, Type, Tentry, Texit, Tloop, Tdefault, Thistory), where,

Name: Name of the state, viz. A.
Type: AND, OR or BASIC.
Tentry: The set of all transitions that enter A.
Texit: The set of all transitions that exit A.
Tloop: The set of all transitions that exit one of A’s immediate child states and

enters another(possibly same) child state.
Tdefault: The single transition to an immediate child state from A.
Thistory: The set of transitions to the history state of A.

For translating Statecharts, we need to keep track of the Entry and Exit Point
Information so that the transitions including the inter-level transitions can be
enabled in the translated Esterel code preserving the Statemate semantics.
The actual information we need to keep track of will be clear by considering the
states between which the transition takes place. Transitions in Statecharts can
be broadly classified as:

T1: Between child states of the same parent.
T2: From a parent state to its (not necessarily immediate) child state.
T3: From a child state to its (not necessarily immediate) parent state.
T4: Any transition that is not of type T1, T2 or T3.

Note that all of these transitions may not occur in a given Statechart. In par-
ticular, types T2 and T3 may not occur, but the way they are translated forms
part of the translation for type T4. The book keeping of the above classes of
transitions is achieved through the Node-Labelling Algorithm by keeping the
appropriate entry and exit information in each node of the AND-OR tree.
Node-Labelling Algorithm: Assuming levels of the nodes in the tree have
already been computed (with root node having level 0, and increasing level for
its child nodes), for each transition in the set Tr of transitions, the algorithm

2 We shall use node synonymously with state and vice-versa.

990 S.A. Seshia et al.

traverses the path from source node n1 to target node n2, labelling these two
nodes as well as intermediate nodes with: (i) name of the transition, (ii) type of
the transition, viz. T1, T2, T3 or T4 and (iii) the fact whether the transition is
entering that node or exiting it. This information is used to generate code in the
translation.

S

A
C D

B

E F

t1:a/b

t2:x/a

t3:y/b

t4:a/c

Fig. 4. Example Statechart

S

B A

E F C D

t3:loop:T4

t3:exit:T4,
t4:entry:T1

t3:entry:T4,
t4:exit:T1

t1:exit:T1,
t2:entry:T1

t1:entry:T1,
t2:exit:T1,
t3:entry:T4

Fig. 5. Corresponding Node-
labelled AND-OR tree

3.2 Labelling for Transition Conflict Resolution

As per Statemate semantics, two transitions are in conflict if they exit a com-
mon state A. Further, conflict resolution is based on the following: Transition t1
has priority over transition t2 if the lowest3 Or-state exited by t1 is lower than
the lowest Or-state exited by t2.

Given this, if trigger events for t1 and t2 occur simultaneously then, we must
ensure that t2 is not taken along with its actions. This is done by a signal hide A.
On taking t1, hide A will be emitted. Therefore, before t2 is taken, a check must
be made for the presence of signal hide A.

This is indicated in the AND-OR tree by traversing the tree top-down, main-
taining a list of “hide-signals” that we need to label the nodes with. At a node,
which has at least one transition that exits it, and which is either the source of
that transition, or the last state exited by it, we label all of its children with
hide A. This is to ensure that while translating, a statement to check for the
presence of hide A is executed before any transition is taken. This will per-
form the job of hiding internal signals. The algorithm to implement hide signal
labeling is omitted here for brevity.

3.3 Code-Generation

The Code-Generation is done in a top down manner traversing the AND-OR
tree. In short, the process is as follows : (1) Declare all necessary signals, (2)
generate code for states and transitions between states, (3) generate code to

3 Lowest means closest to the root node.

A Translation of Statecharts to Esterel 991

]

 exit TA’
 end present;
] end loop
....

] end module
end trap

S

A B

C D

a/b

module A :
....

trap TA’ in [
loop [await immediate goC;

 [[C]]
 trap TC in [

 ||
 await immedaite a; await STEP; emit b; emit sig_C_to_A; exit TC
 end trap]

]

 present sig_C_to_A then

 emit sig_A_to_S;

/* module A exits and returns to S */

module S :
....
loop [await immediate goA;
 trap TA in [
 [[A]]; exit TA;
 end trap
 present sig_A_to_S then
 emit goB;
 end present
] end loop
||
loop [await immedaite goB;
 trap TB in [
 [[B]]
 end trap
] end loop

Fig. 6. Translation of a transition of type T4

do communication within the Statechart, (4) generate code to deal with special
constructs such as history substates.

Declarations: Information about the following kinds of signals is stored in the
annotated AND-OR tree and these are declared at each node while generating
code for the module corresponding to that node.

1. External Input signals.
2. Internal Input events generated during transitions out of substates of parent

node A.
3. Internal Output events(actions) generated during transitions out of substates

of parent node A.
4. If A is a substate of an Or-state with history, then a valued signal new his-

tory A is used so that the history can be changed appropriately whenever
transition to a substate Ai of A takes place.

5. Dummy signals for T2 or T4 transitions that enter A: In this case signals
of the form sig BtoA or sig AtoB would be needed, where B is either an
immediate parent or an immediate child of A. This list is built up for each
such node A, during the Node -Labelling Algorithm. These signals are used
to build a chain of signals that trigger transitions between immediate parent-
child states, and the whole chain generates the entire transition.

6. Dummy signals for T3 or T4 transitions that exit A. Similar to 5 above.

992 S.A. Seshia et al.

7. Valued History signals for all Or-sub-states having history; for each such
OR-state these store the value of the most recent substate. While building
the AND-OR tree we can maintain a list of Or-states which have history.

8. Signals that indicate transition to a history4 substate of a substate of A, or
if A is an Or-state, to indicate transition to history substate of A.

9. Characteristic signals (in, enter, exit) for each substate of A. To generate this
list, traverse the AND-OR tree bottom-up (postorder) and at each node, add
to a list of child nodes. Then while generating code for node A, declare all
characteristic signals for each of its child nodes as listed.

We have a new module only for each OR-node, therefore, we need not keep
a list of all nine types of signals with an AND-node or BASIC-node unless it is
the ROOT node.

The STEP Signal: In the Esterel code generated, each step occurs on
receipt of an external signal called STEP . This signal is needed to provide a
tick on which transitions can be made even when there are no input signals
from the environment (i.e. when all triggering events are internally generated).
Use of STEP is necessary to implement the super-step semantics of Statemate,
wherein several steps are executed starting with some initial triggering events, till
the system reaches a set of stable states (i.e., states with no enabled transitions
out of them).

Transitions: Consider code generation for the translation for a transition t of
type T , with source state A and target state B.

In brief, the translation involves the following : (1) Generate code to await
the occurrence of the triggering event, and, (2) on occurrence of the STEP (as
in Statemate semantics), if the triggering condition is true and no transition
pre-empts t, emit : (a) a signal to activate the next state (called a “go” signal),
(b) a signal to activate a chain of transitions (for types T2 through T4), (c)
signals to exit the current state, i.e., to terminate emission of signals that depict
the current state as active.

Figure 6 illustrates translations with respect to T4 transition.
The complete procedure translate-transition is given in Appendix A. The
parameter curr node is the node for which we are generating code.
Note: For lack of space, we give only snippets of the most essential parts of the
Esterel code. The full code generated is well formed and syntactically correct.

Code-Generation Algorithm: In the following, we describe the basic-code
generation algorithm. Code to be emitted for immediate states like history and
special actions are omitted for brevity.
Notation: In the code-generation algorithms, algorithm details are in Roman
font while the code is boxed in Typewriter font.
4 We have implemented deep-history as a sequence of transitions between history

states. Such signals are used to make ε transitions between history states.

A Translation of Statecharts to Esterel 993

Algorithm 1 Basic Code-Generation Algorithm: The main algorithmic steps
are sketched below.

1. Traverse the AND-OR tree top-down. (in preorder)
2. For each node A do
• If A is an OR-node:

(a) Begin a new module, and declare all signals that occur A’s signal list,
or in the signal list of child nodes of A, till the first child Or-node is
encountered.

(b) Generate code for each block representing the substate of A. Let A1,
A2, ..., An be the immediate child nodes of node A. Let ei1, ei2, ... eim

be the external or internal events on which transitions are made out of
the Ai. Let the corresponding actions be acti1 to actim. Further, let the
conditions under which the transitions are to be taken be Ci1 to Cim.
Let the list of hide signals for the nodes Ai, ∀ i be hide1 to hidet. STEP
is a signal that indicates that the next step must be performed. It is an
external signal. Steps of the translation are described below:
Step 1. Emit preamble code. If A is a substate of an OR-state B with
history, then appropriate newhist signals are emitted to update history.
Code to be emitted from this step is given below:

emit enter A;

[trap T ′
A in [

sustain in A;

‖ [await tick; emit newhistB(A);]
‖ [signal goA1, goA2, ..., goAn in [
· · · % to be completed in other steps

Step 2. Emit code to check for T2 and T4 transitions, or for transitions
to the history substate of A. If none of these are true then default state
is entered. Code from this step is given below:

present

case sig AtoAj do

emit goAj % This is repeated for each sig AtoAj%

case enterhist A do

[if histA = 1 then

emit goA1 % Check for each i%
elseif histA = 2 then

emit goA2

else emit goAk % Ak is the default substate
for A%

end if

end present;

Step 3. For each i, emit code to handle transitions out of Ai and also
the refinement of Ai. The code for each of the i are composed in parallel.
The respective codes to be emitted are given in the substeps below:

994 S.A. Seshia et al.

Substep 1. Preamble code for Ai.

[loop [
await immediate goAi;

trap TAi in

· · · % Subsequent codes will be completed by other
steps %

Substep 2. Emit code corresponding to the refinement of Ai. We
indicate the refinement of Ai by << Ai >>. If Ai is an AND-node or
BASIC-node then this is the block for Ai. If Ai is an Or-node, then
this is a “run Ai” statement. In this case, add it to a queue5 of Or-
nodes Qnodes, so that we emit code for it and its child nodes later. When
the node is visited during the preorder tree traversal, the entire subtree
under that node Ai is skipped to be processed later.

[<< Ai >>; exit TAi;

‖ · · · % subsequent codes will be completed by other steps %

Substep 3. Emit code for each transition triggered by eij , j = 1..m,
and compose in parallel with the above code. i.e., 6 ∀ ti ∈ T i

exit,

call translate-transition(ti,TYPE of ti,Ai);

end trap % TAi

Substep 4. Code emitted in case there are transitions of type T3 or
T4. Thus, for all transitions t of type T3 or T4 which exit state Ai we
would have:

call exit-code-trans(t,TYPE of t,Ai);

Substep 5. Postamble code for the substate Ai is given below:

] end loop

]

Step 4. The postamble code to be emitted is given below:

end signal

]
end trap % T ′

A

]
end module

• If A is an AND-node:
(a) Generate code to emit enter and in signals for A, or for updating history,

as in preamble code above.
(b) Generate code for each one of A’s child nodes, Ai, and compose these in

parallel.
5 Note that queue is implicit in the underlying tree traversal algorithm.
6 For two transitions out of the same state with the same priority, we assume some

priority order known in advance and instead of composing code for these transitions
in parallel, we use the await case .. end await construct of Esterel.

A Translation of Statecharts to Esterel 995

(c) Generate code for each transition that quits a child node of A and com-
pose each in parallel with that in item 2 above. The translation for the
individual transitions is exactly as for an Or-node. There are no looping
transitions of type T4 for an AND-node.

• If A is an BASIC-node:
Generate code to emit enter and in signals for A, or for updating history
of its parent state, just as was done for the Or-state. Also generate code to
begin, await a return signal from or end an activity.

3. Generate code for each of the Or-nodes in the queue Qnodes till no more
Or-nodes remain in the queue.

Note: Algorithm 1 preserves the priority structure of transitions based on scope
by appropriately nesting the traps and using the Esterel semantics of nesting
of traps.

Generation of STEP Signal: In the above Algorithm 1, each step occurs on
receipt of an artificially created external signal called STEP .

Clearly, this STEP signal cannot be generated internally, as it will not gen-
erate a tick then. Further, STEP must be given to the state machine (system)
as long as there are enabled transitions (enabled on internally generated signals).
In our translation, this indication is obtained from the enter and exit signals
emitted.

We define a new signal “give step” which is emitted whenever an enter or
exit signal is emitted. Thus, whenever give step is emitted, a STEP signal must
be emitted. Additionally, STEP must be emitted on occurrence of an external
input. The state machine generated by the Esterel compiler must interface
with the environment through a driver routine. The driver routine executes the
state machine whenever there is an input from the external environment. Thus,
our problem is to execute the state machine under certain conditions(namely
when give step is emitted) even when there is no external input. The trick here
(as in [11]) is to set a bit for every occurrence of give step that is checked by the
driver routine; the bit indicates that the driver routine must generate a tick (and
supply a STEP)7. Thus, due to the presence of “await STEP” in the translation
for transitions, although the actions are “activated” in the current step, they
take effect only in the next step. This is in accordance with the Statemate
semantics.

Our translation faithfully represents all behaviors of the Statemate Stat-
echarts, in both the Step and Superstep time models. In our translation, the
STEP of Statecharts is mapped to the tick of Esterel. Time instants are indi-
cated by a separate TIME signal. In the Superstep time model, the STEP and
TIME signals are distinct, while in the Step model they always occur together.
As noted in [7], a Statechart using the Superstep time model can have possible
infinite loops in the same TIME instant. This can also happen in our Esterel
translation, and cannot be detected using the present Esterel tools.
7 During simulation with the standard Esterel tool xes, we supply STEP as an

external input in much the same way as a tick is supplied.

996 S.A. Seshia et al.

ROOT

t1: a/b
A B

C

t2: b/ct3: c/a

Fig. 7. Statechart with cycle

Let us consider the Statechart shown in fig. 7. Following are the steps exe-
cuted when the event a occurs.

– STEP 1: Transition t1 is enabled because of occurrence of a and the system
goes from the configuration {R,A} to {R,B} and the event b is generated in
the system.

– STEP 2: In this step since event b is available, transition t2 is enabled and
the system leaves the configuration {R,B} and goes to {R,C} and the event
c is generated.

– STEP 3: In this step since event c is available, transition t3 is enabled

In the asynchronous time model [7], all these steps will constitute one superstep
and be executed in one time instant. Each of these steps is executed when the
external signal STEP is given.

It is possible to detect such loops, however, we shall not discuss it here.

3.4 History

As noted in [7], history states can occur only within Or-states. History is imple-
mented using valued history signals for each Or-state having history. The value
0 corresponds to the default state, i.e. no history. The emission of the history
signal for a state S, histS is done only by the root module ROOT, of the entire
Statechart. When a new state is entered within an Or-state S, the module cor-
responding to that state emits a newhistS signal which is captured by ROOT
which in turn updates histS. The history itself is maintained as a integer valued
signal8, the integer indicating which substate of the Or-state is the most recent
one. Below, we show the code part of ROOT which updates the history values.
module ROOT :
· · ·
var x in
[% the below block exists for each Or-state with history

8 However, if we use a shared variable for keeping track of the history, there will be
no need to sustain the integer valued signal used for that purpose.

A Translation of Statecharts to Esterel 997

every immediate newhistS
x := ?newhistS ;
sustain histS(x) ;

end
‖ · · ·
] · · ·
end module

3.5 Illustrative Examples

Here, we shall discuss two examples developed and verified using the above
system.

Example 1. Figure 8 shows an example of the Priority Inversion problem arising
due to nondeterministic behavior of the Statechart. Processes P1, P2 and P3
have priorities 1,2 and 3 respectively, and P1 and P3 share a common resource,
access through which is controlled by a mutex.

It can be shown (by automata reduction) that the configuration (Root, Sys,
P1blocked, P2run, P3premp) is a case of priority inversion and the system is
deadlocked because of the following sequence : P3 enters critical region, P1 blocks
on mutex, P2 pre-empts P3 with P1 and P3 now blocked, and thus priority of P1
and P2 has been inverted. It has been verified that this will always lead to the
configuration (Root,Error). To overcome deadlock, we can add one transition
between the states Error and Sys, which will again bring the system to default
configuration and normal operation can resume.

A sample snippet of the Esterel code generated by our system is given in
the Appendix. Note that the actual code generator slightly deviates from the
abstract algorithms as it uses some implementation optimizations.

Example 2. This is the example of switching interrupts described in section 1
depicted by the Statechart shown in Figure 1.

Our translation described earlier has been applied to the Statechart shown in
Figure 1 and the Esterel code obtained, tested, simulated and verified (using
the Auto/Autograph tools). Some of specific properties that have been verified
are: Event wdt int occurs on system failure and when wdt isr is entered, the
system will toggle between states wdt isr and nmi isr, which is the intended
behaviour. The actual code is not given for brevity.

4 Conclusions and Related Work

In this paper, we have proposed a translation from Statecharts to Esterel, and
have applied this translation to successfully model and analyze some systems
that might occur in real world problems. The translation is syntax-directed so
that the translation of the entire Statecharts specification can be put together
from the translation of its individual components. We have only sketched some
of the algorithms for lack of space.

998 S.A. Seshia et al.

Fig. 8. Priority Inversion Example

4.1 Related Work

An early attempt towards a graphical formalism avoiding the anomalies of Stat-
echarts was the definition of Argos (see [8]). Very recently efforts have also been
reported in combining Argos and the synchronous languages Estereldescribed
in [5]. Another effort of translating Statemate Statecharts to Signal has been
reported in [3] where the aim has been to use Signal (another synchronous
language) and its environment for formal verification purposes. Signal and Es-
terel are quite different considered from the point of view of verification basis
and flexibility. Our approach provides the possibility of using various automata-
based/temporal logic based tools for verification in a fairly natural way.

A recent approach is that of Mikk et al.[9], in which the authors discuss
the translation of Statecharts into another graphical formalism called Extended
Hierarchical Automata(EHA). In this formulation, the inter-level transitions
are eliminated, by extending the labels to include source restriction and tar-
get determinator sets. Our translation does something similar to the one that is
resorted to for EHAs, in that we use dummy signals to make interlevel transi-
tions, one for each level transcended. It must be noted that the translation in
[9] is from one graphical language to another, ours is from a graphical language
to a textual language. In a subsequent work [10], which is of a similar flavour
as ours, Mikk et al. have translated EHAs into Promela for use with the model
checker SPIN. This enables them to do LTL model checking on Statecharts.
With our translation, we are able to use Esterel tools such as FC2Tools to do
equivalence checking, checking for deadlock, livelock and divergent states; and

A Translation of Statecharts to Esterel 999

Hurricane, which does verification of LTL safety properties. We also support
special Statechart features such as timing primitives and history.

Another approach taken with the spirit of providing an integration of Argos
and Esterel has been the work on SyncCharts reported in [1] and [2]. SyncCha-
rts have a precise semantics, and is translatable to Esterel. It does not allow
for inter-level transitions, and history, which are very useful features of State-
charts, and which are part of Statemate Statecharts (which we have worked
with). SyncCharts however has explicit syntactic constructs for preemption such
as suspension, weak abortion, and strong abortion, much like Esterel. The
semantics of these constructs is the same as that of corresponding constructs
in Esterel. Unlike such an approach of having another language, our aim has
been to translate the existing Statecharts that is pragmatically very attractive
and used widely, into an existing framework that permits formal verification.
We have illustrated how the behaviours of a large class of Statecharts can be
captured through the use of the unifying threads that run through the seman-
tics of synchronous languages, both textual and graphical. Also, our aim has not
been to define yet another semantics of Statecharts. Our goal has been to show
how a class of Statecharts which have constructs like inter-level transitions and
global communication of events, and which is used in the industrial strength tool
Statemate, can be translated to a textual synchronous language and formally
verified.

4.2 Summary of Work

We have translated Statecharts to Esterel version 5.10 described in [4] and a
prototype system is in use. We have been using the tools of Esterel verification
such as FC2tools based on bisimulation and Hurricane (from INRIA/CMA); we
are also working on integrating the system with a tool being developed here
by Paritosh Pandya on generating synchronous observers from DC specification
of properties. A spectrum of industrial scale examples have been verified using
Esterel and our translation will help combine ease of specification with this
advantage of verification. The system implemented has shown that it is possible
to integrate the advantages of Statecharts and Esterel in the design of reactive
systems. While it is true that Statemate Statecharts and Esterel have dif-
ferent semantics, our translation works for a subset of deterministic Statecharts,
and using a subset of Esterel constructs in a limited manner. We have thus
maintained Statemate semantics while restricting the class of Statecharts we
translate. The current translation also considers only simple events and actions;
work is in progress to extend this to more general events and actions.

To sum up, this work is interesting from many standpoints. Considered from
view of Statecharts, we have found it useful as a way to incorporate formal
verification and as a diagnostic tool for detecting nondeterminism. From the
point of view of Esterel, it provides an integration of textual and graphical
formalisms. From a practical perspective, it is possible to use heterogeneous
systems such as Statecharts and Esterel together in the development of reactive
systems and the use of the industrial strength Statemate shows this work has

1000 S.A. Seshia et al.

potential worth in industrial system verification. There has been a large effort
in integrating synchronous languages such as Esterel, Lustre and Signal. This
work has attempted to bring Statecharts in a restricted way under this umbrella.
The prototype has been built and found to be effective in the design of small-
scale reactive systems. Experiments are going on in the development of large
complex systems using the system.

Acknowledgments

We thank the anonymous referees for their valuable suggestions and comments.
The work was initiated while Sanjit Seshia was with I.I.T., Bombay working
on a summer project with R.K. Shyamasundar at TIFR, Bombay. He thanks
I.I.T. Bombay, TIFR and CMU for their support. R.K. Shyamasundar thanks
IFCPAR, New Delhi for the partial support under the project 2202-1.

References

[1] André, C. SyncCharts: A Visual Representation of Reactive Behaviors. Tech.
Rep. RR 95-52, I3S, Sophia-Antipolis, France, 1995.

[2] André, C. Representation and Analysis of Reactive Behaviors: A Synchronous
Approach. Tech. Rep. 96-28, Université de Nice, Sophia-Antipolis, France, 1996.

[3] Beauvais, J.-R. et al. A Translation of Statecharts to Signal/DC+. Tech. rep.,
IRISA, 1997.

[4] Berry, G. A Quick Guide to Esterel Version 5.10, release 1.0. Tech. rep., Ecole
des Mines and INRIA, February 1997.

[5] Berry, G., Halbwachs, N., and Maraninchi, F. Unpublished note on Esterel
and Argos. 1995.

[6] Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8 (1987), 231–274.

[7] Harel, D., and Naamad, A. The STATEMATE Semantics of StateCharts. ACM
Transactions on Software Engineering and Methodology 5, 4 (October 1996).

[8] LeGuernic, P. et al. Programming Real-time applications with Signal. Pro-
ceedings of the IEEE 79, 9 (September 1991), 1321–1336.

[9] Mikk, E., Lakhnech, Y., and Siegel, M. Hierarchical automata as model for
statecharts. In LNCS (Dec. 1997), 1345, pp. 181–197.

[10] Mikk, E., Lakhnech, Y., Siegel, M., and Holzmann, G. Implementing Stat-
echarts in Promela/SPIN. In Proc. of the 2nd IEEE Workshop on Industrial-
Strength Formal Specification Techniques (1999), IEEE Computer Society.

[11] Puchol, C. et al. A Formal Approach to Reactive Systems Software: A Telecom-
munications Application in Esterel. In Proc. of the Workshop on Industrial
Strength Formal Specification Techniques (April 1995).

A Translation of Statecharts to Esterel 1001

Appendix A: Code Generation for Transitions

This procedure gives the translation for a transition t of type T , with source
state A and target state B. curr node is the node which we are generating code
for. As mentioned before, the algorithm details are in Roman font while the
emitted code is boxed and in typewriter font.

procedure translate-transition
(t,T,curr node)

begin
A := source(t); B := target(t);
et := event(t); at := action(t);
Ct := condition(t);

/* Let hideS be signal corresponding to transition t which hides other transitions
of scope less than that of t. let t be hidden by signals hide1, hide2, ..., hiden.*/

if (A = curr node) then
begin
EMIT :-

loop
await (immediate) e_t;
(await STEP;)
if C_t then [

present hide_1 else
present hide_2 else
...
present hide_n else
emit hideS;
emit a_t; emit exit_A;

if (T = T1) then
begin

EMIT :-
emit goB; exit T_A;

end
if (T = T2 OR T = T4) then
begin

/* Let S1, S2, ..., Sn be intermediate states between A and B. */
EMIT :-
emit sig_AtoS_1;
exit T_A; % exit trap

end
EMIT :-

1002 S.A. Seshia et al.

/* Complete all present statements */
end present

...
end present

] end if]
end loop

end /* if A==curr node */
else /* if A 6= curr node, i.e., t of type T2 or T4 */
begin

EMIT :-
/* Let A1 and A2 be the two immediate child nodes of A */
present sig_AtoA_1 then
emit sig_A_1toA_2;

end present;

end
end procedure

Note: Above, we have assumed that the condition is a boolean expression, as in
Esterel syntax. If the condition is the test of presence of a signal it must be
replaced by a

present SIG then ...
else ...

end present

translation. If the condition involves testing values of shared valued signals,
which could possibly change value “simultaneously”, then we need to ensure
that the value tested is the one at the time of occurrence of the triggering event.
This code is omitted for brevity.

Further, for transitions of type T3 and T4, on exiting a state, code must be
emitted for continuing the chain of transitions. This code generates signals that
trigger transitions in child states. The code generation routine for this is referred
to in Algorithm 1 as procedure exit-code-trans (trans, Type-of-transi-
tion, States).
We omit the detailed description of this routine in this paper.

A Translation of Statecharts to Esterel 1003

Appendix B: Esterel Code : Priority Inversion Problem

Below we attach code snippets for the states P1 and P1ready.

module P1ready:
% Signal Declarations
output EnterP1ready, InP1ready,
ExitP1ready;

% Program Body --------------
emit EnterP1ready;
do sustain InP1ready watching
ExitP1ready;
end module
%-----------------------------
module P1:

% Declarations deleted for brevity

signal goP1ready, goP1incrit,
goP1blocked, goP1, goP2ready,
goP2run, goP2prempt, goP2,
goP3ready, goP3incrit, goP3prempt,
goP3,goSys in [

% Program Body --------------
emit goP1ready;

emit EnterP1;
do sustain InP1 watching ExitP1;
||
loop
await immediate goP1ready;
trap outP1ready in

run P1ready;
||
loop
await % Exit
case immediate [a] do

present InP3incrit or InP3prempt
then [
% Testing condition
present HideSys then
await STEP
else [
await STEP;emit ExitP1ready;

1004 S.A. Seshia et al.

emit goP1blocked;
exit outP1ready;]
end]

else [
present HideSys then await STEP
else [
await STEP; emit ExitP1ready;
emit goP1incrit;
exit outP1ready]

end % end present
]

end % end present
end % end await

end % end loop
end % end trap
end % end loop
||
loop
await immediate goP1incrit;
trap outP1incrit in
run P1incrit;
||
loop
await % Exit
case immediate [ap] do
present HideSys then await STEP else [
await STEP; emit ExitP1incrit;
emit goP1ready; exit outP1incrit]

end % end present
end % end await

end % end loop
end % end trap
end % end loop
||
loop
await immediate goP1blocked;
trap outP1blocked in
run P1blocked;
||
loop
await % Exit
case immediate [cp] do
present HideSys then await STEP else [
await STEP; emit bq; emit ExitP1blocked;
emit goP1incrit; exit outP1blocked;]

A Translation of Statecharts to Esterel 1005

end % end present
end % end await

end % end loop
end % end trap
end % end loop
] end % end signal
end module

Appendix C: Intuitive Semantics of Esterel

At each instant, each interface or local signal is consistently seen as present or
absent by all statement, ensuring determinism. By default, signals are absent; a
signal is present if and only if it is an input signal emitted by the environment
or a signal internally broadcast by executing an emit statement.

To explain how control propagates, consider first examples using the simplest
derived statement that takes time: the waiting statement “await S”, whose ker-
nel expansion “do halt watching S” will be explained later. When it starts
executing, this statement simply retains the control up to the first future instant
where S is present. If such an instant exists, the await statement terminates
immediately; that is the control is released instantaneously; If no such instant
exists, then the await statements waits forever and never terminates. If two
await statements are put in sequence, as in “await S1; await S2”, one just
waits for S1 and S2 in sequence: control transmission by the sequencing operator
’;’ takes no time by itself. In the parallel construct
“await S1 || await S2”, both await statements are started simultaneously
right away when the parallel construct is started. The parallel statement ter-
minates exactly when its two branches are terminated, i.e. when the last of S1
and S2 occurs. Again, the “||” operator takes no time by itself.

Instantaneous control transmission appears everywhere. The nothing state-
ment is purely transparent: it terminates immediately when started. An “ emit
S ” statement is instantaneous: it broadcasts S and terminates right away, mak-
ing the emission of S transient. In “emit S1; emit S2”, the signals S1 and S2
are emitted simultaneously. In a signal-presence test such as “present S ...”,
the presence of S is tested for right away and the then or else branch is immedi-
ately started accordingly. In a “loop stat end” statement, the body stat starts
immediately when the loop statement starts, and whenever stat terminates it
is instantaneously restarted afresh (to avoid infinite instantaneous looping, the
body of a loop is required not to terminate instantaneously when started).

The watching and trap-exit statements deal with behavior preemption,
which is the most important feature of Esterel. In the watchdog statement “do
state watching S”, the statement stat is executed normally up to proper ter-
mination or up to future occurrence of the signal S, which is called the guard. If
stat terminates strictly before S occurs, so does the whole watching statement;
then the guard has no action. Otherwise, the occurrence of S provokes immediate

1006 S.A. Seshia et al.

preemption of the body stat and immediate termination of the whole watching
statement. Consider for example the statement

do
do

await I1; emit 01
watching I2;
emit 02

watching I3

If I1 occurs strictly before I2 and I3, then the internal await statement termi-
nates normally; 01 is emitted, the internal watching terminates since its body
terminates, 02 is emitted, and the external watching also terminates since its
body does. If I2 occurs before I1 or at the same time as it, but strictly be-
fore I3, then the internal watching preempts the await statement that should
otherwise terminate, 01 is not emitted, 02 is emitted, and the external watch-
ing instantaneously terminates. If I3 occurs before I1 and I2 or at the same
time as then, then the external watching preempts its body and terminates in-
stantaneously, no signal being emitted. Notice how nesting watching statements
provides for priorities.

Now the translation of “await S” as “do halt watching S” will be clear.
The semantics of halt is simple: it keeps the control forever and never terminates.
When S occurs, halt is preempted and the whole construct terminates. Note that
halt is the only kernel statement that takes time by itself.

The trap-exit construct is similar to an exception handling mechanism, but
with purely static scoping and concurrency handling. In trap T in stat end, the
body stat is run normally until it executes an exit T statement. Then execution
of stat is preempted and the whole construct terminates. The body of a trap
statement can contain parallel components; the trap is exited as soon as one
of the components executes an exit T statement, the other components being
preempted. However, exit preemption is weaker than watching preemption, in
the sense that concurrent components execute for a last time when exit occurs.
Consider for example the statement

trap T in
await I1; emit 01

||
await I2; exit T

end

If I1 occurs before I2, then 01 is emitted and one waits for I2 to terminate.
If I2 occurs before I1, then the first branch is preempted, the whole statement
terminates instantaneously, and 01 will never be emitted. If I1 and I2 occur
simultaneously, then both branches do execute and 01 is emitted. Preemption
occurs only after execution at the concerned instant: by exiting a trap, a state-
ment can preempt a concurrent statement, but it does leave it its “last wills”.
The rule for exiting from nested traps is simple:only the outermost trap matters,
the other ones being discarded. For example, in

A Translation of Statecharts to Esterel 1007

trap T1 in
trap T2 in

exit T1
||
exit T2

end;
emit 0

end

traps T1 and T2 are exited simultaneously, the internal trap T2 is discarded
and 0 is not emitted. Traps also provide a way of breaking loops, which would
otherwise never terminate as reflected by:

trap T in
loop ... exit T ... end

end

One can declare local variables by the statement

var X in stat end

Variables deeply differ from signals by the fact that they cannot be shared by
concurrent statements. Variables are updated by instantaneous assignments
“X:=exp” or by instantaneous side effect procedure calls “call P(...)”,
where a procedure P is an external host language piece of code that receives both
value and reference arguments.

An Operational Semantics for Timed RAISE

Xia Yong and Chris George

United Nations University/International Institute for Software Technology,
P.O.Box 3058, Macau
{xy,cwg}@iist.unu.edu

http://www.iist.unu.edu/{∼xy,∼cwg}

Abstract. The reliability of software is an increasingly important de-
mand, especially for safety critical systems. RAISE is a mathematically
based method which has been shown to be useful in the development of
many kinds of software systems. However, RAISE has no particular fea-
tures for specifying real-time requirements, which often occur in safety
critical systems. Adding timing features to RAISE makes a new specifica-
tion language, Timed RAISE Specification Language (TRSL), and gives
it the power of specifying real-time applications. We then have to find a
theoretical foundation for TRSL. In this paper, an operational semantics
of TRSL is first introduced. Then we define a pre-order and test equiva-
lence relation for TRSL. Some proof rules for TRSL are listed, and their
soundness corresponding to our operational model is also explained.

1 Introduction

The reliability of software is an increasingly important demand, especially for
critical systems like train control systems or banking systems, for which failures
may have very severe consequences. Mathematically based “formal” methods
for specification and stepwise development of software have been invented in
order to increase the reliability of software. Some of these languages provide
facilities to specify concurrent systems, and therefore, they can capture various
qualitative aspects of system behaviour, such as deadlock, synchronisation and
safety. However, in a real-time system we may be concerned with the timing of
events. We might want not merely to say that an event occurs, but to say that
it occurs within a particular time interval.

RAISE is a mathematically based method which has been shown to be useful
in the development of many kinds of software systems. However, RAISE has no
particular features for specifying such real-time requirements. Adding real-time
features to RAISE Specification Language (RSL) is not only an interesting topic
for theoretical computer science research, but also a requirement of some RAISE
users.

Integrating RSL with a real-time logic, the Duration Calculus (DC) [ZHR91],
seems a good choice to achieve the above aim. RAISE has good features (in
particular modularity) for describing large systems, while DC is concerned only
with timing properties. The degree of overlap between the two languages is
therefore very small.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1008–1027, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

An Operational Semantics for Timed RAISE 1009

We do not wish to perform a syntactic integration of RSL and DC. This
would create a large language and probably cause the added complications of
time to permeate much of RSL. Instead we note that adding time to a descrip-
tion can be seen as a design step. For example, going from “B must follow A”
to “B must follow A within 3 time units” adds an extra constraint, a design
decision. It therefore seems reasonable to add time within the part of RSL that
is used later in design. The idea is then to be able to (partially) interpret TRSL
descriptions in terms of DC formulae, and show that these formulae satisfy the
timing requirements, also written in DC.

So we have two tasks. The first is extending original RSL to Timed RSL
(TRSL) by introducing some real-time constructs. The second step is relating
TRSL to DC. This paper concentrates on the first of these.

The proposed TRSL, the syntactic extension to RSL, can be found in [GX98].
Section 2 summarises the proposed extension and discusses its effect on the
existing language and its proof system.

After syntactically proposing TRSL, we should establish a theoretical foun-
dation for this new specification language. The theoretical foundation we need
is the proof system, the collection of rules that enable us to reason about spec-
ifications. In this paper we propose an operational semantics and show how it
can be used to establish validity of proof rules. We give an operational semantics
of TRSL in Section 3, define an equivalence relation among TRSL expressions
in Section 4, and apply it to the proof of soundness of TRSL proof rules in
Section 5. Section 6 considers future and related work.

2 Adding Time to RSL

We would like the addition of time to RSL to be the smallest extension that gives
us a useful language, and if possible for it to be a conservative extension, i.e. for
it to leave the existing proof rules unchanged. By “useful” we mean expressive
and convenient for establishing properties. The latter implies an intuitive and
simple proof system, which in turn suggests a simple semantics.

The simplest extension to RSL to include time would seem to be to add a
wait expression. Since we want eventually to relate timed RSL (TRSL) to DC
we will make the parameter type of wait non-negative reals, which we will define
as the type Time. For convenience, we allow natural numbers as arguments of
wait by overloading it. A Nat argument is converted to Time by the existing
RSL prefix operator real. For example, wait 1 is equivalent to wait 1.0.

If we need a parallel expansion rule, it seems necessary also to add a new
construct, “time dependence”, to input and output. An input, as well as return-
ing the value input, will also return a time value representing the time elapsed
between the input being ready and the the communication taking place. Sim-
ilarly, an output will return the time elapsed between the output being ready
and the the communication taking place.

The extension defined here owes much to the work of Wang Yi [Wang91]. He
in particular introduced time dependence. We also follow him in making only

1010 Xia Yong and Chris George

wait expressions, and input and output, cause or allow time to elapse. All other
evolutions of expressions are regarded as instantaneous.

We also follow Wang Yi in adopting the maximal progress assumption. This
means that the time between an input or output being ready and the communi-
cation taking place is minimised. In other words, when an expression can evolve
without waiting for the environment, it will not wait.

This raises a question of what we mean by an internal (non-deterministic)
choice like

e1 de wait 1 ; e2

where e1 and e2 do not initially wait. Blindly applying the maximum progress
assumption leads to this expression evolving only to e1. But this would remove
the possibility of specifying an expression that might immediately perform e1,
or might (non-deterministically) wait for one time unit and then perform e2. We
want to allow this possibility in specification. This leads to the need for a new
operator to replace internal choice in the parallel and interlock expansion rules,
where we need the “maximal progress” version of internal choice. But this is no
more than the addition of another special function internal to the proof rules: it
is not needed in the language.

To see how wait can be used in parallel or interlocked composition, consider

c? ; normal() debc wait 1 ; time out()

The intention is that this expression initially waits for its environment to
offer an output on channel c. If this output on channel c is available within 1
time unit then the communication should be accepted and normal() is executed.
If the output is not available within 1 time unit then it should instead execute
time out(). We can specify these behaviours using the RSL interlock operator –‖.
Interlocked composition is like parallel composition in that the expressions evolve
concurrently, but more aggressive: it forces them to communicate only with each
other until one of them terminates. We expect the following equivalences to hold
for any strictly positive k, assuming that time out() can not itself initially wait:

(c? ; normal() debc wait 1 ; time out()) –‖ (wait(1 − k) ; c!()) ≡
wait(1 − k) ; normal()

(c? ; normal() debc wait 1 ; time out()) –‖ wait(1 + k) ≡
wait 1 ; (time out() –‖ wait k)

2.1 Conservative Extension

Conservative extension of RSL to make TRSL, i.e. all existing RSL proof rules
being unchanged, would be ideal but does not seem to be achievable. There are
two problems.

An Operational Semantics for Timed RAISE 1011

First, introducing time can reduce non-determinacy. For example, specifying
an expression like the one we considered earlier, that will take a special action
(time-out) if some event does not occur within a specified period, can only be
specified without time as a non-deterministic choice between the normal and
time-out behaviour. When time is included we may be able to calculate which
behaviour will be taken; the non-determinacy may be reduced.

Secondly, there are are some rules in RSL that we expect not to hold because
of the kind of properties we are interested in when we want to relate TRSL to
DC. DC is concerned with the duration of states, i.e. for how long properties
hold. We expect properties to be reflected in the values of imperative variables
in RSL. Now consider the following equivalence that is valid in RSL, provided
the expression e does not involve input or output and is convergent:

c? ; v := e ≡ v := e ; c?

The assignment and the input can be commuted. In TRSL in general we have
to introduce a let expression for the time dependence. We would expect from
the RSL proof rules, provided again e does not involve input or output and is
convergent, and provided also that t is not free in e, to be able to derive the
following:

let t = c? in v := e end
≡

let t = v := e ; c? in skip end
≡

v := e ; let t = c? in skip end

It is not immediately clear what the meaning of the second expression should
be, but it is clear that the last would differ from the first in changing the duration
of the state in which v has the value e; the possible wait for the communication
on c shifts from before the assignment to after it. So this derivation cannot be
allowed in TRSL.

These two examples, of reduced non-determinism and restrictions on com-
muting expressions, do seem, however, to encompass the problems. It also seems
likely (though this is the subject of further work) that there is a reduction from
TRSL to RSL (just throwing away the timing information) that is consistent
with a “more deterministic” ordering: the ordering derived later in in Section 4.2.
That is, any behaviour of a timed specification will be a possible behaviour of
its reduction to an untimed one. The second problem involves the strengthening
of applicability conditions for commuting sequential expressions.

3 Operational Semantics

For the sake of clarity, we follow the approach of [HI93, BD93, Deb94]: the
operational semantics in this paper for untimed part of TRSL is closely based
on them, and we only consider a core syntax of TRSL. Our operational semantics
can be viewed as a version of Timed CCS [Wang91] without τs.

1012 Xia Yong and Chris George

3.1 The Core Syntax

For simplicity we restrict the types of expressions to be Unit, Bool and Real.
The set of allowed expressions includes:

– As constants the reals, the booleans true and false, the Unit value (). The
basic expression skip is an expression that immediately terminates success-
fully. We consider also the basic expression stop which represents deadlock
and the basic expression chaos which stands for the divergent process.

– Three binding operators that are the abstraction, the recursion and the let
definition (λ, rec, let). The reader should notice that the rec is not an RSL
binding operator: RSL does not syntactically distinguish recursion. In the
core syntax, it is convenient to indicate where recursion may occur.

– Imperative aspects are supported through the notion of variables and as-
signment.

– We have the following combinators:
de : Nondeterministic choice between two expressions (also called internal

choice). One of the two expressions is selected nondeterministically for
evaluation.

debc : External choice between two expressions. The choice is context de-
pendent, i.e. the environment influences the choice between the two ex-
pressions.

‖ : Parallel composition of two expressions.
–‖ : The interlock operator. It is similar to the parallel operator, but more

aggressive. In other words, two interlocked expressions will communicate
if they are able to communicate with one another. If they are able to
communicate with other concurrently executing value expressions but
not with each other, they deadlock unless one of them can terminate.
The interlock operator is the main novelty in the RSL process algebra.
It has been devised mainly to allow implicit specification of concurrency.

; : Sequencing operator.

The above operators in TRSL have the same meanings as those in RSL. We
also have the extensions to be included:

– TRSL is essentially independent of the time domain. For simplicity, in our
core syntax of TRSL, we just assume the time Domain to be Real+0.

– The expression wait E means we first evaluate the expression E, get the
result d, then delay exactly d units of time.

– Expressions may communicate through unidirectional channels. The expres-
sion let t = c!E1 in E2 means: evaluate E1, send the result (when possible)
on the channel c, and then evaluate E2. t records the time between the com-
munication on c being ready and it occurring. The expression let t = c?x
in E means: assign any value received on the channel c to variable x, and
then evaluate E. Again, t records the time between the communication on c
being ready and it occurring.

More formally the BNF syntax of our language is:

An Operational Semantics for Timed RAISE 1013

Syntactic Categories:

– E in Expressions
– x in Variables
– t, id in Identifiers
– c in Channels
– r in Reals
– T in Time
– τ in Types
– V in ValueDefinitions

Expression The BNF grammar of expressions is:

V ::= id : τ | id : τ , V
E ::= () | true | false | r | T | id | x | skip | stop | chaos |

x := E | if E then E else E | let id = E in E |
wait E | let t = c?x in E | let t = c!E in E |
E de E | E debc E | E ‖ E | E –‖ E | E ; E |
λ id : τ • E | E E | rec id : τ • E |

In fact E ; E′ is equivalent to let id = E in E′ provided id is chosen so as not
to be free in E′. We include E ; E to give a conventional presentation.

3.2 Definition

Store A store s is a finite map from variables (noted x) to values (noted v):
s = [x 7→ v, ...]

Environment An environment ρ is a finite map from identifiers (noted id) to
values (noted v):
ρ = [id 7→ v, ...]

Closures A closure, [[λ id : τ • E, ρ]], is a pair made of

– a lambda expression : λ id : τ • E
– an environment : ρ

Computable Values V is the least set which satisfies:

– V contains values from our types: (), true, false, ... , -1, ..., 0, ..., 1,
– if ρ is an environment, then V contains [[λ id : τ • E, ρ]]

Expressions and Computable Values The set EV of expressions and com-
putable values is defined as
EV = E ∪ V

1014 Xia Yong and Chris George

Events “3” denotes any event;
“4” denotes visible events and silent events.

Visible events
Visible events a consist of :
– input events : c?v
– output events : c!v

where c is a channel and v is a value in V .
ā denotes the complement action of a (e.g. : c?v = c!v).

Time-measurable events
ε(d) denotes waiting d unit of time, where d is a value from the time domain
and d > 0.

Silent events
ε denotes internal moves, including internal behaviours of communication
(which is denoted as “τ” in CCS).

Time Model We assume that all silent events can perform instantaneously
and will never wait unnecessarily. Once both sides of a channel are ready for
communication, the communication will happen without any delay (unless some
other visible event or silent event happens instead) and the communication takes
no time.

The above assumptions are conventional and the reason for adopting them
is just to make proof theory easier.

Notations We introduce some notations that are used later.

1. v, v′, ... represent values drawn from V
2. d, d′, ... represent values drawn from the Time domain.
3. ev, ev′, ... represent values drawn from EV ,
4. a, ā, ε(d), ε,4,3 ... represent events,
5. E, Ei, ... represent expressions.
6. x, y, ... represent variables.
7. s, s′, s′′, ... represent stores.

Configurations Our operational semantics is based on the evolution of config-
urations.

The set of basic configurations BC is defined as:

BC = {< ev, s > | ev ∈ EV ∧ s ∈ Store}
The set of configurations, C, is the least set which satisfies:

1. BC ⊂ C
2. α, β ∈ C implies α op β ∈ C where: op = de, debc, ‖, –‖
3. α, β ∈ C implies α op s op β ∈ C where: op = ‖, –‖
4. α ∈ C implies α ; E, wait α, x := α, (α E) ∈ C

An Operational Semantics for Timed RAISE 1015

5. α ∈ C implies αv ∈ C
6. α ∈ C implies :

(a) [[λ id : τ • α, ρ]] v ∈ C
(b) [[λ id : τ • E, ρ]] α ∈ C

7. α ∈ C implies :
(a) let id = α in E ∈ C
(b) if α then E1 else E2 ∈ C
(c) let t = c! α in E ∈ C

3.3 Operational Rules

The operational rules are given in Figure 1 and Figure 2. Each rule is divided into
two parts: the lower part describes the possible evolution of the configurations,
and the upper part presents the precondition of that evolution. 2 indicates that
there is no precondition.

We use the standard notation E[v/t] to describe the substitution of v for all
free occurrences of the identifier t in E.

3.4 Semantic Function : Merge

merge(s, s′, s′′) = s′ † [x 7→ s′′(x) | x ∈ dom(s′′) ∩ dom(s) • s(x) 6= s′′(x)]

3.5 Meaning of “Sortd” and “SORTd”

Sortd Sortd(α) is a set of ports (channel names tagged as input or output),
whose intuitive meaning is the possible (input or output) visible events that α
can evolve to within the next d units of time. We define “Sortd” inductively
according to configuration structures.

We find that there are three kinds of configuration that can evolve with ε(d):
wait, input and output. So, they are named “Basic Forms”. There are some
other kinds of configurations that can evolve with ε(d), if their components are
in Basic Forms. They are named “Extended Forms”.

BASIC FORMS:

– Sort0(α) = ∅ for α ∈ C
– Sortd(c?) = Sortd(c!) and Sortd(c!) = Sortd(c?) for any channel c
– Sortd(wait < (d + d′), s >) = ∅
– Sortd(< let t = c?x in E , s >) = {c?}
– Sortd(let t = c! < v, s > in E = {c!}

EXTENDED FORMS:
Assume that α and β are one of the Basic Forms.

– Sortd+d′(waitd; E) = Sortd′(E)
– Sortd(α ; E) = Sortd(α)

1016 Xia Yong and Chris George

Basic Expressions
2

ρ `< skip, s >
ε→< (), s >

2

ρ `< stop, s >
ε(d)−→< stop, s >

2

ρ `< chaos, s >
ε→< chaos, s >

Configuration Fork
2

ρ `< E1 op E2, s >
ε→< E1, s > op < E2, s >

where op = de, debc
Look Up

2

ρ † [id 7→ v] `< id, s >
ε→< v, s >

2

ρ `< id, s † [id 7→ v] >
ε→< v, s † [id 7→ v] >

Sequencing
2

ρ `< E1 ; E2, s >
ε→< E1, s > ; E2

ρ ` α
3→ α′

ρ ` α ; E
3→ α′ ; E

2

ρ `< v, s >; E
ε→< E, s >

Assignment
2

ρ `< x := E, s >
ε→ x :=< E, s >

ρ ` α
3→ α′

ρ ` x := α
3→ x := α′

2

ρ ` x :=< v, s >
ε→< (), s † [x 7→ v] >

Waiting
2

ρ `< wait E, s >
ε→ wait < E, s >

ρ ` α
3→ α′

ρ ` wait α
3→ wait α′

2

ρ ` wait < (d + d′), s >
ε(d)−→ wait < d′, s >

when { d > 0 }

2

ρ ` wait < (0), s >
ε−→< (), s >

Input

2

ρ `< let t = c?x in E, s >
c?v−→< E[0/t], s † [x 7→ v] >

2

ρ `< let t = c?x in E, s >
ε(d)−→< let t = c?x in E[t + d/t], s >

Output

2

ρ `< let t = c ! E in E, s >
ε→ let t = c ! < E, s > in E

ρ ` α
3→ α′

ρ ` let t = c ! α in E
3→ let t = c ! α′ in E

2

ρ ` let t = c ! < v, s > in E
c!v−→< E[0/t], s >

2

ρ ` let t = c ! < v, s > in E
ε(d)−→ let t = c ! < v, s > in E[t + d/t]

Internal Choice
2

ρ ` α u β
ε→ α
ε→ β

External Choice

ρ ` α
a→ α′

ρ ` α [] β
a→ α′

β [] α
a→ α′

ρ ` α
ε(d)−→ α′ , ρ ` β

ε(d)−→ β′

ρ ` α [] β
ε(d)−→ α′ [] β′

β [] α
ε(d)−→ β′ [] α′

ρ ` α
ε→ α′

ρ ` α [] β
ε→ α′ [] β

β [] α
ε→ β [] α′

2

ρ ` < v, s > [] α
ε→< v, s >

α [] < v, s >
ε→< v, s >

Fig. 1. Operational Rules for TRSL : Part 1

An Operational Semantics for Timed RAISE 1017

Parallel Combinator
2

ρ `< E1 ‖ E2, s >
ε→< E1, s >‖ s ‖< E2, s >

ρ ` α
a→ α′ , ρ ` β

ā→ β′

ρ ` α ‖ s ‖ β
ε→ α′ ‖ s ‖ β′

β ‖ s ‖ α
ε→ β′ ‖ s ‖ α′

ρ ` α
4→ α′

ρ ` α ‖ s ‖ β
4→ α′ ‖ s ‖ β

β ‖ s ‖ α
4→ β ‖ s ‖ α′

ρ ` α
ε(d)−→ α′ , ρ ` β

ε(d)−→ β′

ρ ` α ‖ s ‖ β
ε(d)−→ α′ ‖ s ‖ β′

β ‖ s ‖ α
ε(d)−→ β′ ‖ s ‖ α′

when

8<
:

[Sortd(α) ∩ Sortd(β) = ∅ ;

Sortd(α) ∩ SOR Td = ∅ ;

Sortd(β) ∩ SOR Td = ∅]

9=
;

2

ρ ` α ‖ s ‖< v, s′ >
ε→ α ‖ s ‖ s′

< v, s′ >‖ s ‖ α
ε→ s′ ‖ s ‖ α

ρ ` α
3→ α′

ρ ` α ‖ s ‖ s′ 3→ α′ ‖ s ‖ s′

s′ ‖ s ‖ α
3→ s′ ‖ s ‖ α′

2

ρ ` < v, s′′ >‖ s ‖ s′ ε→< v, merge(s, s′, s′′) >

s′ ‖ s ‖< v, s′′ >
ε→< v, merge(s, s′, s′′) >

Interlocking
2

ρ `< E1 ‖− E2, s >
ε→< E1, s >‖− s ‖− < E2, s >

ρ ` α
a→ α′ , ρ ` β

ā→ β′

ρ ` α ‖− s ‖− β
ε→ α′ ‖− s ‖− β′

β ‖− s ‖− α
ε→ β′ ‖− s ‖− α′

ρ ` α
ε→ α′

ρ ` α ‖− s ‖− β
ε→ α′ ‖− s ‖− β

β ‖− s ‖− α
ε→ β ‖− s ‖− α′

ρ ` α
ε(d)−→ α′ , ρ ` β

ε(d)−→ β′

ρ ` α ‖− s ‖− β
ε(d)−→ α′ ‖− s ‖− β′

β ‖− s ‖− α
ε(d)−→ β′ ‖− s ‖− α′

when { Sortd(α) ∩ Sortd(β) = ∅}
2

ρ ` α ‖− s ‖− < v, s′ >
ε→ α ‖− s ‖− s′

< v, s′ >‖− s ‖− α
ε→ s′ ‖− s ‖− α

ρ ` α
3→ α′

ρ ` α ‖− s ‖− s′ 3→ α′ ‖− s ‖− s′

s′ ‖− s ‖− α
3→ s′ ‖− s ‖− α′

2

ρ ` < v, s′′ >‖− s ‖− s′ ε→ < v, merge(s, s′, s′′) >

s′ ‖− s ‖− < v, s′′ >
ε→ < v, merge(s, s′, s′′) >

Function
2

ρ `< E1 E2, s >
ε→< E1, s > E2

ρ ` α
3→ α′

ρ ` α E
3→ α′ E

2

ρ `< λ id : τ • E, s >
ε→< [[λ id : τ • E, ρ]], s >

2

ρ `< [[λ id : τ • E1, ρ1]], s > E2
ε→ [[λ id : τ • E1, ρ1]] < E2, s >

ρ ` α
3→ α′

ρ ` [[λ id : τ • E, ρ1]] α
3→ [[λ id : τ • E, ρ1]] α′

2

ρ ` [[λ id : τ • E, ρ1]] < v, s >
3→ [[λ id : τ• < E, s >, ρ1]] v

ρ1 † [id 7→ v] ` α
3→ α′

ρ ` [[λ id : τ • α, ρ1]] v
3→ [[λ id : τ • α′, ρ1]] v

ρ1 † [id 7→ v] ` α
3→ < v′, s >

ρ ` [[λ id : τ • α, ρ1]] v
3→< v′, s >

Let Expression
2

ρ `< let id = E1 in E2, s >
ε→ let id =< E1, s > in E2

ρ ` α
3→ α′

ρ ` let id = α in E
3→ let id = α′ in E

2

ρ ` let id = < v, s > in E
ε→ < E[v/id], s >

If Expression
2

ρ `< if E then E1 else E2, s >
ε→ if < E, s > then E1else E2

ρ ` α
3→ α′

ρ ` if α then E1 else E2
3→ if α′ then E1 else E2

2

ρ ` if < true, s > then E1 else E2
ε→ < E1, s >

2

ρ ` if < false, s > then E1 else E2
ε→ < E2, s >

Recursion
2

ρ `< rec id : τ • E, s >
ε→< E[rec id : τ • E/id], s >

Fig. 2. Operational Rules for TRSL : Part 2

1018 Xia Yong and Chris George

– Sortd(x := α) = Sortd(α)
– Sortd(wait α) = Sortd(α)
– Sortd(let t = c! α in E) = Sortd(α)
– Sortd(α ‖ s ‖ s′) = Sortd(s′ ‖ s ‖ α) = Sortd(α)
– Sortd(α –‖ s –‖ s′) = Sortd(s′ –‖ s –‖ α) = Sortd(α)
– Sortd(α E) = Sortd(α)
– Sortd(α v) = Sortd(α)
– Sortd([[λ id : τ • α, ρ]] v) = Sortd(α)
– Sortd(let id = α in E) = Sortd(α)
– Sortd(if α then E1 else E2) = Sortd(α)
– Sortd(α op β) = Sortd(α) ∪ Sortd(β) where op = “debc”, “‖”

SORTd SORTd is a set of ports. Its definition is just same as Sortd, but can
only be calculated if we know what the environment expressions are. I.e. port c?
(c!) ∈ SORTd means that within d units of time, there are some other processes
that will be ready for complementary communication, c! (c?), on channel c.

3.6 Commentary on Operational Rules

The transition relation is defined as the smallest relation satisfying the axioms
and rules given in our operational rules. We note in particular:

Time-measurable event A configuration can evolve with a time-measurable
event only if all its sub-configurations on both sides of combinators debc, ‖ and
–‖, can evolve with this same time-measurable event.

Maximal progress Maximal progress in RSL means that once a communica-
tion on a channel is ready, it will never wait. In the rules for interlocking, the
semantic function, Sortd, is used to specify that only if no pair of comple-
mentary actions, one from each side of the combinator, is ready for commu-
nication, can this configuration evolve with a time-measurable event. In the
rules for parallel combinator, the condition is stronger: a configuration can
evolve with a time-measurable event only when no communication is possi-
ble, either internal (between the parallel expressions) or external (between
one of them and the environment). (c.f. Section 2). Using “Sort (SORT)” to
guarantee that the composite processes satisfy maximal progress was first
proposed by Wang Yi in his work on Timed CCS [Wang91].

4 Time Test Equivalence

4.1 Definitions

– Let l be a sequence of events, α, β two configurations in C, d ∈ Time and
d > 0. We define α

l⇒ β by:
1. α

<>=⇒ β if α (ε→)∗ β.

An Operational Semantics for Timed RAISE 1019

2. α
al′=⇒ β if for some α, α′, α′′ we have : α

<>=⇒ α′, α′ a→ α′′, and

α′′ l′=⇒ β.

3. α
ε(d)l′
=⇒ β if for some α, α′, α′′ we have : α

<>=⇒ α′, α′
ε(d)−→ α′′, and

α′′ l′=⇒ β.
where <> stands for the empty sequence. Moreover, we merge successive
time-measurable events by treating the sequence ε(d1)ε(d2)...ε(dn) as the
event ε(d1 + d2 + ... + dn).

– Let L be set of traces of a configuration, defined as :

L(α) = {l | for some β , α
l=⇒ β}

– We define the following convergence predicates:
1. We write α ↓ if there is no infinite sequence of internal moves:

α = α0
ε→ α1

ε→ ...

2. α ↓<> if α ↓
3. α ↓ al′ if α ↓ and for all α′ if α

a⇒ α′ then α′ ↓ l′

4. α ↓ ε(d)l′ if α ↓ and for all α′ if α
ε(d)
=⇒ α′ then α′ ↓ l′

5. α ↑ if α ↓ is false and α ↑ l if α ↓ l is false.
– We define the set S(α) of the next possible moves of the configuration α by:

S(α) = {c? | for some v and β, α
c?v=⇒ β} ∪

{c! | for some v and β, α
c!v=⇒ β}

– We define A(α, l), the acceptance set of events of α after performing the
events in the sequence l by :

A(α, l) = {S(α′) | α l=⇒ α′}

– We define : T(α) = π2(α), if for some d > 0 and α
ε(d)−→

(i.e. α can evolve an event of ε(d) in the next step).
Otherwise T(α) is defined as ∅.
π2 is a “projection” function, which returns the set of stores in a configuration
that can perform a time-measurable event:
• For basic configurations: π2(<ev, s>) = {s}
• For configurations, α op β where op = ‖, –‖ : π2(α op β) = π2(α) 5 π2(β)
• For configurations: π2(α debc β) = π2(α) ∪ π2(β)
• For other configurations, e.g. π2(α ; E) = π2(α)

The function “5” is defined by

{s1, ..., sn1} 5 {t1, ..., tn2} =
⋃

i = 1...n1
j = 1...n2

{si ∪ tj}

1020 Xia Yong and Chris George

– We define W(α, l), the store set of events of α after performing the events
in the sequence l by :

W (α, l) = {T (α′) | α l=⇒ α′}

– We define also R(α, l), the set of possible returned pairs (of values and stores)
after l:

R(α, l) = {(v, s) | α
l=⇒< v, s >}

4.2 Equivalence of TRSL Expressions

We first define a pre-order between TRSL configurations.
Definition. For α, β in C, α �SOS β if for every l and for any given ρ:

α ↓ l⇒ a) β ↓ l
b) A(β, l) ⊂⊂ A(α, l)
c) W (β, l) ⊂⊂ W (α, l)
d) R(β, l) ⊆ R(α, l)

where:
A ⊂⊂ B is defined by: ∀ X ∈ A • ∃ Y ∈ B • Y ⊆ X
Now, we begin to define the equivalence between TRSL expressions through

their operational semantics.
Actually, the equivalence between TRSL configurations: α , β, can be defined

as : α �SOS β and β �SOS α. For simplicity of future proof, we rewrite that
equivalence definition as follows.

– α ↑ l iff β ↑ l
– if α ↓ l and β ↓ l then

1. A(α, l) ⊂⊂ A(β, l) and A(β, l) ⊂⊂ A(α, l)
2. W(α, l) ⊂⊂ W(β, l) and W(β, l) ⊂⊂ W(α, l)
3. R(α, l) = R(β, l)

Definition. For any TRSL expressions: P and Q, P = Q iff for any s and for
any given ρ, <P, s> = <Q, s>

4.3 Commentary and Examples

Pre-order Our definition of the pre-order relation on two configuration :
α �SOS β stands for

1. α is more general than β, or
2. α is more nondeterministic than β, or
3. α is implemented by β, or
4. α is more unstable than β, ...

Therefore, in order to guarantee the condition 2, we ask A(β, l) ⊂⊂ A(α, l) to
hold; and to guarantee the condition 4, we ask W(β, l) ⊂⊂ W(α, l) to hold.

An Operational Semantics for Timed RAISE 1021

3
2

1
0 a

b
c

d

a’

b’

c’

d’

Time

Fig. 3. A Trajectory in Two-dimension Time Space

Time Model We view processes under a super-dense model [MP93] as a trajec-
tory in a two dimensional time space [ZH96, PD97, QZ97]. We suppose there are
countably infinite time axes, indexed by natural numbers. Events and processes
happen and evolve in this space. A process starts at some time on a time axis.
When the process executes a time-measurable event, time progresses horizon-
tally, and the process stays on the same time axis. When the process executes
visible and silent events, it jumps vertically up to another time axis, and may
have a new state there. A trajectory of a super-dense behaviour is shown in
Figure 3.

There are two types of turning point. One is called a start turning point
(points a, b, c, d in Figure 3), from which the process will execute a time-
measurable event. The other is called an end turning point (points a’, b’, c’, d’
in Figure 3), from which the process will execute a visible or silent event.

The super-dense model distinguishes clearly between time measurable events
like delays and waits for synchronisation, and visible and silent events like syn-
chronisation and assignments. It allows arbitrary numbers of the latter to occur
instantaneously but in some order, which matches well with the interleaving
semantics of concurrency in (T)RSL.

In our time test equivalence definition, for two equivalent processes (expres-
sions), α and β, demanding A(α, l) = A(β, l) guarantees the same possible
temporal order of visible events and time-measurable events of the two pro-
cesses.

Demanding W(α, l) = W(β, l) guarantees that the stores (variable states)
of two processes (expressions) on every start turning point are the same.

Demanding R(α, l) = R(β, l) guarantees that two expressions, if they termi-
nate, can return the same sets of possible values and final stores.

5 Soundness of Proof Rules

5.1 Proof Rules of TRSL

One of the major reasons for expressing specifications in a formal language like
(T)RSL is to prove properties of specification. Therefore, a proof system for

1022 Xia Yong and Chris George

TRSL should be set up. We list some of the proof rules involving newly added
time constructs.

[wait annihilation]
wait 0.0 ' skip

[wait plus]
wait er ; wait er′ ' wait(er +̇ er′)

[wait introduction]
e ' wait er ; shift(e, er)

when pure(er) ∧ convergent(er) ∧ er ≥ 0.0 ∧ must wait(e, er)

The complete set of proof rules can be found in [GX98]. The original “special
functions” convergent, pure, express,etc. are defined in [RMG95]. New special
functions must wait, shift, etc. are defined in [GX98]. The parallel expansion
rule is changed to:

eu ‖ eu′ '
if parallel ints(eu, eu′) ≡ swap
then parallel exts(eu, eu′) debc parallel exts(eu′, eu)
else

(parallel exts(eu, eu′)debcparallel exts(eu′, eu)debcparallel ints(eu, eu′))u̇
parallel ints(eu, eu′)

end
when isin standard form(eu) ∧ isin standard form(eu′) ∧

(2 assignment disjoint(eu, eu′))

where the operator “u̇” is the “maximal progress” version of the internal choice
operator mentioned in Section 2 and defined in [GX98]. The other “dotted”
operators like “+̇” are simple extensions of the standard arithmetic operators,
returning zero if the result would otherwise be negative.

The revised definitions of parallel exts, parallel ints, and interlock ints
are (showing just one case of each):

parallel exts(wait er ; let (b,t) = c? in eu end, eu′) '
wait er ; let (b,t) = c? in eu ‖ shift(eu′, er +̇ t) end

when no capture(b, eu′) ∧ no capture(t, eu′) ∧
no capture(b, er) ∧ no capture(t, er)

parallel ints(wait er ; let (b,t) = c? in eu end,
wait er′ ; let t′ = c!e in eu′ end) '

wait ˙max(er,er′) ;
let b = e in subst expr(er′ −̇ er,t,eu) ‖ subst expr(er −̇ er′,t′,eu′) end

when no capture(b, eu′) ∧ no capture(b, er) ∧ no capture(b, er′)

An Operational Semantics for Timed RAISE 1023

interlock ints(wait er ; let (b,t) = c? in eu end,
wait er′ ; let t′ = c!e in eu′ end) '

wait ˙max(er,er′) ;
let b = e in subst expr(er′ −̇ er,t,eu) –‖ subst expr(er −̇ er′,t′,eu′) end

when no capture(b, eu′) ∧ no capture(b, er) ∧ no capture(b, er′)

5.2 Soundness

We would like to show that

– The original RSL Proof Rules for the TRSL expressions not involving time
(e.g. simple assignment expressions) still hold in our semantic model.

– Most of the original RSL Proof Rules for TRSL expressions involving time
(e.g. input expressions, output expressions) with newly added side conditions
hold in our semantic model.

– New rules applied to extended operators are sound with respect to our op-
erational semantics

– In our semantic model, no new rules for the original RSL syntax are gener-
ated.

As mentioned in Section 2.1, not all the original RSL proof rules are sound
with respect to our semantic model.

However, it is trivial to prove that all the original proof rules for TRSL ex-
pressions not involving time-measurable events still hold in our semantic model,
because our semantics and the definition of equivalence are just the same as the
original one, if we ignore the “ε(d)” transitions.

For the same reason, it is clear that no new rules for the original RSL syntax
are generated in our semantic model.

We need to add side conditions to some of the proof rules for TRSL ex-
pressions involving time-measurable events. We are interested in proving the
soundness of these rules with respect to our semantic model. Most of the rules
that we need to study are listed on page 457 of [RMG95].

Of course we should also prove the soundness of rules for the extended oper-
ators too. above recommendations.

Proof
Here we just show one example. Other detailed proofs can be seen in [GX98]

[ext choice replacement]
e debc e′ ' e′′ debc e′′′

when (e ≡ e′′) ∧ (e′ ≡ e′′′)

1024 Xia Yong and Chris George

Proof for any s, for any given ρ,

– For Divergence: if one of the configuration is divergent, w.l.g. suppose
<e,s>↑ l, because e ≡ e′′, we have <e′′,s>↑ l too. then from the 3rd
rule in External Choice (c.f. Section ??), we know <e debc e′, s>↑ l and <e′′

debc e′′′, s>↑ l
– if none of configurations are divergent, we would like to prove

1. for any l, we have A(<e debc e′, s>, l) = A(<e′′ debc e′′′, s>, l) :

For visible action, one branch will be selected. For silent action either e or
e′ will evolve to next configuration. For time-measurable action, both of
them will evolve. So for any possible sequence of action, A(<e debc e′, s >,
l) ⊆ A(<e, s>, l) ∪ A(<e′, s>, l). On the other hand, for any possible
sequence, from semantics, it is clear A(<e debc e′, s >, l) ⊇ A(<e, s>, l)
and A(<e debc e′, s >, l) ⊇ A(<e′, s>, l). So A(<e debc e′>, l) = A(<e, s>,
l) ∪ A(<e′, s>, l). For the same reason, we know A(<e′′ debc e′′′, s>, l) =
A(<e′′, s>, l) ∪ A(<e′′′, s>, l). Because e ≡ e′′ and e′ ≡ e′′′, A(<e, s>,
l) = A(<e′′,s>, l) and A(<e′, s>, l) = A(<e′′′, s>, l).
So A(<e debc e′, s>, l) = A(<e′′ debc e′′′, s>, l).

2. for any l, we have W(<e debc e′, s>, l) = W(<e′′ debc e′′′, s>, l) :

From the definition of “π2” function : π2(α debc β) = π2(α) ∪ π2(β), we
can conclude trivially that W(<e debc e′>, l) = W(<e, s>, l) ∪W(<e′, s>,
l) and W(<e′′ debc e′′′, s>, l) = W(<e′′, s>, l) ∪ W(<e′′′, s>, l). Because
e ≡ e′′ and e′ ≡ e′′′, W(<e, s>, l) = W(<e′′,s>, l) and W(<e′, s>, l) =
W(<e′′′, s>, l).
So, we get W(<e debc e′, s>, l) = W(<e′′ debc e′′′, s>, l).

3. for any l, we have R(<e debc e′, s>, l) = R(<e′′ debc e′′′, s>, l) :

From semantics, we know only one branch of the choice can be selected
and evolve to its end. So R(<e debc e′, s>, l) = R(<e, s>, l) ∪ R(<e′, s>,
l) and R(<e′′ debc e′′′, s>, l) = R(<e′′, s>, l) ∪ R(<e′′′, s>, l). because
e ≡ e′′ and e′ ≡ e′′′, R(<e, s>, l) = R(<e′′,s>, l) and R(<e′, s>, l) =
R(<e′′′, s>, l).
We get R(<e debc e′, s>, l) = R(<e′′ debc e′′′, s>, l) at last.

This completes the proof.

6 Discussion

6.1 Future Work

This paper gives a set of proof rules and an operational semantics for TRSL. A
denotational semantics and its formal interrelations with proof rules (axiomatic
semantics) and operational semantics needs to be further investigated. What
is more, a formal relation between an event-based process algebra and a state-
based logic like the Duration Calculus is a non-trivial research topic [Rav94,

An Operational Semantics for Timed RAISE 1025

PG96]. Actually, [LH99] gives a denotational DC semantics of TRSL, and an
“operational semantics with behaviour”, which relates TRSL with DC, has been
proposed in [HX99]. We need more time to give further results.

The method for developing timed RSL specifications is also an important
research direction for TRSL. Some initial results can be seen in [LH99].

6.2 Related Work

Over the past decade, a number of formal calculi (also called process algebras)
for real-time, concurrent systems have been developed; examples are TCCS
[Wang91] and TCSP [Dav93]. These calculi are suitable specification languages
to describe real-time system requirements. They give us ideas for our construc-
tion of Timed RSL and its operational semantics.

However, if one uses those specification languages, the design part of the
program has to be given in another language. Using TRSL, we can stay with the
same language in all steps of development. This is a major motivation for us to
add real-time features to RSL.

There are other approaches to adding real time features to a specification
language. [F92] represents RTL formulae in Z and [FHM98] directly introduces
the differential and integral calculus operators into the Z notation. They are
essentially encodings of time using facilities already in Z. As such they add no
power to the language. In addition they allow all variables to be functions of
time and so permeate the language. For example, notions of refinement become
more complicated. [HX98] embeds DC into RSL using high order logic and also
proposes an extension of RSL syntax with DC constructs. But again this is an
encoding and the power of the language is not changed.

These notational extensions are also at the abstract specification level. They
provide no explicit assistance with implementation.

Our aim is rather different. The addition of the wait construct adds to the
power of RSL. Further, it allows both the abstract specification of timing fea-
tures in a DC notation and also the concrete specification of particular timed
algorithms that can be readily expressed in suitable programming languages.

The super-dense computation model is an important abstract model of real-
time systems [MP93]. Some industrially applicable programming languages, such
as Esterel, adopt similar models.

[ZH96, PD97, QZ97] use (Extended) Duration Calculus to give a denotational
semantics to an OCCAM-like programming language under the super-dense com-
putation model.

Acknowledgements

The authors thank Zhou Chaochen for his advice and guidance while doing this
research work, Anne Haxthausen for her ideas and comments on Timed RAISE,
and He Jifeng for his comments on a draft of this paper. Anonymous reviewers
also provided useful comments.

1026 Xia Yong and Chris George

References

[BD93] D.Bolignano, and M.Debabi. RSL: An Integration of Concur-
rent, Functional and Imperative Paradigms. Technical Report LA-
COS/BULL/MD/3/V12.48, 1993.

[Dav93] Jim Davies. Specification and Proof in Real-Time CSP. Distinguished
Dissertation Series. Cambridge University Press, 1993.

[Deb94] M.Debabi. Intégration des paradigmes de programmation parallèle, fonc-
tionnelle et impérative : fondements sémantiques. Ph.D. Thesis (Thèse de
Doctorat en Informatique), Université Paris XI, Centre d’Orsay, July 1994.

[F92] C. J. Fidge Specification and verification of Real-Time Behaviour Using Z
and RTL in J. Vytopil (ed.), Proc FME’92, LNCS571 (Springer), 1992.

[FHM98] C. J. Fidge, I. J. Hayes and B. P. Mahony, Defining Differentiation and
Integration in Z, Technical report 98-09, Software Verification Research
Centre, School of Information Technology, The University of Queensland,
September 1998.

[GX98] Chris George and Xia Yong An Operational Semantics for Timed RAISE
Technical Report No. 149, United Nations University/International Insti-
tute for Software Technology, November 1998.

[HI93] M. Hennessy and A. Ingólfsdóttir. Communicating Process with Value-
passing and Assignments. In Formal Aspects of Computing, 1993.

[HX98] Anne Haxthausen and Xia Yong A RAISE Specification Framework and
Justification Assistant for the Duration Calculus. In ESSLLI-98 Workshop
on Duration Calculus, August 1998.

[HX99] Anne Haxthausen and Xia Yong. Linking DC together with TRSL. Re-
search Report, Department of Information Technology, Technical Univer-
sity of Denmark, April 1999.

[LH99] Li Li and He Jifeng Towards a Denotational Semantics of Timed RSL
using Duration Calculus Technical Report No. 161, United Nations Uni-
versity/International Institute for Software Technology, April 1999.

[MP93] Z. Manna and A. Pnueli. Models of reactivity. In Acta Informatica. 30(7),
609–678, Springer-Verlag, 1993.

[Rav94] Anders P. Ravn. Design of Embedded Real Time Computing Systems. PhD
thesis, Department of Computer Science, Technical University of Denmark,
Denmark, September 1994.

[RLG92] The RAISE Language Group. The RAISE Specification Language. The
BCS Practitioners Series. Prentice Hall Int., 1992.

[RMG95] The RAISE Method Group. The RAISE Development Method. The BCS
Practitioners Series. Prentice Hall Int., 1995.

[PD97] Paritosh K. Pandya and Dang Van Hung. Duration Calculus of weakly
monotonic time. Technical Report No. 122, United Nations Univer-
sity/International Institute for Software Technology, September 1997.

[PG96] Jifeng He, C.A.R. Hoare, Markus Müller-Olm, Ernst-Rüdiger Olderog,
Michael Schenke, Michael R. Hansen, Anders P. Ravn, and Hans Rischel.
The ProCoS Approach to the Design of Real-Time Systems: Linking Differ-
ent Formalisms. In Formal Methods Europe 96, Oxford, UK, March 1996.
Tutorial Material.

[QZ97] Qiu Zhongyan and Zhou Chaochen A Combination of Interval Logic and
Linear Temporal Logic Technical Report No. 123, United Nations Univer-
sity/International Institute for Software Technology, September 1997.

An Operational Semantics for Timed RAISE 1027

[Wang91] Wang Yi. A Calculus of Real Time Systems. PhD thesis, Department of
Computer Sciences, Chalmers University of Technology, Göterborg, Swe-
den, 1991

[ZH96] Zhou Chaochen and Michael R. Hansen. Chopping a point. In J. F. He et
al (Eds.), BCS-FACS 7th Refinement Workshop, Electronic Workshops in
Computing, Springer-Verlag, 1996.

[ZHR91] Zhou Chaochen, C.A.R. Hoare and A.P. Ravn. A Calculus of Durations.
Information Processing Letters, 40(5):269–276, 1991. Revised June 3, 1992.

Data Abstraction for CSP-OZ?

Heike Wehrheim

Universität Oldenburg
Fachbereich Informatik

Postfach 2503, D–26111 Oldenburg, Germany
wehrheim@informatik.uni-oldenburg.de

Abstract. CSP-OZ is an integrated formal method which combines the
state-oriented method Object-Z with the process algebra CSP, thereby
allowing a description of static as well as dynamic aspects of a system.
Checking correctness of CSP-OZ specifications can be done via a transla-
tion into (FDR-)CSP, on which automatic verification can be performed
with the tool FDR if the resulting CSP process is not too large to be
processed. This paper investigates how data abstraction techniques can
be used to bring a translated specification within range of automatic
verification.

1 Introduction

Recently, there is an emerging interest in specification techniques that combine
specification methods for different views on a system. In particular, methods
integrating static aspects (data) and dynamic aspects (behaviour) are investi-
gated (see for example [17, 10, 22, 20]). CSP-OZ [7] is a formal method that
combines a method for the description of static aspects of systems, Object-Z [6]
(an object-oriented extension of Z [21, 24]), with a method for the specification
of dynamic behaviour, the process algebra CSP [11, 18]. The general idea behind
this integration is to augment the state-oriented Object-Z specification with the
specification of behaviour in the style of CSP while maintaining a clear separa-
tion of the issues of data and behaviour. The combination has a uniform formal
semantics in the style of CSP failures and divergences.

In this paper, we will be concerned with verifying CSP-OZ specifications.
The first step in the verification of a given CSP-OZ specification will be a trans-
lation into CSP1, to be precise, into the CSP dialect of the model checker FDR
(Failure-Divergence-Refinement [9]). This technique has been proposed in [8],
extending previous ideas of [16, 19] to use FDR to check properties of (CSP-)Z
specifications. FDR-CSP is a combination of CSP with a functional language in
the style of Haskell and Miranda. The functional language can be used to encode
the Z data descriptions. Due to the possibly large data domain specified in the
? This work was partially funded by the Leibniz Programme of the German Research

Council (DFG) under grant Ol 98/1-1.
1 The translation is possible for a large subset of CSP-OZ, but cannot treat all Z

features.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1028–1047, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Data Abstraction for CSP-OZ 1029

Object-Z part of a CSP-OZ specification, the resulting CSP process may however
be too complex to be processed by FDR. This paper investigates the usefulness
of data abstraction techniques to reduce the complexity of property checking on
CSP-OZ specifications. The general idea is to apply the framework of abstract
interpretation [4] in the specific setting of CSP-OZ. The use of abstraction tech-
niques for verification has already been investigated for temporal-logic model
checking [5, 1, 14] and is based on abstracting transition systems (the models
for various specification formalisms) while preserving properties formulated in
temporal logic. Techniques for directly constructing abstract transition systems
from specifications are given to avoid the construction of the (possibly large)
concrete transition system at all. These techniques most often rely on choos-
ing some abstract data domain and abstractly interpreting the operators in the
program on this domain. Another application of abstract interpretation in verifi-
cation is the construction of models from real software written in a programming
language [3].

The work most closest to us is [2] which gives abstract interpretations for
value-passing CCS where the correctness checks are based on the notion of test-
ing. However, their abstraction results are formulated within the framework of
Galois connections on transition systems, the semantic models of CCS. For a
designer having written a specification in CCS, it is hard to understand the
practical meaning of the result, it is formulated completely different than his
specification. Furthermore, the obtained abstraction result cannot be the basis
for further process algebraic manipulation. In the approach we present here,
specifications, correctness checks and abstraction results are formulated in the
process algebra theory of CSP. Thus we have a uniform formalism for speci-
fication and verification. A designer using the abstraction technique does not
have to understand the ”lower” semantic level of transition systems. Since the
abstraction results are formulated within CSP theory, they can for instance be
further combined (compositionality) or projected down to the concrete level.
Furthermore, due to the clear separation of data and behaviour in a CSP-OZ
specification, data abstraction only requires local changes of the CSP-OZ spec-
ification (or directly of the CSP process obtained by translation): changing the
Z part by replacing concrete data domains/operations by abstract ones. We nei-
ther change the structure of the process, nor the interpretation of CSP operators.
This enables us to use FDR without any additional modifications to the program
or the model checking algorithm.

The paper is structured as follows: we start with a brief introduction of CSP-
OZ and the translation into CSP. The translation maintains the separation into
data and behaviour. Hence the resulting CSP processes have a quite specific
structure, which we call CSP-OZ form. Section 3 discusses data abstraction
for CSP processes in CSP-OZ form and Section 4 gives a first example. The
next section presents compositionality results for data abstraction and illustrates
the applicability of the results by means of the verification of a router. The
conclusion discusses further related work, especially that of Roscoe, whose book

1030 Heike Wehrheim

[18] contains a great variety of techniques to overcome the problem of state space
complexity, and we discuss the issue of data independence.

2 Prerequisites

We start with a brief description of CSP-OZ and the specific structure of the
translated specifications. The data abstraction techniques we suggest are tailored
towards this specific structure. The translation will be explained through an
example, details can be found in [8]. Afterwards we briefly describe the semantics
underlying the process algebra CSP. A summary of CSP operators can be found
in the appendix, a more detailed introduction in [11].

2.1 CSP-OZ

CSP-OZ is an integrated formal method that allows for a description of static
aspects (by means of Object-Z) as well as dynamic aspects (by means of the
process algebra CSP). A CSP-OZ specification describes a system as a collection
of interacting objects, each of which has a prescribed structure and behaviour.
Communication takes place via channels in the style of CSP. In general, a CSP-
OZ specification consists of a number of paragraphs, introducing classes, global
variables, functions and types. CSP-OZ classes can be combined using the CSP
operators parallel composition, external and internal choice and hiding; thus
overriding the corresponding operators in Object-Z. In this paper, we will mainly
be concerned with CSP-OZ classes, to be precise, with CSP processes which are
translations of CSP-OZ classes. The specific structure of these programs can
best be understood with the original CSP-OZ class structure in mind, which is
as follows:

Name
channel definitions
CSP − Part
type and constant definitions
state schema
initial state schema
operations

We explain the different parts of a CSP-OZ class through a simple example, the
specification of a pool. The pool simply stores elements out of some element set
Elem,

Elem == 0..10

and allows to input and output elements. Every input is signalled to the envi-
ronment.

Data Abstraction for CSP-OZ 1031

Pool
channel signal
channel in : [el : Elem]
channel out : [el : Elem]

main = in?x → signal → main 2 out?x → main

pool : PElem
Init
pool = ?

enable out
pool 6= ?

effect out
∆(pool)
el ! : Elem

el ∈ pool
pool ′ = pool \ {el}

effect in
∆(pool)
el? : Elem

pool ′ = pool ∪ {el}

The first part defines the syntactic interface of the class, i.e. the channels which
can be used for communication with the environment. The second part contains
all CSP-declarations, defining the dynamic behaviour of the class; for our pool:
it may either input some new elements after which this has to be signalled to
the environment or (2) output some elements. No reference to data in any kind
occurs in the CSP part; all communications are of the form ch?x (a communi-
cation of the form ch!e would refer to some concrete data value). Thus also the
output of our pool has the form out?x.

The remaining part of the class definition contains Object-Z-declarations.
The main part is the declaration of the state schema (here the state variable
pool), the initial state schema (its initial value), and operation schemas. The
definition of an operation has to be divided into an (optional) enabling and an
effect schema. The enabling schema (e.g. enable out) is a predicate over the
state variables of the class, and describes the states in which the operation can
be executed (e.g. outputs are only possible when the pool is non-empty). Enable
schemas are thus used to describe data-dependent behaviour. The effect schema
(a predicate over the state variables and input parameters) describes the effect
of an operation on the state space and the values of possible output parameters
(the primed variables are used to describe the value of a variable in the next
state, the ∆-list lists all variables which are changed by the operation).

1032 Heike Wehrheim

2.2 Structure of Translated CSP-OZ Specifications

For the verification, every class of a CSP-OZ specification is translated into the
definition of a CSP process. When using such a definition, we will also refer to
this as the CSP process of an object, a particular instance of a class.

The translation preserves the clear separation between data and behaviour.
The CSP part of the CSP-OZ specification remains unchanged while the Z part
has to be translated into CSP. Intuitively, the behaviour of the Z part is as
follows: in every state (specific values of the state variables) one of the enabled
operations may be taken and the resulting state is determined by the effect of
the operation. Thus the CSP translation of the Z part is an external choice over
all class operations with their enabling conditions as guards. The effect schemas,
which are predicates in the CSP-OZ specification, are translated into functions
from state space and input parameters to sets of possible new states and values of
output parameters. The resulting new state and the values for output parameters
are nondeterministically chosen out of this effect set of an operation.

Assume that we are given a CSP-OZ class specification CLS with state vari-
ables v1, . . . , vn in the state schema, initial values ini(vi) (1 ≤ i ≤ n) and set
of operations Ops , and that we may derive a function In assigning to every
channel ch ∈ Ops its possible values of input variables (derived from the type
of the channel), then the translated specification has the following form (using
partly FDR-CSP and CSP syntax to improve readability; for a description of
FDR-CSP see appendix):

CLS =
let

-- CSP part
main = ...
...
-- Z part
Z_PART(v_1, ..., v_n) =
[] ch: Ops @ -- for every channel

enable_ch(v_1, ...,v_n) & -- if enabled
[] in:In(ch) @ -- for every input value
|~|DIV(out,v_1’,...,v_n’):effect_ch(v_1,...,v_n,in) @

-- choose new state and output
ch.in.out -> Z_PART(v_1’,...,v_n’) -- event

within Z_PART(ini(v_1), ...,ini(v_n)) ||α(main) main

The abbreviation α(main) stands for the alphabet of the process main (the set
of channel names occurring in it) and |~|DIV is a special internal choice operator
capturing the case that the index set of the iterated |~| is empty, in this case the
process diverges. The intuition behind the use of this operator is the following: if
an operation is enabled but its effect is not defined for the current state (yielding
an empty effect set), the process behaves as completely undetermined, it diverges.

The structure of the translated class can be further simplified when there
are no input or no output parameters of a channel, or when the effect of an

Data Abstraction for CSP-OZ 1033

operation is deterministic, i.e. the effect set contains a single value. None of our
examples will use the general structure, most often the Z part is simply of the
form guard1 & ch_1 -> Z(...) [] guard2 & ch_2 -> Z(...)
The translation of the class Pool given above is:

Elem = {0..10}
channel signal
channel in, out: Elem

POOL = let
-- CSP part
main = in?x -> signal -> main [] out?x -> main
-- Z part
Z_PART(pool) =

(true & signal -> Z_PART(pool))
[] (true & in?x -> Z_PART(union(pool,{x})))
[] (not(empty(pool)) &

|~| el:pool @ out.el -> Z_PART(diff(pool,{el})))
within Z_PART({}) [| {| signal,in,out |} |] main

2.3 CSP Semantics

The standard semantic model of CSP is the failure-divergence model. The same
model has been used in [7] to give a semantics to CSP-OZ, by defining a failure-
divergence semantics for the Z part. Thus a uniform semantics is achieved. An
alternative weaker semantic model which is also supported by FDR is the trace
model. We will use both models here. The trace model is sufficient for studying
safety properties, while for liveness properties (e.g. deadlock or livelock freedom)
a more discriminating semantics has to be chosen. Traces record the possible
runs of a process, failures additionally give sets of events that are refused after
some run, and divergences describe the set of traces after which the process may
diverge, i.e. perform an infinite number of internal events. Thus, given a set of
events Σ (typically of the form ch.v , where ch is a channel name and v a value),
we have

traces(P) ⊆ 2Σ∗

failures(P) ⊆ 2Σ∗×2Σ

divergences(P) ⊆ 2Σ∗

These semantic models are used to compare processes and check properties on
them. The most important comparison concept in CSP theory is refinement:

Definition 1. A CSP process P1 is a failure-divergence refinement of a process
P2 (denoted P2 vF P1) if

failures(P2) ⊇ failures(P1) and divergences(P2) ⊇ divergences(P1).

They are failure-divergence equivalent (P1 =F P2) if P1 vF P2 and P2 vF P1.

1034 Heike Wehrheim

If P1 is a refinement of P2, it can be seen as an implementation of P2 since it is
more deterministic than P2. A weaker refinement notion is obtained when only
the traces are used for comparison:

Definition 2. A CSP process P1 is a trace refinement of a process P2 (denoted
P2 vT P1) if traces(P2) ⊇ traces(P1).

Both refinement notions are compositional (or monotone): given two processes
P1, P2 and a CSP context C [·], then P1 v P2 ⇒ C [P1] v C [P2], where v ∈
{vT ,vF}.

There are two possibilities for deriving the semantics of a CSP process: by a
denotational semantics which compositionally computes traces, failures and di-
vergences, or via a structured operational semantics which constructs a transition
system for a process, from which traces, failures and divergences are computed.
Both semantics are consistent: they compute the same traces, failures and diver-
gences of a process. We refer to [18]) for details. A summary of CSP operators
in FDR syntax can be found in the appendix. The two operators which will be
used in our results are

– parallel composition with sychronisation on some set of events A: ||A, and
– renaming: [R], which renames all events according to the renaming relation

R.

We use general renaming relations, not just injective functions. As an example
for a CSP process with renaming: Let P = a → SKIP and R = {(a, b), (a, c)},
then P [R] is equal to b → SKIP 2 c → SKIP .

3 Data Abstraction

Since CSP-OZ specifications may contain rather large amounts of data, the state
space of the resulting CSP process can often be too large to be processed by
FDR. Several techniques have already been proposed to overcome this problem;
especially in the book of Roscoe [18] several methods can be found together with
various application examples.

The technique we propose here is based on abstract interpretation of pro-
grams [4] and can be seen as complementing the other techniques. Abstract
interpretation is a technique for program analysis which is often used in com-
piler design for static analysis (e.g. data-flow analysis, strictness analysis, etc.).
The results of an abstract interpretation can for instance be used in type check-
ing or optimisation. The idea of abstract interpretation is to interpret a program
in an abstract domain using abstract operations. The main advantage is that the
concrete program does not have to be executed while still being able to obtain
information about its real execution. For verification of formal specifications, the
basis of abstract interpretation is to construct an abstract model of the speci-
fication on which abstract properties can be proven which give information on
the concrete model [5, 1, 14]. For this, the data domain of the concrete program

Data Abstraction for CSP-OZ 1035

has to be abstracted and operations of the program are abstractly interpreted
on the new data domain.

In order to apply data abstraction techniques to CSP-OZ, we first have to
make clear what the data is we want to abstract, and what the operations are
we want to interpret abstractly. Since the goal is to use FDR for automatic veri-
fication of properties on the abstracted systems, we certainly cannot change the
semantics of CSP operators in any way. What may be interpreted abstractly are
the enable and effect operations coming from the Z part of the CSP-OZ specifi-
cation. The relevant data domains to be abstracted are the domains of the state
variables: D1, . . . ,Dn for variables v1, . . . , vn , and the domains of the channels:
M1, . . . ,Mk for channels ch1, . . . , chk . We assume that a domain of a channel
chi is split into a domain for input parameters M in

i and for output parameters
M out

i . Then the enable and effect operations have the following signature (we
will refer to this concrete semantics of enable and effect by using the semantic
brackets [[·]]):

[[enable chi]] : D1 × . . .×Dn → B

[[effect chi]] : (D1 × . . .×Dn ×M in
i)→ 2Mout

i ×D1×...×Dn

Instead of interpreting the CSP program on these concrete data domains with the
concrete meaning of enable and effect operations, we use abstract data domains
and abstract interpretations of enable and effect. For this, we first choose abstract
data domains DA

i and MA
j and abstraction functions:

hi : Di → DA
i

gj : Mj → Mj
A

We define h(d1, . . . dn) := (h1(d1), . . . , hn(dn)) and let (h, g)(d1 , . . . , dn ,m) stand
for (h1(d1), . . . , hn(dn), g(m)). In the following, we will abbreviate (d1, . . . , dn)
simply by d . For a given abstraction function g of channel values, we let G
denote the corresponding renaming function on events: G(chi .w) = chi .g(w).

An abstract interpretation [[·]]A of enable and effect operations operates on
abstract data domains:

[[enable chi]]A : DA
1 × . . .×DA

n → B

[[effect chi]]A : (DA
1 × . . .×DA

n ×M in
i

A)→ 2Mout
i

A×DA
1 ×...×DA

n

In order to use FDR as a model-checker on abstracted systems, we have to
replace the concrete enable and effect predicates by abstract predicates enableA

and effectA such that [[enableA
chi

]] = [[enablechi]]A and [[effectAchi
]] = [[effectchi]]A

holds, i.e. the concrete semantics of the new enable and effects must equal the
abstract semantics of the old ones. Furthermore channels have to be declared
over the abstract domains. These changes can already be done in the CSP-OZ
specification, the designer does not have to look at the CSP code at all.

So far, we are free to use whatever abstract interpretation we want. Of course,
the abstracted system should somehow reflect the behaviour of the concrete
system: we want to abstractly observe the events of the concrete system. To

1036 Heike Wehrheim

ensure this, we have to impose conditions on the abstract interpretations. We
consider two types of abstract interpretations: safe and optimal interpretations.

Definition 3. An abstract interpretation [[·]]S of enable and effect predicates is
safe with respect to abstraction functions h and g iff

∀ d ∈ DA : [[enable chi]]S(dA)⇔ ∃ d ∈ D : h(d) = dA ∧ [[enable chi]](d)

and

∀ d ∈ DA,m ∈ MA :

[[effect chi]]S(dA,mA) =
⋃

(d,m)∈D×M
h(d)=dA,gi(m)=mA

(h, gout
i)([[effect chi]](d ,m))

A safe abstract interpretation guarantees that in a state of the abstract system
a communication over some channel is possible whenever there is some corre-
sponding concrete state in which this communication is enabled. The result of a
safe abstraction is an abstract system that allows more moves than the concrete
system. An abstraction which more faithfully represents the concrete system, is
an optimal abstraction.

Definition 4. An abstract interpretation [[·]]O of enable and effect predicates is
optimal with respect to abtraction functions h and g iff

∀ d ∈ DA : [[enable chi]]O(h(d))⇔ [[enable chi]](d) and
∀ d ∈ DA,m ∈ MA : [[effect chi]]O(h(d), gi (m)) = (h, gout

i)([[effect chi]](d ,m)

An optimal abstracted system exactly mimics the behaviour of the concrete
system, only the precise values of communication cannot be observed anymore.
Depending on the choice of abstraction functions, it may not be possible to find
an optimal abstract interpretation. Optimality requires abstraction functions
which guarantee that all concrete states which are abstracted into the same
abstract state abstractly behave ”the same”. Note that every optimal abstraction
is safe. Tool support for proving optimality or safety of interpretations is available
in the form of theorem provers for Z [13, 15].

Given a specification S , we let SS refer to a safe and SO to an optimal
abstraction of S .

What is now the relationship between the behaviour of the abstracted and
the concrete system? Our goal is to express this relationship completely in terms
of process algebra notions. This enables us to use all of the process algebra
theory for further manipulation of the result. In the abstracted system we can,
of course, only observe communications with abstract values. This is the nature
of abstract interpretation, we have lost some information about the concrete
system, in our case the concrete values of communication. Thus we can only
compare the abstracted system with the renamed concrete system:

Data Abstraction for CSP-OZ 1037

Theorem 1. Let S be a CSP process in CSP-OZ form, g1, h1 abstraction func-
tions for a safe and g2, h2 for an optimal interpretation. Then the following
holds:

SS vT S [G1] and
S [G2] =F SO .

The proof can be found in the appendix. This result can be the basis for further
process algebraic computations; for instance compositionality of trace refinement
immediately gives us (SS)[G−1] vT (S [G])[G−1]. The latter is equal to S [G ◦
G−1] which itself can easily be shown to be trace refined by S : S [G ◦G−1] vT S .
All in one, we therefore get:

(SS)[G−1] vT S

This result refers directly to the concrete system S . With the help of this ab-
straction theorem, we are now able to proof properties of a CSP-OZ class S in
the following way:

– construct an abstract class specification: choose abstract domains, abstrac-
tion functions and abstract enable and effect predicates,

– show safety/optimality of abstraction (supported by some theorem prover
extension for Z),

– translate the abstract specification into FDR-CSP (in future automatic),
– show property for SS/SO (FDR),

e.g. Prop vT SS ,
– conclude the holding of a concretised property for S (abstraction theorem),

e.g. Prop[G−1] vT S .

Most of these steps in the verification are tool-supported or even automatic.
Nevertheless, the crucial part of abstraction, finding good abstract domains and
abstraction functions, is still left to the user. [1] gives some heuristics for the
choice of abstraction functions.

4 First Example: An Optimal Abstraction

The following example gives a first impression of data abstractions for CSP-
OZ. It is an optimal abstraction, that reduces an equivalence check between an
infinite state and a finite state specification to an equivalence check between two
finite state systems. Although both systems are very simple, this already shows
the potential of abstract interpretation.

Both specifications describe a simple clock with alternating tick and tock
events. While in the first clock the alternation is encoded by the usage of enabling
predicates (the Z part uses a counter),

Clock1 = let
-- empty CSP part

1038 Heike Wehrheim

main = SKIP
-- Z part
Z_PART(n) = odd(n) & tock -> Z_PART(n+1)

[] even(n) & tick -> Z_PART(n+1)
within Z_PART(0) ||| main

the second clock encodes alternation in the CSP part.

Clock2 = let
-- CSP part
main = tick -> tock -> main
-- Z part
Z_PART = true & tick -> Z_PART

[] true & tock -> Z_PART
within Z_PART [| tick,tock |] main

Hence an equivalence proof of both clocks by separate data and process refine-
ment proofs is not possible. FDR can also not be used since the state space of
the first clock is infinite.
We now apply the following abstraction function h to the first clock

h : k 7→
{

0 if even(k)
1 if odd(k)

and replace the enabling and effect operations by their following abstract ver-
sions: (+1)A(k) := (+1)(k)mod2, evenA(k) := even(k), oddA(k) := odd(k).
This is an optimal abstract interpretation for Clock1 with respect to h. Note
that in this case no abstraction function for channel values is needed and thus
the renaming function G of Theorem 1 is empty. Thus we get the first result:
Clock1O =F Clock1. The abstracted clock is now finite state, thus we can use
FDR for checking whether Clock1O =F Clock2 (the answer is yes), and this
implies Clock1 =F Clock2.
This rather simple example (without input and output parameters) also reveals
close similarities between data abstraction and data refinement (which is the
standard refinement notion within Z). The data abstraction we have used here
is in fact also a valid data refinement (from Clock1 to Clock1O and vice versa).
In general, in our setting every optimal data abstraction can also be seen as a
data refinement plus a renaming.

5 Compositionality

In this section, we will be concerned with the issue of compositionality of data
abstractions. Two aspects will be considered here:

– combining abstraction results for different objects of a system, and
– combining different abstractions of the same object.

The results we get here are formulated within the traces model, thus we only
deal with safety properties.

Data Abstraction for CSP-OZ 1039

5.1 Composing Objects

In general, we will not be interested in a single object alone, but in a system which
is composed out of a number of objects operating in parallel. Thus we have to
extend our abstraction theorem to parallel compositions of objects. Two aspects
are helpful for this extension: the first is the fact that the abstraction theorem for
objects is completely formulated within process algebra theory, and the second
is the compositionality (monotonicity) of both trace and failure refinement.

Consider a system S composed out of two objects S1 and S2 operating in
parallel with synchronisation on some set A ⊆ Σ: S = S1 ||A S2. So far, we
are able to prove properties of S1 and S2 alone by for instance using some safe
abstraction with respect to abstraction functions h1, g1, h2, g2 respectively. By
our abstraction theorem, we know that SS1 vT S1[G1] and SS2 vT S2[G2]. The
first prerequisite for a combination of the abstracted objects is the preservation
of their communication ability: the abstraction functions for the channel values
have to agree on joint channels.

Definition 5. Let g1, g2 be abstraction functions for S1’s and S2’s channel val-
ues and let A = α(S1)∩α(S2) be the set of joint events, with channel names Ch
in A. g1 and g2 agree on A iff for all ch ∈ Ch, v ∈ Dch , g1,ch(v) = g2,ch(v).

When the abstraction functions of the components agree on the joint events of
the components, we can look at the abstracted system as SS = SS1 ||G1(A) SS2 .
Compositionality of trace refinement already gives us the following result:

SS1 ||G1(A) SS2 vT S1[G1] ||G1(A) S2[G2]

However, the left hand side is not the system we are actually interested in,
namely S1 ||A S2. The next proposition helps us towards this goal.

Proposition 1. Let f : Σ → Σ be a renaming function and A ⊆ Σ a set of
events such that a ∈ A⇔ f (a) ∈ f (A) holds; let P1,P2 be CSP processes. Then

P1[f] ||f (A) P2[f] vT (P1 ||A P2)[f]

All renaming functions G generated by some abstraction function g have the
above stated property, thus we immediately get:

S1[G1] ||G1(A) S2[G2] vT (S1 ||A S2)[G1 ∪G2]

Combining these two parts, we get the following compositionality result:

Corollary 1. Let S1, S2 be CSP processes in CSP-OZ form, g1, g2 abstraction
functions which agree on joint events of S1 and S2. Then

SS1 ||G1(A) SS2 vT (S1 ||A S2)[G1 ∪G2] .

Thus we have extended our abstraction theorem for safe abstractions to parallel
compositions of objects. Unfortunately, this result cannot be extended to optimal
abstractions in the sense, that we may replace trace refinement by failures equiv-
alence. Proposition 1 does not even hold for trace equivalence since the concrete
components may fail to synchronise while their abstractions communicate.

1040 Heike Wehrheim

5.2 Combining Abstractions

Besides compositions of objects, we are also interested in composing different
abstraction results of the same object. The idea is to use different abstractions to
prove different properties of an object and afterwards combine these abstractions
to show that also their combination holds.

Consider an object S and two different safe abstractions wrt. h1, g1 and wrt.
h2, g2. We prove two properties of the object via abstractions, using FDR to
show Prop1 vT SS1 and Prop2 vT SS2 . With the abstraction theorem and
monotonicity of trace refinement we get Prop1[G−1

1] vT S and Prop2[G−1
2] vT S

which can again be combined to give

Prop1[G−1
1] ||α(S) Prop2[G−1

2] vT S ||α(S) S

Furthermore, S ||α(S) S =T S . Combining these two parts, we obtain as a corol-
lary:

Corollary 2. Let S be a CSP process in CSP-OZ form, g1, g2 abstraction func-
tions for its channels, Prop1,Prop2 arbitrary CSP processes. Then

Prop1[G−1
1] ||α(S) Prop2[G−1

2] vT S .

Afterwards we can use process algebra theory to compute the overall property
Prop = Prop1[G−1

1]||α(S)Prop2[G−1
2]. When the abstractions have been carefully

chosen (and when they fit together well), Prop might indeed be the property of
interest. The following example demonstrates the use of both kinds of composi-
tionality results.

5.3 Illustrating Example

The example is a 1-to-2n router with n stages (Figure 1 shows a router with
two stages). Stage i contains 2i switches which one input (in) and two outputs
(out0, out1) each. 0

1

2

3

in

in

out0 out1
out0

out0

out1
in

out1

Fig. 1. A 1-to-2n router

The messages which are
send through the router
consist of an address (a bi-
nary number of length n)
and a data part. The ad-
dress is used for routing: a
switch at stage i looks at
the i-th bit of the address;
when it is 0 it sends the
message to the upper chan-
nel (out0), otherwise to the
lower channel (out1). Receipt of messages is acknowledged (ack) and the switches
delay the next input until an acknowledge has been received (rack). Thus the
router contains at most one message. The following CSP specification in CSP-OZ
form describes a router with 2 stages.

Data Abstraction for CSP-OZ 1041

Adr = {<x1,x2>|x1<-{0,1},x2<-{0,1}}
Data = {0..100}

channel ack,ack0,ack1,rack0,rack1 -- channel declarations
channel in,in0,in1 : Adr.Data
channel out0,out1,out2,out3 : Adr.Data

SWITCH(i) = let -- a switch at stage i
-- CSP Part
main = in?x -> (out0?x -> rack0 -> SKIP

[] out1?x -> rack1 -> SKIP);
ack -> main

-- Z Part
Z_Part(adr,msg) =

(true & in?a?d -> Z_Part(a,d))
[] (nth(adr,i) == 0 &

out0.adr.msg -> Z_Part(adr,msg))
[] (nth(adr,i) == 1 &

out1.adr.msg -> Z_Part(adr,msg))
within

Z_Part(<0,1>,0) [| {| in,out0,out1 |} |] main

ROUTER = (SWITCH(1) -- the router
[out0 <-> in0, out1 <-> in1, rack0 <-> ack0, rack1 <-> ack1]

(SWITCH(2)[[in <- in0, ack <- ack0]]
|||

SWITCH(2)[[in <- in1, ack <-ack1,
out0 <- out2, out1 <- out3]]))

\{ack,rack0,rack1}

The routing within a switch is encoded in the enabling conditions of output
communications out0 and out1. The ordering of events (first input, then output,
receive acknowledge and acknowledge itself) is encoded in the CSP process main.
The switches are combined into router by renaming the corresponding ports
appropriately and synchronising on them2. The output ports of the second stage
are renamed into out0, out1, out2 and out3.

The property to be verified is a safety property: every message input to the
router with address a and data d is, if it is delivered at all, correctly delivered at
output port num(a) (the number with binary encoding a). Formulated within
CSP: we would like to show that BUF vT ROUTER, where BUF is defined as

BUF = in?x?y -> OUT(x,y)
OUT(adr,d) = (adr == <0,0> &

2 The composition operators used in ROUTER also involve hiding (linked parallel), for
which we have not established a compositionality result. However, hiding of channels
commutes with renaming of channel values, i.e. (S \ a)[G] = S [G] \ a.

1042 Heike Wehrheim

out0.adr.d -> BUF)
[] (adr == <0,1> &

out1.adr.d -> BUF)
[] (adr == <1,0> &

out2.adr.d -> BUF)
[] (adr == <1,1> &

out3.adr.d -> BUF)

However, it may not be possible to use FDR to prove this property since the
router may be too large to be processed with FDR when the domain of Data is
large.

Two abstractions are possible: abstracting from the data, i.e. mapping all
different data values onto one single value (functions h1, g1), or abstracting from
the address, mapping all addresses onto a single one (functions h2, g2). The first
abstraction allows for an optimal abstract interpretation of enable and effects
(the enabling conditions are independent of the data), the latter only for a safe
abstraction. For the optimal abstraction the only change in the CSP code is a
change of the definition of Data, for the safe abstraction we have to change Adr
(to a single-value type <0>) and the enabling conditions for out0 and out1 which
are now both true. We now separately prove two properties:

– if a message with address a is received, the next message is delivered at port
num(a), and

– if a message with data d is received, the next delivered message contains
data d .

The formulation of these two properties in CSP is:

ACBUF = in?x?y -> OUTA(x)
OUTA(adr) =

(adr == <0,0> &
out0.adr.0 -> ACBUF)

[] (adr == <0,1> &
out1.adr.0 -> ACBUF)

[] (adr == <1,0> &
out2.adr.0 -> ACBUF)

[] (adr == <1,1> &
out3.adr.0 -> ACBUF)

DCBUF = in?x?y -> OUTD(y)
OUTD(d) =

out0.<0>.d -> DCBUF
[] out1.<0>.d -> DCBUF
[] out2.<0>.d -> DCBUF
[] out3.<0>.d -> DCBUF

and we ask FDR whether the following two assertions are valid (a check for trace
refinement):

assert ACBUF [T= ROUTERA1
assert DCBUF [T= ROUTERA2

The answer is yes. This so far proves that ACBUF[G−1
1] vT ROUTER and

DCBUF[G−1
2] vT ROUTER. Combining these two abstractions we get:

ACBUF[G−1
1] ||α(ROUTER) DCBUF[G

−1
2] vT ROUTER

Data Abstraction for CSP-OZ 1043

It is easy to prove within process algebra theory (by giving a divergence re-
specting bisimulation relation) that ACBUF[G−1

1] ||α(ROUTER) DCBUF[G
−1
2] is failures

equivalent to BUF. Thus we have proven the desired property: BUF vT ROUTER.
For the here chosen domain for Data, the refinement check is still possible for
FDR; nevertheless the abstraction reduces a check of 16975474 states in about
170 minutes (on a SUN Ultra 2C with two processors at 300 MHZ each and 896
MB) to one of 1152511 states in 5 minutes.

6 Conclusion

In this paper we have proposed a data abstraction technique for CSP-OZ, which
was based on the idea of abstract interpretation of specifications. We have shown
how properties of concrete specifications are preserved by abstraction by relating
the abstract to the renamed concrete specification. We studied compositionality
of class abstractions and showed how abstraction results can be combined to give
more information about the concrete system. The advantage of our method is
that it is both simple to carry out (abstraction requires only small local changes
in the CSP-OZ specification) and the results are easy to interpret. Specification,
verification and abstraction is formulated within the CSP setting.

So far, the object-oriented nature of the specification language has played no
role in the verification. We intend to further investigate how the object-oriented
structuring of specifications can be exploited to facilitate verification.

Related work. Besides the work already discussed in the introduction, we want
to further comment on some related work, especially on the work of Roscoe, both
because it deals with CSP and because of its great variety of techniques. The
book [18] presents several methods that can be used to analyse CSP programs
which are per se too large to be processed with FDR. These techniques include

– abstraction techniques based on hiding,
– local deadlock analysis and
– data independent property checks.

Especially the last point is of interest for data abstraction: data independence
(first studied by Wolper [23]) is concerned with the behaviour of programs in-
dependent of some of their parameters. For instance, one might be interested in
knowing whether a buffer specification works like a buffer independently of the
stored elements. Roscoe [18] reports on some work (together with Lasic) that
allows to compute thresholds on the size of data domains used for particular
parameters, such that it is sufficient to check a property on a given program
with parameters instantiated with a domain of this size and conclude correct-
ness for all instantiations with larger domains. This could very much facilitate
correctness checks for CSP programs, since it is to be expected that usually a
data independent program with a small data domain already exhibits all the
”relevant” behaviour. The router example could profit from this technique; it is
possibly sufficient to check the trace refinement on a domain of Data of size 2.

1044 Heike Wehrheim

The clock example is, however, not amenable to such techniques since it is not
data independent: it contains tests on data values (even, odd).

Data independence has also been an issue in other work on verification; a very
interesting approach in a process algebraic setting is [12]. Jonsson and Parrow
study programs which are completely data independent (no modification on
data, no testing of values) and show that bisimulation is decidable on this class
of systems, even when the data domain is infinite. Their idea could possibily also
be used for refinement, but is limited to this restricted class.
Acknowledgements. Many thanks to E.-R.Olderog, C.Fischer, H.Dierks and
J.Bredereke for discussions on the paper.

References

[1] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. In
19th ACM POPL, 1992.

[2] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing systems.
In B. Jonsson and J. Parrow, editors, CONCUR’94, volume 836 of Lecture Notes
in Computer Science, pages 417–432, 1994.

[3] J. Corbett. Constructing abstract models for concurrent real time software. In
International Symposium on Software Testing and Analysis, 1996.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4th
ACM POPL, 1977.

[5] D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems:
Abstractions preserving ∀CTL∗, ∃CTL∗ and CTL∗. In E.-R. Olderog, editor,
Programming concepts, methods and calculi, volume A-56, pages 573–592. Elsevier,
1994.

[6] R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated
for the description of standards. Computer Standards and Interfaces, 17:511–533,
1995.

[7] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman and
J. Derrick, editors, Formal Methods for Open Object-Based Distributed Systems
(FMOODS ’97), volume 2, pages 423–438. Chapman & Hall, 1997.

[8] C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR.
In IFM ’99: International Workshop on Integrated Formal Methods, Workshops
in Computing. Springer, 1999.

[9] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Man-
ual, Oct 1997.

[10] J.F. Groote and A. Ponse. Proof theory for µ-CRL: A language for processes with
data. In Semantics of specification languages, Workshops in Computing. Springer,
1993.

[11] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[12] B. Jonsson and J. Parrow. Deciding bisimulation equivalence for a class of non-

finite state programs. Information and Computation, pages 272–302, 1993.
[13] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Is-

abelle/HOL. In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem
Proving in Higher Order Logics, LNCS 1125, pages 283–298. Springer Verlag,
1996.

Data Abstraction for CSP-OZ 1045

[14] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre-
serving abstractions for the verification of concurrent systems. Formal methods
in system design, 6:1–35, 1995.

[15] I. Meisels and M. Saaltink. The Z/EVES Reference Manual. ORA Canada, 1997.
http://www.ora.on.ca/z-eves/.

[16] A. Mota and A. Sampaio. Model-checking CSP-Z. In Proceedings of the European
Joint Conference on Theory and Practice of Software, volume 1382 of LNCS,
pages 205–220, 1998.

[17] J. Quemada, editor. Revised working draft on enhancements to LOTOS (V4).
1996.

[18] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

[19] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through de-
terminism. In D. Gollmann, editor, ESORICS 94, volume 875 of LNCS, pages
33–54. Springer-Verlag, 1994.

[20] G. Smith. A semantic integration of Object-Z and CSP for the specification of con-
current systems. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, Proceedings
of FME 1997, volume 1313 of LNCS, pages 62–81. Springer, 1997.

[21] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall International
Series in Computer Science, 2nd edition, 1992.

[22] K. Taguchi and K. Araki. Specifying concurrent systems by Z + CCS. In In-
ternational Symposium on Future Software Technology (ISFST), pages 101–108,
1997.

[23] P. Wolper. Expressing interesting properties of programs in propositional tempo-
ral logic. In ACM POPL, pages 184–193, 1986.

[24] J. Woodcock and J. Davies. Using Z. Prentice-Hall International, 1996.

A Brief Introduction to CSP Operators

We briefly describe the main CSP operators in the syntax that FDR uses.

– SKIP, STOP: empty processes with successful/unsuccessful termination,
– a -> P: action prefix, first a and then P,
– c?x -> P: complex prefix, first communication on c with input value v

bound to x, then P[v/x],
– P;Q: sequential composition,
– P\a: hiding,
– P[[c <- c’]]: renaming, c ”becomes” c’,
– P[]Q: external choice,
– P|~|Q: internal nondeterministic choice,
– b&P: boolean guard, execute P if b evaluates to true,
– P|||Q: interleaving,
– P[| a |]Q: parallel composition with synchronisation on a,
– P[c <-> c’]Q: linked parallel, parallel composition with synchronisation of

c and c’, hiding both channels.

Furthermore most binary operators have an iterated version of the following
form (here for []): []x:a @ P(x) stands for 2x∈a P(x).

1046 Heike Wehrheim

B Proof of Theorem 1

The proof proceeds via the operational semantics of CSP, i.e. via the generated
transition systems and their traces, failures and divergences. We let Σ denote a
set of visible actions, τ a distinguished internal action such that τ 6∈ Σ.

Definition 6. A labelled transition system (LTS) is a tuple T = 〈Q ,−→, qin〉,
where Q is a set of states, −→ ⊆ Q × Σ × Q a transition relation and qin ∈ Q
an initial state.

We write q −a→ q ′ if (q, a, q ′) ∈ −→, q −a1...an−−−−→ q ′ if there are states q0, q1, . . . qn
such that q = q0, qi −ai+1−−→ qi+1 and qn = q ′, and q =a⇒ q ′ iff q −τ∗−→−a→ q ′ and
a ∈ Σ. A state q ∈ Q diverges (q↑) if there are states q1, q2, . . . such that for all
n ∈ N, qn −τ→ qn+1 and q = q1.
We prove an even stronger result than Theorem 1, replacing trace refinement by
simulation and equivalence by bisimulation. Most results in the area of abstract
interpretation for model checking are also based on showing (bi-)similarity of ab-
stract and concrete system. In order to take care about divergences and refusals,
we need a special form of bisimulation:

Definition 7. Let T1,T2 be transition systems. A relation ρ ⊆ Q1 × Q2 is a
simulation between T1 and T2 if (q01, q02) ∈ ρ and for all (q1, q2) ∈ ρ, a ∈ Σ:

– q2 =a⇒ q ′2 implies ∃ q ′1 : q1 =a⇒ q ′1 and (q ′1, q
′
2) ∈ ρ.

The relation ρ ⊆ Q1 × Q2 is a divergence-respecting bisimulation between T1

and T2 if (q01, q02) ∈ ρ and for all (q1, q2) ∈ ρ, a ∈ Σ ∪ {τ}:

– q1 −a→ q ′1 implies ∃ q ′2 : q2 −a→ q ′2 and (q ′1, q
′
2) ∈ ρ, and vice versa,

– q2 −a→ q ′2 implies ∃ q ′1 : q1 −a→ q ′1 and (q ′1, q
′
2) ∈ ρ, and

– q1↑ ⇐⇒ q2↑.

T1 can simulate T2 (denoted T1 � T2) if there is a simulation from T1 to T2;
T1 is d-bisimilar to T2 (denoted T1 ≈d T2) if there is divergence-respecting
bisimulation between T1 and T2.

Note the different transition relations used in the definition. A relation ρ is thus
not necessarily a bisimulation if both ρ and ρ−1 are simulations. The unusual
definition of =a⇒ (no further invisible actions after a) allows for a more convenient
proof, we just have to consider the states after one visible step and no further
internal moves. This is sufficient for trace refinement.

Proposition 2. Let T1,T2 be two transition systems. Then

– T1 � T2 ⇒ T1 vT T2.
– T1 ≈d T2 ⇒ T1 =F T2.

Data Abstraction for CSP-OZ 1047

Proof of Theorem 1: In the following, we let Z stand for Z PART and ||α(main)

stand for [| α(main) |]. For some given term Z , h(Z) is obtained by replacing in
Z all d by h(d) and all enable predicates and effect functions by their abstracted
versions. The following general observation is used in all three proofs: for some
data-free CSP term P , we have: if P −ch.d1.d2−−−−−→ P ′ then P −ch.d′

1.d′
2−−−−−→ P ′ for all

d ′1, d ′2 in the data domain of the channel ch. This holds since P only contains
communication operations ch?x , thus P can either make any communication
over a channel or none.

– The relation proving simulation of S [G] by SS is

ρ = {(Z (h(d)) ||α(main) P , (Z (d) ||α(main) P)[G]) | main −→∗ P , d ∈ D} .

Assume that (Z (d) ||α(main) P)[G] =chi .w1.w2======⇒ (Z (d ′) ||α(main) P ′)[G]. Then

Z (d) ||α(main) P =chi .m1.m2======⇒ for some m1,m2 such that gi(m1) = w1

and gi(m2) = w2. Hence enablechi (d) = true. By definition of safe ab-
straction, then enableA

chi
(h(d)) = true. Furthermore, m1 ∈ In(chi) and

(m2, d ′) ∈ effectchi (d ,m1). Again by definition of safe abstraction we get:
gi(m1) ∈ InA(chi) and (gi(m2), h(d ′)) ∈ effectAchi

(h(d)), gi (m1)). Hence

Z (h(d)) ||α(main) P =chi .w1.w2======⇒ Z (h(d ′)) ||α(main) P ′.
– The relation proving divergence-respecting bisimulation between SO and

S [G] is

ρ = {(h(Y) ||α(main) P , (Y ||α(main) P)[G]) | main −→∗ P , d ∈ D} ,

where Y is either of the form Z (d) or Y =2ch:Ops enablech (d)& 2in:In(ch)

X (ch, in), and X (ch, in) may either be uDIV (out,d′):effectch(d,in) ch.in.out →
Z (d ′) or DIV or ch.in.out → Z (d ′) such that (out , d ′) ∈ effectch(d , in).
Some of the internal choices may have already been resolved (in case of an
empty effect set, this might also lead to divergence), while others are not yet
taken.
The proof is similar to the above proof, with the difference that we now
have to consider single steps (therefore we get all the above terms in our
bisimulation relation), and that now the abstract interpretation of the en-
able and effect predicates match exactly the concrete interpretations. A τ
transition can either be 1) taking an internal choice (resolving u) or 2) a
divergence. For the divergence we have: effectchi(d,m) is empty if and only
if effectchA

i (h(d),gi(m)) is empty. Concerning the resolution of choices: assume
that the τ resolves the choice over all possible values in the effect set of
some channel chi in the concrete system. Then chi is enabled in the current
abstract as well as concrete state. Hence the τ event occurs in both systems
and the resulting processes are in ρ again. 2

Systems Development Using Z Generics

Fiona Polack1 and Susan Stepney2

1 Department of Computer Science, University of York, UK.
fiona@cs.york.ac.uk, (tel +44 1904 432722)

2 Logica UK Ltd, Betjeman House, 104 Hills Road, Cambridge, CB2 1LQ, UK.
stepneys@logica.com

1 Introduction

In this paper we present a method for using generic components in formal spec-
ifications. This approach results in a flexible generic system description that
separates the concerns of structure and data types. The generic specification
can be extended and modified in a natural manner, to track requirements as
they inevitably evolve during the development process. In addition, the speci-
fication can readily be specialised to use more concrete data types without the
need for a formal refinement, using explicit generic instantiation. Such generic
instantiation also allows operation preconditions to be strengthened; this is not
allowed by classic refinement, but it permits a separation of concerns by allow-
ing preconditions relevant to specialised data types to be added only when they
become relevant.

Here we use the Z specification language and a simple entity-relationship form
as demonstration notations. No new notation or theory is presented; rather it is
the use of Z’s generic schemas to structure and specialise a specification that is
somewhat different from the classical Z specification style described in much of
the literature. We believe that this approach could also be applicable to other
formal methods.

2 The Case for Z, and Z Generics

Z is similar to many model based notations: it applies typed set theory and
predicate logic to system description; it permits rigorous analysis and proof of
system properties; it expresses a system description in precise terms.

Z’s most recognisable feature is the schema box, used to help structure spec-
ifications by grouping together definitions. Z also allows generic definitions that
may be instantiated on use with any set of any type; schemas may themselves
be generic. Most Z specifiers confine their use of generics to global toolkit-style
constants used with implicit instantiation; few fully exploit the possibility of
generic schemas with explicit instantiation.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1048–1067, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Systems Development Using Z Generics 1049

2.1 Generic Definitions in Defining Z Toolkits

Z has used generic definitions from its earliest public appearances. In his defini-
tive Z Reference Manual [1] Spivey gives a generic Mathematical Toolkit for the
Z language. All Z text books (for example [2, 3, 4]) demonstrate generic def-
initions of operations on sets, sequences and bags, as well as more customised
operations.

An example of such a generic definition (used in our case study below) is a
generic optionality definition [5].

optional [X] == { a : F X | #a ≤ 1 }
This can be used to model an item that may be present or absent. If y is declared
to be y : optional [Y], then y is a set that is either empty (absent) or a singleton
(containing a single element of the actual parameter set Y). The type of the set
is controlled by the type of the parameter Y .

It may be tempting to see this basic use of Z generic definitions as fulfilling
the dream of 1980s programmers, regarding generic data types. Although fun-
damental to the use of the Z notation, however, these generic definitions do not
contribute to the process of developing systems.

2.2 Generics for Secondary Toolkits

The widespread development of formal/structured integrations in the 1990s (see
summary papers [6, 7]) has seen the use of Z generic schemas to define represen-
tations of structured model components. For example, the SAZ Method [8, 9, 10]
includes generic representations of entities and the various forms of relationship
encountered in its data modelling notation.

SAZ is an interpretive method (guidelines are used to convert a structured
specification in to a formal notation), rather than a formal translation approach;
the SAZ generics form a toolkit that is imported in to the formal document
environment, giving a uniform appearance to the formal description.

SAZ generic toolkit definitions have advantages and disadvantages.
On the plus side, they reduce the tedium of transliteration, and provide

recognisable components for a reviewer of the formal description. There is little
doubt, for example, that the component

CustomerSet == EntitySet [CID ,Customer]

represents a set of entity instances. In addition, such generics conceal or defer
low-level decisions about details of components, such as an implementation type
for Customer .

On the other hand, the component generic definitions become extremely com-
plex, so the simplicity gained in the system description merely masks, rather than
removes, a complexity of meaning. For example, the various SAZ relationship
generics have formal parameters that are instantiated implicitly in both the dec-
laration and predicate parts. Current Z tool support often fails to expand these

1050 Fiona Polack and Susan Stepney

generics fully, and then cannot assist in proof of many properties of systems that
use them.

Again, these generic usages simply help to express systems; they do not offer
any real contribution to the system development process.

2.3 Generic Systems

The approach advocated here is to use generic definition at the system level. This
approach has some well-known precursors, although neither has the simplicity
or applicability of the approach demonstrated below.

One example is Flinn and Sørensen’s CAVIAR case study [11, chapter 5].
This includes generic modules, providing a super-structure for the specification,
and promotes the development of generic specification libraries, as the authors
advocate. The module concept is very similar to the use below, but uses an
extension to the Z notation to bring this about.

Another example is a proof of compliance to a security policy model, sum-
marised in [2, chapter 4]. Here, a generic top level specification is defined, and it
is demonstrated that this has the generic security properties. The specification
is instantiated with suitable parameters (input structures, output structures,
states), without need to re-prove the high level properties. Again, the approach
is closely related to that demonstrated below. The entire specification is cast as
an axiomatic state transition relation, however.

3 System Development in Z

Literature on system development in Z concentrates on formal refinement [23, 2,
4], neglecting simpler or more intuitive development options. Formal refinement
in Z as part of the development of commercial applications is a reality (for
example, [12, 13]), but it requires considerable effort, and can still justify its
costs only for critical applications. Limitations of refinement (in addition to the
difficulty of performing them) are also being recognised among the academic
formal methods community [14, 15].

Here we explore the use of generic instantiation rather than refinement as the
formal process for developing a system. The development process can be seen
as a progressive reduction in options, as the detail in the system description
increases and becomes more targeted to specific implementation media [16, 17].
We use a simple development lifecycle to illustrate possible development paths.
Although this is not taken forward to implementation, the techniques demon-
strated can be reiterated until the required level of specialisation is attained.

4 Entity-Relationship Description of the Case Study

To illustrate our approach, we use a simple case study derived from the SAZ
project [9, 10].

Systems Development Using Z Generics 1051

refers to

ORDER

is made by

makes

CUSTOMER

is referenced by

LINE

ORDER

comprises

is part of

BOOK

Fig. 1. The data model for the case study, using SSADM v4 notation [18].

In this section we give an informal description of the system. In the next
section we formalise the system state and some sample operations as a generic
Z specification. In section 6 we perform a first specialisation, by defining the
objects in the data-dictionary, and instantiating the specification with them. In
section 7 we describe how the generic structure of the specification makes it
relatively easy to extend and modify both the structure and the components
seperately.

4.1 Scenario

A publishing company accepts orders for books. An order must be placed by
a customer; details of customers placing orders are kept on file. The company
processes orders and notes whether each order line is met in full.

4.2 Data Model

A data structure to support this system is given in figure 1, as an Entity-Relation-
ship Diagram (ERD).

4.3 Events and Processing

The system receives events to create, modify and delete elements of the data
structure. These could be modelled dynamically, using entity life histories or
state charts; here they are simply described.

Receiving an Order: Receipt of an order from a new customer triggers the
creation of a new customer instance. Receipt of any order triggers the creation

1052 Fiona Polack and Susan Stepney

of an order instance, and of a set of instances of order line. The processing
includes validation checks to determine whether the customer is known or new,
and on the composition of order lines.

Customer and Order Modifications: Customer details, especially ad-
dresses, may be changed at any time. Order details are never changed; a re-
order would be a new instance. However, additional lines might be added to an
existing order. Customers are deleted from the records if they have not placed
an order for 5 years. Orders are deleted from the records when the customer is
deleted, or after 10 years if this is sooner.

Processing an Order and Its Component Order Lines: An order in-
stance is processed by first processing each of its order lines. The details of the
processing are not included here, but involve checking that at least some of the
order lines can be met and that an order line is not for the same book as another
order line on the same order.

If an order has no order lines that can be met (that is, all supplied stock
entries are zero), the order is required to be returned to the customer marked
“unmet”, with some suitable covering letter; the order instance is deleted, but
the customer information is retained. Again, the detail is not pursued here.

5 Top-Level Generic Specification

This section presents a top-level Z specification, such as may be used to derive
and clarify requirements. It demonstrates the scope of the system and outlines its
structure. The Z description focuses on the state and operations of the system.
It excludes low-level information, such as attributes and detailed operation pre-
and post-conditions. The approach is derived from the SAZ method, in that the
starting point is a data model and the formal description expresses the entities
and relationships from that model1.

Even with a predetermined approach and style, there are a number of pos-
sible representations in Z for the system described. One approach might be to
represent each entity such as Order as a set of instances, and each relationship
as a relation between the instances of the entities involved. Here, a less abstract
but more intuitive approach is used: we model each entitiy as a mapping from
identifier to instance. This removes the need to modify the underlying structure
using a formal refinement of the specification.

In most published Z case studies, given sets are used to achieve the required
level of abstraction. A given set provides a pool of elements with no internal
structure, and is a suitable model in a specification that abstracts away from
1 There is no attempt to check that the formal and informal descriptions are equivalent,

since it is the formal development that is of interest here. A true development method
would need to document the extent of equivalence of the descriptions in the different
notation and levels of abstration.

Systems Development Using Z Generics 1053

such internal structure. However, in the development of a system, the high-level
description needs to be capable of elaboration as further information about the
data and processing structures emerges during development. The traditional
approach is to refine a given set to a set of structured elements with the desired
low-level properties. Such a refinement requires a proof to show that it has been
performed correctly, which in turn constrains the kind of instantiations that can
be made. Instead of using given sets to model entities, we present a description
made up almost entirely of generic schemas.

5.1 Unique Identifiers

In our high level Z representation, the data model entities that make up the state
are modelled as functions from some unique identifier to the instance. Although
these identifiers could be introduced as generic parameters, they are in fact
genuinely uninteresting. They have but one role: to provide a unique identity
for otherwise potentially identical instances of an entity. The only interest in an
identifier arises at implementation, when uniqueness must be guaranteed. We
do not consider implementation here, so we model these identifiers with given
sets2.

[CID ,OID ,OLID]

CID are customer identifiers, OID are order identifiers, OLID are order line
identifiers. (We choose not to specify the BOOK component yet: that is intro-
duced to illustrate system extension in section 7.2.)

5.2 System State

Rather than specify the entire state space in one chunk, we split it into logically
separate components [2, chapter 11]. Dotted lines (optional relationships) on
the ERD are good places to think about splitting the state.

The customer entity is independent of the others. We model it using a simple
schema, mapping customer identifiers to customer instances, generic in the type
of those instances3.

CustomerBase[CUST]
customer : CID 7 7→ CUST

2 In Z, given sets are disjoint. This may constrain their use to some extent, requiring
the specification of a given set as a super set, and then more detailed subsetting.
For any particular given set, such subsetting can be achieved using a free type. Z
does not support generic free types, however.

3 One difference in style between the use of generic definitions and generic schemas is
the naming of the generic formal parameters. In the former, a parameter tends to
be a single letter; in the latter it tends to be a short word indicating its role. The
longer names lead to formatting problems in the case of multiple parameters.

1054 Fiona Polack and Susan Stepney

As described in the ERD and text, an order must have some order lines; an
order line must be related to one order. The order and order line entities are
thus dependent, as defined by the required relationship isPartOf between the
respective identifiers.

OrderBase[ORDER,OLINE]
order : OID 7 7→ ORDER
orderLine : OLID 7 7→ OLINE
isPartOf : OLID ↔ OID

isPartOf ∈ (dom orderLine)→→ (dom order)

To capture the meaning of the ‘crows foot’ on the isPartOf relationship, we
constrain the Z relation to be a total surjection (an order line instance is related
to no more than one order instance, hence functional; each order line instance
is related to an order instance, hence total; each order instance is related to at
least one order line, hence surjective).

The full system state includes these two substate components, and the is-
MadeBy relationship between them.

OrderingSystem[CUST ,ORDER,OLINE]
CustomerBase[CUST]
OrderBase[ORDER,OLINE]
isMadeBy : OID ↔ CID

isMadeBy ∈ (dom order)→ (dom customer)

The isMadeBy relation is constrained to be a total function (each order instance
is related to precisely one customer instance, hence functional and total; but not
necessarily all customer instances take part, hence not surjective).

5.3 Sample Operations

The events that affect this small system are the receipt and deletion of orders,
and the creation, modification and deletion of customers. (The processing of an
order is not described, because the book description has been omitted.) Generic
operations are defined to model these events. (In the examples below, we omit
the error case schemas, for brevity.)

Having specified the state as independent substates, it is useful to define
schemas for updating just these substates [2, chapter 10]. When we update on
the customer substate, we do not change the isMadeBy relation; when we update
the order part, we may change this relation.

∆CustomerBase[CUST ,ORDER,OLINE]
∆OrderingSystem[CUST ,ORDER,OLINE]
ΞOrderBase[ORDER,OLINE]

isMadeBy ′ = isMadeBy

Systems Development Using Z Generics 1055

∆OrderBase[CUST ,ORDER,OLINE]
∆OrderingSystem[CUST ,ORDER,OLINE]
ΞCustomerBase[CUST]

Customer creation is straightforward. The customer details (for the moment
simply a generic parameter) are input, and the new customer identifier is output.

CreateCustomer [CUST ,ORDER,OLINE]
∆CustomerBase[CUST ,ORDER,OLINE]
cust? : CUST
cid ! : CID

cid ! /∈ dom customer
customer ′ = customer ∪ {cid ! 7→ cust?}

When an order is created, the appropriate order and order line entity instances
are created, and the relationship between their identifiers, and between the order
identifier and the identifier of the customer placing the order, are updated. This
could all be specified in a single operation, say by having the input include a
sequence of the order lines that comprise the order. However, that leads to a
relatively complicated definition that is not reusable for the purpose of adding a
single order line. So we model the effect of the complete operation in two parts.
The first creates an order with one attached order line4. The second adds an
order line to an existing order.

CreateOrder [CUST ,ORDER,OLINE]
∆OrderBase[CUST ,ORDER,OLINE]
orderLine? : OLINE
order? : ORDER
cid? : CID
olid ! : OLID
oid ! : OID

cid? ∈ dom customer
oid ! /∈ dom order
olid ! /∈ dom orderLine
order ′ = order ∪ {oid ! 7→ order?}
orderLine ′ = orderLine ∪ {olid ! 7→ orderLine?}
isPartOf ′ = isPartOf ∪ {olid ! 7→ oid !}
isMadeBy ′ = isMadeBy ∪ {oid ! 7→ cid?}

4 We cannot create an order with no order lines, because of the surjectivity require-
ment. Now would be a good time to check if that requirement is too strong.

1056 Fiona Polack and Susan Stepney

AddOrderLine[CUST ,ORDER,OLINE]
∆OrderBase[CUST ,ORDER,OLINE]
orderLine? : OLINE
oid? : OID
olid ! : OLID

oid? ∈ dom order
olid ! /∈ dom orderLine
order ′ = order
orderLine ′ = orderLine ∪ {olid ! 7→ orderLine?}
isPartOf ′ = isPartOf ∪ {olid ! 7→ oid?}
isMadeBy ′ = isMadeBy

There are several operations to change the details of entity instances. These
include an operation to select a specific customer (by identifier) and change the
value of the instance that it identifies, and an operation to change the value of
an instance of customer however many identifiers it has linked to it. The former
is illustrated. The customer’s relationships do not change.

ChangeCustomer [CUST ,ORDER,OLINE]
∆CustomerBase[CUST ,ORDER,OLINE]
cust? : CUST
cid? : CID

cid? ∈ dom customer
cid? 7→ cust? /∈ customer
customer ′ = customer ⊕ {cid? 7→ cust?}

Deletion is similar to modification, with the stronger precondition that a cus-
tomer instance cannot be deleted if there are still orders for that customer.

DeleteCustomer [CUST ,ORDER,OLINE]
∆CustomerBase[CUST ,ORDER,OLINE]
cid? : CID

cid? ∈ dom customer \ ran isMadeBy
customer ′ = {cid?} −C customer

Similar operations can be defined for the other entities.

5.4 Discussion

The above Z specification is a simple, but precise, account of (part of) an abstract
ordering system. It captures the essential relationships between entities without
discussing any internal structure of those entities. (It captures the ERD, but no
details from the underlying Data Dictionary.) It specifies how those relationships

Systems Development Using Z Generics 1057

may be modified, incorporating all constraints that can be expressed without
reference to internal entity structure.

Such a specification can be used as a starting point for discussion with cus-
tomers, for example in a discussion of business rules or operational details for
the system. Additional information is added in the next development phase,
which is at a lower level of abstraction.

This first Z document has many possible instantiations, representing different
development scenarios and customer requirements. Although it could be instan-
tiated at this stage, there is nothing to be gained by doing so; the abstraction
level requires no extra details, and the instantiation would simply use given sets
for the actual parameters.

6 Design by Instantiation

The full development process is likely to be iterative; this case study merely
captures one step in the development.

The objective of this design is to record the logical details of data and process-
ing. When considering a formal development, the static and dynamic constraints
are an area of particular interest. This is where formal approaches add most
value for limited effort, compared to the traditional diagram-and-text models,
which are generally poor at recording and exploring these system rules [19, 20].

The system description is constrained only in so far as the development out-
comes are genuinely determined at this phase of the development. The specifica-
tion of data must capture known client requirements. It is a matter of policy as
to how such a specification captures additional data formatting and constraints;
managers of development projects should determine whether requirements in
this area are to be expressed at this stage.

As noted earlier, traditional Z development uses given sets for data that has
not yet been fully defined. When the data types are elaborated, a refinement is
required to move from given sets to the new types. Here we show how instead
our generic formulation can be instantiated, to provide a first specialisation of
these data types. In section 6.1 we illustrate the instantiation process by giving
a ‘traditional’-style given sets instantiation of the CustomerBase. In section 6.3
we show how the generic approach may be used at each level.

6.1 Traditional Specification of the Customer Entity

The Data Dictionary says that a customer has a name, an address, the date
when they become a customer, and a credit limit. The credit limit must be
within some globally imposed limit. An address, in turn, comprises a house
identifier, a street, a town, and a postcode. Furthermore, a house identifier may
be a number or a house name.

First we specify the house identifier, using a free type. Simple free types,
enumerated types, allow the specifier to make clear the specific values that an
attribute can take, for example for status-check attributes, and for use in the

1058 Fiona Polack and Susan Stepney

processing specification. This is a step that is often overlooked in structured
method developments, where the specifier may concentrate too early on the
potential implementations of enumerated attribute domains. Enumerated types
are often modified in the course of the development, as more or fewer statuses
become necessary5.

[HOUSENAME]

HOUSE ::= number〈〈N〉〉 | name〈〈HOUSENAME 〉〉
Where a domain for a particular attribute is a subset of a wider set, it is given a
specific domain name as an abbreviation for the wider. This acts as a reminder
that there may need to be more detailed specification of constraints on the
domain. So we introduce limit , which may need to be further constrained, for
example, to be within some global limit.

limit == N1

maxLim : limit

Schema types are used where some structural information is already known about
a type. A typical example concerns the format of an address.

[STREET ,TOWN ,POSTCODE]

Address0
house : HOUSE
street : STREET
town : TOWN
postcode : POSTCODE

We are now in a position to specify the customer entity.

[DATE ,NAME]

Customer0
name : NAME
address : Address0
creditLimit : limit
registeredDate : DATE

creditLimit ≤ maxLim

5 In Z, enumerated types must have unique values; thus, a value such as notFound
cannot be part of more than one enumerated type. This can cause frustration in
large specifications; however, the bonus is that, in complex operations, the status or
message information is clearly readable.

Systems Development Using Z Generics 1059

The traditional Z style would then instantiate the customer substate as follows,
but would eventually require the elaboration of most of its component types.

TradCustomerBase == CustomerBase[Customer0]

One advantage of this specification is that the Z toolkit operators for integers
can be used when putting constraints on credit limits. The main disadvantage
is that types become established, and developers are not prompted to consider
how best features such as limits and maxima should be implemented.

6.2 Operator Definition

In what follows, we use generic types to represent quantities such as credit limit.
We still want to be able to specify that the limit must be less than some global
maximum. So we generically specify the set of all total orders (that is, reflexive,
antisymmetric, transitive and total), and we specify our generic comparison
operator to be one such total order6 7.

relation (4)

[X]
4 : { r : X ↔ X | idX ⊆ r ∧ r ∩ r∼ ⊆ idX

∧ r o
9 r ⊆ r ∧ r ∪ r∼ = X ×X }

The use of a defined order avoids the use of meaning-free type operators that
rely on the semantic understanding of the operator name8, or the completely
unacceptable provision of general purpose type operators (for example, a general
dateComparison operator).

6.3 Generic Specification of the Customer Entity

Continuing our style of using generics to model as yet unelaborated data types,
we can use generic parameters in place of many of the above data types, de-
pending on the extent to which type details are determined by the developers
and clients.
6 Note that this is a loose generic definition. Spivey Z has a proof obligation that a

generic definition is uniquely determined for all possible instantiations. Standard Z
permits loose generics; the proof obligation is that the definition is well formed at
each point of instantiation.

7 This may all seem a little over-complicated. But consider the case of dates or times.
We do not want to be forced to model a date as a simple number, neither do we
want to be forced to model it as a complicated structure yet. But we certainly want
to be able to say one date is before another. Using a generic order, and requiring
date to be ordered, solves the problem.

8 The problem has not been solved entirely, however. An unwanted instantiation of X
and 4 is N and > . A validation process is always required at instantiation.

1060 Fiona Polack and Susan Stepney

Assuming that the address structure is accepted, this can be re-expressed as

Address [HOUSE ,STREET ,TOWN ,POSTCODE]
house : HOUSE
street : STREET
town : TOWN
postcode : POSTCODE

A generic limit is defined.

[LIMIT]
maxLimit : LIMIT

The customer type is defined as a generic, incorporating elaborated types9.

Customer [NAME ,HOUSE ,STREET ,TOWN ,POSTCODE ,
LIMIT ,DATE]

name : NAME
address : Address [HOUSE ,STREET ,TOWN ,POSTCODE]
creditLimit : LIMIT
registeredDate : DATE

creditLimit 4 maxLimit

The order and order line entities can be similarly defined.

Order [DATE]
orderDate : DATE

[AMOUNT]
minAmount : AMOUNT

OrderLine[AMOUNT ,NOTE]
quantity, supplied : AMOUNT
note : NOTE

minAmount 4 quantity
supplied 4 quantity

9 It would be nice if Z had some support for grouping the generic parameters, to
highlight the fact that some are relevant only to the further instantiation of Address,
for example.

Systems Development Using Z Generics 1061

6.4 Instantiating the State

The instantiation uses the entity types to define all necessary sets and relation-
ships. The full state includes the full list of generic parameters.

SystemI [NAME ,HOUSE ,STREET ,TOWN ,POSTCODE ,LIMIT ,
DATE ,AMOUNT ,NOTE] ==

OrderingSystem[Customer [NAME ,HOUSE ,STREET ,TOWN ,
POSTCODE ,LIMIT ,DATE],

Order [DATE],OrderLine[AMOUNT ,NOTE]]

Substates may also be defined by instantiation, and constraints can be added
if necessary. Although the quantity of generic parameters in this expression
is unwieldy, this has an advantage in terms of traceability. Since the innards
of the system types are explicit, it is clear what needs elaborating at a later
stage, and where each component is used in the substates. This is analogous
to an automatic, in-line indexing, which could form the basis for a development
documentation tool.

6.5 Operations

Operations are also specified by instantiation, both of state components, and of
the operations. However, most operations require elaboration of pre- and post-
conditions, taking account of the greater state information, and research into
business rules. A developer seeking additional predicates should, for example, be
encouraged to check the attributes of all the entities in the specification, looking
for range constraints, default entry values, derivation formulae, and relationships
to the values of other attributes in the system.

The specification of an operation is illustrated for the creation of a customer.

CreateCustomerI [NAME ,HOUSE ,STREET ,TOWN ,POSTCODE ,
LIMIT ,DATE ,AMOUNT ,NOTE]

CreateCustomer [Customer [NAME ,HOUSE ,STREET ,TOWN ,
POSTCODE ,LIMIT ,DATE],

Order [DATE],OrderLine[AMOUNT ,NOTE]]
today? : DATE

cust?.registeredDate = today?
“Additional predicates to enforce state invariants”
cust?.creditLimit 4 maxLimit

Notice that this operation has additional preconditions. So some attempted
uses of the operation for certain values of Customer will fail, where the abstract
operation succeeds for any value of generic CUST . Along with elaborating
the data type, we have strengthened the precondition, and so we do not have
a formal refinement (which permits only weakening the precondition). Generic
instantiation has allowed us to separate concerns. The preconditions that depend

1062 Fiona Polack and Susan Stepney

on details of the entity structure are omitted until that entity is elaborated: a
different elaboration could result in a different precondition. This permits a
more abstract top-level specification, where the concrete instantiations are not
classic refinements.

6.6 Discussion

The abstraction level of the specification presented here is similar to the level of
abstraction achieved in published case studies that use integrations of Z with a
structured technique or method. In the integrated methods area, it has generally
been the case that the formal system description has been derived once, from
data models (with dynamic and/or process models as relevant) with low-level
documentation10.

There are intuitive or aesthetic arguments in favour of specification by in-
stantiation. There is a clear separation of concerns; the developer is encouraged
to think abstractly and not to make premature decisions about implementation
or design features.

However, the utility of the approach comes down to an argument between
readability, or adaptability of formal descriptions, and simplicity in the formal
structures used. The use of generics increases the complexity of the Z descrip-
tions. Indeed, the assistance provided by support tools has, in the authors’
experience, been jeopardised where proofs are required of features of descrip-
tions that contain such nested generic instantiations.

7 Reusing and Elaborating through Instantiation

There would seem to be a number of advantages to arriving at this level of
description via instantiation.

– It is easy to modify the initial analysis-derived description, for example to
amend the scope of the system developed, since the essential data and pro-
cessing structures are not lost among lower-level details.

– It is easy to modify the data domains where a client corrects the analysts’
interpretation or changes their mind about domains, or where a developer
is required to produce another system with a similar structure but differ-
ent details. Processing descriptions can be modified to include pre- and
post-conditions, not as a refinement, but as a description of a different spec-
ification that can be derived from the analysis.

These advantages are further illustrated by changing the detail of the instanti-
ation, both in terms of the data dictionary, and in terms of the static structure
of the system.

10 See for example, SAZ case studies [8, 19, 10], Semmens et al [21], Josephs et al [22].

Systems Development Using Z Generics 1063

7.1 Data Dictionary Modifications

The most common changes to a specification during the development of a sys-
tem concern the details of data and constraints. In structured modelling, these
are generally held in some form of textual data dictionary, and support the dia-
grammatic models. Formal specification is particularly clear in the areas of data
domains and static and dynamic constraints; the generic form can easily adapt
to capture alterations made. The problem reduces to a versioning issue, which
is beyond the scope of this paper.

To illustrate the accommodation of such changes, consider the modifications,

– there are no more than n customers in the system;
– orders met in full have a marker attribute set.

These changes do not affect the high-level generic state, which captures the
structure of the system (section 5); they affect only the details of the first in-
stantiation of the structure, section 6.

First, the order entity type is modified to add the new attribute.

RevOrder [DATE ,MARKER]
orderDate : DATE
metInFull : MARKER

This specification replaces Order in subsequent instantiations. None of the op-
erations on order need modifying, since none makes explicit reference to the
component data attributes of the order. In general, however, an operation that
made explicit reference to the component data attributes of a changed entity
would require modification.

The constraint on the number of customers can be introduced as an elabo-
ration to the state schema.

customerLimit : N1

RevOrderSystem[NAME ,HOUSE ,STREET ,TOWN ,POSTCODE ,
LIMIT ,DATE ,AMOUNT ,NOTE]

OrderingSystem[Customer [NAME ,HOUSE ,STREET ,TOWN ,
POSTCODE ,LIMIT ,DATE],

Order [DATE],OrderLine[AMOUNT ,NOTE]]

#customer ≤ customerLimit

Since the signature of the schema is unchanged, there are no knock-on effects in
the operations. However, there is a new pre-condition in AddCustomer : a new
customer cannot be added if it would take the system over the newly-imposed
limit. It is a matter of style whether this pre-condition is left implicit or made
explicit.

1064 Fiona Polack and Susan Stepney

7.2 Structural Modifications

During development of a system, it may be necessary to perform some extension
or specialisation. The most obvious illustrations of this are the addition of an
entity, and the subtyping of an entity in the system data model or state. Al-
though fundamental changes to the data structure would require respecification,
specialisation and extension to the model can generally be accommodated more
simply. This promotes the reuse of formal descriptions.

Extending the State: The scenario data model (figure 1) shows an additional
entity, BOOK . This can be defined generically and added to the system state.
Side issues are the addition of the relationship with existing entities and the
expression of any new constraints on the structure.

[BID]

BookState[BOOK]
book : BID 7 7→ BOOK

BookOrderSystem[CUST ,ORDER,OLINE ,BOOK]
OrderingSystem[CUST ,ORDER,OLINE]
BookState[BOOK]
refersTo : OLID ↔ BID

refersTo ∈ (dom orderLine)→ (dom book)
∀ o : ran isPartOf • (isPartOf ∼)(| {o} |)C refersTo ∈ OLID 7� BID

The additional predicate state that no two order lines of an order may refer to
the same book. Operation schemas need amending accordingly.

Specialising Entities: Specialisation is illustrated by subtyping the customer
entity to express two different kinds of customer:

Corporate[HOUSE ,STREET ,TOWN ,POSTCODE]
invoiceAddress : Address [HOUSE ,STREET ,TOWN ,POSTCODE]

[RATING]
minRating : RATING

Private[RATING]
creditRating : RATING

minRating 4 creditRating

Systems Development Using Z Generics 1065

The customer type is now composed of the common elements (defined in the
original specification), and optional components of these types11. A predicate
can require that a customer is of one subtype only. (The optionality mechanism
is defined in section 2.1.)

SpecialCustomerSpec[NAME ,HOUSE ,STREET ,TOWN ,POSTCODE ,
CREDITLIMIT ,DATE ,RATING]

Customer [NAME ,HOUSE ,STREET ,TOWN ,POSTCODE ,
CREDITLIMIT ,DATE]

private : optional [Private[RATING]]
corporate : optional [Corporate[HOUSE ,STREET ,TOWN ,POSTCODE]]

#private = 1⇔ #corporate = 0

Selectors for private and corporate customers can be written [5]. Again, opera-
tions need extending and modifying accordingly.

8 Discussion

Traditional Z development uses given sets for initially unstructured data types
that can be elaborated during the development. It relies on formal development
methods such as refinement to move towards an implementation goal.

In contrast, we describe an approach that uses generic specification with
elaboration by instantiation. It has the following properties:

– Separation of data and relationships. The abstract specification captures re-
lationships between entities as captured by the ERD; the generic parameters
are instantiated with structures defined from the data dictionary. Each can
be modified independently of the other.

– Elaboration by instantiation. No proof obligations are generated by the in-
stantiation. Different instantiations of the same specification can be used to
produce different systems. Preconditions on operations can be introduced at
the appropriate level of abstraction; development remains valid even though
such precondition strengthening does not follow the formal refinement rela-
tionship.

It is notoriously difficult to document a development. Features that are devel-
oped successively to an implementation are scattered across models and within
models, and traceability becomes a major problem. Whilst the generic devel-
opment presented does not contribute any large-scale improvement in this area,
the inclusion of all the required types in the headings of the generic schemas at
least ensures that these are all available to the developer without searching the
document for given sets and other type instantiations.

11 This slightly clumsy formulation, or something equivalent, is needed in the absence
of generic free types.

1066 Fiona Polack and Susan Stepney

The case study example is small, and although we assert that the approach
scales, it is not entirely clear how the levels of complexity introduced affect the
readability and usability of the development products. The approach would
definitely be improved by better Z support for

– formatting long lists of generic formal parameters
– grouping generic parameters
– generic free types

A tool to support a rigorous development following the approach described here
(as opposed to a tool to support the formal descriptions and proofs) might be
expected to have at least the following characteristics:

– discrimination between levels of detail in the development descriptions, en-
couraging the developer to work consistently through lower levels of ab-
straction (but, to support practical working, not necessarily requiring the
developer to complete one level of abstraction before attempting a lower
level);

– good visualisation and expansion of generic structures and generic instanti-
ations, allowing the developer to explore structures, construct proofs and so
on, without resorting to a complete expansion of all schemas;

– support for the development and use of templates, where a design follows
the outline of the specification but with different structural details, or where
routine structures such as entity sets, refinement retrievals, and structural
proof conjectures, are required.

Support tools might also take design on to generation of, for example, relations
for a relational database, or, at a less specific level, might provide guidance on
the form of design and specification specialisation needed for different media
(programming or database paradigms).

Acknowledgements

The work described in this paper derives in part from work undertaken during
and as a result of the SAZ project, 1990–94, EPSRC grants (GR/J81655) and
(GR/F98642).

We would like to thank Sam Valentine and Ian Toyn for helpful discussions.

References

[1] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 2nd Edition,
1992.

[2] R. Barden, S. Stepney, D. Cooper. Z In Practice. Prentice Hall, 1994.
[3] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification and

Z. Prentice Hall, 2nd Edition, 1996.
[4] J. C. P. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof

Prentice Hall, 1996.

Systems Development Using Z Generics 1067

[5] M. d’Inverno and M. Priestley. Structuring Specification in Z to Build a Uni-
fying Framework for Hypertext Systems. ZUM’95: The Z Formal Specification
Notation; Proceedings of Ninth International Conference of Z Users, Limerick,
Ireland, September 1995, pp83–102. LNCS 967. Springer Verlag, 1995.

[6] L. T. Semmens, R. B. France, and T. W. G. Docker. Integrated Structured
Analysis and Formal Specification Techniques. The Computer Journal, vol 35,
no 6, 1992.

[7] R. B. France and M. M. Larrondo-Petrie. A Two-Dimensional View of Inte-
grated Formal and Informal Specification Techniques. ZUM’95: The Z Formal
Specification Notation; Proceedings of Ninth International Conference of Z Users,
Limerick, Ireland, September 1995, pp434-448. LNCS 967. Springer Verlag, 1995.

[8] F. A. C. Polack, M. Whiston, and P. Hitchcock. Structured Analysis – A Draft
Method for Writing Z Specifications. Proceedings of Sixth Annual Z User Meeting,
York, Dec 1991. Springer Verlag, 1992.

[9] F. Polack, M. Whiston, and K.C. Mander. The SAZ Project: Integrating SSADM
and Z. Proceedings, FME’93 : Industrial Strength Formal Methods, Odense, Den-
mark, April 1993. LNCS 670. Springer Verlag, 1993

[10] F. Polack, M. Whiston, and K. C. Mander. The SAZ Method Version 1.1. York,
YCS 207, Jan 1994.

[11] I. Hayes. Specification Case Studies. Prentice Hall, 2nd Edition, 1992.
[12] S. Stepney. A Tale of Two Proofs. Proceedings, 3rd Northern Formal Methods

Workshop, Ilkley, Sept 1998. BCS-FACS, 1998.
[13] S. Stepney, D. Cooper, and J. C. P. Woodcock. More Powerful Z Data Refine-

ment: Pushing the State of the Art in Industrial Refinement. ZUM’98 : 11th
international conference of Z Users, Berlin. LNCS 1493. Springer Verlag, 1998.

[14] E. Boiten and J. Derrick. IO-Refinement in Z. Proceedings, 3rd Northern Formal
Methods Workshop, Ilkley, Sept 1998. BCS-FACS, 1998.

[15] R. Banach and M. Poppleton. Retrenchment: An Engineering Variation on Re-
finement. Proceedings, B98, Montpellier, France. LNCS 1393. Springer Verlag,
1998.

[16] I. Hayes. Specification Models. Z Twenty Years On: What Is Its Future?, Nantes,
France, October 1995. 1995.

[17] I. J. Hayes and M. Utting. Coercing real-time refinement: A transmitter Northern
Formal Methods Workshop, Ilkley, UK, September 1995. 1995.

[18] CCTA. SSADM Version 4 Reference Manual. NCC Blackwell Ltd, 1990.
[19] H. E. D. Parker, F. Polack, and K. C. Mander The Industrial Trial of SAZ:

Reflections on the Use of an Integrated Specification Method. Z Twenty Years
On: What Is Its Future?, Nantes, France, October 1995.

[20] F. A. C. Polack and K. C. Mander. Software Quality Assurance Using the SAZ
Method. Proceedings of Eighth Annual Z User Meeting, Cambridge, June 1994.
Springer Verlag, 1994.

[21] L. Semmens and P. Allen. Using Yourdon and Z: an Approach to Formal Specifi-
cation. Proceedings of Fifth Annual Z User Meeting, Oxford, Dec 1990. Springer-
Verlag, 1991.

[22] D. Redmond-Pyle and M. Josephs. Enriching a Structured Method with Z. Work-
shop on Methods Integration, 26 September 1991, Leeds, (unpublished)

[23] C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.

A Brief Summary of VSPEC?

Perry Alexander1, Murali Rangarajan1, and Phillip Baraona2

1 Department of Electrical & Computer Engineering
and Computer Science

PO Box 210030
The University of Cincinnati

Cincinnati, OH
{alex,rmurali}@ececs.uc.edu

2 Chrysalis Symbolic Design, Inc.
101 Billerica Ave
5 Billerica Park

Billerica, MA 01862
phil@chrysalis.com

Abstract. This paper provides an overview of the vspec behavioral in-
terface specification language for vhdl. Although operational specifica-
tion language such as vhdl provide exceptional specification capabilities,
at the systems requirements level the operational style is a hindrance.
vspec provides vhdl users with a declarative mechanism for defining
functional requirements and performance constraints. In the tradition of
behavioral interface specification languages, vspec adds clauses to the
vhdl entity construct allowing axiomatic specification of functional re-
quirements. Because system constraints play an ever increasing role in
systems design, vspec also provides performance constraint specifica-
tion capability. This paper presents the basics of vspec, its semantics,
semantic analysis, and briefly describes current and future applications.

Keywords: systems level design, notations, languages, VHDL, Larch

1 Introduction

Requirements analysis is a critical activity in any systems design process. How-
ever, it is poorly supported by tools and languages. Although operational, sim-
ulation centered, hardware description languages such as vhdl [1] provide ex-
cellent support for design, they are less appropriate for requirements analysis.
The operational style tends to introduce implementation bias into requirements.
Furthermore, simulation-based analysis is not always appropriate for evaluating
highly declarative, frequently incomplete requirements. To address such prob-
lems, vspec [2, 3, 4, 5] augments vhdl to provide a declarative requirements
specification capability that support rigorous, formal analysis.
? Support for this work was provided in part by the Advanced Research Projects

Agency and monitored by Wright Labs under the RASSP Technology Program,
contract number F33615-93-C-1316 and by Air Force MANTECH, contract number
F33615-93-C-4303

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1068–1086, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Brief Summary of VSPEC 1069

vspec is a Larch interface language [6, 7] for vhdl. The Larch family of
specification languages supports a two-tiered, model-based approach to specify-
ing software. A Larch specification is written in two languages: a Larch Interface
Language (lil) and the Larch Shared Language (lsl). Larch Interface Language
definitions specify the inputs and outputs of a program component and the com-
ponent’s observable behavior. Typically, input and output parameters are defined
in the host programming language. Then, first order predicates define component
behavior using a traditional axiomatic style. Larch Interface Languages exist for
a variety of programming languages, including C [8, 9], C++ [10] and Ada [11].

lsl is a formal algebraic language that defines the underlying sorts and oper-
ators used in interface language definitions. As the name implies, lsl is common
among all Larch Interface Languages. Specifiers use lsl to define reusable do-
main theories for specification activities and to define semantics for interface
languages.

vspec describes the requirements of a digital system using the canonical
Larch approach. Each vhdl entity is annotated with a pre- and post-condition
to indicate the component’s functional requirements. The operators used in a
vspec description are defined with lsl. vspec also allows a designer to describe
non-functional requirements and the internal state of a device. vspec semantics
is defined by providing a translation of vspec language constructs and vhdl
types into lsl enabling formal verification using Larch tools.

vspec-annotated components can be connected together to form an abstract
architecture. An abstract architecture is an inter-connected collection of compo-
nents where the requirements of each component are specified without defining
their implementation. This describes a class of solutions with a common struc-
ture. A standard vhdl structural architecture referencing vspec annotated en-
tities defines an abstract architecture. The vhdl architecture indicates intercon-
nection in the traditional manner, but the requirements of each component are
defined instead of their implementations.

Abstract architectures specified with vspec present a problem that other
Larch interface languages do not have to address: when is a component in an
abstract architecture active? In traditional sequential programming languages, a
language construct executes after the construct immediately preceding it termi-
nates. For correct execution, a construct’s pre-condition must be satisfied when
the preceding construct terminates. In a vspec abstract architecture, each of the
components behave as independent processes. There is no predefined execution
order so there is no means of determining when a component’s pre-condition
should hold. vspec solves this problem by allowing a user to define an activa-
tion condition for a component. The activation condition defines what causes the
component to begin processing its inputs. When the component state changes
to one that satisfies the activation condition, the pre-condition must hold and
the component performs its specified transformation.

This paper describes the semantics of vspec, concentrating on the language’s
facilities for describing abstract architectures. The opening section provides a
brief summary of the vspec language. Section 3 describes vspec abstract ar-

1070 Perry Alexander, Murali Rangarajan, and Phillip Baraona

chitectures, including a definition of the vspec state model and a description of
how a process algebra (csp) [12] is used to provide a semantics for the vspec
activation condition. Section 5 discusses how these semantics can be used verify
that an abstract architecture satisfies the specification of the entity. Finally, the
paper concludes with a discussion of vspec applications and some related work.

2 The vspec Language

vspec’s declarative specification style complements the traditional vhdl oper-
ational style by providing a requirements specification capability. As a require-
ments specification language, vspec is used very early in the design process to
describe “what” a system should do. The operational style of vhdl makes vhdl
alone ill-suited for requirements specification. It forces a designer to describe a
system by defining a specific design artifact that describes “how” the system be-
haves. When attempting to use vhdl as a requirements specification language,
this forces a designer to deal with unnecessary detail at a very early point in
the design process. In contrast to vhdl’s operational style, vspec allows a de-
signer to declaratively describe a component. Together, vspec and vhdl support
modeling from requirements acquisition through verification and synthesis.

As a working example, a vspec description of a sorting component is shown in
Figure 1. Three basic clauses define functional requirements for an entity: (i) the
requires clause defines the component precondition; (ii) the ensures clause de-
fines the component postcondition; and (iii) the sensitive to clause defines the
component activation condition. Effectively, the requires and ensures clauses
define component function while the sensitive to clause defines component
control.

The requires and ensures clauses are used to define an axiomatic relation-
ship between current and the next state. Specifically, they specify the pre- and
post-conditions of the component. Any component that makes the postcondition
true in the next state given that the precondition is true in the current state
is a valid implementation of these requirements. More precisely, given a compo-
nent with requires clause I(St) and ensures clause O(St, St′post)1, f(St) is a
correct implementation of the requirements if the following condition holds:

∀s · I(St)⇒ O(St, f(St)) (1)

The sensitive to clause plays the same role in a vspec definition that
sensitivity lists and wait statements play in a vhdl description. It defines when
a component is active. The sensitive to clause for sort in Figure 1 states
that the entity activates (and sorts its input) whenever the input changes. The
sensitive to clause contains a predicate indicating when an entity should begin

1 The St′post notation references the value of St in the state after the transformation
described by the entity is performed. This is analogous to the variable′ notation of
lcl [8, 9]

A Brief Summary of VSPEC 1071

entity sort is port

(input: in integer_array;

output: out integer_array);

includes sort;

modifies output;

sensitive to input’event;

requires true;

ensures

permutation(output’post, input)

and inorder(output’post);

constrained by

power <= 5 mW and

size <= 3 um * 5 um and

heat <= 10 mW and

clock <= 50 MHz and

input<->output <= 5 Ms;

end sort;

H

Vcc

Time T

Clk

input output

sort

y
x

Fig. 1. vspec description of a sorting component.

executing and the next section contains a more precise definition of the meaning
of the sensitive to predicate.

In the example specification from Figure 1, the sort component is defined
to operate correctly in any initial state whenever its input changes and pro-
duce an output that is ordered and a permutation of the input. The requires
clause defines a precondition of true. As true holds in any state, the compo-
nent must execute starting in any state. The ensures clause defines a post-
condition of permutation(input,output’post) and ordered(output’post)
requiring that after execution the output should be an ordered permutation of
the input. Note that ordered and permutation are defined in the included trait
sort. The sensitive to clause defines an activation condition of input’event.
Event is a predefined vspec predicate that is true whenever its associated signal
changed values in the previous state change.

In addition to allowing a designer to describe functional requirements, vspec
also allows specification of performance constraints. The vspec constrained
by clause is used for this purpose. As shown in Figure 1, this clause defines
relations over constraint variables. Currently, the defined constraint variables
include power consumption, layout area (expressed as a bounding box), heat
dissipation, clock speed and pin to pin timing. Constraint theories written in
lsl define each constraint type. Users may define their own constraints and
theories if desired.2

The state clause contains a list of variable declarations that define the inter-
nal state of a component. These variables maintain state information that is not

2 vspec constraint specification is not presented in detail in this paper. For further
exposition, please see the Language Reference Manual [13].

1072 Perry Alexander, Murali Rangarajan, and Phillip Baraona

entity find is port

(input: in element_array;

k: in keytype;

output: out element);

includes

Element(element,keytype,

element_array);

modifies output;

requires true;

ensures forall (e : element)

(output = e implies

(e.key = k

and elem_of(e,input)));

constrained by

power <= 5 mW

and size <= 3 um * 5 um

and k<->output <= 5 Ms

and heat <= 10 mW

and clock <= 50 MHz;

end search;

(a.)

entity bin_search is port

(input: in element_array;

k: in integer;

value: out element);

modifies value;

sensitive to

k’event or input’event;

requires

sorted(input);

ensures

output = e iff

(e.key=k and

element_of(e,input));

constrained by

power <= 1 mW and

size <= 1 um * 2 um;

end bin_search;

(b.)

Fig. 2. vspec descriptions of find and binary search components.

visible outside the component. A state clause is not needed in the specification
of a sorting component in Figure 1 as no internal state is stored.

The modifies clause lists variables, ports and signals whose values may be
changed by the entity. Most other Larch interface languages contain a modifies
clause, and the definition of vspec modifies clause is very similar to the defi-
nitions found in these languages [8, 9, 10].

The includes clause is used to include Larch Shared Language definitions
in a vspec description. The sorts and operators defined in the lsl trait named
by the includes clause can be used in the vspec definition.

3 Abstract Architectures

vhdl structural architectures composed only of vspec annotated components
specify abstract architectures. The vhdl architecture syntax remains unchanged
indicating component instantiation and connections. However, the configuration
does not assign an entity/architecture pair to each component instance in the
architecture. Instead, the configuration defines that each component references
an entity with an architecture called VSPEC. This signifies that at the current
point in the design, the requirements of this component are known (via the
vspec description) but no implementation has been defined.

Consider the vspec description of a find component shown in Figure 2a.
The output of find is the element from the input array with the same key as

A Brief Summary of VSPEC 1073

architecture structure of find is

component sort port

(input: in element_array;

output: out element_array);

end component;

component search port

(input: in element_array;

key: in integer;

value: out element);

end component;

signal y: element_array;

begin

b1: sort port map(input,y);

b2: search port map(y,k,output);

end structure;

configuration test_vspec of find is

for structure

for b1:sort use entity

work.sort(VSPEC);

end for;

for b2:search use entity

work.bin_search(VSPEC);

end for;

end for;

end test_struct;

input
input output

find entity

k

y input

key

value output

sorter component
instance b1 of instance b2 of

searcher component

Fig. 3. A vspec abstract architecture representation of the find component.

the k input. This requirement is represented by find’s ensures clause predicate.
One possible way to meet this requirement is to connect the output of a sorting
component to a binary search component as shown in Figure 3. The specification
for sort is the same as the one in in Section 2, while the bin search specification
is shown in Figure 2b. The only difference between this structural description of
find and a vhdl structural description of find is that the configuration specifies
that the vspec descriptions of sort and bin search should be used instead of
a specific architecture for these two entities. This configuration describes an
abstract architecture for the find component. Any implementation satisfying
the vspec requirements of sort and bin search may be associated with the
entity definitions. This abstract architecture for find actually defines a class
of solutions with a common structure.

Although a vhdl architecture referencing vspec definitions defines compo-
nents and interconnections, additional information must be added to specify
when the vspec components activate. In traditional sequential programming,
a language construct “executes” following termination of the construct preced-
ing it. For correct execution, a construct’s pre-condition must be satisfied when
the preceding construct terminates. In hardware systems, components exist si-
multaneously and behave as independent processes. No predefined execution
order exists so there is no means of implicitly determining when a component’s
pre-condition should hold. Consider the find example. The pre-condition of
bin search must hold only when sort has completed its transformation. At all
other times, bin search need only maintain its state.

vhdl provides sensitivity lists and wait statements to synchronize entity
execution and define when a component in a structural architecture is active.
vspec achieves the same end using the sensitive to clause. The sensitive to

1074 Perry Alexander, Murali Rangarajan, and Phillip Baraona

clause contains a predicate called the activation condition that indicates when
an entity should begin executing. Effectively, this activation condition defines
when a vspec annotated entity’s precondition must hold. When the sensitive
to predicate is true, the pre-condition must hold and the implementation must
satisfy the post-condition. When the sensitive to predicate is false, the entity
makes no contribution to the state of the system. In the find example, both
components activate when any of their input signals change.

Formally, the contribution of the sensitive to clause to the transformation
specified by vspec is easily represented using a traditional process algebra such
as csp [12]. Components become processes and events are defined as the states
the entity enters. Thus, any vspec component can be described by a process
that consumes states and generates a process in a new state. To define such
state changes, a component state is defined along with a means for combining
component states into an architecture state.

The formal vspec model of the state of a component is based on Chalin’s
state model [8, Chapter 6] for lcl. This model partitions the computational state
of an lcl description into an environment and a store [14]. The environment
maps (variable) identifiers into objects and the store binds objects to the values
they contain:

Env: Id -> Obj
Store: Obj -> Value

Separating the environment and the store is common among formal mod-
els of programming language semantics. In a language such as lcl, one of the
motivating factors for this is to allow multiple names for the same element of
memory. For example, two C pointers can obviously reference the same memory
location. The program state model above represents this situation by mapping
each of these pointers to the same object in the Env map.

This partitioning of the state of a component is used in the vspec semantics
to model component communication. For a single vspec-specified component,
Env contains a map from each port and state variable in the vspec description
to an object. Store maps each of these objects to their current value. We call
this the abstract state of the vspec component. When vspec components are
connected together to form an abstract architecture, the elements of Env and
Store are slightly different. The Store contains objects for each port in the ar-
chitecture’s entity, for each signal in the architecture and for the state variables
of each component in the architecture. The Env maps each of these three types
of elements to the proper object, but it also maps the ports of each architecture
component to the object that represents the architecture signal the port is con-
nected to. We call the state model of an abstract architecture the concrete state
of the component.

In the simple two component example of Figure 4, the abstract state of
system, A and B are:

A Brief Summary of VSPEC 1075

entity A is port

(x : in integer;

y : out integer);

requires IA(x);

ensures OA(x,y’post);

modifies y;

end A;

entity B is port

(w : in integer;

z : out integer);

requires IB(w);

ensures OB(w,z’post);

modifies z;

end B;

entity system is port

(sys_in : in integer;

sys_out : out integer);

end system;

architecture struct of system is

component A

port (x : in integer;

y : out integer);

end component;

component B

port (w : in integer;

z : out integer);

end component;

signal c;

begin

c1: A port map(sys_in,c);

c2: B port map(c,sys_out);

end struct;

Fig. 4. Example of two entities connected serially.

Envsystem = {sys in 7→ objsys in, sys out 7→ objsys out}
Storesystem = {objsys in 7→ vsys in, objsys out 7→ vsys out}

EnvA = {x 7→ objx, y 7→ objy}
StoreA = {objx 7→ vx, objy 7→ vy}
EnvB = {w 7→ objw, z 7→ objz}

StoreB = {objw 7→ vw, objz 7→ vz}

The concrete state of the struct architecture is:

Envstructsystem = {sys in 7→ objsys in, sys out 7→ objsys out, c 7→ objc,

x 7→ objsys in, y 7→ objc, w 7→ objc, z 7→ objsys out}
Storestructsystem = {objsys in 7→ vsys in, objsys out 7→ vsys out, objc 7→ vc}
Notice that x, y, w and z now map to the objects that contain the values of

the signals that these component ports are connected to in the architecture.
Using a component’s state, its semantics are defined using a csp process and

its requires and ensures clauses. Let f(St) be a function between two states
of entity C that implements the requirements specified in C’s requires and
ensures clauses (i.e. f(St) satisfies Equation 1). The process defining entity C
with a sensitive to predicate S(St) in any state r is:

Cr = r : Ψ → Cf(r) (2)

1076 Perry Alexander, Murali Rangarajan, and Phillip Baraona

where Ψ is the set of states that satisfy C’s activation condition: Ψ = {t : TC |
S(t)}.

The traces of the process defined by a vspec entity is a sequence of abstract
states the entity enters. When the abstract state changes to an abstract state that
satisfies the entity’s activation condition (r in Equation 2), the transformation
defined by the requires and ensures predicates (f(St)) is applied to r. This
generates a new abstract state and the entity behaves like the process defined by
Cf(r). The abstract states that satisfy C’s activation condition form the alphabet
of C. Thus, every trace of C contains only elements from Ψ .

csp’s concurrency operator (‖) combines component processes to define the
behavior of a vspec architecture. Let C1, C2, ..., Cn be the processes represented
by Equation 2 for the set of vspec component instances in architecture A. The
process representing architecture A is:

A = C1 ‖ C2 ‖ ... ‖ Cn (3)

When a state change occurs that satisfies some component’s activation con-
dition, the component performs its specified transformation to its abstract state.
This change is propagated to the concrete state of the architecture where the
activation condition of another component may be satisfied. This causes the pro-
cess to repeat until the system changes to a concrete state where no component’s
activation condition is satisfied. The system then waits until some external de-
vice changes the concrete state to one that activates some component in the
architecture to start the process again.

In the csp model of a vspec process, this notion can be understood by
examining the possible traces of A from Equation 3. Hoare [12] defines traces
over parallel composition, traces(C1 ‖ C2), as:

{t | (t ↑ αC1) ∈ traces(C1) ∧ (t ↑ αC2) ∈ traces(C2) ∧ t ∈ (αC1 ∪ αC2)∗} (4)

Recall that in csp [12], t ↑ αP restricts the trace t to contain only events
that appear in the alphabet of P . Thus, the traces of a parallel composition of
components are all traces that when restricted to the alphabet of each component
yield a trace of that component. Furthermore, traces of C1 ‖ C2 only contain
events from the alphabet of the two components. This means that every trace
of A contains only elements that satisfy the activation condition of at least one
component in A.

4 Generating Semantic Models

vspec semantics are used to verify requirements by transforming vspec into
Larch Shared Language equivalent representations and using the Larch Prover.
The savant vhdl parser [15] has been extended to recognize vspec components
and generate lsl representations. To support translation, background theories

A Brief Summary of VSPEC 1077

representing: (i) vhdl data types; (ii) the store model; and (iii) the CSP se-
mantics were implemented to provide underlying semantics. The resulting lsl
models are suitable for various verification activities using the Larch Prover.

Extending the savant parser to recognize vspec and generate lsl required
extending the language recognizer and the aire intermediate form. The parser
was extended in the canonical fashion to recognize and type check vspec com-
ponents. To generate lsl representations, the aire intermediate form has been
extended to include: (i) vspec constructs; and (ii) “publish” methods to generate
lsl traits representing components and architectures.

Generating lsl representations for vhdl data types, the store model and
csp functions involves defining lsl theories for each construct. For each vhdl
type, a parameterized trait was developed. When the associated type is used
in a specification, the appropriate trait is included to provide a theory for that
type in the lsl model. Similar techniques are used for the store and csp models.
lsl traits defined by Chalin [8] were reused here after some modification and
reverification. For csp functions, the csp axiomatization developed by Camil-
leri [16] is adapted. Camilleri’s original theories were developed in HOL [17],
thus requiring translation to lsl and verification.

The only challenging task associated with translating Camilleri’s csp ax-
iomatization involved moving from a higher order logic representation to a first
order representation. Specifically, the csp choice operation plays a major role
in the vspec definition. In the HOL axiomatization, choice is parameterized
over a choice operation. In lsl, this is achieved using a parameterized trait
with the choice function as a parameter. The instantiation of the trait param-
eter is achieved at parse time requiring a new version of the choice trait to be
instantiated for each instance of choice. The higher order representation allows
instantiation of the choice function at proof time making for dramatically simpler
proof activities.

Each vspec component is translated into an associated lsl trait. Brevity
prevents the expansion of a component in this paper, however these traits share
a common structure centering on: (i) the pre- and post-conditions; and (ii) the
csp choice operator. Specifically, the choice operator is specialized by specifying
a choice function and an alphabet. The alphabet specifies what states can occur
next and was defined as Ψ earlier. The choice function generates the next state
and is defined using the pre- and post-condition of the component.

Figure 5 shows the template used to generate lsl traits for each system
component. The trait is instantiated using the table shown in Table 1. In the
template, operations I(pre) and O(pre,post) are instantiated with the vspec
component’s requires and ensures clauses respectively. The sensitive to
clause is incorporated in the alphabet of the csp process associated with each
component. Recall that the alphabet of the component is defined to be the set of
states satisfying the activation condition. Note that the constrained by clause
is not involved in the definition. Performance constraints are evaluated using
pdl as described in a later section.

1078 Perry Alexander, Murali Rangarajan, and Phillip Baraona

trait name(
port_list %% Port symbols from entity
state_variable_list %% State symbols from state clause
I, O, modSet, modSet_event, input_event, Psi, InitStates,
maintain_state, F, well_def_alpha, choice_F, choice_traces,
choice, entity_process) : trait

includes
OneComponent

includes
includes_list %% Traits explicitly included by the entity

includes
type_trait_list %% Traits included to define VHDL types

includes
program_store_list %% Traits representing program store

introduces
port_declaration_list %% Declaration of ports
state_variable_declaration_list %% Declaration of state variables

asserts
∀ pre, post, any: Store

InitStates_predicate;
%% Value of outputs and state does not change from post state of
%% one element of trace top the next element of the trace

maintain_state(post,any) == maintain_state_predicate;
%% Sensitive to clause defines Psi

pre ∈ Psi == modified_sensitive_to_predicate;
%% requires clause defines I

I(pre) == modified_requires_predicate;
%% ensures clause defines O

O(pre,post) == modified_ensures_predicate;
%% modifies clause defines modSet

modSet == ({} \ins modifies_list);
modSet_event(any) == modifies_event_list;

%% True when an event occurs on an input signal
input_event_assertion;

%% All objects are active objects in store model
active_objects_assertions;

%% All objects above are independent of one another
indep(empty \apd independent_objects_list);
independent_objects_assertions;

Fig. 5. Template specialized to generate traits for single components.

5 Verification

Correctness checks in vspec take three fundamental forms: (i) component veri-
fication; (ii) interconnection verification; and (iii) bisimulation. Component and
interconnection verification represent partial correctness checks used to quickly
assess the quality of a specification. Bisimulation precisely defines the relation-
ship between a vspec architecture and an associated system specification. Al-
though component and interconnection verification only verify specific system
properties, they are frequently simpler to prove than bisimulation relationships.

Component verification allows users to specify properties of a single compo-
nent using lsl. The component is transformed into an lsl trait and the Larch
Prover called with the property as a theorem. Component interconnections are
not considered and typically only the precondition, postcondition and activation
condition are included the verification. This is the simplest verification activity
and is used simply to verify properties of single vspec components.

A Brief Summary of VSPEC 1079

Name from Template Description

trait name entity name trait
port list Comma-separated list of all entity port names.
state variable list Comma-separated list of all entity state variable names.
includes list Comma-separated list of names of all traits explicitly

included in the entity.
type trait list Comma-separated list of trait names that define the vhdl

types needed in this entity.
program store list Comma-separated list of sorted projections of the program

store (SProjStore) needed in this trait.
port declaration list lsl constant declaration for each port signal in the entity.
state variable declaration list lsl constant declaration for each state variable in the entity.
InitStates predicate Predicate to define initial Stores an entity can enter. Takes into

account the initial value of all entity state variables.
maintain state predicate Assertion that the value of all outputs and state variables

does not change from Store post to Store any.
modified sensitive to predicate Entity’s sensitive to clause predicate converted to lsl

format with all port and state variable references replaced with
call to Chalin’s val operator for the proper Store (pre or post).

modified requires predicate Entity’s requires clause predicated converted to lsl format
with all port and state variable references replaced with call to
Chalin’s val operator for the proper Store (pre or post).

modified ensures predicate Entity’s ensures clause predicated converted to lsl format
with all port and state variable references replaced with call to
Chalin’s val operator for the proper Store (pre or post).

modifies list List of all modified port signals and state variables (including
“implicitly” modified ones). The \ins operator separates each
element in this list.

modifies event list Assertion there is an event on the value of at least one
modified object in Store any.

input event assertion Disjunction of statements that an event occurred on an input
signal in state any

active objects assertions Assertion of the form X \in activeObjs(any) for every
object X (i.e. each signal and state variable) in the entity.

independent objects list List of all objects in the entity. The \apd operator
separates each element in this list.

independent objects assertions One commented out assertion of the form
~depOn(dwn(x), dwn(y)) for every possible combination of
port signals and state variables x and y.

Table 1. Summary of substitutions to create a trait for an associate entity using
the entity template.

Interconnection verification examines specific relationships between compo-
nents. As the name implies, interconnection verification centers primarily on
properties of interconnected ports. In most cases, users select from pre-defined
conditions. Proof obligations are generated and verified automatically in most
cases. Specific examples of interconnection verifications include proving: (i) all
outputs from a component are legal inputs to another; (ii) some output from a
component will activate another; and (iii) all inputs activating a component are
legal component inputs. Many similar, additional obligations can be generated
and discharged automatically.

Bisimulation allows a user to verify that an abstract architecture correctly
implements its requirements. This verification obligation is generated automat-
ically by the vspec parser and is based on weak bisimulation [18]. A weak
bisimulation (or simply bisimulation) condition holds when a sequence of states

1080 Perry Alexander, Murali Rangarajan, and Phillip Baraona

in the architecture (or concrete) model produces the desired single state change
specified by the system level (or abstract) model (see Figure 6). Only the first
and last state of the concrete state sequence are significant. The specific state
sequence leading from the initial concrete state to the final concrete state is
ignored.

Abstract State

Concrete State

S S’

s s’ s’’ s’’’

Component Execution

Fig. 6. Concrete state changes associated with a single abstract state change.

Equation 5 is a weak bisimulation correctness obligation for showing abstract
architecture A satisfies a single abstract state change. Here, ΨA is the set of con-
crete states where the activation condition of at least one component inA is true.
The obligation states that for all traces of the concrete state starting in a state
whose abstract projection satisfies the abstract specification’s pre-condition, ei-
ther the resulting process state satisfies the component postcondition or the
process can consume the state and continue.

∀τ : traces(A) · I(abs(τ0)) ∧ A/τ = As ⇒ (O(abs(τ0), abs(s)) ∨ s ∈ ΨA) (5)

In addition to functional verification, the current vspec tool suite supports
constraint verification using The Performance Description Language (pdl) [19].
The semantics of constraints is defined using lsl in a fashion similar to the other
vspec clauses. However, constraint evaluation requires significant manipulation
of intervals. This activity proved to be exceptionally difficult in the Larch toolset.

pdl is a language designed explicitly for representing and evaluating con-
straint information. Specifically, pdl provides a mechanism for representing and
evaluating interval mathematics representations. In pdl, designers define models
for various constraint types. These models are then used to instantiate architec-
tures of components. Each interconnected component is assigned one model for
each constraint to be evaluated.

vspec constraint evaluation allows the user compare a systems level con-
straint description to an architectural description. For each vspec constraint, a
pdl model has been defined. Each model minimally defines the data type as-
sociated with the constraint, and a function to combine two constraint values.
An architecture is derived from the vhdl architecture and populated with the

A Brief Summary of VSPEC 1081

various constraint models. Using the pdl evaluator and the combine operators
associated with each constraint, a system level constraint value is calculated.
This value is then compared with the system level specification to determine if
the architecture meets its associated systems level performance requirements.

6 vspec in Practice

vspec has been evaluated in both academic and industrial settings. Many ex-
ample specifications have been written in the research setting. Two of which,
the Move Machine and Find, represent significant milestones in the vspec life-
cyle. More recently, TRW has used vspec to specify two significant avionics
components.

6.1 The Move Machine

The first significant specification developed using vspec was done by Baraona [4].
The Move Machine is a simple CPU specification where operations are mapped
to memory locations. The only operations performed by the Move Machine move
data from one memory location to another. The Move Machine was specified as
an instruction interpreter and at the register transfer level. Specifications were
written, however no analysis was performed. The Move Machine exercise served
to shake out initial problems in the vspec semantics. Although no verification
was performed, the exercise represented the first actual vspec usage example.
Furthermore, the example represents a common class of systems and provided
an excellent usage example for early users.

6.2 Find

The Find system and architecture specifications presented in Figure 2 represent
the first complete bisimulation verification activity performed using vspec. Like
the Move Machine, Find was developed as a synthesis benchmark and exhibits
some interesting modeling capabilities. Specifically, the use of activation condi-
tions to model data caching. The Find architecture decomposes the problem into
two components: (i) a sorting component; and (ii) a binary search component.
The architecture is specified to cache the results of sorting so that if the input
array does not change, it is not resorted. The result is a more efficient search.

Specifications similar to those presented in Figure 2 were written and parsed
by the original vspec parser. Formal models were generated by the parser and
the Larch Prover was used to perform the verification. For this example, the proof
obligations necessary to show the bisimulation relationship were written by hand.
Although the verification was completed successfully, this activity demonstrated
limitations in using lsl and the Larch Prover for verifications of this size. The
fundamental problem was the first order nature of lsl and the mechanisms used
to specify the basic CSP theories.

1082 Perry Alexander, Murali Rangarajan, and Phillip Baraona

6.3 Pulse Interval Processor

In an initial technology transfer effort, vspec was used jointly by TRW and The
University of Cincinnati to model the Pulse Interval Processing (PIP) section of
an Interrogate Friend or Foe (IFF) transponder. The IFF transponder redesign
represents a real Digital Signal Processing (DSP) product being designed and
fielded by TRW. Although vspec was not used in the actual design flow, we were
given access to specifications and worked with engineers designing the system.
Unfortunately the PIP architecture is proprietary to TRW and details of the
specification cannot be presented here. However, several important results are
presented.

The PIP is an interesting challenge problem because of its means of encoding
information. The PIP’s function is to: (i) receive pulses from a digital signal
processing system; (ii) transform pulse trains into commands; and (ii) produce
appropriate output in response to those commands. Commands are used by other
aircraft and air traffic control systems to gather information about an aircraft’s
altitude, position, mission and origin. The PIP is a particularly interesting model
because information is encoded in the time difference between received pulses.
This presented an interesting specification challenge as vspec does not use a
temporal logic.

The specification was written using lsl to represent pulse times and their
associated receive times. Pulse streams are processed by examining each pulse
with respect to the PIP state and receive time of the last pulse. When a pulse
is received its receive time is stored in the PIP state. When a second pulse
is received, the difference between its receive time and the stored receive time
determines the command issued. The vspec state clause is used to maintain the
last pulse received and a nested IF-THEN-ELSE statement is used to represent
various processing cases.

The PIP specification was partially verified by automatically generating in-
terconnect and component proof obligations. We were able to verify several in-
terconnect conditions and TRW found one type error that had not been caught
in the actual design flow. This error was not significant and would likely have
been caught during design inspection or testing. No bisimulation relationships
were specified or verified as the PIP architecture was established before begin-
ning this specification task. As an extensive design activity for PIP preceded our
efforts and this represented a redesign of a well understood system, the use of
vspec did not seriously impact the actual design flow. However, design engineers
commented that writing vspec made specification of test vectors much simpler.
This represents an interesting and somewhat unexpected result.

6.4 Real Time Monitor

The Real Time Monitor (RTM) is a proprietary special purpose signal processor
used in military aircraft avionics subsystems. It is similar to the PIP except it
contains programmability features allowing it to process multiple pulse streams
and recognize multiple protocols. The RTM processor was specified by TRW

A Brief Summary of VSPEC 1083

exclusively with only vspec language assistance from the developers. Little ver-
ification was performed due to time restraints on the overall project.

Although details of the activity are considered proprietary, TRW acknowl-
edges that using vspec played a key role in reducing estimated product costs
by 25%. They observed that although vspec increased cost and development
time during requirements analysis and representation, early mitigation of errors,
precise requirements capture and ease of test vector generation compensated for
initial costs. Specifically, they reported that the result of the vspec specification
activity resulted in much more precise and complete specifications. Even with-
out extensive verification, they reported discovering and mitigating ambiguities
in the specifications. Although only one legitimate error was discovered, using
vspec forced them to be more precise in their specification activities. However,
it should be noted that the primary motivation for writing vspec was a promise
for automated verification, not more precise specifications.

An unexpected result was TRW’s engineer’s belief that having vspec speci-
fications made defining and generating test vectors an easier task. In the design
and implementation of avionics systems such as those developed by TRW, test
vector generation and maintenance is a resource intensive task. TRW engineers
reported that having vspec specifications made identification of test cases and
definition of test vectors easier. Although unexpected, careful analysis indicates
this result is not surprising. It should be the case that test vectors correspond
with requirements and ultimately that is what they are designed to test. This
result is being explored in a follow on effort to determine if vspec can system-
atically impact the testing process.

TRW commented further that mature tools integrated into vhdl design envi-
ronments would contribute to potential cost savings. Although this represents a
development task, it does indicate the importance of integrating formal methods
into traditional design flows.

6.5 Evaluation Summary

The vspec language and tools were evaluated with respect to two internal and
two industrial examples. Internal examples were evaluated by students at The
University of Cincinnati. The first industrial example was evaluated jointly with
TRW and the second evaluated solely by TRW. Table 2 represents specification
and verification operations performed in each example. Each evaluation was
completed to a large degree of success. Although language semantics and tool
problems were certainly found, TRW is continuing to actively use vspec and
continues to support tool development activities.

7 Related Work

Odyssey Research Associates (ORA) has developed Larch/vhdl, an alternative
Larch interface language for vhdl [20]. Larch/vhdl is targeted for formal anal-
ysis of a vhdl description and ORA is defining a formal semantics for vhdl

1084 Perry Alexander, Murali Rangarajan, and Phillip Baraona

Example System Architecture Interconnect Bisimulation
Spec Spec Verification Verification

Move Machine X X
Find X X X X
PIP X X
RTM X

Table 2. Major vspec evaluation activities.

using lsl. The lsl representations are used in a traditional theorem prover to
verify system correctness. Larch/vhdl annotations are added to a specific vhdl
description to represent proof obligations for the verification process. This differs
from vspec’s purpose of representing requirements and design decisions at high
levels of abstraction.

Augustin et al.’s val [21] is another attempt to annotate vhdl. The pur-
pose of a val annotation to a vhdl description is to document the design for
verification. val provides mechanisms for mapping a behavioral description to
a structural description. Two val/vhdl descriptions of a design can be trans-
formed into a self-checking vhdl program that is simulated to verify that the two
descriptions implement the same function. This is once again slightly different
than vspec’s purpose of high level requirements representation.

The abstract architecture representation capabilities of vspec are also fairly
closely related to several architecture description languages that have been de-
veloped to describe software architectures [22]. Some of the more well known
architecture description are UniCon [23], Wright [24, 25] and Rapide [26, 27].
Each of these languages allow the definition of components and connectors to
define a software architecture. This is very similar to the vhdl notion of a struc-
tural architecture.

Allen and Garlan’s Wright language is of particular interest when discussing
vspec because a Wright component is defined with a variant of csp. Unlike
vspec’s use of csp to define component synchronization, Wright uses csp to
define component behavior as well. A Wright description consists of a collec-
tion of components interacting via instances of connector types. Wright’s csp
descriptions define the sequence of events a component or connector participates
in.

8 Conclusions and Current Status

Several problems and complexities of the Larch-based semantics were discovered
in our prototyping activities. In an effort to eliminate difficulties, the vspec
semantics have been transformed into PVS [28] form. The use of higher order
logic substantially simplifies the specification and verification of CSP properties.
The vspec parser has been re-implemented in Java and generates PVS models

A Brief Summary of VSPEC 1085

in place of Larch. The higher order nature of PVS and maturity of its associate
toolset will dramatically improve verification efficiency.

vspec is currently involved in several commercialization efforts. First, un-
der Air Force and TRW sponsorship, the vspec toolset is being integrated with
Mentor Graphics’ Renoir development environment. This integration will allow
vspec to be evaluated by engineers in their traditional design cycle. Second,
under DARPA and EDAptive Computing sponsorship, vspec is being used to
facilitate component retrieval by comparing component requirements with avail-
able components described by vspec. Comparing requirements with components
formally supports high assurance in the quality of the match. Finally, under
TRW sponsorship we have begun an effort to generate test vectors from vspec
specifications.

This paper briefly presented the vspec language and its associated semantics.
The semantics of single components were defined using a canonical axiomatic ap-
proach. Activation conditions were described and a csp-base semantics provided.
The use of vhdl architectures to describe abstract architectures was then dis-
cussed. The paper concluded with a presentation of examples used to evaluate
the system and results of those activities.

References

[1] IEEE Standard VHDL Language Reference Manual. New York, NY, 1993.
[2] P. Alexander, P. Baraona, and J. Penix. Using Declarative Specifications and

Case-Based Planning for System Synthesis. Concurrent Engineering: Research
and Applications, 2(4), 1994.

[3] P. Alexander, P. Baraona, and J. Penix. Application of Software Synthesis Tech-
niques to Composite Systems. In Computers in Engineering Symposisum of the
ASME ETCE, Houston, TX, January 1995.

[4] P. Baraona, J. Penix, and P. Alexander. VSPEC: A Declarative Requirements
Specification Language for VHDL. In Jean-Michel Berge, Oz Levia, and Jacques
Rouillard, editors, High-Level System Modeling: Specification Languages, volume 3
of Current Issues in Electronic Modeling, chapter 3, pages 51–75. Kluwer Aca-
demic Publishers, Boston, MA, 1995.

[5] Phillip Baraona and Perry Alexander. Abstract architecture representation using
VSPEC. VLSI Design, 9(2):181–201, 1999.

[6] J. Guttag, J. Horning, and J. Wing. The Larch Family of Specification Languages.
IEEE Software, 2(5):24–36, 1985.

[7] John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal
Specification. Springer-Verlag, New York, NY, 1993.

[8] Patrice Chalin. On the Language Design and Semantic Foundation of LCL, a
Larch/C Interface Specification Language. PhD thesis, Concordia University, De-
partment of Computer Science, Montreal, Quebec, Canada, December 1995.

[9] John V. Guttag and James J. Horning. Introduction to LCL, A Larch/C Interface
Language. Technical Report 74, Digital Equipment Corporation Systems Research
Center, 130 Lytton Avenue, Palo Alto, CA 94301, July 1991.

[10] Gary T. Leavens. Larch/C++ Reference Manual. Available at:
ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz , 1995.

1086 Perry Alexander, Murali Rangarajan, and Phillip Baraona

[11] David Guaspari, Carla Marceau, and Wolfgang Polak. Formal Verification of
Ada Programs. IEEE Transactions on Software Engineering, 16(9):1058–1075,
September 1990.

[12] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, 1985.

[13] Knowledge Based Software Engineering Laboratory, University of Cincinnati.
VSPEC Language Reference Manual, 1996.

[14] R.D. Tennent. Principles of Programming Languages. Computer Science Series.
Prentice-Hall International, 1981.

[15] P. A. Wilsey, D. E. Martin, and K. Subramani. Savant/tyvis/warped: Components
for the analysis and simulation of vhdl. In VHDL Users’ Group Spring 1998
Conference, pages 195–201, 1998.

[16] Albert John Camilleri. Mechanizing CSP trace theory in higher order logic. IEEE
Transactions on Software Engineering, 16(9):993–1004, September 1990.

[17] M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Ver-
ification and Automated Theorem Proving, pages 73–128. Springer-Verlag, 1989.

[18] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1980.

[19] Ranga Vemuri, Ram Mandayam, and Vijay Meduri. Performance modeling using
PDL. Computer, 29(4):44–53, April 1996.

[20] D. Jamsek and M. Bickford. Formal Verification of VHDL Models. Technical
Report RL-TR-94-3, Rome Laboratory, Griffiss Air Force Base, NY, March 1994.

[21] L. Augustin, D. Luckham, B. Gennart, Y. Huh, and A. Stanculescu. Hardware
Design and Simulation in VAL/VHDL. Kluwer Academic Publishers, Boston,
MA, 1991.

[22] D. Garlan and M. Shaw. An Introduction to Software Architecture. In V. Am-
briola and G. Tortora, editors, Advances in Software Eng. and Knowledge Eng.,
volume 2, pages 1–39. World Scientific, New York, 1993.

[23] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik. Abstractions
for Software Architecture and Tools to Support Them. IEEE Transactions on
Software Engineering, 21(4):314–335, April 1995.

[24] R. Allen and D. Garlan. Formalizing Architectural Connection. In Proc. Sixteenth
International Conference on Software Engineering, pages 71–80, May 1994.

[25] R. Allen and D. Garlan. A Case Study in Architectural Modelling: The AEGIS
System. In Proceedings of the 8th International Workshop on Software Specifica-
tion and Design, March 1996.

[26] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann. Speci-
fication and Analysis of System Architecture Using Rapide. IEEE Transactions
on Software Engineering, 21(4):315–355, April 1995.

[27] D. Luckham and J. Vera. An Event-Based Architecture Definition Language.
IEEE Transactions on Software Engineering, 21(9):717–734, September 1995.

[28] Judy Crow, John Rushby, Natarajan Shankar, and Mandayan Srivas. A Tutorial
Introduction to PVS. SRI International, Menlo Park, CA, June 1995. Presented
at WIFT’95.

Enhancing the Pre- and Postcondition

Technique for More Expressive Specifications

Gary T. Leavens and Albert L. Baker

Department of Computer Science, Iowa State University
226 Atanasoff Hall, Ames, Iowa 50011-1040 USA
phone: +1 515 294 1580, fax: +1 515 294 1580

http://www.cs.iastate.edu/∼leavens/index.html
http://www.cs.iastate.edu/∼baker/baker.html

leavens@cs.iastate.edu and baker@cs.iastate.edu

Abstract. We describe enhancements to the pre- and postcondition
technique that help specifications convey information more effectively.
Some enhancements allow one to specify redundant information that can
be used in “debugging” specifications. For instance, adding examples to
a specification gives redundant information that may aid some readers,
and can also be used to help ensure that the specification says what is
intended. Other enhancements allow improvements in frame axioms for
object-oriented (OO) procedures, better treatments of exceptions and
inheritance, and improved support for incompletely-specified types.

Many of these enhancements were invented by other authors, but are not
widely known. They have all been integrated into Larch/C++, a Larch-
style behavioral interface specification language for C++. However, such
enhancements could also be used to make other specification languages
more effective tools for communication.

Keywords: specification language design, expressiveness, liberal specifica-
tion, redundancy, debugging, history constraint, Larch.

1 Introduction

1.1 Background and Motivation

The pre- and postcondition technique was described by Hoare in his classic article
[26]. This technique forms the basis of most contemporary specification languages
for sequential systems [1, 15, 16, 18, 23, 28, 31, 41, 40, 42, 43, 47, 50, 51].
(However, Z [24, 52] is an exception, as Z preconditions are not explicitly stated,
but instead are calculated from the specification given [60, Chapter 14].)

We take as our starting point an excellent article by Jonkers [30], which, like
this paper, is addressed to specification language designers. Jonkers says (page
428):

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1087–1106, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1088 Gary T. Leavens and Albert L. Baker

“Nowadays the pre- and postcondition technique is considered a stan-
dard technique in software development as it is being taught in almost
every basic software engineering course. This gives the impression that
the technique has fully matured and that it can be applied everyday in
software development practice. The fact that this is not really the case
is camouflaged by the sloppy and informal way pre- and postconditions
are generally used in practice.”

Besides reconstructing the pre- and postcondition technique, Jonkers de-
scribes several enhancements. These enhancements are found in the specifica-
tion language COLD-1 [15]. The following briefly summarizes the enhancements
COLD-1 makes over previous specification languages, such as VDM [1, 16, 28]
and other languages in the Larch family [23]:

– Dependent variables, the declaration of which allows the dependent variable
to be modified whenever the variables it depends on are modified. Depen-
dent variables can be specified either directly, or indirectly using pre- and
postconditions. (See also Leino’s work on dependencies [37].)

– Fine-grained frame axioms using wild cards and expressions, which allow one
to specify the variables that can be changed more concisely and precisely.

– Let clauses, which allow the introduction of local named abbreviations.
– Some extensions for the specification of reactive systems.

1.2 Contribution

Our work extends Jonker’s work in that all the extensions we discuss in this
paper are new with respect to COLD-1. Many enhancements that we describe
are the work of other authors. Except for the ideas of user-selectable partial
vs. total correctness, and certain forms of redundancy, it is not our intention to
claim the other enhancements as our own. Instead we wish to highlight them so
that they might become more widely known and used in specification language
design.

We show how all these enhancements are integrated in Larch/C++ [32, 33],
a Larch-style behavioral interface specification language for C++. Larch/C++

adopts most of the COLD-1 extensions, except for the technical ideas for fine-
grained frame axioms and the extensions for the specification of reactive systems,
and includes the enhancements discussed below. This integration enhances the
rhetorical effectiveness and utility of Larch/C++.

Nevertheless, the enhancements we discuss would apply equally well to other
specification languages, including those outside the Larch family. That is, the
ideas themselves are not specific to Larch/C++ or even to Larch, but to the pre-
and postcondition technique generally.

We believe that specifications written using these enhancements provide more
precise and more easily understandable contracts. Briefly, we hope that our en-
hancements make specifications more expressive.

Enhancing the Pre- and Postcondition Technique 1089

By more expressive we mean that the specifications convey information more
immediately to the reader. That is, in this paper we care not so much about what
can be expressed, but how easy it is to express and understand.

It is beyond the scope of this paper to experimentally validate our hopes for
increased expressiveness. Instead, we claim just to demonstrate the plausibility
of increased expressiveness by showing suggestive examples, and leave for later
experiential or experimental validation. What we present is a necessary first step.
Furthermore, we believe that too little attention is paid to the expressiveness
of specifications in the formal methods and reuse communities. We believe that
it would be interesting to investigate the degree to which the expressiveness of
formal methods affects their use and cost-effectiveness.

We also claim that some of the enhancements we describe can increase the
quality of specifications. This is particularly true of the redundancy enhance-
ments described in Section 5, which can be used to check that the specification
says what is intended [55, 54, 56].

1.3 Overview

In Section 2 below we show how to allow the specifier to choose either total or
partial correctness specifications. In Section 3, we describe a syntactic sugar,
“case analysis,” that helps break specifications up into more easily understood
pieces. In Section 4, we describe some improvements to frame axioms. In Sec-
tion 5, we describe how to add redundancy, including examples, to specifications.
In Section 6, we describe “history constraints” that can constrain how states can
change. Finally, we offer some conclusions.

2 Liberal Specifications

Most pre- and postcondition-based specification languages have a total correct-
ness [13] semantics. That is, a specification such as Figure 1 must always termi-
nate if the precondition is satisfied.

extern void inc(int& i) throw();

//@ behavior {

//@ requires assigned(i, pre) /\ i^ < INT_MAX;

//@ modifies i;

//@ ensures i’ = i^ + 1;

//@ }

Fig. 1. The Larch/C++ specification of the C++ function inc.

1090 Gary T. Leavens and Albert L. Baker

(In Figure 1, the first line gives the C++ function’s interface. It says that
inc takes an integer argument passed by reference, returns nothing, and may
not throw exceptions. The behavior of inc is specified in the remaining lines.
The precondition starts with the keyword requires, and the postcondition with
the keyword ensures. The notation i^ is the pre-state value of the variable i,
and i’ is its post-state value. The notation assigned(i, pre) means that i has
been assigned a proper value in the pre-state; /\ means “and”. The modifies
clause is a frame axiom, which says that only the object i can have its value
changed.)

A partial correctness , or liberal , semantics means that when the precondi-
tion is satisfied, then if the procedure terminates, the postcondition must hold.
However, termination is not required. By termination, we mean return to the
caller of a procedure, either normally or by throwing an exception. Infinite loops,
jumps to other parts of the program, and program abortion are not termination.

In Larch/C++, users can specify procedures using either the total or partial
correctness semantics. Specifications that use just the keyword ensures have
a total correctness semantics, and those that use ensures liberally have a
partial correctness semantics. (The keyword liberally is inspired by Dijkstra’s
terminology [13]; it has been suggested that on exit might be better.)

One use for partial correctness specifications, as in Hoare’s original work [26],
is to avoid finiteness issues. For example, instead of specifying inc as in Fig-
ure 1, one could drop the precondition conjunct i^ < INT_MAX and use ensures
liberally in the postcondition. In this altered specification, the postcondition
would only need to be satisfied if the procedure terminated; for example, a correct
implementation could abort the program if the result could not be represented.
As a contract this is less precise since no call need terminate, but it is shorter.

Such finiteness issues often arise in allocation routines, such as C++ con-
structors. For example, if an implementation of a constructor might plausibly
need to allocate some memory from the heap, a total correctness specification
would have to describe the circumstances in which there is enough memory avail-
able. Not only would such a specification be tedious and longer, but it might
also overly constrain implementations. The problem is that there is no way to
know how much memory all possible implementations might need.

Although one might specify that a very generous amount of memory is re-
quired for termination, doing so with just a total correctness specification would
impose no obligation at all on implementations when the very generous amount
was not available. In Larch/C++, one can combine total and partial correctness
specifications for the same procedure, and thus more precisely specify both when
a call must terminate and what must be true on termination. The semantics of
such combinations uses the ideas of Dijkstra and others [13, 46, 25].

Another way out of the difficulty with allocation routines would be to change
the meaning of total correctness. For example, one could use a variation on
Poetzsch-Heffter’s semantics [49, page 48] and require termination only if no
memory allocation errors occur.

Enhancing the Pre- and Postcondition Technique 1091

However, there are other uses for partial correctness. A prime use is in speci-
fying when a procedure must not terminate. A simple example is the C++ abort
procedure, which can be specified as in Figure 2. This procedure can always be
called, but when called must abort program execution instead of terminating,
and hence cannot be specified with a total correctness semantics.

void abort();

//@ behavior {

//@ ensures liberally false;

//@ }

Fig. 2. Specification of abort.

The use of partial correctness, together with case analysis (see below), allows
one to specify exactly under what conditions a procedure must not terminate.
This technique is useful in precisely specifying contracts for procedures written
for languages (or compilers) without exception handling. This idea appears in
sugared form in the LCL checks clause [23, 55, 54, 56].

Partial correctness is also useful for specifying procedures for which there
is no known totally-correct implementation. Interpreters for Turing-complete
languages are examples.

3 Case Analysis

A simple syntactic sugar, which we call case analysis, is helpful in breaking up
specifications into more manageable chunks, and in specifying procedures that
can throw exceptions. Its advantage over special-purpose notations for exceptions
(as in LM3 [29, 23], to cite just one example) is that it is also useful for other
kinds of case analysis This sugar was pioneered by Wing [59, Section 4.1.4].
The idea is that a specification can be split into several cases, all of which
must be satisfied by a correct implementation. This concept was independently
reinvented by Wills [57]. Wills called specification cases “capsules”, and used
them effectively in OO specifications.

In Larch/C++, specification cases are separated by the keyword also. Con-
sider the example of Figure 3. This example shows a specification with two cases.
The first case specifies an exception, the second the function’s “normal” behav-
ior, which is to set each element of the argument array to zero. (The notation
\A means “for all”.)

The desugaring of a specification with case analysis turns it into a specifica-
tion with a single total correctness and a single partial correctness case. Each

1092 Gary T. Leavens and Albert L. Baker

#include "BadSize.h"

extern void ZeroArray(double x[], int n) throw(BadSize);

//@ behavior {

//@ requires n <= 0;

//@ ensures throws(BadSize);

//@ also

//@ requires 0 < n /\ n <= size(x) /\ allocated(x, pre);

//@ modifies x;

//@ ensures returns

//@ /\ (\A i: int ((0 <= i /\ i < n) => x’[i] = 0.0));

//@ }

Fig. 3. Specification of the C++ function ZeroArray. The predicate
throws(BadSize) is true when the function terminates and throws the named
exception; returns is true when the function terminates normally. The predicate
allocated(x, pre) is true when x is allocated in the pre-state.

such desugared case has as its precondition the disjunction (written \/) of the
preconditions of each corresponding case, and as its postcondition a conjunction
of implications, with each precondition implying (written =>) the corresponding
postcondition. For example, the specification in Figure 4 is the desugaring of
the specification in Figure 3. We think that Figure 3 is significantly easier to
understand.

The interaction of frame axioms with this desugaring is subtle. The frame
for the desugared specification has to allow all modifications permitted in each
original case, since that permission is needed by the whole procedure. To keep
the original meaning, however, the operator unchanged is used as needed in each
case. For example, in Figure 4, unchanged(x) is conjoined to the original first
case’s postcondition.

With just this sugar, however, precondition conjuncts that are shared among
cases would have to be repeated in each case. To avoid such repetition, cases in
Larch/C++ can be put in the scope of a precondition (and can also be nested).
For example, in Figure 5, the precondition assigned(s, pre) applies to both
cases. The desugaring first conjoins the outer precondition to each of the inner
ones, and applies the previous desugaring. Extracting common parts of precondi-
tions like this also highlights them for the reader. (We attach no special semantics
to such common preconditions, unlike Poetzsch-Heffter [49, pages 96-97].)

For OO specification languages, Wills pointed out that one can understand
inheritance of specifications as meaning that subtype objects must satisfy the
cases specified for them explicitly, as well as those of their supertypes. This
ensures that subtyping is behavioral [11, 42]; that is, subtype objects can be
reused according to their supertypes’ contracts.

Enhancing the Pre- and Postcondition Technique 1093

#include "BadSize.h"

extern void ZeroArray(double x[], int n) throw(BadSize);

//@ behavior {

//@ requires n <= 0 \/ (0 < n /\ n <= size(x) /\ allocated(x, pre));

//@ modifies x;

//@ ensures ((n <= 0) => (throws(BadSize) /\ unchanged(x)))

//@ /\ ((0 < n /\ n <= size(x) /\ allocated(x, pre))

//@ => (returns

//@ /\ \A i: int ((0 <= i /\ i < n) => x’[i] = 0.0)));

//@ }

Fig. 4. Desugared specification of ZeroArray.

4 Framing

A frame axiom in a procedure specification says that “nothing else changes” [5].
VDM and Z both have features to permit the specification of frame axioms (write
permissions in VDM, and ∆ in Z). In the Larch family, interface specifications
languages have followed Wing’s design for Larch/CLU [58] in using the modifies
clause to say that only the objects listed may have their abstract values changed.

In Larch/C++, the meaning of the modifies clause “modifies i;” is trans-
lated by a predicate like the following (see [33, Section 6.2.3.4] for exact details),
which can be thought of as conjoined to the postcondition.

ModifiedObjects(pre, post) \subseteq {i, residue_i}

In the above, the term ModifiedObjects(pre, post) denotes the set of all
objects modified in the transition from the pre-state to the post-state, and
\subseteq is a subset operator. The object residue_i stands for whatever ob-
jects i may depend on that are not in scope [37, Section 11.3]. The modifies
clause gives considerable notational abbreviation, because it asserts that all ob-
jects not mentioned retain their values.

4.1 Trashing

In the Larch family, predicates use the logic of the Larch Shared Language,
which is a logic of total functions [21, 35]. In such a logic, the pre- and post-
states, which are modeled by functions, will return proper values for objects that
are not allocated or that are not assigned a proper value. To avoid ill-defined
specifications, it is important that a specification written in such a logic ensures
that whenever an object’s value is mentioned in a given state, the object is
allocated (i.e., found in the domain of the state function), and assigned (i.e., given
a proper value). If this is not done, then logical problems may occur [8, 27, 36].

1094 Gary T. Leavens and Albert L. Baker

#include "Stack.h"

#include "BadSize.h"

extern void pop2(Stack & s) throw(BadSize);

//@ behavior {

//@ requires assigned(s, pre);

//@ {

//@ requires size(s^) < 2;

//@ ensures throws(BadSize);

//@ also

//@ requires size(s^) >= 2;

//@ modifies s;

//@ ensures returns /\ s’ = pop(pop(s));

//@ ensures redundantly size(s’) = size(s^) - 2;

//@ }

//@ }

Fig. 5. Specification of pop2. The ensures redundantly clause is explained
below.

To avoid such problems in the semantics of the modifies clause, the set
ModifiedObjects(pre, post) can only include objects that are assigned values
in both the pre- and post-states and change their values, or that are allocated
in the pre-state and become assigned in the post-state.

However, in C++ and other languages without garbage collection, procedures
can trash an object, either by deallocating it or by making it unassigned (for
example, by “uninitializing” it from an unassigned variable). Since these actions
are not considered modifications, they are not covered by the modifies clause.
However, without additional support from the specification language, specifiers
would have to make assertions about which objects remain allocated and assigned
in each postcondition [7], which would be inconvenient and verbose.

To avoid having users write in postconditions assertions about what is not
trashed, Chalin [7] argued for a second part to the frame axiom in Larch interface
specifications. In Larch/C++ this is called the trashes clause. Only the objects
listed in the trashes clause may be trashed; hence all objects not mentioned
must remain assigned and allocated if they were in the pre-state, and an omitted
trashes clause means that nothing may be trashed.

As with the modifies clause, the trashes clause is a permission, not a
requirement to trash the objects mentioned. Consider the example in Figure 6
[33, Section 6.3.2.1]. The object pointed to by cp may be trashed, since it is
mentioned in the trashes clause. The postcondition says that it must be trashed
when the value of ref_count drops to 0, but may not be otherwise.

Enhancing the Pre- and Postcondition Technique 1095

extern void dec_ref(char *cp, int & ref_count) throw();

//@ behavior {

//@ requires allocated(cp, pre) /\ assigned(ref_count, pre)

//@ /\ ref_count^ >= 1;

//@ modifies ref_count;

//@ trashes *cp;

//@ ensures ref_count’ = ref_count^ - 1

//@ /\ (if ref_count’ = 0 then trashed(*cp) else ~trashed(*cp));

//@ ensures redundantly ref_count^ > 1 => ~trashed(*cp);

//@ example ref_count^ = 1 /\ ref_count’ = 0 /\ trashed(*cp);

//@ }

Fig. 6. Specification of the C++ function dec ref. The ensures redundantly
and example clauses are explained below.

In Larch/C++, the meaning of the trashes clause “trashes *cp;” is trans-
lated by a predicate like the following (see [33, Section 6.2.3.4] for details), which
can be thought of as conjoined to the postcondition.

TrashedObjects(pre, post) \subseteq {*cp, residue_star_cp}

As above, the object residue_star_cp stands for whatever objects *cp may
depend on that are not in scope [37, Section 11.3].

5 Redundancy

A redundant part of a specification does not itself form part of the contract,
but instead is a formalized commentary on it. By allowing a specifier to state
redundant properties explicitly, a specification language becomes more expres-
sive. First, it allows specifiers to state properties that are important for readers,
without cluttering up the main parts of the specification. More importantly, re-
dundant parts, since they are marked as redundant, allow checking of the main
parts of the specification. One important benefit is that the reader can check his
or her understanding of the main parts against the redundant parts. Another
benefit is that the specifier can record more of the thinking that went into the
specification; for example, various examples or properties of the specification
may be thought of first, and these do not have to be dropped when a more
general form is discovered.

The Larch family has emphasized the benefit of checking how well a specifica-
tion captures the specifier’s intuition by comparing the redundant parts against
the main parts; such checking is called “debugging” a specification [17]. For ex-
ample, the Larch Shared Language incorporates features that can be used to
state redundant claims about theories [23, Chapter 7].

1096 Gary T. Leavens and Albert L. Baker

5.1 Redundant Postconditions

Tan’s work on LCL introduced redundancy into a specification language with
pre- and postconditions [55, 54, 56]. Of particular relevance here are Tan’s “pro-
cedure claims,” which state redundant properties that follow from the main part
of a specification. In Larch/C++, one can use an ensures redundantly clause
to state procedure claims. For example, in Figure 5 the ensures redundantly
clause in the second specification case highlights a property of that case; it says
that the stack’s size decreases by two. Another example occurs in Fig 6.

To use redundant postconditions in debugging a specification, for each such
redundancy claim, one would try to prove the following, where Pre is the case’s
precondition, Frame is the predicate that translates its frame axioms, Post is its
postcondition, and RedunPost is the claimed redundant postcondition [55, 54, 56]
[33, Section 6.8]. (All of these should be in their desugared forms.)

Pre ∧ Frame ∧ Post ⇒ RedunPost (1)

5.2 Examples

When we give problem statements to students, we observe that many students
primarily focus on examples. By adding examples as another form of redundancy
to specifications one gains the benefits of additional redundancy as well as the
ability to convey more clearly what is to be done. (Examples as part of interface
specifications first appeared in Larch/C++ [32].) For instance, in Figure 7, ex-
amples are used to show that isqrt is underspecified; the two examples given
show different approximations that may be returned for the square root of 31.

extern unsigned int isqrt(unsigned int & x) throw();

//@ behavior {

//@ requires assigned(x, pre);

//@ ensures (result-1)*(result-1) < x^ /\ x^ < (result+1)*(result+1);

//@ example x^ = 31 /\ result = 6;

//@ example x^ = 31 /\ result = 5;

//@ }

Fig. 7. Specification of the C++ function isqrt.

One might wonder whether examples are needed when one has case analysis;
for example, why not specify isqrt as in Figure 8? One reason is that this style
of specifying examples would not mark the examples as redundant for the reader.
Worse, the specification in Figure 8 is inconsistent, because it says that when x
is 31, the result must be both 5 and 6.

Enhancing the Pre- and Postcondition Technique 1097

extern unsigned int isqrt(unsigned int & x) throw();

//@ behavior {

//@ requires assigned(x, pre);

//@ {

//@ ensures (result-1)*(result-1) < x^ /\ x^ < (result+1)*(result+1);

//@ also

//@ requires x^ = 31;

//@ ensures result = 6;

//@ also

//@ requires x^ = 31;

//@ ensures result = 5;

//@ }

//@ }

Fig. 8. A bad (inconsistent) specification of isqrt; this shows how examples are
different than specification cases.

Examples can also be used to help debug specifications. What should be
checked is that an example, together with the frame, describes a pair of states
that are in the relation specified by the specification’s main parts. In terms
of predicates, this means that for each example, one should prove the following,
where Example is the example predicate, and Pre, Frame, and Post are as before.

(Example ∧ Frame) ⇒ (Pre ⇒ (Frame ∧ Post)) (2)

By predicate calculus, this is the same as the following.

(Example ∧ Frame ∧ Pre) ⇒ Post (3)

We believe that it is best to give examples that do not contradict the precon-
dition of a specification; hence it is also worthwhile to check that the conjunction
of the example predicate, frame, and precondition is consistent.

The reason why the frame is conjoined to the example predicate in Formula 2
is to avoid forcing the specifier to state what objects are not modified in exam-
ples. For instance, in Figure 7, if the frame axiom were not conjoined to the
example predicate, then there would be no way to prove that the example and
the precondition imply the frame and the postcondition for that example, since
the example predicate says nothing about the value of x in the post-state.

5.3 Redundant Preconditions

One can also apply the idea of redundancy to the precondition. The requires
redundantly clause in Larch/C++ is the analog of the ensures redundantly

1098 Gary T. Leavens and Albert L. Baker

clause for the precondition. It allows one to state redundant preconditions. Re-
dundant preconditions are sometimes useful for pointing out to the reader prop-
erties that follow from the semantics of the specification language, such as that
certain objects are allocated or assigned. For example, in Figure 9, the requires
redundantly clause highlights the fact that reference arguments are implicitly
required to be allocated, and that unsigned integers are non-negative.

extern unsigned int isqrt(unsigned int & x) throw();

//@ behavior {

//@ requires assigned(x, pre);

//@ requires redundantly allocated(x, pre) /\ x^ >= 0;

//@ ensures (result-1)*(result-1) < x^ /\ x^ < (result+1)*(result+1);

//@ example x^ = 31 /\ result = 6;

//@ example x^ = 31 /\ result = 5;

//@ }

Fig. 9. A specification of isqrt that shows the use of requires redundantly.

To use the requires redundantly clause in debugging a specification, one
would prove the following, where again Pre is the desugared precondition, and
RedunPre is the redundant precondition.

Pre ⇒ RedunPre (4)

It would be possible to have an analog of the example clause for precondi-
tions, say with an example input clause. The example input predicates would
be used in debugging the specification by checking that they are consistent with
the precondition. Example inputs are not included in the current version of
Larch/C++ [33], because we have not found a great need for them.

5.4 Redundant Frames

Larch/C++ was also the first interface specification language to extend the idea
of redundancy to the modifies and trashes clauses. In Larch/C++, one can
use modifies redundantly and trashes redundantly clauses. One use for
such clauses is to highlight objects that are implicitly allowed to be modified
or trashed because some explicitly named object has been declared to depend
on them [37]. The debugging of redundant frames is analogous to that used for
redundant preconditions; that is, one would prove that the permissions that are
claimed to be redundant follow from the language’s semantics and the explicit
permissions.

Enhancing the Pre- and Postcondition Technique 1099

5.5 An Alternative Design for Redundancy

We now briefly describe an alternative design for redundancy that has been
considered for Larch/C++, but never adopted. We are experimenting with it
in our specification language for Java [34], and it may be of interest to other
specification language designers.

The idea is that instead of having clauses that allow the specification of
redundancy, that one label entire specification cases as redundant or examples.
For example, one might write the specification of Figure 6 as in Figure 10.

extern void dec_ref(char *cp, int & ref_count) throw();

//@ behavior {

//@ requires allocated(cp, pre) /\ assigned(ref_count, pre)

//@ /\ ref_count^ >= 1;

//@ modifies ref_count;

//@ trashes *cp;

//@ ensures ref_count’ = ref_count^ - 1

//@ /\ (if ref_count’ = 0 then trashed(*cp) else ~trashed(*cp));

//@ }

//@ behavior redundantly {

//@ requires allocated(cp, pre) /\ assigned(ref_count, pre)

//@ /\ ref_count^ > 0;

//@ modifies ref_count;

//@ trashes *cp;

//@ ensures ref_count^ > 1 => ~trashed(*cp);

//@ }

//@ example {

//@ requires ref_count^ = 1;

//@ modifies ref_count;

//@ trashes *cp

//@ ensures ref_count’ = 0 /\ trashed(*cp);

//@ }

Fig. 10. An alternative style for writing redundancy into specifications. This is
not part of Larch/C++, but given in a Larch/C++ style.

One advantage of this style is that it more cleanly separates the redundant
parts of a specification from the main parts. Also, examples seem clearer, because
the descriptions of the pre- and post-states are separated into the requires and
ensures clauses of the example.

The disadvantage of this style is that the specifications become somewhat
more verbose. In a behavior redundantly clause, one must repeat the precon-
dition and frame, which is not necessary with ensures redundantly. While an

1100 Gary T. Leavens and Albert L. Baker

example clause does not need to repeat the precondition, it does seem necessary
to repeat the frame in examples, because this keeps the semantics of an omitted
modifies or trashes clause uniform. However, there might be ways of making
this more palatable.

6 History Constraints

Many specification languages allow one to state invariants for the values of an
abstract data type (ADT). An invariant property is one that must be true of each
object of the ADT in all visible states. A visible state is one that can be observed
by clients of the ADT. Such invariants can be seen as an expressive way to state
properties that would otherwise have to be repeated in every operation’s pre-
and postcondition. However, invariants are not mere notational abbreviations,
because they apply to all operations, even when new ones are added to an ADT.

Liskov and Wing introduced a similar idea as an aid to specifying OO pro-
grams that use behavioral subtyping [39, 38]. A history constraint for a type
describes a property of objects of that type (and all subtypes) that must hold
for any ordered pair of visible states in a computation, where the first state oc-
curs before the second. To make sense, such a property must describe a reflexive
and transitive relation on states. History constraints, if not stated as such, would
otherwise have to be repeated in every operation’s postcondition. However, his-
tory constraints are not mere notational abbreviations, because they apply to
all operations, even new ones added in subtypes.

A simple example is the constraint that some field of an object never changes
its value, once initialized. For instance, in the specification of a BoundedStack
class in Larch/C++, one might write the following history constraint, to state
that a Stack’s field max_size never changes.

//@ constraint max_size^ = max_size’;

The max_size field is allowed to be initialized, because history constraints do not
apply to constructors, as the pre-state value of the object is not visible. (Techni-
cally, in Larch/C++ this is because the field has not yet been assigned a proper
value upon entry to a constructor.) For analogous reasons history constraints
do not apply to destructors. However, the example constraint does say that one
cannot list make_size in a modifies clause for a normal operation (C++ mem-
ber function) of the type BoundedStack. It thus collects information that would
otherwise be spread out in all the modifies clauses of all the operations. Fur-
thermore, the immutability of a field like this would only be written negatively,
by not being listed in all these modifies clauses. Finally, the immutability of a
field could be changed by new operations or by subtypes if it were not listed in
the history constraint.

History constraints can also be used to succinctly express monotonic rela-
tionships between pre- and post-states. For example, the Larch/C++ manual’s
specification of a class Person [33, Section 7.1.1], includes the following history
constraint, which expresses the inexorable arrow of time.

Enhancing the Pre- and Postcondition Technique 1101

//@ constraint age^ <= age’;

To allow debugging of invariants and history constraints, Larch/C++ also al-
lows one to state redundant invariants and history constraints, using invariant
redundantly and constraint redundantly clauses.

An innovation in Larch/C++ is that one can limit a history constraint so
that it only applies to various named operations [11] [33, Section 7.4]. This can
be used to collect common, monotonic, parts of the postconditions of several
operations in one place. A more general version of this idea was advocated by
Borgida et al. as an approach to dealing with frame axioms [5]. The form found in
Larch/C++ is useful in specifying history constraints for types that are intended
as supertypes of weak behavioral subtypes [11, 10] [33, Section 7.8]. However,
an explanation of weak behavioral subtyping is outside the scope of this paper.

7 Other Related Work

Our goal of making pre- and postcondition specifications more expressive is
also served by the refinement calculus [2, 3, 4, 43, 44, 45]. The major exten-
sion in the refinement calculus is the use of abstract programs as specifications.
These are programs that may include specification statements (and other kinds
of nonconstructive statements). This makes it possible to specify higher-order
procedures conveniently, and is particularly useful in component-based or event-
driven settings [6]. However, this extension is orthogonal to the techniques we
have discussed.

The work of Perry on Inscape [48] also has as one of its goals making pre-
and postcondition specifications more practical. It adds to postconditions the
notion of an obligation, which clients are expected to satisfy eventually. Again,
this extension is orthogonal to those discussed in this paper. Inscape also splits
preconditions up into three kinds, although none of them are redundant and
thus cannot be used for debugging specifications. Perry’s Instress tool uses static
analysis to help debug programs, not specifications.

The Extended Static Checker from Compaq SRC [9] carries on this tradition
of static analysis using specifications to help debug programs; again the work is
not aimed at helping debug specifications. The specifications used in this checker
do, however, have some additional constructs for more expressive framing than
what is described in this paper.

Our emphasis on expressiveness in specifications can be seen as following
the emphasis on expressive notation in the “calculational school” of Dijkstra,
Gries, and others (see, e.g., [12, 14, 19, 20]). These authors have considerably
adapted standard mathematical notations to be more consistent and commu-
nicative. However, they have not directed much attention to the pre- and post-
condition technique itself. Similarly, the specification language Z has a great
variety of notational refinements, but these refinements are not aimed at the
pre- and postcondition technique.

1102 Gary T. Leavens and Albert L. Baker

8 Conclusions

In this paper we have described several enhancements to the pre- and postcondi-
tion technique for specifications. These enhancements contribute to the expres-
siveness of Larch/C++, and could be adapted to other specification languages.
We have suggested how the enhancements help the specifier communicate more
effectively with potential clients and implementors. Moreover, they do not result
in any loss of formal rigor.

In our experience, the most significant of these enhancements is the ability
to add redundant examples to specifications. In addition to their potential use in
debugging specifications, we have found that they can help make specifications
clearer. We are also excited about their potential for automated testing [22].

Besides examples, the enhancement we use most often is case analysis [59,
Section 4.1.4] [57]. This is helpful in stating specifications of procedures that
may throw exceptions. However, since it is more general than a special-purposed
notation for exceptions, it is also useful in breaking up the logic of a specification
into more easily understood parts.

Even if specification language designers do not like our syntax, we hope
they will address the issues we have raised and go beyond them. We also look
forward to experimental tests of the expressiveness of these enhancements, and
the eventual refinement of our ideas by that research.

Acknowledgments

Thanks to Yoonsik Cheon, Krishna Kishore Dhara, Matt Markland, and Clyde
Ruby for their work on Larch/C++. Thanks to Patrice Chalin, Peter Müller,
and Rustan Leino for several discussions about the semantics of Larch/C++.
Thanks to Kishore, Peter, Rustan, and Arnd Poetzsch-Heffter, for many helpful
suggestions about an earlier draft of this paper.

The work of both authors was supported in part by the National Science
Foundation under Grant CCR-9803843. Leavens’s work was also supported in
part under Grant CCR-9503168.

References

[1] Derek Andrews. A Theory and Practice of Program Development. FACIT.
Springer-Verlag, London, UK, 1997.

[2] R. J. R. Back. A calculus of refinements for program derivations. Acta Informatica,
25(6):593–624, August 1988.

[3] R. J. R. Back and J. von Wright. Combining angels, deamons and miracles in
program specifications. Theoretical Computer Science, 100(2):365–383, June 1992.

[4] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998.

[5] Alex Borgida, John Mylopoulos, and Raymond Reiter. ‘... and nothing else
changes’: The frame problem in procedure specification. In Proceedings Fifteenth
International Conference on Software Engineering, Baltimore, May 1993. Prelim-
inary version obtained from the authors.

Enhancing the Pre- and Postcondition Technique 1103

[6] Martin Büchi and Emil Sekerinski. Formal methods for component soft-
ware: The refinement calculus perspective. In Proceedings of the Sec-
ond Workshop on Component-Oriented Programming (WCOP), June 1997.
ftp://ftp.abo.fi/pub/cs/papers/mbuechi/FMforCS.ps.gz.

[7] Patrice Chalin. On the Language Design and Semantic Foundation of
LCL, a Larch/C Interface Specification Language. PhD thesis, Con-
cordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec,
Canada, October 1995. Available as CU/DCS TR 95-12, from the URL
ftp://ftp.cs.concordia.ca/pub/chalin/tr.ps.Z.

[8] Patrice Chalin, Peter Grogono, and T. Radhakrishnan. Identification of and so-
lutions to shortcomings of LCL, a Larch/C interface specification language. In
Marie-Claude Gaudel and James Woodcock, editors, FME ’96: Industrial Bene-
fit and Advances in Formal Methods, volume 1051 of Lecture Notes in Computer
Science, pages 385–404, New York, N.Y., March 1996. Springer-Verlag.

[9] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. SRC Research Report 159, Compaq Systems Research Center,
130 Lytton Ave., Palo Alto, Dec 1998.

[10] Krishna Kishore Dhara. Behavioral subtyping in object-oriented languages. Tech-
nical Report TR97-09, Department of Computer Science, Iowa State University,
226 Atanasoff Hall, Ames IA 50011-1040, May 1997. The author’s Ph.D. disser-
tation.

[11] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping
through specification inheritance. In Proceedings of the 18th International Confer-
ence on Software Engineering, Berlin, Germany, pages 258–267. IEEE Computer
Society Press, March 1996. A corrected version is Iowa State University, Dept. of
Computer Science TR #95-20c.

[12] E. W. Dijkstra, editor. Formal Development of Programs and Proofs. University
of Texas at Austin Year of Programming series. Addison-Wesley Publishing Co.,
1990.

[13] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1976.

[14] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and program se-
mantics. Springer-Verlag, NY, 1990.

[15] L. M. G. Feijs and H. B. M. Jonkers. Formal Specification and Design, volume 35 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 1992.

[16] John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools in
Software Development. Cambridge, Cambridge, UK, 1998.

[17] Stephen J. Garland, John V. Guttag, and James J. Horning. Debugging Larch
Shared Language specifications. IEEE Transactions on Software Engineering,
16(6):1044–1057, September 1990.

[18] M. Gogolla, S. Conrad, G. Denker, R. Herzig, N. Vlachantonis, and H. Ehrig.
TROLL light — the language and its development environment. In Manfred
Broy and Stefan Jähnichen, editors, KORSO: Methods, Languages and Tools for
the Construction of Correct Software, volume 1009 of Lecture Notes in Computer
Science, pages 205–220. Springer-Verlag, New York, N.Y., 1995.

[19] David Gries. Teaching calculation and discrimination: A more effective curricu-
lum. Communications of the ACM, 34(3):44–55, March 1991.

[20] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Texts
and Monographs in Computer Science. Springer-Verlag, New York, N.Y., 1994.

1104 Gary T. Leavens and Albert L. Baker

[21] David Gries and Fred B. Schneider. Avoiding the undefined by underspecification.
In Jan van Leeuwen, editor, Computer Science Today: Recent Trends and Devel-
opments, number 1000 in Lecture Notes in Computer Science, pages 366–373.
Springer-Verlag, New York, N.Y., 1995.

[22] M. Gurski and A. L. Baker. Testing SPECS-C++: A first step in validating
distributed systems. In Intellegent Information Management Systems, pages 105–
108, Anaheim, 1994. The International Society for Mini and Microcomputers -
ISMM.

[23] John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, and J.M.
Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag, New
York, N.Y., 1993.

[24] I. Hayes, editor. Specification Case Studies. International Series in Computer
Science. Prentice-Hall, Inc., second edition, 1993.

[25] Wim H. Hesselink. Programs, Recursion, and Unbounded Choice, volume 27 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
New York, N.Y., 1992.

[26] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–583, October 1969.

[27] C.B. Jones. Partial functions and logics: A warning. Information Processing
Letters, 54(2):65–67, 1995.

[28] Cliff B. Jones. Systematic Software Development Using VDM. International Series
in Computer Science. Prentice Hall, Englewood Cliffs, N.J., second edition, 1990.

[29] Kevin D. Jones. LM3: A Larch interface language for Modula-3: A definition and
introduction: Version 1.0. Technical Report 72, Digital Equipment Corporation,
Systems Research Center, 130 Lytton Avenue Palo Alto, CA 94301, June 1991.
Order from src-report@src.dec.com.

[30] H. B. M. Jonkers. Upgrading the pre- and postcondition technique. In S. Prehn
and W. J. Toetenel, editors, VDM ’91 Formal Software Development Methods
4th International Symposium of VDM Europe Noordwijkerhout, The Netherlands,
Volume 1: Conference Contributions, volume 551 of Lecture Notes in Computer
Science, pages 428–456. Springer-Verlag, New York, N.Y., October 1991.

[31] Kevin Lano. The B Language and Method: A guide to Practical Formal Develop-
ment. Formal Appoaches to Computing and Information Technology. Springer-
Verlag, London, UK, 1996.

[32] Gary T. Leavens. An overview of Larch/C++: Behavioral specifications for C++
modules. In Haim Kilov and William Harvey, editors, Specification of Behavioral
Semantics in Object-Oriented Information Modeling, chapter 8, pages 121–142.
Kluwer Academic Publishers, Boston, 1996. An extended version is TR #96-01d,
Department of Computer Science, Iowa State University, Ames, Iowa, 50011.

[33] Gary T. Leavens. Larch/C++ Reference Manual. Version 5.41. Available in
ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz or on the World Wide Web at
the URL http://www.cs.iastate.edu/~leavens/larchc++.html, April 1999.

[34] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. Technical Report 98-06e,
Iowa State University, Department of Computer Science, June 1999.

[35] Gary T. Leavens and Jeannette M. Wing. Protective interface specifications.
In Michel Bidoit and Max Dauchet, editors, TAPSOFT ’97: Theory and Prac-
tice of Software Development, 7th International Joint Conference CAAP/FASE,
Lille, France, volume 1214 of Lecture Notes in Computer Science, pages 520–534.
Springer-Verlag, New York, N.Y., 1997.

Enhancing the Pre- and Postcondition Technique 1105

[36] Gary T. Leavens and Jeannette M. Wing. Protective interface specifications.
Formal Aspects of Computing, 10:59–75, 1998.

[37] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-
03.

[38] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811–1841, Novem-
ber 1994.

[39] Barbara Liskov and Jeannette M. Wing. Specifications and their use in defining
subtypes. ACM SIGPLAN Notices, 28(10):16–28, October 1993. OOPSLA ’93
Proceedings, Andreas Paepcke (editor).

[40] David Luckham. Programming with Specifications: An Introduction to Anna, A
Language for Specifying Ada Programs. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, New York, N.Y., 1990.

[41] David Luckham and Friedrich W. von Henke. An overview of anna - a specification
language for Ada. IEEE Software, 2(2):9–23, March 1985.

[42] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,
N.Y., second edition, 1997.

[43] Carroll Morgan. Programming from Specifications: Second Edition. Prentice Hall
International, Hempstead, UK, 1994.

[44] Carroll Morgan and Trevor Vickers, editors. On the refinement calculus. Formal
approaches of computing and information technology series. Springer-Verlag, New
York, N.Y., 1994.

[45] Joseph M. Morris. A theoretical basis for stepwise refinement and the program-
ming calculus. Science of Computer Programming, 9(3):287–306, December 1987.

[46] Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, October 1989.

[47] William F. Ogden, Murali Sitaraman, Bruce W. Weide, and Stuart H. Zweben.
Part I: The RESOLVE framework and discipline — a research synopsis. ACM
SIGSOFT Software Engineering Notes, 19(4):23–28, Oct 1994.

[48] D. E. Perry. The Inscape environment. In Proceedings of the 11th International
Conference on Software Engineering, pages 2–12, May 1989.

[49] Arnd Poetzsch-Heffter. Specification and verification of object-oriented programs.
Habilitation thesis, Technical University of Munich, January 1997.

[50] David S. Rosenblum. A practical approach to programming with assertions. IEEE
Transactions on Software Engineering, 21(1):19–31, January 1995.

[51] Murali Sitaraman, Lonnie R. Welch, and Douglas E. Harms. On specification of
reusable software components. International Journal of Software Engineering and
Knowledege Engineering, 3(2):207–229, 1993.

[52] J. Michael Spivey. The Z Notation: A Reference Manual. International Series in
Computer Science. Prentice-Hall, New York, N.Y., second edition, 1992.

[53] Susan Stepney, Rosalind Barden, and David Cooper, editors. Object Orientation
in Z. Workshops in Computing. Springer-Verlag, Cambridge CB2 1LQ, UK, 1992.

[54] Yang Meng Tan. Formal specification techniques for promoting software mod-
ularity, enhancing documentation, and testing specifications. Technical Report
619, Massachusetts Institute of Technology, Laboratory for Computer Science,
545 Technology Square, Cambridge, Mass., June 1994.

[55] Yang Meng Tan. Interface language for supporting programming styles. ACM
SIGPLAN Notices, 29(8):74–83, August 1994. Proceedings of the Workshop on
Interface Definition Languages.

1106 Gary T. Leavens and Albert L. Baker

[56] Yang Meng Tan. Formal Specification Techniques for Engineering Modular C Pro-
grams, volume 1 of Kluwer International Series in Software Engineering. Kluwer
Academic Publishers, Boston, 1995.

[57] Alan Wills. Specification in Fresco. In Stepney et al. [53], chapter 11, pages
127–135.

[58] Jeannette M. Wing. Writing Larch interface language specifications. ACM Trans-
actions on Programming Languages and Systems, 9(1):1–24, January 1987.

[59] Jeannette Marie Wing. A two-tiered approach to specifying programs. Technical
Report TR-299, Massachusetts Institute of Technology, Laboratory for Computer
Science, 1983.

[60] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice Hall International Series in Computer Science, 1996.

On Excusable and Inexcusable Failures

Towards an Adequate Notion of Translation Correctness

Markus Müller-Olm and Andreas Wolf?

1 Fachbereich Informatik, LS V, Universität Dortmund, 44221 Dortmund, Germany
mmo@ls5.cs.uni-dortmund.de

2 Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität, 24105 Kiel, Germany

awo@informatik.uni-kiel.de

Abstract. The classical concepts of partial and total correctness iden-
tify all types of runtime errors and divergence. We argue that the as-
sociated notions of translation correctness cannot cope adequately with
practical questions like optimizations and finiteness of machines. As a
step towards a solution we propose more fine-grained correctness no-
tions, which are parameterized in sets of acceptable failure outcomes,
and study a corresponding family of predicate transformers that gener-
alize the well-known wp and wlp transformers. We also discuss the utility
of the resulting setup for answering compiler correctness questions.

Keywords: compiler, correctness, divergence, refinement, runtime-error,
predicate transformer, verification

1 Introduction

Compilers are ubiquitous in today’s computing environments. Their use ranges
from the traditional translation of higher programming languages to conversions
between data formats of a large variety. The rather inconspicuous use of compil-
ers helps to get rid of architecture or system specific representations and allows
thus to handle data or algorithms in a more convenient abstract form.

There is a standard theory for the syntactic aspects of compiler construction
which is well-understood and documented in a number of text books (e.g. [1,
24, 25, 26]). It is applied easily in practice via automated tools like scanner
and parser generators. This has made the construction of the syntactic phases
of compilers, which has been a challenge back in the sixties, to a routine task
nowadays.

This is different for the semantic phases concerned with the question, which
output is to be generated for a given input. In this respect every translation task
requires rather specific considerations and, due to the wide range of applica-
tions sketched above, no general approach is available or to be expected for this
problem. Even if one restricts attention to a more narrow task, the translation
of imperative programming languages considered in this paper, there is still no
? The work of the second author is supported by DFG grant La 426/15-1,2.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1107–1127, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1108 Markus Müller-Olm and Andreas Wolf

generally followed approach, although some well-studied frameworks like, e.g.,
action semantics [19] exist. Of course much is known on efficient (and presum-
ably correct) translation schemes and runtime environments and there is also a
vast amount of literature on optimizations (a recent textbook is [20]). But these
considerations do not build on a consistent, widely accepted semantic basis. As
a consequence, subtle errors are present in generated code and it is difficult
to fully understand which properties are guaranteed to transfer from source to
target programs, in particular if aggressive optimization levels are employed in
the compiler. This is exemplified by the surprising results experienced by many
compiler users every now and then when running generated code.

In many applications errors and uncertainties, although annoying, can be
tolerated. When compilers are used to construct software for safety-critical sys-
tems the matter changes dramatically. The mistrust in compilers is one of the
reasons why such code often is certified on the level of machine- or assembler-code
[15, 23]. Trusted and fully-understood compilers would permit a certification on
the source language level. This would be less time-consuming, cheaper, and more
reliable. From a practical point of view, the ultimate goal of compiler verification
[4, 6, 12, 14, 16, 21, 22] should be to improve on this state of affairs.

Every compiler proof is in danger of burying the essential considerations un-
der a mountain of technicalities, which could seriously affect the credibility of
the established correctness claim. Thus a compiler proof should be based on a
semantic definition in an abstract style. On the other hand, it is important that
the semantic description is rather close to the intuition of the average program-
mer in order to avoid errors resulting from misunderstandings of or, seen from
the perspective of the programmer, errors in the formal semantics definition. As
most people have a rather concrete, operational intuition about the behavior
of (imperative) programs, the ultimate reference point should thus be a rather
concrete, operational semantics.

How can we resolve the obvious conflict between the requirements of using an
operational as well as an abstract kind of semantics? We envision the following
approach: The operational semantics is defined first and provides the ultimate
reference. In particular, the correctness property to be established for the trans-
lation is interpreted in terms of the operational semantics. From the operational
semantics, the more abstract semantics to be used in the compiler proof is de-
rived. This involves defining the objects handled by the abstract semantics in
terms of the operational semantics. Afterwards sufficiently strong properties of
the abstract semantics are established that allow to reason in the compiler proof
on the abstract level without directly recurring to its operational definition.

A particular benefit of this approach is that the abstract semantics can be
suited to the specific correctness property to be established. We shall argue later
in this paper (see Sect. 2) that there is no single universal notion of correct
translation even in the simplified setting considered here. Instead there is a
whole range of sensible notions and the abstract semantics can specifically be
constructed to accommodate reasoning w.r.t. the chosen one.

On Excusable and Inexcusable Failures 1109

So much for the context of this paper; let us now become a bit more con-
crete about our contribution. On the one hand, we are looking for a realistic, yet
tractable, notion of translation correctness and, on the other hand, for abstract
semantics suited to reasoning about it. We argue that common code-optimizing
transformations and the limitations of finite machines give rise to different ex-
pectations about the relationship of the behavior of source and target code. We
show that the notions of translation correctness that derive in a natural way
from the classic idealized notions of partial and total correctness are not able
to cope adequately with these topics. The problem results from the traditional
identification of runtime errors and divergence. As a step towards a solution
we propose relativized correctness notions that are parameterized in sets of ac-
ceptable failures. In order to facilitate compiler correctness proofs we also study
relativized versions of the well-known wp and wlp predicate transformers and
discuss the utility of the resulting setup. The aim of this line of research is to
preserve as much as possible from the elegant appeal of the traditional idealized
setting, while being able to cope with the more practical problems.

The remainder of this article is organized as follows. Section 2 discusses by
means of small examples some pitfalls in defining semantic correctness conditions
for practical compilers. The classical concepts of partial and total correctness and
the associated notions of correct translation are revisited in Sect. 3 before we
introduce the proposed relativized notions in Sect. 4. In particular we introduce
a generalization of the classic wp and wlp predicate transformers [8, 11] called
wrp (weakest relativized predicate transformer) and discuss its relationship to
the classic transformers and its basic properties. In Sect. 6 we study wrp for the
commands of a simple imperative programming language. These commands are
applied to an example in Sect. 7 in order to indicate the utility of the proposed
framework for answering translation correctness questions. We finish the paper
with a number of concluding remarks.

2 On Correctness of Translations

Let us first of all set the stage for the technical discussion. We assume given a
set Π of programs π. The reader should imagine imperative programs intended
to compute on a certain non-empty set of states Σ. Computations of π start in
a state s ∈ Σ; s represents the input to the program. There are three different
types of computations: a computation may terminate regularly in a state s′ ∈ Σ;
it may end up in an error state; or it may diverge, i.e. run forever. Programs
can be non-deterministic, i.e. there may be more than one computation from a
given initial state s.

The details of program execution are not of interest for our purpose; we are
only interested in the final outcomes of computations. Therefore, we assume that
each program π is furnished with a relation R(π) ⊆ Σ × (Σ ∪ Ω). Here Ω is a
non-empty set of failure (or irregular) outcomes disjoint from Σ. Intuitively, Ω
contains the error states mentioned above and a special symbol ∞ representing
divergence. Examples of error states are, e.g., ‘div-by-zero’, ‘arithmetic overflow’

1110 Markus Müller-Olm and Andreas Wolf

etc. We call π deterministic if R(π) is a function, i.e. if for any s ∈ Σ there is
at most one σ such that (s, σ) ∈ R(π). As any practical program has at least
one computation from a given initial state, we may safely assume that R(π) is
total, i.e. that there is an outcome σ with (s, σ) ∈ R(π) for any s ∈ Σ. Unless
otherwise stated this assumption is, however, not needed in this article.

We use the following conventions for the naming of variables: Σ is ranged
over by s, Ω by ω, and Σ ∪ Ω by σ. We also use the letter o to range over
Ω − {∞}.

Intuitively, (s, s′) ∈ R(π) records that s′ is a possible regular result of π from
initial state s, (s, o) ∈ R(π) means that error state o can be reached from s, and
(s,∞) ∈ R(π) that π may diverge from s. R(π) can be thought to be derived
from an operational or denotational semantics. Relational definitions for familiar
programming operators can be found in Sect. 6.

After these preparations, let us discuss what correctness properties we rea-
sonably can expect from translations. Assume for the purpose of this discussion
that π is a source program that has been translated to a target program π′. We
will freely use various features and representations of imperative programs in
the illustrating examples. For simplicity we assume that π and π′ operate on the
same state space.

If π′ is to be a correct implementation of π, we clearly expect that the com-
putations of π′ are related to the computations of π in some sense. Usually, we
are not interested in the intermediate states occurring in computations but just
in the final outcomes produced.1 Therefore, a relational semantics like the above
introduced R(π), which provides an abstraction of the possible computations of
π to possible outcomes, is appropriate for defining correctness of translation.

At first glance, we might require that π′ has the same outcomes as π for any
given initial state, i.e. that R(π′) = R(π). But this requirement is far too strong.
One of the reasons is that non-determinism in π might be resolved in a specific
way in π′. Assume, e.g., that π contains an un-initialized local variable and that
the result of π depends on the (arbitrary) initial value of this local variable, like
in the following program.

BEGIN
int y: y := 17

END;
BEGIN
int z: x := z

END

The final value of x is arbitrary, i.e. we have R(π) = {(s, s[x 7→ n]) | n ∈ Z}
where s[x 7→ n] denotes the substitution of value n for the variable x in state s.
The generated code π′, on the other hand, might well provide the deterministic

1 Of course, for programs with input/output instructions we are also interested in
relating the communicated values. And even for strictly transformational programs,
we might occasionally want to relate intermediate states; for example when we are
interested in correctness of debuggers. But this is beyond the scope of this paper.

On Excusable and Inexcusable Failures 1111

result 17, as it allocates for z the memory location used previously for y, which
still contains y’s old value. No sensible means can enforce full non-determinism in
the target code and we should thus expect at most R(π′) ⊆ R(π): every outcome
produced by the target code is a possible outcome of the source code. This is
the very idea of refinement.

However, reality is not that simple: for various reasons, even R(π′) ⊆ R(π) is
a too strong requirement. A realistic notion of correctness must also accommo-
date limitations of the execution mechanism and optimizations. Let us discuss
each of these in turn.

Limited abilities of the implementation might give rise to failure outcomes of
the target program that are not possible for the source program. Full implemen-
tation of recursion, e.g., requires stacks of unbounded size. Actual computers,
however, provide only a finite amount of memory; we must thus be prepared
to accept the outcome ‘stack-overflow’ or ‘out-of-memory’ every now and then
when executing programs from languages with unrestricted use of recursion. An-
other example is restricted arithmetic. If the source language provides e.g. the
full set of integers as a data type but the executing processor just uses, e.g.,
32-bit representations, the outcome ‘arithmetic overflow’ will occur occasionally.

Such limitations could be handled in various ways. Firstly, we could try
to model the limitations precisely in the source language semantics. This ap-
proach is often applied for restricted arithmetic (consider e.g. the ANSI/IEEE
754 standard for representation of the reals) but is generally impractical for e.g.
bounded stack sizes as it would require very specific knowledge on the imple-
mentation when defining semantics of the source language. Secondly, we could
simply enrich the source language semantics by the error outcomes which would
allow them as possible results of the implementation. This would amount to
considering

R(π) ∪ {(s, error) | error is an outcome reflecting a limitation}
the semantics of π. Thirdly, we could try to handle limitations as part of the
relationship between R(π) and R(π′). The latter is perhaps the most natural
approach but it leads to complicated formalizations in practice. The predicate
transformer semantics solution proposed below will somehow have the flavor of
the second approach but avoids its somewhat unhandy nature.

Optimizations can replace error outcomes by arbitrary outcomes. As a first
example consider the innocuously looking transformation pictured in Fig. 1, an
instance of what is called dead-code elimination [20]. The justification for this
transformation is that the value of e assigned to x in the initial assignment is
never needed, as any path through the program overwrites x’s value before using
it by either the assignment x := 12 or x := 42. Hence it should not be necessary
to perform the evaluation of e and the assignment x := e at all. But suppose
that e is the expression 1/0. Then the left program is guaranteed to produce the
error outcome ‘div-by-zero’ while the right program can have, depending on P ,
whatever outcomes you want! (Note, that it is not always as obvious as in this
example that evaluation of an expression at a certain point in a program might
lead to a run-time error; in general this is undecidable.)

1112 Markus Müller-Olm and Andreas Wolf

y > 0

x:= 12

P

x:= 42

skip

y > 0

x:= 12

P

x:= 42

yes no noyes

Optimized program

x:= e

Original program

Fig. 1. Elimination of dead code.

As a second example of an optimization consider the code motion transfor-
mation [20] in Fig. 2 where b, e and f are assumed not to contain y, and g
is assumed not to contain x. In the optimized program the assignment y := g
appearing in both branches is moved to the start of the program in order to save
code. The reasoning is that g can safely be evaluated before the branching, as
it is evaluated on each path anyhow (in traditional parlance one says g is ‘very
busy’ or ‘downward safe’ at the initial node). Assume now that evaluation of e,
f and g can lead to different error outcomes, say g to an arithmetic overflow and
e, f to a division by zero. Then the left program produces a ‘division-by-zero’
outcome while the optimized right program produces an arithmetic overflow.
The reason is that the notion of downward safety, disregards the possibility of
errors.

In summary, many common optimizing transformations can replace certain
error outcomes by different regular and irregular outcomes. Some optimizations
can even introduce new errors into regularly terminating programs because they
compute intermediate values that are not computed by the original program.
Examples are strength reduction transformations and naive code motion trans-
formations that move loop-invariant pieces of code out of loops.

Should optimizations be banned from verified compilers for these reasons?
No, this would throw out the baby with the bath water in our opinion. Optimiza-
tions play a very important role in increasing the efficiency of program execution
and in many applications effects like the above can be tolerated. But the possible
effects should be precisely understood and documented. A user should thus be
enabled to judge which optimizations are permissible for his particular applica-
tion and to select just these (e.g. by means of compiler switches).

As a curiosity, we mention that common efficiency-improving compiler op-
tions can even lead to a translation of terminating programs into non-terminating
ones in rare cases. The Modula-2 loop for i := 0 to maxcard do . . ., for instance,

On Excusable and Inexcusable Failures 1113

P

yes

noyes

no

x := e

y := g y := g

x := f

b y := g

b

x := e

P

x := f

Original program Optimized program

Fig. 2. A code motion transformation.

no . . .yes

0 <= i <= maxcard

i:=0

i:=i+1

Fig. 3. Prototypical implementation of a for-loop.

obviously is terminating. A typical implementation is the following: i is initial-
ized with the value 0; each iteration starts with a check whether i is still in the
range 0 ≤ i ≤ maxcard; at the end of each iteration i is incremented. This is illus-
trated in Fig 3. Now suppose an implementation disregards arithmetic overflows
in order to increase the performance. Then the incrementation of i at the end of
the iteration i = maxcard effectively sets i to 0 due to the representation of num-
bers. It also sets the carry-flag but sadly this is ignored. Now the test whether i
is still in the range 0 ≤ i ≤ maxcard succeeds! Thus, this implementation of the
loop, which is actually found in practice, will not terminate in contrast to the
original program.

It should have become clear that there is no single universal notion of correct
translation but that different applications and translation schemes preserve a
different amount from the behavior of programs. For a specific translation scheme

1114 Markus Müller-Olm and Andreas Wolf

the set Σ ∪Ω of (regular and irregular) outcomes can be partitioned into three
sets:

– a set PO (‘preserved outcomes ’) of outcomes that has to be preserved liter-
ally;

– a set AO (‘accepted outcomes ’) of outcomes that may arise as result of target
program executions even if not present in the source program’s semantics
(e.g. ‘stack-overflow’ or ‘out-of-memory’); and

– a set CO (‘chaotic outcomes ’) of outcomes of source programs that might
lead to arbitrary outcomes in the target program (e.g. arithmetic errors in
connection with dead code elimination).

Typically the regular outcomes belong to the set PO but also irregular outcomes
may, e.g. ’division-by-zero’, for debugging purposes.

Now suppose given a partition of Σ ∪ Ω as described above. We call π′ a
correct implementation of π w.r.t. preserved outcomes PO, accepted outcomes
AO, and chaotic outcomes CO if for all (s, σ) ∈ R(π′) (at least) one of the
following is valid:

(a) σ is a preserved outcome of a computation of π from s, i.e. σ ∈ PO ∧ (s, σ) ∈
R(π),

(b) σ is an accepted outcome, i.e. σ ∈ AO , or
(c) there is a chaotic outcome of a source program computation from s, i.e.
∃σ′ ∈ CO : (s, σ′) ∈ R(π).

There are various ways of characterizing this property as an inclusion between
relations derived from R(π) and R(π′). One of them is the following that we are
going to take as a definition.

Definition 1 (Correct implementation). π′ implements π w.r.t. preserved
outcomes PO, accepted outcomes AO, and chaotic outcomes CO if and only if

R(π′) ⊆ R(π) ∪ {(s, σ) | σ ∈ AO ∨ ∃σ′ ∈ CO : (s, σ′) ∈ R(π)} .

Often divergence and runtime-errors are identified in simplified semantic treat-
ments of programming languages. This has proved very helpful in establishing
a rich and useful theory of program verification [2, 7, 13] and program refine-
ment [3, 17, 18].2 However, this idealization does not lead to a realistic notion of
correct implementation: on the one hand, the single irregular outcome must be
treated as chaotic, in order to accommodate the effect of optimizations like dead
2 We should mention that Apt and Olderog [2] do consider different irregular outcomes

of programs: divergence, failure, and deadlock. In their proof theories divergence and
failure are identified, but in Chaps. 7 and 8 they introduce a notion of weak total
correctness that reflects the distinction between divergence and deadlock. Weak total
correctness is an instance of our relative correctness notion (Sect. 4). It is introduced
in [2] in order to justify proof rules for total correctness and is said to be not of
interest in itself. In contrast, we emphasize here that relative correctness is indeed
often of independent interest.

On Excusable and Inexcusable Failures 1115

code elimination, because dead code elimination can change the single irregular
outcome (which could represent e.g. ‘div-by-zero’ in this case) to an arbitrary
outcome. On the other hand, it must be treated as acceptable, as it could also
report on a limitation of the execution mechanisms at hand (e.g. standing for
‘out-of-memory’).

We propose more fine-grained notions of program correctness and refinement
intended to allow an adequate treatment of these more practical questions, while
preserving as much as possible from the idealized setup. Before doing so let us
have a more careful look at the classical treatment of program correctness and the
notions of translation correctness to which they give rise, because our proposal
is modeled on this.

3 The Classical Setup

3.1 Program Verification and Predicate Transformers

In Hoare-style program verification one is interested in proving programs par-
tially or totally correct w.r.t. pre- and postconditions on the set of regular states.
For the purpose of this paper a predicate is identified with the set of states for
which it is valid. Thus, the set of predicates is Pred = 2Σ; we range over Pred
by the letters φ and ψ. Pred , ordered by set-inclusion ⊆, is a standard exam-
ple of a complete Boolean lattice. The meet and join operations are ∩ and ∪;
they represent conjunction and disjunction respectively, ¬φ is the complement
of predicate φ, i.e. ¬φ = Σ − φ, the strongest (the smallest) and the weakest
(the greatest) predicate w.r.t. this order is ∅ and Σ. We denote the latter also
by false and true.

The classic literature on Hoare-style program verification and the refinement
calculus identifies, for the sake of simplicity, divergence and failure outcomes or
fully ignores failures. In our setting this amounts to assuming that Ω contains
just one symbol, ⊥, which represents any kind of irregular outcomes, divergence
and failures, R(π) is then a subset of Σ × (Σ ∪ {⊥}). For the purpose of the
later discussion it is, however, more convenient to stay with the distinction be-
tween different irregular outcomes in the relational semantics. The definitions of
total and partial correctness below treat all irregular outcomes as if they were
identified and can thus equivalently be read in both models.

Partial correctness of a program π w.r.t. a precondition φ and postcondition
ψ, denoted by {φ}π{ψ} can be defined as follows.

{φ}π{ψ} iff ∀s, σ : s ∈ φ ∧ (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪Ω .

Intuitively, π is partially correct if each regularly terminating computation from
a state in φ results in a state in ψ. Note, how the restriction to regular results
is expressed by allowing all outcomes in Ω.

Total correctness of π w.r.t. precondition φ and postcondition ψ, denoted
by [φ]π[ψ] additionally requires that there are no irregular computations from
states in φ. This can be expressed nicely by not allowing outcomes in Ω.

1116 Markus Müller-Olm and Andreas Wolf

[φ]π[ψ] iff ∀s, σ : s ∈ φ ∧ (s, σ) ∈ R(π) ⇒ σ ∈ ψ .

An elegant way of expressing partial and total correctness is by means of pred-
icate transformers, i.e. mappings on the space of predicates. Dijkstra [8, 9] con-
siders two predicate transformers. The weakest liberal precondition transformer
wlp is suited to partial correctness and the weakest precondition transformer wp
to total correctness.

A few words on notation: it is convenient and customary in connection with
predicate transformers to denote function application by an infix dot, i.e. writing
f.x instead of the more familiar f(x). Moreover, we adopt the usual convention
that function application associates to the left, i.e. f.x.y means (f.x).y.

For a program π, both wlp.π and wp.π are of type 2Σ → 2Σ. As their name
suggests wlp.π.ψ (wp.π.ψ) is the weakest predicate φ satisfying the Hoare-triple
{φ}π{ψ} (resp. [φ]π[ψ]) (see (1) and (2) below).

Based on the relational semantics R(π) of a program π the predicate trans-
formers wlp.π and wp.π can be defined as follows.

wlp.π.ψ = {s ∈ Σ | ∀σ : (s, σ) ∈ R(π)⇒ σ ∈ ψ ∪Ω}
wp.π.ψ = {s ∈ Σ | ∀σ : (s, σ) ∈ R(π)⇒ σ ∈ ψ} .

Their relationship to partial and total correctness is captured by the following
equivalences, the proof of which is straightforward. These equivalences could also
serve as the definition of wlp and wp.

φ ⊆ wlp.π.ψ iff {φ}π{ψ} . (1)
φ ⊆ wp.π.ψ iff [φ]π[ψ] . (2)

wlp.π and wp.π provide abstractions of R(π) suited to partial and total cor-
rectness. Both carry less information than R(π). This can be seen from the fol-
lowing examples in which we use | to denote (demonic) nondeterministic choice.3

π
def.= x := e | while true do skip od

π′ def.= x := e

Here wlp.π equals wlp.π′ because the two programs yield the same result, if they
terminate. On the other hand, for

π
def.= x := 12 | while true do skip od

π′ def.= x := 42 | while true do skip od

wp.π equals wp.π′ because both programs may diverge. Obviously, in both ex-
amples R(π) and R(π′) differ.

It is interesting to note that in the traditional model where |Ω| = 1, R(π)
can be reconstructed from wp.π together with wlp.π. More specifically,

R(π) = {(s, s′) | s 6∈ wlp.π.(Σ − {s′})}
∪ {(s,⊥) | s 6∈ wp.π.true} .

3 Semantics of | is characterized by the identity R(π | π′) = R(π) ∪R(π′).

On Excusable and Inexcusable Failures 1117

This is no longer true if |Ω| > 1, as, intuitively speaking, the information about
the different causes of failures is not recorded in the predicate transformers.

3.2 Implementation Correctness

There are three natural ways to approach translation correctness. First, one can
focus on properties that transfer from source to target programs. This point of
view is particularly adequate if one is interested mainly in program proving.
Second, one might focus on the outcomes produced by the source and target
program, if one has a particular interest in actually interpreting results of pro-
gram execution. Finally, one might look for a formulation in terms of refinement.
The latter is of particular importance when proving correctness of translations.
Fortunately, there are natural notions of implementation correctness that ac-
commodate all three points of view as we will see in a moment.

The idea of the property-oriented point of view is to consider a program π′ a
correct implementation of a program π if validity of all properties from a certain
class of interest transfers from π to π′. Two natural notions of this kind are
preservation of partial and total correctness.

Definition 2 (Preservation of partial and total correctness).

1. A program π′ implements π w.r.t. preservation of partial correctness (PPC)
if the following holds: ∀φ, ψ : {φ}π{ψ} ⇒ {φ}π′{ψ} .

2. π′ implements π w.r.t. preservation of total correctness (PTC) if the follow-
ing holds: ∀φ, ψ : [φ]π[ψ]⇒ [φ]π′[ψ] .

Note that, while total correctness implies partial correctness, the correspond-
ing preservation properties are unrelated. Neither does PPC imply PTC nor vice
versa.

If one concentrates on outcomes one wants to know which outcomes of the
source program can result in which outcomes of the target program. This point
of view was taken in Sect. 2 and we resort in the theorem below to the notion
of correct implementation introduced in Def. 1. The theorem shows that we can
interpret PPC and PTC also in terms of outcomes in a natural way.

Theorem 3 (Outcome interpretation of PPC and PTC).

1. π′ implements π w.r.t. PPC iff π′ implements π w.r.t. preserved outcomes
Σ, accepted outcomes Ω, and chaotic outcomes ∅.

2. π′ implements π w.r.t. PTC iff π′ implements π w.r.t. preserved outcomes
Σ, accepted outcomes ∅, and chaotic outcomes Ω.

Hence for PPC we have to choose AO = Ω and CO = ∅ and for PTC, just
to the opposite, AO = ∅ and CO = Ω; in both cases we take PO = Σ.

The goal of the refinement-oriented view is to devise a semantic model of pro-
grams that accommodates reasoning about implementation relationships. More
specifically, one is looking for an interpretation of programs in a semantic space

1118 Markus Müller-Olm and Andreas Wolf

that is equipped with an ordering; π′ should implement π iff its interpretation
in the model is related to π’s by the order.

For PPC and PTC adequate interpretations are well-known: they are given
by wlp and wp. The semantic space is the set of monotonic predicate transformers
2Σ → 2Σ . It is ordered by the pointwise extensions ≤ of the inclusion relation
on 2Σ, which is defined by f ≤ g iff ∀ψ : f.ψ ⊆ g.ψ: a predicate transformer g
is considered a refinement of another predicate transformer f if it establishes all
postconditions from weaker preconditions. Restricting attention to monotonic
predicate transformers (i.e. those transformers for which f.ψ ⊆ f.φ if ψ ⊆ φ)
makes functional composition monotonic.

As indicated, refinement in the space of predicate transformers corresponds
to PPC and PTC.

Theorem 4 (Refinement characterization of PPC and PTC).

1. π′ implements π w.r.t. PPC iff wlp.π ≤ wlp.π′.
2. π′ implements π w.r.t. PTC iff wp.π ≤ wp.π′.

In the traditional setup, where |Ω| = 1, the idealized notion of implementa-
tion correctness R(π′) ⊆ R(π) can be regained from wlp and wp. In this case,

R(π′) ⊆ R(π) iff wlp.π ≤ wlp.π′ ∧ wp.π ≤ wp.π′ . (3)

Again, this is no longer true if |Ω| > 1.
It follows from (3) that for the translations discussed in Sect. 2 refinement

w.r.t. either PPC or PTC does not hold, as they did not satisfy R(π′) ⊆ R(π).
Thus, many practical compilers are either incorrect in the sense of PPC or PTC.
A little further reflection unveils that the situation is as worse as it could be:
reported limitations of the execution mechanism prohibit PTC, optimizations
prohibit PPC. Consequently, most practical compilers preserve neither partial
nor total correctness!

However, not the compilers are to be blamed for this sad state of affairs
but the restricted selectivity of the notions of partial and total correctness, par-
ticularly their indiscriminate identification of any kind of run-time errors and
divergence. We, therefore, establish a finer framework in the next section.

4 The Relativized Setup

4.1 Relative Correctness and Relativized Predicate Transformers

For evaluating partial correctness assertions all irregular outcomes of programs
are disregarded; in contrast in total correctness assertions all irregular outcomes
are taken as disproof. The correctness concept we are going to elaborate now
is built around the idea of parameterizing assertions w.r.t. the set of accepted
outcomes. The irregular outcomes that are not accepted are taken as disproof.

On Excusable and Inexcusable Failures 1119

Suppose given a set A ⊆ Ω of outcomes to be accepted. We introduce the
notion of a program π being relatively correct w.r.t. a precondition φ, a postcon-
dition ψ, and the set A of accepted outcomes, denoted by 〈φ〉π〈ψ〉A for short. It
is defined as follows:

〈φ〉π〈ψ〉A iff ∀s, σ : s ∈ φ ∧ (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪A .

Intuitively, a program π is relatively correct if the following holds.

Whenever π is started in a state contained in φ we can be sure that
either π terminates regularly in a state contained in ψ, irregularly with
a failure in A, or, if ∞ ∈ A, diverges.

We can also define a corresponding predicate transformer along the lines of
wlp and wp. It is called the weakest relativized precondition transformer wrpA.π :
Pred → Pred . 4

wrpA.π.ψ = {s ∈ Σ | ∀σ : (s, σ) ∈ R(π)⇒ σ ∈ ψ ∪A} .

Again, we have the following equivalence, that shows that wrpA.π indeed deserves
the name weakest relativized precondition transformer.

φ ⊆ wrpA.π.ψ iff 〈φ〉π〈ψ〉A .

These relativized notions generalize the classical ones. It is easy to see that
partial and total correctness are just the border cases of relative correctness for
the sets A = Ω and A = ∅. Similarly we have for wlp and wp:

wlp.π = wrpΩ.π and wp.π = wrp∅.π ,

so wp and wlp are just the extreme relativized predicate transformers.

4.2 Implementation Correctness

Each set A ⊆ Ω now gives rise to a notion of translation correctness relatively
to A. As in the classic case it can be characterized in terms of preservation,
refinement, and outcomes. More precisely, we have the following theorem, where
we again refer to the notion introduced in Def. 1.

Theorem 5 (Preservation of relative correctness). For all programs π,
π′ and accepted sets of outcomes A ⊆ Ω, the following three conditions are
equivalent.

4 If we would allow error outcomes in postconditions, we could have defined
wrpA.π.ψ = wp.π.(ψ ∪ A). But this would destroy the homogeneity of pre- and
postconditions, and lead to a more complicated definition of sequential composition
of predicate transformers.

1120 Markus Müller-Olm and Andreas Wolf

1. (Preservation) ∀φ, ψ : 〈φ〉π〈ψ〉A ⇒ 〈φ〉π′〈ψ〉A.
2. (Refinement) wrpA.π ≤ wrpA.π

′.
3. (Outcomes) π′ is a correct implementation of π w.r.t. preserved outcomes

Σ, accepted outcomes A, and chaotic outcomes Ω −A.

The intuitive interpretation of these conditions is as follows. There is no
restriction for the behavior of the target program from initial states for which
the source program has a failure outcome inΩ−A; otherwise, we don’t care about
the accepted outcomes in A, and every other outcome of the target program must
also be possible for the source program.

This looks fine, but it is not as general as the aspired notion of correct
implementation from Def. 1, where we assumed that the set of outcomes Σ ∪Ω
is partitioned into preserved, accepted and chaotic outcomes PO, AO and CO.
From the definition of wrp it is clear that each element of the set A that we
carry in wrp’s index is just accepted, not preserved; and the outcomes in Ω −A
are treated chaotically. What about those failure outcomes we really want to
preserve? A compiler user, for instance, might require that an observed outcome
‘div-by-zero’ indeed is caused by a division by zero on the source level. Roughly
speaking we have to treat those outcomes twice, firstly as accepted, and secondly
as chaotic. If we can prove refinement for each of these choices, we have proved
that it is preserved. More formally, we have the following result.

Theorem 6. π′ implements π w.r.t. preserved outcomes PO, accepted outcomes
AO, and chaotic outcomes CO iff, for all A with AO ⊆ A ⊆ AO ∪ (PO ∩ Ω),
wrpA.π ≤ wrpA.π

′.

Thus, although the notion of correct implementation from Def. 1 is not ac-
commodated by refinement reasoning w.r.t. a single fixed set A, it can still be
established by refinement arguments that are appropriately parameterized in A.

As a corollary to Theorem 6, the relational inclusion R(π′) ⊆ R(π) can also
be established with wrp-based reasoning. To see this, just choose PO = Σ∪Ω and
AO = CO = ∅ and observe that the notion of correctness of implementations
degenerates to the relational inclusion R(π′) ⊆ R(π) with this choice.

Corollary 7. R(π′) ⊆ R(π) iff wrpA.π ≤ wrpA.π
′ for all A ⊆ Ω.

Relativized refinement enables us hence to be as fine-grained w.r.t. outcomes
as on the relational level, if desired.

5 Properties of wrp

In the next lemma we collect some basic properties enjoyed by the family of
wrp-transformers. Validity of 4, 7, and 8 depends on the program relation R(π)
being total.

Lemma 8. Suppose π is a program, ψ a predicate, and A,B ⊆ Ω are sets of
irregular outcomes.

On Excusable and Inexcusable Failures 1121

1. wrpA∩B.π = wrpA.π ∧ wrpB.π .
2. wrpA.π ≤ wrpB.π, if A ⊆ B .
3. wrpA.π.ψ = wrpB.π.ψ ∩ wrpA.π.true, if A ⊆ B .
4. wrp∅.π.false = false.
5. wrpA.π is positively conjunctive, i.e. distributes over every non-empty con-

junction of predicates.
6. wrpΩ.π is universally conjunctive, i.e. distributes over every, even the empty

conjunction of predicates.
7. wrpA.π.ψ ⊆ ¬(wrpΩ−A.π.¬ψ) .
8. wrpA.π.ψ = ¬(wrpΩ−A.π.¬ψ) iff π is deterministic.

Dijkstra and Scholten [9] discuss so-called healthiness conditions of wp and wlp.
In our notation they look as follows.

– wp.π.ψ = wlp.π.ψ ∩ wp.π.true (Pairing condition).
– wp.π.false = false (Excluded miracle).
– wp is positively conjunctive.
– wlp is universally conjunctive.

In the sense of [9] these properties have to be satisfied by a pair of predicate
transformers to model an adequate semantics of implementable programs. The
items 3–6 of Lemma 8 show how the healthiness conditions generalize to the fam-
ily of wrp-transformers. Note that in our framework they are derived properties
and not postulates as in [9], due to our point of view that predicate transformer
semantics is derived from an underlying, more concrete operationally-based se-
mantics. Property 8 generalizes the equivalence

– wp.π.ψ = ¬wlp.π.¬ψ iff π is deterministic

that is used as the definition of deterministic programs in [9].

6 Programming Operators

In this section we discuss briefly the wrp characterizations of typical commands
of an imperative programming language. More specifically, we consider assign-
ments x := e, conditionals if b then π1 else π2, while-loops while b do π od, and
sequential composition. We would like to show that wrp enjoys similar, and only
slightly more complicated characterizations as the classic predicate transformers.
Reasoning in terms of wrp seems obviously to be more tractable than reasoning
in terms of an operational or relational semantics.

We suppose given three additional sets of syntactic objects: variables x, ex-
pressions e and Boolean expressions b. The set of variables is denoted by Var .
We assume interpretation functions for expressions and Boolean expressions
E(e) : Σ → (Val ∪ Ω) and B(b) : Σ → (B ∪ Ω). Here Val is the value set
of variables; we range over Val by the letter v. The set B = {tt,ff} represents
the truth values. For the purpose of this section, states are valuations of vari-
ables, i.e. Σ = (Var → Val). As usual s[x 7→ v] denotes the substitution of value

1122 Markus Müller-Olm and Andreas Wolf

v for the variable x in state s. Intuitively, results E(e)(s),B(b)(s) ∈ Ω represent
failures during evaluation of (Boolean) expressions. Such failures are assumed to
propagate to the statement level.

For simplicity we identify syntax and semantics when writing concrete pred-
icates. In order to deal with partially defined expressions we assume special
types of basic predicates: def(e) and inA(e) for expressions e and A ⊆ Ω, and
def(b), inA(b), b = tt, and b = ff for Boolean expressions b. They are interpreted
as follows: def(e) def.= {s | E(e)(s) ∈ Val}, inA(e) def.= {s | E(e)(s) ∈ A},
b = tt

def.= {s | B(b)(s) = tt}. The interpretation of the remaining predicates is
obvious. Note that Boolean expressions can have ‘undefined’ failure results while
predicates cannot.

Let us first consider assignments, conditionals, and the sequential composi-
tion operator. Their relational semantics reads as follows, where we rely on the
convention (from Sect. 2) that s ranges over Σ and ω over Ω.

R(x := e) = {(s, s[x 7→ v]) | E(e)(s) = v}
∪ {(s, ω) | E(e)(s) = ω}

R(if b then π1 else π2) = {(s, σ) | B(b)(s) = tt ∧ (s, σ) ∈ R(π1)}
∪ {(s, σ) | B(b)(s) = ff ∧ (s, σ) ∈ R(π2)}
∪ {(s, ω) | B(b)(s) = ω}

R(π1;π2) = {(s, σ) | ∃s′ ∈ Σ : (s, s′) ∈ R(π1) ∧ (s′, σ) ∈ R(π2)}
∪ {(s, ω) | (s, ω) ∈ R(π1)}

Note how the last set in the clauses for assignments and conditionals expresses
that failures propagate from the expression level to the statement level.

From these relational definitions the following characterizations for the weak-
est relativized predicate transformer can be derived. The proofs are easy but a
bit tedious and hence omitted.

wrpA.x := e.ψ = inA(e) ∨ (def(e) ∧ ψ[e/x])
wrpA.if b then π1 else π2.ψ = inA(b) ∨ (b= tt ∧ wrpA.π1.ψ) ∨ (b=ff ∧ wrpA.π2.ψ)

wrpA.π1;π2.ψ = wrpA.π1.(wrpA.π2.ψ)

Note how the disjuncts inA(e) and inA(b) handle the case of an acceptable failure.
As for wp and wlp, sequential composition corresponds to functional composition
of predicate transformers.

Loop. The situation gets more interesting for loops. The semantics of a while loop
while b do π od can be captured in an intuitive way in terms of the following
notion of a (b, π)-path [21]: A (b, π)-path is a finite or infinite sequence p =
s1, s2, . . . of states in Σ, such that the following conditions are valid.

– Progression: each state in p, except for the last one in the finite case, satisfies
b, i.e. B(b)(si) = tt for all 1 ≤ i < |p|, and

– Succession: successive state are related by R(π), i.e. (si, si+1) ∈ R(π) for all
1 ≤ i < |p|.

On Excusable and Inexcusable Failures 1123

Here the length |p| of (b, π)-path is the number of states in p in the finite case
and ∞ in the infinite case. A finite (b, π)-path is said to go from s to s′ if s and
s′ are its first and last state respectively. Intuitively, the states in a (b, π)-path
represent the intermediate states at the beginning of the loop in a prefix of a
computation with |p| − 1 iterations of the body.

The relational semantics of a while loop while b do π od can now be defined
as follows.

R(while b do π od) =
{(s, s′) | there is a finite (b, π)-path from s to s′ with B(b)(s′) = ff}
∪ {(s, ω) | there is a finite (b, π)-path from s to s′ with B(b)(s′) = ω}
∪ {(s, ω) | there is a finite (b, π)-path from s to s′ with B(b)(s′) = tt

and (s′, ω) ∈ R(π)}
∪ {(s,∞) | there is an infinite (b, π)-path starting in s}

The first set describes the case of regular termination; the other three sets are
concerned with the different causes for failures of loops. First, evaluation of the
guard could fail; second, the evaluation of the body could fail; and, finally, the
loop may diverge.

wrpA.while b do π can be characterized as a (semantic) fixpoint of the equation

X = if b then π;X else skip od .

Not surprisingly, the cases whether divergence is an accepted outcome or not,
differ substantially. We have to take the greatest fixpoint w.r.t. ≤, if ∞ ∈ A,
and the smallest fixpoint if ∞ /∈ A.

Alternatively, the relativized predicate transformer of a loop can be charac-
terized by a recurrence on the predicate level. This generalizes and justifies the
well-known postulates from [9].

Theorem 9. Suppose A ⊆ Ω and ψ ∈ Pred. Then wrpA.while b do π.ψ is the
greatest (weakest) solution of the predicate equation

φ = inA(b) ∨ (b = tt ∧ wrpA.π.φ) ∨ (b = ff ∧ ψ)

if ∞ ∈ A, and the smallest (strongest) solution otherwise.

Due to lack of space, we cannot give the full proof. Let us for explanation just
mention that, if we accept diverging loops, i.e. ∞ ∈ A, then there are more
initial states from which all outgoing computations either satisfy postcondition
ψ or have an outcome contained in A. Thus, the solution must have a greater
cardinality in this case. This makes it plausible that indeed the weakest solution
is the right one.

7 An Application

In order to show the utility of the relativized setup, let us recall one of our
examples from Sect. 2. We are going to study a question of the kind ‘Is a given

1124 Markus Müller-Olm and Andreas Wolf

transformation (translation) permitted w.r.t. some set of accepted outcomes?’.
We consider a simplified version of the dead-code elimination example (Fig. 1).
Suppose π and π′ are the following programs:

π
def.= x := e ; x := f ; P π′ def.= x := f ; P

The expression f is assumed not to contain x; intuitively, it should thus safely be
possible to remove x := e from π as the value of x is over-written immediately. Let
us see whether we can justify the transformation from π to π′ with the relativized
predicate transformers. Note that π can be written in the form x := e ; π′.

Using the identities from the previous section we obtain the following.

wrpA.π.ψ = inA(e) ∨ (def(e) ∧ (wrp.π′.ψ)[e/x])
wrpA.π

′.ψ = inA(f) ∨ (def(f) ∧ (wrp.P.ψ)[f/x])

From the assumption that f does not contain x it follows by standard logical
arguments that the substitution [e/x] has no effect when applied to wrpA.π

′.ψ.
Thus, the identity for wrpA.π.ψ can be simplified.

wrpA.π.ψ = inA(e) ∨ (def(e) ∧ (wrp.π′.ψ))

Now, deciding whether π′ implements π amounts to checking whether wrpA.π.ψ
implies wrpA.π

′.ψ for all predicates ψ. This is certainly the case if inA(e) is
equivalent to false, i.e. does not hold for any state. Indeed in the absence of
any further knowledge about e, f and P this is the only safe statement we can
make.

What does this mean intuitively? The transformation from π to π′ is per-
missible, if we can be sure that none of the failures potentially produced by e
belong to the accepted failures in A. This is in particular the case if A does
not contain any arithmetic error, i.e. none of the errors produced by arithmetic
expressions.5 For a more far-reaching conclusion we would need more specific
knowledge about e. For example, we might conclude from the fact that e does
not contain a division that A might contain the ‘div-by-zero’ failure.

It is interesting to discuss also the border cases for this example. In the PTC-
case we have A = ∅; then inA(e) is equivalent to false for trivial reasons. Thus,
π′ indeed implements π w.r.t. PTC. In the PPC-case, on the other hand we have
A = Ω. Then inA(e) might be valid for some state if evaluation of e might fail.
Thus, the transformation might be invalid in the sense of PPC, depending on
the shape of e. So, the formal framework confirms the informal reasoning from
Sect. 2.

A similar analysis might be performed for the other examples from that
section.

5 Formally, we call an error ω an arithmetic error if there is an expression e and a
state s such that E(e)(s) = ω.

On Excusable and Inexcusable Failures 1125

8 Conclusion

In this paper we suggested a semantic framework for performing compiler cor-
rectness or refinement proofs in scenarios where optimizations and finiteness of
machines are allowed for. The proposed notions of weakest relativized precon-
ditions and the corresponding predicate transformers permit to abandon the
irregular outcomes from the scene in which we actually are working. We have
to take them into account only when interpreting the programs in question. Af-
terwards the actual reasoning can take place in the familiar complete Boolean
lattices of predicates and predicate transformers. Nevertheless the obtained cor-
rectness results can immediately be interpreted in terms of the more concrete
objects of our operational intuition. We see our work as a step towards bridging
a gap between elegant theory and practical needs.

This paper draws its motivation partly from work performed in the Verifix
project [10] funded by the German DFG (Deutsche Forschungsgemeinschaft),
which aims at a fully verified and correctly implemented compiler. Its roots also
lie in the ProCoS project [5] in which we pursued a rather comprehensive com-
piler proof [21] for a prototypic real-time programming language to Transputer
code. In that proof monotonic predicate transformers proved to provide a very
convenient space that facilitates achieving modularity in the correct construc-
tion of the compiling mapping. Modularity is a very important requirement for
such an undertaking as otherwise things might easily become unmanageable and
untrustworthy. wrp is intended to permit an elegant treatment of runtime errors
and finiteness of machines while staying in the familiar and well-studied realm
of predicates and predicate transformers. No new theory about predicate trans-
formers is necessary; wrp just provides a different interpretation of programs
than wlp and wp, but by objects of the same kind.

For simplicity we have assumed that source and target programs act on the
same state space. Of course this is an unrealistic assumption, from a practical
point of view. It is, however, a useful idealization if one is mainly interested
in considerations concerning control flow implementation. The more realistic
situation of different state spaces can be handled with data refinement techniques
and Galois connections. For more information on this topic and corresponding
references see [21].

Future work includes a more thorough study of wrp and its utility for compiler
correctness proofs. More specifically, we are currently investigating the use of wrp
for proving the correctness of the translation of nested parameterless procedures
to machines with bounded stacks.

Acknowledgments. We are grateful to our colleagues from the ProCoS and Verifix
project for many discussions that shaped our view of compiler correctness and
verification; a special thank goes to Hans Langmaack for encouraging us to write
this paper. The funny example of the MODULA 2 loop was communicated by
Gerhard Goos. We also thank Jens Knoop, Hans Langmaack, and an anonymous
referee of FM’99 for comments that helped to improve on a draft version.

1126 Markus Müller-Olm and Andreas Wolf

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[2] K.-R. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer-Verlag, 2nd edition, 1997.

[3] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer, 1998.

[4] E. Börger and I. Durdanović. Correctness of compiling Occam to transputer code.
The Computer Journal, 39(1), 1996.

[5] J. P. Bowen et al. A ProCoS II project description: ESPRIT Basic Research
project 7071. Bulletin of the EATCS, 50:128–137, June 1993.

[6] L. M. Chirica and D. F. Martin. Towards compiler implementation correctness
proofs. ACM Transactions on Programming Languages and Systems, 8(2):185–
214, April 1986.

[7] J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall,
1980.

[8] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[9] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Texts and Monographs in Computer Science. Springer-Verlag, 1990.

[10] W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. Henke, U. Hoffmann,
H. Langmaack, H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler correctness
and implementation verification: The Verifix approach. In P. Fritzson, editor,
Proc. Poster Session CC’96, pages 65 – 73, IDA Technical Report LiTH-IDA-R-
96-12, Linkøping, Sweden, 1996.

[11] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[12] J. D. Guttman, J. D. Ramsdell, and M. Wand. VLISP: A verified implementation
of Scheme. Lisp and Symbolic Computation, 8:5–32, 1995.

[13] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–583, 1969.

[14] C. A. R. Hoare, H. Jifeng, and A. Sampaio. Normal form approach to compiler
design. Acta Informatica, 30:701–739, 1993.

[15] H. Langmaack. Software engineering for certification of systems: Specification,
implementation, and compiler correctness (in German). Informationstechnik und
Technische Informatik, 39(3):41–47, 1997.

[16] J. S. Moore. Piton, A Mechanically Verified Assembly-Level Language. Kluwer
Academic Publishers, 1996.

[17] C. Morgan and T. Vickers, editors. On the Refinement Calculus. Springer-Verlag,
1994.

[18] J. M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9:287–306, 1987.

[19] P. D. Mosses. Action Semantics. Cambridge University Press, 1992.

[20] S. S. Muchnick. Advanced compiler design implementation. Morgan Kaufmann
Publishers, San Francisco, California, 1997.

[21] M. Müller-Olm. Modular Compiler Verification: A Refinement-Algebraic Ap-
proach Advocating Stepwise Abstraction, LNCS 1283. Springer-Verlag, 1997.

[22] T. S. Norvell. Machine code programs are predicates too. In D. Till, editor,
6th Refinement Workshop, Workshops in Computing. Springer-Verlag and British
Computer Society, 1994.

On Excusable and Inexcusable Failures 1127

[23] E. Pofahl. Methods used for inspecting safety relevant software. In W. J. Cullyer,
W. A. Halang, and B. J. Krämer, editors, High Integrity Programmable Electron-
ics, pages 13–14. Dagstuhl-Sem.-Rep. 107, 1995.

[24] S. Sippu and E. Soisalon-Soininen. Parsing Theory Vol. I. Springer-Verlag, 1988.
[25] W. M. Waite and G. Goos. Compiler Construction. Springer-Verlag, 1984.
[26] R. Wilhelm and D. Maurer. Übersetzerbau. Springer, 1992.

Interfacing Program Construction and

Verification

Richard Verhoeven? and Roland Backhouse

Department of Mathematics and Computing Science, Eindhoven University of
Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

{river,rolandb}@win.tue.nl

Abstract. Math∫pad is a document preparation system designed and
developed by the authors and oriented towards the calculational con-
struction of programs. PVS (Prototype Verification System) is a theo-
rem checker developed at SRI that has been extensively used for ver-
ifying software, in particular in safety-critical applications. This paper
describes how these two systems have been combined into one. We dis-
cuss the potential benefits of the combination seen from the viewpoint
of someone wanting to use formal methods for the construction of com-
puter programs, and we discuss the architecture of the combined system
for the benefit of anyone wanting to investigate combining the Math∫pad
system with other programming tools.

1 Introduction

Math∫pad [5] is a document preparation system designed and implemented by
the first author under the direction of the second author, initially with the help
of Olaf Weber. The almost-WYSIWYG nature and flexibility of Math∫pad means
that it can be used for on-screen mathematical calculation (in any formal sys-
tem) and, in particular, for the calculational construction and documentation
of programs, this being indeed the purpose for which the system was originally
designed. The system has now been stable for several years and has been used
to write a number of Ph.D. and M.Sc. theses and articles in the area of the
mathematics of program construction [3] and program specification using Z [8],
as well as the on-line documentation of the system itself [6].

PVS (Prototype Verification System) is a theorem checker developed at SRI
that has been extensively used for verifying software, in particular in safety-
critical applications. A description of PVS is given on the “What is PVS?” page
at SRI [17]:

PVS is a verification system: that is, a specification language inte-
grated with support tools and a theorem prover. It is intended to capture
the state-of-the-art in mechanized formal methods and to be sufficiently

? Research supported by the Dutch Organisation for Scientific Research (NWO) under
contract SION 612–14–001

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1128–1146, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Interfacing Program Construction and Verification 1129

rugged that it can be used for significant applications. PVS is a research
prototype: it evolves and improves as we develop or apply new capabili-
ties, and as the stress of real use exposes new requirements.

PVS is a large and complex system and it takes a long while to
learn to use it effectively. You should be prepared to invest six months
to become a moderately skilled user (less if you already know other
verification systems, more if you need to learn logic or unlearn Z)

Math∫pad and PVS have completely different design goals, stemming from
the fact that Math∫pad is intended to support the (formal) construction of com-
puter programs, whereas PVS is designed to support the verification of existing
programs. Thus Math∫pad supports the language of mathematics, in its full gener-
ality, whereas PVS constrains its user to its own ASCII-based teletype language.
But Math∫pad does not purport to validate or verify the user’s calculations in
any way, that being the responsibility of the user, whereas PVS does.

The design of Math∫pad reflects what we believe to be the highest priorities
in developing tools to support the use of formal methods for software design.
Above all, we concur wholeheartedly with Knuth’s view [12] that programming
is best viewed as a document preparation activity, the documentation serving
to integrate the many different aspects (requirements, specification, implemen-
tation, testing etc.) of a highly complex process. Furthermore the language of
programming specification is the language of mathematics — in other words,
precise and concise, but unconstrained and subject to continual evolution and
adaptation. Finally, the goal of formal methods is to ensure that programs are
correct by construction, i.e. that the discipline of programming guarantees (when
applied conscientiously and correctly) that the constructed program satisfies its
specification.

This is not to say that program verification is not important. Independent
checks on the validity of computer programs are vital to reliability guarantees
and quality control. Formal verification, model checking, extensive (manual) test-
ing and (independent) code walk-throughs all contribute in their own way, and
none should be neglected in the real world of software design, particularly where
safety is significant. But program verification can only be truly helpful if it
doesn’t require “unlearning” a mathematical specification language like Z in
favour of spending six months becoming a moderately skilled user of an awk-
ward teletype language.

This description of PVS might seem to be negative, but many interactive
theorem provers fit this description. For many theorem provers, the user interface
is not as important as the logical engine that does the reasoning. As a result,
users of theorem provers are often confronted with a system-specific specification
language, usually one-dimensional and based on ASCII. Since mathematics uses
special symbols and operators, a translation is needed from the mathematically
oriented language to the specification language, which reduces the readability
and can introduce errors. If the specification becomes unreadable, the user might
prefer the blackboard to do the calculations and consider using the theorem
prover to check it afterwards.

1130 Richard Verhoeven and Roland Backhouse

Some constructors of theorem provers have recognized that the interface
should be improved, as discussed during the User Interfaces for Theorem Provers
(UITP) workshops [7, 4]. To improve the readability, the interface should use
mathematical notations, as used, for example, during lectures on the blackboard.
A good example of such an improved interface is the Jape system [20], where
the user works with a familiar notation, albeit one-dimensional except for some
specific in-built notations. The next step is to integrate the theorems, proofs and
documentation into one single document, as in Mathematica [22] and Maple[16].

Now that we have successfully achieved our own initial goals, in the form
of a stable, well-tested (mathematical-)document preparation system, the time
is ripe to couple it to other tools, such as program verifiers. This document
describes how we have combined Math∫pad with PVS. We discuss the potential
benefits of the combination seen from the viewpoint of someone wanting to
use formal methods for the construction of computer programs, and we discuss
the architecture of the combined system for the benefit of anyone wanting to
investigate combining the Math∫pad system with other programming tools. The
system we have implemented runs under Unix and may be downloaded from
http://www.win.tue.nl/cs/wp/mathspad.

2 User Model

The recent Ph.D. thesis by Matteo Vaccari [21] is illustrative of what we ulti-
mately want to achieve. In his thesis, Vaccari discusses the calculational con-
struction of hardware circuits, where the first 6 chapters contain theoretical
discussions of relation algebra, circuits and regular language recognizers, while
the later chapters contain simulations of the circuits using Tangram [18] and a
machine verification of the theory using PVS [14]. Vaccari used Math∫pad in the
process of developing and documenting the “theoretical” designs in the initial
chapters, and then hand-coded these into the forms acceptable to Tangram and
PVS. (See Fig. 1.)

Mathòpad
(construction)

Tangram
(testing) (verification)

PVS

Fig. 1. The user model

The use of two additional and entirely independent systems to check the
“theoretical” designs gives a remarkable level of confidence in the reliability of

Interfacing Program Construction and Verification 1131

Vaccari’s designs that could not have been achieved by using any one of the
systems on its own. Tangram is a system comprising a language, a simulator
and a compiler developed at Philips Research Laboratories, Eindhoven, for the
design of asynchronous hardware circuits. Using it, Vaccari was able to test
that his designs functioned according to specification. In addition, Tangram has
features to analyse the efficiency of a circuit design (including area, speed and
energy consumption), and warns against unimplementable features. The PVS
system comprises its own, quite different, specification language based on higher-
order logic. Using it, Vaccari was able to formally verify all the lemmas and
theorems leading up to and including the final circuit design. Vaccari comments
in his thesis that neither systems showed up any errors in the calculated designs;
however, the use of Tangram gave practical feedback, whereas the use of PVS
obliged him to clarify certain elements in his calculations.

Independent checks are crucial to improving confidence, but there is one ma-
jor weakness in the procedure adopted by Vaccari: namely, the lack of any formal
link between the mathematical language in which his designs were constructed,
the language of Tangram in which his designs were tested, and the language of
PVS in which his designs were verified. This, however, is a weakness shared by
all validation systems (theorem provers, model checkers, etc.) that we know of
since such systems are invariably based on a language that is different to the
actual implementation language used by “real” programmers. Practical reality
compounds the problems drastically: since systems are subject to continual mod-
ification and evolution, it is almost inevitably the case that what is verified (or
even tested) is not what is executed.

We believe that the use of a system like Math∫pad can make a substantial
contribution to overcoming this weakness. Math∫pad is a structure editor — the
user of Math∫pad manipulates, in fact, an abstract structure which is viewed on-
screen as a mathematical expression but which can also be viewed as a Tangram
program or as a collection of theorems and proofs in the PVS system.

Of course, matters are not quite as simple as we have just sketched. The
process of viewing an abstract structure on screen involves, by design, a very
simple transformation of the structure into display events, whereas the process
of transforming the structure into a Tangram program is much less simple, and
the process of converting it into a collection of PVS theorems and proofs – the
topic of this paper – is far from trivial. But this is essentially what Vaccari did in
his thesis, mostly by hand but also with the aid of a number of automated tools.
Our goal in developing the interface with the PVS system was to automate this
process as much as possible.

A tool like Math∫pad has the potential to be useful as an interface for several
backend engines, such as symbolic computation systems and theorem provers.
Many of those systems have a teletype interface and the mathematical content
is often difficult to read and written in an unfamiliar syntax. Furthermore, each
system uses its own syntax, which makes it virtually impossible to switch from
one system to another. In Math∫pad, the user works with the familiar syntax,
while the generated output is less important. As it is possible to generate output

1132 Richard Verhoeven and Roland Backhouse

in another markup language, it is not too difficult to generate the input that
is needed for a particular backend engine. For a normal user, Math∫pad should
hide all the knowledge that is needed to use the backend engine and translate
the input and output of the backend engine to the syntax familiar to the user.
For an expert user, the connection with the backend engine should be easy to
construct and maintain.

Since there are many possible backend engines with their own markup lan-
guages, the connection between Math∫pad and a backend engine should be as
generic as possible. A connection with one particular backend engine would not
be too difficult to construct and Math∫pad could be tuned for that backend en-
gine. However, if a connection with a different backend engine is needed, the same
work has to be done all over again. Therefore, the core Math∫pad system does
not contain specific knowledge about one particular backend, but it provides the
functionality to add that knowledge.

In the following sections, the connection we have made between Math∫pad
and the PVS system is described. The PVS system was chosen because the
Math∫pad documents with human readable proofs created by Vaccari and their
PVS versions were available to us, thus providing a substantial test-base for our
ideas. Furthermore, the PVS system is a non-trivial system and was likely to
expose problems of a general nature when connecting Math∫pad to other systems.

3 An Example

A simple example will serve to illustrate the difference between mathematical
calculation and PVS-style verification.

3.1 Mathematical Calculation

The example, in the popular Feijen style of proof presentation [11], in Fig. 2 is
taken from Vaccari’s thesis [21]. Figure 3 shows the example as the user sees it
in the Math∫pad editor.

In the example, a law is given about map and fold , together with a proof
that the law is correct. The proof, although very simple, illustrates well the
advantages of good, clear mathematical notation.

Consider the calculation introduced by the words “For n+1 we have”. Note,
first, the invisible use of the associativity of composition in the first two steps1.
In the first step foldn+1.R is replaced by R◦ι×foldn.R, and mapn+1.S is replaced
by S×mapn.S. The combined effect is to replace the top line in the calculation
by

(R◦ι×foldn.R)◦S×mapn.S

where the parentheses indicate the grouping resulting from the two replacements.
Note now that the second step groups the subterms differently. In the second

1 Here multiplication has precedence over composition, denoted by a small circle. The
meaning of the operators is not relevant to the current discussion.

Interfacing Program Construction and Verification 1133

A law about map and fold is the following: given R and S such that

R ◦ S×S = S ◦ R

then
foldn.R ◦ mapn.S = S ◦ foldn.R

The proof is by induction on n; for n = 1 it is trivially true. For n + 1 we have

foldn+1.R ◦ mapn+1.S

= { definitions }
R ◦ ι×foldn.R ◦ S×mapn.S

= { fusion }
R ◦ S×(foldn.R ◦ mapn.S)

= { induction hypothesis }
R ◦ S×(S ◦ foldn.R)

= { proviso: R ◦ S×S = S ◦ R; fusion }
S ◦ R ◦ ι×foldn.R

= { definition }
S ◦ foldn+1.R

Fig. 2. The formatted example

step the subterms ι × foldn.R and S × mapn.S are “fused” together to form the
subterm S×(S ◦ foldn.R ◦ mapn.S). That is, the associativity of composition
has been applied implicitly between the first and second steps transforming the
expression displayed above to

R ◦ (ι×foldn.R ◦ S×mapn.S)

Such uses of associativity occur very frequently in calculations and, as here, a
practised scientist would not make its use explicit. (In fact, another invisible step
in the proof involves exploiting the fact that the symbol ι denotes the identity
of composition.)

A second point to note about this proof is that “fusion” appears twice in the
hints (the remarks between curly bracktes). Both hints refer to the same law,
but the law is used in different directions in the two instances (once from left to
right and once from right to left).

A final point about this little calculation is the non-explicit use of the tran-
sitivity of equality. What is proved is that the top line

foldn+1.R ◦ mapn+1.S

1134 Richard Verhoeven and Roland Backhouse

Fig. 3. The example as it appears in Math∫pad (as screendump)

is equal to the bottom line
S ◦ foldn+1.R

but this is not stated explicitly since it is immediately clear from the structure
and layout of the proof.

3.2 PVS Verification

Although the law and the proof are given in an informal manner, the manual
translation to PVS is straightforward, as is shown in Fig. 4.

The translation may indeed be easy to carry out by hand, but the result is
complex, is far from being readable and does not come anywhere near to the way
that human beings wish to see proofs presented. The statement of the theorem
is readable but this is misleading: the o and ∗ operators are overloaded. Since
you can not define new binary operators in PVS and the number of operators
that can be overloaded is small, it is very likely that the PVS specification will
become unreadable, as binary operators have to be replaced by functions with
two arguments. Furthermore, the precedence of the overloaded operators can not
be changed, which leads to confusion if another precedence is assumed. In the
example, the precedence of the o and ∗ operators is different in the PVS version,
which decreases the readability.

Another factor that contributes to the unreadability is the requirement to be
explicit about the use of the identity of composition. The line with the comment

Interfacing Program Construction and Verification 1135

The PVS definition:

fold_map: THEOREM R o (S*S) = S o R

IMPLIES fold(n,R) o map(n,S) = S o fold(n,R)

The PVS proof script:

(induct "n" 1) %induction

1 (grind) %basis: trivial

(rewrite "id0")

(rewrite "id1")

2 (skolem!) (ground) %step

(skolem!) (ground)

(expand "fold" :if-simplifies t) %definition

(expand "map" :if-simplifies t) %definition

(assoc-rewrite "fusion" :dir RL) %fusion lemma

(inst?) (ground) %induction hypothesis

(replace*)

(rewrite "id1") %remove unit of composition

(rewrite "id0" 1 ("R" "S!1") 1 RL) %add unit of composition

(assoc-rewrite "fusion") %fusion lemma

(rewrite "id0") %remove unit of composition

(replace*) %proviso

(rewrite "comp_assoc") %associativity of composition

Fig. 4. The PVS example

“add unit of composition”, for example, involves a complex “path expression”
indicating to which subterm the rule is applied, in a manner akin to the way
that paths through a directory structure had to be typed in before the existence
of pointing devices.

But most importantly, the proof script as shown in the example is but a very
small part of what the user sees while the proof is being built. After each step in
the proof script, PVS will display the intermediate results and the current goal,
which leads to several pages of formulae in the highly unreadable PVS-speak! A
straightforward proof has thus been turned into an intellectual feat!

4 Building the Interface

4.1 Communication with PVS

From a user interface point of view, PVS is an extension of Emacs, which con-
nects the proof engine to the Emacs interface and the Tcl toolkit. The user can
edit files containing theorems and use the proof engine to construct the proof

1136 Richard Verhoeven and Roland Backhouse

interactively. Since the proof engine is basically a lisp interpreter with state in-
formation, the user interface of the engine is hidden from the user by a collection
of pull-down menus in Emacs. With these menus, the user can perform all the
actions that might be needed to manipulate files, theorems, lemmas and proofs.
However, to construct a PVS proof, the user has to enter plain lisp commands
to apply tactics to a goal. To allow some proof planning, an interface with a Tcl
program is available to keep track of the subgoals.

Since PVS is a closed system and cannot be modified, the available PVS in-
terface had to be used. The first problem was the existing Emacs interface, which
complicates the communication with PVS. Luckily, the PVS system consists of
a core system connected to Emacs with a collection of Emacs lisp files, as shown
in Fig. 5. Emacs contains a lisp interpreter which is used to load the lisp files
for the PVS communication. These configuration files extend Emacs with new
functions and menus to provide a PVS specific interface. With these additional
functions, Emacs is able to communicate with the PVS core system, using its
standard input and output.

PVS core
system

load

Emacs

Lisp interpreter

communication
lisp files for PVS

output

extend

input

Fig. 5. The PVS structure

By using the PVS core system directly, the communication is simplified and
easier to maintain. However, the protocol used between Emacs and the core
system is not documented, probably because the constructors of PVS didn’t
envisage a different interface to that core system. Therefore, the protocol had to
be extracted from the lisp configuration files used by Emacs and the messages
that are sent between Emacs and the core system. With some detective work
in the form of a wrapper script that monitors these messages, we were able to
reconstruct the most important parts of the protocol, which was sufficient to use
the core system without the Emacs interface.

Interfacing Program Construction and Verification 1137

The PVS core system is a lisp interpreter and receives lisp commands as
input, which can be used to update or inspect the state of the system or to
prove a theorem. The output of the core system consists of a combination of
commands to update the state of Emacs and the results of proving a theorem.
The core system might also construct temporary files and instruct Emacs to
open them, which is mainly used for help files and the Tcl interface. The Emacs
interface cleverly hides the lisp input with a collection of pull-down menus, while
the mixed output is parsed and separated into several buffers. For the average
user, only the buffer with the results of a proof are of interest.

The PVS core system operates in three modes: a mode for managing the
state, a mode for making the proofs and a debug mode. Since the active mode
affects the commands that Emacs has to send, the system uses synchronization
points when it switches to a different mode and notifies Emacs. The debug mode
is only used if the system receives incorrect input, and this mode is ended by
resetting PVS.

To construct a different user interface for the PVS core system, the user
interface had to simulate the actions performed by Emacs, such that the core
system could not notice the difference. As our plan was to hide PVS as much
as possible from the user, only a subset of the actions available in Emacs were
made available in the new interface.

4.2 The Math∫pad Infrastructure

The PVS interface has been constructed as a loadable module. For this purpose,
Math∫pad provides an interpreted language which can be used to extend the
interface and to load modules. It is also possible for a loadable module to extend
the language with new functions, variables and types. The infrastructure of the
entire system is shown in Fig. 6.

The interpreter can be used to customise Math∫pad to a particular need. With
the interpreted language, the user can define new functions to combine common
sequences into a single function. These functions can be used in pop-up menus
and keyboard definitions to customise the interface and the keyboard usage.

For each extension, Math∫pad will load an interface definition file to adjust the
menus and keyboard definitions. Depending on the complexity of the extension,
the interface definition file can include a dynamic library, which can extend the
interpreted language with new functions, types and variables. With these new
language items, the user can extend the menus and keyboard definitions and
further customise the extension.

The combination of the interface definition file and the dynamic library can
communicate with the external program through the standard input and output
of the program. In order to do that, input has to be generated in the correct
syntax for the particular program and the output of the program has to be
parsed. As the interpreted language is not yet suited to the complex task of
parsing the output, a dynamic library is usually needed if the output has to be
parsed. When the output does not need to be parsed, some preprocessing of the
output can be performed by adding a filter to the external program.

1138 Richard Verhoeven and Roland Backhouse

library
dynamic

definition
interface

program
external

Mathòpad

interpreter

extend

language

include

load

input output

Fig. 6. The Math∫pad infrastructure

The interpreted language (see Fig. 7 for an example) is an imperative lan-
guage, based on the guarded command language. It supports sequential compo-
sition, selection and repetition, but not recursion. Procedures are defined with a
prototype, which is used to pass the arguments correctly, that is, to dereference
variables where needed. Procedures can have local variables with the normal
scope rules. To support callback functions, one additional operator is added to
support lazy evaluation, that is, to pass an argument to a function such that
it will be evaluated by that function at the correct time, for example after a
filename is selected instead of before the file selector is opened.

The language supports a standard set of operators which can be overloaded by
defining functions for each combination of arguments. This enables an extension
to define new types with sensible operators, without the need to reconstruct the
parser for the interpreted language.

Since some extension might have special needs for the content of menus, the
strings in the interpreted language are in the Unicode encoding. This ensures
that almost any symbol that an extension might need will be available for the
pop-up menus and messages. For mathematical or foreign extensions, this will
increase the readability.

4.3 The PVS Interface Library

The PVS module consists of a dynamic library for communicating with the PVS
core system and an interpreted file to adjust the interface with Math∫pad. The
purpose of the dynamic library is threefold. First, it interprets the Math∫pad

Interfacing Program Construction and Verification 1139

document to extract theorems and proofs. Second, it generates the input that is
sent to the PVS core system. Third, it parses the output that is generated by
the core system.

As a Math∫pad document is structured, the generation of theorems from a
proof given in the Feijen style is not so difficult. For the example in Fig. 2, each
of the five steps has to be correct, so we can generate a theorem for each step.
Since the syntactical differences between the PVS input and the Math∫pad version
are not very different, generating these theorems is straightforward, once the
definitions of the templates are correct. Extracting the proof for these theorems
is also possible, as the hint contains keywords that indicate which strategies
are applicable. In the example, the keyword “fusion” indicates that the fusion
lemma is used as a rewrite rule. The keyword “definition” indicates that some
definition has to be expanded and the keyword “induction” indicates that a
premise is used as a rewrite rule, where the premise can be constructed from
the proof itself by using the first and last expressions. However, the hints are
not always precise enough, as is indicated by the PVS version of the proof. The
additional details are automatically applied by a human reader of the formatted
proof, without complaining. The reader will apply the trivial laws, such as the
“identity of composition” and “associativity of composition”, when needed and
the direction in which an equality law is used is determined by trial and error. A
complex dialogue with the author could be used to get these additional details,
but we decided to define additional PVS strategies which simulate the behaviour
of a human reader:

– a strategy to apply a rewrite rule in both directions,
– a strategy to retry a given strategy after applying the trivial laws, if that

strategy fails the first time,
– a strategy to apply a rewrite rule modulo composition.

These strategies have their limitations, as it is likely that rewrite rules are applied
incorrectly. However, the theorems are usually small and their proofs are short,
so it is less likely that something will go wrong. In the event that a theorem can
not be proven, an indication that the given hint is not sufficient to prove that
step should be a reasonable reply from the system, as a reader might have the
same problems with it as PVS.

For the other part of the example, the extraction of the theorems would
require a combination of natural language processing and logical reasoning, for
which a general solution is difficult. Therefore, this part is still missing from the
current interface.

Once the theorems and proofs are known, they have to be converted to the
specification language used by PVS. Since the output generated by Math∫pad
depends on the templates that are used, it is possible to generate valid PVS input
from Math∫pad expressions without much additional programming. However, the
expressions appear in a certain context and the identifiers should have a certain
type, otherwise PVS will generate parse or type errors. Although the context
and type information can be stored in the document as hidden information,
we chose to use a default context, where certain definitions and identifiers are

1140 Richard Verhoeven and Roland Backhouse

predefined. This approach is quite common in documents with many identifiers,
as it releases the author from the burden of mentioning the type of an identifier
over and over again.

In order to give feedback to the user, the PVS output should be parsed and
converted to familiar syntax. If a theorem is correct, all is well and a simple
message should be sufficient. Otherwise, a warning or error message should be
generated, indicating the problem and possibly a solution. If PVS does not need
the generated proof completely, it might be that the given hint is incorrect or
over-complete and Math∫pad will suggest to adjust the hint in order to avoid
confusing the reader. If PVS is unable to prove the theorem, the hint might
be incomplete or an error might have occurred. By inspecting the output and
comparing the expressions Math∫pad could suggest that an identifier is incorrect
or that a particular law might be applied. Since the user is not familiar with the
PVS language, the output of PVS should be parsed and shown in the language
as used in the document with a familiar syntax. However, the expressions in
Math∫pad are constructed with templates, which are used to generate the PVS
expression. Therefore, these templates should also be used to parse the PVS
output, which is complicated by the possible ambiguities in the definition of
these templates. At the moment, this part is still missing from the experimental
interface.

The PVS output also contains commands which are handled by Emacs. For
each command, the PVS module will either ignore it or translate it to the new
interface. For example, after the PVS core system has finished a proof, it will
tell Emacs to open a buffer with the PVS file that contains the proven theorem.
In Math∫pad, that PVS file is generated by a step in a proof and of no interest
to the user, so Math∫pad will highlight the step that generated the PVS file.

The library adds the functions pvs check hint (to check the selected hint),
pvs start (to start PVS) and pvs add keyword (to define a keyword like “induc-
tion” mentioned above and the related PVS strategies). These functions, together
with the already available functions, are used in the pop-up menus to extend the
interface of Math∫pad, for example to start PVS and to check a selected hint. The
library also adds the variables pvs initialized and pvs in checker, which can
be used to inspect the status of PVS, and pvs context dir, pvs hint file and
pvs lemma name, which are used to customise the generation of PVS files.

Since Math∫pad uses Unicode internally, the strings that are part of the li-
brary, such as error messages, have to be converted to Unicode before they are
used. This conversion uses a translation table to check whether the string has
been customised by the user. This leaves a library with an additional method
of customisation: by converting a string with the translation table, it can be
adjusted by the user. In the PVS module, the string “PVS HEADER” is used as
the header of the PVS file, which defines the context of the generated theorem.
By defining a translation for this string, the correct header is used.

In addition to the theory-specific keywords, there are four keywords with a
special meaning. Each of these keywords is used in a special case:

Interfacing Program Construction and Verification 1141

– INITSTEP is used to initialise the PVS proof and to remove universal quan-
tifiers.

– FINISHSTEP is used to finalise the PVS proof by applying all the trivial
steps,

– EXPRESSIONSTEP is used when an expression occurs within a hint. Ex-
pressions in hints are regarded as assumptions and will result in a premise.

– STOPPVSPROOF is used when the proof fails and PVS has to leave the
proof mode.

Without these four keywords, a correct proof script can not be constructed.
Therefore, the interface definition file has to define these keywords with the
pvs add keyword function.

The dynamic library that is used to communicate with PVS is written in C
and consists of about 1000 lines of code. 35 percent is used to separate the PVS
output and to handle the lisp requests from PVS, 15 percent is used to parse
the PVS proof output and 20 percent is used to extract theorem and proof from
the selected hint.

4.4 The Definition File

The PVS dynamic library handles the communication with the PVS core system
and provides the interpreted language with a collection of high-level functions.
With these functions, the pop-up menus of Math∫pad have been extended with
PVS specific commands or submenus. The interpreted language is also used to
initialize and customize the PVS library, for example by filling the keyword list
and setting up the context. Some parts of the definition file for PVS are shown
in Fig. 7.

First, the dynamic library is included, meaning that the functions and vari-
ables from that library become available to the interpreter. It is also possible to
include other definition files, which can be used to divide the different aspects
of the interface over separate files.

After the dynamic library has been included, the function pvs reset is de-
fined, which is used to reset PVS if something goes wrong. This function could
also be part of the dynamic library, but defining it in the interface definition file
is more flexible, as it can be adjusted more easily.

Once all the functions are available, they can be linked to a pop-up menu
and the keyboard. The interface definition language has special constructions
to make this as easy as possible. A pop-up menu is defined by making a list of
menu items, each containing a description and either the function to be called
or the submenu to be opened. In the example, the menu called PVSMathSpad
gives the user access to four PVS-specific functions. The menu itself is added as
a submenu to the menu called Misc, which lists miscellaneous features.

Three functions are made available through keyboard shortcuts. After the
Meta-p prefix, the key s will start PVS, the key c will check the selected hint
and the key r will reset PVS.

1142 Richard Verhoeven and Roland Backhouse

Include "libpvs.so"

Function pvs_reset()

{

if (pvs_initialized) {

send_signal(2, "PVS Session");

send_string(":reset\n", "PVS Session");

pvs_in_checker := 0;

}

}

Menu PVSMathSpad {

Options Pin;

Title "PVS Link";

"Start" : pvs_start("PVS Session");

"Check Hint" : pvs_check_hint(1);

"Reset" : pvs_reset();

"Exit" : send_string("(pvs::lisp (ILISP:ilisp-restore))

(pvs-errors (exit-pvs))\n", "PVS Session");

}

Menu Misc {

"PVS" : PVSMathSpad;

}

Keyboard Global {

‘M-p‘ ‘s‘ : pvs_start("PVS Session");

‘M-p‘ ‘c‘ : pvs_check_hint(1);

‘M-p‘ ‘r‘ : pvs_reset();

}

Translation English {

"PVS-shell" : "PVS Session";

"PVS_HEADER" : " [t: TYPE+] : THEORY

BEGIN

IMPORTING tuples[t]

n,m: VAR upfrom(1)

R,S,T,U: VAR rel

";

}

pvs_context_dir := "/home/river/pvs-test";

pvs_hint_file := "hint";

pvs_lemma_name := "hintlemma";

pvs_add_keyword("STOPPVSPROOF", "(quit)\nY\n\"nil\"\nno\n",0);

...

pvs_add_keyword("induction",

"(then* (inst?)(ground)

(try-triv-step (bidi-replace*)))\n", 1);

Fig. 7. The interface definition file

Interfacing Program Construction and Verification 1143

To customise the PVS library, two translation strings are defined. As ex-
plained earlier, a translation for the string “PVS HEADER” is given to set the
context for the generated theorems. In general, this translation mechanism is
used to customise the messages from Math∫pad, as these are all in English and
perhaps not clear enough (as in ‘folder’ versus ‘directory’).

At the end, the variables are initialised and the database of keywords is filled.
At this point, the definition file is used as a script file to execute the functions
while the definition file is loaded, which is used to futher customise the library.

5 Related Work

There are already some projects to improve the interface of PVS. TAME [2] is a
layer on top of PVS for reasoning about timed automata and consists of a number
of strategies to reduce the number of steps made in a typical PVS proof to the
number of steps made in a hand-made proof. With these additional strategies,
the user of TAME will not be exposed to the low-level steps and commands
needed in PVS, thereby making the commands field specific. However, since the
PVS interface is used, there is still a gap between the notational conventions
used by PVS and those used in the documentation.

The system PAMELA [9] is designed to check partial correctness of VDM-
like specifications in the area of code generators. By providing a connection
with PVS, the system supports a larger class of specifications, using PVS to
discharge proof obligations. The connection between PAMELA and PVS is made
by extending PVS with additional commands and adding a Tcl/Tk interface
which communicates with the Emacs system. Although this approach works,
the modifications to PVS indicate that using a different theorem or a different
interface would also require such changes. Furthermore, as the existing Emacs
interfaces is still used, it does not remove the burden of using multiple interfaces
and multiple specification languages.

Merriam constructed the PVS proof command prompter [13], which extends
PVS with an additional input method for the proof commands to improve the
PVS interface and to decrease the cognitive overhead for the user. The prompter
uses a fill-in form to ask the user for the arguments that might be used for a
given command.

GrammaTech and Formal Systems Design & Development are working on
an environment for integrating formal methods tools to improve industrial ac-
ceptance of formal methods[1]. The environment will use active documents with
embedded objects, with CORBA to handle the object distribution. The use of
embedded object might cause some problems with the writability of the doc-
uments. That approach is also used by FrameMaker and Word, which are not
the best word processors for mathematically oriented documents, as they have
problems with context switches and treat mathematical expressions as images.

Simons has been working on a system to combine proofs in Isabelle [15] with
documentation [19]. The system uses the structured documentation technique
introduced by Knuth [12] to allow one file to contain both the proofs and the

1144 Richard Verhoeven and Roland Backhouse

documentation and uses programs to separate those. This solves the problem
of combining several files into one document, at the expense of using different
languages in a single file, namely, LATEX for formatting the document, Isabelle
for specifying the proof and the meta language to instruct the programs. For a
user, this mix of languages might be confusing.

The ILF system [10] offers a uniform interface for several automated theo-
rem provers and it removes the burden of translating the specification files to
the languages used by these theorem provers. The ILF system does not require
any changes to the existing theorem provers and works like a server, which sends
proof obligations to the available theorem provers and handles the results. Al-
though ILF hides the specific languages and options of the theorem provers, it
does add its own specification language, based on PROLOG.

6 Conclusions

The goal we set ourselves in this project was to automatically translate mathe-
matical calculations to PVS proofs. An automatic translation is of course much
more difficult than one done by hand. Nevertheless the goal was feasible, given
that Vaccari had written his thesis with the Math∫pad system so that all the
documents needed to test the connection between PVS and Math∫pad were al-
ready available to us. The goal has been achieved except for the interpretation
of natural language linking together different calculations. There are also still
some problems hiding the PVS language from the user.

Math∫pad does not help the user to construct the PVS files which are needed to
get started. Therefore, the connection only works if there are already some PVS
files with the required definitions. These files must be constructed by someone
who is conversant with both Math∫pad and PVS. However, only a limited number
of such experts are needed; (ultimately) other users can exploit the benefits of
formal verification with the PVS system without a six-month training period.

The connection has been made without adjusting PVS in any way. That is,
the same version of PVS can be used with the Emacs interface and the Math∫pad
interface. Although the Emacs interface had to be separated from the PVS core
system, this process is not very difficult and can easily be repeated for the next
version of PVS, assuming that the internal interface does not change drastically.
The conversion from version 2.1 to version 2.2 of PVS was a matter of updating
the initialization file for the PVS core system, which can be constructed by
monitoring the communication between Emacs and the PVS core system.

In order to build a different user interface for an existing theorem prover,
the theorem prover should have a clearly separated user interface and core sys-
tem. For PVS, this structure is not directly visible, but after a closer look, the
separation is not very difficult, although the documentation is missing.

The use of loadable modules in the form of dynamic libraries is a powerful
technique and allows easy extension of a system, as is shown by applications
like Netscape, the Linux kernel, the GIMP and Photoshop. It allows modules
from different sources to combine their strength in order to improve the total

Interfacing Program Construction and Verification 1145

system. If theorem provers were available as modules, the main system could
choose the best module for a given job. With some effort, it is possible to use
an existing theorem prover as a module. However, every theorem prover uses its
own input format, output format and user interface, which makes it very difficult
to combine the power of multiple theorem provers for a single project. Perhaps
the MathML or OpenMath languages will be useful in this respect.

PVS seems to be at the correct level of automation for our purpose. An au-
tomatic theorem prover could not verify whether the hints are meaningful and
would require additional testing. A low-level theorem prover would need addi-
tional information to finish the proof or high-level tactics have to be introduced.

References

[1] P. Anderson, M. Goldsmith, B. Scattergood, and T. Teitelbaum. An environ-
ment for intergrating formal methods tools. In Bertot [7]. See also: http:

//www.grammatech.com/papers/uitp.html.
[2] Myla Archer, Constance Heitmeyer, and Steve Sims. TAME: A PVS interface to

simplify proofs for automata models. In Backhouse [4], pages 147–156. See also:
http://www.win.tue.nl/cs/ipa/uitp/papers/Archer.ps.gz.

[3] R.C. Backhouse. Archive of the mathematics of program construction group.
Available online at http://www.win.tue.nl/cs/wp/papers/, July 1998.

[4] R.C. Backhouse, editor. Workshop on User Interfaces for Theorem Provers,
Computing Science Reports, July 1998. International Workshop, see also http:

//www.win.tue.nl/cs/ipa/uitp/proceedings.html.
[5] R.C. Backhouse, R. Verhoeven, and O. Weber. Math∫pad: A system for on-line

preparation of mathematical documents. Software – Concepts and Tools, 18:80–
89, 1997. See also: http://www.win.tue.nl/cs/wp/mathspad/.

[6] Roland Backhouse and Richard Verhoeven. Math∫pad Ergonomic Document Prepa-
ration, version 0.60 edition, February 1996. Manual of the Math∫pad system. See
also: http://www.win.tue.nl/cs/wp/mathspad/.

[7] Yves Bertot, editor. Workshop on User Interfaces for Theorem Provers, Septem-
ber 1997. International Workshop, see also http://www-sop.inria.fr/croap/

events/uitp97-papers.html.
[8] Eerke Boiten, John Derrick, Howard Bowman, and Maarten Steen. Consistency

and refinement for partial specification in z. In Marie-Claude Gaudel and James
Woodcock, editors, FME ’96: Industrial Benefit and Advances in Formal Methods,
volume 1051 of LNCS, pages 287–306. Springer, 1996.

[9] Bettina Buth. Operation Refinement Proofs for VDM-like Specifications. PhD
thesis, Institute of Computer Science and Practical Mathematics of the Christian-
Albrechts-University Kiel, February 1995. See also: http://www.informatik.

uni-bremen.de/~bb.
[10] Ingo Dahn. Using ILF as an interface to many theorem provers. In Backhouse

[4], pages 75–86. See also: http://www.win.tue.nl/cs/ipa/uitp/papers/Dahn.
ps.gz.

[11] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin, 1990.

[12] D.E. Knuth. Literate programming. Computer Journal, 27(2):97–111, 1984.
[13] N.A. Merriam and M.D. Harrison. What is wrong with GUIs for theorem provers.

In Bertot [7]. See also: http://www.cs.york.ac.uk/~nam/uitp97.ps.gz.

1146 Richard Verhoeven and Roland Backhouse

[14] S. Owre, N. Shankar, and J. M. Rushby. The PVS Specification Language. Com-
puter Science Laboratory, SRI International, Menlo Park, CA, February 1993. See
also: http://pvs.csl.sri.com/.

[15] Lawrence C. Paulson. Isabelle: a Generic Theorem Prover. Number 828 in Lecture
Notes in Computer Science. Springer – Berlin, 1994.

[16] Darren Redfern. The Maple Handbook. Springer, 1996.
[17] John Rushby. What is pvs? Available online at http://pvs.csl.sri.com/

whatispvs.html, November 1998. Contains a description of PVS.
[18] Frits D. Schalij. Tangram manual. Technical Report UR 008/93, Philips Elec-

tronics N.V., 1996.
[19] Martin Simons. Proof presentation for Isabelle. In Elsa Gunter and Amy Felty,

editors, Theorem Proving in Higher Order Logics: 10th International Conference,
TPHOLs ’97, volume 1275 of Lecture Notes in Computer Science, pages 259–274,
Murray Hill, NJ, August 1997. Springer-Verlag.

[20] Bernard Sufrin and Richard Bornat. User interfaces for generic proof assistants
part II: Displaying proofs. In Backhouse [4], pages 147–156. See also: http:

//www.win.tue.nl/cs/ipa/uitp/papers/Sufrin.ps.gz.
[21] Matteo Vaccari. Calculational Derivation of Circuits. PhD thesis, Dipartimento

di Informatica, Università degli Studi di Milano, May 1998. See also: http://
dotto.usr.dsi.unimi.it/~matteo/tesi.ps.gz.

[22] Stephen Wolfram. The Mathematica Book. Cambridge University Press, third
edition edition, 1996.

Software Verification Based on Linear

Programming?

S. Dellacherie??, S. Devulder? ? ?, and J-L. Lambert†

GREYC, CNRS UPRESA 6072, Université de Caen,
BP 5186, 14032 Caen cedex, France

dellache@info.unicaen.fr, devulder@info.unicaen.fr, jll@info.unicaen.fr

Abstract. We introduce a new software verification method based on
plain linear programming. The problematic is being given a software S
and a property P , to find whether there exists a path (i.e. a test sequence)
of S satisfying P , or a proof that P is impossible to satisfy.
The software S is modelized as a set of communicating automata which in
turn is translated into a system of linear equations in positive numbers.
Property P is then translated as extra linear equations added to this
system.
We define the extended notion of flow-path (which includes the notion
of path) permitting the automata to carry flows of data rather than
undividable tokens. By applying linear programming in a sophisticated
way to the linear system, it is possible, in time polynomial in the size of
(S,P), either to display a flow-path of S satisfying P or to prove that P
is impossible to satisfy.
The existence of a flow-path does not always imply the existence of a
path, as it can be non-integer valued. Yet, on all our modelized examples,
the study of the flow-path solution always permitted either to display a
path satisfying P or to underscore a reason proving P to be impossible
to satisfy.
The first part of this document introduces the theoretical background of
our method. The second part sums up results of the use of our method
on some systems of industrial size.

Keywords: software, concurrent program, distributed system, formal verifica-
tion, validation, simulation, test case generation, proof, linear programming,
integer programming.

URL: http://www.info.unicaen.fr/lpv

? This work was partly supported by CNET under grant n#95 5B 046, by Région
Basse-Normandie and CNRS under contract CON950207DR19

?? PhD Student, CNET and University of Caen
? ? ? PhD Student, CNRS and University of Caen

† Professor, University of Caen

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1147–1165, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1148 S. Dellacherie, S. Devulder, and J-L. Lambert

1 Introduction

Linear programming gathers means for optimizing a linear function subject to
a set of linear constraints in real positive numbers [faq]. Due to its efficiency
and the range of its applications areas (production management, networks or-
ganization, resources planification, . . .), it is the cornerstone of combinatorial
optimization techniques. Still at present, due to the arising of interior-point al-
gorithms, linear programming attracts an important research power, both in
theoretical and practical fields. Linear programming algorithms now routinely
solve on a desktop computer problems involving hundreds of thousand rows per
hundreds of thousand columns.

Linear programming is also a classical mean for tackling the much more diffi-
cult integer programming problem where all (or part of) variables need to have
an integer value. A wide range of techniques are available for this particular
problem.

Attempts to use linear programming in the verification domain is not new. The
Petri-nets community has been using linear programming for almost fifteen years.
Yet, it seems to be only used on very constrained models, not well suited for the
modelization of real-world systems [ES92] or for the generation of the set of
the model invariants, which is constructed blindly and whose size increases very
quickly [LM89] [CHP92]. More recently, Corbett and Avrunin [CA95] studied
the use of a general purpose integer programming algorithm directly on a com-
municating automata model. Unfortunately, the use of a general purpose integer
programming algorithm destroys the efficiency of mere linear programming, and
prevents the possibility of constructing proofs on the model.

Thus, to our knowledge, none of these attempts make a complete use of the
powerful theoretical background bind to linear programming: the duality theory.
We will overview in this document how the use of linear programming duality
permits to obtain a non-trivial and efficient (polynomial time) completeness
theorem on the proof of existence of a flow-path or the proof of non-existence of
any flow-path.

Furthermore, as we will see in this document, our method shares very few features
with other existing methods. Unlike model-checking techniques (see for example
[McM93][Kur92] [Hol97]) our method works directly on the automata model
without constructing a representation of the reachability graph, thus enabling
the handling of huge models. Unlike theorem-proving techniques (see for example
[Abr95][ORR+96] [GH93]), the proofs given by our method are automatic and
fastly computed directly on the automata model.

Now considering its negative points, the main drawback of the method is the fact
that if a flow-path is proved to exist, it does not always induce the existence of a
path (i.e. a test sequence on the automata): linear programming works with real
numbers, and the proposed flow-path is not always integer-valued. When such
a fractional solution occurs, one has to make the property more precise and/or
slightly transform the model in order to conclude.

Software Verification Based on Linear Programming 1149

Yet, as we will see in this document, a flow-path is not “very far” from a path.
In practice on the automata models we have studied, the careful reading of the
flow-path solution has always led us to find a path satisfying the property or a
proof that the property is impossible to satisfy.

The first part of this document presents the theoretical background of the
method. The first section formally defines the automata model, the set of prop-
erties handled, the synchronization and flow-synchronization rules. The second
section explains how the automata model and a property are translated into a
system of linear equations, and introduces the main theoretical result obtained
using linear programming theory.

The second part of this document summarizes the results of the use of the method
on three different systems:

1. A generic telephony system. We used our method on instances using from
5 to 7 telephones communicating through fifo-channels of size 3 to 7. Such
a model uses more than 800 automata and 2500 different synchronization
messages. The corresponding state space is more than 1040 wide. Resolutions
took a few tens of minutes.

2. A generic access control system. We used our method on instances using
up to 20 cards, 8 doors and 4 buildings, communications being done using
buffers. Such a model uses 230 automata and 2800 different synchronization
messages. The corresponding state space is more than 1052 wide. Resolutions
took a few hours.

3. A generic bus arbiter. The method was used on instances going up to 1200
cells. The state space is then about 10500 wide. Resolutions took a few tens
of minutes.

On all three systems we have always been able for all properties checked, either
to find a test-suite or a proof of impossibility.

Note that the method described herein is subject to a patent1 and is about to
be industrialized.

2 Theoretical Principles

2.1 The Model

Our linear programming verification method works with a communicating au-
tomata formalism. Using communicating automata is quite common in the ver-
ification domain (StateCharts, part of the SDL and UML formalisms, ...). They
are easy to understand and to use while being powerful enough to modelize a

1 patent #97 15217 registered on Dec. 3rd of 1997 and owned in common by France
Telecom, the CNRS, and the University of Caen

1150 S. Dellacherie, S. Devulder, and J-L. Lambert

large variety of software components. They also consitute a dynamic model of a
software and are thus easily implementable and executable.

The use of communicating automata means that our verification method is
mainly suited to verify the control part of a software, interactions between com-
ponents of a software, and interactions between the control and the data of a
software. A great part of verification needs in industrial software developments
are of this kind.

Synchronized Automata The automata we use communicate via rendez-
vous, synchronizing themselves on messages carried by the transitions. We will
call them in the remaining synchronized automata.

We modelize every possible component of the software with synchronized au-
tomata: the data, the control-flow, the communication channels (fifo-channels,
stacks, ...). Of course, all these components need to have a finite domain, fur-
thermore not too large. Yet we will see in the second part of this document that
rather huge models can be handled by our verification method. Moreover, ab-
straction principles such as described in [CC77] can also be used in our approach
to handle larger validity domains.

Figure 1 presents a small example that we are going to use to illustrate the
method all along this document.

�Ae1 �Be1 �Ce1

Ae2
Be2

Ce2

a1

m1

m2

a2

m3

m4

b1

m1

b2

m3

c1

m2

c2

m4

Fig. 1. A small example of synchronized automata.

Each automaton has states (the nodes, labeled Aei , Bei or Cei) and transitions
(the arcs, labeled ai, bi or ci). Each automaton has a single token that can
move from state to state using the transitions. Transitions carry synchronization
messages (m1, m2, m3 and m4). A transition may have multiple messages. For
instance, arc a1 bears two messages m1 and m2.

An automaton can go (i.e. move its token) from a state to another if and only
if there exists a transition between those two states and all the synchronization
messages present on that transition can be emitted. A message can be emitted
if and only if all automata that know the message (ie. that have at least one
transition carrying this message) can use simultaneously a transition carrying
this message.

Software Verification Based on Linear Programming 1151

For example, automaton A can go from state Ae1 to state Ae2 if and only if
both synchronization messages m1 and m2 can be emitted. This is possible if,
for example, automata B and C are (ie. have their token) respectively in states
Be1 and Ce1 . In this situation, the three automata will arrive in state Ae2 , Be2

and Ce2 respectively.

On the other hand, if A is in state Ae1 while automaton B is in state Be2 , we
are in a deadlock situation. Using transition a1 requires the ability of emitting
message m1 which is impossible. Indeed B knows m1 —carried by b1— but is
not in a state where it can emit it. So transition a1 cannot be used and both
m1 and m2 cannot be emitted which means that transition c1 cannot be used
and that all the automata will have to stay on the same state, thus the deadlock
situation.

Let us state the formal definition of a system of automata, the definition of
the synchronization rule, and then the definition of a system of synchronized
automata.

Definition (automata). A system of automata S is composed of N sub-systems
Sn, 1 ≤ n ≤ N called automata, and of a set M = {mk, 1 ≤ k ≤ |M |} containing
the messages mk of S. Every automaton Sn is described by

1. the set En = {ei
n, 1 ≤ i ≤ |En|} of its states;

2. the set An = {aj
n, 1 ≤ j ≤ |An|} of its transitions;

3. the set of messages Mn ⊂M carried by An.

To every transition aj
n of Sn is associated a unique starting state ej1

n ∈ En and
a unique arriving state ej2

n ∈ En. Every transition aj
n of Sn carries a set of

messages M j
n ⊂Mn. ♦

Definition (synchronization rule). Let us call configuration a mapping C
which associates to every automaton Sn a unique state en ∈ Sn called the
activated state of Sn, and let us call synchronization a subset s of M . We then
define the synchronization rule as follows: the synchronization s has S changed
from configuration C to configuration C′ if and only if ∀Sn ∈ S,

1. if s ∩Mn = ∅ then C′(Sn) = C(Sn)
2. if s ∩Mn 6= ∅ then ∃aj

n = (ej1
n , ej2

n) ∈ An such that
(a) M j

n = s ∩Mn

(b) ej1
n = C(Sn), ej2

n = C′(Sn)

We then say that transition aj
n is fired and that messages m ∈M j

n are activated
during the change from C to C′. ♦
Definition (synchronized automata). A system of synchronized automata is
a system of automata endowed with the synchronization rule.
Furthermore, let C and C′ be two configurations of S. The change from C to
C′ by synchronization s defines a step (C, s, C′) for S. A succession of steps
(C0, s0, C

′
0), . . . , (Cn−1, sn−1, C

′
n) such that Ci+1 = C

′
i defines a path for S. ♦

1152 S. Dellacherie, S. Devulder, and J-L. Lambert

The synchronization rule can be interpreted in two ways: an automaton which
aims at firing a transition can be considered forcing the other automata to fol-
low him, or having to ask the other automata the permission to do so. The
appropriate interpretation has to be given at higher level by the semantic of the
system.

To our knowledge this kind of synchronization rule we defined is not classical, as
all automata have to get simultaneously in accordance to fire their transitions.
Note however that more classical formalisms as Statecharts or the BLIF format
were easily translated in our own formalism.

We now introduce a set of properties which can be verified with our method.

Accessibility Properties The kind of requests we will check on a system
of synchronized automata corresponds to the classical set of accessibility (or
reachability) properties. For every automaton, we give a set of states within
which is the activated state at start, and a set of states within which we want
the activated state to arrive. The question is then whether there exists or not a
path connecting these two sets.

On our small example, such a request could be: having each automaton in its
state Ae1 , Be1 or Ce1 respectively, can automata A and B reach its state Ae2

and Be2 respectively, C being in state Ce1 or Ce2?

Such a set of requests can be formally stated as follow:

Definition (accessibility property). Let S be a system of synchronized au-
tomata. An accessibility property on S is a couple P = (C, C′) of sets of states of
S. ♦
Definition (path-satisfiability). An accessibility property P = (C, C′) on S
has a path satisfying P if and only if there exists a path in k ∈ N steps going
from a configuration C0 to a configuration C

′
n such that ∀Sn ∈ S,

– if En ∩ C 6= ∅ then C0(Sn) ∈ C
– if En ∩ C′ 6= ∅ then C

′
n(Sn) ∈ C′ ♦

The expressiveness of this set of properties is quite large if we consider the
appending of “observing automata” to the system S. These observers permit to
express the necessity of using a particular message before another, the necessity
to avoid a particular message, to avoid a particular transition, etc. On such
automata one can then state an accessibility request, and thus extend the amount
of properties which can be expressed directly on S. It has been shown to have
at least the ability of expressing temporal logic safety formulae [JPO95].

Sub-section 2.1 now introduces a different automata model based on a general-
ization of the synchronization rule. This new model will be useful to state the
main theoretical result given later in this document.

Software Verification Based on Linear Programming 1153

Flow-Synchronized Automata Our method is based on mere linear program-
ming, which means that results given by the linear programming solver won’t
always be integer results. This motivates the introduction (which will be fully
relevant in section 2.2) of a non-integer variation of the synchronization rule and
the definition of flow-synchronized automata. We begin with the introduction of
various kinds of flows:

Definition (message-flow). A message-flow is a function fm which associates
to every message m of S a real quantity fm(m) ∈ [0, 1]. ♦
Definition (transition-flow). A transition-flow is a function fa which asso-
ciates to every transition aj

n of S a real quantity fa(aj
n) ∈ [0, 1]. ♦

Definition (state-flow). A state-flow is a function fe which associates to every
state ei

n of S a real quantity fe(ei
n) ∈ [0, 1]. ♦

We are now ready to state the definition of the non-integer variation of the
synchronization rule:

Definition (flow-synchronization rule). Let

– Am
n be the set of transitions of Sn carrying message m: Am

n = {aj
n ∈ An/m ∈

M j
n},

– Ei+
n be the set of transitions of Sn having ei

n as starting state: Ei+
n = {aj

n ∈
An/∃e, aj

n = (ei
n, e)},

– Ei−
n be the set of transitions of Sn having ei

n as arriving state: Ei−
n = {aj

n ∈
An/∃e, aj

n = (e, ei
n)}.

Let us call

– flow-configuration a state-flow fC such that ∀Sn,
∑

ei
n∈Sn

fC(ei
n) = 1 (i.e.

the quantity of token on each automaton is equal to 1),
– flow-synchronization a pair fs = (fm, fa) such that ∀m ∈ M , ∀Sn, Am

n 6= ∅
⇒ fs(m) =

∑
aj

n∈Am
n

fa(aj
n) (i.e. for all automata that know m, the quantity

of m emitted is equal to the flow going through the transitions carrying m).

We define the flow-synchronization rule as follows: the flow-synchronization fs =
(fm, fa) has S changed from fC to fC′ if and only if ∀ei

n, the following equations
hold:

1.
∑

aj
n∈Ei+

n
fa(aj

n) ≤ fC(ei
n) (i.e. the flow leaving ei

n is not greater than the
quantity of token which is on ei

n),
2.

∑
aj

n∈Ei−
n

fa(aj
n) ≤ fC′(ei

n) (i.e. the flow arriving on ei
n is not greater than

the total amount of token which is on ei
n),

3. fC(ei
n)−∑

aj
n∈Ei+

n
fa(aj

n) = fC′(ei
n)−∑

aj
n∈Ei−

n
fa(aj

n) (i.e. the new quantity
of token on ei

n is the previous quantity plus the flow arriving on ei
n and less

the flow leaving ei
n).

1154 S. Dellacherie, S. Devulder, and J-L. Lambert

If f(aj
n) > 0 then we say that transition aj

n is flow-fired and that messages
m ∈M j

n are flow-activated during the change from fC to fC′ . ♦
This flow-synchronization-rule then defines a new kind of automata:

Definition (flow-synchronized automata). A system of flow-synchronized
automata is a system of automata endowed with the flow-synchronization rule.
Furthermore, let fC and fC′ be two flow-configurations of S. The change from
fC to fC′ by flow-synchronization fs defines a flow-step (fC , fs, fC′) for S. A
succession of flow-steps (fC0 , fs0 , fC

′
0
), . . ., (fCn−1 , fsn−1 , fC′

n
) such that fC

′
i

=
fCi+1 defines a flow-path for S. ♦
We also have by extension of path-satisfiability:

Definition (flow-path-satisfiability). A property P = (C, C′) is flow-path-
satisfiable if and only if there exists a flow-path going from C to C′ in a finite
number of flow-steps. ♦
A system of flow-synchronized automata is a “continuous” version of the cor-
responding system of synchronized automata. On synchronized automata the
quantity of information can be modelized for every automaton with a token
that moves from state to state following the synchronization rule. On flow-
synchronized automata, the information which is in quantity still equal to one
token per automaton, can this time flow through states as would do a liquid,
following the flow-synchronization rule.

The synchronization rule is obviously a special occurence of a flow-synchroniza-
tion rule (it is an integer-valued flow-synchronization), which implies that all
notions binded to this former rule are also special occurences of the equivalent
notions binded to the latter rule (step, path, satisfiability, . . .).

The flow-automata model will be used to state the theoretical result of section
2.2. We yet need one more automata model to fulfill this first section. This last
model, derived from the two former ones, will be the one used in practice by our
method.

The Storied Extension of Automata The idea is to “unfold” through
time the automata model in order to have each synchronization step (or flow-
synchronization step) mapped to a given time step. Thus, during a time step,
every automaton will have to use one of its transitions in accordance with the
(flow-)synchronization rule, or to use a special transition, named an ε-transition,
which will leave the automaton in the same state.

Figure 2 shows the storied version of the previous small example, unfolded
through 3 time steps. All automata are respectively in their state Ae1(0), Be1(0)
and Ce1(0) before the first synchronization occurs. Suppose the first synchro-
nization is the empty-set: all automata will use an ε-transition to stay in the
same state, but ready for the second synchronization: respectively state Ae1 (1),
Be1(1) and Ce1 (1). Now if the second synchronization includes the emission of

Software Verification Based on Linear Programming 1155

�A
e1(0)

A
e2(0) �B

e1(0)
B
e2(0) �C

e1(0)
C
e2(0)

A
e1(1)

A
e2(1)

B
e1(1)

B
e2(1)

C
e1(1)

C
e2(1)

A
e1(2)

A
e2(2)

B
e1(2)

B
e2(2)

C
e1(2)

C
e2(2)

A
e1(3)

A
e2(3)

B
e1(3)

B
e2(3)

C
e1(3)

C
e2(3)

a1(1)

m1(0)
m2(0)

a2(1)

m3(0)
m4(0)

� �

b1(1)

m1(0)

b2(1)

m3(0)
� �

c1(1)

m2(0)

c2(1)

m4(0)
� �

a1(2)

m1(1)
m2(1)

a2(2)

m3(1)
m4(1)

� �

b1(2)

m1(1)

b2(2)

m3(1)
� �

c1(2)

m2(1)

c2(2)

m4(1)
� �

a1(3)

m1(2)
m2(2)

a2(3)

m3(2)
m4(2)

� �

b1(3)

m1(2)

b2(3)

m3(2)
� �

c1(3)

m2(2)

c2(3)

m4(2)
� �

Fig. 2. storied automata of figure 1 on 3 time steps.

m1 and m2, this will make the automata to use respectively transitions a1(2),
b1(2) and c1(2) to reach respectively Ae2(2), Be2(2) and Ce2(2). And so on.

We see that there is a one to one correspondence between synchronization (or
flow-synchronization) steps on the automata model and time steps on the storied
extension. A solution on the latter will thus give directly a solution path (or flow-
path) for the studied automata model. Section 2.2 explains how to use linear
programming on this storied extension of the automata model.

Here is the formal definition of the storied extension of an automata model:

Definition (storied automata). Let S be a system of automata. We consider
S on T + 1 time steps as follow: for each automaton Sn ∈ S we associate

1. to every value t ∈ {0, . . . , T} and every state ei
n, a state ei

n(t);
2. to every value t ∈ {1, . . . , T} and every transition aj

n = (ej1
n , ej2

n), a transition
aj

n(t) = (ej1
n (t− 1), ej2

n (t));
3. to every value t ∈ {1, . . . , T} and every message mk ∈ Maj

n
, a message

mk(t) ∈Maj
n(t);

4. to every value t ∈ {1, . . . , T} and every state ei
n, an ε-transition εi

n(t) =
(ei

n(t− 1), ei
n(t)).

The system thus constructed from S is called the storied system of automata ST

of S on T time steps. ♦
A storied system of automata ST is clearly a special occurence of a system of
automata, and both the definitions of synchronisation and flow-synchronisation
rules are valid on ST . The translation of an accessibility property from S to ST

is obvious: the starting set of configurations C is specified on the first time step
t = 0, and the ending set of configurations C′ is specified on the last time step
t = T . Formally, it gives:

Definition. Let S be a system of automata and ST the corresponding storied
system. Let (C, C′) be an accessibility property on S. The corresponding acces-
sibility property on ST is given by C = C(0) and C′ = C′(T). ♦

1156 S. Dellacherie, S. Devulder, and J-L. Lambert

Furthermore we have the trivial following result binding a path in S and a path
in ST :

Proposition. Let S be a system of automata, ST the corresponding storied sys-
tem of automata. An accessibility property (C, C′) on S is (flow-)path satisfiable
in n steps if and only if (C(0), C′(T)) is (flow-)path satisfiable on ST with T = n.
♦
We are now ready to see how the storied system of automata is used in accordance
with linear programming to verify accessibility properties.

2.2 The Use of Linear Programming

As stated in the introduction, linear programming is a very efficient mean for
solving systems of linear equations in positive numbers when a real (i.e. not
always integer) solution is searched for.

Here is a classical way of formally expressing the kind of problems treated by
linear programming: the problem is to find an x∗, a vector of size n, optimal
solution of

max ctx
Ax = b
x ≥ 0

where A is an m rows, n columns matrix, c a vector of size n, b a vector of size
m.

The optimization criteria ctx is optional, and the problem of only finding an x
subject to {Ax = b, x ≥ 0} is of the same difficulty (it constitutes for example the
first phase of the two-phases simplex algorithm). Our method relies mainly on
finding such an x subject to a system of constraints that translates the properties
of the automata system.

This implies first the necessity of constructing a system of linear constraints that
catches the structural properties of the system of automata. This is the subject
of the following sub-section.

Linear Constraints Drawn out of Automata The system of linear equa-
tions in positive numbers is drawn out of the storied extension ST of the au-
tomata system S as follows:

Two kinds of equations are constructed: flow equations which translate the
preservation of information on every state of every automaton of ST , and syn-
chronization equations which translate the synchronization (or flow-synchroniza-
tion) rule for every message of ST .

Software Verification Based on Linear Programming 1157

To this set of equations are added equations which translate the accessibility
property, by forcing the value of some states at step t = 0 and at step t = T to
be equal to 1.

Here are the equations drawn out of the storied extension (T = 3) of our small ex-
ample, the accessibility property being given by C(0) = {Ae1(0), Be1(0), Ce1(0)}
and C′(3) = {Ae2(3), Be3(3), Ce3(3)}.
The flow equations are for i ∈ {0, . . . , 3}:

Ae1(i) = a1(i + 1) + εAe1(i + 1)
Ae2(i) = a2(i + 1) + εAe2(i + 1)

Ae1(i + 1) = a2(i + 1) + εAe1(i + 1)
Ae2(i + 1) = a1(i + 1) + εAe2(i + 1)

Be1(i) = b1(i + 1) + εBe1(i + 1)
Be2(i) = b2(i + 1) + εBe2(i + 1)

Be1(i + 1) = b2(i + 1) + εBe1(i + 1)
Be2(i + 1) = b1(i + 1) + εBe2(i + 1)

Ce1 (i) = c1(i + 1) + εCe1(i + 1)
Ce2 (i) = c2(i + 1) + εCe2(i + 1)

Ce1 (i + 1) = c2(i + 1) + εCe1(i + 1)
Ce2 (i + 1) = c1(i + 1) + εCe2(i + 1)

The synchronization equations are for i ∈ {1, . . . , 3}:
m1(i) = a1(i)
m1(i) = b1(i)

m2(i) = a1(i)
m2(i) = c1(i)

m3(i) = a2(i)
m3(i) = b2(i)

m4(i) = a2(i)
m4(i) = c2(i)

The property equations are:

Ae1(0) = 1 Be1(0) = 1 Ce1 (0) = 1
Ae2(3) = 1 Be2(3) = 1 Ce2 (3) = 1

Let us see the formal definition of these three sets of equations:

Definition (system of equations). Let S be a system of automata, ST the
storied extension of S on T time steps, and P = (C, C′) an accessibility property
on S. We recall that for every automaton Sn ∈ S, Ei+

n is the set of transitions
having ei

n as starting state, Ei−
n is the set of transitions having ei

n as arriving
state, and Am

n is the set of transitions carrying message m.

The system of linear equations L(ST ,P) drawn out of ST and P is given by the
three following sets of equations:

1158 S. Dellacherie, S. Devulder, and J-L. Lambert

– flow equations: ∀Sn ∈ S, ∀t ∈ {1, . . . , T}, ∀ei
n ∈ Sn, we have

ei
n(t− 1) =

∑

j1∈Ei+
n

aj1
n (t) + εi

n(t)

ei
n(t) =

∑

j2∈Ei−
n

aj2
n (t) + εi

n(t)

– synchronization equations: ∀Sn ∈ S, ∀t ∈ {1, . . . , T}, ∀m ∈Mn, we have

m(t) =
∑

j3∈Am
n

aj3
n (t)

– property equations: ∀Sn ∈ S, we have
∑

ei
n∈En

ei
n(0) = 1

if C ∩ En 6= ∅ then
∑

ei
n∈C∩En

ei
n(0) = 1

if C′ ∩ En 6= ∅ then
∑

ei
n∈C′∩En

ei
n(T) = 1

♦

We clearly have a one to one correspondence between the use of a transition, a
state or a message of the storied system of automata at a given time step and
the value of the corresponding variable of the system of equations, whether the
synchronization rule or the flow-synchronization rule is used.

If we use the synchronisation rule on S, we need to add to L(ST ,P) positivity
and integrality constraints on all its variables. If we use the flow-synchronisation
rule on S, we need to add to L(ST ,P) only the positivity constraints.

Proposition. Let ST be a storied system of automata on T time steps, and
(C(0), C′(T)) an accessibility property on ST .
If the synchronization rule is used on ST , then (C(0), C′(T)) is satisfiable on ST if
and only if L(ST ,P) has a solution with all variables being positive and integer
valued.
If the flow-synchronization rule is used on ST , then (C(0), C′(T)) is satisfiable on
ST if and only if L(ST ,P) has a solution with all variables being positive. ♦
Linear programming can handle systems of positive variables without integrality
constraints. Thus we are only able to use linear programming on a system of
automata using the flow-synchronization rule.

The solving of L(ST ,P) gives either a flow-path or a proof (via the classical
duality theory of linear programming) of the inexistence of any flow-path on a
model of T stories. Subsection 2.2 will show that this completeness result on the
existence or inexistence of flow-paths is independent of the number of steps T .

Software Verification Based on Linear Programming 1159

The Completeness Theorem Being given L(ST ,P), the idea is to eliminate
in an iterative way transitions, messages and states that, whatever the value of T
is, can never be used if one wants to satisfy property P . The fundamental point
is that this iterative mechanism, called the proof system, works independently of
the number of time steps T . This proof system permits to establish the following
completeness theorem:

Theorem (completeness). Let S be a system of automata and P an acces-
sibility property on S. The proof system establishes, in time polynomial in the
size of (S,P), the following alternative:

– it proves the existence of a flow-path on S satisfying P and gives an upper
bound on the number of flow-steps;

– it proves the non-existence of any flow-path of S satisfying P , and thus of
any path of S satisfying P . ♦

The details of the proof of this theorem are technically difficult and too long to
be given in this document (the proof system is fully developed in [Dev99]). We
yet can give an idea of how the proof system works.

Let us suppose P = (C0, Cf) (we ask the system to go from a configuration C0 to
a configuration Cf). The proof system is made of three kind of inferences. Each
inference can deduce from the conclusions of the previous one that some data
(transitions, states or messages) of the system are useless and can be eliminated
safely, or that the accessibility property is impossible to satisfy.

First kind of inference:

If one can find a set of states Q1 such that any entering transition (say a)
must flow-synchronize with another one (say b1) that goes out of this set,

Q
a

b2

b3

b1

1

then we infer: if C0 ∩Q1 = ∅ then Cf ∩Q1 = ∅, which implies that all the
in-going and out-going transitions of Q1 (here a, b1, b2, b3) cannot be used.
These transitions are proved impossible to use and are thus eliminated.

Second kind of inference:

Similarly, if one can find a set of states Q2 such that any transition that
goes out of it must flow-synchronize with another one that goes inside this
set,

b1

b2

b3

a

Q
2

1160 S. Dellacherie, S. Devulder, and J-L. Lambert

then we infer: if Cf ∩ Q2 = ∅ then C0 ∩ Q2 = ∅, which implies that all
the in-going and out-going transitions of Q2 (here a, b1, b2, b3) cannot be
used. These transitions are proved impossible to use and are eliminated.

Third kind of inference:

If one can find a vector Y such that for any configuration Cn, we have
Y tC0 ≤ Y tCn, then we infer: if Cf satisfies Y tC0 > Y tCf , Cf cannot
be accessed and the request is proved infeasible, or else we must have
Y tC0 = Y tCf and any transition that strictly increases Y tCn is forbidden
and eliminated.

All inferences are computed using linear programming, which is a numerical
algorithm. All data eliminated by an inference are yet proved impossible to use.
The key idea of the proof is given by the well known following linear programming
result:

Lemma (Farkas). Let A be a m rows, n columns matrix, and b a vector of size
m. Then one and only one of the following statements is true:

1. there exists a vector x ≥ 0 such that Ax = b;
2. there exists a vector y such that ytA ≥ 0, ytb < 0. ♦

Based on this lemma, for all inferences linear programming gives a certificate
(the y vector) justifying the elimination of the selected set of data.

The remaining question is whenever the existence of a flow-path is proved, how
the existence of a true path can be proved and constructed.

The Effective Search of a Solution Path The proof of non-existence of any
flow-path implies the non-existence of any path, which implies the accessibility
property to be impossible to satisfy. In this case, the proof system is sufficient
to conclude. On the contrary, whenever the proof of existence of a flow-path
is given, it does not imply the existence of a path (as it is not always integer-
valued), and it is thus not directly possible to know whether the accessibility
property can be satisfied or not.

This constitutes the non-polynomial part of our method, and illustrates the in-
trinsic difficulty of software verification as the gap between linear programming
and integer programming. Yet several remarks make this gap not so overwhelm-
ingly difficult in our case. The remainder of this sub-section will give only prag-
matic and rather subjective arguments to understand why it seems to work in
practice.

The first thing to note is that the obtaining of a flow-path is very easy. It suffices
to use a linear programming solver on the storied extension with enough time
steps: the resulting solution is directly interpretable on the flow-synchronized
automata model.

Software Verification Based on Linear Programming 1161

Having the flow-path solution, a general way of finding a path is to force some of
the data to have integer values and to relaunch the linear programming solver.
Iterating this technique permits eventually to find an all integer-valued solution,
which is a path. A general strategy of this kind is yet heavily combinatorial,
with a branching on every forced variable (0 or 1 value), and also combinatorial
on the number of time steps.

However one has to notice that both the automata model and the flow-path
have a semantic meaning. Taking into account this meaning in order to choose
which data (transition, message or state) to force to a particular value, it re-
duces drastically the number of branching necessary to conclude. This guided
branching strategy seems very efficient in practice when a path does exist: on
all our examples, a few forcing steps were sufficient to find a true path.

When no paths exist, it gets more intricated and a guided branching strategy is
not always sufficient. Indeed, the property has to be proved impossible whatever
the number of time steps is. Yet, again guided by the semantic of the model and
of the flow-path solution, the idea is then to find on the automata model the main
reason permitting a non integer-valued solution to exist, and to slightly modify
the automata model in order to eliminate this non integer solution (the theoret-
ical meaning relying behind these slight modifications is given in [Del99b]).

Using this final technique together with some guided branching, we have always
been able to conclude on all the examples we considered.

3 Some Case Studies

We summarize now some experiments we have done with our verification method
on three different systems modelized with our automata-like formalism: a tele-
phony system, an access control system and a bus arbiter.

All computations were done on a 168MHz UltraSparc2 with 256Mb of memory.
The linear programming software used was CPLEX V4.0.

3.1 A Telephony System

This system modelizes mainly a connection/deconnection protocol between enti-
ties — telephones — which communicate between them using fifo channels. The
system is not centralized, which means that any telephone can communicate
directly with any other telephone by sending messages to its fifo channel. Some
more details on this system are given at the end of article [DDL99].

The complexity of this telephony system is due to the increasing amount of differ-
ent messages which can travel through the fifo channels. The connection/decon-
nection protocol uses 12 different messages (6 in emission and 6 in reception) for

1162 S. Dellacherie, S. Devulder, and J-L. Lambert

every possible pair of telephones, these messages being possibly stored on any
place of the corresponding fifo channel.

A telephone is made of two automata (one of 16 states, and one of 3 states).
A fifo channel of size k is made of a write automaton (k + 1 states), a read
automaton (one state) and k memory-cell automata (6 ∗ n(n− 1) + 1 states, n
being the number of telephones).

The experiments were done with n = 7 telephones using fifo channels of size
k = 3, or n = 5 telephones using fifo channels of size k = 7. The resulting
systems is made of more than 800 automata and uses more than 2500 different
synchronization messages. The state space is more than 1040 wide.

Here are some samples of properties for which a test-suite was found:

can phone#5 send a ABANDON to phone#6 ?
can phone#6 read a BUSY LINE from phone#3 ?
can phone#3 send a STOPPING to phone#2 ?
can phone#4 be in its state S13 3.4 ?
can phone#1 and phone#4 be in conversation ?

Here are some samples of properties for which a proof of impossibility was found:

can phone#3 ring while offhooked ?
can phone#5 send BUSY LINE to phone#1 while onhook ?
can phone#2 ring while nobody ever called it ?
can phone#7 be alone in communication ?
can phones #1, #4 and #6 be in circular communication ?

We also proved that with 5 telephones, fifo channels of size 6 were sufficient, by
finding a test suite that fills a fifo of size 6 and by finding a proof that a fifo of
size 7 can never be entirely filled.

In all cases, the computations took always less than an hour and used less than
200Mb of memory.

3.2 An Access Control System

The purpose of the system is to check in and out-goings of people through
doors of some buildings. All doors have a reading-card device and communicate
through buffers with a centralized controlling device. This centralized device
controls the validity of the request (activated and authorized card for the given
building), manages the opening-closing protocol of the door and records the
entrance or exit of the card-bearer. An emergency circuit is also specified in
order to open all doors of a given building in first priority, as well as a reset

Software Verification Based on Linear Programming 1163

protocol to end the emergency and put the doors of the building in a ready-to-
work state. The full technical details on this case study are in [Del99a].

The size of the system grows cubiquely with the number of cards i, the number
of doors j and the number of buildings k. The complexity of this system relies
in the amount of data which has to be maintained while processing the opening-
closing and the emergency-reset protocols (for example the centralized controller
knows for every card in which building it is).

A door is made of 6 automata (of respectively 7, 3, 2, 2, 2, and 2 states). The
centralized controller is made of many automata which represent mainly data. A
door’s buffer has 6 states, and the centralized controller’s buffer has 2ij +3j +1
states.

The experiments were done on a small instance made of 5 cards, 4 doors and
2 buildings, and then checked again on a huge instance made of 20 cards, 8
doors and 4 buildings. On this last instance the resulting system is made of 230
automata and uses more than 2800 different synchronization messages. The state
space is more than 1052 wide.

Here are some samples of properties for which a test-suite was found:

can card#1 go in and out of building#2 with all doors locked behind him?
can card#1 go in-out of building#1 and then get in-out of building#2?

can door#3 be open with all its data in its expected state?
can card#4, being deactivated, get in building#2 after being reactivated?
can all doors of a building on emergency be opened without using a card?

Here are some samples of properties for which a proof of impossibility was found:

can card#1 be in building#2 but registered out of it?
can card#1, who entered building#1, enter building#2

without getting first out of building#1?
can door#3 be open with one of its data in an unexpected state?

can card#4, which is deactivated, get in building#2
without being reactivated?

can a door of a building under emergency stay locked?
can a door being on a building not on emergency

get an emergency message?

The computations on the small instance took always a few minutes and used a
few tens of Mb of memory; on the huge instance it took from 4 to 15 hours and
used less than 200Mb of memory.

3.3 A Bus Arbiter

The bus arbiter is a hardware circuit whose purpose is to give to a single client
an access to a resource shared by several different clients. This is a well known

1164 S. Dellacherie, S. Devulder, and J-L. Lambert

example which has been treated with several techniques. The complete details
on this case study are given in [Dev98].

The bus arbiter used for our experiments was a direct translation from the one
given in the Xeve/Estrel package. It is made of several local cells which decide
whether or not to allow the access to the resource for a client. The client claims
the access by activating a cell which in turn activates a signal if it can access the
resource. Cells are connected one to another to form a ring, allowing information
to propagate. A token goes from one cell to the next on the ring. The cell who
owns the token can access the bus if it wants to. If not, it tells the next cell that
it can access the bus it it wants to. If this next cell doesn’t want to use the bus,
it tells the next cell and so on.

An arbiter with n cells has at least 2n input configurations. We made experiments
for systems with up to 1200 cells. The state space is then at least 10500 wide,
and the computation took around one hour. The property checked was to know
whether a client could access the bus at the same time as client#1. A proof of
impossibility was found for all instances checked.

4 Conclusion

We have presented a new method for software verification which can be used
either to exhibit test suites satisfying a property or proofs that a property is
unsatisfiable.

In comparison with existing verification techniques, the main advantage of our
method is its ability to handle huge models of automata without doing any
abstraction, and to give at worse an answer which has always a semantic meaning
helpful for further study. On the examples we modelized, the study of these
answers has always permitted to conclude.

The modelization used (communicating automata) is dynamic and thus not far
from an implementation. This means that the method is fitted for test suite
generation. However, the relative poor computation time compared to proba-
bilistic techniques indicates mostly an interest in finding probalistically hard
test suites. The resolution time, though, is fast enough (both for path finding
and proof finding) to allow interactivity to the model designer.

The resolution times given here can be improved easily. Our linear programming
solver is not state-of-the-art and current solvers are now about 10 to 30 times
faster while using less memory. The computer we use has a Specfp95 equal to
10, which is quite poor. Furthermore, we didn’t work on optimizing the problem
formulation given to the solver. The work involved is surely important but could
decrease greatly the resolution time.

To finish, both test suites and (under some conditions) proofs can be found
on a small instance of a generic specification and directly checked on a bigger
instance. This is of great importance if the goal is to validate the specification
and not only an instance of it.

Software Verification Based on Linear Programming 1165

References

[Abr95] J-R. Abrial. The B-book. Cambridge University Press, 1995.
[CA95] James C. Corbett and Georges S. Avrunin. Using integer programming to

verify general safety and liveness properties. Technical report, University
of Hawaii at Manoa, 1995.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixed
points. In Proceedings of the 4th ACM Symposium on Principles of Pro-
gramming Languages, Los Angeles, pages 238–252, New York, NY, 1977.
ACM.

[CHP92] J.M. Couvreur, S. Haddad, and J.F. Peyre. parametrized resolution of
families of linear systems. RAIRO Recherche Operationnelle, 26:183–206,
1992.

[DDL99] S. Dellacherie, S. Devulder, and J-L. Lambert. (technical version) software
verification based on linear programming. Technical report, GREYC, uni-
versit de Caen, 1999.

[Del99a] S. Dellacherie. A case study: specification and verification of an access con-
trol system using the lpv technology. Technical report, GREYC, Universit
de Caen, 1999.

[Del99b] S. Dellacherie. Vrification logicielle base sur la programmation linaire.
PhD thesis, Universit de Caen, 1999. To appear.

[Dev98] S. Devulder. A comparison of lpv with other validation methods. Technical
report, GREYC, Universit de Caen, 1998.

[Dev99] S. Devulder. Un modle de preuve de logiciels fond sur la programmation
linaire. PhD thesis, Universit de Caen, 1999. To appear.

[ES92] J. Esparza and M. Silva. A polynomial-time algorithm to decide liveness
of bounded free choice nets. Theoretical Computer Science, 102:185–205,
1992.

[faq] www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html.
[GH93] J.V. Guttag and J.J. Horning. Larch: languages and tools for formal spec-

ification. Springer-Verlag, 1993.
[Hol97] G.J. Holtzmann. The model checker spin. IEEE Transactions on Software

Engineering, 23(5), May 1997.
[JPO95] Laeta Jategaonkar Jagadeesan, Carlos Puchol, and James E. Von

Olnhausen. Safety porperty verification of esterel programs and ap-
plications to telecommunications software. In Seventh Conference on
Computer-aided verification, 1995.

[Kur92] R. P. Kurshan. Automata-theoretic verification of coordinating processes.
Technical report, ATT Bell Laboratories, 1992.

[LM89] J.B. Lasserre and F. Mahey. Using linear programming in petri net anal-
ysis. RAIRO Recherche Operationnelle, 23:43–50, 1989.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. Pvs: Combin-
ing specification, proof checking, and model checking. In LNCS, volume
1102, pages 411–414. Springer Verlag, 1996.

Sensors and Actuators in TCOZ

Brendan Mahony1Jin Song Dong2

1 Information Technology Division
Defence Science and Technology Organisation (DSTO)
Brendan.Mahony@dsto.defence.gov.au

2 School of Computing,
National University of Singapore,
dongjs@comp.nus.edu.sg

Abstract. Timed Communicating Object Z (TCOZ) combines Object-Z's
strengths in modeling complex data and algorithms with Timed CSP's strengths
in modeling real-time concurrency. TCOZ inherits CSP's channel-based com-
munication mechanism, in which messages represent discrete synchronisations
between processes. The purpose of most control systems is to observe and con-
trol analog components. In such cases, the interface between the control system
and the controlled systems cannot be satisfactorily described using the channel
mechanism. In order to address this problem, TCOZ is extended with continuous-
function interface mechanisms inspired by process control theory, the sensor and
the actuator. The utility of these new mechanisms is demonstrated through their
application to the design of an automobile cruise control system.

1 Introduction

The design of complex systems requires powerful mechanisms for modeling data, al-
gorithms, concurrency, and real-time behaviour; as well as for structuring and decom-
posing systems in order to control local complexity. In recognition of this, much recent
work in the development of specification and design notations has concentrated on the
blending of existing notations with strong mechanisms in one or the other of these
areas. An early examples of this trend are the LOTOS language, which blends process
algebras with algebraic modeling languages, and RAISE, which blends VDM, CSP, ML
with algebraic modeling languages. More recently there has been active investigation of
the integration of object-oriented data-structuring techniques with process description
languages. The blending of Z/Object-Z with either CSP [19, 6, 18, 21] or CCS [7, 22]
has been a popular approach. TCOZ lies in this last category. It is a blending of Object-
Z and Timed CSP that is aimed at providing a powerful design notation for real-time
and concurrent systems with digital components.

Many classes of complex digital systems are identified in the literature: concurrent,
real-time, hybrid, embedded to name a few. In fact, many of these systems are better
characterised as control systems [15]. Following Shaw [17], we contend that the ar-
chitecture of control systems is an important structuring mechanism for the efficient
design of complex digital systems. The (closed-loop) control architecture is depicted in
Figure 1 (which is borrowed with minor modifications from Raven [15, Fig. 1.3]).

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1166-1185, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Logic
Control

Feedfoward
Elements

Actuating
Signal Variables

Controlled
SetpointCommand

Elements

Signal
Sensor

Feedback
Elements

Command Variables
Manipulated

Variables
Uncontrolled

Controlled
Process

Fig. 1. Abstract control system architecture

Generally the controlled process is described by a differential or integral equation
involving the controlled, uncontrolled, and manipulated variables, which are best mod-
eled as continuous real-valued functions of real-valued time. The development of pre-
cise models for analog components is essentially beyond the scope of TCOZ, which
is restricted by its nature to the description of discrete models. (Even though TCOZ
adopts real-valued time, all of the events and quantities described in a TCOZ class re-
main essentially discrete in nature.) Higher level design languages such as the Timed
Refinement Calculus [14] or Duration Calculus [24] should instead be employed to
describe the behaviour of the analog components.

However, in a modern digital control system, the subsystem of Figure 1 enclosed
within the dashed rectangle is composed solely of digital components. The feedforward,
feedback, and command elements are generally digital-to-analog and analog-to-digital
converters as appropriate. The actuating signal is used to generate an analog quantity
and the sensor and setpoint signals are sampled from analog quantities. The control
logic is a non-terminating reactive process executing on a digital processing unit. All of
these elements should in theory be amenable to description within a discrete modeling
language such as TCOZ.

In drawing the digital subsystem boundary to encompass the conversion elements
of the control system, we present some challenges to the CSP channel-based commu-
nications mechanism used in TCOZ. The primary challenge lies in the analog nature of
the quantities which make up the interfaces. The discrete modeling mechanisms of CSP
and Object-Z cannot describe a continuously varying quantity. Another point is that the
digital system thus described becomes an open system. CSP channels are better suited
to describing closed systems because of CSP's view of communications as represent-
ing synchronisations between systems. A closed system is one in which all aspects of
system behaviour are fully described, with no need to refer to, nor interface to, other
systems. An open system is one which operates in the context of an environment which
is determined solely by the interface it presents. Since CSP communications require
synchronisation between processes, any system specified in CSP is subject to arbitrary

1167Sensors and Actuators in TCOZ

delay by an uncooperative environment. Such a system cannot usually be completely
decoupled from its environment because it relies on the co-operation of the environment
to make progress.

In order to address these shortcomings of the basic CSP communications mecha-
nism, we propose the introduction to TCOZ of two continuous-function interface mech-
anisms inspired by the control system architecture. The sensor provides a sampling
channel linked to a global continuous variable. The actuator provides a local-variable
linked to a global continuous variable. Sensors and actuators may appear either at the
system boundary (describing how global analog quantities are sampled from or gener-
ated by the digital subsystem) or else within the system (providing a convenient mech-
anism for describing local communications which do not require synchronisations).

Outline of paper

It is assumed that the reader has some familiarity with both Object-Z [4] and CSP, since
the mechanics of blending the two notations is considered only briefly in Section 2.
The continuous-function interface mechanisms, sensor and actuator, are introduced in
Section 3. Section 4 informally describes the high-level functionality of a standard case
study in automatic control, the automobile cruise control. The TCOZ specification of
the cruise control is presented and evaluated in Section 5.

2 Aspects of TCOZ

TCOZ is a blending of Object-Z [4] and Timed CSP [16], for the most part preserving
them as proper sub-languages of the blended notation. The essential elements of this
blending are the unification of the concepts of type, class, and process and the unifica-
tion of Object-Z operation specification schemas with terminating CSP processes. Thus
instances of process may be declared normally and occupy the same syntactic class as
objects. Operation schemas and CSP processes also occupy the same syntactic cate-
gory, operation schema expressions may appear wherever processes may appear in CSP
and CSP process definitions may appear wherever operation definitions may appear in
Object-Z. In this section we briefly consider the aspects of TCOZ which help to bring
the two notations together. A detailed introduction to TCOZ and its Timed CSP and
Object-Z features may be found elsewhere [12]. The semantics of TCOZ can be found
in [10].

2.1 Declaring channels

CSP channels are given an independent, first class role in TCOZ. This allows the com-
munications and control topology of a network of objects to be designed orthogonally
to their class structure.

In order to support the role of CSP channels, the state schema convention is ex-
tended to allow the declaration of communication channels. If c is to be used as a
communication channel by any of the operations of a class, then it must be declared
in the state schema to be of type chan. Channels are type polymorphic and may carry

1168 Brendan Mahony and Jin Song Dong

communications of any type. Being based on ZF set theory, Z is not technically speak-
ing a typed logic [20], so this presents no semantic challenge and prevents unnecessary
proliferation of channel names. Channel variables act in the role of `event constructors' .
A channel c may either appear alone in the role of an event (applied to the null-value)
or else be applied to a Z-value v like so c:v. The conventional usages c?v and c!v serve
solely as visual feedback to document the intention that an event act in the role of an
input or output respectively. They have no semantic implications.

Contrary to the conventions adopted for internal state variables, channels are viewed
as shared rather than as encapsulated entities. This is a consequence of their role as com-
munications interfaces between objects. The introduction of channels to TCOZ reduces
the need to reference other classes in class definitions, thereby enhancing the modularity
of system specifications.

2.2 A model of time and quantity

In TCOZ, all timing information is represented as real valued measurements in seconds.
Describing time and other physical quantities in terms of standard units of measurement
is an important aspect of ensuring the completeness and soundness of specifications of
real-time, reactive, and hybrid systems. In order to support the use of standard units of
measurement, extensions to the Z typing system suggested by Hayes and Mahony [8]
are adopted. Under this convention, time quantities are represented by the type Rs;
where R represents the real numbers and s is the SI symbol for the standard unit of
time. Time literals consist of a real number literal annotated with a symbol representing
a unit of time. For example, 3�s is a literal representing a period of three microseconds,
that is three millionths of the standard time unit, the second. All the SI standard units
symbols are supported and all the arithmetic operators are extended in the obvious way
to allow calculations involving units of measurement.

2.3 Deadlines and delays

In order to describe the timing requirements of operations and sequences of operations,
a deadline command along the lines described by Hayes and Utting [9] is introduced.
If OP is an operation specification (defined through any combination of CSP process
primitives and Object-Z operation schemas) then OP � DEADLINE t describes the pro-
cess which has the same effect as OP, but is constrained to terminate no later than t.

The WAITUNTIL operator is a dual to the deadline operator. The process

OP � WAITUNTIL t

performs OP, but will not terminate until at least time t.

2.4 Guards and preconditions

A novel CSP operator, the state-guard, is used to block or enable execution of an opera-
tion on the basis of an object' s local state. For example, the operation [a � 0] � [�(a) j
a � 0 ^ a0 =

p
a] will replace the state variable a with its square root if a is positive

1169Sensors and Actuators in TCOZ

otherwise it will deadlock, that is be blocked from executing. The blocking or enabling
of this operation is achieved by the state guard [a � 0] � and not by the precondition
a � 0 within the operation schema. If the operation schema alone is invoked with a
negative, it will diverge rather than block. The difference between deadlock and diver-
gence is that a divergence may be refined away by making an operation more robust,
while a deadlock can never be refined away.

An additional function of state guards is as a substitute for CSP's indexed external
choice operator. The process [n : N j 0 � n � 5] � c?n ! P(n) may input any value
of n between 0 and 5 (from channel c) as chosen by its environment. CSP's indexed
internal choice is replaced by the operation schema and sequential composition. The
process [n! : N j 0 � n! � 5]; c!n ! P(n) may output any value of n between 0 and 5
according to its own designs.

2.5 Active and passive objects

Active objects have their own thread of control, while passive objects are controlled
by other objects in a system. In TCOZ, an identifier MAIN (non-terminating process) is
used to determine the behaviour of active objects of a given class [3]. The MAIN process
is required to have neither input nor output parameters. If ob1 and ob2 are active objects
of the class C, then the independent parallel composition behaviour of the two objects
can be represented as ob1 jjj ob2, which means ob1:MAIN jjj ob2:MAIN

2.6 Complex network topologies

In TCOZ, a graph-based approach is adopted to describing network topologies [13]. For
example, consider that processes A and B communicate privately through the channel
ab, processes A and C communicate privately through the channel ca, and processes B
and C communicate privately through the channel bc. This network topology may be
described in TCOZ by the network topology expression

k(A ab
�- B; B bc

�- C; C ca
�- A):

Network topology expressions are a notation intended to mimic the graphical commu-
nicating structure. They consist of interface specifications of the form

P1; : : : ;Pn
c1;:::;cn
� - Q1; : : : ;Qn;

indicating that the channels c1; : : : ; cn are used to communicate from the processes
P1; : : : ;Pn to the processes Q1; : : : ;Qn:

3 Adding continuous-function interfaces to TCOZ

Integrating TCOZ specifications with traditional control theory system models presents
something of a challenge. The standard CSP communications interface is the channel,
which represents a sequence of discrete synchronisations between system and environ-
ment. The standard model for system interfaces in control theory is the continuous,

1170 Brendan Mahony and Jin Song Dong

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

screen

temp

nil

s

init on off on

19.0

20.0

21.0

22.0

23.0

C
o

Fig. 2. The office communication scenario.

differentiable function. One approach to this problem is to require the system designer
to resolve the mismatch at a higher-level of abstraction, handcrafting a translation from
the continuous-functionworld to TCOZ's discrete world. We reject this approach on the
grounds that, though it is very flexible, it constitutes a barrier to the ready acceptance
of TCOZ as design tool for digital components of control systems. Instead we adopt an
approach by which TCOZ takes it upon itself to become a `good corporate citizen' in
the world of control engineering by providing standardised mechanisms for converting
from the discrete to the continuous and vice versa, thus allowing TCOZ process classes
to present a continuous-function interface to their environments. This allows subsys-
tems specified in TCOZ to fit seamlessly into the overall design of a complex control
system.

3.1 The digital temperature display

As a simple demonstration in the use of continuous-function interfaces in TCOZ and
their interaction with CSP channels and Object-Z local variables, we consider the com-
munication scenario between a digital temperature display (DTD) and the occupant of
an office. The office occupant can turn on/off the DTD by pressing the `on' /`off' buttons
on the unit. If the DTD is turned on, then it will monitor the rooms current temperature
using its built-in thermometer and update the temperature display every 5 s to display
the current temperature to the nearest half a degree Celsius. If the DTD is turned off,
the temperature display goes blank. An example behaviour of the DTD is illustrated by
Figure 2.

The communications interfaces to the DTD fall into three distinct classes. The on/off
buttons of the unit are best represented using the channel mechanism, because they re-
quire explicit co-operation between the user and the DTD unit (that is a synchronisation)
and because they are discrete events. A continuous interface could be used, but consid-
erable effort would be required to ensure proper synchronisation. The temperature on
the other hand is best modeled as a continuous function of time and is not well suited

1171Sensors and Actuators in TCOZ

to being described as a CSP channel. Not only is the continuous function the standard
scientific and engineering model for analog quantities, it is also common engineering
practice to view digital signals as piece-wise continuous step-functions [14]. The tem-
perature display falls into an area between the truly continuous and the truly discrete,
either model may be preferred depending on the application. In this case, because the
display falls at the system boundary, the difficulties of using CSP channels to describe
open system interfaces mean that modeling the display as a CSP channel is not ideal.
For example, the requirement that the display be updated every 5 s cannot easily be
expressed if the display is a CSP channel which may be blocked by an uncooperative
environment.

The on/off buttons can be modeled by using CSP channels, one for on-events and
one for off-events. In order to describe the thermometer and the display we introduce
two new continuous-function interface mechanisms.

The thermometer is introduced by a declaration of the form

temp : R�C sensor;

which declares temp to be a continuous-function interface with public type Rs !
R
�C : Internally, temp takes the syntactic role of a CSP channel. The relationship be-

tween the public continuous-function variable and the internal channel is that whenever
a value v is communicated on the internal channel at a time t, that value must be equal
to the value of the continuous function at that time, that is temp(t) = v.

The temperature display is introduced by a declaration of the form

screen : Display actuator; where Display ::= TemphhN � 0:5�Cii j nil:

This declaration also introduces screen as a public continuous-function variable, but in
this case the internal role is that of the local state variable. Thus screen may appear in
the delta list of operations and any other place where a local variable may appear.

The TCOZ process class describing the DTD is below.

DTD

temp : R�C sensor
screen : Display actuator
on; off : chan

INIT

screen = nil

SetScreen
�(screen)
t? : R�C

9 dt : N � 0:5�C �
dt = t � 0:5�C ^
screen0 = Temp(dt)

Show b= ([t : R�C] � temp?t !
SetScreen � DEADLINE 5 s � WAITUNTIL 5 s; Show)
O off ! NoShow

NoShow b= screen := nil; on ! Show

MAIN b= on ! Show

A DTD object begins with the screen blanked (INIT), then when the on-button is pressed
it passes into Show mode.

1172 Brendan Mahony and Jin Song Dong

In Show mode it polls the temperature sensor and displays the result to the nearest
one half degree Celsius. This behaviour is repeated with periodicity 5 s : A repeated
activity with period T can be described by the CSP definition of the form

PA0 b= A; WAITUNTIL T; PA0;

provided the activity A is guaranteed to terminate before T. In order ensure this a dead-
line is placed on the activity giving a definition of the form

PA b= A � DEADLINE T � WAITUNTIL T; PA:

The definition of Show is of precisely this form, ensuring that the screen update occurs
once every 5 s : The fact that the temp channel is a sensor is important in ensuring
that the Show acts as expected. Since temp events do not represent synchronisations
with the environment they happen immediately they are offered. A simple CSP channel
could be blocked for an arbitrary time, making such a periodic behaviour impossible to
guarantee.

If the off-button is pressed with the DTD in Show mode, it immediately passes to the
NoShow mode by blanking the screen. This is expressed using the Timed CSP interrupt
operator (O), which shifts control to the interrupt routine as soon as an interrupt
event (in this case off) is enabled. The DTD remains in NoShow mode until the on-
button is once again pressed. Note that the expression screen := nil is a short form of
the schema [�(screen) j screen0 = nil]

3.2 The local virtues

The experienced CSP practitioner is probably not entirely convinced by the preceding
argument. After all the so-called `continuous-function interface' is really just an asyn-
chronous communications medium and it is well known how to model such things in
CSP. To a degree this criticism is valid, at least in a closed system. A local continuous-
function interface a of type A may be modeled by the following TCOZ process, pro-
vided that it appears in a context in which the channels la and ra are hidden from the
environment and therefore cannot be blocked.

loc a

la; ra : chan
a : A

MAIN b= � LA � ([i : A] � la?i ! a := i; LA) 2 (ra!a ! LA)

If B is a process which uses a as an actuator and C is a process that uses a as a sensor,
then

P b= kB a
�- C

has the same behaviour as

P�
b= kB� la

�- A; A ra
�- C�

;

1173Sensors and Actuators in TCOZ

where B� is B with a replaced by la and updates to a replaced by outputs to la; and C�

is C with a replaced by ra. This interfacing model is inferior in two ways.
Firstly it is only effective when used in closed systems. This means that processes

designed to interface with such a channel cannot be understood in isolation, leading to
a highly coupled system design. In the above examples, the processes B� and C� have
the correct timing behaviour only when placed in conjunction with A as in P�. Unless la
and ra are hidden, a hostile environment may interfere with their behaviour. In contrast
the sensor and actuator mechanism provide a truly localised model of an asynchronous
interface. Systems designed using these mechanisms are decomposed more easily be-
cause the individual components are more easily understood in isolation. In the DTD
specification there is no need to describe the behaviour of system environment at all,
only the interface it presents.

Secondly in the sensor/actuator mechanism the associated continuous function be-
comes a public interface to the TCOZ process. This means that TCOZ processes may
be treated transparently as normal components in a formal approach to analog systems
design. One such approach is being developed by Fidge and Hayes et al [5, 9], based
on Mahony's timed refinement calculus [11, 14]. In any case, describing digital compo-
nents as truly open subsystems seems preferable to requiring the designer to artificially
close a system design by providing unsatisfactory digital approximations to analog sys-
tem components.

3.3 Generating a real-time clock timer

As another example of the utility of continuous-function interfaces, consider the spec-
ification of a real-time system clock for a digital system. A real-time clock provides a
synchronisation signal for the various components in a system, in the form of a simple
square-wave which oscillates with a set frequency. Such clocks are generally rated in
terms of the number of cycles per second (hz) which they generate.

In TCOZ the signal from the real-time clock can be modeled by using a boolean
actuator and the square-wave generated by a periodic process.

RT Clock

freq : Rhz
per; gain : Rs

per � freq = 1 ^ gain < per=10

rtc : B actuator

MAIN b= �C � rtc := : rtc � DEADLINE gain � WAITUNTIL per=10; C

The parameters of the RT Clock represent the frequency freq and period per of the
clock; and the time taken to change state gain, which is much smaller than the period.

1174 Brendan Mahony and Jin Song Dong

3.4 Monitoring input signals

A number of the continuous-function interfaces in the cruise control specification in
Section 4 represent digital signals, that is signals of type boolean. In such cases it is
often of great interest to detect transitions in the signal, either from high to low or vice
versa. The following TCOZ class describes a process which monitors a digital signal
and raises events whenever it encounters a leading or a trailing edge.

Edges

signal : B sensor
up; dn : chan

High b= signal:false! dn ! Low

Low b= signal:true! up ! High

MAIN b= signal:false! Low 2 signal:true! High

It may seem strange to introduce a signal interface and then re-interpret it as events,
but this mechanism gives a more accurate local model of the situation than if the events
themselves were the interface. With a channel based interface, a failure of the system
to process the signal rapidly enough may simply result in the environment waiting till it
is finished. With the continuous-function interface the missing of a processing deadline
definitely results in the missing of an edge.

Sometimes we will be interested only in leading edges or else only in trailing edges.

Lead b= (Edges n dn)
Trail b= (Edges n up)

Both the RT Clock and the Edges classes will be reused extensively in the cruise
control specification.

4 Cruise control overview

The aim of a cruise control system for a car is to maintain the speed of the car even
over varying terrain. The high-level system structure of a cruise control system of a
car is illustrated in Figure 3. The Car is an analog system capable of moving forward,
changing direction, producing heat, and many other observable behaviours which we
represent as an abstract variable perf : The variable perf is a function of three inputs.
The driver provides control inputs by by turning the steering-wheel, applying the brake,
etc the aggregate of which we represent by the abstract variable driver inp: The throttle
setting, represented by throttle, controls the forward speed of the car. Finally, various
environmental factors including wind drag, road incline, etc (represented by env) can
affect the response of the system to the controlling variables.

The purpose of the Cruise class is to monitor the linear speed of the car and to
modulate the throttle setting so as to maintain the speed of the car at a point determined
by the driver inputs.

1175Sensors and Actuators in TCOZ

driver_inp

throttle

Carenv

perf

Cruise

Fig. 3. Block diagram of cruise system and car.

set

res

eng_on

sys_on

brake Set_Throttle

throttle

mode

Set_State

des_speed

speed

Set_Speedwheel_ang

Cruise

acc

1Mhz_Clock

Fig. 4. Block diagram of throttle control.

Notice that the structure of the cruise control system is precisely that of the ab-
stract control system presented in Figure 1. The controlled variable is perf , the uncon-
trolled variables are env and some components of driver inp, the manipulated variable
is throttle, and the command variables are the components of driver inp which deter-
mine the mode of behaviour of the Cruise class. This gives Cruise class itself the same
external interface as the subsystem enclosed by the dashed rectangle in Figure 1, sug-
gesting the structure of that subsystem as a suitable architecture for the Cruise class.
Section 5 is devoted to a formal TCOZ specification of the Cruise subsystem following
this control system architecture.

1176 Brendan Mahony and Jin Song Dong

5 TCOZ model of the cruise control system

The top-level design of the cruise control system, illustrated in Figure 4, follows the
basic structure of the digital subsystem from Figure 1. The command variables are
the components of driver inp (driver input) that are devoted to operating the cruise
control. These consist of the cruise-on/off button sys on, the set-cruise button set, the
resume-cruise button res, the accelerator pedal acc, and the brake pedal brake. The ex-
act function of these command variables is described in Section 5.3, but for the moment
it is sufficient to note that they are interpreted by the Cruise class command element
Set State: The setpoint signals are des speed, mode, and acc which is passed through
directly. The monitored components of the car are eng on which indicates when the en-
gine is running and wheel ang which measures the angular position of a reference point
on one of the wheels. The feedback element of the Cruise class is the Set Speed class,
which uses wheel ang to calculate the current speed. The control function is performed
by the Set Throttle class which determines the correct throttle setting according to the
current speed, mode, des speed, and accelerator heel pulses and (acceleration) acc. The
output from the cruise control is the throttle, which constitutes both the actuating sig-
nal and the manipulated variable. The feedforward element is the trivial process which
propagates throttle through to the Car system. The final class is the real-time clock
which is used to drive the activities of the other classes.

5.1 The clock

In order to drive the cruise control circuitry we introduce a 1Mhz clock, that is 1 cu =
1�s :

1Mhz Clock
RT Clock

per = 1 cu ^ gain < 0:1 cu

5.2 Car speed

The speed of the car is determined by counting clock signals between pulses from a
wheel sensor. This process consists of four components as shown in Figure 5: one to
generate the wheel pulses, one to detect wheel pulses, one to detect clock signals, and
one to actually count the clock signals in each period of revolution and calculate the
speed. The speed is calculated with a precision of 0:1 km hr�1

; that is in units of su ==

0:1 km hr�1
; and also to an accuracy of 0:1 km hr�1, under the assumptions that the

maximum speed of the car is maxs == 300 km hr�1 and the wheel circumference is
Cw == 3m : The period of revolution is calculated with a precision is �1 clock cycle,
the wheel pulse timings may be so as to allow a whole extra clock signal when the
time elapsed is a small fraction of a clock cycle or vice versa. To ensure that the overall
accuracy of the speed calculation is better than �1 su, the clock unit cu must satisfy
the condition

1 cu � Cw
maxs

� 0:5 su
maxs�0:5 su :

1177Sensors and Actuators in TCOZ

Cal_Sp

speed

up

up

p

c
Lead

LeadWheel_Sense pulses

rtc

wheel_ang

Set_Speed

Fig. 5. Block diagram of speed calculation.

The suggested clock rate of 1Mhz is adequate to ensure this condition.

The Wheel Sense process monitors the wheel ang variable and raises the pulse
signal while the angle is between 0 rad and �a : Rrad : In order to ensure the pre-
cision of �1 cu, we require that raising and dropping the signal take no longer than
�a == 0:1 cu :

Wheel Sense

wheel ang : Rradsensor
pulse : B actuator

INIT

pulse = false

MAIN b= �WS �
[a : Rrad j 0 rad � a � �a] � wheel ang?a !

pulse := true � DEADLINE �a;
[a : Rrad j �a � a] � wheel ang?a !

pulse := false � DEADLINE �a; WS

Between each wheel pulse the number of clock pulses is counted to determine the
period of rotation to the nearest clock unit. The speed is then calculated in speed units
by dividing the circumference (Cw) of the wheel by the period between pulses.

Cal Sp

upc; upp : chan
speed : N suactuator
per : N cu

INIT

speed = 0 cu ^ per = 0 cu

NewSpeed
�(speed)

per > Cw=maxs ^
speed = Cw

per � 0:5 su _
per � Cw=maxs ^ speed = maxs

1178 Brendan Mahony and Jin Song Dong

Count b=
[per < Cw=1 su] � (

(upc ! per := per + 1 cu � DEADLINE 0:1 cu; Count) 2
(upp ! (NewSpeed; per := 0 cu) � DEADLINE 0:1 cu; Count))

2

[per � Cw=1 su] �
(speed := 0 su; per := 0 cu) � DEADLINE 0:1 cu;

upp ! Count

MAIN b= upp ! Count

Two exceptional behaviours are considered. If the wheel is rotating very slowly, the
period calculation times out when the count exceeds Cw=maxs, the speed is set to 0 su
and the count is not restarted until the next wheel pulse is encountered. If the wheel is
rotating very fast then the speed is set to maxs.

Set Speed

pe : Lead[pulses
signal ;

upp

up]

ce : Lead[rtc
signal ;

upc

up]

cs : Cal Sp
ws : Wheel Sense

MAIN b= k(ws pulses
� - pe; pe

upp
�- cs; ce upc

�- cs)

5.3 Cruise modes

When operating, the cruise control can be in any of four modes of operation.

CM b= setpoint j accel j decel j rest

setpoint The speed of the car is maintained at the desired speed by manipulating the
throttle setting.

accel The speed of the car is increased by opening the throttle.
decel The speed of the car is decreased by closing the throttle.
rest No throttle manipulation is performed, but the desired speed is remembered.

The mode of operation of the cruise control is determined by the following input
signals.

eng on The cruise control cannot operate if the engine is off.
sys on The cruise control is switched on and off by this signal.
set While the cruise control is in any operating mode, briefly raising the set-signal sets

the desired speed to the current speed and initiates setpoint-mode. Holding the set-
signal high for longer than

th == 1 s

1179Sensors and Actuators in TCOZ

causes the car to enter the decel-mode. When the set-signal falls the desired speed
is set to the current speed, then control returns to setpoint-mode.

res While the cruise control is in any operating mode, briefly raising the res-signal
initiates setpoint-mode, but does not alter the desired speed. Holding the res-signal
high for longer than th causes the car to enter the accel-mode. When the res-signal
falls the desired speed is set to the current speed, then control enters the setpoint-
mode.

brake While the cruise control is in any operating mode, touching the brake causes the
control to enter rest-mode, but does not alter the desired speed.

speed If operating, the cruise control cannot be in setpoint-mode if the desired speed is
less than mind == 50:0 km hr�1

:

The purpose of the Set State process is to determine the correct operating mode and
to maintain the value of the desired speed.

In order to correctly interpret the control signals from the driver, especially in light
of the dual purpose nature of the set and res signals, monitors are placed on these sig-
nals to convert them to a sequence of driver events as depicted in Figure 6. The possible
events on the set signal are sp for enaging cruise control and dc for decelerating. The
possible events on the res signal are rs for resuming cruise control and ac for accelerat-
ing.

Set

se : Edges[set
signal]

sp; dc : chan

SetPt b= dn ! sp ! Interpret
Interpret b= up !

SetPt .fthg (dc ! SetPt)

MAIN b= k(Interpret up;dn
� - se)

Resume

re : Edges[res
signal]

sp; rs : chan

Res b= dn ! rs ! Interpret
SetPt b= dn ! sp ! Interpret
Interpret b= up !

Res .fthg (ac ! SetPt)

MAIN b= k(Interpret up;dn
� - re)

A simple edge monitor is used on the brake signal.
The normal behaviour of the cruise state is to set the mode and des speed signals in

accordance with driver cruise events and any brake events. However, this behaviour is
suppressed if the eng on or sys on signals go low. When both signal go high again the
mode is set to rest and the des speed to 0 su.

Cruise State

ac; sp; rs; dc; upb; dnb : chan
mode : CM actuator
des speed : N suactuator
speed : N susensor
eng on; sys on : B sensor

INIT

mode = rest
des speed = 0 su

1180 Brendan Mahony and Jin Song Dong

Set_State

set

res

brake

Resume
mode

des_speed

Set

Edges upb bdn

eng_on

sys_on

Cruise_State

rs

sp

dc

ac

speed

Fig. 6. Block diagram of cruise state determination.

SP b= sp ! [s : N su] � speed?s ! (
[s � mind] � des speed := s; mode := setpoint 2
[s < mind] � SKIP)

RS b= rs ! (
[des speed � mind] � mode := setpoint 2
[des speed < mind] � SKIP)

AC b= ac ! mode := accel

DC b= dc ! mode := decel

Normal b= (SP 2 RS 2 AC 2 DC); Normal

Active b= Normal O upb ! mode := rest; dnb ! Active

Sys Off b= sys on?true! Active
O sys on?false ! mode := rest; des speed := 0 su; Sys Off

Eng Off b= eng on?true ! Sys Off
O eng on?false ! mode := rest; des speed := 0 su; Eng Off

MAIN b= Eng Off

A Set State class then consists of monitors on the set, res, and brake signals; and a
Cruise State class communicating with each other as described in Figure 6.

1181Sensors and Actuators in TCOZ

upcrtc

mode

des_speed

speed

acc

ThrottleLead

Set_Throttle

Fig. 7. Block diagram of throttle determination.

Set State

sm : Set
rm : Resume
br : Edges[brake

signal ;
upb

up ;
dnb
dn]

cs : Cruise State

MAIN b= k(sm sp;dc
� - cs; rm sp;rs;ac

� - cs; br upb;dnb
� - cs)

5.4 Throttle

The final component of the cruise control determines the appropriate throttle setting
for all cruise modes. A block diagram of the Set Throttle component is depicted in
Figure 7. It is a clocked component which calculates a new throttle setting each clock
cycle, based on the current speed, the cruise mode, the accelerator pedal, and the desired
speed (in setpoint-mode). The throttle and accelerator pedal quantities are represented
abstractly by a unit symbol au.

Throttle
�th : N au
maxth;minth : N au
:::

sp : N su
speed; des speed : N susensor
mode : CM sensor
acc : N ausensor
throttle : N auactuator

::: [details omitted]

1182 Brendan Mahony and Jin Song Dong

The details of the above class are omitted due to the space limitation.
The Set Throttle class consists of a monitor on the clock signal and a Throttle class

for updating the throttle every clock cycle.

Set Throttle

ce : Lead[rtc
signal ;

upc

up]

th : Throttle

MAIN b= k(ce upc
�- th)

5.5 Cruise system

As stated in the introduction to this section, the Cruise class consists of a 1Mhz clock,
a speed monitor, a user input monitor, and a throttle actuator interacting as described in
Figure 4.

Cruise

c : 1Mhz Clock
ss : Set State
sd : Set Speed
st : Set Throttle

MAIN b= k(c rtc
�- sd; st; ss mode;des speed

� - st; sd speed
� - ss; st)

6 Conclusion

In this paper, Timed Communicating Object Z (TCOZ) has been extended with new
communications mechanism, the continuous-function interface. The basic idea is to
use a (usually real-valued) function of real-valued time as communications medium
between objects. The actuator and sensor mechanism differ only in the manner in
which the continuous-function interface is utilised by a class. A actuator takes on the
role of a local variable through which an object `controls' the value of the continuous-
function interface. A sensor takes on the role of a CSP channel through which the object
`monitors' the value of the continuous-function interface.

The standard method of communication between components in an object-oriented
architecture is the method invocation by which an object may request a service from
another object if it knows the appropriate method name and object identifier. This form
of communication leads to a high degree of coupling between object classes because
so much information is needed to set up communications. In CSP the standard commu-
nications mechanism is the channel which provides a more abstract interface between
processes. Each component interacts only with its channels and need have little detailed
knowledge about the structure of other components. However, because communications
on CSP channels represent explicit synchronisations between processes, each process

1183Sensors and Actuators in TCOZ

must obey the correct `protocol' for the channel in order to avoid deadlock situations.
Thus there remains a residual amount of coupling between processes linked by CSP
channels. This coupling is removed by the continuous-function interface mechanism
which does not require a synchronisation between processes for communication to oc-
cur. Through judicious use of channels where synchronisation is truly required (as for
service requests) and continuous-function interfaces where synchronisation is not re-
quired, it is possible to adopt a `open' approach to systems design with a minimum
of inter-module coupling. We believe the open systems approach to be essential to the
treatment of large-scale formal systems design.

The coupling problem with CSP channels has also been recognised by Davies [2],
who suggested the use of signal events as a means of addressing the problem. A signal
event is simply an event which cannot be blocked by its environment. However, if no
process is ready to accept the signal immediately, the information is lost forever. The
continuous-function interface is superior to the signal mechanism, because the infor-
mation transmitted on an actuator signal remains available to any other process until
overwritten by the controlling process.

The actuator and sensor metaphors are drawn from the theory of automatic con-
trol systems. Following Shaw [17], we advocate the control system as an important
architectural framework for the design of real-time, hybrid systems. In this paper we
have demonstrated the power of the control systems architecture by applying it to the
classic hybrid-system case-study, the automobile cruise control. Applying the control
system template of Figure 1 to the cruise control allowed us to identify and describe the
high-level components of the cruise control with a minimum of effort. By adopting the
`natural' architecture for the problem domain, we were able to produce a design with a
low degree of coupling between components; a factor that is likely to make later devel-
opment phases both cheaper and faster. The case study has also served as a vehicle for
demonstrating the power of the continuous-function interface as a means of support-
ing the description of `open' system components. The formal incarnation of the cruise
control design was able to reflect the elegance of the informal architecture because the
continuous-function interface does not bias the design toward higher coupling as would
the method invocation and channel communications mechanisms.

The shift from closed to open systems necessitates close attention to issues of con-
trol, an area where both Z and CSP are weak [23]. We believe that TCOZ with the
actuator and sensor can be a good candidate for specifying open control systems.

Acknowledgements

We would like to thank Neale Fulton, Ian Hayes and anonymous referees for many
useful comments. This work is supported in part by the DSTO/CSIRO Fellowship pro-
gramme.

References

1. K. Araki, A. Galloway, and K. Taguchi, editors. IFM'99: Integrated Formal Methods, York,
UK. Springer-Verlag, June 1999.

1184 Brendan Mahony and Jin Song Dong

2. J. Davies. Specification and Proof in Real-Time Systems. PhD thesis, Oxford University
Computing Laboratory, Programming Research Group, 1991.

3. J.S. Dong and B. Mahony. Active Objects in TCOZ. In J. Staples, M. Hinchey, and S. Liu, ed-
itors, the 2nd IEEE International Conference on Formal Engineering Methods (ICFEM'98),
pages 16–25. IEEE Press, December 1998.

4. R. Duke, G. Rose, and G. Smith. Object-Z: a Specification Language Advocated for the
Description of Standards. Computer Standards and Interfaces, 17:511–533, 1995.

5. C. J. Fidge, I. J. Hayes, A. P. Martin, and A. K. Wabenhorst. A set-theoretic model for
real-time specification and reasoning. In Mathematics of Program Construction, 1998.

6. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowmann and J. Der-
rick, editors, Formal Methods for Open Object-Based Distributed Systems (FMOODS '97),
volume 2, pages 423–438. Chapman & Hall, 1997.

7. A. J. Galloway and W. J. Stoddart. An operational semantics for ZCCS. In M. Hinchey
and S. Liu, editors, the IEEE International Conference on Formal Engineering Methods
(ICFEM'97), pages 272–282, Hiroshima, Japan, November 1997. IEEE Press.

8. I. J. Hayes and B. P. Mahony. Using units of measurement in formal specifications. Formal
Aspects of Computing, 7(3), 1995.

9. I. J. Hayes and M. Utting. Coercing real-time refinement: A transmitter. In D. J. Duke and
A. S. Evans, editors, BCS-FACS Northern Formal Methods Workshop, Electronic Workshops
in Computing. Springer Verlag, 1997.

10. B. Mahony and J.S. Dong. Overview of the semantics of TCOZ. In Araki et al. [1].
11. B. P. Mahony. The Specification and Refinement of Timed Processes. PhD thesis, University

of Queensland, 1991.
12. B. P. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: An introduction to TCOZ.

In K. Futatsugi, R. Kemmerer, and K. Torii, editors, The 20th International Conference on
Software Engineering (ICSE'98), pages 95–104, Kyoto, Japan, April 1998. IEEE Press.

13. B. P. Mahony and J.S. Dong. Network topology and a case-study in TCOZ. In ZUM'98 The
11

th International Conference of Z Users. Springer-Verlag, September 1998.
14. B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A mine pump. IEEE

Transactions on Software Engineering, 18(9):817–826, 1992.
15. F. H. Raven. Automatic Control Engineering. McGraw-Hill, second edition, 1968.
16. S. Schneider and J. Davies. A brief history of Timed CSP. Theoretical Computer Science,

138, 1995.
17. M. Shaw. Beyond objects. ACM Software Engineering Notes, 20(1), January 1995.
18. A. Simpson, J. Davies, and J. Woodcock. Security management via Z and CSP. In J. Grundy,

M. Schwenke, and T. Vickers, editors, IRW/FMP'98. Springer-Verlag, 1998.
19. G. Smith. A semantic integration of Object-Z and CSP for the specification of concurrent

systems. In J. Fitzgerald, C. Jones, and P. Lucas, editors, Proceedings of FME'97: Industrial
Benefit of Formal Methods, Graz, Austria, September 1997. Springer-Verlag.

20. J. M. Spivey. Understanding Z: A Specification Language and its Formal Semantics, Cam-
bridge University Press, 1988.

21. C. Suhl. RT-Z: An integration of Z and timed CSP. In Araki et al. [1].
22. K. Taguchi and K. Araki. The State-Based CCS Semantics for Concurrent Z Specification. In

M. Hinchey and S. Liu, editors, the IEEE International Conference on Formal Engineering
Methods (ICFEM'97), pages 283–292, Hiroshima, Japan, November 1997. IEEE Press.

23. P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM Trans. Soft-
ware Engineering and Methodology, 6(1):1–30, January 1997.

24. C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information Processing
Letters, 40:269–276, 1991.

1185Sensors and Actuators in TCOZ

The UniForM Workbench,
a Universal Development Environment

for Formal Methods

Bernd Krieg-Brückner1, Jan Peleska1, Ernst-Rüdiger Olderog2, Alexander Baer3

1
Bremen Institute of Safe Systems, University of Bremen, PBox 330440, D-28334 Bremen

bkb@Informatik.Uni-Bremen.DE, jp@Informatik.Uni-Bremen.DE
2
University of Oldenburg, PBox 2593, D-26111 Oldenburg

Olderog@Informatik.Uni-Oldenburg.DE
3
INSY, Marzahnerstr. 34, D-13053 Berlin

insy_abaer@compuserve.com

Abstract. The UniForM Workbench supports combination of Formal Methods
(on a solid logical foundation), provides tools for the development of hybrid,
real-time or reactive systems, transformation, verification, validation and test-
ing. Moreover, it comprises a universal framework for the integration of meth-
ods and tools in a common development environment. Several industrial case
studies are described.

1 Introduction

The UniForM Workbench (Universal Formal Methods Workbench, cf. [K+96, K+99,
Kri99]) has been developed by the Universities of Bremen and Oldenburg, and Elpro,
Berlin, funded by the German Ministry for Education and Research, BMBF.

Formal Methods are used in modelling, using a mathematically well-founded
specification language, proving properties about a specification and supporting cor-
rect development. The need arises in many aspects and properties of software, or
more generally systems: for the physical environment of a hybrid hardware / software
system, for the timing behaviour and real-time constraints of an embedded system, for
the hazards and safety requirements of a safety-critical system, for the concurrent in-
teractions of a reactive system, for deadlock and livelock prevention, for performance
and dependability analysis, for architectural and resource requirements, and, finally,
at many stages of the software development process for requirements and design
specifications, etc., to the implementation of a single module.

It is unrealistic to expect a unique standard formalism to cover all the needs listed
above. Instead, the solution is a variety of formalisms that complement each other,
each adapted to the task at hand: specification languages and development method-
ologies, specific development methods or proof techniques, with a whole spectrum of
tool support. Thus the challenge is to cater for correct combination of formalisms to

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1186-1205, 1999.
 Springer-Verlag Berlin Heidelberg 1999

(1) ensure correct transition from abstract to concrete specifications when switching
between formalisms during the development process ("vertical composition"),

(2) ensure correct combination of formalisms in a heterogeneous situation, e.g. com-
bining concurrent and sequential fragments ("horizontal composition"),

(3) enable verification of particular properties, e.g. adherence to a security model,
absence of deadlocks or satisfaction of performance requirements.

Another issue is the correct combination and integration of tools to support Formal
Methods. Tools invariably differ in the exact language or semantics they support; the
tool combination has to realize a correct combination of the resp. methods.

2 Combination of Methods

2.1 Integration into the Software Life Cycle

Integration of Formal Methods into Existing Process Models is important for suc-
cess in industry. The Software Life Cycle Process Model V-Model [VMOD] origi-
nally a German development standard, has become internationally recognised. As
many such standards, it loads a heavy burden on the developer by prescribing a mul-
titude of documents to be produced. Thus tool support is essential to
(1) tailor the V-model first to the needs of a particular enterprise, then
(2) tailor the V-model to the special project at hand, fixing methods and tools,
(3) support its enactment guiding and controlling the use of methods and tools, and
(4) provide automatically generated development documents.
Up to now, tool support for working with the V-Model has mostly been provided by
stand-alone project management components, facilitating the document production
process for the project manager. In the UniForM project, we have adopted a different
approach to V-Model utilisation: Formally speaking, the V-Model is a generic speci-
fication for the system development process. Tailoring the V-Model for a particular
enterprise means instantiating this development process specification by determining
• the products (specifications, code, hardware, tests, proofs etc.) to be created,
• the activities and people responsible for each product,
• the methods to be used for each development step, and
• the tools to be used for application of these methods.
We are convinced that this instantiation process is best performed in the development
environment itself, so that the tailoring process will not only have project manage-
ment documents as output but simultaneously configure the Workbench for the spe-
cific configuration to be used in the development project.

This approach is presently implemented by Purper [BW98, Pur99a, b] in the
Graphical Development Process Assistant, adapting the V-model to formal methods,
where development and quality assurance are intimately related. The V-model is pre-
sented as a heavily interwoven hypertext document, generated from a common data-
base, and tool support items 1 to 4 above; cf. also fig.1. Integration into a develop-
ment environment such as the UniForM Workbench allows the coordination with its
methods and tools (item 3). Tools themselves can generate development documents in
conformance with the V-model (cf. item 4), such as the development history of fig. 6.

1187The UniForM Workbench, a Universal Development Environment

Fig. 1. Example of a V-Model Process Graph as supported by the UniForM Workbench

Combination of Conventional, Semi-Formal and Formal Techniques arises natu-
rally when interfacing with other methods in the context of the V-model. Safety con-
siderations, and thus the employment of formal methods, will often be restricted to
parts of a system. Ideally, graphical interfaces will give the illusion of working with
an informal method while an underlying formal semantics provides hooks to the use
of formal methods (cf. PLC-Automata in section 2.2 and 3.1).

At the same time, it is sometimes advisable to flip back and forth between informal
techniques at a high level of abstraction, e.g. requirements analysis, and formal meth-
ods, once more detail is required; complete formalisation might be premature and
rather a burden, but formal methods are already useful at an early stage to support the
analysis. An example is the specialisation of fault trees for hazard analysis to develop
safety requirements and safety mechanisms [LMK98].

2.2 Combination of Formal Methods

Combinations of Formal Methods are by no means easy to achieve. The need for re-
search has been recognised and requires demanding mathematical foundations, such
as advanced methods in category theory. This has lead to languages for "institution
independent" heterogeneous composition of modules ("in the large", see e.g. [AC94,
Tar96, Dia98]); approaches for reasoning about correct composition of the logics
capturing the semantics "in the small" (see e.g. [Mos96, Mos99b, MTP97, MTP98,
SSC98, S+98]) introduce notions such as embedding, translating one formalism to
another, combination of two formalisms, or projecting to either from the combination.

1188 Bernd Krieg-Brueckner et al.

Z + CSP

Z CSP

HOL

Correct Transformation Rule

O1 O2

M1 M2

Proof of Correctness Meta Level

Object Level

Encoding

Fig. 2. Semantic Representation in UniForM

Semantic Representation. The approach of UniForM is to represent the semantics
underlying a particular formalism or language in higher-order logic (HOL) as it is re-
alized in the logical framework Isabelle [Pau95]. Fig. 2 shows a tiny Logic Graph for
Z, CSP and their projections from the combination Z+CSP, plus the logic encoding
into HOL at the meta level. Specifications in these languages are represented as theo-
ries in Isabelle and used for theorem proving with the verification system IsaWin on
top of Isabelle (cf. section 3.3), and, as a basis for transformational development (cf.
section 3.4), for proving the correctness of transformation rules.

HOL-Z, HOL-CSP and HOL-CASL. In HOL-Z, the logic of Z has been represented
(cf. [KSW96a, KSW96b, K+97, Kol97, L+98]) and the mathematical tool kit has
been proved correct (in co-operation with the ESPRESS project); this resulted in ca.
1k theorems, a 4k line proof script, and ca. 3 person-years of effort.

HOL-CSP represents the logic of CSP; a small but pervasive error in the 20 year
old theory of CSP has been found and corrected [TW97, Tej99]. The process algebra
has been proved correct; this resulted in ca. 3k theorems, a 17k line proof script, and
ca. 3 person-years of effort. The example shows that such an endeavour is by no
means trivial but pays off in the end. The proof of correctness of transformation rules,
in particular, is now much easier. The above statistics includes the effort of becoming
familiar with the intricacies of Isabelle, and most of the effort went into the proof of
the process algebra of CSP. A subsequent representation of the logics and static se-
mantics of CASL basic specifications (including an intricate overloading resolution)
only required about 1 person-year of effort [MKK98].

Reactive Real-Time Systems. The first instantiation of UniForM has been for Z and
CSP since these are considered to be rather mature and have been successfully ap-
plied to industrial cases. At the moment, we are working on methods ("structural
transformations") to project not only from Z+CSP (actually Object-Z, cf. [Fis97,
FS97]), but also from CSP+t, i.e. CSP with real-time constraints, to CSP without
such constraints on the one hand, and simple timer processes on the other, cf. fig. 3.
Thus specialised methods can be used in the projected domains. This breakdown is
also successfully used for testing of real-time and hybrid systems (cf. section 3.4).

Combination of CSP and Object-Z. Whereas CSP is well suited for the description
of communicating processes, Object-Z is an object based specification method for
data, states and state transformations. Motivated by previous work at Oldenburg in

1189The UniForM Workbench, a Universal Development Environment

the ESPRIT Basic Research Action ProCoS (Provably Correct Systems) [ProCoS], a
combination of both methods into the specification language CSP-OZ has been pro-
posed in [Fis97, FS97]. In CSP-OZ the process aspects are described using CSP and
the data aspects using Object-Z. A specific achievement is the simple semantics of the
combination which is based on two ideas:
• the embedding of Object-Z into the standard semantic model of CSP, the so-called

failures/divergences model [Ros97]
• the semantic definition of the combination by the synchronous, parallel composi-

tion of the CSP part and the Object-Z part of a CSP-OZ specification.
Thus to each CSP-OZ specification a semantics in the failures/divergences model is
assigned. As a consequence the concept of refinement of this model is also applicable
to CSP-OZ. It has been shown that both process refinement of the CSP part and data
refinement of the Object-Z part yield refinement of the whole CSP-OZ specification
[Hal97]. Thus FDR (failures/divergences refinement), a commercially available
model checker for CSP [FDR96], can also be applied to CSP-OZ specifications.

Target Code

PLC-
Automata

PLC-Code

DC

Normal Form
Translation

Transformation in
Isabelle/HOL

CSP/Timer

CSP/TimerC

Z + CSP CSP + t

Z

ZC CSPC

CSP

Z + CSP + t

C-Code C-Code/ Interpreter

Hybrid Systems

Real-Time Systems

Fig. 3. Method Combination in UniForM

Combination of PLCs and Duration Calculus. For the specification of time critical
aspects of computer systems, the Duration Calculus (DC for short, cf. [ZHR92]) was
chosen from the start of the UniForM project. DC is intended for a formalization of
high-level requirements.

On the lowest level, Programmable Logic Controllers (PLCs for short) were con-
sidered because they are simple devices that are widespread in control and automation
technology. A PLC interacts with sensors and actuators in a cyclic manner. Each cy-
cle consists of three phases: an input phase where sensor values are read and stored in
local variables, a state transformation phase where all local variables are updated ac-
cording to the stored program, and an output phase where the values of some of the

1190 Bernd Krieg-Brueckner et al.

local variables are output to the actuators. Real-time constraints can be implemented
on PLCs with the help of timers that can be set and reset during the state transforma-
tion phase. The reaction time of a PLC depends on the cycle time.

One of the challenges of the UniForM project was to bridge the gap between Dura-
tion Calculus and PLCs in such a way that the correctness of the PLC software can be
proven against the requirements formalised in DC. One of the discoveries in the
UniForM project was that the behaviour of PLCs can very well be modelled using a
novel type of automaton called PLC-Automaton [Die97], cf. fig. 4. The semantics of
PLC-Automata describes the cyclic behaviour of a PLC; it is defined in terms of the
Duration Calculus. Thus PLC-Automata represent a combination of the concept of
PLC with DC. This enables us to integrate PLC-Automata into a general methodology
for the design of real-time systems based on DC [Old98].

0

0

N
1

N
0.2,{E}

X
0

E 0,1

0

0,1,E

E

1

0

T

T
0.2,{E}

E 0,1

5,{0,1}

Fig. 4: PLC-Automaton

The CoFI Standard Family of Specification Languages. A standard formalism for
all aspects of formal methods seems pragmatically undesirable (if not impossible)
since a projection to a restricted and supposedly simpler formalism allows easier rea-
soning and specialised tools. However, standardisation should be aimed for in well-
defined areas. IFIP WG 1.3 (Foundations of System Specification), based on more
than 7 years of experience of the ESPRIT WG COMPASS, (cf. [Kri96]), started the
Common Framework Initiative for Algebraic Specification and Development, CoFI.

CoFI, an international effort by primarily European groups, is developing a family
of specification languages, a methodology guide and associated tools. The major lan-
guage in this family, the Common Algebraic Specification Language CASL, has just
been completed; it is the basis for sublanguages and extensions in the family. It has a
complete formal semantics. CASL is a rather powerful and general specification lan-
guage for first-order logic specifications with partial and total functions, predicates,
subsorting, and generalized overloading [CoFI, C+97, Mos97]. Sublanguages of
CASL, in connection with the planned extensions towards higher-order, object-
oriented and concurrent aspects, allow interfacing to specialised tools and mapping
from/to other specification languages [Mos99a]; this aspect is crucial for its intended
impact. Various parsers exist; the first prototype implementation in the UniForM

1191The UniForM Workbench, a Universal Development Environment

Workbench [MKK98] comprises static semantic analysis for basic specifications and
theorem proving in Isabelle; it will be the basis for transformational development.

Fig. 5: The Moby/PLC tool for the development of PLC-Automata

3 Tools for Development

3.1 Development of PLC Software

At the University of Oldenburg a tool called Moby/PLC was designed and imple-
mented that supports the work with PLC-Automata [DT98], see fig. 5. The tool com-
prises the following components:
• a graphical editor for drawing PLC-Automata
• a simulator for networks of PLC-Automata
• a compiler for generating PLC code in ST (Structured Text), a dedicated program-

ming language for PLCs
• an algorithm for the static analysis of real-time constraints
• compilers for generating input for the real-time model checkers UPPAAL [B+95]

and KRONOS [D+96]
• a synthesis algorithm for generating PLC-Automata from specifications written in

a subset of Duration Calculus, so-called DC Implementables.

1192 Bernd Krieg-Brueckner et al.

3.2 Tools for CSP-OZ

For the combined specification language CSP-OZ a graphical editor called Moby/OZ
was developed. It is based on the same class library as the Moby/PLC tool. The editor
enables the user to perform type checking using the Object-Z type checker "wizard".

3.3 Verification

Formal Methods are meant for the development of dependable systems: apart from
safety and security, aspects of availability, reliability, fault-tolerance, and a general
adherence to functionality requirements are important. Thus correctness is only one
aspect, but obviously at the heart of the matter. In particular in safety-critical do-
mains, application developers become increasingly aware of the importance of meth-
ods guaranteeing correctness w.r.t. a formal specification requirements, be it by the
invent-and-verify paradigm, synthesis or transformation.

Abstraction to Verify Special Properties. In [B+97, BPS98, UKP98], a technique
for abstracting from an existing program to verify the absence of deadlocks and live-
locks was developed. It was applied successfully to more than 25k lines of Occam
implementing a safety layer of a fault tolerant computer to be used in the International
Space Station Alpha developed by DASA RI, Bremen; thus it is scalable and applica-
ble to realistic applications.

The concrete program is abstracted to a formal specification in CSP containing
only the essential communication behaviour; the approach guarantees that the proof
for the abstract program implies the proved property for the concrete one. If the proof
fails, the property does not hold, or the abstraction is not yet fine enough. The task is
split into manageable subtasks by modularisation according to the process structure,
and a set of generic composition theories developed for the application. The modules
are then model-checked using the tool FDR [FDR96].

The abstraction was done by hand; future research will focus on implementing
formal abstraction transformations in the UniForM Workbench to support the process.

Model-Checking is a very important technique in practice. The FDR tool [FDR96] is
very useful for CSP, mostly for validating specifications, proving properties such as
deadlock-freeness, and for development, proving the correctness of a refinement in
the invent-and-verify paradigm. But it can do more: the transition graph it generates
can be interpreted at run-time; this technique has been used for the safety layer of a
computer on-board a train (see section 5.3). The abstraction and modularisation
method applied to the International Space Station, described in the preceding para-
graphs, shows two things:
• Model-checking is extremely useful when the resp. data-types are essentially enu-

meration types and the systems small enough.
• For large systems, these properties are likely to be violated; reasoning about

modularisation and composition properties is necessary; proof tools are desirable.
Thus both model-checking and (interactive) proofs should go hand in hand. In the
UniForM Workbench, the FDR tool can be used within the interactive proof tool.

1193The UniForM Workbench, a Universal Development Environment

Moreover, the experience of [HP98] when solving the train control problem in
general (cf. also section 5.3) has been that reasoning about algebraic properties at a
high level of abstraction is necessary, with subsequent refinements; model-oriented
specifications and model-checking are not enough for this very practical problem that
had defied a general solution thus far.

Fig. 6. The Isabelle Proof Assistant IsaWin in UniForM

A Window to Isabelle. The UniForM Workbench makes extensive use of the generic
theorem prover Isabelle [Pau95], and heavily relies on the possibilities for interaction
and tactic definition. A graphical user interface, a "window to Isabelle", IsaWin, has
been constructed that hides unnecessary details from the uninitiated user [K+97,
LW98]. Objects such as theories, substitutions, proof rules, simplification sets, theo-
rems and proofs are typed (cf. fig. 6); icons can be dragged onto each other or onto
the manipulation window to achieve various effects. This graphical and gesture-
oriented approach is as a major advance over the rather cryptic textual interface. In
the example, a set of rewrite rules for simplification is dragged onto the ongoing
proof goal in the manipulation.

3.4 Development by Transformation

Architecture of the UniForM Transformation and Verification System. In fact,
theorem proving and transformation, both a form of deduction, are so analogous, that
the UniForM Verification System IsaWin shares a substantial part of its implementa-
tion with the Transformation System TAS (cf. fig. 7, see [LW98, L+98, L+99]). Like
Isabelle, it is implemented in Standard ML; sml_tk [LWW96] is a typed interface in

1194 Bernd Krieg-Brueckner et al.

SML to Tcl/Tk; on top, the generic user interface GUI provides the appearance of fig.
6 and fig. 8. This basic system is then parametrized (as a functor in SML terminol-
ogy) either by the facilities for theorem proving of IsaWin or those for transformation
of TAS. In addition, both share focussing and manipulation of scripts, i.e. proofs or
development histories.

Tcl/Tk
Wish

Logics

Standard ML

Isabelle/HOL

sml_tk

Generic GUI

Transformation System TAS

������
������

������
������

�����
�����

Transformation Rules

������
������

�����
�����

�����
�����

Fig. 7. Architecture of TAS, the UniForM Transformation System

Synthesis by Transformation. While the invent-and-verify paradigm is already sup-
ported by IsaWin, we definitely prefer synthesis-by-transformation over invent-and-
verify as the pragmatically more powerful paradigm. First of all, the latter can be im-
plemented by the former as a transformation rule that generates the necessary verifi-
cation condition from the applicability condition. Secondly, this automatic generation
of the required verification conditions is precisely one of the advantages of the trans-
formational approach. The developer can concentrate on the development steps (viz.
applications of transformation rules) first while the verification conditions are gener-
ated on the side and tabled for later treatment. Above all perhaps, single transforma-
tion rules and automated transformation methods embody development knowledge in
a compact and accessible form like design patterns. Transformation rules preserve
correctness; they can themselves be proved correct in UniForM against the semantics
of the object language, e.g. at the level of the logic representation in HOL, cf. fig. 2.

TAS, the UniForM Transformation System. TAS may be parametrized by a logic
(e.g. semantic representation of Z, CSP or CASL) at the Isabelle level, and by trans-
formation rules at the level of TAS itself, cf. fig. 7 [Lüt97, L+99]. On top of the basic
architecture that it shares with IsaWin, TAS provides icons for (program or specifica-
tion) texts, transformation rules (possibly parametrized) and transformational devel-
opments in progress, in analogy to proofs (cf. shaded icon and manipulation window
in fig. 8). In the example, a parametrized transformation rule is applied to the high-
lighted fragment denoted by focussing, and a window for the editing of parameters is
opened. Once input of parameters is completed, the rule is applied, and a further proof
obligation is possibly generated. A proof obligation may be discharged during or after
the development by transferring it to IsaWin or another verification system such as a

1195The UniForM Workbench, a Universal Development Environment

model checker (presently FDR). The example shows the development of a communi-
cation protocol with send / receive buffers by a sequence of transformations in CSP.

The functionality of TAS subsumes that of a forerunner, the PROSPECTRA system
[HK93]. However, the basis of Isabelle allows a more compact, more flexible and
more powerful realisation: parametrization by additional transformation rules is a
matter of minutes (instantiation of a functor rather than recompilation of the whole
system!); static semantic analysis can often be mapped to type checking of Isabelle;
proof tactics can be defined as SML programs and often allow the automation of ap-
plicability conditions, such that much fewer residual verification conditions need to
be interactively proved by the user.

Fig. 8. Application of a Parametrized Transformation Rule

Development History. Note also the History button that allows navigation in the de-
velopment history, in particular partial undo for continuation in a different way. The
whole development is documented automatically and can be inspected in a WWW
browser: initial and current specification, proof obligations, and development history.

Reusability of Developments. The development history is a formal object as well,
(partial) replay is possible. A development can be turned into a new transformation
rule by command; the generated verification conditions are then combined to a new
applicability condition. Combined with abstraction, developments themselves become
reusable in new situations, not just their products.

3.5 Validation, Verification, and Test Environment for Reactive Real-Time
Systems

For real-world large-scale systems, complete formal development is still unrealistic:
The amount of code implementing the application, operating system, drivers and
firmware is simply too large to admit complete formal treatment. Furthermore, many
correctness aspects of reactive systems depend on the interaction of software and

1196 Bernd Krieg-Brueckner et al.

hardware, and the number of different hardware components is too high to allow for
the creation of formal behavioural models of these components. As a consequence,
our recommendation to the Formal Methods practitioner is as follows:
• Try to develop the logical concepts (communication flow, control algorithms, data

transformation algorithms etc.) in a formal way, in order to avoid logical flaws
creeping into system design and implementation.

• Perform formal code development as far as possible, with emphasis on the critical
modules of the system, otherwise use testing and inspection techniques.

• Use automated testing to check the proper integration of software and hardware.
To support such an approach, the VVT-RT (Verification, Validation and Test for
Real-Time Systems) tool kit is currently integrated into the UniForM Workbench:

Verification, Validation, and Testing. The methodology and tool kit VVT-RT
[Pel96, PS96, PS97] allows automatic testing and verification and validation of (test)
specifications. Test cases are generated from a real-time specification; they drive the
completed hardware/software system as a "black box" in a hardware-in-the-loop con-
figuration from a separate computer containing the test drivers, simulating a normal
or faulty environment. The testing theory ensures, that each test will make an actual
contribution, approximating and converging to a complete verification.

Even more important is the automatic test evaluation component of the tool kit: In
practice, the execution of real-time tests will lead to thousands of lines of timed
traces recording the occurrence of interleaved inputs and outputs over time. Manual
inspection of these traces would be quite impossible. Instead, VVT-RT performs
automatic evaluation of timed traces against a binary graph representation of the for-
mal specification. This approach is very cost-effective. It has been applied success-
fully to one of the case studies of UniForM, a control computer on board of a train for
railway control (see section 5.3), and to an electric power control component of a sat-
ellite developed by OHB, Bremen [Mey98, SMH99].

4 Universal Development Environment

The UniForM Workbench is an open ended tool integration framework for developing
(formal) software development environments from the basis of pre-fabricated off-the-
shelf development tools. The Workbench uses Concurrent Haskell as its central inte-
gration language, extended with a higher order approach to event handling akin to the
one found in process algebras. Integration can therefore be done at a high level of ab-
straction, which combines the merits of functional programming with state-of-the-art
concurrent programming languages.

The Workbench provides support for data, control and presentation integration as
well as utilities for wrapping Haskell interfaces around existing development tools. It
views the integrated Workbench as a reactive (event driven) system, with events
amounting to database change notifications, operating system events, user interactions
and individual tool events. The unique feature of the Workbench is that it provides a
uniform and higher order approach to event handling, which improves on traditional
approaches such as callbacks, by treating events as composable, first class values.

1197The UniForM Workbench, a Universal Development Environment

Subsystem Interaction Manager

Development
Manager

Repository
Manager

daVinci

Netscape

User

User Interaction Manager

Tcl/Tk
Wish

User

Forest
ForSh

Transformation
+ Proof System

Isabelle

Tool

User

Forest Tcl/Tk
Wish

Tcl/Tk
Wish

Fig. 9: System Architecture of the UniForM Workbench

Integration of Tools in the UniForM Workbench is described in detail in [Kar99]
(see also [Kar98]), cf. fig. 9. Control integration is provided by the Subsystem Inter-
action Manager; based on the UniForM Concurrency Toolkit, tools interact in a fine
grained network of communicating concurrent agents and are, in general, loosely
coupled by intermittent adaptors (cf. [Kar97a, Kar97b]). The Repository Manager
[KW97] takes care of data integration with an interface to a public domain version of
the industry standard Portable Common Tool Environment [PCTE94, HPCTE] and
provides version and configuration control, etc. with a graphical interface (using
�������; cf. also fig. 10).

The User Interaction Manager provides presentation integration, incorporating in-
terfaces to ������� (see [FW94, Frö97], and cf. fig. 7 and fig. 10) and its extension
Forest, a WWW-browser, and Tcl/Tk for window management. In particular the latter
two become much more manageable and homogeneous by encapsulation into a typed,
high-level interface in Haskell.

Haskell is the internal integration language; thus even higher-order objects and
processes can be transmitted as objects. External tools are wrapped into a Haskell in-
terface; we are working on an adaptation of the Interface Definition Language of the
industry standard CORBA to Haskell that will shortly open more possibilities to inte-
grate tools in, say, C, C++, or Java.
Architectures for development tools should avoid self-containment and allow integra-
tion with others. The possibility for control and data integration of a tool as an "ab-
stract data type" is the most important (and not obvious since the tool may e.g. not
allow remote control and insist on call-backs); integration of persistent data storage in
a common repository is next (this may require export and import w.r.t. local storage);
presentation integration with the same user interface is last - in fact it is most likely
that the tool has its own graphical user interface. However, interactive Posix tools
usually have a line-oriented interface that can easily be adapted [Kar97b].

1198 Bernd Krieg-Brueckner et al.

This way, a graphical interface to HUGS was developed in a matter of weeks.
Isabelle, IsaWin and TAS have been integrated, and a Z-Workbench with various tools
has been instantiated from the UniForM Workbench (L+98), cf. fig. 10.

Fig. 10: Z-Workbench

Increase of Productivity by Functional Languages. It is quite obvious that we
should use formal methods eventually to produce our own tools; but is this realistic at
the moment for really large systems? Our experience has been best with functional
programming languages so far; we estimate the increase of productivity over, say, C,
to a factor of 3 (in number of lines, backed by empirical evidence). Without them, the
development of large, non-trivial tools over a period of several years would have been
impossible in an academic environment. TAS and IsaWin are extensions of Isabelle
and comprise about 25k lines of SML; the graph visualisation system ������� with
was developed by Fröhlich and Werner [FW94, Frö97] over a period of 5 years com-
prising about 35k lines of a functional language developed at Bremen, plus about 10k
lines of C for interfacing; the tool integration framework of the UniForM Workbench
was developed almost entirely by Karlsen [Kar99] in about 50k lines of Haskell.

1199The UniForM Workbench, a Universal Development Environment

5 Case Studies

5.1 Control of a Single Track Segment

In close cooperation with the industrial partner Elpro, a case study "control of a single
track segment" was defined. The problem concerns the safety of tram traffic on a
segment where only a single track is available, see fig. 11. Such a bottle-neck can oc-
cur for example during repair work. The task is to control the traffic lights in such a
way that collisions of trams driving in opposite direction is avoided and that certain
general traffic rules for trams are obeyed. Real-time requirements occur locally at the
sensor components ES1, CS1, LS1, ES2, CS2, LS2 near the track.

The methodology of PLC-Automata was applied to this case study. Starting from
informal requirements of the customer, in this case the Berlin traffic company, a net-
work consisting of 14 PLC-Automata was constructed using the Moby/PLC tool as
part of the UniForM Workbench [DT98, Die97]. With Moby/PLC the whole network
could be simulated [Tap97]. Essential safety properties were proven, for example that
at most one direction of the single track segment will have a green traffic light. Then
the network of PLC-Automata was compiled into 700 lines of PLC code in the pro-
gramming language ST (Structured Text), which can be distributed over the PLCs as
indicated in fig. 11.

Fig. 11: Tram Control

5.2 Control of Jena Steinweg

After this first successful experiment with Moby/PLC, the Oldenburg group was
challenged by Elpro to attack a more demanding case study where trams are allowed
to drive into and out of the single track segment in many different ways. This control
was actually implemented by Elpro in the city of Jena, hence the name. The complex-
ity of this case study is due to the fact that the signalling of the traffic lights critically
depends on the history of the last tram movements.

1200 Bernd Krieg-Brueckner et al.

This case study could also be modelled with Moby/PLC as a network consisting of
110 PLC-Automata. While simulation still worked well, attempts to perform auto-
matic verification of properties by translating the PLC-Automata into input for the
real-time model checkers UPPAAL [B+95] and KRONOS [D+96] failed so far due to
the complexity of the resulting timed automata. This complexity is caused by the fact
that PLC automata take the cycle times of PLCs explicitly into account, in order to
detect problems between communicating PLCs with different cycle times.

SAFETY LAYER

TF INTERFACE LAYER

SYSTEM INTERFACE LAYER

TFinputs DisplayData

SLOSinterface SLMFinterface SLTFZinterface

WATCHDOG
ZUG-

SCHREIBER

TRIEBFAHRZEUGFÜHRER (TF)

Funktionstasten (T) Monitor (M)

MOBILFUNK (MF)

Funkmodem

TRIEBFAHRZEUG (TFZ)

TFZ-Daten Bremssystem AntriebssystemORTUNGS-
SYSTEM (OS)

BC-KONFIG-
DATEN (config)

BORDRECHNER (BC)

8 7 6 5 4 3

1 2

Fig. 12: Architecture of the On-Board Computer

5.3 On-Board Computer for Railway Control

Another case study was the development of a control computer on board of a train for
railway control [AD97]. It is part of a distributed train and switching control system
developed by Elpro, Berlin, where decentralised track-side safety-units control local
points and communicate with trains via mobile phones. The whole system (with sin-
gle tracks and deviations) has been modelled and specified with CSP in a student
project at Bremen (cf. also [HP98] for a solution of the general train control problem).

The on-board computer has a layered architecture (see fig. 12). The TF INTER-
FACE LAYER communicates with the driver, the SYSTEM INTERFACE LAYER with
a localization subsystem (e.g. GPS), a mobile phone subsystem and the train. The
SAFETY LAYER contains all safety-relevant modules, determining the local state of
the train, the requirements on the decentralized units on the track and their answers,
finally leading to a decision about the permission to continue for the driver, or, alter-
natively, a forced-braking command to the train.

The design of the abstracts away from physical data formats in the concrete inter-
faces. The formal specification in CSP as an abstract transition system could be di-
rectly transliterated into an executable program that calls C++ functions of the inter-
faces [AD97, Pel96b].

1201The UniForM Workbench, a Universal Development Environment

The mobile phone based communication of the on-board computer with the track-
side units in the SYSTEM INTERFACE LAYER is an example of the combination of
CSP and OZ [Fis97, FS97], cf. sections 2.2 and 3.2.

The above case studies were done within the UniForM project; for other industrial ap-
plications of the UniForM Workbench cf. the verification of absence of deadlocks and
livelocks for the International Space Station ([B+97, BPS98, UKP98], see section 3.3)
or the automatic testing of an electric power control component of a satellite ([Mey98,
SMH99], see section 3.5).

6 References

[AD 97] Amthor, P., Dick, S.: Test eines Bordcomputers für ein dezentrales Zugsteuerung-
ssystem unter Verwendung des Werkzeuges VVT-RT. 7. Kolloquium Software-
Entwicklung Methoden, Werkzeuge, Erfahrungen: Mächtigkeit der Software und
ihre Beherrschung, Technische Akademie Esslingen (1997).

[AC94] Astesiano, E., Cerioli, M.: Multiparadigm Specification Languages: a First Attempt
at Foundations, In: C.M.D.J. Andrews and J.F. Groote (eds.), Semantics of Specifi-
cation Languages (SoSl’93), Workshops in Computing, Springer (1994) 168-185.

[BW98] Blank Purper, C., Westmeier, S.: A Graphical Development Process Assistant for
Formal Methods. In: Proc. VISUAL’98 (short papers), at ETAPS’98, Lisbon
(1998). http://www.tzi.de/~uniform/gdpa

[B+95] Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL -- a tool
suite for automatic verification of real-time systems. Proc. 4th DIMACS Workshop:
Verification and Control of Hybrid Systems. New Brunswick, New Jersey, 1995.

[B+97] Buth, B., Kouvaras, M., Peleska, J., Shi, H.: Deadlock Analysis for a Fault-Tolerant
System. In Johnson, M. (ed.): Algebraic Methodology and Software Technology,
AMAST'97. LNCS 1349. Springer (1997) 60-75.

[BPS98] Buth, B., Peleska, J., Shi, H.: Combining Methods for the Livelock Analysis of a
Fault-Tolerant System. In Haeberer, A.M. (ed.): Algebraic Methodology and Soft-
ware Technology, AMAST'98. LNCS 1548. Springer (1999) 124-139.

[C+97] Cerioli, M., Haxthausen, A., Krieg-Brückner, B., Mossakowski, T.: Permissive
Subsorted Partial Logic in CASL. In Johnson, M. (ed.): Algebraic Methodology and
Software Technology, AMAST 97, LNCS 1349, Springer (1997) 91-107.

[CoFI] CoFI: The Common Framework Initiative for Algebraic Specification and Devel-
opment. http://www.brics.dk/Projects/CoFI

[Dia98] Diaconescu, R.: Extra Theory Morphisms for Institutions: logical semantics for
multi-paradigm languages. J. Applied Categorical Structures 6 (1998) 427-453.

[Die97] Dierks, H.: PLC-Automata: A New Class of Implementable Real-Time Automata.
Proc. ARTS'97, LNCS 1231, Springer (1997) 111-125.

[DT98] Dierks, H., Tapken, J.: Tool-Supported Hierarchical Design of Distributed Real-
Time Systems. Euromicro Workshop on Real Time Systems, IEEE (1998) 222-229.

[D+96] Dawsa, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: R. Alur,
T.A. Henzinger, E.D. Sontag (Eds.): Hybrids Systems III – Verfication and Control.
LNCS 1066, Springer, (1996).

[FDR96] Formal Systems Ltd.: Failures Divergence Refinement. User Manual and Tutorial
Version 2.0. Formal Systems (Europe) Ltd. (1996).

[Fis97] Fischer, C.: CSP-OZ: A Combination of Object-Z and CSP. In H. Bowmann, J.
Derrick (eds.): Formal Methods for Open Object-Based Distributed Systems,
FMOODS `97, volume 2, Chapmann & Hall (1997) 423-438.

1202 Bernd Krieg-Brueckner et al.

[FS97] Fischer, C., Smith, G.: Combining CSP and Object-Z: Finite or infinite trace-
Semantics? Proc. FORTE/PSTV 97, Chapmann & Hall(1997) 503-518.

[Frö97] Fröhlich, M.: Inkrementelles Graphlayout im Visualisierungssystem ������i. Dis-
sertation. 1997. Monographs of the Bremen Institute of Safe Systems 6, ISBN 3-
8265-4069-7, Shaker , 1998.

[FW94] Fröhlich, M., Werner, M.: The interactive Graph-Visualization System ������� –
A User Interface for Applications. Informatik Bericht Nr. 5/94, Universität Bremen,
1994. updated doc.: http://www.tzi.de/~daVinci

[Hal97] Hallerstede, S.: Die semantische Fundierung von CSP-Z. Diplomarbeit, Universität
Oldenburg, 1997.

[HPCTE] The H-PCTE Crew: H-PCTE vs. PCTE, Version 2.8, Universität Siegen, 1996.
[HP98] Haxthausen, A. E., Peleska, J.: Formal Development and Verification of a Distrib-

uted Railway Control System. In Proc. 1st FMERail Workshop, Utrecht (1998).
[HK93] Hoffmann, B., Krieg-Brückner, B. (eds.): PROgram Development by Specification

and Transformation, The PROSPECTRA Methodology, Language Family, and
System. LNCS 680. Springer, 1993. http://www.tzi.de/~prospectra

 [Kar97a] Karlsen, E.W.: The UniForM Concurrency ToolKit and its Extensions to Concur-
rent Haskell. In: O'Donnald, J. (ed.): GFPW'97, Glasgow Workshop on Functional
Programming '97, Ullapool.

[Kar97b] Karlsen, E.W.: Integrating Interactive Tools using Concurrent Haskell and Syn-
chronous Events. In ClaPF'97, 2nd Latin-American Conference on Functional
Programming, La Plata, Argentina (1997).

[Kar98] Karlsen, E.W.: The UniForM Workbench - a Higher Order Tool Integration Frame-
work. In: Int'l Workshop on Current Trends in Applied Formal Methods. LNCS.
Springer (to appear).

[Kar99] Karlsen, E.W.: Tool Integration in a Functional Setting. Dissertation. Universität
Bremen (1998) 364pp (to appear)

[KW97] Karlsen, E.W., Westmeier, S.: Using Concurrent Haskell to Develop User Inter-
faces over an Active Repository. In IFL'97, Implementation of Functional Lan-
guages 97, St. Andrew, Scotland. LNCS 1467. Springer (1997).

[Kol98] Kolyang: HOL-Z, An Integrated Formal Support Environment for Z in
Isabelle/HOL. Dissertation, 1997. Monographs of the Bremen Institute of Safe Sys-
tems 5, ISBN 3-8265-4068-9, Shaker, 1998.

[KSW96a] Kolyang, Santen, T., Wolff, B.: A Structure Preserving Encoding of Z in
Isabelle/HOL. In Proc. Int'l Conf. on Theorem Proving in Higher Order Logic.
LNCS 1125. Springer (1996). http://www.tzi.de/~kol/HOL-Z

[KSW96b] Kolyang, Santen, T., Wolff, B.: Correct and User-Friendly Implementations of
Transformation Systems. In: Gaudel, M.-C., Woodcock, J. (eds.): FME'96: Indus-
trial Benefit and Advances in Formal Methods. LNCS 1051 (1996) 629-648.

[Kri96] Krieg-Brückner, B.: Seven Years of COMPASS. In: Haveraaen, M., Owe, O., Dahl,
O.-J. (eds.): Recent Trends in Data Type Specification, LNCS 1130 (1996) 1-13.

[Kri99] Krieg-Brückner, B.: UniForM Perspectives for Formal Methods. In: Int'l Workshop
on Current Trends in Applied Formal Methods. LNCS. Springer (to appear).

[K+96] Krieg-Brückner, B., Peleska, J., Olderog, E.-R., Balzer, D., Baer, A. (1996): Uni-
ForM, Universal Formal Methods Workbench. in: Grote, U., Wolf, G. (eds.): Sta-
tusseminar des BMBF: Softwaretechnologie. Deutsche Forschungsanstalt für Luft-
und Raumfahrt, Berlin 337-356. http://www.tzi.de/~uniform

[K+97] Kolyang, Lüth, C., Meyer, T., Wolff, B.: TAS and IsaWin: Generic Interfaces for
Transformational Program Development and Theorem Proving. In Bidoit, M.,
Dauchet, M. (eds.): Theory and Practice of Software Development '97. LNCS 1214.
Springer (1997) 855-859.

[K+99] Krieg-Brückner, B., Peleska, J., Olderog, E.-R., Balzer, D., Baer, A: UniForM
Workbench, Universelle Entwicklungsumgebung für Formale Methoden; Schluß-
bericht. 1998. Monographs of the Bremen Institute of Safe Systems 9. ISBN 3-8265-
3656-8. Shaker, 1999.

1203The UniForM Workbench, a Universal Development Environment

[LMK98] Lankenau, A., Meyer, O., Krieg-Brückner, B.: Safety in Robotics: The Bremen
Autonomous Wheelchair. In: Proc. AMC'98, 5th Int. Workshop on Advanced Mo-
tion Control, Coimbra, Portugal 1998. ISBN 0-7803-4484-7, pp. 524-529.

[Lüt97] Lüth, C.: Transformational Program Development in the UniForM Workbench. Se-
lected Papers from the 8th Nordic Workshop on Programming Theory, Oslo, Dec.
1996. Oslo University Technical Report 248, May 1997.

[LW98] Lüth, C. and Wolff, B.: Functional Design and Implementation of Graphical User
Interfaces for Theorem Provers. J. of Functional Programming (to appear).

[L+98] Lüth, C., Karlsen, E. W., Kolyang, Westmeier, S., Wolff, B.: HOL-Z in the Uni-
ForM Workbench - a Case Study in Tool Integration for Z. In J. Bowen, A. Fett,, M.
Hinchey (eds.): Proc. ZUM'98, 11th International Conference of Z Users, LNCS
1493, Springer (1998) 116-134.

[L+99] Lüth, C., Tej, H., Kolyang, Krieg-Brückner, B.: TAS and IsaWin: Tools for Trans-
formational Program Development and Theorem Proving. In J.-P. Finance (ed.):
Fundamental Approaches to Software Engineering (FASE'99, at ETAPS'99). LNCS
1577. Springer (1999) 239-243. http://www.tzi.de/~agbkb

[LWW96] Lüth, C., Westmeier, S., Wolff, B.: sml_tk: Functional Programming for Graphical
User Interfaces. Informatik Bericht Nr. 8/96, Universität Bremen.
http://www.tzi.de/~cxl/sml_tk

[Mey98] Meyer, O.: Automated Test of a Power and Thermal Controller of a Satellite. In:
Test Automation for Reactive Systems - Theory and Practice. Dagstuhl Seminar
98361, Schloss Dagstuhl, (1998).

[Mos96] Mossakowski, T.: Using limits of parchments to systematically construct institu-
tions of partial algebras. In M. Haveraaen, O. Owe, O.-J. Dahl, eds.: Recent Trends
in Data Type Specification, LNCS 1130, Springer (1996) 379-393.

[Mos97] Mosses, P.: CoFI: The Common Framework Initiative for Algebraic Specification
and Development. In Bidoit, M., Dauchet, M. (eds.): Theory and Practice of Soft-
ware Development '97. LNCS 1214, Springer (1997) 115-137.

[Mos99a] Mossakowski, T.: Translating OBJ3 to CASL: the Institution Level. In J. L.
Fiadeiro (ed.): Recent Trends in Algebraic Development Techniques. 13th Int'l
Workshop, WADT'98, Lisbon, Selected Papers. LNCS 1589 (1999) 198-214.

[Mos99b] Mossakowski, T.: Representation, Hierarchies and Graphs of Institutions. Disserta-
tion, Universität Bremen, 1996. Revised version. Monographs of the Bremen Insti-
tute of Safe Systems 2, ISBN 3-8265-3653-3, Shaker, 1999.

[MKK98] Mossakowski, T., Kolyang, Krieg-Brückner, B.: Static Semantic Analysis and
Theorem Proving for CASL. In Parisi-Pressice, F. (ed.): Recent Trends in Algebraic
Development Techniques. WADT’97, LNCS 1376, Springer (1998) 333-348.

[MTP97] Mossakowski, T., Tarlecki, A., Pawlowski, W.: Combining and Representing Logi-
cal Systems, In Moggi, E. and Rosolini, G. (eds.): Category Theory and Computer
Science, 7th Int. Conf. LNCS 1290, Springer (1997) 177-196.

[MTP98] Mossakowski, T., Tarlecki, A., Pawlowski, W.: Combining and Representing Logi-
cal Systems Using Model-Theoretic Parchments. In Parisi-Pressice, F. (ed.): Recent
Trends in Algebraic Development Techniques. WADT’97, LNCS 1376, Springer
(1998) 349-364.

[Old98] Olderog, E.-R.: Formal Methods in Real-Time Systems. In Proc. 10th EuroMicro
Workshop on Real Time Systems. IEEE Computer Sociery (1998) 254-263.

[Pau95] Paulson, L. C.: Isabelle: A Generic Theorem Prover. LNCS 828, 1995.
[PCTE94] European Computer Manufacturers Association: Portable Common Tool Environ-

ment (PCTE), Abstract Specification, 3rd ed., ECMA-149. Geneva, 1994.
[Pel96a] Peleska, J.: Formal Methods and the Development of Dependable Systems. Bericht

1/96, Universität Bremen, Fachbereich Mathematik und Informatik (1996) 72p.
http://www.tzi.de/~jp/papers/depend.ps.gz

[Pel96b] Peleska, J.: Test Automation for Safety-Critical Systems: Industrial Application and
Future Developments. In: M.-C. Gaudel, J. Woodcock (eds.): FME'96: Industrial
Benefit and Advances in Formal Methods. LNCS 1051 (1996) 39-59.

1204 Bernd Krieg-Brueckner et al.

[ProCoS] He, J., Hoare, C.A.R., Fränzle, M., Müller-Olm, M., Olderog, E.-R., Schenke, M.,
Hansen, M.R., Ravn, A.P., Rischel, H.: Provably Correct Systems. In H. Lang-
maack, W.-P., de Roever, J., Vytopil (Eds.): Formal Techniques in Real-Time and
Fault-Tolerant Systems. LNCS 863, Springer (1994).288–335.

[PS96] Peleska, J., Siegel, M.: From Testing Theory to Test Driver Implementation. in: M.-
C. Gaudel, J. Woodcock (eds.): FME'96: Industrial Benefit and Advances in For-
mal Methods. LNCS 1051 (1996) 538-556.

[PS97] Peleska, J., Siegel, M.: Test Automation of Safety-Critical Reactive Systems. South
African Computer Jounal 19 (1997) 53-77. http://www.tzi.de/
~jp/papers/sacj97.ps.gz

[Pur99a] Purper, C.: GDPA: A Process Web-Center. Proc. 2nd Workshop on Software Engi-
neering over the Internet, with ICSE'99, Los Angeles, 1999. http:
//sern.cpsc.ucalgary.ca/ ~maurer/ICSE99WS/Program.htm

[Pur99b] Purper, C.: An Environment to support flexibility in process standards. Proc. 1st
IEEE Conf. on Standardization and Innovation in Information Technology. Aachen,
1999 (to appear).

[Ros97] Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, 1997.
[SMH99] Schlingloff, H., Meyer, O., Hülsing, Th.: Correctness Analysis of an Embedded

Controller. In Data Systems in Aerospace, DASIA '99, Lissabon (May 1999).
[SSC98] Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construc-

tion. Journal of Logic and Computation 8:10 (1998) 1-31.
[S+98] Sernadas, A., Sernadas, C., Caleiro, C., Mossakowski, T.: Categorical Fibring of

Logics with Terms and Binding Operators. In Gabbay, D., van Rijke, M. (eds.):
Frontiers of Combining Systems. Research Studies Press (to appear).

[Tap97] Tapken, J.: Interactive and Compilative Simulation of PLC-Automata. In Hahn, W.,
Lehmann, A. (eds.): Simulation in Industry, ESS`97. Society for Computer Simula-
tion (1997) 552-556.

[Tap98] Tapken, J.: MOBY/PLC – A Design Tool for Hierarchical Real-Time Automata. In:
Astesiano, E. (ed.): Fundamental Approaches to Software Engineering, FASE’98,
at ETAPS’98, Lisbon. LNCS 1382, Springer (1998) 326-329.

[TD98] Tapken, J., Dierks, H.: Moby/PLC – Graphical Development of PLC-Automata. In
Ravn, A.P., Rischel, H. (eds.): FTRTFT`98, LNCS 1486, Springer (1998) 311-314.

[Tar96] Tarlecki, A: Moving between logical systems. In M. Haveraaen, O. Owe, O.-J.
Dahl, eds.: Recent Trends in Data Type Specifications, LNCS 1130, 478-502.
Springer, 1996.

[Tej99] Tej, H. (1999): HOL-CSP: Mechanised Formal Development of Concurrent Proc-
esses. Dissertation. (forthcoming)

[TW97] Tej, H., Wolff, B.: A Corrected Failure-Divergence Model for CSP in Isabelle /
HOL. Formal Methods Europe, FME’97. LNCS 1313, Springer (1997) 318-337.

[UKP98] Urban, G., Kolinowitz, H.-J., Peleska, J.: A Survivable Avionics System for Space
Applications. in Proc. FTCS-28, 28th Annual Symposium on Fault-Tolerant Com-
puting, Munich, Germany, 1998.

[VMOD] V-Model: Development Standard for IT Systems of the Federal Republic of Ger-
many. General Directives: 250: Process Lifecycle; 251: Methods Allocation; 252:
Functional Tool Requirements. (1997).

[ZHR92] Zhou, C., Hoare, C.A.R., Ravn, A.P.: A Calculus of Durations. Information Proc-
essing Letters 40(5) (1992) 269-276.

1205The UniForM Workbench, a Universal Development Environment

Integrating Formal Description Techniques

Bernhard Schätz and Franz Huber
*

Fakultät für Informatik, Technische Universität München,
Arcisstraße 21, 80333 München
Email: {schaetz|huberf}@in.tum.de

Abstract. Using graphical description techniques for formal system develop-
ment has become a common approach in many tools. Often multiple description
techniques are used to represent different views of the same system, only to-
gether forming a complete specification. Here, the question of the integration of
those description techniques and views becomes a major issue, raising ques-
tions of consistency and completeness. In this paper, we present an approach to
ensuring conceptual and semantic consistency, influenced by experience gained
from a first implementation of the AUTOFOCUS tool prototype. Finally, we show
how this approach forms the basis for the definition of specification modules.

1 Introduction

Using multiple description techniques has become a common approach for the tool-
based system development. Prominent examples are SDL-based tools (e.g., Ob-
jectGeode [19], SDT [18]) and automata-based approaches (e.g., ObjecTime [17]).
Here, the specification of a system is spread out over several documents, each one
describing a certain view of the system, like its structure, its behavior, its data types,
or some of its sample runs. Only by combining those views we obtain the complete
system specification. However, while this structuring mechanism makes specifica-
tions more readable and manageable, it also poses a major problem: inconsistencies
may arise, for example by
• conflicts between the external and internal interface of a system or component,
• conflicts between the behavior of a system and of its combined subsystems, or
• conflicts between the specified behavior and given sample runs of a system.
To form a reasonable specification, inconsistencies between those views must be
avoided. Thus a tool should support detecting and fixing those inconsistencies. In
other words, for the usability of a tool supporting a view-based specification method,
the integration of those views is a prime requisite. This article describes an approach
towards this integration within the tool prototype AUTOFOCUS.

* This work was carried out within the sub-project A6 of “Sonderforschungsbereich 342

(Werkzeuge und Methoden für die Nutzung paralleler Rechnerarchitekturen)” and the project
SysLab, sponsored by the German Research Community (DFG) under the Leibniz program
and by Siemens-Nixdorf.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1206-1225, 1999.
Ó Springer-Verlag Berlin Heidelberg 1999

The remainder gives a short introduction of the AUTOFOCUS description tech-
niques. Section 2 explains our notion of integrated formalisms, sections 3 and 4
sketch the idea of a conceptual model to base those formalisms on. Section 5 illus-
trates the capabilities of a conceptual model for the reuse of. Finally, section 6 con-
cludes the approach with a short summary and outlook. As mentioned throughout the
article, part of this introduced approach is already implemented in the current version
of AUTOFOCUS, the remainder describes work in progress.

1.1 View-based Systems Development

To support the development of distributed systems, AUTOFOCUS [11] does not aim at
capturing a complete system within a single formalism. Instead, different views of a
system are each specified using an appropriate notation. In the AUTOFOCUS approach,
a distributed system is characterized from several points of view, as
• the structure of a system including its components and channels,
• the behavioral description of the system as a whole or of one of its components,
• the data processed by the system and transmitted across the channels, and
• the interaction of the components and the environment via message exchange.
In general, only a description including all views forms a complete picture of the sys-
tem. Thus, AUTOFOCUS offers multiple description techniques: system structure dia-
grams (SSDs), state transition diagrams (STDs), data type definitions (DTDs), com-
ponent data declarations (CDDs), and extended event traces (EETs), covering all
those aspects. Like the hierarchical concepts of the underlying theory FOCUS [4], each

Fig. 1. The A UTOFOCUS Client Application – Project Browser and Editors

1207Integrating Formal Description Techniques

description technique allows to model on different levels of detail, where, for exam-
ple, components can be either atomic or consist of sub-components themselves.

1.1.1 Document Oriented Description
In AUTOFOCUS, a project, representing a system under development, consists of a
number of documents that are representations of views using the description tech-
niques introduced above. Thus each description technique is mapped to a corre-
sponding class of documents (“diagrams”). Combined, these documents provide a
complete characterization of a system in its current development status.

1.1.2 Hierarchical Documents
All graphical AUTOFOCUS description techniques share the concept of hierarchy.
SSDs, STDs and EETs allow hierarchical decomposition. In an SSD, a system com-
ponent may be viewed as a conceptual unit of sub-components specified in another
SSD. In the same way, a state in an STD can be characterized by another STD docu-
ment describing this state on a more detailed level. In EETs, so-called “boxes” are
introduced as an abbreviating notation for partial runs specified in different EETs.

1.1.3 Integrated Documents
From the user’s point of view, the documents of a development project are integrated,
both vertically along the refinement hierarchies and horizontally along the relation-
ships between documents of different kinds. For instance, an STD can be associated
with a component in an SSD denoting that this STD specifies the behavior of the
component. Along relationships like these, quick and intuitive navigation mechanisms
between the documents are available.

1.1.4 System Structure Diagrams (SSDs)
System structure diagrams describe a distributed system as a network of components
exchanging messages over directed channels. Each component has a set of input and
output ports to which the channels are attached. Channels have associated data types
describing the sets of messages sent across them. Components can be hierarchically
refined by networks of sub-components. Then, the complete sub-network has the
same set of communication ports as the higher-level component this refined view be-
longs to. Graphically, as in Fig. 1, SSDs are represented with boxes as components
and arrows for channels. Both are annotated with identifiers and, in the case of chan-
nels, also with their data types. Input and output ports are visualized as small hollow
and filled circles, respectively.

1.1.5 State Transition Diagrams (STDs)
State transition diagrams are extended finite automata similar to the concepts intro-
duced in [8]. They are used to describe the behavior of a system or component. Each
component can be linked to an STD consisting of states and transitions between them.
Each transition has a set of annotations: a pre- and post-condition, encoded as predi-
cates over the data state of the component satisfied before and after the transition, and
a set of input and output patterns describing the messages read from or written to the

1208 Bernhard Schaetz and Franz Huber

input and output ports. For hierarchical refinement of states in STDs, we use a con-
cept similar to the SSD case. Graphically, automata are represented as graphs with
labeled ovals as states and arrows as transitions. Fig. 1 shows an example of an
AUTOFOCUS state transition diagram.

1.1.6 Datatype Definitions (DTDs)
The types of the data processed by a distributed system are defined in a textual nota-
tion. We use basic types and data type constructors similar to those found in the func-
tional programming language Gofer [14]. The data types defined here may be refer-
enced from within other development documents, for example, as channel data types
in SSDs.

1.1.7 Component Data Declaration (CDDs)
Additionally to receiving and sending messages, components generally store infor-
mation locally to process those messages. For this purpose, local variables may be
defined for each component by associating a component data declaration to it. A CDD
simply consists of a set of variable identifiers and their associated types as defined in
the DTD of the system, plus a possible initial value. Those variables locally defined
for a component may be addressed in the definition of the STD of this component in
the input and output patterns as well as in the pre- and post-conditions.

1.1.8 Extended Event Traces (EETs)
Extended event traces (cf. [16]) describe sample system runs from a component-based
view. As shown in Fig. 1, we use a notation similar to the ITU-standardized message
sequence charts MSC'96 (ITU Z.120, [13]). Using “boxes” EETs, support hierarchy
and specify variants of behavior. Indicators can be used to define optional or repeat-
able parts of an EET. From a methodological point of view they are used in the early
stages of systems development to specify the functionality of a system on a sample
basis as well as system behavior in error situations. Later in the development process,
the system specifications given by SSDs, STDs, and DTDs can be checked against the
EETs, whether they fulfill the properties specified in them.

2 Integration of Formalisms

We use the term integration of description formalisms to express the influence of the
description formalisms on each other. To judge the integration we must answer the
question “How well do the formalisms play together to form a reasonable description
of the system to be developed?” In other words, “What are the necessary side condi-
tions on the formalisms to form a consistent system specification?” Here, we use
“consistency” in a rather general interpretation (cf. [10]) to express several forms of
conditions like:
• Document Interface Correctness: If a document is hierarchically embedded into

another one, these documents must have compatible interfaces (components in
SSDs, states in STDs, or boxes in EETs).

1209Integrating Formal Description Techniques

• Definedness: If a document makes use of objects not defined in the document it-
self, those objects must be defined in a corresponding document (like channel
types in SSDs or STDs).

• Inter-View Consistency: If two or more formalisms describe the same aspect of a
system, the descriptions must be consistent (like SSDs and STDs with EETs).

• Completeness: All necessary documents of a project have to be present.
From a methodological point of view we distinguish two kinds of conditions:
• Conceptual Consistency Conditions can be defined solely in terms of the de-

scription technique concepts. Examples are the interface consistency, the defined-
ness conditions or the well-typedness of specifications.

• Semantical Consistency Conditions can only be defined using semantical no-
tions. Examples are the refinement of a system including its behavioral description
by an implementation through a set of sub-components including their behavioral
description; or the compatibility of a sample EET of a system with the behavioral
description of is sub-components.

Most developers expect the first class of conditions to generally hold during the de-
velopment process. Luckily, there are simple mechanisms to check their validity (cf.
Subsection 2.1). The second class is quite the opposite: very complex mechanisms are
needed to validate those semantical consistency conditions (cf. Subsections 2.2.1 and
2.2.2), if possible at all. Since those conditions are quite complex, however, develop-
ers generally do not expect them to hold throughout the development process.

The distinction between conceptual and semantical consistency conditions plays an
important role with the introduction of the conceptual model as described in section 3.
There we introduce a notion of a specification based on a general conceptual model
for AUTOFOCUS instead of a collection of AUTOFOCUS description techniques.

2.1 Conceptual Consistencies

Conceptual consistency conditions generally are considered to hold invariantly during
the development process. However, mainly due to its originally document-oriented
approach, AUTOFOCUS so far does not strictly enforce conceptual consistency
throughout the development process. It rather offers developers the possibility to
check the violation of conceptual consistency conditions and locate those elements of
the specification causing these violations. With AUTOFOCUS, conditions can be for-
malized using a consistency condition description language based on a typed first-
order logic. The language and the user interface are described in [10] and [6]. Experi-
ences with AUTOFOCUS and this form of conceptual consistency conditions, however,
suggest using a more rigorous approach, as discussed in section 2.3

2.2 Semantic Consistencies

Integration of views on the semantical level is more complicated. Those consistency
conditions can only be expressed by proof obligations defined using the semantical
basis. Thus a formal semantics of the description techniques and a sufficiently power-
ful proof-mechanism are needed. Providing a semantical basis for intuitive graphical

1210 Bernhard Schaetz and Franz Huber

description techniques is becoming more and more state of the art (cf. StateChart,
Rhapsody [12], ObjectGeode, SDT [18]). However, strong verification support, espe-
cially automatic support, is commonly found only in more mathematically oriented
description techniques (e.g., Atelier B [1], FDR [7]). For a strictly integrated use of
those user-friendly description techniques it is not sufficient to support a translation
into a format suitable for a prover. For an integrated approach we furthermore require
a tool to support the user on the level of those description techniques.

2.2.1 Hierarchical Consistencies
In the AUTOFOCUS approach only one form of hierarchical consistency on the seman-
tic level is required: behavioral refinement of systems. Consistency violation may
occur if a component is assigned behavior using a corresponding STD; furthermore a
substructure is defined for this component via an SSD with STDs for all the compo-
nents of this SSD. The AUTOFOCUS approach requires the behavior of the refined
component (substructure components and their behaviors) to be a refinement of the
behavior originally associated with the component. To check the validity of the re-
finement and thus the semantical consistency AUTOFOCUS offers an automatic check
based on the relational µ calculus model checker µcke [3]. The formal basis for this
check can be found in [10].

2.2.2 Inter-View Consistencies
To ensure semantic inter-view consistency in AUTOFOCUS, again, only one form of
check is required. Since the combination of SSDs and STDs on the one hand and
EETs on the other hand characterize system behavior, we require sample runs of the
EETs to be a legal behavior as described by the SSD/STD combination. Again, we
use µcke to check the consistency of the SSD/STD and the EET view.

C2 C3C1

E000

E011

E100

E111

E222

E233

E343

E234

E344

E4

E2E1

E6E5

E3

E1 E2

E3

E4

E5 E6

Fig. 2. Reachable Cuts of an EET and its Partial Order Trace

1211Integrating Formal Description Techniques

As mentioned in Section 1.1.8, EETs are interpreted as positive or negative re-
quirements in the form of sample runs. Formally, an EET is interpreted as a relation
between two system states, relating a state before the execution of the EET to a state
after the execution of all EET events. Thus, its µ formalization makes use of the
product state and product transition relation of all components of the described system
as described in [10]. Thus, an EET is interpreted as a state transition diagram of the
complete system. Reachable cuts are used as the states of this diagram, defined using
the independence expressed by the EETs. Events are considered independent except
in two cases:
• All send and receive events of one component (represented as start or end point of

arrows on a single component axis) are causally dependent in the downward direc-
tion to represent the passing of time.

Send and receive events of a single message event are causally dependent.1 Fig. 2
shows the different reachable cuts of an EET consisting of components C1, C2 and
C3.2 Since a reachable cut marks a possible intermediate state of an EET, we define a
reachable cut by the following rules:
• The start state of an EET (before any event) is a reachable cut.
• If a reachable cut is followed by a set of independent actions, all states reached by

the execution of any subset of this set are reachable cuts.
As shown in Fig. 2, an EET can be equivalently expressed using a partial order trace
(cf. [5]). Here, with independent E1 and E2, we obtain the reachable cuts:
• E000 is reachable by the first rule.
• E100 reachable from E000 through E1 by the second rule,
• E011 reachable from E000 through E2 by the second rule,
• E111 reachable from E100 through E2, from E011 through E1, or from E000

through simultaneously applying E1 and E2 by the second rule.
With E3 being dependent on E1 and E2, the next reachable cut is E222, and – simi-
larly – E233. Analogously E5 and E6 lead to the cuts E343, E234, and E344.

For the µ formalization, we introduce a relation for each reachable state. A relation
corresponds to executing pending events and reaching the associated cuts. For each
execution of a set of events a clause is introduced reflecting the transfer of messages
vi on channels ci and the reached cut EETi . Furthermore, a clause is introduced with
empty messages c nili = representing a “nil round” of the system with no messages
sent. Finally, all clauses are combined using disjunction:
m ¢ ” = Ù Ù = Ù $ Ù ¢ Ú

= Ù Ù = Ù $ Ù ¢ Ú

= Ù Ù = Ù $

EET s s s c nil s c nil t T s t EET t s

s c v s c v t T s t EET t s

s c v s c v t

n

n n

k n n k

(,) (. . .((,) (,))

(. . .((,) (,))

(. . .(

, ,

, ,

1

1 1 1 1 1

1 1

K

K

M

K TT s t EET t sk(,) (,))Ù ¢
Here, the µ operator is used to define the relation as the least fixed point of this recur-
sive definition. T corresponds to the transition relation of the system composed of C1,
C2 and C3, formalized as product transition relation as in [10].

1 Here send/receive events of a message are considered to happen simultaneously and are

therefore interpreted as a single event.
2 For the sake of brevity, we use labels E1, E2, ... instead of regular annotations.

1212 Bernhard Schaetz and Franz Huber

To formalize hierarchic elements of an EET, a single relation is introduced for
those elements. To formalize those sub-parts the above strategy is applied to them.
Depending on the kind of hierarchical structuring mechanism (indicators/boxes) those
sub-EETs are inserted in the relation of the embedding EET analogously to the exe-
cution of a single event:

EET s s t EET s t EET t sb(,) .((,) (,))¢ ” $ Ù ¢ ¢
with EET s tb (,) denoting the relation for the embedded EET constructed as described
below, and EET t s¢ ¢(,) denoting the relation for the remainder of the embedding EET.
The relation for an EET embedded using an indicator is constructed depending on the
kind of the indicator (optional/repetitive/optional repetitive):
• Optional: m ¢ ” ¢ Ú = ¢EET s s EET s s s sb i(,) (,)
• Repetitive: m ¢ ” $ Ù ¢ = Ú ¢EET s s t EET s t s t EET t si(,) . (,) ((,))
• Optional repetitive: m ¢ ” = ¢ Ú $ Ù ¢EET s s s s t EET s t EET t si(,) (. (,) (,))
Here, EET s si (,)¢ denotes the relation for the indicated sub-EET. Similarly, boxes are
formalized by a relation comprising the “boxed” EETs by simply forming a disjunc-
tion over them, thus allowing any of those EETs to substitute the box:

m ¢ ” ¢ Ú Ú ¢EET s s EET s s EET s so n(,) (,) (,)1 K ,
where EET s s EET s sn1(,), , (,)¢ ¢K denote the relations for the boxed EETs.

Since the formalisation of an EET represents a property about the transition rela-
tion of the whole system, it can be used to express different positive and negative re-
quirements about the system using an embedded clause as described in [2]. In case
such a requirement does not hold for the system, the counter example generated of the
model checker can be used to generate a counter example as discussed in [10].

2.3 Lessons Learned

AUTOFOCUS was originally implemented with a user controlled consistency mecha-
nism (cf. [10]). Only syntactic consistency criteria of the description techniques where
controlled automatically during the development process, all other conceptual con-
sistency condition had to be initiated by the user. Experiences have shown that
developers using AUTOFOCUS were willing to trade in a maximally flexible develop-
ment process for an enforcement of conceptual consistency if offered a comfortable
interface for the development of consistent specifications (see Section 5.5). Thus, the
weak integration of description techniques in AUTOFOCUS is currently strengthened
using a single conceptual model. This conceptual model and the resulting approach
currently under implementation are described in Sections 3 and 5.

3 Conceptual Models

This section introduces a simplified version of a conceptual model for AUTOFOCUS.
Here, specifications are instances of this conceptual model and describe systems in an
integrated fashion. Developers create and manipulate them using concrete notations
representing views upon them. Even different graphical or textual views on the same

1213Integrating Formal Description Techniques

parts of the model may be offered. The notations representing these views are the
same used in the document-based initial version of AUTOFOCUS and were introduced
in sections 1.1.4 through 1.1.8.

The elements in the conceptual model make up the essence of the notations used,
like abstract syntax trees generated by parsers for programming languages. In pro-
gramming languages, however, source code “documents” are the important modeling
concept, the syntax tree is generated by the parser unnoticed by the user. Many soft-
ware engineering tools offer a similar approach, treating system descriptions as—at
most loosely related—documents of different kinds. In the model-based approach, the
abstract model is the central concept, both from the tool developer’s and from the
methodologist’s point of view. Developers deal directly with the elements of the ab-
stract model without encapsulation in artificial constructs such as documents. The
modeling elements of AUTOFOCUS are shown in Fig. 3 using a UML-style notation.
For a more detailed description of the modeling concepts we refer to [11].

Subsequently, we describe the elements in the conceptual model, which are, of
course, the concepts described by the notations introduced in Section 1.
• Components encapsulate data, structure, and behavior , communicating with their

environment.
• Data types define data structures used by components.
• Data are encapsulated by a component and provide a means to store persistent

state information inside a component, realized by typed state variables.
• Ports are a component’s means of communicating with its environment. Compo-

nents read data on input ports and send data on output ports.
• Channels are directed, named, and typed. They connect component ports. They

define the communication structure (topology) of a distributed system.

Component

SubComponents

Channel

ControlState

Transition

InputPort OutputPort

{ disjoint }

Pattern

OutputPattern

InputPattern

PreCondition

PostCondition

DataTypeDataElement

Port
0..*

1..*0..*
0..*

0..*
0..*

0..*

0..*

0..*

0..2

0..*

2

1

2

1
1

1..*

1

1

1

0..*

0..*

0..*

Connector

0..*

0..2

0..* 1

10..*

Predicates over the
component's encapsulated
data elements, not treated
here in detail

Expression constructed
according to the rules
for the associated data type,
not treated here in detail

At most two channels can
be connected to a port:
One to the environment of a
component and one to its
internal sub-structure

Fig. 3. Simplified Conceptual Model of A UTOFOCUS

1214 Bernhard Schaetz and Franz Huber

• Control States and Transitions between their entry and exit points—called Con-
nectors—define the control flow of a component. Transitions carry four kinds of
annotations determining their firing conditions,
• pre-conditions and post-conditions, which are predicates over the data elements

of the component to be fulfilled before and after the transition, respectively, and
• input and output patterns, determining which values must be available on the

component’s input ports to fire the transition and which values are then written
to the output ports.

The elements of the conceptual model can be regarded as abstractions of both the un-
derlying formal model and their concrete notations. Thus, the conceptual model repre-
sents the common denominator of both the description techniques and a formal
model.

Viewing specifications as graphs of specification elements, it is possible to con-
struct a multitude of graphs using only instances of the elements and relationships in
the conceptual model, leaving aside the arities given for the relationships. Then, of
course, most of the possible graphs will not conform to the conceptual model.3 In this
respect, the conceptual model acts as a requirement specification for well-formedness
(see Subsection 5.1.1), discriminating well-formed from ill-formed specifications.

4 Views and Description Techniques

How do developers develop system specifications using a conceptual model? In the
model-based approach, a system specification is an instance of the conceptual model,
i.e., a graph consisting of individual nodes, which are atomic modeling entities, and of
arcs capturing their relationships. Such a model instance must obey the well-
formedness conditions defined by the conceptual model; arbitrary graphs are not al-
lowed since they do not represent well-formed specifications. As stated in Section 3,
developers do not manipulate these “specification graphs” as a whole, but by picking
only specific parts of it, which are of interest during particular development activities.
These parts, usually closely related with each other, make up views of the system. For
instance, the structural view in AUTOFOCUS considers only elements from the con-
ceptual model describing the interface of components and their interconnection. The
view on the control flow focuses on the state space of components and the transitions
possible within the state space.

To manipulate elements of these views we represent them visually. In AUTOFOCUS

we use the notations introduced in Sections 1.1.4 through 1.1.8. Although the nota-
tions used to represent modeling entities are the same as in the document-based ap-
proach, their purpose in the model-based approach differs substantially from a meth-
odological point of view. In document-based development documents are closed
modeling artifacts with no explicit references to modeling elements defined in a dif-
ferent context, outside a specific document. Only implicit references are defined, like
references by equality of names of port elements or of names of variables. Only the

3 Although well-formedness is considered an invariant in the development process (see Sub-

section 5.1.1), allowing ill-formed specifications can be reasonable for some, mostly internal,
operations on specifications invisible to the user (see Subsection 5.4.2).

1215Integrating Formal Description Techniques

assembly of all the individual documents and the resolution of these implicit refer-
ences gives the complete view of the specification. In the model-based approach the
specification of the system as a whole is incrementally constructed by adding new
modeling elements to the specification. This complete specification thus really repre-
sents a model of the system, an abstraction of the complete system, which is the goal
of the development process. The notations do not represent self-contained documents
but a visualization of a clipping from the complete specification graph. This clipping
does contain explicit references to other parts of the specification, as in Fig. 4, where
the gray area in the conceptual model encompasses all elements carrying information
about the structure of a system. Within this structural description, other information,
such as the interface view of components (collection of ports of a component) and the
data type view (necessary to describe both the component ports and the channels) is
contained as well. Thus, ports and data types are explicitly referenced in the structural
view. One possible graphical representation of the structural view of a system is given
by SSDs as symbolized in Fig. 4. This sample SSD represents a part of a fault-tolerant
production cell controller, which will also be used as an example in Section 5.2.2. We
call this collection of a view and a notation together with their interrelationships a
description technique. More formally, a description technique consists of
• a subset of modeling elements from the conceptual model and the relationships

between them, which, together, define a specific view on the system,
• a concrete syntax (graphical or textual notation) representing these elements, and
• rules to map the concrete syntax to the modeling elements and vice-versa.

Component
SubComponents

Channel
ControlState

Transition

InputPort
OutputPort

{ disjoint }

Pattern

OutputPattern

InputPattern

PreCondition

PostCondition

DataType

DataElement

Port

0..*

1..*

0..* 0..*

0..*
0..*

0..*

0..*

0..*0..2

0..*

2

1

2

1 1

1..*

1

1

1

0..*0..*

0..*

Connector

0..*

0..2

0..*

1

1

0..*

SystemClock

ProductionCellController

SystemTime: int

r: RobotOp

rs: RobotStatus

p1: PressStatus

p1: PressOp p2: PressOp t: TableOp

Part of the meta-model
related to structural aspects

Graphical notation
describing structure: SSD

Fig. 4. Structural View of Conceptual Model and Notation Representing its Elements

1216 Bernhard Schaetz and Franz Huber

A description technique thus serves as a kind of peephole through which developers
can see (and change) parts of a specification.

5 Specification Modules

The conceptual model introduces the terms and relations needed to describe the sys-
tem specified by the developer. We show how those terms and relations are combined
to form specifications. In Subsection 5.1 we define when a description of a system is
considered a system specification. In Subsection 5.2 we show how specifications and
specification modules are related and what it means to define an incomplete specifi-
cation module. Finally, in Subsection 5.4 we demonstrate how specification modules
are applied to support reuse of specifications.

5.1 Module Criteria

To support reuse of specifications or specification parts, a clear meaning of a specifi-
cation has to be defined. Based on the conceptual model discussed above we intro-
duce the notion of a specification of a system. A specification
• is a well-formed description of one or more aspects of a system,
• may fulfill additional conceptual consistency conditions,
• does not necessarily need to be complete .
Like the conceptual model, a specification is an abstract concept and can have several
concrete syntactical representations. The choice of the conceptual model determines
the notion of a specification by defining the well-formedness and additional concep-
tual consistency conditions of a specification. The first describes invariant conceptual
consistency conditions of a specification, the latter conditions required only at certain
development steps. Since the distinction between a well-formedness condition and a
consistency condition depends on the definition of the conceptual model, this defini-
tion—as a methodological decision—influences the strictness of the design process.
For example, the assignment of a data type to a port or channel may be considered a
well-formedness condition as well as a consistency condition. In the first case a port
or a channel cannot be created without assigning an appropriate type. In the latter
case, a type may be assigned at a later step in the design process.

5.1.1 Well-Formedness
Well-formedness conditions are invariant conditions that hold for specifications in-
variantly throughout the design process. Those invariances are defined by the con-
ceptual model and typically include syntactic properties. Examples are:
• Each channel has two adjacent ports, an output port at its beginning, and an input

port at its end, and an associated data type.
• Each transition has two adjacent connectors.

5.1.2 Consistency
Consistency conditions are defined as additional properties of the conceptual model
that must hold for reasonable specifications but may be violated throughout the design

1217Integrating Formal Description Techniques

process. At certain steps in the design process, consistency of the specification is re-
quired. Typical steps are code generation, verification, and specification module defi-
nition. Different consistency conditions may be required for different steps. While
code generation or simulation require completely defined data types, this is not neces-
sary for verification or specification module definition. Example conditions are:
• Each port, channel, etc. has a defined (i.e., non-empty) type.
• Port names are unique for each system component.
While the first condition is a necessary consistency condition for simulation or code
generation, the second consistency condition is not formally; it may, however, be
formulated and checked to support better readability or clarity of documents gener-
ated from the conceptual model.

5.1.3 Completeness
A third condition to be raised throughout the development process but not mentioned
so far is the completeness of a specification. A specification is called complete if all
relevant objects of the specification are contained in the specification itself. Similar to
the consistency of a specification, completeness is only required at certain steps of the
development process like simulation, code generation or verification. Actually, com-
pleteness can be defined as a consistency condition and checked the same way (see
[10]). However, the incompleteness of a specification module can be used to define
parameterized modules, and is thus treated as a separate property for methodological
reasons: since an instantiation mechanism is needed for incomplete or parameterized
specification modules, incomplete modules are distinguished form other forms of
inconsistency. Subsection 5.2.2 treats this question in more detail.

5.2 Module Definition

Given the modeling concepts introduced above, the notion of a specification module
can be introduced. Typical examples of specification modules are:
• System structure module: A specification module of a system as defined by a cor-

responding component possibly including its sub components.
• Behavioral module: The behavior assigned to a component or a subpart of it.
In our approach a specification module is not distinguished from a specification.
Thus, every well-formed part of a specification is considered a specification module.
A well-formed part of a specification need not be complete. However, for a reason-
able reuse of a specification module, it has to obey several consistency conditions.
This leads to a simple distinction of two different specification module concepts:
• Complete specification module: A specification module is complete if all refer-

enced elements (e.g., type definitions of used port types or local data, sub-
components of a component) are contained in the module.

• Parameterized specification module: A specification module is parameterized if
some referenced elements are not included in the specification (e.g., incomplete
type definitions of a component, undefined behavior of a component).

Specification modules are well-formed specification parts possibly obeying additional
consistency conditions. Therefore, specification modules can either be developed as

1218 Bernhard Schaetz and Franz Huber

in the case of a usual specification or reused form a larger specification by a selection
process based on the conceptual model.

5.2.1 Complete Modules
The simplest form of a specification module is the one containing all relevant infor-
mation. Since—unlike in the parameterized case—no instantiating of the module is
needed, all information of the module can simple be added to the target specification.
A simple example of a complete specification module is the press controller module
of the production cell consisting of
• the data types describing the actuatory and sensory data,
• the interface description of the controller (typed input and output ports),
• the (empty) list of variables of the controller unit, and
• the behavioral description of the controller unit given by an STD using the typed

port, component, and transition variables of the controller.
This module is complete since all entities referenced in this module (data types, ports,
variables, etc) are also defined in this module.

5.2.2 Parameterized Modules
As a simple example we define a behavioral specification module as shown in Fig. 5.
The module is used to handle fault situations of the production cell units. Upon en-
tering the module, an offline status message is issued. The unit is then brought to a
defined state and stability of the unit is reported. Upon receipt of a restart message,
the unit is restarted. Since all of the units of the production cell must support this kind
of error treatment, it is useful to define a general fault module to be instantiated for all
components. The defined specification module consists of three parts:
• The minimal interface to be supplied by a component intended to offer this fault

recovery strategy. The interface is defined by the corresponding ports (i, o, c, s).
• The type of messages used to indicate the status of the unit or to influence its be-

havior. As the behavior is independent of the kind of unit (press, robot arm, etc.),
the unit-dependent part of the message types (data, control) is not specified by the
module but defined as a parameter to be instantiated upon use of the module.

i?x,s?y:c!except.reset

i?x,s?data.y:c!except.reset

i?except.restart,s?x:o!online

i?except.alarm,s?x:o!offline
msg

reset

fault

restart
alarm

up
down

control except

ProductionCellController

resetting

ready
offline

sts

online

i?x,s?except.initial:o!ready

offline ready

sdi

error
initial

up
down

data except

i?x,s?except.error:o!offline

i:msg c:msg

o:stss:sdi
Press1

Press2

Robot

Fig. 5. Parameterized Error Treatment Module

1219Integrating Formal Description Techniques

• The behavior relevant for fault recovery. Only a part of a complete behavioral de-
scription of a unit is described by giving the necessary states (offline, resetting,
ready), and the corresponding transitions and entry- and exit-points. Applying the
module adds the fault-recovery routine to the target specification to be extended to
a complete specification for the corresponding unit.

To apply a parameterized module to a target specification the parameters are instanti-
ated and the resulting module is added to the specification. In Section 5.3 we give a
more precise definition of the concepts of specification modules and their elements; in
Section 5.4 we show how to apply complete or parameterized modules to a target
specification.

5.3 Mathematical Model

In the previous sections we gave an intuitive interpretation of the terms specification
and complete and parameterized specification module. However, to introduce the ap-
plication or reuse of specification modules we need a more precise definition of those
terms. Therefore, we define a mathematical model for the above-introduced concepts.
In Subsection 5.3.1 we define the mathematical concept of modules and their combi-
nation using the notion of colored graphs and typed binary relations.4 Based on this
model we will introduce the necessary formal operations union construction and re-
naming, which will be used to define the module application in Section 5.4.

5.3.1 Model of Specification Modules
A specification is considered a graph with the specification elements of the concep-
tual model as nodes and the relations between these elements as the edges of the
graph.5 Since the conceptual model is typed (the elements of the conceptual model are
elements of distinct classes like components, ports, channels, etc.), the node set is
partitioned. Thus a specification can be described by a pair (E,R) with
• a collection of sets of elements E E E E Em m= -(, , , ,)1 2 1K

• a collection of binary relations R R R R Rn n= -(, , , ,)1 2 1K
with Ei i˝ E and Rj j˝ R , where R E Ej k l= · , as well as corresponding definitions

for E and R . The definitions of Ei and R j depend on the definition of the conceptual
model as described in Section 3. In the AUTOFOCUS conceptual model, for example,
• the collection E contains the set of input ports I , the set of system components S,

the set of channels C , or the set of types T, and
• the collection R contains the relation SS between a system component and its sub

components, the relation IC between an input port and connected channel, IT be-
tween an input port and its type as well as CT between an channel and its type.

Generally R i will not cover the complete range of sub relations of Ri. As, for example,
• a system component cannot be its own sub component, the sub component relation

is not reflexive

4 See [15] for an elaborate treatment of using algebraic approaches to model specifications.
5 For reasons of simplicity we will only consider binary relations; the extension to relations of

higher cardinality is straight-forward.

1220 Bernhard Schaetz and Franz Huber

" ˛ Þ „x S y S x y SS x y: , : .(,)
• it is not possible to connect one port to two input channels, the channel-input port

relation will not contain two different channels for one port:
" ˛ Ù ˛ Þ =i I c C c C i c IC i c IC c c: , : , : .(,) (,)1 2 1 2 1 2

Furthermore, the collection of relations will not cover the complete range of possible
sets of relations fulfilling those above conditions. For example, if a pattern is defined
for an input port in a state transition diagram, both pattern and input port are of the
same type

" ˛ Ù ˛ Ù ˛ Þ =i I p P t T t T i t IT p t PT i p IP t t: , : , : , : .((,) (,) (,))1 2 1 2 1 2
Those additional conditions fulfilled by the pair (E,R) of a specification module repre-
sent the well-formedness conditions described in Subsection 5.1. Some of those con-
ditions above are typically described using arity-annotations of class diagrams. Those
conditions can be expressed in typed first-order predicate logic with equality and can
thus be automatically checked by a consistency checker as described in [10].

5.3.2 Operations on Specification Modules
To combine two modules (,)E R and (,)E R¢ ¢ , the union (,)E E R R¨ ¢ ¨ ¢ is con-
structed with E E E E E Em m¨ ¢ = ¨ ¢ … ¨ ¢(, ,)1 1 and R R R R R Rn n¨ ¢ = ¨ ¢ … ¨ ¢(, ,)1 1 .
E and E´ are neither required to be disjoint nor to be identical. Thus, the union of two
specification modules can introduce
• new specification elements like components, ports, types, states, etc.
• new relations between both old and new specification elements like adding a new

port to an already existing system component.
It is important to note, however, that the union construction of two well-formed or
consistent non-disjoint specification modules in general will not lead to a well-formed
or consistent specification. Subsection 5.4.2 considers this aspect.

Finally, specification modules can be renamed prior to the union application to al-
low the identification of specification elements. Thus, parameterized specification
modules can be applied to specifications. To rename specification modules, isomor-
phic mappings M :E R E R· fi · ,

M

i i iE E E: fi , and

M

j j jR R R: fi are defined

with

M M M M M

m n
= · · · ·(,)E E R R1 1

K K , as well as

M R M e M e e e R R

j j k
i i i j kR E E() {((), ()) | (,) }= ˛ Ù ˝ ·1 2 1 2 E E

Based on the techniques of renaming and union construction we will describe how a
specification module can be applied as a complete or parameterized module in the
following section.

5.4 Module Application

Basically, the application of a specification module can be defined as an embedding
operation on the conceptual model with additional mappings of common elements of
the module and the specification. In Subsection 5.4.1 we outline renaming as the basic
difference between the application of a complete and a parameterized specification
module. Subsection 5.4.2 sketches how such a renaming mapping is used to define
parameterized modules using the example of Subsection 5.2.2.

1221Integrating Formal Description Techniques

5.4.1 Complete and Parameterized Specification Modules
As mentioned in Subsection 5.2 we distinguish between parameterized and complete
specification modules. Having introduced a mathematical model for specification
modules, it is obvious that this distinction is not a technical but a methodical one. To
add a complete specification module we simply construct the union as defined above.
Assuming disjoint sets of specification elements no further renaming is necessary.6

For example, we can simply add the press controller module defined in Subsection
5.2.1 to the specification to add another press to the system. To make use of the con-
troller module we then connect the ports of the module to the ports of the system.
To make use of a parameterized specification module it is necessary to instantiate its
parameters before adding it to the specification. Therefore, the parameter elements
must be renamed to elements of the target specification prior to the union construc-
tion. Like specification parameters in algebraic specification languages like SPEC-
TRUM [9], the parameter elements are considered the interface of a module used to
apply it to the target specification. Again, consider the example of the press controller
module defined in Subsection 5.2.2. The specification can be used as a behavioral
specification module with type parameters (control and data), a system component
parameter (Press1) and a state parameter (fault). To avoid the introduction of new
types for the actuatory and sensory data we identify the types used in the press con-
troller module with the types already defined in the system specification.

5.4.2 Module Instantiation
As mentioned in Subsection 5.4.1, specification modules can be compared to alge-
braic specifications. The combination of specification modules is similar to the com-
bination of algebraic specifications: elements of the interface of the applied specifica-
tion module are identified with elements of the specification (or module) it is applied
to. Thus, to apply a specification module, a mapping must be constructed to map the
interface elements to elements of the same type in the target application. Furthermore,
the resulting specification must again be well-formed. To illustrate module applica-
tion we consider the module introduced in Fig. 5. Here, the mapping
• introduces new port elements (i,o,s,c), new type elements (msg, except, alarm,

etc.), new state elements (offline, resetting, online), as well as the new transition
elements and pattern elements found in Fig. 5,

• identifies old and new elements like the system component Press1, the type ele-
ments data or control and the state fault, and therefore

• introduces new relations, like the component-port relation between Press1 and i, or
the state-sub state relation between fault and offline.

Fig. 5 shows the resulting specification after the mapping and the union construction
including the newly introduced elements, the already defined elements (grayed out)
and the identified elements (dashed).

6 The disjointness condition might be relaxed to support the common use of predefined data

types like bool or int as well as identifiers of specification elements.

1222 Bernhard Schaetz and Franz Huber

5.5 User Interface

Developers manipulate a specification as instance of the conceptual model using con-
crete notations, e.g., as in Sections 1.1.4 through 1.1.8, representing its elements and
their structure. Users interacting with such notations need appropriate operations on
the presented specification part. These operations must fulfill two criteria. First, they
must not allow to create ill-formed specifications in terms of the conceptual model:
Each operation must preserve conceptual consistency (cf. Sections 2 and 5.1). Second,
they must be flexible and comfortable enough, so users do not regard them as too re-
strictive. Since notations are visual elements, interaction mechanisms developed in
the GUI domain that have proven their user-friendliness are candidates to be consid-
ered here. For the AUTOFOCUS approach, the following two concepts are envisaged.

5.5.1 Drag and Drop
One paradigm to exchange information is “drag-and-drop”, a mouse-based interaction
scheme, which aims at several different purposes of information interchange. First,
relocation of information can be accomplished by drag-and-drop: Grabbing an infor-
mation element, a piece of text or a graphics element, for instance, and dragging it
somewhere else results in removing (or copying) it from its source location and plac-
ing it in the target location.

Thus, drag-and-drop can be used to move representations of specification elements
around within their graphical context. These are, however, usually operations that
change only layout information and are thus not semantically relevant.7 With respect
to the specification, drag-and-drop can create new associations between elements of
specifications. Thus, by grabbing a specification element, for example a type defined
in an DTD, in a given context and dragging it into a different context, like a port, a
relationship between the two contexts, the definition of a port of this type, is created.
The target context uses the specification element defined in the source context.

5.5.2 Contextual Menus
Contextual menus provide users with a range of possible operations that are applica-
ble in a certain context. In graphical file managers selecting file or directory icons and
activating the contextual menu presents a set of possible operations that can be carried
out upon the selected files/directories such as deleting or changing properties. We use
contextual menus again to help users establish relationships between specification
elements, for example type constructors to build messages for EET events, and, to
preserve the well-formedness of the specification, to make only suitable specification
constructs available to users.

5.5.3 Example
Consider the use of ports as example. When defining an input pattern for an STD-
transition, an input port has to be specified along with the value or pattern to be pre-
sent at the port for the transition to fire. Assigning the port can be done by dragging
one of the component’s input ports (and only input ports) from the SSD of the com-

7 In EETs the vertical layout of the messages is relevant and relocating them has a meaning.

1223Integrating Formal Description Techniques

ponent into the property sheet of the transition. Alternatively, in the property sheet a
contextual menu can be used to specify the port. In this menu, only the input ports of
the component are available. The data required at the input port can be specified again
by drag and drop of a data type constructor element from the data type definition used
by the port. Alternatively, all possible constructors of component variables (or avail-
able local transition variables) could be given in a contextual menu.

6 Conclusion

We discussed the need for an integration of description formalisms in tool-supported
formal system development. We showed that the introduction of a conceptual model
and the interpretation of description techniques as views on the model on the one
hand and the integration of powerful proof tools on the other hand support a manage-
able conceptually and semantically consistent development process. The introduction
of a conceptual model additionally allows the introduction of specification modules
and eases the reuse of specifications. However, as discussed in Section 5.5, sufficient
usability is a prime requisite for the success of such an approach.

Thus, while the introduced approach is consequently carrying further approaches
found in state-of-the-art system development tools, finally its acceptance can only be
affirmed after the introduced concepts are implemented in the current prototype.

7 References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press
(1996)

2. Bechtel, R.: Einbettung des µ-Kalkül Model-Checkers µ-cke in AutoFocus (in English).
Master’s Thesis. Institut für Informatik, TU München (1999)

3. Biere, A.: Effiziente Modellprüfung des µ-Kalküls mit binären Entscheidungsdiagrammen.
Ph.D.Thesis. Universität Karlsruhe (1997)

4. Broy, M., Dendorfer, C., Dederichs, F., Fuchs, M., Gritzner, T., Weber, R.: The Design of
Distributed Systems – An Introduction to Focus. Technical Report TUM-I9225, Technische
Universität München (1992)

5. Diekert, V., Rozenberg, G.: The Book of Traces. Singapore World Scientific (1995)
6. Einert, G.: Ein Framework zur Konsistenzprüfung von Spezifikationen im AutoFocus-

Werkzeug. Master’s Thesis. Institut für Informatik, TU München (1998)
7. Formal Systems (Europe) Ltd.: Failures-Divergence Refinement: FDR2 User Manual. Ox-

ford (1997)
8. Grosu, R., Klein, C., Rumpe, B., Broy, M.: State Transition Diagrams. Technical Report

TUM-I9630. Technische Universität München (1996)
9. Grosu, R., Nazareth, D.: The Specification Language SPECTRUM – Core Language Report

V1.0. Technical Report TUM-I9429. Technische Universität München (1994)
10. Huber, F., Schätz, B., Einert, G.: Consistent Graphical Specification of Distributed Sys-

tems. In: Fitzgerald, J., Jones, C. B., Lucas, P. (eds.): Proceedings of FME ’97, 4th Interna-
tional Symposium of Formal Methods Europe, Lecture Notes in Computer Science,
Vol. 1313. Springer (1997)

1224 Bernhard Schaetz and Franz Huber

11. Huber, F., Schätz, B., Spies, K.: AUTOFOCUS – Ein Werkzeugkonzept zur Beschreibung
verteilter Systeme. In Herzog, U., Hermanns, H. (eds.): Formale Beschreibungstechniken
für verteilte Systeme. Universität Erlangen - Nürnberg (1996) 165–174

12. i-Logix Inc.: Rhapsody Reference (1997)
13. International Telecommunication Union: ITU-TS Recommendation Z.120: Message Se-

quence Chart (MSC). ITU, Geneva (1996)
14. Jones, M. P.: An Introduction to Gofer. User’s Manual (1993)
15. Paech, B.: Algebraic View Specification. In Wirsing, M., Nivat, M. (eds.): Proceedings of

AMAST ‘96: Algebraic Methodology and Software Technology. Lecture Notes in Com-
puter Science, Vol. 1101. Springer (1996) 444–457

16. Schätz, B., Hußmann, H., Broy, M.: Graphical Development of Consistent System Specifi-
cations. In Gaudel, M.-C., Woodcock, J. (eds.): FME ’96: Industrial Benefit and Advances
in Formal Methods. Lecture Notes in Computer Science, Vol. 1051. Springer (1996)
248–267

17. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. Wiley Profes-
sional Computing (1994)

18. Telelogic AB: SDT 3.1 Reference Manual. Telelogic AB (1996)
19. Verilog: ObjectGEODE Method Guidelines. Verilog (1997)

1225Integrating Formal Description Techniques

A More Complete TLA

Stephan Merz

Institut für Informatik, Universität München
merz@informatik.uni-muenchen.de

Abstract. This paper defines a generalization of Lamport’s Temporal Logic of
Actions. We prove that our logic is stuttering-invariant and give an axiomatization
of its propositional fragment. We also show that standard TLA is as expressive as
our extension once quantification over flexible propositions is added.

1 Background

Temporal logics are routinely used for the specification and analysis of reactive systems.
However, Lamport [10] has identified a shortcoming of standard linear-time temporal
logic (LTL): because it is based on a global notion of “next state”, it does not allow
to relate specifications written at different levels of abstraction. He has therefore main-
tained that specifications should be invariant under “stuttering”, that is, finite repetitions
of identical states, and has proposed the Temporal Logic of Actions (TLA) [12, 13, 6].
Characteristically, TLA formulas contain the “next-time” operator only in a restricted
form and can therefore not distinguish between stuttering-equivalent behaviors. Sev-
eral case studies have established TLA as a useful formalism for describing systems;
on the theoretical side, researchers have studied questions such as the description of
real-time and hybrid systems [3, 11], the representation of assumption-commitment
reasoning [4, 5], and the expressiveness of propositional TLA [18]. Moreover, Lamport
has developed a formal specification language TLA+ based on TLA.

Although TLA has been found to be expressively complete for stuttering-invariant
ω-regular languages [18], this does not necessarily imply that specifications can be ex-
pressed in a natural way. In fact, the syntactic restrictions imposed by Lamport that
ensure invariance under stuttering occasionally make it hard to express seemingly sim-
ple properties. For example, whereas the requirement “eventually P will be true, and Q
will hold at some later state” is expressed by the formula 3(P ∧ 3Q), as in standard
LTL, the analogous requirement “eventually action A will be performed, some time
later followed by action B” is not expressed as easily. Eventual occurrence of action
A is expressed by the formula 3〈A〉v, where A describes the action as a relation on
pairs of states, and v is (roughly speaking) the tuple of all state components of interest.
One might therefore expect to express the informal requirement above by a formula
such as 3

〈
A ∧ 3〈B〉v

〉
v
, but TLA does not allow temporal formulas to occur inside

an action formula (i.e., inside angle brackets). In some cases one can identify a state
formula pA that is true iff action A has happened sometime in the past: for example, A
might represent a request for a resource, and pA could be defined from the system’s log-
file. In those cases, we can express our requirement by the formula 3〈pA ∧ B〉v . This

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1226–1244, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A More Complete TLA 1227

formula requires that eventually action B occurs with pA being true—hence A must
have occurred before. Observe, however, that the “point of reference” has changed with
respect to the informal statement of the requirement, and that action A is no longer
mentioned directly. If no suitable formula pA exists, we can “create” one using TLA’s
quantification over state variables, and write1

∃∃∃∃∃∃ pA : ¬pA ∧ 2[pA′ ≡ (pA ∨A)]v ∧3〈pA ∧B〉v

This formula defines pA to become true at the first occurrence of action A and then
remain true forever; it is an example for a so-called history variable [2]. Although the
formula can be shown to capture the informal requirement, it is certainly not natural.

Another concern that has not been resolved in a satisfactory way is the question of
proof systems, even for propositional TLA. Lamport [12] states a relative complete-
ness result for first-order TLA, subject to expressiveness assumptions similar to those
for Hoare logics, for specifications in so-called “normal form”. Formulas that deviate
from “normal form” specifications arise naturally when specifications are composed [4].
Abadi [1] has proposed an axiomatization of an earlier version of TLA, but it is not clear
whether his proof system can be adapted to the present-day TLA. This is in contrast to
standard propositional temporal logic (PTL) whose axiomatization has been well un-
derstood since a landmark paper by Gabbay et al [8]. Complete axiomatizations are
perhaps of rather academic interest; nevertheless they supply important information
about the principles that underly a given logic, and they can form the basis of practical
verification systems. For example, an accepted axiomatization would have helped us
with the mechanization of TLA in the generic interactive theorem prover Isabelle [15].

In this paper we argue that the two shortcomings of TLA identified above are in
fact related: we define the logic GTLA, which is a variant of TLA, but has a more lib-
eral syntax. For example, 3

〈
A ∧3〈B〉v

〉
v

is a GTLA formula. We prove that GTLA,
like TLA, is invariant under stuttering and provide a sound and complete axiomatiza-
tion, via two different presentations. Finally, we show that TLA and GTLA are equally
expressive once we add quantification over flexible propositions, preserving stuttering
invariance. More precisely, while TLA is a sublogic of GTLA, every GTLA formula
(possibly containing quantifiers) can be effectively translated to a quantified TLA for-
mula. We argue that GTLA is better suited for verification than TLA. The added flex-
ibility in expressiveness, which comes at no extra cost, may prove useful for writing
specifications.

The plan of the paper is as follows: section 2 defines GTLA and contains the proof
of stuttering invariance. Sections 3 and 4 introduce the first, heterogeneous version of an
axiomatization for GTLA; an alternative, homogeneous presentation is derived in sec-
tion 5. Section 6 compares the expressiveness of TLA and GTLA. Section 7 concludes
the paper. Throughout, we restrict ourselves to propositional (or quantified proposi-
tional) logics, although the logic is easily extended to a first-order language.

1 The formula becomes even more complex if A and B are allowed to occur simultaneously.

1228 Stephan Merz

2 A Generalized TLA

We define the syntax and semantics of propositional GTLA and prove that all formulas
are invariant under stuttering.

2.1 Syntax and Semantics

Assume given a denumerable set V of atomic propositions.

Definition 1. Formulas and pre-formulas of GTLA are inductively defined as follows.

1. Every atomic proposition v ∈ V is a formula.
2. If F, G are formulas then ¬F , F ⇒ G, and 2F are formulas.
3. If P is a pre-formula and v ∈ V then 2[P]v is a formula.
4. If F is a formula then F and dF are pre-formulas.
5. If P, Q are pre-formulas then ¬P and P ⇒ Q are pre-formulas.

The pre-formulas of GTLA generalize the transition formulas (actions) of TLA. In
fact, propositional TLA can be defined similarly, except that clause (4) above should
then be changed to

4’. If v ∈ V is an atomic proposition then v and dv are pre-formulas.

We will use symbols such as F, G for formulas, P, Q for pre-formulas, and A, B for
either formulas or pre-formulas. Note that, as in TLA, we consider 2 and 2[]v to be
different operators, for each v ∈ V .

In the following we assume standard abbreviations such as true, ∧, ∨, ≡, and 6≡
(equivalence, non-equivalence) for both formulas and pre-formulas. For compatibility
with standard TLA syntax, we sometimes write v′ instead of dv when v is an atomic
proposition. For a finite set V = {v1, . . . , vn} ⊆ V of atomic propositions we let
2[P]V denote the formula 2[P]v1 ∧ . . . ∧ 2[P]vn ; in particular, 2[P]∅ equals true.
Stretching the notation even further, we write 2[P]F (where F is any formula) for2

2[P ∨ (dF ≡ F)]At(F) where At(F) ⊆ V denotes the set of atomic propositions
that occur in F . We write 3F for the formula ¬2¬F and 3〈P 〉v for ¬2[¬P]v . Con-
sequently, 3〈P 〉{v1,...,vn} denotes 3〈P 〉v1 ∨ . . . ∨ 3〈P 〉vn , and 3〈P 〉F abbreviates
3〈P ∧ (dF 6≡ F)〉At(F). Finally, we let [P]F and 〈P 〉F abbreviate the pre-formulas
P ∨ (dF ≡ F) and P ∧ (dF 6≡ F), respectively.

A state is a boolean valuation s : V → {tt, ff} of the atomic propositions. A behav-
ior σ = s0s1 . . . is an infinite sequence of states. For any i ≥ 0, we denote by σ|i the
suffix of σ starting at state si, that is, the sequence sisi+1 We now define what it
means for a (pre-)formula to hold of a behavior σ, written σ |= F or σ |≈ P .

Definition 2. The semantics of (pre-)formulas is given by the relation |≈, which is in-
ductively defined as follows:

2 This notation introduces an ambiguity when F ≡ v is an atomic proposition. However, both
possible interpretations are equivalent under the semantics of definition 2 below.

A More Complete TLA 1229

σ |≈ v iff s0(v) = tt (for v ∈ V).
σ |≈ ¬A iff σ |≈ A does not hold.
σ |≈ A⇒ B iff σ |≈ A implies σ |≈ B.
σ |≈ 2F iff σ|i |≈ F holds for all i ≥ 0.
σ |≈ 2[P]v iff for all i ≥ 0, si(v) = si+1(v) or σ|i |≈ P .
σ |≈ dF iff σ|1 |≈ F .
For a formula F , we usually write σ |= F instead of σ |≈ F .

We say that a formula F is valid over a behavior σ iff σ|n |= F holds for all n ≥ 0.
Formula F follows from a set F of formulas (written F |= F) iff F is valid over all
behaviors over which all formulas G ∈ F are valid. Finally, F is valid (written |= F)
iff it is valid over all behaviors, which is equivalent to saying that it follows from ∅.

Note that we have chosen the definition of floating validity, which is the traditional
definition for modal logics, rather than the alternative anchored validity, which Lam-
port [12] uses. It is well known that either choice leads to the same set of valid formulas,
although the consequence relation is different. We prefer floating validity because it is
usually easier to axiomatize.

We say that a (pre-)formula is tautological if it results from a propositional tautology
A of classical logic by consistently replacing atomic subformulas of A by formulas or
pre-formulas. It is easy to see that every tautological formula is valid.

2.2 Stuttering Invariance

Definition 1 allows the 2 operator to be applied only to formulas. For example, 2 dv
is not a pre-formula, although d2v is. Had we allowed pre-formulas to freely contain
outermost boxes, we would not obtain invariance under stuttering: consider, for exam-
ple, 2[2(p ⇒ dq)]p, which is not a GTLA formula, and the behaviors σ and τ , where
τ differs from σ only in the repetition of a single state, as illustrated by the following
diagram (where∼ means “don’t care”):

σ : -

¬p
∼

p

¬q
∼
q

∼
q

τ : -

¬p
∼

p

¬q
p

¬q
∼
q

∼
q

Assuming the last state to repeat indefinitely, 2[2(p ⇒ dq)]p clearly holds of σ, but
not of τ .

We now formally define stuttering equivalence and prove that GTLA formulas do
not distinguish between stuttering equivalent behaviors.

Definition 3 (stuttering equivalence). Let V ⊆ V be a set of atomic propositions.

1. Two states s, t are called V -similar, written s 'V t iff s(v) = t(v) for all v ∈ V .
2. V -stuttering equivalence, again written 'V , is the smallest equivalence relation on

behaviors that identifies ρ◦ 〈s〉 ◦σ and ρ◦ 〈tu〉 ◦σ, for any finite sequence of states
ρ, infinite sequence of states σ, and pairwise V -similar states s, t, u.

3. Stuttering equivalence (written ') is V-stuttering equivalence.

1230 Stephan Merz

It follows that σ 'V τ implies σ 'W τ whenever W ⊆ V holds. In particular,
stuttering equivalence is the finest relation among all 'V . Let us list some elementary
facts about stuttering equivalent behaviors.

Proposition 4. Assume that σ 'V τ holds for behaviors σ = s0s1 . . . and τ = t0t1

1. t0 'V s0.
2. For every n ≥ 0 there is some m ≥ 0 such that σ|n 'V τ |m and σ|n+1 'V τ |m+1.

Theorem 5 (stuttering invariance). For any GTLA formula F and any behaviors σ, τ
such that σ 'At(F) τ , we have σ |= F iff τ |= F .

Proof. We simultaneously prove the following assertions by induction on the structure
of (pre-)formulas, for all behaviors σ = s0s1 . . . and τ = t0t1

1. If σ 'At(F) τ then σ |= F iff τ |= F .
2. If σ 'At(P) τ and σ|1 'At(P) τ |1 then σ |≈ P iff τ |≈ P .

We first consider the different cases in the definition of formulas F .

F ∈ V : The assertion follows from proposition 4.1, since s0(F) = t0(F).
¬F : immediate from the induction hypothesis.
F ⇒ G : Since At(F) ⊆ At(F ⇒ G) and At(G) ⊆ At(F ⇒ G), the assumption

σ 'At(F⇒G) τ implies both σ 'At(F) τ and σ 'At(G) τ . This observation,
together with the induction hypothesis, implies the assertion.

2F : By symmetry of 'At(2F), it is enough to prove “if”. So assume that τ |= 2F ,
and let n ≥ 0 be arbitrary. Proposition 4.2 implies that there exists some m ≥ 0
such that σ|n 'At(2F) τ |m. From τ |= 2F we conclude τ |m |= F , and therefore
σ|n |= F by induction hypothesis, since At(2F) = At(F).

2[P]v : Again, we need only prove the “if” part. Assume that τ |= 2[P]v, and let
n ≥ 0 be arbitrary. Choose m ≥ 0 such that σ|n 'At(2[P]v) τ |m and also
σ|n+1 'At(2[P]v) τ |m+1; proposition 4.2 ensures that m exists. Proposition 4.1
implies that sn(v) = tm(v) and sn+1(v) = tm+1(v). If tm(v) = tm+1(v), it
follows that sn(v) = sn+1(v), and we are done. Otherwise, by the assumption
τ |= 2[P]v it follows that τ |m |≈ P , and the induction hypothesis (for assertion 2)
gives σ|n |≈ P because 'At(2[P]v) ⊆ 'At(P).

Turning to assertion 2, we consider the cases in the definition of pre-formulas:

P a formula : immediate from the induction hypothesis for assertion 1.
dF : The assumption that σ|1 'At(dF) τ |1 and the induction hypothesis for asser-

tion 1 imply σ|1 |= F iff τ |1 |= F , and therefore σ |≈ dF iff τ |≈ dF .
¬P, P ⇒ Q : analogous to the corresponding cases for formulas. *

A More Complete TLA 1231

(ax0) ` F whenever F is tautological (pax0) |∼ P whenever P is tautological

(ax1) ` 2F ⇒ F (pax1) |∼ d¬F ≡ ¬ dF

(ax2) ` 2F ⇒ 2[2F]v (pax2) |∼ d(F ⇒ G) ⇒ (dF ⇒ dG)

(ax3) ` 2[F ⇒ dF]F ⇒ (F ⇒ 2F) (pax3) |∼ 2F ⇒ d
2F

(ax4) ` 2[P ⇒ Q]v ⇒ (2[P]v ⇒ 2[Q]v) (pax4) |∼ 2[P]v ≡ [P]v ∧ d
2[P]v

(ax5) ` 2[v′ 6≡ v]v (pax5) |∼ d
2F ⇒ 2[dF]v

(mp)
` F ` F ⇒ G

` G
(pmp)

|∼ P |∼ P ⇒ Q

|∼ Q

(sq)
|∼ P

` 2[P]v
(pre)

` F

|∼ F
(nex)

` F

|∼ dF

Fig. 1. The proof system ΣGTLA.

3 An Axiomatization of GTLA

We now present a proof system ΣGTLA for GTLA and prove its adequacy. ΣGTLA is
based on two provability relations ` and |∼ for formulas and pre-formulas; we therefore
call ΣGTLA a heterogeneous proof system. An alternative “homogeneous” proof system
will be given in section 5. Figure 1 contains the axioms and rules that define ` and |∼.
We extend ` to a relation between sets of formulas and formulas by defining F ` F
iff ` F can be established from the axioms and rules of ΣGTLA if additionally ` G
is assumed for all formulas G ∈ F , and similarly define F |∼ P . Because we are
ultimately only interested in the relation ` for formulas, we do not allow pre-formulas
to occur in the set F of hypotheses.

Many of the axioms and rules of ΣGTLA are familiar from propositional linear-time
temporal logic [8, 9]. First observe that both ` and |∼ contain full propositional calculus.
Axiom (ax3) is a “stuttering-invariant” version of the induction axiom. Its formulation
relies essentially on the GTLA syntax that allows temporal formulas in the scope of
the 2[]v operator. Axiom (ax5) effectively asserts that the pre-formula P in 2[P]v is
evaluated only when v changes value. Axiom (pax1) expresses that time is linear. We
cannot state an induction principle for formulas of the form2[P]v because dP or d[P]v
are not even pre-formulas. For this reason, (pax4) is stronger than its counterparts (ax1)
and (pax3). Axiom (pax5) asserts a form of commutativity for the dand 2 operators.
The rules (sq) and (nex) reflect the floating definition of validity. The necessitation rule

(alw)
` F
` 2F

is easily derived in ΣGTLA. Note also that the axioms (ax2), (ax4), (pax4), (pax5) and
the rule (sq) are easily generalized to versions where the “index” v is replaced by a
finite set V of atomic propositions, or by a GTLA formula.

Theorem 6 (Soundness). For any set F of formulas, F ` F implies F |= F .

1232 Stephan Merz

Proof. The proof is by induction on the assumed derivation of F from F , also proving
thatF |∼ P implies that σ|n |≈ P holds for every n ≥ 0 and every behavior σ such that
all formulas in F are valid over σ. We only consider a few cases.

(ax3) It suffices to prove σ |= 2[F ⇒ dF]F ⇒ (F ⇒ 2F), for any formula F
and any behavior σ = s0s1 So suppose σ |= 2[F ⇒ dF]F and σ |= F .
We prove σ|n |= F for every n ≥ 0, by induction on n. The base case being
trivial, assume that σ|n |= F . If sn 'At(F) sn+1, we have σ|n 'At(F) σ|n+1,
and theorem 5 ensures that σ|n+1 |= F . Otherwise, there is some v ∈ At(F)
such that sn(v) 6= sn+1(v), and the assumption σ |= 2[F ⇒ dF]F implies that
σ|n |≈ (F ⇒ dF) ∨ (dF ≡ F), hence again σ|n+1 |= F .

(pax5) Suppose σ |≈ d2F , that is, σ|n+1 |= F , for every n ≥ 0. We prove that
σ |= 2[dF]v . Let m ≥ 0 be arbitrary. The assumption ensures that σ|m+1 |= F ,
and therefore σ|m |≈ dF . This suffices.

(sq) Assume that F |∼ P , that σ is some behavior such that all formulas in F are
valid over σ, and that n ≥ 0. We need to prove that σ|n |= 2[P]v. So let m ≥ 0
be arbitrary. By induction hypothesis, we know that σ|n+m |≈ P , and therefore
(σ|n)|m |≈ P . This suffices. *

We also have a version of the deduction theorem for ΣGTLA, as stated in the fol-
lowing theorem.

Theorem 7. For any set F of formulas, any formulas F, G, and any pre-formula P we
have F ∪ {F} ` G iff F ` 2F ⇒ G and F ∪ {F} |∼ P iff F |∼ 2F ⇒ P .

Proof. “if”: Assume F ` 2F ⇒ G. A fortiori, we have F ∪ {F} ` 2F ⇒ G. The
derived rule (alw) implies that F ∪ {F} ` 2F , and therefore we have F ∪ {F} ` G
by (mp). The second assertion is proven similarly.

“only if”: The proof is by induction on the assumed derivations of F ∪ {F} ` G and
F ∪ {F} |∼ P (simultaneously for all F and P).

– If G is an axiom or G ∈ F , we have F ` G, and F ` 2F ⇒ G follows by
propositional reasoning. The same argument applies for the second assertion when
P is an axiom.

– If G is F , then F ` 2F ⇒ F is an instance of (ax1).
– If G results from an application of (mp) to previously derived formulas H ⇒ G

and H , then the induction hypothesis implies F ` 2F ⇒ (H ⇒ G) as well
as F ` 2F ⇒ H , from which we conclude F ` 2F ⇒ G by propositional
reasoning. The same argument holds for (pmp).

– Assume that G results from an application of (sq), say, G ≡ 2[Q]v . By induction
hypothesis, we have F |∼ 2F ⇒ Q, and we continue as follows:

(1) |∼ 2F ⇒ Q (ind.hyp.)

(2) ` 2[2F ⇒ Q]v (sq)(1)

(3) ` 2[2F ⇒ Q]v ⇒ (2[2F]v ⇒ 2[Q]v) (ax4)

(4) ` 2F ⇒ 2[2F]v (ax2)

(5) ` 2F ⇒ 2[Q]v (prop)(2)(3)(4)

A More Complete TLA 1233

– If G results from an application of (pre), then by induction hypothesis we have
F ` 2F ⇒ G, and therefore also F |∼ 2F ⇒ G, by (pre).

– If G ≡ dH results from an application of (nex), then the induction hypothesis
yields F ` 2F ⇒ H . Rule (nex) shows F |∼ d(2F ⇒ H), and we obtain
F |∼ d2F ⇒ dH by (pax2) and (pmp). The conclusion F |∼ 2F ⇒ dH follows
with the help of (pax3). *

The following are some derived theorems of ΣGTLA, which will be used later.
Derivations of these theorems can be found in the full version of this paper [14].

(T1) ` 2F ≡ 22F (T2) ` 2[P]v ≡ 22[P]v
(T3) ` 2[[P]v]v ≡ 2[P]v (T4) ` 2[P]v ⇒ 2[[P]v]w
(T5) ` 2[[P]w]v ⇒ 2[[P]v]w (T6) ` 2F ⇒ 2[dF]v
(T7) |∼ 2F ≡ F ∧ d2F (T8) |∼ d(F ∧G) ≡ dF ∧ dG

By rule (pre), every provable formula is also provable as a pre-formula. An impor-
tant result for ΣGTLA shows that the converse is also true. This can be shown by a
careful analysis of the derivations in ΣGTLA; the full proof is given in [14].

Theorem 8. For any set F of formulas and any formula F :

F ` F iff F |∼ F iff F |∼ dF

4 Completeness of ΣGTLA

We will now prove the completeness of ΣGTLA. Let us first note that GTLA, just as
PTL, is not compact:

Example 9. Let F = {2[vi ⇒ v′i+1]vi ,2(vi ⇒ w) : i ≥ 0}. It is easy to see that
F |= v0 ⇒ 2w, but we can clearly not derive F ` v0 ⇒ 2w, because this would
require the infinitary invariant 2

∨
i≥0 vi.

We can therefore only hope for completeness when F is a finite set, and by theo-
rem 7 it is enough to show that |= F implies ` F .

Our completeness proof follows the standard approach [9] of constructing a model
for a finite and consistent set of formulas. To do so, we have to assemble information
about pre-formulas as well as formulas. Nevertheless, the critical step in the proof is to
show that all the essential information is contained in the formulas used for the con-
struction; this is due to the fact that the assumptions in a derivation F ` F do not
contain pre-formulas. For a set G of formulas and pre-formulas, we denote by GF the
set of all formulas contained in G. We also use G to denote the conjunction of all (pre-)
formulas in G; it will always be clear from the context whether we refer to the set or the
(pre-)formula.

A set G is called inconsistent if |∼ ¬G, otherwise it is called consistent. Note that if
G is consistent and A is any formula or pre-formula, one of the sets G∪{A} or G∪{¬A}
is again consistent.

1234 Stephan Merz

We inductively define a set τ(A) for any formula or pre-formula A, as follows:

τ(v) = {v} τ(¬A) = {¬A} ∪ τ(A)
τ(A⇒ B) = {A⇒ B} ∪ τ(A) ∪ τ(B) τ(2F) = {2F} ∪ τ(F)
τ(2[P]v) = {2[P]v, v, dv} ∪ τ(P) τ(dF) = { dF}

For a set G, we define τ(G) as the union of all τ(A), for all (pre-)formulas A contained
in G. Note that our definitions ensure that τ(G) is finite whenever G is finite.

We say that G is complete if it contains either A or ¬A, for every (pre-)formula A
from τ(G). Observe that for every finite and consistent G there exist only finitely many
finite, consistent, and complete G∗ ⊇ G, since τ(G) is itself finite; we call any such G∗
a completion of G. We note the following elementary facts about complete sets. The
proofs of assertions 1 and 3 are standard, whereas the second assertion follows from the
first and theorem 8 by propositional reasoning, since G ⇒ GF holds for any set G by
(ax0).

Proposition 10.

1. Assume that G is finite and consistent, and that G∗1 , . . . ,G∗n are all the different
completions of G. Then |∼ G ⇒ G∗1 ∨ . . . ∨ G∗n.

2. Assume thatF is a finite and consistent set of formulas, and that G1, . . . , Gn are all
the different completions of F . Then ` F ⇒ GF

1 ∨ . . . ∨ GF
n .

3. Assume that G is consistent and complete and that A, B are (pre-)formulas.
(a) If A ∈ G, B ∈ τ(G) and ` A⇒ B or |∼ A⇒ B then B ∈ G.
(b) If A⇒ B ∈ τ(G) then A⇒ B ∈ G iff A /∈ G or B ∈ G.

We now define a set σ(G) of formulas that, intuitively, transfer information from
one state of the model under construction to the next one.

σ1(G) = {F : dF ∈ G} σ2(G) = {¬F : ¬ dF ∈ G}
σ3(G) = {2F : 2F ∈ G} σ4(G) = {¬2F : ¬2F ∈ G, F ∈ G}
σ5(G) = {2[P]v : 2[P]v ∈ G}
σ6(G) = {¬2[P]v : ¬2[P]v ∈ G and

P ∈ G or {v, dv} ⊆ G or {¬v,¬ dv} ⊆ G}
σ(G) = σ1(G) ∪ σ2(G) ∪ σ3(G) ∪ σ4(G) ∪ σ5(G) ∪ σ6(G)

Lemma 11. Assume that G is finite.

1. |∼ G ⇒ dσ(G).
2. If G is consistent, then so is σ(G).

Proof. 1. By (T8), it is enough to show |∼ G ⇒ dF , for every formula F ∈ σ(G).
We distinguish the different cases in the definition of σ(G).

– For F ∈ σ1(G), we have dF ∈ G, so the assertion follows by (pax0).
– If F ≡ ¬G ∈ σ2(G), then ¬ dF ∈ G, and the assertion follows using (pax1).
– If F ≡ 2G ∈ σ3(G), we have 2G ∈ G; use (pax3) to prove the assertion.
– If F ≡ ¬2G ∈ σ4(G), the definition ensures |∼ G ⇒ G ∧ ¬2G, and the

assertion follows by (T7), (pax1), and propositional logic.

A More Complete TLA 1235

– For F ≡ 2[P]v ∈ σ5(G), use (pax4) to prove the assertion.
– If F ≡ ¬2[P]v ∈ σ6(G), the definition and (pax0) yield G ⇒ [P]v ∧ ¬2[P]v ,

and the assertion follows by (pax4) and (pax1).
2. If σ(G) is inconsistent, we have |∼ ¬σ(G). By rule (nex), we obtain |∼ d¬σ(G).

Using axiom (pax1) and propositional logic, assertion (1) implies |∼ ¬G, that is, G
is inconsistent. *

Given a finite and consistent set F of formulas, we inductively define a graph T (F)
of sets of pre-formulas as follows:

– All different completions of F are nodes of T (F), called the roots of T (F).
– If G is a node in T (F) then its successors are all different completions of σ(G).

It follows that every node G is finite, consistent, and complete. Also, the sub-graph
of T (F) that consists of all nodes reachable from the successors of G is just T (σ(G)).

Lemma 12. Assume that F is a finite and consistent set of formulas.

1. T (F) contains only finitely many different nodes G1, . . . ,Gn.
2. Assume that G1, . . . ,Gn are all the different nodes in T (F).

(i) |∼ GF
i ⇒ G1 ∨ . . . ∨ Gn (for i = 1, . . . , n).

(ii) |∼ GF
1 ∨ . . . ∨ GF

n ⇒ d(GF
1 ∨ . . . ∨ GF

n).
(iii) ` F ⇒ 2(GF

1 ∨ . . . ∨ GF
n).

Proof. 1. The completions of a finite set G only contain – possibly negated – pre-
formulas from the set τ(G), which is also finite. On the other hand, the only pre-
formulas in σ(G) that are possibly not in τ(G) are of the form F or ¬F such that G
contains dF or¬ dF , hence the number of doperators decreases, which is possible
only finitely often. Therefore, only finitely many different (pre-)formulas occur in
T (F), hence T (F) can contain only finitely many different nodes.

2. (i) Let i ∈ {1, . . . , n} be arbitrary, and consider the set F ′ of formulas from which
the node Gi was constructed—either the initial set F or the set σ(G′) where G′ is a
predecessor of G in T (F). Proposition 10.1 implies |∼ F ′ ⇒ G1∨ . . .∨Gn because
all consistent completions of F ′ are contained in T (F). Since Gi is a completion
of F ′, it follows that F ′ ⊆ GF

i , hence we have ` GF
i ⇒ F ′ by (ax0), and therefore

the assertion.
(ii) We first note |∼ Gj ⇒ dσ(Gj), for every node Gj of T (F), by lemma 11.
Proposition 10.2 ensures` σ(Gj)⇒ GF

1 ∨. . .∨GF
n . Applying rule (nex) and (pax2),

we obtain |∼ Gj ⇒ d(GF
1 ∨ . . . ∨ GF

n), for every j, hence also |∼ G1 ∨ . . . ∨ Gn ⇒
d(GF

1 ∨. . .∨GF
n). The assertion follows with the help of (i) and propositional logic.

(iii) Let I denote the formula GF
1 ∨ . . . ∨ GF

n . Assertion (ii) and rule (sq) imply
` 2[I ⇒ dI]I , hence ` I ⇒ 2I by axiom (ax3). On the other hand, proposi-
tion 10.2 implies ` F ⇒ I, and the assertion follows. *

We will construct a model forF from the paths in T (F). Let us call a pathG0,G1, . . .
complete iff it satisfies the two following conditions, for every i ≥ 0:

1236 Stephan Merz

– If ¬2F ∈ Gi then ¬F ∈ Gj for some j ≥ i.
– If ¬2[P]v ∈ Gi then for some j ≥ i, ¬P ∈ Gj and either {v,¬ dv} ⊆ Gj or
{¬v, dv} ⊆ Gj .

Lemma 13. Assume that F is a finite and consistent set of formulas. Then T (F) con-
tains a complete path starting at some root.

Proof. We first prove that for every node G of T (F) and any formula F such that
{¬2F, F} ⊆ G there is some nodeH in T (σ(G)) that contains¬F . Suppose not. Then,
in particular, every rootW of T (σ(G)) contains ¬2F and F (because F ∈ τ(σ(G))
and W is a completion of σ(G)), hence ¬2F ∈ σ(W). Inductively, it follows that
{¬2F, F} ⊆ H holds for every node H of T (σ(G)). Let G1, . . . ,Gn be all nodes of
T (σ(G)), and let I denote the formula GF

1 ∨ . . . ∨ GF
n . Then (ax0) gives I ⇒ F ,

which proves I ` 2F , using rule (alw). By theorem 7, we conclude ` 2I ⇒ 2F .
Lemma 12.2(iii) yields ` σ(G)⇒ 2F , but on the other hand we have ` σ(G)⇒ ¬2F
because ¬2F ∈ σ(G). Therefore, σ(G) and (by lemma 11.2) also G is inconsistent, and
a contradiction is reached.

Similarly, we show that there is some node H in T (σ(G)) that contains ¬P and
either {v,¬ dv} or {¬v, dv} whenever ¬2[P]v ∈ G and either P ∈ G or {v, dv} ⊆
G or {¬v,¬ dv} ⊆ G. Suppose not. Then an argument analogous to the one above
establishes that every node H contains P or {v, dv} or {¬v,¬ dv}. By axiom (pax0),
this shows |∼ H ⇒ [P]v. Lemma 12.2(i) implies |∼ I ⇒ [P]v, and by (ax1) and (pre),
a fortiori |∼ 2I ⇒ [P]v. Using rule (sq) and (ax4), this shows ` 2[2I]v ⇒ 2[[P]v]v,
and (T3) implies that ` 2[2I]v ⇒ 2[P]v. But as above we have ` σ(G) ⇒ 2I, and
thus also ` σ(G) ⇒ 2[2I]v by (ax2), which proves ` σ(G) ⇒ 2[P]v . On the other
hand, we know ` σ(G)⇒ ¬2[P]v by assumption and reach a contradiction.

These two claims ensure that for every node G in T (F) that contains either ¬2F or
¬2[P]v there exists some node G′ reachable from G that satisfies the condition from the
definition of a complete path. For if G itself does not satisfy the condition, the formula
is contained in σ(G), hence T (σ(G)), which is just the subgraph of T (F) whose roots
are the sons of G, contains a node as required.

The assertion is now proved by fixing some order on the finite set of formulas ¬2F
and ¬2[P]v that occur in T (F) and an iterative construction that constructs a complete
path piecewise by repeatedly considering the eventuality formulas in the chosen order.
The details of this construction are standard [8, 9]. *

Lemma 14. Assume thatF is a finite and consistent set of formulas and that G0,G1, . . .
is a complete path in T (F). For every i ≥ 0, the following assertions hold:

1. If dF ∈ τ(Gi) then dF ∈ Gi iff F ∈ Gi+1.
2. If 2F ∈ τ(Gi) then 2F ∈ Gi iff F ∈ Gj for all j ≥ i.
3. If 2[P]v ∈ τ(Gi) then 2[P]v ∈ Gi iff for all j ≥ i, P ∈ Gj or {v, dv} ⊆ Gj or
{¬v,¬ dv} ⊆ Gj .

Proof. 1. If dF ∈ Gi then F ∈ σ(Gi) and therefore F ∈ Gi+1, which is a completion
of σ(Gi).
If dF /∈ Gi then ¬ dF ∈ Gi (because Gi is complete), so ¬F ∈ σ(Gi), and again
¬F ∈ Gi+1. The consistency of Gi+1 implies F /∈ Gi+1.

A More Complete TLA 1237

2. Assume 2F ∈ Gi. Then we have F ∈ τ(Gi), and because of ` 2F ⇒ F (ax1)
and proposition 10.3, it follows that F ∈ Gi. Moreover,2F ∈ σ(Gi) and therefore
2F ∈ Gi+1. Inductively, we conclude that F ∈ Gj holds for all j ≥ i.
Conversely, if F ∈ Gj for all j ≥ i then the definition of a complete path and
the consistency of the Gj ensure that ¬2F ∈ Gi cannot hold. The assumption
2F ∈ τ(Gi) and the fact that Gi is complete imply 2F ∈ Gi.

3. Assume 2[P]v ∈ Gi. Then {P, v, dv} ⊆ τ(Gi), and by |∼ 2[P]v ⇒ [P]v (pax4)
and proposition 10.3, the assertion follows for j = i using the completeness and
consistency of Gi and propositional logic. Moreover,2[P]v ∈ σ(Gi) and therefore
2[P]v ∈ Gi+1. Inductively, the assertion follows for all j ≥ i.
Conversely, if P ∈ Gj or {v, dv} ⊆ Gj or {¬v,¬ dv} ⊆ Gj holds for all j ≥ i,
the consistency of the Gj implies that there can be no j ≥ i such that ¬P ∈ Gj

and either {v,¬ dv} ⊆ Gj or {¬v, dv} ⊆ Gj . Therefore, using the definition of a
complete path, it follows that ¬2[P]v ∈ Gi cannot hold, hence 2[P]v ∈ Gi. *

We now have all the bits and pieces to construct a model for a finite and consistent
set F from T (F).

Lemma 15. For every finite and consistent set F of formulas there is a behavior σ such
that σ |= F holds for all F ∈ F .

Proof. Assume that F is a finite and consistent set of formulas. Construct T (F) and
choose some complete path G0,G1, . . . that starts at some root of T (F); such a path
exists by lemma 13. Now define the behavior σ = s0s1 . . . by si(v) = tt iff v ∈ Gi, for
every v ∈ V .

By induction on the structure of (pre-)formulas, we prove that for all (pre-)formulas
A and all i ≥ 0, if A ∈ τ(Gi) then σ|i |≈ A iff A ∈ Gi.

Because of F ⊆ G0 and F ∈ τ(F) = τ(G0) for every F ∈ F , this in particular
implies σ |= F for all formulas F ∈ F .

The inductive proof of the assertion is again standard; we only give a few cases:

2[P]v : Assume 2[P]v ∈ τ(Gi). Therefore, either2[P]v ∈ Gi or ¬2[P]v ∈ Gi. In the
former case, lemma 14.3 implies that, for all j ≥ i, P ∈ Gj or {v, dv} ⊆ Gj or
{¬v,¬ dv} ⊆ Gj . By induction hypothesis and lemma 14.1, this implies that, for
all j ≥ i, σ|j |≈ P or sj(v) = sj+1(v), and therefore σ|i |≈ 2[P]v .
If ¬2[P]v ∈ Gi, then the definition of a complete path ensures that for some j ≥ i,
we have ¬P ∈ Gj and either {v,¬ dv} ⊆ Gj or {¬v, dv} ⊆ Gj , and the induction
hypothesis and lemma 14.1 ensure σ|i |≈ ¬2[P]v .

dF : Assume dF ∈ τ(Gi). By lemma 14.1, dF ∈ Gi iff F ∈ Gi+1 iff (by induction
hypothesis) σ|i+1 |≈ F iff σ|i |≈ dF . *

Theorem 16 (Completeness). For every formula F , if |= F then ` F .

Proof. Assume |= F . Then σ |= ¬F holds for no behavior σ, and lemma 15 implies
that {¬F} is inconsistent, that is |∼ ¬¬F , from which ` F follows by theorem 8.1 and
propositional logic. *

1238 Stephan Merz

(hx0) F whenever F is tautological (hx7) 2[P]v whenever P is tautological

(hx1) 2F ⇒ F (hx8) 2[d¬F ≡ ¬ dF]v

(hx2) 2F ⇒ 2[F]v (hx9) 2[d(F ⇒ G) ⇒ (dF ⇒ dG)]v

(hx3) 2F ⇒ 2[d2F]v (hx10) 2[2[P]v ⇒ [P]v]w

(hx4) 2[F ⇒ dF]F ⇒ (F ⇒ 2F) (hx11) 2[P]v ⇒ 2[d2[P]v]w

(hx5) 2[P ⇒ Q]v ⇒ (2[P]v ⇒ 2[Q]v) (hx12) 2[[P]v ∧ d
2[P]v ⇒ 2[P]v]w

(hx6) 2[v′ 6≡ v]v (hx13) 2[d2F ⇒ 2[dF]v]w

(hmp) F, F ⇒ G h` G (alw) F h` 2F

Fig. 2. The proof system Σh
GTLA.

5 A Homogeneous Axiomatization

The system ΣGTLA is based on the auxiliary relation |∼ besides the relation ` that we
are really interested in. One may argue that one could instead simply translate proposi-
tional (G)TLA to PTL and use any standard PTL proof system. Still, proofs may then
contain PTL formulas such as 2 dF that are not even pre-formulas of GTLA. We now
show that it is possible to eliminate the auxiliary relation |∼ and define a “homogeneous”
axiomatization of GTLA based on a single provability relation h`. The key observation
is that in ΣGTLA, a derived pre-formula can only be used via rule (sq) in the derivation
of a formula. It therefore suffices to “box” the axioms (pax0)–(pax5) and rephrase (pre),
(nex), and (pmp) accordingly. The proof system Σh

GTLA shown in figure 2 is based on
this idea and some further simplifications. The following theorems and rules can be
derived in Σh

GTLA; again, we refer to the full version [14] of this paper.

(H1) 2[P]v,2[P ⇒ Q]v
h` 2[Q]v (H2) F

h` 2[F]v
(H3) 2[P ⇒ Q]v,2[Q⇒ R]v

h` 2[P ⇒ R]v
(H4) 2[[P]v ⇒ P]v (H5) 2[2F ⇒ d2F]v

Again, it is easy to derive analogues of these rules where the “index” v is replaced by a
finite set of atomic propositions, or by a GTLA formula.

We now prove that the two provability relations agree (where F h` F is defined in
the obvious way). In particular, Σh

GTLA is also sound and complete. It is therefore a
matter of taste and convenience which axiomatization to use. The homogeneous proof
system is aesthetically more satisfactory, but the heterogeneous system may be easier
to use. (This is why the completeness proof was given for ΣGTLA.)

Theorem 17. For any set F of formulas and any formula F , F ` F iff F h` F .

Proof. “only if”: By induction on the length of the assumed derivation in ΣGTLA, we
prove thatF h` F wheneverF ` F and thatF h` 2[P]v, for all atomic propositions
v, whenever F |∼ P , for any pre-formula P .

A More Complete TLA 1239

If F is from F or if it is an instance of (ax0), (ax1), (ax3), (ax4) or (ax5) then the
assertion holds trivially because these axioms are also contained in Σh

GTLA. Axiom
(ax2) is derived in Σh

GTLA as follows:

(1) 2[2F ⇒ d2F]F (H5)

(2) 2F ⇒ 22F (1)(hx4)(mp)

(3) 22F ⇒ 2[2F]v (hx2)

(4) 2F ⇒ 2[2F]v (prop)(2)(3)

If the last step in the derivation of F ` F is an application of (mp) to previously
derived formulas G and G⇒ F then by induction hypothesis we have F h` G and
F h` G⇒ F , so F h` F follows by rule (hmp).
If the last step in the derivation of F ` F is an application of (sq) to some previ-
ously derived pre-formula P (so F is 2[P]v) then by the induction hypothesis for
the second assertion we already have F h` 2[P]v .
The second assertion is trivial if the last step in the derivation of F |∼ P is an
instance of (pax0), (pax1), (pax2) or (pax5) because ΣGTLA contains correspond-
ing axioms. The case of (pax3) is taken care of by (H5). As for (pax4), it could
obviously be replaced by

(pax4a) |∼ 2[P]v ⇒ [P]v
(pax4b) |∼ 2[P]v ⇒ d2[P]v
(pax4c) |∼ [P]v ∧ d2[P]v ⇒ 2[P]v

without changing the set of pre-formulas derivable in ΣGTLA. The axioms (hx10)
and (hx12) directly correspond to (pax4a) and (pax4c), so it remains to consider the
case of (pax4b):

(1) 2[P]v ⇒ 2[d2[P]v]w (hx11)

(2) 2[2[P]v ⇒ 2[d2[P]v]w]w (H2)(1)

(3) 2[2[d2[P]v]w ⇒ [d2[P]v]w]w (hx10)

(4) 2[2[P]v ⇒ [d2[P]v]w]w (H3)(2)(3)

(5) 2[[d2[P]v]w ⇒ d2[P]v]w (H4)

(6) 2[2[P]v ⇒ d2[P]v]w (H3)(4)(5)

Considering the rules, the case of (pmp) is handled by the induction hypothesis and
(H1). If the last step in the derivation of F |∼ P is an application of (pre), then P

is actually a formula and has already been derived, so we may assume F h` P by
induction hypothesis. We obtain F h` 2[P]v by (H2).
If the last step is an application of (nex), then P is dF , for some previously derived
formula F , and by induction hypothesis we may assume F h` F . We continue as
follows:

1240 Stephan Merz

(1) F (ind.hyp.)

(2) 2F (alw)(1)

(3) 2[d2F]v (2)(hx3)(hmp)

(4) 2[d2F ⇒ 2[dF]v]v (hx13)

(5) 2[2[dF]v]v (H1)(3)(4)

(6) 2[2[dF]v ⇒ [dF]v]v (hx10)

(7) 2[[dF]v]v (H1)(5)(6)

(8) 2[dF]v (7)(H4)(H1)

“if”: The proof is again by induction on the assumed derivation ofF h` F . The cases of
(hx0), (hx1), (hx4), (hx5), and (hx6) are trivial because ΣGTLA contains the same
axioms. For (hx7), (hx8), (hx9), (hx10), (hx12), and (hx13), the proof uses the
corresponding axioms of ΣGTLA and rule (sq). For (hmp) and (alw), the assertion
follows from the induction hypothesis and rules (mp) and (alw), which is a derived
rule in ΣGTLA.
The axiom (hx2) is derived in ΣGTLA as follows:

(1) |∼ 2F ⇒ F (ax1)(pre)

(2) ` 2[2F ⇒ F]v (sq)(1)

(3) ` 2[2F]v ⇒ 2[F]v (2)(ax4)(mp)

(4) ` 2F ⇒ 2[2F]v (ax2)

(5) ` 2F ⇒ 2[F]v (prop)(3)(4)

The derivation of (hx3) is similar, using (pax3) instead of (ax1). The derivation of
(hx11) is very similar to that of (T4) and is omitted. *

6 Quantification and Expressiveness

We have remarked in section 2 that propositional TLA is a sublanguage of GTLA whose
pre-formulas are restricted to boolean combinations of primed and unprimed proposi-
tion symbols. On the other hand, GTLA can be considered as a sublanguage of PTL by
removing the distinction between formulas and pre-formulas and considering2[P]v as
a short-hand notation for the PTL formula 2(P ∨ (dv ≡ v)). Lamport’s intention in
introducing TLA was to allow the implementation relation between two descriptions of
systems, even at different levels of abstraction, to be represented by model inclusion on
the semantic side, and by validity of implication inside the logic [13]. Theorem 5 gives
a formal expression to this intention, so GTLA satisfies Lamport’s requirement.

Does GTLA add any undesired expressiveness to TLA? We will now show that this
is not the case by proving that TLA and GTLA become equi-expressive once we add
quantification over atomic propositions.

We introduce two auxiliary relations on behaviors that are used in a stuttering-
invariant semantics of quantification over atomic propositions.

A More Complete TLA 1241

Definition 18. For v ∈ V we define the relations =v and ≈v on behaviors as follows:

1. Two behaviors σ = s0s1 . . . and τ = t0t1 . . . are equal up to v, written σ =v τ if
si(w) = ti(w) for all i ≥ 0 and w ∈ V , except possibly v.

2. The relation≈v, called similarity up to v, is defined as≈v = (' ◦ =v ◦ '), where
' is stuttering equivalence and ◦ denotes relational composition.

Proposition 19.

1. For any v ∈ V , the relations =v and ≈v are equivalence relations.
2. ('V ◦ ≈v) = (≈v ◦ 'V ∪{v}), for any v ∈ V and V ⊆ V .

We now extend GTLA by quantification over atomic propositions. Conceptually, ex-
istential quantification corresponds to the hiding of state components in specifications.
Following Lamport, we use a bold quantifier symbol ∃∃∃∃∃∃ to emphasize that its semantics
is non-standard, which helps to preserve stuttering invariance.

Definition 20 (∃∃∃∃∃∃ -GTLA).

1. Formulas and pre-formulas of ∃∃∃∃∃∃ -GTLA are given inductively as in definition 1,
except by adding the following clause:
6. If F is a formula and v ∈ V then ∃∃∃∃∃∃ v : F is a formula.

2. The semantics of ∃∃∃∃∃∃ -GTLA is obtained by adding the following clause to defini-
tion 2.

σ |= ∃∃∃∃∃∃ v : F iff τ |= F holds for some τ ≈v σ.

For a formula F ≡ ∃∃∃∃∃∃ v : G, we define the set At(F) as At(G) \ {v}, since v be-
comes bound by the quantifier. Our definition of the semantics of quantification agrees
with that of Lamport [12] who motivates it by showing that a naive definition would not
preserve stuttering invariance. In fact, ∃∃∃∃∃∃ -GTLA is again insensitive to stuttering:

Theorem 21. For any ∃∃∃∃∃∃ -GTLA formula F and behaviors σ, τ such that σ 'At(F) τ ,
we have σ |= F iff τ |= F .

Proof. Extending the proof of theorem 5, we need only consider the case of a quantified
formula F ≡ ∃∃∃∃∃∃ v : G. So assume that σ |= F and that τ 'At(F) σ. Choose some behav-
ior ρ ≈v σ such that ρ |= G, by the definition of σ |= ∃∃∃∃∃∃ v : G. Then τ ('At(F) ◦ ≈v) ρ,
and by proposition 19 it follows that τ (≈v ◦ 'At(F)∪{v}) ρ, which in turn implies
τ (≈v ◦ 'At(G)) ρ, because'At(F)∪{v} ⊆ 'At(G). Hence, there exists some behavior
π such that τ ≈v π and π 'At(G) ρ. By induction hypothesis it follows that π |= G,
and thus τ |= F as required. *

The semantics of quantified formulas is defined for ∃∃∃∃∃∃ -GTLA in the same way as
for TLA. It is therefore immediate that quantified propositional TLA is again a sublogic
of ∃∃∃∃∃∃ -GTLA. We now show that the two logics are equally expressive by effectively
constructing an equivalent (quantified) TLA formula for every ∃∃∃∃∃∃ -GTLA formula.

Theorem 22. For every ∃∃∃∃∃∃ -GTLA formula F there is a TLA formula FTLA such that
for every behavior σ, σ |= F iff σ |= FTLA.

1242 Stephan Merz

Proof. In a first step, eliminate all quantified subformulas of F by successively choos-
ing a fresh atomic proposition u for every (innermost) subformula ∃∃∃∃∃∃ v : G of F , and
replacing F by ∃∃∃∃∃∃u : 2(u ≡ ∃∃∃∃∃∃ v : G) ∧ F ∗, where F ∗ is obtained from F by replacing
the subformula ∃∃∃∃∃∃ v : G by u. It is easy to see that the resulting formula is equivalent to
the original formula F .

If F does not contain any quantified subformulas except those introduced above,
the final formula F ∗ and every formula G in ∃∃∃∃∃∃ v : G is translated as follows: choose a
new atomic proposition vH for every (topmost) non-atomic formula H such that H or
dH occurs inside a subformula 2[P]v . If vH1 , . . . vHn are all the atomic propositions

added in this way, replace the formula G under consideration by the TLA formula

∃∃∃∃∃∃ vH1 , . . . vHn : 2(vH1 ≡ H1) ∧ . . . ∧2(vHn ≡ Hn) ∧G†

where G† results from G by replacing Hi by vHi , dHi by v′Hi
, and all remaining pre-

formulas du by u′.
For example, if F is the formula

2[2v ⇒ d∃∃∃∃∃∃w : 2[u⇒ d2w]u]v

the first step produces

∃∃∃∃∃∃ x : 2(x ≡ ∃∃∃∃∃∃w : 2[u⇒ d2w]u) ∧ 2[2v ⇒ dx]v

and FTLA is the TLA formula

∃∃∃∃∃∃x : 2(x ≡ ∃∃∃∃∃∃w, y : 2(y ≡ 2w) ∧ 2[u⇒ y′]u) ∧ ∃∃∃∃∃∃ z : 2(z ≡ 2v) ∧ 2[z ⇒ x′]v

Given a behavior σ = s0s1 . . ., define the behavior τ = t0t1 . . . such that, for all
i ≥ 0, si and ti agree on all propositions, except possibly on vH1 , . . . vHn , and where
ti(vHj) = tt iff σ|i |= Hj . The assertion now follows from the following fact, which
is proved by structural induction: For any subformula H of G, σ|i |= H iff τ |i |= H†

where H† is obtained from H in the same way as G† is obtained from G. *

For the GTLA formula 3
〈
A ∧ 〈B〉v

〉
v

considered in section 1, the procedure out-
lined in the proof of theorem 22 produces the TLA formula

∃∃∃∃∃∃x : 2(x ≡ 〈B〉v) ∧3〈A ∧ x〉v

7 Conclusion

The logic GTLA defined in this paper is a variant of Lamport’s Temporal Logic of
Actions. Like TLA, its formulas do not distinguish between behaviors that are stutter-
ing equivalent. However, GTLA removes some apparently unnecessary restrictions on
the syntax of formulas. We have also shown that the propositional fragment of GTLA
admits a complete and reasonably simple axiomatization. In fact, our proof systems
ΣGTLA and Σh

GTLA are much simpler than Abadi’s axiomatization [1] of a previous
version of TLA. We have been careful to adhere to TLA as closely as possible. In

A More Complete TLA 1243

particular, every TLA formula is a GTLA formula, and the two logics are equally ex-
pressive once we add (stuttering-invariant) quantification over flexible proposition sym-
bols, as proposed by Lamport. By Rabinovich’s result of expressive completeness for
TLA [18], it follows that ∃∃∃∃∃∃ -GTLA is expressively complete for all stuttering-invariant
ω-languages definable in the monadic second-order theory of linear orders. We believe
that GTLA is a more natural explanation of TLA’s concepts. The difference between
TLA and GTLA lies in the fact that in GTLA, formulas and pre-formulas are defined
by mutual induction, whereas the syntax of TLA is defined in succeeding layers. In par-
ticular, GTLA allows temporal formulas to occur inside the2[]v operator. The fact that
such formulas can already expressed in TLA via quantification over flexible variables
(cf. the proof of theorem 22) is easily overlooked in the original definition of TLA.
It will remain to be seen whether the added flexibility of GTLA is useful for writing
system specifications.

There are alternative definitions of stuttering-invariant temporal logics. The easiest
way to obtain invariance under stuttering is to interpret the doperator of PTL not as
referring to the immediate successor state, but to the first state in the future that differs
in the valuation of some proposition (and to let dF be true if no such state exists). The
resulting logic is axiomatized by a minor variant of the standard PTL proof system,
and it is “globally” stuttering-invariant with respect to ', but not “locally” with respect
to 'At(F), as determined by the formula under consideration. Unfortunately, “global”
stuttering invariance is not enough to represent implementation by model inclusion.
Another example for a globally stuttering-invariant logic is Pnueli’s TLR [17]. The
logic MTL defined by Mokkedem and Méry [16] is “locally” stuttering-invariant, but
the authors did not prove a completeness result. On the other hand, one could obtain
an axiomatization of TLA or GTLA by interpreting their formulas in PTL. However,
this approach breaks when it comes to quantified formulas, due the stuttering-invariant
definition of the semantics for ∃∃∃∃∃∃ (see also [18]).

GTLA is easily extended to a first-order logic where atomic propositions are re-
placed by atomic predicate-logic formulas, except for the “subscripts” v in formulas
2[P]v, which should then be state variables. (The generalization to arbitrary terms can
be introduced as a short-hand notation as we have done in this paper.) Of course, one
cannot hope for full completeness of first-order GTLA. Nevertheless, the ability to rea-
son about the propositional fragment, together with some simple rules about (rigid)
quantification has turned out to be extremely useful in the application of standard linear-
time temporal logic, and we believe the same to be true for TLA.

References

[1] Martı́n Abadi. An axiomatization of Lamport’s Temporal Logic of Actions. In Jos C. M.
Baeten and Jan W. Klop, editors, CONCUR ’90, Theories of Concurrency: Unification and
Extension, volume 458 of Lecture Notes in Computer Science, pages 57–69, Berlin, 1990.
Springer-Verlag. A revised version is available on the Web at http://www.research.digital.
com/SRC/personal/Martin Abadi/allpapers.html.

[2] Martı́n Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical
Computer Science, 81(2):253–284, May 1991.

1244 Stephan Merz

[3] Martı́n Abadi and Leslie Lamport. An old-fashioned recipe for real time. Research Re-
port 91, Digital Equipment Corporation, Systems Research Center, 1992. An earlier ver-
sion, without proofs, appeared in [7, pages 1–27].

[4] Martı́n Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):507–534, May 1995.

[5] Martı́n Abadi and Stephan Merz. An abstract account of composition. In Jiřı́ Wiedermann
and Petr Hajek, editors, Mathematical Foundations of Computer Science, volume 969 of
Lecture Notes in Computer Science, pages 499–508, Berlin, 1995. Springer-Verlag.

[6] Martı́n Abadi and Stephan Merz. On TLA as a logic. In Manfred Broy, editor, Deductive
Program Design, NATO ASI series F, pages 235–272. Springer-Verlag, Berlin, 1996.

[7] J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors. Real-Time: Theory
in Practice, volume 600 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1992. Proceedings of a REX Real-Time Workshop, held in The Netherlands in June, 1991.

[8] Dov Gabbay, Amir Pnueli, S. Shelah, and Jonathan Stavi. On the temporal analysis of
fairness. In Proceedings of the 7th Annual ACM Symposium on Principles of Programming
Languages, pages 163–173. ACM, 1980.

[9] Fred Kröger. Temporal Logic of Programs, volume 8 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin, 1987.

[10] Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor, Information Pro-
cessing 83: Proceedings of the IFIP 9th World Congress, pages 657–668, Paris, September
1983. IFIP, North-Holland.

[11] Leslie Lamport. Hybrid systems in TLA+. In Robert L. Grossman, Anil Nerode, An-
ders P. Ravn, and Hans Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in
Computer Science, pages 77–102. Springer-Verlag, 1993.

[12] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

[13] Leslie Lamport. Refinement in state-based formalisms. Technical Note 1996–001, Digital
Equipment Corporation, Systems Research Center, Palo Alto, California, December 1996.

[14] Stephan Merz. A more complete TLA. Technical Report, Institut für Informatik, Univer-
sität München. Available on the WWW at URL http://www.pst.informatik.uni-muenchen.
de/˜merz/papers/gtla.html, 1999.

[15] Stephan Merz. Isabelle/TLA. Available on the WWW at URL http://www.pst.informatik.
uni-muenchen.de/˜merz/isabelle/, 1997. Revised 1999.

[16] Abdelillah Mokkedem and Dominique Méry. A stuttering closed temporal logic for mod-
ular reasoning about concurrent programs. In Temporal Logic (ICTL ’94), volume 827 of
Lecture Notes in Computer Science, pages 382–397, Bonn, 1994. Springer-Verlag.

[17] Amir Pnueli. System specification and refinement in temporal logic. In R.K. Shyamasun-
dar, editor, Foundations of Software Technology and Theoretical Computer Science, volume
652 of Lecture Notes in Computer Science, pages 1–38. Springer-Verlag, 1992.

[18] Alexander Rabinovich. Expressive completeness of temporal logic of action. In L. Brim,
J. Gruska, and J. Zlatuska, editors, Mathematical Foundations of Computer Science, vol-
ume 1450 of Lecture Notes in Computer Science, Brno, Czech Republic, August 1998.
Springer-Verlag.

Formal Justification of the Rely-Guarantee

Paradigm for Shared-Variable Concurrency:
A Semantic Approach

F.S. de Boer1, U. Hannemann2, and W.-P. de Roever3

1 Utrecht University, Department of Computer Science, Utrecht, The Netherlands,
frankb@cs.uu.nl

2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische
Mathematik II, Kiel, Germany,

{uha,wpr}@informatik.uni-kiel.de

Abstract. This paper introduces a semantic analysis of the Rely-Guar-
antee (R-G) approach to the compositional verification of shared-variable
concurrency. The main contribution is a new completeness proof.

1 Introduction

In the Rely-Guarantee (R-G) approach to the compositional verification of shared-
variable concurrency [9, 10, 13] a property of a component process is, in essence,
stated as a pair (R,G) consisting of a guarantee property G that the compo-
nent will satisfy provided the environment of the component satisfies the rely
property R. The interpretation of (R,G) has to be carefully defined so as to be
non-circular. Informally, a component P satisfies (R,G) if the environment of
P violates R before component P fails to satisfy G. In this paper we develop
a semantic approach to the formal justification of the Rely-Guarantee proof
method.

There are two basically different compositional semantic models for shared
variable concurrency: reactive-sequence semantics [4], and Aczel-trace semantics
[5]. A reactive sequence of a process P is a sequence of computation steps 〈σ, σ′〉
which represent the execution of an atomic action of P in state σ with resulting
state σ′. The resulting state of a computation step does not necessarily coincide
with the initial state of the subsequent computation step in the sequence. These
‘gaps’ represent the state-changes induced by the (parallel) environment. Note
that thus a reactive sequence abstracts from the the number and granularity of
the environmental actions. In contrast, an Aczel-trace of a process records all
the state-changes (both of the process and its environment) at the level of the
atomic actions.

Which of these two semantics of shared-variable concurrency provides a suit-
able basis for a formal justification of the R-G proof method? A seemingly nat-
ural interpretation of R-G specifications in terms of reactive sequences consists
of the following.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1245–1265, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1246 F.S. de Boer, U. Hannemann, and W.-P. de Roever

If the gaps of a reactive sequence satisfy the rely condition then the
computation steps of the sequence itself should satisfy the guarantee
condition.

However under this interpretation the R-G proof rule for parallel composition
will allow the derivation of incorrect R-G specifications. A proper semantic anal-
ysis based on reactive sequences can be obtained by the introduction of stutter
steps as studied in [4]. In fact the addition of arbitrary stutter steps allows one
to interpret the gaps of a reactive sequence as stemming from the execution of
a single atomic action by the environment. In that case the reactive sequences
semantics actually coincides with the Aczel semantics. In the Aczel semantics
then we have the following interpretation of R-G specifications.

If all the atomic environmental actions satisfy the rely condition then
the computation steps of the sequence itself should satisfy the guarantee
condition.

The main contribution of this paper consists of a new semantic completeness
proof of the R-G proof method. An essential aspect of the R-G paradigm is
that of finding a characterization of validity of a R-G specification which is non-
circular. Indeed, the explicit breaking of cycles in chains of implications between
R and G properties associated with the different processes which constitute
an (open) network occurs already in Misra and Chandy’s formulation of the
Assumption-Commitment method [12] . As our completeness proof for the R-G
paradigm demonstrates, preventing such circularities is straightforward once the
appropriate concepts have been defined, and certainly simpler than any method
proposed before. As worked out in [1], at an abstract level the breaking of such
cycles of dependencies is connected to the use of constructive logics for reasoning
about such dependencies, and is related to the use of such logics by Gerard
Berry in his work on the semantics of the synchronous language Esterel [2].
The completeness proof for our proposed formalization of the Rely-Guarantee
paradigm shows that there is a simple alternative to introducing such logics. The
practical relevance of the new formal justification of the R-G paradigm presented
in this paper lies in the fact that it determines the exact nature of the rely and
guarantee predicates and, consequently, it provides a clear view on the way the
R-G proof method is to be applied.

The approach which is followed in this paper is based on the inductive-
assertion method [7] which is a methodology for proving state-based transition
diagrams correct. It consists of the construction of an assertion network by as-
sociating with each location of a transition diagram a (state) predicate and with
each transition a verification condition on the predicates associated with the lo-
cations involved; semantically, these predicates are viewed as sets of states. Thus
it reduces a statement of correctness of a transition diagram, which consists of
a finite number of locations, to a correspondingly finite number of verification
conditions on predicates.

The inductive assertion method can be trivially generalized to concurrency
by viewing a concurrent transition diagram as the product of its components

Formal Justification of the Rely-Guarantee Paradigm 1247

and thus reducing it to a sequential system. However this global proof method
leads to a number of verification conditions which is exponential in the number
of components.

Compositional proof methods in general provide a reduction in the com-
plexity of the number of verification conditions. In this paper we investigate
the semantic foundations of the Rely-Guarantee proof method for concurrent
systems obtained by sequential and parallel composition from basic transition
diagrams. The components of such a concurrent system communicate via shared
variables.

Technically, we introduce the new concept of R-G-inductive assertion net-
works for reasoning about the sequential components, i.e., the transition di-
agrams, of a concurrent system. By means of compositional proof rules such
assertion networks can be used for deducing properties of the whole system.

The paper is organized as follows: we first introduce transition diagrams as
our basic control structure and define in section 3 the reactive-sequence seman-
tics. R-G correctness formulae are introduced in section 4 together with our proof
system for them. In section 5 we formally define validity of R-G specifications
w.r.t. the reactive sequence semantics and give an example why this choice of
semantics is not appropriate. On top of the reactive sequence semantics we in-
troduce the Aczel semantics, for which we prove in section 8 completeness of the
proof system given in section 4. In section 7 we continue the comparison between
Aczel semantics and reactive sequence semantics by extending the latter with
stutter steps and proving that this change suffices to get a notion of validity of
R-G formulae which is equivalent to the one based on Aczel semantics.

2 Syntax

The basic control construct of our semantical analysis of the Rely-Guarantee
(R-G) proof system is that of a transition diagram, i.e., a labeled directed graph
where each label denotes an instruction. Given a set of states Σ, an instruc-
tion has the following form: a boolean condition b ∈ P(Σ) followed by a state
transformation f ∈ Σ → Σ, notation: b → f . The set of states Σ, with typ-
ical element σ, is given by VAR → VAL, where VAR , with typical elements
x, y, z, . . ., is an infinite set of variables and VAL denotes the underlying domain
of values. In the sequel sets of states often will be called predicates and (sets of)
pairs of states will be called action predicates, with typical element act, as they
reflect the effect of a state transformation (or action) upon the state. We have
the following semantic characterization of the variables involved in a (action)
predicate and a state transformation. This characterization is an approximation
of the corresponding syntactic notion of occurrence of a variable.

Definition 1. Let x̄ denote a sequence x1, . . . , xn of distinct variables. Byσ(x̄)=
σ′(x̄) we then abbreviate

∧n
i=1 σ(xi) = σ′(xi). A predicate φ ∈ P(Σ) involves the

variables x1, . . . , xn if

– ∀σ, σ′ ∈ Σ. σ(x̄) = σ′(x̄)⇒ (σ ∈ φ⇔ σ′ ∈ φ).

1248 F.S. de Boer, U. Hannemann, and W.-P. de Roever

This condition expresses that the outcome of φ only depends on the variables
x1, . . . , xn.
Similarly, an action predicate act ∈ P(Σ ×Σ) involves the variables x1, . . . , xn

if

– ∀〈σ1, σ
′
1〉, 〈σ2, σ

′
2〉 ∈ P(Σ ×Σ).

(σ1(x̄) = σ2(x̄) ∧ σ′1(x̄) = σ′2(x̄))⇒ (〈σ1, σ
′
1〉 ∈ act ⇔ 〈σ2, σ

′
2〉 ∈ act).

Finally, a function f ∈ Σ → Σ involves the variables x̄ if

– ∀σ, σ′ ∈ Σ. σ(x̄) = σ′(x̄)⇒ f(σ)(x̄) = f(σ′)(x̄)
– ∀σ ∈ Σ, y 6∈ x̄. f(σ)(y) = σ(y)

The first condition expresses that if two states σ and σ′ agree with respect to the
variables x̄, then so do their images under f . The second condition expresses
that any other variable is not changed by f .

We restrict ourselves to state-transformations and (action) predicates for
which there exists a finite set of variables which are involved. The set of vari-
ables involved in the state-transformation f , (action) predicates φ and act , we
denote by var(f), var (φ) and var(act), respectively. For predicate φ and action
predicate act let σ |= φ denote σ ∈ φ, and 〈σ, σ′〉 |= act denote 〈σ, σ′〉 ∈ act. By
|= φ (and |= act) we denote the validity of φ (and act), i.e., for all σ, σ |= φ (and
for all 〈σ, σ′〉, 〈σ, σ′〉 |= act).

Given a sequence of distinct variables x̄ = x1, . . . , xn and a sequence of values
v̄ = v1, . . . , vn, the state-transformation (σ : x̄ 7→ v̄) is defined by

(σ : x̄ 7→ v̄)(y) def=
{
σ(y) if y 6∈ {x1, . . . , xn}
vi if y = xi

For a sequence of distinct variables x̄ = x1, . . . , xn, ∃x̄.φ denotes the set of
states σ such that (σ : x̄ 7→ v̄) ∈ φ, for some sequence of values v̄ = v1, . . . , vn.
Similarly, ∃x̄.act , act an action predicate, denotes the set of pairs of states
〈σ, σ′〉 such that 〈(σ : x̄ 7→ v̄), (σ′ : x̄ 7→ v̄′)〉 ∈ act , for some sequences of values
v̄ = v1, . . . , vn and v̄′ = v′1, . . . , v′n. Finally, given a state-transformation f , the
state-transformation ∃x̄.f is defined by ∃x̄.f(σ) def= (f(σ) : x̄ 7→ σ(x̄)), where
σ(x̄) denotes the sequence of values σ(x1), . . . , σ(xn).

We have the following formal definition of a transition diagram.

Definition 2. A basic transition diagram is a quadruple (L, T, s, t), where L is
a finite set of locations l, T is a finite set of transitions (l, b→ f, l′), and s and
t are the entry and exit locations, respectively, which are different (s 6= t). There
are no outgoing transitions starting in t.

A program P is either a basic transition diagram or defined inductively as a
sequential composition P1;P2 or parallel composition P1 ‖ P2 of two programs
P1 and P2.

Formal Justification of the Rely-Guarantee Paradigm 1249

3 Reactive Sequence Semantics

The Rely-Guarantee paradigm aims at specifying both terminating and nonter-
minating computations in a compositional style. We denote termination by the
symbol

√
.

For the formal definition of reactive sequence semantics as introduced in, e.g.,
[4], we use the following transition relation.

Definition 3. For a given basic transition diagram P = 〈L, T, s, t〉,

l
〈σ,σ′〉−→ l′

denotes a transition of P when for some (l, b → f, l′) ∈ T one has that σ |= b
and σ′ = f(σ).

The following axiom and rule allow to compute the reflexive transitive closure
of this transition relation:

l
ε−→ l and

l
w−→ l′, l′ w′−→ l′′

l
w·w′−→ l′′

,

where ε denotes the empty sequence, and “·” the operation of concatenation.

Given a basic transition diagram P , l w−→ l′ thus indicates that starting
at l execution of P can generate the sequence of computation steps w arriving
at l′. Such a sequence w is called a reactive sequence. For a non-empty reactive
sequence w = w′·〈σ, σ′〉 we define laststep(w) def= 〈σ, σ′〉. A reactive sequence w =
〈σ1, σ

′
1〉〈σ2, σ

′
2〉 · · · 〈σn, σ

′
n〉 is called a connected sequence if for all i = 1, . . . , n−1

we have that σ′i = σi+1. A ‘gap’ 〈σ′i, σi+1〉 between two consecutive computation
steps 〈σi, σ

′
i〉 and 〈σi+1, σ

′
i+1〉 represents the state-transformation induced by

the (parallel) environment. Note that such a gap, therefore, abstracts from the
granularity of the environment, i.e., the actual number of atomic computation
steps performed by the environment.

Definition 4. For a basic transition diagram P = 〈L, T, s, t〉, l ∈ L we define
Rl [[P]] def= {w| s w−→ l}.

We distinguish sequences which are terminated w.r.t. the executing process
by ending them with the

√
symbol. Computations are either reactive sequences

or reactive sequences followed by a
√

symbol. Therefore, if a computation w
contains a

√
, it is of the form w′

√
with w′ a reactive sequence containing no

√
symbol.

Definition 5. The reactive-sequence semantics R [[P]] of a program P is defined
as follows: For P = 〈L, T, s, t〉 we define

R [[P]] def=
⋃
l∈L

Rl [[P]] ∪ {w√| w ∈ Rt [[P]] }.

1250 F.S. de Boer, U. Hannemann, and W.-P. de Roever

For P = P1;P2 we define

R [[P]] def= {w |w ∈ R′ [[P1]] } ∪ {w · w′ |w√ ∈ R [[P1]] ∧ w′ ∈ R [[P2]] },

where R′ [[P1]] denotes the set of non-terminated sequences of P1, that is, those
sequences not ending with

√
. Finally, for P = P1 ‖ P2 we define

R [[P]] def= {w |w ∈ w1‖̃w2, w1 ∈ R [[P1]] , w2 ∈ R [[P2]] },

where w1‖̃w2 denotes the set of all interleavings of w1 and w2, ending in
√

if
and only if both w1 and w2 end in

√
.

The semantics R [[P]] contains all the finite prefixes of all the computations
of P , including the non-terminating computations. Recall from the introduction
that a process P satisfies (R,G) provided P ’s environment violates R before P
violatesG, i.e., at any stage of an on-going computation P ’s actions should satisfy
G as long as R remains satisfied by P ’s environment. This is mathematically
expressed by requiring (R,G) to be satisfied by all prefixes of a computation of
P .

So how does one characterize the semantics of programs in which the this
process of parallel composition with new environments has come to an end,
i.e., the semantics of a closed system? This is done by considering only reac-
tive sequences in which the gaps are “closed”, i.e., by considering the subset of
connected sequences.

4 The Rely-Guarantee Proof Method

In this section we first give an intuitive definition of Rely-Guarantee correctness
formulae and their interpretation and then present a proof system for this type
of correctness formula that is fairly standard as far as the composition rules are
concerned [15]. For correctness formulae that reason about basic transition dia-
grams we adapt Floyd’s inductive assertion network method [7] to the additional
requirements of the R-G method.

Definition 6. Let pre and post be predicates denoting sets of states, rely and
guar be action predicates, and P be a program, then 〈rely, guar〉 : {pre} P {post}
is called an R-G correctness formula.

Traditionally, pre and post impose conditions upon the initial, respectively,
final state of a computation, whereas rely and guar impose conditions upon
environmental transitions, respectively, transitions of the process itself. This is
captured by the following intuitive characterization of validity of an R-G formula:

Whenever

1) P is invoked in an initial state which satisfies pre, and
2) the environment satisfies rely,

Formal Justification of the Rely-Guarantee Paradigm 1251

then

3) any transition of P satisfies guar, and
4) if a computation terminates, its final state satisfies post.

We generalize Floyd’s method to the additional requirements of R-G formulae
and define for P = 〈L, T, s, t〉 an R-G-inductive assertion networkQ(rely, guar) :
L→ P(Σ), i.e., we associate with each location l a predicate Ql as follows:

Definition 7 (R-G-inductive assertion networks). An assertion network
Q is R-G-inductive w.r.t. rely and guar for P = 〈L, T, s, t〉 if:

– For every (l, b→ f, l′) ∈ T and state σ: if σ |= Ql ∧ b then 〈σ, f(σ)〉 |= guar
and f(σ) |= Ql′ .

– For every l ∈ L and states σ and σ′: if σ |= Ql and 〈σ, σ′〉 |= rely then
σ′ |= Ql.

We abbreviate that Q is an R-G-inductive assertion network w.r.t. rely and
guar for P by Q(rely, guar) ` P . We have the following rule for deriving R-G
specifications about basic transition diagrams.

Rule 8 (Basic diagram rule) For P = 〈L, T, s, t〉:
Q(rely, guar) ` P

〈rely, guar〉 : {Qs} P {Qt}
The following rules are standard.

Rule 9 (Sequential composition rule)

〈rely, guar〉 : {φ} P1 {χ}, 〈rely, guar〉 : {χ} P2 {ψ}
〈rely, guar〉 : {φ} P1;P2 {ψ}

Rule 10 (Parallel composition rule)

|= rely ∨ guar1 → rely2
|= rely ∨ guar2 → rely1
|= guar1 ∨ guar2 → guar

〈relyi, guari〉 : {pre} Pi {posti}, i = 1, 2
〈rely, guar〉 : {pre} P1‖P2 {post1 ∧ post2}

Rule 11 (Consequence rule)

〈rely, guar〉 : {φ} P {ψ}
|= φ1 → φ, |= ψ → ψ1,

|= rely1 → rely, |= guar→ guar1
〈rely1, guar1〉 : {φ1} P {ψ1}

1252 F.S. de Boer, U. Hannemann, and W.-P. de Roever

Definition 12. A set of program variables z̄ = z1, . . . , zn is called a set of aux-
iliary variables of a program P if:

– For any boolean condition b of P we have z̄ ∩ var(b) = ∅, and
– any state transformation of P can be written as f ◦ g, i.e., a composition

of state-transformations f and g, such that z̄ ∩ var(f) = ∅, and the write
variables of g, i.e, those variables x such that g(σ)(x) 6= σ(x), for some state
σ, are among z̄.

We have the following rule for deleting auxiliary variables:

Rule 13 (Auxiliary variables rule)

〈rely, guar〉 : {φ} P ′ {ψ}
〈∃z̄.rely, guar〉 : {∃z̄.φ} P {ψ} ,

where z̄ is a set of auxiliary variables of P ′, guar and ψ do not involve z̄, and
P is obtained from P ′ by replacing every state transformation f in P ′ by ∃z̄.f .

Finally, how does one reason about closed programs? This is done by requir-
ing rely to be id, the identity on states.

Derivability of an R-G formula 〈rely, guar〉 : {φ} P {ψ} in this proof system
is expressed by

` 〈rely, guar〉 : {φ} P {ψ}.

5 R-G Validity w.r.t. Reactive Sequences Semantics

In order to define the validity of a R-G specification 〈rely, guar〉 : {φ}P{ψ}
we have first to determine the exact meaning of the precondition φ and the
postcondition ψ: Are these predicates referring to the initial and final state of P
itself or of the complete system (which includes the environment of P)? Following
the literature we choose the latter option. Therefore we define the validity of a
R-G specification for P in terms of a triple consisting of an initial (i.e., w.r.t.
the complete system) state σ, a reactive sequence w of P , which records the
sequence of computation steps of P , and a final state σ′, which is final under the
assumption that the environment has terminated as well. Whereas for terminated
computations σ′ is the final state of the complete system, we can interpret it as
the “current” state for non-terminating computations, i.e., the last observation
point at hand.

We define for a reactive sequence w and states σ, σ′ the complement of w
with respect to initial state σ and final state σ′, denoted by 〈σ,w, σ′〉, as follows:

Definition 14. We define

〈σ, ε, σ′〉 def= 〈σ, σ′〉,
〈σ, 〈σ1, σ2〉 · w, σ′〉 def= 〈σ, σ1〉 · 〈σ2, w, σ′〉.

Formal Justification of the Rely-Guarantee Paradigm 1253

The complement of a reactive sequence w with respect to a given initial state
σ and final state σ′ thus specifies the behavior of the environment.

Definition 15. For a reactive sequence w = 〈σ1, σ
′
1〉 · · · 〈σn, σ

′
n〉, w |= act indi-

cates that 〈σi, σ
′
i〉 |= act, i = 1, . . . , n, (and w

√ |= act indicates that w |= act).

Now we are sufficiently equipped to introduce the following notion of validity
of R-G specifications.

Definition 16 (R-Validity of R-G specifications). We define

|=R 〈rely, guar〉 : {φ} P {ψ}

by

for all w ∈ R [[P]] , states σ and σ′, if σ |= φ and 〈σ,w, σ′〉 |= rely then
w |= guar and w = w′

√
, for some w′, implies σ′ |= ψ.

Intuitively, a R-G specification 〈rely, guar〉 : {φ} P {ψ} is R-valid if for
every reactive sequence w of P , initial state σ and final state σ′ (of the parallel
composition of P with its environment) the following holds: if the initial state σ
satisfies φ and all the steps of the environment as specified by 〈σ,w, σ′〉 satisfy
rely then all the steps of w satisfy guar and upon termination the final state σ′

satisfies ψ.
Example 1. We have the following counter-example to the soundness of the

parallel composition rule with respect to the notion of R-validity above: It is not
difficult to check that

|=R 〈x′ = x+ 1, x′ = x+ 1〉 : {x = 0}x := x+ 1{x = 3}.

By an application of the parallel composition rule to x := x + 1 ‖ x := x + 1,
where both assignments x := x+ 1 are specified as above, we then would derive

〈true, x′ = x+ 1〉 : {x = 0}x := x+ 1 ‖ x := x+ 1{x = 3}

which is clearly not R-valid.
(Here x := x + 1 abbreviates the transition diagram 〈{s, t}, {(s, true →

f, t)}, s, t〉, where f increments x by 1.)
In the full paper we show that soundness of the parallel composition rule

with respect to this notion of validity requires all rely-predicate to be transitive,
i.e., that 〈σ, σ′〉 |= rely and 〈σ′, σ′′〉 |= rely imply 〈σ, σ′′〉 |= rely.

This observation motivates our next section where we give a different inter-
pretation of R-G specifications in terms of Aczel-traces. These Aczel-traces will
provide more detailed information about environmental steps.

1254 F.S. de Boer, U. Hannemann, and W.-P. de Roever

6 Aczel Semantics

An Aczel-trace is a connected sequence of process-indexed state pairs. It can
thus be seen as the extension of connected reactive sequence in which every
atomic action contains as additional information an identifier which represents
the executing process.

We assume to have a set Id of process identifiers with typical element I1, I2,
The complement of a set of identifiers V ⊆ Id is denoted by V def= Id \ V .

Definition 17. A process-indexed state pair is a triple 〈σ, I, σ′〉 ∈ Σ× Id×Σ.
An Aczel-trace π is a non-empty connected sequence of process-indexed state
pairs, that might end with a

√
-symbol.

For an Aczel-trace π we define first(π) and last(π) by the first and last state of
the sequence, respectively: first(〈σ, I, σ′〉 · π′) = σ and last(π′ · 〈σ, I, σ′〉) = σ′.
(last(π

√
) = last(π)).

In order to define the set of Aczel-traces of a program in terms of its reactive-
sequence semantics we introduce the following projection operation on Aczel-
traces.

Definition 18. Let V ⊆ Id be a set of identifiers.

ε[V] def= ε,

(〈σ, I, σ′〉 · π)[V] def= π[V], if I 6∈ V,
(〈σ, I, σ′〉 · π)[V] def= 〈σ, σ′〉 · π[V], if I ∈ V,
π
√

[V] def= π[V]
√
.

We define the Aczel semantics of a program P parametric with respect to a set
of identifiers V . The elements of V are used to identify the transitions of P . Thus
we can extract a reactive sequence of P out of an Aczel-trace by projecting onto
this set of identifiers. Within Aczel-traces, the purpose of these identifiers is to
distinguish between steps of the process and steps of the environment.

Definition 19. For P = 〈L, T, s, t〉 a basic transition diagram, l ∈ L, and V ⊆
Id, we define

Aczl
V [[P]] def= {π|π[V] ∈ Rl [[P]] }.

By AczV [[P]] then we denote Aczt
V [[P]] . For composed systems P we define

AczV [[P]] def= {π|π[V] ∈ R [[P]] }.
The proof of the following proposition is straightforward and therefore omit-

ted.

Proposition 20. Let V1 and V2 be disjoint sets of identifiers. We have for every
P = P1 ‖ P2

AczV1 [[P1]] ∩AczV2 [[P2]] ⊆ AczV [[P]] ,

with V = V1 ∪ V2. Note that in general the converse does not hold.

Formal Justification of the Rely-Guarantee Paradigm 1255

We have the following interpretation of R-G specifications.

Definition 21 (Aczel-Validity of R-G specifications). We define

|=A 〈rely, guar〉 : {φ} P {ψ}

by

For all sets of identifiers V and π ∈ AczV [[P]] if first(π) |= φ and
π[V] |= rely then π[V] |= guar and π = π′

√
implies last(π) |= ψ.

The R-G method as presented above is sound with respect to the Aczel-trace
semantics, for the soundness proof of the basic diagram rule we refer to the full
paper. For the other rules detailed proofs in the Aczel-trace set-up are given in
[15].

The main difference between this notion of validity and the one based on
reactive sequences is that now every atomic computation step of the environment
has to satisfy the rely condition. Consequently, for Example 1 we have

6|=A 〈x′ = x+ 1, x′ = x+ 1〉 : {x = 0}x := x+ 1{x = 3},

since there is an arbitrary number of environmental steps possible.

7 Reactive Sequences Reconsidered

As observed above the reactive sequences semanticsR does not provide a correct
interpretation of R-G specifications. More precisely, it requires the predicates
rely1 and rely2 in the parallel composition rule to be transitive. However, we
can obtain such a correct interpretation of R-G specifications by the introduction
of arbitrary stutter steps of the form 〈σ, σ〉.

Definition 22. Let Rτ [[P]] be the smallest set containing R [[P]] which satisfies
the following:

w1 · w2 ∈ Rτ [[P]] implies w1 · 〈σ, σ〉 · w2 ∈ Rτ [[P]] .

This abstraction operation is required in order to obtain a fully abstract
semantics (see [4, 3, 11]). We observe that the corresponding notion of validity,
which we denote by |=Rτ , requires the guar predicate to be reflexive, i.e. 〈σ, σ〉 |=
guar, for every state σ. However, given this restriction we do have that the two
different notions of validity |=A and |=Rτ coincide.

Theorem 23. Let 〈rely, guar〉 : {φ}P{ψ} be such that guar is reflexive. Then

|=A 〈rely, guar〉 : {φ}P{ψ} if and only if |=Rτ 〈rely, guar〉 : {φ}P{ψ}.

1256 F.S. de Boer, U. Hannemann, and W.-P. de Roever

Proof. Let |=A 〈rely, guar〉 : {φ}P{ψ} and w ∈ Rτ [[P]] . Furthermore let σ and
σ′ be such that σ |= φ, 〈σ,w, σ′〉 |= rely. Then the requirements of |=Rτ are
satisfied because of the existence of a corresponding π ∈ AczV [[P]] , for any
(non-empty) V . Formally, we obtain such a corresponding π by defining the
Aczel-trace A(σ,w, σ′) by induction on the length of w. Let E 6∈ V and I ∈ V .
Then

A(σ, ε, σ′) def= 〈σ,E, σ′〉,
A(σ, 〈σ1, σ2〉 · w, σ′) def= 〈σ,E, σ1〉 · 〈σ1, I, σ2〉 ·A(σ2, w, σ

′).

Conversely, let |=Rτ 〈rely, guar〉 : {φ}P{ψ} and π = 〈σ1, I1, σ2〉 · · · 〈σn, In,
σn+1〉 ∈ AczV [[P]] such that σ1 |= φ and 〈σk, σk+1〉 |= rely, for Ik 6∈ V . Then
the requirements of |=A are satisfied because of the existence of a corresponding
w ∈ Rτ [[P]] . Formally, we define R(π) by induction on the length of π:

R(ε) def= ε,

R(〈σ1, I1, σ2〉 · π) def=
{ 〈σ1, σ2〉 ·R(π) I1 ∈ V
〈σ2, σ2〉 ·R(π) I1 6∈ V,

and use R(π) ∈ Rτ [[P]] as reactive sequence corresponding to π to prove that
guar and ψ hold in their respective (pairs of) states. Note that thus the insertion
of stutter steps is used to obtain the ‘gaps’ corresponding to the environmental
steps in π, providing extra observation points.

8 Completeness

This section presents the completeness proof for our proof system and constitutes
the very justification of the paper. We have the following main theorem (the
remainder of this section is devoted to its proof).

Theorem 24. The proof system presented in section 4 is (relative) complete
w.r.t. the Aczel-trace semantics, i.e.,

|=A 〈rely, guar〉 : {φ} P {ψ} implies ` 〈rely, guar〉 : {φ} P {ψ}.
We prove the derivability of an Aczel-valid R-G specification by induction

on the structure of the program P .
Basic case
Given a valid R-G specification |=A 〈rely, guar〉 : {φ} P {ψ}, with P = 〈L, T, s, t〉
a basic transition diagram, we associate with every location l of P the strongest
postcondition SPl(φ, rely, P). The resulting network we denote by SP . Intu-
itively, a state σ belongs to SPl(φ, rely, P) if there is a computation of P together
with its environment that reaches location l of P , starting in a state satisfying
φ, such that all environment steps satisfy rely.

Definition 25. For P = 〈L, T, s, t〉 we define

σ |= SPl(φ, rely, P)

Formal Justification of the Rely-Guarantee Paradigm 1257

by

σ |= φ (in case l equals s) or first(π) |= φ and π[V] |= rely, for some
set V of process identifiers and some π ∈ Aczl

V [[P]] , with last(π) = σ.

Note that any state σ′ which can be reached from a state σ which satisfies
SPl(φ, rely, P) by a sequence of rely-steps also satisfies SPl(φ, rely, P), because
any computation sequence of P together with its environment that reaches loca-
tion l of P in state σ can be extended to a similar sequence reaching σ′. Hence
SPl(φ, rely, P) is invariant under rely.

We also need a characterization of the computation steps of a program P .
This is given by the strongest guarantee SG(φ, rely, P), an action predicate de-
scribing those transitions of P which are actually executed by P in some compu-
tation, provided φ is satisfied initially, and every environment transition satisfies
rely.

Definition 26. Let P be an arbitrary program. We define

〈σ, σ′〉 |= SG(φ, rely, P)

by

first(π) |= φ and π[V] |= rely, for some set V of process identifiers and
π ∈ AczV [[P]] , with 〈σ, σ′〉 = laststep(π[V]).

The following basic properties of SPl and SG follow immediately from their
definitions.

Lemma 27. For P a basic transition diagram we have

i) |=A 〈rely, SG(φ, rely, P)〉 : {φ} P {SPt(φ, rely, P)}.
ii) |=A 〈rely, guar〉 : {φ} P {ψ} implies

a) |= SPt(φ, rely, P)→ ψ.
b) |= SG(φ, rely, P)→ guar.

iii) |= φ→ SPs(φ, rely, P).

Moreover, we have the following lemma.

Lemma 28. Given a basic transition diagram P , SP is an R-G-inductive as-
sertion network w.r.t. rely and SG(φ, rely, P).

Proof. Let l ∈ L and σ |= SPl(φ, rely, P). So, for some set V of process iden-
tifiers, there exists π such that π ∈ Aczl

V [[P]] , first(π) |= φ, π[V] |= rely and
last(π) = σ.

– Let σ |= b and (l, b → f, l′) ∈ T . By executing (l, b → f, l′) we reach l′

with σ′ = f(σ). We first prove that σ′ |= SPl′(φ, rely, P). Without loss
of generality we may assume that V is non-empty. Let I ∈ V . Since π ∈
Aczl

V [[P]] we get that π′ = π·〈σ, I, σ′〉 ∈ Aczl′
V [[P]] . We have that first(π) =

first(π′) |= φ (note that π is non-empty). Moreover, π[V] |= rely and π[V] =
π′[V]. Thus, π′[V] |= rely. Obviously we have last(π′) = σ′ and therefore
σ′ |= SPl′(φ, rely, P). Additionally, since 〈σ, σ′〉 = laststep(π′[V]) we derive
that 〈σ, σ′〉 |= SG(φ, rely, P).

1258 F.S. de Boer, U. Hannemann, and W.-P. de Roever

– Next let 〈σ, σ′〉 |= rely. We have for I 6∈ V that π′ = π ·〈σ, I, σ′〉 ∈ Aczl
V [[P]] .

Again we have that first(π) = first(π′) |= φ. Since π[V] |= rely, 〈σ, σ′〉 |=
rely and π′[V] = π[V] · 〈σ, σ′〉 we conclude that π′[V] |= rely. Finally,
last(π′) = σ′. Thus, σ′ |= SPl(φ, rely, P).

By our basic rule 8 we thus derive that

` 〈rely, SG(φ, rely, P)〉 : {SPs(φ, rely, P)} P {SPt(φ, rely, P)}.
Since by Lemma 27

– |= φ→ SPs(φ, rely, P),
– |= SPt(φ, rely, P)→ ψ, and
– |= SG(φ, rely, P ′)→ guar

hold, we derive by the consequence rule

` 〈rely, guar〉 : {φ} P {ψ}.
Composed programs
Next we consider the remaining cases P = P1;P2 and P = P1 ‖ P2. First we
generalize definition 25.

Definition 29. We define for every system P ,

σ |= SP (φ, rely, P)

if

first(π) |= φ and π[V] |= rely, for some set V of process identifiers and
some π

√ ∈ AczV [[P]] , with last(π) = σ.

Note that for P = (L, T, s, t) a basic transition diagram SP (φ, rely, P) =
SPt(φ, rely, P). The basic properties of Lemma 27 carry over to the general
case.

Lemma 30. For every system P we have

i) |=A 〈rely, SG(φ, rely, P)〉 : {φ} P {SP (φ, rely, P)}.
ii) |=A 〈rely, guar〉 : {φ} P {ψ} implies

a) |= SP (φ, rely, P)→ ψ.
b) |= SG(φ, rely, P)→ guar.

Sequential composition
Now consider the case of sequential composition. Let

|=A 〈rely, guar〉 : {φ}P1;P2{ψ}.
By the induction hypothesis we thus obtain

` 〈rely, SG(φ, rely, P1)〉 : {φ}P1{SP (φ, rely, P1)}

Formal Justification of the Rely-Guarantee Paradigm 1259

and
` 〈rely, SG(φ′, rely, P2)〉 : {φ′}P2{SP (φ′, rely, P2)},

where φ′ = SP (φ, rely, P1). Furthermore,

|=A 〈rely, guar〉 : {φ}P1;P2{ψ}
implies

|=A 〈rely, guar〉 : {φ}P1{SP (φ, rely, P1)}
and

|=A 〈rely, guar〉 : {SP (φ, rely, P1)}P2{ψ}.
Using the above lemma we thus obtain by the consequence rule

` 〈rely, guar〉 : {φ}P1{SP (φ, rely, P1)}
and

` 〈rely, guar〉 : {SP (φ, rely, P1)}P2{ψ}.
An application of the rule for sequential composition concludes the proof.
Parallel composition
We have now arrived at the most interesting case P = P1‖P2. Let

|=A 〈rely, guar〉 : {φ}P1‖P2{ψ}.
Our task is to construct predicates that fit the parallel composition rule 10. In

particular we have to define predicates relyi, guari, pre, posti, i = 1, 2, such that
for some augmentation P ′i of Pi with auxiliary variables the R-G specifications

|=A 〈relyi, guari〉 : {pre} P ′i {posti}, i = 1, 2,

and the corresponding side conditions hold.
In order to define such predicates we introduce histories.

Definition 31. A history θ is a sequence of indexed states (I, σ), with I ∈ Id.
An indexed state (I, σ) indicates that the process I is active in state σ.

We assume given a set of history variables HVAR ⊆ V AR with typical
element h. For h a history variable, σ(h) is a history.

Our next step is to augment every transition of P1‖P2 with a corresponding
update to the fresh history variable h (i.e., h does not occur in P nor in the given
predicates rely, guar, φ, and ψ). This history variable h records the history of P ,
i.e., the sequence of state changes of process P together with its environment, plus
the active components responsible for these changes. Without loss of generality
we may assume that P1 and P2 are two distinct process identifiers. We then
transform each transition (l, b→ f, l′) of a constituent of Pi to (l, b→ f ◦ g, l′),
where g def= (σ : h 7→ h · (Pi, σ)), i.e., g(σ) is like σ, except for the value of h
which is extended by (Pi, σ). This augmented version of Pi will be denoted by
P ′i .

1260 F.S. de Boer, U. Hannemann, and W.-P. de Roever

Note that in the augmented process P ′ = P ′1‖P ′2 boolean conditions do not
involve the history variable h, and that h does not occur in assignments to non-
history variables. I.e., the history variable h is an auxiliary variable which does
not influence the flow-of-control of a process.

We have to ensure, in order to have the complete computation history recorded
in h, that every possible environmental action should update the history variable
correctly. I.e., we should prevent that some process is setting, e.g., h := ε, by
formulating additional requirements upon rely; also we change the given pre-
condition φ to ensure that initially h denotes the empty sequence.

Definition 32. We define

– 〈σ, σ′〉 |= rely′ if and only if 〈σ, σ′〉 |= rely and σ′(h) = σ(h) · (E, σ)
– σ |= φ′ if and only if σ |= φ and σ(h) = ε,

where E ∈ Id is a process identifier distinct from P1 and P2, representing “the
environment”.

It is straightforward to prove that

|=A 〈rely, guar〉 : {φ}P1‖P2{ψ}

implies
|=A 〈rely′, guar〉 : {φ′}P ′1‖P ′2{ψ}.

Moreover, we introduce the following rely condition ei which ensures a correct
update of the history variable h by the environment of P ′i when executed in the
context P ′1 ‖ P ′2. Note that the environment of P ′i in the context of P ′1 ‖ P ′2
consists of the common environment of P ′1 and P ′2 and the other component P ′j ,
i 6= j.

Definition 33. Let for i = 1, 2,

〈σ, σ′〉 |= ei

be defined by

σ′(h) = σ(h) · (E, σ) or σ′(h) = σ(h) · (Pj , σ),

where i 6= j(∈ {1, 2}).
We are now in a position to define the predicates that will satisfy the re-

quirements of the parallel composition rule.

Definition 34. We define for i = 1, 2 the following predicates

– relyi
def= rely′ ∨ SG(φ′, ej, P

′
j) (i 6= j);

– posti
def= SP (φ′, relyi, P

′
i);

– guari
def= SG(φ′, relyi, P

′
i).

Formal Justification of the Rely-Guarantee Paradigm 1261

The predicate relyi is intended to specify the steps of the environment of P ′i in
the context of P ′1 ‖ P ′2. The computation steps of the common environment of
P ′1 and P ′2 are specified by the action predicate rely′ whereas the computation
steps of the other component are specified by the action predicate SG(φ′, ej, P

′
j)

which states the existence of a corresponding computation of P ′j in which the
environment correctly updates the history variable h.

By Lemma 30 we have for i = 1, 2

|=A 〈relyi, guari〉 : {φ′} P ′i {posti}.

By the induction hypothesis we thus have

` 〈relyi, guari〉 : {φ′}P ′i{posti}.

We therefore now prove the corresponding requirements of the parallel compo-
sition rule.

Lemma 35. We have for i, j = 1, 2 and i 6= j

|= rely′ ∨ guari → relyj,

and
|= guar1 ∨ guar2 → guar.

Proof. The validity of the implication

rely′ ∨ guari → relyj

follows from the validity of the implication

SG(φ′, relyi, P
′
i)→ SG(φ′, ei, P

′
i).

Validity of this latter implication in turn follows from the validity of the implica-
tion relyi → ei. Let 〈σ, σ′〉 |= relyi. In case 〈σ, σ′〉 |= rely′, by definition of rely′,
we have that σ′(h) = σ(h) · (E, σ), otherwise 〈σ, σ′〉 |= SG(φ′, ej, P

′
j), and so we

have by definition of SG and the construction of P ′j , that σ′(h) = σ(h) · (Pj , σ).
In order to prove the validity of the implication

guar1 ∨ guar2 → guar

let 〈σ, σ′〉 ∈ guari. By definition of guari there exists

π = 〈σ1, I1, σ2〉 · · · 〈σn, In, σn+1〉 ∈ AczV [[P ′i]] ,

for some set of process identifiers V such that σ1 |= φ′, σn = σ, σn+1 = σ′,
and 〈σk, σk+1〉 |= relyi, whenever Ik 6∈ V . Note that by definition of relyi and
construction of P ′j , (i 6= j), Ik 6∈ V implies either σk+1(h) = σk(h) · (E, σk) or
σk+1(h) = σk(h) · (Pj , σk). Moreover, for Ik ∈ V we have by construction of P ′i
that σk+1(h) = σk(h) · (Pi, σk). Thus we may assume without loss of generality

1262 F.S. de Boer, U. Hannemann, and W.-P. de Roever

that σk+1(h) = σk(h) · (Ik, σk), k = 1, . . . , n (simply rename the identifiers Ik
accordingly). Since, σ1(h) = ε, we derive by a straightforward induction that
σk+1(h) = (I1, σ1) · · · (Ik, σk), k = 1, . . . , n.

Either there is a last Pj step in the Aczel trace π or there isn’t one. If there
is no such step in π then also π ∈ AczV ∪W [[P ′1‖P ′2]] , for any set W of identifiers,
because there are no Pj steps in π. Otherwise, let 〈σl, Pj , σl+1〉 be the last Pj

(i 6= j) step of the Aczel-trace π. We have that 〈σl, σl+1〉 |= SG(φ′, ej , P
′
j). By

definition of SG(φ′, ej, P
′
j) there exists

π′ = 〈σ′1, I ′1, σ′2〉 · · · 〈σ′m, Im, σ′m+1〉 ∈ AczW [[P ′j]] ,

for some set of process identifiers W such that σ′1 |= φ′, σ′m = σl, σ′m+1 = σl+1,
and 〈σ′k, σ′k+1〉 |= ej, whenever I ′k 6∈W . By definition of ej and the construction
of P ′j , in a similar manner as argued above, we may assume without loss of
generality that σ′k+1(h) = σ′k(h) · (I ′k, σ′k), k = 1, . . . ,m. Since, σ′1(h) = ε, we
thus derive by a straightforward induction that σ′k+1(h) = (I ′1, σ

′
1) · · · (I ′k, σ′k),

k = 1, . . . ,m. But σ′m+1(h) = σl+1(h), and consequently we derive that π′ is
a prefix of π. Since π is an extension of π′ consisting of non-Pj steps only,
by definition of AczW [[P ′j]] we subsequently derive that π ∈ AczW [[P ′j]] . By
proposition 20, AczV [[P ′1]] ∩AczW [[P ′2]] ⊆ AczV ∪W [[P ′1‖P ′2]] . From this we derive
that π ∈ AczV ∪W [[P ′1‖P ′2]] . Since π[V ∪W] |= rely′ and σ1 |= φ′ we thus infer
from the validity of

|=A 〈rely′, guar〉 : {φ′}P ′1‖P ′2{ψ}

that 〈σ, σ′〉 |= guar.

By an application of the parallel composition rule we thus obtain

` 〈rely′, guar〉 : {φ′}P ′1 ‖ P ′2{post1 ∧ post2}.

In order to proceed we first show that |= post1∧post2 → ψ. Let σ |= post1∧post2.
By definition of post1 and post2 there exist computations

π = 〈σ1, I1, σ2〉 · · · 〈σn, In, σn+1〉√ ∈ AczV1 [[P ′i]]

and
π′ = 〈σ′1, I ′1, σ′2〉 · · · 〈σ′m, I ′m, σ′m+1〉

√ ∈ AczV2 [[P ′j]]

such that σ = σn+1 = σ′m+1, σ1 |= φ′, σ′1 |= φ′, 〈σk, σk+1〉 |= rely1, Ik 6∈ V1,
and 〈σ′k, σ′k+1〉 |= rely2, I ′k 6∈ V2. By definition of relyi and construction of P ′i
(i = 1, 2), we may assume without loss of generality that V1 = {P1}, V2 = {P2},
σk+1(h) = σk(h) · (Ik, σk), k = 1, . . . , n, and σ′k+1(h) = σ′k(h) · (I ′k, σ′k), k =
1, . . . ,m (simply rename the identifiers Ik, k = 1, . . . , n, and I ′l , l = 1, . . . ,m,
accordingly). Since σ1(h) = σ′1(h) = ε, we derive by a straightforward induction
that σn+1(h) = (I1, σ1) · · · (In, σn) and σ′m+1(h) = (I ′1, σ′1) · · · (I ′m, σ′m). Thus we
derive from σn+1(h) = σ′m+1(h) that π = π′. Since AczV1 [[P ′1]] ∩ AczV2 [[P ′2]] ⊆

Formal Justification of the Rely-Guarantee Paradigm 1263

AczV [[P ′1‖P ′2]] , we derive that π ∈ AczV [[P ′1‖P ′2]] . By the given validity of the
R-G-specification

|=A 〈rely, guar〉 : {φ}P1‖P2{ψ}
(note that φ′ implies φ and rely′ implies rely) we thus derive that σ |= ψ.

By an application of the consequence rule we thus obtain

` 〈rely′, guar〉 : {φ′}P ′1 ‖ P ′2{ψ}.
Next we apply the auxiliary variables rule:

` 〈∃h.rely′, guar〉 : {∃h.φ′}P1 ‖ P2{ψ}.
Finally, by an application of the consequence rule (using |= rely → ∃h.rely′ and
|= φ→ ∃h.φ′), we conclude

` 〈rely, guar〉 : {φ}P1 ‖ P2{ψ}.

9 Conclusion, Future, and Related Work

This paper advocates the usefulness of a semantic analysis of proof methods for
concurrency. Such an analysis abstracts away from any expressibility issues and
is especially effective in case of giving soundness and completeness proofs. By
focussing on the semantic issues we discovered facts which were not known before
about the R-G paradigm: that reactive-sequence semantics are inappropriate
for modeling this paradigm, that Aczel-trace semantics does provide a correct
interpretation for R-G validity, and that by adding finite stutter steps to reactive
sequences a model is obtained which does model R-G validity adequately.

Furthermore, in such a semantic analysis one separates reasoning about se-
quential components from reasoning about parallel composition, by defining for
the former an appropriate concept of inductive assertion networks (here: R-G-
inductive assertion networks), and reasoning about the latter by Hoare-like proof
rules. This considerably simplifies the reasoning process (just compare [15]), and
focusses attention on the one central issue, namely, how to formulate a minimal
number of rules for reasoning compositionally about shared-variable concurrency
for open systems in a sound and semantically complete way. Such rules provide
the basis for machine-supported compositional reasoning about concurrency in
PVS, as used in, e.g., Hooman’s work [8].

Finally, by focussing on the essential elements underlying completeness of
the proposed proof method we discovered a proof which is much simpler than
any previous “proof” appearing in the literature (of the correctness of none of
which we are convinced anymore), and which extends the usual patterns of com-
pleteness proofs for Hoare-like reasoning about concurrency in a straightforward
way.

This work arose out of a careful analysis of of the completeness proof pre-
sented in [14, 15], which is based on reduction to the completeness proof of
the method of Owicki & Gries. We believe that our direct completeness proof

1264 F.S. de Boer, U. Hannemann, and W.-P. de Roever

provides more insight in the R-G proof method. Also it is much simpler and
therefore easier to check its correctness.

An interesting avenue of research opens up by applying the various methods
which Gérard Berry employed, in his characterizations of the semantics of Es-
terel, to the Assume-Guarantee paradigm (the name of which was invented by
Natarajan Shankar).

The present paper is the third one in a series of papers on the semantical
analysis of compositional proof methods for concurrency, and will eventually
appear as part of a chapter on compositional proof methods for concurrency in
[6].

References

[1] M. Abadi and G. D. Plotkin. A logical view of composition. Theoretical Computer
Science, 114(1):3–30, 1993.

[2] G. Berry. The Constructive Semantics of Esterel. Book in preparation,
http://www-sop.inria.fr/meije/esterel/doc/main-papers.html, 1999.

[3] S. Brookes. A fully abstract semantics of a shared variable parallel language. In
Proceedings 8th Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press, pages 98–109, 1993.

[4] F.S. de Boer, J.N. Kok, C. Palamedessi, and J.J.M.M. Rutten. The failure of fail-
ures: towards a paradigm for asynchronous communication. In Baeten and Groote,
editors, CONCUR’91, LNCS 527. Springer-Verlag, 1991.

[5] W.-P. de Roever. The quest for compositionality - a survey of assertion-based proof
systems for concurrent programs, part 1: Concurrency based on shared variables. In
Proc. of IFIP Working Conf, The Role of Abstract Models in Computer Science,
North-Holland, 1985.

[6] W.-P. de Roever, F.S. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: An Introduction to State-based Methods.
To appear.

[7] R.W. Floyd. Assigning meanings to programs. In Proceedings AMS Symp. Applied
Mathematics, volume 19, pages 19–31, Providence, R.I., 1967. American Mathemat-
ical Society.

[8] J.Hooman. Compositional Verification of Real-Time Applications. In W.-
P. de Roever, H. Langmaack, and A. Pnueli (eds.) Compositionality: The Signifi-
cant Difference. International Symposium, COMPOS’97, Bad Malente, Germany,
September 8 –12, 1997. pp. 130–149, Springer-Verlag, LNCS 1536, 1998.

[9] C.B. Jones. Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University Computing Laboratory, 1981.

[10] C.B. Jones. Tentative steps towards a development method for interfering pro-
grams. ACM Transactions on Programming Languages and Systems, 5(4):596–619,
1983.

[11] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3), pp. 872–923, 1994.

[12] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engeneering, 7(7):417–426, 1981.

[13] E. Stark. A proof technique for rely/guarantee properties. In Proceedings of
5th Conference on Foundations of Software Technology and Theoretical Computer
Science, LNCS 206, pages 369–391. Springer-Verlag, 1985.

Formal Justification of the Rely-Guarantee Paradigm 1265

[14] Q. Xu. A theory of state-based parallel programming. DPhil. Thesis, Oxford
University computing Laboratory, 1992.

[15] Q. Xu, W.-P. de Roever, and J. He. The rely-guarantee method for verifying
shared-variable concurrent programs. Formal Aspects of Computing, 9(2):149–174,
1997.

Relating Z and First-Order Logic

Andrew Martin?

Oxford University Software Engineering Centre
Computing Laboratory, Wolfson Building

Parks Road, Oxford OX1 3QD, UK.
apm@comlab.ox.ac.uk

Abstract Despite being widely regarded as a gloss on first-order logic
and set theory, Z has not been found to be very supportive of proof. This
paper attempts to distinguish between the different philosophies of proof
in Z. It discusses some of the issues which must be addressed in creating
a proof technology for Z, namely schemas, undefinedness, and what kind
of logic to use.

1 Introduction

The Z notation [26] is gaining widespread acceptance as a useful means of speci-
fying software systems. Tool support for Z, though given impetus by the Z stan-
dardization activity [20], is quite varied, especially in the area of proof. There
appears to be little consensus about what proving properties of Z specifications
actually means. Different people seem to understand Z and proof differently.

Z has been widely regarded as a sylized form of classical first-order logic
and set theory, with a simple type system (but this is not a universal view; see
below). The schema language complicates this relationship considerably. As the
semantics of schemas has become more complex, it has been increasingly unclear
whether Z needs its own logic, or whether it can be manipulated using a familiar
system. In creating proof tools, some authors do not appear to have even asked
this question, but have assumed a Z semantics which corresponds exactly with
the computational logic of some host system.

Therefore, the language of discourse has become surprisingly clouded. The
aim of this paper is to relate the different understandings of the nature of proof in
Z, and to explain the issues involved. Automatic translations from one notational
system to another—or one logic to another—are of course part of any total
logical system for Z. Since Z is a large and rich notation, the verification of those
translations becomes an issue itself.

Outline of the paper The following section sets the scene, discussing the notion
and purpose of proof in Z. Section 3 defines many terms, according to long-
standing logical terminology. Somehow these have not always been followed in
the Z community, or have come to mean different things to different people. The
? Paper written at the University of Southampton.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1266–1280, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Relating Z and First-Order Logic 1267

next section surveys some of the leading approaches to this topic—and points to a
more detailed survey elsewhere. Sections 5 and 6 detail the two most basic issues
which affect reasoning in Z: schemas, and the issue of undefinedness. Section 7
considers related and future work. Alternative approaches are not based on first-
order logic at all. For the future, the key challenge seems to be in finding ways
to manage the complexity of Z proofs. The paper finishes with some conclusions.

2 Z, Logical Calculi, and Semantics

Z is quite clearly a logical notation. The central task of writing a Z specification
is writing schemas. The main content of a schema is found in its predicate part.
This is a collection of sentences of first-order logic. The syntax which Z has
settled upon is slightly different from that found in most logical texts, but this
is not significant.

Whilst in some philosophical disciplines logical notation may be introduced
largely as a means to add precision to statements, in mathematical work, and
in particular, in software engineering, it is more usual to add a calculus to the
presentation of a logical notation. Logic is not used as a language in its own
right, but as a means to facilitate proof activity.

In this regard, Z is unusual, since whilst it is not ‘semantics free’ it has
arisen with a rich language, but little in the way of logic. Spivey [25] presents
a denotational semantics, and also elements of a logical calculus for the schema
notation. More mundane logical proof rules are assumed and not stated.

This reminds us that there are at least two possible approaches to giving
meaning to a piece of formal text: we can give a denotational semantics; a model
in some system which is already understood—this is Spivey’s main approach
(despite the use of Z as the metalanguage). Alternatively, we can give a logical
calculus, a system of reasoning which relates terms of the language without
interpreting them. Such a logic is a higher-level description, and is, in general
more practical.

Of course, many writers of specifications will be concerned neither with the
model nor with the logic. They are interested in writing specifications and com-
municating ideas unambiguously, but not in proving that their specifications are
complete, say. Nevertheless, a logical system—however expressed—is an impor-
tant mental tool in writing specifications. The specifier needs to know whether,
for example, writing

x 6∈ dom f ∧ f ′ = f ∪ {x 7→ y}

is equivalent to writing

f ′ = f ⊕ {x 7→ y} .

The application of the definitions of the various operators is a logical process.
Some such questions are easily answered, others will require careful detailed
reasoning. The answer depends upon the choice of logical system, and will not

1268 Andrew Martin

usually be answered with reference to the model. Most logics will agree on most
answers, but in some cases—particularly where application of partial functions
is involved—the answers will vary.

If the Z user does wish to undertake more formal reasoning (in calculation of
preconditions, for example) then the detailed choice of logical system (whether to
support a proof by hand, or by machine) will have a significant effect, potentially
on both the ease or difficulty of the proof, and perhaps the outcome.

A number of approaches to proof in Z have been taken as a result of the
lack of a ‘standard’ answer. Some of these are explored below; a comprehensive
survey is presented in [18], covering both traditional logical presentations, and
computational logics/proof tools for Z.

3 Languages and Logic

For some reason, the language used to discuss Z semantics and logic is frequently
at odds with the usual terminology of mathematical logic [19, 8]. This section
seeks to establish some definitions.

3.1 Terminology

In this paper, we see the Z notation as a language in the logical sense. The study
of how Z is to be expressed is a matter of syntax. The study of meaning, and
the relationship of one Z specification (or predicate) with another—whether via
models or logics—is the concern of semantics.

We may construct a semantics for Z by associating with each term in the
language some object in an underlying structure (typically, a set). A particular
semantic construction is a model of a particular Z specification (or predicate) if
the relationships between terms in the specification also hold in the model (if it
makes the predicate true). A predicate is logically valid if it holds in all models.
It is logically valid relative to a specification if it holds in all the models of that
specification.

A logic for Z is a collection of axioms and rules of inference written using
the Z notation. These rules and axioms may be used inductively to define which
predicates are logical consequences of others. Those which are the logical conse-
quence of the empty set of predicates (or, equivalently, the logical consequence
of only the axioms of the logic) are known as theorems. Usually, such a logic will
allow the use of the definitions in a specification (schemas, generic definitions,
etc.), so that a predicate may be a theorem of a specification, if it is a logical
consequence of the definitions in that specification.

A logic for Z may be proven sound in some model by showing that each of its
theorems is logically valid. It is traditional to ask whether a logic is also complete
— i.e. whether every logically valid predicate is also a theorem. A consequence
of Gödel’s incompleteness theorem is that it is not possible to find a complete
logic for Z with respect to any conventional underlying theory of sets.

Relating Z and First-Order Logic 1269

A different question is to ask whether a logic for Z is complete with respect
to the mapping into the underlying set theory: this relies on treating the under-
lying theory as itself a formal system, rather than a model as above. Such an
alternative understanding will be discussed below.

Alternative Views Z has often been seen not as a language, but as a sugared
syntax for ZF set theory. In this view, most of the foregoing terminology is not
used. Instead, one seeks to exhibit a mapping from Z to an underlying language of
sets, and to conduct all one’s reasoning in the corresponding theory of sets. Since
the core parts of Z are simple set theory, the mapping is sometimes invisible, and
one is able to use the normal rules of set theory on Z terms. If a partial inverse
for the mapping can be found (it will not be bijective, since the richness of Z
syntax is not typically present in the underlying system) then the underlying
theory might be said to induce a logic for Z, though this construction has not
been explored.

Noteworthy is that this process of translation is largely indistinguishable from
the process of providing a model for Z, as described above. This may help to
explain why the process of Z standardization which began by seeking to provide
a logic for Z has lately focussed most of its semantic efforts on the model theory
of Z.

In many of the proof tools described in the literature, there is no attempt to
describe a logic for Z. Instead, the tool is constructed by ‘embedding’ Z in some
computational logic system. The most successful embeddings use higher-order
logic (as described in the HOL tool, or in Isabelle’s HOL theory) as the ‘host’.
The embeddings are on a spectrum from ‘shallow’ to ‘deep’, depending on how
much of Z’s semantic structure is retained in the translation. To produce a deep
embedding (i.e. one which retains much of Z’s structure) is a non-trivial task.
As a result, the question arises of how to validate this translation.

A proof in the underlying theory may be demonstrably sound for models of
that theory, but the embedding approach is unable to ask whether this represents
a sound proof for Z, since there is nothing against which to judge the translation.
The difference between truth and provability clearly borders at some point on
the philosophical, and is outside the scope of this paper.

3.2 Theorems

It has long been customary to write conjectures (or theorems) in Z specifications
as

` pred

the intention being to speculate (or indicate) that pred is a logical consequence
of the foregoing specification. Various Z paragraphs have been written to the
left of the turnstile (`)—schemas, declarations and predicates, etc.—the in-
tended meaning being that the foregoing specification, augmented with those
paragraphs, has pred as a logical consequence,

1270 Andrew Martin

Thus, for example, in Spivey’s [26] BirthdayBook specification, he demon-
strates (without writing `) that

AddBirthday ` known ′ = known ∪ {name?}
meaning that in the context of this specification, and further, within the scope
of AddBirthday as a definition, known has the property shown.

Spivey avoids use of ` in this way, but other authors do not. Since the
system of logic to be used in such a proof is usually ill-defined, this is a most
remarkable abuse of notation, or else a philosophical oddity even for the most
ardent Platonist. In the mentioned texts on logic, and others, the turnstile is
used as a metalogical symbol to indicate (conjectured) theoremhood with respect
to some particular logical calculus. The calculus is either understood from the
context, or its name is supplied as an explicit decoration. For a Z specification,
where there is no calculus to be understood from the context, it is far from clear
what such a conjecture (or theorem) is to mean.

On the ‘alternative view’ given above, the calculus is presumably understood
to be classical first-order logic and set theory. The variety of available presenta-
tions (and as a result, of sets of theorems), especially for the latter, would seem
to leave the statement of a theorem in this way dangerously close to meaningless.

The Draft Z Standard [20] has given a meaning for statements of Z conjectural
theorems which is entirely independent of any logical calculus. This is of course
quite a feat. In fact, the Standard’s definition does not touch theoremhood at
all, but instead deals with model-theoretic truth. That is, the Standard says that

` pred

holds in a specification Spec exactly when all the models of the specification
satisfy the predicate. That is, in the notation of the Standard,

{| Spec |}M ⊆ {| pred |}M .

This form of proposition is more traditionally written

Spec |= pred .

As we have observed, one might expect a logic for Z to be sound—that is,
that every theorem of a specification is true in every model of that specification
(or, ‘`’ V ‘|=’). In pure first-order logic, the converse property (completeness)
also holds, so every logically valid predicate is a theorem. This property does not
extend to axiomatic set theory (if it is consistent), so it is not the case that the
notions of theoremhood and logical validity can be used interchangeably in Z.

As a result, we must conclude that the unqualified use of statements such as
the one which began this subsection is unfortunate, if not misleading.

4 Approaches to Logic and Semantics

A logical presentation is able to give meaning to a metalogical statement like
` pred . A denotational semantics—giving models for the language—is able to

Relating Z and First-Order Logic 1271

give meaning to statements like |= pred . The most tractable way to demonstrate
inductively that a logical calculus is consistent is to exhibit a semantic structure
and demonstrate that the logic is sound with respect to the semantics. This has
been the intention of the Z Standards activity [20], though lately most effort has
been spent on the model.

Many texts have given elements of a logical calculus for Z, [25] and [30] being
the among the first. Later, Spivey [26] remarks that his Z Reference Manual has
not included a full set of inference rules, not least because there is insufficient
experience of how to present such rules so that they interact helpfully. Potter et
al. [22] devote a chapter to formal reasoning in Z, but for pedagogical reasons,
rather than to present a systematic reasoning system for Z. Perhaps Woodcock
and Davies [29] give the fullest textbook treatment of reasoning in Z, but again,
this is presented as a good means of understanding the complexities and nuances
of the notation.

Separate accounts have described logics for Z in a more systematic manner.
W [28] was perhaps the first; it has been followed by V [7], which corrects a
number of shortcomings in the account of W . These logics have been developed
to be part of the Z Standardization activity. Henson and Reeves [11] have also
produced a logic for Z, which they have named ZC . Their logic and conclusions
mirror the W family in some respects, but achieve a higher level of rigour and a
greater separation of concerns. They argue that some of the innovations of W ,
such as a novel treatment of substitution, are unnecessary—see below.

Fig.1. Some approaches to reasoning

Figure 1 illustrates some of the approaches to giving meaning to, and/or
reasoning about, Z specifications. Logics for Z transform one conjecture into
another—or discharge the proof obligation to show that the conjecture is a

1272 Andrew Martin

theorem—without leaving the Z notation. In each case, the turnstile symbol
` is understood relative to the logic in use, be it W , V , ZC , etc.

The figure also illustrates the possibility of transforming a Z specification
into a model, in, say the language of first-order logic and set theory. It is then
possible to re-cast the conjecture in two different ways—as a possible theorem of
the formal system of first-order logic and set theory, or as a property of the model.
These two activities appear very similar indeed, but are in fact quite different
endeavours. Working in the former system will be a formal logical activity; work
in the latter is more akin to mainstream mathematics. One is in the domain of
proof theory, the other, model theory.

Most proof tools take the first of these approaches. Z/EVES [23] does pre-
cisely this; ProofPower [13] and Z-in-Isabelle/HOL [14] use higher-order, rather
than first-order, logic. Bowen and Gorden [5] explain that these embeddings of
one logic in another may take place at a number of different depths, depending
upon the extent to which the artefacts of the high-level language (Z) are mod-
elled directly in the host logic. In Z, the principal interest is with the modelling
of schemas—see below. A comparison of tools on this basis is included in [18].

It is worthwhile noting that the soundness of these formal logical manipula-
tions is itself guaranteed by an embedding in some model. The soundness (where
proven) of each logical approach means that the sets of transformations increase
when passing down the page—that is, the available logical steps in a logic for Z is
a subset of those available by reasoning about a representation of Z in FOL/ZF,
etc. As we have observed, properties true in the model may not be provable in
the logic, so the inclusion is typically as a proper subset.

Having performed logical reasoning in FOL or HOL, it is not always an easy
task to transform the resulting terms back into Z. The deeper embeddings ac-
complish this quite successfully. Z/EVES, in particular, is able to recast virtually
every predicate back into a Z form. Z/EVES is one system which might, then, be
said to induce a logic for Z, though the complexity of the transformation means
that the details of this logic have not been elucidated.

An alternative to embedding the Z notation in another logic is to encode a
logical calculus for Z in a logical framework [17, 15], or in a custom implemen-
tation such as CADiZ [27]. The soundness of these encodings is usually called
faithfulness. An encoding is called adequate if it allows precisely the same set
of manipulations as the logic it encodes. In practice this is rarely the case, so
encodings are shown in the diagram with a transformation arrow the highest on
the page; it may be imagined to admit the smallest set of transformations.

The diagram is of course only indicative. Particular logics, encodings, em-
beddings, and models will not necessarily form a neat hierarchy, because there
is no general agreement on the class of Z theorems and derivations.

5 Schemas

Schemas are without doubt the most important and distinctive feature of the Z
notation. Semantically, they represent a challenge, and framing suitable inference

Relating Z and First-Order Logic 1273

rules for dealing with them has been a significant research activity, which is
reported elsewhere [9, 6]. The difficulty with schemas has been in finding a
uniform representation which can represent a schema abstractly, and used to
give its properties in each situation in which it may appear.

Consider the following schema, which describes a size-limited phone directory,
assuming that MAX has been given some natural number value.

S == [n : NAME 7 7→ PHONE | #n < MAX]

S might be used as a declaration, as in the following predicate which says that
only international numbers are stored:

∀S • (∀ p : domn • p ∈ INTERNATIONAL)

S might be used as an expression, as in the following predicate which says the
same thing:

∀ s : S • (∀ p : dom s .n • p ∈ INTERNATIONAL)

S might be used as a predicate, as in

∀n : NAME 7 7→ PHONE • S

which we might interpret as saying that all phone directories are limited in size.
The difficulty arises because when S is used as a predicate, the component

labelled n behaves like a free variable—it can be captured by a quantifier. Inci-
dentally, MAX cannot be captured by a quantifier; in all instances of S it takes
the value it did at the point where S is defined. When S is used as an expression,
n is more like a bound variable—though not entirely, as alpha-conversion would
affect the type of the expression. Moreover, in Draft Standard Z, a schema-type
object can be created at any level of scope, not just at the top level, so the
boundness/freeness of variables depends critically on the context of the term.

Dealing with these issues led the designers ofW/V etc. to create an elaborate
calculus of bound and free variables, and eventually an object-level notion of
substitution. When a schema is used as an expression, it denotes a set of bindings,
which are associations of labels with values. For example, the schema

T
x , y : N

x < y

has as members bindings such as

〈| x == 3, y == 4 |〉, 〈| x == 2, y == 6 |〉
etc. A binding such as 〈| x == e |〉 carries the same semantic content as a
traditional substitution [x/e]. Instead of writing P [x/e], we might write

P � 〈| x == e |〉
the latter being a wholly Z predicate.

1274 Andrew Martin

Henson and Reeves [11] have since suggested that this innovation was unnec-
essary and over-complicates the logic. Their logic avoids needing schema com-
ponents to be sometimes bound and sometimes free, and consequentially is able
to use a more usual notion of substitution.

The V logic presents a complete calculus for schemas based on this approach
to bindings and substitution. Henson and Reeves [9] present a similar calculus,
based upon their logic ZC , retaining a more traditional notion of substitution,
and basing their rules on a notion of schema membership which is more liberal.
Both pieces of work demonstrate sufficient inference rules to allow schema objects
to be eliminated entirely—demonstrating that a logic for the whole of Z can be
constructed using ordinary ZF and adding one new construction (the labelled
product/schema type/binding).

These calculi also make formal many of the results that have been used by Z
practitioners (and schema expansion tools) over many years for the analysis of
operators in the schema calculus. For example, if D1 and D2 represent schema
declaration parts in ‘normalized’ form (itself typically described informally) then

[D1 | P1] ∧ [D2 | P2] = [D1 tD2 | P1 ∧ P2]

where t is some signature-compatible union. A proof of this property is presented
by Henson and Reeves [9], though it was also possible using W [28].

6 Undefinedness

Whilst most well-formed expressions in Z can be given a meaning quite readily,
there are two places where a problem arises with potentially undefined terms.
One is in the area of function application; the other with improper µ-terms. The
latter may be seen as a special case of the former (and vice versa), and so we
restrict our attention to function application. (The µ operator is used to select
from a set the unique member having a given property. Where no such unique
member exists—either through there being no member with the property, or
several members with the property—the µ-term is called improper. It is a simple
matter to reconstruct this as a discussion of functions and relations.)

Z allows functions to be total or partial. In Z, both functions and relations
are sets of pairs. There is no uniform procedure to check whether a given relation
is in fact a function, so the language allows relations to be applied to arguments
as if they were functions. Problems may arise if a partial function is applied to
an argument not in its domain, or if a relation is applied at a point where it is
not functional (i.e. it maps its argument to more than one value): what is the
function application to denote, and how does this value affect the surrounding
terms, or the predicate in which it occurs?

This is not merely an academic enquiry, since it may materially alter the
meaning of a specification. Moreover the use of partial functions is very common
Z style, so the question potentially affects very many Z specifications. Z has been
criticised on these grounds, particularly by the creators of PVS [21]. In PVS all

Relating Z and First-Order Logic 1275

functions are total—the burden is thereby shifted into the type system, which
unlike Z’s is therefore undecidable.

The tool Z/EVES [23] incorporates a similar check that each function applica-
tion is well-formed. Its authors report that the majority of ‘real’ Z specifications
examined have failed this test. Many have argued (notably, the late Peter Lup-
ton [16]) that a specification which exploits any interpretation of undefinedness
is a bad specification.

6.1 Approaches to Undefinedness

A comprehensive treatment of the possible approaches to undefined terms is
given by Arthan [1]. These include the possibility of allowing undefined terms to
be reflected in making the predicates in which they arise also undefined. That
approach gives rise to a three-valued logic, as used in VDM [12], but it is not
generally embraced by Z users (the Cogito project [3] is an exception).

The two most popular approaches are characterised by Arthan as ‘UPF’
(undefined propositions are false) and ‘UED’ (undefined expressions denote). In
the latter case, all expressions are assumed to denote a value, but it may not be
possible to determine which one.

The Draft Z Standard has accommodated the variety of approaches by loosely
defining the semantics of function application. Whereas most expressions are de-
fined by an equation, so that the meaning of a particular expression is a particular
set or relation in the underlying set theory, function application is defined by
a set inclusion. Thus, the value of an expression involving a relation applied
outside is domain, or where it is not functional, is not prescribed.

Different logical systems may resolve this in different ways, and nevertheless
be considered compliant (arguably, sound). For example, each type could be
given a non-Z error value, and this could be taken as the value of the undefined
term. Or, possibly, there could be a different error value for each term, to ensure
that undefined terms are not inadvertently made equal. The resolution chosen by
the W/V family of logics is to determine that undefined expressions denote a Z
value of the appropriate type, but not to allow sufficient apparatus to determine
which value that is.

6.2 Baumann’s Question

TheW/V resolution described above gives rise to a question posed by Baumann
[2].

If every expression denotes a Z value of the appropriate type, then surely

` ∀ f : X 7→ Y • (∀ x : X • (∃ y : Y • f x = y)
)

therefore

` ∀ f : X 7→ Y • (∀ x : X • (∃ y : Y • x 7→ y ∈ f))

1276 Andrew Martin

therefore

` ∀ f : X 7→ Y • (∀ x : X • x ∈ dom f)

therefore

` ∀ f : X 7→ Y • f ∈ X → Y

That is to say, all partial functions in Z are also total functions. This is clearly
undesirable; indeed, it is at odds with most users’ understanding of Z.

The resolution of this apparent paradox lies in the difference between truth
(in the model) and provability (in the logic). Writing |=D pred to mean that pred
holds in the model extended so that it has the property ‘every term denotes’,
the following may be true

|=D ∀ f : X 7→ Y • (∀ x : X • (∃ y : Y • f x = y)
)

,

but it does not follow (indeed, it is not the case) that this predicate is a theorem
of W etc. (Its truth is not certain, because the extension of the model may
be made in a number of different ways: the model might determine that any
application of a function outside its domain results in a ‘bottom’ value which is
outside the type system, or a distinguished value of the appropriate type, or an
entirely unspecified member of the type. The predicate above would be true in
the latter two cases—provided Y is a basic type, and not some subset—but not
in the first.)

6.3 Issues of Methodology

We have already argued that matters of logic are important not only to those who
wish to prove properties of their specifications, but to all who try to understand
Z specifications. In particular, a working knowledge of logic will enable the reader
to ask questions about what would have happened if something had been written
differently.

The treatment of undefinedness has an impact on how one writes specifi-
cations as well as how one reasons about them. An oft-cited example is the
specification which declares a (possibly infinite) set and then asserts that its
cardinality is fixed.

s : PN

#s = 4

The cardinality function # is partial; its value is defined only on finite sets.
The question of whether or not the definition of s is a useful one depends upon
one’s treatment of undefined terms. If every expression denotes (‘UED’), then
#s and 4 can be used interchangeably in the sequel, which is probably almost
what the specifier intended—but not quite. On the other hand one interpretation
of the position ‘UPF’ would mean that the very possibility that #s may be

Relating Z and First-Order Logic 1277

undefined would be enough to make the predicate false, and therefore the whole
specification inconsistent (and useless). Another interpretation of ‘UPF’ would
be to rule out those models in which #s = 4 is false (for whatever reason,
including undefinedness), leaving a specification which performs as ‘intended’.
The apparatus for achieving the latter is non-trivial.

Conversely, we can easily exhibit specifications—such as set comprehensions
or schemas—where we would like undefined terms to give rise to false predicates,
so that the rogue terms are excluded from the set/schema. For example, writing

S4 == { s : PN | #s = 4 }

we would hope that S4 would be the set of all sets of natural numbers having
cardinality 4—and no others. On the ‘UED’ interpretation, we can be sure that
the sets of four natural numbers are members of S4, but we cannot prove that,
say, N is not. In ‘UPF’, however, S4 would contain exactly the sets of natural
numbers having four elements, and nothing else.

The study of undefinedness has a long history in classical mathematics, with
no universal answer, and often no need for one because the ‘intuitive’ answer is
usually the right one (normal mathematical practice not being overly formal).
That there should be no ready answer in Z is therefore not surprising.

7 Future and Related Work

7.1 Managing Complexity

Just as undefinedness is a widespread problem, so too is the issue of managing
complexity. Z’s schema notation provides the specifier with the opportunity to
write very deeply-nested specifications in a very compact way. Anyone who has
used a schema expansion tool will know how readily an innocuous-looking five-
line schema can when fully expanded occupy several printed pages.

A challenge in supporting proof is to find ways to manage this complexity.
This issue is almost orthogonal to the logical concerns already raised, but has a
profound impact on the tractability of formal proof for anything but the smallest
specification.

Moreover, the language is quite rich, and uses a variety of specialised symbols.
Again, these are a means to the management of complexity, since they allow
complex ideas to be expressed succinctly. They are, however, outside the general
abilities of most proof tools today, though they need not be, since on-screen
display of symbol fonts is now quite commonplace.

Support for practical reasoning will require solving these two difficulties in
tool implementations. The first is ideally a methodological issue as well as an
interface one. Despite discovering logics for schemas, no practical method for
using schemas to structure proofs as well as specifications has been discovered.

1278 Andrew Martin

7.2 Other Logics

Whilst this paper has largely described Z in relation to first-order logic, higher-
order logic has been found to be a good basis for Z semantics. In particular,
it offers a very appropriate type model (provided schema types/bindings are
incorporated). [24] has described an isomorphism between Z and HOL (disre-
garding names in schema types). This provides the theory underlying the Z in
Isabelle/HOL work described above.

Others have considered using constructive logics [10]. In this approach, proof
becomes a means of program development. In other contexts, second-order logic
has been found to be a useful tool; perhaps it could also add expressiveness to Z.

8 Conclusions

Z now has quite a lengthy history, and sometimes the original motivations and
assumed theory have become obscured. This paper’s purpose is to make some
observations about the purpose and role of proof in Z, and its relationship to
first-order logic. General understanding of these topics has been divergent, and
the hope is to promote some common acceptance and understanding; in essence
to provide a framework for a philosophy of proof in Z. Much of the paper has
been devoted to documenting issues that are ‘part of the folklore’ of Z proof but
do not seem to have been recorded anywhere—to the annoyance of newcomers
to the field.

The original connection between Z and first-order logic was very close. Vari-
ous developments have served to obscure this relationship. Two pieces of recent
work [11, 6] show that the relationship persists, and indeed a first-order logic
can be described which, with the single addition of schema types can be used
to reason about the whole language. Insofar as demonstrating this relationship
is non-trivial it also suggests that Z adds some significant structure to the lan-
guage of first-order logic and set theory. Experience suggests that this structure
is useful for specification. It appears that it may also be useful for proof.

References

[1] R. D. Arthan. Undefinedness in Z: Issues for specification and proof, 1996. Pre-
sented at CADE-13 Workshop on Mechanization of Partial Functions.

[2] Peter Baumann. Private Communication, April 1994.
[3] Anthony Bloesch, Ed Kazmierczak, Peter Kearney, and Owen Traynor. The Cog-

ito methodology and system. In Asia–Pacific Software Engineering Conference
’94, pages 345–355, 1994.

[4] J. P. Bowen, A. Fett, and M. G. Hinchey, editors. ZUM’98: The Z Formal Specifi-
cation Notation, 11th International Conference of Z Users, Berlin, Germany, 24–
26 September 1998, volume 1493 of Lecture Notes in Computer Science. Springer-
Verlag, 1998.

[5] J. P. Bowen and M. J. C. Gordon. A shallow embedding of Z in HOL. Information
and Software Technology, 37(5–6):269–276, 1995.

Relating Z and First-Order Logic 1279

[6] Stephen Brien and Andrew Martin. A calculus for schemas in Z. J. Symbolic
Computation, 2000. To appear.

[7] Stephen M. Brien. A Logic and Model for the Z Standard. D.Phil. thesis, Univer-
sity of Oxford, 1998.

[8] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,
1972.

[9] M. C. Henson and S. Reeves. A logic for the schema calculus. In Bowen et al. [4],
pages 172–191.

[10] Martin Henson and Steve Reeves. New foundations for Z. In Jim Grundy, Martin
Schwenke, and Trevor Vickers, editors, IRW/FMP’98. Springer-Verlag, 1998.

[11] Martin C. Henson and Steve Reeves. Investigating Z. Technical Report CSM-317,
Department of Computer Science, University of Essex, 1998. Journal of Logic and
Computation, to appear.

[12] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall
Intenational, second edition, 1990.

[13] R. B. Jones. ICL ProofPower. BCS FACS FACTS, Series III, 1(1):10–13, Winter
1992.

[14] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Is-
abelle/HOL. In 1996 International Conference on Theorem Proving in Higher
Order Logic. Springer-Verlag, 1996.

[15] Ina Kraan and Peter Baumann. Implementing Z in Isabelle. In Jonathan P. Bowen
and Michael G. Hinchey, editors, ZUM’95: The Z Formal Specification Notation,
volume 967 of LNCS, pages 355–373. Springer-Verlag, 1995.

[16] Peter J. L. Lupton. Z and undefinedness. Technical Report PRG/91/68, Z Stan-
dards Panel / Programming Research Group, 1991.

[17] A. Martin. Encoding W: A logic for Z in 2OBJ. In J. C. P. Woodcock and
P. G. Larsen, editors, FME’93: Industrial-Strength Formal Methods, volume 670
of Lecture Notes in Computer Science, pages 462–481. Formal Methods Europe,
Springer-Verlag, 1993.

[18] Andrew Martin. Why effective proof tool support for Z is hard. Technical report
97-34, Software Verification Research Centre, School of Information Technology,
The University of Queensland, Brisbane 4072. Australia, November 1997.

[19] Elliott Mendelson. Introduction to Mathematical Logic. Mathematics Series.
Wadsworth and Brooks/Cole, 1987.

[20] John Nicholls, editor. Z Notation. Z Standards Panel, ISO Panel
JTC1/SC22/WG19 (Rapporteur Group for Z), 1995. Version 1.2, ISO Committee
Draft; CD 13568.

[21] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV ’96, number 1102 in Lec-
ture Notes in Computer Science, pages 411–414, New Brunswick, NJ, July/August
1996. Springer-Verlag.

[22] B. F. Potter, J. E. Sinclair, and D. Till. An Introduction to Formal Specification
and Z. Prentice Hall International Series in Computer Science, 2nd edition, 1996.

[23] M. Saaltink. The Z/EVES system. In J. P. Bowen, M. G. Hinchey, and D. Till,
editors, ZUM’97: The Z Formal Specification Notation, volume 1212 of Lecture
Notes in Computer Science, pages 72–85. Springer-Verlag, 1997.

[24] T. Santen. On the semantic relation of Z and HOL. In Bowen et al. [4], pages
96–115.

1280 Andrew Martin

[25] J. M. Spivey. Understanding Z: A Specification Language and its Formal Seman-
tics, volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, January 1988.

[26] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, second edition,
1992.

[27] I. Toyn. Formal reasoning in the Z notation using CADiZ. In Proc. 2nd Workshop
on User Interfaces to Theorem Provers, York, July 1996.

[28] J. C. P. Woodcock and S. M. Brien. W: A Logic for Z. In Proceedings 6th Z User
Meeting. Springer-Verlag, 1992.

[29] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, 1996.

[30] J. C. P. Woodcock and M. Loomes. Software Engineering Mathematics: Formal
Methods Demystified. Pitman, 1988.

Acknowledgements

If I have any insight in this area, it has been gained in discussions with members
of the Z Standards panel. Anthony Hall helped to make stark the choices faced
in dealing with undefinedness, and discussions with Martin Henson have greatly
helped my understanding and exposition.

Formal Modeling of the Enterprise JavaBeansTM

Component Integration Framework

João Pedro Sousa and David Garlan

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{jpsousa|garlan}@cs.cmu.edu
http://www.cs.cmu.edu/∼able/

Abstract. An emerging trend in the engineering of complex systems
is the use of component integration frameworks. Such a framework pre-
scribes an architectural design that permits flexible composition of third-
party components into applications. A good example is Sun Microsys-
tems’ Enterprise JavaBeansTM (EJB) framework, which supports object-
oriented, distributed, enterprise-level applications, such as account man-
agement systems. One problem with frameworks like EJB is that they
are documented informally, making it difficult to understand precisely
what is provided by the framework, and what is required to use it. We
believe formal specification can help, and in this paper show how a formal
architectural description language can be used to describe and provide
insight into such frameworks.
Keywords: Software architecture, software frameworks, component in-
tegration standards, component-based software, Enterprise JavaBeans.

1 Introduction

Component integration frameworks1 are becoming increasingly important for
commercial software systems. The purpose of a component integration frame-
work is to prescribe a standard architectural design that permits flexible com-
position of third-party components. Usually a framework defines three things:
(a) the overall structure of an application in terms of its major types of con-
stituent components; (b) a set of interface standards that describe what capa-
bilities are required of those components; and (c) reusable infrastructure that
supports the integration of those components through shared services and com-
munication channels.

A successful framework greatly simplifies the development of complex sys-
tems. By providing rules for component integration, many of the general prob-
lems of component mismatch do not arise [8]. By providing a component inte-
gration platform for third-party software, application developers can build new

1 Component integration frameworks are sometimes referred to as component archi-
tectures

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1281–1300, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1282 João Pedro Sousa and David Garlan

applications using a rich supply of existing parts. By providing a reusable infras-
tructure, the framework substantially reduces the amount of custom code that
must be written to support communication between those parts.

A good example of a framework is Microsoft’s Visual BasicTM system, which
defines an architecture for component integration (Visual Basic Controls), rules
for adding application-specific components (such as customized widgets, forms,
graphics, etc.), and code that implements many shared services for graphical user
interfaces (for example, to support coordination and communication among the
parts via events.)

Another, more recent example is Sun’s Enterprise JavaBeansTM (EJB) ar-
chitecture. EJB is intended to support distributed, Java-based, enterprise-level
applications, such as business information management systems. Among other
things, it prescribes an architecture that defines a standard, vendor-neutral in-
terface to information services including transactions, persistence, and security.
It thereby permits application writers to develop component-based implemen-
tations of business processing software that are portable across different imple-
mentations of those underlying services.

One critical issue for users and implementors of a framework is the docu-
mentation that explains what the framework provides and what is required to
instantiate it correctly for some application. Typically a framework is specified
using a combination of informal and semi-formal documentation. On the infor-
mal side are guidelines and high-level descriptions of usage scenarios, tips, and
examples. On the semi-formal side one usually finds a description of an appli-
cation programmer’s interface (API) that explains what kinds of services are
provided by the framework. APIs are formal to the extent that they provide
precise descriptions of those services – usually as a set of signatures, possibly
annotated with informal pre- and post-conditions.

Such documentation is clearly necessary. However, by itself it leaves many
important questions unanswered – for component developers, system integrators,
framework implementers, and proposers of new frameworks. For example, the
framework’s API may specify the names and parameters of services provided by
the infrastructure. However, it may not be clear what are the restrictions (if any)
on the ordering of invocations of those services. Usage scenarios may help, but
they only provide examples of selected interactions, requiring the reader to infer
the general rule. Moreover, it may not be clear what facilities must be provided
by the parts added to the framework, and which are optional.

As with most forms of informal system documentation and specification, the
situation could be greatly improved if one had a precise description as a for-
mal specification of the framework. However, a number of critical issues arise
immediately. What aspects of the framework should be modeled? How should
that model be structured to best expose the architectural design? How should
one model the parts of the framework to maintain traceability to the original
documentation, and yet still improve clarity? How should one distinguish op-
tional from required behavior? For object-oriented frameworks what aspects of
the object-oriented design should be exposed in the formal model?

Formal Modeling of the EJBTM Architecture 1283

In this paper we show how one can use formal architectural modeling to pro-
vide one set of answers to these questions. The key idea is to provide an abstract
structural description of the framework that makes clear what are the high-level
interfaces and interactions, and to characterize their semantics in terms of proto-
cols. By making explicit the protocols inherent in the integration framework, we
make precise the requirements on both the components and on the supporting
infrastructure itself. This in turn yields a deeper understanding of the frame-
work, and ultimately supports analysis of its properties. Furthermore, we can
validate that the model is a useful abstraction of “reality” by checking that the
model exhibits the properties that are required informally in the specification of
the software framework.

In the remainder of this paper we describe our experience in developing a
specification of Sun’s Enterprise JavaBeans integration framework. The primary
contributions of this paper are twofold. First, we show how formal architectural
models based on protocols can clarify the intent of an integration framework, as
well as expose critical properties of it. Second, we describe techniques to create
the model, and structure it to support traceability, tractability, and automated
analysis for checking of desirable properties. These techniques, while illustrated
in terms of EJB, shed light more generally on ways to provide formal architec-
tural models of object-oriented frameworks.

2 Related Research

This work is closely related to three areas of prior research. The first area is
the field of architectural description and analysis. Currently there are many
architecture description languages (ADLs) and tools to support their use (such
as [11], [17], [14], [13]). While these ADLs are far from being in widespread use,
there have been numerous examples of their application to realistic case studies.
This paper contributes to this body of case studies, but pushes on a different
dimension – namely, the application of architectural modeling to component
integration frameworks.

Among existing ADLs the one used here, Wright, is most closely related
to Rapide [11], since both use event patterns to describe abstract behavior of
architectures. Wright differs from Rapide insofar as it supports definition of
connectors as explicit semantic entities and permits static analysis using model
checking tools. As we will see, this capability is at the heart of our approach for
modeling integration frameworks.

The second related area is research on the analysis of architectural standards.
An example close in spirit to our work is that of Sullivan and colleagues, who
used Z to model and analyze the Microsoft COM standard [18]. In our own pre-
vious work we looked at the High Level Architecture (HLA) for Distributed
Simulation [2]. HLA defines an integration standard for multi-vendor distributed
simulations. We demonstrated that Wright could be used to model this frame-
work and identify potential flaws in the HLA design. EJB differs from HLA in
that it provides a different set of challenges. In particular, unlike HLA, EJB is

1284 João Pedro Sousa and David Garlan

an object-oriented framework; it has a diverse set of interface specifications; and
its has weaker (but more typical) documentation.

The third related area is protocol specification and analysis. There has been
considerable research on ways to specify protocols using a variety of formalisms,
including I/O Automata [12], SMV [4, 5], SDL [10], and Petri Nets [15]. While
our research shares many of the same goals, there is one important difference.
Most protocol analysis assumes one is starting with a complete description of the
protocol. The problem is then to analyze that protocol for various properties. In
contrast, in architectural modeling of systems like EJB, protocols are typically
implicit in the APIs described in the framework documentation. Discovering
what the protocols are, and how they determine the behavior of the system is
itself a major challenge.

3 Enterprise JavaBeansTM

3.1 Background

One of the most important and prevalent classes of software systems are those
that support business information applications, such as accounting systems and
inventory tracking systems. Today these systems are usually structured as multi-
tiered client-server systems, in which business-processing software provides ser-
vices to client programs, and in turn relies on lower level information manage-
ment services, such as for transactions, persistence, and security (see Fig. 1.)

Transaction
Processing

Persistency Security

Information
management

services

Business Application Software

Clients

Fig. 1. A three-tiered business application

Currently one of the problems with writing such software is portability: ap-
plication software must be partially rewritten for each vendor’s support facilities
because information management services provided by different venders often
have radically different interfaces.

Formal Modeling of the EJBTM Architecture 1285

Additionally, clients of application software are faced with a huge variety
of interfaces to those applications. While some differences are inevitable, given
that different applications must provide different capabilities, one would wish
for certain levels of standardization for generic operations such as creating or
deleting business process entities (such as accounts).

To address this problem several vendors have proposed component integra-
tion frameworks for this class of system. One of these is Sun Microsystems’
Enterprise JavaBeansTM framework, a component architecture for building dis-
tributed, object-oriented, multi-vendor, business applications in the Java pro-
gramming language. The basic idea of the framework is to standardize on three
things. First, the framework defines a standard interface to information man-
agement services, insulating application software from gratuitous differences in
vendors’ native interfaces. Second, the framework defines certain standard oper-
ations that can be used by client software to create, delete, and access business
objects, thereby providing some uniformity across different business applications
software. Third, the framework defines rules for composing object-oriented busi-
ness applications using reusable components called beans.

By standardizing on these aspects of an information management application,
EJB intends to promote application portability, multi-vendor interoperability,
and rapid composition of applications from independently developed parts.

The remainder of this section elaborates on the elements of EJB that are
necessary to follow the formalization in Sect. 6.

3.2 Overview of Enterprise JavaBeansTM

Sun’s “Specification of the Enterprise JavaBeansTM Architecture” [6], (hence-
forth, EJB spec) defines a standard for third parties to develop Enterprise
JavaBeansTM deployment environments (henceforth, EJB servers). An appli-
cation running in one of these environments would access information manage-
ment services by requesting them of the EJB server, via the EJB API, in the
way prescribed by the EJB spec.

Figure 2 illustrates a system with a remote client calling an application that
implements some business logic, for which Orders and Accounts are relevant
operational entities. In the object-oriented paradigm, such entities are termed
objects. An object can be viewed as a unit that holds a cohesive piece of infor-
mation and that defines a collection of operations (implemented by methods) to
manipulate it.

The EJB framework defines particular kinds of objects, termed Enterprise
JavaBeansTM (beans, for short). Beans must conform to specific rules concerning
the methods to create or remove a bean, or to query a population of beans for the
satisfaction of some property. Hence, whenever client software needs to access a
bean, it can take some features for granted.

It is the job of EJB server providers to map the functionality that the EJB
spec describes into available products and technologies. In version 1.0, released
in March 1998, the EJB spec covers transaction management, persistence, and

1286 João Pedro Sousa and David Garlan

Transaction
Processing

Persistency Security

EJB API

Application

Account bean

Order bean
Client

EJB server

Fig. 2. The EJB server offering access to information management services.

security services.2 The EJB spec does not regulate how these services are to be
implemented, however: they may be implemented by the EJB server provider,
as part of the server; or they may rely on external products, eventually supplied
by other vendors. Such products, however, are invisible to the beans.

A typical example of the symbiosis between an EJB server and an external
product would be for an EJB server provider to offer access to one or more in-
dustry standard databases. The customer organization could then develop new
applications that access existing corporate databases, using the persistency ser-
vices provided by the EJB server. All that the developers of the new application
would need to be aware of is the logical schema of the existing databases.

Standard

Vendor specific
mapping

Transaction
Processing

Persistency Security

Container

Bean

Client

Client
Contract

Bean
Contract

Bean

Fig. 3. The EJB container.

2 Actually, version 1.0 views persistency services to be optional.

Formal Modeling of the EJBTM Architecture 1287

The EJB spec refers to the collection of services that both the beans and the
client software use as a container (see Fig. 3). A container provides a deployment
environment that wraps the beans during their lifecycle. Each bean lives within
a container. The container supports (directly or indirectly) all aspects that the
bean assumes about the outside world, as defined in the EJB spec.3 The protocols
that regulate the dialog between a bean and its container are termed the bean
contract.

The container also supports a set of protocols, termed the client contract,
that regulate the dialog between client software and a bean. The client contract
defines two interfaces that a client uses to communicate with a specific bean: the
Home Interface and the Remote Interface. Both interfaces are implemented at
deployment-time by special-purpose tools supplied by the EJB server provider.4

The Remote Interface reflects the functionality of the bean it represents, as it
publishes the so-called business methods of the bean. Each bean has one such
interface. The Home Interface contains the methods for creation and removal of
beans, as well as optional methods for querying the population of beans (finder
methods). There is one such interface per bean class.

To use the services of a bean a client first obtains a reference to the bean’s
class Home Interface using the Java Naming and Directory InterfaceTM (JNDI).
Using this reference, the client software can call a create method in the class’s
Home Interface, thus obtaining a reference to the bean’s Remote Interface im-
plemented by the container. The Remote Interface then delegates subsequent
method calls to the corresponding bean. The fact that the client uses JNDI to
obtain a reference to the Home Interface of the class is a necessary condition for
distribution transparency. Any piece of software, including a bean, may use the
client contract to communicate with some bean if the software does not know (or
care) where the target bean is actually being deployed. Such software calls the
interfaces in the container holding the target bean using Java’s Remote Method
Invocation.

An EJB server manages the population of beans that reside in main memory
in a way that is transparent to the client software. As the population of beans
inside a container grows beyond a certain limit, determined by the EJB server,
the container sends some number of the least recently used beans to secondary
memory. The EJB spec refers to the beans that are subject to this operation
as passivated. Since every call to a bean flows through the interfaces in the

3 This does not mean the container restrains beans from accessing the world outside
EJB. For instance, a bean may include Java Database Connectivity (JDBC) code to
access a database directly. However, in doing so, the bean sacrifices implementation
independence and distribution transparency.

4 In Java, the Home and Remote Interface are termed EJBHome and EJBObject,
respectively. These two interfaces in the EJB spec are extended by user-written,
domain-specific, Java interfaces. Such domain-specific Java interfaces are read by
the deployment tools to produce the container-specific classes that implement the
two interfaces. The latter classes are, however, invisible to the user. For the sake of
clarity we will continue to refer to the user-specified interfaces as Home and Remote
Interface.

1288 João Pedro Sousa and David Garlan

container, it is the container that relays the call to the bean, as appropriate. So,
whenever a method call is addressed to a passivated bean, the bean is brought
back to primary memory by the container. The EJB spec refers to beans that
are subject to this latter operation as activated.

Although passivation and activation are transparent to the client calling the
bean, it is not so to the bean itself. Before being passivated, the bean is required
to release the shared resources it acquired previously, so as not to lock them dur-
ing passivation time. Likewise, upon activation, the bean may have to reacquire
the resources to serve the client’s request. Therefore, in order to allow the bean
to perform these actions, the container issues synchronization messages to the
bean just before passivation and immediately after activation, before the client’s
call is relayed (ejbPassivate and ejbActivate, in Fig. 4.)

Client Home
Interface

Remote
Interface

Container Bean

create(args)
newInstance

setContext()

ejbCreate(args)

businessMethod(args)
businessMethod(args)

ejbPassivate()

businessMethod(args)

businessMethod(args)

ejbActivate()

remove()
ejbRemove()

Fig. 4. Sample event trace for the lifecycle of a bean.

3.3 The Enterprise JavaBeansTM Specification

The EJB spec [6] released by Sun is a 180-page document, in which the concepts
and their interplay are described in English, much in the same way as Sect. 3.2. A
few informal state diagrams complement the explanation. There are also some
chapters dedicated to the presentation of illustrative scenarios of interactions
described using event trace diagrams. For instance, the event trace in Fig. 4 is
an adaptation of the ones in pages 32 to 36 of the EJB spec. The document has

Formal Modeling of the EJBTM Architecture 1289

an appendix enumerating the Java API that the elements of the architecture
should follow. The signature and purpose of each method is briefly described,
in English, along with an enumeration of the exceptions that may be raised. No
pre- and post-conditions are provided.

Although voluminous, documentation such as this has two intrinsic problems.
First, related information is spread throughout the document. For example, to
determine what sequence of method calls a bean must follow to request a typ-
ical service from the container, the reader must locate the explanation in the
text (hopefully covering all relevant operations), refer to the API method de-
scriptions, examine any examples of sample executions, and consult the list of
possible raised exceptions.

Second, the lack of a precise definition makes it difficult for a reader to
resolve inconsistencies and ambiguities, and to determine the intended semantics
of the framework. As an example of unresolvable inconsistencies, in one place
the documentation says the Home Interface should “define zero or more create
methods” (page 14), while in another it says “one or more create methods”
(page 20). Without a single place in the document that has the precise definition,
it is impossible to determine which of the two (if either) is correct (even assuming
we can determine what a create method should do).

As another example, consider the issue of the interaction between bean dele-
tion and bean passivation. Suppose a client decides to remove a bean that the
client has not accessed in some time. If the container has passivated that bean, it
is not clear what happens. The normal rules of method invocation would imply
that the bean would first have to be activated (reacquiring all resources needed
for its normal operation), only to be immediately removed. This seems like a
strange kind of behavior, and it is not clear if it is intended by the standard.

Finally, as with any documentation that only provides examples of method
sequences, rather than formal rules, it is impossible for a reader to be sure what
generalization is intended.

It seems clear that much could be gained by a formal unambiguous spec-
ification of EJB as a supplementary (or even central) resource for framework
implementers, bean providers, and developers of client software. In the remain-
der of this paper we examine one such specification.

4 Wright

Wright is a formal language for describing software architecture. As with most
architecture description languages, Wright describes the architecture of a sys-
tem as a graph of components and connectors. Components represent the main
centers of computation, while connectors represent the interactions between com-
ponents. While all architecture description languages permit the specification of
new component types, unlike many languages, Wright also supports the explicit
specification of new architectural connector types [1].5

5 Wright also supports the ability to define architectural styles, check for consistency
and completeness of architectural configurations, and check for consistent specifica-

1290 João Pedro Sousa and David Garlan

A simple Client-Server system description is shown below:

Configuration SimpleExample

Component Server

Port Provide = <provide protocol>

Computation = <Server specification>

Component Client

Port Request = <request protocol>

Computation = <Client specification>

Connector C-S-connector

Role Client = <client protocol>

Role Server = <server protocol>

Glue = <glue protocol>

Instances

s: Server

c: Client

cs: C-S-connector

Attachments

s.Provide as cs.Server;

c.Request as cs.Client

end SimpleExample.

This example shows three basic elements of a Wright system description: com-
ponent and connector type declarations, instance declarations, and attachments.
The instance declarations and attachments together define a particular system
configuration.

In Wright, the description of a component has two important parts, the
interface and the computation. A component interface consists of a number of
ports. Each port defines a point of interaction through which the component
may interact with its environment.

A connector represents an interaction among a collection of components. For
example, a pipe represents a sequential flow of data between two filters. A Wright
description of a connector consists of a set of roles and the glue. Each role defines
the allowable behavior of one participant in the interaction. A pipe has two roles,
the source of data and the recipient. The glue defines how the roles will interact
with each other.

The specification of both components and connectors can be parameterized,
either with a numeric range – allowing a variable number of ports or roles with
identical behaviors – or with a process description – instantiating the generic
structure of a component (or connector) to a specific behavior. A typical case
of parameterization is a Client-Server connector that allows the attachment of a
variable number of Clients, multiplexing their requests according to rules defined
in the glue protocol:

tions of components and connectors. In this paper we restrict our presentation to
just those parts of Wright that concern the specification of EJB. See [3] for further
details.

Formal Modeling of the EJBTM Architecture 1291

Connector C-S-connector(nClients:1..)

Role Client1..nClients = <client protocol>

Role Server = <server protocol>

Glue = <client multiplexing glue protocol>

Each part of a Wright description – port, role, computation, and glue – is defined
using a variant of CSP [9]. Each such specification defines a pattern of events
(called a process) using operators for sequencing (“ → ” and “ ; ”), choice
(“ u ” and “ ”), parallel composition (“ ‖ ”) and interruption (“ 4 ”).6

Wright extends CSP in three minor syntactic ways. First, it distinguishes
between initiating an event and observing an event. An event that is initiated
by a process is written with an overbar. Second, it uses the symbol § to denote
the successfully-terminating process.7 (In CSP this is usually written “SKIP”.)
Third, Wright uses a quantification operator: <op> x : S • P(x). This operator
constructs a new process based on the process expression P(s), and the set S,
combining its parts by the operator <op>.

For example, i:1,2,3 • Pi = P1 P2 P3 .

5 Component or Connector?

When defining the architectural structure of a framework, a key question is what
are the connectors. This question is important because many frameworks are es-
sentially concerned with providing mediating infrastructure between components
that are provided by the user of the framework. Making a clear distinction be-
tween the replaceable componentry, and the mechanisms that coordinate their
interaction greatly improves the comprehensibility of the framework.

From our perspective, the entities that are a locus of application-specific
computation are best represented as components. The infrastructure that is
prescribed by the framework to assure the interconnection between application
components is a likely candidate to be represented as a (set of) connector(s).

In general, however, it may not always be obvious what should be represented
as a component and what should be represented as a connector. Consider the
system illustrated in Fig. 5a, consisting of three components: A, B, and C. In
some cases the purpose of C is to enable the communication between A and B,
using an A-C protocol over connector X, and a C-B protocol over connector Y.
If those two protocols are completely independent, it makes sense to represent
C as a distinct component, and keep X and Y as separate connectors.

On the other hand, if events on X are tightly coupled with those on Y (or
vice versa), then it may make more sense to represent the protocol between X

6 We assume familiarity with CSP. For details on the semantics of the mentioned
operators see the extended version of this paper in electronic format, available from
Springer Verlag.

7 Wright uses a non-standard interpretation of external choice in the case in which one
of the branches is § : specifically, the choice remains external, unlike, for example,
the treatment in [16]. See [3] for technical details.

1292 João Pedro Sousa and David Garlan

A

C

BX Y

A B
C

(a)

(b)

Fig. 5. Component or connector?

and Y directly using a single connector, as indicated in Fig. 5b. In this case, the
connector itself encapsulates the mediating behavior of C as glue.

Representing a complex piece of software as a connector is a judgement call
that is enabled by describing connectors as first class architectural entities. This
perspective departs from a notion of connection that is restricted to relatively
simple mechanisms like method calling, event announcing, or data pipelining.
It requires the ability to describe the protocols that go on at each end of the
connector (the roles in Wright) as well as the rules that tie those protocols to-
gether (the glue). In addition, it requires the ability describe complex topologies
of connection, beyond simple point-to-point, like having multiple clients com-
municating with a server over the same set of protocols (a parametric multi-role
connector in Wright – see Sect. 4.)

6 Formalizing Enterprise JavaBeansTM

Turning now to EJB (as illustrated in Fig. 3), it seems clear that clients and beans
should be represented as components. Each performs significant application-
specific computation, and is best viewed as a first class type of computational
entity in the architectural framework. However, as the actual computations of
the clients and beans cannot be defined at the framework level (since they will be
determined when the framework is used to develop a particular application), we
will represent those components parametrically. That is, the actual application
code will be used to instantiate them at a later time.

What about the EJB container? While it would be possible to represent it
as a component, as in Fig. 5a, it seems far better to consider it a rich connector,
as in Fig. 5b. Not only is the container primarily responsible for bridging the
gap between clients and beans, but also the container-client and container-bean
sub-protocols are so tightly interwoven that it is makes sense to describe them
as a single semantic entity (i.e., the connector glue). For example, the effect of
a remote method call from a client to a bean is mediated by the container so
that if the target bean is passivated it can be activated using the container-bean
activation protocol. The resulting general structure is illustrated in Fig. 6.

Formal Modeling of the EJBTM Architecture 1293

Container

Home Interface

Remote Interface

BeanClient

Component Port Role

Legend

Connector

Fig. 6. One Client connected to one Bean.

In this case the Remote and Home interfaces become roles in the Container
connector that both a Client and a Bean interact with. In Wright this structure
is described (schematically) as:

Configuration one-Client-one-Bean

Component Client (BusinessLogic: Process)

Port UseHomeInterface = <...>

Port UseRemoteInterface = BusinessLogic

Computation = <...>

Component EJBean (BusinessLogic: Process)

Port BeanHome = <...>

Port JxBean = <...>

Port RemoteInterface = BusinessLogic

Computation = <...>

Connector Container (BusinessLogic: Process)

Role HomeInterface = <...>

Role RemoteInterface = BusinessLogic

Role UseBeanHome = <...>

Role UseJxBean = <...>

Role UseRemoteInterface = BusinessLogic

Glue = <...>

Process SomeBusinessLogic = <...>

Instances

A: Client(SomeBusinessLogic)

B: EJBean(SomeBusinessLogic)

C: Container(SomeBusinessLogic)

Attachments

A.UseHomeInterface as C.HomeInterface

A.UseRemoteInterface as C.RemoteInterface

C.UseBeanHome as B.BeanHome

C.UseRemoteInterface as B.RemoteInterface

C.UseJxBean as B.JxBean

end one-Client-one-Bean.

1294 João Pedro Sousa and David Garlan

As indicated earlier, we use a placeholder process BusinessLogic as a parameter
to clients, beans, and the Container connector. (The connector is parameterized
by the business logic because it also needs to know about the BusinessLogic
protocol.)

The Wright specification of the configuration also defines the attachments be-
tween the ports of each component and the corresponding roles in the Container.
The next sections examine each part in turn.

6.1 The Client

The specification of a Client component is:

Component Client (BusinessLogic: Process)

Port UseRemoteInterface = BusinessLogic

Port UseHomeInterface

= create→ (GoHomeInterface

4 noSuchObjectException

→ UseHomeInterface)

4 remove → (x removeException → x))

Where GoHomeInterface

= getEJBMetaData → GoHomeInterface

Computation = create → CallBean

Where CallBean

= ((UseRemoteInterface ‖ GoHomeInterface)

4 noSuchObjectException → create → CallBean)

4 remove → (x removeException → x)

It has two ports for accessing the Bean: UseHomeInterface and UseRemote-
Interface. As noted above, the latter is defined by a process that describes
the application logic implemented by the Bean and is passed to the Client as a
parameter (BusinessLogic).

The process describing the client’s view of the Home Interface consists of
three events: create and remove, with the obvious meaning, and getEJBMeta-
Data, which is a service provided by the container that returns meta-information
about the methods supported by the bean. Note that the port is initialized by a
create event and terminated by a remove event. The auxiliary process definition
GoHomeInterface, describes the Home Interface perspective of what may go on
between the creation of a bean and its removal: getting the bean’s meta-data.

An event that may occur at any time after the creation, noSuchObject-
Exception, corresponds to an exception being raised by the container. In fact,
the EJB spec says that “a Client must always be prepared to recreate a new
instance (of a bean) if it looses the one it is using” (pp. 24).8 Hence, if the Client
gets a noSuchObjectException, it should go back to create another bean. The

8 In a distributed computing environment, it is possible to loose communication with
a remote server. The distribution transparency provided by EJB, however, has the
potential to hide from the client whether the reinitialized home interface is directed
to the same, recovered, server or to another that supports the same bean class.

Formal Modeling of the EJBTM Architecture 1295

Wright specification exhibits this property in both the specification of the process
GoHomeInterface and in the process CallBean in the Client’s computation: the
occurrence of a noSuchObjectException event causes the Client to reinitialize
the Home Interface by issuing a create event. In Sect. 7 we see how less trivial
properties can be checked by the use of automated tools.

The main body of computation, once it is initialized by a create, is the par-
allel composition of the processes UseRemoteInterface and GoHomeInterface.
What goes on in this composition is dictated by the application logic, passed
as a parameter to the client, in parallel with the initialized Home Interface. Fi-
nally, at any time (after initialization) the client may decide to remove the bean.
This is signaled by the client-initiated remove event interrupting the process
described above (using the 4 operator). However, the Client must be prepared
to handle a removeException, thrown by the Container. After a remove, either
the computation successfully terminates, or it accepts a removeException, after
which it also terminates. The EJB spec does not define how components should
handle exceptions. So we only note the fact that an exception may be received.
It should be clear now that the specification of the UseHomeInterface port is
actually a view of the Client’s computation, restricted to the events recognized
by the Home Interface.

The HomeInterface role in the container expresses the possible behaviors of
the client that attaches to this role:

Connector Container (BusinessLogic: Process)

Role HomeInterface = create → GoHomeInterface

Where GoHomeInterface

= (getEJBMetaData → GoHomeInterface

noSuchObjectException → HomeInterface)

u remove → (x removeException → x)

The process specification for this role is equivalent to the process in the Use-
HomeInterface of the Client component, in the sense that it will generate the
same set of traces. After being initialized by create, the attached component will
choose (internally) whether or not to remove the bean. If the component chooses
not to remove the bean, it may initiate a request for meta-data. It also admits
a noSuchObjectException, which resets the role. If the component chooses to
remove the bean, it admits a removeException, but terminates afterwards, in
either case.9

6.2 The Container and the Bean

In the container, there are three Wright roles that are involved in the creation of
a bean. The first is the HomeInterface role, as discussed in Sect. 6.1, to which

9 Again, for simplicity, we focus on a single run of the protocols between the client
and the container, in order to distinguish between a situation where the protocol
demands a reset, from a situation where it runs through successfully and could go
back to create another bean.

1296 João Pedro Sousa and David Garlan

the client attaches. The other two are the UseBeanHome and UseJxBean roles, to
which the bean attaches:

Connector Container (BusinessLogic: Process)

alpha Created = αUseJxBean \ {setContext, ejbRemove}
...

Role UseBeanHome = newInstance → ejbCreate → x

Role UseJxBean = setContext → GoJxBean

Where GoJxBean

= ejbPassivate → ejbActivate → GoJxBean

ejbRemove → UseJxBean

Glue = ...

Where BeanLive

= create → newInstance → setContext → ejbCreate

→ (RUNCreated

4 remove → ejbRemove → x)

...

Component EJBean (EJBObject: Process)

Port BeanHome = newInstance → ejbCreate → x

Port JxBean = setContext → GoJxBean

Where GoJxBean

= ejbPassivate → ejbActivate → GoJxBean

ejbRemove → x

Since it is often the case that a protocol refers to events in more than one role,
the perspective that a specific role has of a protocol is limited by the alphabet
of the role. It is the glue that links what goes on in each role, thus completing
the protocol followed by the connector.

In order to single out each piece of the glue that corresponds to a particular
protocol in the software framework, we introduce auxiliary process definitions.
BeanLive is one of them. Since this is a glue process, it takes the viewpoint
of the container: hence, the create event is initiated by the environment (in
the HomeInterface role). After receiving a create, the container initiates the
newInstance event in the UseBeanHome role, sets the newly created bean’s run-
time context (setContext in the UseJxBean role,) and signals the new bean to
run the appropriate initialization method (ejbCreate in UseBeanHome).

The BeanLive process then accepts any event in the alphabet of the UseJx-
Bean role, except for setContext (part of the initialization) and ejbRemove (part
of the termination). When interrupted by a remove event in the HomeInterface
role, the BeanLive process signals the bean to run the appropriate termination
method (ejbRemove in the UseJxBean role) and then terminates.10

The Container relays the business logic events in the role RemoteInterface
(to which the Client attaches) to the role UseRemoteInterface (to which the

10 The roles take the viewpoint of the environment (of the components that attach to
the roles,) as opposed to the viewpoint of the container. So, the parity of initiation
is reversed in the glue and in the roles. Note also that the processes in the roles
UseBeanHome and UseJxBean match the processes in the corresponding ports in
the Bean component, BeanHome and JxBean.

Formal Modeling of the EJBTM Architecture 1297

Bean attaches). The glue process Delegate assures this by simply stating that
any event e in the RemoteInterface role is followed by the (container-initiated)
same event e in the UseRemoteInterface role.

Recall now that the container may decide to passivate a bean according to
a least recently used policy. The glue process SwapBean (see below) accepts any
event in the alphabet of the Container,11 except for the events ejbPassivate
and ejbActivate. Whenever the container decides to initiate an ejbPassivate
event, the SwapBean process waits for the next event in the RemoteInterface
role. After that, and before the event is relayed to the UseRemoteInterface role,
an ejbActivate event is interleaved. The parallel combination of the processes
SwapBean and Delegate in the glue produces the desired effect: the business logic
events are normally relayed, but whenever the bean was passivated, it receives
an activation event just before the business logic event is sent.

Connector Container (BusinessLogic: Process)

alpha Activated = αContainer \ {ejbPassivate, ejbActivate}
Role UseJxBean = setContext → GoJxBean

Where GoJxBean

= ejbPassivate → ejbActivate → GoJxBean

ejbRemove → UseJxBean

...

Role RemoteInterface = BusinessLogic

Role UseRemoteInterface = BusinessLogic

Glue = BeanLive

‖ Delegate

‖ SwapBean

Where Delegate = e: αRemoteInterface •
RemoteInterface.e → UseRemoteInterface.e → Delegate

Where SwapBean

= RUNActivated 4 ejbPassivate

→ (e: αRemoteInterface • RemoteInterface.e

→ ejbActivate → UseRemoteInterface.e → SwapBean)

7 Using the Model

By precisely specifying the implied protocols of interaction for EJB, one achieves
a number of immediate benefits. First, the formal specification is explicit about
permitted orderings of method calls, and about where the locus of choice lies.
Second, the specification makes explicit where different parts of the framework
share assumptions. In particular, the role of BusinessLogic as a parameter helps
clarify the way in which assumptions about the application-specific behavior are
shared among the parts of the framework. Third, the model helps clarify some
of the more complex aspects of the model by localizing behavior. For example,
the murky role of passivation becomes clear in the Container glue.

Furthermore, it is also possible to submit the model to formal analysis via
model checking tools. To do this we used the FDRTM model checker for CSP [7]
11 Taken here as the union of the alphabets in all roles.

1298 João Pedro Sousa and David Garlan

to check for deadlocks in the container.12 In addition to checking for deadlocks,
FDR can also be used to make sure that specific required behaviors13 still hold
in the overall result of the composition of all local specifications. For that we
use the CSP notion of process refinement. Specifically, we can check if a process
describing the desired behavior is refined by the overall specification; for instance,
if a process describing the client’s recovery after a container failure is refined by
the one-Client-one-Server specification. If that is the case, that means that the
intended behavior was not lost due to a mistake during the process of specifying
all the interacting behaviors.

For the current model, analysis revealed one significant problem. The prob-
lem concerns a possible race condition between the delegation and passivation
processes inside the Container. Suppose that the Client initiates an event in the
RemoteInterface role. Then, before the Delegate process relays the event to
the bean through the UseRemoteInterface role, the SwapBean process, oper-
ating concurrently, decides to passivate the bean. Now, the Delegate process
must relay the received business logic event to the UseRemoteInterface role,
before it can accept the next event in the RemoteInterface role. However, the
SwapBean process just issued an ejbPassivate notification to the bean, and
hence it waits for the next event in the RemoteInterface role to reactivate the
bean. Therefore, the processes that go on inside the Container cannot agree on
what to do next, and the connector deadlocks.

A simple correction for the deadlock is:

Connector Container (EJBObject: Process)

...

Where Delegate

= (e: αRemoteInterface •
RemoteInterface.e → UseRemoteInterface.e → Delegate)

ejbPassivate → Delegate

...

That is, the Delegate process must prevent passivation between receiving an
event in the RemoteInterface role and relaying it to the UseRemoteInterface
role. One way to model it in CSP is to explicitly allow the ejbPassivate event
outside the mentioned “critical section”.

While arguably one might attribute the detected problem to our specification,
and not to Sun’s EJB spec, it does point out a place where the complexity of the
specification can lead to errors that might be hard to detect otherwise. Without
a precise model and effective automated analysis tools to identify problem areas,
such errors could easily be introduced, undetected, into an implementation.

12 Translation from Wright to FDR is accomplished semi-automatically using the
Wright tool set. See [1].

13 For instance, Sun’s document (pp. 24) states that any implementation of the EJB
protocol between a client and an EJB server must allow the client to recover from
EJB server crashes.

Formal Modeling of the EJBTM Architecture 1299

8 Conclusions and Future Work

In this paper we have outlined a formal architectural model of part of Sun’s EJB
component integration framework. In doing this we have attempted to shed light
both on EJB itself, and on the way in which one can go about modeling object-
oriented architectural frameworks. The key idea in our approach is to take an
architectural view of the problem that makes explicit the protocols of interaction
between the principle parts of the framework. In particular, we have shown how
representing the framework’s mediating infrastructure as a connector with a
well-defined protocol helps to clarify the overall structure of the framework and
to localize the relationships between the various method calls that connect the
parts.

The use of formal architectural modeling languages to represent frameworks
such as EJB opens up a number of important questions to investigate. First,
while our specification focused on certain properties of the framework, there are
many others that one might want to model. For example, although potential
deadlocks are highlighted by our model, we do not handle important issues such
as performance, reliability, and security. For many frameworks finding notations
that expose such properties will be crucial.

Second, given a formal specification, such as the one we have presented, it
should be possible to influence conformance testing. Currently, conformance to
a framework can only be loosely checked – for example, by making sure that an
implementation provides the full API. However, given a richer semantic model,
it should be possible to do much better.

Third, the EJB spec uses inheritance to organize the presentation of many
of its concepts. For example, the SessionBean class inherits behavior from the
EnterpriseBean class, which in turn inherits from the java.io.Serializable
class. In contrast, the formal model that we have presented is essentially flat. To
come up with our model we had to fold together the implicit semantic behavior
defined in several classes. It would have been much nicer to have been able to
mirror the inheritance structure in the architectural specification. While such
extension is relatively well-understood with respect to signatures, it is not so
clear what is needed to handle interactive behaviors – such as protocols of inter-
action. Finding a suitable calculus of protocol extension is an open and relevant
topic for future research.

Acknowledgments

This research was supported by the US Defense Advanced Research Projects
Agency and Rome Laboratory, USAF, under Cooperative Agreement F30602-97-
2-0031, and by the US National Science Foundation under Grant CCR-9357792.
Views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed
or implied, of Rome Laboratory, the US Department of Defense, or the US
National Science Foundation. The US Government is authorized to reproduce

1300 João Pedro Sousa and David Garlan

and distribute reprints for Government purposes, notwithstanding any copyright
notation thereon.

References

[1] Robert Allen and David Garlan. A formal basis for architectural connection. In
ACM Trans. on Software Engineering and Methodology, July 1997.

[2] Robert Allen, David Garlan, and James Ivers. Formal modeling and analysis of
the HLA component integration standard. In Sixth Intl. Symposium on the Foun-
dations of Software Engineering (FSE-6), Nov. 1998.

[3] Robert Allen. A Formal Approach to Software Architecture. PhD thesis, CMU,
School of Computer Science, January 1997. CMU/SCS Report CMU-CS-97-144.

[4] Edmund Clarke et al. Automatic verification of finite state concurrent systems
using temporal logic specifications. In ACM Trans. on Programming Languages
and Systems, April 1986.

[5] Edmund Clarke et al. Verification Tools for Finite-State Concurrent Systems. A
Decade of concurrency - Reflections and Perspectives. Springer Verlag LNCS 803,
1994.

[6] Vlada Matena, Mark Hapner, Enterprise JavaBeansTM, Sun Microsystems Inc.,
Palo Alto, California, 1998.

[7] Failures Divergence Refinement: User Manual and Tutorial, 1.2β. Formal Systems
(Europe) Ltd., Oxford, England, 1992.

[8] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: Why
reuse is so hard. IEEE Software, November 1995.

[9] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[10] Gerald J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1991.
[11] David C Luckham, et al. Specification and analysis of system architecture using

Rapide. In IEEE Trans. on Software Engineering, April 1995.
[12] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.

Technical Report MIT/LCS/TM-373, MIT LCS, 1988.
[13] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software

architectures. In Proceedings ESEC’95, Sept. 1995.
[14] M. Moriconi, X. Qian, and R. Riemenschneider. Correct architecture refinement.

In IEEE Trans. on Software Engineering, April 1995.
[15] J.L. Peterson. Petri nets. ACM Computing Surveys, September 1977.
[16] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
[17] Mary Shaw, et al. Abstractions for software architecture and tools to support

them. In IEEE Trans. on Software Engineering, April 1995.
[18] K.J. Sullivan, J. Socha, and M. Marchukov. Using formal methods to reason about

architectural standards. In 1997 Intl. Conf. on Software Engineering, May 1997.

Developing Components in the Presence of

Re-entrance

Leonid Mikhajlov1, Emil Sekerinski2, and Linas Laibinis1

1 Turku Centre for Computer Science,
Lemminkäisenkatu 14A, Turku 20520, Finland
Leonid.Mikhajlov,Linas.Laibinis@abo.fi

2 McMaster University,
1280 Main Street West, Hamilton, Ontario, Canada, L8S4K1

Emil.Sekerinski@mcmaster.ca

Abstract. Independent development of components according to their
specifications is complicated by the fact that a thread of control can
exit and re-enter the same component. This kind of re-entrance may
cause problems as the internal representation of a component can be
observed in an inconsistent state. We argue that the ad-hoc reasoning
used in establishing conformance of components to their specifications
that intuitively appears to be correct does not account for the presence
of re-entrance. Such reasoning leads to a conflict between assumptions
that component developers make about the behavior of components in a
system, resulting in the component re-entrance problem. We formulate
the modular reasoning property that captures the process of independent
component development and introduce two requirements that must be
imposed to avoid the re-entrance problem. Then we define a customized
theory of components, component systems, and component refinement
which models the process of component development from specifications.
Using this theory, we prove that the formulated requirements are suffi-
cient to establish the modular reasoning property.

1 Introduction

In this paper we study a problem which hinders the development of a compo-
nent market. One of the characteristic features of component-based systems and
standards is the fact that components are developed by independent developers
and an integration phase is either completely absent or minimized. When the
integration phase is missing as, e.g., in CI Labs OpenDoc [8], components are
composed by end users; when the integration phase is postponed, as in the case
of Sun Java Beans [16] and Microsoft COM [15], components are composed by
application developers. With both composition scenarios, components commu-
nicate by invoking each other’s methods through the interfaces they implement.
Interfaces are syntactic and only syntactic compatibility of components imple-
menting them can be verified in the integration phase. It has been recognized
[10, 17] that the verification of syntactic compatibility is insufficient to guar-
antee seamless interoperation of components in the resulting system. Interfaces

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1301–1320, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1302 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

component Model component View
s : seq of char := 〈〉, update() b=
get s() b= return s, print(# Model−Bget s())
get num() b= return #s, end
append(val t : seq of char) b=

s := s b t;View−Bupdate()
end

Fig. 1. Specification of the Model-View component system. The operator #
returns the length of a sequence and the operator ̂ concatenates two sequences.

should be augmented with behavioral specifications of the expected functionality
to stipulate the contractual obligations that the components implementing such
interfaces are required to meet. Due to the missing integration phase, it becomes
impossible to analyze semantic integrity of the composed system. Therefore, a
specification and verification method should provide for modular reasoning: ver-
ifying that participating components meet their contractual obligations should
be sufficient to guarantee that the composed system operates correctly.

The independent development of components according to their specifica-
tions is complicated by the fact that, in general, a thread of control can exit
and re-enter the same component. Suppose that we have two communicating
components A and B, each with its own attributes. A method of component A
invokes a method of component B. At the moment when the method of B is in-
voked, instance variables of A might be in transition between consistent states.
The component B can observe and modify the state of A by calling back its
methods. Such a re-entering method invocation pattern is problematic because
B can observe A in an unexpected inconsistent state and become invalidated.
Further on we refer to this problem as the component re-entrance problem. In
order to show the implications of the component re-entrance problem on the
independent development of components, we analyze the example in Fig. 1.

Let us first remark on the specification notation that we use in our exam-
ples. It was pointed out [13, 2, 10, 5, 6] that a specification can be viewed as an
abstract program. In fact, specifications differ from executable programs only
by the degree of nondeterminism and data structures that are used. Typically,
an executable program is just a deterministic specification operating on imple-
mentable data structures. Such an approach to formal specification is advanta-
geous, because it permits to include method calls in a component specification to
fix a certain communication protocol. This approach is state-based, and in order
to specify the behavior of component methods we need to model data attributes
of this component. Even though component attributes are present in its spec-
ification, they cannot be accessed by clients of this component and, therefore,
can be changed in a development step. When such a change is made, component
methods must be modified to work with the new attributes.

Developing Components in the Presence of Re-entrance 1303

As the problem that we consider does not depend on a programming lan-
guage, in the example in Fig. 1 we use a simple specification notation which
should appeal to the reader’s intuition. Weakest precondition and operational
semantics for statements in this notation can be found in [2]. Note that each
statement explicitly indicates which variables it modifies; the other variables
remain unchanged.

The example follows the Observer pattern [9], which allows separating the
presentational aspects of the user interface from the underlying application data,
by defining two components Model and View . The components Model and View
refer to each other. Note that we deliberately abstract away from the mechanism
by which such mutual reference can be achieved, because we want to keep our
component model as general as possible. Components can be static entities, such
as modules, or dynamic entities, such as objects. In the case of static entities
mutual reference can be established by mutual inclusion of syntactic interfaces,
whereas with dynamic entities it can be achieved, for example, by passing point-
ers to components as method parameters.

The specification Model maintains a string s, represented by a sequence of
characters and initialized with an empty sequence. Every time a new string is
appended to the string in Model , the method update of View is called. In turn,
update calls back Model ’s get s() method and prints out the number of elements
in the received string. In a component market, these specifications are published
and independent developers are offered to implement these components.

Suppose that one software company decides to implement the specification
of Model . To avoid counting characters in the method get num, the developers
introduce an integer attribute n to represent the number of characters in the
sequence. Accordingly, they implement a component Model ′ as follows:

component Model ′

s : seq of char := 〈〉,
n : int := 0,
get s() =̂ return s,
get num() =̂ return n,
append(val t : seq of char) =̂

s := s ̂ t;View−Bupdate(); n := n + #t
end

Note that taking into account the specification of the method update in View ,
the implementation of the method append appears to be perfectly valid. In fact,
updating the screen as early as possible is a reasonable policy.

Now suppose that another software company decides to implement a com-
ponent View ′ according to the specification. Note that the developers of View ′

do not have access to the code of Model ′, so the only thing they can rely on is
its specification. To avoid passing a sequence of characters as a parameter, the
method update can be implemented to invoke the method get num of Model :

1304 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

component View ′

update() =̂ print(Model−Bget num())
end

Here we face the component re-entrance problem. Even though components
Model ′ and View ′ appear to implement the specification correctly, their compo-
sition behaves incorrectly: the number of elements in the string s that update
prints out is wrong.

In a component market, where developments have to be independent, this
constitutes a major obstacle. However, if we view Model and View as implemen-
tations and Model ′ and View ′ as more efficient implementations, we see that
this problem occurs not only during development, but also during maintenance
of component systems. The formalism in which we study the problem encom-
passes both situations in a uniform way.

A recommendation known from practice suggests always to establish a com-
ponent invariant before the thread of control leaves the component. In fact, this
is the recommendation for implementing the Observer pattern as it can be found
in [9]. In the example above, the developers of Model ′ should have established
the component invariant n = #s before invoking the method update.

In this paper we present a formal analysis of the problem that supports this
requirement, but reveals that it is not sufficient in the general case. Two further
restrictions should be imposed according to “no call-back assumptions” and “no
accidental mutual recursion” requirements.

The rest of the paper is organized as follows. We begin with a detailed anal-
ysis of the component re-entrance problem and explain why we view it as the
conflict of assumptions that developers of components make about the behavior
of other components in the system. We formulate the modular reasoning prop-
erty that captures the process of independent component development. Using
simple examples, we then justify the introduction of two requirements that must
be imposed to avoid the re-entrance problem. Next we develop a customized the-
ory of components, component composition, and refinement and prove a modular
reasoning theorem which states that the modular reasoning property reinforced
with our requirements holds in the presence of re-entrance. Finally, we offer
a discussion of implications of the modular reasoning theorem, discuss related
work, and provide some insights on our future work.

2 The Essence of the Component Re-entrance
Problem

A component operates by communicating with an environment. Unlike in the
case of procedure libraries, the environment calls back the component’s methods.
The component and its environment play symmetrical roles: the component is
a client of the environment, while the environment is a client of the component.
Therefore, we can view the entire system as consisting of only two components,
the component under consideration and the component “environment”.

Developing Components in the Presence of Re-entrance 1305

A B

A' B'

Fig. 2. Independence of component development. Developers can access only the
components in the corresponding hatched areas.

Let us now define the notion of behavioral conformance more precisely. We
say that a system (or a component) S is refined by a system (or a component)
S′ if the externally observable behavior of S′ is the externally observable be-
havior of S or an improvement of it. In other words, if S′ is a refinement of S
then it is substitutable for S in any context.1 Note that S and S′ can be, respec-
tively, a specification and a more concrete specification, a specification and an
implementation, or an implementation and a more efficient implementation.

Now suppose that we have a specification of a system composed of two com-
ponents A and B invoking each other’s methods. Ultimately, independent devel-
opers of refining components A′ and B′ would like to achieve that the system
resulting from the composition of these components be a refinement of the com-
position of the original components A and B, namely,

A compB is refined by A′ compB′ (1)

where comp composes two components into a component system. A composition
of two components has all the methods of both components with all mutual
method calls resolved. Due to the late integration phase, which is characteristic
of component systems, developers of a component cannot analyze the source
code of the new environment this component will be used in, and can rely only
on the original specification of the system. This setting is illustrated in Fig. 2.

The behavior of a component invoking methods of another component de-
pends on the behavior of these methods. Therefore, when reasoning about the
conformance of the component A′ to the component A, the developers need to
make assumptions about the behavior of the component B. The ad-hoc method
for taking such assumptions into account is to reason about the refinement be-
tween the results of composition of A′ and A with B:

A compB is refined by A′ compB, (2)

and dually for the components B′ and B:

A compB is refined by A compB′ (3)

1 The formal definition of refinement is given in Sec.4.3.

1306 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

Unfortunately, in the general case, the two requirements (2) and (3) are insuf-
ficient to establish the goal (1), as demonstrated by the previous example. In
other words, the desired property

if A compB is refined by A′ compB and
A compB is refined by A compB′

then A compB is refined by A′ compB′
(4)

does not hold. We believe that this fact constitutes the essence of the component
re-entrance problem. The problem occurs due to the conflict of assumptions
the developers of components make about the behavior of other components
in the system. In the previous example the developers of the component View ′

assumed that at the moment when the method update is called the invariant
of the implementation of Model would hold. Similarly, the developers of Model ′

assumed that they did not need to establish the invariant before invoking update,
because its specification did not rely on it. These conflicting assumptions led to
the problem during composition.

This consideration brings us to the questions how we can guide the process
of component development, so that the system composed of the refining compo-
nents would always be safely substitutable for the original one, and how while
developing a component one can make assumptions about the behavior of the
other components in the system, in a consistent manner.

3 Modular Reasoning Required

Apparently, it would be desirable if for establishing refinement between com-
posed systems it would be sufficient to verify refinement between the corre-
sponding components. In other words, we would like the following property to
hold:

if A is refined by A′ and
B is refined by B′

then A compB is refined by A′ compB′

However, establishing refinement between the participating components is
complicated due to their mutual dependence. In principle, we can say that a
component is refined by another component if the systems resulting from the
composition of these components with an arbitrarily chosen component are in
refinement:

A is refined by A′ =̂ A compB is refined by A′ compB, for any B
In fact, it is possible to prove that this definition of refinement indeed establishes
the property (4) for the case of mutually dependent components. Unfortunately,
this definition of refinement is too restrictive to be used in practice. According to
this definition, one can only refine bodies of methods around method invocations,
without being able to assume anything about the called methods.

Developing Components in the Presence of Re-entrance 1307

For the definition of component refinement to be useful in practice it should
permit to make assumptions about the context in which the component under
consideration operates. As the context (environment) of a component can be
seen as the other component, we would like the following modular reasoning
property to hold:

if A is refined by A′ in context of B and
B is refined by B′ in context of A

then A compB is refined by A′ compB′

In the case when the complete context is assumed in a refinement step, the
modular reasoning property is equivalent to the property (4). However, as was
demonstrated by the previous example, the conclusion of the modular reasoning
property does not hold in this case. In order to establish refinement between the
composed systems, it is necessary to restrict the assumptions that component
developers can make about the context in which the component is going to
operate. To identify the restrictions that should be imposed on the assumptions
about the component context, let us consider two counter examples invalidating
the property (4).

In the following example we use an assertion statement {p}, where p is a
state predicate. If p is true in the current state, the assertion skips, otherwise
it aborts. Therefore, the assertion statement can be seen as an abbreviation for
the conditional if p then skip else abort.

component A component B
m1(valres x : int) =̂ {x > 5}; x := 5, n(valres x : int) =̂
m2(valres x : int) =̂ {x > 0}; x := 5 A−Bm1(x)

end end
component A′ component B′

m1(valres x : int) =̂ {x > 0}; x := 5, n(valres x : int) =̂
m2(valres x : int) =̂ B−Bn(x) {x > 5}; x := 5

end end

If we expand the bodies of the method m2 in the composed systems then we
have:

(A compB) :: m2 = {x > 0}; x := 5 (A′ compB) :: m2 = {x > 0}; x := 5
(A compB′) :: m2 = {x > 0}; x := 5 (A′ compB′) :: m2 = {x > 5}; x := 5

Therefore,

(A compB) :: m2 is refined by (A′ compB) :: m2 and
(A compB) :: m2 is refined by (A compB′) :: m2

However, it is not the case that

(A compB) :: m2 is refined by (A′ compB′) :: m2

1308 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

Due to the presence of assertions, the precondition x > 5 of (A′ compB′) :: m2

is stronger than the precondition x > 0 of (A compB) :: m2, while to preserve
refinement, preconditions can only be weakened.

This example motivates us to formulate the following “no call-back assump-
tions” requirement:

While developing an implementation of a method, implementations
of other methods of the same component cannot be assumed; their
specifications should be considered instead.

As the behavior of the environment serving as a context depends on the behavior
of the component under consideration, assuming that the environment is going
to call back on the refined component would implicitly modify the specification.

However, there exists another aspect of the component re-entrance problem
which cannot be handled by simply restricting the context for refinement. The
following rather trivial example illustrates this aspect of the problem.

component A component B
m(res r : int) =̂ r := 5 n(res r : int) =̂ r := 5

end end
component A′ component B′

m(res r : int) =̂ B−Bn(r) n(res r : int) =̂ A−Bm(r)
end end

It is easy to see that a call to any method in the composition A′ compB′ of the
refined components leads to a never terminating recursion of method invocations.
Obviously, such a behavior does refine the behavior of the original system. In
fact, a similar problem was described by Carroll Morgan in [13]. He mentions
that in case of mutually dependent modules their independent refinements can
accidentally introduce mutual recursion. Based on this example, we formulate
the following “no accidental mutual recursion” requirement:

Independent development of components should not introduce unex-
pected mutual recursion.

We claim that if the “no call-back assumptions” and “no accidental mutual
recursion” requirements are satisfied, then the modular reasoning property holds.
For proving this claim formally we develop a customized theory of components,
component systems, and their refinement.

4 Formalization of Components, Composition, and
Refinement

We formalize components, component systems, and refinement between them
within the refinement calculus [2, 13]. For simplicity, we assume that compo-
nents do not have self-calls and component implementations do not introduce
new methods. Here we only consider components which do not have recursive
and mutually recursive methods. Our model is tailored specifically to allow for
reasoning about the properties under consideration.

Developing Components in the Presence of Re-entrance 1309

4.1 Statements and Statement Refinement

This subsection is based on the work by Ralph Back and Joakim von Wright as
presented in [2, 3, 4]. The refinement calculus is a logical framework for reasoning
about correctness and refinement of imperative programs. The language used to
express programs and specifications is essentially Dijkstra’s language of guarded
commands, with some extensions. Each command of this language is identified
with its weakest precondition predicate transformer. Therefore, program state-
ments are modeled as functions that map postconditions to preconditions.

The predicates over a state space (type) Σ are functions from Σ to Bool ,
denoted by PΣ. The relations from Σ to Γ are functions from Σ to a predicate
(set of values) over Γ , denoted by Σ ↔ Γ . The predicate transformers from Σ
to Γ are functions mapping predicates over Γ to predicates over Σ, denoted
by Σ 7→ Γ (note the reversion of the direction), or by Ptran(Σ) in the case of
Σ 7→ Σ.

The entailment ordering p ⊆ q on predicates p, q : PΣ is defined as universal
implication on booleans, i.e.

p ⊆ q =̂ (∀σ : Σ • p. σ ⇒ q. σ)

The conjunction and disjunction on predicates ∪ and ∩ are defined pointwise.
The predicates true and false over Σ map every σ : Σ to the boolean values T
and F, respectively. The refinement ordering S v T , read S is refined by T , on
statements S, T : Σ 7→ Γ is defined by universal entailment:

S v T =̂ (∀q : PΓ • S. q ⊆ T . q)

A predicate transformer S : Σ 7→ Γ is said to be monotonic if for all predi-
cates p and q, p ⊆ q implies S. p ⊆ S. q. Statements from Σ to Γ are identified
with monotonic predicate transformers from Σ to Γ . Statements of this kind
may be concrete, i.e. executable, or abstract, i.e. specifications. The refinement
calculus includes all standard program statements, such as assignments, condi-
tionals, and loops. Here we only present the definitions of the constructs that
are used later in the paper.

The sequential composition of statements S : Σ 7→ Γ and T : Γ 7→ ∆ is mod-
eled by their functional composition, for q : P∆,

(S; T). q =̂ S. (T . q)

The statement abort does not guarantee any outcome or termination, there-
fore, it maps every postcondition to false. The statement magic is miraculous,
since it is always guaranteed to establish any postcondition. The statement skip
leaves the state unchanged. Thus, we have:

abort. q =̂ false magic. q =̂ true skip. q =̂ q

The assertion statement {p} indicates that the predicate p is known to hold
at a certain point in the program. The assertion {p} behaves as abort if p does
not hold, and as skip otherwise. Formally, it is defined as follows:

{p}. q =̂ p ∩ q

1310 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

The language supports two kinds of non-deterministic updates which, in fact,
represent specification statements. Given a relation P : Σ ↔ Γ , the angelic up-
date {P} : Σ 7→ Γ , and the demonic update [P] : Σ 7→ Γ are defined by

{P}. q. σ =̂ (∃ γ : Γ • P . σ. γ ∧ q. γ) [P]. q. σ =̂ (∀γ : Γ • P . σ. γ ⇒ q. γ)

When started in a state σ, {P} angelically chooses a new state γ such that P . σ. γ
holds, while [P] demonically chooses a new state γ such that P . σ. γ holds. If no
such state exists, then {P} aborts, whereas [P] behaves as magic. Traditional
pre-postcondition specifications can be easily expressed in the refinement calcu-
lus. For example, a specification with the precondition x > 0 and postcondition
x′ > x, where x′ stands for the new value of the program variable x, can be
expressed by the statement {p}; [P], where p. x = x > 0 and P . x. x′ = x′ > x.

The cartesian product of state spaces Σ and Γ is written Σ × Γ . For pred-
icates p : PΣ and q : PΓ , their product p × q is a predicate of type P(Σ × Γ)
defined by

(p× q). (σ, γ) =̂ p. σ ∧ q. γ

For relations P1 : Σ1 ↔ Γ1 and P2 : Σ2 ↔ Γ2, their product P1 × P2, is a
relation of type (Σ1 ×Σ2)↔ (Γ1 × Γ2), where for σ1 : Σ1, σ2 : Σ2, γ1 : Γ1, and
γ2 : Γ2, we have:

(P1 × P2). (σ1, σ2). (γ1, γ2) =̂ (P1. σ1. γ1) ∧ (P2. σ2. γ2)

For predicate transformers S1 : Σ1 7→ Γ1 and S2 : Σ2 7→ Γ2, their product
S1×S2 is a predicate transformer of type Σ1×Σ2 7→ Γ1×Γ2 whose execution
has the same effect as the simultaneous execution of S1 and S2:

(S1 × S2). q =̂ (∪ q1, q2 | q1 × q2 ⊆ q • S1. q1 × S2. q2)

The cross products operators are not associative in the sense that, e.g., S1×
(S2×S3) 6= (S1×S2)×S3. As different associations of the cross product operators
are isomorphic to each other, for simplicity we disregard the non-associativity.

A statement S operating on the state space Σ can be coerced to operate on
the state space Σ′ using an encoding operator ↓ with a relation R : Σ′ ↔ Σ
[3]. By lifting the relation R to the level of predicate transformers, we get the
update statements {R} : Σ′ 7→ Σ and [R−1] : Σ 7→ Σ′ that can be used to define
the encoding operator ↓ as follows:

S↓R =̂ {R}; S; [R−1]

Note that the statement S ↓R operates on the state space Σ′. For tuples of
statements, the encoding operator is defined elementwise. The encoding operator
is left-associative and has a higher precedence than function application.

The encoding operator can be used to define data refinement in terms of
ordinary refinement [19]. A statement S : Ptran(Σ) is data refined by a statement
S′ : Ptran(Σ′) via a relation R : Σ′ ↔ Σ, connecting concrete and abstract
states, if S concretely coerced with R is refined by S′, i.e.

S vR S′ =̂ S↓R v S′

Developing Components in the Presence of Re-entrance 1311

A statement is said to be indifferent with respect to an encoding relation
if it does not operate on the state component coerced with the relation. An
indifferent statement skip× S is characterized by the following property:

(skip× S)↓(R × Id) v (skip× S)

Relations of the form R× Id and Id × P are said to be orthogonal to each
other. Further on, we use the following property of the encoding operator for the
orthogonal relations R× Id and Id × P :

S↓(R × Id)↓(Id × P) = S↓(Id × P)↓(R × Id) = S↓(P ×R)

Forward functional composition is denoted by ◦ and defined in the usual way:

(f ◦g). x =̂ f. (g. x)

Repeated function application fn is defined inductively by

f0. x = x
fn+1. x = fn. (f. x)

4.2 Components and Composition

As we have mentioned, any component system can be seen as consisting of two
components A and B. Suppose that A has m and B has n methods. The compo-
nents communicate by invoking each other’s methods and passing parameters.
For simplicity, we model method parameters by global variables that methods of
both components can access in turns. For every formal parameter of a method
we introduce a separate global variable which is used for passing values in and
out of components. It is easy to see that parameter passing by value and by
reference can be modeled in this way. As due to encapsulation the type of the
internal state of the other component is not known, we say that the body of a
method of the component A has the type Ptran(Σ × ∆ × β), where Σ is the
type of A’s internal state, ∆ is the type of global variables modeling method
parameters, and β is the type variable to be instantiated with the type of the
internal state of the other component during composition. As the internal state
of the other component is not accessible, we assume that methods of A operate
only on their internal state and the state representing method parameters and
are, therefore, of the form S × skip. Similarly, methods of B have bodies that
are of the form skip×S and of the type Ptran(α×∆×Γ), where α is the type
variable.

The behavior of a component method depends on the behavior of the methods
it invokes. We can model a method of the component A as a function of a tuple
of method bodies returning a method body2:

ai =̂ λBb • abi

2 We accept the following scheme for naming variables: a variable starting with a
capital letter represents a tuple of variables; the second letter b in the name of a
variable means that it represents a method body (statement) or a tuple of method
bodies.

1312 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

If we introduce an abbreviation Ψn to stand for Ψ × ...× Ψ with n occurrences
of Ψ , we can write out the type of ai as Ptrann(Σ×∆×β)→ Ptran(Σ×∆×β),
where n is the number of methods of B. Methods of B are defined in the same
manner, but have the type Ptranm(α × ∆ × Γ) → Ptran(α × ∆ × Γ), where
m is the number of methods in B. We assume that every method is monotonic
in its argument. Accordingly, we can collectively describe all methods of A as a
function A given as follows:

A =̂ (λBb • (ab1, ..., abm)) : Ptrann(Σ ×∆× β)→ Ptranm(Σ ×∆× β)

Therefore, the component A is a tuple (a0, A), where a0 : Σ is an initial value of
the internal state and A is the function as defined above. The definition of the
component B is similar but with the corresponding differences in typing.

Composing components A and B results in a component system that has
methods of both components with all mutual calls resolved. The methods of the
component A in the composed system can be approximated by A. B.Abort,
where Abort is a tuple of abort statements. Using functional composition, this
can be rewritten as (A◦B).Abort. Methods in such an approximation behave
as the methods of A with all external calls redirected to B, but with external
calls of B aborting rather then going back to A. Hence a better approximation
of the methods of A in the composed system would be (A◦B◦A◦B).Abort,
and yet a better one (A◦B◦A◦B◦A◦B).Abort, etc. The desired result is then
the limit of this sequence. This limit can be expressed as the least fixed point
(µ A◦B), which is the least Xb with respect to the refinement ordering on tuples
of statements such that Xb = (A◦B).Xb. Choosing the least fixed point means
that a non-terminating sequence of calls from A to B and back is equivalent to
abort, which is the meaning of a non-terminating loop. According to the theorem
of Knaster-Tarski [18], a monotonic function has a unique least fixed point in a
complete lattice. Statements form a complete lattice with the refinement ordering
v and the function (A◦B) is monotonic in its argument, therefore, (µ A◦B)
exists and is unique. Similarly, the methods of the component B in the composed
system are defined by (µ B◦A).

The component system resulting from the composition of the components A
and B can now be defined as follows:

(A compB) =̂ ((a0, b0), (µ A◦B, µ B◦A))

Note that during composition, the type variables α and β, representing unknown
state spaces of the components B and A, get instantiated with Σ and Γ respec-
tively, so that the composed system has methods operating on the state space
Σ ×∆× Γ .

4.3 Refining Components and Component Systems

Let A : Ptrann(Σ×∆×β)→ Ptranm(Σ×∆×β) and A′ : Ptrann(Σ′×∆×β)→
Ptranm(Σ′ × ∆ × β) be methods of components A and A′, respectively. We

Developing Components in the Presence of Re-entrance 1313

say that A is data refined by A′ in the context of component B via a relation
R× Id × Id if

A
BvRA′ =̂ (µ A◦B)↓(R× Id × Id) v A′. (µ B◦A)↓(R× Id × Id))

For methods of components B and B′ we have a similar definition but via a
relation Id × Id × P .

As method bodies of the components A′ and B′ are indifferent to the relations
Id×Id×P and R×Id×Id respectively, we use the following encoding propagation
lemma :

(A′.Xb)↓(Id × Id × P) v A′.Xb↓(Id × Id × P)
(B′.Yb)↓(R × Id × Id) v B′.Yb↓(R× Id × Id)

The proof of this lemma can be found in [12].
We say that A = (a0 : Σ, A : Ptrann(Σ ×∆× β)→ Ptranm(Σ ×∆× β)) is

refined by A′ = (a′0 : Σ′, A′ : Ptrann(Σ′×∆×β)→ Ptranm(Σ′×∆×β)) in the
context of B, if there exists a relation R : Σ′ ↔ Σ such that this relation holds
between the initial values, and methods of A are data refined by methods of A′
in the context of B via the relation R× Id × Id . Formally,

A Bv A′ =̂ (∃R • (R. a′0. a0) ∧ A
BvRA′)

For the components B = (b0 : Γ, B) and B′ = (b′0 : Γ ′, B′) the definition of re-
finement is similar, only that the initial values are connected via a relation
P : Γ ′ ↔ Γ and methods of B are data refined by methods of B′ in the context
of A via the relation Id × Id × P .

We say that the component system A compB is refined by the component
system A′ compB′, if there exist such relations R and P that initial values of
these component systems are related via the relation R×P and tuples of method
bodies are related via the relation R× Id × P . Formally, we have:

A compB v A′ compB′ =̂
(∃R, P • (R × P). (a′0, b′0). (a0, b0) ∧

(µ A◦B)↓(R × Id × P) v (µ A′◦B′) ∧
(µ B◦A)↓(R × Id × P) v (µ B′◦A′))

5 Modular Reasoning Theorem

Our objective is to prove that the modular reasoning property holds for mutually
dependent components if the “no call-back assumptions” and “no accidental
mutual recursion” requirements are satisfied. First we formulate and prove the
modular reasoning theorem which captures the mathematical meaning of the
modular reasoning property reinforced with the requirements. Then we explain
how the requirements are reflected in the assumptions of the theorem. As the
“no accidental mutual recursion” requirement is non-modular, in the sense that
it requires checking for the absence of mutual recursion in the system composed
from refining components, we then discuss techniques which permit to satisfy
this requirement in a modular fashion.

1314 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

5.1 Formulating and Proving the Theorem

Modular Reasoning Theorem. Let components A, B, A′, and B′ be given as
follows:

A = (a0 : Σ, A : Ptrann(Σ ×∆× β)→ Ptranm(Σ ×∆× β)),
B = (b0 : Γ, B : Ptranm(α ×∆× Γ)→ Ptrann(α×∆× Γ)),
A′ = (a′0 : Σ′, A′ : Ptrann(Σ′ ×∆× β)→ Ptranm(Σ′ ×∆× β)),
B′ = (b′0 : Γ ′, B′ : Ptranm(α×∆× Γ ′)→ Ptrann(α×∆× Γ ′))

Then we have:

A Bv A′ ∧ (a)

B Av B′ ∧ (b)
(∃k • ∀Xb • (µ A′◦B′) = (A′◦B′)k. Xb) ∧ (c)
(∃l • ∀Yb • (µ B′◦A′) = (B′◦A′)l.Yb) ⇒ (d)
A compB v A′ compB′

Proof Expanding the definitions and making simple logical transformations, we
get three subgoals

1. (R. a′0. a0) ∧ (P . b′0. b0) ⇒ (R× P). (a′0, b
′
0). (a0, b0)

2. A
BvRA′ ∧ B

AvP B′ ∧ (c) ∧ (d) ⇒ (µ A◦B)↓(R× Id × P) v (µ A′◦B′)
3. A

BvRA′ ∧ B
AvP B′ ∧ (c) ∧ (d) ⇒ (µ B◦A)↓(R× Id × P) v (µ B′◦A′)

where R and P are fixed but arbitrary relations. The first subgoal is obviously
true. To prove the second and the third subgoals, we first prove the following
lemma.

Lemma. For functions A, B, A′ and B′ defined as above, relations R : Σ′ ↔ Σ
and P : Γ ′ ↔ Γ , and any natural number k, we have:

A
BvRA′ ∧ B

AvP B′ ⇒ (µ A◦B)↓(R× Id ×P) v (A′◦B′)k. (µ A◦B)↓(R× Id ×P)

Proof We prove this lemma by induction over k.
Base case:

(A′◦B′)0. (µ A◦B)↓(R× Id × P)
= {definition of f0}

(µ A◦B)↓(R× Id × P)

Inductive case:
Assuming (µ A◦B)↓(R × Id × P) v (A′ ◦B′)k. (µ A◦B)↓(R × Id × P), we
calculate:

(µ A◦B)↓(R× Id × P)

Developing Components in the Presence of Re-entrance 1315

v {induction assumption}
(A′◦B′)k. (µ A◦B)↓(R× Id × P)

= {the property of encoding operator for the orthogonal relations}
(A′◦B′)k. (µ A◦B)↓(R× Id × Id)↓(Id × Id × P)

v {assumption A
BvRA′}

(A′◦B′)k. (A′. (µ B◦A)↓(R× Id × Id))↓(Id × Id × P)
v {encoding propagation lemma }

(A′◦B′)k. A′. (µ B◦A)↓(R× Id × Id)↓(Id × Id × P)
= {the rule for encoding with orthogonal relations}

(A′◦B′)k. A′. (µ B◦A)↓(Id × Id × P)↓(R × Id × Id)

v {assumption B
AvP B′}

(A′◦B′)k. A′. (B′. (µ A◦B)↓(Id × Id × P))↓(R × Id × Id)
v {encoding propagation lemma }

(A′◦B′)k. A′. B′. (µ A◦B)↓(Id × Id × P)↓(R× Id × Id)
= {the property of encoding operator for the orthogonal relations}

(A′◦B′)k. A′. B′. (µ A◦B)↓(R× Id × P)
= {fk+1. x = fk. (f. x), definition of composition}

(A′◦B′)k+1. (µ A◦B)↓(R× Id × P) 2

Now using this lemma we can prove the second subgoal of the Modular

Reasoning Theorem. Assume A
BvRA′, B

AvP B′, and ∀Xb • (µ A′ ◦B′) = (A′ ◦
B′)k. Xb, for fixed but arbitrary k. The conclusion is then proved as follows:

(µ A◦B)↓(R× Id × P)
v {Lemma}

(A′◦B′)k. (µ A◦B)↓(R× Id × P)
= {assumption (c), instantiating Xb with (µ A◦B)↓(R× Id × P)}

(µ A′◦B′)
The proof of the third subgoal is similar. 2

5.2 Interpretation and Implications of the Theorem

Let us consider how the requirement “no call-back assumptions” is reflected
in the formulation of the theorem. In fact, this requirement is not captured
by a separate assumption in the theorem, rather the definition of component
refinement in context accommodates for it. As stipulated by this requirement,
when refining the component A to A′ we should not assume that the component
B calls back methods of A′, because in doing so we would implicitly modify the
specification of the component system. The specification of method bodies of A is

1316 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

mathematically defined by (µ A◦B), whereas the specification of method bodies
of B is defined by (µ B◦A). Accordingly, refinement between the specification
of method bodies of A and the implementation of methods of A′ in the context
of the specification of method bodies of B is expressed as follows:

(µ A◦B)↓(R× Id × Id) v A′. (µ B◦A)↓(R × Id × Id)

Here the encodings are necessary for adjusting the state spaces of the partici-
pating components. The same requirement for the refinement between B and B′

in context of A is treated similarly.
Unlike in the case of “no call-back assumptions”, the “no accidental mutual

recursion” requirement is captured in the assumptions (c) and (d) of the theorem
explicitly. Let us consider the assumption (c) (the assumption (d) is treated
similarly):

(∃n • ∀Xb • (µ A′◦B′) = (A′◦B′)k.Xb)

In this formula (A′◦B′)k is the function resulting from composing the function
(A′ ◦B′) with itself n − 1 times. The intuition here is as follows. If the result
of applying the function (A′ ◦B′) to an arbitrary tuple of method bodies a
finite number of times is equal to the complete unfolding of method invocations
between A′ and B′, then the bodies of methods of A′ are completely defined.
This, of course, can only be achieved if the unfolding terminates, i.e. there is no
infinite mutual recursion.

The “no accidental mutual recursion” requirement is non-modular in the
sense that it requires checking for the absence of mutual recursion in the system
composed from refined components. We envision several approaches to satisfying
this requirement in a modular manner. For example, component methods in
the original specification can be marked as atomic if they do not call other
methods. While refining a component, atomic methods must remain atomic and
non-atomic ones can introduce new calls only to atomic methods. Although being
apparently restrictive, this approach guarantees the absence of accidental mutual
recursion in the refined composed system. With another approach, we can assign
to every method an index which indicates the maximal depth of method calls
that this method is allowed to make. This approach apparently only works if
the original specification does not have mutually recursive method calls. For
example, a method m which does not invoke any other method will have index
0, whereas a method n invoking m will have index 1. If a method invokes several
methods with different indices, it is assigned the maximal of these indices plus
one. With the original specification annotated in this manner we can require
that, while refining a method, calls to methods with indices higher than the
indices of the methods that were called before cannot be introduced. However,
the detailed analysis of the different methods for establishing the “no accidental
mutual recursion” requirement in a modular manner is outside the scope of this
paper.

Developing Components in the Presence of Re-entrance 1317

6 Discussion, Conclusions, and Related Work

We study a problem which hinders independent development of components in
the presence of re-entrance. A formal analysis of this problem allowed us to rec-
ognize the essence of the problem in the conflict of assumptions that developers
of components make about the behavior of other components in the system.

Problems related to compositionality of systems have been and remain a sub-
ject of intensive studies in the formal methods community, e.g. [7]. In particu-
lar, compositionality of concurrently executing processes communicating through
global variables has been the focus of formal analysis by Abadi and Lamport in
[1]. However, the setting that they consider is rather different from our, as we
consider sequential communication of components.

Problems with re-entrance are also often discussed in the context of con-
current programming. In a multithreaded environment several instances of the
same procedure modifying global variables can be executed simultaneously. One
thread of control can enter the procedure and, before the end of the proce-
dure is reached, a second thread of control can re-enter the same procedure.
Apparently, such a situation is problematic because the second instance of the
procedure might observe the global variables in an inconsistent state, or it can
modify these global variables and then the first instance will observe them in an
inconsistent state.

The problem that we consider is sufficiently different from the re-entrance
problem as known in concurrent programming to deserve a separate name, the
“component re-entrance problem”. There are two scenarios in which this problem
can occur; firstly, when components are independently developed from specifi-
cations and, secondly, during independent maintenance of components.

One of the recommendations in concurrent programming is to circumvent the
re-entrance problem by avoiding the re-entrance setting, which can be achieved
using various locking mechanisms. In object-oriented and component-based pro-
gramming the re-entrance setting can be avoided by following what is known
as the “push” communication style. Adhering to this style requires passing to
a client component all the data it might possibly need as method parameters.
Apparently, such an approach to component communication is rather inefficient,
and it is often preferable to pass to the client component just a reference to itself
and permit it to obtain all the data it might need. However, the latter approach,
which is often referred to as the “pull” approach, matches the re-entrance setting.

Several researchers have pointed out that components should specify rele-
vant information about their environments, such as required interfaces [14]. It
was also recognized that accidental reuse does not lead to the development of
robust maintainable systems [9]. To be really useful, reuse must be pre-planned
by system developers. Agreeing with these ideas, we advocate a specification
method where component environments are described by abstract specifications
of their behavior. We believe that the specification of the environment should be
split into components specifying certain interfaces to indicate the communica-
tion protocol between the components. As the specifications of the environment
components can be given in terms of abstract mathematical data structures

1318 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

and non-deterministic specification statements, this would permit a multitude
of different implementations.

Similar problems occurring during maintenance of mutually dependent com-
ponents have been mentioned by several researchers, e.g., Bertrand Meyer in [11]
and Clemens Szyperski in [17]. Meyer considers the setting with two mutually
dependent classes whose invariants include each other’s attributes. His method
for verification of conformance between two implementations of one class requires
that the new implementation respect the invariant of the original implementa-
tion. He notices that this requirement alone is not sufficient for establishing cor-
rectness of the composed system and refers to this problem as “indirect invariant
effect”. He then makes the conjecture that mirroring such interclass invariants
in the participating classes would be sufficient to avoid the problem. Although
we disagree with the practice of stating interclass invariants, it appears that the
problem considered by Meyer is just a special case of the component re-entrance
problem as formulated in this paper. As our examples demonstrate, preserving
invariants, taken alone, does not eliminate the problem.

Szyperski describes a similar problem but sees it rather as an instance of
the re-entrance problem as occurring in concurrent systems. He reiterates the
common recommendation for avoiding the problem, which suggests to establish a
component invariant before invoking any external method. Interestingly enough,
the recommendation to re-establish the invariant before all external method
calls does not follow from the specification and is rather motivated by empirical
expertise. As demonstrated by our examples, this recommendation, although
being necessary, is insufficient.

In fact, our “no call-back assumptions” requirement subsumes this recom-
mendation. Let us reconsider our first example. According to the Modular Rea-
soning Theorem, to demonstrate that Model ′ is a valid implementation of Model
in the context of View , we would need to show that every method of Model ′

calling methods of View composed with methods of Model refines the corre-
sponding methods of Model composed with methods of View . Since Model and
Model ′ operate on different attributes, to express, for example, in the method
append of Model ′ the behavior of a call to View .update, which calls get s of
Model , we need to coerce this call using an abstraction relation. Such an abstrac-
tion relation usually includes component invariants, and in this case includes the
component invariant n = #s of Model ′, i.e. R. (s′, n′). s =̂ s′ = s ∧ n′ = #s′.
Note that in the definition of R the attributes of Model ′ are primed in order to
distinguish them from the attributes of Model . According to the definition of re-
finement in context, the proof obligation for the method append after expansion
and simplification is

(s := s ̂ t; print(#s))↓R v s := s ̂ t; (print(#s))↓R; n := n + #t

The right hand side can be expanded to s := s t̂; {R}; print(#s); [R−1]; n := n+
#t. The abstraction statement preceding the invocation of print aborts, because
it tries to find an abstract value of a sequence s satisfying the invariant #s = n
which obviously does not hold at this point. Certainly, an aborting method is

Developing Components in the Presence of Re-entrance 1319

not a refinement of a non-aborting one and, therefore, Model ′ fails to correctly
implement Model in the context of View , breaching our requirement.

The requirement to re-establish a component invariant before all external
calls is rather restrictive, because re-establishing the invariant might require
a sequence of method calls to this and other components. Besides, it is not
always necessary to establish the entire component invariant before external
calls, because clients of the component can depend on some parts of the com-
ponent invariant while being indifferent to the other parts. Szyperski in [17]
proposes to “weaken invariants conditionally and make the conditions available
to clients through test functions”. In a way, he proposes to make assumptions
that component developers make about other components more explicit. This
idea can be elaborated through augmenting the specification of components with
require/ensure statements stipulating assumptions and guarantees that the com-
ponents make. To avoid a conflict of assumptions, the component specification
can make explicit the information the component relies on and provides to other
components. For instance, every method can begin with a require condition and
end with an ensure condition. Also every method invocation can be surrounded
by an ensure/require couple. Then, while implementing a method, the developer
can assume the information as stipulated in the require condition and ought to
establish the ensure condition. Such an explicit statement of mutual assumptions
and guarantees between components would reduce the need to unfold method
invocations when verifying refinement in context. Note that the theoretical un-
derpinning of such an approach to specification of component systems is an
interpretation of the results presented in this paper, as the refinement calculus
includes constructs for expressing the require/ensure statements.

A specification and verification method for component systems based on such
an approach should additionally provide for satisfying the “no accidental mutual
recursion” requirement in a modular manner. The detailed elaboration of such
a method represents the subject of current research.

As was already mentioned, we have made a number of simplifications in
the component model. In particular, we have assumed that components do not
have self-calls and component implementations do not introduce new methods.
Relaxing these confinements on the component model is the subject of future
work.

Acknowledgments

We would like to express our gratitude to Anna Mikhajlova for useful comments.
Ralph Back and Joakim von Wright have provided valuable feedback on an
earlier version of this paper. Discussions with Eric Hehner and his colleagues
while presenting this work at the University of Toronto helped us to improve the
presentation of the material.

1320 Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis

References

[1] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73–132, Jan. 1993.

[2] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, April 1998.

[3] R. J. R. Back and J. von Wright. Encoding, decoding and data refinement. Tech-
nical Report TUCS-TR-236, Turku Centre for Computer Science, Finland, Mar.
1, 1999.

[4] R. J. R. Back and J. von Wright. Products in the refinement calculus. Technical
Report TUCS-TR-235, Turku Centre for Computer Science, Finland, Feb. 11,
1999.

[5] M. Büchi and E. Sekerinski. Formal methods for component software: The re-
finement calculus perspective. In W. Weck, J. Bosch, and C. Szyperski, editors,
Proceedings of WCOP’97, volume 5 of TUCS General Publication, pages 23–32,
June 1997.

[6] M. Büchi and W. Weck. A plea for grey-box components. Technical Report
TUCS-TR-122, Turku Centre for Computer Science, Finland, Sept. 5, 1997.

[7] W.-P. de Roever, H. Langmaack, and A. Pnueli. Compositionality: The Significant
Difference. Proceedings of COMPOS’97, volume 1536 of LNCS. Springer-Verlag,
1997.

[8] J. Feiler and A. Meadow. Essential OpenDoc. Addison-Wesley, 1996.
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
[10] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying behavioural

compositions in object-oriented systems. In Proceedings OOPSLA/ECOOP’90,
ACM SIGPLAN Notices, pages 169–180, Oct. 1990.

[11] B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, N.Y.,
second edition, 1997.

[12] L. Mikhajlov, E. Sekerinski, and L. Laibinis. Developing components in the pres-
ence of re-entrance. Technical Report TUCS-TR-239, TUCS - Turku Centre for
Computer Science, Feb. 9 1999. Tue, 9 Jan 1999 8:17:45 GMT.

[13] C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.
[14] A. Olafsson and D. Bryan. On the need for “required interfaces” of components.

In M. Muehlhaeuser, editor, Special Issues in Object Oriented Programming, pages
159–165. dpunkt Verlag Heidelberg, 1997. ISBN 3-920993-67-5.

[15] D. Rogerson. Inside COM: Microsoft’s Component Object Model. Microsoft Press,
1997.

[16] Sun Microsystems. Java Beans(TM), July 1997. Graham Hamilton (ed.). Version
1.0.1.

[17] C. Szyperski. Component Software – Beyond Object-Oriented Software. Addison-
Wesley, 1997.

[18] A. Tarski. A lattice theoretical fixed point theorem and its applications. Pacific
J. Mathematics, 5:285–309, 1955.

[19] J. Wright. Program refinement by theorem prover. In 6th Refinement Workshop,
London, 1994. Springer–Verlag.

Communication and Synchronisation

Using Interaction Objects

H.B.M. Jonkers

Philips Research Laboratories Eindhoven,
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

jonkers@natlab.research.philips.com

Abstract. In this paper we introduce a model of process communica-
tion and synchronisation, based on the concept of interaction objects.
Interaction objects define an abstraction mechanism for concurrent ac-
cess to data, based on a strict separation of process interaction and data
access. Process interaction can be controlled by means of three basic in-
teraction operators that operate on interaction objects. The interaction
operators can be used to define various forms of communication and syn-
chronisation including a general form of condition synchronisation. We
define the concept of an interaction object and the interaction operators,
and give examples of a number of interaction objects. Various aspects
of interaction objects are discussed, such as the formal specification and
implementation of interaction objects, and the verification of programs
that use interaction objects.

1 Introduction

Most operating systems and concurrent programming languages in wide use
today are based on the same basic model of process communication and syn-
chronisation. Processes communicate and synchronise by means of intermediate
objects such as shared variables, semaphores, monitors, message queues, chan-
nels, etc. The operations associated with these intermediate objects can be used
concurrently by processes to pass information to each other, or to wait until
certain synchronisation conditions are met. The communication and synchroni-
sation mechanisms associated with these objects have been subject of extensive
study, leading to a rich theory; see e.g. [1, 22] for comprehensive surveys.

In this paper we introduce a model of process communication and synchro-
nisation, based on a specific type of intermediate object called an interaction
object. Interaction objects define an abstraction mechanism for concurrent ac-
cess to data, based on a strict separation of process interaction and data access.
Interaction objects have non-blocking and atomic operations only, implying that
they can be specified using standard sequential techniques. Interaction between
processes, including blocking, is controlled by means of three basic interaction
operators that operate on interaction objects. In combination with various types
of interaction objects, these operators can be used to define several forms of

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1321–1342, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1322 H.B.M. Jonkers

communication and synchronisation, including a general form of condition syn-
chronisation.

As we will argue in the paper, programming with interaction objects and
interaction operators helps in minimising and making explicit the interference in
concurrent programs, and thereby in reducing their complexity. This argument
is supported by practical experience with the CoCoNut software component [16]
that has been used in several applications in Philips. CoCoNut provides a full
implementation of the programming model discussed in this paper and includes
a collection of ready-made interaction objects.

This paper consists of two main parts. In the first part, Section 2, we define
the basic concepts such as the interaction point, interaction object and inter-
action operator, and give an example of an interaction object. In the second
part, Section 3, we deal with various aspects of the use of interaction objects,
such as how to specify and implement them, and how to verify programs that
use interaction objects. In Section 4 we compare interaction objects with related
approaches.

The concept of an interaction object, as defined in this paper, originated
from work on the SPRINT method [15, 8]. It should not be confused with the
concept of an interaction object as used in the context of user interfaces, where
it refers to a user-interface widget. In order to distinguish the two, the first type
of objects can be characterised as process interaction objects and the second
type as computer-human interaction objects.

2 Basic Concepts

2.1 Objects and Processes

We consider systems consisting of two types of entities: passive objects and active
processes. An object consists of a collection of variables and a set of operations.
The sets of variables of objects are disjoint. In any given state of the system a
variable has a certain value. The values of all variables of an object define the
state of the object. The state of an object can only be inspected or changed by
means of the operations associated with the object. An operation of an object
accesses the variables of that object only. An operation is said to be enabled if
its precondition is true and disabled if its precondition is false.

A process is an autonomous sequential activity that operates on objects, i.e.,
it may inspect and change the values of variables using the operations associated
with the objects. Each process has a domain defining the local variables of the
process. The domains of processes are disjoint. Variables not in the domain of
any process are referred to as global variables.

The operations of objects are divided into two classes: access operations and
interaction operations. An access operation of an object X is an operation that,
when called by a process P , will access variables of X in the domain of P only.
Since process domains are disjoint, processes can never interfere by calling access
operations. An interaction operation of an object X is an operation that, when

Communication and Synchronisation Using Interaction Objects 1323

called by a process P , may access variables of X outside the domain of P , i.e.,
global variables or variables in the domains of other processes.

Objects and processes partition the set of variables orthogonally, as illus-
trated in Figure 1. In this and other figures, objects are represented by rectan-
gles, processes by ellipses, variables by small rounded rectangles and operations
by arrows. The variables associated with an object may be contained in different
processes. For example, the variables v1 and v3 of object X are contained in the
domains of processes P and Q , respectively. Likewise, the variables associated
with a process may be part of different objects. For example, the variables v3

and v5 from the domain of Q are contained in the objects X and Y , respectively.
There may also be variables that are not contained in any process, such as the
global variable v2 of X , or in any object, such as the internal variable v4 of Q .

X Y

P Q

v1 v2 v3 v4 v5

Fig. 1. Objects and Processes

2.2 Interaction Points

In the model defined above, all interaction between processes occurs by means
of interaction operations of objects. Most existing communication and synchro-
nisation mechanisms such as monitors, channels, pipes, etc., can be viewed as
objects with interaction operations. For example, a message queue, as supported
by most operating systems, can be seen as an object containing one global vari-
able (a message buffer) and two interaction operations: send and receive (see
Figure 2).

sender receiver

send receive

message flow

message buffer

Fig. 2. Message Queue

We define an interaction point as a point in the code or execution of a pro-
cess where the process interacts with other processes, i.e., where it potentially
influences the behaviour of other processes (outgoing interaction point) or is po-
tentially influenced by other processes (incoming interaction point). We use the
word “potentially” because the influence of an action of one process on another

1324 H.B.M. Jonkers

may be indirect or may depend on dynamic conditions. For example, calling a
send operation of a message queue introduces an outgoing interaction point in
the sender process. The receiver process will only be influenced by this when it
calls the receive operation of the message queue, introducing an incoming inter-
action point in the receiver process. There may even be no influence at all if the
receiver process chooses to ignore the message queue.

A synchronisation point is a special type of incoming interaction point where
the progress of a process is influenced by other processes, i.e., where the pro-
cess may block. Calling the receive operation of a message queue will typically
introduce a synchronisation point: if the message queue is empty, the receiver
will block until a message is put into the queue by the sender. If the message
queue is bounded, a send operation could also introduce a synchronisation point
in addition to an outgoing interaction point: if the message queue is full, the
sender will block until the receiver removes a message from the queue.

The complexity of concurrent programs is closely related to the number of in-
teraction points contained in them. Even a relatively small number of interaction
points can give rise to a very large number of interleavings of process actions,
making it hard to establish the correctness of such programs. It is therefore im-
portant to keep the number of interaction points as small as possible, i.e., to
achieve as much decoupling of processes as possible. The mechanisms referred to
above only support this to a certain extent, since most operations of monitors,
channels, etc., contain interaction points. This is even true for those operations
that read information only. For example, an operation of a message queue that
allows the receiver to determine the number of messages in the queue introduces
an incoming interaction point in the receiver, since the number of messages in
the queue may be influenced by the sender.

The model introduced in this paper takes a rather drastic approach in cur-
tailing the number of interaction points. It limits process interaction to three
general interaction operators which can be used to insert explicit interaction
points in the process code. Process code not containing any of these interaction
operators will not contain interaction points. The key to this approach is the
concept of an interaction object, as defined in the next section.

2.3 Interaction Objects

An interaction object X is an object satisfying the following requirements:

1. All operations of X are non-blocking and atomic.
2. The variables of X consist of the following disjoint subsets per process P :

(a) inX ,P : the input variables of X for P , which are local variables of P .
(b) iavX ,P : the interaction variables of X for P , which are global variables.
(c) outX ,P : the output variables of X for P , which are local variables of P .

3. X has exactly two interaction operations:
(a) commitX , which has no parameters. The call of commitX from a process

P will be denoted as commitX ,P . It accesses variables in inX ,P ∪ iavX ,P

only, modifies variables in iavX ,P only, and disables itself.

Communication and Synchronisation Using Interaction Objects 1325

(b) syncX , which has a process as its parameter. The call of syncX from a
process P with parameter Q will be denoted as syncX ,P ,Q . It accesses
variables in iavX ,Q ∪outX ,P only, modifies variables in outX ,P only, and
disables itself.

The commit and sync operations of interaction objects will be represented in
diagrams by curved arrows as indicated in Figure 3.

X

P

commitX,P

syncX,P,Q

inX,P iavX,P

outX,P

outX,Q

iavX,Q inX,Q

Q

commitX,Q

syncX,Q,P

Fig. 3. Commit and Sync Operations

The following remarks can be made about the requirements listed above:

Item 1: This requirement implies that operations of interaction objects do not
contain synchronisation points. It also implies that interaction objects can
be fully specified using classical pre- and post-condition techniques.

Item 2: Input and output is seen from the point of view of interaction objects
rather than processes. That is, the input and output variables provide input
to and output from an interaction object. The interaction variables are the
intermediaries between input and output variables.

Item 3a: commitX ,P can be seen as an action that “commits” a local state
change of P by making its effect visible in the interaction variables iavX ,P ,
thus introducing an outgoing interaction point in P . The self-disabling re-
quirement reflects the fact that there is no sense in committing a local state
change twice if the local state has not changed. The only way commitX ,P

can be enabled after being disabled is by calls of access operations of X by
P , modifying the variables in inX ,P .

Item 3b: syncX ,P ,Q can be seen as an action that “synchronises” the local state
of P with the state of the interaction variables iavX ,Q , thus introducing an
incoming interaction point in P . The self-disabling requirement reflects the
fact that there is no sense in synchronising twice to a global state change if
the global state has not changed. The only way syncX ,P ,Q can be enabled
after being disabled is by calls of commitX ,Q modifying the variables in
iavX ,Q .

In the remainder of this paper we will use the definition of an interaction ob-
ject in a somewhat more liberal way. An object is an interaction object if its

1326 H.B.M. Jonkers

representation in terms of variables can be turned into a behaviourally equiva-
lent representation satisfying the above requirements. This approach is justified
because objects are fully encapsulated: they can be accessed by means of oper-
ations only. It does not matter which variables are used to represent the object,
as long as the external behaviour of the object remains the same. This freedom
can often be used to write more natural specifications of interaction objects.
The disadvantage is that we may have to prove behavioural equivalence of spec-
ifications; we will use standard data transformation techniques to do this (see
Section 3.2).

We will assume, from now on, that processes interact by means of interac-
tion objects only. Other types of objects are not relevant in the context of this
discussion and will be ignored.

2.4 Example of an Interaction Object

As a simple example of interaction objects we consider observers. An observer
is an interaction object that allows one process, the reader, to observe the value
of a variable that is changed concurrently by another process, the writer. An
observer is similar to a shared variable except that write and read operations
are “cached”, with the cache being controlled by commits and syncs. Both the
writer and the reader have a cached copy of the shared variable. The writer
writes to its own cached copy of the variable. These changes will not become
externally visible until the writer performs a commit on the observer. The reader
reads from its cached copy and will not see any changes until it performs a sync
on the observer.

Conceptually, an observer X contains three variables: an input variable wv ,
an interaction variable iv , and an output variable rv . More precisely:

inX ,P = if P = writer then {wv} else ∅
iavX ,P = if P = writer then {iv} else ∅
outX ,P = if P = reader then {rv} else ∅

These variables are depicted in Figure 4. In diagrams of interaction objects
such as Figure 4, we label the arrows representing commitX ,P and syncX ,P ,Q

actions without indicating the X , P and Q , since that information follows from
the position of the arrows. Furthermore, we omit arrows representing commits
and syncs that are always disabled, such as commitX ,R and syncX ,W ,R where
W = writer and R = reader .

We will specify interaction objects in a small subset of Z [24]. The model
of an interaction object is defined by a Z schema containing the processes and
variables associated with the interaction object (see the Observer schema below).
The initial state is defined by the init schema and the operations by schemas
with the same name as the operation (see the write, read , commit and sync
schemas below). In the specifications we treat the process P calling an operation
as a parameter of that operation (indicated by “P” rather than “P?”), though in
actual code this parameter will normally be implicit. The first line in the axiom

Communication and Synchronisation Using Interaction Objects 1327

commit sync

wv iv rv

write read

writer reader

Fig. 4. Model of an Observer

part of an operation schema can be read as its pre-condition and the rest as its
post-condition.

The full specification of observers is given below, where Process and Value
(the values of observers) are given sets.

Observer
writer , reader : Process
wv , iv , rv : Value

init
Observer
v? : Value

wv = iv = rv = v?

∆Observer
Observer
Observer ′

writer ′ = writer ∧ reader ′ = reader

write
∆Observer
P : Process
v? : Value

P = writer
wv ′ = v? ∧ iv ′ = iv ∧ rv ′ = rv

read
ΞObserver
P : Process
v ! : Value

P = reader
v ! = rv

1328 H.B.M. Jonkers

commit
∆Observer
P : Process

P = writer ∧ wv 6= iv
wv ′ = wv ∧ iv ′ = wv ∧ rv ′ = rv

sync
∆Observer
P ,Q : Process

P = reader ∧ Q = writer ∧ rv 6= iv
wv ′ = wv ∧ iv ′ = iv ∧ rv ′ = iv

We can easily verify that observers, as specified above, meet all requirements
of interaction objects. It is also quite simple to generalise this specification for
observers with multiple readers.

2.5 Basic Interaction Operators

When dealing with configurations of processes and interaction objects the picto-
rial representations used so far are somewhat clumsy. To represent such config-
urations, we introduce an additional graphical notation which is similar to the
one used in [9]. As illustrated in Figure 5, processes are represented by parallel-
lograms and interaction objects by rectangles. A line connecting a process P to

P2 P3P1 X3

X1

X2

Fig. 5. Configuration of Processes and Interaction Objects

an interaction object X indicates that P is attached to X , i.e., that there is some
form of interaction between P and X , by means of commits, syncs, or both. If
P is not attached to X , commitX ,P and syncX ,P ,Q are always disabled and can
therefore be ignored. The rectangles represent general interaction objects; we
will introduce special symbols for particular types of interaction objects. The
symbol for an observer, with multiple readers, is shown in Figure 6.

writer reader

observer

Fig. 6. Observer Symbol

Programming with interaction objects would be a nuisance if each interac-
tion had to be programmed in terms of calls of individual commit and sync

Communication and Synchronisation Using Interaction Objects 1329

operations. For example, all interactions in process P2, in Figure 5, would have
to be programmed in terms of the commits and syncs of interaction objects X1,
X2 and X3. Instead of this, we will define three basic interaction operators that
provide a general way to control interaction. In practice, one can even make it
impossible to access the individual commit and sync operations other than by
means of these interaction operators (as done in CoCoNut, see Section 3.4).

The first two interaction operators, called commit and sync, are more or less
obvious. When used in a process P , commit performs all enabled commits and
sync performs all enabled syncs on the interaction objects that P is attached
to. Use of commit and sync in a process P will be denoted as commitP
and syncP , respectively. So, when programming process P2 in Figure 5, the
programmer could perform a number of access operations on the interaction
objects X1, X2 and X3, and then use commit to make their effect visible to P1

and P3, or use sync to synchronise with any changes made by P1 and P3 to the
global variables in X1, X2 and X3.

Statically, i.e., in the process code, commitP introduces a single outgoing
interaction point and syncP introduces a single incoming interaction point in
P . Dynamically, both commitP and syncP may amount to the execution of a
sequence of individual atomic actions, and they may thereby introduce multiple
interaction points in P . For syncP , this is more or less natural since the indi-
vidual syncs executed by syncP are enabled asynchronously by the commits of
other processes. Even while executing syncP , new syncs may be enabled. In or-
der to avoid potential unboundedness in the execution of syncP , we will assume
that syncs that are enabled during the execution of syncP are ignored; they will
be executed in the next call of syncP .

For commitP , the situation is different. The set of commits that are executed
by commitP is fully predictable since these commits have been enabled by P
itself. Moreover, the order of execution of these commits is irrelevant since each
commitX ,P operates on a disjoint set of variables: it reads from inX ,P ∪ iavX ,P

and writes to iavX ,P . We will therefore assume that the commits executed by
commitP are executed in a single atomic action. This can be implemented in
an efficient way, as discussed in Section 3.4.

Both commit and sync are non-blocking operators. In order to provide a
general interaction mechanism, we also need some way to block a process, i.e.,
some way to introduce a synchronisation point in the code of a process. The
third interaction operator, called wait, does just that. When used in a process
P it will block P until at least one syncX ,P ,Q is enabled for some X and Q . Use
of wait in a process P will be denoted as waitP .

We will say that a process P is in sync with an interaction object X if
syncX ,P ,Q is disabled for all Q . Otherwise we will say that P is out of sync with
X . We will say that a process is in sync if it is in sync with all interaction objects
it is attached to. Otherwise we will say that it is out of sync. So, the effect of
waitP can also be described as “block P until it is out of sync”.

1330 H.B.M. Jonkers

The definitions of the three interaction operators are summarised below:

commitP : Perform all enabled commits of the interaction objects to which P
is attached in one atomic action.

syncP : Perform all enabled syncs of the interaction objects to which P is at-
tached, where each sync is an individual atomic action.

waitP : Block until at least one sync of an interaction object attached to P is
enabled.

2.6 Composite Interaction Operators

The three interaction operators defined above constitute a complete set in the
sense that, in combination with the proper interaction objects, they can be used
to define most of the standard communication and synchronisation mechanisms.
Rather than defining these mechanisms directly in terms of the basic interaction
operators, it is useful to use a few composite interaction operators. In defining
these operators, and also in the example process code, we will use C(++)-like
macro definitions, control structures and parameter passing conventions. We will
use “:=” rather than “=” as the assignment operator, and “=” rather than “==”
as the equality operator.

The first composite interaction operator is the next operator defined by:

#define next { commit; sync; }
It is typically used after a sequence of access operations S1; . . . ;Sn in a process
to make the effect of the operations globally visible and, at the same time, to
synchronise with global state changes of other processes. Note that the sequence
of actions:

S1; . . . ; Sn ; commit;

constitutes a single atomic state transition. The name of the next operator is
inspired by the similar nextstate operator of SDL [6]. That is, we can read it
as “finish the current atomic state transition, synchronise, and start with the
next”.

The second composite interaction operator is the parameterised await oper-
ator defined by:

#define await(C) { next; while(¬ C){ wait; sync; } }
await(C) will make a process wait until condition C becomes true. Any condi-
tion C is allowed, provided that only local variables of the process and side-effect
free access operations of objects are used in C . (We will weaken this restriction
later on.) The await operator provides what is known as condition synchronisa-
tion and can be seen as a restricted, though still fairly general form of the await
statement [1]. Unlike the general await statement, it can be implemented very
efficiently. All that is required is efficient implementations of the commit, sync
and wait operators (see Section 3.4).

Communication and Synchronisation Using Interaction Objects 1331

When executing await(C), a process P will perform a commit and then
repeatedly perform a sync, evaluate C , and call wait as long as C returns
false. Calling wait when C returns false is safe because C depends only on the
values of local variables in P . C can only become true due to the execution of
syncs that modify the local variables of P . If no sync is enabled, P can safely
block in wait until a sync is enabled. Note that C may be true temporarily
during the execution of a sync, while still being false immediately after the
execution of sync. However, if C finally becomes true it will still be true at the
beginning of the statement immediately following await(C). So, irrespective of
the condition C , the following assert statement will never fail:

await(C); assert(C);

In the examples discussed in the remainder of this paper, we will only use next
and await rather than commit, sync and wait. Strictly speaking, we could
even restrict ourselves to using await since next is equivalent to await(true).

3 Using Interaction Objects

3.1 Using the Interaction Operators

In order to demonstrate the use of the interaction operators we consider a simple
alarm control system (inspired by an example from [5]). The system should mea-
sure the temperature and humidity in a room every 50 and 100 ms, respectively,
and ring a bell while the temperature and humidity are in the unsafe range. The
predicate safe(t , h) indicates whether the combination of temperature t and
humidity h is in the safe range. We use three processes: measure temperature
and measure humidity to measure temperature and humidity, respectively, and
alarm control to control the alarm bell. The alarm control process can read the
temperature and humidity by means of two observers temp and humi , that are
written to by the two measurement processes (see Figure 7).

measure
temperature

alarm
control

measure
humidity

bell

temp

humi

Fig. 7. Temperature Humidity Alarm System

The code of the three processes is given below, where sleep(n) delays a pro-
cess for n milliseconds, and measure temp(&t) and measure humi(&h) perform
measurements of temperature and humidity and assign the measured values to
the variables t and h, respectively. The bell is represented by the variable bell
with two possible values: on and off . Initially the temperature and humidity are
in the safe range and the bell is off.

1332 H.B.M. Jonkers

#define T temp.read()
#define H humi .read()

measure temperature: measure humidity: alarm control :
Temperature t ; Humidity h; while(true)
while(true) while(true) { await(¬ safe(T ,H));
{ sleep(50); { sleep(100); bell := on;

measure temp(&t); measure humi(&h); await(safe(T ,H));
temp.write(t); humi .write(h); bell := off ;
next; next; }
} }

Informally we can argue the correctness of this program as follows. At the two
synchronisation points in the alarm control process, i.e., at the two occurrences
of wait in the await statements, the following invariant holds:

(¬ safe(T ,H) ∧ bell = on) ∨ (safe(T ,H) ∧ bell = off)

When blocked at one of its synchronisation points, the alarm control process
is in sync with the temp and humi observers and hence T and H are equal
to the measured temperature and humidity, respectively. So, as long as the
alarm control process is blocked, the system has the desired properties. As soon
as it gets out of sync because of changes of the measured temperature or humid-
ity, the process will de-block, re-synchronise and block again at either the same
or the next synchronisation point, thereby restoring the invariant. The blocking
will occur because syncs disable themselves and the two conditions in the await
operators are mutually exclusive. The assumption in all of this is, of course, that
the execution of the code in the body of the while loop of the alarm control pro-
cess takes substantially less time than the average time between two successive
“out of sync” events in the observers temp and humi (which is always ≥ 33 ms).
Note that the next operator in the measurement processes could be replaced by
commit.

3.2 Specifying Interaction Objects

In Section 2.4 we have already seen a specification of a simple interaction object.
Some of the more subtle details of specifying interaction objects will be illus-
trated here using the example of a mailbox. A mailbox is similar to a message
queue as discussed earlier (see Figure 2) in that it provides a way to pass mes-
sages from a sender process to a receiver process asynchronously. The difference
is that mailboxes satisfy the requirements of interaction objects, as reflected by
the model of a mailbox in Figure 8. The send and receive operations operate on
the local message queues sm and rm in the domains of the sender and receiver
processes, respectively. Interaction between sender and receiver occurs through
the global message queue im using commits and syncs.

We will allow mailboxes to be used simultaneously by multiple senders, lead-
ing to the generalised mailbox model indicated in Figure 9. In this model, each

Communication and Synchronisation Using Interaction Objects 1333

commit sync

im

send
receive

sender receiver

rmsm
length

Fig. 8. Model of a Mailbox with a Single Sender

sender process P has its own local and global message queues. This is repre-
sented in the formal specification of a mailbox below, by means of the functions
sm and im that map a sender process P to its associated message queues sm(P)
and im(P). In the specification we use the types Process and Message as given
sets.

send

commit sync

im1

send

receivesender1

receiver

rm

sm1

length

im2sm2sender2

Fig. 9. Model of a Mailbox with Multiple Senders

Mailbox
senders : F Process
receiver : Process
sm, im : Process 7→ seqMessage
rm : seqMessage

dom sm = dom im = senders

init
Mailbox

(∀P : senders • sm(P) = im(P) = 〈〉) ∧ rm = 〈〉

∆Mailbox
Mailbox
Mailbox ′

senders ′ = senders ∧ receiver ′ = receiver

1334 H.B.M. Jonkers

send
∆Mailbox
P : Process
m? : Message

P ∈ senders
sm ′ = sm ⊕ {P 7→ 〈m?〉a sm(P)} ∧ im ′ = im ∧ rm ′ = rm

receive
∆Mailbox
P : Process
m! : Message

P = receiver ∧ rm 6= 〈〉
sm ′ = sm ∧ im ′ = im ∧ rm ′ a 〈m!〉 = rm

length
ΞMailbox
P : Process
n! : N

P = receiver
n! = #rm

commit
∆Mailbox
P : Process

P ∈ senders ∧ sm(P) 6= 〈〉
sm ′ = sm ⊕ {P 7→ 〈〉} ∧ im ′ = im ⊕ {P 7→ sm(P)a im(P)} ∧ rm ′ = rm

sync
∆Mailbox
P ,Q : Process

P = receiver ∧ Q ∈ senders ∧ im(Q) 6= 〈〉
sm ′ = sm ∧ im ′ = im ⊕ {Q 7→ 〈〉} ∧ rm ′ = im(Q)a rm

In contrast with observers, it is not immediately clear that mailboxes satisfy all
requirements of interaction objects. The obvious way to define the sets of input,
interaction and output variables of a mailbox X is as follows:

inX ,P = if P ∈ senders then {sm(P)} else ∅
iavX ,P = if P ∈ senders then {im(P)} else ∅
outX ,P = if P = receiver then {rm} else ∅

In this definition we took the liberty of interpreting sm(P) and im(P) as indi-
vidual variables rather than as references to parts of the variables sm and im.

Communication and Synchronisation Using Interaction Objects 1335

The reason why the above definition does not work is that commitX ,P modifies
the variables in inX ,P , and syncX ,P ,Q modifies the variables in iavX ,Q . This is
not allowed according to the definition of interaction objects. It can be remedied
by transforming the above specification into another behaviourally equivalent
specification using a different set of variables, as sketched briefly below. We use
the method of “adding and removing variables” as described in [14, 20]. Step 1 is
to augment the model of a mailbox with three new variables: the input variable
st , the interaction variable it and the output variable rt .

Mailbox2
Mailbox
st , it , rt : Process 7→ seqMessage

dom st = dom it = dom rt = senders

The idea is to make st(P) equal to the trace of all messages sent to the mailbox
by process P , with commit making copies of st(P) in it(P) and sync making
copies of it(P) in rt(P). Step 2 is to augment the operation specifications ac-
cordingly, and prove the following mailbox invariant:

∀P : senders • st(P) = sm(P) a it(P) ∧ it(P) = im(P) a rt(P)

This invariant allows sm and im to be expressed entirely in terms of st , it and
rt . Step 3 is to eliminate all applied occurrences of sm and im by means of
replacements. Step 4 is to remove the now redundant defining occurrences of sm
and im from the model as well. The new definition of a mailbox, thus obtained,
satisfies all interaction object requirements, where:

inX ,P = if P ∈ senders then {st(P)} else ∅
iavX ,P = if P ∈ senders then {it(P)} else ∅
outX ,P = if P = receiver then {rt(P), rm} else ∅

3.3 Communicating Using Interaction Objects

We will use mailboxes to illustrate how interaction objects can be used to com-
municate between processes. The symbol for a mailbox is shown in Figure 10. A

sender receiver

mailbox

Fig. 10. Mailbox Symbol

sender process can send a message x to a mailbox mbx like this:

mbx .send(x); next;

1336 H.B.M. Jonkers

The receiver process can receive the message in a variable m like this:

await(mbx .length > 0); mbx .receive(&m);

Here we have assumed that the output parameter m!, in the specification of the
receive operation, has been implemented as a reference parameter. Compared
with the normal way of receiving a message from a message queue using a single
blocking call, the above may seem somewhat clumsy. This can be remedied
by implementing the precondition of receive as a boolean return value. If the
precondition is not valid, the operation returns false and has no side effect,
allowing a message to be received like this:

await(mbx .receive(&m));

This approach requires the use of assertions with side effects. A safe rule to
contain the negative effects of this is to require that the condition C in await(C)
has no effect when it returns false. This implies that, in the execution of the await
statement, the side effect will occur only once, i.e., when the assertion C returns
true.

Using or and and as conditional versions of the logical operators ∨ and
∧ (similar to the || and && operators in C), several standard communication
constructs can be defined directly in terms of the await construct. A process
that has to receive data from one of two mailboxes mbx1 and mbx2 can do so
by means of the following construct:

await(mbx1.receive(&m) or mbx2.receive(&m));

By adding guards and actions, this can be extended to a general guarded input
statement:

await((GUARD1 and mbx1.receive(&m) and ACTION 1)
or (GUARD2 and mbx2.receive(&m) and ACTION 2)
);

The only assumption we make here is that the guards have no side effect and that
the actions return true. By replacing mailboxes by interaction objects supporting
synchronous communication (such as CoCoNut channels, see Section 3.4), we can
even implement a rendezvous mechanism without introducing any additional
language constructs. The above guarded input statement then corresponds to
an Ada select statement.

In order to demonstrate what happens if multiple processes are concurrently
sending data to the same mailbox, consider a simple configuration of two pro-
ducers and one consumer, as depicted in Figure 11. Each producer repeatedly
sends a pair of consecutive numbers to the mailbox in a single atomic action.
The consumer also receives the natural numbers in pairs, as described by the
code of producers and consumer below.

Communication and Synchronisation Using Interaction Objects 1337

producer1

consumer

mbx

producer2

Fig. 11. Producers and Consumer

produceri (i = 1, 2): consumer :
int n := 0; int n1,n2;
while(true) while(true)
{ mbx .send(n); { await(mbx .length ≥ 2);

mbx .send(n + 1); mbx .receive(&n1);
next; mbx .receive(&n2);
n := n + 1; assert(n2 = n1 + 1);
} }

It is easy to infer from the specification of mailboxes that, despite the fact that
the individual send operations of the producers are interleaved, the consumer will
always receive pairs of two consecutive numbers. Hence, the assert statement
in the consumer code will never fail. Though not advisable from the point of
view of defensive programming, we could even replace the await statement in
the consumer code by:

await(mbx .length > 0);

3.4 Implementing Interaction Objects

In discussing the implementation of interaction objects, we will restrict ourselves
to the situation that all processes execute in the same address space, i.e., that
processes are threads. This situation is typical for embedded systems in the con-
text of which the concept of an interaction object originated. Embedded systems
often use real-time kernels to provide basic thread management, synchronisation
and communication. Implementing interaction objects in distributed systems is
a separate story that will not be discussed here.

The implementation problem of interaction objects is essentially the problem
of implementing the three interaction operators commit, sync, and wait. First
consider the problem of guaranteeing the atomicity of commit and the individ-
ual syncs executed by sync. This problem can be solved by associating a mutual
exclusion mechanism with each process P . When executing commit, P uses this
mechanism to disable access to all of its associated interaction variables, i.e., the
variables in the sets iavX ,P for all X attached to P (see Figure 3). Another
process Q executing syncX ,Q,P uses the same mechanism to disable access to
the variables iavX ,P .

1338 H.B.M. Jonkers

The mutual exclusion mechanism can be chosen per process. Mutexes and
pre-emption disabling are typical choices, while interrupt disabling can be used
for interrupt service routines (ISRs). Note that, insofar as interaction objects
are concerned, we can treat ISRs as normal processes, even though they are
dealt with differently at the operating system level. For non-ISR processes, pre-
emption disabling is often a good choice because commits and syncs are nor-
mally very short actions. For example, in a typical mailbox implementation, they
amount to append operations on linked lists.

The problem of how to determine which commits and syncs should be exe-
cuted by commit or sync can be solved by introducing flags cX ,P and sX ,P ,Q

for each commitX ,P and syncX ,P ,Q , respectively, while maintaining the following
invariant:

commitX ,P is enabled ⇒ cX ,P is set
syncX ,P ,Q is enabled ⇒ sX ,P ,Q is set

According to the definition of an interaction object, only the access operations of
X can enable commitX ,P , so access operations of X should set cX ,P when called
by P . Likewise, only commitX ,Q can enable syncX ,P ,Q , so commitX ,Q should set
sX ,P ,Q when called by Q . commit and sync can use the flags to determine which
commits or syncs to execute. They should clear a flag immediately before the
execution of the corresponding commit or sync. This cannot violate the invariant
because of the self-disabling property of commits and syncs. wait can use the
sX ,P ,Q flags to determine whether a process should be blocked or de-blocked,
without affecting the flags themselves. Note that there could be situations where
a flag is set while the corresponding commit or sync is disabled. This can do no
harm provided that disabled commits and syncs have no effect when executed.
Note also that in a real implementation, it is more efficient to use lists of function
pointers rather than flags (similar to active messages [10]).

The CoCoNut component [16], developed by Philips Research, provides a full
implementation of interaction objects along the lines sketched above. CoCoNut
(“Control Component in a Nutshell”) is a scalable, platform-independent soft-
ware component defining an operating system abstraction on top of which appli-
cations using interaction objects can be developed. It provides implementations
of the interaction operators and a number of interaction objects such as ob-
servers (see Section 2.4), mailboxes (see Section 3.2), events (asynchronous push
buttons), channels (one-slot buffers supporting synchronous communication),
buffers (multi-slot bounded communication buffers), locks (mutexes according
to the interaction object model), and timers (programmable objects supporting
timed actions). In addition to this, CoCoNut supports dynamic creation of in-
teraction objects, dynamic attachment of processes to interaction objects, and
facilities for the construction of custom-made interaction objects.

Another feature of CoCoNut is the support for organising applications as
collections of communicating state machines, with the ability to allocate state
machines to processes at compile time. This allows systematic task inversion [9]
which is important in resource-constrained embedded systems that can only
afford a small number of processes. In the extreme case that all state machines

Communication and Synchronisation Using Interaction Objects 1339

are allocated to the same process, a single-process version of CoCoNut can be
used requiring no real-time kernel. Kernel-based applications of CoCoNut should
nevertheless be preferred since they can take full, real-time advantage of the loose
process coupling provided by interaction objects, using the pre-emptive priority-
based scheduling support of the kernel. In practice, CoCoNut has been used both
with and without real-time kernels.

3.5 Verifying Programs That Use Interaction Objects

Programs that use interaction objects can be verified using standard verification
techniques for concurrent programs such as [7, 18, 17]. The verification task is
simplified because these programs, if properly designed, can be dissected into
relatively large pieces of atomic code. We exemplify this by sketching how a
program that uses interaction objects can be mapped to a transition system,
thus enabling the use of standard techniques for proving properties of transition
systems (see [23], for example).

We will assume that programs use await and next as interaction operators
only, and that all conditions in await statements are free of side effects. With the
await and next macros expanded, the code of each process consists of atomic
sequences of statements ending in commit, where each commit is followed by
one or more executions of sync. For example, the code of the alarm control
process from the temperature/humidity alarm system in Section 3.1 expands,
with some rewriting, to:

commit;
while(true)
{ sync; while(safe(T ,H)){ wait; sync; }; bell := on; commit;

sync; while(¬ safe(T ,H)){ wait; sync; }; bell := off ; commit;
}

Using an auxiliary control variable to model the program counter, code like this
can be mapped in a standard way to a transition system. In this case we do not
even need the auxiliary variable because the bell variable, whose initial value
is false, can be used as the control variable. In programs that use interaction
objects, the transitions will be of two types: outgoing transitions (the ones ending
in commit) and incoming transitions (the individual syncs contained in sync).
We can ignore the occurrences of wait because they are only there to keep the
program from useless busy waiting. Since the sync operator is used between
all outgoing transitions, we decouple the incoming transitions from the control
flow and treat the syncs as autonomous transitions in the transition system. For
example, the alarm control process breaks down into the following transitions:

bell = off ∧ ¬ safe(T ,H)→ bell := on; commitPA ;
bell = on ∧ safe(T ,H)→ bell := off ; commitPA ;
enabled(synctemp,PA,PT)→ synctemp,PA,PT ;
enabled(synchumi,PA,PH)→ synchumi,PA,PH ;

1340 H.B.M. Jonkers

Here PA, PT and PH represent the alarm control , measure temperature and
measure humidity processes, respectively. The part on the left-hand side of an
arrow is the enabling condition of the transition, and the part on the right-hand
side is the atomic action of the transition. Using the formal specifications of the
interaction objects, the transition rules can be expressed in terms of operations
on variables and can be further simplified. For example, the input variables of
interaction objects can generally be completely eliminated. In the above case,
the occurrences of commitPA can even be omitted because they have no effect.

The decoupling of synchronisation actions from the control flow in the above
mapping of programs to transition systems implies that we are actually using
a more nondeterministic of version of the sync operator than the one defined
in Section 2.5. Rather than assuming that sync executes all enabled syncs in
a process, we assume that it executes some enabled syncs, where “some” could
be anything between none and all. Fairness is assumed in the sense that an
enabled sync will eventually be executed. This is the natural interpretation of the
sync operator in a distributed setting. We prefer this interpretation in proving
properties of programs, since it leads to simpler transition systems and wider
applicability of programs. As a consequence, we should design our programs in
such a way that their desired properties can be proven irrespective of the order of
execution of the synchronisation actions. Note that if timing is important, as in
the temperature/humidity alarm system, time steps can be added as transitions
to the transition systems leading to a timed transition systems approach [11].

4 Related Work

In this section, we compare our concurrent system model (processes communi-
cating by means of interaction objects) to related approaches. A common aim
of our model and more fundamental models, such as transition systems [18, 7]
and action systems [2], including language outgrowths such as Seuss [19] and
DisCo [13], is to support the use of sequential techniques in dealing with concur-
rent systems, based on an interleaving model of concurrency. The link with tran-
sition systems was already discussed in Section 3.5. In terms of action systems,
access operations of objects would be private actions and interaction operations
would be joint actions of processes. The difference is that we restrict ourselves
to very special types of joint actions (commits and syncs) allowing the definition
of general interaction operators that can be inserted in the control flow of a
process. Neither transition systems nor action systems consider processes at the
level of control flow.

Interaction operators similar to the ones defined in this paper can be found,
for example, in the Mianjin language [21] and in SDL [6]. Mianjin is a parallel
programming language supporting the concept of global objects and the ability
to call methods of global objects asynchronously from different processes. The
process owning the global object will not be interfered with until it calls the
poll operator, which has a similar effect as a sync operator in that it executes
all pending global method calls and thereby introduces an incoming interaction
point in the process. The main differences are that sync is more restricted than

Communication and Synchronisation Using Interaction Objects 1341

poll since it executes synchronisation actions only, and that there is no equivalent
of the commit operator in Mianjin.

As already noticed in Section 2.6, the nextstate operator of SDL is similar
to the next interaction operator. SDL is a concurrent programming language
supporting state machines that communicate asynchronously using “signals”.
At the beginning of a transition, a state machine can receive signals and during
the transition it can send signals. The nextstate operator is used to terminate
a transition. This can conceptually be seen as “committing” any pending out-
put and “synchronising” to new input, before going to the next transition. The
model defined in this paper is more general than the SDL programming model
in that it allows state machines to communicate using any type of communica-
tion mechanism (interaction object). During a transition, a state machine can
perform arbitrary input and output actions (access operations on interaction
objects) without the danger of affecting the atomicity of the transition.

Monitors [3, 12, 4] and interaction objects are similar in the sense that both
define an abstraction mechanism for concurrent access to data. There is one es-
sential difference: in monitors all interaction between processes accessing the data
is controlled from within the monitor. Synchronisation is controlled internally
e.g. using condition variables, implying that monitor operations are generally
blocking operations. In contrast, the operations of an interaction object do not
contain interaction points at all except for the two interaction operations commit
and sync which are non-blocking. All interaction between processes is controlled
outside an interaction object by means of three basic interaction operators. This
has a number of consequences. First of all, processes can use a general form
of condition synchronisation, using the await operator, instead of the dedicated
condition synchronisation implemented by a monitor. Secondly, processes can de-
fine synchronisation conditions that involve multiple interaction objects. With
monitors this is not possible because monitor operations may block. Finally, in-
teraction objects are simpler to specify and verify than monitors: they can e.g.
be specified completely using pre- and post-condition techniques.

5 Conclusion

We conclude by recapitulating some of the salient features of the model of com-
munication and synchronisation introduced in this paper. The key characteristic
of this model is the strict separation of process interaction and data access as
reflected in the definition of an interaction object. All process interaction is
established by means of three interaction operators and all data access is non-
interfering. As a consequence of this separation of concerns, programmers get
full control over the interaction points in their programs and can deal with data
access using standard sequential techniques. Furthermore, various standard ways
of communication and synchronisation can be be modelled directly in terms of
combinations of interaction operators and interaction objects. The model can
be implemented in an efficient and platform-independent way, as demonstrated
by the CoCoNut component [16]. Distributed implementations of interaction
objects have not been discussed in this paper and are subject of future work.

1342 H.B.M. Jonkers

References

[1] Andrews, G.R., Concurrent Programming, Benjamin/Cummings (1991).
[2] Back, R.J.R., Kurki-Suonio, R., Distributed Cooperation with Action Systems, ACM

Transactions on Programming Languages and Systems, Vol. 10, 4 (1988), 513–554.
[3] Brinch Hansen, P., Operating System Principles, Prentice-Hall (1973).
[4] Buhr, P.A., Fortier, M., Coffin, M.H., Monitor Classification, ACM Computing

Surveys 27, 1 (1995), 63–107.
[5] Bustard, D., Elder, J., Welsh, J., Concurrent Program Structures, Prentice Hall

(1988).
[6] CCITT Recommendation Z.100: Specification and Description Language SDL, Blue

Book, Volume X.1–X.5, ITU (1988).
[7] Chandy, K.M., Misra, J., Parallel Program Design, Addison Wesley (1988).
[8] Feijs, L.M.G., Jonkers, H.B.M., History, Principles and Application of the SPRINT

Method, Journal of Systems and Software 41 (1998), 199-219.
[9] Gomaa, H., Software Design Methods for Concurrent and Real-Time Systems,

Addison-Wesley (1993).
[10] von Eicken, T., Culler, D., Goldstein, S.C., Schauser, K.E., Active Messages: a

Mechanism for Integrated Communication and Computation, in: Proceedings of
the 19th International Symposium on Computer Architecture (1992).

[11] Henzinger, T.A., Manna, Z., Pnueli, A., Timed Transition Systems. In: Real-Time:
Theory in Practice, Lecture Notes in Computer Science, Vol. 600, Springer-Verlag
(1992), 226–251.

[12] Hoare, C.A.R., Monitors: An Operating System Structuring Concept, Communi-
cations of the ACM, Vol. 17, 10 (1974), 549–557.

[13] Järvinen, H.-M., Kurki-Suonio, R., DisCo specification language: marriage of ac-
tions and objects. In: Proceedings of the 11th International Conference on Dis-
tributed Computing Systems, IEEE Computer Society Press (1991), 142–151.

[14] Jonkers, H.B.M., Abstraction, Specification and Implementation Techniques,
Mathematical Centre Tracts, Vol. 166, Mathematisch Centrum (1983).

[15] Jonkers, H.B.M., An Overview of the SPRINT Method. In: Woodcock, J.C.P.,
Larsen, P.G. (Eds.), Industrial Strength Formal Methods, Lecture Notes in Com-
puter Science, Vol. 670, Springer-Verlag (1993), 403-427.

[16] Jonkers, H.B.M., Survey of CoCoNut 1.0, Technical Report RWB-506-ir-96022,
Philips Research, Information and Software Technology (1996).

[17] Lamport, L., The Temporal Logic of Actions, ACM Transactions on Programming
Languages and Systems, Vol. 16, 3 (1994), 872–923.

[18] Manna, Z., Pnueli, A., The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag (1992).

[19] Misra, J., An Object Model for Multiprogramming, Proc. 10th IPPS/SPDP 98
Workshops, Jose Rolim (ed.), Lecture Notes in Computer Science, Vol. 1388,
Springer-Verlag (1998), 881–889.

[20] Morgan, C., Programming from Specifications, Prentice Hall (1990).
[21] Roe, P., Szyperski, C., Mianjin is Gardens Point: A Parallel Language Taming

Asynchronous Communication. In: Fourth Australasian Conference on Parallel and
Real-Time Systems (PART’97), Springer-Verlag (1997).

[22] Schneider, F.B., On Concurrent Programming, Springer-Verlag (1997).
[23] Shankar, A.U., An Introduction to Assertional Reasoning for Concurrent Systems,

ACM Computing Surveys, Vol. 25, 3 (1993), 225–262.
[24] Spivey, J.M., The Z Notation: A Reference Manual, Second Edition, Prentice Hall

(1992)

Modelling Microsoft COM Using π-Calculus

Loe M.G. Feijs

Philips Research Laboratories and EESI TUE
feijs@natlab.research.philips.com and feijs@win.tue.nl

Abstract. We use the π-calculus to model aspects of Microsoft’s COM
architecture. The paper introduces certain aspects of COM, first using
IDL and C++, and then using a sugared version of the π-calculus (with
numbers and lists added). Most of the complexities arise in dynamic in-
terface management. We explore using the reduction rules of the calculus
to show that two components (a stack and stack-observer) do indeed con-
nect to each other in the required manner.

1 Introduction

There is considerable experience with using formal techniques for modelling and
analysis of classical communication protocols, by which we mean those proto-
cols which deal with such issues as splitting and assembling protocol data units,
error control and flow control. Languages like CCS [1], ACP [2], LOTOS [3],
PSF [4], SDL [5], MSC [6] etc. have proven to be useful for this. The compo-
nent technology [7, 8] which is emerging presently, brings with it protocols of a
slightly different type: they are concerned with dynamic binding and with ne-
gotiating about a component’s capabilities. Configurations change dynamically
and processes not only exchange data, but they also exchange link-names.

Therefore we consider it worthwhile to experiment with the π-calculus [9],
which provides precisely this extra expressive power. We apply the π-calculus
to key aspects of one of the most successful component technologies presently
available: Microsoft’s Component Object Model (COM) [10]. This is the basic
technology which makes it possible, among other things, to perform run-time ne-
gotiations and establish run-time bindings. COM is the basis of what Microsoft
calls Active-X, whose forerunner was called OLE (Object Linking and Embed-
ding) [11]. It is Active-X or OLE which allows to copy-paste a bitmap made by
MS-Paint into a MS-Word document, and then find that when the bitmap is
embedded in the Word document, it still can be edited in a wysiwyg style.

Survey of the paper : in Sect. 2 we present a brief discussion of the relevance of
component technology and introductory remarks on Microsoft COM. In Sect. 3
we present a summary of the π-calculus. In Sect. 4 we present the principles of
our approach to modelling COM using π-calculus. Sects. 5 and 6 together form
the first part of our case study: the former explaining concrete aspects of COM
for a component MyStack by using only IDL and C++ as notations, the latter
section describing precisely the same aspects but using π-calculus instead of
IDL and C++. Then in Sect. 7 we discuss the key aspect of COM (manipulating

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1343–1363, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1344 Loe M.G. Feijs

interface pointers) and in Sect. 8 we extend the formal π-calculus model in order
to properly deal with these key aspects of COM as well. A sample calculation
using the rules of π-calculus is given in Sect. 9. Finally Sect. 10 contains some
concluding remarks. The paper demands no a-priori knowledge of COM or π-
calculus: Sects. 5 and 7 introduce COM and Sect. 3 summarises the π-calculus.

Acknowledgements: the author would like to thank Hans Jonkers for the help
and cooperation on the subject of this paper; the author also wants to thank the
anonymous referees for their helpful comments.

2 Component Technology

The idea of component technology is that custom programs are composed from
reusable parts that serve to perform certain sub-tasks. In the model proposed by
Microsoft, components are reused in binary executable form. It includes a binary
interfacing mechanism which lets components communicate with each other in
an open system. There is a need to add components to an open system and to
add new interfaces to a system. The connection and communication mechanisms
are standardised and do not depend on the specific interfaces themselves. The
set of components in a system can change over time. So there are situations
where a newer component that is capable of exploiting a certain new interface
encounters an old component that does not know about this new interface. For
this purpose there is a negotiation mechanism in COM by which one component
or application can find out if a desired interface is supported by another compo-
nent. It makes sense to think of interfaces as formal legal contracts. Implementers
must make sure their implementations meet the contracts. In COM, contracts
are identified by interface identifiers (IIDs). When components are enhanced,
they get new interfaces, while preserving possibly some of the older interfaces.
It is also possible to remove some of the older interfaces. The interfaces them-
selves are not changed. Each IID identifies a contract which may or may not be
supported by a given component (or better, by a given object; in this paper we
do not go into the distinction between components and objects). Once the IID
is fixed and released, no one is supposed to make even the smallest modifica-
tion to the signature or the semantics of the interface. The signature is fixed by
means of the language IDL. Although most of the COM literature insists that
the semantics of the interfaces for a given IID be fixed, there is no dedicated
specification language for COM and often the semantic aspects of the contracts
are not formally specified. Williams in [12] provides an exposé of the ideas of
system evolution underlying COM (this paragraph is based on Williams’ text).

The internal operation of a COM component is hidden because COM is a
binary standard. A COM component is obtained by compilation of for example,
a C++ program, or a Java program. The source code is not released for distri-
bution. Usually only the compiled version, i.e. the machine code is released. It is
not possible to read to or write from a component’s data structures directly. All
access must be done via procedure calls. This approach preserves the freedom for
choosing another data structure in a next version of the component. Secondly, it

Modelling Microsoft COM Using π-Calculus 1345

is relatively easy to replace a local function call by a call to a stub, which at its
turn executes an RPC (remote procedure call). This kind of replacement, which
is easy for procedure calls, would not be so easy to realise for direct access to
data structures.

All functions (procedures) are grouped into so-called interfaces. An interface
is a set of functions whose semantics is somehow related. This resembles the
well-known concept of ‘signature’ from the theory of algebraic datatypes. An
interface however only contains functions, no abstract types. There are auxiliary
types such as void, long, etc, and also “struct”s or other interface types; but the
main type, the component’s type itself remains implicit. Usually a component has
several interfaces (which is an important difference with algebraic data types).

3 The π-Calculus

The π-calculus was proposed by Milner, Parrow and Walker in 1992. It is also
called ‘a calculus of mobile processes’, but actually no processes are moved
around, only the identities of the ports of the processes can be communicated
from one process to another. The π-calculus has a certain simplicity which comes
from the fact that all distinction between variables and constants has been re-
moved. The main idea is that the calculus is like CCS, except for the fact that
not only values are communicated, but also port identifiers.

A very brief summary of the calculus is given here. If p is a port, then pv . P is
the process which sends value v along port p and then proceeds as P . Conversely,
p(x) . Q is the process which receives a value over port p, binds the value thus
received to x, and proceeds as Q. In the body Q, this x may be used. The special
thing about π-calculus is that port identifiers may be sent and received as well.
For example q(p) . pv . R is the process which receives port identifier p via port
q, and then uses this p for sending something else, viz. v (and proceeds as R).

Further operators of the π-calculus include + for alternative composition, |
for parallel composition, recursive definition, inaction 0, silent step τ , matching
prefix [x = y] and binding prefix (x). The main rule of computation is that
(... + yx.P + ...) | (... + y(z).Q + ...) τ−→ P |Q{x/z}.

4 Modelling Approach

The main modelling techniques that we propose and that we shall put into action
in Sects. 6 and 8 are the following:

– invocation of a procedure with n input and m output parameters is modelled
by n + 1 send actions followed by m receive actions. HRESULT (handle to a
result) and call-by-reference parameters are treated in the same way.

– interface pointers are modelled as π-calculus ports, for example if the one-
argument procedure p belongs to interface i, then invoking p is modeled as
ip . ia . i(h) . · · · . So p is the procedure’s name, a is its input argument and
h is the result (of type HRESULT).

1346 Loe M.G. Feijs

– the state-based behaviour of the component is modelled by recursive equa-
tions where the various parts of the state are parameters.

5 The ‘Interface’ Concept of COM

Our example is about a stack. We begin with its main interface (the push and
pop behaviour). Each interface has a name. In COM this name always starts
with a capital I. So we assume that the usual push and pop functions are inside
IManipulate. There is a language for describing interfaces called IDL (Interface
Definition Language). For the first interface, we assume a few auxiliary types:

– HRESULT, whose value set has 232 elements, among which are S_OK, S_FALSE,
E_NOINTERFACE, E_NOTIMPL and E_FAIL.

– The set ITEM (the values that will be pushed onto the stack), with a value
set which is considered not being interesting now (32 bits integers).

For the purpose of classifying the obtained HRESULT values there are two auxil-
iary functions, FAILED(...) and SUCCEEDED(...), which we fix for the time
being by means of equations: FAILED(S_OK) = FALSE, FAILED(S_FALSE) =
FALSE, FAILED(E_NOINTERFACE) = TRUE, etcetera. Generally FAILED(S_...)
= FALSE and SUCCEEDED(S_...) = TRUE. Conversely FAILED(E_...) = TRUE
and SUCCEEDED(E_ ...) = FALSE.

Now we are ready to present our first interface definition in IDL (we have
left out a few things, viz. [in], [out] which serve for classifying parameters,
and :IUnknown, which indicates inheritance on interfaces).

interface IManipulate

{

HRESULT clear();

HRESULT is_empty();

HRESULT push(ITEM i);

HRESULT pop(ITEM *retval);

}

First we discuss the syntax of this specification. The first word, “interface”
is a key-word. The second word, “IManipulate” is the name that is given to
the newly defined interface. Thereafter, between “{” and “}” there is a set of
four function headers. These function headers are denoted with a syntax which
resembles C or C++. Recall that in C and C++ declarations always mention the
type first, followed by the name of the variable or parameter of that type. So for
example HRESULT push(ITEM i); means that push is a function that takes an
ITEM value and that yields a HRESULT value. Please note that push is a function
in the sense of the programming languages C and C++, that is, a procedure
with side-effect. The IDL description only contains signature information; in
particular, it does not say which variables are assigned to. For is_empty we can
use the distinction between S_OK and S_FALSE to indicate whether the stack is
empty (S_OK) or not empty (S_FALSE). Usually this is not recommended, but it

Modelling Microsoft COM Using π-Calculus 1347

is possible. Also note the asterisk in (ITEM *retval): the C or C++ conventions
apply. So this function has to be called having as its argument a pointer to a
variable in which an ITEM will fit. This variable could be called retval. In that
case &retval is a pointer to this variable. Therefore the call pop(&retval) has
the effect that upon return we find that retval contains the ITEM value which
was first on top of the stack (assuming that HRESULT delivered the value S_OK).

If we have a stack object, we can perform push and pop operations, etc. But
we shall never have objects as such; we will only have direct access to pointers
which refer to interfaces. These interface pointers can be dereferenced (which
gives us interfaces), and by using an interface we can call clear, is_empty,
push and pop. Suppose for example that ps is a pointer to an IManipulate
interface of a component with stack behaviour, then we can run the following
fragment of C++ (if we prefer Java we have to write “.” instead of “->”). So
this is code of some component or application which has to use a stack.

HRESULT hr;

ITEM i,retval;

BOOL test = FALSE;

hr = ps->clear();

if (SUCCEEDED(hr))

{

hr = ps->push(i);

if (SUCCEEDED(hr))

{

hr = ps->pop(&retval);

if (SUCCEEDED(hr))

{

test = (retval == i);

} else // failed to pop

} else // failed to push

} else // failed to clear

6 Modelling Interface Behaviour in π-Calculus

We show a recursive definition of a process MyStack which models the interface
behaviour of the IManipulate interface. It is based on the principles of Sect. 4.

The state-based behaviour of the various components is modelled again by
recursive process equations where the various parts of the state are carried along
as parameters of the processes. Although the pure π-calculus does not provide
for built-in data types and process parameters, we assume that these can be
simulated thanks to the power of the π-calculus (which is known to simulate full
λ-calculus). We assume additional operators <>, <.> and ++ for lists of items.
Here <> denotes the empty stack, <.> is the operator which makes a one-element
list, and ++ denotes concatenation.

The process MyStack has two parameters. The first of these, pIman, models
the interface pointer along which all communication takes place. The second
parameter is the contents of the stack.

1348 Loe M.G. Feijs

MyStack(pIman,<>) =

(pIman (f) .

([f = clear] .

pIman S OK .

MyStack(pIman,<>)

+ [f = is empty] .

pIman S OK .

MyStack(pIman,<>)

+ [f = push] .

pIman (j) .

pIman S OK .

MyStack(pIman,<j>)

+ [f = pop] .

pIman E FAIL .

MyStack(pIman,<>)

))

MyStack(pIman,<i>++s) =

(pIman (f) .

([f = clear] .

pIman S OK .

MyStack(pIman,<>)

+ [f = is empty] .

pIman S FALSE .

MyStack(pIman,<i>++s)

+ [f = push] .

pIman (j) .

pIman S OK .

MyStack(pIman,<j>++<i>++s)

+ [f = pop] .

pIman S OK .

pIman i .

MyStack(pIman,s)

))

There is nothing special about this model yet. It could be written in CCS or any
process algebraic formalism. But in the next section we present other aspects
and other examples in COM, the modelling of which becomes more interesting.

7 Manipulating COM Interface Pointers

An important question to be addressed now is: “how do we get an interface
pointer of a stack”? There are two answers: (1) get it from somebody else, (2)
create it yourself.

For the first case (got it from somebody else) it is best to first perform
some querying in order to make sure that we have a valid interface pointer
of the desired interface identifier (IID); there is a general mechanism for that.
For a given interface pointer it is possible to ask in a dynamic way whether

Modelling Microsoft COM Using π-Calculus 1349

its component has an interface with IManipulate behaviour (that is, whether
the component implements stack behaviour). This asking in a dynamic way is
important because objects are created in a dynamic way, on different machines,
possibly from different or even incompatible component versions. So it is very
essential first to find out more about the component behind a given pointer. This
asking/testing mechanism makes it possible to obtain other interface pointers
once we have the first one that belongs to a certain component. The mechanism
is implemented as a procedure which is called QueryInterface.

For the second case it is possible to get hold of an interface pointer via a so-
called “factory”. Once we have the first, we can use QueryIterface to get the
others. First we discuss the QueryInterface mechanism. Each component sup-
ports one interface that is obligatory: IUnknown. Later we shall show more of our
component MyStack which happens to have three interfaces. These will be called
IUnknown, IManipulate and IOverflow (see figure). The interface IUnknown has
to be supported by every component. There is no language construct to express
that MyStack has these three interfaces.

,0DQLSXODWH

,8QNQRZQ

V�0\6WDFN
,2YHUIORZ

Fig. 1. MyStack object having three interfaces.

MyStack is a concrete component which contains a ‘class’, of which instances
can be created. In Figure 1 we show an instance (which is why we underlined
s:MyStack). The asking/testing mechanism is provided by IUnknown, which has
the following IDL:

interface IUnknown

{

HRESULT QueryInterface(REFIID iid, void** ppv);

HRESULT AddRef();

HRESULT Release();

}

REFIID is the type of pointers to IID, where IID is the type of interface iden-
tifiers. Interface identifiers are statically determined identifications. Note: this
iid must be viewed as an input parameter; the fact that REFIID is a pointer
itself is only an efficiency trick which amounts to a call-by-reference mechanism.
The second parameter yields an untyped pointer (an interface pointer). This
QueryInterface function embodies the mentioned asking/testing mechanism.

1350 Loe M.G. Feijs

What comes next is an intermezzo about interface identifiers and interface
pointers. Interface pointers indicate specific instances of interfaces, associated
with corresponding object instances, whereas interface identifiers effectively give
the “type” of the interface. An interface identifier is obtained statically using a
special number generator (uuidgen, to be run by the interface designer, no cen-
tral registering). This could yield 6A92D9A0-C04D-11D3-A11B-00A024674DFA for
IManipulate. In the same way IUnknown has its own interface identifier, but this
is always the same, on all machines, viz. 00000000-0000-0000-C000000000000046.
This takes care of all numbers being unique. Using the number generator at
another point in time or at another machine yields a different number. This
number 00000077-0000-0000-C000-000000000048 could be the IID that belongs to
all IManipulate interfaces. If we have ten stacks then we have 30 interfaces:
ten of the first IID (00000000-0000-0000-C000-000000000046), and ten of the IID
of IManipulate, and yet another 10 of that of IOverflow. But all 30 of them
have another interface, and hence another interface pointer.

Next we put the asking/testing mechanism into operation. Let us presuppose
constants for the interface identifiers, typically fixed by a #define IID_IUNKNOWN
00000000-0000- 0000-C000-000000000046, etc. Now assume that the factory
has given us a pointer, pStack say, as in the following program fragment:

void* pStack;

pStack = ... // from the factory

Then we can test pStack by asking if indeed the IID of IUnknown is known.

void* pStack_;

HRESULT hr;

hr = pStack->QueryInterface(IID_IUNKNOWN, &pStack_);

If hr equals S_OK, or if it is one of the other S_ values, then we know that
we have got an IUnknown interface pointer. Besides that, QueryInterface also
provides a result, in this case in pStack_, and if all is right, this is again a
pointer to the same interface as pStack. Although this was a nice test, it does
not seem to advance us much. So next we shall use QueryInterface to obtain a
pointer to another interface, IManipulate. This works the same as just before:
call QueryInterface, but now giving it the IID (obtained once from the special
number generator) of IManipulate

void* pIman;

HRESULT hr;

hr = pStack->QueryInterface(IID_IMANIPULATE, &pIman);

If hr equals S_OK, or one of the other S_ values, then we know that in pIman we
have got an IManipulate interface pointer. We may assume that a stack has been
created (or at least something else that implements IManipulate behaviour).
Now we are ready to use this object.

hr = pIman->clear();

hr = pIman->push(i);

hr = pIman->pop(&retval);

Modelling Microsoft COM Using π-Calculus 1351

This was quite involved, but the advantage is that, starting from a suspect
pointer, which may or may not come from the appropriate “factory”, we have
verified that it belongs to an object with stack behaviour. And in this way we
arrived at functions for which there is no more reason to doubt that they will
meet our expectations.

Now let us have a look at the third interface of MyStack, the IOverflow.
The idea is that it is employed for connecting “callbacks”. We imagine that
heavy usage of the push operation (much more push’es than pop’s) could lead to
an overflow of the stack. In fact, each stack has only a limited memory capacity
(1000 items say) and if this is exceeded, the normal stack behaviour can no longer
be guaranteed. It should be tried to prevent this, which is better than trying
to restore a stack where the damage has already occurred. Therefore we assume
that there is another component, for example called MyStackObserver, which
has to be warned whenever the threat for overflow occurs (MyStackObserver
is only a concrete example, in fact we are concerned with the general idea of a
component which observes a stack). Of course it would be possible to have the
calls of the observer’s procedures “hard-coded” in MyStack. But assume that we
refrain from doing so, and instead of that let us demand that objects with stack
behaviour work for arbitrary observers, not just this specific MyStackObserver.
So an arbitrary component must be able to subscribe to warnings concerning
stack overflow. Therefore such an object (e.g. MyStackObserver) must tell the
object with stack behaviour which procedure must be called if an overflow threat
occurs and which procedure must be called if an overflow happened nevertheless.
In this context we call these procedures of the observer “callback procedures”. In
general there may be several callbacks procedures; it is COM-style to group them
into an interface. In our running example we choose for naming this interface
IStackObserver; it has to be implemented by MyStackObserver.

In this example we want two call back procedures, onStackHalfFull() for
when the stack is about half full and onStackOverflow() for handling a real
overflow. We give the IDL description of this interface:

interface IObserver

{

HRESULT onStackHalfFull();

HRESULT onStackOverflow();

}

MyStackObserver has to “inform” the stack object of these two procedures,
but it will not do so for each procedure separately. It does so in a single step,
namely by sending its IStackObserver interface pointer to the object with stack
behaviour. Now the problem of “informing” has been reduced to transferring an
interface pointer. That is easy if we choose the IOverflow interface as follows:

interface IOverflow

{

HRESULT subscribe(int p, IStackObserver* obs);

HRESULT unsubscribe(IStackObserver* obs);

}

1352 Loe M.G. Feijs

The parameter p of subscribe indicates at which percentage of the stack space
the warning is generated. For example if p equals 50 then the warning will come
when precisely half of the available stack space has been used up. Now the
intention of all this is that two component instances will get connected as shown
in Figure 2 below.

,6WDFN2EVHUYHU

��R�0\6WDFN
����2EVHUYHU

,2YHUIORZ

,8QNQRZQ

���V�0\6WDFN

,8QNQRZQ

,0DQLSXODWH

Fig. 2. MyStackObserver and MyStack coupled.

The arrow from MyStack to the lollipop of IStackObserver indicates that
object s, being an instantiation of component MyStack can perform calls to
procedures of the object IStackObserver. Whereas IOverflow is an incoming
interface of the object with stack behaviour, we say that IStackObserver is
an outgoing interface of it. Somewhere in the initialisation of MyStackObserver
there is a call of subscribe(...) as we shall show in the corresponding program
fragment given below. Let us assume that pStack is pointing to the IUnknown
interface of an object with stack behaviour. Also assume that IID_IOVERFLOW is
defined by means of a #define.

IUnknown * pStack; // IUnknown pointer of e.g. MyStack (given)

IStackObserver* pIobs; // interface pointer of observator self (given)

IOverflow* pIovr; // interface pointer (to be filled in)

HRESULT hr;

hr = pStack->QueryInterface(IID_IOVERFLOW, &pIovr);

if SUCCEEDED(hr) {

hr = pIovr->subscribe(50, pIobs);

if SUCCEEDED(hr) {

// coupling made

} else ...

} else ...

We assume that somewhere inside the object with stack behaviour this value
50 is stored, for example in a variable called warninglevel. We also assume
that this object with stack behaviour can only deal with one subscriber, whose
IStackObserver interface pointer is kept in the variable pIobs (internally in

Modelling Microsoft COM Using π-Calculus 1353

the object with stack behaviour). So the implementation of subscribe, possibly
being a part of the implementation of MyStack, could look as follows:

int warninglevel; // (to be filled in)

IStackObserver* pIobs; // subscriber (to be filled in)

HRESULT subscribe(int p, IStackObserver* obs)

{ warninglevel = p

pIobs = obs;

return S_OK;

}

Figure 3 below illustrates the entire structure of pointers built-up in this way. In
this state we find that the system consisting of MyStackObserver and MyStack
is sufficiently coupled in order that the operational behaviour of the component
with stack behaviour can begin.

,6WDFN2EVHUYHU

R�0\6WDFN
2EVHUYHU

,2YHUIORZ

,8QNQRZQ

V�0\6WDFN

,8QNQRZQ

,0DQLSXODWH

S6WDFN

S,RYU
S,REV

��

...
VWDFN

VS

ZDUQLQJOHYHO

S,REV

Fig. 3. Implementation of MyStackObserver and MyStack coupling.

It can be seen how the outgoing arrows of Figure 2 are nothing but abstrac-
tions of the implementation-level arrows (that is, pointers). Of course Figure 3 is
not suited for specification purposes because it reveals too much implementation
detail. It is an illustration of one of the possible ways the implementation could
work; but variables such as pStack, pIovr, pIobs, stack, sp, warninglevel
and (the other) pIobs are not visible from the ouside of the component.

Once the coupling has been established, the object with stack behaviour can
perform calls of onStackHalfFull() and onStackOverflow(). Let us have a
look at a possible implementation of push(...) inside MyStack. We repeat the
declarations of warninglevel and pIobs.

#define MAX 1000

int warninglevel; // (given)

IStackObserver* pIobs; // subscriber (given)

1354 Loe M.G. Feijs

int sp; // stack pointer

ITEM stack[MAX]; // contents of the stack

HRESULT hr;

HRESULT push(Item i)

{ if (sp >= MAX) {

hr = pIobs->onStackOverflow();

return E_FAIL;

}

else {

if (sp >= warninglevel*(MAX / 100)) {

hr = pIobs->onStackHalfFull();

}

stack[sp++] = i;

return S_OK;

} }

By now it should be clear that Figure 1 (stack behaviour with three interfaces)
is somehow incomplete: the view of an object with stack behaviour is only com-
plete if we include its outgoing interface as well. Whenever we want to fix a con-
tract concerning stack behaviour we have to describe IUnknown, IManipulate,
IOverflow and IStackObserver. Then we have an interface suite of stack be-
haviour which is independent of the context. Only in this way it may become
possible to have a complete specification of the suite (and hence of a component
that supports that suite).

Although everybody is free to invent new interfaces and make agreements
on their usage, there are a number of standard interfaces which are themselves
part of the COM framework. Next to IUnknown which was discussed above,
the following four interfaces are frequently used; these belong together, pro-
viding a general mechanism for binding all kinds of subscribers to components
that will perform callbacks: IConnectionPoint, IConnectionPointContainer,
IEnumConnectionPoints and IEnumConnections. They resemble IOverflow,
but are much more general. The basic idea is that for each outgoing interface
(such as IStackObserver) there is an extra incoming interface that offers the
possibility of subscribing to certain events (coupling them to callback functions).
This extra incoming interface is called IConnectionPoint. It makes it possible
to have more than one subscriber. Moreover, IConnectionPoint is standard-
ised: there is no need to invent from scratch what the interface will look like.
The interface can always be the same, quite independently of the precise nature
of the outgoing interface itself.

8 Modelling COM Interface Manipulation in π-Calculus

In this section we present a formal model of MyStackwhich support the interfaces
IUnknown, IManipulate and IOverflow. We also show parts of MyStackObserver
which supports the interfaces IUnknown and IStackObserver. Finally we show
a part of StackUser, which supports no interfaces but which does have a certain

Modelling Microsoft COM Using π-Calculus 1355

active behaviour. As before, we assume operators <>, <.> and ++ for lists of items.
Moreover, if s is a list of items, we let |s| be the length of the list. We assume
0,1,... and + for natural numbers. We assume IID_IUNKNOWN, IID_IMANIPULATE,
IID_IOVERFLOW and IID_ISTACKOBSERVER for interface identifiers. And we as-
sume i0 to be some value of type ITEM. We adopted a simplification, viz. to have
only one reference counter keeping the total number of references to any of the
interfaces of the object (this is done often although conceptually there is one
counter per interface). The present model does not build further on the model
of Sect. 6, we just start from scratch again. There is one COM feature which
we have left out in order to simplify the presentation; this is the fact that all
interfaces ‘inherit’ from IUnknown.

MyStack(pIunk,pIman,pIovr,pIobs,refs,stack,wl) =

(IUnknown(pIunk,pIman,pIovr,pIobs,refs,stack,wl)

+ IManipulate(pIunk,pIman,pIovr,pIobs,refs,stack,wl)

+ IOverflow(pIunk,pIman,pIovr,pIobs,refs,stack,wl)

)

The state-based behaviour of the various components is modelled again by re-
cursive process equations where the various parts of the state are parameters of
the processes. The remarks of Sect. 6 apply here too.

IUnknown(pIunk,pIman,pIovr,pIobs,refs,stack,wl) =

(pIunk (f) .

([f = QueryInterface] .

pIunk (iid) .

([iid = IID IUNKNOWN]

pIunk S OK .

pIunk pIunk .

MyStack(pIunk,pIman,pIovr,pIobs,refs + 1,stack,wl)

+ [iid = IID IMANIPULATE]

pIunk S OK .

pIunk pIman .

MyStack(pIunk,pIman,pIovr,pIobs,refs + 1,stack,wl)

+ [iid = IID IOVERFLOW]

pIunk S OK .

pIunk pIovr .

MyStack(pIunk,pIman,pIovr,pIobs,refs + 1,stack,wl)

+ ["otherwise"]

pIunk E NOINTERFACE .

pIunk NULL .

MyStack(pIunk,pIman,pIovr,pIobs,refs,stack,wl)

)

+ [f = AddRef] .

pIunk S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs + 1,stack,wl)

+ [f = Release] .

([refs = 1]

pIunk S OK .

0

1356 Loe M.G. Feijs

+ [refs > 1]

pIunk S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs - 1,stack,wl)

)))

IManipulate(pIunk,pIman,pIovr,pIobs,refs,<>,wl) =

(pIman (f) .

([f = clear] .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<>,wl)

+ [f = is empty] .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<>,wl)

+ [f = push] .

pIman (j) .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<j>,wl)

+ [f = pop] .

pIman E FAIL .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<>,wl)

))

IManipulate(pIunk,pIman,pIovr,pIobs,refs,<i>++s,wl) =

(pIman (f) .

([f = clear] .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<>,wl)

+ [f = is empty] .

pIman S FALSE .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<i>++s,wl)

+ [f = push] .

pIman (j) .

([|<i>++s| ≥ MAX]

pIobs onStackOverflow .

pIobs (h) .

pIman E FAIL .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<i>++s,wl)

+ [|<i>++s| < MAX]

([|<i>++s| ≥ wl*(MAX/100)]

pIobs onStackHalfFull .

pIobs (h) .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<j>++<i>++s,wl)

+ [|<i>++s| < wl*(MAX/100)]

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<j>++<i>++s,wl)

)

)

+ [f = pop] .

pIman S OK .

Modelling Microsoft COM Using π-Calculus 1357

pIman i .

MyStack(pIunk,pIman,pIovr,pIobs,refs,s,wl)

))

For IOverflow we only show the subscribe procedure; because of space limita-
tions we leave out our earlier unsubscribe (which poses no special problems).

IOverflow(pStack,pIman,pIovr,pIobs,refs,stack,wl) =

(pIovr (f) .

[f = subscribe] .

pIovr (w) .

pIovr (b) .

pIovr S OK .

MyStack(pStack,pIman,pIovr,b,refs,stack,w)

)

Next we present MyStackObserver, which is described by a few initialisation
steps where the subscription takes place, followed by MyStackObserverCont (for
continuation) which is described by recursion. Note that MyStackObserver sup-
ports two interfaces.

MyStackObserver(pIunk,pIobs,pStack,refs) =

pStack QueryInterface .

pStack IID IOVERFLOW .

pStack (h) .

pStack (pIovr) .

pIovr subscribe .

pIovr 50 .

pIovr pIobs .

pIovr (h) .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs,0,0)

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs,x,y) =

(IUnknown’(pIunk,pIobs,pStack,pIovr,refs,x,y)

+ IStackObserver(pIunk,pIobs,pStack,pIovr,refs,x,y)

)

Next we present IUnknown’, which is the implementation of COM’s IUnknown
interface for the stack observer. Note that although it is said that each component
has to implement COM’s IUnknown, we see that the implementation of this
IUnknown’ is slightly different from the IUnknown given before, just because
MyStackObserver has different interfaces than MyStack.

IUnknown’(pIunk,pIobs,pStack,pIovr,refs,x,y) =

(pIunk (f) .

([f = QueryInterface] .

pIunk (iid) .

([iid = IID IUNKNOWN]

pIunk S OK .

pIunk pIunk .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs + 1,x,y) =

1358 Loe M.G. Feijs

+ [iid = IID ISTACKOBSERVER]

pIunk S OK .

pIunk pIobs .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs + 1,x,y) =

+ ["otherwise"]

pIunk E FAIL .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs,x,y) =

)

+ [f = AddRef] .

pIunk S OK .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs + 1,x,y) =

+ [f = Release] .

([refs = 1]

pIunk S OK .

0

+ [refs > 1]

pIunk S OK .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs - 1,x,y) =

)))

IStackObserver(pIunk,pIobs,pStack,pIovr,refs,x,y) =

(pIobs (f) .

([f = onStackHalfFull] .

pIobs S OK .

IStackObserver(pIunk,pIobs,pStack,pIovr,refs,x + 1,y)

+ [f = onStackOverflow] .

pIobs S OK .

IStackObserver(pIunk,pIobs,pStack,pIovr,refs,x,y + 1)

))

Now we may compose a system out of various instances of these components. We
show the obvious combination having one instance of each. So we assume three
initial interface pointers to the three interfaces of MyStack. We also assume two
interface pointers to the two interfaces of MyStackObserver. Finally we assume
one interface pointer to the IUnknown interface of StackUser. Of course all these
six interface pointers are different. Let these initial interface pointers be called
PSTACK, PIMAN, PIOVR, PIUNK, PIOBS and PUSER, respectively. Upon initialisation,
the MyStack instance only knows its own interfaces, whereas MyStackObserver
and StackUser know, next to their own interfaces, also the IUnknown interface
pointer of the instance of MyStack.

System = (MyStack(PSTACK,PIMAN,PIOVR,NULL,1,<>,100)

| MyStackObserver(PIUNK,PIOBS,PSTACK,1)

| StackUser(PUSER,PSTACK)

)

9 Calculations

In this section we show an example of a calculation. This shows one way of
using the formal model. Let us consider only the first two parallel components

Modelling Microsoft COM Using π-Calculus 1359

of System, leaving out the stack user. Now we are ready to do some calculation
work.

(MyStack(PSTACK,PIMAN,PIOVR,NULL,1,<>,100)

| MyStackObserver(PIUNK,PIOBS,PSTACK,1)

)

=

((PSTACK (f) .

([f = QueryInterface]

PSTACK (iid) .

([iid = IID IOVERFLOW]

PSTACK S OK .

PSTACK PIOVR .

MyStack(PSTACK,PIMAN,PIOVR,NULL,2,<>,100)

+ [‘‘other iid values’’] ...

)

+ [‘‘other f values’’]

)

+ PIMAN (f)

+ PIOVR (f)

)

| (PSTACK QueryInterface .

PSTACK IID IOVERFLOW .

PSTACK (h) .

PSTACK (pIovr) .

pIovr subscribe .

pIovr 50 .

pIovr PIOBS .

pIovr (h) .

MyStackObserverCont(PIUNK,PIOBS,PSTACK,pIovr,1,0,0)

))

τ−→
(PSTACK (iid) .

([iid = IID IOVERFLOW]

PSTACK S OK .

PSTACK PIOVR .

MyStack(PSTACK,PIMAN,PIOVR,NULL,2,<>,100)

+ [‘‘other iid values’’] ...

)

| (PSTACK IID IOVERFLOW .

PSTACK (h) .

PSTACK (pIovr) .

pIovr subscribe .

pIovr 50 .

pIovr PIOBS .

pIovr (h) .

MyStackObserverCont(PIUNK,PIOBS,PSTACK,pIovr,1,0,0)

))

1360 Loe M.G. Feijs

τ−→
τ−→
((PSTACK PIOVR .

MyStack(PSTACK,PIMAN,PIOVR,NULL,2,<>,100)

)

| (PSTACK (pIovr) .

pIovr subscribe .

pIovr 50 .

pIovr PIOBS .

pIovr (h) .

MyStackObserverCont(PIUNK,PIOBS,PSTACK,pIovr,1,0,0)

))

τ−→
(MyStack(PSTACK,PIMAN,PIOVR,NULL,2,<>,100)

| (PIOVR subscribe .

PIOVR 50 .

PIOVR PIOBS .

pIovr (h) .

MyStackObserverCont(PIUNK,PIOBS,PSTACK,PIOVR,1,0,0)

))

This can be interpreted as: the composition of MyStack(PSTACK,PIMAN, PIOVR,
NULL, 1,<>,100) and MyStackObserver(PIUNK,PIOBS,PSTACK,1) can evolve
to the situation of Fig. 4. The calculation result represents the state where the
link indicated by the arrow from the pIovr variable of o:MyStackObserver to
the IOverflow lollipop of s:MyStack has been established. This means that we
have the situation of Figure 4.

,6WDFN2EVHUYHU

R�0\6WDFN
2EVHUYHU

,2YHUIORZ

,8QNQRZQ

V�0\6WDFN

,8QNQRZQ

,0DQLSXODWH

S6WDFN

S,RYU

S,REV

...
VWDFN

VS

ZDUQLQJOHYHO

S,REV

Fig. 4. MyStackObserver and MyStack partially coupled.

The link from the pIobs variable in s:MyStack to the lollipop of IStackObserver
has not been established yet (that is why the MyStack term still has one NULL

Modelling Microsoft COM Using π-Calculus 1361

argument), but of course this is what will happen next if we would continue our
calculation. The arrow from pStack, and pIobs of o:MyStackObserver were
assumed to be available from the very beginning; these are PSTACK and PIOBS.
continuing the calculation, the situation of Figure 3 will be reached in a finite
number of steps. It will be reached necessarily because there are no alternative
receive constructs that match the names sent.

So the above calculation shows one way of exploiting the model. In general,
the exploitation can be done in various ways analogous to the exploitation of
classical communication protocol models in CCS and other process algebraic
formalism such as ACP, µCRL, PSF, LOTOS:

– equational reasoning to show behavioural congruence of specifications and
implementations (there is a theory of bisimulation for the π-calculus),

– simulation to demonstrate, visualise or test the operational behaviour of a
given model in a given context (as demonstrated above).

10 Concluding Remarks

The modelling of COM mechanisms turned out easy and natural (interface
pointer manipulations and π-calculcus have good semantic match). The case
study was about modelling a component with stack-manipulation behaviour,
the obligatory QueryInterface behaviour, and an ‘observer’ which is more or
less similar to the well-known observer pattern [13].

Related work: Kramer and Magee defined the ADL called Darwin [14]. It is
a combination of a Module Interconnection Language (MIL) and a behavioural
specification language. A key ingredients of the MIL part of Darwin is the ‘bind’
construct: r -- p means that a required service r is bound to a provided service
p. It gets its semantics via π-calculus as follows: to the semantic models of r and
p a special agent is added (as a component in a parallel composition); the task of
the agent is to send the name of p to r. See [15]. A special elaboration algorithm
guarantees that all the bindings specified in Darwin lead to the desired exchange
of names. A difference with our work is that we use no intermediate ADL with
built-in solutions for the exchange of names.

Sullivan et al. [16] model aspects of COM using Z. Components are modelled
as consisting of a finite set of interfaces, a corresponding set of IIDs, and an
iunknown interface (which is an element of this former finite set). Every interface
supports the QueryInterface operation, which is modelled as a partial function
QI that maps the interface and a given IID to another type. They show how
formal specification techniques help in explaining and analysing the complexities
of COM. Neither COM interfaces nor COM function calls are mapped directly
to Z schemas (indirections are modelled as functions, e.g. QI).

Other interesting references include [17] (OO notation πoβλ based on π-
calculus), [18] (a research program for component frameworks, including a dis-
cussion on use of π-calculus for open systems components) and [19] (components
are interactive systems communicating asynchronously through channels).

1362 Loe M.G. Feijs

There are several issues not addressed but worth further investigation: adding
features to π-calculus, concurrency aspects (see the notes on molecular actions
and private names in [9]), and re-entrant procedures. The present paper is an
exercise in trying to understand component-technology. We do not yet advocate
the direct usage of π-calculus. Most of the semantic aspects of interfaces can be
described well by languages in the tradition of VDM [20], Z [21] and COLD [22],
but there may be a need for special syntactic sugar and special methodogical
and tool-based support.

References

[1] Milner, R.: Communication and concurrency, Prentice Hall (1989)
[2] Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-

mation and Computation, 60(1/3):109-137 (1984)
[3] Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LO-

TOS, Computer Networks and ISDN Systems, 14, (1987) 25–59
[4] Mauw, S., Veltink, G.J. (Eds.): Algebraic specification of communication protocols,

Cambridge Tracts in Theoretical Comp. Sc. 36, CUP (1993)
[5] CCITT. Specification and Description Language (SDL), Rec. Z.100
[6] CCITT. Message Sequence Chart (MSC), Rec. Z.120, Study Group X (1996)
[7] Szyperski, C.: Component Software, Beyond Object-oriented Programming, Addis-

son Wesley, ISBN 0-201-17888-5
[8] Orfali, R., Harkey, D., Edwards, J.: The essential distributed objects survival guide,

John Wiley & Sons, Inc. (1996)
[9] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes Pt.1 Information

and Computation 100(1) (1992) 1–40
[10] Microsoft Corporation. The Component Object Model Specification, Version 0.9,

Microsoft (1995)
[11] Brockschmidt, K.: How OLE and COM solve the problems of component software

design, Microsoft Systems Journal, (1996) 63–80
[12] Williams, T.: Reusable Components for Evolving Systems, IEEE 1998 Software

Reuse Conference (pp. 12–16)
[13] Gamma, E.,, Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of

reusable object-oriented software, Addison-Wesley (1994)
[14] Magee, J., Kramer, J.: Dynamic Structure in Software Architectures, in: Proc. 4th

ACM SIGSOFT Symp. on the Foundations of Software Engineering
[15] Eisenbach, S., Paterson, R.: pi-Calculus semantics for the concurrent configuration

language Darwin, Hawaii Int. Conf. on System Sciences (1993)
[16] Sullivan, K.J., Socha, J., Marchukov, M.: Using formal methods to reason about

architectural standards, International conference on software engineering ICSE ’97,
(1997) 503–512

[17] Jones, C.B.: A π-calculus semantics for an object-based design notation, in: E.
Best (Ed.), Proceedings of CONCUR’93, Springer-Verlag LNCS 715, (1993) 158–
172

[18] Nierstrasz, O.: Infrastructure forsoftware component frameworks, Internet
http://www.iam.unibe.ch/~scg/Archive/NFS/iscf.html (1996)

[19] Broy, M.: Towards a mathematical concept of a component and its use, Software
– concepts and tools 18, (1997) 137–148

[20] Jones, C.B.: Systematic software development using VDM, Prentice Hall (1986)

Modelling Microsoft COM Using π-Calculus 1363

[21] Spivey, J.M.: Understanding Z: a specification language and its formal seman-
tics, Volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press (1988)

[22] Feijs, L.M.G., Jonkers, H.B.M., Middelburg, C.A.: Notations for Software Design,
FACIT Series, Springer-Verlag (1994)

Validation of Mixed Signal-Alpha Real-Time

Systems through Affine Calculus on Clock
Synchronisation Constraints

Irina M. Smarandache1, Thierry Gautier2, and Paul Le Guernic2

1 The University of Reading, Department of Computer Science
Whiteknights, PO Box 225, Reading RG6 6AY, United Kingdom

Tel.: (44) 118 931 8611 (7626), Fax: (44) 118 975 1994
I.M.Smarandache@reading.ac.uk

2 IRISA-INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France
Thierry.Gautier@irisa.fr, Paul.LeGuernic@irisa.fr

Abstract. In this paper we present the affine clock calculus as an exten-
sion of the formal verification techniques provided by the Signal lan-
guage. A Signal program describes a system of clock synchronisation
constraints the consistency of which is verified by compilation (clock cal-
culus). Well-adapted in control-based system design, the clock calculus
has to be extended in order to enable the validation of Signal-Alpha ap-
plications which usually contain important numerical calculations. The
new affine clock calculus is based on the properties of affine relations in-
duced between clocks by the refinement of Signal-Alpha specifications
in a codesign context. Affine relations enable the derivation of a new set
of synchronisability rules which represent conditions against which syn-
chronisation constraints on clocks can be assessed. Properties of affine
relations and synchronisability rules are derived in the semantical model
of traces of Signal. A prototype implementing a subset of the synchro-
nisability rules has been integrated in the Signal compiler and used for
the validation of a video image coding application specified using Signal
and Alpha.

1 Introduction

Real-time systems, and more generally reactive systems [4], are in continuous
interaction with their environment. Therefore, they must respond in time to
external stimuli. Moreover, real-time systems must be safe, thus one would wish
to prove their correctness. Time constraints and safety are two important aspects
to be considered in the design of a real-time application.

Real-time systems may be constrained by very tight real-time deadlines.
Moreover, a hardware implementation of parts of these systems is sometimes
required, to meet specific constraints for instance. An example is an application
consisting of numerical calculations performed iteratively on large structures of
regular multidimensional data. In this case, a hardware/software implementation
may be envisaged, in which the numerical calculations are conveyed to hardware

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1364–1383, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Validation of Mixed Signal-Alpha Real-Time Systems 1365

for efficiency reasons, while the control relating these parts is implemented in
software.

In general, designing a mixed hardware/software real-time system requires a
rigorous methodology that comprises methods and tools addressing, among oth-
ers, system specification and validation, optimal code generation and hardware
synthesis. These aspects are dealt with in codesign [7] [9] which denotes the spec-
ification, validation and implementation of an application which consists both
of a hardware part, in the form of a set of specialised integrated circuits, and a
software part implemented on general programmable processors. The idea is to
explore various possible implementations of hardware/software systems in order
to improve their performance and to ensure the respect of cost constraints.

1.1 Real-Time System Codesign

System codesign is a complex process which can be decomposed into three main
activities [7]: 1. The cospecification of an application at various levels of abstrac-
tion; 2. The validation of a specification by formal verification or simulation, also
known as cosimulation; 3. The hardware/software partitioning of an application,
the evaluation of a partitioning from the point of view of the time constraints
and cost, the generation of executable code, the synthesis of hardware, and the
production of the interface between hardware and software, i.e cosynthesis. A
lot of work has been done, the purpose of which was to define a well-structured
methodology for codesign [7] [11] [19]. An important point was generally the
description of both hardware and software using the same language, like for in-
stance Vhdl enhanced with mechanisms for calling C functions [14], or high-level
languages like C, C++ or Fortran extended with facilities for the description
of hardware systems [10]. These approaches enable the programming of both the
hardware and software parts of a system in a unique framework and their vali-
dation by simulation. However, they cannot guarantee system correctness. This
aspect can be much improved by using formal languages for system specification,
refinement of specifications towards lower levels of abstraction (implementation)
and validation of the various specifications by formal verification.

Defining a complete methodology of codesign requires addressing other rel-
evant problems, most of them concerning cosynthesis. Among these problems
there are the automatic partitioning into hardware and software, the synthesis
of hardware and the generation of optimal code for software implementation.

The work presented in this paper is part of a more general effort for building
a hybrid framework in which the Signal [12] [13] and Alpha [20] languages can
be used for real-time system codesign.

1.2 Cospecification and Cosimulation of Signal-Alpha Systems

Signal is a synchronous [4] language developed for the specification, validation
and implementation of real-time systems. Signal variables represent finite or
infinite sequences of values (data) which can be filtered or merged before being
submitted to classical boolean or mathematical operations. A clock is implicitly

1366 Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic

associated with each Signal variable: it represents a set of temporal indices
which denote the logical instants where the variable is present and has a value.
The semantics of a Signal program can be described by a system of constraints
(relations) on clocks and values, which is constructed and verified for consistency
during compilation. The verification of the clock constraints is called clock cal-
culus. The Signal environment is enhanced with tools for C [5] and Vhdl [3]
code generation and formal verification of dynamic properties [2].

In its present form, Signal is well-adapted for the design of control-based
real-time systems. Firstly, this is due to its limitations concerning the treatment
of computations on multidimensional data such as matrices. Only simple algo-
rithms can be expressed in Signal and no significant optimisation is performed
at the level of the generation of executable C or Vhdl code concerning vectors.
In contrast with Signal, the Alpha language has been developed primarily for
the specification and implementation of algorithms on multidimensional data.
Such algorithms can be described in Alpha using affine recurrence equations
over convex polyhedral domains [20] and be further transformed for optimal
hardware or software implementation on parallel or sequential architectures [21].

Given their complementary properties, the Signal and Alpha languages
can be used jointly for the design of real-time systems containing important
numerical calculations on multidimensional data and control: numerical compu-
tations are expressed in Alpha and the control is conveyed to Signal. When the
real-time requirements of the system are very tight, a mixed hardware/software
implementation may be envisaged. In [9] we propose a hybrid framework for the
combined use of Signal and Alpha in real-time system codesign. In order for
this framework to be operational, it is necessary to interface Signal and Alpha
programs both at the functional and architectural level. The former corresponds
to a high-level mathematical representation of an algorithm in Alpha, while the
latter contains a set of new temporal indices corresponding to the execution of
the algorithm on a parallel or sequential architecture.

In Signal-Alpha systems, the refinement of an Alpha program from a
functional level to an architectural level oriented toward a particular implemen-
tation also induces a refinement of the temporal indices in Signal. The new
time indices are obtained through affine transformations on the instants of time
of the initial Signal specification. Consider clocks c and c1 in Signal which
are identical at the functional level (they are also denoted as synchronous). Af-
ter refinement, their relative position is such that clock c1 can be obtained by
an affine transformation applied to clock c: the instants of time of c and c1,
denoted respectively T and T1, can be described by a pair of affine functions
T = {nt + ϕ1 | t ∈ T }, T1 = {dt + ϕ2 | t ∈ T }, on the same set of instants T .
With ϕ = ϕ2 − ϕ1, we will say that clock c1 is obtained by an (n, ϕ, d)-affine
transformation applied to clock c, where n, d ∈ IIN∗ the set of strictly positive
integers and ϕ ∈ 6Z the set of integers. Clocks c and c1 are also said to be in an
(n, ϕ, d)-affine relation.

Clocks obtained by affine transformation may be re-synchronised at the ar-
chitectural level. As an example, consider clocks c, c1 and c2 which are identical

Validation of Mixed Signal-Alpha Real-Time Systems 1367

in the Signal functional specification. At the architectural level, clocks c1 and
c2 have been transformed such that c, c1 and c, c2 are respectively in affine
relations of parameters (n1, ϕ1, d1) and (n2, ϕ2, d2). Whether clocks c1 and c2

can be re-synchronised depends on the properties of the affine relations which
are induced from the values of (n1, ϕ1, d1) and (n2, ϕ2, d2). Moreover, the rela-
tions between c, c1 and respectively, c, c2 may be expressions on (n, ϕ, d)-affine
relations constructed using operations like composition, union, etc. In this case,
the re-synchronisation of clocks c1 and c2 depends on the properties of these
operations.

The Signal clock calculus performs the verification of clock synchronisation
constraints using a set of synchronisability rules, i.e. conditions against which
these constraints can be assessed. The current clock calculus depends on boolean
equation resolution methods [5] [1] which have been successfully used for the val-
idation of numerous control-based real-time applications. However, in order to
validate mixed Signal-Alpha systems as presented above, it is necessary to ex-
tend the current clock calculus with a set of synchronisability rules deduced from
the properties of (n, ϕ, d)-affine relations. The new set of rules defines the affine
clock calculus, which constitutes the main topic of this paper. We explore the
space of (n, ϕ, d)-affine relations and study to which extent it is closed under the
main operations that can be performed on affine relations. Following this study,
we define a set of synchronisability rules which, although incomplete, enables
the validation of the principles underlying the cospecification and cosimulation
using Signal and Alpha. The semantical model of traces of Signal [12] [16]
constitutes the support for the study of the properties of affine relations and for
the definition of the new synchronisability rules.

1.3 Organisation of the Paper

In Section 2 we present the integration of Signal and Alpha for system code-
sign. Section 3 is the central core of this paper and is dedicated to the definition
and implementation of the affine clock calculus. The main concepts useful for
this purpose are progressively introduced: these are the model of traces of the
Signal language, the properties of affine relations on clocks, the set of synchro-
nisability rules induced by the latter, and finally the necessary elements for the
integration of the affine clock calculus in the compiler. The affine clock calculus
has been applied to the cospecification and cosimulation of a video image coding
application; this is briefly illustrated in Section 4. In the same section we discuss
in which way the Signal and Alpha environments may further contribute to
the development of a complete codesign methodology based on both languages.
Finally, in Section 5 we present conclusions and perspectives of our work.

2 Signal and Alpha in Real-Time System Codesign

Figure 1 summarizes the main elements of the environments around Signal and
Alpha that make both languages well-adapted for real-time system codesign.

1368 Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic

Signal and Alpha programs represent mathematical notations for the proper-
ties of the processes they define. The system of constraints on clocks and values
associated with a Signal program is transformed by compilation into a synchro-
nised data flow graph (Sdfg). This data structure constitutes the support for
executable code generation (C or Vhdl) or verification of dynamic properties
using the formal tool Sigali [2].

The Alpha compiler includes a powerful type checking mechanism based on
the structure of an Alpha variable as a function over convex polyhedra. The
syntax tree obtained after compilation can be directly translated into C code for
functional simulation, or it can be transformed into a subset of Alpha called Al-
pha0 which exhibits the details of a parallel or sequential implementation. The
syntax tree in Alpha0 form can be further translated in C or Vhdl executable
code or directly mapped on a netlist [21].

The interface between Signal and Alpha is based on the fact that both
languages can be translated in C and executed for functional simulation. Fur-
thermore, Signal offers the possibility to call external processes: such a process
can be the specification of an algorithm in a language other than Signal. A
particular type of an external process is a function, the execution of which is
considered instantaneous from the point of view of Signal. A Signal function
can be a predefined or a user-defined C function.

Fig. 1. Signal and Alpha in system codesign.

2.1 Functional Cospecification and Cosimulation

Being a synchronous language, Signal is based on the following hypotheses [4]:
1. All actions (communications and calculations) in a system have zero logical

Validation of Mixed Signal-Alpha Real-Time Systems 1369

duration (the elapsed time is represented by the precedence of successive values
on a same data flow); 2. Two or more actions can take place at the same logical
instant, such actions being termed “simultaneous”. From the point of view of
the logical temporal properties of a system, only succession and simultaneity
of instants are of interest. Although their exact time values are not considered,
note however that they will be considered for a given implementation. The pro-
cess associated with a Signal program represents thus a succession of logical
instants, with each instant being associated one or more actions considered of
zero logical duration and involving process variables present at that instant.

Consider for example a coding system for sequences of video images at 34
Mbits/s [8]. A system of this type consists of a set of numerical treatments
applied iteratively on images of the same dimension. Images are divided into
luminance and chrominance blocks and treatments are applied to each block.
Numerical treatments consist mainly of algorithms for inter and intra image
coding which require operations like a discrete cosine transformation (Dct). In
order to illustrate the interfacing between Signal and Alpha, we have isolated
from the coding application a simple Signal program and have illustrated the
associated process in Fig. 2. It consists of a Dct operation applied in sequence to
different values Ai of the matrix of pixels A present at each logical instant of time
ti. The matrix A corresponds to a block of luminance or chrominance of an image.
The Dct can be expressed in Signal as B := Dct(A), where Dct is actually an
external process. The Dct is a time consuming algorithm, particularly for large
matrices or when applied to images containing a large number of blocks. In order
to improve the overall performance of the coding application, one would wish
to execute each instance Bi := Dct(Ai) on a parallel integrated architecture as
derived by the Alpha environment.

The Dct can be easily described in Alpha. The Signal-Alpha cospecifica-
tion and cosimulation of the new system is made possible at the functional level
as follows (see Fig. 2): 1. The Alpha system is translated in executable C code;
2. The C function ALPHA C obtained at step 1 represents the external process
implementing the Dct in Signal. The function ALPHA C is considered instan-
taneous in Signal; the clocks of the matrices A and B, denoted respectively by
c and c1, are therefore synchronous. The overall system is thus represented as
a Signal specification executing instantaneously the functional description of
the Alpha specification. The system can be validated in the Signal environ-
ment by formal verification (compilation, model checking with Sigali) and/or
simulation.

2.2 Implementation-Oriented Cospecification and Cosimulation

A mixed Signal-Alpha specification at the functional level may be refined in
order to take into consideration the details of a particular implementation. The
Alpha program of Section 2.1 describing a Dct may be submitted to a sequence
of transformations for a parallel or sequential implementation. These transfor-
mations guarantee the equivalence of the final specification, noted ALPHA’ in
Fig. 3, with the initial ALPHA system of Fig. 2. The system ALPHA’ contains

1370 Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic

Fig. 2. Signal-Alpha interface at functional level.

the time indices corresponding to a particular scheduling of the Dct operation.
In Fig. 3 these time indices are represented as the diagonal sets of micro-instants
µtji associated with each macro-instant ti.

The Signal specification has to be refined accordingly in order to enable the
validation of the overall system. Therefore, the micro-instants of time of ALPHA’
are taken into consideration in the new process SIGNAL’ and described as the
sets of instants µSti0, µSti1, etc. (see Fig. 3). The C function ALPHA’ C has
been derived from ALPHA’ and transformed in order to describe the sequence
of operations performed at each micro-instant of time.

Fig. 3. Signal-Alpha interface at architectural level.

The regularity of Alpha values manifests itself in Signal in several ways.
First, the sets of micro-instants µSti0, µSti1, etc. have the same cardinality. Also,
successive values for B are provided at specific micro-instants between any two
successive macro-instants ti and ti+1 in a regular manner. This situation is il-
lustrated in Fig. 4 where the clocks of matrices A and B, denoted respectively
by c and c1, are defined by the following instants of time: c = {0, 9, 18, ...} and
c1 = {6, 15, ...} (after providing the values Bi at the instants of time defined by
c1, the architecture implementing the operation Bi := Dct(Ai) may execute fur-
ther computations like initialisations for the next operation Bi+1 := Dct(Ai+1)).

Validation of Mixed Signal-Alpha Real-Time Systems 1371

Fig. 4. Illustration of an affine relation.

In Fig. 4, clock c′ is defined by the set of instants {0, 1, 2, 3, 4, 5, ...}. It can
be noticed that clocks c and c1 are placed in a regular manner on the sup-
port clock c′: their relative position is such that c1 has been obtained through
an (9, 6, 9)-affine transformation applied to c. By definition, clock c1 is the re-
sult of an (n, ϕ, d)-affine transformation applied to clock c if it can be obtained
from c through steps 1 and 2 as follows: 1. Constructing a new clock c′ as the
union of c with the set of instants obtained by introducing n − 1 fictive in-
stants between any two successive instants of c (and −ϕ fictive instants before
the first instant of c when ϕ is negative). 2. Defining the clock c1 as the set
of instants {dt + ϕ | t ∈ c′}, with c′ = {t | t ∈ IIN} (in other words, counting ev-
ery d instant, starting with the ϕth instant of c′, or with the first instant of
c′ when ϕ is negative). Clocks c and c1 are then said to be in an (n, ϕ, d)-
affine relation. The above definition can be expressed in an equivalent form
as follows: clocks c and c1 are in (n, ϕ, d)-affine relation if there exists a clock
c′ such that c and c1 can be respectively expressed using the affine functions
λt.(nt + ϕ1) and λt.(dt + ϕ2), with ϕ2 − ϕ1 = ϕ, with respect to the time in-
dices of c′: c′ = {t | t ∈ IIN}, c = {nt + ϕ1 | t ∈ c′}, c1 = {dt + ϕ2 | t ∈ c′}.

Properties on affine relations can be exploited in order to verify that
clocks are synchronisable, that is, their sets of instants can be identified (re-
synchronised). Consider (Fig. 2) a Signal program which executes two succes-
sive Dct operations at each macro-instant ti, one on a luminance block of an
image, noted B := Dct(A), and the second one on the next block of red chromi-
nance of the same image, described by D := Dct(C).

Each Dct function is expressed in Alpha at the functional level and further
refined according to a particular implementation. The Signal specification is
refined accordingly and we obtain the timing diagrams of Fig. 5: the clocks of A
and C are synchronous and equal to c, the clocks of B and D are respectively
c1 and c2, and the clocks c′ and c′′ describe the instants of the excution of the
Dct functions on a potential architecture derived in the Alpha environment.

In the functional Signal-Alpha specification, clocks c, c1 and c2 were syn-
chronous (see Section 2.1 for details). After refinement of the time indices in
the Signal-Alpha specification, the clocks c1 and c2 should be re-synchronised
in order to preserve the temporal properties of the whole application. Whether
the re-synchronisation of c1 and c2 is possible given their relative position as
illustrated in Fig. 5, or after further adjustments of their time indices, can be
decided based on the properties of the affine relations existing between c, c1

1372 Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic

Fig. 5. Synchronisable clocks in the context of codesign with Signal and Al-
pha.

and c, c2 respectively. Clocks c, c1 and c, c2 are respectively in (9, 6, 9) and
(7, 3, 7)-affine relation in the process SIGNAL’. The relation existing between
the triplets (9, 6, 9) and (7, 3, 7) guarantees the equivalence of the corresponding
affine relations. This will be detailed in Section 3. Informally, the equivalence of
the above affine relations expresses the fact that the relative positions of clocks
c and c1, respectively c and c2, are identical. Based on this observation, clocks
c1 and c2 can be identified without contradicting the temporal behaviour of the
other clocks in the Signal program. The instants of time of clocks c′ and c′′

situated between two successive instants of c and c1 (or c2) are independent and
can be positioned with respect to each other in various manners; in Fig. 5 we
have illustrated one possibility. Therefore, c1 and c2 can be re-synchronised; we
say that c1 and c2 are synchronisable.

The aim of the affine clock calculus discussed in Section 3 is to define neces-
sary and sufficient conditions for clock synchronisability based on the properties
of affine relations on clocks. These conditions are expressed as a set of synchro-
nisability rules and are derived in the semantical model of traces of Signal.
Section 3 begins with an introdution to these concepts.

3 Affine Calculus on Clocks in Signal

Figure 6 introduces the reader to the semantics of traces [12] [16] of Signal.
The most important concepts in Signal are: 1. the signal, which denotes a
variable of the language and represents a finite or infinite sequence of values;
2. the clock, a variable associated with each signal which represents the set of
logical instants where the values of the signal are present. Signal operators
manipulate signals by imposing implicit or explicit constraints on their values

Validation of Mixed Signal-Alpha Real-Time Systems 1373

and clocks. Constraints on clocks are usually expressed as identities between
clock expressions constructed using the operators of intersection (∧), union (∨)
or difference (\). Clocks can be also subsets of other clocks defined as samplings
by boolean conditions. When no condition is explicitly or implicitly stated on a
pair of clocks, they are independent.

Fig. 6. Illustration of Signal semantics of traces.

A Signal program describes a real-time system, which is in continuous inter-
action with its environment. Input values are transformed corresponding to the
actions of a given specification and the results are provided to the environment.
This situation is illustrated in Fig. 6 in the case of a program manipulating in-
puts x and y and providing output z depending on the values of x and y. In case
z is the addition of x and y, signals x, y and z are implicitly constrained by the
+ operator in Signal to have the same clocks cx = cy = cz.

The configurations F and F ′ illustrated in Fig. 6 correspond to two different
executions of the Signal program, involving sequences xi, yi and zi and respec-
tively x′i, y′i and z′i. The set of all possible configurations, called traces, which
can be exhibited during the execution of a Signal program, defines completely
the process P associated with the program. Consider A a subset of the set B of
signals manipulated by a program. A trace may contain instants with no action
involving signals from A. However, each instant of this type contains actions
which involve other signals from the set B\A. Given a subset A of signals, a flow
on A is a trace with at least one action involving signals from A for each logical
instant. In the particular case of Fig. 6, if we consider the subset of signals to
be {x, y, z}, the traces illustrated are actually flows.

More generally, the process P associated with a Signal program is a set of
flows on the variables of the program. Each flow F in P is constrained by a system
of equations on the clocks and values of signals manipulated by P . Equations
on values can be further expressed in the abstract form of a data dependency

1374 Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic

graph (an example of a data dependency graph is illustrated in Fig. 6 for the +
operator). Besides the clock calculus, the compiler verifies data consistency by
checking the absence of cycles in the data dependency graph. In the next section
however, we will concentrate mainly on the clock calculus.

3.1 Clock Calculus & Synchronisability

The clock calculus is equivalent to the resolution of a system of clock equations.
For example:

c = c1

c′ = (c1 ∧ c2) ∨ c1

c = c′
(1)

can be a system derived from a Signal program which manipulates clocks c, c′,
c1 and c2. In this simple system, c1 and (c1 ∧ c2) ∨ c1 have clearly to be proved
equivalent, which is an immediate consequence of the axioms of the boolean
lattice. The space of clocks associated with a Signal program is a boolean lattice
[6] the properties of which are extensively used for the proof of equivalences. The
resolution of the system is performed by triangularisation of the system [5] [1].

Given a boolean signal Cd, its clock, denoted Ĉd, can be partitioned into the
clock [Cd] where the signal Cd is present and true and the clock [¬Cd] where Cd
is present and false (the clocks [Cd] and [¬Cd] represent samplings by boolean
conditions). The relations between clocks Ĉd, [Cd] and [¬Cd] are expressed by
the partition equations below:

[Cd] ∨ [¬Cd] = Ĉd
[Cd] ∧ [¬Cd] = ∅ (2)

The axioms of the boolean lattice together with the partition equations induce
on the space of clocks a lattice of an order � “coarser” than the order ≤ of
the boolean lattice [5]. Clocks can be boolean formulas constructed either with
samplings by boolean conditions [Cd], [¬Cd] or with free variables of the boolean
lattice. The properties of the lattice of order � are actually used during the
triangularisation of any system of clock equations.

The axioms of the lattice � represent a system of synchronisability rules in
the sense described below. Clocks c and c′ are synchronisable in the process P ,

which is denoted by c
P
� c′, if there exists a flow F in P in which c and c′ are

synchronous:

c
P
� c′ ⇔ ∃F ∈ P, c

F= c′ (3)

(we note c
F= c′ the fact that c and c′ are synchronous in F).

Whenever the property expressed by equation 3 is valid for each flow F in P ,
the clocks c and c′ are said to be synchronous in P , which is denoted by c

P= c′.
This definition can be expressed as follows:

c
P= c′ ⇔ ∀F ∈ P, c

F= c′ (4)

Validation of Mixed Signal-Alpha Real-Time Systems 1375

Unless explicitly constrained through the Signal program, clocks c and c′ are
completely independent in the associated P process. Therefore, their relative
position can be such that in some flows F in P they are identical, while in some
other flows F ′ in P their instants interleave in an arbitrary manner: obviously,
if c and c′ are independent in P , they are synchronisable. When the relative
position of clocks c and c′ is implicitly or explicitly constrained by the Signal
operators, flows F in P are subsequently constrained and the synchronisability
of c and c′ depends on these constraints.

In order to better understand the use of the synchronisability rules, consider
for example a process P derived from a Signal program Prg in which clocks c
and c′ are defined by the first two equations of the system (1):

c = c1

c′ = (c1 ∧ c2) ∨ c1
(5)

Program Prg may be transformed into Prg ′ in which an additional constraint
has been expressed on clocks c and c′: c = c′ (in the Signal-Alpha context, Prg
could be part of a transformed Signal-Alpha specification, as seen above, and
Prg ′ the same specification, in which clocks are resynchronised). Consider the
process P ′ corresponding to the program Prg ′. The system of clock equations
associated with Prg ′ is (1). Given the set of flows F ′ ⊆ P such that c

F= c′,
∀F ∈ F ′, it results P ′ = F ′. Therefore, verifying the consistency of (1), which is
equivalent to testing that clocks c and c′ are equivalent in P ′, is further equivalent
to testing the synchronisability of c and c′ in P . The rule (c1∧c2)∨c1 = c1 from
the boolean lattice is indeed a synchronism rule: (c1 ∧ c2) ∨ c1

P= c1 for every
process P . The same axiom holds for the process P associated with Prg . And

thus (c1 ∧ c2) ∨ c1

P
� c1, since synchronism implies synchronisability. Therefore

in the example, F ′ is not empty and it can be concluded that P ′ is consistent
from the point of view of the constraints expressed on its clocks.

The rules of the lattice � represent synchronisability rules: each identity
f1 = f2, with f1, f2 boolean formulas on clocks, is equivalent to f1

P= f2 which

implies f1

P
� f2 for every process P . These rules can be further extended using

the properties of the affine relations between clocks. Figure 5 illustrates this idea:
if P is the process associated with the program SIGNAL’, the configuration in
which clocks c1 and c2 coincide represent a flow F ∈ P such that c1

F= c2. Thus, c1

and c2 are synchronisable in P . The reason here is that the (9, 6, 9) and (7, 3, 7)-
affine relations existing respectively between c, c1 and c, c2 are equivalent. In the
next section, we define the affine relation associated with a flow and a process
and further explicitate the concept of equivalence of affine relations.

3.2 Affine Relations in Signal

Given n, d ∈ IIN∗ and ϕ ∈ 6Z fixed, clocks c and c1 are in (n, ϕ, d)-affine relation in
the flow F—which is denoted c RF

(n,ϕ,d) c1 or (c, c1) ∈ RF
(n,ϕ,d)—if the relative

1376 Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic

position of c and c1 in F can be induced by an (n, ϕ, d)-affine transformation as
defined in Section 2.2.

Clocks c and c1 are in (n, ϕ, d)-affine relation in process P , denoted
c RP

(n,ϕ,d) c1 or (c, c1) ∈ RP
(n,ϕ,d), if they are in (n, ϕ, d)-affine relation in each

flow F of P , i.e. c RF
(n,ϕ,d) c1, ∀F ∈ P . Flows and processes are defined over the

set of variables they manipulate. For a given set A, a flow F on A is a member of
the set of flows FA that can be constructed with the variables of A. In a similar
manner, a process P on A belongs to the set of processes on A, i.e. P ∈ PA.
Because of the finite nature of the sets of variables associated with flows and
processes, affine relations can be defined as finite sets as follows:

∀F ∈ FA, RF
(n,ϕ,d) = {(c, c1) ∈ A×A | c RF

(n,ϕ,d) c1} (6)

∀P ∈ FA, RP
(n,ϕ,d) = {(c, c1) ∈ A×A | c RP

(n,ϕ,d) c1} (7)

Consider the process P ∈ P{c,c1,c2} defined as follows:

P = {F ∈ F{c,c1,c2} | c RF
(n1,ϕ1,d1)

c1, c RF
(n2,ϕ2,d2)

c2} (8)

(induced by a Signal program that manipulates only the clocks c, c1 and c2).
From the definition of an affine relation associated with a process it results

c RP
(n1,ϕ1,d1)

c1 and c RP
(n2,ϕ2,d2)

c2. Clocks c1 and c2 are synchronisable in P

if there exists F ∈ P satisfying c1
F= c2. Consider Fs ∈ P satisfying c1

Fs= c2.
Obviously c RFs

(n1,ϕ1,d1)
c1 and c RFs

(n2,ϕ2,d2)
c2. Being identical in Fs, clocks c1

and c2 can be replaced with each other and therefore c RFs

(n1,ϕ1,d1)
c1 implies

c RFs

(n1,ϕ1,d1)
c2 and c RFs

(n2,ϕ2,d2)
c2 implies c RFs

(n2,ϕ2,d2)
c1. It results therefore

that RFs

(n1,ϕ1,d1)
= RFs

(n2,ϕ2,d2)
= {(c, c1), (c, c2)}. In conclusion, a necessary con-

dition for clocks c1 and c2 to be synchronisable in P is that RFs

(n1,ϕ1,d1)
and

RFs

(n2,ϕ2,d2)
be equivalent. In the case of the process P defined by (8), it can be

proved that this condition is also sufficient.
The equivalence of affine relations depends on the closure properties of the

space of affine relations with respect to the main operations that can be applied
to it. These are either union, intersection or difference induced by the homonym
operations on clocks, or general operations on relations like inverse and com-
position [15]. In the next section we propose a study of these properties in the
semantical model of traces of Signal.

3.3 Properties on Affine Relations & Synchronisability Rules

The Semantics of Traces. Consider a finite set of signals A. The set of all
possible flows defined on A is denoted FA. Subsets of flows from FA can be
grouped in processes which are members of the set PA of all processes that can
be defined on A. A Signal program on A defines a process P ∈ PA; each flow

Validation of Mixed Signal-Alpha Real-Time Systems 1377

F ∈ P satisfies some constraints imposed by the Signal operators on the clocks
and values of the signals from A.

Signal disposes of four basic operators (kernel) which are sufficient for the
construction of any program regardless of its complexity. Kernel operators are
combined through composition and restriction in order to build programs. The
composition and restriction of programs induce naturally the corresponding op-
erations on processes and flows. Intuitively, the restriction of a flow F to a set
of variables A′ ⊆ A is the flow ΠA′(F) which contains only those instants of F
with actions involving signals from A′.

Concerning processes, the main operations are defined as follows. Given a set
of variables A′ ⊆ A, the restriction of P ∈ PA to A′ (the projection of P on A′)
contains the flows F ∈ P manipulating exclusively variables of A′:

ΠA′(P) = {F ′ ∈ FA′ | F ′ = ΠA′(F), ∀F ∈ P} (9)

The composition of processes P1 ∈ PA1 and P2 ∈ PA2 , with A1, A2 arbitrary
sets of variables, is defined by:

P1 | P2 = {F ∈ FA1 ∪A2
| ΠA1(F) ∈ P1, ΠA2(F) ∈ P2} (10)

The following lemma describes the necessary and sufficient conditions—
stated as ΠA2(P) ⊆ Q—for a property valid in the process Q to be also also
in P :

Lemma 1. ∀P ∈ PA1 , ∀Q ∈ PA2 , A2 ⊆ A1,

ΠA2(P) ⊆ Q⇔ P | Q = P (11)

In other words, given the hypothesis described by the left hand side of (11), Q
expresses a property valid also in P .

Properties on Affine Relations. Operations specific to relations in general,
like inverse ()−1 and composition ∗, can be applied to affine relations [15]. As an
example, consider a process P ∈ P{c,c1,c2,c3} with clocks c, c1, c2 and c3 satisfying
c RP

(n1,ϕ1,d1)
c1, c1 RP

(n2,ϕ2,d2)
c2 and c RP

(n3,ϕ3,d3)
c3. Obviously, it results that

c RP
(n1,ϕ1,d1)

∗ RP
(n2,ϕ2,d2)

c2 and the synchronisability of c2 and c3 depends on
properties of the composition. When the space of affine relations is closed under
composition, the test of the synchronisability of c2 and c3 reduces itself to the
verification of the equivalence of affine relations.

Affine relations can be further combined through union ∪r, intersection ∩r

and difference \r induced by the homonym operations on clocks (∨, ∧, \). A sim-
ilar argument as before conducts to the necessity of studying closure properties
of these operators with respect to the space of affine relations.

Here is a brief presentation of the main steps and results obtained in the
study of affine relations.

1378 Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic

Equivalence of Affine Relations. An equivalence relation, noted∼, can be defined
between triplets (n, ϕ, d) as follows: (n, ϕ, d) ∼ (n′, ϕ′, d′) iff either nd′ = n′d and
nϕ′ = n′ϕ, for G | ϕ (i.e., G is a divisor of ϕ) and G′ | ϕ′, or nd′ = n′d and[

dt+ϕ
n

]
=

[
d′t+ϕ′

n′

]
, ∀t ∈ IIN, dt+ϕ ≥ 0, for G 6 | ϕ and G′ 6 | ϕ′, with G = gcd(n, d)

the greatest common divisor of n and d, G′ = gcd(n′, d′) and [x] the integer
part of x ∈ IIN. The equivalence of affine relations depends exclusively on the
values of the associated triplets (n, ϕ, d) [17]:

Proposition 1.

RF
(n,ϕ,d) = RF

(n′,ϕ′,d′), ∀ F ∈ FA ⇔ (n, ϕ, d) ∼ (n′, ϕ′, d′) (12)

Canonical Form. In order to reduce the complexity of the test of the equivalence
∼, we have then defined a canonical form (nCF , ϕCF , dCF) for a triplet (n, ϕ, d)
[18] as follows:

Proposition 2.

a) G | ϕ ⇒ (nCF , ϕCF , dCF) = (n
G , ϕ

G , d
G)

b) G 6 | ϕ⇒ (nCF , ϕCF , dCF) = (2 n
G , (2

[
ϕ
G

]
+ 1), 2 d

G)
(13)

Consequently, the canonical form of RF
(n,ϕ,d) is RF

(nCF ,ϕCF ,dCF) and the ver-
ification of the identity of two affine relations is thus reduced to the verification
that two triplets of integers are identical:

Proposition 3.

RF
(n,ϕ,d) = RF

(n′,ϕ′,d′) ⇔ (nCF , ϕCF , dCF) = (n′CF , ϕ′CF , d′CF) (14)

Operations on affine relations. If any expression on affine relations could be
rewritten as an affine relation, the verification of clock synchronisability would
consist only in a test of equivalence on affine relations as above. But it has been
observed that this was not the case in general. The closure property is true
for the inverse of an affine relation. Also, the affine relation RF

(1,0,1) is neutral
with respect to composition. However, the closure property is lost when dealing
with composition. The composition of two general affine relations RF

(n,ϕ,d) and
RF

(n′,ϕ′,d′) does not generally produce an affine relation. Nevertheless, it has
been possible to identify in the space of the affine relations RF

(n,ϕ,d) a subspace
consisting of relations of the form RF

(1,ϕ,d), with ϕ ≥ 0, in which the closure
property is true. Following this observation, we have distinguished two cases, as
detailed in the sequel.

Properties of affine relations RF
(1,ϕ,d), with ϕ ≥ 0. It has been demonstrated [16]

that the space of affine relations RF
(1,ϕ,d), although closed under composition ∗

and intersection ∩r , is not closed under union ∪r and difference \r. It is there-
fore necessary to define necessary and sufficient conditions for the equivalence

Validation of Mixed Signal-Alpha Real-Time Systems 1379

of arbitrary expressions constructed with affine relations of the form RF
(1,ϕ,d)

using composition, union, intersection and difference. Given the complexity of
the space of expressions on affine relations RF

(1,ϕ,d) and the necessity of efficient
algorithms for testing their equivalence, the question of the existence of a canon-
ical form appears. Our attempt to provide a canonical form using exclusively the
∪r operator—based on the observation that any expression in this space can be
rewritten as a union of affine relationsRF

(1,ϕ,d)—has failed because of the infinite
number of possibilities in which a relationRF

(1,ϕ,d) can be rewritten as a union of
affine relations of the same type. However, in [16] we propose a relative normal
form which reduces partially the complexity of the equivalence calculus.

Properties of general affine relations RF
(n,ϕ,d). Deciding that two arbitrary ex-

pressions on general affine relations are equivalent is a difficult problem. An
initial step may be to isolate subsets of triplets (n, ϕ, d) and (n′, ϕ′, d′) which
respect the condition that the result of the operation RF

(n,ϕ,d) opr RF
(n′,ϕ′,d′),

with opr ∈ {∗,∪r,∩r, \r}, is an affine relation. In [16] we propose a subset
of such triplets {(n, ϕ, d), (n′, ϕ′, d′)}, for which the above property is true, for
the composition. Computing this subset {(n, ϕ, d), (n′, ϕ′, d′)} is an NP-complete
problem. Future work may consider the applicability of heuristic search methods
for this computation. Another open problem is the study of the properties of the
union ∪r, intersection ∩r and difference \r of general affine relations.

Synchronisability Rules. The main results concerning the particular affine
relations RF

(1,ϕ,d), with ϕ ≥ 0, and the general ones RF
(n,ϕ,d) have respectively

permitted the induction of a set of synchronism rules and a set of synchronisabil-
ity rules. These rules actually represent a set of conditions which are necessary
and sufficient for the synchronism and respectively the synchronisability of two
clocks.

An example of synchronism rule is given below. Consider the process P ∈
P{c,c1,c2,c3} defined by:

P = {F ∈ F{c,c1,c2,c3} | c RF
(1,ϕ1,d1)

c1, c1 RF
(1,ϕ2,d2)

c2, c RF
(1,ϕ3,d3)

c3} (15)

Obviously c RP
(1,ϕ1,d1)

c1, c1 RP
(1,ϕ2,d2)

c2 and c RP
(1,ϕ3,d3)

c3. The calculus
on affine relations RF

(1,ϕ,d) induces RF
(1,ϕ1,d1)

∗ RF
(1,ϕ2,d2)

= RF
(1,ϕ1+d1ϕ2,d1d2)

which is valid also for processes: RP
(1,ϕ1,d1)

∗ RP
(1,ϕ2,d2)

= RP
(1,ϕ1+d1ϕ2,d1d2)

.
Therefore c RP

(1,ϕ1+d1ϕ2,d1d2)
c2, and c2 and c3 are synchronisable if and only

if RP
(1,ϕ1+d1ϕ2,d1d2)

= RP
(1,ϕ3,d3)

. With Propositions 2 and 3, RP
(1,ϕ1+d1ϕ2,d1d2)

and RP
(1,ϕ3,d3)

are equivalent if and only if (1, ϕ1 + d1ϕ2, d1d2) and (1, ϕ3, d3)
are identical, that is, ϕ1 + d1ϕ2 = ϕ3 and d1d2 = d3. This result is expressed in
the following synchronism rule:

Proposition 4. ∀P ∈ P{c,c1,c2,c3} with c, c1, c2 and c3 satisfying
c RP

(1,ϕ1,d1)
c1, c1 RP

(1,ϕ2,d2)
c2 and c RP

(1,ϕ3,d3)
c3, the following equivalences are

verified:

1380 Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic

c2

P
� c3 ⇔

{
ϕ1 + d1ϕ2 = ϕ3

d1d2 = d3

}
⇔ c2

P= c3 (16)

In Fig. 7 the particular case ϕ1 = 6, d1 = 2, ϕ2 = 1, d2 = 2, and ϕ3 = 8,
d3 = 4 is illustrated. It can be observed that clock c1 is an affine sampling of
phase ϕ1 and period d1 on clock c. Clock c2 is defined similarly by an affine
sampling of parameters ϕ2 and d2 on c1. The same clock c2 can be obtained by
an affine sampling of ϕ3 and d3 on c; the clock c3 constructed in this manner is
synchronous, and therefore synchronisable, with c2.

Following a sequence of steps similar as for Proposition 4, we have derived
a system of synchronism rules which is minimal; it enables the verification of
the synchronisability of two arbitrary clocks related by an expression on affine
relations RF

(1,ϕ,d), with ϕ ≥ 0. The results concerning the equivalence of general
affine relations RF

(n,ϕ,d), summarized by Propositions 1, 2 and 3, and the partial
result on composition of general affine relations, have allowed the derivation of
a set of synchronisability rules which are sufficient for the validation of Signal
programs for which the single operation performed on affine relations is composi-
tion. Further work should be dedicated to the study of the union ∪r, intersection
∩r and difference \r of general affine relations.

Fig. 7. Illustration of Proposition 4.

3.4 Implementation of the Affine Clock Calculus

A prototype implementing the synchronisability rules introduced in Section 3.3
has been integrated with the existing clock calculus and used for the validation
of the Signal-Alpha interface on the video image coding application intro-
duced in Section 2. In Section 3.1 we have explained that the existing (boolean)
clock calculus relies on the properties of the lattice � existing on the space of
clocks, and that it is equivalent to a system of synchronisability rules. The im-
plementation of the affine clock calculus is briefly described now. By choosing

Validation of Mixed Signal-Alpha Real-Time Systems 1381

an appropriate implementation of a general affine relation RP
(n,ϕ,d) as detailed

in [16], the considered clock expressions contain formulas constructed only with
affine clocks, that is, affine samplings of specified phase and period on a given
basis clock. Thus, the order �aff defined by

�aff = {(c1, c2)| ∃ϕi ≥ 0, di > 1,RP
t = EXP(. . . ,RP

(1,ϕi,di)
, . . .), c1RP

t c2} (17)

with EXP a general expression on affine relations, induces on the space of affine
clocks a lattice structure. The system of equations on affine clocks associated
with a Signal program is solved by triangularisation. When the equivalence of
two clock expressions has to be demonstrated, synchronisability rules such that
deduced in Section 3.3 are applied. Finally, for the integration of the affine and
boolean clock calculus, each synchronisability rule which has been deduced in a
process Q ∈ PA2 , is used in a larger context P ∈ PA1 , with A2 ⊆ A1, satisfying
ΠA2(P) ⊆ Q. Following Lemma 1, the synchronisability rule is also valid in P .

4 Application

The affine clock calculus has been used for the validation of the video image
coding application described in Section 2. This application contains an important
control part, which has been programmed in Signal, and operations like the
Dct, which have been expressed in Alpha. The application has been specified
and simulated at both functional and architectural levels as described in Section
2. In the coding system described in [8], each image is decomposed into a fixed
number of macro-blocks, each macro-block consisting of one block of luminance
and two blocks of chrominance (red and blue). At the architectural level, we
have refined the Alpha specifications of the Dcts corresponding to the blocks
of luminance and red chrominance of a macro-block. These temporal refinements
have been expressed in Signal by means of two general affine relations between
clocks c, c1 and c, c2 as illustrated in Fig. 5. The synchronisability of c1 and c2

has been verified by compilation and the entire Signal-Alpha system has been
simulated in C.

Most of the operations involved in image coding applications are critical from
the point of view of execution time or resources. Therefore, a codesign approach
can be considered. The affine clock calculus represents an important element
in defining a complete codesign methodology based on the Signal and Alpha
languages. Besides the cospecification and cosimulation of an application, using
Signal and Alpha in a codesign framework is interesting since it offers solu-
tions to other codesign problems such as the automatic synthesis of specialised
circuits for regular algorithms, or the generation of optimal code for the soft-
ware implementation of both calculations and control. Concerning the latter,
one might consider the hardware/software partitioning of an application corre-
sponding to the partitioning into Signal and Alpha subsystems. Therefore,
Alpha processes would be implemented in hardware by automatic synthesis,
while Signal processes would be translated into C code for general purpose

1382 Irina M. Smarandache, Thierry Gautier, and Paul Le Guernic

architectures. However, the proposed partitioning is not unique and automatic
hardware/software partitioning remains an open problem, as it is the implemen-
tation of the hardware/software interface.

5 Conclusion

The joint use of the Signal and Alpha languages in hardware/software codesign
has introduced the problem of the validation of mixed Signal-Alpha specifica-
tions both at the functional and architectural levels. The refinement of Signal-
Alpha specifications towards the architectural level and their subsequent val-
idation necessitates the extension of the formal clock calculus implemented in
the Signal compiler. This paper presents the new affine clock calculus based
on the properties of affine relations induced between clocks by the refinement of
Signal-Alpha specifications. The properties of affine relations are studied in
the semantical model of traces of the Signal language, but can be extended to
any general model with similar characteristics. Based on this study, a new set
of synchronisability rules is defined and integrated with the set already imple-
mented by the existing formal clock calculus.

The affine clock calculus is relevant for the definition and implementation
of a codesign methodology using the Signal and Alpha languages. Techniques
for real-time system validation (formal verification, simulation) available in the
Signal and Alpha environments can be used for cospecification and cosimu-
lation. Both environments also have tools for automatic generation of optimal
implementations which can be used in a complementary manner for hardware
synthesis and/or implementation on general architectures. Further work should
be devoted to the complete integration of the Signal and Alpha languages
thus making possible the use of the most adapted formalism and environment
for a given application.

References

[1] Amagbegnon T., Besnard L., Le Guernic P.: Arborescent Canonical Form of
Boolean Expressions. INRIA Research Report 2290, IRISA/INRIA - Rennes,
France, 1994

[2] Amagbegnon T., Le Guernic P., Marchand H., Rutten E.: The Signal
dataflow methodology applied to a production cell. IRISA Research Report 917,
IRISA/INRIA - Rennes, France, 1995

[3] Belhadj M.: “Using Vhdl for Link to Synthesis Tools”. Proceedings of the North
Atlantic Test Workshop, June 1994, Nmes, France

[4] Benveniste A., Berry G.: “Real-Time systems design and programming”, Pro-
ceedings of the IEEE, September 1991, 79, (9)

[5] Besnard L.: Compilation de Signal : horloges, dpendances, environnement, PhD
Thesis, University of Rennes 1, France, September 1992

[6] Birkhoff G.: Lattice Theory, AMS colloquium publications, 1973
[7] De Micheli G.: “Computer-Aided Hardware-Software Codesign”, IEEE Micro,

August 1994, 14, (4)

Validation of Mixed Signal-Alpha Real-Time Systems 1383

[8] ETSI (European Telecommunication Standards Institute) Specification of Com-
ponent TV codecs 32-45 Mbit/s. December 1990

[9] Gautier T., Le Guernic P., Quinton P., Rajopadhye S., Risset T., Smarandache
I.: “Projet CAIRN: conception d’architectures partir de Signal et Alpha”
CODESIGN Conception conjointe logiciel-matriel, Eyrolles, Collection Technique
et Scientifique des Tlcommunications, 1998

[10] Gupta R.K., Coelho C.N., De Micheli G.: “Program Implementation Schemes for
Hardware-Software Systems” Computer, January 1994, pp. 48-55

[11] Kalavade A., Lee E.A.: “A Hardware-Software Codesign Methodology for Dsp
Applications” IEEE Design & Test of Computers, September 1993, 10, (3), pp.
16-28

[12] Le Guernic P., Gautier T.: “Data-Flow to von Neumann: the Signal Approach”,
Advanced Topics in Data-Flow Computing, (Gaudiot J.-L. and Bic L., 1991), pp.
413-438

[13] Le Guernic P., Gautier T., Le Borgne M., Le Maire C.: “Programming Real-time
Applications with Signal”, Proceedings of the IEEE, September 1991, 79, (9),
pp. 1321-1336

[14] Salinas M.H., Johnson B.W., Aylor J.H.: “Implementation-Independent Model
of an Instruction Set Architecture in Vhdl” IEEE Design & Test of Computers,
September 1993, 10, (3), pp. 42-54

[15] Sanderson J.G.: A Relational Theory of Computing, Springer Verlag 1980, 80,
Goss G. and Hartmanis J.

[16] Smarandache I.: Transformations affines d’horloges : application au codesign de
systèmes temps-réel en utilisant les langages Signal et Alpha, PhD Thesis,
University of Rennes 1, France, October 1998

[17] Smarandache I., Le Guernic P.: “Affine Transformations in Signal and
Their Applications in the Specification and Validation of Real-Time Systems”
Transformation-Based Reactive Systems Development, Proceedings of the 4th In-
ternational AMAST Workshop on Real-Time Systems and Concurrent and Dis-
tributed Software, Palma, Spain, LNCS 1231, Springer Verlag, 1997

[18] Smarandache I., Le Guernic P.: A Canonical Form for Affine Relations in Signal.
INRIA Research Report 3097, IRISA/INRIA - Rennes, France, 1997

[19] Thomas D.E., Adams J.K., Schmit H.: “A Model and Methodology for Hardware-
Software Codesign” IEEE Design & Test of Computers, September 1993, 10, (3),
pp. 6-15

[20] Wilde D.: The Alpha Language. IRISA Research Report 827, IRISA/INRIA -
Rennes, France, 1994

[21] Wilde D., Sié O.: Regular array synthesis using Alpha. IRISA Research Report
829, IRISA/INRIA - Rennes, France, 1994

Combining Theorem Proving and Continuous

Models in Synchronous Design

Simin Nadjm-Tehrani1 and Ove Åkerlund2

1 Dept. of Computer and Information Science, Linköping University
S-581 83 Linköping, Sweden

simin@ida.liu.se
2 Saab AB, S-581 88 Linköping, Sweden

ove.akerlund@saab.se

Abstract. Support for system specification in terms of modelling and
simulation environments has become a common practice in safety-critical
applications. Also, a current trend is the automatic code-generation, and
integration with formal methods tools in terms of translators from a high
level design – often using common intermediate languages.
What is missing from current formal methods tools is a well-founded inte-
gration of models for different parts of a system, being software/hardware
or control-intensive/data-intensive. By hardware we mean here the full
range of domains in engineering systems including mechanics, hydraulics,
electronics. Thus, there is a methodological gap for proving system prop-
erties from semantically well-defined descriptions of the parts.
We report on the progress achieved with the European SYRF project
with regard to verification of integrated analog/discrete systems. The
project pursues the development of new theories, application to case
studies, and tool development in parallel. We use a ventilation control
system, a case study provided by Saab Aerospace, to illustrate the work
in progress on how hardware and software models used by engineers
can be derived, composed and analysed for satisfaction of safety and
timeliness properties.

Keywords: control system, synchronous languages, theorem proving,
hybrid system, proof methodology

1 Introduction

Many applications of formal methods in system development are in the require-
ments specification phase – often formalising a subset of requirements corre-
sponding to functional behaviour of the system [9, 6]. In embedded systems,
these requirements commonly refer to the component which is under design –
typically the controller for some physical devices (realised either as software or
electronics). However, there is a class of properties arising as a result of inter-
action between the controller and the controlled environment, the verification
of which requires an explicit model of the environment. This paper addresses

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1384–1399, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Combining Theorem Proving and Continuous Models 1385

verification methodologies for such types of requirements in the context of syn-
chronous languages.

A growingly popular approach to controller design or programming uses the
family of synchronous languages (Lustre, Esterel, Signal and statecharts) [7, 8].
One reason for choosing such languages is the support provided in the develop-
ment environments: the controller can be analysed to eliminate causal inconsis-
tencies, and to detect nondeterminism in the reactive software. The clock calculii
in Lustre and Signal, as well as constructive semantics in Esterel can be seen
as verification support provided directly by the compiler (comparable to several
properties verified by model checking in [5]). Most of the works reported within
this community, however, apply verification techniques to check the controller
on its own.

Modelling the controlled environment is common in control engineering. How-
ever, the analysis tools within this field primarily provide support for continuous
system simulation, and are less adequate for proving properties of programs with
discrete mode changes and (or) complex non-linear dynamics in the plant.

Within the Esprit project SYRF (on SYnchronous Reactive Formalisms), we
present an approach whereby modelling tools used for analysis of analog systems
can be used to substantiate the properties of the environment when formally ver-
ifying a closed loop system. We use the continuous model of the environment
in two different settings. In the first approach, compositional verification is per-
formed across different modelling platforms [14]. A required property is split
into a number of conjuncts (proof obligations). Some of these are discharged by
proofs in the discrete platform, using the controller properties. Others are veri-
fied in the environment model by simulation and extreme case analysis. Certain
properties are refined in several steps before they are reduced to dischargable
components.

In the second approach we model (aspects of) the continuous subsystem in
the same (discrete) proof environment as the controller. Here, the restrictions in
the physical model provide a sufficient condition: The proof of the property in the
closed loop model holds provided that the restrictions leading to the discretised
model holds.

A case study provided by Saab Aerospace is used to illustrate the alternative
approaches, the properties for which they are appropriate, and some verification
results obtained. However, some comparative studies are still in progress, and
will be conclusively presented in the final report of the project.

2 The Air Control Case Study

The case study consists of a climatic chamber. A control system regulates and
monitors the flow and the temperature of air which is circulating in the chamber.
Originally, it was developed as a demo system which demonstrates the kind of
problems appearing in developing realistic subsystems such as the ventilation
system in the JAS 39 Gripen aircraft. It was presented to the project partners in

1386 Simin Nadjm-Tehrani and Ove Åkerlund

terms of a 4 page textual specification and an implemented code for a controller
in hierarchical block diagrams with state machines at the lowest level.

Flow
Sensor

Temperature
Sensor

Fan

Inlet Outlet

Heater

Fig. 1. The hardware components of the air control system.

The chamber is to be ventilated through the inlet and outlet and has a given
volume. It has two sensors for measuring the internal air temperature and the
air flow. Figure 1 presents the component model of the chamber, while Figure 2
shows the interface between the system and the operator. The external interface
primarily consists of an on-off button, two analog knobs for setting the values
for required temperature and flow (reference values), as well as warning signals
in terms of a light and a sound. It also includes lights for showing some of its
internal modes of operation.

Reference

Wait Work Block

Actual
Temperature

Flow
Actual

Light Sound

User input System output

ON/OFF

Reference
Temperature

Flow

Mode

Warnings

Fig. 2. The external interface to the system.

The controller has three modes while it is on. It has an initialising ”wait”
mode in which the heater and the fan are used to bring the chamber temperature
and flow within a given scope. It also has two active modes in which more
accurate regulation is achieved. One is the ”solution” mode in which the actual

Combining Theorem Proving and Continuous Models 1387

temperature and flow values are brought to levels close to the reference values.
The other, the ”work” mode in which the actual values are maintained in the
required region (within ∆ of the reference values). The final mode, denoted as
the “block” mode, is devoted to abnormal situations and it is intended as a
shut-down mode. It is brought about when the earlier sound and light warnings
have not led to changes in the reference values by the operator, or when the
actual values fall outside the allowed scope despite manual intervention (for
example due to unforeseen changes in unmodelled inputs, e.g. the incoming air
temperature).

2.1 Requirements Specifications

The textual description mentioned above has a prescriptive nature. It describes
how a controller should be implemented, giving some details about what should
happen in each mode. To focus the formal verification work we had to deduce the
overall goals of the control system: those requirements which are to be enforced
by the suggested design.

The result of this study has been identification of the following global re-
quirements.

– Keeping the reference values constant,
• the work light will be lit within a time bound from the start of the

system, and
• the system will be stable in the work mode.

– Chamber temperature never exceeds a given (hazardous) limit.
– Whenever the reference values are (re)set, the system will (re)stablise within

a time bound or warnings are issued.

Note that these are not properties of the controller on its own. Note also
that our formulations are intended to fit in a framework where different proof
techniques are applied where they suit best. Although “being stable in the work
mode” can be seen as a safety property (the conditions for leaving the mode
will not be true), it is most expedient to use control theory methods for proving
this property. This is due to the fact that not all inputs to the system are kept
constant (see the result of the physical modelling step). Hence, it is formulated
as a stability property.

Another aspect to point out is on the second (safety) property. Here we
look beyond the functional demand on the system to monitor and warn when
the temperature falls outside given intervals. We rather attempt to see what is
the goal of devising such intervals and mode changes and envisage as a (mode-
independent) goal of the system that the air is never heated to a hazardous level
(even in the block mode and after warnings are issued).

3 Model of the Controller

The controller has been modelled in several synchronous languages both in the
data flow style (Lustre), and the control flow style (Esterel, statecharts). It

1388 Simin Nadjm-Tehrani and Ove Åkerlund

represents the typical case where it is most naturally described in a combination
of these paradigms. Thus, mode automata [12] and the synchronie workbench
[1] use this as a demonstrator system. Also, a multi-formalism representation of
the example used for distributed code generation can be found in [3].

Having models which reflect the nature of the computations naturally, surely
avoids some development errors. Moreover, once the models are analysed with
respect to the required properties they can be automatically translated to in-
termediate and lower layer programming languages. For example from mode-
automata to Lustre, to DC, and to C (see work package 2 in the project [17]).
Note that code generation is also available in tools which support analysis of
continuous systems and analog (periodic) controllers (e.g. Matlab and MatrixX
[10]). However, these are not targeted for cases with complex software with hi-
erarchical structure and do not support formal verification.

It is also essential to obtain integration with analysis tools if the detailed
design is to be formally verified prior to code generation. This is much more ob-
vious where the controller has a hierarchical description, discrete mode changes,
and complex control structures. Here, the work in the project is still in prelim-
inary stages. Prototype translators from Lustre to PVS [16], and Lustre to the
first order theorem prover NP-Tools by Prover technology have been developed
(see work package 3.4 in [17]). However, the applications are still in progress.

Here we report on one such translator used in the case study: the proto-
type developed by Prover technology which translates a subset of the Statemate
languages (with a synchronous interpretation) to NP-Tools with integer arith-
metic [4]. The model of the controller in statecharts is too large for being pre-
sented here. However, the size of the translated NP-Tools model provides a feel
for the size. The insect-like macro resulting from the translation to NP-Tools
has 96 input variables and 88 output variables (seen as a circuit).

3.1 Lessons Learnt

Our experience with the modelling activities for climatic chamber controller can
be summarised as follows. The NP-Tools [18] environment should obviously be
seen as an analysis environment, not a primary modelling environment. The de-
scription of the controller at the circuit level loses much of the inherent structure
and does not provide an overview when compared with the statechart model.
On the other hand, using statecharts alone was not ideal for description of such
a controller either. The model we developed prior to translation to NP-Tools
used only a subset of the Statemate (statechart) notation. In particular, activ-
ity charts could not be used. Thus, all (continuous) control activities which are
ideally described in a language like Lustre give rise to several self-loops within
every active regulation mode, each loop having its own enabling condition.

The result of the translation from statecharts to NP-Tools was a macro with
all the inner logic hidden. Each dynamic variable was modelled as an in-pin
representing the value before each step, and an out-pin for the value after the
step (additional pins for initial values are also provided). During the verification
step counter-models presented by the theorem prover showed errors in the design

Combining Theorem Proving and Continuous Models 1389

model. However, after every modification to the design (in the statechart model),
one needed to recompile to the NPTool format, which soon became impractical.

As a result of the childhood problems with the translators, we have so far
attempted all our closed loop verifications on models directly developed in NP-
Tools and a physical environment model. When modelling in NP-Tools we have
used a similar style to modelling (variable naming conventions for values before
and after a step, etc), as if the model was the result of translation from the
statechart model.

The experience here shows, however, that much of the value in high level
modelling is lost. To show, for example, that the control system is only in one
mode at any time produced a number of counter examples and several modifi-
cations to the model. This is trivially achieved by competent compilers (e.g. the
Esterel compiler based on constructive semantics [2]).

We are currently experimenting with the Lucifer tool which is a similar trans-
lator from Lustre to NP-Tools (see SYRF deliverable 2.2 [17]). Here, translation
provides an improvement. The hierarchical structure of the Lustre program, not
so visible in the textual language, becomes more visible in the NP-Tools ver-
sion. This is due to preservation of the structure at the Lustre ”node” level (one
NP-Tools macro for each Lustre node).

4 Models of the Physical Environment

The physical model developed for the climatic chamber case study and the un-
derlying assumptions were detailed in [14]. In the simplest form, the continuous
model for the example, as derived from engineering models, has one differential
equation describing changes in the chamber temperature as a function of three
inputs: the incoming air temperature, the applied voltage, and the air flow in
the chamber.

An initial hybrid model for this part (under the given assumptions) is seem-
ingly simple: consisting of one discrete mode and one equation. The differential
equation, in which ui are inputs, x is the only state variable, and a, b and c are
constants, has the following form:

ẋ = au1x + bu2 + cu1u3

Here, u1 denotes the air flow [m2/s], u2 is the square of the controller-applied
voltage [V], and u3 is the temperature for the incoming air [K]. x denotes the
chamber temperature which is prescribed to be within allowed ranges in different
modes by the requirements/design document. Namely, the document refers to
the chamber temperature being “within ∆ of the reference temperature”, or
being “ within 2∆ the reference temperature” as part of the transition condition
between various modes.

1390 Simin Nadjm-Tehrani and Ove Åkerlund

4.1 Transformations on the Model

Ideally we would like to combine this model and the synchronous controllers
described above, and perform analysis on the closed loop system. However, pro-
totypical analysis environments in which hybrid models can be analysed are
much more restrictive. Note that despite simplifying assumptions this model
is still non-linear, and in particular the evolutions in state are not linear in
time. We therefore propose a number of transformations on the model which
makes some specific instances of it analysable. Two obvious “specialisations”
are transformation to hybrid automata (HA) and transformation to a discrete
time model.

Thus, we look at certain restrictions to the model which yield a “simpler”
representation. Though simplicity might mean a larger number of discrete modes
with simpler dynamics in each mode.

Another reason for looking at these restrictions is that the environment model
above is an open system. One of the “simpler” models, hybrid automata, requires
us to give invariances over every mode and differential equations describing each
variable of the system. The distinction between state and input is thus removed,
and the model is expected to incorporate full information both about control
signals (here the voltage), and the disturbances (here the incoming air temper-
ature).

On the other hand, we wish to keep a modular version of the environment
(although simpler). We would like to plug and play with different control pro-
grams and verify each property in that context. Thus, there is a conflict between
making the model simpler (e.g. turning it into HA) and keeping it modular.

We therefore propose a number of restrictions which can be applied with as
little impact on modularity as possible. In particular, we distinguish between
restricting:

– unmodelled inputs, and
– modelled inputs.

With unmodelled inputs we mean those which are completely outside our
control. In the context of the case study the incoming air temperature is such an
input. Since we do not have any information on how they can vary, restriction to
a class, in any case proves something about the closed loop system when inputs
are in that class. For these inputs we assume piecewise constant signals with a
finite range of values.

For modelled inputs, either the input is described in detail as the state of
another continuous state system, or the input is a control signal generated by
a control program. In the former case, a parallel composition of the hybrid
transition system eliminates those variables as inputs and makes them state
variables. In the latter case – for control signals – we again restrict the signal
to a class without making the controller behaviour fixed. In particular, control
signals issued from a synchronous controller, depending on being periodic or not,
lead to different abstractions of the physical model.

Combining Theorem Proving and Continuous Models 1391

(a) piecewise constant control signal with changes allowed at equidistant points
in time, lead to the discrete-time abstraction of the model as difference equa-
tions.

(b) piecewise constant control signals which set the rate of change of a continuous
variable (e.g. increase, decrease, steady), lead to piecewise constant slopes
incorporated in a hybrid automaton model.

We attempt both approximations in the project case study (see section 5
below). As far as other continuous (non-control) inputs are concerned, as a first
approximation it is reasonable to assume that they are constant. This is standard
practice in control engineering, and again, gives valid results for those system
trajectories brought about by the constant input.

In the climatic chamber, as a first approximation we assume that the flow
(u1)is constant at all times. We further assume that the incoming air temperature
(u3) is piecewise constant with a finite range of values.

Thus the model of the system can be transformed to a hybrid transition
system (HTS) [15] with one mode for every possible value of u3. This analysis
gives us Figure 3 as the first approximation.

mi

u3 = v3i

.

u3 = v3(i+1)

ẋ = ax + bu2 + di

Fig. 3. Assuming that domain of u3 = {v31, . . . , v3n},a = au1, and di = cu1v3i

4.2 The Hybrid Automaton Model

One restriction to the incoming control signal assumes the controller to have
three modes of operation with regard to the control signal: increasing, decreasing
and keeping constant. In this section we take the model of Figure 3 and restrict
u2 to be of this type. This assumption leads to a model of the chamber whereby
every mode in Figure 3 will be replaced by three modes as displayed in Figure 4.
The figure shows the obtained hybrid automaton fragment, where the conditions
for incoming and outgoing transitions from the fragment are left out.

It should be clear that by specifically stating the rate of change for u2 this
variable can no longer be considered as an input variable in the original transition
system. In order to utilise the added knowledge for simplifying the equation for
x, we need to relate rate of change of u2 with the changes in x. Thus, we need to
explicitly represent a clock which measures how long the system has resided in

1392 Simin Nadjm-Tehrani and Ove Åkerlund

mi2mi3 mi1
.

ẋ = ax + bu2 + di

u̇2 =−α
ẋ = ax + bu2 + di

u̇2 = α

ẋ = ax + bu2 + di

u̇2 = 0

Fig. 4. An HTS model with u2 as a state variable: assuming that it may stay
constant, or increase/decrease at a constant rate.

each mode since the last time it was entered. We use the clock t for this purpose.
This variable has to be reset to zero every time a mode is entered. Furthermore,
we need to establish the condition for leaving a mode and entering a new one,
which obviously arises due to actions of the controller. In HA, this is achieved
by adding synchronisation labels corresponding to controller actions. The HA
in Figure 5 allows arbitrary changes of slope within the range {−α, 0, α} by the
controller. Note that the value of x is now dependent on the (apriori unknown)
value of u2 on entry to the mode. This value on entry is captured by adding a
piece-wise constant variable (gi) and an assignment at each mode change.

It can be observed that the obtained hybrid automaton still is not analysable
algorithmically. That is, it is not yet a linear hybrid automaton (x does not
vary with constant slope). To make this model analysable using the existing
(hybrid automata) verification tools, we need to add bounds on the evolution of
x (otherwise the value of x will increase or decrease infinitely as time goes by in
each mode). Adding these bounds is possible once the plant model is composed
with a particular controller – a controller which has output signals of the type
assumed in this plant model, i.e. an on-off controller with three values for u2.
Since the Saab program is not of this type this track will not be continued any
further.

4.3 The Discrete Time Model

Considering constant flow and piecewise constant incoming air temperature as
in previous case, but a different restriction for the control signal we obtain a
different approximation in this subsection.

Here, we assume that the heater is controlled by a synchronous program.
Moreover we assume the incoming control signal (voltage) and its square u2 to
change only at equidistant points in time. After this assumption, one can rewrite
the differential equations into a discrete-time form by making the sampling in-
terval T a parameter of the model. Thus, every differential equation in Figure 3
may be replaced by the difference equation:

Combining Theorem Proving and Continuous Models 1393

.
steady

decrease
mi3 mi1

increase

steady
mi2

ẋ = ax− bαt + gi

u̇2 =−α
ṫ = 1

ġi = 0

ẋ = ax + gi

u̇2 = 0
ṫ = 1

ġi = 0

t := 0, gi := bu2 + dit := 0, gi := bu2 + di

t := 0, gi := bu2 + dit := 0, gi := bu2 + di

ẋ = ax + bαt + gi

u̇2 = α
ṫ = 1

ġi = 0

Fig. 5. Fragment of a hybrid automaton model with the same assumptions as
in Figure 4 – the clock t and the piece-wise constant function gi = bu2 + di have
been added to relate the changes in x to u2.

x((k + 1)T) = x(kT)eaT + b/a(eaT − 1) u2(kT) + di/a(eaT − 1)

That is, the (k+1)th value of x is defined in terms of the kth value of x and the
kth value of u2 (which is assumed constant during the interval [kT, (k + 1)T]).
This reduces the chamber model to a mode-automaton which is a hierachical
model compilable to a Lustre program [12]. The syntax and semantics of mode-
automata can also be found in the SYRF deliverable 2.1 [17].

4.4 Lessons Learnt

In the last two subsections we have seen how treatments of the control signal in
two different ways results in two different “simplified” models, each useful in the
context of some verification environment (see section 5).

Alhough it might seem that these guidelines are ad hoc, they rest on under-
lying general principles which justifies them in the context of verification. For
example, to restrict the control signal in the above two ways is definitely superior
to treatment of such a signal in a way similar to unmodelled inputs. Consider
for example the case that the input u2 (representing the square of the issued
voltage) is piecewise constant with a finite range (with no further restrictions).

This leads to a new model, starting from the HTS in Figure 3 and repeating
the same step earlier performed for u3. That is, the voltage signalis assumed
to have a finite range of values leading to the finite range {v21, . . . , v2p} for u2.
Replacing every mode of the HTS in Figure 3 with p modes, we get a totally
connected HTS of the form shown in Figure 6.

1394 Simin Nadjm-Tehrani and Ove Åkerlund

u3 = v3i

. . .

mi2

mip

u2 = v22

. . .mi1

u2 = v21

. . .

u2 = v21

u2 = v2p

ẋ = ax + ki1

ẋ = ax + ki2

ẋ = ax + kip

Fig. 6. The HTS obtained with piecewise constant restriction on the control
variable u2 – where kij = bv2j + di.

Note that “simplifying” with the same treatment for two different types of
input variables gives different results. In the case of a physical variable (the
incoming temperature), it is reasonable to assume that values v31, . . . , v3n can
be taken by u3 in that order. In the case of the control signal u2 we should assume
that the variable may be set to any of the values v21, . . . , v2p in any order. We
simply have no continuity assumptions on a discrete signal. Here, simplification
of the continuous dynamics in a mode comes at a much higher price in terms of
the increase in the number of (discrete) modes.

In those cases where the nature of the controller is intentionally left open (e.g.
not restricted to be periodic) this might be a suitable abstraction. However, it
is unnecessarily complex if we already intend to test a particular controller with
specific characteristics (on/off controller in the HA case, and a sampled program
in the case of the discrete time model).

5 Verification Techniques

In the project we have experimented with two different approaches to verifca-
tion. The first one is compositional: a given requirement is decomposed into
several conjuncts (prrof obligations). Different subsystem models (represented
in different modelling environments) are used to verify that different proof obli-
gations hold. The second approach, referred to as one-shot verification, models

Combining Theorem Proving and Continuous Models 1395

the physical system in the same proof environment and at the same abstraction
level as the controller.

5.1 Compositional Verification

Our approach combines formal and informal reasoning as well as continuous
analysis. In this approach we combine proofs in the NP-Tools theorem prover
and simulations in the SystemBuild environment of the MatrixX tool [10].

First, we attempt to find sufficient conditions which facilitate proving a prop-
erty using our knowledge of the system. These auxiliary properties may be of
the following kinds:

– an assumption which we discharge informally
– a property of the controller or the environment which we formally prove

locally
– another property arising as an interaction of the two, which we further refine

by finding further sufficient conditions

Then the system satisfies the top requirement under the informally dis-
charged assumptions.

Consider the second property which is a safety property. The only actuator
in the system causing hazards is the heater which must be shown to heat the air
to desired levels but not to hazardous levels. Let R2 express this property.

R2: The chamber temperature x never exceeds a limit TH

The aim is to find (strong enough) properties R2i such that
∧

R2i is sufficient
for proving R2. We start with the following conditions:

R20: The chamber temperature is equal to the incoming temperature u3 at
start time

R21: The reference temperature TRef can never exceed TRefmax , and
TRefmax + 2∆ < TH

R22: Whenever the system is in wait-, solution-, or work-mode, we have
x < TH

R23: The system is never in block-mode while x > TH

These properties can be discharged informally or proved within the NP-Tools
model except for R23 which we continue to refine:

R231: x = TRef + 2∆ < TH when entering the block-mode
R232: the applied voltage u = 0 throughout the stay in block-mode
R233: The system leaves the block-mode after tblock seconds, and enters the

off-mode
R234: The temperature x does not increase while the system is in the block

mode

This is sufficient for proving the safety property provided that
R231 ∧R232 ∧R233 ∧R234 → R23.
Properties R231 to R233 are easily proved using the NP-Tools model of the
controller. For the proof of R234 we use continuous reasoning based on the
simulation models.

1396 Simin Nadjm-Tehrani and Ove Åkerlund

5.2 One-Shot Verification

Here we describe the approach whereby some aspects of the environment model
are directly stated in the same verification environment as the controller is.

Consider now the first requirement. The stability component of this require-
ment can best be verified using control theory and exact knowledge of the control
algorithm in the work mode. Here, we concentrate on the first component, de-
noting it by R1.

R1: Keeping the reference values constant, the work light will be lit within
t1 from the start of the system

First, we provide sufficient conditions for R1 to hold in the design model:

R11: The system starts in the wait mode with the chamber temperature
equal to u3

R12: While TRef is constant, the only successor to the wait mode is the
solution mode
Given input restrictions R10,

R13: The system leaves the wait mode within wait time from the start
of the system
R14: the system leaves the solution mode within solution time from en-
tering the mode

R15: While TRef is constant, the only successor to the solution mode is the
work mode, and the work light is turned on whenever work mode is entered
R16: wait time + solution time ≤ t1

We initially claim that

R11 ∧R12 ∧R13 ∧R14 ∧R15 ∧R16 → R1

At a later stage we may drop R11 and replace it with the assumption that the
initial chamber temperature is different from u3. But to begin with, we make
the restrictions in R10 more explicit, and show that

R10 → R13 ∧R14

Here, we have several paths to take, but the choice is guided by the veri-
fication techniques we intend to utilise. For example, the following restrictions
justify the adoption of a discrete-time model of the environment in a mode-
automaton [12] with n discrete modes. Each mode is then governed by a differ-
ence equation derived from the continuous model (see section 4.3) in the standard
manner.

R101: u1 stays constant at Q [m3/s]
R102: u2 may vary every tsample seconds
R103: u3 is piecewise constant taking the values {v1, . . . , vn}

Combining Theorem Proving and Continuous Models 1397

Note that using mode-automata [12], changes in state variables in each mode
are defined in terms of a Lustre program. Each state variable is thus defined
by an equation relating the state variables at the previous (clock) step and the
current input.

Adopting the restrictions above, the verification method would be as follows:
using a scheme for compilation from mode-automata to Lustre we obtain a model
of the environment in Lustre which can be composed with a controller in Lustre,
and further compiled to NP-Tools. In NP-Tools it is possible (but tedious) to
show that the number of steps leading to the work light coming on is ≤ N for
some N (this proves R1 for a given tsample provided that t1 ≥ Ntsample).

The tool Lucifer which translates Lustre programs to NP-Tools models makes
these proofs easier. It facilitates inductive proofs with a base larger than 1. That
is, it is possible to compose n copies of the transition relation for the system, and
show the initial condition holding in the first n steps, followed by the inductive
step. This is a track we are currently exploring in the project.

Note that this is one reason for not choosing a ”too short” sampling inter-
val [14]. As well as other disadvantages associated with oversampling, a large N
makes the proof more difficult. Our approach is based on proving the bounded
response property for as small N as feasible.

6 Related Works

The work we have reported is at a too early stage for making definitive remarks
about feasibility of combining ”push-botton” theorem provers and simulation
environments. More work is also needed to compare the method with ”heavy
duty” theorem proving in the spirit of [6]. However, some preliminary points for
discussion have already emerged. Some of the shortcomings are reminiscent of
those reported in [5]: the limitation to interger arithmetic, for example, means
that the counter proofs presented by the system are more informative than the
safety proofs holding over a limited range. This is, however, compensated in our
approach by departing from fully formal proofs and combining with a simulation
analysis when (local) reasoning over reals is crucial to the property in question.

Our model of the heat process intentionally made several simplifications to
fit an early experimental set up [14]. The interested reader may for example
refer to a more complex model of heat exchangers in [13] where some of our
restrictions are relaxed. The purpose of that paper is the illustration of a rich
simulation language and only the plant part of the heat exchanger is subjected
to validation by simulation.

It is also interesting to note that the size of the real ventilation subsystem,
compared to the demo system, in the same format as the one discussed in section
3 (NP-Tools circuit), is 700 input variables and 500 output variables. Despite
the seemingly large state space, the size of the reachable states set – as far as
required for the types of properties mentioned – is small enough for practical
purposes, even in the real system [11].

1398 Simin Nadjm-Tehrani and Ove Åkerlund

Further work in the other parts of the project, specially extensions to the
Lucifer prototype are very interesting for enhancing our verification methodology
and incorporation of our methods in the system development process.

Acknowledgements

This work was supported by the Esprit LTR project SYRF, the Swedish board
for technical research (TFR), and the Swedish board for technical development
(NUTEK).

References

[1] A. Poigné and M. Morley and O. Maffëıs and L. Holenderski. The Synchronous
Approach to Designing Reactive Systems . Formal Methods in System Design,
12(2):163–187, March 1998.

[2] G. Berry. The Foundations of Esterel. In Proofs, Languages and Interaction:
Essays in Honour of Robin Milner. MIT Press, 1998. To appear.

[3] L. Besnard, P. Bournai, T. Gautier, N. Halbwachs, S. Nadjm-Tehrani, and
A. Ressouche. Design of a Multi-formalism Application and Distribution in a
Data-flow Context: An Example. In Proceedings of the 12th international Sym-
posium on Languages for Intentional programming, Athens, June 1999. World
Scientific.

[4] B. Carlson, M. Carlsson, and G. St̊almarck. NP(FD): A
Proof System for Finite Domain Formulas. Technical report,
Logikkonsult NP AB, Sweden, April 1997. Available from
http://www-verimag.imag.fr//SYNCHRONE/SYRF/HTML97/a321.html.

[5] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J.D.
Reese. Model Checking Large Software Specifications. IEEE Transactions on
Software Engineering, 24:498–519, July 1998.

[6] B. Dutertre and V. Stavridou. Formal Requirements Analysis of an Avionics
Control System. IEEE Transactions on Software Engineering, 25(5):267–278, May
1997.

[7] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, 1993.

[8] D. Harel. STATECHARTS: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8:231–274, 1987.

[9] M. Heimdahl and N. Leveson. Completeness and Consistency in Heirarchi-
cal State-based Requirements. IEEE transactions on Software Engineering,
22(6):363–377, June 1996.

[10] Integrated Systems Inc. SystemBuild v 5.0 User’s Guide. Santa Clara, CA, USA,
1997.

[11] O. Åkerlund. Application of Formal Methods for Analysis of the Demo System
and parts of the Ventilation System of JAS 39 (in swedish). Technical report,
Saab Aerospace AB, Linköping, Sweden, January 1997.

[12] F. Maraninchi and Y. Rémond. Mode-automata: About modes and states for
reactive systems. In Programming Languages and Systems, Proceedings of the
7th European Symposium On Programming, Held as part of ETAPS’98, Lisbon,
Portugal, LNCS 1381. Springer verlag, March 1998.

Combining Theorem Proving and Continuous Models 1399

[13] S.E. Mattsson. On modelling of heat exchangers in modelica. In Proc. 9th Euro-
pean Simulation Symposium, Passau, Germany, October 1997. Currently available
through http://www.modelica.org/papers/papers.shtml.

[14] S. Nadjm-Tehrani. Integration of Analog and Discrete Synchronous Design. In Hy-
brid Systems: Computation and Control, Proceedings of the second international
workshop, March 1999, LNCS 1569, pages 193–208. Springer Verlag, March 1999.

[15] S. Nadjm-Tehrani. Time-Deterministic Hybrid Transition Systems. In Hybrid
Systems V, Proceedings of the fifth international workshop on hybrid systems,
September 1997, LNCS 1567, pages 238–250. Springer Verlag, 1999.

[16] N. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In Proc. 11th International Conference on Automated Deduction, LNCS 607.
Springer Verlag, 1992.

[17] The SYRF Project. Deliverables for Work packages 1 to 7. Available from
http://www-verimag.imag.fr//SYNCHRONE/SYRF/deliv1.html, 1997-99.

[18] Prover Technology. NPTools v 2.3 User’s Guide. Stockholm, Sweden. Contact:
http://www.prover.com.

ParTS

A Partitioning Transformation System

Juliano Iyoda, Augusto Sampaio, and Leila Silva

Departamento de Informática - UFPE
Caixa Postal 7851 - Cidade Universitária

CEP 50740-540 Recife - PE - Brazil
{jmi,acas,lmas}@di.ufpe.br

Abstract. This paper describes a system (ParTS) for automatic hard-
ware/software partitioning of applications described in the concurrent
programming language occam. Based on algebraic transformations of
occam programs, the strategy guarantees, by construction, that the parti-
tioning process preserves the semantics of the original description. ParTS
has been developed as an extension of OTS — a tool implemented at
Oxford University which allows one to apply basic algebraic laws to an
occam program in an interactive way. ParTS extends OTS with elaborate
transformation rules which are necessary for carrying out partitioning au-
tomatically. To illustrate the partitioning methodology and our system,
a convolution program is used as a case study.

1 The Hardware/Software Partitioning Problem

The specification of a computer system is usually fully implemented as a software
solution (executed in a general hardware like a microprocessor). On the other
hand, some strong requirements (like performance or size) demand an implemen-
tation completely in hardware. Nevertheless, in between these two extremes,
there are applications that favour a combined implementation with software
and hardware components. This has become a recent trend in Computing called
Hardware/Software Codesign, which has been widely adopted in the design of
embedded systems.

The problem of how to divide a specification into hardware and software
components, the hardware/software partitioning problem, raises at least two
major and orthogonal problems: 1) How can the partitioning be done so that
the result satisfies the efficiency requirements? 2) Does the final system execute
its tasks according to the original specification?

The first question can be solved by heuristic algorithms and the second by
formal verification that the partitioned system preserves the semantics of the
original description.

Several approaches to hardware/software partitioning have been developed,
as described, for example, in [2, 8, 12, 13]. All the approaches above emphasise
the algorithmic aspects of hardware/software partitioning. More recently, some
works have suggested the use of formal methods in the partitioning process, as

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1400–1419, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

ParTS A Partitioning Transformation System 1401

reported, for example, in [1, 6, 7]. Although these approaches use formal methods
to hardware/software partitioning, neither of them includes a formal verification
that the partitioning preserves the semantics of the original description.

In [3] Barros and Sampaio presented some initial ideas towards a partitioning
approach whose emphasis is correctness. This work was the seed of the PISH
project, a co-design environment which is being developed by four Brazilian
universities [4]. The project comprises all the steps from the partitioning of (an
initial description of) the system into hardware and software components to the
layout generation of the hardware.

Silva et al. [18, 19] further develop the ideas presented in [3] by giving a
precise characterisation of the partitioning process as a program transformation
task. These works apply algebraic rules to guarantee that the partitioned system
has the same functionality of the original description.

The main purpose of this paper is to present an environment which imple-
ments the strategy described in [3, 18, 19] to provide automatic hardware/soft-
ware partitioning. This environment, the Partitioning Transformation System —
ParTS, is an extension of the Oxford occam Transformation System (OTS) [10]
— a tool developed at Oxford University constructed to perform transformations
of occam programs [16]. While the basic algebraic laws implemented in OTS are
useful for program transformation in general, they express only simple trans-
formations, and are not suitable to capture the partitioning problem. ParTS
extends OTS with new transformation rules specific for the partitioning strat-
egy adopted. Also, ParTS deals with new language constructs not addressed by
OTS (see Section 3) and provides a new graphical user interface. The transfor-
mation rules are coded as functions in the SML [15] functional language and the
strategy is also a function that applies the rules in an appropriate order. Then
the final system generated by ParTS is derived from the application of several
semantic-preserving rules which guarantees the correctness of the solution by
construction.

The next sections are organised as follows. Section 2 presents a brief descrip-
tion of the occam language and some of its laws. Section 3 explains the strategy
adopted to carry out the partitioning. The implementation issues of ParTS are
described in Section 4 and a case study of a hardware/software partitioning (of
a convolution program) is shown in Section 5. Finally, Section 6 summarises the
contribution of this paper and discusses topics for further research.

2 A Language of Communicating Processes

The goal of this section is to present the language which is used both to de-
scribe the applications and to reason about the partitioning process itself. This
language is a representative subset of occam. For convenience, we sometimes
linearise occam syntax in this paper. For example, we may write SEQ(P1, P2,...,
Pn) instead of the standard vertical style. The subset of occam adopted here
is defined by the following BNF-style syntax definition, where [clause] has the
usual meaning that clause is an optional item.

1402 Juliano Iyoda, Augusto Sampaio, and Leila Silva

P ::= SKIP | STOP | x := e

| ch ? x | ch ! e

| IF [rep](c1 P1, c2 P2,..., cn Pn)

| ALT [rep] (c1&g1 P1, c2&g2 P2,..., cn&gn Pn)

| SEQ [rep] (P1, P2,..., Pn)

| PAR [rep] (P1, P2..., Pn)

| WHILE c P

| VAR x: P

| CHAN ch: P

Informally, these processes behave as explained in what follows. The SKIP
construct has no effect and always terminates successfully. STOP is the canonical
deadlock process which can make no further progress. The commands x := e,
ch ? x and ch ! e, are assignment, input and output commands, respectively;
the communication in occam is synchronous. The commands IF and ALT select
a process to execute, based on a condition (IF) or on a guard (ALT). While IF’s
conditions are always boolean expressions, ALT’s guards involve input commands.
IF’s selection is deterministic; the lowest index boolean condition to be true ac-
tivates the corresponding process. If none of the conditions is TRUE it behaves
like STOP. On the other hand, ALT’s selection is non-deterministic and randomly
activates the process corresponding to the first guard to be satisfied. If more
than one guard is satisfied at the same time, ALT activates non-deterministically
one of the corresponding processes. If none of the guards is no satisfied ALT be-
haves like STOP. The commands SEQ and PAR denote the sequential and parallel
composition of processes, respectively. Processes within a PAR constructor run
concurrently, with the possibility of communication between them. Communi-
cation is the only way two parallel processes can affect one another, so (when
combined in parallel) one process cannot access a variable that another one can
modify. The command WHILE denotes a loop which executes a process until the
WHILE’s condition becomes false. The constructs VAR and CHAN declare local vari-
ables and channels, respectively. Here we avoid mentioning a particular type for
the declared variables or channels. The optional argument rep which appears
in the IF, ALT, SEQ and PAR constructors stands for a replicator of the form
i = m FOR n where m and n are integer expressions. A more detailed description
of these commands can be found in [16].

As shown in [17], there are many algebraic laws which hold of the occam
constructs. Such laws change the syntax of a program but preserve its semantics.
A set of algebraic laws which completely characterises the semantics of WHILE-
free occam programs is given in [17]. In this section we present only a few of
these laws for the purpose of illustration.

The SEQ operator runs a number of processes in sequence. If it has no argu-
ments it simply terminates.

Law 2.1 (SEQ-SKIP unit) SEQ() = SKIP

Otherwise it runs the first argument until it terminates and then runs the rest
in sequence. Therefore it obeys the following associative law.

ParTS A Partitioning Transformation System 1403

Law 2.2 (SEQ-assoc) SEQ(P1, P2,..., Pn) = SEQ(P1, SEQ(P2, P3,..., Pn))

It is possible to use the above laws to transform all occurrences of SEQ within a
program to binary form.

PAR is an associative operator.

Law 2.3 (PAR-assoc) PAR(P1, P2,..., Pn) = PAR(P1, PAR(P2, P3,..., Pn))

As with SEQ, we can reduce all occurrences of PAR to a binary form. The next
law shows that the order in which the processes are combined in parallel is not
important (PAR is symmetric).

Law 2.4 (PAR-sym) PAR(P1, P2) = PAR(P2, P1)

3 The Partitioning Approach

The hardware/software partitioning approach considered in this work performs
the partitioning by applying a set of algebraic rules to the original system de-
scription. This is carried out in four major phases, as captured by Figure 1 and
explained below.

Splitting The initial description of the system (written in occam) is trans-
formed into the parallel composition of a number of simple processes. The
formal definition of a simple process is given in [18], but it is enough to
think of it as a process with granularity of a primitive command, possibly
as a branch of a conditional (IF) or choice (ALT) statement.

Classification A set of implementation alternatives for each simple process is
established by considering some features such as concurrent behaviour, data
dependency, multiplicity, non-determinism and mutual exclusion.

Clustering Among the implementation alternatives of each process, one is cho-
sen based on the minimisation of an area-delay cost function. The simple
processes are grouped in clusters according to the similarity of functionality
and the degree of parallelism. Each cluster groups simple processes that will
be implemented in hardware or in software (this is determined by annota-
tions). The fact that the simple processes generated by the splitting are in
parallel gives full flexibility for this phase: as PAR is symmetric (Law 2.4) all
possible permutations can be analysed.

Joining The processes in each cluster are effectively combined (either in se-
quence or in parallel), as determined by the result of the clustering process.

It is worthwhile mentioning that the phases that use algebraic transforma-
tions are splitting and joining. It has been proved that the use of algebraic
rules in these phases preserves the semantics of the system while the program is
being transformed [18, 19]. The classification and clustering phases implement
heuristics to produce an efficient final system and the produced output is a mere
permutation of the simple processes inside the PAR construction. Note that this

1404 Juliano Iyoda, Augusto Sampaio, and Leila Silva

Fig. 1. The partitioning approach

procedure also does not affect the system behaviour once the PAR is associative
and symmetric, as captured by laws 2.3 and 2.4.

ParTS is concerned only with splitting and joining since these are imple-
mented by program transformation. In the rest of this section we describe these
two phases in more detail. More information about the other two phases and
about the tool which implements them can be found in [4]. In any case we will
make clear how ParTS interacts with this tool to generate the partitioned sys-
tem.

3.1 The Splitting Strategy

To improve flexibility concerning user interaction, the subset of occam presented
in Section 2 was extended to consider new constructors: BOX, HBOX, SBOX and
CON.

The syntax of these constructors is BOX P, HBOX P, and so on, where P is a
process. The introduction of these constructors in occam has no semantic effect;
they can be regarded just as annotations, useful not only for the splitting, but
also for the other phases.

A process included into a constructor BOX is not split and its cost is analysed
as a whole at the clustering phase. The HBOX and SBOX constructors denote a
BOX which must be implemented in hardware and in software, respectively. They
are used to raise the granularity level of the splitting phase when this happens
to be convenient for a given application.

The constructor CON is an annotation for a controlling process; this is further
explained in this section.

The goal of the splitting phase is to transform any initial description into a
set of simple parallel processes by the application of a reduction strategy. This
strategy applies algebraic rules and has two main steps. The first step transforms
all IF’s and ALT’s commands into simple processes. As a simple process has at
most one statement in its internal level, IF’s and ALT’s commands with multiple

ParTS A Partitioning Transformation System 1405

branches must be broken. Moreover, if a branch of a conditional command is a
SEQ, PAR or WHILE process, it is necessary to distribute the conditional over these
processes. Rule 1 and Rule 2 are examples of the rules employed in this step.

Rule 1:

IF(b1 P1, ..., bn Pn)

= VAR c1, ..., cn: SEQ(c1, ..., cn:= FALSE, ..., FALSE,

IF(b1 c1 := TRUE, ..., bn cn := TRUE),

IF(c1 P1, TRUE SKIP), ..., IF(cn Pn, TRUE SKIP))

provided each ck is a fresh variable (occurring only where explicitly shown).

This rule transforms any conditional process into a sequence of IF’s to allow
the analysis of each subprocess of the original conditional.

Note that the first IF of the right-hand side makes the choice (and saves the
result in one of the fresh variables) allowing the subsequent conditionals to be
carried out in sequence.

Rule 2:

IF(b VAR x : SEQ(P1, ..., Pn), TRUE SKIP)

= VAR c : SEQ(c := b,

VAR x : SEQ(IF(c P1, TRUE SKIP), ..., IF(c Pn, TRUE SKIP)))

provided that c is a fresh variable.

This rule distributes IF over SEQ. Note that after exhaustive application of
this rule, no IFwill include any SEQ in its internal process. Similar rules distribute
IF over ALT and over WHILE.

The second step of the splitting strategy transforms the intermediary descrip-
tion generated by the first step in the normal form of the splitting phase, which
is a set of parallel (simple) processes. Two crucial transformations of this step
are: 1) To turn simple processes closed in the sense that all variable used and
assigned in the process are local. 2) To introduce a controlling process between
every two simple processes. The controlling process acts as the interface between
the processes under its control and the environment.

To understand the usefulness of a controlling process, consider two processes
P1 and P2 with data-dependency and originally in sequence. To put P1 and P2
in parallel, as required by the normal form, communication must be introduced
between them, as occam does not allow parallel processes to share variables. The
purpose of the controlling process is to manage this communication. Except for
communication commands of the original description, each Pi interacts with the
environment through the controlling process.

Rule 3 shows how sequential processes can be combined in parallel.

1406 Juliano Iyoda, Augusto Sampaio, and Leila Silva

Rule 3:

VAR z : SEQ(P1, P2)

= CHAN ch1, ch2, ch3, ch4: PAR(VAR x1: SEQ(ch1 ? x1, P1, ch2 ! x1
′),

VAR x2: SEQ(ch3 ? x2, P2, ch4 ! x2
′),

VAR z : CON(SEQ(ch1 ! x1, ch2 ? x1
′, ch3 ! x2, ch4 ? x2

′)))

provided xi= USED(Pi) ∪ ASS(Pi) and xi’= ASS(Pi) and ch1, ch2, ch3 and ch4 are

not free in P1 or P2.

It is denoted by ASS(P) the list of free1 variables that are assigned in process
P and by USED(P) the list of free variables used in expressions of P (either on
the right-hand side of an assignment or in a boolean expression or in an output
command).

Observe that although P1 and P2 are in parallel on the right-hand side of the
rule above, in fact their behaviour are sequential. Process P2 can executes only
after the controlling process synchronises with P1 through channel ch2.

3.2 The Joining Strategy

To indicate the result of the clustering phase, other new constructors are in-
troduced: PARhw, PARsw, PARser and PARpar. These constructors have the same
semantics of the standard PAR. The constructors PARhw and PARsw serve as an-
notations to denote the hardware and the software cluster, respectively. The
constructors PARser and PARpar denote that the sub-processes included in each
of them must be serialised and parallelised, respectively.

The goal of the joining strategy is to combine the processes that belong to
the same cluster with the aim to implement the decisions taken by the cluster-
ing phase. Basically the joining phase applies algebraic rules to parallelise and
serialise arbitrary simple processes. The parallelisation and serialisation must
eliminate the communication introduced during the splitting phase, as well as
the introduced variables on the case of IF’s and ALT’s recomposition.

As an example of the rules employed in this phase, consider Rule 4 below:

Rule 4:

CHAN ch,ch1,ch2,ch3,ch4,ch5,ch6:

PAR

Q1

F(PARpar

VAR x1: SEQ(ch1? x1, P1, ch2! x1’)

VAR x2: SEQ(ch3? x2, P2, ch4! x2’)

Q2)

VAR x:CON(SEQ(ch5? x,VAR z:SEQ(ch1!x1,ch2?x1’,ch3!x2,ch4?x2’),

ch6! x’))

1 If P is some occam term and x is a variable, we say that an occurrence of x in P is
free if it is not in the scope of any declaration of x in P, and bound otherwise.

ParTS A Partitioning Transformation System 1407

=

CHAN ch,ch5,ch6:

PAR

Q1

F(PARpar VAR x:SEQ(ch5?x, PAR(VAR z1:P1,VAR z2:P2), ch6!x’)

Q2)

provided that x1’∩ x2= ∅ and x2’∩ x1= ∅
where x = x1∪ x2, x’= x1’∪ x2’, xi = USED(Pi) ∪ ASS(Pi),
xi’= ASS(Pi) and zi = z ∩ xi, for i = 1,2.

To understand this rule, observe that the process P1 and P2 on the left-hand
side of the rule are executed in sequence and their execution is controlled by
the controlling process annotated with the construct CON. Note also that P1
and P2 are included in a PARpar constructor which means that they should be
parallelised. The side conditions of the rule requires that P1 and P2 do not have
data-dependency. The effect of the rule is to combine P1 and P2 in parallel, with
the elimination of the controlling process, as can be noticed from the right-hand
side of the rule.

4 ParTS Implementation

This section describes some implementation issues of ParTS such as its archi-
tecture, the programming languages used and the system it extends, OTS.

ParTS comprises two software layers: the transformation system in SML [15]
and a graphical user interface in Java [5]. The core of ParTS is the SML module
which implements the strategy to perform the hardware/software partitioning.
This module extends the OTS environment including the specific rules of the
splitting and the joining phases.

Fig. 2. The ParTS architecture

As shown in Figure 2 the Java module comprises three sub-modules which
are concerned with communication with the SML module via a pipe (Commu-

1408 Juliano Iyoda, Augusto Sampaio, and Leila Silva

nication module), concealment of the SML functions (ParTS Services module)
and interface presentation (GUI module).

This architecture properly separates the system functionality from its graph-
ical interface.

4.1 The Transformation Layer in SML

The OTS is implemented using the Edinburgh SML which is an interactive
programming environment for a strongly-typed strict functional language. A
functional program is defined as a set of values and functions. The SML also
includes some imperative programming features which enables the construction
of input/output commands and side-effect operations (assignment).

Collections of items are processed in SML using lists, a pre-defined type of
the language. The lists are denoted by [] (the empty list) or by enumeration
of its elements (such as [1,2,3]). The infix operator :: (pronounced ’cons’)
constructs a new list by adding an element in front of an existing list (if l is
the list [x1,...,xn] and x is a value of the correct type then x::l is the list
[x,x1,...,xn]).

New types are defined by the datatype declaration which allows the creation
of heterogeneous classes (a class constructed from several distinct subclasses). A
simple example of datatype declaration is shown below:

datatype process = SKIP

| STOP

| seq of process list;

This example defines a very small subset of the occam language. The new
type process and the constructors SKIP, STOP and seq are created. Constructors
are regarded as functions which create values of a datatype. The constructors
SKIP and STOP receive no arguments and returns a process and the constructor
seq receives a process list and returns a process.

A function is defined as a set of equations containing a pattern as parameter
and an expression as result. The argument passed is compared with the patterns
and if some pattern matches then the corresponding expression is evaluated.

fun binary_seq (seq (p1::p2::p)) = seq (p1::[seq (p2::p)])

| binary_seq p = p;

The first equation uses on its left-hand side the pattern (seq (p1::p2::p))
— a sequence with at least two processes — and, on its right-hand side, the ex-
pression seq (p1::[seq (p2::p)]) which constructs a binary sequential pro-
cess. The second equation performs no transformation on the argument. When-
ever the argument does not match the pattern stated in the first equation, it will
always match the second equation which uses a variable p to stand for a general
pattern. For example, the evaluation of binary seq(SKIP) reduces to SKIP.

The last version of OTS (released in 1988) was implemented by Goldsmith
[10] in the SML functional language. An abstract syntax for occam was defined

ParTS A Partitioning Transformation System 1409

in SML as a set of recursive datatypes. The basic algebraic laws of occam are
implemented as functions. A parse function is used to input a text file containing
an occam process and translates it to the abstract syntax.

A sample of how an abstract syntax can be implemented using SML datatypes
is shown below.

An identifier is represented as a string.

datatype identifier = ident of string;

Variables and channels are identifiers.

datatype variable = var of identifier;

datatype channel = chan of identifier;

Each operator of the language is a constructor of the type process with
the relevant arguments. For example, an assignment statement is represented
by the assign constructor and has as arguments a list of variables and a list of
expressions.

datatype process = assign of (variable list) * expression list

| input_proc of channel * (variable list)

| output_proc of channel * (expression list)

| SKIP

| STOP

| dec of declaration * process

| seq_con of process list

| par_con of process list

| if_con of conditional list

| ...

and declaration = var_dec of variable list

| chan_dec of channel list

and conditional = sim_cond of expression * process

| if_cond of conditional list

and expression = TRUE

| FALSE

| num of int

| varexp of variable

| ...

As an example, the parser of OTS reads a file containing the following process

SEQ

x := y

ch ? y

and translates it to

seq_con [assign([var(ident ‘‘x’’)],[varexp(var(ident ‘‘y’’))]),

input_proc(chan(ident ‘‘ch’’),[var(ident ‘‘y’’)])]

1410 Juliano Iyoda, Augusto Sampaio, and Leila Silva

ParTS implements the transformation rules for the partitioning as functions.
Nevertheless, these rules usually express much more complex transformations
than the basic algebraics laws implemented in OTS.

As an example, we discuss the implementation of Rule 2 which will be called
distIF(). The implementation of this rule has some auxiliary definitions. The
function freshVar() receives a process P and returns a fresh variable (a variable
that does not occur free in P). The function map() receives a function f and a
list l and applies f to each element of l.

We also need to construct a function that builds each IF of the right-hand
side of Rule 2. The oneIF() function receives as parameters a boolean expression
and a process and returns a conditional process.

We also use the let expressions facility of SML. A let expression has the
general form let D in E end. D is a declaration of values that is evaluated first.
Then the expression E is evaluated inside the context of names declared in D.

Now we can define the distIF() function that implements Rule 2.

fun distIF (proc as

if_con [

sim_cond(b,

dec(var_dec x,

seq_con Pn)),

sim_cond(TRUE,

SKIP)]) =

let val c = freshVar(proc)

val c_exp = varexp c

in dec(var_dec [c],

seq_con [

assign([c],[b]),

dec(var_dec x,

seq_con (map (oneIF c_exp) Pn))])

end;

The proc as clause before the pattern creates the name proc that is bound
to the conditional process received as argument. Then, proc is used as the argu-
ment of freshVar() function to generate a fresh variable (c); c exp is just the
fresh variable transformed into an expression type. The expression (map (oneIF
c exp) Pn) applies the (oneIF c exp) function to each element of the process
list Pn.

Clearly, the abstract syntax of occam (and the auxiliary functions) makes the
implementation less readable. Even so, each rule is implemented in an elegant
and abstract way as an SML function.

In a similar way, ParTS implements all the rules of the splitting and the join-
ing phases. These new functions form the main code of ParTS. The splitting and
the joining strategies are also implemented as functions. Each one is defined as
the composition of the transformation rules (coded as functions) for the relevant
phase. These rules are applied in an appropriate order to produce the desired
result. The application of a rule is achieved through a higher-order function that
takes the rule as argument and applies it to the current process.

ParTS A Partitioning Transformation System 1411

4.2 The Graphical User Interface

A great improvement with respect to OTS is that the interface of OTS was
specific for the Sun View environment and requires the user to interact at the
level of SML functions. We have also implemented some facilities not available
in OTS; this is further discussed below.

The GUI of ParTS implemented in Java allows users to manipulate several
occam processes in different windows. The portability of Java makes possible
the implementation of different versions of ParTS, for Unix SunOS and Win-
dows95. The Windows95 version uses the Moscow SML instead of Edinburgh
SML without any loss of functionality.

Figure 3 shows the interface of ParTS. A brief description of some elements
of the screen is given below.

Fig. 3. The ParTS interface

File Menu The file menu provides commands to load occam files and save them
(in general after performing transformations). It is possible to open various
different files at the same time.

Zoom in Using this facility one can focus on any internal subprocess of the
process, allowing the user to apply laws whose effect is restricted to internal
parts of the process.

1412 Juliano Iyoda, Augusto Sampaio, and Leila Silva

Zoom out This button has the opposite effect of the Zoom in button. For
example:

SEQ SEQ
SEQ P1

P1
Zoom in=⇒ P2

P2
Zoom out⇐=

Q

Max depth / More depth ParTS allows the user to visualise a process par-
tially. The Max depth button shows the process completely, without hiding
any subprocess. The effect of the More depth button is to show the hidden
subprocesses incrementally.

Less depth / Min depth The opposite effect of More depth is achieved with
Less depth button. There is also the equivalent Min depth button that hides
all subprocesses. For example,

SEQ SEQ
... SEQ [2 clauses] SEQ

P3
More depth

=⇒ P1
Less depth⇐= P2

P3

Laws and rules This combo box is used to select the name of law/rule that
will be applied to the current process (it contains rules named as split and
join which perform the transformations to carry out the hardware/software
partitioning). Also there exist all the laws that construct the split and the
join strategies, allowing the user to do the partitioning step by step, if de-
sired.

Apply The apply button must be used after choosing a law. It will apply that
law and transform the current process accordingly.

New page If it is set before the application of a law, the effect produced by ap-
plying the law is shown in a separate window (without changing the current
process). This is useful when one is not sure whether the law will provide
the desired transformation.

OTS already included facilities related to zoom, depth and application of
laws. Nevertheless, the interaction with the user is at the level of SML syntax.
In ParTS all the interaction is directly in the occam notation. Furthermore, all
the facilities concerning file manipulation and multiple windows are entirely new.

5 A Small Case Study

This section illustrates the hardware/software partitioning process of a vector
convolution program used as a case study. For conciseness reasons, the expla-
nation will emphasise particular aspects of the partitioning process, instead of
trying to address all the details of the transformations involved.

ParTS A Partitioning Transformation System 1413

Figure 4a shows the original description of the convolution program, and
Figure 4b the partial result of the splitting phase generated by ParTS. The
system exhaustively applies the rules of the splitting phase coded as functions in
SML, as explained in the previous section. Using an Intel Pentium II 300 MHz
and 64 MB of RAM as the hardware platform, ParTS takes about 15 seconds
to perform the splitting of this program, and transforms the original description
into 37 simple processes, combined in parallel.

Observe from Figure 4b that each of these processes has at most one as-
signment in its most internal level. The only exception is Process 1, where all
subprocesses included into a BOX constructor are considered as an atomic process
and therefore it has not been split.

Another point to notice is that all simple processes have been turned closed
(their variables are local). Moreover, each original process is encapsulated (pre-
ceded and followed by communication commands).

The application of Rule 1 to Process 2 of Figure 4a transforms it into four
simple processes (see Process 2.1, 2.2, 2.3 and 2.4 of Figure 4b) and the appli-
cation of Rule 3 introduces communication between each pair of these simple
processes. Process 3 in Figure 4b is the controlling process of Process 2.3 and
2.4.

After the splitting phase, the classification and the clustering phases take
place. As we have mentioned before, these phases are related to the efficiency
issue of partitioning process. The classification and clustering phases are being
implemented as a separate tool which is under development and communicates
with ParTS via shared files.

The classification phase defines for each simple process a set of implementa-
tions alternatives such as parallel, sequential, independent, etc. (see Figure 5a).
The clustering phase builds a clustering tree which defines the clusters and how
their processes must be combined (Figure 5b). Observe that the processes 2.1
– 2.4 of Figure 4b are grouped in the same cluster and must be combined in
sequence. The cut line shown in Figure 5b separates the hardware and software
clusters based on the heuristics defined in [2]. The clustering phase is responsible
only for determining which processes should be combined to form the clusters,
but do not carry out the transformations to effectively combine them.

Figure 6a shows the program after the classification and the clustering phases.
This program reflects the design decision of the clustering phase. Note that the
only changes concerning the occam program of Figure 4b are the annotations to
identify the software (PARsw) and the hardware (PARhw) clusters, and whether
each group of processes must be combined in sequence (PARser) or in parallel
(PARpar).

Regarding the preservation of semantics, the transformation of the program
in Figure 4b into the one in Figure 6a is immediately justified by the associativity
and symmetry of parallel composition (see laws 2.3 and 2.4 of Section 2). This
emphasises the fact that classification and clustering are concerned with the
efficiency of the partitioning process, and have very little to do with program
transformation.

1414 Juliano Iyoda, Augusto Sampaio, and Leila Silva

Fig. 4. The splitting phase

ParTS A Partitioning Transformation System 1415

Fig. 5. The classification and the clustering phases

The final partitioned system is shown in Figure 6b. Observe that the BOX
annotation has been eliminated. Since all subprocesses 2.1 – 2.4 belongs to the
same cluster, the IF process is re-arranged and Process 3 is eliminated. ParTS
combines the processes in the joining phase by applying the join strategy to
the file generated by the clustering phase. This process takes about 2 seconds to
complete (using the same hardware previously mentioned).

In fact, all controlling processes are eliminated and the only remaining com-
munication is the one necessary for the synchronisation between the hardware
and the software components (Observe channels ch67 and ch68 in Figure 6b).

6 Conclusions

We have used an intentionally small case study to illustrate an innovative ap-
proach to the implementation of hardware/software partitioning. The Parti-
tioning Transformation System (ParTS) realises the partitioning process as a
program transformation task, based on algebraic rules which ensure that the
resulting program is correct (with respect to the original input) by construction.

The approach to partitioning is structured into four major phases, as sum-
marised by Figure 7.

The first task performed by ParTS (Figure 7a-b) is to split a process in
several simple processes operating in parallel. The phases of classification and
clustering are concerned with the efficiency of the partitioned program. From the
result of the splitting, a graph is constructed to allow a cost analysis to be carried
out. However, this tree is suitable only as an intermediate representation, and,
as already said, the implementation of classification and clustering are separate
from ParTS which is exclusively concerned with program transformation.

1416 Juliano Iyoda, Augusto Sampaio, and Leila Silva

Fig. 6. The joining phase

ParTS A Partitioning Transformation System 1417

The following step is to represent the clustering tree as a program with
the form shown in Figure 7c, where annotations are used to determine which
clusters are to be implemented in hardware and in software. Also note that we
use an annotation for each cluster. This contains useful information (generated
during the clustering) to guide the combination of the processes in each cluster;
basically, this indicates whether process must be combined in sequence (PARser)
or in parallel (PARpar).

Fig. 7. The partitioning approach

Finally, the joining phases takes a program as in Figure 7c, carries out the
necessary transformations to combine the processes in each cluster, and generates
the final result, which is a precise abstract representation of our intended target
architecture: with one software process and an arbitrary number of hardware
processes (Figure 7d).

In terms of implementation, ParTS was built as an extension of the Oxford
occam Transformation System (OTS), keeping all the original functionality of
OTS, but adding specific notation and rules to allow a precise capture of the
partitioning process, apart from a new user interface.

While the splitting has been completely formalised and implemented, the
joining is still our major current focus of attention. A strategy for the joining
phase is proposed in [19] based on transformation and reduction of configurations
in a binary tree which represents the result of the clustering phase. While we
have already implemented some general rules of the joining phase (which allows
us to automatically partition some small examples like the one presented here)
the full implementation of the joining strategy is still under development.

The integration between ParTS and the tool which implements the classifi-
cation and clustering phases is also a topic for further research.

There are several systems which perform automatic hardware/software par-
titioning based on different approaches. The COSYMA system [8] assumes an
all-software implementation as initial solution. A simulated annealing algorithm
moves software code to hardware until the time constraints are met. The VUL-
CAN system [11] starts by an all-hardware solution and uses an iterative ap-
proach to move operations from hardware to software. The SpecSyn [9] supports

1418 Juliano Iyoda, Augusto Sampaio, and Leila Silva

several partitioning algorithms and presents an approach combining clustering
and greedy algorithms. The Lycos [14] achieves the partitioning by a dynamic-
programming algorithm that uses the information of the profiling and the time
and area estimation steps.

None of these systems is concerned with the formal correctness of the parti-
tioning process. To our knowledge, ParTS is the only existing tool which imple-
ments hardware/software partitioning based on algebraic transformations which
ensures the preservation of semantics.

Acknowledgements

We are grateful to Michael Goldsmith for making available the source code of
OTS. We also thank the Brazilian Research Council (CNPq) for financial support
through the grants 130264/98-9 and 521039/95-9.

References

[1] A. Balsoni, W. Fornaccari, D. Sciuto. Partitioning and Exploration Strategies in
the TOSCA Co-Design Flow. In Proceedings of Fourth International Workshop
on HW/SW Codesign, (1996) 62–69.

[2] E. Barros. Hardware/Software Partitioning using UNITY. PhD thesis, Universität
Tübingen, Germany, 1993.

[3] E. Barros and A. Sampaio. Towards Probably Correct Hardware/Software Par-
titioning Using Occam. In Proceedings of the Third International Workshop on
HW/SW Codesign (CODES’94), Grenoble, France. IEEE Press, (1994) 210-217.

[4] E. Barros et al. The PISH Methodology for Hardware/Software Codesign. In
Workshop of ProTem-CC, CNPq, (1998) 65–98.

[5] M. Campione and K. Walrath. The Java Tutorial: Object-Oriented Programming
for the Internet. Addison Wesley Pub Co., 1998.

[6] C. Carreras, J. C. López, M. L. López, C. Delgado-Kloos, N. Martinéz, L. Sánchez.
A Co-Design Methodology Based on Formal Specification and High-level Esti-
mation. In Proceedings of Fourth International Workshop on HW/SW Codesign
(1996) 28–35.

[7] T. Cheung, G. Hellestrand and P. Kanthamanon. A Multi-level Transformation
Approach to HW/SW Co-Design: A Case Study. In Proceedings of Fourth Inter-
national Workshop on HW/SW Codesign, (1996) 10–17.

[8] R. Ernst and J. Henkel. Hardware-Software Codesign of Embedded Controllers
Based on Hardware Extraction. In Handouts of the International Workshop on
Hardware-Software Co-Design, October 1992.

[9] D. Gajski and F. Vahid. Specification and Design of Embedded Hardware-Software
Systems. In IEEE Design and Test of Computers, Spring 1995, 53-67.

[10] M. Goldsmith. The Oxford occam Transformation System. Technical report,
Oxford University Computing Laboratory, January 1988.

[11] R. Gupta, C. N. Coelho and G. De Micheli. Synthesis and Simulation of Digital
Systems Containing Interacting Hardware and Software Components. In Proceed-
ings of 29th Design Automation Conference,1992.

[12] R. Gupta and G. De Micheli. System-level Synthesis Using Re-programmable
Components. In Proceedings of EDAC, (1992) 2–7, IEEE Press.

ParTS A Partitioning Transformation System 1419

[13] P. V. Knudsen and J. Madsen. PACE: A Dynamic Programming Algorithm for
Hardware/Software Partitioning.In Proceedings of Fourth International Workshop
on HW/SW Codesign, (1996) 85–92.

[14] J. Madsen. J. Groge, P. V. Knudsen, M. E. Petersen and A. Haxthausen. Lycos:
The Lyngby Co-synthesis System. In Design Automation of Embedded Systems,
1997,2(2):195-235.

[15] L. Paulson. ML for the working programmer. Cambridge University Press, 1991.
[16] D. Pountain and D. May. A tutorial introduction to occam programming. INMOS,

BSP Professional Books, 1987.
[17] A. Roscoe and C. A. R. Hoare. The laws of occam programming. In Theoretical

Computer Science, 60, (1988) 177–229.
[18] L. Silva, A. Sampaio and E. Barros. A Normal Form Reduction Strategy for

Hardware/Software Partitioning. In Formal Methods Europe (FME) 97. Lecture
Notes in Computer Science 1313, (1997) 624–643.

[19] L. Silva, A. Sampaio, E. Barros and J. Iyoda. An Algebraic Approach for Combin-
ing Processes in a Hardware/Software Partitioning Environment. In Proceedings
of the Seventh International Conference on Algebraic Methodology and Software
Technology (AMAST), (1998) 308–324

A Behavioral Model for Co-design

He Jifeng?

International Institute For Software Technology
The United Nations University

P.O.Box 3058, Macau
jifeng@iist.unu.edu

1 Introduction

With chip size reaching one million transistors, the complexity of VLSI algo-
rithms – i.e., algorithms implemented as a digital VLSI circuit – is approaching
that of software algorithms – i.e., algorithms implemented as code. However, the
design methods for circuits that are commonly found in textbooks resemble the
low-level machine language programming methods. Selecting individual logical
gates and registers in a circuit like selecting individual machine instruction in a
program. State transition diagrams are like flowcharts. These methods may have
been adequate for small circuit design when they were introduced, but they are
not adequate for circuits that perform complicated customer algorithms.

Oftenly we do not build circuits to perform complicated algorithms di-
rectly. We build general-purpose processor, and customise them for a particular
algorithm by writing a program. For many application, particularly where speed
of execution or security is important, a customer-built in circuit is better than
the traditional processor-and-software combination. The speed is improved by
the absence of the machine language layer and introducing parallelism, whereas
security is improved by the impossibility of reprogramming. Moreover, there are
space saving compared to a combination of software and processor.

In principle, there is no difference between hardware and software; what
can be done with one can be done with the other. For example, an assignment
statement x := b, where x is a Boolean variable, can be realised by a clocked cir-
cuit, wherein the output port of a combination device which generates the value
of expression b is connected to the input port of a register, which is allocated
to hold the value of x. An incoming clock signal triggers the execution of the
circuit which propagates the value of b to the output port of the register. On
the other hand, the instruction set of a general-purpose processor can often be
described by an interpreter [2, 6].

Out of the previous analysis has come an increasing awareness of the need
for behavioural models suited for specifying and reasoning about both programs
and digital devices. Contemporary hardware description languages (for example
[7, 10, 11]) are not sufficient because of the following limitations:
? On leave from East China Normal University, Shanghai. This work was partly sup-

ported by EPSRC research grant GR/K58708 “Linking theories for computer sci-
ence”

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1420–1438, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Behavioral Model for Co-design 1421

1. Most such tools are intended much more for simulation than for mathemat-
ically sound reasoning.

2. Difficulties arise in developing circuit specifications that may refer to differ-
ent levels of behavioral abstraction.

3. Existing formal frameworks for such languages are in general too restrictive
to deal with the inherent parallelism of digital circuits.

An extended linear-time temporal logic based on intervals was developed
in [4, 5, 9] for presenting the kinds of quantitative timing properties and sig-
nal transitions that occur in hardware devices. The behaviour of programs and
circuits can often be decomposed into successively smaller intervals of activity.
State transitions of programs can be characterised by properties relating the ini-
tial and final values of variables over interval of times. However in the treatment
of hybrid systems where the physical world evolve continuously, this approach
seems inappropriate.

We have used the notations of DC (Duration Calculus [12]) to describe hy-
brid systems. Case studies show that many quantitative timing properties can be
handled effectively in DC. Nevertheless, it is not designed to model event-based
languages, and lacks the mechanisms to synchronise systems with different time
granularity. Section 2 presents a specification language, which is a variant of DC,
enriched with a novel parallel operator to integrate systems evolved at various
time rate. Its mixed interval structure enables us to model both discrete-time
and continuous-time systems. This framework provides a unifying means for pre-
senting the various features of event-based hardware description languages and
state-based imperative programming languages.

The main purpose of the mathematical definition of temporal operators
is to deduce their interesting properties. These are most elegantly expressed as
algebraic laws – equations usually, but sometimes inequations, with implication
between formulae rather than equivalence. Section 3 is devoted to the algebraic
properties of our specification language. Algebra is well-suited for direct use by
engineers in symbolic calculation of parameters and structure of an optimal de-
sign. Algebraic proofs by term rewriting are the most promising way in which
computers can assist in the process of reliable design.

Section 4 gives a number of tests, known as healthiness conditions, which
can be applied to specifications and intermediate designs to maintain their fea-
sibility during the development process. It also explores the mathematical links
between theories satisfying individual healthiness conditions, and shows that the
set of formulae expressible in each theory is closed under relevant operators.

The VERILOG hardware description language (HDL) [11] is widely used
to model the structure and behaviour of digital systems ranging from simple
hardware building blocks to complete systems. It has a simulation oriented se-
mantics based on events, i.e., changes to the values of wires and registers. This
event semantics can actually model detailed asynchronous behaviour, but is very
fine-grained and does not support formal verification. Section 5 shows the utility
of our theory in dealing with hardware, and provides an observation-oriented
semantics to the core of VERILOG.

1422 He Jifeng

TEMPURA [4, 9] is an imperative language based on interval temporal
logic. It has been put forward as a useful tool for reasoning about concurrent pro-
grams and hardware. Every TEMPURA statement is a temporal logic formula.
TEMPURA is formalised in Section 6 as a sub-theory which satisfies additional
healthiness conditions.

2 Specification Language

Our specification language is based on continuous time represented by
reals

T ime =df Real

It adopts two types of time intervals: closed continuous interval [b, e] and finite
discrete intervals < t0, . . . , tn >. Let E ⊆ T ime, the set I(E) of intervals with
the end points of E is defined by

I(E) =df CI ∪DI

CI =df {[b, e] | b ≤ e ∧ {b, e} ⊂ E}
DI =df {{t0, . . . , tn} | {t0, . . . , tn} ⊆ E ∧ (t0 < . . . < tn)}

In the following, we will use σ to range over intervals, and σ.b and σ.e to represent
its left and right end points. Adjacent intervals of the same type can be combined
into a big one by the catenation operator ̂
σ1 ̂σ2 =df σ1 ∪ σ2 if σ1.e = σ2.b and ({σ1, σ2} ⊆ CI or {σ1, σ2} ⊆ DI)

We adopt an inclusion-like partial order ≤ among intervals

σ1 ≤ σ2 =df (σ1.b = σ2.b) ∧ (σ1.e = σ2.e) ∧ (σ1 ⊆ σ2)

Clearly, this ordering is preserved by the catenation operator.
As a specification mechanism based on interval temporal logic, our

language includes

– global variables, which represent constant (i.e., independent of time) and are
denoted by lower letters x, y, . . . , z.

– state variables, which stand for real functions over T ime, and are denoted
by capital letters X , Y, . . . , Z.

– temporal variables, which are identified as real functions on intervals. and
denoted by lower letters u, v, . . . , w.

Two specific temporal variables l and] are present to characterise the type
of intervals, where the first one stands for the length of interval

l(σ) =df σ.e− σ.b

and the second is used to count the isolated time points of interval

]([b, e]) =df if b < e then 0 else 1

](< t0, . . . , tn >) =df n + 1

A Behavioral Model for Co-design 1423

The terms of the language can conveniently be defined by induction

(1) global variables are terms.
(2) temporal variables (including l and]) are terms.
(3) if X is a state variable, then

←
X
→
X and ©X are terms.

(4) if r1, . . . , rn are terms and f is an n-ary function name, then f(r1, . . . , rn) is
also a term.

The set of well-formed formulae is generated by the following rules:

(1) if r1, . . . , rn are terms, and p is an n-ary predicate name, then p(r1, . . . , rn)
is a well-formed formula
(2) true and false are well-formed formulae.
(3) if F and G are well-formed formulae, so are ¬F and F ∧G and ∃h•F , where
h is either a (global or state) variable.
(4) if both F and G are well-formed formulae, so are F ∗, F ̂G and F\\G.

A modelM assigns every variable a constant of the proper type

(1) Temporal variable v is associated with an interval functionM(v).
(2) State variable X is interpreted as a time functionM(X)
(3) Global variable x is assigned a realM(x)
(4) Function names f and predicate names p are interpreted as functionsM(f)
on Real and relationsM(p) over Real respectively.

Let h be a variable. Two models M1 and M2 are called to be h-
equivalent, denoted byM1 ≡h M2, if for all variables v different from x

M1(v) = M2(v)

Terms are interpreted over intervals. Given a modelM and an interval σ ∈ I(E)
the value of a term r over σ is defined by

Mσ(x) =df M(x)

Mσ(l) =df l(σ)

Mσ(]) =df](σ)

Mσ(v) =df M(v)(σ)

Mσ(
←
X) =df M(X)(σ.b)

Mσ(
→
X) =df M(X)(σ.e)

Mσ(©X) =df M(X)(σ.e) if σ ∈ CI

=df M(X)(t1) if σ =< t0, t1, . . . , tn >

Mσ(f(r1, . . . , rn)) =df M(f)(Mσ(r1), . . . ,Mσ(rn))

Formulae are interpreted as functions from intervals to the Boolean values
{tt, ff}.

1424 He Jifeng

Mσ(true) =df tt

Mσ(false) =df ff

Mσ(p(r1, . . . , rn)) =df Mσ(p)(Mσ(r1), . . . ,Mσ(rn))

Mσ(¬F) =df ¬ Mσ(F)

Mσ(F ∧G) =df Mσ(F) ∧ Mσ(G)

Mσ(F ∗) =df l(σ) = 0 ∨
∃σ0, . . . , σn • σ = (σ0 ̂ . . . ̂σn) ∧ ∀i •Mσi(F)

Mσ(∃h • F) =df ∃M′ • M′σ(F) ∧ (M≡h M′)
Mσ(F ̂G) =df ∃σ1, σ2 • σ = (σ1 ̂σ2) ∧ Mσ1(F) ∧ Mσ2(G)

Mσ(F\\G) =df ∃ρ, σ0, . . . , σn • σ = (σ0 ̂ . . . ̂σn) ∧ ∀i •Mσi(F) ∧
ρ = < σ0.b, σ1.b, . . . , σn.b, σn.e > ∧ Mρ(G)

All the usual logical connectives (disjunction, implication, etc.) and quantifiers
can be defined in interval term. For example

F ∨G =df ¬ (¬F ∧ ¬G)

∀h • F =df ¬(∃h • ¬F)

The modal operators 3 and 2 can be defined in terms of the chop operator.

(1) The formula 3F holds on the interval σ if F does so on one of its subinter-
vals.

3F =df truê (F ̂ true)

3tF holds on σ if F holds in its suffix subinterval.

3tF =df truêF

(2) The formula 2F holds if F holds on all its subintervals.

2F =df ¬3(¬F)

2tF holds on σ if F holds on all its suffix subintervals.

2tF =df ¬3t(¬F)

(3) We use the notation unit to denote the interval of zero length

unit =df (l = 0)

(4) Let b be a Boolean expression of state variables. Define

F � b�Q =df (F ∧ b) ∨ (G ∧ ¬b)

3 Algebraic Laws

The great merit of algebra is as a powerful tool for exploring family relationship
over a wide range of different theories. For example, study of foundations of inter-
val temporal logic has given denotations to a wide variety of Duration Calculus
– Mean Value Calculus of Durations, Extended Duration Calculus, Super-dense

A Behavioral Model for Co-design 1425

Duration Calculus, etc. Distinctions are revealed in the structure and content
of each kind of time domain and state variable so defined. It is only their alge-
braic properties that emphasise the family likeness across the range of Duration
systems.

3.1 Chop

The chop operator ̂ is used to model sequential systems. Like its counterpart
in ITL, its behaviour is subject to the following familiar laws.

(int-1) (associativity)

F ̂ (ĜH) = (F ̂G)̂H

(int-2) (unit)

unit̂G = G = Ĝunit

(int-3) (disjunctivity)

F ̂ (G1 ∨ G2) = (F ̂G1) ∨ (F ̂G2)

(F1 ∨ F2)̂G = (F1̂G) ∨ (F2̂G)

(int-4) (conjunctivity) If L = (l = x) or L = (] = n + 1) (for n ≥ 0), then

L̂ (G1 ∧ G2) = (L̂G1) ∧ (L̂G2)

(F1 ∧ F2)̂L = (F1̂L) ∧ (F2̂L)

(int-5) (scope extension) If h is not free in G, then

(∃h • F)̂G = ∃h • (F ̂G)

(int-6) (dense time)

(l = r)̂ (l = s) ⇒ (l = r + s)

(int-7) (interval independency) If F does not contain temporal variables, nor
temporal propositional letter, then

(F ̂G)⇒ F

(ĜF)⇒ F

(int-8) (zero)

falsêG = false = F ̂ false

(int-9) (intermediate state) If p is a predicate, then

(F ∧ p(
→
X))̂G) = F ̂ (p(

←
X) ∧G)

(int-10) (initial and final states) If p is a predicate, then

(p(
←
X) ∧ F)̂Q = p(

←
X) ∧ (F ̂G)

F ̂ (G ∧ p(
→
X)) = (F ∧G) ∧ p(

→
X)

Adjacent intervals of the same type can be combined into a single one.

1426 He Jifeng

(int-11) (closure of interval catenation)

(] = 0)̂ (] = 0) = (] = 0)

(] = m + 1)̂ (] = n + 1) = (] = m + n + 1)

(int-12) (validity of catenation)

(] = 0)̂ (] ≥ 2) = false (] ≥ 2)̂ (] = 0)

The length and number of isolated time points of interval are governed by the
following laws.

(int-13) (non-empty length)

(] ≥ 0) = true = (l ≥ 0)

(int-14) (singleton sets)

(l = 0) = (] = 1)

3.2 Parallel

The definition of \\ is complicated; so it is comforting that it shows many of the
algebraic properties of other familiar parallel operators.

(\\-1) (associativity)

(F\\G)\\H = F\\(G\\H)

(\\-2) (time synchronisation)

F\\(unit ∧G) = (F ∧ unit)\\G = (F ∧ unit ∧G)

F\\(l > 0 ∧G) = (F ∧ l > 0)\\G
(\\-3) (disjunctivity)

F\\(G1 ∨G2) = (F\\G1) ∨ (F\\G2)

(\\-4) (conjunctivity)

(F ∧ l = x)\\(G1 ∧G2) = ((F ∧ l = x)\\G1) ∧ ((F ∧ l = x)̂G2)

(F1 ∧ (l = x) ∧ F2)\\G = ((F1 ∧ l = x)\\G) ∧ ((F2 ∧ l = x)\\G)

(\\-5) (\\ − ̂ distribution)

F\\(ĜH) =

(unit\\G)̂ (F\\H) ∨ (F\\G)̂ (F\\H) ∨ (F\\G)̂ (unit\\H)

(\\-6) (locality of state variable) If h is not free in F , then

F\\(∃h •G) = ∃h • (F\\G)

(\\-7) (monotonicity) If H1 ⇒ H2, then

(H1\\G) ⇒ (H2\\G)

(\\-8) (exclusiveness)

¬(true\\(] = 0))

A Behavioral Model for Co-design 1427

(\\-9) (single transition)

F\\(G ∧] = 2) = F ∧ (true\\(G ∧] = 2))

(\\-10) (void synchronisation)

(true\\(] = 2)) = l > 0

(\\-11) (̂ − ∨ distribution)

(unit ∨ F)\\G = (unit\\G) ∨ (F\\G)

(\\-12) (interval decomposition independency) If p is a predicate, then

F\\(G ∧ p(
←
X,

→
X, l)) = (F\\G) ∧ p(

←
X,

→
X, l)

(\\-13) (invariant) If p is a predicate, then

(F ∧ p(
←
X,

→
X))\\(G ∧ (] ≥ 2)) = F\\(G ∧2t(l > 0⇒ p(

←
X, ©X)))

Theorem 3.1

(1) true\\true = true

(2) false\\G = false = F\\false
(3) F\\(] ≤ 2) = F

(4) F\\(] = n + 1) = (F ∧ l > 0))n, for n ≥ 1

where F 0 =df unit and Fn+1 =df F ̂Fn.

Proof of (1) true\\true {(int− 1) and (\\ − 3)}
⇐ true\\(] = 1) ∨ true\\(] = 2) {(\\ − 2) and (̂ − 10)}
= (l = 0) ∨ (l > 0) {(int− 1)}
= true

The conclusion (4) can be proved by induction.

F\\(] = 2) {(\\ − 9) and (\\ − 10)}
= F ∧ (l > 0)

F\\(] = n + 2) {(int− 10)}
= F\\((] = 2)̂ (] = n + 1)) {(\\ − 5)}
= (unit\\(] = 2))̂ (F\\(] = n)) ∨

(F\\] = 2)̂ (F\\] = n) ∨
(F\\(] = 2))̂ (unit\\(] = n)) {(\\ − 2) and (int− 12)}

= (F\\] = 2)̂ (F\\] = n) {inductive hypothesis}
= (F ∧ l > 0)̂ (F ∧ l > 0)n {Def of Fn+1}
= (F ∧ l > 0)n+1 2

Corollary

If unit⇒ F then F\\true = F ∗ 2

1428 He Jifeng

4 Healthiness Conditions

In this section, we work towards to a more precise characterisation of the class
of formulae that are useful in software/hardware design. As usual, we follow
the standard practice of mathematics, which is to classify the basic concepts by
their important properties. For example, among the functions of real numbers,
it is useful to single out those are integrable, or continuous, or rational, or dif-
ferentiable. A similar classification of the basic concept of a interval formula is
essential to our goal of unifying theories of co-design. This section gives a set of
healthiness conditions, and shows that the set of healthy formulae is closed un-
der relevant operators. In the later sections we will demonstrate that all actual
software/hardware systems satisfy all the the stated healthiness conditions (and
more).

4.1 Monotonicity

Definition 4.1 (Monotonic formulae)
As a predicate of intervals, a formula F is monotonic if it respects the ordering
relation ≤ over I, i.e., for any model M and any intervals σ1 and σ2

(σ1 ≤ σ2) ⇒ (Mσ1(F) ⇒ Mσ2(F)) 2

Examples 4.2
(1) true and false are monotonic.
(2) Let X be a state variable and p a predicate letter, then p(l,

←
X,

→
X) is mono-

tonic.
(3) The formula] ≤ 1 is monotonic, but] ≤ n is not monotonic for n ≥ 2.
(4) Let X be a state variable, then

stb(X) =df ∃x • 2t(
←
X= x)

is not monotonic. 2

Define

Φ1(F) =df F ∨ (true\\F)

Theorem 4.3 (Fixed point representation)
F is monotonic iff F = Φ1(F) 2

Corollary Monotonic formulae form a complete lattice.

Proof From the monotonicity of Φ1 and Tarski’s fixed point theorem. 2

Theorem 4.4

F is monotonic iff it lies in the image set of Φ1.

Proof We are going to show that Φ1 is idempotent.

A Behavioral Model for Co-design 1429

Φ2
1(G) {Def of Φ1}

= Φ1(G) ∨ (true\\Φ1(G)) {(\\ − 3) and (\\ − 1)}
= Φ1(G) ∨ (true\\G) ∨ ((true\\true)\\G) {Theorem 3.(1)}
= Φ1(G) ∨ (true\\G) {Def of Φ1}
= Φ1(G) 2

Theorem 4.5

(1) Φ1(F ∨G) = Φ1(F) ∨ Φ1(G)

(2) Φ1(F ∧G) ⇒ Φ1(F) ∧ Φ1(G)

(3) Φ1(∃h • F) = ∃h • Φ1(F)

(4) Φ1(F ̂G) ⇒ Φ1(F)̂Φ1(G)

(5) Φ1(F ∗) ⇒ (Φ1(F))∗

(6) Φ1(F\\G) ⇒ (Φ1(F)\\Φ1(G))

(7) Φ1(F � b(
←
X)�G) = Φ1(F) � b(

←
X)� Φ1(G)

Proof of (3) Φ1(F ̂Q) {(\\ − 5)}
= (F ̂G) ∨ ((unit\\F)̂ (true\\G)) ∨

((true\\F)̂ (true\\Q)) ∨ (true\\F)̂ (unit\\G) {(\\ − 7)}
= (F ̂G) ∨ (true\\F)̂ (true\\G) {(int− 4)}
⇒ (F ∨ (true\\F))̂ (G ∨ (true\\G)) {Def of Φ1}
= Φ1(P)̂Φ1(Q) 2

Theorem 4.6 (Closure of monotonic formulae)
If F and G are monotonic, so are F ∨G, F ∧G, F ̂G, F ∗, F\\G, F � b(

←
X)�G,

and ∃h • F .

Proof Assume that both F and G are monotonic.

F ̂G {(X ⇒ Φ1(X))}
⇒ Φ1(F ̂G) {Theorem 4.5(3)}
⇒ Φ1(F)̂Φ1(G) {F = Φ1(F) and G = Φ1(G)}
= F ̂G

which implies that F ̂G = Φ1(F ̂G) as required. 2

4.2 DI Approachable

Definition 4.7 (DI approachable formulae)

If the behaviour of F over continuous intervals is determined by its behaviour
over discrete intervals, then it is said to be DI approachable, i.e.,

∀M, ∀σ • (σ ∈ CI ⇒ (Mσ(F) =
∨

ρ∈DI ∧ ρ≤σMρ(F))) 2

1430 He Jifeng

Examples 4.8
(1) true, false, unit and l > 0 are all DI approachable.

(2) 3(X = 1) is DI approachable.

(3)] = 0 is monotonic, but not DI approachable.

(4)] ≤ 2 is DI approachable, but not monotonic.

(5) stb(X) is neither DI approachable nor monotonic. 2

Define

Φ2(F) =df (] ≤ 2)\\F
Theorem 4.9
F is DI approachable iff F = Φ2(F) 2

Corollary DI approachable formulae form a complete lattice. 2

Theorem 4.10
F is DI approachable iff it lies in the image set of Φ2.

Proof (] ≤ 2)\\(] ≤ 2) {(\\ − 8) and (\\ − 3)}
= (] ≤ 2)\\(] = 1) ∨ (] ≤ 2)\\(] = 2) {(\\ − 2), (\\ − 9) and (\\ − 10)}
= (] ≤ 2) ∧ (] = 1) ∨ (] ≤ 2) ∧ (l > 0) {(int− 1)}
=] ≤ 2

which together (\\ − 2) implies that Φ2 is idempotent. 2

Theorem 4.11
(1) Φ2(F ∨G) = Φ2(F) ∨ Φ2(G)

(2) Φ2(F ∧G) = Φ2(F) ∧ Φ2(G)

(3) Φ2(F ̂G) = Φ2(F)̂Φ2(G)

(4) Φ2(∃h • F) = ∃h • Φ2(F)

(5) Φ2(F ∗) = (Φ2(F))∗

(6) Φ2(F\\G) = Φ2(F)\\G
(7) Φ2(F � b(

←
X)�G) = Φ2(F) � b(

←
X)� Φ2(G)

Proof Φ2(F ̂G) {(\\ − 5)}
= (unit\\F)̂Φ2(G) ∨ Φ2(F)̂Φ2(G) ∨

Φ2(F)̂ (unit\\G) {(\\ − 2) and (int− 14)}
= Φ2(F ∧ unit)̂Φ2(G) ∨ Φ2(F)̂Φ2(G) ∨

Φ2(F)̂Φ2(G ∧ unit) {(\\ − 7)}
= Φ2(F)̂Φ2(G) 2

Theorem 4.12 (Closure of DI-approachable formulae)
If F and G are DI-approachable, so are F ∨G, F ∧G, F ̂G, F ∗, F\\H (for all
H) and ∃h • F . 2

A Behavioral Model for Co-design 1431

4.3 Continuity

Definition 4.13
A formula F is continuous if for any model and for any time interval σ

Mσ(F) =
∨

ρ∈DI ∧ ρ≤σMρ(F) 2

Examples 4.14
(1) true and false are continuous.
(2) Let x be a global variable. Then the predicate p(x, l) is continuous.

(3) Let E1 and E2 be expressions of state variables.
→
E1=

←
E2 is continuous. 2

Define

Φ3(F) =df true\\F
Theorem 4.15
F is continuous iff F = Φ3(F) 2

Corollary Continuous formulae form a complete lattice. 2

Theorem 4.16
F is continuous iff it is monotonic and DI approachable.

Proof of (⇒) Φ2(F) {F = Φ3(F)}
= (] ≤ 2)\\(true\\F) {(\\ − 1)}
= ((] ≤ 2)\\true)\\F) {Example 4.7(1)}
= true\\F {F = Φ3(F)}
= F {F = Φ3(F)}
= F ∨ Φ3(F) {Def of Φ3}
= F ∨ (true\\F) {Def of Φ1}
= Φ1(F)

(⇐) F {(\\ − 1) and F = Φ2(F) = Φ1(F)}
= ((] ≤ 2)\\true)\\F {Example 4.7(1)}
= true\\F {Def of Φ3}
= Φ3(F) 2

Theorem 4.17
F is continuous iff it lies in the image set of Φ3.

Proof From the fact that true\\true = true. 2

Theorem 4.18
(1) Φ3(F ∨G) = Φ3(F) ∨ Φ3(G)

(2) Φ3(F ∧G) ⇒ Φ3(F) ∧ Φ3(G)

(3) Φ3(F ̂G) = Φ3(F)̂Φ3(G)

(4) Φ3(∃h • F) = ∃h • Φ3(F)

1432 He Jifeng

(5) Φ3(F ∗) = (Φ3(F))∗

(6) Φ3(F\\G) = Φ3(F)\\G
(7) Φ2(F � b(

←
X)�G) = Φ2(F) � b(

←
X)� Φ2(G) 2

Theorem 4.19 (Closure of continuous formulae)
If F and G are continuous, so are F ∨ G, F ∧ G, F ̂ G, F ∗, F\\H (for all H)
and ∃h • F . 2

4.4 Temporal Programs

Let E be an expression of state variables. The formula stb(E) holds on
an interval σ if the value of E remains unchanged throughout that interval.

stb(E) =df ∃x •2t(
←
E = x)

The formula stb−(E) is true on σ if the value of E remains changed except at
the end of that interval.

stb−(E) =df ∃x •2t(l > 0⇒ (
←
E = x))

Let E =< E1, . . . , En > be a list of expressions. We define

stb(E) =df stb(E1) ∧ . . . ∧ stb(En)

The formula stb−(E) can be defined in a similar way.

(stb-1) stb(E) ∧ unit = unit = stb−(E) ∧ unit

(stb-2) stb(E) = stb−(E) ∧ (
←
E=
→
E)

(stb-3) stb(E) ∧ (F ̂G) = (stb(E) ∧ F)̂ (stb(E) ∧G)

(stb-4) stb−(E)\\stb−(E) = stb−(E)

(stb-5) stb−(< X, Y, . . . , Z >)∗ = stb−(X)∗ ∧ stb−(< Y, . . . , Z >)∗

(stb-6) stb−(< X, Y, . . . , Z >)\\stb−(E(X, Y, . . . , Z)) =

stb−(< X, Y, . . . , Z >)∗ ∧ stb−(E(X, Y, . . . , Z))

Definition 4.20 (Program variable)
A state variable X is a program variable if it is identified as a right continuous
step function with finite variability, i.e.

stb−(X)∗ = true 2

Definition 4.21 (Program)
A formula F is said to be a temporal program of variables X ,Y . . . , Z if

F = stb−(< X, Y, . . . , Z >)\\F
We will use V AR to abbreviate the list < X, Y, . . . , Z > of state variables hence-
forth. 2

Examples 4.22
(1) true and false are temporal programs.
(2) From (stb-1) and (\\ − 2) it follows that unit is a program.

A Behavioral Model for Co-design 1433

(3) Let p be a predicate, and x a global variable. From (\\ − 12) and Corollary
of Theorem 3.1 we conclude that p(l, x) is a temporal program.

(4) Let E1 and E2 be expressions of program variables X, Y, . . . , Z.
→
E1=

←
E2 is

a temporal program.
(5) stb−(b) and stb(b) are temporal programs. 2

Theorem 4.23
A monotonic formula F is a temporal program of X , Y ,. . . , Z iff F is continuous.

Proof of (⇐) F {F is continuous}
= true\\F {(stb− 6)}
= (stb−(V AR)∗)\\F {Corollary of Theorem 3.1}
= (stb−(V AR)\\true)\\F {(\\ − 1)}
= stb−(V AR)\\(true\\F) {F is continuous}
= stb−(V AR)\\F
(⇒) F {F is monotonic}
= F ∨ (true\\F) {F is a program}
= (stb−(V AR)\\F) ∨ (true\\F) {(\\ − 7)}
= true\\F 2

Theorem 4.24
F is a temporal program iff there is a formula G such that

F = stb−(V AR)\\G
Proof stb−(V AR)\\(stb−(V AR)\\G) {(\\ − 1)}

= (stb−(V AR)\\stb−(V AR))\\G {(stb− 4)}
= stb−(V AR)\\G 2

Theorem 4.25
(1) Temporal programs form a complete lattice.

(2) If F and G are temporal programs, so are F ∨G, F ̂G, F ∗, F � b�G and
∃h • F . 2

Example 4.26 (Temporal assignment)
Let E1 and E2 be the expressions of program variables.
The notation E1 ← E2 denotes a temporal assignment, which holds on the in-
terval σ if the final value of E1 and the initial value of E2 are the same.

E1← E2 =df

→
E1=

←
E2

Example 4.22(3) indicates that E1← E2 is a temporal program. 2

1434 He Jifeng

Example 4.27 (Assignment)
Conventional programming language assignments X := E usually incorporate
additional assumptions that are not captured by temporal assignments. Typi-
cally, all program variables but X are assumed to remain unchanged, and the
update on X occurs at the end of the interval.

X := E =df (X ← E) ∧ (stb−(X) ∧ stb(Y) ∧ . . . ∧ stb(Z)) 2

5 VERILOG Timing Controlled Statements

The VERILOG hardware description language [11] is widely used to model the
structure and behaviour of digital systems ranging from simple hardware build-
ing blocks to complete systems. Its semantics is based on scheduling of events
and the propagation of changes. In this section we are going to examine the
VERILOG timing controlled statements and the delayed assignments.

Timing controls are used in VERILOG for scheduling. They are either
delay (#e) or guards. Guards are either level sensitive (wait(b)) or edge sensitive
(∆(b), ⇑ (b) or ⇓ (b)).

Let P be a program, and e an expression. The VERILOG statement #e &P
postpones the execution of P for e time units.

#e P =df (l =
←
e)̂P

Let b be a Boolean expression of program variables. wait(b)&P fires the
program P whenever the guard b becomes true.

wait(b) &P =df (unit� b� stb−(b))̂ (P � b� stb(b))

⇑ (b) &P executes the program P whenever the value of b switches from ff to
tt.

⇑ (b) &P =df (stb−(b)̂ (stb(b)� b� (wait(b)&P))) � b� (wait(b)&P)

Its dual, denoted by ⇓ (b) &P , executes P whenever the value of b goes back to
ff .

⇓ (b) &P =df ⇑ (¬b) &P
∆(b) &P executes the program P once the Boolean expression b changes its value.

∆(b) &P =df (wait(¬b) &P)� b� (wait(b) &P)

The notation X = #e E denotes a delayed assignment which evaluates
the value of E , and then assigns it to X after e time units delay.

X = #e E =df ∃c • (
←
E= c) ∧ (#e &(X ← c))

The delayed assignment X = wait(b) E evaluates the value of E first,
and assigns it to X whenever b becomes true.

(X = wait b E) =df ∃c • (
←
E= c) ∧ (wait(b) &(X ← c))

From Theorem 4.25 it follows that all timing controlled statements and the de-
layed assignments are temporal programs. 2

A Behavioral Model for Co-design 1435

6 Clock

In this section, we choose natural numbers as the end points of the intervals:

E =df Nat

As a result, every interval has integer length

∃n ∈ Nat • (l = n) = true

and (stb− 4) can be strengthen to

(stb-4a) (stb−(E) ∧ l ≤ 1)\\stb−(E) = stb−(E)

Definition 6.1 (Register)
A state variable X is a register variable if its value changes only at the end
points.

stb−(X)∗ = true 2

Definition 6.2 (Fullness)
A time interval σ is full if it contains all the end points of E lying between σ.b
and σ.e, i.e.

{n | n ∈ E ∧ (σ.b ≤ n ≤ σ.e)} ⊆ σ

All the intervals in CI are full. The discrete interval < 0, 1, 2 > is full, but
< 0, 2 > is not.

Define

full =df (] = 0) ∨ (] = l + 1)

It is obvious that full holds on σ iff σ is full. Furthermore, if σ is full, so are its
subintervals.

(full-1) 2 full = full

(full-2) 2t full = full 2

Theorem 6.3
If V AR =df< X, Y, . . . , Z > is a list of register variables then

(stb−(V AR) ∧ (l ≤ 1))∗ = full 2

Definition 6.4 (Clocked program)
F is a clocked program of register variables of V AR if

F = (stb−(V AR) ∧ l ≤ 1)\\F 2

Theorem 6.5 (Additional healthiness condition)
F is a clocked program iff F is a temporal program satisfying F = F ∧ full

Proof of (⇒) stb−(V AR)\\F {Def. 6.4}
= (stb−(V AR)\\(stb−(V AR) ∧ (l ≤ 1)))\\F {(\\ − 12)}
= ((stb−(V AR)\\stb−(V AR)) ∧ (l ≤ 1))\\F {(stb− 4)}
= (stb−(V AR) ∧ (l ≤ 1))\\F {Def. 6.4}
= F

1436 He Jifeng

which implies that F is a temporal program. From (\\ − 3) and the fact that

F = (stb−(V AR) ∧ (l ≤ 1))\\F
we conclude that F = F ∧ full.

(⇐) F {Def. 5.2}
= (stb−(V AR)\\F) {(stb− 4a)}
= ((stb−(V AR) ∧ l ≤ 1)\\stb−(V AR))\\F {(\\ − 1)}
= (stb−(V AR) ∧ l ≤ 1)\\F 2

Theorem 6.6
If F is a clocked program then F is monotonic. 2

Corollary
F is a clocked program iff F is continuous and satisfies

F = F ∧ full

Proof of (⇒) From Theorems 6.5 and 6.6 it follows that F is a monotonic
program satisfying F = F ∧ full. The conclusion that F is also continuous
follows directly from Theorem 4.23.

(⇐) The conclusion follows from Theorems 4.23 and 6.5. 2

Theorem 6.7
(1) Clocked programs form a complete lattice.

(2) If F and G are clocked programs, so are F ̂G, F ∨G, F ∧G, (¬F ∧ full),
∃x • F , F � b(

←
X)�G, 2t F and 2F . 2

Examples 6.8
(1) false and full are clocked programs.

(2) Let p(
←
X,

→
X, l) be a predicate. Then p(X, X ′, l)∧ full is a clocked program.

(3) Let X be a register variable. Then stb(X) ∧ full is a clocked program. 2

TEMPURA [4, 9] is a computer programming language that is especially
good at expression temporal behaviour. The following are several built-in oper-
ators for constructing TEMPURA programs.

The notation empty is used to mark termination.

empty =df unit

From the fact that

(stb−(V AR) ∧ (l ≤ 1))\\unit = stb−(V AR) ∧ unit = unit

it follows that empty is a clocked program.

The operator next is used to describe what happen next, where “next”
means “after one unit of time”.

next F =df (l = 1)̂F

A Behavioral Model for Co-design 1437

From Theorem 6.7 it follows that next preserves clocked programs.

Something is considered to happen always if it happens immediately and
then again after each time unit.

always F =df 2t F

Clearly always also preserves clocked programs.

The formula haltF holds on the interval σ iff F holds on the interval
< σ.e >.

haltF =df always (full ∧ (empty≡ F))

From Theorem 6.7 it follows that if F is a clocked program so is haltF .

The assignment assign(A, B) asserts that the final value of A is equal to
the initial value of B.

assign(A, B) =df (A← B) ∧ full

From Example 6.8(2) we conclude that assign(A, B) is a clocked program.

Unit-assignment is an assignment which completes its execution in one
time unit.

uassign(A, B) =df (l = 1) ∧ assign(A, B)

Both (l = 1) and assign(A, B) are clocked programs, so is their conjunction
uassign(A, B).

Another kind of assignment that occurs frequently is initialisation. It can
be achieved in zero-time.

iassign(A, B) =df empty ∧ assign(A, B)

From Example 6.8(2) it follows that the initialisation is a clocked program.

TEMPERA statement gets(A, B) is used to express the repeated assign-
ment.

gets(A, B) =df always (empty ∨ ∃x • x =
←
B ∧ next (

←
A= x)))

From Theorem 6.7 it follows that gets(A, B) is also a clocked program.

References

[1] M. Abadi and Z. Manna. Temporal logic programming. Proc. IEEE Symposium
on Logic Programming, (1987).

[2] M.R. Barbacci. Instruction Set Processor Specifications (ISPS): The notation and
its application. IEEE Trans. Comp. 30: 24–40, (1981).

[3] M. Gordon. Proving a computer correct. Technical Report 42, University of Cam-
bridge Computer Laboratory, (1983).

[4] R.W.S. Hale. Programming in Temporal Logic. Technical Report 173, Computing
Laboratory, University of Cambridge, (1980).

[5] J. Halpern, Z. Manna and B. Moszkowski. A hardware semantics based on tem-
poral intervals. In Proc. of 10th Internal Colloquium on Automata, Languages
and Programming, 278–291, (1983).

1438 He Jifeng

[6] D. May and R. Shepherd. The transputer implementation of Occam. In Commu-
nication Process Architecture, 19–29, (1988).

[7] S. Mazor. A Guide to VHDL. Kluwer Publisher, (1992).
[8] B.C. Moszkowski. A Temporal Logic for multi-level reasoning about hardware.

IEEE Computer 18(2): 10–19, (1985).
[9] B.C. Moszkowski. Executing Temporal Logic Programs. Cambridge University

Press, Cambridge, (1986).
[10] A.C. Parker and J.J. Wallace. SLOIDE: An I/O hardware description language.

IEEE Trans. Comp, 423–439, (1981).
[11] D.E. Thomas and P. Moorby. The VERILOG Hardware Description Language.

Kluwer Publisher, (1991).
[12] Zhou Chaochen, C.A.R. Hoare and A.P. Ravn. A calculus of duration. Information

Processing Letters 40(5): 269–275, (1991).

A Weakest Precondition Semantics for an

Object-Oriented Language of Refinement

Ana Cavalcanti1 and David A. Naumann2

1 Departamento de Informática
Universidade Federal de Pernambuco, Po Box 7851 50740-540 Recife PE Brazil

Phone: +55 81 271 8430 Fax: +55 81 271 8438
alcc@di.ufpe.br www.di.ufpe.br/∼alcc

2 Department of Computer Science
Stevens Institute of Technology, Hoboken NJ 07030 USA

naumann@cs.stevens-tech.edu www.cs.stevens-tech.edu/∼naumann

Abstract. We define a predicate-transformer semantics for an object-
oriented language that includes specification constructs from refinement
calculi. The language includes recursive classes, visibility control, dy-
namic binding, and recursive methods. Using the semantics, we formulate
notions of refinement. Such results are a first step towards a refinement
calculus.

Keywords: refinement calculi, semantic models, object-orientation, verification

1 Introduction

There has been extensive study of formal type-systems for object-oriented lan-
guages, and some study of formal specification, but formalization of development
methods [BKS98, Lan95] lags behind both the language features and the infor-
mal methods presently used. This paper presents a semantic basis for formal
development of programs in languages like Java and C++. Our language, called
rool (for Refinement Object-oriented Language), is sufficiently similar to Java
to be used in meaningful case studies and to capture some of the central difficul-
ties, yet it is sufficiently constrained to make it possible to give a comprehensible
semantics.

We assume the reader is familiar with basic concepts and terminology of
object-oriented programming. We address the following challenging issues.

• Dynamic binding of methods means that the version of a method that will be
invoked is determined only at run time. Such programs exhibit phenomena
similar to higher-order imperative programs.
• Classes are important in practice for modularity, but they are complicated to

model (for which reason many studies focus on instance-oriented subtyping).
• Object-oriented programs involve fine-grained control of visibility in terms of

private, inherited, and public identifiers.

Our language has mutually recursive classes and recursive methods. We omit ref-
erence types, however. Pointers are ubiquitous in practice, but so are techniques

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1439–1459, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1440 Ana Cavalcanti and David A. Naumann

to isolate deliberate sharing from the many situations where value semantics is
preferable. Our object values are tuples with recursive nesting but no sharing.
We leave pointers as an important but separate issue [AdB94].

Our work is part of a project that aims to extend to object-oriented program-
ming the most widely-used and well-developed formal methods – those associated
with Hoare logic and weakest preconditions. Because behavioural subclassing in-
volves intermingled programs and specifications [LW94], it is natural to extend
a refinement calculus [Mor94, BvW98]. As usual in refinement calculi, our se-
mantics is based on weakest preconditions.

In the approach we adopt, commands denote functions on formulas. In iso-
lation, purely syntactic transformer semantics is dubious. While our collabora-
tors are developing a state-transformer semantics which will make it possible
to prove operational soundness, we have taken the preliminary step of giving
a set-theoretic semantics for predicate formulas and expressions, for the type-
correctness results. Object states are represented by tuples of attribute values,
and in general types denote sets of values. Methods are treated as procedures
with a distinguished self parameter. Classes denote tuples of method mean-
ings. Predicate formulas denote sets of states. The interplay between the value-
oriented semantics of expressions and the formula-oriented semantics of com-
mands is mediated by the semantics of formulas.

The semantics is based on a typing system. In the methodological literature
simpler approaches are usually taken: there is a fixed global typing, or untyped
variables are used and types are treated as predicates. A fixed global typing is
unsuitable for formulating laws about subclasses and inheritance; and treating
types as predicates risks inconsistency in the presence of higher-order phenom-
ena. We employ techniques that have become standard in type theory and deno-
tational semantics; the semantics is defined in terms of typing derivations, which
provides convenient access to necessary contextual information.

We do not treat more advanced notions of subtyping than those in Java: we
are interested in reasoning about type casts and tests as they are used in Java and
its cousin languages. The typing system is similar to that of [Nau98b], and also
to those used in typing algorithms, where subsumption is incorporated into rules
for different constructs rather than being present as a general rule. Nonetheless,
soundness of our definitions is not at all obvious, due to subtleties of modelling
dynamic binding as well as mutually recursive classes. In this paper, we disallow
mutually recursive methods, which lets us use a simpler, though non-trivial,
well-ordering to show the semantics is well defined.

The main contribution of this paper is the extension of standard weakest
precondition semantics to a Java-like language with classes, visibility, dynamic
binding, and recursion. We give basic results on soundness of the definitions,
define notions of program and class refinement, and show that the constructors
of rool are monotonic with respect to refinement. Our semantics is being used
in ongoing research on practical specification and verification. For reasons of
space we omit many definitions and proofs that appear in [CN99].

A Weakest Precondition Semantics for an Object-Oriented Language 1441

e ∈ Exp ::= self | super | null | new N
| x | f (e) variable, built-in application
| e is N | (N)e type test, type cast
| e.x | (e; x : e) attribute selection and update

ψ ∈ Pred ::= e | e isExactly N boolean expression, exact type test
| (∨ i • ψi) | ψ ⇒ ψ | ∀ x : T • ψ

c ∈ Com ::= le := e | c; c multiple assignment, sequence
| x : [ψ,ψ] specification statement
| pc(e) parameterized command application
| if []i • ψi → ci fi alternation
| rec Y • c end | Y recursion, recursive call
| var x : T • c end local variable block
| avar x : T • c end angelic variable block

pc ∈ PCom ::= pds • c parameterization
| m | le.m method calls

pds ∈ Pds ::= ? | pd | pd ; pds parameter declarations
pd ∈ Pd ::= val x : T | res x : T | vres x : T

Table 1. Expressions, selected predicates, commands, and parameterized com-
mands.

2 Language

The imperative constructs of rool are based on the language of Morgan’s refine-
ment calculus [Mor94], which extends Dijkstra’s language of guarded commands.
Specifications are regarded as commands; we use the word command to refer to
specifications, commands in the traditional sense, and hybrids where program-
ming structures and specifications are mixed.

Data types T are the types of attributes, local variables, method parameters,
and expressions. They are either primitive (bool, int, and others) or class names
N . Primitives may include functional types such as arrays of integers.

The expressions e are generated by a rule in Table 1. We assume that x
stands for a variable identifier, and f for a literal or built-in function. Built-ins
should include primitive predicates like equality. The update (e1; x : e2) denotes
a fresh object copied from e1 but with the attribute x mapped to a copy of e2.
Attribute selection e.x is a run-time error in states where e denotes null, and
(N)e is an error if the value of e is not of dynamic type N . The type test e is N
checks whether non-null e has type N ; it is false if e is null, like instanceof
in Java. The predicates ψ of rool include formulas of first-order logic, program
expressions of type bool, and exact type tests e isExactlyN .

We identify a subset Le of Exp; these left-expressions can appear as the target
of assignments and method calls, and as result and value-result arguments.

le ∈ Le ::= le1 | self | self .le1 le1 ∈ Le1 ::= x | le1.x

Assignments to self and method calls with self as a result or value-result ar-
gument would never appear in user programs, but they are used in the seman-

1442 Ana Cavalcanti and David A. Naumann

tics. We allow le in le := e to range over finite non-empty sequences of left-
expressions, and e over corresponding lists.

For alternation we use an informal indexed notation for finite sets of guarded
commands. Specification statements are as in [Mor94]. Methods are defined
using procedure abstractions in the form of Back’s parameterized commands
val x : T • c, res x : T • c, or vres x : T • c [CSW99]. These correspond to
parameter passing by copy: call-by-value, by-result, and by-value-result, respec-
tively. In each case, x stands for a finite sequence of variable identifiers, T for a
corresponding list of types, and c for a command. We use x to stand both for
a single variable and for lists of variables; the context should make clear which
one is meant. The same comment applies to our uses of e and T .

A parameterized command can be applied to a list of arguments to yield
a command. A method call is a parameterized command. A call m refers to a
method of the current object; a call le.m refers to a method associated with the
object that is the current value of le. We do not allow method calls e1.m(e) where
e1 is a general expression, because it is convenient in the semantic definitions
that the object is named by a variable (the same is done in [AL97]). If e1 is
not a left-expression, e1.m(e) is equivalent to var x : T • x := e1; x .m(e) end,
where x is fresh. This is not an adequate replacement for e1.m(e), when e1 is a
left-expression, because it does not make persistent the changes to e1. However,
calls of the form le.m(e) are available in rool.

A program is a sequence of class declarations followed by a command.

Program ::= cds • c
cds ∈ Cds ::= ? | cd cds
cd ∈ Cd ::= class N1 [extends N2]

pri x1 : T1; prot x2 : T2; {meth m =̂ (pds • c) end}∗;
end

A class declaration cd introduces a class named N1. The optional extends-clause
determines the immediate superclass of N1. In its absence, N1 extends object,
which has no attributes or methods. The pri and prot clauses introduce the
private and protected attributes of N1 (recall that x1 and x2 can be lists). The
visibility mechanism is similar to that of Java: private attributes are visible
just inside the class, and protected attributes are visible in the class and in
its subclasses. Following the pri and prot clauses, there is a list of method
declarations. The method introduced by meth m =̂ (pds • c) end is named m;
its body is the parameterized command (pds • c). All methods are considered
to be public.

3 Typing

Besides the data types T , other phrase types θ are available for predicate for-
mulas, commands, parameterized commands, and complete programs.

θ ::= T | pred | com | pcom(pds) | program

A Weakest Precondition Semantics for an Object-Oriented Language 1443

The types of phrases, in the context of a collection of class declarations, a specific
class, and some method parameter and local variable declarations, are given by
the typing relation B . For example, Γ,N B c : com asserts that c is a com-
mand that can appear in the body of a method in class N . Here Γ is a typing
environment; it records class declarations as well as locals for c: the attributes
visible in N , and method parameters and local variables in scope. Similarly,
Γ,N B e : T asserts that in a method of N , e is an expression of type T .

3.1 Typing Environment

We assume the existence of two disjoint sets of names: the set CName of class
names and the set LName of local names. A local may be either an attribute, a
method, a method parameter, or a local variable. We also distinguish two class
names: object and main. The former is the superclass of all classes. The latter
does not refer to a class itself, but to the main part of a complete program.

A typing environment Γ is a record with six fields: attr , meth, vis , cnames ,
supcls , and locals . The first, attr , is a finite partial function CName 7 7→LSignature.
An LSignature associates a local name with a type: LSignature =LName 7 7→Type.
The field attr records the names and types of all declared and inherited at-
tributes of every declared class. Similarly, meth records the names and signa-
tures of all declared and inherited methods of the known classes: meth has type
CName 7 7→ MDecs where MDecs = LName 7 7→ Pds .

The third field of a typing environment, vis , records the visibility of the
attributes of the declared classes: vis has type CName 7 7→ (LName 7 7→ Visibility)
where Visibility = {pri , prot , ipri}. If, we have that for an attribute x of a class
N , vis N x = pri , then x is a private attribute of N that was declared (and not
inherited) by N ; the inherited private attributes of N are associated to ipri .
Finally, prot refers to the protected (either inherited or declared) attributes.

The cnames field of a typing environment is a set containing the name of all
declared classes: cnames = dom attr = dommeth = dom vis . The distinguished
class name object is supposed to be in cnames , while main, which does not
refer to a class, is supposed not to be in cnames . Moreover, the class object is
associated to the empty signature in both attr and meth.

The supcls field of a typing environment associates a class name to the name
of its immediate superclass: supcls has type CName 7 7→ CName. All declared
classes have a direct superclass: either a class mentioned explicitly in their dec-
larations or object. On the other hand, object itself does not have a super-
class. Furthermore, a superclass is a declared class and the inheritance relation-
ship is not allowed to have circularities. The subtype relation ≤Γ is defined by
T1 ≤Γ T2 ⇔ (T1,T2) ∈ (Γ.supcls)+ ∨ T1 = T2.

The last component of a typing environment, locals , is an LSignature that
records the types of the visible atributes of the current class, and of any method
parameter and local variables in scope. The attributes are also recorded in attr ;
this redundancy simplifies typing rules. The classes referred to in the signatures
in the range of either attr or meth and in locals must be declared.

1444 Ana Cavalcanti and David A. Naumann

N 6= main

Γ,N B self : N

N ′ ∈ Γ.cnames

Γ,N B new N ′ : N ′
Γ,N B e : N ′ N ′′ ≤Γ N ′

Γ,N B e is N ′′ : bool

Γ,N B e : N ′ N ′′ ≤Γ N ′

Γ,N B (N ′′)e : N ′′
Γ,N B e : N ′ Γ.attr N ′ x = T visib Γ N ′ N x

Γ,N B e.x : T

Γ B e : bool

Γ B e : pred

Γ B ψi : pred for all i

Γ B (∨ i • ψi) : pred

Γ ; x : T B ψ : pred

Γ B ∀ x : T • ψ : pred

Γ,N B e : N ′ N ′′ ≤Γ N ′

Γ,N B e isExactly N ′′ : pred

(Γ ; x : N ′′) B ψ : pred N ′′ ≤Γ N ′

(Γ ; x : N ′) B x isExactly N ′′ ∧ ψ : pred

Table 2. Typing of selected expressions and predicates.

A typing Γ,N B phrase : θ holds just if it is well formed and is derivable using
the rules to be presented in the sequel. Well formedness is characterised by three
properties. First, Γ has to satisfy the conditions above for environments. Sec-
ondly, the current class must be declared: N 6= main⇒ N ∈ Γ.cnames . Thirdly,
domΓ.locals should include all visible attributes of N , i.e. the declared private
and the declared and inherited protected attributes – all but the inherited pri-
vate ones. We assume that no parameter or local variable has the same name
as an attribute of the class. If N is main there are no restrictions on Γ.locals ,
which contains only parameters and local variables.

3.2 Expressions and Predicates

Typing rules for some expressions and predicates are in Table 2. The boolean
expression e is N ′′ is well-typed when the type of e is a superclass of N ′′. The
type of e.x is that of the x attribute of the class of e, provided this attribute
is visible from the current class. In a hypothesis like Γ.attr N ′ x = T , which
involves partial functions, we mean that the expressions are defined and equal.
Visibility is considered in visib Γ N ′ N x , a condition stating that, according to
Γ , x is an attribute of N ′ visible from inside N . We define visib Γ N ′ N x to
hold if and only if N ≤Γ N ′, Γ.vis N x 6= ipri , and N 6= N ′ ⇒ Γ.vis N x 6= pri .
The attributes visible in N are those declared in N itself and those inherited
from its superclasses that are not private.

A typing Γ,N B ψ : pred is for a predicate on the state space of a method
in class N , where Γ.locals declares local variables, parameters, and attributes
to which ψ may refer. We say ψ is typable in Γ,N , meaning Γ,N B ψ : pred
is derivable; similarly for command typings later. In some rules we omit the
current class N because it does not change throughout the rule. The environment
Γ ; x : T , differs from Γ just in the locals field: we define (Γ ; x : T).locals to be
Γ.locals ⊕ {x 7→ T}, where ⊕ denotes function overriding.

The rule for isExactly is similar to the rule for is, but we also need coercion
rules for is and isExactly in combination with ∧ and⇒. As an example, consider

A Weakest Precondition Semantics for an Object-Oriented Language 1445

(Γ ; x : T) B c : com par ∈ {val, res,vres}
Γ B (par x : T • c) : pcom(par x : T)

Γ.meth N m = pds

Γ,N B m : pcom(pds)

Γ,N B le : N ′ Γ.meth N ′ m = pds

Γ,N B le.m : pcom(pds)

Γ B le : T Γ B e : T ′ T ′ ≤Γ T sdisjoint le

Γ B le := e : com

Γ B pc : pcom(val x : T) Γ B e : T ′ T ′ ≤Γ T

Γ B pc(e) : com

Γ B pc : pcom(vres x : T) Γ B le : T sdisjoint le

Γ B pc(le) : com

Γ B ψi : pred Γ B ci : com

Γ B if []i • ψi → ci fi : com

(Γ ; x : T) B c : com

Γ B (var x : T • c end) : com

Table 3. Typing of selected parameterized commands and commands.

a class Pt of points and an extended class Cpt with an added attribute color . The
predicate (x .color = red) is not typable in a context (Γ ; x : Pt),N . However, if
for instance (Γ, x : Cpt),N B x .color = red : pred, we would like the predicate
x is Cpt ⇒ x .color = red to be typable in a context where x has type Pt . Using
only the separate rules for is and ⇒, it is not typable as such; but it can be
typed by a coercion rule for is like the one for isExactly in Table 2. Rules
like this allow the derivation of typings in more than one way, but the semantic
definitions ensure that the meaning is independent of derivation (Lemma 6).

Substitution on formulas and expressions is standard, but it is worth noting
that the free variables of e.x are those of e. This is because x is in the role of
an attribute name.

3.3 Parameterized Commands, Commands, and Programs

Typing rules for selected commands and parameterized commands are presented
in Table 3. The type of a parameterized command records its parameter decla-
rations. In the cases of m and le.m , the declarations are recorded in the meth
attribute of the typing environment. Of course, le.m is well-typed only if the
type of le is a class with a method m. An omitted rule deals with multiple
parameters.

To preclude aliasing, the rule for assignment stipulates sdisjoint le. This
means that, if le is a list, then no member of le is a prefix of another, after
deleting self . For example, neither x , x .y nor x , self.x is sdisjoint , but x , y.x is.
If pc is a parameterized command with parameter declaration val x : T , then
pc(e) is well-typed when the type of e is a subtype of T . If x is a result or a

1446 Ana Cavalcanti and David A. Naumann

value-result parameter, then pc can only be applied to sdisjoint left-expressions.
If x is a result parameter, pc(le) is well-typed when T is a subtype of the type
of le. When x is a value-result parameter, these types have to be the same.

A complete program cds • c is well-typed in an environment where only
global variables x are in scope, just when c is well-typed in the environment
Γ determined by cds and x : T , and considering that the current class is main.

Γ,main B c : com Γ = ((VDecs cds main); x : T)
Vmeth Γ cds nomrec Γ cds

(?; x : T) B cds • c : program

The fields of the environment ? are all empty, so that in (?; x : T) the only non-
empty field is locals , which records the global variables x : T of the program. The
function VDecs extracts information from and checks a sequence of class decla-
rations. In the environment determined by this function, the classes are associ-
ated with both its declared and inherited methods. The condition Vmeth Γ cds
checks that the method bodies in cds are well-typed in the environment Γ . The
method bodies are checked in an environment that includes their signatures, so
recursive calls are appropriately dealt with. Mutually recursive calls, however,
are not allowed. This is verified by the condition nomrec Γ cds .

The absence of mutual recursion between methods can not be checked as
easily as the absence of mutual recursion between procedures of a traditional
imperative program. By way of illustration, consider classes C , D and C ′; the
class C has an attribute a of type integer and a method m1 that, for instance,
increments a by 1. The class D has an attribute c of class C , a method m2 with
a call c.m1(), and some other methods. There is no mutual recursion, as m1 does
not call m2. However, suppose that in a subclass C ′ of C we declare an attribute
d : D and redefine m1 introducing a call d .m2(). Now, if the private attribute c
of D happens to have dynamic type C ′ when m2 is called, then mutual recursion
will arise. To rule out mutual recursion, we require that if a method m2 calls a
method m1 then neither m1 nor any of its redefinitions calls m2.

3.4 Properties of Typing

To a large extent, a context determines the type of an expression; an exception is
null, for which we have Γ,N B null : N ′ for all N ,N ′. Some phrases, however,
can be typed in many contexts. For example, considering again the class Pt and
its subclass CPt , the command x := new CPt can be typed in Γ ; x : Pt and also
in Γ ; x : CPt . Nonetheless, an expression typing does determine a derivation.

Lemma 1. For all typings Γ,N B e : T, there is at most one derivation.

For predicates, the coercion rules make it possible to derive certain typings
in more than one way. For example, if ψ is derivable in (Γ ; x : N ′),N , then
(Γ ; x : N ′),N B x is N ′ ⇒ ψ : pred can be derived using the rules for is and
⇒, or using a coercion rule; more on this later.

To show type-correctness of method calls we need the following result. It is
similar to the coercion rules, but in fact it does not depend on them.

A Weakest Precondition Semantics for an Object-Oriented Language 1447

Lemma 2. The following rule is admissible, in the sense that the conclusion is
derivable if the hypothesis are.

Γ,N B ψN ′ : pred for all N ′ ≤Γ N N 6= main

Γ,N B (∨N ′≤Γ N • self isExactly N ′ ∧ ψN ′) : pred

Many type systems include a rule of subsumption, but this would make coher-
ence (Lemma 6) harder to prove. The useful effects of subsumption are built-in
to the typing rules.

4 Semantics

Since rool includes infeasible (discontinuous) constructs, recursive class defini-
tions cannot be interpreted by standard domain-theoretic techniques. We deal
with recursive classes by separating attributes from methods, so the domain
equations to be solved are simple “polynomials” involving first-order records.

The semantics [[Γ,N B phrase : θ]] of each derivable typing, except method
call, is defined as a function of the semantics of its constituent phrases. Most typ-
ing rules have a corresponding semantics which we present in a form that mimics
the typing rule, to remind the reader of the typings for constituent phrases and
any side conditions on those typings. Some phrases are treated indirectly through
syntactic transformations described later.

Method calls are the most complicated part of the semantics, and they are
discussed last. Semantics of method call goes beyond recursion on typing deriva-
tions. Moreover, we need the semantics to be defined for any phrase typable in
an extended typing system defined as follows. The first change is that constraints
involving the predicate visib are dropped. The second is that, in the rules for
type tests and type casts, the subtyping constraint is dropped.

Semantically, e is N ′′, for example, can only hold if N ′′ is a subtype of the
declared type of e. Nevertheless, this constraint is incompatible with the seman-
tics of assignment, which as usual is interpreted by substitution. Consider, for
instance, a context Γ with locals x : Pt , z : SCPt where SCPt ≤Γ CPt ≤Γ Pt .
In this context, both x := z and x is CPt are typable, but substitution yields
z is CPt which is not typable in the original system because CPt 6≤Γ SCPt .

All results in Section 3.4 hold for both typing systems. The constraints we
drop are natural for user programs, but such constraints are not found in seman-
tic studies. Although user specifications would not refer to non-visible attributes,
such predicates can be used in proofs of laws.

4.1 Environments, Data Types, and States

An environment is a finite partial function CName 7 7→ (LName 7 7→ PCom) that
for a given class associates method names to parameterized commands. As for-
malized later on, the parameterized command corresponding to a method will
be that given in its declaration, with an extra parameter me. This parameter

1448 Ana Cavalcanti and David A. Naumann

is passed by value-result and provides the attributes of the object upon which
the method is called. This facilitates interpretation of the method body in the
context of its calls.

For a given typing environment Γ , we define the set [[Γ]] of environments
compatible with Γ . The environments η in [[Γ]] are characterized by the following
conditions. First, dom η = Γ.cnames . Also, dom(η N) = dom(Γ.meth N) for all
N ∈ dom η. Finally, the parameter declarations are those recorded in Γ.meth,
along with the extra value-result parameter me; for all N ,m there is some c
such that η N m = (vres me : N ; Γ.meth N m • c). In the environments we
construct later, c is derived from the declared body as a fixpoint.

In addition to the environment, the semantic function for expressions also
takes a state as argument. A state assigns type-correct values to the attributes of
the current object, and to the parameters and local variables. It also records the
class of the current object. Object values, like states, assign values to attribute
names. Our formalization begins with a universal set of untyped values, which
are then used for the semantics of specific data types and state types.

The sets Value and ObjValue are the least solutions to the equations below.
We assume the unions are disjoint. The symbol −C means domain subtraction.

Value = {error,null} ∪ {true, false} ∪ Z∪ObjValue
ObjValue = {f : ({myclass} ∪ LName) 7 7→ (CName ∪ Value) |

myclass ∈ dom f ∧ f myclass ∈ CName ∧
({myclass} −C f) ⊆ (LName 7 7→ Value)}

Values for other primitive types should also be included. An object value is
a mapping from field names to values, with the distinguished name myclass
mapped to a class name.

The meanings of data types are parameterized by a typing environment. For
primitives, we define [[bool]]Γ = {error, true, false} and [[int]]Γ = {error} ∪ Z.
For N in Γ.cnames , we define [[N]]Γ to be the correctly-typed object values.

[[N]]Γ = {error,null} ∪
{f : ObjValue |

dom f = dom(Γ.attr (f myclass)) ∪ {myclass} ∧
f myclass ≤Γ N ∧
∀ x : dom(Γ.attr (f myclass)) • f x ∈ [[Γ.attr (f myclass) x]]Γ }

It is straightforward to prove that N ≤Γ N ′ implies [[N]]Γ ⊆ [[N ′]]Γ .
States are elements of ObjValue, although the “attributes” in a state include

values of parameters and local variables. We write [[Γ,N]] for the set of states for
class N and typing environment Γ . An state σ is in [[Γ,N]] just if it satisfies the
following conditions. First, σ gives values to the attributes of the actual class, if
it is not main, and to the variables in Γ.locals .

N 6= main⇒ domσ \{myclass}= dom(Γ.attr (σ myclass)) ∪ dom(Γ.locals)

The union is not disjoint: Γ.locals declares the visible attributes and any lo-
cal variables and method parameters; Γ.attr(σ myclass)) declares all attributes,

A Weakest Precondition Semantics for an Object-Oriented Language 1449

including inherited private ones. If N is main, σ gives values just to the vari-
ables in Γ.locals . Also, if N is not main, then myclass is a subclass of N ;
otherwise, myclass is main itself. The last condition is that σ assigns val-
ues of the correct type. For N 6= main and x in domσ \ {myclass} we require
x ∈ dom(Γ.attr N) to imply σ x ∈ [[Γ.attr N x]]Γ , and x ∈ domΓ.locals to imply
σ x ∈ [[Γ.locals x]]Γ . Just the latter implication applies if N = main.

4.2 Expressions and Predicates

For η ∈ [[Γ]], σ ∈ [[Γ,N]], and derivable Γ,N B e : T , we define [[Γ,N B e : T]]η σ,
the value of e in state σ. It is an element of [[T]]Γ (Lemma 5).

We assume that for built-in function f : T → U a semantics is given, as a
total function [[T]]Γ → [[U]]Γ . The semantics of self is as follows.

[[Γ,N B self : N]]η σ = ({myclass} ∪ dom(Γ.attr (σ myclass))) C σ

This uses domain restriction (C) of σ: the attributes and myclass are retained;
local variables and parameters are dropped. The similar definition for super and
those for null and variables are omitted. We define [[Γ,N B new N ′ : N ′]]η σ as
init Γ N ′ where init Γ N ′ is an object initialized with default values: false for
boolean attributes, 0 for integers and null for objects. For other primitive types
a default initial value should be given.

The value of the boolean expression e is N ′′ is determined by whether the
value of e is an object of class N ′′. We omit the null and error cases.

[[Γ,N B e : N ′]]η σ = v v 6∈ {null, error}
[[Γ,N B e is N ′′ : bool]]η σ = (v myclass ≤Γ N ′′)

Semantics of attribute selection, update, and cast are straightforward; they yield
error for null.

The semantics [[Γ,N B ψ : pred]]η of a predicate ψ is a subset of [[Γ,N]] (Lem-
ma 6). The semantics of expressions as formulas, and of the logical operations,
is standard and omitted. The semantics of isExactly is similar to that of is.

[[Γ,N B e : N ′]]η = f

[[Γ,N B e isExactly N ′′ : pred]]η =
{σ : [[Γ,N]] | f σ 6∈ {null, error} ∧ (f σ) myclass = N ′′}

The coercion rules have similar semantics; we consider that involving is and ∧.

[[(Γ ; x : N ′′),N B ψ : pred]]η = Σ N ′′ ≤Γ N ′

[[(Γ ; x : N ′),N B x is N ′′ ∧ ψ : pred]]η =
{σ : [[(Γ ; x : N ′),N]] | (σ x) 6∈ {null, error} ∧ (σ x) myclass ≤Γ N ′′ ∧ σ ∈ Σ}

This combines the interpretations of the combined operators.

1450 Ana Cavalcanti and David A. Naumann

(val x : T • c)(e) −→ (var l : T • l := e; c[l/x]) if l 6∈ (FV e) ∪ (FV c)
(res x : T • c)(le) −→ (var l : T • c[l/x]; le := l) if l 6∈ (FV le) ∪ (FV c)
(vres x : T • c)(le) −→ (var l : T • l := le; c[l/x]; le := l) if l 6∈ (FV le) ∪ (FV c)
(pd ; pds • c)(e, e ′) −→ (pd • (pds • c)(e ′))(e) if α(pd) 6∈ (FV e ′)
(• c)() −→ c
le.x := e −→ le := (le; x : e)
le.x , y := e, e ′ −→ le, y := (le; x : e), e ′

le, le ′ := e, e ′ −→ le ′, le := e ′, e
m(e) −→ self .m(e)

Table 4. Syntactic transformations

4.3 Commands and Parameterized Commands

For command typing Γ,N B c : com and environment η ∈ [[Γ]], the semantics
[[Γ,N B c : com]]η is a total function on formulas (Theorem 1) which, when
applied to a formula typable in Γ,N yields a result typable in Γ,N (Theorem 2).

Assignments to general left-expressions are dealt with using syntactic trans-
formations that yield assignments of update expressions to simple variables and
to self . Assignment to simple variables is interpreted using substitution.

Γ B x : T Γ B e : T ′ T ′ ≤Γ T

[[Γ B x := e : com]]η ψ = (e 6= error ∧ ψ[e/x])

We use an expression “error”. In this paper we omit error from the grammar
because it has no other use; its typing rule and semantics are straightforward.

User programs should not include assignments to self and method calls where
self is used as a result or value-result argument. Assignments to self are intro-
duced only in the syntactic transformations for parameter passing, when the
argument corresponding to the me parameter of a method is self . This guaran-
tees that self is always assigned an object of the current class, but the semantics
cannot depend on this assumption.

Γ,N B e : N ′ N ′ ≤Γ N

[[Γ,N B self := e : com]]η ψ =
(∨N ′≤Γ N • e isExactly N ′ ∧ ψ[e, e.x/self , x]) where x = dom(Γ.attr N ′)

This uses a disjunction over the subclasses N ′ of N ; each disjunct involves a
substitution for appropriate attributes. There is no need to check that e is not
error because error isExactly N ′ is false, for all N ′. If the only assignments
to self are those introduced in the semantics, self is always assigned an object
of the current class, in which case the semantics simplifies to ψ[e, e.x/self , x].
We need not give an operational justification for the general case.

We define [[Γ ; x : T B x : [ψ1, ψ2] : com]]η ψ to be ψ1 ∧ (∀ x : T • ψ2 ⇒ ψ)
as in Morgan’s work. We also use the standard semantics for control constructs
and blocks.

A Weakest Precondition Semantics for an Object-Oriented Language 1451

Parameter passing and various forms of assignment are reduced by the rule
below to more basic constructs using the relation −→ defined in Table 4.

c −→∗ c′ [[Γ,N B c′ : com]]η = g

[[Γ,N B c : com]]η = g

If Γ,N B c : com and c −→ c′ then Γ,N B c′ : com (Lemma 3). The reflexive-
transitive closure −→∗ of −→ reduces every derivable command typing to one
for which there is a direct semantic definition (Theorem 1). The first five trans-
formations rewrite parameter passing in the usual way; α(pd) denotes the set of
variables declared in pd , and FV gives free variables. The next three transforma-
tions rewrite assignments to left-expressions into assignments to simple variables
or self . The last transformation inserts the missing object (self) in a method
call m(e).

4.4 Programs and Method Calls

The meaning of a complete program is the meaning of its main command, in an
appropriate environment. The typing includes global variables x of c.

[[Γ,main B c : com]]η = f Γ = ((VDecs cds main); x : T)
Vmeth Γ cds η = Meths Γ cds

[[?; x : T B cds • c : program]] = f

The environment η records the methods available for objects of each of the
classes declared in cds ; these methods are extracted from cds by the function
Meths which builds η as follows.

For each class N and method m, the parameterized command η N m has an
extra value-result parameter me, and in its body each occurrence of an attribute
x of N or of a call to a method m of N is replaced by me.x and me.m. Only
“top level” occurrences of attributes are changed: if x is an attribute, then x .x
becomes me.x .x . For a class that inherits m, me must be given the more specific
type; it always has exactly the type of the object, compatible with the typing
rule for value-result parameters.

If the declared body of a method m contains recursive invocations, then
η N m is the least fixed point of the context determined by the body. This
approach is also used in Back’s work and [CSW98] to deal with recursive pa-
rameterized procedures. We forbid mutual recursion so that fixpoints can be
taken separately for each method. We justify existence of the least fixed point
by techniques used in the cited works; it depends on monotonicity (Theorem 3).

Finally we consider method calls le.m(e). Even though le.m is a param-
eterized command, typed for example as Γ,N B le.m : pcom(val x : T), no
transformation rule is applicable. In a state where the dynamic type of le is
N ′, η N ′ m takes the form (vres me : N ′; val x : T • c), and if we define fN ′

as [[Γ,N B (vres me : N ′; val x : T • c)(le, e) : com]]η, then we should define
[[Γ,N B le.m(e) : com]]η ψ to be fN ′ ψ. The semantics of method call is the

1452 Ana Cavalcanti and David A. Naumann

disjunction, over the possible classes N ′, of le isExactly N ′ ∧ fN ′ ψ. Thus the
semantics fN ′ is used just when it should be. The possible classes N ′ are the
subclasses of the static type N ′′ of le, determined by the derivation of le.

[[Γ,N B (η N ′ m)(le, e) : com]]η = fN ′ all N ′ ≤Γ N ′′, for N ′′ the type of le

[[Γ,N B le.m(e) : com]]η ψ = (∨N ′≤Γ N ′′• le isExactly N ′ ∧ fN ′ψ)

The hypothesis depends on η N ′ m being typable in Γ,N . The free variables
in the original declaration of m are attributes visible in the class, now accessed
through the me parameter. Those attributes are not necessarily visible in the
context of the call, so references me.x are only typable in the extended system.

4.5 Example

The program below acts on a global variable c of type C . For clarity, we write
the body of a method with no parameters as a command, instead of as a param-
eterized command with an empty declaration.

class C pri x : int; meth Inc =̂ x := x + 1; meth Dec =̂ x := x − 1 end
• c.Inc()

We calculate the weakest precondition for this program to establish c.x > 0.
Writing CD to stand for the declaration of C above, we begin.

[[?; c : C ; B CD • c.Inc() : program]] (c.x > 0)

= [[Γ,main B c.Inc() : com]]η (c.x > 0)

Here the typing environment Γ = (VDecs CD main); c : C is as follows.

(attr = {object 7→ ?,C 7→ {x 7→ int} },
meth = {object 7→ ?,C 7→ {Inc 7→ ?,Dec 7→ ?} },
vis = {object 7→ ?,C 7→ {x 7→ pri} },
cnames = {object,C}, supcls = {C 7→ object}, locals = {c 7→ C})

The environment η = Meth Γ CD is shown below.

{object 7→?,C 7→ {Inc 7→ (vres me : C • me.x := me.x + 1), Dec 7→ . . .} }
We proceed as follows.

[[Γ,main B c.Inc() : com]]η (c.x > 0)

= (∨N ′≤Γ C• c isExactly N ′ ∧ [[Γ,main B (η N ′ Inc)(c) : com]] (c.x > 0))

[by the semantics of method call]

= c 6∈ {null, error} ∧ [[Γ,main B (η C Inc)(c) : com]] (c.x > 0)
[by C has no proper subclasses and the semantics of isExactly]

= c 6∈ {null, error} ∧ [by the definition of η]
[[Γ,main B (vres me : C • me.x := me.x + 1)(c) : com]]η (c.x > 0)

A Weakest Precondition Semantics for an Object-Oriented Language 1453

= c 6∈ {null, error} ∧ [by a syntactic transformation]
[[Γ,main B (var l : C • l := c; l .x := l .x + 1; c := l) : com]]η (c.x > 0)

= c 6∈ {null, error} ∧ [by the semantics of variable blocks]
∀ l • [[Γ ; l : C ,main B (l := c; l .x := l .x + 1; c := l) : com]]η (c.x > 0)

= c 6∈ {null, error} ∧ c.x 6= error ∧ (c.x > 0)[l/c][(l ; x : l .x + 1)/l][c/l]
[by the semantics of sequence and assignment]

= c 6∈ {null, error} ∧ c.x 6= error ∧ c.x + 1 > 0
[by a properties of substitution and update expressions]

The result obtained is exactly what should be expected.

5 Properties of the Semantics

This section shows that the semantics is a well-defined function of typings, and
that it is type-correct. Before presenting these theorems, however, we present
auxiliary results.

Lemma 3. The syntactic transformations preserve typing, in the sense that
Γ,N B c : com and c −→ c′ imply Γ,N B c′ : com, for all c, c′.

To prove the type-correctness theorem, we need typability to be preserved by
substitution on formulas. This result holds only in the extended type system,
where subtyping constraints are dropped from the rules for type tests and casts.

Lemma 4. (a) Suppose Γ,N B ψ : pred is derivable and x is free in ψ; let
T be the type of x (which is uniquely determined by Γ,N). If T ′ ≤Γ T and
Γ,N B e : T ′ is derivable then Γ,N B ψ[e/x] : pred is derivable. (b) Same as
part (a) but with self in place of x .

The rules for assignment and result-parameter passing also involve subtyping
constraints, but that does not invalidate Lemma 4 because predicate typings do
not depend on command typings.

Because the semantics of rool is not defined by structural recursion on
program texts, we need to show that the notation is coherent, in the sense
that [[Γ,N B phrase : θ]] is a function of the typing Γ,N B phrase : θ. Expression
typings have unique derivations (Lemma 1), and the semantics is defined directly
in terms of the typing rules, so coherence for expressions is immediate. As a
result, type-correctness for expressions is straightforward.

Lemma 5. If Γ,N B e : T then [[Γ,N B e : T]]η σ ∈ [[T]]Γ for all η ∈ [[Γ]] and
σ ∈ [[Γ,N]].

Due to the coercion rules, predicate typings are not unique. We need a coherence
lemma.

1454 Ana Cavalcanti and David A. Naumann

Lemma 6. The semantics [[Γ,N B ψ : pred]] of a predicate typing is a function
of the typing Γ,N B ψ : pred, and [[Γ,N B ψ : pred]] ⊆ [[Γ,N]].

For command typings, derivations are unique except for derivations of predicates
that occur within commands. Nevertheless, the semantics of commands does not
depend on semantics of predicates, so there is no issue of coherence.

There are two parts of the semantics of commands, however, that are not sim-
ply defined by structural recursion on derivations. The first is that for some com-
mands the semantics is given indirectly by syntactic transformation. Nonethe-
less, these transformations preserve typing (Lemma 3), and the derivations of
the transformed phrases are built from the derivations of the original phrases in
such a way that the semantics depends only on the semantics of subderivations.

Method calls are the second difficult part: [[Γ,N B le.m(e) : com]]η depends
on the semantics of method calls [[Γ,N B η N ′ m(e) : com]]η where N ′ ranges
over subtypes of the type N ′′ of le. The parameterized command η N ′ m can
contain method calls, so the semantics of a method call depends on the semantics
of method calls, which are certainly not part of the derivation of le.m(e).

However, we are only concerned recursion-free environments: those obtained
from Meth Γ cds , in which recursion has been resolved already. The semantics
of a method m of a class N depends only on methods N ′,m ′ that do not depend
on N ,m, and the relation “can call” on pairs N ′,m ′ is well founded. We combine
this lexicographically with the order “is a subderivation” to obtain a well founded
order. We define the notion of the semantics [[Γ,N B phrase : θ]] in the context
of some method N ′,m ′; this depends on subderivations of phrase : θ and also on
semantics for phrases in context of methods N ′′,m ′′ smaller than N ′,m ′.

Theorem 1. For all derivable Γ,N B c : com and all η ∈ [[Γ]], the semantics
[[Γ,N B c : com]]η is a total function on all formulas, regardless of type, provided
that η is recursion-free.

Proof By induction with respect to the order discussed above.
Case assignment: for assignments to simple identifiers, and for assignments to
self , the semantics is given directly. Others are reduced by syntactic transforma-
tions to the simple case. By Lemma 3 the transformed assignments are typable
in Γ,N . Any assignment can be rewritten to a simple one which is unique up to
the order in which variables are listed; and order does not affect the semantics.
Case specification statement: this has a single typing rule and the semantics is
given directly.
Case application pc(e) of an explicit parameterized command (not a method
call): the transformation rules eliminate argument(s) e in favor of local variables
and assignments. The result is typable (Lemma 3). Moreover, the derivation of
the transformed command is composed of subderivations of the original com-
mand. Introducing local variables involves the choice of identifier l , but the
semantics is independent of the choice because l is bound by ∀.
Case method call applied to parameters: a method call m(e) is reduced to
self .m(e), which has the general form le.m(e). Let ψ be any formula. The seman-
tics for le.m(e) is defined provided each fN ′ , i.e. [[Γ,N B η N ′ m(le, e) : com]]η,

A Weakest Precondition Semantics for an Object-Oriented Language 1455

is defined. By the conditions on environments, η N ′ m(le, e) is typable. The
methods on which η N ′ m depends are smaller in our ordering, by the proviso
that η is recursion-free. By induction, [[Γ,N B η N ′ m(le, e) : com]]η denotes a
total function on formulas, and hence so does the semantics of the call.
Cases explicit recursion: this is defined using least fixpoints of program contexts.
Because these are monotonic (Theorem 3), the least fixpoints are well defined.
Cases sequence, alternation and variable blocks: in each case there is a direct
semantic definition and the result holds by induction. 2

Theorem 2. If Γ,N B ψ : pred and Γ,N B c : com are derivable then so is
Γ,N B ([[Γ,N B c : com]]η ψ) : pred, provided η is recursion-free.

Proof By induction, using the order defined above.
Case assignment: for simple variables, the semantics requires that the predicate
e 6= error ∧ ψ[e/x] be typable in Γ provided that ψ is. Thus we need that
Γ B x : T and Γ B e : T ′ and T ′ ≤Γ T imply Γ B ψ[e/x] : pred. That is by
Lemma 4(a). To type e 6= error, we use the typing rule for error (which gives
it any type), and then the rule for built-in functions to type the equality. For
assignments to self , suppose ψ is typable in Γ,N . For each N ′, we have, by
Lemma 4(b), ψ[e, e.x/self , x] typable in Γ,N ′. Moreover, if an assignment to
self is typable in Γ,N , then self is typable in Γ,N and so N 6= main. Thus, by
Lemma 2, (∨N ′≤Γ N • self isExactly N ′ ∧ ψ[e, e.x/self , x]) is typable in Γ,N .
Case specification statement: for Γ ; x : T B x : [ψ1, ψ2] : com to be derivable,
ψ1 and ψ2 are typable in Γ ; x : T . For ψ with Γ ; x : T B ψ : pred the semantics
yields ψ1 ∧ (∀ x : T • ψ2 ⇒ ψ), which can be typed for Γ ; x : T using the rules
for ∧, ∀, and ⇒.
Cases sequence: straightforward use of induction.
Case alternation: by induction, each fi in the semantics yields well-typed for-
mulas, and the guards have to be typable predicates in Γ,N , so the formula
(∨ i • ψi) ∧ (∧ i • ψi ⇒ fi ψ) is also typable using the rules for ∧, ∨, and ⇒.
Case method call: for method calls le.m(e), we have to show that the predicate
(∨N ′• le isExactly N ′ ∧ fN ′ ψ) is typable in Γ,N . By induction, each fN ′ ap-
plies to formulas typable in Γ,N , and each returns the same. Now le is typable
in Γ,N , so by using the rules ∨, ∧, and isExactly we obtain the desired result.
Case blocks: the weakest precondition [[Γ B (var x : T • c end) : com]]η ψ is
defined as (∀ x : T • f ψ), where f = [[Γ ; x : T B c : com]]η. If ψ is typable in
Γ then it is also typable in Γ ; x : T . Therefore f can be applied to ψ and by
induction f ψ is typable in Γ ; x : T , and hence by the typing rule for ∀ we get
(∀ x : T • f ψ) typable in Γ . Similar considerations apply to avar blocks. 2

It is straightforward to formulate and prove definedness and type-preservation
for complete programs, using Theorems 1 and 2.

6 Refinement

In this section we define notions of refinement and give the basic result on mono-
tonicity. To simplify definitions, we assume that all phrases are well-typed.

1456 Ana Cavalcanti and David A. Naumann

The fundamental refinement relationship v is between programs. This is
based on pointwise order on predicate transformers, as usual, but restricted
to healthy predicates just as in languages where procedures can be assigned
to variables [Nau98b, HH98]. As an example, if class CPt suitably refines Pt
we expect the refinement x := new Pt v x := new CPt . But the postcondition
x isExactly Pt is established only by the first assignment. The solution is to
restrict attention to monotonic predicates. For our purposes, a predicate ψ is
monotonic provided that for any object values ov1, ov2, if ov1 satisfies ψ and
ov2 myclass ≤Γ ov1 myclass , and ov2 agrees with ov1 on all the attributes of
ov1 myclass , then ov2 satisfies ψ.

Definition 1. For sequences of class declarations cds and cds ′, commands c
and c′ with the same free variables x : T, define (cds • c) v (cds ′ • c′) if and
only if, for all monotonic ψ,

[[?; x : T B (cds • c) : program]] ψ ⇒ [[?; x : T B (cds ′ • c′) : program]] ψ

The free variables of a program represent its input and output; therefore, it
makes sense to compare only programs with the same free variables.

A program can be refined by refining its command part and its class declara-
tions. Commands in rool apear in the context of a sequence of class declarations,
so we first define relation cds ,N B c v c′, which establishes that in the context
of cds the command c occurring in the class N is refined by c′.

Definition 2. For a sequence of class declarations cds, commands c and c′, and
a class N , define cds ,N B c v c′ if and only if, for all monotonic predicates ψ,

[[Γ,N B c : com]]η ψ ⇒ [[Γ,N B c′ : com]]η ψ

where Γ = (VDecs cds N); x : T, x are the method parameters and local vari-
ables in scope, and η = Meths Γ cds.

Because methods are parameterized commands, we need the analog of Defini-
tion 1 for them.

Definition 3. For sequence of class declarations cds, parameterized commands
pc and pc′, which have the same parameters, and a class N , cds,N B pc v pc′

if and only if, for all (lists of) expressions e, cds,N B pc(e) v pc′(e)

This is a straightforward extension Back’s definition (see [CSW98]).
Using induction as in Theorems 1 and 2, the following can be proved.

Theorem 3. Suppose we have a sequence of class declarations cds, a class N ,
a parameterized command pc, and a context C[·] which is a parameterized com-
mand, and so, a function from parameterized commands to parameterized com-
mands. If we have that cds ,N B pc v pc′, then cds ,N B C[pc] v C[pc′]. Simi-
larly, the command constructors are monotonic.

This theorem justifies our treatment of recursion and recursive methods.

A Weakest Precondition Semantics for an Object-Oriented Language 1457

As a class is a data type, refinement of classes is related to data refine-
ment [HHS87]. We define the relation view , cds B cds ′ 4 cds ′′, for a list of meth-
ods view and sequences of class declarations cds , cds ′, and cds ′′. The meaning
is that in the context of cds , if only methods listed in view are used, then the
class declaration cds ′ can be replaced by cds ′′.

Definition 4. For a list of methods view, sequences of class declarations cds,
cds ′, and cds ′′, view , cds B cds ′ 4 cds ′′ if and only if, for all commands c that
uses only methods in view, (cds ; cds ′ • c) v (cds ; cds ′′ • c).

Refinement between single classes cd ′ and cd ′′ is a special case. By considering a
more general relation, we allow for restructuring a collection of class declarations.
In practice, Definition 4 would not be used directly, but it is the fundamental no-
tion with respect to which techniques such as downward and upward simulation
must be proved sound [HHS87, Nau98a].

7 Discussion

We have shown how the standard predicate-transformer model can be extended
to an object-oriented language. The semantics can be modified to allow arbitrary
mutual recursion among methods, at the cost of taking a single fixpoint for
the entire environment of methods. This makes it more complicated to prove
refinement laws, so we have chosen the simpler approach at this stage.

Others [Lei98, MS97, BKS98] have extended existing refinement calculi with
object-oriented features, but restricting inheritance or not dealing with classes
and visibility. Those works, however, deal with sharing and concurrency. An-
other approach to objects is implicit in the parametricity semantics of Algol-like
languages. It has been adapted to object-oriented programs by Reddy [Red98],
with whom we are collaborating to give a semantics for rool.

The main shortcoming of our semantics is that it is not entirely composi-
tional. Since our aim is to validate laws like those in [Bor98], for when one class
is a behavioural subclass of another, within the context of some other classes,
this is a potential problem. However, the touchstone criteria for behavioural re-
finement is that cds1 • c v cds2 • c should hold whenever cds2 is obtained from
cds1 by behavioural refinement of some classes. Fortunately, this has a natural
formulation with a single context that includes all relevant classes.

Our notion of class refinement corresponds to the notion of behavioural sub-
typing introduced by Liskov and Wing [LW94]. Definition 4 captures the essence
of their subtype requirement. In our framework the property of interest is refine-
ment of programs, which captures the notion of total correctness. The two ways
of defining the subtype relation presented in [LW94] are based on the downward
simulation technique [HHS87], specialized to the particular case of functional
data refinement. We expect that particular techniques like these can be proved
sound with respect to Definition 4. Similarly, Liskov and Wing claim, but do not
formalize, that their definitions satisfy the subtype requirement.

1458 Ana Cavalcanti and David A. Naumann

By using a language of specification and programming, we do not need a
distinction between specifications and implementations of classes. As already
seen in traditional refinement calculi, this simplifies both the theory of refinement
and the presentation and application of refinement laws.

Acknowledgement This work benefitted from discussions with our collaborators
Augusto Sampaio, Uday Reddy, Paulo Borba, and Hongseok Yang. UFPE and
Stevens provided generous support for travel.

References

[AdB94] Pierre America and Frank de Boer. Reasoning about dynamically evolving
process structures. Formal Aspects of Computing, 6:269–316, 1994.

[AL97] Mart́in Abadi and K. Rustan Leino. A logic of object-oriented programs.
In Proceedings, TAPSOFT 1997. Springer-Verlag, 1997. Expanded in DEC
SRC report 161.

[BvW98] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic In-
troduction. Graduate Texts in Computer Science. Springer-Verlag, 1998.

[BKS98] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to
object-orientation in action systems. In Johan Jeuring, ed., Mathematics of
Program Construction, LNCS 1422, pages 68–95. Springer, 1998.

[Bor98] Paulo Borba. Where are the laws of object-oriented programming? In I
Brazilian Workshop on Formal Methods, pages 59–70, Porto Alegre, Brazil,
19th–21st October 1998.

[CN99] A. L. C. Cavalcanti and D. A. Naumann. A Weakest Precondition Seman-
tics for an Object-oriented Language of Refinement - Extended Version.
Available at http://www.di.ufpe.br/~alcc

[CSW98] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Proce-
dures and Recursion in the Refinement Calculus. Journal of the Brazilian
Computer Society, 5(1):1–15, 1998.

[CSW99] A. L. C. Cavalcanti, A. Sampaio, and J. C. P. Woodcock. An inconsistency in
procedures, parameters, and substitution in the refinement calculus. Science
of Computer Programming, 33(1):87–96, 1999.

[HH98] C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice
Hall, 1998.

[HHS87] C. A. R. Hoare and J. He and J. W. Sanders. Prespecification in data
refinement. Information Processing Letters, 25(2), 1987.

[Lan95] Kevin Lano. Formal Object-Oriented Development. Springer, 1995.
[Lei98] K. Rustan M. Leino. Recursive object types in a logic of object-oriented

programming. In Chris Hankin, ed., 7th European Symposium on Program-
ming, LNCS 1381. Springer, 1998.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages and Systems, 16(6),
1994.

[MS97] A. Mikhajlova and E. Sekerinski, Class refinement and interface refinement
in object-oriented programs. In Proceedings of FME’97: Industrial Benefit
of Formal Methods. Springer, 1997.

[Mor94] Carroll Morgan. Programming from Specifications, 2ed. Prentice Hall, 1994.

A Weakest Precondition Semantics for an Object-Oriented Language 1459

[Nau98a] David A. Naumann. Validity of data refinement for a higher order impera-
tive language. Submitted.

[Nau98b] David A. Naumann. Predicate transformer semantics of a higher order im-
perative language with record subtypes. Science of Computer Programming,
1998. To appear.

[Red98] U. S. Reddy. Objects and classes in Algol-like languages. In Fifth
Intern. Workshop on Foundations of Object-oriented Languages. URL:
http://pauillac.inria.fr/ remy/fool/proceedings.html, Jan 1998.

Reasoning About Interactive Systems

Ralph Back, Anna Mikhajlova, and Joakim von Wright

Turku Centre for Computer Science, Åbo Akademi University
Lemminkäisenkatu 14A, Turku 20520, Finland
phone: +358-2-215-4032, fax: +358-2-241-0154

backrj, amikhajl, jwright@abo.fi

Abstract. The unifying ground for interactive programs and compo-
nent-based systems is the interaction between a user and the system
or between a component and its environment. Modeling and reasoning
about interactive systems in a formal framework is critical for ensur-
ing the systems’ reliability and correctness. A mathematical foundation
based on the idea of contracts permits this kind of reasoning. In this
paper we study an iterative choice contract statement which models an
event loop allowing the user to repeatedly choose from a number of ac-
tions an alternative which is enabled and have it executed. We study
mathematical properties of iterative choice and demonstrate its model-
ing capabilities by specifying a component environment which describes
all actions the environment can take on a component, and an interactive
dialog box permitting the user to make selections in a dialog with the
system. We show how to prove correctness of the dialog box with respect
to given requirements, and develop its refinement allowing more complex
functionality and providing wider choice for the user.

1 Introduction

Most of contemporary software systems are inherently interactive: desk-top ap-
plications interact with a user, embedded systems interact with the environment,
system integration software interacts with the systems it integrates, etc. In ad-
dition, in systems constructed using an object-oriented or a component-based
approach objects or components interact with each other.

To be able to verify the behavior of an interactive system in its entirety, it is
first necessary to capture this behavior in a precise specification. Formal methods
have been traditionally weak in capturing the intricacy of interaction. Probably
for this reason, the importance of specifying and verifying program parts de-
scribing interaction with the environment (especially in case of interacting with
a human user) is considered as secondary to the importance of establishing cor-
rectness of some “critical” parts of the program. However, in view of the growing
complexity and importance of various interactive systems, the need for verify-
ing correctness of interaction becomes obvious. For instance, embedded systems,
which are intrinsically interactive and often used in safety-critical environments,
can lead to dramatic consequences if they ignore input from the environment or
deliver wrong output.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1460–1476, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Reasoning About Interactive Systems 1461

Component-oriented approach to software design and development is rapidly
gaining popularity and stimulates research on methods for analysis and con-
struction of reliable and correct components and their compositions. Compo-
nent compositions consist of cooperating or interacting components, and for
each component all the other components it cooperates with can be collectively
considered as the environment. Although various standard methods can be used
for reasoning about separate components, component environments present in
this respect a challenge. The ability to model and reason about component envi-
ronments is critical for reasoning about component-based systems. The designer
of a component should be aware of the behavior of the environment in which
the component is supposed to operate. Knowing the precise behavior of the en-
vironment, it is then possible to analyze the effect a change to the component
will have on the environment, design an appropriate component interface, etc.

Interaction is often multifaceted in the sense that component-based systems
can interact with the user and interactive programs can be component-based.
Moreover, for components in a component-based system their environment can
be transparent, they will interact with this environment in the same way regard-
less of whether it is another component or a human user.

To a large extent the weakness of verification techniques for interactive parts
of programs can be explained by the lack of modeling methods capable of captur-
ing interaction and the freedom of choice that the environment has. Accordingly,
development of a specification and verification method in a formalism expressive
enough to model interaction is of critical importance. The mathematical foun-
dation for reasoning about interactive systems, based on the idea of contracts,
has been introduced in [4, 6]. In particular, Back and von Wright proposed using
an iterative choice contract statement which describes an event loop, allowing
the user to repeatedly choose from a number of actions an alternative which
is enabled and have it executed. In this paper we focus on the iterative choice
statement, examine its modeling capabilities, and develop its mathematical prop-
erties. In particular, we present rules for proving correctness of iterative choice
with respect to given pre- and postconditions, and rules for iterative choice re-
finement through refining the options it presents and adding new alternatives.
We illustrate the expressive power and versatility of iterative choice by specify-
ing a component environment which describes all actions the environment can
take on a component, and an interactive dialog box permitting the user to make
selections in a dialog with the system. We show how to prove correctness of
the dialog box with respect to given requirements, and develop its refinement
allowing more complex functionality and providing wider choice for the user.

Notation: We use simply typed higher-order logic as the logical framework in the
paper. The type of functions from a type Σ to a type Γ is denoted by Σ → Γ
and functions can have arguments and results of function type. Functions can be
described using λ-abstraction, and we write f. x for the application of function
f to argument x.

1462 Ralph Back, Anna Mikhajlova, and Joakim von Wright

2 Contracts and Refinement

A computation can generally be seen as involving a number of agents (programs,
modules, systems, users, etc.) who carry out actions according to a document
(specification, program) that has been laid out in advance. When reasoning
about a computation, we can view this document as a contract between the
agents involved. In this section we review a notation for contract statements.
A more detailed description as well as operational and weakest precondition
semantics of these statements can be found in [4, 6].

We assume that the world that contracts talk about is described as a state σ.
The state space Σ is the set (type) of all possible states. The state has a number
of program variables x1, . . . , xn, each of which can be observed and changed
independently of the others. A program variable x of type Γ is really a pair of
the value function valx : Σ → Γ and the update function setx : Γ → Σ → Σ.
Given a state σ, valx . σ is the value of x in this state, while σ′ = setx . γ. σ is
the new state that we get by setting the value of x to γ. An assignment like
x := x + y denotes a state changing function that updates the value of x to the
value of the expression x+ y, i.e. (x := x+ y). σ = setx . (valx . σ + valy. σ). σ.

A state predicate p : Σ → Bool is a boolean function on the state. Since
a predicate corresponds to a set of states, we use set notation (∪, ⊆, etc.) for
predicates. Using program variables, state predicates can be written as boolean
expressions, for example, (x + 1 > y). Similarly, a state relation R : Σ →
Σ → Bool relates a state σ to a state σ′ whenever R. σ. σ′ holds. We permit a
generalized assignment notation for relations. For example, (x := x′ | x′ > x+y)
relates state σ to state σ′ if the value of x in σ′ is greater than the sum of the
values of x and y in σ and all other variables are unchanged.

2.1 Contract Notation

Contracts are built from state changing functions, predicates and relations. The
update 〈f〉 changes the state according to f : Σ → Σ. If the initial state is
σ0 then the agent must produce a final state f. σ0. An assignment statement
is a special kind of update where the state changing function is an assignment.
For example, the assignment statement 〈x := x + y〉 (or just x := x + y when
it is clear from the context that an assignment statement rather than a state
changing function is intended) requires the agent to set the value of program
variable x to the sum of the values of x and y.

The assertion {p} of a state predicate p is a requirement that the agent must
satisfy in a given state. For instance, {x+ y = 0} expresses that the sum of (the
values of variables) x and y in the state must be zero. If the assertion does not
hold, then the agent has breached the contract. The assumption [p] is dual to an
assertion; if the condition p does not hold, then the agent is released from any
obligation to carry out his part of the contract.

In the sequential action S1; S2 the action S1 is carried out first, followed by
S2. A choice S1 t S2 allows the agent to choose between carrying out S1 or S2.

Reasoning About Interactive Systems 1463

In general, there can be a number of agents that are acting together to change
the world and whose behavior is bound by contracts. We can indicate explicitly
which agent is responsible for each choice. For example, in the contract

S = x := 0; ((y := 1 tb y := 2) ta x := x + 1); {y = x}a
the agents involved are a and b. The effect of the update is independent of
which agent carries it out, so this information can be lost when writing contract
statements.

The relational update {R}a is a contract statement that permits an agent
to choose between all final states related by the state relation R to the initial
state (if no such final state exists, then the agent has breached the contract).
For example, the contract statement {x := x′ | x < x′}a is carried out by agent
a by changing the state so that the value of x becomes larger than the current
value, without changing the values of any other variables.

A recursive contract statement of the form (reca X • S) is interpreted as
the contract statement S, but with each occurrence of statement variable X
in S treated as a recursive invocation of the whole contract (reca X • S). A
more convenient way to define a recursive contract is by an equation of the form
X =a S, where S typically contains some occurrences of X . The indicated
agent is responsible for termination; if the recursion unfolds infinitely, then the
agent has breached the contract.

2.2 Using Contracts

Assume that we pick out one or more agents whose side we are taking. These
agents are assumed to have a common goal and to coordinate their choices in
order to achieve this goal. Hence, we can regard this group of agents as a single
agent. The other agents need not share the goals of our agents. To prepare for
the worst, we assume that the other agents try to prevent us from reaching our
goals, and that they coordinate their choices against us. We will make this a
little more dramatic and call our agents collectively the angel and the other
agents collectively the demon. We refer to choices made by our agents as angelic
choices, and to choices made by the other agents as demonic choices.

Having taken the side of certain agents, we can simplify the notation for
contract statements. We write t for the angelic choice tangel and u for the
demonic choice tdemon . Furthermore, we note that if our agents have breached
the contract, then the other agents are released from it, i.e. {p}angel = [p]demon ,
and vice versa. Hence, we agree to let {p} stand for {p}angel and [p] stand
for {p}demon . This justifies the following syntax, where the explicit indication
of which agent is responsible for the choice, assertion or assumption has been
removed:

S ::= 〈f〉 | {p} | [p] | S1; S2 | S1 t S2 | S1 u S2

This notation generalizes in the obvious way to generalized choices: we write
t{Si | i ∈ I} for the angelic choice of one of the alternatives in the set {Si | i ∈ I}

1464 Ralph Back, Anna Mikhajlova, and Joakim von Wright

and we write u{Si | i ∈ I} for the corresponding demonic choice. For relational
update, we write {R} if the next state is chosen by the angel, and [R] if the next
state is chosen by the demon. Furthermore, we write (µX • S) for (recangel X • S)
and (νX • S) for (recdemon X • S); this notation agrees with the predicate
transformer semantics of contracts.

The notation for contracts allows us to express all standard programming
language constructs, like sequential composition, assignments, empty statements,
conditional statements, loops, and blocks with local variables.

2.3 User Interaction

Interactive programs can be seen as special cases of contracts, where two agents
are involved, the user and the computer system. The user in this case is the angel,
which chooses between alternatives in order to influence the computation in a
desired manner, and the computer system is the demon, resolving any internal
choices in a manner unknown to the user.

User input during program execution is modeled by an angelic relational
assignment. For example, the contract

{x, e := x′, e′ | x′ ≥ 0 ∧ e > 0}; [x := x′ | − e < x′2 − x < e]

describes how the user gives as input a value x whose square root is to be
computed, as well as the precision e with which the computer is to compute this
square root.

This simple contract specifies the interaction between the user and the com-
puting system. The first statement specifies the user’s responsibility (to give an
input value that satisfies the given conditions) and the second statement speci-
fies the system’s responsibility (to compute a new value for x that satisfies the
given condition).

2.4 Semantics, Correctness, and Refinement of Contracts

Every contract statement has a weakest precondition predicate transformer se-
mantics. A predicate transformer S : (Γ → Bool) → (Σ → Bool) is a function
from predicates on Γ to predicates on Σ. We write

Σ 7→ Γ =̂ (Γ → Bool)→ (Σ → Bool)

to denote a set of all predicate transformers from Σ to Γ . A contract statement
with initial state in Σ and final state in Γ determines a monotonic predicate
transformer S : Σ 7→ Γ that maps any postcondition q : Γ → Bool to the weak-
est precondition p : Σ → Bool such that the statement is guaranteed to terminate
in a final state satisfying q whenever the initial state satisfies p. Following an
established tradition, we identify contract statements with the monotonic pred-
icate transformers that they determine. For details of the predicate transformer
semantics, we refer to [4, 6].

Reasoning About Interactive Systems 1465

The total correctness assertion p {|S |} q is said to hold if the user can use the
contract S to establish the postcondition q when starting in the set of states p.
The pair of state predicates (p, q) is usually referred to as the pre- and postcon-
dition specification of the contract S. The total correctness assertion p {|S |} q,
which is equal to p ⊆ S. q, means that the user can (by making the right choices)
either achieve the postcondition q or be released from the contract, no matter
what the other agents do.

A contract S is refined by a contract S′, written S v S′, if any condition that
we can establish with the first contract can also be established with the second
contract. Formally, S v S′ is defined to hold if p {|S |} q ⇒ p {|S′ |} q, for any p
and q. Refinement is reflexive and transitive. In addition, the contract construc-
tors are monotonic, so a contract can be refined by refining a subcomponent.

The refinement calculus provides rules for transforming more abstract pro-
gram structures into more concrete ones based on the notion of refinement of
contracts presented above. Large collections of refinement rules are given, for
instance, in [6, 10].

3 Iterative Choice and Its Modeling Capabilities

3.1 Modeling Component Environment

To demonstrate how the iterative choice statement can be used to model a
component environment, let us first introduce the notion of a component. We
view a component as an abstract data type with internal state and methods
that can be invoked on the component to carry out certain functionality and
(possibly) change the component’s state.

c = component
x : Σ := x0

m1 (val x1 : Γ1, res y1 : ∆1) = M1,
. . .
mn (val xn : Γn, res yn : ∆n) = Mn

end

Here x : Σ are the variables which carry the internal component’s state. These
variables have some initial values x0. Methods named m1, . . . , mn are specified
by statements M1, . . . , Mn respectively. Invocation of a method on a component
has a standard procedure call semantics, with the only difference that the value
of the component itself is passed as a value-result argument. We will denote
invocation of mi on c with value and result arguments v : Γi and r : ∆i by
c.mi(v, r).

An environment using a component c does so by invoking its methods. Every
time the environment has a choice of which method to choose for execution. In
general, each option is preceded with an assertion which determines whether the
option is enabled in a particular state. While at least one of the assertions holds,
the environment may repeatedly choose a particular option which is enabled and

1466 Ralph Back, Anna Mikhajlova, and Joakim von Wright

have it executed. The environment decides on its own when it is willing to stop
choosing options. Such an iterative choice of method invocations, followed by
arbitrary statements not affecting the component state directly, describes all the
actions the environment program might undertake:

begin var l : Λ • p; do q1 :: c.m1(g1, d1); L1 〈〉 . . . 〈〉 qn :: c.mn(gn, dn); Ln od end

Here the construct inside the keywords do .. od is the iterative choice statement.
The alternatives among which the choice is made at each iteration step are
separated by 〈〉. Variables l : Λ are some local variables initialized according to
p, predicates q1 . . . qn are the asserted conditions on the state, and statements
L1 through Ln are arbitrary. The initialization p, the assertions q1 . . . qn, and
the statements L1, . . . , Ln do not refer to c, which is justified by the assumption
that the component state is encapsulated.

The whole program statement is a contract between the component c and any
environment using c. The method enabledness condition qi corresponds to the
assumptions made by the corresponding method mi, as stated in its subcontract
(the method body definition). For example, in a component EntryField a method
SetLength(val l : Nat) can begin with an assumption that the length l does
not exceed some constant value lmax. An environment invoking SetLength on
EntryField will then have to assert that a specific length does indeed satisfy this
requirement:

do length ≤ lmax :: EntryField .SetLength(length); . . . od

The assumption of this condition in the body of SetLength will pass through, as
{p}; [p] = {p}, for all predicates p.

3.2 Modeling an Interactive Dialog Box

Suppose that we would like to describe a font selection dialog box, where the
user is offered the choice of selecting a particular font and its size. The user can
select a font by typing the font name in the entry field; the selection is accepted
if the entered font name belongs to the set of available fonts. The size of the
font can also be chosen by typing the corresponding number in the entry field.
The user may change the selections of both the font and the size any number
of times before he presses the OK button, which results in closing the dialog
box and changing the corresponding text according to the last selection. We can
model this kind of a dialog box as shown in Fig. 1. In this specification fentry :
String and sentry : Nat are global variables representing current selections of the
font name and its size in the corresponding entry fields of the dialog box. The
constants Fonts : set of String and Sizes : set of Nat represent sets of available
font names and font sizes.

When the user opens the dialog box, he assumes that the default entries for
the font name and size are among those available in the system, as expressed by
the corresponding assumption in DialogBoxSpec. If this assumption is met by the
system, the user may enter new font name, or new font size, or leave the current

Reasoning About Interactive Systems 1467

DialogBoxSpec = [fentry ∈ Fonts ∧ sentry ∈ Sizes];
do true :: {fentry := s | s ∈ Fonts}
〈〉 true :: {sentry := n |n ∈ Sizes}
od

Fig. 1. Specification of a dialog box

selections intact. The user may select any alternative any number of times until
he is satisfied with the choice and decides to stop the iteration. Note that to
model dialog closing, we do not need to explicitly maintain a boolean variable
Ok pressed , have all the options enabled only when ¬Ok pressed holds, and set
it explicitly to true to terminate iteration: all this is implicit in the model.

This is a very general specification of DialogBoxSpec, but still it is a useful
abstraction precisely and succinctly describing the intended behavior. In Sec. 4.3
we will show how one can check correctness of this specification with respect to a
given precondition and postcondition. Also, this specification can be refined to a
more detailed one, specifying an extended functionality, as we will demonstrate
in Sec. 4.5.

4 Definition and Properties of Iterative Choice

We begin with studying mathematical properties of an angelic iteration operator,
which is used to define iterative choice.

4.1 Angelic Iteration and Its Properties

Let S be a monotonic predicate transformer (i.e., the denotation of a contract).
We define an iteration construct over S, angelic iteration, as the following fix-
point:

Sφ =̂ (µX • S; X t skip) (Angelic iteration)

As such, this construct is a dual of the weak iteration S∗ defined in [6] by
(νX • S; X u skip).

Theorem 1. Let S be an arbitrary monotonic predicate transformer. Then

Sφ = ((S◦)∗)◦

Intuitively, the statement Sφ is executed so that S is repeated an angelically
chosen (finite) number of times before the iteration is terminated by choosing
skip. For example, (x := x+1)φ increments x an angelically chosen finite number
of times, and has, therefore, the same effect as the angelic update {x := x′ |x ≤
x′}.

A collection of basic properties of angelic iteration follows by duality from
the corresponding properties of weak iteration proved in [5].

1468 Ralph Back, Anna Mikhajlova, and Joakim von Wright

Theorem 2. Let S and T be arbitrary monotonic predicate transformers. Then

(a) Sφ is monotonic and terminating

(b) Sφ preserves termination, strictness, and disjunctivity

(c) S v Sφ

(d) (Sφ)φ = Sφ

(e) Sφ; Sφ = Sφ

(f) S v T ⇒ Sφ v T φ

Here, a predicate transformer S is said to be terminating if S. true = true, strict
if S. false = false, and disjunctive if S. (∪i ∈ I • qi) = (∪i ∈ I • S. qi), for I 6= ∅.

To account for tail recursion, angelic iteration can be characterized as follows:

Lemma 1. Let S and T be arbitrary monotonic predicate transformers. Then

Sφ; T = (µX • S; X t T)

This lemma provides us with general unfolding and induction rules. For ar-
bitrary monotonic predicate transformers S and T ,

Sφ; T = S; Sφ; T t T (unfolding)

S; X t T v X ⇒ Sφ; T v X (induction)

From the unfolding rule with T taken to be skip we get the useful property
that doing nothing is refined by angelic iteration:

skip v Sφ

Angelic iteration can also be characterized on the level of predicates:

Lemma 2. Let S : Σ 7→ Σ be an arbitrary monotonic predicate transformer
and q : PΣ an arbitrary predicate. Then

Sφ.q = (µx • S. x ∪ q)

When applied to monotonic predicate transformers, the angelic iteration op-
erator has two interesting properties known from the theory of regular languages,
namely, the decomposition property and the leapfrog property.

Lemma 3. Let S and T be arbitrary monotonic predicate transformers. Then

(S t T)φ = Sφ; (T ; Sφ)φ (decomposition)

(S; T)φ; S v S; (T ; S)φ (leapfrog)

(if S is disjunctive, then the leapfrog property is an equality).
Lemma 1, Lemma 2, and Lemma 3 follow by duality from the corresponding

properties of weak iteration as given in [6].

Reasoning About Interactive Systems 1469

Let us now study under what conditions the total correctness assertion
p {|Sφ |} q is valid. In lattice theory, the general least fixpoint introduction rule
states that

tw v f. t<w

t v µ f

where {tw | w ∈ W} is a ranked collection of elements (so that W is a well-
founded set and v < w ⇒ tv v tw), t<w is an abbreviation for (tv | v < w • tv),
and t = (tw ∈ W • tw). When used for predicates, with Sφ. q = (µx • S. x∪ q),
this rule directly gives us the correctness rule for angelic iteration

pw ⊆ (S. p<w) ∪ q

p {|Sφ |} q

(angelic iteration
correctness rule)

where {pw | w ∈W} is a ranked collection of predicates and p = (∪w ∈ W · pw).
If the ranked predicates are written using an invariant I and a termination
function t, then we have

I ∩ t = w ⊆ S. (I ∩ t < w) ∪ q

I {|Sφ |} q

where w is a fresh variable. Intuitively, this rule says that at every step either
the invariant I is preserved (with t decreasing) or the desired postcondition q is
reached directly and the iteration can terminate. This corresponds to temporal
logic assertions “I until q” and “eventually not I”. Since t cannot decrease
indefinitely, this guarantees that the program eventually reaches q if it started
in I.

4.2 Iterative Choice and Its Properties

Now we consider a derivative of the angelic iteration Sφ, the iterative choice
statement. This specification construct was defined in [6] as follows:

do 〈〉ni=1gi :: Si od =̂ (Iterative choice)
(µ X • {g1}; S1; X t . . . t {gn}; Sn; X t skip)

As such, iterative choice is equivalent to the angelic iteration of the statement
tn

i=1{gi}; Si,

do 〈〉ni=1gi :: Si od = (tn
i=1{gi}; Si)φ

and its properties can be derived from the corresponding properties of the angelic
iteration.

An angelic iteration is refined if every alternative in the old system is refined
by the angelic choice of all the alternatives in the new system.

1470 Ralph Back, Anna Mikhajlova, and Joakim von Wright

Theorem 3. For arbitrary state predicates g1, . . . , gn and g′1, . . . , g
′
m, and arbi-

trary contract statements S1, . . . , Sn and S′1, . . . , S
′
m we have that

(∀i | 1 ≤ i ≤ n • {gi}; Si v tm
j=1{g′j}; S′j) ⇒

do 〈〉ni=1gi :: Si od v do 〈〉mj=1g
′
j :: S′j od

This can be compared with the rule for Dijkstra’s traditional do-loop, where ev-
ery alternative of the new loop must refine the demonic choice of the alternatives
of the old loop (and the exit condition must be unchanged).

Two useful corollaries state that whenever every option is refined, the itera-
tive choice of these options is a refinement, and also that adding alternatives in
the iterative choice is a refinement.

Corollary 1. For arbitrary state predicates g1, . . . , gn and g′1, . . . , g
′
n, and arbi-

trary contract statements S1, . . . , Sn and S′1, . . . , S
′
n we have that

g1 ⊆ g′1 ∧ . . . ∧ gn ⊆ g′n ∧ {g1}; S1 v S′1 ∧ . . . ∧ {gn}; Sn v S′n ⇒
do 〈〉ni=1gi :: Si od v do 〈〉ni=1g

′
i :: S′i od

Corollary 2. For arbitrary state predicates g1, . . . , gn+1 and arbitrary contract
statements S1, . . . , Sn+1 we have that

do 〈〉ni=1gi :: Si od v do 〈〉n+1
i=1 gi :: Si od

The correctness rule for iterative choice states that for each ranked predicate
which is stronger than the precondition there should be a choice decreasing the
rank of this predicate or the possibility of establishing the postcondition directly:

pw ⊆ ∪n
i=1(gi ∩ Si. p<w) ∪ q

p {| do 〈〉ni=1gi :: Si od |} q

(iterative choice
correctness rule)

When the ranked predicates are written using an invariant I and a termina-
tion function t, this rule becomes

p ⊆ I I ∩ t = w ⊆ ∪n
i=1(gi ∩ Si. (I ∩ t < w)) ∪ q

p {| do 〈〉ni=1gi :: Si od |} q

From the correctness rule we immediately get the iterative choice introduc-
tion rule

pw ⊆ ∪n
i=1(gi ∩ Si. p<w) ∪ q[x′ := x]

{p}; [x := x′ | q] v do 〈〉ni=1gi :: Si od

(iterative choice
introduction rule)

where x does not occur free in q.

Reasoning About Interactive Systems 1471

4.3 Proving Correctness of the Interactive Dialog Box

Suppose that the font “Times” belongs to the set of available fonts, Fonts, and
the size 12 is in the set of available sizes, Sizes . Can the user, by making the
right choices, select this font with this size? The answer to this question can be
given by verifying the following total correctness assertion:

“Times” ∈ Fonts ∩
12 ∈ Sizes {|

do true :: {fentry := s | s in Fonts}
〈〉 true :: {sentry := n |n in Sizes}
od

|} fentry = “Times”∩
sentry = 12

Using the rule for the correctness of iterative choice with the invariant I and
the termination function t such that

I = “Times” ∈ Fonts ∩ 12 ∈ Sizes
t = #({“Times”, 12} \ {fentry, sentry})

we then need to prove two subgoals:

1. “Times” ∈ Fonts ∩ 12 ∈ Sizes ⊆ I
2. I ∩ t = w ⊆ true ∩ {fentry := s | s in Fonts}. (I ∩ t < w) ∪

true ∩ {sentry := n |n in Sizes}. (I ∩ t < w) ∪
fentry = “Times” ∩ sentry = 12

The first subgoal states that the precondition is stronger than the invariant and
is trivially true. The second subgoal states that, when the invariant holds, at least
one of the alternatives will decrease the termination function while preserving
the invariant. It can be proved by using the definition of angelic relational update
and rules of logic.

Being very simple, this example nethertheless demonstrates the essence of
establishing correctness in the presence of iterative choice. By verifying that this
specification is correct with respect to the given pre- and postcondition, we can
guarantee that any refinement of it will preserve the correctness.

4.4 Data Refinement of Iterative Choice

Data refinement is a general technique by which one can change data represen-
tation in a refinement. A contract statement S may begin in a state space Σ and
end in a state space Γ , written S : Σ 7→ Γ . Assume that contract statements
S and S′ operate on state spaces Σ and Σ′ respectively, i.e. S : Σ 7→ Σ and
S′ : Σ′ 7→ Σ′. Let R : Σ′ → Σ → Bool be a relation between the state spaces Σ′

and Σ. Following [3], the statement S is said to be data refined by the statement
S′ via the relation R, denoted S v{R} S′, if {R}; S v S′; {R}. An alternative
and equivalent characterization of data refinement using the inverse relation R−1

arises from the fact that {R} and [R−1] are each others inverses, in the sense
that {R}; [R−1] v skip and skip v [R−1]; {R}. Abbreviating {R}; S; [R−1] by
S ↓{R} we have that

S v{R} S′ ≡ S ↓{R} v S′

1472 Ralph Back, Anna Mikhajlova, and Joakim von Wright

We will call D an abstraction statement if D is such that D = {R}, for some
R. In this case, our notion of data refinement is the standard one, often referred
to as forward data refinement or downward simulation.

Data refinement properties of angelic iteration and iterative choice cannot
be proved directly by a duality argument from the corresponding results for the
traditional iteration operators. However, they can still be proved:

Theorem 4. Assume that S and D are monotonic predicate transformers and
that D is an abstraction statement. Then

Sφ ↓D v (S ↓D)φ

As a consequence, the angelic iteration operator preserves data refinement:

Corollary 3. Assume that S, S′ and D are monotonic predicate transformers
and that D is an abstraction statement. Then

S vD S′ ⇒ Sφ vD S′φ

Proofs of Theorem 4 and Corollary 3 can be found in [2].
Data refinement rules for iterative choice also arise from the corresponding

rules for angelic iteration. First, data refinement can be propagated inside iter-
ative choice:

Theorem 5. Assume that g1, . . . , gn are arbitrary state predicates, S1, . . . , Sn

are arbitrary contract statements, and D is an abstraction statement. Then

do 〈〉ni=1gi :: Si od↓D v do 〈〉ni=1D. gi :: Si ↓D od

A more general rule shows how a proof of data refinement between itera-
tive choices can be reduced to proofs of data refinement between the iterated
alternatives.

Theorem 6. Assume that g1, . . . , gn and g′1, . . . , g
′
m are arbitrary state predi-

cates, S1, . . . , Sn and S′1, . . . , S
′
m are arbitrary contract statements, and D is an

abstraction statement. Then

(∀i | 1 ≤ i ≤ n • {gi}; Si vD tm
j=1{g′j}; S′j) ⇒

do 〈〉ni=1gi :: Si od vD do 〈〉mj=1g
′
j :: S′j od

Proofs of Theorems 5 and 6 can be found in [2]. A useful special case of these
theorems is when the number of choices is the same and they are refined one by
one.

Corollary 4. Assume that g1, . . . , gn and g′1, . . . , g
′
n are arbitrary state predi-

cates, S1, . . . , Sn and S′1, . . . , S
′
n are arbitrary contract statements, and D is an

abstraction statement. Then

D. g1 ⊆ g′1 ∧ . . . ∧ D. gn ⊆ g′n ∧ {g1}; S1 vD S′1 ∧ . . . ∧ {gn}; Sn vD S′n ⇒
do 〈〉ni=1gi :: Si od vD do 〈〉ni=1g

′
i :: S′i od

Reasoning About Interactive Systems 1473

4.5 Data Refinement of Interactive Dialog Box

Let us now demonstrate how our original specification of a dialog box can be
data refined to a more concrete one. Suppose that we would like to describe
a dialog box, where the user can select a font by choosing it from the list of
available fonts or by typing the font name in the entry field. The size of the font
can also be chosen either from the list of sizes or by typing the corresponding
number in the entry field. Using the iterative choice statement, we can model
this kind of a dialog box as shown in Fig. 2.

In this specification the arrays fonts : array 1..fmax of String and sizes :
array 1..smax of Nat are used to represent lists of the corresponding items. When
the user opens the dialog box, the system initializes fonts and sizes to contain
elements from the constant sets Fonts and Sizes . The function array to set , used
for this purpose, is given as follows:

array to set = (λ (a, n) . {e | ∃ i • 1 ≤ i ≤ n ∧ a[i] = e})

The initialization conditions #Fonts = fmax and #Sizes = smax state, in ad-
dition, that the arrays contain exactly as many elements as the corresponding
constant sets. Indices fpos : Nat and spos : Nat represent the currently cho-
sen selections in the corresponding arrays and are initialized to index some
items in fonts and sizes ; the variables fentry and sentry are initialized with
values of these items. The implicit invariant maintained by DialogBox states
that fonts [fpos] = fentry and sizes [spos] = sentry, i.e. the currently selected
font in the list of available fonts is the same as the one currently typed in the
font entry field, and similarly for font sizes.

The iterative choice statement is the contract stipulating the interaction be-
tween the user making choices and the system reacting to these choices. Consider,

DialogBox = [fentry , sentry , fonts, sizes , fpos, spos :=
fentry ′, sentry ′, fonts ′, sizes ′, fpos ′, spos ′ |

array to set(fonts ′, fmax) = Fonts ∧ #Fonts = fmax ∧
array to set(sizes ′, smax) = Sizes ∧ #Sizes = smax ∧
fentry ′ = fonts ′[fpos ′] ∧ sentry ′ = sizes ′[spos ′]∧
1 ≤ fpos ′ ≤ fmax ∧ 1 ≤ spos ′ ≤ smax];

do true :: {fentry := fentry ′ | ∃ i • 1 ≤ i ≤ fmax ∧ fonts [i] = fentry ′};
[fpos := fpos ′ | fonts[fpos ′] = fentry]

〈〉 true :: {sentry := sentry ′ | ∃ i • 1 ≤ i ≤ smax ∧ sizes [i] = sentry ′};
[spos := spos ′ | sizes [spos ′] = sentry]

〈〉 true :: {fpos := fpos ′ | 1 ≤ fpos ′ ≤ fmax}; fentry := fonts[fpos]
〈〉 true :: {spos := spos ′ | 1 ≤ spos ′ ≤ smax}; sentry := sizes [spos]
od

Fig. 2. Specification of a dialog box refinement

1474 Ralph Back, Anna Mikhajlova, and Joakim von Wright

for example, the case when the user wants to select a font by directly choosing
it from the list of available fonts, as modeled by the third alternative. First, the
user is offered to pick an index fpos ′, identifying a certain font in the list of
fonts, and then the system updates the variable fentry to maintain the invariant
fonts [fpos] = fentry.

The abstraction relation coercing the state of DialogBox to the state of
DialogBoxSpec is essentially an invariant on the concrete variables:

array to set(fonts , fmax) = Fonts ∧ #Fonts = fmax ∧ 1 ≤ fpos ≤ fmax ∧
array to set(sizes , smax) = Sizes ∧ #Sizes = smax ∧ 1 ≤ spos ≤ smax ∧
fentry = fonts [fpos] ∧ sentry = sizes [spos]

Strictly speaking, we should distinguish between fentry, sentry of
DialogBoxSpec and fentry, sentry of DialogBox ; the abstraction relation also
includes the conditions fentry = fentry0 and sentry = sentry0, where fentry0

and sentry0 denote fentry and sentry of DialogBoxSpec. It can be shown that
DialogBoxSpec v{R} DialogBox , where

R. concrete. abstract = array to set(fonts , fmax) = Fonts ∧ #Fonts = fmax ∧
array to set(sizes , smax) = Sizes ∧ #Sizes = smax ∧
1 ≤ fpos ≤ fmax ∧ 1 ≤ spos ≤ smax ∧
fentry = fonts [fpos] ∧ sentry = sizes [spos]∧
fentry = fentry0 ∧ sentry = sentry0

with concrete = fentry , sentry, fonts , sizes , fpos , spos and abstract = fentry0,
sentry0.

5 Conclusions and Related Work

We have described an interactive computing system in terms of contracts binding
participating agents and stipulating their obligations and assumptions. In par-
ticular, we have focused on the iterative choice contract and studied its algebraic
properties and modeling capabilities. This work extends [4] where Back and von
Wright introduced the notions of correctness and refinement for contracts and
defined their weakest precondition semantics.

The notion of contracts is based on the fundamental duality between demonic
and angelic nondeterminism (choices of different agents), abortion (breaching a
contract), and miracles (being released from a contract). The notion of angelic
nondeterminism goes back to the theory of nondeterministic automata and the
nondeterministic programs of Floyd [8]. Broy in [7] discusses the use of demonic
and angelic nondeterminism with respect to concurrency. Some applications of
angelic nondeterminism are shown by Ward and Hayes in [12]. Adabi, Lamport,
and Wolper in [1] study realizability of specifications, considering them as “de-
termined” games, where the system plays against the environment and wins if
it produces a correct behavior. Specifications are identified with the properties
that they specify, and no assumptions are made about how they are written.

Reasoning About Interactive Systems 1475

Moschovakis in [11] studies non-deterministic interaction in concurrent commu-
nication also considering it from the game-theoretic perspective.

Another direction of related work concentrates on studying the role of interac-
tion in computing systems. Wegner in [13] proposes to use interaction machines
as “a formal framework for interactive models”. Interaction machines are de-
scribed as extensions of Turing machines with unbounded input streams, which
“precisely capture fuzzy concepts like open systems and empirical computer sci-
ence”. The main thesis of work presented in [13] and further developed in [14] is
that “Logic is too weak to model interactive computation” and, instead, empiri-
cal models should be used for this purpose. Apparently, first-order logic is meant
by the author, which is indeed too weak for modeling interaction. However, our
formalization is based on an extension of higher-order logic and, as such, is
perfectly suitable for this purpose. Also, it is claimed in [13] that “Interaction
machines are incomplete in the sense of Gödel: their nonenumerable number of
true statements cannot be enumerated by a set of theorems. [...] The incomplete-
ness of interactive systems implies that proving correctness is not merely hard
but impossible.” We believe that our work presents a proof to the contrary.

As future work we intend to investigate modeling capabilities of iterative
choice further. In particular, its application to modeling client and server proxies
in distributed object-oriented systems appears to be of interest. Various archi-
tectural solutions, such as implicit invocation [9], can also be described in this
framework, and the work on this topic is the subject of current research.

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications
of reactive systems. In Proceedings of 16th ICALP, volume 372 of LNCS, pages
1–17, Stresa, Italy, 11–15 July 1989. Springer-Verlag.

[2] R. Back, A. Mikhajlova, and J. von Wright. Modeling component environments
and interactive programs using iterative choice. Technical Report 200, Turku
Centre for Computer Science, September 1998.

[3] R. J. R. Back. Changing data representation in the refinement calculus. In 21st
Hawaii International Conference on System Sciences. IEEE, January 1989.

[4] R. J. R. Back and J. von Wright. Contracts, games and refinement. In 4th Work-
shop on Expressiveness in Concurrency, EXPRESS’97, volume 7 of Electronic
Notes in Theoretical Computer Science. Elsevier, September 1997.

[5] R. J. R. Back and J. von Wright. Reasoning algebraically about loops. Technical
Report 144, Turku Centre for Computer Science, November 1997.

[6] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, April 1998.

[7] M. Broy. A theory for nondeterminism, parallelism, communication, and concur-
rency. Theoretical Computer Science, 45:1–61, 1986.

[8] R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Math-
ematical aspects of computer science, volume 19, pages 19–31. American Mathe-
matical Society, 1967.

[9] D. Garlan and D. Notkin. Formalizing design spaces: Implicit invocation mecha-
nisms. In VDM 91, Volume 1: Conference Contributions, LNCS 551, pages 31–44.
Springer-Verlag, Oct. 1991.

1476 Ralph Back, Anna Mikhajlova, and Joakim von Wright

[10] C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.
[11] Y. N. Moschovakis. A model of concurrency with fair merge and full recursion.

Information and Computation, 93(1):114–171, July 1991.
[12] N. Ward and I. Hayes. Applications of angelic nondeterminism. In P.A.C.Bailes,

editor, 6th Australian Software Engineering Conference, pages 391–404, Sydney,
Australia, 1991.

[13] P. Wegner. Interactive software technology. In J. Allen B. Tucker, editor, The
Computer Science and Engineering Handbook. CRC Press, in cooperation with
ACM, 1997.

[14] P. Wegner. Interactive foundations of computing. Theoretical Computer Science,
192(2):315–351, Feb. 1998.

Non-atomic Refinement in Z

John Derrick and Eerke Boiten

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.
J.Derrick@ukc.ac.uk

Abstract. This paper discusses the refinement of systems specified in
Z when we relax the assumption that the refinement will preserve the
atomicity of operations. Data refinement is a well established technique
for transforming specifications of abstract data types into ones which are
closer to an eventual implementation. To verify a refinement a retrieve
relation is used which relates the concrete to abstract states and allow
the comparison between the data types to be made on a step by step
basis by comparing an abstract operation with its concrete counterpart.

A step by step comparison is possible because the two abstract data
types are assumed to be conformal, i.e. there is a one-one correspondence
between abstract and concrete operations, so each abstract operation
has a concrete counterpart. In this paper we relax that assumption to
discuss refinements where an abstract operation is refined by, not one,
but a sequence of concrete operations. Such non-conformal or non-atomic
refinements arise naturally in a number of settings and we illustrate our
derivations with a simple example of a bank accounting system.

Keywords: Specification; Refinement; Z; Non-atomic refinement; Non-atomic
operations.

1 Introduction

This paper discusses the refinement of systems specified in state-based specifi-
cation languages such as Z [8] when we relax the assumption that refinements
preserve the atomicity of operations.

State-based languages have gained a certain amount of acceptance in the
software community as an industrial strength formal method. As a canonical
example, we will concentrate on Z in this paper, although the methods we derive
could be applied to other state-based languages. Z is a state-based language
whose specifications are written using set theory and first order logic. Abstract
data types are specified in Z using the so called “state plus operations” style,
where a collection of operations describe changes to the state space. The state
space, initialisation and operations are described as schemas, and the schema
calculus has proved to be an enduring structuring mechanism for specifying
complex systems. These schemas, and the operations that they represent, can
be understood as (total or partial) relations on the underlying state space.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1477–1496, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1478 John Derrick and Eerke Boiten

In addition to specifying a system, we might also wish to develop, or re-
fine, it further. This idea of data refinement is a well established technique for
transforming specifications of abstract data types into ones which are closer
to an eventual implementation. Such a refinement might typically weaken the
precondition of an operation, remove some non-determinism or even alter the
state space of the specification. The conditions under which a development is
a correct refinement are encapsulated into two refinement (or simulation) rules:
downward and upward simulations [10]. To verify a refinement the simulations
use a retrieve relation which relates the concrete to abstract states and allow
the comparison between the data types to be made on a step by step basis by
comparing an abstract operation with its concrete counterpart. Versions of the
simulation rules for Z are given in [10].

The step by step comparison that a simulation makes is possible because the
two abstract data types are assumed to be conformal [6], i.e. there is a one-one
correspondence between abstract and concrete operations, so each abstract op-
eration has a concrete counterpart. In this paper we relax that assumption to
discuss refinements where an abstract operation is refined by, not one, but a se-
quence of concrete operations. The motivation for such a refinement is twofold:
we might wish to reflect the structure of the eventual implementation in a spec-
ification without having to make that choice at an initial abstract level, and
going further, we might wish to allow interleavings of concrete operations for
the sake of efficiency. For example, we might want to describe an abstract oper-
ation AOp in the first instance, but in a subsequent development describe how
AOp is implemented as a sequence of concrete operations: COp1 followed by
COp2.

Such non-conformal or non-atomic refinements arise naturally in a number of
settings. For example, a protocol might be specified abstractly as a single opera-
tion, but in a later development refined into a sequence of operations describing
the structure of how the protocol works in more detail. Another example might
be a (coffee!) machine which has an operation that requires a sequence of inputs
(or generates a sequence of outputs). At the abstract level this is described as a
single atomic operation, but at the concrete level we may wish to dispense with
this assumption and specify the process of entering the inputs (generating the
outputs) one by one.

Such non-atomic refinements have been extensively studied in the context
of process algebras, usually under the name of action refinement [2]. Examples
of simple non-atomic refinements are beginning to emerge for state-based spec-
ifications, however, we are not aware of any systematic study of state-based
non-atomic refinement. (Although there has been some study of hiding sets of
actions in action systems [7].) The purpose of this paper is to contribute to such
a discussion.

The simplest approach to non-atomic refinement is to introduce a skip op-
eration in the abstract specification, such an operation produces no change in
the abstract state. One of the concrete operations, say COp1, can refine AOp
whilst the other refines skip. Examples of applications of such an approach in-

Non-atomic Refinement in Z 1479

clude protocol refinements in B [1], in Z [10] and buffers in B [4]. In Section 3 of
this paper we derive the relational basis for refinements of this kind and give a
Z formulation for the appropriate simulation conditions.

However, not all non-atomic refinements can be verified in such a manner.
Consider a refinement where we would like to split a collection of inputs or
outputs across several concrete operations. Because we are transforming the
inputs/outputs in this fashion, such a refinement cannot in general be verified
using abstract steps of skips. A more complex example which illustrates some of
the problems will be given in Section 4.

In Section 5 we consider how such refinements can be verified in general. The
initial condition we consider decomposes an abstract operation into a sequence
of concrete operations COp1

o
9COp2, where no requirement is made that either of

the concrete operations refines skip. In order to distribute an abstract operation’s
inputs and outputs across a sequence of concrete operations we apply current
work on I/O refinement described in [3, 9], extending it where necessary to
provide the required generalisation. This generalisation is derived in Section
6. The resulting refinement rules are given in Z and we show how they can
be applied to the example in Section 4. In Section 7 we summarise the rules
and in Section 8 we make some concluding remarks. We begin by describing the
traditional view of refinement in Z based upon the standard relational semantics,
throughout the paper we will work at the relational level only using the Z schema
calculus to give the final refinement conditions.

2 A Relational View of Refinement in Z

In this section we discuss the relational view of refinement and describe how it
treats partiality, leading to the standard presentation of refinement in a language
such as Z [8, 10]. In doing so we present a summary of results in [6, 10] to which
the reader is directed for more detailed explanation if necessary.

The underlying model of a state based system is a relational model, where the
components of an abstract data type (ADT) are relations (assumed total for the
moment). An ADT is a quadruple A = (Astate, ai , {aopi}i∈I , af) which acts on
a global state space G such that: Astate is the space of values; ai ∈ G ↔ Astate
is an initialisation; af ∈ Astate ↔ G is a finalisation; aopi are operations in
Astate ↔ Astate.

A program P is a sequence of operations upon a data type beginning with
an initialisation and ending with a finalisation, e.g.

P(A) = ai o
9 aop1

o
9 aop2

o
9 af

The standard derivation of refinement assumes that the abstract and concrete
data types are conformal, i.e. they have the same global state space G and that
the indexing sets for the operations coincide (so every abstract operation has a
concrete counterpart and vice versa).

Definition 1. A data type C refines a data type A if, for every program P,
P(C) ⊆ P(A).

1480 John Derrick and Eerke Boiten

This has the effect (for total relations) of refinement being the reduction of
non-determinism. This definition of refinement involves quantification over all
programs, and in order to verify such refinements, simulations are used which
consider values produced at each step of a program’s execution. Simulations are
thus the means to make the verification of a refinement feasible. In order to con-
sider values produced at each step we need a relation r between the two state
spaces Astate and Cstate, this relation is known as the retrieve relation.

Partiality
In the relational framework we have described so far the relations were assumed
to be total relations. However, not all operations are total, and the traditional
meaning of an operation ρ specified as a partial relation is that ρ behaves as spec-
ified when used within its precondition (domain), and outside its precondition,
anything may happen.

In order to deal with this partial relations are totalised, i.e. we add a dis-
tinguished element ⊥ to the state space, denoting undefinedness, and we denote
such an augmented version of X by X⊥. Thus if ρ is a partial relation between
X and Y , we add the following sets of pairs to ρ: {x : X⊥, y : Y ⊥ | x 6∈ domρ •
x 7→ y}, and call this new (total) relation

•
ρ.

We also require that the retrieve relation be strict, i.e., that r propagates
undefinedness and we ensure this by considering the lifted form of r ∈ X ↔ Y :

◦
r= r ∪ ({⊥} ×Y ⊥)

The retrieve relation gives rise to two types of step by step comparisons: down-
wards simulation and upwards simulation [10]. These simulation relations are
the basis for refinement methods in Z and other state based languages. Their
usefulness lies in the fact that they are sound and jointly complete [6].

In this paper we restrict our attention to the more commonly occurring down-
ward simulations. A downward simulation is a relation r from Astate to Cstate
such that

•
ci⊆

•
ai o

9

◦
r

◦
r o

9

•
cf⊆

•
af

◦
r o

9

•
copi⊆ •

aopi
o
9

◦
r for each index i ∈ I

The simulation rules are defined in terms of augmented relations. We can
extract the underlying rules for the original partial relations as follows. For
example, for a downwards simulation these rules are equivalent to the following:

ci ⊆ ai o
9 r

r o
9 cf ⊆ af

(dom aopi C r o
9 copi) ⊆ aopi

o
9 r

ran((dom aopi)C r) ⊆ dom copi

Non-atomic Refinement in Z 1481

The last two conditions (where C is domain restriction [8]) mean that: the
effect of copi must be consistent with that of aopi ; and, the operation copi is
defined for every value that can be reached from the domain of aopi using r .

Inputs and Outputs
We can use this relational semantics to model systems in which operations have
input and output (IO) by providing all inputs at initialisation and delaying out-
puts until finalisation. To do so we augment the state by adding two sequences,
an input sequence and an output sequence. Initially, the output sequence is
empty; in the final state, the input sequence is empty. Every time an operation
is executed, (if the operation has an input) the first value is removed from the
input sequence, and (if the operation has an output) a value is added to the
end of the output sequence. The outcome of the operation does not (directly)
depend on any other value in the input or output sequence.

Above conditions for a downward simulation were derived for use between
operations that have no inputs or outputs. We can now derive similar downward
simulation conditions for operations that do have inputs and outputs, by aug-
menting the state with extra components representing the sequence of inputs
still to be dealt with and the sequence of outputs already computed.

Let operations aop and cop consume input and produce output. Let us denote
the equivalent operations that expect input and output sequences by aops and
cops . It is now possible to translate the conditions for a downwards simulation
between aops and cops into conditions between aop and cop. Given a relation
r between states without input and output sequences, we must construct an
equivalent relation that acts on the enhanced form of the state. We use the
following retrieve relation on the extended state

rs = r‖id [Inp]‖id [Outp]

where ‖ is a relational parallel composition (see [10]) and Inp and Outp are the
types of the input and output sequences of aop. id [Inp] maps an abstract input
sequence to an identical concrete input sequence, and similarly for the output
(see figure 1).

Using such a retrieve relation, [10] derive equivalent simulation rules for aop
and cop which are as follows (because any operation can produce output the
finalisation condition is no longer required):

ci ⊆ ai o
9 r

(dom aop C (r‖id) o
9 cop) ⊆ aop o

9 (r‖id)
ran((dom aop) C (r‖id)) ⊆ dom cop

These rules can now be transformed from their relational setting to simula-
tion rules for Z specifications by writing them in the Z schema calculus. This
formalisation is the same as the rules given in standard presentations of refine-
ment in Z, e.g. [8].

1482 John Derrick and Eerke Boiten

Astate

seqAInput

seqAOutput

seqCInput

seqCOutput

cop

aops

scop

Cstate

aop
Astate

input output

input output

Cstate

id[Outp]
id[Inp] r

id id

Fig. 1. Refinement of operations with input and output

Definition 1 Let R be the retrieve relation between data types (Astate,Ainit ,
{AOp}) and (Cstate,Cinit , {COp}). Suppose that the operations have an input
x? : X and output y! : Y . R is a downwards simulation if the following hold.

∀Cstate • CInit ⇒ (∃Astate • AInit ∧R)
∀Astate; Cstate; x? : X • preAOp ∧ R ⇒ preCOp
∀Astate; Cstate; Cstate ′; x? : X ; y! : Y •

preAOp ∧ COp ∧ R ⇒ ∃Astate′ • R′ ∧AOp

In the subsequent sections of this paper we will relax two assumptions made
above. The starting point will be to consider the consequences of refining an
abstract operation into more than one concrete operation. In doing so we will
need the generality of IO refinement which assumes a general mapping between
the pairs of input and output streams as opposed to the identities id [Inp] and
id [Outp] used above.

3 Simple Non-atomic Refinement

We begin our derivation with the same definition of refinement, namely that for
every program P , P(C) ⊆ P(A). Let us now suppose that in the two data types
the indexes coincide except that abstract operation aop is refined by the sequence
cop1; cop2. We now have two sets of potential programs, those drawn from the
abstract indexes and those from the concrete indexes. Let us denote these PA

and PC respectively. So ai o
9aop o

9af and ci o
9cop1

o
9cop2

o
9cf are programs in PA(A)

and PA(C) respectively, whereas ci o
9 cop2

o
9 cf , ci o

9 cop1
o
9 cf and ci o

9 cop2
o
9 cop1

o
9 cf

are programs in PC (C). Thus for non-atomic refinement there are two conditions
which can perhaps be considered as liveness and safety conditions respectively:

PA(C) ⊆ PA(A) and PC (C) ⊆ PC (A)

Non-atomic Refinement in Z 1483

The first requires that if we take abstract indexes then the equivalent concrete
program reduces non-determinism, e.g. ci o

9 cop1
o
9 cop2

o
9 cf ⊆ ai o

9 aop o
9 af .

The second implies that to every concrete program there must be some abstract
equivalent that it refines, e.g. there will be an abstract equivalent to ci o

9cop2
o
9cf .

To begin we consider the case when both these conditions are required. Sim-
ulations can be used to make step-by-step comparisons as before. Quantification
over all abstract programs leads to the requirement that

◦
r o

9

•
cop1

o
9

•
cop2 ⊆ •

aop o
9

◦
r (1)

whilst quantification over all concrete programs requires that we find abstract
counterparts to cop1 and cop2 which we denote p1

A and p2
A such that

◦
r o

9

•
cop1 ⊆ p1

A
o
9

◦
r and

◦
r o

9

•
cop2 ⊆ p2

A
o
9

◦
r

The obvious choice for p1
A and p2

A are for one to be the original abstract op-

eration
•

aop and for the other to be
•

skipR (the subscript R will be explained
in a moment). Clearly these choices are sufficient, but not necessary, however
whilst it is possible to construct examples where the concrete operations are re-
fining different abstract operations it is difficult to construct realistic examples.
Thus, without loss of generality taking cop1 to refine aop, let us consider the
requirement that

◦
r o

9

•
cop1 ⊆ •

aop o
9

◦
r and

◦
r o

9

•
cop2 ⊆

•
skipR

o
9

◦
r (2)

The abstract operation
•

skipR can be chosen to be any operation satisfying

(1) with the property that
•

aop o
9

•
skipR=

•
aop. For then if (2) holds we have

◦
r o

9

•
cop1

o
9

•
cop2 ⊆ •

aop o
9

◦
r o

9

•
cop2 ⊆ •

aop o
9

•
skipR

o
9

◦
r =

•
aop o

9

◦
r

Thus (2) represents sufficient conditions for the action refinement of aop
into cop1; cop2. We can now extract the underlying conditions on the partial
relations in the usual manner. The first is the standard condition for refining
aop by cop1, namely that (we elide the identities over input and output streams
for the moment)

(dom aop C r o
9 cop1) ⊆ aop o

9 r
ran((dom aop) C r) ⊆ dom cop1

The requirement that
•

aop o
9

•
skipR=

•
aop could be satisfied by skipR = skip,

however, this is unnecessarily restrictive and in fact we can take skipR = A C
skip for any A with ran aop ⊆ A. Possible choices for skipR then range from
ran aop C skip to skip itself. The second requirement in (2) is equivalent to

(dom skipR C r o
9 cop2) ⊆ skipR

o
9 r

ran((dom skipR)C r) ⊆ dom cop2

1484 John Derrick and Eerke Boiten

Taking skipR = ran aop C skip these become

(ran aop C r o
9 cop2) ⊆ ran aop C r

ran(ran aop C r) ⊆ dom cop2

and when skipR = skip they are: r o
9 cop2 ⊆ r and ran r ⊆ dom cop2.

These can be translated into Z in the usual manner. It is in this context that
the non-atomic refinements given in [10, 4] are verified.

For example, in [4] a specification is given of an unordered buffer together
with a refinement of it. The refinement introduces an additional operation, mid,
which is a refinement of skip at the abstract level.

However, some desirable non-atomic refinements are more complex than this,
and we illustrate the problem with an example which will motivate our need for
more general refinement conditions.

4 Example - A Bank Account

We specify a bank consisting of a number of electronic booths where users may
deposit money and check their balances. At an abstract level we are given a
mapping from names to Money (= IN), and operations allowing money to be
deposited and balances checked. The example illustrates nicely many of the issues
involved in non-atomic refinement?.

ABank =̂ [act : Name 7→ Money]
ABankInit =̂ [ABank ′ | act ′ = ?]
AOpenAcct =̂ [∆ABank ; n? : Name | act ′ = act ⊕ {n? 7→ 0}]

Deposit
∆ABank
n? : Name
p? : Money

n? ∈ dom act
act ′ = act ⊕ {n? 7→ act(n?) + p?}

Balance
ΞABank
n? : Name
b! : Money

n? ∈ dom act
b! = act n?

At the concrete level an atomic Deposit operation is unrealistic and we
would like the amounts to be transferred coin by coin at every booth thus
allowing interleaving of these operations with actions at other booths, where
Coin = {1, 2, 5, 10} say. To specify this we use a collection of temporary ac-
counts tct and split the Deposit operation into a transaction consisting of a
Start , a succession of Next operations transferring the amount coin by coin with
a Stop operation ending the process. A temporary account is now represented
by sequences of coins. The Stop operation takes this sequence and sums the
coins entered, updating the concrete account with the result of this calculation
? and is adapted from an example in [10] which specifies a distributed file store.

Non-atomic Refinement in Z 1485

(remember that +/. represents distributed summation over a sequence). The
concrete specification is as follows, where −C is domain subtraction.

CBank
cct : Name 7→ Money
tct : Name 7→ seqCoin

dom tct ⊆ dom cct

CBankInit =̂ [CBank ′ | cct ′ = tct ′ = ?]

Start
∆CBank
n? : Name

n? ∈ dom cct
tct ′ = tct ⊕ {n? 7→ 〈 〉}
cct ′ = cct

Next
∆CBank
n? : Name
c? : Coin

n? ∈ dom tct
tct ′ = tct ⊕ {n? 7→ (tct n?)a 〈c?〉}
cct ′ = cct

Stop
∆CBank
n? : Name

n? ∈ dom tct
tct ′ = {n?} −C tct
cct ′ = cct⊕
{n? 7→ cct(n?) + (+/.(tct n?))}

Balance
ΞCBank
n? : Name
b! : Money

n? ∈ dom cct
b! = cct n?

The link between the abstract and concrete state spaces will be via the rela-
tion R

R
ABank
CBank

act = cct

Clearly at some level the abstract Deposit operation is being refined by the
sequence Start o

9 Next . . .Next o
9 Stop. However, the refinement isn’t simply a

matter of one of the concrete operations corresponding to Deposit whilst the
others correspond to skip.

At issue is the following. The retrieve relation links act and cct , therefore
abstract skip operations can be refined by concrete operations which only change
the temporary account tct . Therefore Start and Next look suitable candidates to

1486 John Derrick and Eerke Boiten

refine skip. There are however two problems. The first is that although Start and
Next do not alter cct they do consume input, conceptually taking values off the
input stream. Therefore at the level of an augmented state complete with input
stream they do not simply correspond to skip. The second, and related, problem
is that if Stop corresponds to Deposit then preDeposit ∧ R needs to imply the
precondition of Stop. However, the precondition of Stop is that n? ∈ dom tct ,
which isn’t a consequence of preDeposit ∧ R. The issue is that n? ∈ dom tct
is assuming that at least a Start operation has already happened, and that the
system is now ready to Stop. Stop can in fact be amended to overcome this
problem. However to do this you need to put sufficient functionality into it that
the other concrete operations are then unnecessary.

As we can see there are many issues involved in such a refinement, not least is
the problem that the inputs of Deposit are distributed throughout the concrete
operations, this means that we must develop machinery in addition to that
discussed in the last section. This is what we seek to do next.

5 General Non-atomic Refinement

In this section we will consider more general refinements than considered in
Section 3, in particular we drop the requirement that PC (C) ⊆ PC (A). This
means that we can consider decomposing an abstract operation into a sequence
of concrete operations without requiring that any of these concrete operations
refine an abstract operation of skip. This opens the way to providing methods of
refinement that can tackle some of the issues highlighted in the previous section.
In this section we also consider various properties of non-atomic refinement. In
particular, we show that non-atomic refinement is transitive and we consider con-
ditions on the concrete operations that will allow interleaving of the components
of a non-atomic decomposition.

To verify a general non-atomic refinement we must also address in some detail
how we treat inputs and outputs. The bank account example is particularly
interesting in this respect because it has taken an input amount p? : Money
and broken it down into a single input c? : Coin provided a number of times
via the Next operation. To verify such refinements we will use the technique of
IO-refinement and to apply it we extend current work in this area [3, 9]. These
points are discussed in Section 6, we begin now with the general conditions for
a non-atomic refinement.

5.1 Conditions for a Non-atomic Refinement

We begin by dropping the safety requirement that PC (C) ⊆ PC (A), so in par-
ticular the requirements of (2) disappear and the single requirement is that:

◦
r o

9

•
cop1

o
9

•
cop2 ⊆ •

aop o
9

◦
r (3)

With this single requirement we can extract the underlying conditions on
the partial relations as before to find that this is equivalent to three conditions,
namely that

Non-atomic Refinement in Z 1487

(dom aop C r o
9 cop1

o
9 cop2) ⊆ aop o

9 r (4)
ran((dom aop) C r) ⊆ dom cop1 (5)

ran((dom aop) C r o
9 cop1) ⊆ dom cop2 (6)

If cop1 is deterministic we can replace the last two (applicability) conditions by
a single condition.

Proposition 1 If cop1 is deterministic then

ran((dom aop) C r) ⊆ dom cop1 ∧
ran((dom aop) C r o

9 cop1) ⊆ dom cop2

is equivalent to the condition ran((dom aop) C r) ⊆ dom(cop1
o
9 cop2).

The requirement of cop1 being deterministic is necessary to ensure that the
resultant condition implies ran((dom aop) C r o

9 cop1) ⊆ dom cop2, the other
implications always hold.

Before we proceed any further it is important to check whether non-atomic
refinement is transitive, that is further non-atomic or atomic refinements should
give rise to an overall refinement. This is indeed the case.

Theorem 1. Non-atomic refinement is transitive.

Proof. There are four cases to consider which are illustrated in the following
diagram.

aop

cop cop

ccop ccop1 2

1 2

aop

cop cop

ccop ccop2

1 2

aop

cop cop

ccop ccop1

1 2

aop

cop cop1 2

ccop
11 12

ccop21 22

r

s

In each case it is easy to see that we have transitivity. 2

Without considering any input and output transformations at this stage we
can express the relational conditions given in (4-6) in the Z schema calculus.
The formulation is as follows.

Definition 2 R is a non-atomic downwards simulation if the following hold.

∀Astate; Cstate; Cstate ′ •
preAOp ∧ (COp1

o
9 COp2) ∧ R ⇒ ∃Astate′ • R′ ∧ AOp

∀Astate; Cstate • preAOp ∧ R ⇒ preCOp1

∀Astate; Cstate • preAOp ∧ R ∧ COp1 ⇒ preCOp2

1488 John Derrick and Eerke Boiten

These conditions generalise to a non-atomic refinement with an arbitrary
number of abstract and concrete operations in the obvious manner.

Let us consider the bank account example when the deposit p? consists of
a single coin. We then have three operations Start o

9 Next o
9 Stop in our concrete

refinement (we will consider an arbitrary amount deposited later when we have
a way to transform inputs). To verify such a refinement we have to demonstrate
four conditions:

∀Astate; Cstate; Cstate ′ •
preDeposit ∧ (Start o

9 Next o
9 Stop) ∧ R ⇒ ∃Astate′ • R′ ∧Deposit

∀Astate; Cstate • preDeposit ∧ R ⇒ preStart
∀Astate; Cstate • preDeposit ∧ R ∧ Start ⇒ preNext
∀Astate; Cstate • preDeposit ∧ R ∧ (Start o

9 Next)⇒ preStop

We will consider the three applicability conditions first. The predicate of
preDeposit∧R will be the condition that n? ∈ dom cct , which is the precondition
of Start . Similarly preDeposit ∧ R ∧ Start implies n? ∈ dom tct which is the
precondition of Next . The precondition of Stop works in a similar way. Thus
even without IO transformations the applicability conditions can be verified.

The correctness condition requires that we calculate the schema composition
(Start o

9 Next o
9 Stop) which results in

∆CBank
n? : Name
c? : Coin

n? ∈ dom cct
tct ′ = {n?} −C tct
cct ′ = cct ⊕ {n? 7→ cct(n?) + c?}

Given a very simple input transformation of a deposit p? into a single coin this
can be seen to satisfy (at an intuitive level) the criteria for decomposing Deposit
into these three operations as long as we assume inputs correspond to a single
coin. In the next section we will see how this intuition can be formalised and
how we can verify the general case of an arbitrarily large deposit.

6 Input and Output Transformations

In this section we consider the input and output transformations that are needed
to support non-atomic refinements. We begin with a discussion of IO refinement
which generalises the standard refinement conditions by allowing inputs and
outputs to alter under refinement. We apply this work to non-atomic refinement
in Section 6.2 resulting in a set of conditions that allow inputs and outputs to
be distributed throughout a concrete decomposition.

Non-atomic Refinement in Z 1489

To understand the issues let us consider our running example again. In order
to verify a refinement we have to prove a correctness condition between Deposit
and the concrete decomposition. At the end of the previous section we considered
the case when the input deposit was composed of a single coin, and we calculated
the schema composition (Start o

9 Next o
9 Stop) to verify the correctness criteria.

Even at this point there is an issue to consider, for this composition has
an input c? : Coin whereas Deposit has an input p? : Money. Although at an
intuitive level we can see the correspondence between these schemas, a strict
interpretation of standard refinement does not allow the inputs and outputs
or their types to be changed??. This is a direct consequence of the use of the
identities id [Inp] and id [Outp] in the retrieve relation

rs = r‖id [Inp]‖id [Outp]

discussed in section 2. These identities map abstract input and output sequences
to identical concrete input and output sequences, because they are identical, the
types of the input and output cannot change.

6.1 IO Refinement

Recent work on IO refinement [3, 9] has tackled this issue, and provides a solu-
tion to this problem by generalising the retrieve relation rs . Here we follow the
formalisation of [3] although [9] provides an alternative characterisation.

IO refinement is a generalisation of standard (atomic) refinement. Let us
consider the refinement of an abstract operation aop into a concrete one cop.
Suppose further that r is the retrieve relation which links the abstract and
concrete state spaces. In order to allow the types of inputs and outputs to change
IO refinement replaces the identities with arbitrary relations it and ot between
the input and output elements respectively. Thus it and ot are essentially retrieve
relations between the inputs and outputs, hence allowing these to change under a
refinement in a similar way to changing the state space. The full retrieve relation
rs between the enhanced state is then

rs = r‖it∗‖ot∗

where it∗ applies it along each element in the input sequence.
It is necessary to impose some conditions on it and ot . The first is that for

rs not to exclude combinations of states in r , we need to require that it and ot
are total on the abstract input and output types. Secondly, ot must be injective.
This condition guarantees that different abstract (“original”) outputs can be
distinguished in the concrete case because their concrete representations will be
different as well.

?? The file store example given in [10] contains another example of such a transformation
where an input file is decomposed into a sequence of bytes.

1490 John Derrick and Eerke Boiten

The conditions for an IO refinement between aops and cops can be given an
equivalent formulation in terms of aop and cop (see figure 2):

dom aop C ((r‖it) o
9 cop) ⊆ aop o

9 (r‖ot)
ran(dom aop C (r‖it)) ⊆ dom cop

Astate

seqAInput

seqAOutput

seqCInput

seqCOutput

cop

aops

scop

Cstate

it*
ot*

aop
Astate

input output

input output

Cstate

it ot

Fig. 2. IO refinement of operations

These conditions can be expressed as conditions on Z schemas as follows. The
relations it and ot between the inputs and outputs become schemas called input
and output transformers. An input transformer for a schema is an operation
whose outputs exactly match the schema’s inputs, and whose signature is made
up of input- and output components only; similarly for output transformers.
These are applied to the abstract and concrete operations using piping (�).

With these notions in place we can re-phrase the conditions of IO refine-
ment in the Z schema calculus. We use an overlining operator, which extends
componentwise to signatures and schemas: x? = x !, x ! = x?. Thus IT denotes
the schema where all inputs become outputs with the same basename, and all
outputs inputs.

Definition 3 Let IT be an input transformer for COp which is total on the
abstract inputs. Let OT be a total injective output transformer for AOp. The
retrieve relation R defines an IO refinement if:

applicability ∀Astate; Cstate • pre(IT � AOp) ∧ R ⇒ preCOp
correctness wherever AOp is defined, COp with the input transformation should

produce a result related by R and the output transformation to one that AOp
could have produced:

∀Astate; Cstate; Cstate ′ •
preAOp ∧ R ∧ (IT � COp)⇒ ∃Astate′ • R′ ∧ (AOp � OT)

Non-atomic Refinement in Z 1491

IO refinement allows inputs and outputs to be refined in a controlled manner.
Controlled because since inputs and outputs are observable we must be able to
reconstruct the original behaviour from a concrete refinement. This reconstruc-
tion is achieved by using the input and output transformers which essentially
act as wrappers to a concrete operation, converting abstract inputs to concrete
ones and similarly for the output. Hayes and Sanders [5] use piping in much the
same way: to represent the equivalent of relational composition for inputs and
outputs in Z schemas. They use the term “representation schema” for what we
call “transformers”.

We can apply these ideas to our example. The input transformer schema that
we need to use is thus given by

IT
p? : Money
c! : Coin
n?,n! : Name

c! = p? ∧ n! = n?

Here c! is an output so that it matches the input c? of the composition (Start o
9

Next o
9 Stop), and no changes are made to the name so that is passed through

unchanged. There are no outputs so the output transformer is the identity. With
this in place it is easy to see that we have the correct transformations in place
to deal with the change of input when each input p? is entered as a sequence
consisting of one single coin, and we can verify the condition

preDeposit ∧ (IT � Start o
9 Next o

9 Stop) ∧ R ⇒ ∃Astate′ • R′ ∧Deposit

However, in reality deposits can be arbitrarily large (i.e. not provided by
a single coin), and to deal with this we need further generalisations. The next
subsection considers how to do this by integrating IO refinement into the non-
atomic refinement conditions we have already derived.

6.2 General IO Transformations

Consider the case when the input deposit is given as two coins. We will now
have to verify a correctness condition between Deposit and the composition
(Start o

9Next o
9Next o

9Stop) to show that the non-atomic refinement holds. However,
if we calculate this composition we result in

∆CBank
n? : Name
c? : Coin

n? ∈ dom cct
tct ′ = {n?} −C tct
cct ′ = cct ⊕ {n? 7→ cct(n?) + c? + c?}

1492 John Derrick and Eerke Boiten

We have lost the differentiation needed between the inputs of distinct applica-
tions of the Next operation. Furthermore, our input transformation is now not
just between two operations, but a whole sequence of concrete operations, the
length of which is only determined by the input p? (the number of Next opera-
tions needed is in fact determined by the coins used as long as they sum to the
correct amount p?), and this can continually vary.

To deal with this we will generalise IO refinement in the following way. IO
refinement was derived as a condition between one abstract and one concrete
operation, because of that a simple element by element mapping it sufficed. In
our world of non-atomic refinement we wish to decompose one abstract operation
into a sequence of concrete operations. Therefore we need a mapping between an
abstract input and a sequence of concrete inputs representing the inputs needed
in the decomposition. We thus replace the maps it and ot by rin and rout where

rin : Ainput ←→ seqCinput
rout : Aoutput ←→ seqCoutput

and rin is total on Ainput , and rout is total on seqCoutput . For example, sup-
pose that an amount p? is entered as the sequence of coins 〈c1?, . . . , cm?〉,
then an abstract input (n?, p?) for the Deposit operation will be mapped to
the input sequence 〈n?, (n?, c1?), . . . , (n?, cm?),n?〉 to be consumed by (Start o

9

Next , . . . ,Next o
9 Stop).

Given a decomposition of aop into cop1
o
9 cop2 let us denote operations acting

on the augmented state space be denoted by, as before, aops , cop1s and cop2s .
With mappings rin and rout describing how the inputs and outputs of aop are
turned into those for cop1 and cop2, and a retrieve relation r between the state
spaces, the retrieve relation rs on the augmented state will be given by

rs = r‖ /̂.r∗in‖ /̂.r∗out

Here /̂.r∗in takes an input sequence seqAinput and creates a concrete input
sequence by concatenating together the effect of rin for each item in seqAinput . If
there are two concrete operations in the refinement, then rin maps each abstract
input into a pair of concrete inputs, the first for consumption by cop1 the second
for cop2 (see figure 3).

seqAInput

seqCInput

aops

cop
1s

; cop2s

r in

< . . . , c22, c21, c12, c11 >

< . . . , a2, a1 >

Fig. 3. Splitting the abstract input

Non-atomic Refinement in Z 1493

We can now take the three non-atomic refinement conditions described in
terms of an augmented state:

(dom aops C rs o
9 cop1s

o
9 cop2s) ⊆ aops

o
9 rs (7)

ran((dom aops)C rs) ⊆ dom cop1s (8)
ran((dom aops)C rs o

9 cop1s) ⊆ dom cop2s (9)

and turn these into equivalent conditions on the operations with input and out-
put at each step: aop, cop1 and cop2 in the usual way. It is easy to see that they
become:

dom aop C (r‖rin) o
9 (id‖cop1) o

9 (cop2‖id) ⊆ aop o
9 (r‖rout) (10)

ran(dom aop C (r‖rin)) ⊆ dom cop1 (11)
ran(dom aop C (r‖rin) o

9 (id‖cop1)) ⊆ dom cop2 (12)

where again we require that rout , like ot , is injective.

In the formalisation of these conditions we need to write (id‖cop1) and
(cop2‖id) because a single abstract input has become a pair of concrete inputs,
one for cop1 and one for cop2. In order to correctly select its input we need to
write (id‖cop1) and (cop2‖id) in the relational formalisation. These manipula-
tions will appear in a different form when we express these conditions in the Z
schema calculus.

To illustrate how this is done let us return for the moment to our example.
For an arbitrary large deposit the input transformer IT is something like

IT
p? : Money
c! : seqCoin
n?,n! : Name

+/.(c!) = p? ∧ n! = n?

where now we will output the deposit as a sequence of coins c!. However, we need
to represent one more bit of information, namely that expressed in (id‖cop1)
which says the concrete operations take the transformed input one at a time.
Let us suppose a deposit comprises m coins. Then the cleanest way to express
this is to observe that c! = 〈c1, . . . , cm〉, and describe the process explicitly as
substitutions in the operations, i.e. as (Start o

9Next [c1/c?]o9. . .o9Next [cm/c?]o9Stop).
With this in place we can express the refinement conditions that have to be
verified, e.g. we require

preDeposit ∧ (IT � Start o
9 Next [c1/c?] o

9 . . . o
9 Next [cm/c?] o

9 Stop) ∧ R ⇒
∃Astate ′ • R′ ∧Deposit

1494 John Derrick and Eerke Boiten

The general formalisation in Z effectively combines our three conditions
needed for a non-atomic refinement of AOp into COp1

o
9 COp2 with the use

of input and output transformers from IO refinement. Explicit substitutions (as
in the Next operation) are only necessary when the decomposition of AOp in-
volves more than one occurrence of the same concrete operation. If COp1 and
COp2 are distinct operations then the formalisation is the following:

Definition 4 Non-atomic refinement with IO transformations
Let IT be an input transformer for COp1

o
9 COp2 which is total on the abstract

inputs. Let OT be a total injective output transformer for AOp. The retrieve
relation R defines a non-atomic IO refinement if:

∀Astate; Cstate; Cstate ′ •
preAOp ∧ (IT � COp1

o
9 COp2) ∧ R ⇒ ∃Astate′ • R′ ∧ (AOp � OT)

∀Astate; Cstate • pre(IT � AOp) ∧ R ⇒ pre COp1

∀Astate; Cstate • pre(IT � AOp) ∧ R ∧ (IT � COp1)⇒ preCOp2

If COp1 and COp2 are not distinct (e.g. two Next operations) then explicit
substitutions are needed to control the inputs and outputs together with a pred-
icate in the input transformer describing which operation receives which input.

Finally consider the situation where deposits can be arbitrary large. Now we
do not know the number of operations in the concrete decomposition at the out-
set, and we have to describe it as follows. Given the abstract Deposit operation
we use the same input transformer IT as before and decompose Deposit into the
sequence

Start o
9 (o

9/{(i ,Next [c!.i/c?]) | i ∈ dom c!}) o
9 Stop

Here o
9/ denotes distributed schema composition along the sequence

〈Next [c!.1/c?], . . . ,Next [c!.m/c?]〉 where m = #c!. This expression produces a
schema composition of the correct number of Next operations according to the
size of c! as required (c! can be any sequence that adds up to the correct amount).
We can calculate such a schema composition, and it is easy to see that all the
conditions for a non-atomic refinement are met.

7 Summary

It is worth summarising the criteria for non-atomic refinement as we have derived
them gradually throughout the paper. In this summary we do not mention the
initialisation condition which is identical to that of standard refinement. Let
AOp be decomposed into the sequence COp1

o
9 COp2.

Simple non-atomic refinement requires that one of the concrete operations
(COp1 say) refines AOp and the other refines a restricted skip. The requirements
on COp1 refining AOp are the standard ones whilst those on COp2 are that for
some abstract state A with ranAOp ⇒ A we have

∀Astate; Cstate; A • A ∧R ⇒ preCOp2

∀Astate; Cstate; Cstate ′; A • A ∧ R ∧ COp2 ⇒ ∃A′ • ΞA ∧R′

Non-atomic Refinement in Z 1495

For a general non-atomic refinement where we drop the requirement that
concrete operations directly refine abstract counterparts we have three basic
conditions. They are:

∀Astate; Cstate; Cstate ′ •
preAOp ∧ (COp1

o
9 COp2) ∧R ⇒ ∃Astate′ • R′ ∧ AOp

∀Astate; Cstate • preAOp ∧R ⇒ preCOp1

∀Astate; Cstate • preAOp ∧R ∧COp1 ⇒ preCOp2

These conditions do not allow any input or output transformations. If we re-
quire abstract inputs and outputs to be distributed over the concrete operations
it is necessary to use input and output transformers IT and OT such that:

∀Astate; Cstate; Cstate ′ •
preAOp ∧ (IT � COp1

o
9 COp2) ∧ R ⇒ ∃Astate′ • R′ ∧ (AOp � OT)

∀Astate; Cstate • pre(IT � AOp) ∧ R ⇒ preCOp1

∀Astate; Cstate • pre(IT � AOp) ∧ R ∧ (IT � COp1)⇒ preCOp2

where IT is total on the abstract inputs and is an input transformer for COp1
o
9

COp2 and OT is a total and injective output transformer for AOp.
If the concrete decomposition involves more than one occurrence of the same

concrete operation (as in Next above), then it may be necessary to use explicit
schema substitutions for the input names in this last formalisation.

8 Conclusions

In this paper we have presented the beginnings of a study of state based non-
atomic refinement. This led to a number of conditions for such a refinement
given in the summary above. All of these conditions are derived from the basic
definition of refinement as the reduction of non-determinism. Differences between
the sets of conditions arise firstly from whether we require both PA(C) ⊆ PA(A)
and PC (C) ⊆ PC (A) to hold, or just the former.

Considering just the former allowed us to consider how abstract inputs and
outputs could be distributed over the sequence of concrete operations. To do
so we applied the theory of IO refinement which extends standard refinement
by allowing the retrieve relation to be extended to input and output types in
addition to relating the state spaces.

The result is three sets of conditions. The first can be used when one of the
concrete operations refines skip and the other refines the original abstract oper-
ation. The second defines conditions for a general decomposition into a number
of concrete operations where the inputs and outputs are not altered. The third
used IO transformers to relax this last condition. Although the use of IO trans-
formers looks at first sight complex, they are merely wrappers which explain
how an abstract input (or output) gets turned into its concrete counterpart. Al-
though our illustrative example concentrated on input transformations, similar
transformations are feasible for the outputs of an operation.

1496 John Derrick and Eerke Boiten

Further work to be done in this area includes looking at the relationship
between upward simulations and non-atomic refinement, where we expect similar
rules could be developed. It would also be useful to develop syntactic support
for non-atomic refinement. For example, if an abstract operation is specified at
the abstract level as AOp =̂ AOp1

o
9AOp2 under what conditions is AOp1

o
9AOp2

a non-atomic refinement of AOp.

References

[1] Jean-Raymond Abrial and Louis Mussat. Specification and design of a trans-
mission protocol by successive refinements using B. In Manfred Broy and Birgit
Schieder, editors, Mathematical Methods in Program Development, volume 158 of
NATO ASI Series F: Computer and Systems Sciences, pages 129–200. Springer,
1997.

[2] L. Aceto. Action refinement in process algebras. CUP, London, 1992.
[3] E.A. Boiten and J. Derrick. IO - refinement in Z. In 3rd BCS-FACS Northern

Formal Methods Workshop, Electronic Workshops in Computing. Springer Verlag,
September 1998.

[4] M. Butler. An approach to the design of distributed systems with B AMN. In J. P.
Bowen, M. G. Hinchey, and D. Till, editors, ZUM’97: The Z formal specification
notation, LNCS 1212, pages 223–241, Reading, April 1997. Springer-Verlag.

[5] I.J. Hayes and J.W. Sanders. Specification by interface separation. Formal Aspects
of Computing, 7(4):430–439, 1995.

[6] He Jifeng and C.A.R. Hoare. Prespecification and data refinement. In Data Re-
finement in a Categorical Setting, Technical Monograph, number PRG-90. Oxford
University Computing Laboratory, November 1990.

[7] J. Sinclair and J. Woodcock. Event refinement in state-based concurrent systems.
Formal Aspects of Computing, 7:266–288, 1995.

[8] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.
[9] S. Stepney, D. Cooper, and J. C. P. Woodcock. More powerful data refinement in

Z. In J. P. Bowen, A. Fett, and M. G. Hinchey, editors, ZUM’98: The Z Formal
Specification Notation, volume 1493 of LNCS, pages 284–307. Springer-Verlag,
1998.

[10] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Pren-
tice Hall, 1996.

Refinement Semantics and Loop Rules

Eric C.R. Hehner1, Andrew M. Gravell2

1 Dep't Computer Science, University of Toronto,
Toronto ON M5S 3G4, Canada

hehner@cs.toronto.edu
2 Electronics and Computer Science Dep't, University of Southampton,

Southampton SO9 5NH UK
amg@ecs.soton.ac.uk

Abstract . Refinement semantics is an alternative to least fixpoint
semantics that is more useful for programming. From it we derive a variety
of rules for w h i l e-loops, f o r-loops, and loops with intermediate and deep
exits. We illustrate the use of these rules with examples.

1 Introduction

A specification is a boolean expression whose variables represent quantities of
interest. By “boolean expression” we mean an expression of type boolean; we do not
mean to restrict the types of variables and subexpressions, nor the operators, within a
specification. Quantifiers, functions, terms from the application domain, and terms
invented for one particular specification are all welcome. Here is an example
specification using x and n as the initial values of two integer variables, x′ and
n′ as their final values, t as the time when execution starts, and t′ as the time
when execution finishes.

n≥0 ⇒ x′ = x×2n ∧ t′ ≤ t+n
A specification is implemented on a computer when, for any initial values of the

variables, the computer generates (computes) final values to satisfy the specification.
A specification is implementable if, for any initial values of the variables, there are
final values to satisfy the specification with nondecreasing time. In our example
variables, a specification S is implementable if

∀x, n, t· ∃x′, n′, t′· S ∧ t′≥t
A program is a specification that has been implemented, so that a computer can

execute it. The program notations we use include: ok (the empty program), x:= e
(assignment), P;Q (sequential composition), and i f b then P e l se Q (conditional
composition). In variables x , n , and t , they are defined as

ok = x′=x ∧ n′=n ∧ t′=t
x:= e = x′=e ∧ n′=n ∧ t′=t
P;Q = ∃x′ ′, n′ ′, t′ ′· (for x′, n′, t′ substitute x′ ′, n′ ′, t′ ′ in P)

∧ (for x, n, t substitute x′ ′, n′ ′, t′ ′ in Q)
i f b then P e l se Q = b∧P ∨ ¬b∧Q

= (b⇒P) ∧ (¬b⇒Q)

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1497-1510, 1999.
 Springer-Verlag Berlin Heidelberg 1999

There are many useful laws that save us from having to use the definitions
directly; for a list of laws see [4]. One such law is the Substitution Law

x:= e; P = (for x substitute e in P)
which can be proven from the equations just given defining assignment and sequential
composition.

Suppose we are given specification S . If S is a program, we can execute it. If
not, we have some programming to do. That means building a program P such that
S⇐P is a theorem; this is called refinement. Since S is implied by P , all
computer behavior satisfying P also satisfies S . We might refine in steps, finding
specifications R , Q , ... such that S⇐R⇐Q⇐. . .⇐P .

If S is a specification and P is a program, and S⇐P , then we have an
implementation for S : to execute S just execute P . So we can consider S to be
a program also. If S is implementable, and P would be a program but for
occurrences of S , we still have an implementation of S : when S reoccurs
(recursively), just reexecute P (recursively). So we can still consider S to be a
program. For example,

n≥0 ⇒ x′ = x×2n ∧ t′ ≤ t+n
⇐ i f n 0 then (x:= x×2; n:= n–1; t:= t+1; n≥0 ⇒ x′=x×2n ∧ t′≤t+n) e l se ok
In this context, we may pronounce ⇐ as any of “is implied by”, “is refined by”, or
“is implemented by”. The occurrence of t:= t+1 is not executed in the sense of
having a value computed and stored, but only in the sense that it accounts for the time
required to execute other instructions. We could have chosen different time increments
and placed them differently; this choice simply counts iterations. Inside the brackets
we use the Substitution Law three times (from right to left), and replace i f and ok
by their definitions, to obtain

n≥0 ⇒ x′=x×2n ∧ t′≤t+n
⇐ (n>0 ⇒ x′=x×2n ∧ t′≤t+n) ∧ (n=0 ⇒ x′=x ∧ n′=n ∧ t′=t)
which is clearly a theorem.

2 Notation

Here are all the notations used in this paper, arranged by precedence level.
0. 0 1 2 ∞ x y () [] numbers, booleans, variables, brackets
1. fx application, indexing
2. 2x exponentiation
3. × multiplication
4. + – addition, subtraction
5. = < > ≤ ≥ comparisons
6. ¬ negation
7. ∧ conjunction
8. ∨ disjunction
9. ⇒ ⇐ implications
10. := if then else while do for do assignment, conditional, loops
11. ∀· ∃· ; quantifications, sequential composition
12. = ⇒ ⇐ equation, implications

1498 Eric C.R. Hehner and Andrew M. Gravell

Superscripting serves to bracket all operations within it. The infix operator –
associates from left to right. The infix operators × + ∧ ∨ ; are associative (they
associate in both directions). On levels 5, 9, and 12 the operators are continuing; for
example, a=b=c neither associates to the left nor associates to the right, but means
a=b ∧ b=c . On any one of these levels, a mixture of continuing operators can be
used. For example, a≤b<c means a≤b ∧ b<c . The operators = ⇒ ⇐ are
identical to = ⇒ ⇐ except for precedence. Square brackets [] universally
quantify over all state variables (initial and final values), including time.

We use σ to stand for all the unprimed variables, σ′ for primed versions of the
same variables, and σ′′ for double-primed versions. If e is an expression in
unprimed variables, then e′ is the same expression as e but with primes on all the
variables, and e′ ′ has double-primes on all the variables. If P is a specification (a
boolean expression in unprimed and primed variables), then Pσσ′′ is the same as P
but with all its unprimed variables replaced with the corresponding double-primed
variables.

3 Least Fixpoints

Least fixpoints are a standard way to define the semantics of loop constructs. “Least”
means least refined, so in the context of this paper it means least strong; to avoid
confusion about the ordering, we shall say “weakest”. The while-loop can be defined
by the following two axioms.

while b do S = i f b then (S ; while b do S) e l se ok
[W = i f b then (S ; W) e l se ok] ⇒ [W ⇒ while b do S]

The first axiom says that while b do S is a fixpoint of the function (in variable
W)

i f b then (S ; W) e l se ok
The second axiom says that while b do S is weaker than or equal to any fixpoint of
that function. Together, they say that while b do S is the weakest fixpoint.

In place of fixpoints, we can use prefixpoints to define the semantics of loop
constructs. The while-loop can be defined by the following two axioms.

while b do S ⇒ i f b then (S ; while b do S) e l se ok
[W ⇒ i f b then (S ; W) e l se ok] ⇒ [W ⇒ while b do S]

The weakest fixpoint and weakest prefixpoint definitions are equivalent, but the latter
may be preferred because, from it, the former is easily proven (algebraically), but from
the former the proof of the latter is harder (topological).

When we include time among the observable properties of a computation, we can
strengthen our loop semantics by using the weakest progressive prefixpoint [9]. This
time we define the while-loop as follows.

while b do S ⇒ t′≥t
while b do S ⇒ i f b then (S ; t:= t+1; while b do S) e l se ok

[W ⇒ t′≥t] ∧ [W ⇒ i f b then (S ; t:= t+1; W) e l se ok]
⇒ [W ⇒ while b do S]

This definition is not equivalent to the previous two. With it we can prove
while do ok = t′=∞

1499Refinement Semantics and Loop Rules

which says sensibly that the loop takes infinite time, whereas the previous two say
while do ok =

which tells us nothing useful. The only disadvantage of the weakest progressive
prefixpoint is that it is tied to the particular measure of time that counts iterations,
whereas the others can be used with a real-valued time variable that measures the real
execution time.

4 Refinement Semantics

All three of the least fixpoint semantics (weakest fixpoint, weakest prefixpoint,
weakest progressive prefixpoint) say what a loop is by saying how it can be
implemented (or refined). For example, the axiom

[W ⇒ i f b then (S ; W) e l se ok] ⇒ [W ⇒ while b do S]
says that while b do S can be implemented (refined) by W if

W ⇒ i f b then (S ; W) e l se ok
Refinement semantics says what a loop is by saying what it implements (or refines).
Whereas a least fixpoint semantics tells the implementers what they want to know,
refinement semantics tells programmers what they want to know in order to use loops
as programming notations.

As a first effort at refinement semantics, we might try
while b do S ⇐ i f b then (S ; while b do S) e l se ok
[W ⇐ i f b then (S ; W) e l se ok] ⇒ [W ⇐ while b do S]

making while b do S the greatest (strongest) postfixpoint. The second of these
axioms says that while b do S implements (refines) W if

W ⇐ i f b then (S ; W) e l se ok
With this axiom alone, while b do S might just be , but according to the first
axiom it must be implemented (refined) by its first unrolling. Unfortunately, that
definition sometimes makes while b do S unimplementable (even when S is
implementable). Restricting W to be implementable and insisting that while b do
S be implementable is unfortunately inconsistent. Dropping the first axiom and
restricting W to be implementable in the second, we can still prove

x′=2 ∧ t′=∞ ⇐ while do t:= t+1
By itself, this is not a problem. Although it may be strange to say that an infinite
loop results in a final value of 2 for variable x , this final value is promised only at
time ∞ when no-one can observe the contrary. But we can equally well prove

x′=3 ∧ t′=∞ ⇐ while do t:= t+1
and hence, by boolean algebra,

⇐ while do t:= t+1
and so, by transitivity,

x′=2 ∧ t′=t ⇐ while do t:= t+1
which promises a final value of 2 for variable x at the present time, when we can
easily observe the contrary. Greatest fixpoints just don't work.

To avoid all these problems and still provide a semantics oriented toward
programming rather than implementation, we define the refinement semantics of
while as follows. Let

1500 Eric C.R. Hehner and Andrew M. Gravell

W ⇐ while b do S
be an abbreviation (syntactic sugar) for the refinement

W ⇐ i f b then (S ; W) e l se ok
Refinement semantics does not ascribe any meaning to the while-loop by itself, but
only to the refinement.

As an example, we previously proved
n≥0 ⇒ x′ = x×2n ∧ t′ ≤ t+n

⇐ i f n 0 then (x:= x×2; n:= n–1; t:= t+1; n≥0 ⇒ x′=x×2n ∧ t′≤t+n) e l se ok
hence refinement semantics says

n≥0 ⇒ x′ = x×2n ∧ t′ ≤ t+n
⇐ while n 0 do (x:= x×2; n:= n–1; t:= t+1)

Programming constructs are required to be monotonic, which means for the
while-loop

[P⇒Q] ⇒ [while b do P ⇒ while b do Q]
Since refinement semantics does not give a meaning to the while-loop, we cannot
prove monotonicity in this form. Instead we can prove monotonicity in the form

[W ⇐ while b do P] ∧ [P ⇐ Q] ⇒ [W ⇐ while b do Q]
which is exactly the Law of Stepwise Refinement used by programmers to refine a
specification in a sequence of steps. Similarly we can prove the Law of Partwise
Refinement

[W ⇐ while b do P] ∧ [X ⇐ while b do Q]
⇒ [W∧X ⇐ while b do P∧Q]

which allows programmers to write a specification in parts, refine the parts separately
(with the same structure), and then combine the refinements to get a solution to the
combined specification.

5 Comparison of Least Fixpoint and Refinement Semantics

If the body of a loop does not decrease variable x , then the loop does not decrease
x . The refinement

x′≥x ⇐ while b do x:= x+1
is an easy theorem by refinement semantics, but not a theorem at all by any of the
least fixpoint semantics. The problem is that the loop condition b might be and
the loop execution is infinite. It may seem reasonable to refrain from concluding
anything about final values after an infinite computation, but

t′≥t ⇐ while b do t:= t+1
is reasonable even if the computation is infinite. It is easily provable by refinement
semantics. It is an axiom in weakest progressive prefixpoint semantics. It is not
provable by weakest fixpoint semantics, nor (of course) by weakest prefixpoint
semantics.

The next example
x<0 ⇒ t′=∞ ⇐ while x 0 do (x:= x–1; t:= t+1)

informs us that for negative initial x , the computation is infinite. This too is easily
provable by refinement semantics, provable with difficulty by weakest progressive
prefixpoint semantics, but not provable by weakest fixpoint semantics, nor (of

1501Refinement Semantics and Loop Rules

course) by weakest prefixpoint semantics.
The final example for the purpose of comparison

t′=3 ⇐ while do t:= t+1
says, unreasonably, that this computation will end at time 3. To their credit, it is not
provable by any of the least fixpoint semantics. To its discredit, it is provable by
refinement semantics. However, refinement semantics says that this is just an
abbreviation for

t′=3 ⇐ i f then (t:= t+1; t′=3) e l se ok
and as stated earlier, to consider that t′=3 is implemented by this recursion, it must
first be implementable. Since it is not, it is excluded from consideration.

As a practical matter, it is convenient to be able to prove invariance (safety)
properties without having to prove termination (or liveness) first. Refinement
semantics allows this separation of concerns; the various least fixpoint semantics do
not. With the addition of communication (input and output, not covered in this
paper, see [4]), nonterminating executions can perform useful computation, so a
semantics that does not insist on termination is useful.

6 Variant

A variant v is an expression in unprimed variables, together with an ordering <
satisfying the well-founded induction axiom:

[(v′<v; ¬P) ∨ P] ⇒ [P]
or, more verbosely [2],
(0) [(∀σ′′· v′ ′<v ⇒ Pσσ′′) ⇒ P] ⇒ [P]
When specialized to the natural numbers,

(∀n· (∀m · m<n ⇒ Pm) ⇒ Pn) ⇒ (∀n· Pn)
it is sometimes called “course-of-values induction” or “Noetherian induction”.

When the body of a loop decreases a variant, refinement semantics is a consequence
of least fixpoint semantics. All we need is the prefixpoint axiom
(1) while b do v′<v ⇒ i f b then (v′<v; while b do v′<v) e l se ok
Now suppose
(2) S ⇐ i f b then (v′<v; S) e l se ok
From (0), (1), and (2) we can prove
(3) S ⇐ while b do v′<v
Proof: We start with what we want to prove.

[S ⇐ while b do v′<v] use (0) with (3) as P
⇐ [(∀σ′′· v′ ′<v ⇒ (S ⇐ while b do v′<v)σσ′′) ⇒ (S ⇐ while b do v′<v)]
To prove this, we prove the final implication, making use of its context (the other
information on the same line) when necessary.

S use (2)
⇐ i f b then (v′<v; S) e l se ok expand the ;
= i f b then (∃σ′′· v′ ′<v ∧ Sσσ′′) e l se ok strengthen Sσσ′′ using context
⇐ i f b then (∃σ′′· v′ ′<v ∧ (while b′ ′ do v′<v′ ′)) e l se ok contract to ;
= i f b then (v′<v; while b do v′<v) e l se ok use (1)
⇐ while b do v′<v

1502 Eric C.R. Hehner and Andrew M. Gravell

Thus, in the presence of a variant, refinement semantics is sound relative to fixpoint
semantics. In fact, in the presence of a variant, there is exactly one fixpoint, and all
postfixpoints are weaker than or equal to the fixpoint. Although the loop body
v′<v appears to do nothing but decrease the variant, the result generalizes to loops
whose bodies do other work while decreasing the variant (the variant v and its
relation < can be defined so that v′<v includes useful work). Although the result
has been stated and proven for while-loops, it generalizes to any recursion in which
each recursive call occurs in a monotonic context and the variant is decreased before
the call.

7 Rule of Invariants and Variants

Since the least fixpoint semantics is oriented to implementation rather than
programming, programmers are not able to use it directly. Instead, they have used
rules that can be derived from it. The best-known rule for the use of while-loops is
the Rule of Invariants and Variants. The version in [8] is as follows: Let I (the
invariant) be a boolean expression in unprimed variables, and let v (the variant) be
an integer expression in unprimed variables. Then

I ⇒ I′ ∧ ¬b′ ⇐ while b do I ∧ b ⇒ I′ ∧ 0≤v′<v
If the body of the loop maintains the invariant and decreases the variant but not below
0 , then the loop maintains the invariant and negates the condition.

The Rule of Invariants and Variants is a special case of the refinement semantics.
It is easy to prove

I ⇒ I′ ∧ ¬b′ ⇐ i f b then (I ∧ b ⇒ I′ ∧ 0≤v′<v; I ⇒ I′ ∧ ¬b′) e l se ok
but that doesn't prove termination. To use refinement semantics to prove that the
variant gives termination, we augment the specification with 0≤v ⇒ t′ ≤ t+v , and
add t:= t+1 to the loop body. We prove

I ∧ 0≤v ⇒ I′ ∧ ¬b′ ∧ t′ ≤ t+v
⇐ while b do (I ∧ 0≤v ∧ b ⇒ I′ ∧ 0≤v′<v; t:= t+1)
by proving

I ∧ 0≤v ⇒ I′ ∧ ¬b′ ∧ t′ ≤ t+v
⇐ i f b

then (I ∧ 0≤v ∧ b ⇒ I′ ∧ 0≤v′<v; t:= t+1; I ∧ 0≤v ⇒ I′ ∧ ¬b′ ∧ t′ ≤ t+v)
e l se ok

The proof is easy and is omitted.
It is well-known that the Rule of Invariants and Variants is incomplete; for

example, it cannot be used as it stands to prove
x′=x ⇐ while do

because x′=x cannot be rewritten in the required form. The standard work-around is
to allow a slightly different form of the rule, using so-called “logical constants”.
Instead of the preceding, we prove

x′=x ⇐ ∀X · x=X ⇒ x′=X
∀X · (x=X ⇒ x′=X ⇐ while do)

1503Refinement Semantics and Loop Rules

Here is an example of the use of the Rule of Invariants and Variants.
n≥0 ⇒ x′=2n ⇐ x:= 1; n≥0 ⇒ x′ = x×2n

n≥0 ⇒ x′ = x×2n ⇐ while n 0 do (x:= x×2; n:= n–1)
To put the specification n≥0 ⇒ x′ = x×2n in the proper form to use the rule, we
need to find an invariant and a variant. The variant is obvious: n . For the invariant,
we need a “logical constant” C ; the invariant is then 0≤n ∧ x×2n=C .

n≥0 ⇒ x′=2n ⇐ x:= 1; ∀C· 0≤n ∧ x×2n=C ⇒ 0≤n′ ∧ x′×2n′=C ∧ n′=0
∀C· (0≤n ∧ x×2n=C ⇒ 0≤n′ ∧ x′×2n′=C ∧ n′=0

⇐ while n 0 do 0≤n ∧ x×2n=C ∧ n 0
⇒ 0≤n′ ∧ x′×2n′=C ∧ 0≤n′<n)

0≤n ∧ x×2n=C ∧ n 0 ⇒ 0≤n′ ∧ x′×2n′=C ∧ 0≤n′<n ⇐ x:= x×2; n:= n–1
For this very ordinary example, the Rule of Invariants and Variants has made the proof
considerably harder than the refinement semantics proof.

There is a hidden subtlety in the Rule of Invariants and Variants: the body is
unimplementable unless I∧b ⇒ 0<v . The rule is still sound without this
constraint, but then the loop body cannot be implemented.

For further special cases of this rule worth mentioning see [3].

8 Terminating While-Loop Rule

Early work [5,1] presented semantics and proof rules by a pair of boolean expressions
(then called “predicates”). One expression of the pair characterized initial states, and
the other characterized final states. It was soon realized that most often the final state
depends on the initial state, and “logical constants” were needed to relate the two
states. All current work (VDM, Z, B, TLA, refinement calculus) uses two related sets
of variables (undecorated and decorated) in the same boolean expression, making
“logical constants” unnecessary. An invariant is a boolean expression about one state;
it is a remnant of the early work. The Rule of Invariants and Variants is leftover from
the days when the initial and final states had to be described separately and then related
by “logical constants”. There is no longer any need to do so. We now present a new
rule, the terminating while-loop rule, which is simpler, more convenient, and more
general.

At the same time as we get rid of invariants, independently we take the
opportunity to relabel the variant as an upper bound on the remaining execution time,
measured as a count of iterations. The Rule of Invariants and Variants uses this time
bound (the variant) to imply termination, then throws it away; it does not appear in
the loop specification I ⇒ I′ ∧ ¬b′ . But a time bound is interesting information in
its own right, so we won't throw it away.

Let f be a nonnegative real-valued function of the state σ and let δ be a
positive real constant. Then

W ∧ t′≤t+fσ ⇐ while b do S
if

W ∧ t′≤t+fσ ⇐ i f b then (S ; W ∧ t′≤t+fσ+δ) e l se ok
To use this rule on our example problem we must restrict n to be a natural

variable. Then

1504 Eric C.R. Hehner and Andrew M. Gravell

x′ = x×2n ∧ t′ ≤ t+n ⇐ while n 0 do (x:= x×2; n:= n–1)
because

x′ = x×2n ∧ t′ ≤ t+n
⇐ i f n 0 then (x:= x×2; n:= n–1; x′ = x×2n ∧ t′ ≤ t+n+1) e l se ok

The terminating while-loop rule can be proven both by refinement semantics
(trivially) and by least fixpoint semantics (harder).

9 Loops with Exits

Loops with intermediate or deep exits are awkward to define by least fixpoint
semantics, but quite straightforward by refinement semantics. For example, to prove

L ⇐ l oop
P;
ex i t 1 when b; exit one level of loop
Q;
l oop

ex i t 2 when c; exit two levels of loop
R ;
ex i t 1 when d exit one level of loop

end
end

find a specification M for the inner loop and prove
L ⇐ P; i f b then ok e l se (Q; M; L)
M ⇐ i f c then ok e l se (R ; i f d then L e l se M)

Refinement semantics requires a specification for every loop, which is recommended
programming practice anyway.

10 For-Loops

The for-loop has usually been treated as a syntactic sugar for a while-loop, given
neither a semantics of its own nor rules for its use. We now offer four rules for the
use of for-loops; one of them is taken from [4], and is similar to [6]; the other three
are new. Any of the three new rules can serve as the refinement semantics of the for-
loop.

We shall use the syntax
for i:= m ,..n do S i

for controlled iteration, where i is a fresh identifier, not assignable within the loop
body, m and n are integer expressions evaluated once, m≤n , and S i is a
specification indexed by i . The asymmetric notation m , . .n indicates that m is
included and n excluded, so there are n–m iterations. This asymmetry simplifies
the rules for the use of for-loops.

1505Refinement Semantics and Loop Rules

Rule I (Invariant). Our first for-loop rule is taken from [4]. Let Ii be a
boolean expression in unprimed variables indexed by i . Then

m≤n ∧ Im ⇒ I′n ⇐ for i:= m , . .n do m≤i<n ∧ Ii ⇒ I′(i+1)

Here is an example of the use of Rule I. Let Ii = x=2i .
n≥0 ⇒ x′=2n ⇐ x:= 1; 0≤n ∧ x=20 ⇒ x′=2n

0≤n ∧ x=20 ⇒ x′=2n ⇐ for i:= 0,..n do 0≤i<n ∧ x=2i ⇒ x′=2i+1

0≤i<n ∧ x=2i ⇒ x′=2i+1 ⇐ x:= x×2

Like the while-loop Rule of Invariants and Variants, Rule I is incomplete; for
example, it cannot be used as it stands to prove

x′=x ⇐ for i:= 0,..0 do
because x′=x cannot be rewritten in the required form. However, Rule I becomes
complete if we allow the use of “logical constants”. Instead of the preceding, we
prove

x′=x ⇐ ∀X · x=X ⇒ x′=X
∀X · (x=X ⇒ x′=X ⇐ for i:= 0,..0 do)

As in the Rule of Invariants and Variants, the invariant is a vestige of earlier
programming methods, and is completely superseded by the following three rules.

Rule F (Forward). Let Fi be a specification indexed by i . Then
m≤n ⇒ Fm ⇐ for i:= m , . .n do m≤i<n ⇒ S i

if
∀i: m ,..n· (S i; F(i+1)) ⇒ Fi
ok ⇒ Fn

Specification Fi describes what has yet to be done at iteration i . At the beginning,
everything (Fm) has yet to be done. At iteration i , Fi will be done by doing S i
and then F(i+1) . At the end, Fn will be done by doing nothing more (ok).

Here is an example of the use of Rule F. Define Fi = x′=x×2n–i . Then
n≥0 ⇒ x′=2n ⇐ x:= 1; 0≤n ⇒ x′=x×2n

0≤n ⇒ x′=x×2n ⇐ for i:= 0,..n do x:= x×2
because

∀i: 0,..n· (x:= x×2; x′=x×2n–(i+1)) ⇒ x′=x×2n–i

ok ⇒ x′=x×2n–n

The soundness of Rule F can be demonstrated by correspondence with the
following computation.

Fm where
Fi ⇐ i f i=n then ok e l se (S i; F(i+1))

which says: execute procedure F with argument m , where procedure F with
parameter i is implemented as i f i=n then ok e l se (S i; F(i+1)) . This is the
standard while-loop definition of a for-loop. If we accept that this execution is what
we intended, then Rule F is sound.

To show the completeness of Rule F, let Fi = S i; S (i+1); ...; S (n–1) . Then
Fm specifies the for-loop exactly.

1506 Eric C.R. Hehner and Andrew M. Gravell

Rule B (Backward). Let Bi be a specification indexed by i . Then
m≤n ⇒ Bn ⇐ for i:= m , . .n do m≤i<n ⇒ S i

if
ok ⇒ Bm
∀i: m ,..n· (Bi; S i) ⇒ B(i+1)

Specification Bi describes what has been done up to iteration i . At the beginning,
when we have done nothing (ok), we have done Bm . When we have done Bi and
then we do S i , then we have done B(i+1) . At the end we have done everything
(Bn).

Here is an example of the use of Rule B. Define Bi = x′=x×2i . Then
n≥0 ⇒ x′=2n ⇐ x:= 1; 0≤n ⇒ x′=x×2n

0≤n ⇒ x′=x×2n ⇐ for i:= 0,..n do x:= x×2
because

ok ⇒ x′=x×20

∀i: 0,..n· (x′=x×2i; x:= x×2) ⇒ x′=x×2i+1

The soundness of Rule B can be demonstrated by correspondence with the
following computation.

Bn where
Bi ⇐ i f i=m then ok e l se (B(i–1); S (i–1))

This computation dives into its recursions from n down to m , executing the S i
on the way back up. If we accept this as an execution of the for-loop, then Rule B is
sound.

To show the completeness of Rule B, let Bi = S m; S (m+1); ...; S (i–1) . Then
Bn specifies the for-loop exactly.

Rule G (General). Let Gik be a specification indexed by i and k . Then
m≤n ⇒ Gmn ⇐ for j:= m , . .n do m≤j<n ⇒ Gj(j+1)

if
m=n ∧ ok ⇒ Gmn
∀i, j, k· m≤i<j<k≤n ∧ (Gij; Gjk) ⇒ Gik

Here is an example of the use of Rule G. Define Gik = x′=x×2k–i . Then
n≥0 ⇒ x′=2n ⇐ x:= 1; 0≤n ⇒ x′=x×2n

0≤n ⇒ x′=x×2n ⇐ for j:= 0,..n do 0≤j<n ⇒ x′=x×2(j+1)–j

0≤j<n ⇒ x′=x×2(j+1)–j ⇐ x:= x×2
because

m=n ∧ x′=x ⇒ x′=x×2n–m

∀i, j, k· 0≤i<j<k≤n ∧ (x′=x×2j–i; x′=x×2k–j) ⇒ x′=x×2k–i

The soundness of Rule G can be demonstrated by correspondence with the
following computation.

i f m=n then ok e l se Gmn where
Gik ⇐ i f i+1=k then S i e l se (i<j′<k; Gij; Gjk)

If we accept this as an execution of the for-loop, then Rule G is sound.
To show the completeness of Rule G, let Gik = S i; S (i+1); ...; S (k–1) . Then

Gmn specifies the for-loop exactly.

1507Refinement Semantics and Loop Rules

11 Comparison of the For-Loop Rules

Each rule asks us to think about the computation in a different way.
Rule I: what is true between iterations?
Rule F: what is true of a final segment of the iterations?
Rule B: what is true of an initial segment of the iterations?
Rule G: what is true of an arbitrary segment of the iterations?

Rules F and B require us to choose a direction; rules I and G are directionless. Rules
F, B, and G are like the definition of lists: we may construct lists by appending
items, prepending items, or catenation of lists.

Each of the rules F, B, and G is a special case of each of the other two, so all three
of them are sound and complete if one of them is. In one respect, Rule G seems to
demand more than necessary: it asks us to prove (Gij; Gjk) ⇒ Gik for all j
between i and k , when one such j is enough. Rules B and F are the special cases
of Rule G when j is chosen to be either i+1 or k–1 . But we have to specify the
effect of the for-loop from m to n anyway, and so it may be easy to generalize the
specification to an arbitrary segment.

Rules F and B ask us to specify a single step (S i) in addition to a segment (Fi
or Bi); Rules I and G do not, since Ii⇒I(i+1) and Gi(i+1) are single steps. We
can rewrite Rule F so that it does not require us to specify S i , as follows.

m≤n ⇒ Fm ⇐ for i:= m , . .n do m≤i<n ⇒ ¬(¬Fi; F(i+1)∪)
where ∪ is transposition (put primes on all unprimed variables and simultaneously
remove primes from all primed variables). The expression ¬(¬Fi; F(i+1)∪) is
known as the weakest prespecification of Fi and F(i+1) [7]. We can similarly
rewrite Rule B so that it does not require us to specify S i , as follows.

m≤n ⇒ Bm ⇐ for i:= m , . .n do m≤i<n ⇒ ¬(Bi∪; ¬B(i+1))
The expression ¬(Bi∪; ¬B(i+1)) is the weakest postspecification of Bi and
B(i+1) . We did not do so, judging that the specification of S i was the lesser evil.

For the record, the rules remain valid when n=∞ . Also for the record, the for-
loop rules could be stated more simply as follows:

Rule I: Im ⇒ I′n ⇐ for i:= m , . .n do Ii ⇒ I′(i+1)
Rule F: Fm ⇐ for i:= m , . .n do S i
Rule B: Bn ⇐ for i:= m , . .n do S i
Rule G: Gmn ⇐ for i:= m , . .n do Gi(i+1)

The missing parts can be incorporated into the remaining parts. The way we have
stated the rules is longer but more convenient for use.

12 Examples

In practice, the differences among the rules may be small. The most common use of
a for-loop is to do something to every item (element) of a list (array). As an
example, let's just add 1 to every item of list L . Formally,

#L′=#L ∧ (∀j: 0,..#L· L′j = Lj + 1)
For Rule I we have to introduce “logical constant” M to be the initial value of L .
The four rules require us to invent the following four specifications.

1508 Eric C.R. Hehner and Andrew M. Gravell

Ii = #L=#M ∧ (∀j: 0,..i· Lj = Mj + 1) ∧ (∀j: i,..#L· Lj = Mj)
Fi = #L′=#L ∧ (∀j: 0,..i· L′j = Lj) ∧ (∀j: i,..#L· L′j = Lj + 1)
Bi = #L′=#L ∧ (∀j: 0,..i· L′j = Lj + 1) ∧ (∀j: i,..#L· L′j = Lj)
Gik = #L′=#L ∧ (∀j: 0,..i· L′j = Lj) ∧ (∀j: i, . .k· L′j = Lj + 1)

∧ (∀j: k,..#L· L′j = Lj)
Our next example is cubing by addition.

x′=n3

⇐ x:= 0; y:= 1; z:= 6; for i:= 0;..n do (x:= x+y; y:= y+z; z:= z+6)
The four rules require us to invent the following four specifications.

Ii = x=i3 ∧ y = 3i2+3i+1 ∧ z = 6i+6
Fi = x=i3 ∧ y = 3i2+3i+1 ∧ z = 6i+6 ⇒ x′=n3 ∧ y′ = 3n2+3n+1 ∧ z′ = 6n+6
Bi = x=0 ∧ y=1 ∧ z=6 ⇒ x′ = i3 ∧ y′ = 3i2+3i+1 ∧ z′ = 6i+6
Gik = x′ = x+k3–i3 ∧ y′ = y+3(k2–i2)+3(k–i) ∧ z′ = z+6(k–i)

In those two examples at least, there is little to help us decide which rule is best.

13 Conclusions

Refinement semantics is an alternative to least fixpoint semantics that is more useful
for programming. From it we derived a variety of rules for while-loops, for-loops,
and loops with intermediate and deep exits. We illustrated the use of these rules with
examples.

The difficulty of finding invariants is one of the deterrents to wider adoption of
formal methods. Invariants are a vestige of the earliest work on loop rules, which
used two one-state expressions. The invariant rules are entirely superseded by
simpler, more general, easier-to-use rules.

The variant, used to prove loop termination, is entirely superseded by the more
general, easier-to-use time variable. A variant is equivalent to the special case of a
time variable that counts loop iterations. With a time variable, we can measure time
any way we want, including real time, and no special rule is required to prove time
bounds.

Least fixpoint semantics quantifies over specifications, and so it is second order.
Refinement semantics is absolutely first order. It achieves this by treating loop
constructs as second-class citizens; they are merely a “syntactic sugar” for a recursive
refinement. Whether by least fixpoint or refinement semantics, loop constructs are
given meaning by translation to a recursive form. If we use formal methods for
programming, it is easier to refine to the recursive form than to the loop constructs;
a compiler can then compile the recursive form to an efficient machine code with
branching. It is therefore appropriate to treat loop constructs as second-class: they are
neither necessary nor convenient.

1509Refinement Semantics and Loop Rules

Acknowledgments

We thank Victor Kwan, Emil Sekerinski, and Michael Butler for substantive
contributions to this paper. The first author thanks IFIP Working Groups 2.1 and 2.3
for being his research fora, and the University of Southampton for support and
hospitality during the writing of this paper.

References

1 . E.W.Dijkstra: a Discipline of Programming, Prentice-Hall, New Jersey, 1976
2 . E.W.Dijkstra, A.J.M.vanGasteren: “a Simple Fixpoint Argument without the

Restriction to Continuity”, Acta Informatica v.13 p.1-7, 1986
3 . A.M.Gravell: “Simpler Laws for the Introduction of Loops”, ECS, University of

Southampton, 1996
4 . E.C.R.Hehner: a Practical Theory of Programming, Springer-Verlag, New York, 1993
5 . C.A.R.Hoare: “an Axiomatic Basis for Computer Programming”, CACM 12(10), 1969
6 . C.A.R.Hoare: “a Note on the f o r statement”, BIT v.12 n.3 p.334-341, 1972
7 . C.A.R.Hoare, J.He: “the Weakest Prespecification”, Fundamenta Informaticae v.9 p.51-

84, 217-252, 1986
8 . C.C.Morgan: Programming from Specifications, second edition, Prentice-Hall,

London, 1994
9 . T.S.Norvell: “Predicative Semantics of Loops”, Algorithmic Languages and Calculi ,

Chapman-Hall, 1997

1510 Eric C.R. Hehner and Andrew M. Gravell

J. Wing, J. Woodcock, J. Davies (Eds.): FM'99, Vol. II, LNCS 1709, pp. 1511-1526, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Lessons from the Application of Formal Methods
 to the Design of a Storm Surge Barrier Control System

Michel Chaudron1, Jan Tretmans2 & Klaas Wijbrans1

1CMG Public Sector B.V., Division Advanced Technology,
 P.O. Box 187, 2501 CD The Hague, The Netherlands

{michel.chaudron, klaas.wijbrans}@cmg.nl

 2 University of Twente, Department of Computer Science,
 Formal Methods & Tools group,

P.O. Box 217, 7500 AE Enschede, The Netherlands
tretmans@cs.utwente.nl

Abstract We describe the experience of the industrial application of formal
methods in the development of a mission critical system. We give a description
of the system that was to be developed and the methods that were employed to
realize the high level of reliability that was required. In this paper we will
describe which formal techniques were used, how these techniques were used,
the influence of formal methods on the development process and
recommendations for managing the use of formal methods.

1. Introduction

The control of more and more processes that are critical to businesses and society are
trusted to computer systems. This calls for methods for the engineering of systems
with very high quality requirements such as reliability, safety and security. The
developments in this area are aimed at improving the quality of the engineering
process (such as ISO 9001, Capability Maturity Model (CMM) [Pau94]) as well as at
improving the quality of the product (such as formal methods).

The application of formal methods in industrial software development projects is
gaining maturity, but still raises a number of technical and managerial questions to
which no definitive answers have been given. In this paper we will touch upon a
number of technical and managerial questions related to the use of formal methods.
These questions were encountered in the course of the engineering of a safety-critical
system in a fixed-time, fixed-price project where the project members had had prior
experience with software engineering, but hardly any experience with formal
methods. The experiences described in this paper are based on interviews with the
people involved in the development of the system. The issues raised in these
interviews were mainly non-technical and are concerned with how engineers and
managers experienced the use of formal methods. No attempts to quantification or
measurements are made. For technical issues with respect to the formal techniques
used we refer to [Kar97, Kar98].

1512 Michel Chaudron, Jan Tretmans, and Klaas Wijbrans

This paper is organized as follows: in section 2 we describe the context of the system
that was to be built, the systems high quality requirements and the approach used in
the engineering of the system. In section 3 we describe our evaluation of the use of
formal methods in this process. The lessons learned from this project are described in
section 4 and conclusions in section 5.

2. Case Description: The BOS System

BOS (Dutch: Beslis & Ondersteunend Systeem, i.e., Decision & Support System) is
the system that controls the storm surge barrier in the Nieuwe Waterweg near
Rotterdam. BOS was developed by CMG, division Advanced Technology. In this
section we describe the storm surge barrier that BOS has to control. This context of
the project explains the very high requirements that were put on the reliability and
safety of the BOS system. Because of the special nature of this system, a dedicated
system engineering process was devised for the project. This dedicated engineering
process was ISO 9001 certified.

2.1 The Battle with the Sea

The Netherlands are located in a low delta by the sea, into which important rivers
such as the Rhine and IJssel flow. The history of The Netherlands has been shaped by
the struggle against the sea. The great flood disaster of 1953 in Zeeland was a rude
shock to the Netherlands, demonstrating yet again that the country was not safe. It
was shortly after this flood disaster that the Delta Plan was drafted, with measures to
prevent such calamities from occurring in the future. This Delta Plan was a defense
plan which involved the building of a network of dams in Zeeland and upgrading the
existing dikes to a failure rate of 10-4, i.e., one flooding every 10,000 years.

The realization of the Delta Plan started soon after 1953 and in 1986 the impressive
dam network in Zeeland was finished. The weak point in the defence was now the
Nieuwe Waterweg. The Nieuwe Waterweg connects the main port of Rotterdam with
the North Sea, hence it is an important shipping route. Because the Nieuwe Waterweg
is completely open and large parts of Rotterdam are situated below sea level, it forms
a major risk for flooding of Rotterdam. Moreover, the Nieuwe Waterweg is a major
outlet for water coming from the Rhine.

To protect Rotterdam from flooding, a storm surge barrier, called the Maeslant
Kering, was constructed in the Nieuwe Waterweg. An impression of the barrier is
given in Figure 1.

 Lessons from the Application of Formal Methods 1513

Fig. 1. Top view of the Maeslant Kering near Hoek van Holland. At the top of the figure the
Nieuwe Waterweg flows to the North Sea; in the bottom direction is Rotterdam. The Nieuwe
Waterweg is about 300m wide.

The requirements that Rotterdam should be protected from flooding, that its port
should be reachable at all times (except at unacceptable weather conditions), and that
the water coming from the Rhine should not cause Rotterdam to be flooded from the
inside, has led to a design of a movable barrier. The barrier consists of two hollow
floating walls, called sector doors, connected with steel arms to pivot points on both
banks. Each sector door, which should resist the huge forces of the incoming water, is
as large as the Eiffel Tower. During normal weather conditions the two sector doors
rest in their docks. Only when storms are expected with danger of flooding the two
sector doors are closed. The closing procedure consists of several steps. First the
docks are filled with water, so the doors start to float, then the doors are moved to the
centre of the Nieuwe Waterweg and then they are filled with water until they touch
the bottom. A big advantage of the design of the movable barrier is that the
construction and maintenance can be done without interfering with the ship traffic.
For animation and more information, see the internet-site of the Dutch Ministry of
Transport, Public Works and Water Management [RWS].

The main requirement on the barrier is that it is as reliable as a dike. Careful failure
analysis showed that a manual control of this barrier would undermine the reliability.
For complex tasks − like deciding when to close the barrier and then closing it −
normal human beings have a failure probability of one in thousand. Therefore it was
considered to be safer to let a computer control the barrier.

1514 Michel Chaudron, Jan Tretmans, and Klaas Wijbrans

2.2 The BOS System

The BOS system decides autonomously about opening or closing the barrier. BOS has
the responsibility for closing the barrier when predictions indicate that the expected
water level in Rotterdam will be too high. But since Rotterdam is a major port with a
lot of ship traffic, the barrier should be closed only when really necessary and as for
as short a period as possible. An unnecessarily closed barrier will cost millions of
guilders because of restricted ship traffic, while there is also the danger of flooding
from the landside through the Rhine if its water cannot flow freely to the sea.

The design of the BOS system is an effort in linking several distinct disciplines. These
include the organizational and global overview of the system functionality and
requirements by Rijkswaterstaat (the Dutch Ministry of Transport, Public Works and
Water Management), the hydrological knowledge and model-based water level
predictions by the Waterloopkundig Laboratorium (independent research institute for
water management and control), and the controlling and automation discipline and
systems' integration knowledge by CMG.

2.3 Building a Safety Critical System

Because of the dangers and costs involved, very strict safety and reliability
requirements are imposed on the BOS software. The failure probability for not closing
the barrier when this is deemed necessary should be less than 10-4, and the failure
probability for not opening the barrier when requested should be less than 10-5. The
latter is seen as more critical because of the danger of destruction of the whole barrier
if, due to water flowing from the Rhine, the pressure at the inside, i.e., landside, of the
barrier is higher than the pressure from the seaside.

The high safety and reliability requirements make BOS a mission critical system (or
safety critical system) for which special care, effort and precautions should be taken
in order to guarantee its safe, reliable and correct operation. To this extent, the design
and development of the BOS software was guided by the standard IEC1508
[IEC1508]. This standard is aimed at software development for safety critical
systems. It is a best practices standard that categorizes systems according to their
safety and reliability requirements into different Safety Integrity Levels (SIL).
According to this categorization BOS belongs to the highest SIL level (SIL 4).
IEC1508 denotes methodologies, techniques and activities as “not recommended”,
“recommended”, “highly recommended”, etc. depending on SIL level. For SIL 4
inspection and reviewing, use of an independent test team and the use of formal
methods are “highly recommended”.

None of the “highly recommended” techniques can completely assure the required
safety, reliability and correctness [Bro95]. Only a carefully chosen combination of
appropriate techniques can help to increase the confidence that the system has the
required quality. This has led to the formulation of a dedicated system engineering
process depicted in Figure 2. This Figure indicates which techniques have been used
in the different phases of development.

 Lessons from the Application of Formal Methods 1515

Concept Analysis Design Realization Installation Operation Decommission

s a age e t

Co f g at o a age e t

eq e e ts a age e t

o a et ods

a t To e a t es g

Cod g Sta da ds

Adva ced Test g

ev ew g a d spect o

Fig. 2. The dedicated system engineering process combines different techniques.

An integral, risk oriented approach in the system development path identifies at an
early stage the aspects of the system that are critical for carrying out the mission of
the system. These risks are managed by carrying out both process and product
measures. In the development path, a number of methods and techniques are
integrated. These are mutually supporting and bring about an effectiveness of the
whole that is greater than the sum of the parts. One of the techniques that is proposed
in the system development process and that was used in the development of the BOS
system is formal methods. The remainder of this paper concentrates on issues
concerning the practical use of formal methods in the BOS project.

The BOS system was delivered on time and within budget and is fully operational
since October 1998. Its development took three years and about 25 man-years of
effort. It resulted in 20,000 lines of formal specification and in 450,000 lines of (a
safe subset of) C++ code.

3. Putting Formal Methods into Practice

In this section we describe how formal methods were used in the engineering of the
BOS system. It should be noted that a number of observations made here hold more
generally for the use of new techniques, not only for formal methods. Moreover, not
all benefits achieved within the project can be solely attributed to the use of formal
methods because there appeared to be a synergetic effect between the different,
quality improving techniques that were applied.

1516 Michel Chaudron, Jan Tretmans, and Klaas Wijbrans

3.1 The Degree of Formality

On the grounds of the promises of formal methods and their recommendation by the
IEC 1508 standard, it was decided to investigate their use for the engineering of the
BOS system. It was thought that most benefits of the use of formal methods were to
be gained if they would be used as an integral part of the system engineering process.
This is a clear difference with many other projects where formal methods are used in
a parallel or in a “shadow” project. Important consequences of integrating formal
methods in the critical path of the engineering process are:

− All project members had to acquire working knowledge of formal methods. Hence
a phase of learning and acceptance becomes an integral part of the engineering
process.

− The degree of formality that is achieved is probably somewhat lower than is
typically achieved in a parallel development process because such processes
usually employ highly specialized team-members.

− At completion of the project, it is not possible to compare between processes with
and without formal methods. This complicates the evaluation of the use of formal
methods.

Central to the engineering process of the complete system was the reduction of risks.
For the software system, the following risks were identified:

− The BOS system consists of multiple concurrent processes. This incurs the risks of
deadlock or the use of ‘bad data’ due to synchronization issues.

− The incomplete specification of the behaviour of the system could lead to
unexpected behaviour in situations that had not been foreseen. Experience had
shown that situations that are typically overlooked are error handling and error
recovery.

− Interface faults may occur if interfaces are not specified completely or when they
lack robustness.

The use of formal methods was aimed at reducing the probability of the manifestation
of these risks. To this end, the degree of formality used was adjusted to the degree of
criticality of the different parts of the system. The following levels of formality were
identified:

1. Formal annotation of “informal” specifications in order to increase precision and
reduce ambiguity.

2. Formal definition of specifications: the purpose is to come to a complete, precise
and unambiguous specification of a system.

3. Formal specifications as basis for informal reasoning about the system.

4. Formal specification and reasoning about system properties: mathematical
reasoning, possibly supported by tools, is employed to deduce properties of the
specification.

 Lessons from the Application of Formal Methods 1517

Most modules were specified at level 2, sometimes with informal reasoning (level 3).
This level was deemed useful for prevention and early detection of faults introduced
in the development process through miscommunication and misinterpretation between
designers, implementers and testers. In particular, it was hoped that this would aid in
reducing the faults that would occur in the integration test (when modules that have
been coded and tested individually are composed). Less critical parts of the system
were dealt with at level 1, for example, the graphical user interface. Some of the
modules that could potentially contribute to the manifestation of one of the
aforementioned risks were dealt with at a high level of formality (some at level 3 and
some (almost) at level 4). This concerned the internal process scheduling and the
communication protocols with the “outside world”.

It is important to note that only very small parts of the BOS system were dealt with at
level 4, and that for these parts only the design was considered at this level of
formality. Not a single line of program code was completely proved correct. Hence, in
the BOS approach formal methods do not guarantee complete correctness of code.
Different levels of formality and, consequently, different levels of (expected)
correctness, were considered. For some parts “a little bit of formal methods” was
applied while for other parts “a bit more formality” was used.

3.2 The Selection of Formal Methods

Once it was decided that formal methods were to be used, a selection had to be made
in favour of a (combination of) particular technique(s). The techniques had to be
suitable for modelling the aspects of the system that were considered critical.

The aspects that are addressed by a formal technique are related to the view a
technique takes on a software system. Formal techniques can be classified according
to these different views of software systems:

− the data view: which data plays a role in a system

− the functional (or input-output) view: which functions play a role in the system and
in what way do these transform the data

− the dynamic or behaviour view: in what order are functions executed

The BOS project focussed on the formalization of the behavioural and functional
views. The main candidates considered for the behavioural aspects were CSP
[Hoa85], Promela [Hol91] and LOTOS [ISO8807]. The main candidates for the
functional view were Z [Spi92] and VDM [Jon90]. The choice in favour of these
techniques was made on pragmatic grounds. The arguments that played a role in the
selection procedure were: expected learning time, familiarity of the team with a
technique and the availability (and price) of tools.

Because of its resemblance to C, it was expected that Promela was easy to learn.
Furthermore, a free validation tool called Spin, is available for Promela and can be
easily obtained [Spin]. (Free tools were important, in the first place, because there
was only a restricted budget for formal methods tools. Moreover, free tools allow

1518 Michel Chaudron, Jan Tretmans, and Klaas Wijbrans

experimenting, playing and learning without bureaucracy and without having to
convince managers of their necessity. Especially, in the more or less experimental
starting phase, it helps if tools can be obtained easily. These advantages were
considered to be more important than consistent and guaranteed level of support
provided by commercial tools.)

For the functional view, Z seemed easier to learn than VDM. Furthermore there was
some familiarity within the project team and some free tools for Z are available.
Hence, the behavioural view was modelled using Promela and the functional view
using Z.

Promela was used for modelling the interaction between processes and the interaction
between the BOS system and the “outside” world. Verification using Promela was
limited to the verification of standard properties such as the absence of deadlock and
live-lock. Furthermore, the Promela specifications were simulated. This increased
insight into system properties. The use of Promela and Spin has led to the
identification of significant errors and omissions in early designs. The use of Promela
and Spin is considered successful because (1) it helped in reducing defects and (2) it
helped in detecting defects early in the development process which reduces the effort
and cost required in later stages of development.

Z was used for specifying the functions performed by processes. A common critique
on Z is the great diversity of mathematical symbols used. In practice, this was not
considered to be a problem for learning Z. A more significant issue was the great
degree of expressive freedom of Z. The bases for Z are set theory and predicate logic.
These make Z a very powerful formalism with a great expressiveness. However, as a
result, Z allows a great deal of freedom and offers little structure for the style in which
it is to be used. In the initial phases of using Z, different people used different styles
for writing schemas and schemas were not very comprehensible. A need arose for a
common ‘style’ for using Z, which would be acceptable to all project members. The
most important issues this style had to provide were guidelines and conventions for
writing specifications and guidelines for choosing suitable (levels of) abstractions.
But the style should also take into account the needs of implementers, testers and
reviewers. Implementers prefer a style that is concrete and can be easily mapped onto
programming language constructs. Testers need clearly distinguishable, testable
constraints, and easy controllability (bringing the system in a desired state) and
observability (observing that the system is in a required state). Reviews are most
easily performed if there is a close relationship, preferably one-to-one, between the
concepts of the document to be checked and the document with respect to which it is
checked.

For the BOS project, a specification-standard − comparable to a coding-standard −
was developed. This standard constrained the use of Z and contained heuristic and
pragmatic rules for its use. Also very practical issues like layout of schemas and
naming conventions were fixed by this standard. Examples of style are a clear
separation between pre- and post-conditions for all operation schemas and a
constructive style of writing Z constraints where the new value of a variable (primed
variable) always appears at the left-hand side of an equation. The recognition of this
style-problem and the development of the standards in such a way that they satisfied

 Lessons from the Application of Formal Methods 1519

designers, reviewers, implementers and testers, have taken much time. We found that
the literature on learning and using Z did not provide sufficient support for these
issues. Moreover, the nature of these problems is such that learning by own
experience is a necessity anyhow. After the introduction of the standards, the situation
improved rapidly: specifications were written according to a similar structure and
were more easily comprehensible by implementers, reviewers and testers. From this
stage onward, it was found an important benefit of Z that programmers and testers
could use the formal specifications as a clear, precise and indisputable basis for their
work.

The tool used for Z was ZTC (Z Type Checker) [ZTC]. (The associated animator
ZANS was not used.) ZTC can only verify static properties such as syntax, variable
declarations and typing. Such a tool is essential for obtaining a reasonable level of
completeness and consistency, in particular, since large portions of errors were simple
type-errors. Other errors that were encountered were incomplete cases, i.e., not all
combinations of predicates of an operation were covered, however, these errors could
only be discovered by manual, laborious checking and not through the use of ZTC. It
was felt that tools were lacking for rewriting specifications (for instance, for rewriting
preconditions into a standard format such as disjunctive normal form) and for
(simple) proofs such as checking pre- and post-conditions and invariant properties −
which could have been used to find the incomplete cases of operations.

An important problem in the use of formal methods is the making of models, i.e.,
abstractions of reality. Choosing the level of abstraction seems to be inherently
difficult. Although this problem occurs with all modelling methods, it is more
manifest with Z than with Promela. This is probably because Promela is, as a
language, less abstract than Z: the concepts of Promela (processes, messages,
channels, etc.) are more concrete and closer to the concepts which software engineers
usually use for thinking and reasoning. The best way of learning abstraction and
modelling seems to be through practice.

3.3 Combining Promela and Z

In the BOS project, the behavioural view was modelled using Promela and the
functional view using Z, hence there was a need for combining the specifications of
the different views of the system. This was done in a fairly informal manner by using
naming conventions in Promela and Z.

The use of multiple formalisms brings along advantages as well as disadvantages. An
advantage is that the system is considered from different points of view and that
special attention is paid to connecting these views. The confrontation of the different
views increases the likelihood of finding problems or omissions in an early stage. On
the other hand, disadvantages are that the different specifications may overlap, thus
introducing possible inconsistency, or that the different specifications may leave
certain systems parts unspecified, thus introducing incompleteness. Another
disadvantage is that there is no tool support for the integrated use of Promela and Z.
Although the use of one, integrated language would have been beneficial for the BOS
project, the use of different formalisms was not considered to be a big hindrance.

1520 Michel Chaudron, Jan Tretmans, and Klaas Wijbrans

3.4 Formal Methods in the Development Process

In the BOS project, formal methods were used in the technical design phase for the
writing of formal specifications. The resulting formal specifications were used as
basis for coding and testing. In this section we describe issues related to formal
methods that arose in the different phases of the software development process.

Functional specification & technical design
A functional specification in natural language, combined with Hatley & Pirbhai kind
of diagrams [HP87], was input to the project. On the basis of this specification a
formal technical design was to be written. The formalization of the functional
specification led to the detection and resolution of many ambiguities, omissions and
errors in the functional specification. In hindsight, more errors were found through the
process of formalization (making the formal description) than in a later stage through
the validation of the formal specification. We conclude that the use of formal methods
requires precision, structure and consistency, which help in the prevention and early
detection of errors.

It takes more time to write a formal technical design than an “informal” design. This
is because more thought has to be put into details of the design. Also it is more
difficult to leave open (or hide) design decisions. The extra investment in the
formalization of a technical design is easily compensated during the implementation,
testing and maintenance phases.

Validation
Promela was used for a number of validations and simulations, in particular, of
protocols for communication between BOS and its environment. Also, a formal model
has been made of the interaction of the modules of the BOS system. These analyses
have shown the absence of deadlock and live-lock. No formal validations were
performed using Z. Only static checks and informal, manual reasoning about Z
schemas was used.

The possibilities for validation were limited by the functionality (in particular for Z)
and performance (mainly for Promela) of the available tools. For the Promela tool
Spin the state-space explosion problem was the main bottleneck. For Z the possibility
of rewriting a specification was missed; see also the discussion in section 3.2 about
ZTC.

Design reviews
Reviews were performed based on formal specifications annotated with natural
language descriptions. These reviews were found to be much more effective than
reviews based solely on specifications in natural language. The increase in
effectiveness was attributed to the fact that concepts, attributes and properties could
be addressed, discussed and pointed to with more preciseness and less ambiguity.
There were less disputes of the form “what do you exactly mean with that?”

 Lessons from the Application of Formal Methods 1521

Implementation
The implementations of the system modules in (a safe subset of) C++ were developed
on the basis of the formal specifications of the technical design. However, no formal
derivation of programming code was used because the benefits were estimated to be
marginal in relation to the large efforts which would be needed for this. In hindsight,
this estimation turned out to be valid. The number of defects introduced by the
manual implementation process was relatively small.

An important lesson from the implementation phase is that programmers have to learn
to be very precise in reading the formal specifications. They have to convert the
specifications into program code without making their own interpretations and design
decisions. This is different from what most programmers use to do and it implies the
need for a change of mentality.

Testing
We previously reported on the benefits of formal methods for testing in [GWT98].
Although no formal derivation of tests was applied, the use of formal methods
facilitated the systematic identification of test cases. The precise and formally
specified requirements led to a clear and structured set of tests with a high degree of
code coverage.

Testers appeared to be more rigorous than they would have been without formal
specifications, in the sense that more detail-errors were found (but less major design
errors were found, as expected). Furthermore, the formal specifications settled easily
interpretation differences between testers and implementers. Future improvements of
the testing phase are possible through increased automated support including
automatic derivation of tests from formal specifications [Tre99].

General
Current formal methods focus on one of the views of software systems. It would be
desirable to have a formal method which deals with the different views of software
systems in an integrated fashion – preferably in combination with existing software
development methods and techniques, such as data-flow diagrams, Ward & Mellor
[WM85], Hatley & Pirbhai [HP87] or UML [BRJ98].

4. Lessons Learned

In this section we describe some of the important lessons we learned from our
experience with formal methods.

4.1 Quality

The general conclusion of most project members is that the quality of the system is
higher than could have been achieved without the use of formal methods. Once a
working knowledge of formal methods had been acquired, the system modules
produced were close to “first time right.” Modules that were specified formally

1522 Michel Chaudron, Jan Tretmans, and Klaas Wijbrans

required less maintenance and rework. Most problems were encountered in modules
where formal methods were not used or where the quality of the formal specification
was low due to time-pressure.

4.2 Costs

Costs of formal development were estimated to be comparable with costs without the
use of formal methods. It should be noted, however, that a large amount of these costs
were related to learning and obtaining experience, hence it could be expected that a
next formal project will save money.

4.3 The Learning Phase

On the first use of formal methods a training phase is unavoidable. Besides the
learning of syntax and semantics of the formalisms, people had to learn how to use
the formal methods effectively. In particular, people had to learn that a formal
specification had to be read in a much more precise manner than a specification in
natural language. Also, in the learning phase it was found that a specification “style”
was needed to constrain the degrees of freedom of the specification methods.

In the process of getting acquainted with a formal method, it was found to be
important to have an experimentation phase. In this phase people should be allowed to
get a feeling for the possibilities, structure, constructions and the like of a formal
method by making specifications and programs that are not part of the final product.
This leaves opportunity for exploring and investigation and learning from making
mistakes without the pressure of having to produce fault-free products. This learning
phase is also a good time to explore the possible ways in which one formal method
can be combined with other (formal) methods. The availability of tools helps in this
learning phase. In particular, a formal-methods simulation tool is a good means for
providing feedback to the student of a method. The use of the Promela simulator in
Spin was profitable in this respect.

4.4 Support from Academia

During the development of BOS CMG was supported by the Formal Methods &
Tools group of the University of Twente. It turned out that the expertise of the
University of Twente was not completely sufficient for supporting the application of,
mainly, Z in large projects such as BOS. The expertise was mainly oriented towards
formal methods as formal (mathematical) languages and towards formal syntax,
semantics and proof techniques. The problems encountered in BOS, however, were
not formal (mathematical) problems, but mainly problems related to the use of formal
methods in a large project: how to use formal methods effectively in a software
development trajectory; how to combine formal methods with other software
engineering techniques; and the identification and definition of the “specification
standards” for Z. With these aspects there was little experience at the University of
Twente. Also in the literature there is little known about these practical aspects of the

 Lessons from the Application of Formal Methods 1523

use of formal methods. The combination of knowledge and experience of both
practical software engineering and formal methods is still rare.

4.5 Tools

Although it is known for some time that the availability of tools is essential to the
industrial acceptance of formal methods, the tools we used provide too little support.
In particular, attention should be paid to scaling up tools to large applications and to
the integration or compatibility of formal methods tools with existing software
development methods and tools.

4.6 Planning and Monitoring

The use of formal methods in the development process had several consequences for
the planning of the project. Firstly, formally specifying the functional design takes up
more time than specifying in natural language. However, using a formal method for
the design leads to the identification of omissions, ambiguities and inconsistencies
that can be removed at a relatively early stage. We are confident that the effort
invested in the design phase has been (more than) compensated by reductions of effort
in subsequent phases.

A second consequence is that large parts of the testing phase can be performed
concurrently with coding of the implementation. Whereas in many system
development projects test suites are only developed and implemented after the system
has been implemented, BOS shows that the level of detail provided by a formal
design makes is possible to perform these phases concurrently. Starting from the
formal design, implementers start coding, while at the same time testers start writing
test plans, generating test suites and developing a test environment. Usually, testers
are faster so that when the implementation is ready, test execution can start
immediately. Clearly, this reduces the total project time by reducing the critical path
for testing.

In the beginning, metrics from the design phase were not used for planning the coding
and testing phase. After some time, it turned out that the number of lines of Z could
be used as a rudimentary metrics for planning. Analysis showed a correlation between
the number of lines of Z and the number of lines of C++ code or the testing effort,
respectively. In particular, after some experience had been obtained and some data
had been collected, module test execution could be planned relatively precisely based
on this metrics. This effect was strengthened by the fact that test plans and test suites
were developed concurrently with coding, see above. Further analysis is needed to
explore the precise nature of the correlation between the size of the specification and
the implementation and testing effort. Other metrics that could be explored are the
number of Z schemas or the number of data items in a description.

1524 Michel Chaudron, Jan Tretmans, and Klaas Wijbrans

4.7 People Management

People are stimulated by the possibility of learning new skills and experiencing that
they improve the quality of their work. This can be illustrated by the fact that at later
stages of the project, some project members decided to write and analyse a module
(GUI) at a higher level of formality than followed from its degree of criticality.

The different levels of formality require different skills in using formal techniques.
Hence, the training of different project members may need to be aimed at different
skill levels. Learning to read and review formal specifications requires less training
than learning to write specifications, which, in turn, requires less training than
necessary for doing model-checking. Of course, each person’s tasks should be
adapted to his or her capabilities and education, e.g., while almost all software
engineers, after some training, can read formal specifications, model-checking is
better performed by people having some mathematical background. Some team
members did not have any affinity with formal methods. These persons left the
project, to mutual benefit of both these persons and the project.

4.8 Communication with the Client

A common critique of formal methods is that they are not suitable for communication
with clients. In the BOS project we have dealt with this issue in the following way.
Firstly, all specifications consisted of a combination of formal text and accompanying
text in natural language. In practice, the clients focussed mainly on the description in
natural language. Secondly, it was found that the animations of Promela specifications
using the Spin simulator were very helpful in communicating with the client, in order
to have the client understand the design and to make the client aware of potential
problems.

Test plan
Test suites

Design

Coding

Test
execution

 Lessons from the Application of Formal Methods 1525

5. Conclusions and Recommendations

We have described some of our experiences with the use of formal methods in the
commercial engineering of an industrial, safety-critical system. The system was
delivered on time and within budget. It was found that formal methods had a positive
contribution to the quality of the system. However, it should be noted that formal
methods were used as one of a number of integrated techniques and that there is a
synergetic effect between these techniques. Formal methods have the greatest added
value when they are applied in combination with other quality improvement
techniques. Hence, methods to improve the quality of the software product should be
used in combination with methods for the improvement of the quality of the
engineering process (such as are suggested by CMM). More about the other quality
improving techniques used in BOS can be found in [WBG98].

On pragmatic grounds we used Promela for modelling the behavioural view of the
system and Z for the functional view. The introduction of Promela went relatively
easy because of its ease in use, among others, through its visualization using message
sequence charts. A few early successes in finding major design errors stimulated its
further use. Overall, it was found useful in exposing errors in interface design.

The use of Z in a professional software-engineering project requires more than a few
courses in first-order predicate logic and Z-notation. A useful idiom and conventions
have to be developed ranging from high-level structuring conventions to naming
conventions. The developed set of conventions for Z together with extensive coding
standards (implementation guidelines) proved to enhance efficiency in the coding
phase. In [GWT98] we have reported the additional benefits of this approach to the
independent test phase.

More errors were found through the process of formalization (making a formal
description) than in later stages through the validation of the formal specifications.
Formal derivation or proof of code was not used at all. Yet, we conclude that the use
of formal methods was profitable. Their use provides precision, structure and
consistency that help in the prevention and early detection of errors.

Acknowledgements

The authors would like to thank Eric Burgers, Wouter Geurts, Franc Buve, Rijn Buve,
Sjaak de Graaf, Hedde van de Lugt, Peter Bosman, Peter van de Heuvel and Robin
Rijkers, all of CMG Public Sector B.V. in The Hague, for their active participation
during the interviews that form the basis of this paper. Annemieke van Wijk, CMG,
for is thanked for her secretarial support. Ed Brinksma, Pim Kars, Wil Janssen, Job
Zwiers and Theo Ruys from the University of Twente gave support and feedback
during different phases of the BOS development. The second author acknowledges
the financial support of CMG The Netherlands while performing part of the work
underlying this paper. The anonymous referees are thanked for their constructive
criticism, which helped in improving this paper.

1526 Michel Chaudron, Jan Tretmans, and Klaas Wijbrans

 References

[BRJ98] G. Booch, J. Rumbaugh and I. Jacobsen. The Unified Modeling Language –
User Guide. The Addison-Wesley Object Technology Series, Addison
Wesley, 1998.

[Bro95] F. P. Brookes. The Mythical Man-Month: Essays on Software Engineering.
Anniversary edition. Addison Wesley, 1995.

[GWT98] W. Geurts, K. Wijbrans and J. Tretmans. Testing and Formal Methods –
BOS Project Case Study. In: EuroSTAR’98: 6th European Intl. Conference
on Software Testing, Analysis & Review, pages 215 – 229, Munich,
Germany, November 30 – December 1, 1998.

[Hoa85] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
[HP87] D. J. Hatley and I.A. Pirbhai. Strategies for Real Time System Specification.

Dorset House, 1987.
[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-

Hall, 1991.
[IEC1508] IEC (International Electrotechnical Commission), Functional Safety of

Electrical/Electronic/Programmable Systems: Generic Aspects, IEC 1508,
1995. (Now: IEC 61508).

[ISO8807] ISO, Information Processing Systems Open Systems Interconnection,
LOTOS – A Formal Description Technique based on the Temporal
Ordering of Observational Behaviour, International Standard IS8807, ISO,
Geneva, 1989.

[Jon90] C. B. Jones, Systematic Software Development using VDM (2nd edition),
Prentice Hall, 1990.

[Kar97] P. Kars, The Application of Promela and SPIN in the BOS Project, in J.-C.
Grégoire, G. J. Holzmann and D. Peled (eds), The Second Workshop on the
SPIN Verification System; Proceedings of a DIMACS workshop, August 5,
1996, volume 32 of DIMACS series in Discrete Mathematics and
Theoretical Computer Science, pages 51-63. American Mathematical
Society, 1997.

[Kar98] P. Kars, Formal Methods in the Design of a Storm Surge Barrier Control
System. In: G. Rozenberg and F. W. Vaandrager (eds.) Lectures on
Embedded Systems, pages 353 – 367, Lecture Notes in Computer Science
1494, Springer-Verlag, 1998.

[Pau94] M. C. Paulk et al., The Capability Maturity Model: Guidelines for
Improving the Software Process, Addison-Wesley, 1994.

[RWS] Dutch Ministry of Transport, Public Works and Water Management.
URL: http://www.minvenw.nl/rws/dzh/svk/engels/index.html

[Spin] Spin. On-the-fly, LTL Model Checking with Spin.
 URL: http://netlib.bell-labs.com/netlib/spin/whatispin.html
[Spi92] J. M. Spivey. The Z notation: a Reference Manual (2nd edition). Prentice-

Hall, 1992.
[Tre99] J. Tretmans. Testing Concurrent Systems: A Formal Approach. In: J.

Baeten and S. Mauw, Concur’99. Lecture Notes in Computer Science,
Springer-Verlag, 1999.

[WBG98] K. C. J. Wijbrans, F. Buve and W. Geurts. Practical Experiences in the BOS
Project. In: Proceedings of the Embedded Systems Symposium, May 19,
1998, Eindhoven University of Technology, Eindhoven, The Netherlands.

[WM85] P.T. Ward and S.J. Mellor. Structured Development for Real Time Systems.
Volume 1: Introduction & Tools. Yourdon Press Computing Series.
Prentice Hall, 1985.

[ZTC] ZTC. Z Type Checker. URL: http://saturn.cs.depaul.edu/~fm/ztc.html

The Value of Verification: Positive Experience of

Industrial Proof

Steve King1, Jonathan Hammond2, Rod Chapman2, and Andy Pryor2

1 Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK

king@cs.york.ac.uk
2 Praxis Critical Systems, 20 Manvers St, Bath, BA1 1PX, UK

{jarh,rod,aap}@praxis-cs.co.uk

Abstract. This paper describes the use of formal development methods
on an industrial safety-critical application. The Z notation was used for
documenting the system specification and part of the design, and the
SPARK subset of Ada was used for coding. However, perhaps the most
distinctive nature of the project lies in the amount of proof which was
carried out: proofs were carried out both at the Z level — approximately
150 proofs in 500 pages — and at the SPARK code level — approximately
9000 verification conditions generated and discharged. The project was
carried out under UK Interim Defence Standards 00-55 and 00-56, which
require the use of formal methods on safety-critical applications. It is
believed to be the first to be completed against the rigorous demands of
the 1991 version of these standards.
The paper includes a comparison of proof with the various types of test-
ing employed, in terms of their efficiency at finding faults. The most
striking result is that the Z proof was substantially more efficient at
finding faults than the most efficient testing phase. Given the impor-
tance of early fault detection, this helps to demonstrate the significant
benefit and practicality of large-scale proof on projects of this kind.

1 Introduction

When early drafts of the UK Defence Standard 00-551 were produced, there was a
certain amount of controversy among software suppliers because of the perceived
emphasis on formal methods: a formal specification and design were required, as
well as formal arguments to link the specification to the design, and the design
to the code, and even to support the production of an executable prototype.
It was claimed that the level of formality required was unrealistic given current
technology. The work reported in this paper shows that developing software using
such formal techniques is indeed possible. It is now becoming more common for
projects to use formal notations to document specifications and even designs, but
this project is unusual in the scale of the proof work that has been carried out.
The particular notations used were Z [24, 28] for specification and design, and
1 The procurement of Safety Critical Software in Defence Equipment [18, 19]

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1527–1545, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1528 Steve King et al.

the SPARK [3, 23] subset of Ada for code, together with its associated toolset.
The proof work on Z covered about 500 pages, while over 9,000 verification
conditions were generated and discharged in the SPARK proof work.

During the project, many metrics were recorded, and a selection are reported
in this paper. It is interesting to compare the numbers of faults found at various
stages of the process with the amount of effort spent on the stage. These figures
seem to show the value of the proofs that were carried out on the Z documents.

The structure of the paper is as follows: after a brief description of the ap-
plication, the SPARK programming language and toolset are described. (It is
assumed that the reader is familiar with the Z notation: if not, there are several
good text books available [28, 16], and a glossary is provided in Appendix A
for a few key Z terms.) We then describe in some detail how proof was used in
the development process, and look at both quantitative and subjective results
before drawing some conclusions.

2 The Application: SHOLIS

The application we describe in this paper is called SHOLIS — the Ship Heli-
copter Operating Limits Information System. This is a new safety-critical sys-
tem, which aids the safe operation of helicopters on naval vessels. It is essentially
an information system, giving advice on the safety of helicopter flying operations.
The SHOLIS programme is on-going but, after evaluation (if successful), it is
intended that SHOLIS will be used on UK Royal Navy and Royal Fleet Aux-
iliary vessels. SHOLIS is developed for the UK Ministry of Defence (MoD) by
PMES2, with Praxis Critical Systems as the subcontractor responsible for the
development of all the application software.

Brief System Description SHOLIS contains a database of Ship Helicopter
Operating Limits (SHOLs). Each SHOL specifies the allowed limits for perform-
ing a given operation, e.g. takeoff or land, for a particular type of helicopter. One
of the main safety-critical functions of SHOLIS is to make continual comparisons
of sensor information against a selected SHOL. Audible and visual alarms are
given whenever the current environmental conditions exceed the allowed limits.

The SHOLIS functions are grouped on a number of pages. These are viewed
on plasma displays on the flight deck and bridge of a ship. Operators at each
display can use buttons to view the pages independently. The buttons are also
used to enter information, although certain functions, e.g. the selection of a
SHOL, are only available to one display at any given time.

Due to its critical nature the system is developed to stringent standards,
including the MoD Interim Defence Standards 00-55 [18, 19] and 00-56 [17],
as discussed above. High availability requirements necessitate the use of dual
redundant hardware.

2 Power Magnetics and Electronic Systems Limited

The Value of Verification: Positive Experience of Industrial Proof 1529

Safety Requirements SHOLIS has a number of catastrophic hazards, which,
if they occurred, could lead to the loss of an aircraft and/or damage to a ship.
Any software with the potential to cause such a hazard, as identified by the
software safety analysis, is classed as safety-critical and developed to SIL43. The
remaining software is classed as non-safety critical, although it is still developed
to a stringent standard (roughly equivalent to SIL3).

3 The Programming Language: SPARK

SPARK is a high-level programming language, designed for writing software for
high integrity systems. The executable part of the language is a subset of Ada
[20], but there are additional annotations permitted which make it possible to
carry out data and information flow analysis [4], and to prove partial code cor-
rectness, using the commercial toolset associated with the language: the SPARK
Examiner, Simplifier and Proof Checker.4

There were several design drivers behind the choices as to what parts of Ada
should be removed from the SPARK programming language:

– logical soundness: there should be no ambiguities in the language;
– simplicity of formal description: it should be possible to describe the whole

language in a relatively simple way;
– expressive power: notwithstanding the previous two factors, the language

should be rich enough to describe real systems;
– security: it should be possible to determine statically whether a program

conforms to the language rules;
– verifiability: program verification should be not only theoretically possible,

but also tractable for industrial-sized systems;
– bounded time and space requirements: in order to avoid the possibility of

run-time errors caused by exhausting finite resources such as time and space,
the resource requirements of a program should be determinable statically.

Together, these considerations led to decisions to omit several features of Ada:
gotos, aliasing, default parameters for subprograms (i.e. procedures and func-
tions), side-effects in functions, recursion, tasks, exceptions and generics. In ad-
dition, several other features, such as the type model, are simplified: no access
types (pointers), type aliasing, derived types or anonymous types. Apart from
these exclusions and restrictions, the normal Ada package structure is used for
programming, with its distinction between package interfaces (or specifications)
and package bodies. Within a package, further structuring is possible using pro-
cedures and functions and it is at this level that we can see the first of the new
annotations.
3 Interim Defence Standard 00-56 defines four Safety Integrity Levels (SILs), of which

SIL4 is the most critical, and SIL1 is the least critical.
4 SPARK and its toolset were originally developed by Program Validation Limited

(PVL), which was incorporated into Praxis Critical Systems in 1994.

1530 Steve King et al.

Annotations are comments which are ignored by an Ada compiler, but pro-
cessed by the SPARK tools. The first group of annotations is concerned with
data and information flow analysis5:

– --# global
– --# derives
– --# own
– --# inherit

The --# global and --# derives annotations between them specify the infor-
mation needed for data and information flow analysis of individual subprograms.
Data-flow analysis involves checking that global variables and parameters are
used in the expected way: imported variables can only be read from, exported
variables can be written to, and variables that are both imported and exported
can be read from and written to. There are also checks that variables are not
being read before being initialised with a value, that values are not overwritten
before being read, that all imported variables are actually used somewhere, and
so on.

Information-flow analysis uses the --# derives annotation where, for each
output variable, a list is given of the imported variables on which its final value
depends. These dependencies are checked by making an analysis of the expres-
sions assigned to variables in the subprogram body. Both data- and information-
flow analyses are decidable, and entirely automated by the SPARK Examiner.

The own and inherit annotations are used for scoping and structuring. The
own annotation is used to declare the existence of state variables inside a package:
the values of these variables are preserved between calls of subprograms in the
package. The inherit annotation makes visible the items from another package
scope, e.g. it allows the annotations in a package to refer to the own variables of
the inherited package.

The second group of annotations is used for code verification:

– --# pre
– --# post
– --# assert
– --# return

The pre and post annotations are found in the specification of a procedure,
and are used for the traditional precondition and postcondition of the procedure
— pre gives a predicate on the input parameters and initial state (imported)
variables, while post relates input and output parameters and initial and fi-
nal state (exported) variables. On non-looping programs, the SPARK Examiner
produces proof obligations by ‘hoisting’ the postcondition through the procedure
body and checking that the supplied precondition implies this transformed post-
condition. For looping programs, the assert annotation is used to specify the
loop invariant. The verification conditions (VCs) generated by the Examiner for
looping programs check for partial correctness: separate arguments are needed
5 All annotations are prefixed by --#, with -- being the Ada comment prefix

The Value of Verification: Positive Experience of Industrial Proof 1531

to consider loop termination, if total correctness is required. Finally, the return
annotation is used to define (explicitly or implicitly) the result of a function,
thus allowing checking of functions to be carried out at a more abstract level.

The SPARK Examiner has a mode of operation where, in addition to the
VCs generated by the flow analysis and proof annotations, it also generates
VCs which, if discharged, would guarantee that the SPARK program could not
raise any run-time exceptions. The design of the SPARK language itself ensures
that the Ada exceptions Tasking Error and Program Error can never arise in a
SPARK program. In addition, since SPARK is designed so that the space require-
ments can be computed statically, it is possible to guarantee that Storage Error
cannot be raised. The only remaining possible exception is Constraint Error,
and the restrictions on the SPARK language mean that this can only be caused
by a division check, an index check, a range check or an overflow check. When
invoked with the run-time check (RTC) option, the SPARK Examiner generates
VCs for the first three of these checks, and the VCs for the overflow check can
be generated by the RTC plus Overflow option.

There are two possible routes for discharging the VCs produced by the Ex-
aminer: the Simplifier and the Proof Checker. The Simplifier is an automatic
tool which carries out routine simplification using a collection of rules. If a VC
cannot be discharged by the Simplifier, then a developer can invoke the Proof
Checker, which is an interactive assistant allowing exploration of the problem
and (it is hoped) the construction of a proof.

4 Proof in the SHOLIS Development Process

4.1 The Development Process

The development process used for SHOLIS was a fairly standard one, following
the requirements of IDS 00-55. In simplified form, it comprised:

– Requirements, written in English;
– Software Requirement Specification (SRS), written in Z and English;
– Software Design Specification (SDS), written in SPARK, Z and English;
– Code, written in SPARK;
– Testing.

The Requirements documents consisted of over 4,000 statements of system re-
quirements, most of which were software-related, while the SRS was about 300
pages long, containing Z, English and some additional mathematical definitions
(of vector geometry). The purpose of the SDS was to add implementation details
to the SRS: software architecture, ‘refinement’ of one part of the Z specification
(where an intermediate level of design was needed), scheduling design, resource
usage, SPARK package specifications and so on. The software itself totalled
about 133,000 lines of code, made up of 13,000 lines of Ada declarations, 14,000

1532 Steve King et al.

lines of Ada statements, 54,000 lines of SPARK flow annotations,6 20,000 lines
of SPARK proof annotations and 32,000 blank or comment lines.7

4.2 Proof Activities

The proof activities on SHOLIS can be divided into two areas: Z proof and
SPARK proof. Proof of various Z properties took place at both SRS and SDS
level. The SRS, containing the abstract Z specification, has several standard op-
portunities for proof: consistency of global variables and constants, existence of
initial states and checking of preconditions. It is interesting to see how the struc-
ture of the Z specification was exploited in these proofs. The main structuring
of the Z specification was by what were called ‘subsystems’, i.e. the state was
partitioned into a number of pieces that were separately specified, together with
‘local’ operations. Subsystems included such things as sensors, alarms, faults,
and the currently selected SHOL, etc. Each main display page selectable by
the user also had its own subsystem. In general, the complete SHOLIS state
was simply the conjunction of all the subsystems, with appropriate additional
invariants.

The notable exception to this involved the pages, as SHOLIS has two displays.
So a display state schema was defined (which included the various pages as
schema types), and a standard functional promotion carried out to the complete
multiple displays state. Thus an individual page’s state schema is effectively
promoted twice (once to the ‘display level’ and again to the ‘multiple displays
level’).

Each of the 14 top-level (system) operations had a precondition proof. At
the top level this consisted of manual rigorous argument to remove Ξ schemas
(on unaffected subsystems) and associated top-level invariants. The rigorous
arguments continued until the precondition proof had been ‘factored down’ to
precondition proofs of the constituent subsystem operations. Sometimes top-level
invariants (which were not obviously preserved) were also ‘factored down’, so the
subsystem precondition proofs were sometimes stronger than the ‘standard’ Z
precondition proofs (in that there was an additional ‘factored down’ invariant to
preserve). In general, schema expansion was not performed until the subsystem
level was reached. Proofs were only carried out for subsystems that had been
identified as SIL4. This structuring did not apply to the initial state proof. Here
the top-level obligation was mechanically fully expanded and then simplified.

Each subsystem was a separate chapter in the SRS and mapped to a different
Ada package in the design.

6 The SPARK flow annotations are deliberately written in a very ‘spread-out’ way
which uses a large number of lines, for ease of maintenance. Furthermore the need to
do code proof, coupled with the current lack of abstract proof support, meant that
the SPARK concept of own variable refinement could not be exploited to reduce
substantially the size of the annotations (see section 5.2).

7 There was a little non-SPARK code: some assembler, used only in booting up SHO-
LIS, and some non-SPARK Ada, used for interfacing to hardware devices.

The Value of Verification: Positive Experience of Industrial Proof 1533

The key safety properties of SHOLIS were also formalised in Z, and proved.
These properties were expressed in terms of a sequence of operations. Clearly,
for this application, the most important safety properties involved ensuring that
when certain sensor values were outside the current SHOL, a warning had to be
given, and also that when the values were inside the SHOL, no alarm would be
given.8 Thus the proofs of safety properties involved checks of the form

In o
9 Calc o

9 Out gives the correct warning ,

where the schema In verified and stored the input values, Calc performed the
comparison with the current SHOL and updated the alarm state, and Out gave
the output processing. Each of these schemas represents one of the 14 top-level
system operations, and thus the safety properties could not be expressed as part
of the main specification, as they cover sequences of system operations.

At the SDS level there were further proof opportunities, demonstrating the
consistency and correctness of the part of the design written in Z.

All of the proofs at the Z level were carried out by a form of ‘rigorous ar-
gument’, with some assistance from tools — particularly the CADiZ tool [26],
for schema expansion. For the SPARK proof work, on the other hand, all of
the work was carried out with machine assistance: the Examiner, Simplifier and
Proof Checker were used.

Data- and information-flow analysis was carried out for all of the code in
SHOLIS. The intention had been to do only data-flow analysis for the main con-
trol loop, and parts of the event scheduler called from this control loop. This is
because, at that level, almost every variable has an effect on every other vari-
able, so the information-flow annotations would be both lengthy and uninforma-
tive. However, the SHOLIS application software is a single process running on a
single processor (modulo redundant hardware), containing software of different
integrity levels. Hence, full information-flow analysis was needed at the top level
to demonstrate functional separation between the SIL4 and non-SIL4 code, e.g.
to show that the non-SIL4 code did not incorrectly interfere with critical data
on the same processor.

The demonstration of functional separation also justified only constructing
SPARK program correctness proofs on the SIL4 parts of the software. For ev-
ery subprogram of this sort, SPARK pre and post annotations were produced
from the Z descriptions. The SPARK names were kept as close as possible to
the Z names, but there were inevitable small differences, for instance package
names. There were also simple type translations: Z sequences became arrays
with a slightly different syntax, partial functions also became arrays and so on.
Although this could be seen as a ‘weak link’ in the formal development pro-
cess, experience showed that it was actually relatively simple to produce these
SPARK annotations, and very few detected errors were introduced at this point.
The Z state invariants were incorporated into both pre and post annotations of
procedures, which produced one or two interesting difficulties: the annotations
could only refer to variables which were visible according to the SPARK rules,
8 Otherwise safe recovery of aircraft might not be possible.

1534 Steve King et al.

but sometimes the invariants referred to variables which were not visible. The
solution was to write the strongest condition possible using the visible variables,
so that, at the next level ‘up’, this condition together with the frame knowledge
that other variables were unchanged would establish the invariant.

Although the intention had originally been to generate the proof annotations
along with the code, time pressures — caused by the need to pass the code to
the IV&V team9 — meant that many proof annotations were actually added
slightly later. Having produced the necessary annotations, the SPARK Exam-
iner was then used to generate the proof obligations to show that the code did
indeed satisfy its specification. These proof obligations were first submitted to
the SPARK Simplifier, which managed to discharge about 75% of them auto-
matically. The remaining ones were virtually all proved using the SPARK Proof
Checker, the exceptions being:

– proof obligations that depended on formal descriptions of hardware devices
which were not available; and

– proof obligations for a few subprograms, that involved a lot of effort to
prove, but which, by symmetry, were merely further examples of code that
had already been proved.

The final group of SPARK proof activities concerned the run-time checks
(RTCs). Since it was clear that a run-time failure — be it invalid range or index,
division by zero, or overflow — would be a danger to the safety-critical parts of
SHOLIS whether it occurred in SIL4 code or not, the whole of the software was
subjected to the SPARK Examiner’s RTC (plus Overflow) facility. Again, all of
the generated proof obligations were proved, either by the Simplifier or using
the Proof Checker.

4.3 Proof Personnel

The proof activity on the SHOLIS project was carried out by four engineers. Two
were responsible for the Z proofs, and one of these also worked with the other two
engineers on the generation of SPARK proof annotations corresponding to the
Z specifications, and all the SPARK proof activity. The data- and information-
flow analysis was carried out by the two coders. All of the proof engineers were
experienced mathematicians and software engineers who had worked for several
years in various formal methods, including Z and CSP. However, only one had
experience with the SPARK Simplifier and Proof Checker before the project
started.

It is also interesting to consider, with hindsight, the skills which seem to be
necessary for such a project. For the Z proof work, significant experience (either
academic or industrial) of Z and at least some exposure to proof are necessary
to be productive enough to be commercially cost-effective (e.g. familiarity with
concepts such as proof by cases and proof by contradiction). For the formal
9 Independent Verification and Validation team: part of Praxis Critical Systems, but

independent of the development team.

The Value of Verification: Positive Experience of Industrial Proof 1535

SPARK proofs, a good (informal) understanding of the meaning of imperative
programming constructs is essential, together with some familiarity with relevant
proof concepts such as loop invariants. However, previous experience with the
tools is not thought necessary. Interestingly, the proofs of absence of run-time
errors are much more accessible, since the tools can generate the VCs without
any additional proof annotations (although annotations may be needed to enable
the VCs to be proved). Also, a large proportion of these VCs are typically proved
automatically using the Simplifier. This enables effort to be quickly focussed on
potential problem areas and/or the more complex code, where it may not be
straightforward to prove the code error-free.

4.4 Proof Validation

The Z proofs were subject to a formal peer-review process, when the proofs
produced by each engineer were formally reviewed by the other. In addition, the
IV&V team reviewed a sample (selected by them) of the proofs, and found only
typographical errors. The SPARK code proofs were also reviewed by the IV&V
team, and are replayable on the SPARK toolset. The team also reviewed the
additional proof rules that had been inserted to discharge the VCs.10 However,
none of the proofs was inspected or reviewed by the customer.

4.5 Timing and Resource Usage

As already discussed, the SHOLIS application consists of both SIL4 and non-
SIL4 code. Although the information-flow analysis demonstrated functional sep-
aration, non-functional interactions (e.g. slow performance of non-SIL4 code pre-
venting the timely execution of SIL4 code) could still have had an unacceptable
impact on safety. So, in addition to functional correctness, significant effort was
spent on non-functional aspects of the behaviour of all the SHOLIS code.

Timing: An in-house static timing analysis tool was used, which was based
on programmer-supplied annotations in the source code. This did not read
or analyse the object code at all — it merely computed a worst-case num-
ber of “statements” for each subprogram, and used a constant “number of
statements per second” (determined by hand analysis and actual timing of a
“typical” portion of the code) to make a crude estimate of an upper-bound
on the timing of a subprogram.

Memory: Care was taken never to allocate memory dynamically: SPARK en-
sures this 99% of the time, but there were a few cases where careful coding
was necessary to take into account the compiler’s allocation policy.11 SPARK
is non-recursive, so a simple static analysis of object code is sufficient to de-
termine worst-case stack usage, which was done.

10 These rules were either the necessary definitions of SPARK proof functions, or more
generally useful rules which are not part of the Proof Checker’s rulebase.

11 Section 5.2 contains more details on this topic.

1536 Steve King et al.

I/O bandwidth: This was a crucial aspect of SHOLIS, since the available
bandwidth to the displays was a limiting factor. Again, programmer-supplied
annotations in the source (actually PERL expressions!) were used to indi-
cate the worst-case number of characters that could be sent to the display by
each subprogram. A simple PERL tool collected and evaluated the results.

The above systematic estimation/calculation was backed up in all cases with
targetted testing, based on known worst-case application behaviour, to measure
actual timing and resource usage (e.g. a dynamic “high water mark” test of stack
usage). These tests provided additional confidence in the accuracy/conservative
nature of the systematically produced figures.

5 Results, Experiences, and Lessons Learnt

Having described what was carried out in the way of proof on the SHOLIS
project, we can now look at the results of this work, both in terms of quantitative
results and in terms of more subjective feelings about the work.

5.1 Quantitative Results

In the Z proof work, approximately 150 proofs were carried out, of which about
130 were at the SRS level and the remainder at the SDS level. These proofs
covered about 500 pages. In the SPARK proof work, approximately 9,000 verifi-
cation conditions (VCs) were generated, of which 3,100 were proofs of functional
and safety properties, and the remaining 5,900 came from the RTC generator.
Of these 9,000 VCs, 6,800 were discharged automatically by the Simplifier and
the remainder were discharged by the SPARK Proof Checker, or by the ‘rig-
orous argument’ referred to above, in a few cases. Indeed, subjective feedback
from the project team emphasised the importance of using the most powerful
workstations possible for the computationally intensive work of the Simplifier:
‘a big computer is far cheaper than the time of the engineers using it’ !

The project team kept track of faults found at different stages during the
development process, and the rounded percentages are shown in Figure 1. The
definition of a fault for these purposes is simply an error which required some-
thing to be changed. It could therefore range from a simple clerical error to an
observable system failure. However, these figures exclude faults which were not
faults in the actual system development (specification, design, code etc). Thus,
for instance, errors in test scripts are not included. Figure 1 also shows how
much of the total effort on SHOLIS (19 person-years) was spent on each phase.

Note that Figure 1 lists the project phases in approximately the order in
which they occurred. However, there was some parallelism between phases. In
particular, code proof overlapped with unit and integration testing, and espe-
cially with system validation testing.

For comparison, [13] contains figures on effort and size metrics for another
safety-related real-time project, but for a much larger system than SHOLIS. This

The Value of Verification: Positive Experience of Industrial Proof 1537

Project phase Faults found (%) Effort (%)

Specification 3.5 5
Z proof 16 2.5
High-level design 1.5 2
Detailed design, code & informal test 26.5 17.5
Unit test 16 25
Integration test 1 1
Code proof 5.5 4
System validation test 21.5 9.5
Acceptance test 0.5 1.5
Other12 8 32

Fig. 1. Faults found and effort spent during phases of the project

other project also used formal methods, although there was only a very small
amount of proof.

Informal feedback from the SHOLIS team indicated a feeling that the most
cost-effective phases for fault-finding were Z Proof and System Validation Tests.
The Z Proof phase in particular was felt to be effective at finding a significant
number of faults, with relatively little effort, early in the development process.
Figure 2 gives a graphical representation of the exact figures, where the dark bars
show the actual number of faults found by each phase. For the verification phases,
i.e. those phases whose main purpose was the detection of faults, Figure 2 also
shows the efficiency with which faults were found (the lighter bars), by dividing
the number of detected faults by the effort expended.

These figures clearly show that the Z Proof was, by a significant margin, the
most efficient phase at finding faults, followed by the System Validation Test
phase. It is perhaps even more surprising that Code Proof was more efficient
than Unit Testing, despite the fact that substantial amounts of unit testing were
completed before the bulk of code proof started.

One word of caution: it has not yet been possible to conduct a serious anal-
ysis of the nature of the faults (e.g. severity) found by different project phases.
However, some initial impressions are described here.

The faults found during System Validation often originated from the require-
ments, or from incorrectly capturing the requirements in Z, rather than being
instances of code not being a correct implementation of the Z specification. The
faults found during the Code Proof phase were mostly cases of very subtle prob-
lems revealed by the RTCs — in particular circumstances (usually very unlikely
ones), it might have been possible for a run-time error to have occurred. On the
other hand, the traditional Unit and Integration Testing phases did find a num-
ber of faults that could have manifested themselves in realistic use of the final
system. This included faults in two small, but critical, numerical calculations

12 Staff familiarisation (1%), project management and planning (20%), safety manage-
ment and engineering (7%) and IV&V non-testing activities (4%).

1538 Steve King et al.

0

10

20

30

40

50

60

70

80

90

100

S
ep

ci
fi

ca
ti

on

Z
P

ro
of

H
ig

h-
le

ve
lD

es
ig

n

C
od

e

U
ni

tT
es

t

In
te

gr
at

io
n

T
es

t

C
od

e
P

ro
of

S
ys

te
m

V
al

id
at

io
n

A
cc

ep
ta

nc
e

O
th

er

N
o.

of
F

au
lt

s
F

ou
nd

0

0.1

0.2

0.3

0.4

0.5

0.6

E
ff

ic
ie

nc
y

Fig. 2. Faults found and ‘efficiency’ of the phases of development

involving real (Ada fixed-point) arithmetic, where the SPARK proof model is
not rich enough to allow precise reasoning about rounding and accuracy errors.13

By sampling a few of the other faults found during unit testing, it has been con-
firmed that code proof should also have found the faults (since unprovable VCs
are generated from the faulty code) if proof had occurred before testing. Even
given the ordering of phases, the Code Proof phase did reveal one significant
bug: the proof of the safety properties involved checking that certain invariants
were maintained at the control loop level, but it was found that there was a path
through the system which invalidated one of these invariants. Once this was un-
derstood, it was relatively easy for the developer to go to the test installation,
press a few buttons and show that the system was in a clearly invalid state.

5.2 Subjective Feedback on the Use of Proof

Since this project was unique, in our experience, in the amount of Z/SPARK
proof carried out, there were many lessons learnt, both about the advantages of
doing these sorts of proofs, and about their drawbacks. One of the most impor-
tant ideas to appreciate was the limit of formality. Figure 3 gives a representation
of the call-tree of the main program: procedure Main is at the top of the tree,
followed closely by the scheduler and event handler, while the subprograms and
packages at the bottom include device drivers for the I/O devices.
13 In these cases, manual numerical analysis was carried out to confirm the accuracy

of the code.

The Value of Verification: Positive Experience of Industrial Proof 1539

Although the ‘middle’ part of the system could be neatly described by Z
and SPARK, there were problems with both the ‘top’ and ‘bottom’ parts of the
system. At the very top level, experience showed that the proof annotations were
often simply too large to be manageable. This was exacerbated by the current
lack of abstract proof support in SPARK, unlike the existing abstraction support
for data and information flow analysis.14

Thus a decision was taken to prove only ‘interesting properties’ — such as
the safety invariants — at the very top level of the SPARK. On the other hand,
at the ‘bottom’ of the architecture, there was a need to interface with other
software, such as device drivers, for which there was no formal specification at
all. In this case, the solution adopted was often to supply a very abstract formal
specification but no more. This usually took the form of a specification such as

o! = f(x) ,

where the function f , acting on the state variables x to produce outputs o!, is
left entirely nondeterministic. However, by naming f , it is possible to express the
proof annotations, and to show exactly what properties of the supplied device
driver are being relied on.

Top level:

eg scheduler

partly formally specified

partly formally specified
eg device drivers

Bottom level:

formally specified
Middle level:

Formal ‘limit’

Fig. 3. The limits of formality

14 SPARK includes the concept of an abstract own variable, where a single own variable
(declared in a package specification) may represent a set of variables used in the
implementation. Although the SPARK toolset fully supports abstract own variables
in all types of flow analysis, there is currently no support for reasoning about such
variable ‘refinements’.

1540 Steve King et al.

It was also important to remember that, of course, the development process
did not stop when SPARK source code was produced: the code had to be com-
piled into object code. However good the development process had been in order
to produce the source code, if the compiler had bugs, then the delivered system
might be unacceptable due to compiler-introduced errors. A commercial, vali-
dated Ada compiler was used since that would bring some guarantees of quality
through its years of service and the hope that any compiler bugs had been found
by other users. In fact, the only compiler bug found during the project was in
the optimiser, which was then switched off — the necessary performance was
achieved by having the Ada run-time checks turned off in the compiled code.
However, one difficulty with using a compiler for the full Ada language was that
of course it did not understand the philosophy behind SPARK: on one occasion,
it was realised that the compiler was using a perfectly valid code-generation
strategy involving dynamic allocation of a large temporary variable, contrary to
all of the SPARK ideas of predictability of resource usage, no dynamic memory
allocation and so on. Here the solution involved a member of the project team
using his ability to read the object code to write a script which checked the gen-
erated object code for dynamic memory allocation calls. There were also one or
two problems in ensuring that the SPARK code was both provable and obeyed
the timing requirements of the system. The fact that there was an expert in
timing analysis [6] in the team was invaluable here.

In the Z proofs, it was found that the choice of state invariants was particu-
larly important for finding errors: if the invariants were not strong enough, then
it was quite possible to discharge the precondition proof obligation for an opera-
tion that had a postcondition which did not correspond to the desired outcome.
(Some details of errors found by Z proofs are given below.)

There were several lessons learnt about coding styles which made the proof
task easier: these are to be recorded in an internal ‘Coding Style Guide’ for future
SPARK proof projects. For instance, if it is necessary to perform some action
for every value of a small discrete type, it is sometimes easier to prove correct a
sequence of statements rather than a loop over all of the possible values.

It is too early for there to be evidence yet about the cost of future changes
to the system, though this is clearly an important question given the fairly novel
and extensive use of proof on SHOLIS. Although there is limited experience of
using tools to maintain proofs, it should be noted that the proportion of effort
spent producing the proofs was fairly low (6.5%). One of the SHOLIS developers
has remarked that he believes, as for most developments, that it is the design
structure which is likely to have the most significant effect on the cost of future
changes. There is also evidence [22], from an independent analysis of the project
described in [13], that the use of a formal specification leads to simpler code
which is easier to understand, and therefore to maintain.

Finally, at least one of the developers/provers remarked that it was from the
VCs which didn’t go straight through the Simplifier that most was learnt. In fact
the code proof stage provided confidence that the code did actually implement

The Value of Verification: Positive Experience of Industrial Proof 1541

the Z specification, and the RTC proofs gave confidence that the Ada run-time
check options on the compiler could be turned off safely.

5.3 The Types of Errors Found by Z Proofs

Approximately 70% of the Z proofs concerned preconditions, and they found
approximately 75% of the total faults found by Z proof. An initial analysis of
the faults reveals a number of different types (in approximately decreasing order
of significance).

Incorrect functionality specified: there were several cases where, although
the Z was well-defined and had the expected precondition, the actual func-
tionality specified did not meet the requirements. These instances were found
as a side-effect of the (human) prover having to understand precisely what
the Z meant, in order to construct the proof, and realising that this did not
correspond with their informal understanding of the required behaviour.

Lack of mode/history information modelled: as already described, SHO-
LIS has a number of different types of information pages. Certain pages
and/or associated system functions are only available in particular circum-
stances, e.g. after a selection has been made. A number of precondition proofs
revealed that the Z model did not adequately capture these ordering depen-
dencies.15 In each case, the solution was to add invariants to encode ‘history’
information, e.g. if this button (and hence system function) is available to
the user then this selection state must be defined.

Contradictory operations: for a couple of operations, there were overlap-
ping cases that specified conflicting behaviour, resulting in a contradiction.
Perhaps more interesting were operations whose explicit postcondition pred-
icates contradicted (implicitly included) invariants. In about four cases it
turned out that the invariant was too strong, i.e. when the invariant was
originally formulated, it was not noticed that there were legitimate situa-
tions where the invariant would not hold. Typically, these situations could
be characterised and the invariant ‘weakened’ by the addition of an ‘or’-case.

Missing cases: there were a number of instances of missing cases (e.g. not cov-
ering all possible combinations of input values). These typically resulted from
either undefined function-applications (i.e. a value not being in a function’s
domain), or from the result of a calculation being outside an allowed range
(e.g. to trying to increase a value beyond a fixed upper limit).

Incorrectly loose specifications: there were three or four examples where
the prover spotted that the postcondition did not specify a value for one or
more state components. Since Z has no ‘rest unchanged’ convention, for any
variables which are to be left unchanged, this must be explicitly specified.
As with the incorrect functionality case, it was not the precondition itself
which showed the problem, but the thorough consideration of the operation
required to produce the proof.

15 Z has no explicit mechanism for specifying dependencies on the ordering of opera-
tions.

1542 Steve King et al.

5.4 SPARK 83 versus SPARK 95

Since the SHOLIS project started in 1993, it was obviously not possible to use
SPARK 95, the later version of SPARK derived from Ada 95, together with an
updated toolset. However, it is clear that several features of SPARK 95 would
have made life easier on the SHOLIS project: use type clauses, the ability to
read out parameters, moded globals and the changes to static expressions. Some
details of a later trial port of SHOLIS to SPARK 95 can be found in [7].

6 Related Work

While there has been an increasing use of formal methods for specification in
industry — see, for example, [11, 12, 15] — there is less evidence for the use
of refinement and proof. However, [25] offers a recent example of the use of Z
refinement on an industrial scale. This work led to some improvements in the
formulation of the Z refinement rules, and to a better understanding of the
Z/CSP relationship [5].

On the SPARK proof front, [10] reports the use of SPARK with an extension
to SPC’s CoRE (Consortium Requirements Engineering) modelling method [8],
which in turn is based on Parnas tables[1]. The specifications in these tables were
converted to SPARK postconditions. Parnas tables were used successfully on the
Darlington shutdown system [21, 9], but would not have been as appropriate as
Z for the SHOLIS work, since Z has a much richer state-modelling capability.
This was necessary for areas like maintaining a history of input sensor values.

7 Conclusions

The SHOLIS project made extensive use of formal methods, including both Z
and SPARK proof, and it is believed to be the first to be completed under the
1991 version of UK MoD Interim Defence Standards 00-55 and 00-56.

The overall experience of industrial-scale proof has been very positive and
obtained significantly better results than were originally expected. In terms of
faults found for effort expended, the Z Proof phase was by far the most efficient
phase of the project. One reason for this may be because the Z Proof was the
first verification phase on the project. Proofs at the SPARK code level were not
as efficient at finding faults, but this was to be expected since significant testing
— both informal and formal — had already been completed before the code
proofs took place. However, the code proofs were still more efficient at error
detection than unit testing, and provided crucial assurance that the code was
free of run-time exceptions.

The results of the different types of testing are also quite revealing. In partic-
ular, system validation testing was substantially more efficient at finding faults
than unit testing. In our experience this is consistent with anecdotal evidence
from other high-integrity projects. As a result we have significantly refined our
testing strategy on more recent projects.

The Value of Verification: Positive Experience of Industrial Proof 1543

There are some important constraints to remember when attempting proof on
a large-scale. Part of the success of proof on SHOLIS is due to the simple system
architecture, and hence the straightforward mapping that is possible between
the specification, design and code. If SHOLIS were a heavily distributed system,
it is not believed that as much could have been achieved. (Further discussion of
practical issues concerning the use of formal methods in large-system design can
be found in [13, 14].) The limits of formality must also be considered. For the
foreseeable future, testing is likely to have an important role in gaining necessary
assurance of compilers, hardware, timing issues etc.

On the Z side, further support is needed (in terms of both proof techniques
and tools) for reasoning about subsystems coupled by invariants, other than by
brute force expansion. Some large-scale SPARK reasoning mechanisms are also
needed, including some support for abstract proof, before the technology can
be extensively used at the highest levels of large systems. The next release of
the SPARK toolset is very likely to contain such mechanisms, as a result of
experiences on SHOLIS and other projects.

In summary, proof was an important part of the SHOLIS development pro-
cess, and an important factor in contributing to the quality of the delivered
product. We believe our success shows both the significant benefit and practi-
cality of large-scale proof on projects of this kind.

Acknowledgements

This paper reports the work of the entire SHOLIS proof and coding team: Janet
Barnes, Rod Chapman, Jonathan Hammond, Andy Pryor and Neil White. The
permission of PMES and MoD to publish this paper is gratefully acknowledged.
The FM99 referees and Anthony Hall gave useful feedback on earlier versions of
the paper.

A Z Glossary

This glossary gives brief definitions for the Z terms used in the paper. Readers
are referred to the many text books on Z for a more extensive introduction.

Schema expansion: one of the key features of Z is the schema, a named collec-
tion of variable declarations and invariants linking them. The schema name
can be used as a declaration, and this technique is widely used to control
complexity. Schema expansion involves replacing schema names with the
corresponding declarations and invariants. This can either be carried out
‘all-in-one’, when expansion continues until there are no schema names left,
or ‘one-level-at-a-time’, when only the immediately-visible schema names are
expanded — of course, this may introduce further schema names.

Ξ schema: a Ξ schema is used to describe operations which do not change the
state of a system. It is a shorthand for the inclusion of a state before, a
state after and an equality predicate stating that all state components are
unchanged. It is typically used in ‘enquiry’ operations, where the purpose

1544 Steve King et al.

of the operation is to give an output depending on the current state, rather
than to change the state.

Promotion: this is a technique for specifying the behaviour of systems which
consist of several copies of a smaller subsystem. The state of the subsystem
is first described, together with operations on it. This ‘local’ state is then
used in the description of the larger ‘global’ state, and the ‘local’ operations
are combined with a framing schema to describe the operations on the global
state. A ‘functional promotion’ is one where the local state is included in the
global state by introducing a variable which is a function from an indexing
set to the local state. Further details may be found in [28, 27, 2].

Precondition proof: in Z, operations are described with a single predicate,
encapsulating both the precondition and the postcondition. The precondition
can be extracted from this by applying the pre operator, which hides the
after-state and outputs. The ‘precondition proof’ is then a check that the
specifier’s view of the operation’s precondition — obtained by consideration
of the environment in which the operation is executed — is strong enough
to imply the real precondition, as expressed with pre.

Initial state proof: this is a proof that a valid initial state for the system does
exist. In this context, ‘valid’ means ‘obeying the state invariant’.

References

[1] T. Alspaugh, S. Faulk, K. Heninger Britton, R. Parker, D. Parnas, and J. Shore.
Software requirements for the A7-E aircraft. Technical Report NRL/FR/5530-
92-9194, Naval Research Laboratory, Washington, D.C., 1992.

[2] R. Barden, S. Stepney, and D. Cooper. Z in practice. BCS Practitioner Series.
Prentice-Hall, 1994.

[3] J. Barnes. High integrity Ada: The SPARK approach. Addison-Wesley, 1997.
[4] J-F. Bergeretti and B.A. Carré. Information-flow and data-flow analysis of while-

programs. ACM Trans. Prog. Lang. Sys., 7(1), January 1985.
[5] C. Bolton, J. Davies, and J.C.P. Woodcock. On the refinement and simulation

of data types and processes. In K. Araki, A. Galloway, and K. Taguchi, edi-
tors, IFM99: Proceedings of the 1st International Conference on Integrated Formal
Methods, pages 273–292. Springer-Verlag, 1999.

[6] R.C. Chapman, A. Burns, and A.J. Wellings. Combining static worst-case timing
analysis and program proof. Real-Time Systems Journal, 11(2):145–171, Septem-
ber 1996.

[7] R.C. Chapman and R. Dewar. Re-engineering a safety-critical application using
SPARK 95 and GNORT. In M.H. Harbour and J.A. de la Puente, editors, Reliable
Software Technology: Proceedings of the 1999 Ada Europe Conference, Santander,
Spain, number 1622 in Lecture Notes in Computer Science, pages 39–51. Springer-
Verlag, 1999.

[8] Consortium Requirements Engineering Guidebook. Technical Report SPC-92060-
CMC Version 01.00.09, Software Productivity Consortium, Herndon, VA, USA,
1993.

[9] D. Craigen, S. L. Gerhart, and T. J. Ralston. An international survey of industrial
applications of formal methods. Technical Report NIST GCR 93/626-V1 & 2,

The Value of Verification: Positive Experience of Industrial Proof 1545

Atomic Energy Control Board of Canada, US National Institute of Standards
and Technology, and US Naval Research Laboratories, 1993.

[10] M. Croxford and J.M. Sutton. Breaking through the V and V bottleneck. In
M. Toussaint, editor, Ada in Europe 1995, volume 1031 of Lecture Notes in Com-
puter Science, pages 344–354. Springer-Verlag, 1995.

[11] J. Fitzgerald, C. B. Jones, and P. Lucas, editors. FME’97: Industrial Application
and Strengthened Foundations of Formal Methods, volume 1313 of Lecture Notes
in Computer Science. Formal Methods Europe, Springer-Verlag, 1997.

[12] M.-C. Gaudel and J. C. P. Woodcock, editors. FME’96: Industrial Benefit and
Advances in Formal Methods, volume 1051 of Lecture Notes in Computer Science.
Formal Methods Europe, Springer-Verlag, 1996.

[13] A. Hall. Using formal methods to develop an ATC information system. IEEE
Software, 13(2):66–76, March 1996.

[14] A. Hall. Keynote speech: What does industry need from formal specification
techniques? In 2nd IEEE Workshop on Industrial-Strength Formal Specification
Techniques, 1998.

[15] M.G. Hinchey and Bowen J.P., editors. Applications of Formal Methods. Prentice-
Hall International series in computer science / C.A.R. Hoare, series editor.
Prentice-Hall International, Englewood Cliffs, N.J. ; London, 1996.

[16] J. Jacky. The way of Z: Practical programming with formal methods. Cambridge
University Press, Cambridge, UK, 1997.

[17] MOD. Hazard analysis and safety classification of the computer and programmable
electronic system elements of defence equipment. UK Ministry of Defence, April
1991. INTERIM DEF STAN 00-56.

[18] MOD. The procurement of safety critical software in defence equipment. UK Min-
istry of Defence, April 1991. INTERIM DEF STAN 00-55 (Part 1: Requirements).

[19] MOD. The procurement of safety critical software in defence equipment. UK
Ministry of Defence, April 1991. INTERIM DEF STAN 00-55 (Part 2: Guidance).

[20] K.A. Nyberg, editor. The annotated Ada Reference Manual. ANSI, 1983.
ANSI/MIL-STD-1815A-1983.

[21] D.L. Parnas, G.J.K. Asmis, and J.D. Kendall. Reviewable development of safety
critical software. In Proceedings of the International Conference on Control and
Instrumentation in Nuclear Installations, 1990.

[22] S.L. Pfleeger and Hatton L. Investigating the influence of formal methods. IEEE
Computer, 30(2):33–43, February 1997.

[23] SPARK — The SPADE Ada Kernel. Praxis Critical Systems, August 1997. Edi-
tion 3.3.

[24] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

[25] S. Stepney, D. Cooper, and J.C.P. Woodcock. More powerful Z data refinement:
Pushing the state of the art in industrial refinement. In J.P. Bowen, A. Fett, and
M.G. Hinchey, editors, ZUM’98: the Z formal specification notation, volume 1493
of Lecture Notes in Computer Science, pages 284–307. Springer-Verlag, 1998.

[26] I. Toyn and J.A. McDermid. CADiZ: An architecture for Z tools and its imple-
mentation. Software — Practice and Experience, 25(3):305–330, March 1995.

[27] J.C.P. Woodcock. Mathematics as a management tool: Proof rules for promotion.
In B.A. Kitchenham, editor, Software Engineering for Large Software Systems.
Elsevier, 1990.

[28] J.C.P. Woodcock and J. Davies. Using Z: specification, refinement and proof.
Prentice-Hall International series in computer science / C.A.R. Hoare, series edi-
tor. Prentice Hall, 1996.

Formal Development and Verification of

a Distributed Railway Control System

Anne E. Haxthausen1 and Jan Peleska2

1 Dept. of Information Technology, Techn. University of Denmark, DK-2800 Lyngby,
ah@it.dtu.dk

2 BISS, Universität Bremen, P.O. Box 330440, D-28334 Bremen,
jp@informatik.uni-bremen.de

Abstract. In this article we introduce the concept for a distributed rail-
way control system and present the specification and verification of the
main algorithm used for safe distributed control. Our design and verifi-
cation approach is based on the RAISE method, starting with highly ab-
stract algebraic specifications which are transformed into directly imple-
mentable distributed control processes by applying a series of refinement
and verification steps. Concrete safety requirements are derived from an
abstract version that can be easily validated with respect to soundness
and completeness. Complexity is further reduced by separating the sys-
tem model into a domain model describing the physical system in absence
of control and a controller model introducing the safety-related control
mechanisms as a separate entity monitoring observables of the physical
system to decide whether it is safe for a train to move or for a point to
be switched.

1 Introduction

The present modernisation of European railway networks raises a large variety
of issues related to the design and verification of railway control systems. One
of these problems is the question how to design control systems for small local
networks that can only operate effectively if the costs for initial installation,
operation and maintenance of the control system are low. Today’s centralised
interlocking systems – at least those which are available in Germany – are far too
expensive for such small (possibly privatised) networks. A promising approach is
to distribute the tasks of train control, train protection and interlocking over a
network of cooperating components using the standard communication facilities
offered by mobile telephone providers. On the other hand, a distributed control
concept also introduces new safety issues that could be disregarded as long as
centralised control was applied: First, the new communication medium requires
security and reliability mechanisms that were unnecessary for centralised systems
transmitting control commands to signals and points over wires. Second, the
distribution of a control algorithm over several components raises new design
and verification issues, since the concept of a global state space as available in a
centralised interlocking system can no longer be implemented.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1546–1563, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Formal Development and Verification 1547

In this article, we will describe the concept of a distributed railway control
system consisting of switch boxes (SB), each one locally controlling a point, and
train control computers (TCC) residing in the train engines and collecting the
local state information from switch boxes along the track to derive the decision
whether the train may enter the next track segment. The system concept does
not require signals along the track, since the “go/no-go” decisions are performed
and indicated in the train control computers. We give an overview over the for-
mal specification and verification of the main control algorithm executed by the
distributed cooperating control components. The system is designed to operate
on simple networks, which means in our context that there are two distinguished
destinations A and B, such that at each track segment of the network there is a
uniquely defined direction to reach A and B, respectively. Typically, this defini-
tion applies to networks which are not highly frequented by trains and connect
two main stations with small intermediate stations (Figure 1).

A Bdirection AB direction BA

Fig. 1. Simple railway network.

Our specification and verification approach is based on the RAISE formal
method and tool set [6, 7] and follows the invent-and-verify paradigm. To ad-
dress safety issues in a systematic way the standard procedure (see [8]) sep-
arating the equipment under control – that is, the railway network with its
trains – from the control system – in our case, the set of TCCs and SBs – is
applied. To this end, we first develop abstract algebraic specifications for the
domain model, i.e., the railway network and the trains to be controlled, and the
safety requirements stating that the system must not perform a transition into a
hazardous state where trains may collide or derailing might occur. These require-
ments are expressed as conditions about the observables of the domain model.
Using stepwise refinement and accompanying verification steps, we introduce
additional observables that may be monitored by a controller giving the “can
move/cannot move” conditions for each train and the “can be switched/cannot
be switched” conditions for each point. The completeness and consistency of
these conditions is verified by proving refinement relations to the higher-level
specifications which already have been proved to be consistent with the initial
safety requirements. The first stage of the invent-and-verify development ends
when the observables of the last refinement needed to control the safety of train
movements and point switching are implementable in the sense that they can

1548 Anne E. Haxthausen and Jan Peleska

be transformed into a concrete state space that may be conveniently partitioned
among a set of distributed cooperating processes. The second stage specifies
and verifies the concrete – i.e., implementable – distributed controller model by
introducing communicating processes which represent train control computers
and switch boxes. The TCC processes collect state information from the SB pro-
cesses to make the“can move/cannot move” decisions. The SB processes store
the relevant state information to take the “can be switched/cannot be switched”
decisions for their local points. The resulting controller is a distributed program
which is underspecified with respect to application-dependent control decisions
– like defining the order in which trains may pass along a single-track section
– which can be made without violating the safety requirements. Concrete con-
troller implementations will resolve this underspecification by choosing a specific
solution for application-dependent control decisions.

The work presented here originated from a collaboration of the authors with
INSY GmbH Berlin, who developed the distributed systems design described in
the next section for their railway control system RELIS 2000 designed for local
railway networks. In this collaboration, the authors focus on the generalisation
and verification of the control concepts used in RELIS 2000. Furthermore, the
second author is cooperating with Transnet (South African Railways) in the field
of development, verification, validation and test of safety-critical systems.

In Section 2, we introduce the general concept for the distributed railway
control system discussed in this article. Similar approaches of “Funkbasierter
Fahrbetrieb (FFB)” – that is, train control based on radio transmission – are
presently investigated by German Railways [3]. Our verification concept de-
scribed in the following sections applies to all of these approaches. Section 3
presents the formal specification of the system’s domain model. In Section 4,
an abstract version of the safety requirements is introduced. The subsequent
sections are concerned with the development of the control system as a series
of refinement and verification steps. In the discussion (Section 7) we sketch the
more general issues of our concept for the development, verification, validation
and test of safety-critical systems.

2 Engineering Concept

In this section, we introduce the technical concept of the distributed railway
control system to be formally specified and verified below. The technical concept
is based on the RELIS 2000 system of INSY GmbH with generalisations and
modifications performed by the authors.

Consider the system configuration depicted in Figure 2. The tasks of train
control, train protection and interlocking are distributed on train control com-
puters (TCC) residing in each train T1, T2 and switch boxes (SB) SB1, SB2,
SB3, each one controlling a single point, the boundary between two segments
(e.g. blocks) of a single track or a railway crossing. The basic principle of the
control algorithm is as follows:

Formal Development and Verification 1549

SB 1 SB 2 SB 3

T2

T1

Fig. 2. Distributed railway control system – trains communicating with switch
boxes.

– Each switch box stores the local safety-related information in its state space.
For example, this information contains the actual state of the traffic lights
guarding the railway crossing, whether a train is approaching the switch box
or the track segments that are presently connected by the local point. The
switch boxes use sensors to detect approaching trains and to decide whether
a train has left the critical area close to a point or a crossing.

– To pass a railway crossing or to enter a new track segment, a train’s TCC
communicates with the relevant switch boxes to make a request for blocking
a crossing, switching a point or just reserving the relevant track segments
at the SB for the train to pass. The decision which switch boxes to address
is based on the location of the train which is determined by means of the
Global Positioning System (GPS) or by using track components signalling
their location to the passing train.

– Depending on their local state, the switch boxes may or may not comply
with the request received from a TCC. In any case, each SB returns its
(possibly updated) local state information to the requesting TCC. After
having collected the response from each relevant SB, the TCC evaluates the
SB states to decide whether it is safe to approach the crossing or to enter
the next track segment.

– For train protection, each TCC blocks the train engine if it is not allowed
to leave a station and triggers the emergency brake if the train approaches
a railway crossing or enters a new track segment without permission from
the associated switch boxes. Furthermore, each TCC monitors the speed of
the train and gives warning messages or triggers the emergency brakes if the
actual speed exceeds the maximum velocity admitted for the type of train
at its actual location in the network.

Observe that in principle, the concept sketched above would admit completely
automatic train control without train engine drivers being present. However,
in the possible realisations presently discussed, this is not intended: The train

1550 Anne E. Haxthausen and Jan Peleska

engine driver has the ultimate responsibility to decide whether it is safe to leave
a station, enter a new track segment or pass a crossing.

In the subsequent sections we will focus on the formal specification and veri-
fication of the control algorithm concerned with “can move/cannot move” deci-
sions for trains and “can be switched/cannot be switched” decisions for points.
To introduce the principles of this algorithm, consider Figure 3 which shows the
local state spaces of two switch boxes SB1, SB2 and trains T1, T2.

ROUTE-SBs:

ROUTE-SEGMENTS:

SB1, ...

DIR: POS: S3

LOCKS: none

RESERVATIONS:

[SB1:{S3}]

T2T1

ROUTE-SBs:

ROUTE-SEGMENTS:

SB1, SB2, ...

DIR: POS: S1

LOCKS: SB1

RESERVATIONS:

[SB1:{S1,S2}] [SB2:{S2}]

(S3,), (S1,)(S1,), (S2,), (S4,)

SB1

CONNECTED: S1<->S2

T1

passive

ACTION: none

LOCKED_BY:

SENSOR:

RES S2:

RES S3:

T1

T2

DIR S1:RES S1: T1

DIR S2:

DIR S3:

T1

T2

SB1

S1
S2

S3

S4

BA

SB2

S3<->S4

none

passive

ACTION: none

LOCKED_BY:

SENSOR:

RES S2:

RES S3:

T1

n.a.

DIR S4:RES S4: --

DIR S2:

DIR S3:

SB2

CONNECTED:

Fig. 3. Switch boxes, trains and their state spaces.

In state component CONNECTED, the switch box stores which track seg-
ments are presently connected by the local point. (If the SB just separates two
blocks on a single track, this information is static.) In the components DIR S1,
DIR S2,. . . the directions associated with each track segment are stored: A seg-
ment can either be used only for trains going in direction A → B, or for trains
going in direction B → A or in both directions (A ↔ B). Typically, this infor-
mation is fairly static and will only be changed if deviations from the ordinary
train schedule occur, for example when constructions are going on or when a
train arrives late. As explained below, the segment direction will be evaluated to

Formal Development and Verification 1551

decide whether a train may reserve a switch box. The LOCKED BY state com-
ponent indicates whether a specific train has the right to pass the switch box. If
such a train is registered in this component, it is impossible to switch the local
point to another direction until the train has passed. For the detection of pass-
ing trains, a state component SENSOR is activated by a set of sensors attached
to the track when a train approaches the point. The component is returned to
state “passive” as soon as the sensors indicate that the last waggon of the train
has passed the point. To decide whether a train may get a reservation for a
segment approaching the switch box and whether a point may be locked for a
train, additional state components RES S1, RES S2,. . . are maintained at each
switch box for every track segment whose segment direction is approaching the
SB. The ACTION component of the state space is used as a “transaction flag”
for commands which have to be executed on several switch boxes in a synchro-
nised manner: The switch box will refuse new commands, as long as the ACTION
flag indicates such a transaction. Observe that this flag is unnecessary for the
standard reservation commands described next.

The state space of each TCC contains the lists ROUTE-SEGMENTS and
ROUTE-SBs of track segments and switch boxes along the train route. When
leaving a segment and passing a switch box, these entries are removed from
the head of each list. Again, segments are stored together with their directions
→,←,↔. State component DIR stores the direction where the train is heading
to. A train may only move along segments whose direction is compatible with
DIR. In POS, the actual position is stored. In the abstraction presented here,
positions are specified by one or two segments, the former indicating that the
train is on the segment without touching neighbouring segments, the latter in-
dicating that the train is in the critical area of a point (potentially) connecting
the two segments. State component RESERVATIONS stores the switch boxes and
associated segments which have been reserved by the train. LOCKS is a list of
switch boxes whose points have been switched in the direction of the train route
and are locked for the train. Whenever a train is allowed to proceed into the
next segment, this information must be consistent with the corresponding RES-
and LOCKED BY-components of the switch boxes involved.

To determine, whether a train T1 may enter a new segment S2 (cf. Figure 3),
the train control computer and the relevant switch boxes evaluate the state space
described above as follows:

– To guarantee safety for the train at its local position, two conditions must
be fulfilled:

1. The train direction must be consistent with the direction associated with
the local track segment. (Train T1 going in direction A → B cannot
have its position on segment S3, since the latter has associated direction
B → A.)

2. Each train must have a reservation for its local track segment at the next
switch box to be approached by the train (S1 must be reserved for train
T1 at switch box SB1).

1552 Anne E. Haxthausen and Jan Peleska

– To enter the next segment (S2 for train T1), three safety conditions must be
fulfilled:
1. The train direction must be consistent with the direction of the segment

to be entered. (S1 has direction A ↔ B, so this is consistent with T1’s
train direction A→ B.)

2. The next SB must be locked for the train (SB1 is locked by T1, so this
condition is fulfilled for T1).

3. The train must have a reservation for the next segment S2 at every switch
box where S2 is an approaching segment. (In Figure 3, S2 approaches
both SB1 and SB2, so T1 must reserve S2 at both switch boxes. In
contrast to that, T2 only needed to reserve S3 at SB1 before entering S3
from S4.)

– In order to fulfil these three conditions, the train signals its wish to enter
the next segment to the associated switch boxes. Each switch box enters the
train’s reservation for the next segment if this is not already reserved for
another train. If reservation is possible and the SB is not locked by another
train, it will switch its point into the required direction if necessary and lock
the point for the requesting train.

– If the three conditions are fulfilled the train may enter the next segment. As
soon as the train has passed the next SB, the SB will delete the lock and
all reservations made by the train. (In Figure 3, SB1 will unlock its point
and delete all references to T1, as soon as the train has passed the point and
entered S2. Note that T1 is still completely safe at its new location, since
each train wishing to enter S2 from either S1 or S4 also needs a reservation
of S2 at SB2, and this is still blocked by T1.) The train will update its own
state space accordingly.

In the sections below, this informal system concept is described and verified
in a formal way. Observe that in this article we deal with untimed control and
safety mechanisms only. Time-dependent conditions – for example, “when is last
time point (depending on speed and position) to trigger the emergency brakes
in order to prevent the train from entering the next segment ?” – are imported
into the specifications at a later stage as a “timed refinement” of the untimed
control mechanisms discussed here.

3 Domain Model

In this section we show (parts of) a domain model capturing those physical
objects and events of the uncontrolled railway system which are relevant for the
development of the railway control system. We divide the model into a static
part and a dynamic (state based) part. Other authors have established similar
railway domain models [1, 4, 5].

Formal Development and Verification 1553

3.1 Static Part of the Model

The static part of the model comprise definitions of data types for objects. The
physical objects we consider include the trains, the points (switch boxes) and
the railway network.

Trains
Each train has a unique identification belonging to the following, not further
specified type:

type TrainId

Points
Each point has a unique identification belonging to the following, not further
specified type:

type PointId

Railway Network
A railway network consists of segments connected according to the network
topology.

Each segment has a unique identification belonging to the following, not
further specified type:

type Segment

In our model, the network topology is specified by a predicate (are neighbours)
which defines which segment ends are neighbours:

value
are neighbours : SegmentEnd × SegmentEnd → Bool

where a segment end is a pair consisting of a segment identification and one of
two possible ends:

type
SegmentEnd = Segment × End, End == a end | b end

The are neighbours predicate must satisfy a number of axioms (not presented
here) ensuring that the network is directed.

3.2 Dynamic Part of the Model

As trains move along the segments of the network and points are switched, the
state of the railway may change over time. We use a discrete, event-based model
to describe state transitions.

1554 Anne E. Haxthausen and Jan Peleska

The State Space
At this early phase of development, we do not yet know, what the exact state
space is, but only that the state space should contain information about some
dynamic properties of objects which we will explain below. Therefore, we just
introduce a name for the type of states without giving any datatype representa-
tion:

type State

and characterise this type implicitly by specifying state observer functions of the
form obs : State × ... → T which can be used to capture information (of type
T) about the state.

Dynamic Properties of Trains
Each train has a position and a direction which may change over time.

We assume that the length of segments is chosen such that any train has a
position on one or two neighbouring segments1 or it has passed an end point of
the network:

type
Position ==

single(seg of : Segment) | double(fst : Segment, snd : Segment) | error

A position of the form single(s) indicates that the train is residing on a single
segment s, a position of the form double(s1, s2), where s1 and s2 are two neigh-
bouring segments, indicates that the train is residing on one or both segments
in the critical area of the point potentially connecting these segments. The error
position is used to model the case where a train has passed an end point of the
network.

Since the railway network is directed according to our simple network as-
sumption described in the introduction, there are two possible train directions:

type Direction == dirAB | dirBA

We introduce the following functions to observe the mentioned properties:

value /∗ state observers ∗/
position : State × TrainId → Position,
direction : State × TrainId → Direction

1 Our engineering concept can be adapted to railway systems for which this assump-
tion does not hold by using lists of segments for train positions instead of the here
proposed representation.

Formal Development and Verification 1555

Dynamic Properties of Points
Points may be switched. Hence, the connections between segment ends of the
railway network may change over time. We introduce the following function to
observe this:

value /∗ state observer ∗/
are connected : State × SegmentEnd × SegmentEnd → Bool

The are connected observer must satisfy some axioms (not presented here) en-
suring that some physical laws are satisfied, e.g. that only neighbouring segments
are connected and there is exactly one connection in each point.

Events
We consider the following events:

– trains move from one position to their next position
– points are switched

It should be noted that in this uncontrolled model, events may lead to unsafe
states.

For each kind of event we introduce a state constructor which can be used
to make the associated state changes:

value /∗ state constructors ∗/
move : State × TrainId → State,
switch : State × PointId × SegmentEnd → State

Their behaviour is defined by observer axioms. For instance, the following axiom
states that moving a train does not change how segment ends are connected

axiom /∗ observer axioms ∗/
[are connected move]
∀ σ : State, t : TrainId, se1, se2 : SegmentEnd •

are connected(move(σ, t), se1, se2) ≡ are connected(σ, se1, se2)

and the following axiom states that moving a train affects the position of the
train itself:

[position move]
∀ σ : State, t1, t2 : TrainId •

position(move(σ, t1), t2) ≡
if t2 = t1 then

next position(σ, position(σ, t2), direction(σ, t2))
else position(σ, t2) end

pre safe(σ)

where safe is a function defined in next section, and next position(σ, pos, dir)
is an auxiliary function defined below. It gives the next position after pos in
direction dir.

1556 Anne E. Haxthausen and Jan Peleska

value
next position : State × Position × Direction → Position

axiom
∀ σ : State, s1, s2 : Segment, dir : Direction •

next position(σ, double(s1, s2), dir) ≡ single(s2),

∀ σ : State, s1, s2 : Segment, dir : Direction •

are connected(to end(s1, dir), from end(s2, dir)) ⇒
next position(σ, single(s1), dir) ≡ double(s1, s2),

∀ σ : State, s1 : Segment, dir : Direction •

(∀ s2 : Segment •

∼ are connected(to end(s1, dir), from end(s2, dir))
) ⇒
next position(σ, single(s1), dir) ≡ error

The first axiom states that the next possible position of a train having a posi-
tion on two segments, s1 and s2, is its front segment s2. The second and the
third axiom define the next possible position for trains in direction dir having a
position on a single segment s1. If the “to-end” in direction dir of segment s1 is
connected to the “from-end” in direction dir of some segment s2 then the train
will have its next possible position on s1 and s2, otherwise the train is at an
end point of the railway network and will have error (modelling derailing) as its
next possible position. The “to-end” in direction dir of segment s is defined as
follows

value
to end : Segment × Direction → SegmentEnd
to end(s, dir) ≡ if dir = dirAB then (s, b end) else (s, a end) end

The “from-end” is the opposite end of the “to-end”.
There are similar observer axioms for switch.

4 Safety Requirements

Our goal is to develop a train control & interlocking system satisfying the fol-
lowing two safety requirements:

No collision: Two trains must not reside on the same segment.
No derailing: Trains must not derail (by passing an end point of the network

or by entering a point from a segment which is not connected with the next
segment).

The notion of safety can be formalised by defining a predicate which can be used
to test whether a state is safe:

Formal Development and Verification 1557

value
safe : State → Bool
safe(σ) ≡ no collision(σ) ∧ no derailing(σ),

no collision : State → Bool
no collision(σ) ≡

(∀ t1, t2 : TrainId • t1 6= t2 ⇒
segments(position(σ, t1)) ∩ segments(position(σ, t2)) = {}

),

no derailing : State → Bool
no derailing(σ) ≡

(∀ t : TrainId •

position(σ, t) 6= error ∧
(∀ s1, s2 : Segment • position(σ, t) = double(s1, s2) ⇒

are connected
(σ, to end(s1, direction(σ, t)), from end(s2, direction(σ, t)))))

Here segments is an auxiliary function giving the segments of a position.

5 Development of the Railway Control System: First
Stage

The purpose of the railway control system is to prevent events to happen when
they may lead to an unsafe state. We develop an implementable controller model
by stepwise refinement following the invent-and-verify paradigm. The develop-
ment is divided into two major stages of which we describe the first in this
section.

In the first major stage of development we design a full state space keeping
information not only about the dynamic properties described in the domain
model, but also about new dynamic data (observables) like segment reservations
which may be monitored by the controller to evaluate the “can move/cannot
move” and “can be switched/cannot be switched” conditions. New data like
segment reservations also give rise to new state constructors modelling events
like making a reservation.

Our strategy for fulfilling the safety requirements is to invent

1. a state invariant consistent(σ), and
2. for each constructor con, a guard (condition) can con(σ, ...) which can be

used by the controller to decide whether it should allow events (correspond-
ing to application of that constructor) to happen

such that the following strong safety requirements are fulfilled:

1. States satisfying the state invariant must also be safe.
2. Any state transition made by a state constructor must preserve the state

invariant when the associated guard is true.

1558 Anne E. Haxthausen and Jan Peleska

3. If the guards for two different events are both true in a state satisfying the
state invariant, then a state change made by one of the events must not
make the guard for the other event false.

These requirements ensure that if the initial state satisfies the state invariant,
and the railway control system only allows events to happen when the corre-
sponding guards are true then the system will stay safe.

The first strong safety requirement can be formalised by the following theory:

[consistent is safe]
∀ σ : State • consistent(σ) ⇒ safe(σ)

The second strong safety requirement can be formalised by a theory

[safe con]
∀ ... • consistent(σ) ∧ can con(σ, ...) ⇒ consistent(con(σ, ...))

for each constructor con, and the third strong safety requirement can be for-
malised by a theory typically of the form

[safe con1 con2]
∀ ... •

consistent(σ) ∧ can con1(σ, x) ∧ can con2(σ, y)
⇒ can con2(con1(σ, x), y)

for each pair of constructors, con1 and con2.
The state space, state invariant, guards etc. are found by stepwise refinement

and verification.

5.1 First Specification

The first specification is an abstract, algebraic specification extending the do-
main model with the following declarations:

value /∗ state invariant ∗/
consistent : State → Bool

value /∗ guards for constructors ∗/
can move : State × TrainId → Bool,
can switch : State × PointId × SegmentEnd → Bool

As the State is not yet explicit, and the set of observers is not complete, we
cannot yet give complete explicit definitions of the state invariant and guards.
Instead we specify requirements to the guards by implications of the form

axiom /∗ requirements to guard can con ∗/
[can con implication1]
∀ ... can con(σ, ...) ∧ consistent(σ) ⇒ ...

and requirements to the state invariant by an implication of the form:

Formal Development and Verification 1559

axiom /∗ requirements to consistent ∗/
[consistent implication1]
∀ σ : State • consistent(σ) ⇒ p1(σ)

We use implications so that we can enrich the requirements in later steps with
additional constraints.

5.2 Second to Fourth Specification

Each of the next three specifications are algebraic and obtained from the pre-
vious specification by adding declarations of new observers, state constructors
and guards, observer-constructor axioms for new observers and/or constructors
and requirement axioms (in form of implications) for new guards. Furthermore,
the requirements to the state invariant is enriched in specification number i by
adding the axiom

axiom /∗ requirements to consistent ∗/
[consistent implicationi]
∀ σ : State • consistent(σ) ⇒ pi(σ)

(where pi(σ) is a predicate), and the requirements to some of the previous
guards can con are refined by making the predicate of the right-hand side of
the [can con implication] axioms stronger.

Below, we give a short survey of which concepts are added in the second to
fourth specification.

Second Specification
In the second specification, two new concepts are introduced:

– segment registrations for trains, and
– segment directions

The idea is, that a train must only be allowed to move to a segment if it is
registered on that segment and if its direction is consistent with the direction of
that segment.

Third Specification
In the third specification, segment reservations at switch boxes is introduced
and segment registrations is defined in terms of that. Furthermore, a concept
of locking of points is introduced. The idea is that a train must lock a point
in order to pass it, and when a train has locked a point, the point cannot be
switched before the train has passed the point.

Fourth Specification
In the fourth specification, a notion of train routes is introduced, and sensors at
the switch boxes sense when trains are passing.

1560 Anne E. Haxthausen and Jan Peleska

5.3 Fifth Specification

Finally, in the fifth specification we are able to define a concrete state space
consisting of a state space for each train and a state space for each switch box:

type
State = {| σ : State′ • is wff(σ) |},
State′ = (TrainId →m TrainState) × (SwitchboxId →m SwitchboxState)

where TrainState and SwitchboxState are given explicit formal representations
for the local train state and switch box state, respectively. These representations
correspond to the informal descriptions in Figure 3. We only consider states
(defined by a predicate is wff) which satisfy the axioms of physical laws (like
“only neighbouring segments are connected”) of the domain model.

With this explicit definition of State, it is now possible to replace all ax-
ioms with explicit function definitions in terms of functions defined for the two
new types TrainState and SwitchboxState. For instance, the observer function
direction can be defined as follows

direction : State × TrainId → Direction
direction((σ t, σ s), t) ≡ T.direction(σ t(t))

where T.direction is an observer function defined for train states (of type Train-
State), and the state invariant can be given a definition of the form

consistent : State → Bool
consistent(σ) ≡ p1(σ) ∧ ... ∧ p5(σ)

5.4 Verification

Implementation Relations
In each of the development steps (from specification number i to specification
number i + 1, i = 1, ..., 4) above, we have used the RAISE justification tools to
prove that the new specification is a refinement of the previous specification, i.e.
the new specification provides declarations of at least all the types and functions
provided by the previous specification, and that all the axioms of the previous
specification are consequences of the axioms of the new specification.

Satisfaction of Safety Requirements
For each of the first four specifications we prove that it is consistent with the
strong safety requirements stated in the beginning of this section, and finally for
the fifth specification we prove that it fully satisfies these requirements.

The [consistent is safe] theory is verified to hold already for the first specifi-
cation. Then, since refinements preserve theories, we know that it also holds for
the second to fifth specification.

Verification of the [can con] theories is done stepwise: For specification num-
ber i we prove

Formal Development and Verification 1561

∀ ... • consistent(σ) ∧ can con(σ, ...) ⇒ pi(con(σ, ...))

Then, since refinements preserve theories, the fifth specification satisfies

∀ ... • consistent(σ) ∧ can con(σ, ...) ⇒
(p1(con(σ, ...)) ∧ ... ∧ p5(con(σ, ...)))

which is equivalent to the [can con] theory, cf. the definition of consistent in the
fifth specification.

Verification of the [can con1 con2] theories is done similarly.

6 Development of the Railway Control System: Second
Stage

The fifth specification presented above introduced explicit implementable states
for trains and switch boxes. However, at that stage no architectural require-
ments were present, so that different centralised or distributed system designs
may be elaborated as correct implementations of this specification. The second
stage of our development introduces a concrete architectural design and com-
munication protocol for a distributed railway controller consisting of concurrent
communicating processes

value
controller : State ∼→ in any out any Unit
controller(σ t, σ s) ≡

(‖ { TCC[t].main(σ t(t)) | t : TrainId})
‖
(‖ { SB[s].main(σ s(s)) | s : SwitchboxId})

where TCC[t].main(σt(t)) is a process representing the train control computer
in train t, and SB[s].main(σs(s)) is a process representing switch box s. These
processes are defined in terms of the guards, state constructors and observers
defined in the first major stage, and follow the protocol described in section 2.
The transition from the last specification stage to the distributed design stage is
performed according to a standardised procedure resulting in designs which are
consistent to the specification in a natural way (cf. Figure 4):

– The global specification state is mapped in one-one correspondence to the
distributed components: For global state (σ t, σ s), train tid and switch
box bid, σ t(tid) is mapped to TrainState[tid] and σ s(bid) is mapped to
SwitchboxState[bid].

– Application of each constructor con on a train state and/or a switch box
state is guarded by a channel command and the corresponding can con guard
defined in the fifth specification layer. Observe that the train and switch box
state spaces have been designed in such a way that each guard evaluation can
be based on the local state space only. For example, a train control computer
will allow the train to move if it is triggered by the do move channel and the
can move guard evaluates to true on the local state space.

1562 Anne E. Haxthausen and Jan Peleska

– For correct implementation of the fifth specification layer, corresponding
state components in trains and switch boxes (for example, the reservation
state and the lock state described in section 2) must be consistent, whenever
a guard using this state information is evaluated. To ensure this, a commu-
nication protocol between trains and switch boxes is designed to implement
the reservation constructor introduced in the specifications: Train tid sends
a reservation request on channel C[tid,bid].res to switch box bid. The switch
box evaluates a local guard and responds by returning its possibly updated
state space to the train via channel C[tid,bid].SBstate. This information is
used by the TCC to update its local information about reservations and
locks.

TCC[1]

SB[1] SB[2]

TrainState[1]

SwitchboxState[1] SwitchboxState[2]

do_move

do_res

C[1,1].res

C[1,1].SBstate

C[1,2].res

C[1,2].SBstate

Fig. 4. Distributed architecture with train control computers, switch boxes and
communication channels.

7 Discussion

In this article, we have presented the engineering concept and the design and
verification of a control algorithm for a distributed railway control system. We
consider the following aspects of our work to be the main advantages in compar-
ison to other work that has been performed in the field of design and verification
of similar systems (see [2] as an example of another practically relevant approach
to formal specification and verification in the railway domain):

– Our refinement approach starting with highly abstract algebraic specifi-
cations and ending with concrete distributed programs helps to separate
general aspects of train control mechanisms and their safety from concrete
application-specific design decisions.

– Our verification concept is independent on the size of the underlying network
topology. In contrast to that, experiments with model checking have led
to unmanageable explosions of the state space, as soon as more complex
networks were involved or a larger number of trains had to be controlled.

Formal Development and Verification 1563

– Within the restrictions of the simple network definition given above, the
network topologies covered by our algorithm are fairly general: There are no
limits regarding the size of the network, the number tracks involved or the
places where points may occur. In contrast to that, approaches using com-
positional reasoning and structural induction over the underlying network
topologies only seem to work for unrealistically simplified networks.

– Starting with a most abstract version of safety requirements, our approach
allows to verify their completeness and trace their “implementation” in the
more concrete refinements of the abstract control algorithm in a straight-
forward manner. For approaches defining only implementation-specific safety
requirements without reference to a more abstract safety concept, it is nearly
infeasible to check safety requirements with respect to completeness.

We would like to emphasise that the control algorithm presented here rep-
resents just a building block in a more general approach for the development,
verification, validation and test (VVT) of safety-critical systems which is inves-
tigated by the authors’ research groups at DTU and the Bremen Institute of
Safe Systems (BISS). In this wider context, our research work covers

– A systems engineering approach for safety-critical systems which is driven
by hazard analysis, risk analysis and a design approach taking VVT issues
into consideration right from the beginning of the development life cycle,

– Software-architectures for safety controllers,
– Automated real-time testing for embedded hardware/software components,
– An integrated standardised concept for verification, validation and test of

safety-critical embedded controllers, applying combinations of VVT meth-
ods, each one optimised for a specific step in the system development life
cycle.

References

[1] D. Bjørner, C.W. George, B. Stig Hansen, H. Laustrup, and S. Prehn. A rail-
way system, coordination’97, case study workshop example. Technical Report 93,
UNU/IIST, P.O.Box 3058, Macau, 1997.

[2] B. Dehbonei and F. Mejia. Formal development of safety-critical software systems
in railway signalling. In M. G. Hinchey and J. P. Bowen, editors, Applications of
Formal Methods, pages 227–252. Prentice Hall Int., 1995.

[3] Regionalstrecken. Eisenbahntechnische Rundschau (ETR) 46 (1997), Heft 6, 323-
331.

[4] K. Mark Hansen. Linking Safety Analysis to Safety Requirements — exemplified by
Railway Interlocking Systems. PhD thesis, Department of Information Technology,
Technical University of Danmark, Lyngby, 1996.

[5] K. Mark Hansen. Formalising railway interlocking systems. In Proceedings of
Second FMERail Workshop, October 1998.

[6] The RAISE Language Group. The RAISE Specification Language. The BCS Prac-
titioners Series. Prentice Hall Int., 1992.

[7] The RAISE Method Group. The RAISE Development Method. The BCS Practi-
tioners Series. Prentice Hall Int., 1995.

[8] N. Storey. Safety-Critical Computer Systems. Addison Wesley, 1996.

Safety Analysis in Formal Specification

Kaisa Sere and Elena Troubitsyna

Department of Computer Science, Åbo Akademi University,
Turku Centre for Computer Science (TUCS),

Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland,
{Kaisa.Sere, Elena.Troubitsyna}@abo.fi

Abstract. Formal methods give us techniques to specify the functional-
ity of a system, to verify its correctness or to develop the system stepwise
from an abstract specification to its implementation. These aspects are
important when designing safety-critical systems. Safety analysis is a vi-
tal part of the development of such systems. However, formal methods
seldom interface well with the more informal techniques developed for
safety analysis. Action systems is a formal approach to distributed com-
puting that has proven its worth in the design of safety-critical systems.
The approach is based on a firm mathematical foundation within which
the reasoning about the correctness and behaviour of the system under
development is carried out. The purpose of this paper is to show how we
can incorporate the results of safety analysis into an action system speci-
fication by encoding this information via available composition operators
for action systems in order to specify robust and safe controllers.

1 Introduction

Formal methods give us techniques to formally specify the functionality of a sys-
tem, to verify its correctness or to develop the system stepwise from an abstract
specification to its implementation. These aspects are important when designing
safety-critical systems. Safety analysis is a vital part of the development of such
systems. However, formal methods seldom interface well with the more infor-
mal techniques developed for safety analysis [13, 6]. Hansen et al. [5] spotted
the problem of the semantic gap between the abstract level of the hazard anal-
ysis and the way of software specification. They suggest to use the results of
Fault Tree Analysis as a source of the formulation of requirements which em-
bedded software should meet. In their approach a description of fault trees is
given in terms of real-time temporal logic. Their goal is to obtain a safety in-
variant which embedded software should preserve. Wong and Joyce [16] show
how safety-related hazards are expressed in terms of source code for embedded
software in order to verify this with respect to the hazards. The purpose of this
paper is to develop a theory on how safety analysis techniques are used hand-
in-hand with formal specification methods and how the results of the analysis
are stepwise adopted by the specification in order to produce safe and robust
systems consisting of both hardware and software.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1564–1583, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Safety Analysis in Formal Specification 1565

We use the action system formalism [1] as our formal design technique. This
formalism is a state-based approach to system design. It provides a completely
rigorous foundation for the stepwise development of system specifications and
implementations. It has found many applications especially among parallel and
distributed systems among which many are safety-critical [3, 10]. Our target
systems are reactive, i.e., usually concurrent systems that interact with their
environment and respond to not only normal safe situations, but to the occurred
hazardous situations as well. We often call this environment a plant. Examples
of such systems are embedded control systems.

In our earlier work [9, 14] we have proposed methods to reason about the
impact of probabilistic behaviour of components on the overall safety of a con-
trol system. We concentrated on the probabilistic extension of the specification
language developing tools to reason quantitatively about the systems’ reliability
and safety. Here we use the available modularization operators, most notably
the prioritising composition [11], to capture the idea of safety related hazards.
Our preliminary work [12] shows that the approach seems promising. We show in
this paper how to embed the results of a hazard analysis into an action systems
specification in a stepwise manner. The embedding is carried out within a formal
calculus, the refinement calculus for action systems [1]. Our approach is similar
to that of Hansen et al. in the sense that we can also obtain a safety invariant as
a result of the safety analysis as they do. In addition, our approach allows the
identified hazards to be specified and handled by the controller software. Hence,
we focus on the specification aspect here.

Overview. In Section 2, we briefly describe action systems concentrating on the
language issues and refinement as well as defining the important composition
operators. In Section 3, we outline the way control systems are specified in the
action systems framework. In Section 4, we show how the results of the Fault
Tree Analysis can be encoded into the formalism. We exemplify the approach
in Section 5. In Section 6, we concentrate on hazard analysis in a more general
setting. We end in Section 7 with some concluding remarks.

2 Action Systems

An action system A is a set of actions operating on local and global variables:

A =̂ const c; global z ; |[var a ; A0 ; do A1 [] . . . [] An od]|
The systemA describes a computation, in which local variables a are first created
and initialised in A0. Then repeatedly any of the enabled actions A1, . . . ,An is
non-deterministically selected for execution. The computation terminates if no
action is enabled, otherwise it continues infinitely. Actions operating on disjoint
sets of variables can be executed in any order or in parallel.

Actions are taken to be atomic, meaning that only their input-output be-
haviour is of interest. They can be arbitrary sequential statements. Their be-
haviour can therefore be described by the weakest precondition predicate trans-
former of Dijkstra [4]: wp(A, p) is the weakest precondition such that action A

1566 Kaisa Sere and Elena Troubitsyna

terminates in a state satisfying predicate p. In addition to the statements con-
sidered by Dijkstra, we allow pure guarded commands g → A, non-deterministic
choice A [] B between actions A,B , and nondeterministic assignment v := v ′.Q
which assigns to variables v such a value v ′ that the predicate Q holds.

wp(abort , p) =̂ false wp((A ; B), p) =̂ wp(A,wp(B , p))
wp(skip, p) =̂ p wp((A [] B), p) =̂ wp(A, p) ∧ wp(B , p)
wp(v := e, p) =̂ p[v := e] wp((g → A), p) =̂ g ⇒ wp(A, p)

wp(v := v ′.Q , p) =̂ (∀v ′.Q ⇒ p[v := v ′])

Generally, an action that establishes any postcondition is said to be miraculous.
We take the view that an action is only enabled in those initial states in which
it behaves non-miraculously. The guard of an action characterises those states
for which the action is enabled:

gd A =̂ ¬wp(A, false)

The body S of an action A = g → S is denoted by sA.
Let A and B be actions. The prioritising composition A // B selects the first

operand if it is enabled, otherwise the second, the choice being deterministic.

A // B =̂ A [] (¬gd A→ B)

The prioritising composition of two actions is enabled if either operand is.

gd(A // B) = gd A ∨ gd B

Let us now study different notions of refinement for action systems [2]. We say
that action A is refined by action C , written A ≤ C , if, whenever A establishes
a certain postcondition, so does C :

A ≤ C iff for all p: wp(A, p)⇒ wp(C , p)

Together with the monotonicity of wp this implies that for a certain precondition,
C might establish a stronger postcondition than A (reduce nondeterminism of
A) or even establish postcondition false (behave miraculously).

A variation of refinement is if A is (data-) refined by C via a relation R,
written A ≤R C . For this, assume A operates on variables a, u and C operates
on variables c, u. Let R be a predicate over a, c, u:

A ≤R C iff for all p: R ∧ wp(A, p)⇒ wp(C , (∃ a·R ∧ p))

Data refinement allows the local variables of an action system to be replaced.
We have the following theorem to prove data refinement between actions:

Theorem 1. A ≤R C holds iff

(i) R ∧ gd C ⇒ gd A
(ii) for all p: R ∧ gd C ∧ wp(sA, p)⇒ wp(sC , (∃a·R ∧ p))

Safety Analysis in Formal Specification 1567

Rule 1 a: =? ≤ a: = a ′.Q ,where a: =? =̂ a: = a ′.true
Rule 2 For two actions A,B : A [] B ≤ A // B
Rule 3 g1 ∨ g2 → abort // g(A) → A ≤ g1 → abort // g2 → B [] g(A) → A

where A and B can also be abortive
Rule 4 a: =? ≤R c: = c′.Q if Q ∧ R ⇒ (∃a ′·R[a, c: = a ′, c′])
Rule 5 A1;A2 ≤R C1;C2 if A1 ≤R C1 and A2 ≤R C2
Rule 6 A1 // A2 ≤R C1 // C2 if A1 ≤R C1 and A2 ≤R C2

and R ∧ gd A1 ⇒ gd C1

Fig. 1. Refinement rules

The next theorem presents conditions to be verified in order to establish
refinement between action systems.

Theorem 2. A ≤R C holds iff

(i) C0⇒ (∃a·R ∧ A0)
(ii) A ≤R C
(iii) R ∧ gd A⇒ gC

The proofs of Theorem 1 and Theorem 2 can be found elsewhere [2].
When carrying out refinement in practice one seldom appeals to the general

definition of refinement. Instead certain pre-proven refinement rules are used.
Figure 1 presents a number of rules [12] that are especially useful when working
with hazards as will be seen later.

3 Specifying Control Systems with Safety Consideration

Let us now sketch a way to specify control systems within action systems for-
malism. Rather than embody all the requirements in the initial specification,
we introduce some of them in successive refinement steps. Usually, refinement is
used as a way of verifying the correctness of an implementation with respect to a
specification, but is it can also be used as a way of structuring the requirements
such that they are easier to validate [3, 10]. In this paper we develop mechanisms
to handle failure situations by the refinement activity.

Our initial action system is intended to model the behaviour of the overall
system, that is, the physical environment and the controller together. It allows
us to use assumptions that we make about how the environment behaves. The
initial specification of the system is very abstract. Usually it is built in such a way
that all the details concerning interaction between the plant and the controller
(via sensors and actuators) as well as details of failures are omitted.

Below a control system is modelled as an interleaving between the plant P
and the controller C

System =̂ const c; global z ; |[var pv , cv , fail ; I ; do P ; C od]| (1)

1568 Kaisa Sere and Elena Troubitsyna

The action I initialises the system. Both P and C are actions and they might
share variables. This initial specification of the plant action P is

P =̂ pv , z , fail : =?, ?, ?

where pv are the state variables needed to model the local state of the plant,
and the controller action C is

C =̂ Failure // (Unit1 [] Unit2 [] . . . [] UnitM)

The controller consists of a prioritising composition of the action Failure

Failure =̂ fail → Emergency

which shuts down the system if a failure occurs, i.e., the action Emergency is
equivalent to abort , and the actions Uniti , i = 1..M , which have the form

Uniti =̂ gi → control actioni

Here for simplicity we assume that the occurrence of a global system failure is
modelled by a local variable fail . Later we drop this simplification and consider
the action Failure guarded by a predicate over the global and the local variables
of the system. Each of the actions Uniti specifies the control required to operate
a certain plant device (we call it a plant unit) in absence of failures. They can
refer to the variables pv , z , and normally some other variables, too, denoted
as cv in (1) . Observe that we can be certain that there are no failures present
when an action Uniti is executed as the prioritising composition between the
faulty behaviour and the control actions ensures this. Without this operator,
i.e., using the choice operator between these actions, the control actions would
require a more elaborate guard, namely gi ∧¬fail . This latter approach is taken
for instance by Liu and Joseph [8].

In our initial specification System we assume that the state of the plant can be
directly observed by the controller. Further refinement of the initial specification
leads to the introduction of implementation details which make the specification
more realistic: the controller cannot observe the real state of the plant any more
but rather makes assumptions about it based on sensor readings. Control is
performed by means of actuators which, like the sensors, are modelled as state
variables [3]. Eventually, we arrive at the representation of the system in the
form presented in Fig. 2.

In our previous work on action systems for safety-critical systems [3, 10],
failure modes of the components together with the safety invariant imposed on
the system were given a priori. The task was to capture these requirements into
a specification. In the industrial practice, however, the design of a safety-critical
system assumes that this information is unavailable and should be obtained as
a result of a safety analysis of the system. On the base of the safety analysis
the designer should build the controller so that it is able to withstand faults
appearing in the fault-prone units. To obtain the failure modes for the controlling
program we show how the specification and refinement of the system under
construction can proceed hand-in-hand with the safety analysis.

Safety Analysis in Formal Specification 1569

�
�

�
�

Actuators

�
�

�
�

VariablesVariables
Controller

Actions
Environment

Actions
Controller Environment

�
���

-
�

-
� @

@@I�
�	

Sensors

�
�

�
�

@
@@R

Controller Environment

�
�

�
�

Fig. 2. Structure of the system specification

Observe, that both the safety analysis and the stepwise program development
conduct reasoning from an abstract level to a concrete level. The safety analysis
starts by identifying hazards which are potentially dangerous, and proceeds by
producing detailed descriptions of them together with finding the means to cope
with these hazards. We incorporate the information that becomes available at
each stage of the safety process by performing corresponding refinements of the
initial specification, as shown in Fig. 3.

With such an approach the preliminary hazard identification gives the se-
mantics to the action Failure: it is a reaction on the occurrence of the identified
hazard. When the system enters a hazardous state it violates the safety invari-
ant and therefore, should be shut down. Safe operation of the action system
System (1) can be expressed via a safety invariant safety on the state variables
of the system:

safety =̂ ¬fail ⇒ safety condition

Safety is checked within the weakest precondition calculus by ensuring that the
initial state establishes safety, and that wp(C , safety) holds, i.e. the actions of
the controller preserve safety. As the safety analysis proceeds more information
on the failures causing hazardous situations becomes available and allows us to
weaken the safety invariant by expressing this new information.

4 Representing a Fault Tree in a Specification

There are a number of standard techniques for producing detailed description of
the identified hazards [6, 13]. In this paper we choose the Fault Tree Analysis
and show next, how to incorporate the information obtained as a result of the
fault tree analysis in the initial system specification (1) given in form of an action
system. The Fault Tree Analysis (FTA) is a deductive safety analysis technique.
It is a top-down approach applied during the entire design stage. A preliminary
hazard identification provides information about functions of the system and
the possible failures (see Fig. 3). This information is taken as an input for the
FTA. The result of the FTA is an identification of those component faults that
result in different hazardous situations. Each fault tree has a root representing

1570 Kaisa Sere and Elena Troubitsyna

?

?

?

?

?

?

� -

� -

� -

� -

� -

� -

Safety Analysis

code generation

single failure mode
Abstract specification with a

data refinement
Partitioning of failure modes
to represent identified hazards

refinement
Prioritizing of failure modes

data refinement
Detail specification of each
failure according to fault tree

data refinement
Introduction of fault-tolerance
in the specification

Introduction of the required
redundancy

data refinement

Code of controller program

Preliminary hazards
identification

Estimation of each hazard level

Fault tree analysis for each
identified hazard

Identification of means of

Software Development

redundancy
Decisions on introduction of

procedures for each hazardous fault
detection and fault tolerance

Fig. 3. Interaction of software development process with safety analysis

a hazardous failure. The tree traces the system to the lower component level
revealing the possible causes of the failure.

A fault tree consists of two main entities, leaves and gates. The leaves, often
called events, represent the system states which in combination with other events
lead to the occurrence of the hazardous fault represented by the root of the tree.
The gates are logical connectives which join the leaves. They describe which
particular combination of events results in the occurrence of the hazard. In this
paper we consider two basic logical gates, namely disjunction and conjunction.
Below we present the rules which allow us to embed the information about
failures given in the form of a fault tree in the specification of the system given
in the form of an action system.

A leaf of a fault tree describes a certain set of system states. It, therefore, can
be expressed as a predicate over the state variables of the system. In the system
specification the leaves, or more precisely the predicates representing the leaves,
appear as the guards of the actions which specify the reaction of the system on
the occurred faults. With each event we also associate a certain level of criticality
defined by the level of the fault tree at which that particular event appears. The
root of the tree, therefore, is the event of the first level of criticality, the events
directly connected to the root by means of a logical gate have the second level
of criticality etc. It is clear, that the occurrence of an event which is close to
the root might lead to an inevitable catastrophe, and therefore, should be dealt
with urgently.

A gate of a fault tree defines the logical operator (conjunction or disjunction)
over the predicates representing the leaves which the gate connects. Therefore,
if an action specifies a reaction of the controller on the combination of certain
events we define its guard on the base of the gate which conjoins these events.

Safety Analysis in Formal Specification 1571

����

��

...(2,N)
E

E
(1,1)

(a) (b)

... E

E
(1,1)

E
(2,1) (2,1)

E
(2,N)

Fig. 4. Basic fault trees

The approach we advocate in this paper suggests to analyse a fault tree in
a stepwise manner. Namely, we start from the specification of the system in
form (1) where the value true of the boolean fail represents the root of the fault
tree. Here for simplicity, we assume that there is only one hazard identified for
a given system. In the next section we extend the technique to reason about
systems with several hazards. Analysing the fault tree level after level we step-
wise embed detailed representation of the faults and model the reaction of the
controller in the specification. As a result, we obtain a specification of the sys-
tem within which both faults and reactions on them are specified in terms of
the state variables. Moreover, the faults are treated according to their criticality
which is defined by the levels of the fault tree. Below we describe a number of
generic rules which allow us to specify faults preserving the structure of the fault
tree.

Consider the fault tree (a) in Fig. 4, where events E(2,1), . . . ,E(2,N) are caused
by failures of sensors and actuators (see Fig.2) or represent certain events over
globally observed system states (e.g. the states of the physical environment). The
event E(i,j) stands for the j − th event on the i − th level of the fault tree. Even
though we consider here only two levels, the results can be applied recursively to
an arbitrary number of levels. We show an example of this in the next section.

The occurrence of the failure E(1,1) and the system reaction on that can be
specified by the action Failure of the following form:

Failure =̂ E(2,1) ∨ . . . ∨ E(2,N) → Reaction on E(1,1)

where E(2,1), . . . ,E(2,i) are predicates over the local variables of the system repre-
senting sensor and actuator failures and E(2,i+1), . . . ,E(2,N) are predicates over
the global variables representing events over globally observed system states.
Moreover,

E(1,1) = E(2,1) ∨ . . . ∨ E(2,N)

Data refinement allows us to change the local part of the state space (i.e.
to manipulate the local variables of the specification) provided the behaviour of

1572 Kaisa Sere and Elena Troubitsyna

the system on the global level is preserved. Therefore, the events expressed as
predicates over the global variables of the system should obtain a detail represen-
tation already in the initial specification of the system as new globally observable
behaviour cannot be added via refinement. This restriction allows us to ensure
that the behaviour of the refined specification is subsumed by the behaviour of
the initial specification. In contrary, the representation of the events which do
not refer to the global state can be very abstract in the initial specification.

Consider again the fault tree (a) in Fig. 4 where none of the events E(2,1),
. . . , E(2,N) refers to the global state and hence are for simplicity modelled by
the local variables E(2,1), . . . ,E(2,N) in the system specification. For that case we
have the following result:

Theorem 3. The action system A of the form (1) such that E(1,1) = fail in
the fault tree (a) in Fig. 4 is refined by the action system A′:

A′ =̂ const c; global z ; |[var v ,E(2,1), ...,E(2,N); I ′; do P ; C ′ od]|

where I ′ initialises the variables and the controller action C ′ is a prioritising
composition of the reaction on the occurred failure E(1,1) specified by the action
Failure ′

Failure′ =̂ E(2,1) ∨ . . . ∨ E(2,N) → Emergency

with the control actions:

C ′ =̂ Failure′ // (Unit1 [] Unit2 [] . . . [] UnitM)

Proof. The refinement relation R =̂ fail = (E(2,1)∨. . .∨E(2,N)) allows us to prove
that A ≤R A′ appealing to Theorem 2, hence, proving the theorem.

Next we develop a similar rule for specifying the fault tree (b) in Fig. 4 which
contains the logical gate conjunction. Assume that events E(2,1), . . . ,E(2,i) are
caused by failures of sensors and actuators (see Fig.2) and events E(2,i+1), . . . ,
E(2,N) represent certain events over globally observed system states. The occur-
rence of the failure E(1,1) is caused by the conjunction of these events as specified
by the fault tree. We specify the occurrence of the event E(1,1) and the reaction
of the controller on that by the action Failure of the following form:

Failure =̂ E(2,1) ∧ . . . ∧ E(2,N) → Reaction on E(1,1)

where E(2,1), . . . ,E(2,i) are again predicates over the local variables of the system
and E(2,i+1), . . . ,E(2,N) are predicates over the global variables and

E(1,1) = E(2,1) ∧ . . . ∧ E(2,N)

Note, that in case a failure is caused by disjunction of a set of events (the
fault tree (a) in Fig. 4) the controller is intolerant to the occurrence of any
single event from this set. In case of conjunction (the fault tree (b) in Fig. 4)
the situation is different: the controller can cope with each particular event to

Safety Analysis in Formal Specification 1573

preclude the occurrence of the more critical failure caused by the conjunction of
these events.

Again for simplicity assume that none of the events E(2,1), . . . ,E(2,N) of the
fault tree (b) in Fig. 4 refers to the global states and are therefore modelled by
local variables of the same name in the system specification. Then the following
theorem provides us with a formal technique to represent such a fault tree in the
specification as a refinement of the initial system specification.

Theorem 4. The action system A of the form (1) such that E(1,1) = fail in
the fault tree (b) in Fig. 4 is refined by the action system A′:

A′ =̂ const c; global z ; |[var v ,E(2,1), . . . ,E(2,N); I ′; do P ; C ′ od]|

where I ′ is the new initialisation and the controller action C ′

C ′ =̂ Failure′ // (Unit1 [] Unit2 [] . . . [] UnitM)

is a prioritising composition between the control actions Unit1,Unit2, . . . , UnitM
and the action Failure ′

Failure′ =̂ E(2,1) ∧ . . . ∧ E(2,N) → Emergency
// E(2,1) → RescueE(2,1)

[] . . .

[] E(2,N) → RescueE(2,N)

which specify the reaction Emergency of the controller on the occurrence of the
hazardous failure E(1,1), together with the reaction statements RescueE(2,1) , . . . ,
RescueE(2,N) on the local variables E(2,1), ...,E(2,N).

Proof. The refinement relation R =̂ fail = (E(2,1)∨. . .∨E(2,N)) allows us to prove
that A ≤R A′ on the base of Theorem 2. This results in proving the theorem.

The statements RescueE(2,1) . . . ,RescueE(2,N) specify invocations of the mainte-
nance procedures as the responses on the occurred failures of the sensors and
the actuators (see Fig.2).

The treatment of a more general case where the events E(2,1), . . . , E(2,N) can
refer to both global and local states is different in the sense that we have to give
a detailed description of the events over the global system state already in the
initial specification. The reasoning about the events referring to the local part
of the state space is, however, still conducted as above.

Below we present a general form of the initial specification of the action
Failure for this case which additionally specifies controller reactions on com-
bined events caused by multiple failures. In that case the action representing the
occurrence of failure E(1,1) of the fault tree (b) in Fig. 4 contains also the ac-
tions specifying the reactions on these combined events. The specification of the
occurrence of the failure E(1,1) as well as the occurrences of the combinations of
the events E(2,1), . . . ,E(2,N) with the reactions of the controller are represented
by the action Failure below

1574 Kaisa Sere and Elena Troubitsyna

Failure =̂ E(2,1) ∧ ... ∧ E(2,N) → Emergency

//
∧

i∈[1..N]

E(2,i) → Resque1

[] . . . (2)

[]
∧

i∈[1..N]

E(2,i) → Resquel

where E(2,1), . . . ,E(2,N) are predicates over the local and the global variables.
Here the statements Resque1, . . ., Resquel specify the invocations of the mainte-
nance procedures as the responses on the occurred events. The guards of these
actions are formed from arbitrary event combinations and might describe reac-
tions on each of the events E(2,1), . . . ,E(2,N) separately as well.

5 Example: A Heater Controller

To illustrate both construction of a fault tree and building of the corresponding
specification we consider an example — a heater controller for a tank of toxic
liquid. A computer controls the heater using a power switch on the basis of
information obtained from a temperature sensor. The controller tries to maintain
the temperature between certain limits. If the temperature exceeds a critical
threshold the toxic liquid can harm its environment in a certain way (we leave
it unspecified).

We start the safety analysis of our system (see Fig. 3) by the preliminary
hazard identification. Since the system can harm its environment as a result of
overheating of the toxic liquid, we identify the hazard overheating and proceed
the analysis by constructing the corresponding fault tree. The fault tree in Fig. 5
identifies the faults of the system components and their logical combinations
which lead to overheating.

Overheating of the toxic liquid, the event E(1,1) takes place if the temperature
reaches a predefined threshold, heat is supplied, and a failure to switch off the
heater takes place. Therefore, E(1,1) = E(2,1) ∧ E(2,2) ∧ E(2,3). The failure to
switch of the heater, the event E(2,3) is a result of the failure to issue the switch
off signal or a primary switch failure, E(2,3) = E(3,1)∨E(3,2). Finally, the failure
E(3,1) occurs if either the controller fails or the temperature sensor fails and
indicates a wrong (lower than the real) temperature, E(3,1) = E(4,1) ∨ E(4,2).

Designing a formal specification of the system according to the approach
proposed in this paper, we depict the information obtained from the construction
of the fault tree. Our initial specification of the system below:

Safety Analysis in Formal Specification 1575

��

��

��

��

��

Heater
is on

Failure to switch

Primary switch
failure

Controller
failure

Temperature
sensor failure

E E E

E E

(2,1) (2,2) (2,3)

(4,1) (4,2)

E
(3,2)

off heater
Temperature

is high

Failure to issue
switch off signal

(3,1)
E

E
(1,1)

Overheating

Fig. 5. Fault tree of overheating

A =̂ const tr : Real / ∗ critical threshold ∗ /
ht : Real / ∗ high temperature limit ∗ /
lt : Real / ∗ low temperature limit ∗ /
maxd : Real / ∗maximal temperature decrease per unit of time ∗ /
maxi : Real / ∗maximal temperature increase per unit of time ∗ /
maxt : Real / ∗maximal feasible temperature ∗ /
lt < ht < tr ;

global t : Real / ∗ temperature ∗ /
heat : on|off / ∗ supply of heating ∗ /

|[var E(2,3):Bool ; I ; do Environment ; Controller od]|

has the form (1) where Controller = Failure // Switch.
As described previously, the action Failure specifies the occurrence of over-

heating and the rescue procedures undertaken by the controller as responses to
the occurred failures. Overheating is the result of the conjunction of the events
E(2,1), E(2,2), E(2,3). We express the event E(2,1) by the predicate t ≥ tr , where t
is a global variable modelling the temperature of the liquid and tr is the critical
temperature threshold defined by the corresponding constant in our specifica-
tion. Similarly, the event E(2,2) is represented by the predicate heat = on. The
global variable heat evaluates to on if the heater is switched on and to off oth-
erwise. The event E(2,3) is caused by the failures of the sensor and the actuator,

1576 Kaisa Sere and Elena Troubitsyna

which will appear in the specification later. Meanwhile we model the failure
E(2,3) by a local variable with the same name: the variable E(2,3) is true if the
event E(2,3) takes places. Therefore, we define overheating, the event E(1,1), as
follows:

overheating = t ≥ tr ∧ heat = on ∧ E(2,3)

If overheating takes place the system should be shut down. However, if no
failure to switch off heating occurs the controller can preclude an immediate
occurrence of overheating by switching off the heater. We pessimistically assume
that the system is shut down if there is a failure to switch off the heater. We
specify a more realistic treatment of this failure as soon as a detailed specification
of the sensor and the actuator becomes available. The specification of the action
Failure

Failure =̂ overheating → abort
// t ≥ tr ∧ heat = on → heat : = off
[] E(2,3) → abort

is obtained on the basis of the reasoning described in Section 4. Observe, that the
structure of the part of the fault tree in Fig. 5 we analyse here is similar to the
structure of the fault tree (b) in Fig. 4. The general form of an action specifying
the responses of the system to combined events was given by the action (2). Here
we applied the same kind of reasoning to obtain the action Failure.

The rest of the system specification is rather typical for control systems
treated within the action system formalism. Specifying the initialisation we as-
sume that the system starts its operation in a state where no failures have
occurred: I =̂ E(2,3): = false.

We specify the environment very abstractly: we merely describe an arbitrary
temperature change and a non-deterministic occurrence of a fault.

Environment = Envp ;Envf
Envp = t : =?
Envf = E(2,3): =?

The control action Switch specifies the switching off and on the heater in order
to maintain the liquid temperature in the safe region:

Switch =̂ t ≥ ht ∧ heat = on → heat : = off
[] t ≤ lt ∧ heat = off → heat : = on

The analysis of the next level of the fault tree is based on the application
of Theorem 3: the occurrence of the event E(2,3) results from the disjunction
of the events E(3,1) and E(3,2). To specify the event E(3,1) we introduce a local
variable E(3,1) which is true if the event occurs. The event E(3,2) results from
the failure of the actuator — the power switch. To specify this we introduce the
local variable sw stat modelling the status of the switch in our specification. To
simplify the reasoning we omit the detailed specification of an invocation of a

Safety Analysis in Formal Specification 1577

switch repair procedure and present only its effect: the repaired power switch.
The specification of the response on the event E(3,1) is similar to that of the
event E(2,3).

The specification of the system A′ is as follows

A′ =̂ . . . |[var sw stat :ok |failed ; E(3,1):Bool ; I ′ ;
do Environment ′;Controller ′ od]|

where Controller ′ = Failure′ // Switch is obtained by taking into account infor-
mation obtained from the analysis of the second and the third levels of the fault
tree in Fig. 5 as specified by the action Failure′

Failure′ =̂ overheating ′ → abort
// t ≥ tr ∧ heat = on → heat : = off
// sw stat = failed → sw stat : = ok
[] E(3,1) → abort

Here overheating ′ = t ≥ tr ∧ heat = on ∧ (sw stat = failed ∨ E(3,1)).
Also in this step we refine the environment action by considering maximal

system dynamics and by modelling the occurred failures over the introduced
local variables:

Environment ′ =̂ Env ′p ;Env ′f
Env ′p =̂ t : = t ′.t −maxd ≤ t ′ ≤ t + maxi ∧ 0 ≤ t ≤ maxt
Envf =̂ sw stat : =? ; E(3,1): =?

The new initialisation is I ′ =̂ sw stat : = ok ; E(3,1): = false
On the base of Theorem 3 and the refinement rules given in Fig.1 it can be

shown that the action system A′ refines the action system A with the refinement
relation R1

R1 =̂ E(2,3) = (sw stat = failed ∨ E(3,1))

Analysing the last level of the fault tree in Fig. 5, we observe that the event
E(4,1) cannot be expressed in the specification of the controller. The failure of
the controller is caused by the hardware or software error. However, it points out
the necessity to introduce a controller independent device in the system design,
a watch dog. Such a device periodically checks the status of the controller and
shuts down the system or activates a stand-by controller if the main controller
fails. Therefore, we consider the event E(4,2) which specifies a failure of the tem-
perature sensor. The introduction of a representation of the sensor in the system
specification transforms the specification of the controller in such a way that the
controller relies on the sensor readings to perform its duties. The real state of
the environment becomes inaccessible to the controller. Applying Theorem 3 we
perform data refinement of the system obtaining the specification A′′.

A′′ =̂ . . . |[var sw stat , sen stat :ok |failed ; t tr , t est1, t est2:Real ; I ′′ ;
do Environment ′′;Controller ′′ od]|

1578 Kaisa Sere and Elena Troubitsyna

where Controller ′′ = Failure′′ // Switch′. The initialisation establishes a state
where both the temperature sensor and the power switch function properly.

I ′′ =̂ sw stat : = ok ; sen stat : = ok ;t tr : = t ;t est1, t est2: = t tr , t tr

The environment models a change of the temperature, independent occurrences
of the sensor and the actuator failures, and an estimate of the temperature made
by the controller:

Environment ′′ =̂ Env ′p ; Env ′′f ; T Estim
Env ′′f =̂ sw stat : =? ; sen stat : =?;

t tr : = t tr ′.sen stat = ok ⇒ t tr ′ = t∧
sen stat = failed ⇒ t tr ′ = t tr

T Estim =̂ t est1, t est2: = t est ′1, t est ′2.Q

where

Q = (sen stat = ok ⇒ t est ′1 = t tr ∧ t est ′2 = t tr) ∧ (sen stat = failed ⇒
(t est ′1 = (if t est1 + maxi < maxt then t est1 + maxi else maxt)∧
t est ′2 = (if t est2 −maxd > 0 then t est2 −maxd else 0)))

Compared to the action Failure′, the action Failure′′ introduces additionally
a reaction to the failure of the sensor. Moreover, it defines overheating by tracing
the whole fault tree (Fig. 5):

Failure′′ = overheating ′′ → abort
// t est1 ≥ tr ∧ heat = on → heat : = off
// sw stat = failed → sw stat : = ok
// sen stat = failed → sen stat : = ok

with overheating ′′ = t est1 ≥ tr ∧ heat = on ∧ (sw stat = failed ∨ sen stat =
failed).

In the specification of the controller we change the access to the real temper-
ature and substitute it by the temperature estimate of the controller:

Switch′ =̂ t est1 ≥ ht ∧ heat = on → heat : = off
[] t est2 ≤ lt ∧ heat = off → heat : = on

Data refinement between the action systems A′ and A′′, A′ ≤R2 A′′, is proved
with the refinement relation

R2 =̂ E(3,1) = sen stat ∧
(sen stat = ok ⇒ t = t tr ∧ t est1 = t tr ∧ t est2 = t tr) ∧
(sen stat = failed ⇒ t est2 ≤ t ≤ t est1)

Safety Analysis in Formal Specification 1579

6 Prioritising Hazards

Section 4 provided us with techniques that allow us to represent a single hazard in
a specification. Often, however, there are several hazards identified for a system
under construction. We need, therefore, to generalise the presented approach to
reasoning about system hazards in general.

We assume that a set of hazards H is obtained as a result of the hazard
identification. For each hazard Hi ∈ H an appropriate fault tree FTi is con-
structed. The obtained fault trees form a set FT : each tree from the set can be
represented in the system specification as described in Section 4. Here we focus
on the interaction between the representation of hazards in the specification.

Analysing the set of hazardsH we assess the risk associated with each hazard
from this set. The assessment is based on available quantitative information
about component reliabilities or on expert judgements about the likelihood and
severity of each hazard. Having assessed the risks associated with the identified
hazards we can classify them. There are a number of methods and standards
providing guidance for the classification of risks [13]. Without going into details
we assume without loss of generality that there are three disjoint classes of
hazards formed on the basis of the classification of risks associated with the
hazards.

Class I : {H1, . . . ,Hc1}
Class II : {Hc1+1, . . . ,Hc2}
Class III : {Hc2+1, . . . ,Hc3}

Let us make this more concrete by giving a potential interpretation to the
classes. Assume that on the base of the performed classification we formulate
failure modes of the system to be designed. The system enters Emergency mode
if any of the hazardous situations from Class I occurred. Hence, these are the
hazards that are intolerable and have a high risk associated with them. The
mode Resque is caused by hazards belonging to class Class II . These are less
severe hazards but still critical. They should be avoided or their effect should be
mitigated. An occurrence of a hazard from Class III transforms the system into
the Degraded mode. Here the failures can be tolerated as the risks associated
with the corresponding hazards are negligible.

Now we return to the specification of the system from the software point
of view. Developing the specification of the controller which should withstand
several types of hazardous failures it is desirable to carry out the development
process in such a way that the produced classification of hazards is preserved.

Consider again the general form of the system specification (1). As we de-
scribed previously the guard of the action Failure, fail is in general a predicate
over the global and the local variables. It expresses the occurrence of the iden-
tified hazardous failure. Since we now consider a set of hazardous failures the
predicate fail should express the occurrence of any of them, i.e.

fail =
∨N

i=1 Hi

1580 Kaisa Sere and Elena Troubitsyna

where each of the predicates Hi , Hi ∈ H for i = 1..N describes a corresponding
hazard in terms of the state variables as explained in Section 4. In the initial
system specification we assume pessimistically, that each of the hazardous faults
is treated equally by Emergency statement.

To introduce the different failure modes in the general specification of failures
given by the action Failure we partition it as shown below:

Failure = Fail1 [] Fail2 [] Fail3

The three actions Fail1,Fail2,Fail3 which describe the different classes of haz-
ards:

Fail1 =̂ gFail1→ Emergency
Fail2 =̂ gFail2→ Resque
Fail3 =̂ gFail3→ Degraded

The action Fail1 specifies the reaction of the system on hazards from Class I
which is Emergency, shut down of the system. The occurrence of a hazard or
several of them is modelled by the guard of the action, which is defined to be
disjunction of hazards from Class I :

gFail1 =̂ ∨c1
i=1Hi

The hazards belonging to Class II are specified by the action Fail2. Since a
hazard from Class II does not lead to the imminent catastrophe, some actions to
bring the system back to a non-hazardous state should be undertaken. Generally,
the action has the form

Fail2 =̂ Hc1+1 → Resquec1+1 [] . . . [] Hc2 → Resquec2

Here each of the individual actions becomes enabled if a corresponding hazard
from Class II occurs. The body of each action is an invocation of some Resque
procedure. The structure of the action Fail3 is similar to the action Fail2, but has
the hazards of Class III as the guards and corresponding corrective procedures
as the bodies.

Another safety requirement which we capture in the specification is a ne-
cessity to cope with the failures according to their criticality: we give priority
to failures with high risks associated to them. Hence, Fail1 should be executed
immediately when enabled. Also Fail2 and Fail3 will be taken whenever enabled
provided no action in a higher priority class is enabled. A normal control action
Uniti is only taken when there are no failures detected in the system. Therefore,
the most severe hazards — hazards belonging to Class I should be handled by
the controller with highest priority. They form the class of highest priority in
the specification of the controller. Consequently, the priority of the class de-
creases with increasing its priority index. The non-deterministic choice between
the failure actions cannot guarantee this. The effect is obtained by prioritising
the failure actions:

Fail1 [] Fail2 [] Fail3 ≤ Fail1 // Fail2 // Fail3

Safety Analysis in Formal Specification 1581

The generalisation of the made observations from the perspective of the pro-
gram refinement is given by the following theorem:

Theorem 5. The action system

A =̂ const c; global z ; |[var pv , cv ; I ; do P ; (Failure // C) od]|

such that

Failure=̂ fail → Emergency

where fail is a predicate over the local and the global system variables and
Emergency is equivalent to abort is refined by the action system

A′ =̂ const c; global z ; |[var pv , cv ; I ; do P ; (Failure′ // C) od]|

where

Failure ′ =̂ fail1 → Emergency
// fail2 → Rescue
// fail3 → Degraded

and

fail1 =̂
∨c1

i=1 Hi

fail2 =̂
∨c2

i=c1+1 Hi

fail3 =̂
∨N

i=c2+1 Hi

and where Hi for i = 1..N are the predicates over the local and the global variables
such that fail =

∨N
i=1 Hi

Proof. The theorem follows from the observation that an action guarded by
the disjunction of predicates can be partitioned to actions guarded by separate
disjuncts. Moreover, the application of Rule 2 in Fig. 1 allows us to prioritise
these actions. Finally, abort statement is trivially refined by any statement (by
itself also as follows from the reflexivity of the refinement).

7 Concluding Remarks

We have shown how information about hazardous situations occurring in a plant
can be embedded in the formal specification of a control program. Via this
embedding the hazardous situations are treated according to their criticality
and urgency. This allows to enhance safety of the overall system by ensuring
that in case some marginal failure occurred simultaneously with a more critical
failure the latter one will be treated with the highest priority. The development
of the heater controller in Section 5 illustrated the application of the approach.

We have chosen to model the plant with the controlling software within the
action system formalism. Our approach to embed safety analysis within the
system development was based on using the refinement calculus associated with
action systems. The creation of the system specification was carried out in the

1582 Kaisa Sere and Elena Troubitsyna

stepwise manner: each refinement step incorporated information supplied by the
corresponding level of the fault tree. Our example on the heater controller in
Section 5 confirmed that the stepwise program refinement can naturally proceed
hand-in-hand with the safety analysis. Observe also, the benefits of such an
incorporation: the final form of the action modelling failures correctly prioritises
the failures according to their criticality by the construction. A more elaborate
case study on the approach is given in an accompanying paper [15] where we
design a mine pump control system.

Further refinement steps are concentrated on the introduction of detailed
specification of each identified hazard as illustrated in Section 5. Observe that
applying the results of Theorem 5 we obtain a possibility to reason about each
hazard in context of its own class. The reasoning structured in this way ensures
a correct prioritising of failures causing hazards of different criticality. Therefore,
when applying the techniques from Section 4 to elaborate on each of the identified
hazards we do not only preserve the structure of the corresponding fault trees,
but also the criticality of faults constituting the hazards from different classes.

Even though we in this paper concentrated on safety analysis and faulty
behaviour of a system, the system itself is developed in a modular fashion, con-
centrating first on the normal behaviour of the system stating both the plant and
the controller requirements within a single framework. Thereafter the different
failure mechanisms are incorporated into the specification. Hence, we can sepa-
rate the concerns, concentrate on parts of the system separately as well as use
and state assumptions about the physical plant itself. This is an approach tradi-
tionally advocated by action systems [3, 10]. We as well as other researchers [7]
argue that only such an approach makes a formal analysis of a system feasible,
easily adjustable and less redundant.

Acknowledgements. The work reported here was supported by the Academy of
Finland. The authors are grateful to the anonymous referees for their comments
on the paper.

References

[1] R. J. R. Back and K. Sere. From modular systems to action systems. Proc.
of Formal Methods Europe’94, Spain, October 1994. Lecture Notes in Computer
Science. Springer–Verlag, 1994.

[2] R. J. R.Back and J. von Wright. Trace Refinement of Action Systems. In Proc.
of CONCUR-94, Sweden, August 1994. Lecture Notes in Computer Science.
Springer–Verlag, 1994.

[3] M. Butler, E. Sekerinski, and K. Sere. An Action System Approach to the Steam
Boiler Problem. In Jean-Raymond Abrial, Egon Borger and Hans Langmaack,
editors, Formal Methods for Industrial Applications: Specifying and Program-
ming the Steam Boiler Control, Lecture Notes in Computer Science Vol. 1165.
Springer-Verlag, 1996.

[4] E.W. Dijkstra. A Discipline of Programming. Prentice Hall International, En-
glewood Cliffs, N.J., 1976.

Safety Analysis in Formal Specification 1583

[5] K.M. Hansen, A. P. Ravn and V. Stavridou. From Safety Analysis to Software
Requirements. In IEEE Transactions on Software Engineering, Vol.24, No.7,
July 1998

[6] N.G. Leveson. Safeware: System Safety and Computers, Addison-Wesley, 1995.
[7] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements

Specification for Process-Control Systems. In IEEE Transactions on Software
Engineering, 1994.

[8] Z. Liu and M. Joseph. Transformations of programs for fault-tolerance. In
Formal Aspects of Computing, Vol 4, No. 5 1992, pp. 442-469

[9] A. McIver, C.C. Morgan and E. Troubitsyna. The probabilistic steam boiler: a
case study in probabilistic data refinement. In Proc. of IRW/FMP’98, Australia,
1998.

[10] E. Sekerinski and K. Sere (Eds.). Program Development by Refinement - Case
Studies Using the B Method. Springer Verlag 1998.

[11] E. Sekerinski and K. Sere. A Theory of Prioritizing Composition . The Computer
Journal, VOL. 39, No 8, pp. 701-712. The British Computer Society. Oxford
University Press.

[12] K. Sere and E. Troubitsyna. Hazard Analysis in Formal Specification. In Proc.
of SAFECOMP’99, France, 1999. To appear.

[13] N. Storey. Safety-critical computer systems. Addison-Wesley, 1996.
[14] E. Troubitsyna. Refining for Safety. TUCS Technical Report No.237, February

1999.
[15] E. Troubitsyna. Specifying Safety-Related Hazards Formally. In Proc. of

ISSC’99, USA, 1999. To appear.
[16] K. Wong and J. Joyce. Refinement of Safety-Related Hazards into Verifiable

Code Assertions. in Proceedings of SAFECOMP’98,, Heidelberg, Germany, Oc-
tober, 1998.

Formal Specification and Validation of a Vital

Communication Protocol?

A. Cimatti1, P.L. Pieraccini2, R. Sebastiani1, P. Traverso1, and A. Villafiorita1

1 ITC-IRST, Via Sommarive 18, 38055 Povo, Trento, Italy
{cimatti,leaf,rseba,adolfo}@irst.itc.it

2 Ansaldo Segnalamento Ferroviario, Via dei Pescatori 35, Genova, Italy
pieraccini@ansaldo.it

Abstract. Formal methods have a great potential of application as pow-
erful specification and early debugging methods in the development of
industrial systems. In certain application fields, formal methods are even
becoming part of standards. However, the application of formal methods
in the development of industrial products is by no means trivial. Indeed,
formal methods can be costly, slow down the process of development,
and require changes on the development cycle, and training. This pa-
per describes a project developed by Ansaldo Segnalamento Ferroviario
with the collaboration of IRST. Formal methods have been successfully
applied to the development of an industrial communication protocol for
distributed, safety critical systems. The project used a formal language
to specify the protocol, and model checking techniques to validate the
model.

1 Introduction

Formal methods have a great potential of application as powerful specification
and early debugging methods in the development of industrial systems [2]. In
certain application fields, formal methods are even becoming part of standards [1,
4]. However, the application of formal methods in the development of industrial
products is by no means trivial. Indeed, formal methods can be costly, slow down
the process of development, and require changes on the development cycle, and
training.

This paper describes a project developed by Ansaldo Segnalamento Fer-
roviario (Asf) with the collaboration of IRST, where formal methods have been
successfully applied to the development of an industrial communication proto-
col, called Safety Layer. The Safety Layer is used to present to safety-critical
applicative software point-to-point, dependable channels, implemented over a
double field bus. The design of such a protocol is a very complex task. A previous
implementation, developed without the assistance of formal methods, required
an expensive activity of debugging on the field, and was difficult to maintain

? The work described in this paper was founded under contracts 1607/249958(NA)
and 4508/324731(GE).

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1584–1604, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Formal Specification and Validation of a Vital Communication Protocol 1585

and extend. On the other hand, the protocol was chosen (for its good qualities
in safety and dependability) as the communication basis of several computer-
based, distributed safety-critical products under development in Asf. Formal
methods were thus applied to develop a high-quality product. The goal of the
project described in this paper was to produce and validate a detailed design
specification of the Safety Layer, which could be used as a basis for newly devel-
oped, well documented and highly maintainable software. Besides the technical
difficulties, the project was subject to strict timing constraints. Furthermore, it
was necessary to make the specification easily understandable also by software
developers which were not expert in formal methods. Finally, the specification
had to be as simple as possible to allow for a clean implementation.

The project started from informal requirements of previous implementations,
from informal descriptions and from the knowledge internal to the company. Dur-
ing the project, the protocol was completely redesigned and formally specified
and validated. The activity was carried out with ObjectGEODE [10], a tool
for the formal development of concurrent systems. The SDL [6] graphical specifi-
cation language was used to provide an operational specification of the protocol.
The model checker of ObjectGEODE was heavily used to interactively sim-
ulate and exhaustively analyze the protocol. Several anomalous behaviors and
incompletenesses in intermediate versions of the specifications were detected
by simulation, and conveniently displayed in form of (automatically generated)
Message Sequence Charts (MSC’s) [7].

The final document specifying the Safety Layer [3] combines the formal model
with informal explanations and annotations. It is currently being used as the
basis for the implementation, and will be used as the basis for the interface
specification of a stand-alone product. The executable formal model will be
available for the analysis of possible modifications, and for the generation of
the test cases.

This paper is structured as follows. In section 2 we describe the Safety Layer
protocol. In section 3 we outline the project requirements, phases, and method-
ology. In section 4 we describe the specification of the Safety Layer, highlighting
the technical details and the interaction of informal and formal specification. In
section 5 we discuss the process of formal validation. Finally, in section 6 we
discuss the impact of the project and we draw some conclusions.

2 Informal Description of the Safety Layer

The Safety Layer is a communication protocol intended to provide reliable com-
munication for distributed safety critical systems, e.g. Automatic Train Control
systems, track-to-train communication systems, interlocking systems. Typically,
such systems are based on several computing stations connected via field bus.

The Safety Layer provides applicative programs (running on different units)
with point to point communication channels. Figure 1 depicts applicative pro-
grams A, B and C, running on different units, connected by point-to-point
bidirectional channels AB and BC. Such channels are protected against data

1586 A. Cimatti et al.

Applicative A

Profibus Driver Profibus Driver Profibus Driver Profibus Driver Profibus Driver Profibus Driver

Profibus 2

Profibus 1

Applicative B Applicative C

Channel BCChannel AB

Safety Layer Safety Layer

Connction AB1 (active)

Safety Layer

Connection AB2 (backup)

Fig. 1. The Safety Layer

corruption and out-of-order reception by means of CRC (Cyclic Redundancy
Checksum) protection, authentication mechanisms, sequence numbering and fi-
nal shutdown in presence of repeated errors. The interface to the application
program is extremely simple, i.e. only send and receive primitives are available.
The Safety Layer is configured off-line, i.e. the applicative-level channels are fixed
at design time.

Besides guaranteeing the safety of communication channels to the applica-
tive programs, the role of the Safety Layer is to enhance dependability, i.e. to
make the channels available for the applicative programs as much as possible.
Therefore, each unit running the Safety Layer is connected to two independent
field buses. The ProFiBus [8] drivers provide the Safety Layer with connection-
oriented communication primitives. The role of the Safety Layer is to hide this
redundancy from the application program, which only can see a reliable com-
munication channel. The Safety Layer tries to maintain two connections, one
per ProFiBus, for each point-to-point channel to the application level. In Fig-
ure 1, the channel AB between applicatives A and B is realized through the two
connections AB1 and AB2. In the case of nominal behavior of the protocol, one
connection is active, through which data can be transmitted, while the other is
in standby. (Notationally, the former is called the active connection, while the
latter is called the backup connection.) Even when no data is transmitted, a
minimum rate of transmission is guaranteed on both connections, by means of
special control telegrams, called connection monitoring. This mechanism is used
to reduce the time needed to detect problems, such as disturbance on the bus,
or malfunctioning of hardware components. Such problems may be revealed by
messages with corrupted CRC or out-of-order sequence numbers, or by time-
outs.

When a problem arises on the backup bus, the backup connection is reset, and
the reconnection procedure is retried. The active connection is not affected. The

Formal Specification and Validation of a Vital Communication Protocol 1587

protocol can thus work properly in a degraded mode, when only one connection
is available, but this is completely hidden to the applicative program.

If a problem arises on the active connection, and the backup connection is
working properly, then the switch-over procedure is undertaken. The switch-over
is a distinguishing mechanism of the protocol. When a switch-over occurs, the
backup connection becomes active, and will be used to transmit applicative data,
while the (previously) active connection is reset and restarted in standby.

3 The Project

The Safety Layer is a very complicated protocol. A previous implementation
had been built with traditional software development methods, for a particular
redunded architecture. This activity had been troublesome, and had resulted in
high costs in development and maintainability.

3.1 Requirements

The Safety Layer protocol, presented in previous section, is the basis for several
computer-based, distributed safety-critical products under development in Asf.
The main requirement of the project was to provide a detailed, operational spec-
ification of the Safety Layer, describing the state machines realizing the protocol.
This specification is a direct input to the implementation of the protocol, and
the state variables specified in the model are to be implemented exactly as spec-
ified. This direct link between specification and implementation was required to
enhance the maintainability of the protocol, and its reusability in subsequent
applications. Furthermore, the specification should consider as legal the behav-
iors generated by the previous implementation of the Safety Layer. Finally, it
was required that the time for the specification of the Safety Layer should not
be too long, in order not to delay the implementation and thus impact on the
projects where the Safety Layer had to be used.

3.2 Phases

The project was carried out in 10 months, along the following stages. First, an
analysis of the protocol requirements was carried out. This task was particularly
heavy, due to the large incompleteness in the documentation of the first imple-
mentation, and its dependence on the hardware architecture. As a result of this
phase, a distinction was carried out between the aspects which should be for-
mally analyzed, and the ones which were clear enough to be informally specified.
Then, a preliminary model was developed, where the ProFiBus was assumed
not to corrupt but only lose data, i.e. transmission errors were not taken into
account. In this stage, a crucial design choice was taken to structure the Safety
Layer by introducing an intermediate level. This choice allowed to partition the
complexity of the design problem, and resulted in a much clearer and manageable
design. In the final stage, the protocol specification was extended to take into

1588 A. Cimatti et al.

account the details of the transmission error. This phase required a substantial
complication of (some of) the state machines. However, the modification to be
applied to the model generated in the previous phase were uniform, and thus
simple to realize.

3.3 Methodology

The methodology applied in this project was heavily based on formal meth-
ods. The ObjectGEODE tool was thoroughly applied in the project. Object-
GEODE is a commercial tool for the development of real-time distributed sys-
tems, based on formal methods. It allows to specify the system to be analyzed by
means of SDL. A translator from StateCharts to SDL allows to obtain skeletons
for SDL programs from high-level description of state machines. Requirements
can be expressed by means of MSC’s, or via observer automata expressed in a
programming language. An explicit state model checker is directly connected to
the SDL, and allows to exhaustively analyze finite state systems.

In this project, StateCharts were used to provide high level, pictorial repre-
sentation of the finite state machines realizing the protocol. SDL was used to
provide a precise, executable specification of the machines. The ObjectGEODE
model checker was applied to reduce the development time, by pointing out a
large number of problems in intermediate versions of the design. MSC were gen-
erated via simulation to provide an easy-to-understand description of behaviors.

4 Formal Specification of the Safety Layer

The design specifications were produced in form of an SDL model. An SDL
model of a system is described by a hierarchy of diagrams. In the top diagram
(interconnection diagram) the system is decomposed into building blocks ; each
block is connected to other blocks and to the environment by channels ; channels
and blocks are interfaced by gates ; each SDL channel is labeled by a couple of
message lists , which describe the sets of messages which can be sent in the two
directions. In a lower level of interconnection diagrams, each block is decomposed
into a set of processes , which are interconnected by routes . In the further lower
level of the hierarchy, each process is exploded into a set of transition diagrams ,
which represents (the SDL code of) the state machine of the process. This code
can be executed by the ObjectGEODE simulator.

4.1 Safety Layer = CM + 2 · SL

The Safety Layer allows in principle to handle several channels to different units.
For instance, channels AB and BC are handled by the central Safety Layer block
in Figure 1. However, since there are no interactions between different channels
on the same Safety Layer, it is possible to consider only the problem of specifying
the management of a single channel. This means to “fill” a box with a port to
the applicative program, and two ports to the ProFiBus drivers. The internal

Formal Specification and Validation of a Vital Communication Protocol 1589

system modello

SL_CM_A1
(CM_SL_LIST)

(SL_CM_LIST)

PB_SL_A2
(BUS_LIST)

(BUS_LIST)
PB_SL_A1

(BUS_LIST)

(BUS_LIST)

SL_CM_A2
(SL_CM_LIST)

(CM_SL_LIST)

AP_CM_A
(AP_CM_LIST)

(CM_AP_LIST)

SL_SAP

BUS_SAP

A2 : SAFETY_LAYER_type

SL_SAP

BUS_SAP

A1 : SAFETY_LAYER_type

SL1_SAP SL2_SAP

CM_SAP

CM_A:
CONNECTION_MANAGER_type

Fig. 2. The SDL diagram of the model of the Safety Layer.

structure of such box is presented in Figure 2, in the form of SDL interconnection
diagram.

The system is decomposed into three blocks: an upper block “Connection
Manager” (CM) CM A and two lower identical blocks “Safety Layer” (SL) A1
and A2. (For compatibility with the notation used in other Asf documents,
the expression “Safety Layer” has been used to denote both the whole sys-
tem and the lower blocks; to avoid ambiguities, from now on we will denote
the latter ones simply by “SL”.) CM A communicates with the application by
means of channel AP CM A through gate CM SAP, exchanging in the two directions
messages belonging to CM AP LIST and CM AP LIST respectively. CM A also com-
municates with the two SL’s A1, A2 by means of channels SL CM A1, SL CM A1
through gates SL1 SAP, SL1 SAP, exchanging messages belonging to CM AP LIST
and CM AP LIST. A1 (resp. A2) communicates with its own ProFiBus driver by
means of channel PB SL A1 (resp. PB SL A2) through gate BUS SAP, exchanging
messages belonging to BUS LIST.

The idea is thus to hierarchically decompose the protocol in three compo-
nents. The rationale behind the decomposition is that each SL machine is able
to handle a single connection, and is not even aware of the existence of the other
SL machine. The CM is not aware of the details of the status of the SL ma-
chines. On the other hand, the CM has a clear view of the redundancy of the

1590 A. Cimatti et al.

channel, and enforces control on the SL machines according to the events which
are signaled by them.

In this way, it was possible to specify independently the SL and CM machines.
This allowed to partition the specification problem, and make it possible to
contain the number of states in each machine. The model checker was invaluable
in the task of pointing out the bad interactions between them. Furthermore, the
blocks A1 and A2 are implemented as two instances of the same process type.
This means that the resulting system is conceptually simpler, the code can be
heavily factored, and thus it is easier to maintain.

Finally, the SL and CM machines are asynchronously composed in the final
system. This is a precise design choice of the model. Once the protocol is vali-
dated without constraints on the order of execution of its component machines,
it is possible to choose, in the implementation phase, any possible algorithm of
activation of the SL and CM machines. The model has been designed to reduce
as much as possible the unnecessary constraints on the implementation level.

4.2 Overview of the CM Machine

The executable SDL model of the machines was integrated with a set of high
level, abstract StateCharts, which were used as a graphical roadmap for the
specification. Figure 3 represents (a simplified view of) the CM machine. The
name of each state is in the form <s1>A <s2>R, where <s1> represents the state
of the active connection and <s2> represents the state of the backup one. A
couple of pointers keep track of which is the active SL and which is the backup
one. The states are grouped into three distinct macro-states, each representing
an operating mode of the channel.
Non-operative. It involves the states IdleA IdleR, SyncA IdleR (synchroniza-
tion of the active connection), StartA IdleR, WcA IdleR (setup of the active
connection), IdleA WsoR and WdisA WsoR (switch-over). No connection is cur-
rently set; the two stations cannot exchange data; the CM tries to setup the
active connection.
Operative (without backup). It involves the states DataA IdleR, DataA SyncR
(synchronization of the backup connection), DataA StartR and dataA WcR (setup
of the backup connection). Only the active connection is set; the CM tries to
set up also the backup connection. The two stations can exchange data along
the active connection; if no data telegram is to be sent, the active connection is
monitored by sending connection monitoring (CM) telegrams. If the active con-
nection is dropped, the channel becomes non-operative, as there is no backup
connection.
Operative (with backup). It involves only the state DataA StandbyR. Both
the active and backup connection are set. The two stations can exchange data
along the active connection; if no data are to be sent, the active connection is
monitored by sending connection monitoring (CM) telegrams; the backup con-
nection is also periodically monitored by sending CM telegrams. If the active
connection is dropped, the backup connection becomes active (switch-over) and
the channel keeps operative (without backup).

Formal Specification and Validation of a Vital Communication Protocol 1591

WcA_IdleR

DataA_StandbyR

DataA_WcR

(4,5)

(4,5)

(4,5)

(4,5)

(4,5)

(6’)
. . . .

(8) WdisA_WsoR

(7)

IdleA_WsoR(7)

(2)

(2)

(3)
(2)

(2)

DataA_StartR

(1)

(1)

IdleA_IdleR

SyncA_IdleR

StartA_IdleR

DataA_IdleR

DataA_SyncR

(1)

(1)

(3)

. . . .
(6")

(7)

Operative channel (without backup)

Operative channel (with backup)

Non-operative channel

(8)

(1) Re-syncronization

(3) Connection setup (non-initializer side)

(2) Connection setup (initializer side)

(6’) (Active) Connecton drop

(6") (Redundant) Connecton drop

(7) Switch-over (by local CM)

(8) Switch-over (by remote CM)

(5) Data receive

(4) Data send

Fig. 3. A simplified view of the CM machine.

The transitions are grouped into eight main functionalities:
(1) Re-synchronization of the active (resp. backup) connection. From
the initial state IdleA IdleR (resp. DataA IdleR), before starting the setup of
the active (resp. backup) connection, the CM enters the state SyncA IdleR (resp.
DataA SyncR) where it waits for a fixed amount of time. During this period all the
commands coming from both connections (resp. from the backup connection) are
discharged. This removes all the information related to the previous connection
and leaves enough time to the remote station to detect the disconnection and
to drop the connection too. After the re-synchronization period, the CM enters
the state StartA IdleR (resp. DataA StartR).
(2,3) Connection Setup These transitions allow the CM to set up new con-
nections. The modalities depend on the CM (whether it is initializer or not),
and on the connection (whether it is to be active or backup).
(4,5) Data send and receive. The CM is in one of the operative channel states
(DataA XxxxR) When it receives a data slot to send from the application, it sends
a data command to the active SL and waits. When the CM receives the data
confirm command, it provides a confirmation to the application. When it receives

1592 A. Cimatti et al.

a data indication command from the active SL, it passes to the application the
data slot received.
(6) Drop of one connection. The CM receives a disconnection indication
command from one of two SL’s. If the command comes from the active SL
(Transitions (6’)) and the CM is not in the state DataA StandbyR, then the CM
drops the active connection (if any) and enters the initial state IdleA IdleR. If
the command comes from the backup SL (Transitions (6”)) and the CM is in one
of the operative channel states, then the CM drops the backup connection (if
any) and enters the state DataA IdleR; if the CM is not in one of the operative
channel states, the command is ignored.
(7,8) Switch-over. The CM is in DataA StandbyR (channel operative with
backup). If the CM receives a disconnect indication command from the active SL
(Transitions 7), then it sends to the backup SL a switch-over request command
and waits in the state IdleA WsoR. When the backup SL replies with a switch-
over confirm command, the CM swaps the roles of the two SL’s —so that the
former backup connection becomes active— and enters the state DataA IdleR. In
the state IdleA WsoR the CM may also receive from the backup SL a switch-over
indication command; this happens whenever also the other station detects the
disconnection and initiates the switch-over (double switch-over). Then the CM
replies with a switch-over response command, remaining in the state IdleA WsoR.
The CM can also receive a switch-over indication from the backup SL, in which
case activates the suitable switch-over procedure (Transitions 8).

4.3 Overview of the SL Machine

Figure 4 represents (a simplified view of) each SL machine. The transitions are
grouped into eight main functionalities:
(1) Connection setup (initializer side). The SL is in the state IDLE (non
connected). When it receives from its CM a connection request command —
indicating the role of the connection: active or backup— it sends via ProFiBus
a telegram CR (connection request) and waits for a reply in the state WFCC. When
it receives back the telegram CC (connection confirm), it sends via ProFiBus
a telegram A1 (authentication) and waits for a reply in the state WFA2. When
it receives back the telegram A2 (authentication acknowledge) it performs an
authentication test: if everything is correct, the connection is setup, and the
SL enters the state DATA (active) or STANDBY (backup) depending to the role
assigned.
(2) Connection setup (non-initializer side). The SL is in the state IDLE
(non connected). When it receives via ProFiBus a telegram CR, it replies with
a telegram CC and waits in the state WFA1. When it receives via ProFiBus a
telegram A1, it replies with a telegram CC and waits in the state WFA1. When it
receives back the telegram A1 it performs an authentication test: if everything is
correct, it informs its own CM by a connection indication command and waits
in the state WFC RESP. When it receives back a connection response confirm —
indicating the role of the connection: active or backup— it sends via ProFiBus

Formal Specification and Validation of a Vital Communication Protocol 1593

IDLE

WFC_RESPWFA2

WFSO_RESPWFSOA

WFCC WFA1

DISCONNECTED

(5,6)
. . . .

(5,6)
. . . .

DATA STANDBY

(1)

(1)

(2)

(2)

(7)

(7)

(7) (8)

(8)

(8)

(7)

(3,4) (3,4)
(5,6)

(1) (2)

(1) Connection setup (Initializer side)
(2) Connection setup (Non-initializer side)
(3) Data or Connection Monitoring Send
(4) Data or Connection Monitoring Receive
(5) Connection drop (from CM)
(6) Connection drop (from Profibus)
(7) Switch-over (from CM)
(8) Switch-over (from Profibus)

Fig. 4. A simplified view of the SL machine.

the telegram A2. The connection is setup, and the SL enters the state DATA
(active) or STANDBY (backup) depending to the role assigned.
(3) Data and Connection Monitoring send. In case of active connection, the
SL handles each send data request command received from its CM by sending a
data telegram (DT) via ProFiBus containing the data received; the acknowledge
received from the ProFiBus is passed to the CM by a data confirm command;
when there is no data to be sent within a certain time slot, the SL sends a
connection monitoring telegram (CM). In case of backup connection, the SL sends
CM telegrams at fixed intervals.
(4) Data and Connection Monitoring receive. In case of active connection,
the SL handles each data telegram DT received via ProFiBus by sending to the
CM a data send confirm command containing the data received; moreover, the
SL monitors the receipt of at least one DT or CM every time slot. In case of backup
connection, the SL just monitors the receipt of at least one CM every time slot.
In both cases, if the connection monitoring test fails, the connection is dropped.
(5) Connection drop (from CM) The SL may receive from its CM a discon-
nect request command. If so, the SL drops the connection. Depending on some
information contained in the command and on the current state, the SL can
enter either the state IDLE (temporary disconnection: another connection can
be setup) or the state DISCONNECTED (permanent disconnection: no new connec-
tion is possible); it can either send via ProFiBus a disconnect telegram (DI) or
not; it can either acknowledge the disconnection by a disconnection indication
command or not.

1594 A. Cimatti et al.

(6) Connection drop (from ProFiBus) The SL may receive via ProFiBus
a disconnect telegram DI. If so, the SL drops the connection. Depending on some
information contained in the telegram, the SL can enter either the states IDLE
or DISCONNECTED; it can either inform the CM by a disconnection indication
command or not.
(7) Switch-over (from CM). The SL is in the state STANDBY (backup connec-
tion). If it receives from the CM a switch-over request command then it sends
via ProFiBus a switch-over indication telegram (SOI) and waits for a reply in
the state WFSOA. When it receives back a switch-over acknowledgment telegram
(SOA), it informs the CM with a switch-over confirm command and enters the
state DATA: the new active connection is set. In the state WFSOA the SL may also
receive via ProFiBus a SOI telegram (double switch-over). If so, the SL simply
replies with a SOA telegram, remaining in the state WFSOA.
(8) Switch-over (from ProFiBus). The SL is in the state STANDBY (backup
connection). If it receives via ProFiBus a switch-over indication telegram (SOI),
then it informs its CM with a switch-over indication command and waits for
a reply in the state WFSO RESP. When it receives back a switch-over response
command, it sends via ProFiBus a switch-over acknowledgment telegram (SOA)
and enters the state DATA. In the state WFSO RESP the SL handles the situations
of double switch-over; if it receives from the CM a switch-over request command,
then it sends via ProFiBus a switch-over indication telegram (SOI) and remains
in WFSO RESP; if it receives back a switch-over acknowledgment telegram (SOA), it
informs the CM with a switch-over confirm command, and remains in WFSO RESP;
the same happens if the SL is already in the state DATA.

The telegrams CR, CC, A1 and SOI are acknowledged by the receipt of the
telegrams CC, A1, A2 and SOA respectively: if one telegram is not acknowledged
within a certain time slot, the connection is dropped.

In order to send telegram to the partner station, each SL uses the ProFiBus
service “Send Data with Acknowledgment” [8], which provides a positive (resp.
negative) acknowledgment whenever the telegram sent is successfully delivered
(resp. is not delivered) to the remote SL. Thus, each time a SL sends a tele-
gram via ProFiBus, it waits for the acknowledgment in a proper intermediate
state: if the acknowledgment is positive, the remaining part of the transition
is processed, otherwise the connection is dropped. Notice that the intermediate
states can not be interleaved: when the SL is in a intermediate state, any event
incoming is temporarily saved and its processing is postponed to the next state.
This corresponds to consider the “send with acknowledge” phase as an atomic
operation. (Notationally, the positive and negative acknowledgment are denoted
by pb ack and pb nak respectively; the intermediate states are called acknowl-
edgment states , and are denoted by the suffix “ ACK”; the states represented in
Figure 4 are called instead the main states .)

4.4 An Example of Transition Diagram

To provide an example of an SDL process diagram, in Figure 5 we report the SDL
description of the functionality (8) of the SL “Switch-over from ProFiBus”.

Formal Specification and Validation of a Vital Communication Protocol 1595

process type SL_type

STANDBY

SOI

Crc#seq_ok

Reset_Timers

Saf_SO.ind
(self)

SL_resetpars

WFSO_RESP

WFSO_RESP

Saf_SO.resp
(address)

set(now
+timDataT,
timer_CMt)

set(now
+timDataR,
timer_CMr)

SOA

SOA_ACK

pb_ack

SL_resetpars

DATA

WFSO_RESP

Saf_SO.req
(address)

set(now
+timConn,
timer_cr)

SOI

SOI_2_ACK

pb_ack

SL_resetpars

WFSO_RESP

WFSO_RESP

SOA

Crc#seq_ok

reset
(timer_cr)

Saf_SO.cnf
(self)

SL_resetpars

-

timer_cr

Error_Handle
(false)

SL_resetpars

IDLE

DATA

SOA

Crc#seq_ok

reset
(timer_cr)

Saf_SO.cnf
(self)

SL_resetpars

-

timer_cr

Error_Handle
(false)

SL_resetpars

IDLE

Fig. 5. An example of the SDL specification of SL transitions: (8) Switch-over
from ProFiBus.

(Notationally, as it is standard practice in protocol theory [9], the service prim-
itives of the protocols —called “commands” here— have been classified into
request (.req), indication (.ind), response (.resp) and confirm (.cnf) com-
mands . The SDL notation is rather intuitive and will be clear in the description
below.) By “the SL receives correctly a telegram” we will mean that the SL re-
ceives a telegram, it tests both the CRC and the sequence number of the telegram
and the result is positive (condition Crc#seq ok); by “the SL sends correctly a
telegram” we will mean that the SL sends the telegram and waits in a proper
acknowledgment state “ ACK” until it receives a pb ack. (The unsuccessful send
and receipt of telegrams are described in other diagrams.) The procedure call
SL resetpars at the end of the transitions resets the values of the fields of
input telegrams and commands; it will be ignored in the description. A state
labeled with “–” means “the previous state”. The timers timer CMt, timer CMr
and timer cr check respectively the connection monitoring —transmission and
reception— and the acknowledgment of the telegrams CR, CC, A1 and SOI, as
described above.

1596 A. Cimatti et al.

system modello

USE terminale_lib;

SL_CM_B1

(CM_SL_LIST)

(SL_CM_LIST)

SL_CM_A1

(CM_SL_LIST)

(SL_CM_LIST)

PB_SL_A2

(BUS_LIST)

(BUS_LIST)

PB_SL_A1

(BUS_LIST)

(BUS_LIST)

SL_CM_A2

(SL_CM_LIST)

(CM_SL_LIST)

SL_CM_B2

(SL_CM_LIST)

(CM_SL_LIST)

AP_CM_A

(AP_CM_LIST)

(CM_AP_LIST)

AP_CM_B

(AP_CM_LIST)

(CM_AP_LIST)

BUS1

(BUS_LIST)

(BUS_LIST)

BUS2

(BUS_LIST)

(BUS_LIST)

SL_SAP

BUS_SAP
A2 : SAFETY_LAYER_type

SL_SAP

BUS_SAP
B2 : SAFETY_LAYER_type

SL_SAP

BUS_SAP
A1 : SAFETY_LAYER_type

SL_SAP

BUS_SAP
B1 : SAFETY_LAYER_type

SL1_SAP SL2_SAP

CM_SAP

CM_A:
CONNECTION_MANAGER_type

CM_SAP

SL1_SAP SL2_SAP

CM_B:
CONNECTION_MANAGER_type

PBA1_SAP PBA2_SAP PBB2_SAPPBB1_SAP

PB_AB12 : PROFIBUS_type

Fig. 6. The SDL interconnection diagram of the simulated model.

Formal Specification and Validation of a Vital Communication Protocol 1597

The transitions represented in Figure 5 can be described as follows:

1. The SL is in the state STANDBY (backup connection) and receives correctly via
ProFiBus a switch-over indication telegram SOI. Thus it resets all timers
(procedure call Reset Timers), it sends to the CM a switch-over indication
command Saf SO.ind and waits for a reply in the state WFSO RESP.

2. When the CM replies with a switch-over response command Saf SO.resp,
the SL sets the timers timer CMt and timer CMr to some proper values, sends
successfully via ProFiBus a switch-over acknowledgment telegram SOA and
enters the state DATA. (The new active connection is now set, so that the SL
can send and receive data and connection monitoring telegrams.)

3. It may be the case that, in the state WFSO RESP, the SL receives from the
CM a switch-over request command Saf SO.resp (double switch-over). If so,
the SL sets timer cr to a proper value, it sends successfully the switch-over
indication telegram SOI waiting in WFSO RESP both the switch-over response
command from the CM and the telegram SOA from the remote SL.

4. The SL can receive via ProFiBus a telegram SOA in the state WFSO RESP.
(This happens in case of double switch-over, if the telegram SOA is received
before the command Saf SO.resp.) If so, it simply sends to the CM a switch-
over indication command Saf SO.ind and remains in the same state. If
timer cr triggers before the reception of the telegram SOA, the SL considers
it as an error, invokes the procedure Error handle and drops the connection,
entering the state IDLE.

5. The SL can receive via ProFiBus a telegram SOA also in the state DATA.
(This happens in case of double switch-over, if the telegram SOA is received
after the command Saf SO.resp.) If so, the SL behaves exactly as in the
previous situation.

5 Formal Validation

During the project, interactive and exhaustive simulations were performed on
the model configured as depicted in Figure 6. (In this model each block is built by
one single process; thus from now on we will use the words “block” and “process”
as synonyms.) The model represents a point-to-point channel AB between two
partner stations A and B. The station A consists on a CM block CM A and two SL
blocks A1 and A2; the station B consists on a CM block CM B and two SL blocks
B1 and B2. (The names of the gates and of the message lists are analogous to the
ones in Figure 2.) A1 and B1 (resp. A2 and B2) exchange telegrams through the
connection AB1 (resp. AB2), which they setup and monitor. A1 and A2 exchange
telegrams with B1 and B2 respectively by means of a block PB AB12 representing
the ProFiBus layer. PB AB12 is a non-deterministic process: when one of the SL
process sends a telegram, PB AB12 can either send the telegram to the partner
SL process and return pb ack to the source SL, or return pb nak to the source
SL without sending the telegram to the partner SL.

The development and validation of the model has been a cyclic process: at
each cycle the model was simulated by running the simulator/model checker of

1598 A. Cimatti et al.

so_double

saf_disc.ind (true,false,pid(a2!sl(1)))

saf_so.req (pid(a1!sl(1)))

saf_so.cnf (pid(a1!sl(1)))

soi

pb_ack

soi

soa

pb_ack

soa

soi

soi

pb_ack

soa

soa

pb_ack

saf_so.req (pid(b1!sl(1)))

saf_so.cnf (pid(b1!sl(1)))

saf_disc.ind (true,false,pid(b2!sl(1)))

inst_1_cm_a.cm

PROCESS
/modello

/cm_a/cm(1)
inst_a1

BLOCK
/modello

/a1

inst_a2

BLOCK
/modello

/a2
inst_1_pb

PROCESS
/modello

/pb_ab12
/pb(1)

inst_b1

BLOCK
/modello

/b1

inst_b2

BLOCK
/modello

/b2

inst_1_cm_b.cm

PROCESS
/modello

/cm_b/cm(1)

Fig. 7. The MSC of the double switch-over.

Formal Specification and Validation of a Vital Communication Protocol 1599

ObjectGEODE in both interactive and exhaustive mode; the errors or anoma-
lous behaviors revealed were traced by means of MSC’s and analyzed; then a
new version of the model was produced which included the modifications sug-
gested by the analysis. All simulations have been performed on a SUN SPARC10
workstation with 128MB RAM.

5.1 Interactive Simulation

The first step of every simulation cycle was to run the simulator in interac-
tive mode, in order to verify by hand the nominal behavior of the system and
some typical scenarios. For instance, we have simulated interactively standard
situations like setup of both active and backup connection, data and connec-
tion monitoring exchange, drop of active and/or backup connection, single and
double switch-over, plus some scenarios of typical error handling (CRC errors,
ProFiBus errors, channel delays, etc.). The corresponding MSC’s have been
produced and analyzed.

As an example, the MSC so double of Figure 7 describes the execution of a
scenario of double switch-over. The MSC notation is rather intuitive: the verti-
cal lines represent, from left to right, the seven blocks/processes CM A, A1, A2,
PB AB12, B1, B2 and CM B; the arrows represent the messages exchanged. The
MSC has been obtained by simulating interactively the final version of the model.
At the starting point, the channel is operative with backup, AB2 is the active con-
nection and AB1 the backup one, so that CM A, CM B are in DataA StandbyR, A2, B2
are in DATA and A1, B1 are in STANDBY. (In the following description all telegrams
are sent with success, so that we omit to mention the pb ack messages; we also
omit the description of the values of the fields of the commands and telegrams
because they are not relevant in this context.) Each active SL A2 and B2 reveals
a problem on the active connection (e.g., a failed connection monitoring). Then
it informs its own CM with a disconnection indication command Saf DISC.ind.
Each CM starts the switch-over phase by sending a switch-over request command
Saf SO.req to its own backup SL. The latter sends via ProFiBus a switch-over
indication telegram SOI and waits for the switch-over acknowledge telegram SOA.
Instead it receives first the SOI telegram from the other SL (double switch-over)
and simply replies with a SOA. When it finally receives the SOA, it informs its
own CM by a switch-over confirm command saf SO.cnf. Then each CM swaps
the roles of its SL’s. The connection AB1 is now the active one, and the CM can
start the setup of the backup connection AB2.

5.2 Model Checking

The second step of every simulation cycle was to run the simulator in exhaustive
mode (model checking). This was a very effective form of early debugging for
the system, as the model checker found automatically a large number of errors
or unexpected behaviors. Furthermore, most of these problems were of such a
complicate nature to be nearly impossible for a human analyst to conceive.

1600 A. Cimatti et al.

err_so_double

saf_disc.ind (true,false,pid(a2!sl(1)))

saf_so.req (pid(a1!sl(1)))

soi

pb_ack

soi

soa pb_ack

soa

soi

soi

pb_ack

soa

pb_ack

soa

saf_so.ind (pid(b1!sl(1)))

saf_so.req (pid(b1!sl(1)))

saf_so.resp (pid(b1!sl(1)))

saf_disc.ind (true,false,pid(b2!sl(1)))

inst_cm_a

BLOCK
/modello
/cm_a inst_a1

BLOCK
/modello

/a1

inst_a2

BLOCK
/modello

/a2
inst_1_pb

PROCESS
/modello
/pb_ab12

/pb(1)

inst_b1

BLOCK
/modello

/b1

inst_b2

BLOCK
/modello

/b2

inst_cm_b

BLOCK
/modello
/cm_b

Fig. 8. The MSC of an error occurred during a double switch-over (revealed in
an intermediate version of the model).

Formal Specification and Validation of a Vital Communication Protocol 1601

During this phase, we have pervasively used most of the optional features of
the simulator/model checker of ObjectGEODE, in particular:

– different choices of search strategy. For instance, depth-first search allows
for detecting strongly connected cycles, while breadth-first search allows for
generating error scenarios of minimal length;

– state compression, to reduce memory occupation;
– filtering, to hinder the execution of some selected transitions, thus allowing

for a selective analysis of the various functionalities of the model.

An Example of Early Debugging In an intermediate version of the SDL
model, the last couple of transitions of the diagram in Figure 5 —input of SOA
and timer cr in the state DATA— was not there, and timer cr was not used
in WFSO RESP. (Intuitively, this was due to the assumption —which revealed
incorrect— that no switch-over telegram could ever be received by an active
SL.) During an exhaustive simulation, the model checker stopped for a “false
input” error: the SL B1 had received an unexpected input of a SOA telegram
while it was in the state DATA.

The MSC derived from the error scenario generated is reported in the MSC
of Figure 8. (The starting conditions and the assumptions are the same as for
the MSC so double of Figure 7.) The active SL A2 reveals a problem on the
active connection and informs CM A with a disconnection indication command
Saf DISC.ind. CM A sends a switch-over request command Saf SO.req to its
own backup SL A1, which sends via ProFiBus a switch-over indication telegram
SOI to the remote SL B1. B1 informs CM B by a switch-over indication command
Saf SO.ind, and waits for the switch-over response command Saf SO.resp in
the state WFSO RESP (first transition of Figure 5). In the meanwhile also the SL
B2 reveals a problem on the active connection and informs CM B with a discon-
nection indication command Saf DISC.ind; CM B reacts by sending a switch-over
request command Saf SO.req to B1. B1 receives the Saf SO.req and sends via
ProFiBus a telegram SOI to A1 (third transition of Figure 5). CM B replies to
the command Saf SO.ind with a switch-over response command Saf SO.resp.
B1 receives it, sends via ProFiBus a telegram SOA and enters the state DATA
(second transition of Figure 5). A1 replies to the SOI with a telegram SOA. Un-
fortunately —as the last couple of transitions of Figure 5 is missing— B1 is not
prepared to receive a telegram SOA in the state DATA. This causes an error.

Notice that the error happens because the Saf SO.ind and the Saf SO.req
“cross” between B1 and CM B, so that B1 receives the Saf SO.req in between the
exchange Saf SO.ind/Saf SO.resp. In an implemented version of the system, it
is reasonable to assume that the communications between CM and SL are much
faster than those via ProFiBus, so that the probability of a similar crossing is
very low. Therefore this error would have been extremely hard to detect during
the testing phase of the implemented system.

1602 A. Cimatti et al.

Final Validation

We focus now on three very intensive exhaustive simulations we performed of the
final version of the model. No transition has been filtered, so that all functional-
ities are analyzed. Using the state compression allowed by the model checker, we
could impose a bound of 3 · 106 reachable states. 1 In the first two simulations
the model checker was run with a breadth-first search strategy, starting from
the situations “channel non operative” and “channel operative with backup” re-
spectively; in the third simulation the model checker was run with a depth-first
search strategy. Each simulation required several hours of CPU time.

The three simulations shared the following results. 2

verify stopped by states limit

Number of exceptions: 0

Number of deadlocks: 0

Number of stop conditions: 0

Transitions coverage rate: 75.00 (94 transitions not covered)

States coverage rate: 100.00 (0 states not covered)

(...)

None of the three simulations has been able to cover the whole state space (that
is, the number of reachable states is greater than 3 · 106). They have covered
respectively 9, 10 and 13 million transitions. However, it is worth remarking that,
when an error was detected in intermediate versions of the model, this was always
done within up to a few thousands states analized. Since the final runs signaled
no exception (dynamic error), deadlock, or stop condition (unexpected inputs,
role incongruences of the SL’s), the degree of confidence on the correctness of
the design was considered to be rather high.

All simulations have covered the 100% of the control states and about 75% of
the transitions. Furthermore, all the uncovered transitions of the CM’s had been
introduced to fill the matrix event/state, and were not expected to be covered:

from_wdisa_wsor_input_all: 0

from_idlea_wsor_input_all: 0

from_idlea_idler_synca_idler_starta_idler_wca_idler_wdisa_wsor_

idlea_wsor_input_cm_put.req: 0

from_dataa_startr_dataa_wcr_input_all: 0

from_starta_idler_wca_idler_input_all: 0

from_dataa_syncr_input_all: 0

from_dataa_idler_input_all: 0

from_idlea_idler_input_all: 0

(...)

(The SL’s filtered the unexpected telegrams and thus they did not send anoma-
lous commands to their CM.)
1 Empirically, 3 · 106 was the biggest number of states we could handle with 128M

RAM.
2 The simulator’s outputs have been slightly reformatted in order to fit into the page

frame.

Formal Specification and Validation of a Vital Communication Protocol 1603

The explosion of the state space was to be expected: industrial systems tend
to explode. Although several tricks were used to contain the state explosion —
like, e.g., filtering and state compression— it was impossible to complete the
exploration because the model is actually infinite state in principle. This is due
to the fact that no rigid synchronization is imposed on the blocks of the system,
and that the length of the queues is not limited. Another fancier model checker
(e.g., SPIN [5]) could be applied with profit. In particular, the partial order re-
duction appear to be particularly promising in case of asynchronous composition
of processes in the same site.

6 Conclusions

In this paper we presented an application of formal methods to the design of a
complex communication protocol for distributed, safety critical systems. During
the project, the protocol was formally specified as composition of several finite
state machines. Model checking techniques were used to automatically analyze
the specifications, and pinpoint several subtle errors and unexpected behaviours
in early stages of the design.

It is well known that formal methods are not a panacea, and may have
drawbacks if not applied in the right way. The quantification of the costs and
benefits of formal methods is not easy. For this particular project, however, it is
fair to say that the application of formal methods was effective. The specification
of the protocol has been judged to be of high quality, it is independent of the
architecture, and imposes very weak constraints on the particular combination
of the SL and CM machines, thus allowing for different architectural choices at
implementation time. An informal specification of the protocol would have been
hard, and its manual validation would have been nearly impossible without the
support of model checking. The pay-off from the application of formal methods
is also in the further availability of an executable model. This can be used for
mechanically assisted test design, and provides a basis for an easy and early
validation of future modifications. The impact of the use of formal methods in
this project is very significant. The formal specifications are currently used to
implement two different versions of the safety layer, running on two different
hardware platforms.

References

[1] J. Bowen. Formal Methods in Safety-Critical Standards. Oxford University Com-
puting Laboratory Technical Report, 1995.

[2] J. Bowen. The Industrial Take-Up of Formal Methods. Oxford University Com-
puting Laboratory Technical Report, 1995.

[3] A. Cimatti, R. Sebastiani, and P. Traverso. Specifica formale dei protocolli Safety
Layer e Connection Manager (Formal specification of the Safety Layer and Con-
nection Manager protocols). In italian. ITC-IRST deliverable 9808-02, project
Safety Critical Applications III - SCAPIII, January 1999.

1604 A. Cimatti et al.

[4] European Commitee for Electrotechnical Standardization. European Standard -
Railway Applications: Software for Railways Control and Protection Systems. EN
50128, 1995.

[5] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991.

[6] ITU-T. CCITT specification and description language (SDL), March 1993. ITU-T
Recommendation Z.100.

[7] ITU-T. Message Sequence Chart (MSC), October 1996. ITU-T Recommendation
Z.120.

[8] Profibus Nutzerorganization. Profibus Standard, July 1996. DIN 19 245.
[9] A. Tanenbaum. Computer Networks. Prentice Hall, 1989.

[10] VERILOG. ObjectGEODE Documentation. Available at www.verilogusa.com.

Incremental Design of a Po wer Transformer

Station Controller using a Controller Synthesis

Methodology?

Herv�e Marchand1 and Mazen Samaan2

1 IRISA / INRIA - Rennes,

F-35042 RENNES, France

e-mail: hmarchan@irisa.fr
2 EDF/DER, EP, dept. CCC,

6 quai Watier, 78401 CHATOU, France

e-mail: Mazen.Samaan@der.edf.fr

Abstract. In this paper, we describe the incremental speci�cation of a

pow er transformer station controller using a contr oller synthesis method-

ology. We specify the main requirements as simple properties, named

contr ol objectives, that the controlled plant has to satisfy . Then, using

algebraic tec hniques, the controller is automatically derived from these

set of con trol objectiv es. In our case, the plant is speci�ed at a high level,

using the data-ow synchronous Signal language and then by its logical

abstraction, named polynomial dynamical system. The control objectives

are speci�ed as invariance, reachability, attr activityproperties, as well as

partial order relations to be checked by the plant. The control objectives

equations are then synthesized using algebraic transformations.

Key-words: Discrete Even t Systems, Polynomial Dynamical System, Supervi-

sory Control Problem, Signal, Pow er Plant.

1 Introduction & Motivations

The Signal language [8] is developed for precise speci�cation of real-time reac-

tive systems [2]. In such systems, requirements are usually chec keda posteriori

using property veri�cation and/or simulation techniques. Control theory of Dis-

crete Even t Systems (DES) allows to use constructive methods, that ensure, a

priori, required properties of the system behavior. The validation phase is then

reduced to properties that are not guaranteed by the programming process.

There exist di�erent theories for control of Discrete Even t Systems since the

80's [14, 1, 5, 13]. Here, we choose to specify the plant in Signal and the control

synthesis as well as veri�cation are performed on a logical abstraction of this

program, called a polynomial dynamical system (PDS) over Z=3Z. The control

? This work was partially supported by �Electricit �e de France (EDF) under contract

number M64/7C8321/E5/11 and by the Esprit SYRF project 22703.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1605-1624, 1999.
 Springer-Verlag Berlin Heidelberg 1999

of the plant is performed by restricting the controllable input values with respect

to the control objectives (logical or optimal). These restrictions are obtained by

incorporating new algebraic equations into the initial system. The theory of PDS

uses classical tools in algebraic geometry, such as ideals, varieties and morphisms.

This theory sets the basis for the veri�cation and the formal calculus tool, Si-

gali built around the Signal environment. Sigali manipulates the system of

equations instead of the sets of solutions, avoiding the enumeration of the state

space. This abstract level avoids a particular choice of set implementations, such

as BDDs, even if all operations are actually based on this representation for sets.

Fig. 1. Description of the tool

The methodology is the following (see Figure 1). The user �rst speci�es

in Signal both the physical model and the control/veri�cation objectives to

be ensured/checked. The Signal compiler translates the Signal program into

a PDS, and the control/veri�cation objectives in terms of polynomial rela-

tions/operations. The controller is then synthesized using Sigali. The result

is a controller coded by a polynomial and then by a Binary Decision Diagram.

To illustrate our approach, we consider in this paper the application to the

speci�cation of the automatic control system of a power transformer station. It

concerns the response to electric faults on the lines traversing it. It involves com-

plex interactions between communicating automata, interruption and preemp-

tion behaviors, timers and timeouts, reactivity to external events, among others.

The functionality of the controller is to handle the power interruption, the redi-

rection of supply sources, and the re-establishment of the power following an

interruption. The objective is twofold: the safety of material and uninterrupted

best service. The safety of material can be achieved by (automatic) triggering

circuit-breakers when an electric fault occurs on lines, whereas the best quality

service can be achieved by minimizing the number of costumers concerned by

a power cut, and re-establishment of the current as quickly as possible for the

customers hit by the fault (i.e, minimizing the failure in the distribution of power

in terms of duration and size of the interrupted sub-network).

1606 H. Marchand and M. Samaan

2 Overview of the power transformer station

In this section, we make a brief description of the power transformer station

network as well as the various requirements the controller has to handle.

2.1 The power transformer station description

�Electricit�e de France has hundreds of high voltage networks linked to production

and medium voltage networks connected to distribution. Each station consists of

one or more power transformer stations to which circuit-breakers are connected.

The purpose of an electric power transformer station is to lower the voltage so

that it can be distributed in urban centers to end-users. The kind of transformer

(see Figure 2) we consider, receives high voltage lines, and feeds several medium

voltage lines to distribute power to end-users.

Fig. 2. The power transformer station topology.

For each high voltage line, a transformer lowers the voltage. During opera-

tion of this system, several faults can occur (three types of electric faults are

considered: phase PH, homopolar H, or wattmetric W), due to causes internal or

external to the station. To protect the device and the environment, several cir-

cuit breakers are placed in a network of cells in di�erent parts of the station

(on the arrival lines, link lines, and departure lines). These circuit breakers are

informed about the possible presence of faults by sensors.

Power and Fault Propagation: We discuss here some physical properties of

the power network located inside the power transformer station controller. It is

obvious that the power can be seen by the di�erent cells if and only if all the

upstream circuit-breakers are closed. Consequently, if the link circuit-breaker is

1607Incremental Design of a Power Transformer Station Controller

opened, the power is cut and no fault can be seen by the di�erent cells of the

power transformer station. The visibility of the fault by the sensors of the cells

is less obvious. In fact, we have to consider two major properties:

{ On one hand, if a physical fault, considered as an input of our system, is

seen by the sensors of a cell, then all the downstream sensors are not able to

see some physical faults. In fact, the appearance of a fault at a certain level

(the departure level in Figure 3(a) for example) increases the voltage on the

downstream lines and masks all the other possible faults.

(a) The fault masking (b) The fault propagation

Fig. 3. The Fault properties

{ On the other hand, if the sensors of a cell at a given level (for example

the sensors of one of the departure cells as illustrated in Figure 3(b)) are

informed about the presence of a fault, then all the upstream sensors (here

the sensors of the arrival cell) detect the same fault. Consequently, it is the

arrival cell that handle the fault.

2.2 The controller

The controller can be divided into two parts. The �rst part concerns the local

controllers (i.e., the cells). We chose to specify each local controller in Signal,

because they merge logical and numerical aspects. We give here only a brief

description of the behavior of the di�erent cells (more details can be found in

[12, 7]). The other part concerns more general requirements to be checked by

the global controller of the power transformer station. That speci�cation will be

described in the following.

The Cells: Each circuit breaker controller (or cell) de�nes a behavior beginning

with the con�rmation and identi�cation of the type of the fault. In fact, a variety

of faults are transient, i.e., they occur only for a very short time. Since their

duration is so short that they do not cause any danger, the operation of the

circuit-breaker is inhibited. The purpose of this con�rmation phase is let the

transient faults disappear spontaneously. If the fault is con�rmed, the handling

consists in opening the circuit-breaker during a given delay for a certain number

1608 H. Marchand and M. Samaan

of periods and then closing it again. The circuit-breaker is opened in consecutive

cycles with an increased duration. At the end of each cycle, if the fault is still

present, the circuit-breaker is reopened. Finally, in case the fault is still present

at the end of the last cycle, the circuit-breaker is opened de�nitively, and control

is given to the remote operator.

The speci�cation of a large part of these local controllers has been performed

using the Signal synchronous language [12] and veri�ed using our formal cal-

culus system, named Sigali [7].

Some global requirements for the controller: Even if is quite easy to

specify the local controllers in Signal, some other requirements are too informal,

or their behaviors are too complex to be expressed directly as programs.

1. One of the most signi�cant problems concerns the appearance of two faults

(the kind of faults is not important here) at two di�erent departure cells, at

the same time. Double faults are very dangerous, because they imply high

defective currents. At the place of the fault, this results in a dangerous path

voltage that can electrocute people or cause heavy material damages. The

detection of these double faults must be performed as fast as possible as well

as the handling of one of the faults.

2. Another important aspect is to know which of the circuit breakers must be

opened. If the fault appears on the departure line, it is possible to open the

circuit breaker at departure level, at link level, or at arrival level. Obviously,

it is in the interest of users that the circuit be broken at the departure level,

and not at a higher level, so that the fewest users are deprived of power.

3. We also have to take into account the importance of the departure circuit-

breaker. Assume that some departure line, involved in a double faults prob-

lem, supplies a hospital. Then, if the double faults occur, the controller

should not open this circuit-breaker, since electricity must always delivered

to a hospital.

The transformer station network as well as the cells are speci�ed in Signal. In

order to take into account the requirements (1), (2) and (3), with the purpose of

obtaining an optimal controller, we rely on automatic controller synthesis that

is performed on the logical abstraction of the global system (network + cells).

3 The Signal equational data ow real-time language

Signal [8] is built around a minimal kernel of operators. It manipulates signals

X, which denote unbounded series of typed values (xt)t2T , indexed by time t in
a time domain T . An associated clock determines the set of instants at which

values are present. A particular type of signals called event is characterized

only by its presence, and has always the value true (hence, its negation by not

is always false). The clock of a signal X is obtained by applying the operator

event X. The constructs of the language can be used in an equational style to

1609Incremental Design of a Power Transformer Station Controller

specify the relations between signals i.e. , between their values and between their

clocks. Systems of equations on signals are built using a composition construct,

thus de�ning processes. Data ow applications are activities executed over a set

of instants in time. At each instant, input data is acquired from the execution

environment; output values are produced according to the system of equations

considered as a network of operations.

3.1 The Signal language.

The kernel of the Signal language is based on four operations, de�ning primitive

processes or equations, and a composition operation to build more elaborate

processes in the form of systems of equations.

Functions are instantaneous transformations on the data. The de�nition of a

signal Yt by the function f : 8t; Yt = f(X1t ; X2t ; : : : ; Xnt) is written in Signal:

Y := ff X1, X2, : : : , Xng. Y, X1, : : : , Xn are required to have the same clock.

Selection of a signal X according to a boolean condition C is: Y := X when C.

If C is present and true, then Y has the presence and value of X. The clock of Y

is the intersection of that of X and that of C at the value true.

Deterministic merge noted: Z := X default Y has the value of X when it is

present, or otherwise that of Y if it is present and X is not. Its clock is the union

of that of X and that of Y.

Delay gives access to past values of a signal. E.g., the equation ZXt = Xt�1,

with initial value V0 de�nes a dynamic process. It is encoded by: ZX := X$1 with

initialization ZX init V0. X and ZX have equal clocks.

Composition of processes is noted \|" (for processes P1 and P2, with paren-

thesizing: (| P1 | P2 |)). It consists in the composition of the systems of equa-

tions; it is associative and commutative. It can be interpreted as parallelism

between processes.

The following table illustrates each of the primitives with a trace:

n 3 2 1 0 3 2 : : :
zn := n$ 1 init 0 0 3 2 1 0 3 .: : :

p := zn-1 -1 2 1 0 -1 2 : : :
x := true when (zn=0) t t

y := true when (n=0) default (not x) f t f

Derived features: Derived processes have been de�ned on the base of

the primitive operators, providing programming comfort. E.g., the instruction

X ^ = Y speci�es that signals X and Y are synchronous (i.e., have equal clocks);

when B gives the clock of true-valued occurrences of B.

For a more detailed description of the language, its semantic, and applica-

tions, the reader is referred to [8]. The complete programming environment also

features a block-diagram oriented graphical user interface and a proof system

for dynamic properties of Signal programs, called Sigali (see Section 4).

1610 H. Marchand and M. Samaan

3.2 Speci�cation in Signal of the power transformer station

The transformer station network we are considering contains four departure,

two arrival and one link circuit-breakers as well as the cells that control

each circuit-breaker [7]. The process Physical Model in Figure 4 describes the

power and fault propagation according to the state of the di�erent circuit-

breakers. It is composed of nine subprocesses. The process Power Propagation

describes the propagation of power according to the state of the circuit-breakers

(Open/Closed). The process Fault Visibility describes the fault propagation

and visibility according to the other faults that are potentially present. The

remaining seven processes encode the di�erent circuit-breakers.

Fig. 4. The main process in Signal

The inputs of this main process are booleans that encode the physical

faults: Fault Link M, Fault Arr i M (i=1,2), Fault Dep j M (j =1,..,4). They

encode faults that are really present on the di�erent lines. The event inputs

req close ... and req open ... indicate opening and closing requests of the

various circuit-breakers. The outputs of the main process are the booleans

Fault Link, Fault Arr i, Fault Dep j, representing the signals that are sent

to the di�erent cells. They indicate whether a cell is faulty or not. These outputs

represents the knowledge that the sensors of the di�erent cells have.

We will now see how the subprocesses are speci�ed in Signal.

The circuit-breaker: A circuit-breaker is speci�ed in Signal as follows: The

process Circuit-Breaker takes two sensors inputs: Req Open and Req Close.

They represent opening and closing requests. The output Close represents the

status of the circuit-breaker.

1611Incremental Design of a Power Transformer Station Controller

(| Close := (Req_Close default (false when Req_Open) default Z_Close

| Z_Close := Close $1 init true

| Close ^= Tick

| (Req_Close when Req_Open) ^= when (not Req_Open) |)

Fig. 5. The Circuit-breaker in Signal

The boolean Close becomes true when the process receives the event

req close, and false when it receives the event Req open, otherwise it is equal to

its last value (i.e. Close is true when the circuit-breaker is closed and false other-

wise). The constraint Req Close when Req Open ^= when not Req Close says

that the two events Req Close and Req Open are exclusive.

Power Propagation: It is a �lter process using the state of the circuit-breakers.

Power propagation also induces a visibility of possible faults. If a circuit-breaker

is open then no fault can be detected by the sensors of downstream cells.

Fig. 6. speci�cation in Signal of the power propagation

This is speci�ed in the process Power Propagation shown in Figure 6.

The inputs are booleans that code the physical faults and the status of

the circuit-breakers. For example, a fault could be detected by the sensor

of the departure cell 1 (i.e. Fault Dep 1 E is true) if there exists a physical

fault (Fault Dep 1 M=true) and if the upstream circuit-breakers are closed (ie,

Close Link=true and Close Arr 1=true and Close Dep 1=true).

Fault visibility and propagation: The Fault Visibility process in Figure

7, speci�es fault visibility and propagation. As we explained in Section 2.1, a

fault could be seen by the sensors of a cell only if no upstream fault is present.

1612 H. Marchand and M. Samaan

Fig. 7. Speci�cation in Signal of the fault propagation and visibility

For example, a fault cannot be detected by the sensor of the departure

cell 1 (i.e. Fault Dep 1 is false), even if a physical fault exists at this level

(Fault Dep 1 E=true1), when another physical fault exists at the link level

(Fault Link 1 K=true) or at the arrival level 1 (Fault Arr 1 K=true). It is thus,

true just when the departure cell 1 detects a physical fault (Fault Dep 1 E)

and no upstream fault exists. A contrario, if a fault is picked up by a cell,

then it is also picked up by the upstream cells. This is for example the mean-

ing of Fault Link := (when (Fault Arr 1 default Fault Arr 2)) default

Fault link K.

4 Veri�cation of Signal programs

The Signal environment contains a veri�cation and controller synthesis tool-

box, Sigali. This tool allows us to prove the correctness of the dynamical be-

havior of the system. The equational nature of the Signal language leads to the

use of polynomial dynamical equation systems (PDS) over Z=3Z, i.e. integers
modulo 3: f-1,0,1g, as a formal model of program behavior. The theory of PDS

uses classical concepts of algebraic geometry, such as ideals, varieties and co-

morphisms [6]. The techniques consist in manipulating the system of equations

instead of the sets of solutions, which avoids enumerating state spaces.

To model its behavior, a Signal process is translated into a system of poly-

nomial equations over Z=3Z [7]. The three possible states of a boolean signal X

(i.e. , present and true, present and false, or absent) are coded in a signal variable

x by (present and true! 1, present and false! �1, and absent! 0). For the

non-boolean signals, we only code the fact that the signal is present or absent:

(present! 1 and absent! 0).

Each of the primitive processes of Signal are then encoded as polynomial

equations. Let us just consider the example of the selection operator. C := A

when B means "if b = 1 then c = a else c = 0". It can be rewritten as a

polynomial equation: c = a(�b� b2). Indeed, the solutions of this equation are

the set of possible behaviors of the primitive process when. For example, if the

signal B is true (i.e. , b=1), then (�b� b2) = (�1� 1) = 1 in Z=3Z, which leads

to c = a.

1 Note that this fault has already be �ltered. It can only be present if all the upstream

circuit-breakers are closed

1613Incremental Design of a Power Transformer Station Controller

The delay $, which is dynamical, is di�erent because it requires memoriz-

ing the past value of the signal into a state variable x. In order to encode

B := A$1 init B0, we have to introduce the three following equations:

8<
:

x0 = a+ (1� a2)x (1)

b = xa2 (2)

x0 = b0 (3)

where x0 is the value of the memory at the next instant. Equation (1) describes

what will be the next value x0 of the state variable. If a is present, x0 is equal to a
(because (1�a2) = 0), otherwise x0 is equal to the last value of a, memorized by

x. Equation (2) gives to b the last value of a (i.e. the value of x) and constrains

the clocks b and a to be equal. Equation (3) corresponds to the initial value of

x, which is the initial value of b.
Table 1 shows how all the primitive operators are translated into polynomial

equations. Remark that for the non boolean expressions, we just translate the

synchronization between the signals.

Boolean expressions

B := not A b = � a

C := A and B
c = ab(ab� a� b� 1)

a2 = b2 = c2

C := A or B
c = ab(1� a� b� ab)

a2 = b2 = c2

C := A default B c = a+ (1� a2)b

C := A when B c = a(�b� b2)

B := A $1 (init b0)

x0 = a+ (1� a2)x

b = a2x

x0 = b0

non-boolean expressions

B := f(A1; : : : ; An) b2 = a21 = � � � = a2n
C := A default B c2 = a2 + b2 � a2b2

C := A when B c2 = a2(�b� b2)

B := A $1 (init b0) b2 = a2

Table 1. Translation of the primitive operators.

Any Signal speci�cation can be translated into a set of equations called

polynomial dynamical system (PDS), that can be reorganized as follows:

S =

8<
:
X 0 = P (X;Y)
Q(X;Y) = 0

Q0(X) = 0

(1)

where X;Y;X 0 are vectors of variables in Z=3Z and dim(X) = dim(X 0). The

components of the vectors X and X 0 represent the states of the system and are

called state variables. They come from the translation of the delay operator. Y
is a vector of variables in Z=3Z, called event variables. The �rst equation is the

state transition equation; the second equation is called the constraint equation

1614 H. Marchand and M. Samaan

and speci�es which events may occur in a given state; the last equation gives

the initial states. The behavior of such a PDS is the following: at each instant t,
given a state xt and an admissible yt, such that Q(xt; yt) = 0, the system evolves

into state xt+1 = P (xt; yt).

Veri�cation of a Signal program: We now explain how veri�cation of a

Signal program (in fact, the corresponding PDS) can be carried out. Using

algebraic operations, it is possible to check properties such as invariance, reach-

ability and attractivity [7]. Note that most of them will be used in the sequel as

control objectives for controller synthesis purposes. We just give here the basic

de�nitions of each of this properties.

De�nition 1. 1. A set of states E is invariant for a dynamical system if for

every x in E and every y admissible in x, P (x; y) is still in E.
2. A subset F of states is reachable if and only if for every state x 2 F there

exists a trajectory starting from the initial states that reaches x.
3. A subset F of states is attractive from a set of states E if and only if every

state trajectory initialized in E reaches F . �

For a more complete review of the theoretical foundation of this approach, the

reader may refer to [6, 7].

Speci�cation of a property: Using an extension of the Signal language,

named Signal+, it is possible to express the properties to be checked, as well as

the control objectives to be synthesized (see section 5.2), in the Signal program.

The syntax is

(| Sigali(Verif_Objective(PROP)) |)

The keyword Sigali means that the subexpression has to be evaluated by Si-

gali. The function Verif Objective (it could be invariance, reachability,

attractivity, etc) means that Sigali has to check the corresponding property

according to the boolean PROP, which de�nes a set of states in the corresponding

PDS. The complete Signal program is obtained composing the process specify-

ing the plant and the one specifying the veri�cation objectives in parallel. Thus,

the compiler produces a �le which contains the polynomial dynamical system re-

sulting from the abstraction of the complete Signal program and the algebraic

veri�cation objectives. This �le is then interpreted by Sigali. Suppose that, for

example, we want, in a Signal program named \system", to check the attrac-

tivity of the set of states where the boolean PROP is true. The corresponding

Signal+ program is then:

(| system() (the physical model specified in Signal)

| PROP: definition of the boolean PROP in Signal

| Sigali(Attractivity(True(PROP))) |)

The corresponding Sigali �le, obtained after compilation of the Signal pro-

gram, is:

1615Incremental Design of a Power Transformer Station Controller

read(``system.z3z''); => loading of the PDS

Set_States : True(PROP); => Compute the states where PROP is true

Attractivity(S,Set_States);

=> Check for the attractivity of Set_States from the initial states

The �le \system.z3z" contains in a coded form the polynomial dynamical sys-

tem that represents the system. Set States is a polynomial that is equal to 0

when the boolean PROP is true. The methods consist in verifying that the set of

states where the polynomial Set States takes the value 0 is attractive from the

initial states (the answer is then true or false): Attractivity(S, Set States).

This �le is then interpreted by Sigali that checks the veri�cation objective.

4.1 Veri�cation of the power transformer network

In this section, we apply the tools to check various properties of our Signal

implementation of the transformer station. After the translation of the Sig-

nal program, we obtain a PDS with 60 state variables and 35 event variables.

Note that the compiler also checks the causal and temporal concurrency of our

program and produces an executable code. We will now describe some of the

di�erent properties, which have been proved.

(1) \There is no possibility to have a fault at the departure, arrival and link

level when the link circuit-breaker is opened." In order to check this property, we

add to the original speci�cation the following code

(| Error:= ((Fault_Link or Fault_Arr_1 or Fault_Arr_1 or

Fault_Dep_1 or Fault_Dep_2 or Fault_Dep_3 or Fault_Dep_4)

when Open_Link) default false

| Error ^= Tick

| Sigali(Reachable(True(Error))) |)

The Error signal is a boolean which takes the value true when the property is

violated. In order to prove the property, we have to check that there does not

exist any trajectory of the system which leads to the states where the Error

signal is true (Reachable(True(Error))). The produced �le is interpreted by

Sigali that checks whether this set of states is reachable or not. In this case,

the result is false, which means that the boolean Error never takes the value

true. The property is satis�ed2 . In the same way, we proved similar properties

when one of the arrival or departure circuit-breakers is open.

(2) \If there exists a physical fault at the link level and if this fault is picked

up by its sensor then the arrival sensors can not detect a fault". We show here

the property for the arrival cell 1. It can be expressed as an invariance of a set

of states.

(| Error:= (Fault_Arr_1 when Fault_Link_E) default false

| Error ^= Tick

| Sigali(Invariance(False(Error))) |)

2 Alternatively, this property could be also expressed as the invariance of the boolean

False(Error), namely Sigali(Invariance(False(Error))).

1616 H. Marchand and M. Samaan

We have proved similar properties for a departure fault as well as when a physical

fault appears at the arrival level and at the departure level at the same time.

(3) We also proved using the same methods the following property: \If a

fault occurs at a departure level, then it is automatically seen by the upstream

sensors when no other fault exists at a higher level."

All the important properties of the transformer station network have been

proved in this way. Note that the cell behaviors have also been proved (see [7]

for more details).

5 The automatic controller synthesis methodology

5.1 Controllable polynomial dynamical system

Before speaking about control of polynomial dynamical systems, we �rst need to

introduce a distinction between the events. From now on, we distinguish between

the uncontrollable events which are sent by the system to the controller, and the

controllable events which are sent by the controller to the system.

A polynomial dynamical system S is now written as:

S :

8<
:
Q(X;Y; U) = 0

X 0 = P (X;Y; U)
Q0(X0) = 0

(2)

where the vector X represents the state variables; Y and U are respectively the

set of uncontrollable and controllable event variables. Such a system is called a

controllable polynomial dynamic system. Let n, m, and p be the respective di-

mensions of X , Y , and U . The trajectories of a controllable system are sequences

(xt; yt; ut) in (Z=3Z)
n+m+p such that Q0(x0) = 0 and, for all t, Q(xt; yt; ut) = 0

and xt+1 = P (xt; yt; ut): The events (yt; ut) include an uncontrollable compo-

nent yt and a controllable one ut
3. We have no direct inuence on the yt part

which depends only on the state xt, but we observe it. On the other hand, we

have full control over ut and we can choose any value of ut which is admissible,

i.e. , such that Q(xt; yt; ut) = 0. To distinguish the two components, a vector

y 2 (Z=3Z)
m is called an event and a vector u 2 (Z=3Z)

p a control . From now

on, an event y is admissible in a state x if there exists a control u such that

Q(x; y; u) = 0; such a control is said compatible with y in x.

The controllers: A PDS can be controlled by �rst selecting a particular ini-

tial state x0 and then by choosing suitable values for u1; u2; : : : ; un; : : : . We will

here consider control policies where the value of the control ut is instantaneously
computed from the value of xt and yt. Such a controller is called a static con-

troller . It is a system of two equations: C(X;Y; U) = 0 and C0(X) = 0, where

3 This particular aspect constitutes one of the main di�erences with [14]. In our case,

the events are partially controllable, whereas in the other case, the events are either

controllable or uncontrollable.

1617Incremental Design of a Power Transformer Station Controller

the equation C0(X) = 0 determines initial states satisfying the control objectives

and the other one describes how to choose the instantaneous controls; when the

controlled system is in state x, and when an event y occurs, any value u such

that Q(x; y; u) = 0 and C(x; y; u) = 0 can be chosen. The behavior of the system

S composed with the controller is then modeled by the system Sc:

Sc =

8<
:
X 0 = P (X;Y; U)
Q(X;Y; U) = 0 C(X;Y; U) = 0

Q0(X0) = 0 C0(X0) = 0

(3)

However, not every controller (C;CO) is acceptable. First, the controlled system

SC has to be initialized ; thus, the equations Q0(X) = 0 and C0(X) = 0 must

have common solutions. Furthermore, due to the uncontrollability of the events

Y , any event that the system S can produce must be admissible by the controlled

system SC . Such a controller is said to be acceptable.

5.2 Traditional Control Objectives

We now illustrate the use of the framework for solving a traditional control

synthesis problem we shall reuse in the sequel.

Suppose we want to ensure the invariance of a set of statesE. Let us introduce
the operator

�
pre, de�ned by: for any set of states F ,

�
pre (F) = fx 2 (Z=3Z)

n j 8y admissible, 9u;Q(x; y; u) = 0 and P (x; y; u) 2 Fg

Consider now the sequence (Ei)i2N de�ned by:

�
E0 = E

Ei+1 = Ei\
�
pre (E)

(4)

The sequence (4) is decreasing. Since all sets Ei are �nite, there exists a j such
that Ej+1 = Ej . The set Ej is then the greatest control-invariant subset of

E. Let gj be the polynomial that has Ej as solution, then C0(X) = gj and

C(X;Y; U) = P �(gj)
4 is an admissible feed-back controller and the system SC :

S + (C0; C) veri�es the invariance of the set of states E.
Using similar methods, we are also able to to compute controllers (C;C0)

that ensure

{ the reachability of a set of states from the initial states of the system,

{ the attractivity of a set of states E from a set of states F .
{ the recurrence of a set of states E.

We can also consider control objectives that are conjunctions of basic properties

of state trajectories. However, basic properties cannot, in general, be combined

in a modular way. For example, an invariance property puts restrictions on the

4 the solutions of the polynomial P �(g) are the triples (x; y; u) that satisfy the relation

\P (x; y; u) is solution of the polynomial g".

1618 H. Marchand and M. Samaan

set of state trajectories which may be not compatible with an attractivity prop-

erty. The synthesis of a controller insuring both properties must be e�ected by

considering both properties simultaneously and not by combining a controller

insuring safety with a controller insuring attractivity independently. For more

details on the way controllers are synthesized, the reader may refer to [4].

Speci�cation of the control objectives: As for veri�cation (Section 4),

the control objectives can be directly speci�ed in Signal+ program, using

the key-word Sigali. For example, if we add in the Signal program the line

Sigali(S Attractivity(S,PROP)), the compiler produces a �le that is inter-

preted by Sigali which computes the controller with respect to the control

objective. In this particular case, the controller will ensure the attractivity of

the set of states Set States, where Set States is a polynomial that is equal to

zero when the boolean PROP is true. The result of the controller synthesis is a

polynomial that is represented by a Binary Decision Diagram (BDD). This BDD

is then saved in a �le that could be used to perform a simulation [11].

Application to the transformer station: We have seen in the previous sec-

tion, that one of the most critical requirements concerns the double fault prob-

lem. We assume here that the circuit-breakers are ideal, i.e. they immediately

react to actuators (i.e. , when a circuit-breaker receives an opening/closing re-

quest, then at the next instant the circuit-breaker is opened/closed). With this

assumption, the double fault problem can be rephrased as follows:

\if two faults are picked up at the same time by two di�erent departure cells,

then at the next instant, one of the two faults (or both) must disappear."

In order to synthesize the controller, we assume that the only controllable

events are the opening and closing requests of the di�erent circuit-breakers. The

other events concern the appearance of the faults and cannot be considered

controllable. The speci�cation of the control objective is then:

(| 2_Fault := when (Fault_Dep_1 and Fault_Dep_2)

default when (Fault_Dep_1 and Fault_Dep_3)

default when (Fault_Dep_1 and Fault_Dep_4)

default when (Fault_Dep_2 and Fault_Dep_3)

default when (Fault_Dep_2 and Fault_Dep_4)

default when (Fault_Dep_3 and Fault_Dep_4) default false

| Z_2_Fault := 2_Fault $1 init false

| Error := 2_Fault and Z_2_Fault

| Sigali(S_Invariance(S,False(Error)) |)

The boolean 2 Fault is true, when two faults are present at the same time

and is false otherwise. The boolean Error is true when two faults are present

at two consecutive instants. We then ask Sigali to compute a controller that

forces the boolean Error to be always false (i.e., whatever the behavior, there

is no possibility for the controlled system to reach a state where Error is true).

1619Incremental Design of a Power Transformer Station Controller

The Signal compiler translates the Signal program into a PDS, and the

control objectives in terms of polynomial relations and polynomial operations.

Applying the algorithm, described by the �xed-point computation (4), we are

able to synthesize a controller (C1; C0), that ensures the invariance of the set

of states where the boolean Error is true, for the controlled system SC1
= S +

(C1; C0). The result is a controller coded by a polynomial and a BDD.

Using the controller synthesis methodology, we solved the double fault prob-

lem. However, some requirements have not been taken into account (importance

of the lines, of the circuit-breakers,...). This kind of requirements cannot be

solved using traditional control objectives such as invariance, reachability or at-

tractivity. In the next section, we will handle this kind of requirements, using

control objectives expressed as order relations.

5.3 Numerical Order Relation Control Problem

We now present the synthesis of control objectives that considers the way to

reach a given logical goal. This kind of control objectives will be useful in the

sequel to express some properties of the power transformer station controller, as

the one dealing with the importance of the di�erent circuit-breakers. For this

purpose we introduce cost functions on states. Intuitively speaking, the cost

function is used to express priority between the di�erent states that a system

can reach in one transition. Let S be a PDS as the one described by (2). Let us

suppose that the system evolves into a state x, and that y is an admissible event

at x. As the system is generally not deterministic, it may have several controls

u such that Q(x; y; u) = 0. Let u1 and u2 be two controls compatible with y in

x. The system can evolve into either x1 = P (x; y; u1) or x2 = P (x; y; u2). Our
goal is to synthesize a controller that will choose between u1 and u2, in such

a way that the system evolves into either x1 or x2 according to a given choice

criterion. In the sequel, we express this criterion as a cost function relation.

Controller synthesis method: Let X = (X1; : : : ; Xn) be the state variables

of the system. Then, a cost function is a map from (Z=3Z)
n to N, which associates

to each x of (Z=3Z)
n some integer k.

De�nition 2. Given a PDS S and a cost function c over the states of this

system, a state x1 is said to be c-better than a state x2 (denoted x1 �c x2), if
and only if, c(x2) � c(x1). �

In order to express the corresponding order relation as a polynomial relation,

let us consider kmax = supx2(Z=3Z)n(c(x)): The following sets of states are then
computed Ai = fx 2 (Z=3Z)

n j c(x) = ig: The sets (Ai)i=0::kmax
form a

partition of the global set of states. Note that some Ai could be reduced to the

empty set. The proof of the following property is straightforward:

Proposition 1. x1 �c x2 , 9i 2 [0; ::; kmax]; x1 2 Ai ^ x2 2
Skmax

j=i Aj �

1620 H. Marchand and M. Samaan

Let g0; : : : ; gkmax
be the polynomials that have the sets A1; : : : ; Akmax

as solu-

tions5. The order relation �c de�ned by the proposition 1 can be expressed as

polynomial relation:

Corollary 1. x �c x
0 , R�c(x; x

0) = 0, where

R�c(X;X 0) =

nY
i=1

fg2i (X)� (

nY
j=i

(g2j (X
0)))g with f � g = (f2 + g2)2:

As we deal with a non strict order relation, from �c, we construct a strict order

relation, named �c de�ned as: x �c x
0 , fx �c x

0^q(x0 �c x)g. Its translation
in terms of polynomial equation is then given by:

R�c(X;X 0) = R�c(X;X 0)� (1�R2
�c
(X 0; X)): (5)

We now are interested in the direct control policy we want to be adopted by the

system; i.e. , how to choose the right control when the system S has evolved

into a state x and an uncontrollable event y has occurred.

De�nition 3. A control u1 is said to be better compared to a control u2, if and
only if x1 = P (x; y; u1) �c x2 = P (x; y; u2): Using the polynomial approach, it

gives R�c(P (x; y; u1); P (x; y; u2)) = 0. �

In other words, the controller has to choose, for a pair (x; y), a compatible

control with y in x, that allows the system to evolve into one of the states that

are maximal for the relation R�c . To do so, let us introduce a new order relation

Ac de�ned from the order relation �c.

(x; y; u) Ac (x
0; y0; u0),

8<
:
x = x0

y = y0

P (x; y; u) �c P (x; y; u
0)

(6)

In other words, a triple (x; y; u) is \better" than a triple (x; y; u0) whenever

the state P (x; y; u) reached by choosing the control u is better than the state

P (x; y; u0) reached by choosing the control u0.

We will now compute the maximal triples of this new order relation among all

of the triples. To this e�ect, we use I = f(x; y; u) 2 (Z=3Z)
n+m+p j Q(x; y; u) =

0g the set of admissible triples (x; y; u). The maximal set of triples Imax is then

provided by the following relation:

Imax = I � f(x; y; u) j 9(x; y; u0) 2 I; (x; y; u0) Ac (x; y; u)g (7)

The characterization of the set of states Imax in terms of polynomials is the

following:

5 To compute e�ciently such polynomials, it is important to use the Arithmetic De-

cision Diagrams (ADD) developed, for example, by [3].

1621Incremental Design of a Power Transformer Station Controller

Proposition 2. The polynomial C that has Imax as solutions is given by:

C(X;Y; U) = Q(X;Y; U)� (1� 9elimU0(Q(X;Y; U
0
)�R�c(P (X;Y; U

0
); P (X;Y; U))))

where the solutions of 9elimU 0(Q(X;Y; U 0) are given by the set

f(x; y)=9u0; Q(x; y; u0) = 0g.

Using this controller, the choice of a control u, compatible with y in x, is reduced
such that the possible successor state is maximal for the (partial) order relation

�c. Note that if a triple (x; y; u) is not comparable with the maximal element

of the order relation Ac, the control u is allowed by the controller (i.e. , u is

compatible with the event y in the state x).

Without control, the system can start from one of the initial states of I0 =
fx = Q0(x) = 0g. To determine the new initial states of the system, we will

take the ones that are the maximal states (for the order relation R�c) among

all the solutions of the equation Q0(X) = 0. This computation is performed by

removing from I0 all the states for which there exist at least one smaller state

for the strict order relation �c. Using the same method as the one previously

described for the computation of the polynomial C, we obtain a polynomial C0.

The solutions of this polynomial are the states that are maximal for the order

relation Ac.

Theorem 1. With the preceding notations, (C;C0) is an acceptable controller

for the system S. Moreover, the controlled system SC = (S+(C;C0)) adopts the

control policy of De�nition 3. �

Some others characterization of order relations in terms of polynomials can be

found in [10]. Finally, note that the notion of numerical order relation has been

generalized over a bounded states trajectory of the system, retrieving the clas-

sical notion of Optimal Control [9].

Application to the power transformer station controller: We have seen

in Section 5.2 how to compute a controller that solves the double fault problem.

However, even if this particular problem is solved, other requirements had not

been taken into account. The �rst one is induced by the obtained controller

itself. Indeed, several solutions are available at each instant. For example, when

two faults appear at a given instant, the controller can choose to open all the

circuit-breakers, or at least the link circuit-breaker. This kind of solutions is not

admissible and must not be considered. The second requirements concerns the

importance of the lines. The �rst controller (C1; C0) does not handle this kind

of problems and can force the system to open the bad circuit-breakers.

As consequences, two new requirements must be added in order to obtain a

real controller:

1. The number of opened circuit-breaker must be minimal

2. The importance of the lines (and of the circuit-breakers) has to be di�erent.

1622 H. Marchand and M. Samaan

These two requirements introduce a quantitative aspect to the control objectives.

We will now describe the solutions we proposed to cope with these problems.

First, let us assume that the state of a circuit-breaker is coded with a state

variable according to the following convention: the state variable i is equal to 1

if and only if the corresponding circuit-breaker i is closed. CB is then a vector

of state variables which collects all the state variables encoding the states of the

circuit-breakers. To minimize the number of open circuit-breaker and to take into

account the importance of the line, we use a cost function . We simply encode

the fact that the more important is the circuit-breaker, the larger is the cost

allocated to the state variable which encodes the circuit-breaker. The following

picture summarizes the way we allocate the cost.

The cost allocated to each state variable corresponds to the cost when the

corresponding circuit-breaker is opened. When it is closed, the cost is equal to

0. The cost of a global state is simply obtained by adding all the circuit-breaker

costs. With this cost function, it is always more expensive to open a circuit-

breaker at a certain level than to open all the downstream circuit-breakers.

Moreover, the cost allocated to the state variable that encodes the second de-

parture circuit-breaker (encoded by the state variable Xdep2)) is bigger than the

others because the corresponding line supplies a hospital (for example). Finally

note that the cost function is minimal when the number of open circuit-breaker

is minimal.

Let us consider the system SC1
. We then introduce an order relation over

the states of the system: a state x1 is said to be better compared to a state

x2 (x1 w x2) if and only if for their corresponding sub-vectors CB1 and CB2,

we have CB1 wc CB2. This order relation is then translated in an algebraic

relation Rwc , following Equation (5) and by applying the construction described

in proposition 2 and 1, we obtain a controller (C2; C
0
0) for which the controlled

system SC2
= (SC1

+ (C2; C
0
0)) respects the control strategy.

6 Conclusion

In this paper, we described the incremental speci�cation of a power transformer

station controller using the control theory concepts of the class of polynomial

dynamical systems over Z=3Z. As this model results from the translation of a

Signal program [8], we have a powerful environment to describe the model for

a synchronous data-ow system. Even if classical control can be used, we have

shown that using the algebraic framework, optimal control synthesis problem

1623Incremental Design of a Power Transformer Station Controller

is possible. The order relation controller synthesis technique can be used to

synthesize control objectives which relate more to the way to get to a logical

goal, than to the goal to be reached.

Acknowledgment: The authors gratefully acknowledge relevant comments

from the anonymous reviewers of this paper.

References

1. S. Balemi, G. J. Ho�mann, H. Wong-Toi, and G. F. Franklin. Supervisory control

of a rapid thermal multiprocessor. IEEE Transactions on Automatic Control,

38(7):1040{1059, July 1993.
2. A. Benveniste and G. Berry. Real-time systems designs and programming. Pro-

ceedings of the IEEE, 79(9):1270{1282, September 1991.
3. R.E. Bryant and Chen Y. Veri�cation of Arithmetic Functions with Binary Dia-

grams. Research Report, School of Computer Science CMU, May 1995.
4. B. Dutertre and M. Le Borgne. Control of polynomial dynamic systems: an exam-

ple. Research Report 798, IRISA, January 1994.
5. L.E. Holloway, B.H. Krogh, and A. Giua. A survey of Petri net methods for

controlled discrete event systems. Discrete Event Dynamic Systems: Theory and

Application, 7:151{190, 1997.
6. M. Le Borgne, A. Benveniste, and P. Le Guernic. Polynomial dynamical systems

over �nite �elds. In Algebraic Computing in Control, volume 165, pages 212{222.

LNCIS, G. Jacob et F. Lamnabhi-lagarrigue, March 1991.
7. M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan. Formal veri�cation of

signal programs: Application to a power transformer station controller. In Proceed-

ings of AMAST'96, pages 271{285, Munich, Germany, July 1996. Springer-Verlag,

LNCS 1101.
8. P. Le Guernic and T. Gautier. Data-ow to von Neumann: the SIGNAL approach.

In Jean-Luc Gaudiot and Lubomir Bic, editors, Advanced Topics in Data-Flow

Computing, chapter 15, pages 413{438. Prentice-Hall, 1991.
9. H. Marchand and M. Le Borgne. On the optimal control of polynomial dynamical

systems over Z=pZ. In 4th International Workshop on Discrete Event Systems,

pages 385{390, Cagliari, Italy, August 1998.
10. H. Marchand and M. Le Borgne. Partial order control of discrete event systems

modeled as polynomial dynamical systems. In 1998 IEEE International Conference

On Control Applications, Trieste, Italia, September 1998.
11. H. Marchand, Bournai P., M. Le Borgne, and P. Le Guernic. A design environment

for discrete-event controllers based on the signal language. In 1998 IEEE Inter-

national Conf. On Systems, Man, And Cybernetics, pages 770{775, San Diego,

California, USA, October 1998.
12. H. Marchand, E. Rutten, and M. Samaan. Synchronous design of a transformer

station controller with Signal. In 4th IEEE Conference on Control Applications,

pages 754{759, Albany, New-York, September 1995.
13. H. Melcher and K. Winkelmann. Controller synthesis for the production cell case

study. In Proceedings of the 2nd Workshop on Formal Methods in Software Practice

(FMSP-98), pages 24{33, New YOrk, March 4{5 1998. ACM Press.
14. P. J. Ramadge andW. M. Wonham. The control of discrete event systems. Proceed-

ings of the IEEE; Special issue on Dynamics of Discrete Event Systems, 77(1):81{

98, 1989.

1624 H. Marchand and M. Samaan

Verifying Behavioural Specifications

in CafeOBJ Environment

Akira Mori and Kokichi Futatsugi

Japan Advanced Institute of Science and Technology, Hokuriku
1-1 Asahidai Tatsunokuchi Nomi Ishikawa, 923-1292, JAPAN

{amori,kokichi}@jaist.ac.jp

Abstract. In this paper, we present techniques for automated verifica-
tion of behavioural specifications using hidden algebra. Two non-trivial
examples, the Alternating Bit Protocol and a snooping cache coher-
ence protocol, are presented with complete specification code and proof
scores for CafeOBJ verification system. The refinement proof based on
behavioural coinduction is given for the first example, and the coherence
proof based on invariance is given for the second.

1 Introduction

The promise of formal methods has been heard for a long time, but with a few
exceptions, they have not lived up to expectations. The shortcomings are due
to:

– gap between specification and implementation, leading to the overspecifica-
tion problem, and

– lack of unified logical systems that cover entire software design/development
process, necessitating human intervention.

In other words, there have not been appropriate logical foundations for software
specification. Overpopulation of specification languages has led to idiosyncrasy
that is so difficult to see through. If formal methods are to have industrial im-
pact on software productivity, they have to offer seamless integrated support
throughout specification, verification, and transformation.

In this paper, we report on several techniques developed for behavioural
specification based on hidden algebra to demonstrate its potential to be an
industrial-strength specification method in the future. Hidden algebra was de-
veloped in an attempt to give a semantics for software engineering, and for the
object paradigm in particular, supporting correctness proofs that are as simple
and mechanical as possible [1]. It distinguishes hidden sorts from visible sorts.
As hidden sorts model states of the system, equations of hidden sorts need to be
interpreted in a different manner. For this, hidden algebra formalises a notion
of behavioural abstraction, by defining behavioural satisfaction of equations.
An effective proof method for behavioural equation has been developed, called
behavioural coinduction, and used for various refinement proofs.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1625–1643, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1626 Akira Mori and Kokichi Futatsugi

The development of hidden algebra is not an isolated event. There are many
other proposed methods for behavioural specification, whose purpose is to char-
acterise how systems behave instead of how they are implemented, but very few
computer support systems exist. The CafeOBJ [2] system offers an integrated
environment for specification and verification in the tradition of the OBJ lan-
guages, and is the only system that supports behavioural specification based
on hidden algebra. As part of an effort to show the capability of behavioural
specification, we report on some of the new features of CafeOBJ by means of
two non-trivial examples, the Alternating Bit Protocol and a snooping cache
coherence protocol. Specification code and correctness proof scores for CafeOBJ
are presented for a complete explanation.

The organisation of the paper is as follows: Section 2 briefly summarises the-
oretical backgrounds of hidden algebra, Section 3 and 4 detail the specification
and verification of the Alternating Bit Protocol and snooping cache coherence
protocol respectively, and Section 5 concludes with comparisons with other ap-
proaches and future plans.

2 Hidden Algebra

This section presents basic definitions of hidden algebra. See [1, 3] for more
details.

Hidden algebra distinguishes hidden state values from visible data values.
Data values are defined as elements of a fixed (ordinary) algebraD with signature
Ψ and sort set V such that for each d ∈ Dv with v ∈ V there is some ψ ∈ Ψ[],v

interpreted as d in D. On the other hand, (hidden) state values are defined as
elements of a special algebra with syntactic restrictions on its signature.

Definition 1. A hidden signature (over (V, Ψ,D)) is a triple (H,Σ,Σb),
where H is a set of hidden sorts disjoint from V , Σ is an (H ∪ V)-sorted
signature with Ψ ⊆ Σ, and Σb ⊆ Σ is a set of behavioural operations disjoint
from Ψ , such that

– each σ ∈ Σw,s with w ∈ V ∗ and s ∈ V lies in Ψw,s, and,
– each σ ∈ Σb

w,s has exactly one element of H in w.

(H,Σ,Σb) may be abbreviated to Σ leaving Σb implicit. An operation σ in
Σb

w,s is called a method if s ∈ H and an attribute if s ∈ V . σ ∈ Σw,s is called
a hidden constant if w ∈ V ∗ and s ∈ H.

Note that operations in Σw,s−Σb
w,s may have more than one elements of H in w.

These non-behavioural operations were not considered in the original defini-
tion of hidden algebra [1]. They have been introduced to increase expressiveness
of hidden algebra [4, 5]. The above definition is due to [4] and is supported in
the current CafeOBJ system.

Definition 2. Given a hidden signature (H,Σ,Σb), a hidden Σ-algebra A is
a (many sorted) Σ-algebra A such that A|̀Ψ = D.

Verifying Behavioural Specifications in CafeOBJ Environment 1627

As mentioned above, the elements of Av where v ∈ V is thought of as data values
and the elements of Ah where h ∈ H as state values.

Definition 3. A hidden (or behavioural) theory (or specification) is a
quadruple (H,Σ,Σb, E), where (H,Σ,Σb) is a hidden signature and E is a set
of Σ-(conditional) equations; we may write (Σ,E) for short.

Example 1. We present a behavioural specification of a flag object using CafeOBJ
notations [3]. A flag object is either up or down, and there are methods to put
it up, to put it down, and to reverse its state:

mod* FLAG {
[Flag]
bops (up_) (dn_) (rev_) : Flag -> Flag -- methods
bop up?_ : Flag -> Bool -- attribute
var F : Flag
eq up? up F = true .
eq up? dn F = false .
eq up? rev F = not up? F .

}

A CafeOBJ keyword mod* means that the module has a loose behavioural se-
mantics in contrast with a tight (initial algebra) semantics specified by the
keyword mod!. A pair of starred brackets *[...]* is used for sort declaration
and * indicates that the declared sort is a hidden sort. For visible sorts, [...]
is used. The keyword bop declares behavioural operations in Σb (i.e., attributes
and methods).

The meaning of the FLAG specification should be clear, however, some of
the intended behaviours of the flag object, for example, a behavioural equation
rev rev F = F cannot be deduced from the FLAG specification using ordinary
equational reasoning1. This means that ordinary satisfaction of equations is too
strict for behavioural equations and a weaker notion of satisfaction based on
indistinguishability2 is needed. In hidden algebra, it is formalised using contexts
as follows.

Definition 4. Given a hidden signature (H,Σ,Σb), a behavioural context is
a term having a single occurrence of a special variable of hidden-sort denoted by
z and is formed by the following rules:

– any variable z (of any sort) is a behavioural context,
– for any σ ∈ Σb

vh,s, any behavioural context c of sort h, and any tuple of
ground terms t ∈ (TΣ)v, σ(t, c) is a behavioural context, where v ∈ V ∗ and
h ∈ H. If s ∈ V , then σ(t, c) is called visible, otherwise it is called hidden.

1 Not to mention induction.
2 By means of method application and attribute observation.

1628 Akira Mori and Kokichi Futatsugi

Given a hidden Σ-algebra A, two elements a and a′ of the same carrier set
As are said to be behaviourally equivalent, denoted by a ∼s a

′ (or just a ∼ a′)
iff Ac(a) = Ac(a′) for all visible behavioural contexts c, where Ac denotes the
function interpreting the context c as an operation on A.

A hidden Σ-algebra A behaviourally satisfies a (conditional) equation e
of the form (∀X) t = t′ if t1 = t′1, ..., tm = t′m iff

θ∗(t) ∼ θ∗(t′) whenever θ∗(tj) ∼ θ∗(t′j) for all j = 1, ...,m

for every valuation θ : X → A. In this case, we write A |≡Σ e. We may drop the
subscript Σ.

Note that for visible sorted equations, there is no difference between ordinary
satisfaction and behavioural satisfaction. We will use the symbol ∼ instead of
= when the equation should be interpreted by behavioural satisfaction. Such
equations are called behavioural equations and specified by keywords beq,
bceq in CafeOBJ, instead of eq, ceq where ceq stands for conditional equations.

The first effective algebraic proof technique for behavioural equivalence was
context induction [6], however, a more comprehensive technique based on max-
imality has been developed.

Definition 5. Given a hidden signature Σ, and a hidden Σ-algebra A, be-
havioural congruence on A is a Σb-congruence which is identity on visible
sorts.

Theorem 1. Given a hidden signature Σ and a hidden Σ-algebra A, then be-
havioural equivalence is the largest behavioural congruence on A.

See [1, 4, 5] for the proof.
Thanks to this theorem, one can show a ∼ a′ by finding some behavioural

congruence that relates a and a′ 3. This is what is called behavioural (or hid-
den) coinduction and justifies a variety of techniques for proving behavioural
equivalence. For example, to show that every FLAG-algebra satisfies the equation
(∀F : Flag) rev rev F = F, one only needs to show that up? rev rev F = up? F.
This is a special case of attribute coherent theory, where the equivalence on
attributes is behavioural equivalence 4. CafeOBJ system automatically checks if
this happens every time a new module is loaded. When this is the case, showing
behavioural satisfaction is automatic.

Non-behavioural operations have been introduced to enhance the expres-
sive power of hidden algebra [4], for example for modular construction of be-
havioural specifications. However, non-behavioural constructors may not pre-
serve behavioural equivalence and therefore may ruin the soundness of equa-
tional reasoning (specifically the congruence rule substituting equal with equal).
The next definition gives a sufficient condition for sound equational deduction.
3 Note that the situation is very much similar to the technique in process algebra for

demonstrating (strong) bisimilarity through bisimulation [7].
4 Visit the website at UCSD, http://www.cs.ucsd.edu/groups/links.

Verifying Behavioural Specifications in CafeOBJ Environment 1629

Definition 6. Given a hidden signature Σ and a hidden Σ-algebra A, an oper-
ation σ ∈ Σw,s−Σb

w,s is said to be behaviourally coherent iff it preserves the
behavioural equivalence on A, that is, Aσ(a1, a2, . . . , an) ∼s Aσ(a′1, a

′
2, . . . , a

′
n) if

a1 ∼s1 a
′
1, a2 ∼s2 a

′
2, . . . , an ∼sn a′n for all (a1, a2, . . . , an) and (a′1, a

′
2, . . . , a

′
n)

in As1 × As2 × · · · ×Asn , where w = s1s2 · · · sn.

The next theorem is due to [4]. See also [5] for another proof (in a slightly
different setting) and examples.

Theorem 2. If all operations in Σ −Σb are behaviourally coherent, then ordi-
nary equational deduction is sound for behavioural equations.

3 The Alternating Bit Protocol

Now that we have introduced all necessary concepts, let us turn to some inter-
esting specifications and their verification.

The first example is the classic Alternating Bit Protocol (ABP) [8]. The pro-
tocol is designed to achieve secure communication through unreliable channels
that may lose or duplicate packets. The model of the protocol consists of four
agents, the sender, the receiver, the message (msg) channel from the sender to
the receiver, and the acknowledgement (ack) channel from the receiver to the
sender.

Sender ReceiverChannels

.........

.........

......... ack

data
 bit

 msg

 ack

Fig. 1. The Alternating Bit Protocol

In addition to data that are transmitted, the protocol uses extra bits to
recover potential errors (loss and duplication) in the channels. The sender sends
messages, each of which consists of a data and a bit, along the msg channel,
and receives acknowledgement bits from the ack channel. The receiver receives
messages from the msg channel and sends back acknowledgements along the
ack channel. The channel is modeled as a simple unbounded queue that may
lose or duplicate packets, but does not alter the order of packets. As its name
suggests, the key trick of the protocol is the bit alternation that takes place
when a packet having the right bit is received. This is a good example for formal

1630 Akira Mori and Kokichi Futatsugi

specification and verification methods, since its procedure is extremely simple,
yet very sophisticated.

We model the protocol in terms of actions taken by the sender and the
receiver. Each agent maintains three types of information, a data, a bit, and a
timer. Each checks the incoming bit with the bit it has and then determines
the next action. We have included the timer since it is necessary to prevent
deadlocks5.

Sender:

– receives a right ack (the same bit as it has) from the ack channel, accepts
and keeps a new data, alternates the bit, sends a couple of the new data and
the new bit along the msg channel, sets a timer;

– receives a wrong ack (does nothing);
– resends a couple of the current data and bit when the timer goes off.

Receiver:

– receives a message with a right bit (the opposite bit of the one it has) from
the msg channel, keeps the new data (for future delivery), alternates the bit,
sends the new bit along the ack channel, sets a timer;

– receives a message with a wrong bit (does nothing);
– resends the current bit when the timer goes off.

Below is a more or less faithful behavioural specification of the descriptions
above.

mod! DATA { protecting(BOOL) [Nat Bool < Data] }

mod! QUEUE(X :: TRIV) {
[NeQueue < Queue]
op nil : -> Queue
op front : NeQueue -> Elt
op enq : Elt Queue -> NeQueue
op deq : NeQueue -> Queue
vars D E : Elt var Q : Queue
eq deq(enq(E,nil)) = nil .
eq deq(enq(E,enq(D,Q))) = enq(E,deq(enq(D,Q))) .
eq front(enq(E,nil)) = E .
eq front(enq(E,enq(D,Q))) = front(enq(D,Q)) .

}
mod* SENDER {
protecting(DATA)
[Sender]
bop bit : Sender -> Bool
bop val : Sender -> Data

5 However, the timer does not appear in the behavioural specification.

Verifying Behavioural Specifications in CafeOBJ Environment 1631

bop in : Data Bool Sender -> Sender
op init : -> Sender
var D : Data var B : Bool var S : Sender
eq bit(init) = true . -- valid initial state
ceq val(in(D,B,S)) = D if bit(S) == B.--new data for right ack
ceq bit(in(D,B,S)) = not bit(S) if bit(S) == B.--alternates bit
bceq in(D,B,S) = S if bit(S) =/= B . -- stays put for wrong ack

}
mod* RECEIVER {
protecting(DATA)
[Receiver]
bop bit : Receiver -> Bool
bop val : Receiver -> Data
bop get : Data Bool Receiver -> Receiver
op init : -> Receiver
var D : Data var B : Bool var R : Receiver
eq bit(init) = true . -- valid initial state
ceq val(get(D,B,R)) = D if bit(R) =/= B . -- output value
ceq bit(get(D,B,R)) = not bit(R) if bit(R)=/=B.--alternates bit
bceq get(D,B,R) = R if bit(R) == B . -- stays put for wrong bit

}
mod* ABP {
protecting(SENDER + RECEIVER + QUEUE[DATA])
[Abp]
op Init : -> Abp
op Protocol: Sender Receiver Queue Queue Queue->Abp {coherent}
bop In : Data Abp -> Abp
bop Out : Abp -> Abp
bop Val : Abp -> Data
vars D E : Data var B : Bool var A : Abp var S : Sender
var R : Receiver vars L L1 L2 : Queue
beq Init = Protocol(init,init,nil,nil,nil) .
bceq In(D,Protocol(S,R,L1,L2,enq(B,L)))

= Protocol(in(D,front(enq(B,L)),S),R,enq(D,L1),
enq(not bit(S),L2),deq(enq(B,L)))

if bit(S) == front(enq(B,L)) .
beq In(D,Protocol(S,R,enq(E,L1),enq(B,L2),nil))

= Protocol(S,R,enq(E,L1),enq(B,L2),nil) .
bceq [1] : Protocol(S,R,L1,L2,enq(B,L))

= Protocol(S,R,L1,L2,deq(enq(B,L)))
if bit(S) =/= front(enq(B,L)) .

bceq Out(Protocol(S,R,enq(D,L1),enq(B,L2),L))
= Protocol(S,get(front(enq(D,L1)),front(enq(B,L2)),R),
deq(enq(D,L1)),deq(enq(B,L2)),enq(not bit(R),L))

if bit(R) =/= front(enq(B,L2)) .

1632 Akira Mori and Kokichi Futatsugi

bceq [2] : Protocol(S,R,enq(D,L1),enq(B,L2),L)
= Protocol(S,R,deq(enq(D,L1)),deq(enq(B,L2)),L)
if bit(R) == front(enq(B,L2)) .

beq Out(Protocol(S,R,nil,nil,enq(B,L)))
= Protocol(S,R,nil,nil,enq(B,L)) .

beq [3] : Protocol(S,R,L1,L2,L)
= Protocol(S,R,enq(val(S),L1),enq(bit(S),L2),L) .

beq [4] : Protocol(S,R,L1,L2,L)
= Protocol(S,R,L1,L2,enq(bit(R),L)) .

eq Val(Protocol(S,R,L1,L2,L)) = val(R) .
}

A few remarks about the specification are in order.

– Transmitted data and alternation bits are specified using CafeOBJ’s default
built-in modules Nat (the natural numbers) and Bool (the Booleans).

– A parameterised module QUEUE and subsorts Nat and Bool are used to avoid
multiple presence of QUEUE modules. Also subsort NeQueue is used to avoid
introducing user-defined error elements.

– Modules are imported by protecting declaration. It instructs that the se-
mantics of imported modules should not be altered. There are other impor-
tation modes than protecting. See [3] for details and semantics.

– Initial states are defined as hidden constants. Attribute values for initial
states can be defined by visible equations. The initial state of ABP may look
strange since the data transmission can only be started by the Receiver
taking a time-out action6. This is rather a syntactic convenience, i.e., one
could have put an appropriate acknowledgement bit in the ack channel.

– Module expressions such as SENDER + RECEIVER + QUEUE[DATA] avoid mul-
tiple internal copies of shared modules.

– A non-behavioural operation Protocol is declared coherent in the ABP
module. Thus one can freely use equational reasoning through reduction
commands reduce or red in CafeOBJ. The coherence of Protocol needs to
be proved separately, however, it is trivial and omitted here. One can think
of coherent operations as behavioural constructors just like ordinary data
type constructors. They are used to define legitimate system configurations
in terms of behavioural sub-modules.

CafeOBJ keywords appearing in the specification should be easily interpreted
by corresponding hidden algebra notions. Interested readers are referred to [3]
for CafeOBJ specific details.

Interpreting equations [1], [2], [3], and [4] with (ordinary) strict
satisfaction of equations will not make sense. For example, one might think
that equations [3] and [4] bring about inconsistency since the operation
Protocol acts as a constructor. One has to remember, however, that they are
behavioural equations that only need to be satisfied behaviourally. By virtue of

6 Not by the Sender.

Verifying Behavioural Specifications in CafeOBJ Environment 1633

behavioural satisfaction, equations [1] and [2] state that wrong packets
are removed without making any trace while [3] and [4] state that time-
out events are invisible and resending actions should not affect the following
behaviour of the protocol. Writing behavioural equations always runs a risk of
producing inconsistent specifications since they imply infinite number of visible
equations. This is probably the most difficult aspect of behavioural specification.

We define the notion of behavioural refinement first.

Definition 7. A hidden signature map ϕ : (H,Σ)→ (H ′, Σ′) is a signature
morphism ϕ : Σ → Σ′ that preserves hidden sorts and behavioural operations,
and that is the identity on (V, Ψ). A hidden signature map ϕ : (Σ,E)→ (Σ′, E′)
is a refinement iff for every (Σ′, E′)-algebra M ′ we have ϕM ′ |≡Σ E. (ϕM ′

denotes M ′ viewed as a Σ-algebra.)

It can be shown that ϕ is a refinement iff all visible consequences of the abstract
specification hold in the concrete specification [9]:

Proposition 1. A hidden signature map ϕ : (Σ,E)→ (Σ′, E′) is a refinement
iff E′ |= ϕ(c[e]) for each e ∈ E and each visible Σ-context c, where if e is the
equation (∀X) t = t′, then c[e] denotes the equation (∀X) c[t] = c[t′].

Now we want to show that ABP is a refinement of the following behavioural
specification BUF of a buffer of capacity one.

mod* BUF {
[Nat] *[Buf]*
op init : -> Buf
bop in : Nat Buf -> Buf
bop val : Buf -> Nat
bop out : Buf -> Buf
bop empty? : Buf -> Bool
var N : Nat var B : Buf
eq empty?(init) = true .
ceq empty?(out(B)) = true if not empty?(B) .
eq empty?(in(N,B)) = false .
ceq val(out(in(N,B))) = N if empty?(B) .
bceq in(N,B) = B if not empty?(B) .
bceq out(B) = B if empty?(B) .

}

The meaning of this specification should be clear, however, note that the output
value is secure only after the out operation.

In order to demonstrate7 refinement from BUF to ABP, we first need to find
an underlying signature map. For this, we define an ABP counterpart Empty? of
empty? as follows.

7 Before starting formal verification, one can check how ABP works via symbolic exe-
cution. See Appendix A for a CafeOBJ session of simple ABP reductions.

1634 Akira Mori and Kokichi Futatsugi

bop Empty? : Abp -> Bool .
var S : Sender var R : Receiver vars L L1 L2 : Queue
eq Empty?(Protocol(S,R,L1,L2,L)) = bit(S) == bit(R) .

Then the refinement proof requires us to show all equations from BUF are
valid in ABP as well. This is done by finding an appropriate candidate relation
R on Abp and showing that it is a behavioural congruence. In general, this is
highly non-trivial. However, a closer look at behavioural equations [1] – [4
] of ABP leads to the observation that for any reachable state of the protocol
there is a behaviourally equivalent state whose channels are all empty. This is
the ingenious aspect of the protocol that achieves robust communication against
loss and duplication in the channels.

We are going to make this observation precise by creating CafeOBJ scores.
However, since CafeOBJ does not have full theorem proving capability (only re-
ductions), we need some maneuvers for quantified variables and conditionals, and
also for rewriting directions and orders. The CafeOBJ commands for controlling
these are omitted from the following proof score.

We define the candidate relation R to be

op _R_ : Abp Abp -> Bool .
vars S1 S2 : Sender vars R1 R2 : Receiver
ceq Protocol(S1,R1,nil,nil,nil) R Protocol(S2,R2,nil,nil,nil)=true

if val(S1) == val(S2) and val(R1) == val(R2) and
((bit(S1) == bit(R1)) == (bit(S2) == bit(R2))) .

It suffices to define R on states with empty channels since behavioural equations
in ABP are closed within reachable states Protocol(S,R,L1,L2,L) where

L2 = a∗b∗, L = b∗a∗, a = bit(S), b = bit(R).

(The head of the queue is placed to the right, and a stands for the opposite
bit of a.) It is very interesting to note that only one bit change occurs in the
concatenation of L2 and L, depending upon whether a = b or a 6= b. The a = b
case corresponds to the empty state ready to accept a new data, and a 6= b
to the full state having an accepted data waiting to be delivered. Identifying
these two groups of states is essential for any attempt at formal verification of
the ABP. It is also noted that the use of a coherent non-behavioural operation
(that is, Protocol) simplifies the specification together with the enabled power
of equational reasoning.

Now to check congruence of R.

-- universally quantified variables
-- i.e., Theorem of (Hidden) Constants
ops s s1 s2 s3 : -> Sender . ops r r1 r2 r3 : -> Receiver .
ops a a1 a2 a3 : -> Abp . op e : -> Nat .

-- a matches a2 while a1 matches a3,
eq a = Protocol(s,r,nil,nil,nil) .

Verifying Behavioural Specifications in CafeOBJ Environment 1635

eq a1 = Protocol(s1,r1,nil,nil,nil) .
eq a2 = Protocol(s2,r2,nil,nil,nil) .
eq a3 = Protocol(s3,r3,nil,nil,nil) .

-- relational expansion of R for "a R a2" and "a1 R a3"
eq bit(r) = not bit(s) . eq bit(r2) = not bit(s2) .
eq val(r) = val(r2) . eq val(s) = val(s2) .
eq bit(r1) = bit(s1) . eq bit(r3) = bit(s3) .
eq val(r1) = val(r3) . eq val(s1) = val(s3) .

-- check if R is a behavioural congruence
red In(e,a) R In(e,a2) . -- should be true
red Out(a) R Out(a2) . -- should be true
red In(e,a1) R In(e,a3) . -- should be true
red Out(a1) R Out(a3) . -- should be true

CafeOBJ gives true for all reductions.
We have used the Theorem of (Hidden) Constants to perform proof rules for

universal quantifiers by introducing fresh constant operations. The soundness of
the method is proved in [1, 5]. We have also used implication elimination and case
analysis. One can mimic proof rules of first order logic with equality in a similar
manner. An automated proof support tool called Kumo has been developed for
OBJ3 and CafeOBJ systems [10]. Kumo is not just a proof checking tool, but
also helps to publish proofs over the internet, i.e., Kumo creates webpages for
proofs as it checks proofs given in the proof scripts.

Now that we have established a behavioural congruence, we can use be-
havioural coinduction to prove behavioural equations. The general case is rather
complicated, however, if we restrict attention to ABP states with empty channels
as the representatives of equivalent classes modulo R, the coinduction proof be-
comes manageable using reduction. The following CafeOBJ score does this by
unfolding conditionals. Note that the constants a and a1 are the same as defined
earlier.

var B : Bool
eq not(not(B)) = B . -- necessary! inductive theorem on Bool

red Empty?(init) . -- should be true
red Empty?(Out(a)) == true . -- should be true

red Empty?(In(e,a)) == false . -- should be true
red Empty?(In(e,a1)) == false . -- should be true

red Val(Out(In(e,a1))) == e . -- should be true
red In(e,a) R a . -- should be true
red Out(a1) R a1 . -- should be true

1636 Akira Mori and Kokichi Futatsugi

Again, CafeOBJ returns true for all reductions 8. We can now claim that

“ABP implements BUF when there are no errors in channels.”

However, the error recovering capability of ABP is automatic since any loss or du-
plication in the channel does not affect the (now proved) behavioural congruence
of R. Therefore, we arrive at the following correctness theorem for ABP.

Theorem 3. As far as the reachable states are concerned, errors in channels
do not affect the behaviour of the protocol. In other words, the ABP is a robust
implementation of a buffer BUF of capacity one.

Mechanising the whole process should be possible by defining an appropriate
merge operation on queues and the filter that checks bit changes. However, it
is going to be an induction flood. We do not feel it necessary to completely
mechanise proofs when human can do a much better job. We will see a fully
automated verification example using a theorem prover in the next section.

4 Cache Coherence Protocol

In this section, we present a somewhat more implementation-oriented example
of a cache coherence protocol.

A number of computation units share a main memory through a common ac-
cess bus. Each unit issues access requests through the bus and maintains its own
cached copy. In order to assure consistency among cached copies, the protocol
watches (snoops) requests on the bus and takes appropriate actions depending
on the flag values that tracks cache states. A coherence condition we consider is
the following.

“If there are two shared copies, they must be of the same value.”

We model the Illinois cache protocol [11] following [12]. There are three
types of requests, (read, write, and replacement), and four different flag values
(cache states):

– invalid – obsolete;
– shared – not modified, possible copies in other caches;
– valid-exclusive – not modified, only copy in caches;
– dirty – modified, only copy in caches.

Coherence actions are taken as follows, depending on the cache state of the
requesting unit and the existence of other cached copies.

Read Hit. the cache (in the requesting unit) is not invalid, no extra action;
Read Miss. the cache is invalid, look for other cached copies;
8 The double negation equation is necessary. The situation is frequently encountered,

in which coinduction (or invariance proof) on hidden sorts requires induction on
visible sorts.

Verifying Behavioural Specifications in CafeOBJ Environment 1637

............Unit#1 Unit#2 Unit#3 Unit#n

Memory

 read
 write
replace

Protocol

Fig. 2. The Illinois Cache Protocol

– dirty cache provides the latest value, both end up shared;
– any other valid-exclusive or shared cache provides the latest value,

all caches having a copy end up shard;
– no cached copy, get a valid-exclusive copy from the main memory;

Write Hit. the cache is not invalid;
– the cache is dirty, no extra action;
– valid-exclusive turns dirty;
– shared turns dirty, all other shared copies are invalid-ated;

Write Miss. invalid turns dirty, all cached copies are invalid-ated;
Replacement. dirty copy is written back to the main memory, stays dirty;

Below is a behavioural specification PROTOCOL of the above procedure.

mod! FLAG {
[Flag]
ops invalid valid-exclusive dirty shared : -> Flag

}
mod* PROTOCOL {
protecting(NAT + BOOL + FLAG)
[Protocol]
bop flag : Nat Protocol -> Flag -- cache state
bop cdata : Nat Protocol -> Nat -- cache value
bop mdata : Protocol -> Nat -- memory value
bop read : Nat Protocol -> Protocol
bop write : Nat Nat Protocol -> Protocol
op init : -> Protocol
vars I J K M N : Nat var P : Protocol

-- initial state
eq flag(I,init) = invalid .

1638 Akira Mori and Kokichi Futatsugi

-- write
eq cdata(I,write(I,M,P)) = M .
ceq cdata(J,write(I,M,P)) = cdata(J,P) if I =/= J .
eq flag(I,write(I,M,P)) = dirty .
-- invalidation
ceq flag(J,write(I,M,P)) = invalid if I =/= J .
ceq mdata(write(I,M,P)) = mdata(P) .

-- read
-- read hit
bceq read(I,P) = P if flag(I,P) =/= invalid .
-- if there is a dirty copy Cj then
eq cdata(I,read(I,write(J,M,P)))=M.--Cj provides missing block
eq mdata(read(I,write(J,M,P))) = mdata(P) .
ceq flag(I,read(I,write(J,M,P))) = shared -- and Ci, Cj

if I =/= J .
ceq flag(J,read(I,write(J,M,P))) = shared -- end up shared.

if I =/= J .
-- if there is a clean copy Cj then
ceq cdata(I,read(I,read(J,P))) = cdata(J,read(J,P)) if I =/= J .

-- Cj provides the missing block
ceq flag(I,read(I,read(J,P)))=shared if I =/= J.--and Ci,Cj
ceq flag(J,read(I,read(J,P)))=shared if I =/= J.--end up shared.
-- independence
beq read(I,read(I,P)) = read(I,P) .
ceq flag(I,read(J,read(K,P))) = flag(I,read(K,P))

if I =/= J and I =/= K .
ceq cdata(I,read(J,P)) = cdata(I,P) if I =/= J .
eq mdata(read(I,P)) = mdata(P) .
-- if there is no cached copy (i.e., only in initial state)
eq cdata(I,read(I,init)) = mdata(init) .
eq flag(I,read(I,init)) = valid-exclusive .
eq mdata(read(I,init)) = mdata(init) .

}

A few remarks on the specification.

– It does not have any non-behavioural operations, thus equational reasoning
is trivially sound.

– Unlike ABP, it handles arbitrary number of units, which is modeled by oper-
ations having an index argument for the unit.

– It only models a single memory block since multiple blocks can be modeled
by an extra argument of each operation.

– It does not model replacement since it has little effect on the coherence
property (and due to the limit of space).

– It is written in a deterministic fashion to allow symbolic execution with term
rewriting (reduction) in CafeOBJ. It is based on the following decision and
observation.

Verifying Behavioural Specifications in CafeOBJ Environment 1639

• The unit that made a read request most recently is the one who provides
the value.
• write always gets a dirty copy and invalidates other copies.

As we mentioned earlier, getting inconsistent specifications is much more
likely in behavioural specification. We had great help from a resolution / paramod-
ulation theorem prover that was implemented on CafeOBJ, in finding subtle
inconsistencies among attribute values in the earlier versions.

Now we want to show the following coherence condition.

In all reachable states S:Protocol,
∀I,J:Nat flag(I,S)=flag(J,S)=shared⇒ cdata(I,S)=cdata(J,S) .

Equational reasoning cannot prove this because it cannot trace all reachable
states with respect to behavioural equivalence. The proof requires a technique
similar to coinduction, known as invariance proof. (See [13] for a category-
theoretic characterisation of invariants including relation to bisimulation, and
[14] for a fixed-point characterisation.) It is a well-studied topic in the field of
program verification and is also a prototype of (safety) model checking. There
are two equivalent ways of proving invariance, forward and backward. Backward
calculation of largest invariants (also known as weakest preconditions) is partic-
ularly suitable for behavioural specification. Making a long story short, to prove
that a predicate P (S : h) on a hidden sort h is an invariant for all reachable
states, it suffices to show that the initial state satisfies P and that P is closed
under all methods, that is, ∀S : h ∀X : v P (S) ⇒ P (m(X,S)) for all method
m ∈ Σb

vh,h (e.g., [13]). In our case, the predicate on Protocol is defined as
follows.

P(S:Protocol)=
∀I,J:Nat flag(I,S)=flag(J,S)=shared ⇒ cdata(I,S)=cdata(J,S).

Thus, in order to prove the invariance of P , we have to prove the following
formulas.

P(init).
∀S:Protocol ∀N:Nat P(S) ⇒ P(read(N,S)) .
∀S:Protocol ∀N,M :Nat P(S) ⇒ P(write(N,M,S)) .

It took about five minutes for our resolution/paramodulation theorem prover to
get the proofs of these on a Pentium 266MHz PC 9. The process is completely
automatic except for the inductive theorems on visible sort (in our case, Flag)
mentioned below. The user gives a predicate and the system generates all proof
obligations in clausal form, which are then passed to the prover. Taking five
minutes may not sound great. However, the proof is not easy for a human either.
One of the authors tried the proof and it took more than five minutes. It is
a straight-forward case analysis and we believe that resolution is particularly
9 The first one is trivial, the third one is easy, and the second one took almost the

entire execution time.

1640 Akira Mori and Kokichi Futatsugi

useful for this type of theorem proving. Although this proof is probably close
to the practical limit of automated theorem provers, we see many interesting
applications to behavioural specifications.

For example, the above proof requires inductive theorems on the FLAG spec-
ification10.

∀F:Flag (F=invalid ∨ F=valid-exclusive ∨ F=dirty ∨ F=shared) .
invalid 6= valid− exclusive .
invalid 6= dirty .
· · ·

It is an interesting challenge to work with full-fledged inductive theorem provers
so that these inductive theorems are discovered automatically when needed.

The example here may be interesting as a cache coherence proof in its own
right since there are very few examples that are: 1) fully automated (no human
intervention), 2) ready for implementation , 3) free of syntactic translation, and
4) machine supported, despite the large volume of research devoted to the topic.

The invariance proof is too simple when regarded as model checking. How-
ever, by combining iterative calculations of largest fixed-points, one can perform
full-scale model checking. We are currently working on a so-called behavioural
model checker that manages predicate representations, obligation generation,
and theorem prover (resolution + induction) control. This is an interesting area
of study, i.e., the combination of deductive and model-theoretic methods for
software verification.

5 Concluding Remarks

In this paper, we have presented methods for verifying behavioural specifica-
tions based on hidden algebra. We have reported on CafeOBJ’s automation
support with a couple of non-trivial examples, the Alternating Bit Protocol and
a snooping cache coherence protocol. The refinement proof based on behavioural
coinduction is given for the first example, and the coherence proof based on in-
variance is given for the second. We have included almost complete specification
code and proof scores since they are much more valuable and effective sometimes
than verbal descriptions and explanations.

Since the hidden algebra (or behavioural) approach is a relatively new branch
of formal methods, we compare its characteristics with other well-established11

methods.

Process algebra treats observability based on events (rather than values) and
is very suitable for defining process interaction and evolution, which is one
of the unexplored fields of study in hidden algebra. On the other hand,
hidden algebra fits very well the notion of object orientation (methods/
attributes, encapsulated states, inheritance, overloading, and so on). The

10 These were given to the system in advance.
11 Thus some references are omitted.

Verifying Behavioural Specifications in CafeOBJ Environment 1641

examples presented in the paper are ready for implementation in Java, for
instance. Also hidden algebra fully inherits the power of abstract data type
specification, by which one can define static, architectural aspects of software
systems (by modules expressions) as well as basic data types within them.

Temporal logic enjoys the rigor of mathematical logics and has made consid-
erable impact on formal verification through model checking technologies.
We are afraid, however, that it may not support software design process
(via refinement) very well since implementing temporal formulas (again for
example in Java) can be very difficult. We are developing techniques for
model checking behavioural specifications, which is briefly touched upon in
Section 4, and planning to use temporal formulas as an input language.

I/O Automata [15] and evolving algebra [16] are probably the closest to
the hidden algebra approach. This is not surprising since hidden algebra
stems from early formalisation efforts for automata. We feel that these tech-
niques are more or less compatible. However, hidden algebra has a clear
relation with ordinary algebra via behavioural equivalence and can rely on
equational reasoning with machine support systems such as CafeOBJ.

Coalgebra [13] stresses duality with algebra and has produced many nice the-
oretical (mostly category-theoretic) results including the construction of ter-
minal coalgebra, Birkhoff like axiomatisability results, and so on. Hidden
algebra (without non-behavioural operations) is actually a concrete case of
coalgebra (e.g.,[17]) just like many-sorted algebra is a concrete case of algebra
(of endo-functors). Coalgebra provides strong supports for hidden algebra in
the area of theoretical development.

We like to mention briefly a couple of related techniques that we think are
effective if used with behavioural specification.

Abstract interpretation [14] can go beyond the limit of refinement-based
verification as it goes in the other direction. However, giving a right abstrac-
tion can be very difficult. Combining these two (refinement and abstraction)
seems very promising. Various safety properties can be proved in this way.

Model checking has become a major topic in automated verification because
of the increased computational capability enabled by binary decision dia-
grams (BDD) techniques. Application is still limited to hardware since the
BDD techniques only apply to finite state systems. It is now a common per-
ception that model checking for software systems requires a combined use of
deductive and model-theoretic techniques. We feel behavioural specification
offers a very good common ground for this. The example in Section 4 is the
first step toward this.

We are building an integrated specification/verification environment on top
of the CafeOBJ system. The planned features include a more efficient built-in
resolution engine, an inductive theorem prover, and a behavioural model check-
ing system. We also plan to have more substantial examples of distributed algo-
rithms, fault-tolerant protocols, and security protocols. This is very important
not just for theoreticians to get feedback, but also for practitioners to enhance
the applicability of the method.

1642 Akira Mori and Kokichi Futatsugi

Acknowledgement. We thank Prof. Joseph Goguen for his pioneering work in
algebraic specification theory and for creating a new exciting field of study for
us.

References

[1] Goguen, J., Malcolm, G.: A Hidden Agenda. To appear in Theoretical Computer
Science, also available as Technical Report CS97-538, Computer Sci.& Eng. Dept.,
Univ. of Calif. at San Diego (1997)

[2] Futatsugi, K., Nakagawa, A.: An Overview of CAFE Specification Environment:
an algebraic approach for creating, verifying, and maintaining formal specification
over networks, Proc. of First IEEE Int’l. Conf. on Formal Engineering Methods
(1997)

[3] Diaconescu, R., Futatsugi, K.: CafeOBJ Report. World Scientific (1998)
[4] Diaconescu, R: Behavioural Coherence in Object-oriented Algebraic Specification.

Technical Report IS-RR-98-0017F, Japan Advanced Institute of Science and Tech-
nology (1998)

[5] Rosu̧, G., Goguen, J.: Hidden Congruent Deduction. To appear in Lecture Notes
in Artificial Intelligence (1999)

[6] Bidoit, M., Hennicker, R., Wirsing, M.: Behavioural and Abstractor Specifications.
Science of Computer Programming 25(2-3) (1995) 149–186

[7] Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
[8] Bartlett, K., Scantlebury, R., Wilkinson, P.: A Note on Reliable Full-duplex Trans-

mission over Half-duplex Links. Communication of the ACM 12(5) (1969) 260–261
[9] Malcolm, G., Goguen, J.: Proving Correctness of Refinement and Implementation.

Technical Monograph PRG-114, Programming Research Group, University of Ox-
ford (1994)

[10] Goguen, J.. Mori, A., Lin, K, Rosu̧, G., Sato, A.: Distributed Cooperative Formal
Methods Tools. Proc. of IEEE First Int’l Conf. on Automated Software Engineering
(1997) 55–62

[11] Paramarcos, M., Patel, J.: A Low-Overhead Coherence Solution for Multiproces-
sors with Private Cache Memories. Proc. of Eleventh Int’l. Symp. on Computer
Architecture (1984) 348–354

[12] Pong, F.: Symbolic State Model: A New Approach for the Verification of Cache
Coherence Protocols. Ph.D. Thesis, Dept. of Electrical Engineering-Systems, Univ.
of Southern California (1995)

[13] Jacobs, B.: Invariants, Bisimulations and the Correctness of Coalgebraic Refine-
ments. Lecture Notes in Computer Science 1349 (1998) 276–291

[14] Cousot, P., Cousot, R.: Refining Model Checking by Abstract Interpretation. To
appear in Automated Software Engineering Journal 6(1) (1999) 69–95

[15] Lynch, N.: Distributed Algorithms. Morgan Kaufman Pub. Inc. (1996)
[16] Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In Börger, ed. Specification

and Validation Methods, Oxford University Press (1995) 9–36
[17] Ĉırstea, C.: Coalgebra Semantics for Hidden Algebra: Parameterised Objects and

Inheritance. Lecture Notes in Computer Science 1376 (1998)

Verifying Behavioural Specifications in CafeOBJ Environment 1643

A A CafeOBJ Session for the Alternating Bit Protocol

mori(d194-054)[1024]cafeobj
-- loading standard prelude
Loading /usr/local/cafeobj-1.4/prelude/std.bin
Finished loading /usr/local/cafeobj-1.4/prelude/std.bin

-- CafeOBJ system Version 1.4.2(b3+) --
built: 1998 Nov 28 Sat 6:29:00 GMT

prelude file: std.bin

1999 Feb 10 Mon 16:46:26 GMT
Type ? for help

uses GCL (GNU Common Lisp)

Licensed under GNU Public Library License
Contains Enhancements by W. Schelter

CafeOBJ> in abp
processing input : ./abp.mod
-- defining module! DATA_*.._* done.
-- defining module! QUEUE_*_*........_....* done.
-- defining module* SENDER........._...*
** system already proved =*= is a congruence of SENDER done.
-- defining module* RECEIVER........._...*
** system already proved =*= is a congruence of RECEIVER done.
-- defining module* ABP,,,,,,,*_*............._.
** system failed to prove =*= is a congruence of ABP done.
CafeOBJ> in test
processing input : ./test.mod
-- opening module ABP.. done.
-- reduce in % : Val(Out(In(2,Out(In(1,Init)))))
2 : NzNat
(0.000 sec for parse, 99 rewrites(0.020 sec), 142 matches)
-- reduce in % : Val(Out(In(2,In(1,Init))))
1 : NzNat
(0.000 sec for parse, 46 rewrites(0.000 sec), 78 matches)
-- reduce in % : Val(Out(In(3,In(2,In(1,Init)))))
1 : NzNat
(0.000 sec for parse, 53 rewrites(0.010 sec), 96 matches)
-- reduce in % : Val(Out(In(3,In(2,Out(In(1,Init))))))
2 : NzNat
(0.000 sec for parse, 114 rewrites(0.010 sec), 170 matches)
-- reduce in % : Val(Out(In(3,Out(Out(In(2,Out(In(1,Init))))))))
3 : NzNat
(0.000 sec for parse, 250 rewrites(0.020 sec), 354 matches)
CafeOBJ>

Component-Based Algebraic Specification and
Verification in CafeOBJ

Răzvan Diaconescu?, Kokichi Futatsugi, and Shusaku Iida

Japan Advanced Institute of Science and Technology

Abstract. We present a formal method for component-based system specifica-
tion and verification which is based on the new algebraic specification language
CafeOBJ, which is a modern successor of OBJ incorporating several new devel-
opments in algebraic specification theory and practice.
We first give an overview of the main features of CafeOBJ, including its logi-
cal foundations, and then we focus on the behavioural specification paradigm in
CafeOBJ, surveying the object-oriented CafeOBJ specification and verification
methodology based on behavioural abstraction.
The last part of this paper further focuses on a component-based behavioural
specification and verification methodology which features high reusability of
both specification code and verification proof scores. This methodology consti-
tutes the basis for an industrial strength formal method around CafeOBJ.

1 Overview of CafeOBJ

CafeOBJ (whose definition is given by [7]) is a modern successor of the OBJ language
[18, 10] incorporating several new major developments in algebraic specification the-
ory and practice. It is aimed to be an industrial strength language, suitable both for re-
searchers and for practitioners. This section is devoted to a brief overview of CafeOBJ,
including its main features, its specification and verification environment, and its logical
foundations.

1.1 CafeOBJ Main Features

Equational Specification and Programming. This is inherited from OBJ [18, 10] and
constitutes the basis of the language, the other features being somehow built on top of
it. As with OBJ, CafeOBJ is executable (by term rewriting), which gives an elegant
declarative way of functional programming, often referred as algebraic programming.1

As with OBJ, CafeOBJ also permits equational specification modulo several equational
theories such as associativity, commutativity, identity, idempotence, and combinations
between all these. This feature is reflected at the execution level by term rewriting mod-
ulo such equational theories.

? On leave from the Institute of Mathematics of the Romanian Academy, PO Box 1-764,
Bucharest 70700, ROMANIA.

1 Please notice that although this paradigm may be used as programming, this aspect is still
secondary to its specification side.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1644–1663, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Component-Based Algebraic Specification and Verification in CafeOBJ 1645

Behavioural Specification. Behavioural specification [13, 14, 4] provides another
novel generalization of ordinary algebraic specification but in a different direction. Be-
havioural specification characterizes how objects (and systems) behave, not how they
are implemented. This new form of abstraction can be very powerful in the specification
and verification of software systems since it naturally embeds other useful paradigms
such as concurrency, object-orientation, constraints, nondeterminism, etc. (see [14] for
details). Behavioural abstraction is achieved by using specification with hidden sorts
and a behavioural concept of satisfaction based on the idea of indistinguishability of
states that are observationally the same, which also generalizes process algebra and
transition systems (see [14]).

CafeOBJ directly supports behavioural specification and its proof theory through
special language constructs, such as

– hidden sorts (for states of systems),
– behavioural operations (for direct “actions” and “observations” on states of sys-

tems),
– behavioural coherence declarations for (non-behavioural) operations (which might

be either derived (indirect) “observations” or “constructors” on states of systems),
and

– behavioural axioms (stating behavioural satisfaction).

The advanced coinduction proof method receives support in CafeOBJ via a de-
fault (candidate) coinduction relation (denoted =*=). In CafeOBJ, coinduction can
be used either in the classical HSA sense [14] for proving behavioural equivalence of
states of objects, or for proving behavioural transitions (which appear when applying
behavioural abstraction to RWL).2

Besides language constructs, CafeOBJ supports behavioural specification and ver-
ification by several methodologies.3 CafeOBJ currently highlights a methodology for
concurrent object composition which features high reusability not only of specification
code but also of verifications [7, 8]. Behavioural specification in CafeOBJ might also
be effectively used as an object-oriented (state-oriented) alternative for traditional ADT
specifications. Experiments seem to indicate that an object-oriented style of specifica-
tion even of basic data types (such as sets, lists, etc.) might lead to higher simplicity of
code and drastic simplification of verification process [7].

Behavioural specification is reflected at the execution level by the concept of be-
havioural rewriting [7, 4] which refines ordinary rewriting with a condition ensuring
the correctness of the use of behavioural equations in proving strict equalities.

Rewriting Logic Specification. Rewriting logic specification in CafeOBJ is based
on a simplified version of Meseguer’s rewriting logic [20] specification framework for
concurrent systems which gives a non-trivial extension of traditional algebraic specifi-
cation towards concurrency. RWL incorporates many different models of concurrency

2 However, until the time this paper was written, the latter has not been yet explored sufficiently,
especially practically.

3 This is still an open research topic, the current methodologies might be developed further and
new methodologies might be added in the future.

1646 Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida

in a natural, simple, and elegant way, thus giving CafeOBJ a wide range of applica-
tions. Unlike Maude [2], the current CafeOBJ design does not fully support labelled
RWL which permits full reasoning about multiple transitions between states (or system
configurations), but provides proof support for reasoning about the existence of transi-
tions between states (or configurations) of concurrent systems via a built-in predicate
(denoted ==>) with dynamic definition encoding both the proof theory of RWL and the
user defined transitions (rules) into equational logic.

From a methodological perspective, CafeOBJ develops the use of RWL transitions
for specifying and verifying the properties of declarative encoding of algorithms (see
[7]) as well as for specifying and verifying transition systems.

Module System. The principles of the CafeOBJ module system are inherited from
OBJ which builds on ideas first realized in the language Clear [1], most notably institu-
tions [11, 9]. CafeOBJ module system features

– several kinds of imports,
– sharing for multiple imports,
– parameterized programming allowing
• multiple parameters,
• views for parameter instantiation,
• integration of CafeOBJ specifications with executable code in a lower level

language
– module expressions.

However, the theory supporting the CafeOBJ module system represents an updating of
the original Clear/OBJ concepts to the more sophisticated situation of multi-paradigm
systems involving theory morphisms across institution embeddings [5], and the concrete
design of the language revise the OBJ view on importation modes and parameters [7].

Type System and Partiality. CafeOBJ has a type system that allows subtypes based
on order sorted algebra (abbreviated OSA) [17, 12]. This provides a mathematically
rigorous form of runtime type checking and error handling, giving CafeOBJ a syntactic
flexibility comparable to that of untyped languages, while preserving all the advantages
of strong typing.

Since at this moment there are many order sortedness formalisms, many of them
very little different from others, and each of them having its own technical advantages
and disadvantages and being most appropriate for a certain class of applications, we
decided to keep the concrete order sortedness formalism open at least at the level of
the language definition. Instead we formulate some basic simple conditions which any
concrete CafeOBJ order sorted formalism should obey. These conditions come close to
Meseguer’s OSAR [21] which is a revised version of other versions of order sortedness
existing in the literature, most notably Goguen’s OSA [12].

CafeOBJ does not directly do partial operations but rather handles them by us-
ing error sorts and a sort membership predicate in the style of membership equational
logic (abbreviated MEL) [21]. The semantics of specifications with partial operations
is given by MEL.

Component-Based Algebraic Specification and Verification in CafeOBJ 1647

1.2 The CafeOBJ Specification and Verification Environment

Although this is rather a feature of the current system rather than of the language, due
to its importance for the effective use of the current CafeOBJ system, we briefly survey
it here.

The CafeOBJ system includes an environment supporting specification documents
with formal contents over networks and enabling formal verifications of specifications.
The CafeOBJ environment takes advantage of current InterNet technologies and can
be thought as consisting of four parts:

– The interpreter in isolation acts very much like the OBJ3 interpreter by check-
ing syntax and evaluating (reducing) terms. In addition, the CafeOBJ interpreter
incorporates an abstract TRS machine and a compiler.

– The proof assistant extends the theorem proving capabilities of the interpreter with
more powerful, dedicated provers.

– The document manager takes care of processing of specification documents over
networks.

– Specification libraries focus on several specific problem domains, such as object-
oriented programming, database management, interactive systems, etc.

1.3 CafeOBJ Logical Foundations

CafeOBJ is a declarative language with firm mathematical and logical foundations in
the same way as other OBJ-family languages (OBJ, Eqlog [15, 3], FOOPS [16], Maude
[20]) are. The reference paper for the CafeOBJ mathematical foundations is [6], while
the book [7] gives a somehow less mathematical easy-to-read (including many exam-
ples) presentation of the semantics of CafeOBJ. In this section we give a very brief
overview of the CafeOBJ logical and mathematical foundations, for a full understand-
ing of this aspect of CafeOBJ the reader is referred to [6] and [7].

The mathematical semantics of CafeOBJ is based on state-of-the-art algebraic
specification concepts and results, and is strongly based on category theory and the
theory of institutions [11, 5, 9]. The following are the principles governing the logical
and mathematical foundations of CafeOBJ:

P1. there is an underlying logic4 in which all basic constructs and features of
the language can be rigorously explained.

P2. provide an integrated, cohesive, and unitary approach to the semantics of
specification in-the-small and in-the-large.

P3. develop all ingredients (concepts, results, etc.) at the highest appropriate
level of abstraction.

The CafeOBJ Cube. CafeOBJ is a multi-paradigm language. Each of the main
paradigms implemented in CafeOBJ is rigorously based on some underlying logic;
the paradigms resulting from various combinations are based on the combination of

4 Here “logic” should be understood in the modern relativistic sense of “institution” which pro-
vides a mathematical definition for a logic (see [11]) rather than in the more classical sense.

1648 Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida

logics. The structure of these logics is shown by the following CafeOBJ cube , where
the arrows mean embedding between the logics, which correspond to institution embed-
dings (i.e., a strong form of institution morphisms of [11, 9]) (the orientation of arrows
correspond to embedding “less complex” into “more complex” logics).

MSA

HSA

RWL

HSRWL

OSA OSRWL

HOSRWLHOSA H = hidden
A = algebra
O = order
S = sorted
M = many
RWL = rewriting logic

The mathematical structure represented by this cube is that of a lattice of institution
embeddings [5, 6]. By employing other logical-based paradigms the CafeOBJ cube
may be thought as a hyper-cube (see [6, 7] for details). It is important to understand
that th CafeOBJ logical foundations are based on the CafeOBJ cube rather than on its
flattening represented by HOSRWL.5

The design of CafeOBJ lead to several important developments in algebraic spec-
ification theory. One of them is the concept of extra theory morphism [5], which is a
concept of theory morphism across institution embeddings, generalizing the ordinary
(intra) theory morphisms to the multi-paradigm situation. Another important theoreti-
cal development is constituted by the formalism underlying behavioural specification
in CafeOBJ which is a non-trivial extension of classical hidden algebra [14] in several
directions, most notably permitting operations with several hidden arguments via the
crucial coherence property. This extension is called “coherent hidden algebra” in [4]
and comes very close to the “observational logic” of Bidoit and Hennicker [19]. The
details of the “coherent hidden algebra” institution can be found in [6].

2 Behavioural Specification in CafeOBJ

Behavioural specification might be the most distinctive feature of CafeOBJ within the
broad family of algebraic specification languages. As mentioned above, behavioural
specification paradigm is incorporated into the design of the language in a rather direct
way. Also, this paradigm constitutes the core of the current CafeOBJ object-oriented
specification and verification methodologies. We devote this section to a methodologi-
cal presentation of the behavioural specification paradigm in CafeOBJ, trying also to
explain the main concepts behind this paradigm.

5 The technical reason for this is that model reducts across some of the edges (i.e., the left-
to-right ones) of the CafeOBJ cube involve both an ordinary model reduct and a non-trivial
reduct along the corresponding institution embedding, see [6, 5, 7] for details.

Component-Based Algebraic Specification and Verification in CafeOBJ 1649

2.1 Basic Behavioural Specification

Basic behavioural specification is the simplest level of behavioural specification in
which the operations are either actions or observations on the states of the objects. Let
us consider an object-oriented (or “state-oriented”) CafeOBJ specification for lists:

mod! TRIV+ (X :: TRIV) {
op err : -> ?Elt

}
mod* LIST {
protecting(TRIV+)
[List]
op nil : -> List
bop cons : Elt List-> List -- action
bop car : List -> ?Elt -- observation
bop cdr : List -> List -- action
vars E E’ : Elt
var L : List
eq car(nil) = err .
eq car(cons(E, L)) = E .
beq cdr(nil) = nil .
beq cdr(cons(E, L)) = L .

}
This is quite different from the usual data-oriented specification of lists. In our be-
havioural specification, lists are treated as objects with states (the sort of states is the
hidden sort List), and the usual list operations (cons and cdr) act on the states of the list
object or (car) observe the states. Actions and observations are specified as behavioural
operations. In general, a behavioural operation is called action iff its sort is hidden (i.e.,
state type), and is called observation iff its sort is visible (i.e., data type). Behavioural
operations are restricted to have exactly one hidden sort in their arity, this monadicity
property being characteristic to behavioural operations (either actions or observations).
Behavioural operations define the behavioural equivalence relation between the states
of the object, denoted as ∼:

s∼ s′ iff [c(s) = c(s′) for all visible behavioural contexts c]

A behavioural context c is any string of behavioural operations (this makes sense be-
cause of the monadicity property on hidden sorts of the behavioural operations). c is
visible iff its sort is visible; this is the same as saying that c has an observation at the
top. It is important to notice that behavioural equivalence is a semantic notion; this
means that whenever we consider a behavioural equivalence relation we need to con-
sider a model (i.e., an implementation) for the specification6.

CafeOBJ methodologies introduce a graphical notation extending the classical ADJ-
diagram notation for data types for behavioural specification in which

G1. Sorts are represented by ellipsoidal disks with visible (data) sorts represented in
white and hidden (state) sorts represented in grey, and with subsort inclusion rep-
resented by disk inclusion, and

6 Which needs not to be a concrete one.

1650 Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida

G2. Operations are represented by multi-source arrows with the monadic part from the
hidden sort thickened in case of behavioural operations.

The list specification can be therefore visualised as follows:

List

Elt

?Elt

cdr

car

cons

err

nil

car(nil) = err
car(cons(E,L)) = E
cdr(nil) ~ nil
cdr(cons(E,L)) ~ L

Several other aspects of this specifications need special attention. The first one con-
cerns the data of this specification and the error handling aspect of this methodology.
LIST specifies a list object over any set of elements. “Any set of elements” is speci-
fied by the built-in module TRIV which specifies one sort (Elt) with loose denotation
(hence its denotation is given by all sets); this is used as a parameter of the specifica-
tion LIST and can be instantiated to any concrete data type. The error handling aspect
arises because of the partiality of car. TRIV+ just introduces a new error element (err).
The error supersort ?Elt is built-in7 and err is the only new element belonging to [the
denotation of] ?Elt; this is ensured by the free extension of [the loose denotation of]
TRIV which is specified by giving TRIV+ initial denotation (mod!). Notice that this
style of error handling contrasts the more complex data-oriented approach which uses
a subsort for the non-empty lists and overloads the list operations on this subsort. This
methodological simplification is mainly possible because of the loose denotation of be-
havioural specification (with the adequate “loose” behavioural equality) which avoids
the strictness of the initial denotation of the data-oriented approach.

Another aspect is given by the use of behavioural equations in the specification
LIST. Behavioural equations represent behavioural equivalence relations between states
rather than strict equalities. Therefore each model (implementation) of LIST does not
need to interpret cdr(cons(e,l)) as l, where e is an element and l is a list8, but rather as
a state behavioural equivalent to l. For example, if one implements the list object as an
array with pointer, in this model (implementation) this equality does not hold strictly,
but it holds behaviourally. Generally speaking, behavioural equality is the meaningful
equality on hidden sorts, while the strict equality is the meaningful equality for the
visible (data) sorts. However, there are situations when the strict equality on hidden sorts
is also necessary. Behavioural abstraction also provides a nice way of error handling for

7 It is provided by the system.
8 Better said, a state of the list object.

Component-Based Algebraic Specification and Verification in CafeOBJ 1651

hidden sorts, as shown by the other behavioural equation. Thus instead of introducing a
(hidden) error for cdr(nil), we rather shift the error handling to the data type by saying
this is behaviourally equivalent to nil.9 A finer analysis of the behavioural equivalence
on the list object (see the section below) tells us that the behavioural equality between
cdr(nil) and nil is exactly the same with saying that car (cdr n(nil)) = err for all natural
numbers n, which is the natural minimal condition for the behaviour of nil.

2.2 Behavioural Specification with Hidden Constructors

Behavioural specification with hidden constructors is a more advanced level of be-
havioural specification which relies on the important novel concept of behavioural co-
herence first defined and studied in [7, 4] and which was first realized by the CafeOBJ
language [7].

At the general level, a hidden constructor is an operation on hidden sorts10 whose
sort is also hidden and which is not declared behavioural. This means that such oper-
ation does not take part in the definition of the behavioural equivalence relation. Also
(and related to the above), a hidden constructor need not be monadic on the hidden
sorts, thus it may admit several hidden sorts in the arity.

In the data-oriented specification of lists there is a difference in nature between cons
and cdr, in that cons is a “constructor” and cdr is a “destructor”. This different nature
of cons and cdr reflects in the behavioural specification too and is formally supported
by the fact that one may prove (from the specification LIST) that for all lists l and l′,

l ∼ l′ iff [car(cdr n(l)) = car(cdrn(l′)) for all natural numbers n]

Technically this means that for the purpose of defining the appropriate behavioural
equivalence for lists, cons does not play any rôle, therefore it may be specified as an
ordinary operation, hence cons is a hidden constructor. Consequently, the only real be-
havioural operations are the observation car and the action cdr. This new specification
for lists can be visualized by the following CafeOBJ diagram:

List

Elt

?Elt

cdr

car

cons

err

nil

car(nil) = err
car(cons(E,L)) = E
cdr(nil) ~ nil
cdr(cons(E,L)) ~ L

9 Recall that in LISP cdr(nil) is also equal to nil but under a LISP concept of equality; it may be
worthwhile trying to think LISP equality in behavioural abstraction terms.

10 Which may also have visible sorts in the arity.

1652 Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida

This “neutrality” of cons with respect to the behavioural equivalence may be under-
stood by the fact that cons preserves the behavioural equivalence defined by cdr and
car only. This basic property of hidden constructors is called coherence [7, 4], which
in general means the preservation of the behavioural equivalence relation by the hid-
den constructors. In CafeOBJ the coherence property is user specified as an operation
attribute:

op cons : Elt List -> List {coherent}
The semantic meaning of a coherence declaration is that the corresponding spec-

ification admits only models for which the operation is coherent (i.e., it preserves the
behavioural equivalence). For methodological reason CafeOBJ admits potentially non-
coherent operations (in the absence of the coherence declaration), however in the final
version of the specification all hidden constructors should be declare coherent both for
semantical and operational reasons.11

2.3 Behavioural Coherence Methodologies

In the above list example the coherence of cons can be proved as a formal property of
the specification 12. This means that in any model of this specification the interpretation
of cons automatically preserves the behavioural equivalence, so the class of models
(implementations) of the specification with cons not specified as coherent coincides
with its subclass of models for the case when cons is specified as coherent. Such con-
structors, which occurs frequently and which are practically desirable are called the
conservative.

The opposite case is represented by the non-conservative constructors, which cor-
responds to the situation when the class of models for the case when the operation
is specified as coherent is a strict subclass of the class of models when the operation
is not specified as coherent. Proof-theoretically, this means the coherence property of
the operation cannot be formally proved as a consequence property of the [rest of the]
specification. Because of its semantical aspect, the methodology of non-conservative
constructors is more advanced and sophisticated than the conservative one. However it
might be very useful in dealing with non-terminating computations, in a way similar to
the the use of commutativity attribute for operations in classical algebraic specification
(see [4] for more details).

Proving Behavioural Coherence. We now concentrate to an example illustrating the
behavioural coherence methodology of conservative constructors. Consider the follow-
ing behavioural specification of sets:

11 A simple example is given by the coherence proof scores, when one needs to start with the
absence of the coherence declaration for the operation. The coherence declaration is added to
the specification only after its proof.

12 The CafeOBJ proof score for this is rather simple; we leave it as exercise for the reader.

Component-Based Algebraic Specification and Verification in CafeOBJ 1653

Elt

in
Bool

Set

empty

add

neg

U,&

E in empty = false
E in add(E’,S) = (E = E’) or (E in S)
E in (S1 U S2) = (E in S1) or (E in S2)
E in (S1 & S2) = (E in S1) and (E in S2)
E in neg(S) = not(E in S)

This specification has only one behavioural operation, namely the observation in . The
hidden constructors add, U , & , and neg can be proved coherent by the following
CafeOBJ proof score:

open .
ops s1 s2 s1’ s2’ : -> Set . -- arbitrary sets as temporary constants
ops e e’ : -> Elt . -- arbitrary elements as temporary constants
ceq S1 =*= S2 = true if (e in S1) == (e in S2) . -- definition of behavioural equivalence
beq s1 = s1’ . -- hypothesis
beq s2 = s2’ . -- hypothesis

red add(e, s1) =*= add(e, s1’) . -- beh coherence of add() for variable clash at Elt
red add(e’, s1) =*= add(e’, s1’) . -- beh coherence of add() for no variable clash at Elt
red (s1 U s2) =*= (s1’ U s2’) . -- beh coherence of U
red (s1 & s2) =*= (s1’ & s2’) . -- beh coherence of &
red neg(s1) =*= neg(s1’) . -- beh coherence of neg
close
where
Notice the simplicity of this proof score which uses the built-in default coinduc-

tion relation =*= which in practice is oftenly the behavioural equivalence. Once the
coherence of the hidden constructors is formally proved, their coherence declarations
are added to the specification, thus obtaining the final version of the specification under
the methodology of conservative hidden constructors.

2.4 Behavioural Verification

One of the great advantages of behavioural specification lies in the simplicity of the ver-
ification stage which sometimes contrasts sharply with the complexity of corresponding
data type verifications. Sets are one of the examples showing clearly the greater sim-
plicity of behavioural verifications. While the verification of set-theoretic properties in
the data approach gets into a very complex induction process, behavioural properties
of sets can be proved almost immediately. The following is the very simple CafeOBJ
proof score for one of De Morgan laws:

open .
op e : -> Elt .

1654 Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida

ops s1 s2 s3 : -> Set .
-- definition of behavioural equivalence
ceq S1:Set =*= S2:Set = true if (e in S1) == (e in S2) .

red neg(s1 U s2) =*= (neg(s1) & neg(s2)) . -- proof of de Morgan law
close
Notice that CafeOBJ proof scores follow a certain pattern. Firstly, one “opens” an

working module for adding temporary entities; this is the command open. The com-
mand close “closes” the module, thus resetting it to its original content. After opening,
one introduces temporary constants which, due to the fact that they are arbitrary, have
the meaning of variables local to the proof score. The next step consists of setting up the
proof context, involving declaring the hypotheses, etc. The proofs are effectively done
by CafeOBJ reduction mechanism (the command red). The inputs of red are usually
logical atomic properties which are encoded as Boolean terms, so in general one ex-
pects a true answer from the CafeOBJ interpreter for each of such reductions. In case
of more complex proofs, a CafeOBJ proof score flatten the corresponding proof tree to
a sequence of hypotheses and reductions. In this flattening, properties proved by reduc-
tions might be lemmas which might be later used as hypotheses for other reductions.

Behavioural Rewriting. The execution of behavioural specifications is done by be-
havioural rewriting, which is a refinement of ordinary (term) rewriting that ensures
the correctness of rewriting when using behavioural equations as rewrite rules. The
basic condition of behavioural rewriting requires the existence of a path formed by be-
havioural or coherent operations on top of the redex. When inferring strict equalities,
it is required in addition that the top of such path is of visible sort. For example, when
proving the behavioural coherence of add,

red add(e, s1) =*= add(e, s1’) .
means a strict equality reduction. In this case the first behavioural equation of the cor-
responding proof score cannot be used as a first rewriting step since the condition of
behavioural rewriting is not fulfilled. This triggers the use of the conditional equation
instead as a first rewriting step, and only after this the use of behavioural equations of
the proof score fall under the required condition.

2.5 Behavioural Refinement

Object refinement in behavioural specification is a relaxed form of behavioural specifi-
cation morphism (see [7] for more details). As an example we show how behavioural
lists refine behavioural sets, which corresponds to the basic intuition of sets imple-
mented as lists. For simplicity of presentation we consider here only the case of basic
sets, without union, intersection, and negation13. The refinement of behavioural basic
sets to lists was represented above by extending the graphical notation previously intro-
duced with:

G3. Refinement of sorts and operations is written by / and sharing the same figure
(disk or arrow) in the diagram.

G4. Newly introduced sorts and operations are represented by dotted lines.

13 Our example can be easily extended to union and intersection, but not so easily to negation.

Component-Based Algebraic Specification and Verification in CafeOBJ 1655

Set/List

Elt

?Elt

/cdr

/car

add/cons

in/...
Bool

/err

empty/nil

E in L |----> (E == car(L)) or-else
 (car(L) =/= err) and-also (E in cdr(L)))

In this refinement, the hidden sort Set is refined to the hidden sort List (this means
that any state of the set object and be implemented by a state of the list object), add
is refined to cons. The list object has the observation car and the action cdr as new
behavioural operations and also adds the error handling. The set object observation in
is refined to a derived observation (using some operational versions of the Boolean
connectives). This refinement can be encoded in CafeOBJ by the following module
import:

mod* LIST’ { protecting(LIST)
op in : Elt List -> Bool {coherent} -- coherence provable from the rest of spec
vars E E’ : Elt
var L : List
eq E in L = (E == car(L)) or-else (car(L) =/= err and-also E in cdr(L)) . }

The following is the proof score for the fact that the mapping defined above is indeed
a refinement, i.e., the property of add holds for cons:14

open LIST’ .
ops e e1 e2 : -> Elt . -- arbitrary elements as temporary constants
op l : -> List . -- arbitrary list as temporary constant
eq e1 in l = true . -- the basic case when the element does belong to the list
eq e2 in l = false . -- the basic case when the element does not belong to the list

red e in nil == false . -- the nil case
red e1 in cons(e,l) == true .
red e2 in cons(e,l) == false .
red e in cons(e,l) == true . -- the element clash case
close

3 Concurrent Object Composition in CafeOBJ

In this section we present the object composition method of CafeOBJ based on the
behavioural specification paradigm. We present here a simplified method which does
not use behavioural coherence. We use UML to represent object composition:

14 This involves a small case analysis.

1656 Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida

Object A

Object B

Object CObject D Object E

base level objects

In the above UML figure, B is composed of D and E, A of B and C, and non-
compound objects (i.e., objects with no components) are called base level objects. A
composition in UML is represented by line tipped by a diamond, and if necessary,
qualified by the numbers of components (1 for one and * for many).

Projection operations from the hidden sort of the states of the compound object
to the hidden sorts of the states of the component objects constitute the main techni-
cal concept underlying the CafeOBJ composition method; projection operations are
related to the lines of UML figures. Projection operations are subject to the following
mathematical conditions [8, 7]. Given a compound object O (with signature (V ∪H, S)
for which V is a set of visible sorts and H is a set of hidden sorts), a set of the labels of its
components Ob j, and the components {On}n∈Ob j of O (with signatures (Vn∪Hn, S n)),
the projection operations p n : h→ hn (with h ∈H and hn ∈Hn) for each n ∈Ob j satisfy
the following conditions:

1. for each observation o of O, there exists n ∈ Ob j and a data (possibly derived)
operation f : vn1 ...vni → v (vni ∈Vn and v ∈V where i is a natural number), and for
each nk with k ∈ {1, . . . , i} a visible Onk -context cnk (i.e., made only of operations
of the signature of Onk) such that o(X) = f ((cn1 ◦ p n1)(X), ...,(cni ◦ p ni)(X)) for all
states X ,

2. for each action a of O, and for each n ∈ Ob j, there exists a sequence of actions an

such that p n◦a = an◦p n, and
3. for each constant const of O, and for each n ∈ Ob j, there exists a constant constn

such that p n(const) = constn (i.e., the initial state of a compound object should be
is related to the initial state of each component.)

In the compound objects we only define communication between the components; this
means that the only equations at the level of the specification of the compound objects
are the ones relating the actions and observations of the compound objects to those
of the components as described above. In the case of synchronized compositions, the
equations of the previous definition are conditional rather than unconditional. Their
conditions are subject to the following:

Component-Based Algebraic Specification and Verification in CafeOBJ 1657

– each condition is a finite conjunction of equalities between terms of the form cn◦ p n

(where p n is a projection operator and cn is an On-context) and terms in the data
signature, and

– disjunction of all the conditions corresponding to a given left hand side (of equa-
tions regarded as a rewrite rule) is true.

3.1 Parallel Connection

The components of a composite object are connected (unsynchronized) in parallel if
there is no synchronization between them. In order to define the concept of synchro-
nization, we have to introduce the concept of action group. Two actions of a compound
object are in the same action group when they change the state of the same component
object via a projection operation. Synchronization appears when:

– there exists an overlapping between some action groups, or
– the projected state of the compound object (via a projection operation) depends on

the state of a different (from the object corresponding to the projection operation)
component.

The first case is sometimes called broadcasting and the second case is sometimes called
client-server computing. In the unsynchronized case, we have full concurrency between
all the components, which means that all the actions of the compound object can be ap-
plied concurrently, therefore the components can be implemented as distributed pro-
cesses or concurrent processes with multi-thread which are based on asynchronous
communications.

For unsynchronized parallel connection, we consider a bank account system exam-
ple. Firstly, we consider a very simple bank account system which consists of a fixed
numbers of individual accounts, lets actually consider the case of just two accounts.
The specification of an account can be obtained just by renaming the specification
COUNTER1 of a counter object with integers as follows

mod* ACCOUNT1 { protecting(COUNTER1 *{ hsort Counter -> Account1,
op init-counter -> init-account1 })}

mod* ACCOUNT2 { protecting(COUNTER1 *{ hsort Counter -> Account2,
op init-counter -> init-account2 })}

where COUNTER1 is represented in CafeOBJ graphical notation as follows:

Counter1

Int

add

amountamount(init-counter1) = 0
amount(add(I, C)) = I + amount(C)

init-counter

1658 Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida

We then compose these two account objects as in the following double figure con-
taining both the UML and the CafeOBJ graphical15 representation of this composi-
tion, where deposit1 and withdraw1 are the actions for the first account, balance1 is
the observation for the first account, account1 is the projection operation for the first
account, and deposit2, withdraw2, balance2, and account2 are the corresponding
actions, observation, and projection operation for the second account:

AccountSys

Account1 Account2

deposit1

deposit2

withdraw1

withdraw2

add add

1

1

1

1

AccountSys

Account1 Account2

account1

deposit1
deposit2
withdraw1
withdraw2

balance1
balance2

account2

Nat

Int

init-account-sys

The equations for this parallel connection (composition) are as follows:
eq balance1(AS) = amount(account1(AS)) .
eq balance2(AS) = amount(account2(AS)) .
eq account1(init-account-sys) = init-account1 .
eq account1(deposit1(N, AS)) = add(N, account1(AS)) .
eq account1(deposit2(N, AS)) = account1(AS) .
eq account1(withdraw1(N, AS)) = add(-(N), account1(AS)) .
eq account1(withdraw2(N, AS)) = account1(AS) .
eq account2(init-account-sys) = init-account2 .
eq account2(deposit1(N, AS)) = account2(AS) .
eq account2(deposit2(N, AS)) = add(N, account2(AS)) .
eq account2(withdraw1(N, AS)) = account2(AS) .
eq account2(withdraw2(N, AS)) = add(-(N), account2(AS)) .

Notice that besides the first two equations relating the observations on the com-
pound object to those on the components, the other equations relate the actions of the
account system to the actions of the components. Remark that the actions corresponding
to one component do not change the state of the second component (via the projection
operation), hence this composition is unsynchronized. In fact these equations express-
ing the concurrency of composition need not be specified by the user, in their absence
they may be generated internally by the system, thus reducing the specification of the
composition to the essential information which should be provided by the user.

15 The CafeOBJ graphical representation corresponds to the module defining this object compo-
sition rather than to the “flattened” specification, hence the operations of the components are
not included in the figure.

Component-Based Algebraic Specification and Verification in CafeOBJ 1659

3.2 Dynamic Connection

In this subsection, we extend the previous bank account system example to support an
arbitrary number of accounts. The accounts are created or deleted dynamically, so we
call such architecture pattern dynamic connection and we call the objects connected
dynamically as dynamic objects. A dynamic object has an object identifier type as the
arity of its initial state (which is quite a natural idea that in object-oriented programming
languages, language systems automatically providing a pointer for each object when
created). We therefore firstly extend the specification of the counter to a dynamic object

op init-counter : UId -> Counter
where UId is a sort for user identifiers. The actions add-account and del-account
maintain the user accounts. add-account creates accounts with some initial balance
while del-account deletes the accounts; both of them are parameterized by the user
identifiers UId. Each of deposit and withdraw is also parameterized by the user identi-
fiers. Most notably, the projection operation for Account is also parameterized by UId.
The initial state of AccountSys has no account, so it is mapped to the error state called
no-account. The structure of the new bank account system can be represented in UML
and CafeOBJ graphical notation as follows:

AccountSys

Account

add

1

*

add-account

del-account

deposit

withdraw

AccountSys Nat

deposit
withdraw

add-account
del-account

account

no-account

Account

UId

Finally, the equations relate the actions of AccountSys to those of Account via the pro-
jection operation only when they correspond to the specified user account. Here is the
essential part of the CafeOBJ code for the dynamic system of accounts specification:

eq account(U, init-account-sys) = no-account .
ceq account(U, add-account(U’, N, A)) = add(N, init-account(U)) if U == U’ .
ceq account(U, add-account(U’, N, A)) = account(U, A) if U =/= U’ .
ceq account(U, del-account(U’, A)) = no-account if U == U’ .
ceq account(U, del-account(U’, A)) = account(U, A) if U =/= U’ .
ceq account(U, deposit(U’, N, A)) = add(N, account(U, A)) if U == U’ .
ceq account(U, deposit(U’, N, A)) = account(U, A) if U =/= U’ .
ceq account(U, withdraw(U’, N, A)) = add(-(N), account(U, A)) if U == U’ .
ceq account(U, withdraw(U’, N, A)) = account(U, A) if U =/= U’ .

3.3 Synchronized Parallel Connection

In this subsection, we add a user database (UserDB) to the bank account system exam-
ple for having a more sophisticated user management mechanism. This enables query-

1660 Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida

ing whether an user already has an account in the bank account system. The users data
base is obtained just by reusing (renaming) the set object of Section 12. The new ac-
count system compound object contains both synchronization patterns: broadcasting
and client-server computing. add-account is related to add of Account by the projec-
tion operation for Account and it is also related to add of UserDB by the projection
operation for UserDB. So, there is an overlapping of action groups (broadcasting).
Also, add-account is related to add of Account by the projection operation for Ac-
count using the information of UserDB (client-server computing). The same holds for
del-account. The following is the UML and CafeOBJ graphical representation of this:

AccountSys

UserDB Account

deposit

add-account

withdraw

del-account

add add

1

1

1

*

U

&

neg

AccountSys

UserDB Account

Nat UId

deposit
withdraw

add-account
del-account

accountuser-db

init-account-sys

and here is the CafeOBJ code representing the equations for the projection operation
for UserDB:

eq user-db(init-account-sys) = empty .
eq user-db(add-account(U, AS)) = add(U, user-db(AS)) .
eq user-db(del-account(U, AS)) = neg(add(U, empty)) & user-db(AS) .
eq user-db(deposit(U, N, AS)) = user-db(AS) .
eq user-db(withdraw(U, N, AS)) = user-db(AS) .

The following is the CafeOBJ code for the equations for the projection operation for
Account, we skip here the equations of deposit and withdraw which are the same as in
the previous example, and we also skip the equation for del-account which is similar
to that of add-account:

eq account(U, init-account-sys) = no-account .
ceq account(U, add-account(U’, N, AS)) = add(N, init-account(U))

if U == U’ and not(U in user-db(AS)) .
ceq account(U, add-account(U’, N, AS)) = account(U, AS)

if U =/= U’ or U in user-db(AS) .

For add-account, we check whether the user is already registered and if not map it to
add. If the user is already registered in UserDB, then skip.

It is interesting to mention that the same test
red balance(’u:UId, add-account(’u, 100, deposit(’u, 30, add-account(’u, 100,
init-account-sys))))

gets different results in the previous account system example and in the current syn-
chronized example due to the finer user management in the synchronized case.

Component-Based Algebraic Specification and Verification in CafeOBJ 1661

3.4 Compositionality of Verifications

In object-oriented programming, reusability of the source code is important, but in
object-oriented specification, reusability of the proofs is also very important because of
the verification process. We call this compositionality of verifications of components. In
the CafeOBJ object composition method this is achieved by the following fundamental
Theorem (for its proof see [8]):

Theorem 1. Given the states s and s′ of a compound object then the behavioural equiv-
alence∼ of the compound object is defined as follows:

s∼ s′ iff p n(s) ∼n p n(s′) for all n ∈ Obj

where Ob j is a set of the labels for the components (you can consider these labels as
the names of the component modules), p n is the projection operation corresponding to
the component object n, and ∼n is the behavioural equivalence of the component.2

Therefore, in the case of a hierarchic object composition, the behavioural equivalence
for the whole system is just the conjunction of the behavioural equivalences of the base
level objects, which are generally rather simple.

For example, the behavioural equivalence for the bank account system is a con-
junction of the behavioural equivalence Account (indexed by the user identifiers) and
UserDB, and these two are checked automatically by the CafeOBJ system. This means
that behavioural proofs for the bank account system are almost automatic, without hav-
ing to go through the usual coinduction process. Therefore, the behavioural equivalence
R[] of AccountSys can be defined by the following CafeOBJ code:

mod BEQ-ACCOUNT-SYSTEM { protecting(ACCOUNT-SYSTEM)
op R[] : AccountSys UId AccountSys -> Bool
vars AS1 AS2 : AccountSys
var U : UId
eq AS1 R[U] AS2 = account(U, AS1) =*= account(U, AS2) and

user-db(AS1) =*= user-db(AS2) . }
Notice the use of the parameterized relation for handling the conjunction indexed by
the user identifiers.

Now, we will prove the true concurrency of withdrawals of two different users,
which can be considered as a safety property for this system of bank accounts and
which is formulated as the following commutativity behavioural property:

withdraw(u1,n1,withdraw(u2,n2,as)) ∼ withdraw(u2,n2,withdraw(u1,n1,as))

The following CafeOBJ code builds the proof tree containing all possible cases formed
by orthogonal combinations of atomic cases for the users with respect to their member-
ship to the user accounts data base. The basic proof term is TERM. The automatic
generation of the proof tree (RESULT)is done by a meta-level encoding in CafeOBJ
by using its rewrite engine for one-directional construction of the proof tree (this pro-
cess uses the rewriting logic feature of CafeOBJ, hence the use of transitions (trans)
rather than equations).
mod PROOF-TREE { protecting(BEQ-ACCOUNT-SYSTEM)

ops n1 n2 : -> Nat -- arbitrary amounts for withdrawal

1662 Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida

ops u u1 u1’ u2 u2’ : -> UId -- arbitrary user identifiers
op as : -> AccountSys -- arbitrary state of the account system
eq u1 in user-db(as) = true . -- first user is in the data base
eq u2 in user-db(as) = true . -- second user is in the data base
eq u1’ in user-db(as) = false . -- first user is not in the data base
eq u2’ in user-db(as) = false . -- second user is not in the data base
vars U U1 U2 : UId
op TERM : UId UId UId -> Bool -- basic proof term
trans TERM(U, U1, U2) => withdraw(U1, n1, withdraw(U2, n2, as)) R[U]

withdraw(U2, n2, withdraw(U1, n1, as)) .
op TERM1 : UId UId -> Bool
trans TERM1(U, U1) => TERM(U, U1, u2) and TERM(U, U1, u2’) .
op TERM2 : UId -> Bool
trans TERM2(U) => TERM1(U, u1) and TERM1(U, u1’) .
op RESULT : -> Bool -- final proof term
trans RESULT => TERM2(u1) and TERM2(u1’) and TERM2(u) . }

The execution of the proof term RESULT gives true after the system performs 233
rewrites.

4 Conclusions and Future Work

In this paper we presented the CafeOBJ object-oriented methodology for component-
based specification and verification which is based on the CafeOBJ behavioural ab-
straction paradigm. We also presented the basic behavioural specification methodology
in CafeOBJ and gave a brief overview of the CafeOBJ language, system and specifi-
cation environment.

Future work in this area will further explore and refine the current CafeOBJ method-
ologies exposed here with the aim of creating an industrial tool around these method-
ologies containing an industrial-oriented tutorial, a GUI interface probably based on
the current CafeOBJ graphical notation, a graphical proof environment supporting dis-
tributed proofs over networks, etc.

Also, the power and sophistication of CafeOBJ gives the possibility to develop al-
ternative behavioural specification and verification methodologies, including component-
based ones. We plan to study such alternative methodologies and their relationship to
the current one.

References

[1] Rod Burstall and Joseph Goguen. The semantics of Clear, a specification language. In
Dines Bjorner, editor, Proceedings, 1979 Copenhagen Winter School on Abstract Software
Specification, pages 292–332. Springer, 1980. Lecture Notes in Computer Science, Volume
86.

[2] Manuel Clavel, Steve Eker, Patrick Lincoln, and Jose Meseguer. Principles of Maude.
Electronic Notes in Theoretical Computer Science, 4, 1996. Proceedings, First International
Workshop on Rewriting Logic and its Applications. Asilomar, California, September 1996.

[3] Răzvan Diaconescu. Category-based semantics for equational and constraint logic pro-
gramming, 1994. DPhil thesis, University of Oxford.

Component-Based Algebraic Specification and Verification in CafeOBJ 1663

[4] Răzvan Diaconescu. Behavioural coherence in object-oriented algebraic specification.
Technical Report IS-RR-98-0017F, Japan Advanced Institute for Science and Technology,
June 1998. Submitted to publication.

[5] Răzvan Diaconescu. Extra theory morphisms for institutions: logical semantics for multi-
paradigm languages. J. of Applied Categorical Structures, 6(4):427–453, 1998.

[6] Răzvan Diaconescu and Kokichi Futatsugi. Logical foundations of CafeOBJ. 1998. Sub-
mitted to publication.

[7] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification, volume 6 of
AMAST Series in Computing. World Scientific, 1998.

[8] Răzvan Diaconescu, Kokichi Futatsugi, and Shusaku Iida. Component-based algebraic
specifications: – behavioural specification for component based software engineering –.
In Behavioural Semantics of Object-oriented Business and System Specification. Kluwer,
1999.

[9] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for modulari-
sation. In Gerard Huet and Gordon Plotkin, editors, Logical Environments, pages 83–130.
Cambridge, 1993. Proceedings of a Workshop held in Edinburgh, Scotland, May 1991.

[10] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jose Meseguer. Principles
of OBJ2. In Proceedings of the 12th ACM Symposium on Principles of Programming
Languages, pages 52–66. ACM, 1985.

[11] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the Association for Computing Machinery, 39(1):95–146,
January 1992.

[12] Joseph Goguen and Răzvan Diaconescu. An Oxford survey of order sorted algebra. Math-
ematical Structures in Computer Science, 4(4):363–392, 1994.

[13] Joseph Goguen and Răzvan Diaconescu. Towards an algebraic semantics for the object
paradigm. In Harmut Ehrig and Fernando Orejas, editors, Recent Trends in Data Type
Specification, volume 785 of Lecture Notes in Computer Science, pages 1–34. Springer,
1994.

[14] Joseph Goguen and Grant Malcolm. A hidden agenda. Technical Report CS97-538, Uni-
versity of California at San Diego, 1997.

[15] Joseph Goguen and José Meseguer. Eqlog: Equality, types, and generic modules for logic
programming. In Douglas DeGroot and Gary Lindstrom, editors, Logic Programming:
Functions, Relations and Equations, pages 295–363. Prentice-Hall, 1986.

[16] Joseph Goguen and José Meseguer. Unifying functional, object-oriented and relational
programming, with logical semantics. In Bruce Shriver and Peter Wegner, editors, Research
Directions in Object-Oriented Programming, pages 417–477. MIT, 1987.

[17] Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theoretical Computer
Science, 105(2):217–273, 1992.

[18] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Algebraic Specification with OBJ:
An Introduction with Case Studies. Cambridge. To appear.

[19] Rolf Hennicker and Michel Bidoit. Observational logic. In A. M. Haeberer, editor, Al-
gebraic Methodology and Software Technology, number 1584 in LNCS, pages 263–277.
Springer, 1999. Proc. AMAST’99.

[20] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

[21] José Meseguer. Membership algebra as a logical framework for equational specification.
In F. Parisi-Pressice, editor, Proc. WADT’97, number 1376 in Lecture Notes in Computer
Science, pages 18–61. Springer, 1998.

Using Algebraic Specification Techniques in

Development of Object-Oriented Frameworks

Shin Nakajima

NEC C&C Media Research Laboratories, Kawasaki, Japan

Abstract. This paper reports experience in using CafeOBJ (a multi-
paradigm algebraic specification language) in the development of object-
oriented frameworks of the ODP trader that is implemented with Java
and JavaIDL. We first identify several aspects in the target problem be-
fore applying the known techniques of developing object-oriented frame-
works. We use CafeOBJ to describe each aspect solution to mechanically
check the integrity of the descriptions when all the aspects are put to-
gether. Although the experience is based on a particular problem only,
the proposed method is clear enough to give a systematically and sharply
focused help in reaching the solution, and to illustrate practice of using
formal methods in the process.

1 Introduction

Formal methods are finding increasingly widespread use in the development of
complex software systems and several notable projects are reported that have
used the technology successfully [9]. The technology, however, has not yet reached
the level where most software engineers use formal methods in their daily work.
The basis of formal methods is mathematically-based languages for specifying
and verifying software systems. Generally a specification language is used for
writing functional properties and is able to handle only one aspect of the system.
Thus, we often rest satisfied with specifying essential or critical properties of the
system even when we use formal methods.

In real world software systems, however, characteristics other than functional
properties such as ease of customization or maintenance are equally important.
Software system, at the same time, can be viewed as an aggregate of various
heterogeneous, often interrelated, subproblems [17]. Identifying aspects that can
be tackled with a formal specification language is sometimes the most difficult
task. Establishing the methodological principles of selecting and applying formal
software development techniques is important[7].

This paper reports experience in using an algebraic specification language
CafeOBJ [11][13] in the development of the ODP trading service [1], and in
particular focuses on the design method. The trading server is implemented as
object-oriented frameworks [10][18] so that it has a well-organized architecture
making it easy to customize. We first identify a set of distinct aspects in the
problem. Next, we refine and elaborate each aspect by using various specification

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1664–1683, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Using Algebraic Specification Techniques 1665

techniques for each one. Because the basic idea of identifying distinct aspects
is decomposition, completing the system requires an integration of all. We use
CafeOBJ to write solutions of each aspect, and thus checking the integrity is
made possible when all the aspect descriptions are put together.

The present paper is organized as follows: section 2 explains the ODP trading
service server. Section 3 reports on our experience in design and implementa-
tion of the ODP trading service server. Section 4 concludes the paper, and the
appendix gives small example CafeOBJ specifications as an introduction to the
language.

2 Trading Service Server

To facilitate the construction of distributed application systems, common ser-
vice objects for distributed computing environments are being established [2].
The ODP trader provides functionalities to manage service in an open globally
distributed environment [1].

2.1 The ODP Trader

The ODP trader is widely accepted because it is defined following the RM-ODP
[24] (a result of a longterm joint effort by ISO and ITU-T) that aims to pro-
vide a general architectural framework for distributed systems in a multi-vendor
environment. The standard document of the ODP trading function follows the
guideline of the RM-ODP, and describes three viewpoints: enterprise (require-
ment capture and early design), information (conceptual design and information
modeling), and computational (software design and development). The informa-
tion viewpoint uses the Z notation to define basic concepts, the trader state,
and a set of top-level operations visible from the outside. The computational
viewpoint provides a decomposition of the overall functionality into several com-
ponents and their interactions. It uses IDL [2] to describe the basic datatypes
and the top-level operation interfaces, and it supplements the descriptions of
all functional properties by using natural language. Actually, the specification
written in IDL comprises five major functional interfaces: Lookup, Register,
Admin, Link, and Proxy. The computational viewpoint is technically aligned
with the OMG trading object service [3], although the OMG trader is restricted
to manage service implemented as CORBA objects1.

2.2 Trading Functions and Design Aspects

Figure 1 shows a trader and the participants in a trading scenario. The Exporter
exports a service offer. The Importer imports the service offer and then becomes

1 In this paper, the ODP/OMG trader refers to the computational viewpoint specifi-
cation.

1666 Shin Nakajima

Exporter Importer

Service Type

Trader
1. export 2. import

3. service interaction

Fig. 1. Trading Scenario

starting trader

T1

T2

T3

T4

T5

T6

Fig. 2. Federated Trader Group

Aspect (example) Specification Technique

common concept (service type) abstract datatype
policy (scoping policy) functional programming
algorithm (query, federation) stream-style programming
language (constraint language) denotational semantics style
functional object (Lookup) concurrent object
architecture concurrent object

Table 1. Aspects and Specification techniques

a client of the service. The Trader mediates between the two by using the ex-
ported service offers stored in its own repository which is ready for import re-
quests. Every service offer has a service type and is considered to be its instance.
The service type holds the interface type of the object being advertised and a
list of property definitions. A property is a triple of name, type of the value and
mode which indicates whether the property is mandatory or optional. Further,
a subtype relation is defined between service types. The relation is useful both
in importing offers that do not exactly match the request and in defining a new
derived service type from the existing ones. The common concept defined in the
ODP/OMG trader specification document, such as the service type, the service
offer or the property definition, plays a central role in the trading scenario, and
thus proper understanding of the concepts is important in designing the trader
server.

Because importing, implemented as the Lookup interface, is the most complex
and interesting function, this paper focuses on its design and implementation.
The following IDL fragment shows a portion of a query operation of the Lookup
interface. It is the operation for importing.2

typedef Istring ServiceTypeName;

typedef Istring Constraint;

typedef Istring Preference;

2 Parameters not relevant here are omitted for brevity.

Using Algebraic Specification Techniques 1667

void query(

in ServiceTypeName type,

in Constraint constr,

in Preference pref,

...

out OfferSeq offers,

out OfferIterator offer_itr,

...

) raises (...)

The first parameter type specifies the service type name of requested offers.
The parameter constr is a condition that the offers should satisfy and is a
constraint language expression that specifies the condition in a concise manner.
The expression describes semantically a set of property values of service offers
that the client tries to import. The trader searches its repository to find service
offers whose property values satisfy the constraint expression. Understanding the
search process requires an explicit formulation of the constraint language, and
its formal definition would be valuable.

The parameter pref is preference information that specifies that the matched
offers are sorted according to the preference rule. The sorted offers are returned
to the importer in the out parameters: offers and offer_itr. The standard
specification also defines a set of scoping policies to provide the upper bounds
(cardinalities) of offers to be searched at various stages of the search process.
Actual values of the cardinalities are determined by a combination of the im-
porter’s policies and the trader’s policies. Understanding the role of each scoping
policy requires grasping the global flow of the base query algorithm.

The ODP/OMG trader defines the specification for interworking or federa-
tion of traders to realize scalability. The use of a federated trader group enables
a large number of service offers to be partitioned into a set of small offer sets of
manageable size. One trader is responsible for each partition and works with the
other traders when necessary. Figure 2 shows an example of a federated trader
group. The traders T1 to T6 are linked as indicated by the curved arrows. When
a query is issued on the starting trader T1 and a federated search is requested,
traders T2 to T6 also initiate local searches. All the matching offers are collected
and returned to the client importer.

The federation process uses a set of policies controlling the graph traversal. A
simple one is the request_id that cuts out unnecessary visits to the same trader,
and another is the hop_count that restricts the number of traders to visit. A
set of policies called the FollowOption controls the traversal semantically. For
example, a link marked with if_no_local is followed only if no matched offer
is found in a trader at the source of the link. Again, the role of each policy is
hard to understand without referring to the global flow of the base federation
algorithm.

The ODP/OMG standard describes the query and federation algorithm and
the role of each policy by using illustrative examples. In particular, the expla-
nation adapts a stream processing style of selecting appropriate offers from an
initial candidate set. The overall picture, however, is hard to grasp because the

1668 Shin Nakajima

descriptions are informal and scattered over several pages of the document [1][3].
A concise description is needed to prepare a precise design description of the al-
gorithm, and functional programming style is a good candidate.

After the analysis of the trader specification mentioned above, we come to
a conclusion that the six aspects in table 1 are mixed together to form the
whole system. Table 1 shows the aspects and the accompanying specification
techniques. In summary, the ODP/OMG trader is a medium scale, non-trivial
problem that has six heterogeneous subproblems. Since the aspects are quite dis-
tinct in nature, no general-purpose methodology is adequate. Using specification
techniques suitable for each aspect is a better approach to a systematically and
sharply focused help in reaching the solution.

3 Design and Implementation

We use Java [5] as the implementation language and JavaIDL [19] as the ORB
(Object Request Broker) to implement the trading service server. We also adapt
the object-oriented framework technology to construct a highly modular system
that aims to allow future customizations and ease of maintenance.

ODP Trader
Document

Requirements
on Server

Aspect Design

CafeOBJ
Descriptions

OOD
Documents

Java
Programs

JDK/JavaIDL

(formal specification) (informal specification) (implementation)

The Problem

(informal specification)

(informal specification)

(semi-formal specification)

Fig. 3. Development Process

3.1 Overview of Development Process

Figure 3 summarizes the development process, which is one adapted from a
process based on the parallel-iterative model of software development [26].

The aspect-centered design phase starts with the analysis of the ODP doc-
ument and of what is required on the target system. Then the specification
techniques that best describe the characteristics of each of the aspects are se-
lected (Table 1). From the semi-formal description of the aspect design, informal
specification descriptions are obtained with the help of standard techniques using

Using Algebraic Specification Techniques 1669

collaboration-based design [6][8][22] and design patterns [14][18]. In particular,
the collaboration-based design, sometimes called scenario-based design, focuses
on the analysis of interaction patterns between participant objects, and promotes
to use notations such as MSC (Message Sequence Chart). During this phase, the
specifications of the JDK library and JavaIDL are referred to. While the informal
specifications and the implementation are being prepared, CafeOBJ descriptions
of the aspects are also being prepared as the formal specification documents.

The aspect-centered design is quite useful because the ODP/OMG trading
service server is a complicated specification. Identifying six important aspects
and refining and elaborating each one with an appropriate design technique indi-
vidually facilitates the design and implementation of the object-oriented frame-
works. Aspect design alone, however, comes with one drawback.

The basic idea of the aspect design is decomposition of a complicated prob-
lem into a set of various aspects. Conversely, completing the system requires
integration of the solutions of each aspect. Without the formal specification
descriptions that can be mechanically analyzable, we only have a combination
of mostly analyzable functional programs and unanalyzable graphical notations
such as MSC. What could do is human design review only. Instead we use a
specification language to describe solution descriptions of each aspect, and thus
make it easy to check integrity when all the aspect descriptions are put together.

Our choice is a multiparadigm algebraic specification language CafeOBJ,
which has clear semantics based on hidden order-sorted rewriting logic [11][13].
The logic subsumes order-sorted equational logic [12][15], concurrent rewriting
logic [20], and hidden algebra [16].3 Being an algebraic specification language,
CafeOBJ promotes a property-oriented specification style: the target system is
modeled as algebra by describing a set of properties to be satisfied. By intro-
ducing suitable specification modules (algebra), various computational models
ranging from MSC4 to functional programming and concurrent objects can be
encoded in CafeOBJ. Further because CafeOBJ has clear operational semantics,
specifications written in it are executable. It helps much to validate functionality
of the system. The appendix provides a brief introduction to CafeOBJ.

3.2 CafeOBJ Descriptions of Aspect Solutions

This section deals with some example CafeOBJ descriptions of the aspect solu-
tion.

Common Concepts Of the entries in Table 1, the common concepts such
as ServiceType and PropertyDefinition are easily translated into CafeOBJ
modules because abstract datatype technique provides a concise way to model
such basic vocabularies.
3 We will not consider hidden algebra in this paper.
4 Basically a transition system. The use of MSC in object-oriented modeling and its

encoding method in CafeOBJ are described in [22].

1670 Shin Nakajima

The module SERVICE-TYPE-NAME introduces a new sort ServiceTypeName
that specifies a set of service type name.

mod! SERVICE-TYPE-NAME { [ServiceTypeName] }

Service type is defined as an abstract data type. The module SERVICE-TYPE
provides a concise notation to represent record-like terms and accessor functions.
The module SERVICE-SUBTYPING defines the service subtyping relationship. Ac-
tually _is-subtype-of_ is a predicate used to calculate whether the operand
service types satisfy the subtyping relationship.

mod! SERVICE-TYPE {

[ServiceType]

protecting (PROPERTY-DEFINITION)

protecting (INTERFACE)

protecting (SERVICE-TYPE-NAME)

signature {

op [name=_, interface=_, properties=_] :

ServiceTypeName Interface PropertyDefinition -> ServiceType

op _.name : ServiceType -> ServiceTypeName

op _.interface : ServiceType -> Interface

op _.properties : ServiceType -> PropertyDefinition

op _.property(_) : ServiceType PropertyName -> ModeAndType

op _.names : ServiceType -> Seq<PropertyName>

}

axioms {

var S : ServiceTypeName var T : ServiceType

var N : PropertyName var I : Interface var PS : PropertyDefinition

eq ([name=(S), interface=(I), properties=(PS)]).name = S .

eq ([name=(S), interface=(I), properties=(PS)]).interface = I .

eq ([name=(S), interface=(I), properties=(PS)]).properties = PS .

eq ([name=(S), interface=(I), properties=(PS)]).property(N) =

lookup(PS,N) .

eq (T).names = names((T).properties) .

}

}

mod! SERVICE-SUBTYPING {

protecting (SERVICE-TYPE)

signature { op _is-subtype-of_ : ServiceType ServiceType -> Bool }

axioms {

vars T1 T2 : ServiceType

eq (T1) is-subtype-of (T2)

= (((T1).interface is-subinterface-of (T2).interface)

and ((T1).names includes (T2).names))

and (mode-strength((T2).names,(T1).properties,(T2).properties)) .

}

}

Using Algebraic Specification Techniques 1671

Query Algorithm and Policy The policy of the ODP/OMG trader is just
a parameter that modifies the behavior of both local and federated query al-
gorithms. It is hard to understand the meaning of policies without referring to
the basic algorithm. Additionally in order to grasp the global behavior of the
algorithm at a glance, a concise notation is needed. Notation borrowed from the
functional programming language StandardML[21] is used, and some symbols
for describing and handling set-like collections of data are added. The query
processing is in particular viewed from a stream-based functional programming
style. This viewpoint is in accordance with the informal presentation in the
ODP/OMG document [1][3]. Below CafeOBJ modules are explained with refer-
ring to the pseudo StandardML descriptions.

The top-level function IDLquery(T,I), which is invoked as an IDL request
takes the following form. All the function definitions are supposed to come in
the lexical context (as fun · · ·) of the IDLquery(T,I). They use T and I freely
as global constants, where T refers to the trader state and trader’s policy and I
is the importer’s request and policy.

fun IDLquery(T,I) =
fun query() = if valid-trader()

then if valid id() then (select ◦ federation ◦ search)(T.offers) else φ
else IDLquery(remote trader(T),I)

fun · · ·
in

query()
end

IDLquery(T,I) calls query to check whether the request is on the trader itself.
Then, it invokes the body of query function, which is a stream-style processing
consisting of search, federation, and select. The module QUERY-ALGORITHM
is a CafeOBJ description of IDLquery(T,I).

mod! QUERY-ALGORITHM [X :: TH-TRADER-STATE, Y :: TH-IMPORTER-REQUEST] {

signature {

op query’ : TraderState Request Set<Offer> -> Seq<Offer>

op valid-trader : TraderState TraderName -> Bool

op valid-request-id : TraderState RequestId -> Bool

}

axioms {

var T : TraderState var I : Request var S : Set<Offer>

eq query’(T,I,S) = if valid-trader(T,(I).starting-trader)

then (if valid-request-id(T,(I).request-id)

then select(T,I,federation(T,I,search(T,I,S)))

else empty<Offer> fi)

else delegate(T,I) fi .

}

}

1672 Shin Nakajima

The function search collects candidate offers. The candidate space is then
truncated according to appropriate policies on cardinality. The search uses two
such cardinality filters. The functions select and order describe the specifica-
tions for the preference calculation.

fun search(R) = (match cardinality filter ◦ match
◦ search cardinality filter ◦ gather)(R)

fun select(R) = (return cardinality filter ◦ order)(R)
fun order(R) = order on preference(R,I.preference)

The module SEARCH-CARDINALITY, for example, defines the way that the search
cardinality is calculated by using a trader’s policy and an importer’s policy.

mod! SEARCH-CARDINALITY [X :: TH-TRADER-POLICY, Y :: TH-IMPORTER-POLICY]{

signature {

op search-cardinality : TraderPolicy ImporterPolicy -> Cardinality

}

axioms {

var T : TraderPolicy var I : ImporterPolicy

eq search-cardinality(T,I)

= if exist((I).search-card)

then min((I).search-card,(T).max-search-card)

else (T).def-search-card fi .

}

}

The function federation(R) controls a federated query process. It first
checks whether further IDL query requests to the linked traders are necessary
by consulting the trader’s policy on the hop_count.

fun federation(R)
= let val new count = new hop count()

in
if new count ≥ 0 then traversal((I with new count),R) else R

end
The function traversal is invoked with a modified importer policy (J) and
the offers obtained locally (R), and it controls invocations on the target trader
located at the far end of the specified link. The control again requires a scoping
policy calculation, which involves the link policies as well as the trader’s and the
importer’s policies. The two functions new_importer_follow_rule(L,J) and
current_link_follow_rule(L,J) show how to use the FollowOption policy.
Finally, the function dispatch shows the use of the FollowOption rule. The
rule defines three cases – local_only, if_no_local, and always –. And how
the final offers are constructed depends on the case.

fun traversal(J,R)
=

⋃
∀L∈T.links dispatch on(current link follow rule(L,J), L,

(I with new importer follow rule(L,J)),R)

Using Algebraic Specification Techniques 1673

fun current link follow rule(L,J)
= if exist(J.link follow rule)

then min(J.link follow rule, L.limiting follow rule, T.max follow policy)
else min(L.limiting follow rule, T.max follow policy, T.def follow policy)

fun dispatch on(local only,L,J,R) = R
| dispatch on(if no local,L,J,R) = if empty(R) then follow(L,J) else R
| dispatch on(always,L,J,R) = follow(L,J) ∪ R

The module FOLLOW-OPTION describes FollowOption policy. Basically it pro-
vides min functions, and other functions are omitted for brevity. The module
NEW-LINK-OPTION shows an example of calculating the FollowOption policy,
which is used in the federation process.

mod! FOLLOW-OPTION {

[FollowOption]

signature {

ops local-only if-no-local always : -> FollowOption

op min : FollowOption FollowOption -> FollowOption

op min : FollowOption FollowOption FollowOption -> FollowOption

op _<_ : FollowOption FollowOption -> Bool

... (omitted) ...

}

axioms {

vars F1 F2 F3 : FollowOption

eq (F1) < (F2) = (((F1 == local-only) and (not (F2 == local-only)))

or ((F1 == if-no-local) and (F2 == always))) .

ceq min(F1,F2) = F1 if (F1)<(F2) .

... (omitted) ...

}

}

mod! NEW-LINK-OPTION [X :: TH-TRADER-POLICY, Y :: TH-IMPORTER-POLICY,

Z :: TH-LINK-POLICY] {

protecting (FOLLOW-OPTION)

signature {

op current-link-follow-rule :

TraderPolicy ImporterPolicy LinkPolicy -> FollowOption

}

axioms {

var T : TraderPolicy var I : ImporterPolicy var L : LinkPolicy

eq current-link-follow-rule(T,I,L)

= if exist((I).link-follow-rule)

then min((I).link-follow-rule, (L).limiting-follow-rule,

(T).max-follow-policy)

else min((L).limiting-follow-rule, (T).max-follow-policy,

(T).def-follow-policy) fi .

}

}

1674 Shin Nakajima

Constraint Language Two functions (match and order_on_preference)used
in the query algorithm involve evaluation of a constraint expression and a prefer-
ence expression. Each function is defined in such a way that it calls an evaluation
function (either CE or PE).

fun match(R) = CE [[I.constraint]] R
fun order on preference(R,X) = PE [[X]] R

The constraint language is defined in a standard way according to the denota-
tional description of language semantics. First, the abstract syntax of the lan-
guage, a portion of which is shown below, is defined.

CExp ::= Pred

Pred ::= L | Exp == Exp | exist L | not Pred

| Pred and Pred | Pred or Pred | ...

Then, a valuation function for each syntax category is introduced; CE is an
example one for constraint expressions (CExp) and it further calls LE of the
valuation function for predicates (Pred). R stands for a set of offers and O is an
offer.

CE : CExp → R → R
LE : Pred → O → Bool

The specifications of the constraint language interpreter or evaluator are given
by the definitions of the valuation function. It can be defined systematically by
studying the meaning of each abstract syntax construct.

CE [[E]] R = { O ∈ R | LE [[E]] O }
LE [[L]] O = prop-val(O,L)↓Bool

LE [[E1 == E2]] O = AE [[E1]] O == AE [[E2]] O
. . .

The CafeOBJ description is straightforward because the denotational-style
description of language definition is translated easily in a standard way into
CafeOBJ. The module PRED-SYNTAX defines the abstract syntax tree and the
module PRED-EVAL provides the valuation function.

mod! PRED-SYNTAX {

protecting (EXP-SYNTAX)

[Pred, Exp < Pred]

signature {

op _==_ : Exp Exp -> Pred

op exist : Exp -> Pred

op not : Pred -> Pred

... (omitted) ...

}

}

Using Algebraic Specification Techniques 1675

mod! PRED-EVAL {

protecting (PRED-SYNTAX)

protecting (EXP-EVAL)

signature { op EP(_)_ : Pred ServiceOffer -> Bool }

axioms {

vars E1 E2 : Exp var P : Pred var N : PropertyName

var O : ServiceOffer

eq EP(label(N)) O = EE(label(N)) O .

eq EP(E1 == E2) O = (EE(E1) O) == (EE(E2) O) .

eq EP(exist E) O = exist-property(O,(EE(E) O)) .

eq EP(not P) O = not(EP(P) O) .

... (omitted) ...

}

}

Functional Objects and Architecture A functional object describes the
behavior of interfaces such as the Lookup and Register, while the architecture
here refers to a global organization of functional objects. We use collaboration-
based design methods to refine and elaborate these aspects in order to identify
the responsibilities of constituent objects, each of which is then translated into
a Maude concurrent object [20]. The Maude model is a standard encoding of
concurrent objects in algebraic specification languages [22][27]. Please refer to
the appendix for a brief explanation on how to encode the Maude concurrent
object model in CafeOBJ.

The module IDL-LOOKUP represents the CORBA object implementing the
Lookup interface with its behavioral specification written in CafeOBJ. Other
functional objects are IDL-REGISTER, IDL-LINK, IDL-ADMIN, TRADER-STATE,
TYPE-REPOSITORY, and OFFER-REPOSITORY. The architecture is just a collection
of the concurrent objects (Configuration), each of which is described by the
corresponding module such as IDL-LOOKUP.

A Lookup object receiving a query(O,N,C,P,Q,D,H,R)message converts the
input parameters into the representation that the part of the algorithm assumes,
then invokes the body of the query algorithm (query’), and finally translates
the result to match the IDL interface specifications.

mod! IDL-LOOKUP[X :: TH-LOOKUP-AID, Y :: TH-LOOKUP-MSG] {

extending (ROOT)

protecting (LOOKUP-VALUE)

[LookupTerm < ObjectTerm , CIdLookup < CId]

signature {

op <(_:_)|_> : OId CIdLookup Attributes -> LookupTerm

op Lookup : -> CIdLookup

op invoke-query : TraderState ServiceTypeName Constraint Preference

Seq<Policy> Seq<PolicyName> Nat Set<Offer> -> Seq<Offer>

}

axioms {

vars O R R’ : OId var REST : Attributes vars T U : OId

var N : ServiceTypeName var C : Constraint var H : Nat

1676 Shin Nakajima

var P : Preference var Q : Seq<Policy>

var D : Seq<PolicyName> var X : TraderState var S : Set<Offer>

trans query(O,N,C,P,Q,D,H,R)

<(O : Lookup)|(offers=(U)),(state=(T)),(client=(R’)),(REST)>

=> trader-state(T,O) initial-offers(U,O) m-wait(O,U,T)

<(O : Lookup)|(offers=(U)),(state=(T)),(client=(R)),(REST)> .

trans m-wait(O,U,T) return(O,U,S) return(O,T,X)

<(O : Lookup)|(client=(R)),(REST)>

=> void(R) outArgs(invoke-query(X,N,C,P,Q,D,H,S))

<(O : Lookup)|(client=(R)),(REST)> .

eq invoke-query(X,N,C,P,Q,D,H,S) = query’(X,request(N,C,P,Q,D,H),S) .

}

}

On receiving a query message, the Lookup object sends messages to the
OfferRepository object (U) and the TraderState object (T) to obtain a set of
potential offers and the trader state. The Lookup object, then, invokes query’.
As shown before in the module QUERY-ALGORITHM, query’ is defined algorithmi-
cally. The above module assumes that the module LOOKUP-VALUE imports library
modules such as QUERY-ALGORITHM.

Putting Together The last step is to put together all the aspect solutions to
have a whole design artifact of the ODP/OMG trader. Each solution consists
of one or more CafeOBJ module(s), and the integration is just to introduce a
top level module that imports all the necessary ones. The following CafeOBJ
module illustrates a way of integrating what is necessary to describe the whole
system.

mod! WHOLE-SYSTEM {

protecting (IDL-LOOKUP[TRADER-AID, TRADER-MSG])

protecting (IDL-REGISTER[TRADER-AID, TRADER-MSG])

protecting (IDL-LINK[TRADER-AID, TRADER-MSG])

protecting (IDL-ADMIN[TRADER-AID, TRADER-MSG])

protecting (TRADER-STATE[TRADER-AID, TRADER-MSG])

protecting (TYPE-REPOSITORY[TRADER-AID, TRADER-MSG])

protecting (OFFER-REPOSITORY[TRADER-AID, TRADER-MSG])

}

For example, instantiating the parameterized module IDL-LOOKUP with the ap-
propriate modules produces a algebraic model of the Lookup object. The CAFE
environment automatically imports all the modules by recursively traversing the
module import relations of each module such as protecting(LOOKUP-VALUE) or
extending(ROOT). The process automatically involves syntax and sort checking.

Using Algebraic Specification Techniques 1677

3.3 Resultant Frameworks Written in Java

The trading server consists of several object-oriented frameworks (subsystems)
that are refined and elaborated from the aspect solutions. This section focuses
on two such subsystems. Figures 4 and 5 show the resultant frameworks written
in Java.

Constraint

Standard
Planner

Standard
Parser

Standard
Checker

Search Match

Standard
Evaluator

ServiceType
Repository

OfferRepositoryImporterPolicy Extent

TypeDescriptor

1.1 parse 1.2 check

2. gather

3. match

2.1 extent

3.1 filter

3.1.1 start

0. search

1.4 reorder

1.4.1 prop-def

1.3 types

Offer

3.1.1.1 get

Fig. 4. Query Processing Framework

Federation

Delegate Accumulate

Edge

FollowPolicy

LinkPolicy

ImporterPolicy

TraderPolicy

(Linked)
Trader

0.

1.

2. 2.1

2.2 query 2.3

(2.3.1 iterator)

Fig. 5. Federation Framework

Based on the formal language definition presented early, designing the frame-
work for constraint-language processing is straightforward (figure 4). This frame-
work is a representative of using design patterns [14]: the composite pattern for
representing the abstract syntax tree (AST) and the visitor pattern for repre-
senting the tree walkers such as a light semantic checker (StandardChecker),
a filtering condition reorder planner (StandardPlanner), and an interpreter
(StandardEvaluator).

Two offline support tools are used in implementing the constraint language
processor: JavaCC [4](a public domain Java-based parser generator) and ASTG
(a visitor-skeleton generator). ASTG accepts BNF descriptions of abstract syn-
tax similar to the one in [25], and generates Java class definitions implementing

1678 Shin Nakajima

both the AST node objects and skeleton codes for tree-walking. The skeleton
code follows a convention of the visitor design pattern. Completing the program
is not difficult because the program code fragment that need to be written in the
body part of the skeleton corresponds to the clauses of the valuation functions,

Figure 5 shows the object-oriented framework that implements the federation
process. This subsystem is an example of using the collaboration-based design
technique with an algorithmic representation of the aspect design as its input
specification. The collaboration-based design focuses on the analysis of the in-
teraction patterns or a sequence of messages between objects, and the algorithm
expressed in the functional programming style can be considered to provide an
abstract view of a sequence of messages between (potential) participant objects.

The design step involves (1) identifying participant objects in a heuristic
manner, and (2) determining responsibility of each object [6][8] to be consis-
tent with the algorithm description. For example, the algorithm described by
the function federation(R) is divided into Federation and Delegate. Class
Delegate corresponds to the body of the function traversal(J,R) and thus
implements details of the algorithm. Class Federation is responsible for con-
trolling the whole federation process and thus plays the role of Façade [14], which
decouples the federation subsystem from the rest of the program and thus makes
it easy for testing. Another example of the important design decision is encap-
sulating FollowOption calculation functions in class FollowOption, which aims
to allow future customization of the policy.

3.4 Discussions

Reflection on Development Process The main development process con-
sisted of three steps: the aspect design, the functional design, and the coding
and testing. The aspect design step started with the study of the system re-
quirements and ended with the semi-formal description of each aspects. The
functional design step was one in which the collaboration-based object-oriented
design method and the design pattern technique were used to produce design
documents describing specifications of Java classes. It was followed by the coding
and testing. We assigned one person (this author) to the aspect design and two
engineers to the coding and testing. All three persons worked together to produce
the design documents at the intermediate step. The engineers were not familiar
with the collaboration-based object-oriented design technique and required on
the job training. The functional design step involved technology transfer, and
took far longer than initially planned. The time needed for coding and testing,
however, was short for a program of this size.5

One advantage of the aspect design is that the resultant solutions contribute
to provide a guideline for elaborating the design into object-oriented frameworks
written in Java. Especially, the design is helpful to identify hot spots (program

5 Roughly 25 K lines of Java, but the size is not constant because the program code
is updated periodically.

Using Algebraic Specification Techniques 1679

points to be customized) and to determine the structure or the architecture of
the Java program.

We could start to use CafeOBJ only when we almost reached a code complete
stage of the first working prototype. It is partly because we had to finish most of
the coding work as early as possible due to the time constraint of the financial
support. We used the CafeOBJ descriptions to check the conformance of the
informal design and the implementation against the ODP document.

Additionally, we think that most of the engineers would not accept CafeOBJ
descriptions as their input source information because the engineers resisted
even the semi-formal descriptions of the aspect design. Proper division of labor
between project members is thus important when formal methods are used in
real world projects.

Relation to Information Viewpoint As mentioned in section 2.1, the ODP
trader recommendation follows the RM-ODP and presents three viewpoints:
enterprise, information, and computational. Because the information and com-
putational viewpoints deal with the ODP trader specification formally, estab-
lishing the relationship between the two viewpoints is also desirable. However,
since the current recommendation uses more than one technique to specify es-
sentially one functionality (the ODP trading function), there are some gaps
between descriptions of the two viewpoints. Actually, the Z specification and
the IDL specification define one concept through the use of respective language
constructs. Since each language has different underlying computational models,
the two kinds of specification are not easy to compare to see how both viewpoint
specifications are really related. This is partly because each specification uses a
lot of language-specific idioms.

We have presented CafeOBJ descriptions of the information viewpoint of
the ODP trader elsewhere [23]. Together with the CafeOBJ descriptions in the
present paper, these descriptions show that CafeOBJ can represent different ab-
stract levels for different aspects of the specificand while providing the same spec-
ification fragments for a set of the common vocabulary such as ServiceType or
PropertyDefinition. The CafeOBJ descriptions of the information viewpoint
were used as data dictionaries in writing the present CafeOBJ descriptions.

Role of CafeOBJ Descriptions The basic idea of the aspect-centered design
is to break a whole problem into a set of manageable subproblems that can be
solved individually. Each aspect may have its own notation such as functional-
style descriptions or message-sequence charts, and the descriptions of each aspect
can be validated separately. On the other hand, the overall system cannot be
described without integrating all the solution descriptions, and this is difficult
when each aspect and its solution have a different notation.

We use CafeOBJ to write each aspect solution, and thus make it possbile
to check the integrity when all the aspect descriptions are put together. First,
we can get benefits from syntax and sort checking. This helps to identify what

1680 Shin Nakajima

is missing. Second, with appropriate input test terms, we can validate the de-
sign by test execution (specification animation). It also helps uncover logical
inconsistency spreading over different aspect descriptions.

The CafeOBJ descriptions themselves form an artifact. It is an analogic
model [17] in the sense that the artifact does not represent the Java program
faithfully, but instead elucidates essential design in an abstract manner. We plan
to use the model as a reusable design artifact when we develop a product line
(a family of systems having similar functionalities) in future.

One of methodological advantages of CafeOBJ is to provide hidden algebra or
behavioral equations[11][13][16]. Specifications using hidden algebra are basically
statemachines, where sequences of allowable events describe the properties of the
statemachine without defining the constituting states explicitly. The technique is
adequate when certain properties are verified by using observational equivalence.

Contrarily, writing specifications in a constructive and operational manner
is significant in the present development process. The CafeOBJ descriptions
focus on the design aspects and the solutions such as the query and federation
algorithm in detail. Such a detailed description acts as a starting point for the
further refinement and elaboration. In summary, the CafeOBJ description is
an abstract implementation in the present approach. It is worth investigating
to compare the pro and cons of the two approaches (the present one and the
hidden algebra approach) and to study their roles in the development process of
object-oriented frameworks.

4 Conclusion

We have reported our experience in using CafeOBJ (a multiparadigm alge-
braic specification language) in developing object-oriented frameworks of the
ODP/OMG trader that is implemented with Java and JavaIDL.

We have discussed the ways in which the introduction of an explicit design
phase for the aspect analysis greatly helped us develop object-oriented frame-
works for the trading server object. In addition, the use of a single specification
language (CafeOBJ) made it possible to check integrity after all the aspect de-
scriptions were put together. The formal descriptions in CafeOBJ contributed
to raising credibility of the design description. Although our experience is based
on the ODP/OMG trader only, the idea of the aspect design with a proper use
of CafeOBJ is clear enough to illustrate practice of using formal methods in the
development of object-oriented frameworks.

Acknowledgements

Discussions with Prof. Kokichi Futatsugi (JAIST) and Prof. Tetsuo Tamai (Univ.
of Tokyo) were helpful in forming the idea presented in this paper. The comments
from the anonymous reviewers helped much to improve the presentation.

Using Algebraic Specification Techniques 1681

References

[1] ITU-T Rec. X.950-1 : Information Technology - Open Distributed Processing -
Trading Function - Part 1: Specification (1997).

[2] OMG : OMG CORBA (http://www.omg.org).
[3] OMG : CORBAservices, Trading Object Service Specification (1997).
[4] Sun Microsystems : JavaCC Documentation (http://www.suntest.com/JavaCC/).
[5] Arnold, K. and Gosling, J. : The JavaTM Programming Language, Addison-Wesley

1996.
[6] Beck, K. and Cunningham, W. : A Laboratory for Teaching Object-Oriented Think-

ing, Proc. OOPSLA’89, pp.1-6 (1989).
[7] Bjørner, D., Koussoube, S., Noussi, R., and Satchok, G. : Michael Jackson’s Prob-

lem Frames: Towards Methodological Principles of Selecting and Applying Formal
Software Development Techniques and Tools, Proc. 1st IEEE ICFEM (1997).

[8] Carroll, J.M. (ed.) : Scenario-Based Design, John Wiley & Sons 1995.
[9] Clarke, E.M. and Wing, J.M. : Formal Methods: State of the Art and Future

Directions, ACM Computing Surveys (1996).
[10] Deutsch, L.P. : Design Reuse and Frameworks in the Smalltalk-80 Programming

System, in Software Reusability vol.2 (Biggerstaff and Perlis, ed.), pp.55-71, ACM
Press 1989.

[11] Diaconescu, R. and Futatsugi, K. : The CafeOBJ Report, World Scientific 1998.
[12] Futatsugi, K., Goguen, J., Jouannaud, J-P., and Meseguer, J. : Principles of OBJ2,

Proc. 12th POPL, pp.52-66 (1985).
[13] Futatsugi, K. and Nakagawa, A.T. : An Overview of CAFE Specification Envi-

ronment, Proc. 1st IEEE ICFEM (1997).
[14] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. : Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley 1994.
[15] Goguen, J. and Malcolm, G. : Algebraic Semantics of Imperative Programs, The

MIT Press 1996.
[16] Goguen, J. and Malcolm, G. : A Hidden Agenda, UCSD CS97-538 (1997).
[17] Jackson, M. : Software Requirements & Specifications, Addison-Wesley 1995.
[18] Johnson, R. : Documenting Frameworks using Patterns, Proc. OOPSLA’92, pp.63-

76 (1992).
[19] Lewis, G., Barber, S., and Siegel, E. : Programming with Java IDL, John Wiley

& Sons 1998.
[20] Meseguer, J. : A Logical Theory of Concurrent Objects and its Realization in the

Maude Language, in Research Directions in Concurrent Object-Oriented Program-
ming (Agha, Wegner and Yonezawa ed.), pp.314-390, The MIT Press 1993.

[21] Milner, R., Tofte, M., Harper, R., and MacQueen, D. : The Definition of Standard
ML (revised), The MIT Press 1997.

[22] Nakajima, S. and Futatsugi, K. : An Object-Oriented Modeling Method for Alge-
braic Specifications in CafeOBJ, Proc. 19th ICSE, pp.34-44 (1997).

[23] Nakajima, S. and Futatsugi, K. : An Algebraic Approach to Specification and
Analysis of the ODP Trader, Trans. IPS Japan Vol.40 No.4, pp.1861-1873(1999).

[24] Raymond, K. : Reference Model of Open Distributed Processing (RM-ODP) :
Introduction, Proc. ICODP’95 (1995).

[25] Wang, D.C., Appel, A.W., and Korn, J.L. : The Zephyr Abstract Syntax Descrip-
tion Language, Proc. USENIX DSL, pp.213-227 (1997).

[26] Wing, J. and Zaremski, A.M. : Unintrusive Ways to Integrate Formal Specifica-
tions in Practice, CMU-CS-91-113 (1991).

[27] Wirsing, M. and Knapp, A. : A Formal Approach to Object-Oriented Software
Engineering, Proc. 1st Workshop on Rewriting Logic and its Applications (1996).

1682 Shin Nakajima

A CafeOBJ: The Specification Language

CafeOBJ has two kinds of axioms6 to describe functional behavior [11][13]. An
equational axiom (eq) is based on equational logic and thus is suitable for rep-
resenting static relationships, whereas a rewriting axiom (trans) is based on
concurrent rewriting logic and is suitable for modeling changes in some states.

Here is a simple example, a CafeOBJ specification of LIST. The module
LIST defines a generic abstract datatype List. _ _ (juxtaposing two data of the
specified sorts) is a List constructor. |_| returns the length of the operand list
data and is a recursive function over the structure of the list. The module LIST
also defines some utility functions such as n-hd and n-tl.

mod! LIST[X :: TRIV] {

[NeList, List] [Elt < NeList < List]

protecting (NAT)

signature {

op nil : -> List

op __ : List List -> List {assoc id: nil}

op __ : NeList List -> NeList

op __ : NeList NeList -> NeList

op |_| : List -> Nat

op n-hd : Nat NeList -> NeList

op n-tl : Nat NeList -> List

}

axioms {

var X : Elt var L : List

eq | nil | = 0 .

eq | X | = 1 .

eq | X L | = 1 + | L | .

... (omitted) ...

}

}

The Maude concurrent object [20] can easily be encoded in CafeOBJ. The
Maude model relies on a Configuration and rewriting rules based on concurrent
rewriting logic. Configuration is a snapshot of global states consisting of objects
and messages at some particular time. Object computation (sending messages
to objects) proceeds as rewriting on Configuration. In addition, Maude has
a concise syntax to represent the object term (<(_:_)|_>) and some encoding
techniques to simulate inheritance. We regard the Maude model to be a standard
encoding for concurrent objects in algebraic specification languages [22][27].

Below is an example of object definition: the module ITERATOR defines an
Iterator object, which maintains a list of data and returns the specified number
of data when requested by a next-n message. Actually, it is CafeOBJ encoding
of the IDL iterator interface with functional behavior at an abstract level.
6 We do not consider hidden algebra here.

Using Algebraic Specification Techniques 1683

mod! ITERATOR[X :: TH-ITERATOR-AID, Y :: TH-ITERATOR-MSG] {

extending (ROOT)

protecting (ITERATOR-VALUE)

[IteratorTerm < ObjectTerm]

[CIdIterator < CId]

signature {

op <(_:_)|_> : OId CIdIterator Attributes -> IteratorTerm

op Iterator : -> CIdIterator

}

axioms {

vars O R : OId var L : List var N : NzNat

var REST : Attributes

ctrans next-n (O,N,R) <(O : Iterator)|(body = L), (REST)>

=> <(O : Iterator)|(body = n-tl(N,L)), (REST)>

return(R,true) outArgs(R,n-hd(N,L)) if N <= |L| .

ctrans next-n (O,N,R) <(O : Iterator)|(body = L), (REST)>

=> <(O : Iterator)|(body = L), (REST)> return(R,false) if N > |L| .

trans destroy(O,R) <(O : Iterator)|(REST)> => void(R) .

}

}

The module ITERATOR imports two other modules ROOT and ITERATOR-VALUE.
The module ROOT is a runtime module that provides the symbols necessary to
represent Maude concurrent objects. That is, it provides the following sort sym-
bols: Configuration to represent the snapshot, Message for messages,
ObjectTerm for the body of objects which consists of Attributes (a collec-
tion of attribute name and value pairs), CId for class identifiers, and OId for
identifiers of object instances.

As shown in the example, a user-defined class should define a concrete rep-
resentation of the object term (<(_:_)|_>) in a new sort (IteratorTerm) and
a class identifier constant (Iterator) in another new sort (CIdIterator). The
axioms part has a set of rewriting rules (either trans or ctrans), each of which
defines a method body. In writing the method body, we often refer to sym-
bols defined in other modules, for example the sort List and the related utility
functions. The module ITERATOR-VALUE is supposed to import all the modules
necessary for the ITERATOR such as LIST[NAT].

Maude as a Formal Meta-tool?

M. Clavel1, F. Durán2, S. Eker2, J. Meseguer2, and M.-O. Stehr2

1 Department of Philosophy, University of Navarre, Spain
2 SRI International, Menlo Park, CA 94025, USA

Abstract. Given the different perspectives from which a complex soft-
ware system has to be analyzed, the multiplicity of formalisms is unavoid-
able. This poses two important technical challenges: how to rigorously
meet the need to interrelate formalisms, and how to reduce the duplica-
tion of effort in tool and specification building across formalisms. These
challenges could be answered by adequate formal meta-tools that, when
given the specification of a formal inference system, generate an effi-
cient inference engine, and when given a specification of two formalisms
and a translation, generate an actual translator between them. Similarly,
module composition operations that are logic-independent, but that at
present require costly implementation efforts for each formalism, could
be provided for logics in general by module algebra generator meta-tools.
The foundations of meta-tools of this kind can be based on a metatheory
of general logics. Their actual design and implementation can be based
on appropriate logical frameworks having efficient implementations. This
paper explains how the reflective logical framework of rewriting logic can
be used, in conjunction with an efficient reflective implementation such
as the Maude language, to design formal meta-tools such as those de-
scribed above. The feasibility of these ideas and techniques has been
demonstrated by a number of substantial experiments in which new for-
mal tools and new translations between formalisms, efficient enough to
be used in practice, have been generated.

1 Introduction

At present, formal methods for software specification and verification tend to
be monolithic, in the sense that in each approach only one formal system or
specification language is used to formalize the desired system properties. For
this reason, formal systems, and the tools based on them, can be as it were
autistic, because they lack the meta-tools and methods necessary for relating
them to other formalisms and to their supporting tools.

As a consequence, it is at present very difficult to integrate in a rigorous
way different formal descriptions, and to reason across such descriptions. This
situation is very unsatisfactory, and presents one of the biggest obstacles to the

? Supported by DARPA and NASA through Contract NAS2-98073, by Office of Naval
Research Contract N00014-96-C-0114, and by National Science Foundation Grant
CCR-9633363.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1684–1703, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Maude as a Formal Meta-tool 1685

use of formal methods in software engineering because, given the complexity of
large software systems, it is a fact of life that no single perspective, no single
formalization or level of abstraction suffices to represent a system and reason
about its behavior. We use the expression formal interoperability to denote this
capacity to move in a mathematically rigorous way across the different formal-
izations of a system, and to use in a rigorously integrated manner the different
tools supporting such formalizations [52, 49].

By transforming problems in a formalism lacking tools into equivalent prob-
lems in a formalism that has them, formal interoperability can save much time
and effort in tool development. Also, libraries of theories and specifications can
in this way be amortized across many formalisms, avoiding much duplication of
effort. One would similarly like to have rigorous meta-methods and tools making
it easy to solve different parts of a complex problem using different formal tools,
and to then integrate the subproblem solutions into an overall solution.

These considerations suggest that it would be very fruitful to investigate
and develop new formal meta-tools, that is, tools in which we can easily and
rigorously develop many formal tools at a very high level of abstraction; and
also tools through which we can rigorously interoperate existing and future tools.
Specifically, it would be very useful to have:

– Formal Tool Generators, that given a formal description of an inference sys-
tem, generate an inference engine for it that is sufficiently efficient to be
used in practice as a tool.

– Formal Translation Generators, that given formal descriptions of two for-
malisms and of a translation between them, generate an actual translator
that can be used to translate specifications and to interoperate tools across
the given formalisms.

– Module Algebra Generators, that given a formalism with appropriate met-
alogical properties, extend its language of basic specifications into a much
richer algebra of specification-combining operations, including specification
hierarchies, parameterized specifications, and many other specification trans-
formations.

But where will the metatheory supporting such meta-tools come from? To
make such tools mathematically rigorous, the first thing obviously needed is to
have a mathematical metatheory of logics and of translations between logics.
We have been investigating the theory of general logics [47, 44, 52, 11, 16] for
this purpose. This theory axiomatizes the proof-theoretic and model-theoretic
facets of logics and their translations, includes the theory of institutions as its
model-theoretic component [30], and is related to other similar metatheories (see
the survey [52]).

But meta-tools need more than a metatheory. They have to “run” and there-
fore they need an executable metatheory. This can be provided by an adequate
logical framework, that is, by a logic with good properties as a metalogic in
which other logics can be naturally represented, and that, in addition, is exe-
cutable with good performance. Then, an implementation of such a framework
logic could serve as a basis for developing the meta-tools.

1686 M. Clavel et al.

This paper reports on our results and experiments in using the Maude lan-
guage [15, 13] as a formal meta-tool in the senses described above. Maude is
a reflective language based on rewriting logic [48] that essentially contains the
OBJ3 language as an equational sublanguage. Rewriting logic extends equational
logic and has very good properties as a logical framework, in which many other
logics and many semantic formalisms can be naturally represented [43, 51]. A
very important property of the rewriting logic framework is its being reflective
[17, 12]. Reflection is efficiently supported by the Maude implementation and,
together with the high-performance of Maude, is the key feature making possible
the use of Maude as a meta-tool.

The rest of the paper is organized as follows. Section 2 explains in more detail
in which sense rewriting logic is a reflective logical framework, and some basic
principles and methods underlying the use of a rewriting logic implementation
as a formal meta-tool. Section 3 describes the key features of Maude allowing
it to be used as a meta-tool. Our experience in building formal tools in Maude
is described in Section 4, where we report on several formal tool generator and
formal translation generator uses, and on the beginnings of a module algebra
generator capability. We finish the paper with some concluding remarks and
future research directions.

2 A Reflective Logical Framework

A formal meta-tool must both rely on, and support, a precise axiomatization of
different logics. That is what makes it formal, and what distinguishes it from tool
implementations in conventional languages, say Java, in which the implementa-
tion itself is not a suitable formal axiomatization of the tool being implemented.

This leads us to the need for a metatheory of logics, as a necessary foundation
for the design of formal meta-tools. In our work we have used the theory of gen-
eral logics proposed in [47], which provides an axiomatic framework to formalize
the proof theory and model theory of a logic, and which also provides adequate
notions of mapping between logics, that is, of logic translations. This theory
contains Goguen and Burstall’s theory of institutions [30] as its model-theoretic
component.

The theory of general logics allows us to define the space of logics as a cat-
egory, in which the objects are the different logics, and the morphisms are the
different mappings translating one logic into another. We can therefore axioma-
tize a translation Φ from a logic L to a logic L′ as a morphism

(†) Φ : L −→ L′

in the category of logics. A logical framework is then a logic F such that a very
wide class of logics can be mapped to it by maps of logics

(‡) Ψ : L −→ F

Maude as a Formal Meta-tool 1687

called representation maps, that have particularly good properties such as con-
servativity1.

A number of logics, particularly higher-order logics based on typed lambda
calculi, have been proposed as logical frameworks, including the Edinburgh log-
ical framework LF [35, 2, 27], generic theorem provers such as Isabelle [56],
λProlog [54, 25], and Elf [57], and the work of Basin and Constable [4] on met-
alogical frameworks. Other approaches, such as Feferman’s logical framework
FS0 [24]—that has been used in the work of Matthews, Smaill, and Basin [46]—
earlier work by Smullyan [59], and the 2OBJ generic theorem prover of Goguen,
Stevens, Hobley, and Hilberdink [33] are instead first-order. Our work should of
course be placed within the context of the above related work, and of experi-
ments carried out in different frameworks to prototype formal systems (for more
discussion see the survey [52]).

2.1 Rewriting Logic and Reflection

We and other researchers (see references in [51]) have investigated the suitability
of rewriting logic [48] as a logical framework and have found it to have very good
properties for this purpose. One important practical advantage is that, what
might be called the representational distance between a theory T in the original
logic and its rewriting logic representation Ψ(T) is often practically zero. That
is, both T ’s original syntax and its rules of inference are faithfully mirrored by
the rewrite theory Ψ(T).

A rewrite theory (Ω, E, R) is an equational theory (Ω, E) with signature of
operations Ω and equations E together with a collection R of labeled rewrite
rules of the form

r : t −→ t′.

Logically, such rules mean that we can derive the formula t′ from the formula t.
That is, the logical reading of a rewrite rule is that of an inference rule.

Since the syntax Ω and the equational axioms E of a rewrite theory are
entirely user-definable, rewriting logic can represent in a direct and natural way
the formulas of any finitary logic as elements of an algebraic data type defined by
a suitable equational theory (Ω, E). Furthermore, the structural axioms satisfied
by such formulas—for example, associativity and commutativity of a conjunction
operator, or of a set of formulas in a sequent—can also be naturally axiomatized
as equations in such an equational theory. Each inference rule in the logic is then
naturally axiomatized as a rewrite rule, that is applied modulo the equations E.
If there are side conditions in the inference rule, then the corresponding rewrite
rule is conditional [48]. Rewriting logic has then very simple (meta-) rules of
deduction [48], allowing it to mirror deduction in any finitary logic as rewriting
inference. In earlier work with Narciso Mart́ı-Oliet we have shown how this
general method for representing logics in the rewriting logic framework allows
1 A map of logics is conservative [47] if the translation of a sentence is a theorem if

and only if the sentence was a theorem in the original logic. Conservative maps are
sometimes said to be adequate and faithful by other authors.

1688 M. Clavel et al.

very natural and direct representations for many logics, including also a general
method for representing quantifiers [43, 44, 45].

Besides these good properties, there is an additional key property making
rewriting logic remarkably useful as a metalogic, namely reflection. Rewriting
logic is reflective [17, 12] in the precise sense that there is a finitely presented
rewrite theory U such that for any finitely presented rewrite theory T (including
U itself) we have the following equivalence

T ` t −→ t′ ⇐⇒ U ` 〈T , t〉 −→ 〈T , t′〉,

where T and t are terms representing T and t as data elements of U , of respective
types Theory and Term. Since U is representable in itself, we can achieve a
“reflective tower” with an arbitrary number of levels of reflection, since we have

T ` t −→ t′ ⇐⇒ U ` 〈T , t〉 −→ 〈T , t′〉 ⇐⇒ U ` 〈U, 〈T , t〉〉 −→ 〈U, 〈T , t′〉〉 . . .

The key advantage of having a reflective logical framework logic such as rewrit-
ing logic is that we can represent—or as it is said reify—within the logic in a
computable way maps of the form (†) and (‡). We can do so by extending the
universal theory U with equational abstract data type definitions for the data
type of theories TheoryL for each logic L of interest. Then, a map of the form
(†) can be reified as an equationally-defined function

Φ : TheoryL −→ TheoryL′ .

And, similarly, a representation map of the form (‡), with F rewriting logic, can
be reified by a function

Ψ : TheoryL −→ Theory .

If the maps Φ and Ψ are computable, then, by a metatheorem of Bergstra and
Tucker [5] it is possible to define the functions Φ and Ψ by means of corresponding
finite sets of Church-Rosser and terminating equations. That is, such functions
can be effectively defined and executed within rewriting logic.

2.2 Formal Meta-tool Techniques

How can we systematically exploit all these properties to use a reflective im-
plementation of rewriting logic as a meta-tool? Formal tool generator uses can
be well supported by defining representation maps Ψ that are conservative. In
conjunction with a reflective implementation of rewriting logic, we can reify such
representation maps as functions of the form Ψ that give us a systematic way
of executing a logic L by representing each theory T in L—which becomes a
data element T of TheoryL—by the rewrite theory that Ψ(T) metarepresents.
By executing such a rewrite theory we are in fact executing the (representation
of) T . In our experience, the maps Ψ are essentially identity maps, preserving
the original structure of the formulas, and mirroring each inference rule by a

Maude as a Formal Meta-tool 1689

corresponding rewrite rule. Therefore, a user can easily follow and understand
the rewriting logic execution of the theory T thus represented.

But how well can we execute the representation of such a theory T ? In gen-
eral, the inference process of T may be highly nondeterministic, and may have to
be guided by so-called strategies. Will the status of such strategies be logical, or
extra-logical? And will strategies be representable at all in the framework logic?
Rewriting logic reflection saves the day, because strategies have a logical status:
they are computed by rewrite theories at the metalevel. That is, in the reflective
tower they are always one level above the rewrite theory whose execution they
control. Furthermore, there is great freedom for creating different internal strat-
egy languages that extend rewriting logic’s universal theory U to allow a flexible
logical specification of strategies [17, 12, 13].

Formal translator generator uses are of course supported by formally speci-
fying the algebraic data types TheoryL and TheoryL′ of the logics in question
and the translation function Φ. Module algebra generator uses can be supported
by defining a parameterized algebraic data type, say ModAlg [X], that, given a
logic L having good metalogical properties, extends the data type TheoryL of
theories to an algebra of theory-composition operations ModAlg [TheoryL].

Section 3 explains the reflective metalanguage features of Maude that make
meta-tool uses of this kind possible, and Section 4 summarizes our practical
meta-tool experience with Maude.

3 Maude’s Metalanguage Features

Maude [15, 13] is a reflective language whose modules are theories in rewriting
logic. The most general Maude modules are called system modules. Given a
rewrite theory T = (Ω, E, R), a system module has essentially the form mod
T endm, that is, it is expressed with a syntax quite close to the corresponding
mathematical notation for its corresponding rewrite theory.2 The equations E
in the equational theory (Ω, E) underlying the rewrite theory T = (Ω, E, R) are
presented as a union E = A ∪ E′, with A a set of equational axioms introduced
as attributes of certain operators in the signature Ω—for example, a conjunction
operator ∧ can be declared associative and commutative by keywords assoc
and comm—and where E′ is a set of equations that are assumed to be Church-
Rosser and terminating modulo the axioms A. Maude supports rewriting modulo
different combinations of such equational attributes: operators can be declared
associative, commutative, with identity, and idempotent [13]. Maude contains
a sublanguage of functional modules of the form fmod (Ω, E) endfm, with the
equational theory (Ω, E) satisfying the conditions already mentioned. A system
module mod T endm specifies the initial model [48] of the rewrite theory T .
Similarly, a functional module fmod (Ω, E) endfm specifies the initial algebra of
the equational theory (Ω, E).

2 See [13] for a detailed description of Maude’s syntax, which is quite similar to that
of OBJ3 [32].

1690 M. Clavel et al.

3.1 The Module META-LEVEL

A naive implementation of reflection can be very expensive both in time and
in memory use. Therefore, a good implementation must provide efficient ways
of performing reflective computations. In Maude this is achieved through its
predefined META-LEVELmodule, in which key functionality of the universal theory
U of rewriting logic has been efficiently implemented. In particular, META-LEVEL
has sorts Term and Module, so that the representations t and T of a term t and a
module (that is, a rewrite theory) T have sorts Term and Module, respectively. As
the universal theory U that it implements in a built-in fashion, META-LEVEL can
also support a reflective tower with an arbitrary number of levels of reflection.
We summarize below the key functionality provided by META-LEVEL:

– Maude terms are reified as elements of a data type Term of terms;
– Maude modules are reified as terms in a data type Module of modules;
– the process of reducing a term to normal form is reified by a function

meta-reduce;
– the process of applying a rule of a system module to a subject term is reified

by a function meta-apply;
– the process of rewriting a term in a system module using Maude’s default

strategy is reified by a function meta-rewrite; and
– parsing and pretty printing of a term in a module are also reified by corre-

sponding metalevel functions meta-parse and meta-pretty-print.

Representing Terms. Terms are reified as elements of the data type Term of
terms, with the following signature

subsort Qid < Term .
subsort Term < TermList .
op {_}_ : Qid Qid -> Term .
op _[_] : Qid TermList -> Term .
op _,_ : TermList TermList -> TermList [assoc] .

The first declaration, making the sort Qid of quoted identifiers a subsort of Term,
is used to represent variables in a term by the corresponding quoted identifiers.
Thus, the variable N is represented by ’N. The operator { } is used for rep-
resenting constants as pairs, with the first argument the constant, in quoted
form, and the second argument the sort of the constant, also in quoted form.
For example, the constant 0 in the module NAT discussed below is represented
as {’0}’Nat. The operator [] corresponds to the recursive construction of
terms out of subterms, with the first argument the top operator in quoted form,
and the second argument the list of its subterms, where list concatenation is
denoted , . For example, the term s s 0 + s 0 of sort Nat in the module NAT
is metarepresented as

’ + [’s [’s [{’0}’Nat]],’s [{’0}’Nat]].

Maude as a Formal Meta-tool 1691

Representing Modules. Functional and system modules are metarepresented
in a syntax very similar to their original user syntax. The main differences are
that: (1) terms in equations, membership axioms (see [50, 13] for more on mem-
bership axioms) and rules are now metarepresented as explained above; and
(2) sets of identifiers—used in declarations of sorts—are represented as sets of
quoted identifiers built with an associative and commutative operator ; .

To motivate the general syntax for representing modules, we illustrate it
with a simple example—namely, a module NAT for natural numbers with zero
and successor and with a commutative addition operator.

fmod NAT is
sorts Zero Nat .
subsort Zero < Nat .
op 0 : -> Zero .
op s_ : Nat -> Nat .
op _+_ : Nat Nat -> Nat [comm] .
vars N M : Nat .
eq 0 + N = N .
eq s N + M = s (N + M) .

endfm

The syntax for the top-level operator representing functional modules is as fol-
lows.

sorts FModule Module .
subsort FModule < Module .

op fmod_is_______endfm : Qid ImportList SortDecl
SubsortDeclSet OpDeclSet
VarDeclSet MembAxSet EquationSet -> FModule .

The representation NAT of NAT in META-LEVEL is the term

fmod ’NAT is
nil
sorts ’Zero ; ’Nat .
subsort ’Zero < ’Nat .
op ’0 : nil -> ’Zero [none] .
op ’s_ : ’Nat -> ’Nat [none] .
op ’_+_ : ’Nat ’Nat -> ’Nat [comm] .
var ’N : ’Nat .
var ’M : ’Nat .
none
eq ’_+_[{’0}’Nat, ’N] = ’N .
eq ’_+_[’s_[’N], ’M] = ’s_[’_+_[’N, ’M]] .

endfm

Since NAT has no list of imported submodules and no membership axioms those
fields are filled by the nil import list, and the none set of membership axioms.

1692 M. Clavel et al.

Similarly, since the zero and successor operators have no attributes, they have
the none set of attributes.

Note that—just as in the case of terms—terms of sort Module can be metarep-
resented again, yielding then a term of sort Term, and this can be iterated an
arbitrary number of times. This is in fact necessary when a metalevel computa-
tion has to operate at higher levels. A good example is the inductive theorem
prover described in Section 4.1, where modules are metarepresented as terms
of sort Module in the inference rules for induction, but they have to be meta-
metarepresented as terms of sort Term when used in strategies that control the
application of the inductive inference rules.

There are many advanced applications that the META-LEVEL module makes
possible. Firstly, strategies or tactics to guide the application of the rewrite rules
of a theory can be defined by rewrite rules in strategy languages [17, 12, 13],
which are Maude modules extending META-LEVEL in which the more basic forms
of rewriting supported by functions like meta-apply and meta-reduce can be
extended to arbitrarily complex rewrite strategies defined in a declarative way
within the logic. Secondly, as further explained in Section 4.5, an extensible
module algebra of module composition and transformation operations can be
constructed by defining new functions on the data type Module and on other
data types extending it. Thirdly, as explained in Section 4, many uses of Maude
as a metalanguage in which we can implement other languages, including formal
specification languages and formal tools, are naturally and easily supported.

3.2 Additional Metalanguage Features

Suppose that we want to build a theorem prover for a logic, or an executable
formal specification language. We can do so by representing the logic L of the
theorem prover or specification language in question in rewriting logic by means
of a representation map

Ψ : L −→ RWLogic.

Using reflection we can, as already explained in Section 2, internalize such a map
as an equationally defined function Ψ . In Maude this is accomplished using the
module META-LEVEL and its sort Module. We can reify the above representation
map Ψ by defining an abstract data type ModuleL representing theories in the
logic L and specifying Ψ as an equationally-defined function

Ψ : ModuleL −→ Module

in a module extending META-LEVEL. We can then use the functions meta-reduce,
meta-apply, and meta-rewrite, or more complex strategies that use such func-
tions, to execute in Maude the metarepresentation Ψ(T) of a theory T in L. In
other words, we can in this way execute L in Maude.

But we need more. To build a usable formal tool we need to build an environ-
ment for it, including not only the execution aspect just described, but parsing,
pretty printing, and input/output. If we had instead considered formal trans-
lator generator uses of Maude, we would have observed entirely similar needs,

Maude as a Formal Meta-tool 1693

since we need to get the specifications in different logics—originating from, or
going to, different tools—in and out of Maude by appropriate parsing, pretty
printing, and input-output functions. In Maude, these additional metalanguage
features are supported as follows:

– The syntax definition for L is accomplished by defining the data type ModuleL.
In Maude this can be done with very flexible user-definable mixfix syntax,
that can mirror the concrete syntax of an existing tool supporting L.

– Particularities at the lexical level of L can be accommodated by user-definable
bubble sorts, that tailor the adequate notions of token and identifier to the
language in question (see [13]).

– Parsing and pretty printing for L is accomplished by the meta-parse and
meta-pretty-print functions in META-LEVEL, in conjunction with the bub-
ble sorts defined for L.

– Input/output of theory definitions, and of commands for execution in L is
accomplished by the predefined module LOOP-MODE, that provides a generic
read-eval-print loop (see [13]).

In Section 4 we describe our experience in using the META-LEVEL and the above
metalanguage features of Maude as a meta-tool to build formal tools.

4 Using Maude as a Formal Meta-tool

This section summarizes our experience using Maude as a formal meta-tool.
Specifically, we report on three formal tool generator uses—an inductive theorem
prover and a Church-Rosser Checker for membership equational logic, and a
proof assistant for the open calculus of constructions—four formal translator
generator uses, several specification language environment-building uses, and on
the beginnings of a module algebra generator use.

4.1 An Inductive Theorem Prover

Using the reflective features of Maude’s META-LEVEL module, we have built an
inductive theorem prover for equational logic specifications [14] that can be
used to prove inductive properties of both CafeOBJ specifications [26] and of
functional modules in Maude.

The specifications we are dealing with are equational theories T having an
initial algebra semantics. The theory T about which we want to prove inductive
properties is at the object level. The rules of inference for induction can be
naturally expressed as a rewrite theory I. For example, one of the inference
rules is the following constants lemma rule, that reduces universally quantified
goals with variables to ground goals in which the variables have been declared
as constants

T ` (∀{x1, . . . , xn}).p
T ∪ {op c1:-> s1. · · · op cn:-> sn.} ` p[c1/x1, . . . , cn/xn]

1694 M. Clavel et al.

where xi has sort si and the constants c1, . . . , cn do not occur in T . Its expres-
sion as a rewrite rule in Maude—that rewrites the current set of goals modulo
associativity and commutativity—is as follows

rl [constantsLemma]:
goalSet(proveinVariety(IS,T,VQuantification(XS,P)), G)

=> --
goalSet(proveinVariety(IS,addNewConstants(XS, T),

varsToNewConstants(XS,P)), G) .

where the function addNewConstants(XS, T) adds a new constant of the ap-
propriate sort to the theory T for each variable in XS. (The dashes in the rule
are a, notationally convenient, Maude comment convention).

Note that, since this rewrite theory uses T as a data structure—that is,
it actually uses its representation T—the theory I should be defined at the
metalevel. Proving an inductive theorem for T corresponds to applying the rules
in I with some strategy. But since the strategies for any rewrite theory belong to
the metalevel of such a theory, and I is already at the metalevel, we need three
levels to clearly distinguish levels and make our design entirely modular, so that,
for example, we can change the strategy without any change whatsoever to the
inference rules in I. This is illustrated by the following picture, describing the
modular architecture of our theorem prover.

?
6

Meta-metalevel

Metalevel

?
6

Object level Object theory

Induction

Inference Rules for

Inductive Proof

Strategy for

This tool uses several levels of reflection and associative-commutative rewrit-
ing, and expresses the inference rules at a very high level of abstraction. How-
ever, thanks to the efficient implementation of Maude—that can reach more than
1,300,000 rewrites per second on a 450 MHz Pentium II for some applications—
the resulting implementation is a tool of competitive performance that can be
used in practice in interactive mode with typically fast response times. Further-
more, our tool-building experience has been very positive, both in terms of how
quickly we were able to develop the tool, and how easily we can extend it and
maintain it. We are currently extending this theorem prover by extending both
its logic, from equational to rewriting logic, and its inference rules, to support
more powerful reasoning methods, including metalogical reasoning.

Maude as a Formal Meta-tool 1695

4.2 A Church-Rosser Checker

We have also built a Church-Rosser checker tool [14] that analyzes equational
specifications to check whether they satisfy the Church-Rosser property. This
tool can be used to analyze order-sorted [31] equational specifications in CafeOBJ
and in Maude. The tool outputs a collection of proof obligations that can be used
to either modify the specification or to prove them.

The Church-Rosser Checker has a reflective design similar to that of the
inductive theorem prover, but somewhat simpler. Again, the module T , that we
want to check is Church-Rosser, is at the object level. An inference system C for
checking the Church-Rosser property uses T as a data structure, and therefore
is a rewrite theory at the metalevel. However, since the checking process can
be described in a purely functional way, there is no need in this case for an
additional strategy layer at the meta-metalevel: two levels suffice.

Maude does not yet have built-in support for unification, but only for match-
ing. Therefore, we implemented the order-sorted unification algorithm using
rewrite rules which—with unification being the real workhorse of the tool—is
of course inefficient. However, in spite of this inefficiency, of using reflection,
and of making heavy use of associative-commutative rewriting—which is NP-
complete—our tool has competitive performance. For example, it generates a
long list of proof obligations for a substantial example, namely the number hi-
erarchy from the natural to the rational numbers, after 2,091,898 rewrites in 12
seconds running on a 450 MHz Pentium II.

We are currently extending this tool in several ways. Firstly, unification will
be performed by Maude in a built-in way. This will greatly improve performance,
and will enhance the general capabilities of Maude as a formal meta-tool. Sec-
ondly, besides Church-Rosser checking we will support Knuth-Bendix comple-
tion of membership equational logic specifications [7] and coherence completion
of rewrite theories [62].

4.3 Formal Interoperability Experiments

Using the general methods explained in Section 2.2, Maude can be used as a “log-
ical bus” to interoperate in a systematic and rigorous way different formalisms
and their associated tools.

The goal is twofold. Firstly, the mappings relating different formalisms should
themselves be formalized in a metalogic, so that they are rigorously defined and it
becomes possible to subject them to formal metalogical analysis to verify their
correctness. Secondly, the formal definition of a mapping between two logics
should be executable, so that it can be used to carry out the translation and
to interoperate in practice different formal tools. This is precisely what defining
such mappings in Maude makes possible.

Maps of logics can relate any two logics of interest. In particular, when the
target logic is rewriting logic, we can execute in Maude the translated theories.
However, in other cases the goal may be to relate two different formalisms which
may have tools of their own. We describe below some formal interoperability

1696 M. Clavel et al.

experiments—carried out in cooperation with several colleagues—that illustrate
the different uses just discussed and some combined uses.

HOL → Nuprl . The HOL theorem proving system [34] has a rich library of
theories that can save a lot of effort by not having to specify from scratch many
commonly encountered theories. Potentially, this is a very useful resource not
only for HOL, but for other theorem proving systems based on other logics.
Howe [37] defined a map of logics mapping the HOL logic into the logic of Nuprl
[19], and implemented such a mapping to make possible the translation from
HOL theories to Nuprl theories. In this way, the practical goal of relating both
systems and making the HOL libraries available to Nuprl was achieved. However,
the translation itself was carried out by conventional means, and therefore was
not in a form suitable for metalogical analysis.

After studying this mapping with the kind help of D. Howe and R. Constable,
Stehr and Meseguer have recently formally specified it in Maude. The result is
an executable formal specification of the mapping that translates HOL theories
into Nuprl theories. Large HOL libraries have already been translated into Nuprl
this way.

In order to verify the correctness of the translation, we have investigated, in
parallel with the work summarized above, an abstract version of the mapping in
the categorical framework of general logics [47]. Stehr and Meseguer have proved
a strong correctness result, namely, that the mapping is actually a mapping
between the entailment systems of HOL and a classical variant of Nuprl. This
result is of a proof-theoretic nature and hence complementary to the semantical
argument given in [37]. Beyond its role as a direct justification for the translator,
this result suggests an interesting new direction, namely, extending the mapping
between entailment systems to a mapping between proof calculi, which would
mean in practice that theorems could be translated together with their proofs.

LinLogic → RWLogic. As an illustration of the naturalness and flexibility
with which rewriting logic can be used as a logical framework to represent other
logics, Mart́ı-Oliet and Meseguer defined two simple mappings from linear logic
[29] to rewriting logic: one for its propositional fragment, and another for first-
order linear logic [43]. In addition, they explained how—using the fact that
rewriting logic is reflective and the methods discussed in Section 2.2—these
mappings could be specified and executed in Maude, thus endowing linear logic
with an executable environment. Based on these ideas, Clavel and Mart́ı-Oliet
have specified in Maude the mapping from propositional linear logic to rewriting
logic [12].

Wright → CSP → RWLogic. Architectural description languages (ADLs)
can be useful in the early phases of software design, maintenance, and evolution.
Furthermore, if architectural descriptions can be subjected to formal analysis,
design flaws and inconsistencies can be detected quite early in the design process.
The Wright language [1] is an ADL with the attractive feature of having a formal
semantics based on CSP [36].

Maude as a Formal Meta-tool 1697

Meseguer, Nodelman, and Talcott have recently developed in Maude a proto-
type executable environment for Wright using two mappings. The first mapping
gives an executable formal specification of the CSP semantics of Wright, that is,
it associates to each Wright architectural description a CSP process. The second
mapping gives an executable rewriting logic semantics to CSP itself. The compo-
sition of both mappings provides a prototype executable environment for Wright,
which can be used—in conjunction with appropriate rewrite strategies—to both
animate Wright architectural descriptions, and to submit such descriptions to
different forms of formal analysis.

PTS → RWLogic. Pure type systems (PTS) [3] generalize the λ-cube [3],
which already contains important systems, like the simply typed and the (higher-
order) polymorphic lambda calculi, a system λP close to the logical framework
LF [35], and their combination, the calculus of constructions CC [20]. PTS sys-
tems are considered to be of key importance, since their generality and simplicity
makes them an ideal basis for representing higher-order logics either directly, via
the propositions-as-types interpretation [28], or via their use as a logical frame-
work [27].

In [61] we show how the definition of PTS systems can be formalized in
membership equational logic. It is noteworthy that the representational distance
between the informal mathematical presentation of PTS systems with identifica-
tion of α-equivalent terms and the membership equational logic specification of
PTS systems is close to zero. In contrast to a higher-order representation in LF
[35] or Isabelle [56], this first-order inductive approach is closer to mathematical
practice, and the adequacy of the representation does not require complex meta-
logical justifications. It has also greater explanational power, since we explain
higher-order calculi in terms of a first-order system with a very simple semantics.

We have also defined uniform pure type systems (UPTS) a more concrete
variant of PTS systems that do not abstract from the treatment of names, but
use a uniform notion of names based on CINNI [60], a new first-order calculus
of names and substitutions. UPTS systems solve the problem of closure under
α-conversion [58][42] in a very elegant way. A membership equational logic spec-
ification of UPTS systems can be given that contains the equational substitution
calculus and directly formalizes the informal presentation.

Furthermore, [61] describes how meta-operational aspects of UPTS systems,
like type checking and type inference, can be formalized in rewriting logic. For
this purpose the inference system of a UPTS system is specified as a rewrite
theory. The result of this formalization is an executable specification of UPTS
systems that is correct w.r.t. the more abstract specification in an obvious way.

4.4 A Proof Assistant for the Open Calculus of Constructions

Rewriting logic favors the use of abstract specifications. It has a flexible com-
putation system based on conditional rewriting modulo equations, and it uses
a very liberal notion of inductive definitions. PTS systems, in particular CC,
provide higher-order (dependent) types, but they are based on a fixed notion

1698 M. Clavel et al.

of computation, namely β-reduction. This unsatisfying situation has been ad-
dressed by addition of inductive definitions [55][40] and algebraic extensions in
the style of abstract data type systems [6]. Also, the idea of overcoming these
limitations using some combination of membership equational logic with the
calculus of constructions has been suggested as a long-term goal in [39].

To close the gap between these two different paradigms of equational logic
and higher-order type theory we are currently investigating the open calculus
of constructions (OCC) an equational variant of the calculus of constructions
with an open computational system and a flexible universe hierarchy. Using
Maude and the ideas on CINNI and UPTS systems mentioned above, we have
developed an experimental proof assistant for OCC that has additional features
such as definitions and meta-variables. Maude has been extremely useful to ex-
plore the potential of OCC from the very early stage of its design. In addition,
the formal executable specification of OCC exploits the reflective capabilities of
Maude, yielding orders of magnitude speedups over Lego [41] and Coq [38] in
the evaluation of functional expressions.

4.5 Implementing Formal Specification Languages

The efforts required for building adequate tools for formal specification languages
are considerable. Such efforts can be particularly intense when such languages are
executable, since a good execution engine must also be developed. The methods
described in this paper can be used in practice to develop tools and environments
for formal specification languages, including executable ones, and to endow such
languages with a powerful module algebra of specification-combining operations.

We have applied these methods to the design and implementation of Maude
itself. The most basic parts of the language—supporting module hierarchies of
functional and system modules and some predefined modules—are implemented
in C++, giving rise to a sublanguage called Core Maude. This is extended by
special syntax for object-oriented specifications, and by a rich module algebra of
parameterized modules and module composition in the Clear/OBJ style [10, 32]
giving rise to the Full Maude language.

All of Full Maude has been formally specified in Core Maude [23, 22]. This
formal specification—about 7,000 lines—is in fact its implementation, which is
available in the Maude web page (http://maude.csl.sri.com). Our experience
in this regard is very encouraging in several respects. Firstly, because of how
quickly we were able to develop Full Maude. Secondly, because of how easy
it will be to maintain it, modify it, and extend it with new features and new
module operations. Thirdly, because of the competitive performance with which
we can carry out very complex module composition and module transformation
operations, that makes the interaction with Full Maude quite reasonable.

The reflective methods described in this paper, that underly our develop-
ment of Full Maude, are much more general. They can equally be used to de-
velop high-performance executable environments for other formal specification
languages with much less effort and much greater flexibility, maintainability,
and extensibility than what would be required in conventional implementations.

Maude as a Formal Meta-tool 1699

For example, Denker and Millen have specified in Maude their Common Au-
thentication Specification Language (CAPSL) its CIL intermediate language,
and a CAPSL to CIL translator [21], and plan to translate CIL into Maude
to execute CAPSL specifications. Similarly, Braga and Mosses are using Maude
to develop executable environment for Structural Operational Semantics and
for Action Semantics [53]; and Bruni, Meseguer and Montanari have defined a
mapping from Tile Logic to Rewriting Logic [9] and have used it as a basis
for executing tile logic specifications in Maude [8]. It would be quite interesting
to explore Maude implementations for other specification languages such as a
next-generation CafeOBJ [26] and CASL [18].

Furthermore, we plan to generalize the module algebra that we have devel-
oped for Maude into a module algebra generator, that could endow many other
specification languages with powerful and extensible algebras for combining and
transforming specifications. As explained in Section 2.2, this can be done by
defining such a module algebra as a parameterized algebraic data type. The
module algebra of Maude provided by the Full Maude specification should then
be regarded as the particular instance of such a generic construction, namely,
for the case in which the underlying logic L is rewriting logic.

5 Conclusions

We have argued that, given the different perspectives from which a complex soft-
ware system has to be analyzed, the multiplicity of formalisms is unavoidable.
We have also argued that the technical challenges posed by the need to inter-
relate formalisms require advances in formal interoperability and in meta-tool
design that can be based on a metatheory of general logics and on appropriate
logical frameworks having efficient implementations. We have explained how the
reflective logical framework of rewriting logic can be used, in conjunction with
an efficient reflective implementation such as Maude, to design formal meta-tools
and to rigorously support formal interoperability. The feasibility of these ideas
and techniques has been demonstrated by a number of substantial experiments
in which new formal tools and new translations between formalisms, efficient
enough to be used in practice, have been generated.

Much work remains ahead to further advance these ideas. Maude 1.0 was
made publicly available on the web in January 1999. It is well documented [13]
and already supports all the formal meta-tool uses described in this paper. We
are currently working towards version 2.0. In that new version we plan to en-
hance the formal meta-tool features of Maude. Specifically, we plan to increase
Maude’s flexibility in tailoring the lexical level of any language, to enhance its in-
put/output capabilities by means of built-in objects, to provide efficient built-in
support for unification modulo different equational theories, to support efficient
search in the space of rewrite paths, and to further extend the expressiveness of
Maude and of its META-LEVEL module.

We also plan to develop a module algebra generator by generalizing the
current module algebra of Full Maude to a parameterized algebraic data type.
The further development of Maude’s theorem proving tools will also be very

1700 M. Clavel et al.

important, because it will allow carrying out proofs of metalogical properties
about the formalisms and translations represented in Maude.

Finally, more experience on using Maude as a formal meta-tool is needed.
We hope that the recent release of Maude, and the positive experience already
gained will help us and others gain a broader experience in the future.

5.1 Acknowledgments

We thank: Stuart Allen, Robert Constable, and Douglas Howe for their help in
understanding the HOL → Nuprl translation; Uri Nodelman and Carolyn Tal-
cott for their work on the Wright → CSP → RWLogic translation; Grit Denker
and Jon Millen for their work on the CAPSL to CIL translation; Christiano
Braga and Peter Mosses for their work on building executable environments for
SOS and Action Semantics; and Roberto Bruni and Ugo Montanari for their
work on the translation from Tile Logic to Rewriting Logic, all of which are
important experiments discussed in this paper. We also thank our fellow Maude
team members Grit Denker, Patrick Lincoln, Narciso Mart́ı-Oliet and José Que-
sada for their contributions to the theory and practice of Maude, and Carolyn
Talcott for many discussions and extensive joint work on formal interoperability.
We are also grateful to David Basin, Narciso Mart́ı-Oliet, and the referees for
their constructive criticism.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans.
Soft. Eng. and Meth., July 1997.

[2] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using typed lambda calculus
to implement formal systems on a machine. Journal of Automated Reasoning,
9(3):309–354, December 1992.

[3] H. P. Barendregt. Lambda-calculi with types. In S. Abramsky, D. M. Gabbay,
and T. Maibaum, editors, Background: Computational Structures, volume 2 of
Handbook of Logic in Computer Science. Oxford: Clarendon Press, 1992.

[4] D. A. Basin and R. L. Constable. Metalogical frameworks. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 1–29. Cambridge University
Press, 1993.

[5] J. Bergstra and J. Tucker. Characterization of computable data types by means of
a finite equational specification method. In J. W. de Bakker and J. van Leeuwen,
editors, Automata, Languages and Programming, Seventh Colloquium, pages 76–
90. Springer-Verlag, 1980. LNCS, Volume 81.

[6] F. Blanqui, J. Jouannaud, and M. Okada. The calculus of algebraic construc-
tions. In Proc. RTA’99: Rewriting Techniques and Applications, Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[7] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. To appear in Theoretical Computer Science, http:
//maude.csl.sri.com.

[8] R. Bruni, J. Meseguer, and U. Montanari. Internal strategies in a rewriting im-
plementation of tile systems. Proc. 2nd Intl. Workshop on Rewriting Logic and
its Applications, ENTCS, North Holland, 1998.

Maude as a Formal Meta-tool 1701

[9] R. Bruni, J. Meseguer, and U. Montanari. Process and term tile logic. Technical
Report SRI-CSL-98-06, SRI International, July 1998.

[10] R. Burstall and J. A. Goguen. The semantics of Clear, a specification language. In
D. Bjorner, editor, Proceedings of the 1979 Copenhagen Winter School on Abstract
Software Specification, pages 292–332. Springer LNCS 86, 1980.

[11] M. Cerioli and J. Meseguer. May I borrow your logic? (Transporting logical
structure along maps). Theoretical Computer Science, 173:311–347, 1997.

[12] M. Clavel. Reflection in general logics and in rewriting logic, with applications to
the Maude language. Ph.D. Thesis, University of Navarre, 1998.

[13] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. SRI International,
January 1999, http://maude.csl.sri.com.

[14] M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In Proc. of the CafeOBJ Symposium ’98, Numazu,
Japan. CafeOBJ Project, April 1998. http://maude.csl.sri.com.

[15] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Ap-
plications, volume 4 of Electronic Notes in Theoretical Computer Science. El-
sevier, 1996. http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/

volume4.htm.
[16] M. Clavel and J. Meseguer. Axiomatizing reflective logics and languages. In

G. Kiczales, editor, Proceedings of Reflection’96, San Francisco, California, April
1996, pages 263–288, 1996. http://jerry.cs.uiuc.edu/reflection/.

[17] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Ap-
plications, volume 4 of Electronic Notes in Theoretical Computer Science. El-
sevier, 1996. http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/

volume4.htm.
[18] CoFI Task Group on Semantics. CASL—The CoFI algebraic specification lan-

guage, version 0.97, Semantics. http://www.brics.dk/Projects/CoFI, July 1997.
[19] R. Constable. Implementing Mathematics with the Nuprl Proof Development Sys-

tem. Prentice Hall, 1987.
[20] T. Coquand and G. Huet. The calculus of constructions. Information and Com-

putation, 76(2/3):95–120, 1988.
[21] G. Denker and J. Millen. CAPSL intermediate language. In N. Heintze and

E. Clarke, editors, Proc. of Workshop on Formal Methods and Security Proto-
cols, July 1999, Trento, Italy, 1999. www.cs.bell-labs.com/who/nch/fmsp99/

program.html.
[22] F. Durán. A reflective module algebra with applications to the Maude language.

Ph.D. Thesis, University of Malaga, 1999.
[23] F. Durán and J. Meseguer. An extensible module algebra for Maude. Proc. 2nd

Intl. Workshop on Rewriting Logic and its Applications, ENTCS, North Holland,
1998.

[24] S. Feferman. Finitary inductively presented logics. In R. Ferro et al., editors,
Logic Colloquium’88, pages 191–220. North-Holland, 1989.

[25] A. Felty and D. Miller. Encoding a dependent-type λ-calculus in a logic pro-
gramming language. In M. Stickel, editor, Proc. 10th. Int. Conf. on Automated
Deduction, Kaiserslautern, Germany, July 1990, volume 449 of LNCS, pages 221–
235. Springer-Verlag, 1990.

[26] K. Futatsugi and R. Diaconescu. CafeOBJ report. AMAST Series in Computing,
Vol. 6, World Scientific, 1998.

1702 M. Clavel et al.

[27] P. Gardner. Representing Logics in Type Theory. PhD thesis, Technical Report
CST-93-92, Department of Computer Science, University of Edinburgh, 1992.

[28] H. Geuvers. Logics and Type Systems. PhD thesis, University of Nijmegen, 1993.
[29] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.
[30] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification

and programming. Journal of the ACM, 39(1):95–146, 1992.
[31] J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for

multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217–273, 1992.

[32] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. In-
troducing OBJ. Technical Report SRI-CSL-92-03, SRI International, Computer
Science Laboratory, 1992. To appear in J.A. Goguen and G.R. Malcolm, editors,
Applications of Algebraic Specification Using OBJ, Academic Press, 1999.

[33] J. A. Goguen, A. Stevens, K. Hobley, and H. Hilberdink. 2OBJ: A meta-logical
framework based on equational logic. Philosophical Transactions of the Royal
Society, Series A, 339:69–86, 1992.

[34] M. Gordon. Introduction to HOL: A Theorem Proving Environment. Cambridge
University Press, 1993.

[35] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association Computing Machinery, 40(1):143–184, 1993.

[36] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[37] D. J. Howe. Semantical foundations for embedding HOL in Nuprl. In M. Wirsing

and M. Nivat, editors, Algebraic Methodology and Software Technology, volume
1101 of Lecture Notes in Computer Science, pages 85–101, Berlin, 1996. Springer-
Verlag.

[38] G. Huet, C. Paulin-Mohring, et al. The Coq Proof Assistent Refer-
ence Manual, Version 6.2.4, Coq Project. Technical report, INRIA, 1999.
http://pauillac.inria.fr/coq/.

[39] J. P. Jouannaud. Membership equational logic, calculus of inductive constructions,
and rewrite logic. In 2nd Workshop on Rewrite Logic and Applications, 1998.

[40] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. In-
ternational Series of Monographs on Computer Science. Oxford University Press,
1994.

[41] Z. Luo and R. Pollack. Lego proof development system: User’s manual. LFCS
Technical Report ECS-LFCS-92-211, University of Edinburgh, 1992.

[42] L. Magnussen. The Implementation of ALF – a Proof Editor based on Martin-
Löf ’s Monomorphic Type Theory with Explicit Substitutions. PhD thesis, Univer-
sity of Göteborg, Dept. of Computer Science, 1994.

[43] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. Technical Report SRI-CSL-93-05, SRI International, Computer Science
Laboratory, August 1993. To appear in D. Gabbay, ed., Handbook of Philosophi-
cal Logic, Kluwer Academic Publishers.

[44] N. Mart́ı-Oliet and J. Meseguer. General logics and logical frameworks. In D. Gab-
bay, editor, What is a Logical System?, pages 355–392. Oxford University Press,
1994.

[45] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its
Applications, volume 4 of Electronic Notes in Theoretical Computer Science. El-
sevier, 1996. http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/

volume4.htm.

Maude as a Formal Meta-tool 1703

[46] S. Matthews, A. Smaill, and D. Basin. Experience with FS0 as a framework
theory. In G. Huet and G. Plotkin, editors, Logical Environments, pages 61–82.
Cambridge University Press, 1993.

[47] J. Meseguer. General logics. In H.-D. E. et al., editor, Logic Colloquium’87, pages
275–329. North-Holland, 1989.

[48] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science, 96(1):73–155, 1992.

[49] J. Meseguer. Formal interoperability. In Proceedings of the 1998 Conference on
Mathematics in Artificial Intelligence, Fort Laurerdale, Florida, January 1998,
1998. http://rutcor.rutgers.edu/~amai/Proceedings.html.

[50] J. Meseguer. Membership algebra as a semantic framework for equational speci-
fication. In F. Parisi-Presicce, ed., Proc. WADT’97, 18–61, Springer LNCS 1376,
1998.

[51] J. Meseguer. Research directions in rewriting logic. In U. Berger and H. Schwicht-
enberg, editors, Computational Logic, NATO Advanced Study Institute, Markto-
berdorf, Germany, July 29 – August 6, 1997. Springer-Verlag, 1999.

[52] J. Meseguer and N. Mart́ı-Oliet. From abstract data types to logical frame-
works. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent Trends in
Data Type Specification, Santa Margherita, Italy, May/June 1994, pages 48–80.
Springer LNCS 906, 1995.

[53] P. Mosses. Action Semantics. Cambridge University Press, 1992.
[54] G. Nadathur and D. Miller. An overview of λProlog. In K. Bowen and R. Kowalski,

editors, Fifth Int. Joint Conf. and Symp. on Logic Programming, pages 810–827.
The MIT Press, 1988.

[55] C. Paulin-Mohring. Inductive Definitions in the system Coq – Rules and Prop-
erties. In M. Bezem and J. . F. Groote, editors, Typed Lambda Calculi and Ap-
plications, International Conference on Typed Lambda Calculi and Applications,
TLCA 93, volume 664 of Lecture Notes in Computer Science. Springer Varlag,
1993.

[56] L. C. Paulson. Isabelle, volume 828 of Lecture Notes in Computer Science.
Springer Verlag, 1994.

[57] F. Pfenning. Elf: A language for logic definition and verified metaprogramming. In
Proc. Fourth Annual IEEE Symp. on Logic in Computer Science, pages 313–322,
Asilomar, California, June 1989.

[58] R. Pollack. Closure under alpha-conversion. In H. Barendregt and T. Nipkow,
editors, Types for Proofs and Programs: International Workshop TYPES’93, Ni-
jmegen, May 1993, Selected Papers., volume 806 of Lecture Notes in Computer
Science, pages 313–332. Springer-Verlag, 1993.

[59] R. M. Smullyan. Theory of Formal Systems, volume 47 of Annals of Mathematics
Studies. Princeton University Press, 1961.

[60] M.-O. Stehr. CINNI - A New Calculus of Explicit Substitutions and its Appli-
cation to Pure Type Systems. Manuscript, SRI-International, CSL, Menlo Park,
CA, USA.

[61] M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic — meta-logical
and meta-operational views. Submitted for publication.

[62] P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis et al., edi-
tors, PARLE’94, Proc. Sixth Int. Conf. on Parallel Architectures and Languages
Europe, Athens, Greece, July 1994, volume 817 of LNCS, pages 648–660. Springer-
Verlag, 1994.

Hiding More of Hidden Algebra

Joseph Goguen and Grigore Roşu?

Department of Computer Science & Engineering
University of California at San Diego

1 Introduction

Behavioral specification is a rapidly advancing area of algebraic semantics that
supports practical applications by allowing models (implementations) that only
behaviorally satisfy specifications, infinitary data structures (such as streams),
behavioral refinements, and coinduction proof methods. This paper generalizes
the hidden algebra approach to allow: (P1) operations with multiple hidden ar-
guments, and (P2) defining behavioral equivalence with a subset of operations,
in addition to the already present (P3) built-in data types, (P4) nondetermin-
ism, (P5) concurrency, and (P6) non-congruent operations. All important results
generalize, but more elegant formulations use the new institution in Section 5.
Behavioral satisfaction appeared 1981 in [20], hidden algebra 1989 in [9], multiple
hidden arguments 1992 in [1], congruent and behavioral operations in [1, 18], be-
havioral equivalence defined by a subset of operations in [1], and non-congruent
operations in [5]; all this was previously integrated in [21], but this paper gives
new examples, institutions, and results relating hidden algebra to information
hiding. We assume familiarity with basics of algebraic specification, e.g., [11, 13].

2 Basic Hidden Algebra

Definition 1. A hidden signature is (Ψ,D,Σ), often written justΣ, where Ψ is a
V -sorted signature,D is a Ψ -algebra called the data algebra, Σ is a (V ∪H)-sorted
signature extending Ψ such that each operation in Σ with both its arguments
and result in V lies in Ψ , and V and H are disjoint sets, called visible sorts and
hidden sorts, respectively. For technical reasons (e.g., see [12]), we assume each
element d in D is denoted by exactly one constant in Ψ , also denoted d.

A hidden subsignature of Σ is a hidden signature (Ψ,D, Γ) with Γ ⊆ Σ. A
behavioral, or hidden, Σ-specification or theory is (Σ,Γ,E), where Σ is a hidden
signature, Γ is a hidden subsignature of Σ, and E is a set of Σ-equations.
Operations in Γ − Ψ may be called behavioral [6] or observational [1, 2].

A hidden Σ-algebra is a many sorted Σ-algebra A such that A|Ψ = D. 2

An adequate discussion of the complex historical and technical relations
among the many approaches to behavioral specification is not possible in this
? On leave from Fundamentals of Computer Science, Faculty of Mathematics, Univer-

sity of Bucharest, Romania.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1704–1719, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Hiding More of Hidden Algebra 1705

short paper, but we do our best to be accurate, if not comprehensive. We drop
the restriction of [9, 12] to operations with at most one hidden argument. Op-
erations with hidden arguments may be called attributes if the result is visible,
and methods if it is hidden; those with visible arguments and hidden result are
called hidden constants. Behavioral operations are used in experiments to dis-
tinguish states; i.e., they define behavioral equivalence. Note that our models
do not require all operations to be congruent (see Definition 5) as in [15, 18],
since non-congruent operations are needed for applications like length for lists
implemented as sets, and the push operation in Example 2. Example 3 gives a
spec equivalent to that in Example 1, with in as its only behavioral operation,
thus illustrating the need for (P2). Our models also satisfy (P3), having a fixed
subalgebra of data values, as distinct from observational logic ([1, 2], etc.) and
CafeOBJ [6]. This is desirable because real applications use standard Booleans
and integers rather than arbitrary models of some theory; however, all results
of this paper still hold for the fully loose semantics, and there are applications
where it is useful, although we feel these are better handled by parameterization.
Coalgebra is an elegant related approach (e.g., [16]) that lacks nondeterminism,
multiple hidden arguments, and other features; one symptom of the difference is
that final algebras no longer exist for our generalization. Set union is one natural
example motivating (P1); there are many others. If sets are objects with hidden
state, then operations like union have two hidden arguments:
Example 1. We can specify sets using CafeOBJ syntax1 [6] as follows:
mod* SET { *[Set]* pr(NAT)

bop _in_ : Nat Set -> Bool ** attribute

op empty : -> Set ** hidden const

bop add : Nat Set -> Set ** method

bop _U_ : Set Set -> Set ** 2 hidden args

bop _&_ : Set Set -> Set ** 2 hidden args

bop neg : Set -> Set ** method

vars N N’ : Nat vars X X’ : Set

eq N in empty = false .

eq N in add(N’,X) = (N == N’) or (N in X) .

eq N in (X U X’) = (N in X) or (N in X’) .

eq N in (X & X’) = (N in X) and (N in X’) .

eq N in neg(X) = not (N in X) . }

Here “*[Set]*” declares Set a hidden sort, “bop” declares behavioral opera-
tions, and “pr(NAT)” imports the module NAT of natural numbers in “protect-
ing” mode, i.e., so that the naturals are not compromised. The constant empty
is the only non-behavioral operation, indicated by the keyword “op”, and neg is
complement with respect to the set of all natural numbers. 2

Definition 2. Given an equivalence ∼ on A, an operation σ in Σs1...sn,s is
congruent for ∼ iff Aσ(a1, ..., an) ∼ Aσ(a′1, ..., a

′
n) whenever ai ∼ a′i for i =

1, ..., n. A hidden Γ -congruence on A is an equivalence on A which is the identity
on visible sorts and is congruent for each operation in Γ . 2
1 But CafeOBJ prohibits behavioral operations with more than one hidden argument.

1706 Joseph Goguen and Grigore Roşu

The following result from [21] is the basis for generalizing coinduction and
other results to operations with multiple hidden arguments:

Theorem 3. Given a hidden subsignature Γ of Σ and a hidden Σ-algebra A,
there exists a largest hidden Γ -congruence on A, called Γ -behavioral equivalence
and denoted ≡Γ

Σ. 2

Definition 4. A hidden Σ-algebra A Γ -behaviorally satisfies a conditional Σ-
equation e = (∀X) t = t′ if t1 = t′1, ..., tn = t′n iff for each θ : X → A, if
θ(ti) ≡Γ

Σ θ(t′i) for i = 1, ..., n, then θ(t) ≡Γ
Σ θ(t′); in this case we write A |≡Γ

Σ e.
If E is a set of Σ-equations, we write A |≡Γ

Σ E if A Γ -behaviorally satisfies each
equation in E. When Σ and Γ are clear from context, we may write ≡ and |≡
instead of ≡Γ

Σ and |≡Γ
Σ respectively. We say that A behaviorally satisfies (or is a

model of) a behavioral specification B = (Σ,Γ,E) iff A |≡Γ
Σ E, and in this case

we write A |≡ B; also B |≡ e means A |≡ B implies A |≡Γ
Σ e. 2

Example 2. Nondeterministic Stack: The following example after [12] motivates
non-congruent operations. We specify a random number generator for a dis-
tributed system, as a process that puts generated numbers on a stack, where
numbers are consumed with exactly one call by one process, since multiple ac-
cess to a single number is wrong. We consider two stack states equivalent iff they
have the same numbers in the same order; then top and pop are congruent for
this equivalence, but push is not, since its behavior should not be determined
by what is on the stack.

mod* NDSTACK { *[Stack]* pr(NAT)

bop top : Stack -> Nat ** attribute

bop pop : Stack -> Stack ** method

op empty : -> Stack ** hidden constant

op push : Stack -> Stack ** not congruent!

var S : Stack

beq pop(empty) = empty .

beq pop(push(S)) = S . }

An implementation might use a function f : Nat → Nat where f(n) is the nth
randomly generated number. To ensure that n changes with each new call, we
can keep it as a variable with the stack, incremented whenever a new number
is pushed. Such an implementation is equivalent to the following model: Let
ANat = ω, where ω is the natural numbers, and let AStack = ω × ω∗, where
ω∗ is lists of naturals. Using [head,tail] list notation with [] for the empty list,
let Aempty = (0, []), Atop((n, [])) = 0, Atop((n, [h, t])) = h, Apop((n, [])) = (n, []),
Apop((n, [h, t])) = (n, t), and Apush((n, l)) = (n + 1, [f(n), l]). Then two states
are behaviorally equivalent iff for every sequence of pops followed by a top they
give the same number, that is, they store the same elements in the same order;
in other words, (n, l) ≡ (n′, l′) iff l = l′. push is not behaviorally congruent for
this model, because f(n) can be different from f(n′). 2

Hiding More of Hidden Algebra 1707

2.1 Coinduction

Example 3. We prove that union in Example 1 is commutative, i.e., that
(∀X,X ′) X U X ′ = X ′ U X

is behaviorally satisfied by all models of SET. For A a model of SET, we use infix
notation, ∈ instead of Ain and ∪ instead of A U .

Let R be a binary relation on A, called the candidate relation, defined by
a R a′ if and only if n ∈ a iff n ∈ a′ for all natural numbers n. We claim R
is a hidden congruence. We show only that union is congruent for R, the other
cases being similar. Suppose a1 R a′1 and a2 R a′2, i.e., (n ∈ a1 iff n ∈ a′1) and
(n ∈ a2 iff n ∈ a′2) for all natural numbers n. Then n ∈ a1 ∪ a2 iff n ∈ a′1 ∪ a′2,
i.e., a1 ∪ a2 R a′1 ∪ a′2.

Since R is a hidden congruence, it is included in behavioral equivalence.
We now show (a ∪ a′) R (a′ ∪ a) for all a, a′ ∈ A. This is equivalent to n ∈
a ∪ a′ iff n ∈ a′ ∪ a, i.e., to (n ∈ a or n ∈ a′) iff (n ∈ a′ or n ∈ a), which
is obvious. Thus we conclude that a ∪ a′ is behaviorally equivalent to a′ ∪ a
for all a, a′ ∈ A. Therefore A |≡Σ

Σ (∀X,X ′) X U X ′ = X ′ U X, and since A was
arbitrary, SET |≡ (∀X,X ′) X U X ′ = X ′ U X. Here is a CafeOBJ proof score for
this reasoning (but see footnote 2):
mod* COINDUCTION { pr(SET)

op _R_ : Set Set -> Bool

op n : -> Nat

vars X X’ : Set

eq X R X’ = (n in X) == (n in X’) . }

open COINDUCTION .

ops a1 a1’ a2 a2’ : -> Set .

eq n in a1 = n in a1’ . ** assume that a1 R a1’

eq n in a2 = n in a2’ . ** assume that a2 R a2’

red (a1 U a2) R (a1’ U a2’) . **> should be true

red (a1 & a2) R (a1’ & a2’) . **> should be true

red neg(a1) R neg(a1) . **> should be true

op m : -> Nat .

red add(m, a1) R add(m, a1’) . **> should be true

eq m = n .

red add(m, a1) R add(m, a1’) . **> should be true

close

open COINDUCTION .

ops a a’ : -> Set .

red (a U a’) R (a’ U a) . **> should be true

close

2

3 Eliminating Behavioral Operations

The fewer operations in Γ , the easier it is to do coinduction, because fewer oper-
ations need be shown congruent for the candidate relation. This section follows
[21], using the notion of behaviorally equivalent specifications and conditions
for a specification to be behavioral equivalent to another with fewer behavioral

1708 Joseph Goguen and Grigore Roşu

operations. The first definition of operations congruent over behavioral equiv-
alence defined by a subset of operations seems to have been [1]; similar ideas
also appear in [18, 19, 21], and in [6, 5] as well as in [15], which use the term
behavioral coherence. We prefer the term “congruent” because the congruence
rule of equational deduction is sound in hidden logic for an operation iff that
operation is behaviorally congruent.
Definition 5. An operation σ is Γ -behaviorally congruent for A iff σ is congru-
ent for ≡Γ

Σ on A; we will often say just “congruent”. An operation σ ∈ Σ is
behaviorally congruent for a specification B iff it is behaviorally congruent for
every A |≡ B. 2

Proposition 6. If B = (Σ,Γ,E) is a behavioral specification, then all opera-
tions in Γ and all hidden constants are behaviorally congruent for B. 2

Corollary 7. Congruence Criterion: Let B = (Σ,Γ,E) be a hidden speci-
fication and let σ : v1...vmh1...hk → h be an operation in Σ, where v1, ..., vm

are visible sorts and h1, ..., hk, h are hidden sorts. If W = {y1 : v1, ..., ym :
vm, x1 : h1, ..., xk : hk} is a set of variables, then let σ(W) denote the term
σ(y1, ..., ym, x1, ..., xk). If for each appropriate δ : s1...sn → s in Γ and each
j = 1, ..., n such that sj = h there is some γ in TΓ (Zj ∪ W) such that the
Σ-equation (∀Zj ,W) δ(Zj , σ(W)) = γ is in E (modulo renaming of variables),
then σ is behaviorally congruent for B. 2

Example 4 uses this criterion to show all the set operations congruent for the
behavioral equivalence generated by in. The above is a special case of Theorem
16 of [21], which is further generalized in [4], although the result in [4] also follows
from Theorem 16 of [21].
Definition 8. Hidden specifications B1 = (Σ,Γ1, E1) and B2 = (Σ,Γ2, E2) over
the same hidden signature are equivalent iff for any hidden Σ-algebra A, A |≡ B1

iff A |≡ B2, and in this case ≡Γ1
Σ =≡Γ2

Σ on A. 2

The rest of this section assumes B1 = (Σ,Γ1, E) and B2 = (Σ,Γ2, E) are two
hidden specifications over the same signature with the same equations and with
Γ1 ⊆ Γ2; we also assume that the Σ-equations in E have no conditions of hid-
den sort. The result below gives a method for eliminating behavioral operations
from a specification. If a behavioral operation can be shown congruent for the
behavioral specification that takes that operation as non-behavioral, then the
two specs are equivalent.

Theorem 9. B1 and B2 are equivalent iff all operations in Γ2 are behaviorally
congruent for B1. 2

Example 4. We modify the specification SET so that its only behavioral operation
is in, and call the result SETH. By the congruence criterion (Corollary 7), add,
U , & and neg are all behaviorally congruent for SETH. Thus by Theorem 9,
SET and SETH are equivalent. This greatly simplifies the coinductive proof in
Example 3:

Hiding More of Hidden Algebra 1709

mod* COINDUCTION { pr(SETH)

op _R_ : Set Set -> Bool

op n : -> Nat

vars X X’ : Set

eq X R X’ = (n in X) == (n in X’) . }

open COINDUCTION .

ops a a’ : -> Set .

red (a U a’) R (a’ U a) . **> should be true

close

2

Example 5. Lists of Semaphores: The use of semaphores for scheduling and pro-
tecting resources is well known. A flag is associated with each non-preemptive
resource. When the resource is allocated to a process, its semaphore is put up,
and access is prohibited. When the process releases the resource, its semaphore
is put down and it can be allocated to another process. Many modern processors
support semaphores to speed up operating systems, and often include a function
to reverse a flag. Here is a CafeOBJ specification:
mod* FLAG { *[Flag]* pr(QID)

bop resource_ : Flag -> Id

bop up?_ : Flag -> Bool

ops up down rev : Flag -> Flag

var F : Flag

eq up? up(F) = true . eq resource up(F) = resource F .

eq up? down(F) = false . eq resource down(F) = resource F .

eq up? rev(F) = not up? F . eq resource rev(F) = resource F . }

It is intended that all operations are behavioral, but by the congruence criterion
(Corollary 7) and Theorem 9, the spec with only up? and resource declared
behavioral is equivalent, because the others are obviously congruent.

When many resources of the same type are available (e.g., printers), their flags
are kept in a list (an array is undesirable since the number of resources varies
dynamically) from which the scheduler chooses the first unallocated resource
when a request is received. We want all operations behavioral, that is, to preserve
the intended behavior of flags and lists of flags. Here is a CafeOBJ spec (but see
footnote 2, noting that cons has two hidden arguments):
mod* FLAG-LIST { *[List]* pr(FLAG)

bop car_ : List -> Flag

bop cdr_ : List -> List

bop cons : Flag List -> List

var F : Flag var L : List

beq car cons(F, L) = F .

beq cdr cons(F, L) = L . }

The behavioral equations here allow more flexible implementation. For example,
an operating system can allocate at its discretion software or hardware imple-
mentations for flags, so that car cons(F, L) is only behaviorally equivalent to
F. The congruence criterion can again be applied with Theorem 9 to show that
FLAG-LIST is equivalent to the spec where cons is not behavioral. (We have left

1710 Joseph Goguen and Grigore Roşu

some details unspecified, such as car and cdr of the empty list, to make the spec
easier to understand.)

Now consider a new spec where lists of flags can be put up and down. This is
useful for operating systems to put resources in a safe state for system shutdown,
or when hardware or software anomalies are detected.
mod* FLAG-LIST’{ *[Flag < List]* pr(FLAG)

bop car_ : List -> Flag

bop cdr_ : List -> List

op cons : Flag List -> List

var F : Flag var L : List

beq car cons(F, L) = F . beq cdr cons(F, L) = L .

ops up down : List -> List

beq car up(L) = up(car L) . beq cdr up(L) = up(cdr L) .

beq car down(L) = down(car L) . beq cdr down(L) = down(cdr L) . }

The congruence criterion and Theorem 9 again justify having only car and cdr
behavioral. Now we use coinduction to prove that up(cons(F, L)) is behav-
iorally equivalent to cons(up(F), up(L)) for all flags F and lists of flags L:
mod* COINDUCTION { pr(FLAG-LIST’)

op _R_ : Flag Flag -> Bool

op _R_ : List List -> Bool

vars F F’ : Flag vars L L’ : List

eq F R F = true . eq L R L = true .

eq F R F’ = (up? F == up? F’) and (resource F == resource F’) .

eq L R L’ = ((car L) R (car L’)) and ((cdr L) R (cdr L’)) . }

Notice that we didn’t completely define the candidate relation, but rather gave
axioms it should satisfy, saying R is a hidden congruence (but without symmetry
and transitivity, since we don’t need these properties); we know such relations
exist, because behavioral equivalence is one. This code is a bit dangerous, because
of its (co)recurrent definition of the candidate relation, which can lead to non-
terminating rewriting; but it works in this case, because the equation eq L R L
= true is applied before the last equation. We now demonstrate two interesting
properties:
open COINDUCTION .

op f : -> Flag . op l : -> List .

red up(cons(f, l)) R cons(up(f), up(l)) . **> should be true

red down(cons(f, l)) R cons(down(f), down(l)) . **> should be true

close

CafeOBJ does 29 rewrites and 114 matches for each reduction. 2

4 Behavioral Abstraction Is Information Hiding

This section shows that any behavioral specification B over a hidden signature
Σ can be translated to an ordinary algebraic specification B̃ over a signature
Σ̃ containing Σ, such that a hidden Σ-algebra behaviorally satisfies B iff it
strictly satisfies Σ2B̃ (which is the set of all Σ-theorems of B̃, see [7] for more
detail). The specification B̃ can be generated automatically from B. This result
allows using an equational logic theorem prover (such as OBJ3) for behavioral
equations. Constructions in Definitions 12, 13 and 17 were inspired by work in
[2, 3, 17].

Hiding More of Hidden Algebra 1711

Definition 10. For each hidden sort h, let ?h be a special variable of sort h
different from every other variable appearing in this paper. Given a hidden Σ-
algebra A and an element ah of sort h of A, let ãh : TΓ (A∪{?h})→ A denote the
unique extension of the function from A ∪ {?h} to A which is the identity on A
and takes ?h to ah. If t, t′ are terms in TΓ (A∪{?h}) and TΣ(A∪X) respectively,
let t[t′] denote the term in TΣ(A∪X) obtained by substituting ?h for t′ in t. Let
LTΓ (A ∪ {?h}) be the (V ∪H)-sorted subset of terms in TΓ (A ∪ {?h}) over the
behavioral operations in Γ having exactly one occurrence of ?h, whose proper
subterms are either elements of A or else hidden terms in LTΓ (A ∪ {?h}). 2
In other words, there are only hidden valued operations on the path from ?h to
the root of any term in LTΓ (A∪{?h}), except that the operation at the top may
be visible, and all other proper subterms which do not contain ?h are elements
of A. The following can be seen as an alternative proof of Theorem 3:

Proposition 11. Given a hidden Σ-algebra A and a, a′ ∈ Ah then a ≡Γ
Σ,h a

′ iff
ã(c) = ã′(c) for each v ∈ V and each c ∈ LTΓ,v(A ∪ {?h}).
Proof. We show that the relation ∼ defined by a ∼h a

′ iff ã(c) = ã′(c) for each
v ∈ V and each c ∈ LTΓ,v(A ∪ {?h}) is the largest hidden Γ -congruence.

Let σ : h1...hkvk+1...vn → s be any operation in Γ (with its first k arguments
hidden), let ai, a

′
i ∈ Ahi such that ai ∼hi a

′
i for i = 1, ..., k, let di ∈ Avi(= Dvi)

for i = k+1, ..., n, and let v ∈ V and c ∈ LTΓ,v(A∪{?s}) (if the sort s is visible,
delete all occurrences of c in the proof that follows and replace terms of the form
c[t] by just t). Let ci be the term c[σ(a′1, ..., a

′
i−1, ?hi , ai+1, ..., ak, dk+1, ..., dn)]

for each i = 1, ..., k. Because ai ∼hi a
′
i one gets ãi(ci) = ã′i(ci). Letting a and

a′ denote the elements Aσ(a1, ..., ak, dk+1, ..., dn) and Aσ(a′1, ..., a
′
k, dk+1, ..., dn)

respectively, notice that ã(c) = ã1(c1), ã′i(ci) = ãi+1(ci+1) for i = 1, ..., k−1, and
ã′k = ã′(c). Therefore ã(c) = ã′(c), and since c is arbitrary, we obtain a ∼s a

′,
i.e., ∼ is preserved by σ, and so ∼ is a hidden Γ -congruence.

Because all operations in Γ preserve hidden Γ -congruences, so do the terms
in LTΓ (A ∪ {?h}). In particular, terms in LTΓ,v(A ∪ {?h}) take congruent ele-
ments to identities. Therefore any hidden Γ -congruence is included in ∼. 2

Definition 12. Given a hidden signature (Ψ,D,Σ) (where S = V ∪H), let
(S̃, Σ̃) be the ordinary signature with S̃ = S ∪ (H→S), where (H→S) = {(h→
s) | s ∈ S, h ∈ H} is a set of new sorts, and where Σ̃ adds to Σ:
• a new operation �h :→ (h→h) for each h ∈ H ,
• a new operation σk

h : s1 ... sk−1 (h→ hk) sk+1 ... sn → (h→ s) for each
behavioral operation σ : s1 ... sk−1 hk sk+1 ... sn → s in Γ , for each k =
1, ..., n such that hk ∈ H and each h ∈ H , and
• a new operation [] : (h→s) h→s for each h ∈ H and s ∈ S.
2

Definition 13. Given hidden Σ-algebra A, define an ordinary Σ̃-algebra Ã by:

1. Ã|Σ = A, so Ã extends A,
2. Ã(h→s) = LTΓ,s(A ∪ {?h}),

1712 Joseph Goguen and Grigore Roşu

3. Ã�h
= ?h,

4. Ãσk
h

: As1 × · · ·Ask−1 × Ã(h→hk) × Ask+1 × · · · × Asn → Ã(h→s) for each
behavioral operation σ : s1 ... sk−1 hk sk+1 ... sn → s in Γ and h ∈ H , by
Ãσk

h
(a1, ..., ak−1, t, ak+1, ..., an) = σ(a1, ..., ak−1, t, ak+1, ..., an) for ai ∈ Asi

for i ∈ {1, ..., k − 1, k + 1, ..., n}, t ∈ LTΓ,hk
(A ∪ {?h}), and

5. Ã [] : Ã(h→s) ×Ah → As for s ∈ S and h ∈ H , by Ã [](t, ah) = ãh(t).
2

Proposition 14. Given a hidden Σ-algebra A, then

1. Ã |=Σ̃ (∀x : h) �h[x] = x for each h ∈ H, and
2. Ã |=Σ̃ (∀Yk, z : (h→hk), x : h) σk

h(Yk, z)[x] = σ(Yk, z[x]), where Yk is the set
of variables {y1 : s1, ..., yk−1 : sk−1, yk+1 : sk+1, ..., yn : sn}, σk

h(Yk, z) is
a shorthand for the term σk

h(y1, ..., yk−1, z, yk+1, ..., yn) and σ(Yk, z[x]) for
the term σ(y1, ..., yk−1, z[x], yk+1, ..., yn), for all behavioral operations σ :
s1 ... sk−1 hk sk+1 ... sn → s in Γ and all h ∈ H.

Proof. 1. Let θ : {x} → Ã be any assignment and let ah be θ(x). Then
θ̃(�h[x]) = Ã [](Ã�h

, ah) = ãh(?h) = ah = θ̃(x) ,
where θ̃ : TΣ̃({x})→ Ã is the unique Σ̃-algebra morphism extending θ.

2. Let θ : Yk ∪{s : (h→hk), x : h} → Ã be any assignment and let ai = θ(yi) for
all i ∈ {1, ..., k − 1, k + 1, ..., n}, t = θ(z), and ah = θ(x). Then

θ̃(σk
h(Yk, z)[x]) = Ã [](Ãσk

h
(a1, ..., ak−1, t, ak+1, ..., an), ah)

= ãh(σ(a1, ..., ak−1, t, ak+1, ..., an))
= Aσ(a1, ..., ak−1, ãh(t), ak+1, ..., an)
= Ãσ(a1, ..., ak−1, Ã [](t, ah), ak+1, ..., an)
= θ̃(σ(Yk, z[x])) .

2

The rest of this section assumes equations have no conditions of hidden sort.

Definition 15. For each Σ-equation e = (∀X) t = t′ if t1 = t′1, .., tn = t′n, let ẽ
be the set of Σ̃-equations where ẽ is either the set containing only e regarded as
a Σ̃-equation if the sort of t and t′ is visible, or the set
{(∀X, z : (h→v)) z[t] = z[t′] if t1 = t′1, .., tn = t′n | v ∈ V }

if the sort h of t and t′ is hidden. 2

Proposition 16. Given a hidden Σ-algebra A and Σ-equation e, then Ã |=Σ̃ ẽ

iff A |≡Γ
Σ e.

Proof. Let e be the Σ-equation (∀X) t = t′ if t1 = t′1, .., tn = t′n. If the sort of
t, t′ is visible then the result is easy, so we assume the sort h of t, t′ is hidden.

Suppose Ã |=Σ̃ ẽ and let θ : X → A be any assignment such that θ(ti) = θ(t′i)
for i = 1, ..., n. Let v ∈ V and c ∈ LTΓ,v(A∪{?h}). Define ϕ : X∪{z : (h→v)} →
Ã to be θ on X, with ϕ(z) = c. Then Ã |=Σ̃ ẽ implies ϕ̃(z[t]) = ϕ̃(z[t′]), where

Hiding More of Hidden Algebra 1713

ϕ̃ : TΣ̃(X ∪ {z : (h→v)}) → Ã is the unique extension of ϕ to a Σ̃-homo-
morphism. But ϕ̃(z[t]) = Ã [](ϕ(z), θ(t)) = ˜θ(t)(c) and similarly ϕ̃(z[t′]) =

˜θ(t′)(c), so by Proposition 11, θ(t) ≡Γ
Σ,h θ(t

′). Thus A |≡Σ e.
Conversely, suppose A |≡Σ e and let v ∈ V and ϕ : X ∪ {z : (h→v)} → Ã

such that ϕ(ti) = ϕ(t′i) for i = 1, ..., n. Then A |≡Σ e implies ϕ(t) ≡Γ
Σ,h ϕ(t′),

so by Proposition 11, ˜ϕ(t)(ϕ(z)) = ˜ϕ(t′)(ϕ(z)). But ˜ϕ(t)(ϕ(z)) = ϕ̃(z[t]) and
˜ϕ(t′)(ϕ(z)) = ϕ̃(z[t′]), so ϕ̃(z[t]) = ϕ̃(z[t′]). Therefore Ã |=Σ̃ ẽ. 2

Definition 17. Given B = (Γ,Σ,E), let B̃ = (Σ̃, Ẽ) be the ordinary specifica-
tion with Ẽ adding to

⋃
e∈E ẽ the equations, for each h ∈ H

(∀x : h) �h[x] = x,
(∀Yk, z : (h→hk), x : h) σk

h(Yk, z)[x] = σ(Yk, z[x]) ,
for all behavioral operations σ : s1 ... sk−1 hk sk+1 ... sn → s in Γ . (See the
notation of Proposition 14). 2

Notice that B̃ is finite whenever B is finite, and that if B has no conditional
equations then neither does B̃.

Example 6. If B is the specification SETH of Example 4, then B̃ is:
mod! SET! { [Set] pr(NAT)

op _in_ : Nat Set -> Bool

op empty : -> Set

op add : Nat Set -> Set

op _U_ : Set Set -> Set

op _&_ : Set Set -> Set

op neg : Set -> Set

vars N N’ : Nat vars X X’ : Set

eq N in empty = false .

eq N in add(N’,X) = (N == N’) or (N in X) .

eq N in (X U X’) = (N in X) or (N in X’) .

eq N in (X & X’) = (N in X) and (N in X’) .

eq N in neg(X) = not (N in X) . }

mod! SET~ { [Set->Set Set->Bool] pr(SET!)

op <> : -> Set->Set

op _IN_ : Nat Set->Set -> Set->Bool

op _[_] : Set->Set Set -> Set

op _[_] : Set->Bool Set -> Bool

var Z : Set->Set var X : Set var N : Nat

eq <> [X] = X .

eq (N IN Z) [X] = N in Z [X] . }

Here SET! is just SETH with behavioral features removed, extended with sorts
Set->Set and Set->Bool (we don’t add the sort Set->Nat because there is
no behavioral operation of sort Nat in SETH), a constant <> of sort Set->Set
which stands for �Set : → (Set->Set), an operation IN which stands for
(in)2Set : Nat (Set->Set) → (Set->Bool), two operations [] defined from
Set->Set and Set to Set and from Set->Bool and Set to Bool respectively,
and the two equations required by Definition 17. 2

1714 Joseph Goguen and Grigore Roşu

Corollary 18. For any hidden Σ-algebra A, Ã |= B̃ iff A |≡ B.

Proof. From Propositions 14 and 16. 2

Example 7. Proposition 16 and Corollary 18 can help prove behavioral proper-
ties equationally, such as commutativity of union in the spec SETH of Example
4. We claim it suffices to show that SET˜satisfies

(?) (∀X,X ′ : Set, Z : (Set− > Bool)) Z[X U X ′] = Z[X ′ U X].
Indeed, if A behaviorally satisfies SETH, then Corollary 18 implies Ã satisfies (?),
so by Proposition 16, A behaviorally satisfies (∀X,X ′ : Set) X U X ′ = X ′ U X.

We prove that (∀X,X ′ : Set, Z : Set− > Bool) Z[X U X ′] = Z[X ′ U X] is
an equational consequence of SET~. First open SET~ and introduce two constants
of sort Set and another of sort Set->Bool:
open SET~ .

ops x x’ : -> Set . op z : -> Set->Bool . op p : -> Bool .

eq p = (z [x U x’] == z [x’ U x]) .

Our goal is to prove that p reduces to true. Since IN is the only operation of
sort Set->Bool, the only way for z as above to exist is for it to be a term of the
form n IN s, where n is a natural number and s is of sort Set->Set:

op n : -> Nat . op s : -> Set->Set .

eq z = n IN s .

Because the only operation of sort Set->Set is <>, we can reduce p as follows:
eq s = <> .

red p . **> should be true

CafeOBJ does 12 rewrites and 64 matches. This proof was simple because there
were no behavioral operations of hidden sort, but in general such proofs would
need induction on the structure of terms of sorts (h→h′), and thus would be as
awkward as are proofs by context induction [14]. 2

Proposition 19. If A is a Σ-algebra (not necessary hidden) such that A |=Σ

(∀X) t = t′ if C, then:
1. A |=Σ (∀X ′) t = t′ if C for each X ⊆ X ′;
2. A |=Σ (∀X) t′ = t if C;
3. A |=Σ (∀X) t = t′′ if C whenever A |=Σ (∀X) t′ = t′′;
4. A |=Σ (∀Y) ρ(t) = ρ(t′) if ρ(C) for any substitution ρ : X → TΣ(Y), where

ρ(C) is the set {ρ(ti) = ρ(t′i) | ti = t′i ∈ C} .
2

Theorem 20. For any hidden Σ-algebra A and any behavioral specification B,
A |≡ B iff A |= Σ2B̃.

Proof. If A |≡ B then Corollary 18 gives Ã |= B̃, so that Ã |= Σ2B̃, and thus
A |= Σ2B̃.

Suppose A |= Σ2B̃, let e be any Σ-equation (∀X) t = t′ if C in B, and
let θ : X → A be any assignment such that θ(C). If the sort of t, t′ is visi-
ble then A |=Σ e, so A |≡Γ

Σ e. If the sort h of t, t′ is hidden then let v ∈ V

Hiding More of Hidden Algebra 1715

and c ∈ LTΓ,v(A ∪ {?h}). Then c has the form σ1(α1, σ2(α2, ..., σm(αm, ?h)...)),
where σj(αj , t) indicates σj(a1,j , ..., ak−1,j , t, ak+1,j , ..., anj ,j) for some appropri-
ate elements a1,j , ..., ak−1,j , ak+1,j , ..., anj ,j in A, such that the sort of σ1 is
v and the sorts of σ2, ..., σm are hidden. Let ch ∈ TΣ̃,(h→v)(A) be the term
(σ1)k1

h (α1, σ2)k2
h (α2, ..., (σm)km

h (αm, �h)...)). Using the special equations in B̃ (see
Definition 17) and Proposition 19, it can be shown that B̃ |= (∀X,A) ch[t] = c[t]
and B̃ |= (∀X,A) ch[t′] = c[t′]. On the other hand, since the equation

(∀X, z : (h→v)) z[t] = z[t′] if C
is in Ẽ and ch is a Σ̃-term, Proposition 19 gives B̃ |= (∀X,A) ch[t] = ch[t′] if C.
Also Proposition 19 gives B̃ |= (∀X,A) c[t] = c[t′] if C, i.e., (∀X,A) c[t] =
c[t′] if C belongs to Σ2B̃. Therefore A |=Σ (∀X,A) c[t] = c[t′] if C. Letting
ϕ : X ∪ A → A be θ on X and the identity on A, we get ˜θ(t)(c) = ˜θ(t′)(c).
Since c was arbitrary, Proposition 11 gives θ(t) ≡Γ

Σ θ(t′). Thus A |≡Γ
Σ e, so that

A |≡ B. 2

5 Two Institutions for Hidden Algebra

We give two institutions [10] for the generalization of hidden algebra to multiple
hidden arguments and fewer behavioral operations. The first follows the insti-
tution of basic hidden algebra [9] and the approach earlier in this paper, while
the second seems more promising for future research. A similar adaptation (but
without the citation) of the result in [9] to the observational logic framework ap-
pears in [15]; our approach also avoids the infinitary logic used in observational
logic. We fix a data algebra D, and proceed as follows:

Signatures: The category Sign has hidden signatures overD as objects. A mor-
phism of hidden signatures φ : (Γ1, Σ1)→ (Γ2, Σ2) is the identity on the visible
signature Ψ , takes hidden sorts to hidden sorts, and if a behavioral operation δ2
in Γ2 has an argument sort in φ(H1) then there is some behavioral operation δ1
in Γ1 such that δ2 = φ(δ1). Sign is indeed a category, and the composition of
two hidden signature morphisms is another. Indeed, let ψ : (Γ2, Σ2)→ (Γ3, Σ3)
and let δ3 be an operation in Γ3 having an argument sort in (φ;ψ)(H1). Then δ3
has an argument sort in ψ(H2), so there is an operation δ2 in Γ2 with δ3 = ψ(δ2).
Also δ2 has an argument sort in φ(H1), so there is some δ1 in Γ1 with δ2 = φ(δ1).
Therefore δ3 = (φ;ψ)(δ1), i.e., φ;ψ is a morphism of hidden signatures.

Sentences: Given a hidden signature (Γ,Σ), let Sen(Γ,Σ) be the set of all
Σ-equations. If φ : (Γ1, Σ1) → (Γ2, Σ2) is a hidden signature morphism, then
Sen(φ) is the function taking aΣ1-equation e = (∀X) t = t′ if t1 = t′1, ..., tn = t′n
to the Σ2-equation

φ(e) = (∀X ′) φ(t) = φ(t′) if φ(t1) = φ(t′1), ..., φ(tn) = φ(t′n),
where X ′ is {x : φ(s) | x : s ∈ X}. Then Sen : Sign→ Set is indeed a functor.

Models: Given a hidden signature (Γ,Σ), let Mod(Γ,Σ) be the category of
hidden Σ-algebras and their morphisms. If φ : (Γ1, Σ1) → (Γ2, Σ2) is a hidden
signature morphism, then Mod(φ) is the usual reduct functor, |φ. Unlike [1, 15],
etc., this allows models where not all operations are congruent.

1716 Joseph Goguen and Grigore Roşu

Satisfaction Relation: behavioral satisfaction, i.e., |=(Γ,Σ)= |≡Γ
Σ .

Theorem 21. Satisfaction Condition: Given φ : (Γ1, Σ1)→ (Γ2, Σ2) a hid-
den signature morphism, e = (∀X) t = t′ if t1 = t′1, ..., tn = t′n a Σ1-equation,
and A a hidden Σ2-algebra, then A |≡Γ2

Σ2
φ(e) iff A|φ |≡Γ1

Σ1
e.

Proof. There is a bijection between (A|φ)X and AX′
that takes θ : X → A|φ to

θ′ : X ′ → A defined by θ′(x : φ(s)) = θ(x : s), and takes θ′ : X ′ → A to θ : X →
A|φ defined by θ(x : s) = θ′(x : φ(s)). Notice that for every term t in TΣ1(X), we
have θ(t) = θ′(φ(t)) where φ(t) is the term t with each x : s replaced by x : φ(s)
and each operation σ replaced by φ(σ). It remains to prove that a ≡Γ1

Σ1,h a′ iff
a ≡Γ2

Σ2,φ(h) a
′ for each a, a′ ∈ Aφ(h), where ≡Γ1

Σ1
is behavioral equivalence on

A|φ and ≡Γ2
Σ2

is behavioral equivalence on A. Since φ(c1) ∈ LTΓ2(A|φ ∪ {?φ(h)})
whenever c1 ∈ LTΓ1(A|φ ∪{?h}), one gets a ≡Γ2

Σ2,φ(h) a
′ implies a ≡Γ1

Σ1,h a
′. Now

if c2 ∈ LTΓ2(A ∪ {?φ(h)}) then because for every operation δ2 in Γ2 having an
argument sort in φ(H1) there is some δ1 in Γ1 with δ2 = φ(δ1), we iteratively
get a term c1 ∈ LTΓ1(A|phi ∪ {?h}) such that c2 = φ(c1). Therefore a ≡Γ1

Σ1,h a
′

implies a ≡Γ2
Σ2,φ(h) a

′. 2

Our second institution views the declaration of a behavioral operation as
a new kind of sentence, rather than part of a hidden signature. The notion of
model also changes, adding an equivalence relation as in [1]. This is natural for
modern software engineering, since languages like Java provide classes with an
operation denoted equals which serves this purpose. Sentences in [1] are pairs
〈e, ∆〉, where ∆ is a set of terms (pretty much like a cobasis over the derived
signature), which are satisfied by (A,∼) iff (A,∼) satisfies e as in our case below
(actually e is a first-order formula in their framework) and ∼⊆≡∆. Fix a data
algebra D, and proceed as follows:

Signatures: The category Sign has hidden signatures over D as objects. A
morphism of hidden signatures φ : Σ1 → Σ2 is identity on the visible signature
Ψ and takes hidden sorts to hidden sorts.

Sentences: Given a hidden signatureΣ, let Sen(Σ) be the set of allΣ-equations
unioned with Σ. If φ : Σ1 → Σ2 is a hidden signature morphism, then Sen(φ)
is the function taking a Σ1-equation e = (∀X) t = t′ if t1 = t′1, ..., tn = t′n to
the Σ2-equation φ(e) = (∀X ′) φ(t) = φ(t′) if φ(t1) = φ(t′1), ..., φ(tn) = φ(t′n),
where X ′ is the set {x : φ(s) | x : s ∈ X}, and taking σ : s1 ... sn → s to
φ(σ) : φ(s1) ... φ(sn)→ φ(s). Then Sen : Sign→ Set is indeed a functor.

Models: Given a hidden signature Σ, let Mod(Σ) be the category of pairs
(A,∼) where A is a hidden Σ-algebra and ∼ is an equivalence relation on A
which is identity on visible sorts, with morphisms f : (A,∼) → (A′,∼′) with
f : A → A′ a Σ-homomorphism such that f(∼) ⊆ ∼′. If φ : Σ1 → Σ2 is
a hidden signature morphism, then Mod(φ), often denoted |φ, is defined as
(A,∼)|φ = (A|φ,∼|φ) on objects, where A|φ is the ordinary many-sorted algebra
reduct and (∼|φ)s =∼φ(s) for all sorts s of Σ1, and as f |φ : (A,∼)|φ → (A′,∼′)|φ
on morphisms. Notice that indeed f |φ(∼|φ) ⊆ ∼′|φ, so Mod is well defined.

Hiding More of Hidden Algebra 1717

Satisfaction Relation: A Σ-model (A,∼) satisfies a conditional Σ-equation
(∀X) t = t′ if t1 = t′1, ..., tn = t′n iff for each θ : X → A, if θ(t1) ∼ θ(t′1), ...,
θ(tn) ∼ θ(t′n) then θ(t) ∼ θ(t′). Also (A,∼) satisfies a Σ-sentence γ ∈ Σ iff γ is
congruent for ∼.

Theorem 22. Satisfaction Condition: Let φ : Σ1 → Σ2 be a morphism of
hidden signatures, let e be a Σ1-sentence and let (A,∼) be a model of Σ2. Then
(A,∼) |=Σ2 φ(e) iff (A,∼)|φ |=Σ1 e.

Proof. First suppose e is a Σ-equation (∀X) t = t′ if t1 = t′1, ..., tn = t′n. Notice
that there is a bijection between functions from X to (A|φ) and functions from
X ′ to A taking θ : X → A|φ to θ′ : X ′ → A defined by θ′(x : φ(s)) = θ(x : s) and
taking θ′ : X ′ → A to θ : X → A|φ defined by θ(x : s) = θ′(x : φ(s)). Because
for every term t in TΣ1(X) we have θ(t) = θ′(φ(t)) where φ(t) is the term t with
each x : s replaced by x : φ(s) and each operation σ replaced by φ(σ), the result
is immediate.

Second, suppose e is an operation γ ∈ Σ. Then (A,∼) satisfies φ(γ) iff φ(γ)
is congruent for ∼, which is equivalent to γ being congruent for ∼|φ. 2

This institution justifies our belief that asserting an operation behavioral is a
kind of sentence, not a kind of syntactic declaration as in the “extended hidden
signatures” of [5]2. Coinduction now appears in the following elegant guise:

Proposition 23. Given a hidden subsignature Γ of Σ, a set of Σ-equations E
and a hidden Σ-algebra A, then

– (A,∼) |=Σ E,Γ implies (A,≡Γ
Σ) |=Σ E,Γ .

– (A,≡Γ
Σ) |=Σ Γ .

– A |≡Γ
Σ E iff (A,≡Γ

Σ) |=Σ E iff (A,≡Γ
Σ) |=Σ E,Γ .

2

There is a natural relationship between our two institutions:

– since congruent operations are declared with sentences, any signature in the
first institution translates to a specification in the second;

– any model A of (Σ,Γ) in the first institution gives a model of the second,
namely (A,≡Γ

Σ);
– any (Σ,Γ)-sentence is a Σ-sentence;

and we can see that for any (Σ,Γ)-sentence e and any hidden Σ-algebra A, we
get A |≡Γ

Σ e iff (A,≡Γ
Σ) |=Σ e. This relationship suggests a new (as far as we

know) kind of relationship between institutions (here Th(I) denotes the category
of theories over I, see [10]):

Definition 24. Given two institutions I = (Sign,Mod,Sen, |=) and I′ =
(Sign′,Mod′,Sen′, |=′), then an institution theoroidal forward morphism3, from
I to I ′ is (Φ, β, α) where:
2 However, the most recent version of [8] treats coherence assertions as sentences.
3 This terminology is a preliminary attempt to bring some order to the chaos of re-

lationships among institutions, by using names that suggest the nature of the rela-
tionship involved.

1718 Joseph Goguen and Grigore Roşu

– Φ : Sign → Th(I′) is a map such that Φ;U ′ : Sign → Sign′ is a functor,
where U ′ : Th(I ′) → Sign′ is the forgetful functor; we ambiguously let Φ
also denote the functor Φ;U ′,

– β : Mod⇒ Φ;Mod′ is a natural transformation, and
– α : Sen⇒ Φ;Sen′ is a natural transformation,

such that for any signature Σ ∈ Sign, any sentence e ∈ Sen(Sign) and any
modelm ∈Mod(Sign), the satisfaction condition, m |=Σ e iff β(m) |=Φ(Σ) α(e),
holds. 2

Proposition 25. There is an institution theoroidal forward morphism from the
first to the second institution defined above. 2

We thank the anonymous referees for their comments, which have helped us to
piece together aspects of the relationship of our work with that of other groups,
and to conclude that a convergence of viewpoints may be occurring within the
broad area that might be called behavioral algebra.

References

[1] Gilles Bernot, Michael Bidoit, and Teodor Knapik. Observational specifications
and the indistinguishability assumption. Theoretical Computer Science, 139(1-
2):275–314, 1995. Submitted 1992.

[2] Michael Bidoit and Rolf Hennicker. Behavioral theories and the proof of behavioral
properties. Theoretical Computer Science, 165(1):3–55, 1996.

[3] Michael Bidoit and Rolf Hennicker. Modular correctness proofs of behavioural
implementations. Acta Informatica, 35(11):951–1005, 1998.

[4] Michael Bidoit and Rolf Hennicker. Observer complete definitions are be-
haviourally coherent. Technical Report LSV-99-4, ENS de Cachan, 1999.

[5] Răzvan Diaconescu. Behavioral coherence in object-oriented algebraic specifica-
tion. Technical Report IS–RR–98–0017F, Japan Advanced Institute for Science
and Technology, June 1998. Submitted for publication.

[6] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification. World
Scientific, 1998. AMAST Series in Computing, volume 6.

[7] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for
modularization. In Gerard Huet and Gordon Plotkin, editors, Logical Environ-
ments, pages 83–130. Cambridge, 1993.

[8] Răzvan Diaconescu and Kokichi Futatsugi. Logical foundations of CafeOBJ. Sub-
mitted for publication.

[9] Joseph Goguen. Types as theories. In George Michael Reed, Andrew William
Roscoe, and Ralph F. Wachter, editors, Topology and Category Theory in Com-
puter Science, pages 357–390. Oxford, 1991. Proceedings of a Conference held at
Oxford, June 1989.

[10] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39(1):95–146, January 1992.

[11] Joseph Goguen and Grant Malcolm. Algebraic Semantics of Imperative Programs.
MIT, 1996.

Hiding More of Hidden Algebra 1719

[12] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer Sci-
ence, to appear 1999. Also UCSD Dept. Computer Science & Eng. Technical Re-
port CS97–538, May 1997.

[13] Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract data types. In
Raymond Yeh, editor, Current Trends in Programming Methodology, IV, pages
80–149. Prentice-Hall, 1978.

[14] Rolf Hennicker. Context induction: a proof principle for behavioral abstractions.
Formal Aspects of Computing, 3(4):326–345, 1991.

[15] Rolf Hennicker and Michel Bidoit. Observational logic. In Algebraic Methodology
and Software Technology (AMAST’98), volume 1548 of Lecture Notes in Computer
Science, pages 263–277. Springer, 1999.

[16] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. Bulletin
of the European Association for Theoretical Computer Science, 62:222–259, 1997.

[17] Seikô Mikami. Semantics of equational specifications with module import and
verification method of behavioral equations. In Proceedings, CafeOBJ Symposium.
Japan Advanced Institute for Science and Technology, 1998. Numazu, Japan, April
1998.

[18] Peter Padawitz. Swinging data types: Syntax, semantics, and theory. In Proceed-
ings, WADT’95, volume 1130 of Lecture Notes in Computer Science, pages 409–
435. Springer, 1996.

[19] Peter Padawitz. Towards the one-tiered design of data types and transition sys-
tems. In Proceedings, WADT’97, volume 1376 of Lecture Notes in Computer Sci-
ence, pages 365–380. Springer, 1998.

[20] Horst Reichel. Behavioural equivalence – a unifying concept for initial and fi-
nal specifications. In Proceedings, Third Hungarian Computer Science Conference.
Akademiai Kiado, 1981. Budapest.

[21] Grigore Roşu and Joseph Goguen. Hidden congruent deduction. In Ricardo Ca-
ferra and Gernot Salzer, editors, Proceedings, First-Order Theorem Proving -
FTP‘98, pages 213–223. Technische Universitat Wien, 1998. Full version to appear
in Lecture Notes in Artificial Intelligence, 1999.

A Termination Detection Algorithm:

Specification and Verification

Robert Eschbach

Department of Computing Sciences,
University of Kaiserslautern, PO 3049

D-67653 Kaiserslautern, Germany

Abstract. We propose a methodology for the specification and verifica-
tion of distributed algorithms using Gurevich’s concept of Abstract State
Machines. The methodology relies on a distinction between a higher-
level specification and a lower-level specification of an algorithm. The
algorithm is characterized by an informal problem description. A justi-
fication assures the appropriateness of the higher-level specification for
the problem description. A mathematical verification assures that the
lower-level specification implements the higher-level one and is based
on a refinement-relation. This methodology is demonstrated by a well-
known distributed termination detection algorithm originally invented
by Dijkstra, Feijen, and van Gasteren.

1 Introduction

In this paper we propose a methodology for the specification and verification
of distributed algorithms using Gurevich’s concept of Abstract State Machines
(cf. [Gur95], [Gur97], [Gur99]). The development of distributed algorithms usu-
ally starts with an informal problem description (see figure 2). In order to get
a mathematical model of the problem description at the starting point of con-
struction one has to choose what often is called a ground model (cf. [Bör99])
or a higher-level specification for the problem description. In this paper the
higher-level specification is an Abstract State Machine (ASM) and as such it
constitutes a well-defined mathematical object. An informal justification1 shows
the appropriateness of the higher-level specification for the problem description
(cf. [Bör99]). A so-called lower-level specification represents the algorithm on
a more concrete abstraction level as the higher-level specification. The mathe-
matical verification guarantees that the lower-level specification implements the
higher-level specification and is usually based on refinement relations. In this
paper we focus mainly on the mathematical verification.
We use a well-known distributed algorithm, namely a termination detection al-
gorithm originally invented by Dijkstra, Feijen and van Gasteren in [DFvG83]
as an example to show how such an algorithm can be specified and verified
within this methodology using Abstract State Machines. We give in this paper
1 Since the problem description is informal, a mathematical proof is not possible.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1720–1737, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Termination Detection Algorithm: Specification and Verification 1721

a correctness proof for a variation2 of the algorithm presented in [DFvG83]. As
in [BGR95] our correctness proof relies on a distinction between a higher-level
view and a lower-level view of the algorithm. The proof itself is given on a de-
tailed mathematical level using thereby standard techniques from mathematics
like case distinction or induction. We introduce for both the higher-level speci-
fication and the lower-level specification a kind of stuttering steps. The concept
of stuttering is well-known from TLA (cf. [Lam94]). Stuttering steps represent
steps in which a machine changes its local state. These changes are invisible. The
stuttering itself leads to a simple and natural refinement relation which eases
the construction of our correctness proof.

justification
informal

problem description higher-level specification

lower-level specification

mathematical
verification

Fig. 1. Underlying Methodology

We specify and verify the termination detection algorithm of Dijkstra, Feijen,
van Gasteren on a detailed mathematical level. The reader who is interested
in a more intuitive explanation and an excellent derivation of this algorithm
is referred to [Dij99] (or [DFvG83] for the original version). We start with a
description of the problem of termination detection [Dij99]:

We consider N machines, each of which is either active or passive. Only
active machines send what are called “messages” to other machines; each
message sent is received some finite period of time later. After having
received a message a machine is active; the receipt of a message is the only
mechanism that triggers for a passive machine its transition to activity.
For each machine, the transition from the active to the passive state may
occur “spontaneously”. From the above it follows that the state in which

2 The variation itself stems from Shmuel Safra. The variation is that message trans-
mission no longer needs to be instantaneous and is described in [Dij99]. In [Dij99]
Safra’s algorithm is derived along the very same lines as in [DFvG83]. Note also
that in [DFvG83] the authors present a [DS80]-algorithm for the detection of the
termination of a distributed computation.

1722 Robert Eschbach

all machines are passive and no messages are on their way is stable: the
distributed computation with which the messages are associated is said
to have terminated. The purpose of the algorithm to be designed is to
enable one of the machines, machine nr. 0 say, to detect that this stable
state has been reached.

We denote the process by which termination is detected as “the probe”. In addi-
tion to messages, machines can send what are called “signals” to other machines.
We adopt a circular arrangement of the machines, more precisely, we assume that
machine nr. 0 can send a signal to machine nr. N-1 and that machine nr. i+1
can send a signal to machine nr. i. Note that a machine can send a signal irre-
spective of its activity state. Especially this means that a passive machine can
send a signal but cannot send a message.

This paper is organized as follows. In section 2 we construct the higher-level spec-
ification A. This ASM represents the problem of termination detection stated
above. We present domains, functions, modules, runs, and constraints of A. In
section 3 we construct the lower-level specification A′. This ASM represents the
termination detection algorithm presented in [Dij99]. In the lower-level specifi-
cation the probe is implemented by adding new rules and refining old ones of
A, respectively. We present the lower-level specification in the same way as the
higher-level one. Section 4 presents the correctness proof for the termination
detection algorithm. First we define what it means for the lower-level ASM A′
to implement the higher-level ASM A. Then we prove that A′ implements A. In
section 5 we give some concluding remarks.
Throughout this paper we assume the reader to be familiar with Gurevich’s
ASMs, especially with distributed ASMs, cf. [Gur95].

2 Higher-Level Specification

This section presents a higher-level specification for the problem description
given in the introduction. The higher-level specification is given as a distributed
ASM. In the following we describe a distributed ASM by its

1. domains,
2. functions,
3. modules,
4. runs,
5. constraints.

Domains (i.e., sets) can be classified into static and dynamic domains, i.e., do-
mains which are changeable during a run or not changeable, respectively. Func-
tions can be classified into internal, shared, and external functions. Our classifi-
cation is based on a broad distinction between ASM agents and the environment.
A more detailed classification can be found in [Bör99]. Internal functions can be
changed by ASM agents only. A shared function can be affected by both ASM

A Termination Detection Algorithm: Specification and Verification 1723

agents and the environment. External functions can be changed by the envi-
ronment only. Furthermore functions can be classified into static or dynamic
functions, i.e., functions which are changeable during a run or not changeable,
respectively. Modules are ASM rules (programs) which are associated with ASM
agents. In a run an agent executes its associated module. In this paper a run
is essentially an infinite sequence of states Sk and an infinite sequence of ASM
agents Ak such that Sk can be transformed by agent Ak and the environment
into state Sk+1. Constraints can be used to impose conditions upon functions,
e.g. external functions.

2.1 Domains of A
We define Machine to be the static universe of machine identifiers {0, . . . , N−1}.
We assume each machine identifier to be associated with an agent in the dis-
tributed ASM A. In the following instead of agents we simply speak of machines
of A. Bool denotes the domain {true, false} of boolean values, Nat the universe
of natural numbers, and Int the universe of integers. The set {SM, RM, P, S}
represents the set of so-called execution-modes.

2.2 Functions of A
Let τ be the vocabulary of A. Besides some standard functions on Bool, Nat,
and Int the vocabulary τ is defined by the following functions. Messages are
realized by an internal, dynamic function

messages : Machine -> Nat.

We assume that initially messages has value 0 for all machines. A machine can
send a message (SM), receive a message (RM), execute the probe (P), or execute
a skip (S). For this purpose we introduce an external, dynamic function

mode : Machine -> {SM,RM,P,S},

which determines the execution mode for each machine. A machine can either
be active or be passive. The shared, dynamic function

active: Machine -> Bool,

determines the activity state for each machine. Active machines can send mes-
sages to other machines. The external, dynamic function

receivingMachine: -> Machine

determines the destination of a message transmission. In order to detect termi-
nation we introduce the external, dynamic function

terminationDetected : -> Bool.

We assume terminationDetected initially to be false.

1724 Robert Eschbach

2.3 Modules of A
Each machine executes a module consisting of the rules SendMessage, Receive-
Message, and Skip.
Sending a message to machine j is realized by incrementing messages(j), re-
ceiving a message by machine i by decrementing messages(i). Note that only
active machines can send messages.

SendMessage

if mode(me) = SM and active(me) = true then
messages(receivingMachine) := messages(receivingMachine) + 1

On receipt of a message, the receiving machine becomes active. Note that ma-
chines can receive messages irrespective of their activity state.

ReceiveMessage

if mode(me) = RM and messages(me) > 0 then
messages(me) := messages(me) - 1, active(me) := true

The rule Skip realizes stuttering steps, i.e., steps in which machines invisibly
change their local states. In A the probe is specified by execution-mode P, rule
Skip, and the external, dynamic function terminationDetected constrained by
properties given in section 2.5. An executing machine in mode P performs a
stuttering step. Stuttering steps in a run can be replaced by concrete transi-
tions in the lower-level specification. In this way we obtain a simple and natural
refinement relation.

Skip

if mode(me) = S or mode(me) = P then skip

2.4 Runs of A
We rely on the notion of partially ordered runs of [Gur95] generalized to external
and shared functions and specialized to the linear ordered set of moves (Nat, <).
We consider only infinite runs. Since the only agents in A are machines, the
function A which determines for each k ∈ Nat an agent performing move k, is a
mapping from the natural numbers to machine identifiers. The state function S
is a mapping from the natural numbers to the states of A. We define a possible
run of A to be a tuple (A, S) with A : Nat → Machine and S : Nat → State
such that

1. S(0) is an initial state of A, i.e., S(0) fulfills the initial conditions given in
section 2.2, and

A Termination Detection Algorithm: Specification and Verification 1725

2. state S(k+1) is obtained from S(k) by executing the module of machine A(k)
at S(k) and then executing an action of the environment, i.e. by changing
shared and external functions in an arbitrary way.

Instead of S(k) (or A(k)) we sometimes write Sk (or Ak). In the following we
simply say Sk+1 is obtained from Sk by executing machine Ak, i.e., the action
of the environment is omitted. We speak of move k or of step (k, k +1) in run ρ.
We say ρ is a run of A if ρ satisfies the constraints given in the following section
2.5.

Remark. We could use real-time semantics with either instantaneous or durative
actions, like in [BGR95], but the algorithm can be formulated naturally and
adequately in this simpler semantics.

2.5 Constraints of A

We present the constraints of A using the standard temporal operators 2 and
3. We denote the value that a term t takes at time k in a run ρ by tk. In the
following let ρ = (A, S) be a possible run of A.

C0: ∀i ∈Machine : 23(A = i ∧mode(i) = RM)

Intuitively, constraint C0 assures that a message sent is received a finite period
of time later. Note that a machine may never send a message but must receive
a sent message. Suppose one of the machines sends machine i a message. Thus
there exists a time point, say k, with messages(i)k > 0. From C0 we know there
exists a time point, say l, with k ≤ l such that machine i is executed in step
(l, l + 1) with mode(i)l = RM. In this step machine i receives a sent message.

C1: The environment can change the function active in step (k, k + 1)
only from true to false and this only if mode(Ak)k 6= RM.

The receipt of a message is the only way for a passive machine to become active.
Constraint C1 guarantees that the environment cannot change the activity state
of an active machine which tries to receive a message. This avoids “inconsis-
tencies” between receipt of a message and “spontaneous” transitions from the
active to the passive state by the environment. Note that constraints C0 and C1
ensure a kind of “fair” runs. The ASM A together with C0 and C1 model the
distributed system in the problem description.

Let Bk =
∑

i : 0 ≤ i < N : messages(i)k denote the number of messages on
their way at time k. Termination at time k can then be characterized by:

Terminationk , Bk = 0 ∧ (∀i ∈Machine : active(i)k = false).

1726 Robert Eschbach

Now we pose some constraints on terminationDetected. These constraints are
an essential part of the higher-level specification.

C2: 2(terminationDetected→ Termination)

Constraint C2 assures that the value of terminationDetected is correct, i.e., if
termination is detected in ρ then there is termination.

C3: 2(Termination→ 3 terminationDetected)

Constraint C3 makes sure that if there is termination in ρ then terminationDe-
tected eventually becomes true.

C4: 2(terminationDetected→ 2 terminationDetected)

Constraint C4 guarantees that terminationDetected remains true if it is once
set to true. Constraints C2, C3, and C4 ensure “good” runs, i.e., runs in which
the value of terminationDetected is true. Constraints C2, C3, and C4 essentially
specify correctness of the termination detection problem. Note that constraints
C3 and C4 implies 2(Termination → 32 terminationDetected). The converse
implication does not hold.

Remark. We think the higher-level specification A represents faithfully the
problem description given in section 1 and hence can be seen as an adequate
mathematical model of the informal problem description. Nevertheless a justi-
fication for this ASM is necessary. We refer the reader to [Bör99] for further
information on the problem of justification. We concentrate in this paper mainly
on the mathematical verification. A detailed justification is beyond the scope of
this paper.

3 Lower-Level Specification

This section presents a lower-level specification for the algorithm presented in
[DFvG83]. The lower-level specification is given as a distributed ASM. We de-
scribe A′ in the same way as A.

3.1 Domains of A0

The abstract state machine A′ has the same domains as A.

A Termination Detection Algorithm: Specification and Verification 1727

3.2 Functions of A0

Let τ ′ be the vocabulary of A′. We do not mention standard functions on Bool,
Nat, and Int. Vocabulary τ is a subvocabulary of τ ′, i.e., τ ⊆ τ ′. The following
functions of A′ coincides on declaration, classification and initial conditions with
the ones given in A.

1. messages : Machine -> Nat (internal, dynamic)
2. mode : Machine -> {SM,RM,P,S} (external, dynamic)
3. active: Machine -> Bool (shared, dynamic)
4. receivingMachine: -> Machine (external, dynamic)

In A the function terminationDetected is an external, dynamic function. In
A′ the function terminationDetected is an internal, dynamic function.

terminationDetected : -> Bool.

We assume terminationDetected initially to be false.
Now we present new functions of A′, i.e., functions of A′ which are not part of
the signature of A. Each machine has a local message counter which is modeled
by an internal dynamic function

c: Machine -> Int.

This local message counter can be incremented (sending a message) or decre-
mented (receiving a message) by each machine. The intention is that counter
c(i) represents local knowledge which can be used and changed only by ma-
chine i, i.e., c(i) can be seen as an internal location for machine i. We assume
that initially all local message counters have value 0.
Each machine can turn either white or black. The color of a machine is realized
by an internal, dynamic function

color: Machine -> {black, white}.

We assume each machine initially to be white.
We describe the probe as a token being sent around the ring using signalling
facilities. The token is realized by an internal, dynamic function

token: Machine -> Bool.

Initially token is false for all machines. Like machines the token can turn either
white or black. Since there is at most one token propagated through the ring we
use nullary, internal, dynamic functions to model color and value of the token,
respectively.

tokenColor: -> {black, white}
tokenValue: -> Int

1728 Robert Eschbach

The function tokenColor is assumed initially to be white and the function
tokenValue initially to be 0. Note that M0 initiates the probe by transmitting
the token to MN−1 and each Mi+1 transmits the token to Mi. We use the
internal, static function

next: Machine -> Machine,

to model this circular arrangement of machines3.
The internal, static function

id: Machine -> Machine,

returns for each machine its machine identifier.
We assume that machine M0 can initiate the probe. We realize the initiation of
the probe by a shared function

initiateProbe : -> Bool.

We assume initiateProbe initially to be false.

3.3 Modules of A0

Each machine executes a module consisting of the rules SendMessage, ReceiveMes-
sage, TransmitToken, InitiateProbe, NextProbe, and Skip.
Rule SendMessage of A′ is a refined version of the one ofA. In the refined version
additionally the local message counter c(me) is affected.

SendMessage

if mode(me) = SM and active(me) = true then
messages(receivingMachine) := messages(receivingMachine) + 1,
c(me) := c(me) + 1

On receipt of a message, the receiving machine is active and turns black. Note
that machines can receive messages irrespective of their activity state. Note
further that rule ReceiveMessage is a refined version of the one of A since it
coincides with the latter on vocabulary τ .

ReceiveMessage

if mode(me) = RM and messages(me) > 0 then
messages(me) := messages(me) - 1, active(me) := true,
c(me) := c(me) - 1, color(me) := black

3 next(0) = N − 1, next(N − 1) = N − 2, . . . , next(1) = 0

A Termination Detection Algorithm: Specification and Verification 1729

In A the probe is realized by stuttering steps (rule Skip) and the external, dy-
namic function terminationDetected constrained by C2, C3, C4. In A′ the
probe is realized by the rules TransmitToken, InitiateProbe and NextProbe and
the internal, dynamic function terminationDetected. Upon token transmis-
sion4 the executing machine is passive and turns white. The value of the token is
changed according to the local message counter. Note also that in the following
rule only machines Mi+1 can transmit the token.

TransmitToken

if mode(me) = P and token(me) = true and
active(me) = false and id(me) <> 0 then
token(me) := false, token(next(me)) := true,
if color(me) = black then tokenColor := black,
tokenValue := tokenValue + c(me), color(me) := white

If machine 0 is executed in mode P and initiateProbe = true holds then a new
token is created and transmitted to machine N−1. The token itself is white and
has value 0. Furthermore machine 0 turns to white and sets initiateProbe to
false. The latter avoids “nested” probes.

InitiateProbe

if mode(me) = P and id(me) = 0 and initiateProbe = true then
token(next(me)) := true, tokenValue := 0,
tokenColor := white, color(me) := white,
initiateProbe := false

At token return machine 0 investigates whether the stable state of termination
has been reached or not. We say, the probe has been successful if at token return
c(0) + tokenValue = 0, machine 0 is white and passive, and the token is white.
After an successful probe machine 0 sets terminationDetected to true. After
an unsuccessful probe machine 0 initiates a next probe by setting initiateProbe
to true.

NextProbe

if mode(me) = P and id(me) = 0 and token(me) = true then
if c(me) + tokenValue = 0 and color(me) = white and

tokenColor = white and active(me) = false then
terminationDetected := true

else
initiateProbe := true, token(me) := false

4 via signal communication facilities which are available irrespective of facilities for
message transmission, cf. section 1

1730 Robert Eschbach

As in A we realize stuttering by a rule Skip. Note also that in A an executing
machine in mode P performs a stuttering step (cf. rule Skip of A).

Skip

if mode(me) = S then skip

3.4 Runs of A0

We use the same notion of possible run of A′ as for A. We say ρ′ is a run of A′ if
ρ′ satisfies constraints C0, C1, and the constraints given in the following section
3.5.

3.5 Constraints of A0

In the following let ρ′ = (A′, S′) be a possible run of A′. Besides constraints C0
and C1 (stated for A′) a run of A′ has to fulfill the following constraints.

C5: ∀i ∈Machine : 23(A′ = i ∧mode(i) = P)

Intuitively, constraint C5 assures that token transmission proceeds. More pre-
cisely, constraint C5 assures that each machine is executed infinite many times
in mode P.

C6: The environment sets initiateProbe in ρ′ exactly once to true.

Intuitively, constraint C6 assures that in each run the first probe is initiated by
the environment. Note that initially initiateProbe is false and cannot changed
by a machine until it is set to true by the environment.

4 Verification

In this section we show that the lower-level ASM A′ is an implementation of A.
In the first subsection we define what it means for A′ to implement A. In the
second subsection we prove that A′ implements A.

4.1 Implementation

In this subsection we define what it means for the lower-level ASM A′ to imple-
ment the higher-level ASM A.
There exists two distinct approaches to specification which Lamport calls in
[Lam86] the prescriptive and restrictive approaches. In the prescriptive approach
an implementation must exhibit all the same possible behaviors as the specifi-
cation. In the restrictive approach, it is required that every possible lower-level
behavior is represented by a higher-level behavior. In this paper the intention is

A Termination Detection Algorithm: Specification and Verification 1731

that the lower-level specification A′ should satisfy constraints C2, C3, C4, i.e.,
each run of A′ should satisfy C2, C3, C4. We do not require that all higher-level
runs are implemented in a single implementation. Otherwise an implementation
has to detect termination in the moment it occurred (cf. constraint C3). We
adopt here the restrictive approach.
As in first-order logic, the reduct of an τ ′-state S′ to the vocabulary τ is the
state S denoted by S′|τ obtained from S′ by restricting the interpretation of
function names on τ ′ to τ . Note that τ is a subvocabulary of τ ′.
Now we define a refinement-relation, more precisely, we define a refinement-
relation between A and A′ which is sufficient to give the corresponding correct-
ness proof. We say a run ρ′ = (A′, S′) of A′ implements a run ρ = (A, S) of A
if

1. Sk
∼= S′k|τ , and

2. Ak = A′k

for all k ∈ Nat. Call a run ρ of A a higher-level run and a run ρ′ of A′ a lower-
level run, respectively. We say that ASM A′ implements A iff each lower-level run
implements a higher-level run. If Run(A) denotes the collection of runs of A and
Run(A′) the collection of runs of A′, respectively, then this refinement-relation
can be characterized by

Run(A′)|τ ⊆ Run(A),

where Run(A′)|τ denotes the collection of runs of A′ restricted to the vocabulary
τ of A (cf. the construction of ρ in the following section 4.2). Look at [AL91]
for a detailed discussion under which assumptions the existence of a refinement-
relation can be guaranteed.

4.2 A0 Implements A
Now we will prove that A′ implements A. We have to show that each lower-level
run is an implementation of a higher-level run. Let ρ′ = (A′, S′) be an arbitrary
run of A′. We define a tuple ρ = (A, S) by:

1. Ak := A′k
2. Sk := S′k|τ

We show that ρ is a run of A. We make the following observations: (i) constraints
C0 and C1 are satisfied in ρ (denoted by ρ |= C0 ∧ C1), (ii) Sk

∼= S′k|τ and
Ak = A′k hold for all k ∈ Nat. It remains to show that (i) ρ is a possible run of
A, and (ii) ρ |= C2 ∧ C3 ∧ C4. In this case ρ is a run of A. From this we can
conclude that ρ′ is an implementation of ρ and hence that A′ implements A.
Since A and A′ require the same initial conditions for functions from τ we know
that S′0|τ is an initial state of A. It remains to show that Sk+1 can be obtained
from Sk by executing machine Ak in A, i.e., that the so-called reduct property
depicted in Fig. 2 holds. Note that in A′ (and in A) for each time point at most
one guard of the rules is satisfied.

1732 Robert Eschbach

A : S′
k|τ

A′
k- S′

k+1|τ

A′ : S′
k

|τ
6

A′
k

- S′
k+1

|τ
6

Fig. 2. Reduct Property

Lemma 1. For all k ∈ Nat state Sk+1 can be obtained from Sk by executing
machine Ak in A.

Proof. Let k ∈ Nat. We simply say Rk holds, if the reduct property holds for
k, i.e. if S′k+1|τ is obtained from S′k|τ by executing machine A′k. (1) Assume
mode(Ak)k 6= P. Rules SendMessage and ReceiveMessage of A′ are refined ver-
sions of the corresponding rules of A. Mode S leads in both A′ and A′ to stut-
tering steps. Hence we can conclude Rk. (2) Assume mode(Ak)k = P. Rules
TransmitToken and InitiateProbe of A′ change only functions from τ ′ \ τ . Rule
NextProbe of A′ changes function terminationDetected. This function is an ex-
ternal function of A, i.e., can be changed by the environment in an arbitrary
way. q.e.d.

With lemma 1 we can now conclude that ρ is a possible run of A. It remains
to show that ρ fulfills constraints C2, C3, and C4. Let t : Nat → Machine be
a partial function which is defined for all time points k, denoted by Def(t(k)),
at which a token exists and which returns for such time points the machine at
which the token resides. For the sake of brevity let qk denote tokenValuek. The
following property P is taken from [Dij99] and is defined as

P: 2(Def(t)→ (P0∧ (P1∨P2∨P3∨P4)))

where:

P0: B = (
∑

i : 0 ≤ i < N : c(i))

Informally, property P0 says that the sum of all local message counters is the
number of all messages on their way.

P1: (∀i : t < i < N : active(i) = false) ∧ (
∑

i : t < i < N : c(i)) = q)

Call machines i : t < i < N visited machines. Informally, property P1 says that
all visited machines are passive and that the tokenValue is the sum of the local
message counters of these machines.

A Termination Detection Algorithm: Specification and Verification 1733

P2: (
∑

i : 0 ≤ i ≤ t : c(i)) + q > 0

Informally, property P2 means that the sum of all local message counters of the
unvisited machines plus the value of the token is greater than 0.

P3: ∃i : 0 ≤ i ≤ t : color(i) = black

Informally, property P3 means that there exists an unvisited machine i which is
black.

P4: tokenColor = black

The meaning of property P4 is clear. We write A′ |= P if each run of A′ satisfies
property P.

Lemma 2. P is an invariant of A′, i.e., A′ |= P.

Proof. Let ρ′ = (A′, S′) be a run run of A′. We simply say Qk holds for a state
property Q if S′k |= Q is true.
The message counter of a machine will be incremented when sending a message
and decremented when receiving a message. Thus we can immediately conclude
∀k : P0k or equivalently 2P0.
Let k̂ be an arbitrary natural number such that t(k̂) is defined. From the rules of
A′ follows that there must be at least one probe starting before k̂. More precisely,
there exists a maximal k0 ≤ k̂ such that at time k0−1 no machine has the token
and at time k0 machine MN−1 has the token.
We show:

1. the conjecture holds for k0, and
2. if the conjecture holds for a k < k̂ so it holds for k + 1.

We start with k = k0. At step (k0−1, k0) the token is created. Thus M0 executes
in this move rule InitiateProbe. Hence t(k0) = N − 1 and P1k0 . Assume the
conjecture to be true for k < k̂. Thus at least one of the properties P1k, ..., P4k

holds.

(1) Assume P1k holds.
(1.1) Assume that there exists i0 : t(k) < i0 < N such that Mi0 receives

a message in step (k, k + 1). Since Mi0 executes rule ReceiveMessage
in step (k, k + 1) the message counter of Mi0 is decremented and Mi0

becomes active (cf. C1). Token location, token color, and token value do
not change. We know that c(i0)k+1 = c(i0)k − 1, active(i0)k+1 = true,
and t(k) = t(k + 1) hold. Since machine i0 receives a message we get
Bk > 0. With P1k we can conclude (

∑
i : t(k + 1) < i < N : c(i)k+1) =

qk −1. With P0k+1 and Bk+1 ≥ 0 we get P2k+1.

1734 Robert Eschbach

(1.2) Assume that for all i : t(k) < i < N machine Mi does not receive a
message in step (k, k + 1). At time k all machines Mi with t(k) < i < N
are passive, thus they can not send a message and hence their message
counters do not change. Their activity state does not change, too.

(1.2.1) Assume the token is not transmitted in step (k, k + 1) . Then P1k+1

holds.
(1.2.2) Assume the token is transmitted in step (k, k +1) . We can conclude

that rule TransmitToken is executed by machine Mt(k) and t(k) > 0.
Hence machine Mt(k) is passive both at time k and at time k +1 (cf.
C1). The message counter of Mt(k) does not change. When Mt(k)

executes rule TransmitToken it increases the token value by c(t(k)).
Hence P1k+1 holds.

(2) Assume P2k holds.
(2.1) Assume there exists i0 : 0 ≤ i0 ≤ t(k) such that Mi0 receives a message

in step (k, k + 1). Then color(i0)k+1 = black and t(k + 1) = t(k) holds.
Thus P3k+1 holds.

(2.2) Assume for all i : 0 ≤ i ≤ t(k) Mi receives no message in step (k, k + 1).
Thus we get

∑
i : 0 ≤ i ≤ t(k) : c(i)k+1 ≥

∑
i : 0 ≤ i ≤ t(k) : c(i)k.

(2.2.1) Assume there is token transmission in step (k, k + 1). In this case
P2k+1 holds.

(2.2.2) Assume there is no token transmission in step (k, k +1). In this case
we know that rule TransmitToken is executed by machine Mt(k).
Furthermore we know that t(k) > 0 holds. We get immediately

∑
i :

0 ≤ i ≤ t(k) : c(i)k+1 =
∑

i : 0 ≤ i ≤ t(k) : c(i)k. Using t(k + 1) =
t(k) − 1 and qk+1 = qk + c(t(k))k we get (

∑
i : 0 ≤ i ≤ t(k + 1) :

c(i)k+1) + qk+1 = (
∑

: 0 ≤ i ≤ t(k) : c(i)k) + qk. The assumption
P2k gives P2k+1.

(3) Assume P3k holds.
(3.1) Assume t(k + 1) = t(k) holds. We get immediately P3k+1.
(3.2) Assume t(k + 1) 6= t(k) holds.

(3.2.1) Assume Mt(k) is black at time k. The token will be blackened and
transmitted to machine Mt(k+1) in step (k, k + 1). Thus, we get
P4k+1.

(3.2.2) Assume Mt(k) is white at time k. There exists i with 0 ≤ i ≤ t(k+1)
such that Mi is black at time k + 1. Thus, we get P3k+1.

(4) Assume P4k holds. If Machine 0 initiates the probe it creates a new token
(cf. rule InitiateProbe). This token is transmitted to machine N − 1. The
token is white and has value 0. Within a probe the token can only turn black
(cf. rule TransmitToken). Thus we can conclude that P4k+1 holds.

q.e.d.

This invariant is now used to prove ρ |=C2∧C3∧C4. Note that ρ′ |=C2∧C3∧C4
implies ρ |= C2∧C3∧C4. We start with a simple lemma.

A Termination Detection Algorithm: Specification and Verification 1735

Lemma 3. ρ |= C4

Proof. There exists no rule in A′ which sets terminationDetected to false. Thus
we get ρ′ |= C4 and hence ρ |= C4. q.e.d.

Now we show that the value of terminationDetected in ρ is “correct”.

Lemma 4. ρ |= C2

Proof. Assume in ρ′ that there exists a time point k with terminationDetectedk =
true. Let k1 be the smallest number with this property. This means that at
time k0 := k1 − 1 terminationDetected is false. Hence M0 sets in step (k0, k1)
terminationDetected to true. Thus c(0)k0 + tokenValuek0 = 0, color(0)k0 =
white, active(0)k0 = false, and tokenColork0 = white. With lemma 2 we know
that P1k0 ∨ P2k0 ∨ P3k0 ∨ P4k0 . From the above follows ¬(P2k0 ∨ P3k0 ∨
P4k0). Hence P1k0 holds. We can conclude that Terminationk0 holds. Since
terminationDetected remains true and the termination situation is stable this
leads to ρ′ |= C2 and hence ρ |= C2. q.e.d.

Note that in each probe the token returns to machine 0 after a finite period
of time if ρ′ contains termination. In the following we simply say that in this
case the probe ends after a finite period of time. This can be seen by constraint
C5 and the rules realizing the probe, i.e., InitiateProbe, TransmitToken, and
NextProbe, respectively.

Lemma 5. ρ |= C3

Proof. Assume there exists in ρ′ a time point k such that Terminationk holds.
We know that in this case each probe ends after a finite period of time. If a probe
ends at a point with no termination machine 0 initiates a new probe. Otherwise
machine 0 would detect termination at a point with no termination. This is in
contradiction with lemma 4. Hence lemma 4 guarantees the initiation of a new
probe. Thus there exists a probe, say Pr0, which ends within the termination.

(1) Assume M0 detects in probe Pr0 termination. Then we are finished.
(2) Assume M0 detects not termination in probe Pr0. Then a new probe Pr1 is

initiated by M0. The token returns in probe Pr1 with tokenValue = 0. Since
upon token transmission machines whitens itself we know that all machines
are white when the token returns to M0.

(2.1) Assume the token returns white to M0 in Pr1. Then M0 detects termi-
nation.

(2.2) Assume the token returns black to M0 in Pr1. Then M0 initiates a new
probe Pr2. In this probe the token returns white to M0 and M0 detects
termination.

q.e.d.

We can conclude that ρ is a run of A. We have shown that each lower-level run
is an implementation of a higher-level run. This subsection is summarized in the
following theorem.

Theorem 1. A′ implements A

1736 Robert Eschbach

5 Conclusions

In this paper we have presented a methodology for the specification and ver-
ification of distributed algorithms using Gurevich’s concept of Abstract State
Machines. Starting with an informal problem description one constructs a higher-
level specification, which should be an appropriate mathematical model of the
problem description. The appropriateness is established by a justification. A
lower-level specification represents the algorithm on a more concrete abstraction
level. The mathematical verification guarantees that the lower-level specification
implements the higher-level specification. This methodology was presented by a
well-known distributed algorithm, namely the termination detection algorithm
originally invented by Dijkstra, Feijen and van Gasteren in [DFvG83] in a slight
variation presented in [Dij99].
In this paper we have mainly stressed on the mathematical verification. The
verification is given on a detailed mathematical level. Note that the presented
proofs are not formal, i.e., they are not based on a proof calculus. The goal
of these informal proofs is to give the underlying ideas. They can be seen as
abstractions from detailed and rigor formal proofs based on a proof calculus.
Future research will emphasize on a formal, mathematical verification.
The justification that the higher-level specification is appropriate for the problem
description is beyond the scope of this paper. Future research will emphasize
on methods for justification. More precisely, we will investigate the FOREST-
approach presented at web page [KP] (cf. [PGK97] for the underlying idea).

Acknowledgment. I would like to thank Thomas Deiß, Martin Kronenburg,
and Klaus Madlener for their constructive criticism on this paper. Furthermore
I would like to thank the anonymous referees for their useful and detailed com-
ments and suggestions on the previous version of this paper.

References

[AL91] Mart́in Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, May 1991.

[BGR95] Egon Börger, Yuri Gurevich, and Dean Rosenzweig. The bakery algorithm:
Yet another specification and verification. In E. Börger, editor, Specification
and Validation Methods, pages 231–243. Oxford University Press, 1995.

[Bör99] Egon Börger. High level system design and analysis using abstract state
machines. In Hutter, Stephan, Traverso, and Ullman, editors, Current
Trends in Applied Formal Methods (FM-Trends 98), LNCS. Springer, 1999.
to appear.

[DFvG83] Edsger W. Dijkstra, W.H.J. Feijen, and A.J.M. van Gasteren. Derivation
of a termination detection algorithm for distributed computations. Infor-
mation Processing Letters, 16(5):217–219, 1983.

[Dij99] Edsger W. Dijkstra. Shmuel Safra’s version of termination detection. In
M. Broy and R. Steinbrüggen, editors, Proceedings of the NATO Advanced
Study Institute on Calculational System Design, Marktoberdorf, Germany,
28 July - 9 August 1998, pages 297–301, 1999.

A Termination Detection Algorithm: Specification and Verification 1737

[DS80] Edsger W. Dijkstra and C.S. Scholten. Termination detection for diffusing
computations. Information Processing Letters, 11(1):1–4, 1980.

[Gur95] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University Press,
1995.

[Gur97] Yuri Gurevich. May 1997 draft of the ASM guide. Technical Report CSE-
TR-336-97, University of Michigan, 1997.

[Gur99] Yuri Gurevich. The sequential ASM thesis. Bulletin of the European
Association for Theoretical Computer Science, 67:93–124, February 1999.
Columns: Logic in Computer Science.

[KP] Martin Kronenburg and Christian Peper. The FOREST Approach: World
Wide Web page at http://rn.informatik.uni-kl.de/~forest/.

[Lam86] Leslie Lamport. On interprocess communication. Distributed Computing,
1:77–101, 1986.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[PGK97] Christian Peper, Reinhard Gotzhein, and Martin Kronenburg. A generic
approach to the formal specification of requirements. In 1st IEEE Inter-
national Conference on Formal Engineering Methods 1997 (ICFEM’97),
Hiroshima, Japan. IEEE Computer Society, 1997.

Logspace Reducibility via

Abstract State Machines

Erich Grädel and Marc Spielmann

Mathematische Grundlagen der Informatik,
RWTH Aachen, D-52056 Aachen, Germany

{graedel, spielmann}@informatik.rwth-aachen.de

Abstract. We present a notion of logspace reducibility among struc-
tures that is based on abstract state machines (ASM). Our reductions
are logspace computable (due to the syntactic restrictions we impose
on ASM-programs) and are equally expressive as the logic (FO+DTC)
enriched with the ability to handle sets. On ordered structures they pre-
cisely capture Logspace. Our work continues that of Blass, Gurevich
and Shelah on the choiceless fragment of Ptime. Indeed, our reductions
can be seen as the choiceless fragment of Logspace.

1 Introduction

Abstract State Machines (ASM) have become a successful methodology for the
specification and verification of hardware and software systems. Aside this, ASM
provide a computation model which is also very interesting under theoretical
aspects. In this paper we study applications of ASM to the theory of computation.
More precisely, we investigate logspace computability via ASM.

Logspace computability is an important level of complexity, for several rea-
sons:

– It can be viewed as the natural notion of computability with ‘very little’
memory.

– Logspace computable functions can be computed in parallel very efficiently
(i.e., in polylogarithmic time) with a reasonable amount of hardware (i.e.,
by circuits of polynomial size).

– Logspace reductions are widely accepted as a natural basis for completeness
results for important complexity classes like P, NP, and Pspace. Indeed,
most of the complete problems for these classes are complete with respect
to logspace reductions [Pap94, GHR95].

The standard computation model in complexity theory is the Turing machine.
By definition, a function is logspace computable if it is computable by a Turing
machine using on inputs of length n at most O(log n) cells of its work tapes.
However, Turing machines work on strings, whereas many problems arising in
computer science and logic have inputs that are naturally viewed as structures
rather than strings. Furthermore, in most cases algorithms on structures should

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1738–1757, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Logspace Reducibility via Abstract State Machines 1739

treat isomorphic structures in the same way. Although we can encode structures
by strings, there is no easily computable string representation of isomorphism
classes of structures. (This problem was addressed by Chandra and Harel in
the context of database queries [CH82]. It disappears when the structures are
linearly ordered.). The situation calls for computation models that work directly
on structures rather than strings, and in particular, for a notion of logspace
computability on structures and for a reduction theory among structures that is
based on such a notion.

There are several computation models on structures in the literature. Some
of them have been developed in the context of database theory (see [AHV95]),
most notably the generic machines of Abiteboul and Vianu. Another model,
which we will use in this paper, is provided by abstract state machines, formerly
known as evolving algebras [Gur91, Gur95, Gur97], which has become the foun-
dation of a successful methodology for specification and verification of software
and hardware systems [BH98]. One can view a Turing machine program as a
description of how to modify the current configuration of a Turing machine to
obtain the next configuration. Similarly, an ASM-program describes how to mod-
ify the current state of an ASM to obtain the next state. The main difference
is that the states of an ASM are mathematical structures rather than strings.
Thus, an ASM takes a structure as input and modifies it step by step, until it
stops and outputs the resulting structure. (Aside from this basic model, there do
exist more general types of ASM, e.g., real-time ASM and recursive ASM, which
have been proved useful for specifying and verifying dynamic systems. These will
not be considered in the present paper.)

Both generic machines and ASM (and a number of other models as well)
are computationally complete: they can calculate all computable (isomorphism-
invariant) functions on finite structures. Hence, the notion of (isomorphism-
invariant) computable functions on structures is well-understood. The situation
becomes much more intriguing when we impose complexity bounds. It is not at
all clear whether there exists a computation model on structures (for instance
a subclass of abstract state machines) that describes precisely the class of all
polynomial-time computable functions, or the class of all logspace computable
functions on structures. The straightforward approach, namely to impose ap-
propriate time and space restrictions on one of the known (computationally
complete) machine model on structures, does not work. The first problem is
that honest time measures for such a model are not always obvious and (natu-
ral) space measures may not exist at all. But more importantly, the computa-
tional completeness of generic machines or ASM does not scale down to lower
complexity levels. For instance, the class of functions computable by ASM in
honest polynomial time is a strict subclass of the class of isomorphism-invariant
functions that are polynomial-time computable in the usual sense, i.e. on string
encodings of structures.

The problem of whether there exists a computation model describing pre-
cisely the logspace computable isomorphism-invariant functions has been for-
mulated in different terms as the problem of whether there exists a logic for

1740 Erich Grädel and Marc Spielmann

Logspace, one of the main open problems of finite model theory. This problem
has been made precise by Gurevich [Gur88] (for polynomial time rather than log-
arithmic space, but the situation is similar). Let us briefly review the situation
for Logspace.

It is a well-known result due to Immerman [Imm87] that logspace computabil-
ity is closely related to the logic (FO+DTC), first-order logic (FO) augmented
with the deterministic transitive closure operator DTC. A query on ordered fi-
nite structures is logspace computable iff it is expressible in (FO+DTC). The
DTC operator assigns to any definable binary relation E the transitive closure
of the deterministic part Edet of E; Edet is obtained by removing all edges from
E that start at a point with out-degree > 1. An advantage of this description
of logspace computability is that once a query is formulated in (FO+DTC), it
is guaranteed to be computable in logspace. There is no need to analyze the
storage requirements of an algorithm.

On the other side, handling (FO+DTC) is not as straightforward as, say,
a programming language and requires a certain familiarity with logic. More-
over, expressions in (FO+DTC) tend to be rather complex and hard to read
when describing non-trivial queries. More to the point, if no linear order is
available, (FO+DTC) fails to express all logspace queries. In fact, some very
simple problems, which are obviously logspace computable, are not expressible
in (FO+DTC). A standard example of such a problem, often called Parity,
is the question whether the cardinality of a given structure is even. Gurevich
[Gur88] conjectured that there is no logic (and hence no computation model on
structures) that captures Ptime or Logspace on arbitrary finite structures.

A natural model-theoretic notion of reductions among structures is provided
by (first-order) interpretations (see [Hod93, Chapter 5]). Informally, a structure
A is interpreted in a structure B by a sequence of first-order formulae that define
an isomorphic copy ofA inside B. It is well-known that first-order interpretations
are weaker than logspace reductions. One way to enhance their power is to
consider (FO+DTC)-interpretations instead. While these still do not capture
all logspace computable functions from structures to structures they give us a
better lower bound for the desired class of logspace reductions among structures.

After these introductory remarks, we are now in a position to formulate some
necessary conditions for the notion of reductions among structures that we want
to put forward:

1. Reductions should be computable in logarithmic space.
2. Reasonable closure properties should be satisfied. In particular, the class of

reductions should be closed under composition.
3. On ordered structures, our notion should capture all logspace computable

functions from structures to structures.
4. On unordered structures, our reductions should have at least the power of

(FO+DTC)-interpretations.

Our work is based on a recent paper by Blass, Gurevich, and Shelah [BGS97],
who introduced and investigated the choiceless fragment of Ptime, denoted
C̃Ptime. An important feature of algorithms on ordered structures (or strings)

Logspace Reducibility via Abstract State Machines 1741

is the ability to make choices. Out of any set of (otherwise indistinguishable)
elements the algorithm can select, say, the smallest, and proceed from there.
Typical examples are graph algorithms. Consider, for instance, an algorithm de-
ciding reachability in digraphs. A common way to determine whether a target
node t is reachable from a source node s in a given digraph G is to construct the
set of all reachable nodes from s. To this end the algorithm maintains an auxil-
iary set X of ‘endpoints’. Initially,X := {s}. At each iteration step the algorithm
‘chooses’ a node in X , e.g., by selecting the smallest one, adds its neighbors to
the set of reachable nodes, and updates the set of endpoints accordingly. The
algorithm terminates once the target node has been found reachable, or the set
of reachable points has become stable. It is easy to see that in this example
explicit choice is not really needed. Instead of choosing one particular endpoint
one can process all of them in parallel. But this seems not always possible. For
example, in matching algorithms choice is used in a much more sophisticated
way, and there is no known efficient algorithm for perfect matching that avoids
explicit choice.

The main idea in [BGS97] is to use hereditarily finite sets and parallel exe-
cution to replace explicit choice. Abstract state machines serve as a convenient
vehicle to define the choiceless fragment of Ptime in a precise and convincing
way. The clean description via ASM makes the class amenable to combinatorial
and model-theoretic tools that are used in [BGS97] to determine the power of
C̃Ptime.

In this paper we continue the work of Blass, Gurevich and Shelah. We study
reductions among structures that are defined by means of ASM-programs. Moti-
vated by the approach in [BGS97], we equip our model with the ability to handle
small sets, which, for instance, serve as a convenient reservoir for new elements.
(Notice that while reducing an instance of one problem to an instance of an-
other problem one often has to invent new elements, e.g., new nodes in a graph.)
The syntactic restrictions we impose on ASM-programs will guarantee that all
functions computed by such programs are logspace computable (by a Turing
machine). On ordered structures, moreover, a function is logspace computable
iff it can be computed by such a program. Due to the ability to handle sets, our
programs are ‘choiceless’: they can form a set without ever actually choosing one
particular element of the set. Indeed, the class of properties computable by our
programs can be seen as the choiceless fragment of Logspace, which we denote
C̃Logspace. Taking the results of [BGS97] into account, we obtain the following
relations between standard, choiceless, and descriptive complexity classes:

Logspace ⊆ Ptime
∪1 ∪1

C̃Logspace ⊂2 C̃Ptime
∪3 ∪2

(FO+DTC) ⊂3 (FO+LFP)

where the inclusions marked 1, 2, and 3 are proper due to the following problems:

1742 Erich Grädel and Marc Spielmann

(1) Parity
(2) Small Subset Parity (see Corollary 24)
(3) Reachability in double graphs (see Lemma 11)

We introduce two different variants of ASM-programs to define reductions
among structures. Programs of the basic variant, which we call nullary programs,
are essentially just basic ASM-programs (in the sense of [Gur97]) where every
dynamic function is nullary. Nullary programs suffice to capture Logspace on
ordered input, but are fairly weak without access to an ordering. Programs of
the more powerful variant, called bounded memory programs, are sequences of
nullary programs where the nullary programs may also occur parameterized by
means of do-forall-clauses (see [Gur97]). Bounded memory programs have two
main advantages over nullary programs. Firstly, even for functions that can be
computed by means of nullary programs, bounded memory programs admit pre-
sentations that are more succinct and easier to understand. Secondly, bounded
memory programs are strictly more expressive than both nullary programs and
the logic (FO+DTC).

At this point, the reader may wonder why we use the term “bounded memory
programs” rather than, say, “logspace programs”. Recall that ASM have been
put forward as a model for describing algorithms on their natural level of ab-
straction [Gur95]. The term “logspace” refers to the bit-level. When we describe
common logspace algorithms at their natural abstraction level (e.g., by ASM),
we see that most of them actually use a bounded number of memory locations
(variables) each of which stores an object that is identified by a logarithmic
number of bits (e.g., an element of the input structure or a natural number
polynomially bounded in the cardinality of the input structure). Hence we find
‘bounded memory’ programs more adequate for the spirit of ASM.

The contents of the paper is as follows: In Section 2 we recall some ter-
minology from finite model theory and set theory, latter mostly adopted from
[BGS97]. In Section 3 we introduce nullary programs, our basic variant of pro-
grams. In Section 4 we prove that all functions computable by nullary programs
are logspace computable. To this end, we describe computations of nullary pro-
grams in terms of a set-theoretic extension of the logic (FO+DTC). Bounded
memory programs, our more powerful variant of programs, are defined in Sec-
tion 5. In Section 6 we introduce the complexity class C̃Logspace and show
that it is a robust class which also has a logical characterization. Finally, we
separate Ptime and Logspace on the choiceless level.

2 Preliminaries

Global relations. Let C be a class of structures over some vocabulary σ.
A k-ary global relation (or query) ρ on C is a mapping that assigns to ev-
ery structure A ∈ C a (local) relation ρA ⊆ Ak (where A is the universe of
A), such that isomorphisms between structures in C are preserved, i.e., every
isomorphism between two structures A and B in C is also an isomorphism be-
tween (A, ρA) and (B, ρB). For example, every first-order formula ϕ(x1, . . . , xk)

Logspace Reducibility via Abstract State Machines 1743

over σ (all of whose free variables occur among x1, . . . , xk) defines a k-ary
global relation on the class of all σ-structures: ϕ maps a σ-structure A to
ϕA := {(a1, . . . , ak) ∈ Ak : A |= ϕ[a1, . . . , ak]}.

Deterministic transitive closure logic. Let FO denote first-order logic with
equality. Deterministic transitive closure logic, (FO+DTC), is obtained from FO
by adding to the usual formula-formation rules of FO the rule

– If ϕ is a formula, x̄ and ȳ are two k-tuples of variables, and ū and v̄ are two
k-tuples of terms, then [DTCx̄,ȳ ϕ](ū, v̄) is a formula.

For any 2k-ary relation R, let DTC(R) denote the transitive reflexive closure of
the deterministic part Rdet of R. (Rdet is the 2k-ary relation obtained from R
by removing all edges (ā, b̄) ∈ R for which there exists an edge (ā, b̄′) ∈ R such
that b̄ 6= b̄′.) The semantics of [DTCx̄,ȳ ϕ](ū, v̄) is as follows. Regard [DTCx̄,ȳ ϕ]
as a new 2k-ary relation symbol whose interpretation is DTC(R), where R is
the 2k-ary relation defined by ϕ(x̄, x̄′). As an example, consider a finite digraph
G = (V,E) with two distinguished nodes s and t. G |= [DTCx,y E(x, y)][s, t] iff
there exists a path in G (composed from E-edges) that starts at node s, ends at
node t, and each node on the path (except t) has out-degree 1. For a more formal
definition of the semantics of DTC-formulas the reader is referred to [EF95].

Fact 1 ([Imm87]). A global relation on ordered structures is definable in the
logic (FO+DTC) iff it is logspace computable.

Hereditarily finite sets. Let A be a finite set of atoms (i.e., elements that are
not sets, also called urelements in set theory). The set HF(A) of all hereditarily
finite objects built from the atoms in A is the least set such that

– A ⊆ HF(A),
– every finite subset of HF(A) is an element of HF(A).

Thus, an object X ∈ HF(A) is either a finite set or an atom from A. A set
X is transitive, if whenever Z ∈ Y ∈ X , then Z ∈ X . The transitive closure
TC(X) of an object X is the least transitive set with X ∈ TC(X). For instance,
TC(A) = A ∪ {A}. Observe that for every object X ∈ HF(A), TC(X) is finite
and in HF(A). By the size of an object X we mean the cardinality of TC(X).
For example, the size of A is |A|+1. Notice that the size of X is a bound for both
the cardinality of A∩TC(X) and the length k of chains Y1 ∈ Y2 ∈ . . . ∈ Yk ∈ X .
The maximum k is also called the rank of X . We write HFs(A) for the restriction
of HF(A) to objects of size at most s.

3 Nullary Programs

In this section we introduce nullary programs, a restricted model for logspace
computability on structures. On ordered input structures nullary programs suf-
fice to describe all logspace computable functions.

1744 Erich Grädel and Marc Spielmann

States. Let σ and τ be disjoint finite relational vocabularies. We extend σ ∪ τ
to a program vocabulary Υ (σ, τ) containing, in addition to σ ∪ τ ,
– a unary relation symbol Universe,
– the set theoretic symbols ∈, Atoms, unique,?, where ∈ is a binary relation

symbol, Atoms is a unary relation symbol, unique is a unary function sym-
bol, and ? is a constant symbol,

– a number of constant symbols f1, . . . , fd.

Our programs will take finite σ-structures as inputs and compute finite τ -
structures as outputs. Therefore, we refer to σ as the input vocabulary and to
τ as the output vocabulary. The universe of the output will be determined by
the interpretation of the symbol Universe, and may grow during the course of
a computation by writing to Universe. In the following we treat Universe as a
special kind of output symbol.

Definition 2. Let A be a finite σ-structure whose universe A is a set of atoms.
On input A every nullary program over Υ (σ, τ) (defined below, see Definition
6) starts its computation in the initial state S(A), which is a Υ (σ, τ)-structure
defined as follows:

– the universe of S(A) is HF(A),
– A is embedded in S(A), i.e., RS(A) = RA for every input relation R ∈ σ,
– the interpretation of ∈ and ? are the obvious ones; Atoms is interpreted as

the set A; for every singleton X ∈ HF(A), unique(X) is the unique Y ∈ X ;
for all other X ∈ HF(A), unique(X) := ?,

– every output relation (including Universe) is empty,
– each fi is interpreted as ?.

ut

Definition 3. Every state S of a nullary program over Υ (σ, τ) on input A is
a Υ (σ, τ)-structure with universe HF(A). During a computation the universe
HF(A) and the interpretations of the input symbols and the set-theoretic sym-
bols remain unchanged; these symbols are static. In contrast, f1, . . . , fd and all
output symbols (including Universe) are dynamic in the sense that their inter-
pretation may or may not change from one state to the next. While there are
few restrictions on how to change the interpretation of f1, . . . , fd, every output
relation is write-only. Once a tuple is put into an output relation it remains there
for the rest of the computation. We call f1, . . . , fd dynamic functions. ut

Notice that because tuples cannot be removed from the output, the out-
put is in general relational. Since we will later also consider composition of
programs, it is natural to restrict attention to relational input and output vo-
cabularies. However, this restriction has no practical impact. For instance, if
you like your favorite function F to be part of the input structure, simply in-
clude the graph GF of F . Your program may then contain a term of the form
unique{y ∈ Atoms : GF (x, y)} whose semantics will be F (x).

Logspace Reducibility via Abstract State Machines 1745

The logic (FO+BS). The ASM-programs that we will put forward are based
on a restricted variant of first-order definability over states. Below we define a
fragment of FO over states which is not as expressive as full FO over states.
The fragment is nevertheless strictly more expressive than FO over the input
structures, as it can handle ‘bounded’ sets. To emphasize this, we denote the
fragment (FO+BS) where “BS” alludes to “bounded sets”.

For any vocabulary σ let σ+ := σ ∪ {∈, Atoms, unique,?}.

Definition 4. The terms and formulae of (FO+BS) over σ are defined by si-
multaneous induction:

T1 As usual, terms are built from variables and constants, and are closed under
application of function symbols (from σ+).

T2 If t1, . . . , tk are terms and s is a natural number, then {t1, . . . , tk}s is a
term. ({t1, . . . , tk}s denotes the set whose elements are denoted by t1, . . . , tk,
provided that this set has size ≤ s).

T3 Choose a term t, a variable x, a formula ϕ, and a natural number s. Let r
be either a set symbol in σ+ or a term with no free occurrence of x. Then
{t : x ∈ r : ϕ}s is a term (denoting the set of all t(x) with x from range r
satisfying condition ϕ(x), provided that this set has size ≤ s).

F Atomic formulae are defined as usual (from = and the relations in σ+). For-
mulae are either atomic formulae or built from previously defined formulae
by means of negation and disjunction.

The free and bound variables of terms and formulae are defined in the obvious
way. In particular, a variable occurs free in {t : x ∈ r : ϕ}s if it occurs free in
t, r or ϕ and is different from x. x itself occurs bound. ut

The semantics of a term t with respect to a state S with universe HF(A) is
clear in the case where t is of type T1. If t = {t1, . . . , tk}s and the set {tS1 , . . . , tSk }
has size ≤ s, then tS is this set. Otherwise, tS := ?. When t = {t0 : x ∈ r : ϕ}s
and the set {tS0 [X] : X ∈ rS : S |= ϕ[X]} has size ≤ s, let tS be this set.
Otherwise, tS := ?. The semantics of a formula ϕ with respect to S is standard.

We did not mention quantification in the definition of (FO+BS). But note
that (FO+BS) can define a guarded form of quantification. For example, let
(∃x ∈ r)ϕ abbreviate the formula ? ∈ {? : x ∈ r : ϕ}. (Technically, the set term
in this formula needs a subscript to bound its size; 2 will do. To ease notation we
frequently omit the subscript at a set term when the set’s description implies an
obvious bound on its size.) By using Atoms for the guard r in (∃x ∈ r)ϕ, we can
simulate in (FO+BS) quantification over elements of the input structure. This
implies that, with respect to definability over the input structures, (FO+BS)
indeed extends FO.

Lemma 5. For every FO-formula ψ(x̄) over σ there exists a (FO+BS)-formula
ϕ(x̄) over σ such that for every finite σ-structure A and all ā ∈ Ak, A |= ψ[ā]
iff S(A) |= ϕ[ā].

1746 Erich Grädel and Marc Spielmann

Syntax and semantics of nullary programs.

Definition 6. Fix a program vocabulary Υ = Υ (σ, τ) with dynamic functions
f1, . . . , fd. We define nullary rules over Υ inductively:

– Updates: For every dynamic function f ∈ Υ , every k-ary output relation
R ∈ Υ , and all (FO+BS)-terms t0, t1, . . . , tk over σ ∪ {f1, . . . , fd} the two
assignments f := t0 and R(t1, . . . , tk) := true are (atomic) nullary rules.
(Frequently, we will abbreviate R(t1, . . . , tk) := true to R(t1, . . . , tk).)

– Conditional: If ϕ is a (FO+BS)-formula over σ ∪ {f1, . . . , fd} and Π a
nullary rule, then (if ϕ then Π) is a nullary rule (with guard ϕ).

– Parallel execution: If Π0 and Π1 are nullary rules, then Π0
Π1

is a nullary

rule (for brevity sometimes written as Π0||Π1).

The free and bound variables of a nullary rule are defined in the obvious way. A
nullary program is a nullary rule without free variables. ut

The semantics of nullary programs is (almost) standard. Consider a nullary
program Π over Υ (σ, τ) and let S be a state of Π . We denote the sequel of S
with respect to Π (see [Gur97]) by Π(S). The run of Π on S is the maximal
sequence S0,S1,S2, . . . of states such that S0 = S, Si+1 = Π(Si), and Si+1 6= Si

for every state Si+1 in the sequence. Note that a run is either finite or infinite,
and that a finite run ends with a state Si satisfying Si = Π(Si). The run of Π
on a finite σ-structure A is the run of Π on S(A). In case the latter is finite and
ends with a state S, the output of Π on A is, by definition, the τ -reduct of the
substructure of S induced by UniverseS . This convention enables us to define
the universe of the output by throwing into the unary output relation Universe
all those objects which we want to be present.

Obviously, the output of Π on A is—if it exists—a τ -structure. But is it
finite? To see this, observe that for every nullary program Π there exists an
upper bound s of the size of the objects thatΠ can touch. (s ≥ 1 is the maximum
of all explicit size bounds of set terms occurring in Π .) Thus, the universe of the
output structure is a subset of HFs(A). For every finite A, HFs(A) is finite.

Note also that the output of a nullary program in general cannot serve as
input to another program, because its universe may contain elements that are
sets. To avoid problems when composing programs later on we will from now on
tacitly assume that the output of a nullary program has its non-atomic elements
converted to genuine atoms.

Example 7. Consider the binary global relation ρDTC which maps every finite
ordered digraph G = (V,E,<) to DTC(E). (Recall that DTC(E) denotes the
deterministic transitive closure of G’s edge relation E.) We present a nullary
program ΠDTC with input vocabulary {E,<} and output vocabulary {DTC}
that computes ρDTC . On input G, ΠDTC outputs the graph (V,DTC(E)).

Let us first concentrate on an instance of the problem: write a nullary pro-
gram Π which, given a node start node ∈ V , outputs all nodes on the deter-
ministic E-path that starts at start node. Here is a possible solution. In the first

Logspace Reducibility via Abstract State Machines 1747

step, Π initializes a nullary dynamic function pebble with start node. Then, in
every following step, Π outputs pebble and moves pebble along the deterministic
path by executing the update pebble := succ(pebble), where succ(x) abbreviates
the term unique{y ∈ Atoms : Exy}.

But how do we ensure termination of this process if the path leads into a
cycle? Every cycle in G has at most |V | nodes. Thus it suffices to set up a
counter which triggers termination after |V | steps. Let counter be a nullary
dynamic function and let least denote the least node in G w.r.t. to the ordering
< of the nodes. (Note that least is definable as unique{x ∈ Atoms : ¬(∃y ∈
Atoms) y < x}.) Π initializes counter with least and executes in every step
the update counter := counter + 1, where counter + 1 stands for the term
unique{x ∈ Atoms : x > counter∧ (∀y ∈ Atoms)(y > counter → y ≥ x)}.

Π as defined below outputs a pair (start node, a) for every node a on the
deterministic path that starts at start node. It becomes idle (i.e., it stops) when
pebble has no unique E-successor or when counter assumes ? after |V | steps.

Π := if mode = initialize pebble then
pebble := start node
counter := least
mode := move pebble

if mode = move pebble then
if pebble 6= ? ∧ counter 6= ? then

DTC(start node, pebble)
pebble := succ(pebble)
counter := counter + 1

else
mode := next path

From Π one easily obtains the desired nullary program ΠDTC . ΠDTC sys-
tematically varies start node over all nodes in V and calls for each instance the
above program Π (see line (1) below). When Π terminates, ΠDTC resumes its
computation in line (2).

ΠDTC := if mode = initial then
start node := least
mode := initialize pebble

Π (1)
if mode = next path ∧ start node 6= ? then (2)

Universe(start node)
start node := start node + 1
mode := initialize pebble

ut

It is worth noticing that there is no obvious way to define a nullary pro-
gram computing DTC(E) without access to an ordering of the nodes. Without
such an ordering we can neither count—and this way detect a cycle—nor search
systematically through all nodes. The example reveals two defects of nullary

1748 Erich Grädel and Marc Spielmann

programs when no order is available: (1) How can we ensure termination of
nullary programs? (2) How do we perform systematic search of the universe?
In Section 5 we are going to cure both defects by upgrading nullary programs
to bounded memory programs.

4 Logical Description of Computations

In this section we prove that nullary programs are logspace computable. To this
end we describe computations of nullary programs in terms of (FO+BS+DTC),
i.e., the closure of (FO+BS) under (a bounded version of) the DTC-operator.
Logspace computability of nullary programs then follows from the observation
that every sentence in (FO+BS+DTC) can be evaluated in logarithmic space.
On ordered input structures the other direction holds also: every logspace com-
putable function can be computed by a nullary program. Thus, on ordered input
nullary programs are as powerful as logspace Turing machines.

In the remainder of this section let σ denote a finite relational vocabulary.

Definition 8. The hereditarily finite extension A+ of a finite σ-structure A is
a σ+-structure defined as follows:

– the universe of A+ is HF(A),
– RA

+
= RA for every R ∈ σ, and

– the interpretation of ∈, Atoms, unique,? are as in Definition 2.

Let ϕ(x1, . . . , xk) be a (FO+BS)-formula over σ. The global relation defined by ϕ,
also denoted ϕ, maps the hereditarily finite extension A+ of a finite σ-structure
A to the (possibly infinite) relation ϕA

+
:= {(X1, . . . , Xk) ∈ HF(A)k : A+ |=

ϕ[X1, . . . , Xk]}. For any finite σ-structure A, let ϕA denote ϕA
+
. ut

We extend the logic (FO+BS) to the logic (FO+BS+DTC) by adding a new
formula-formation rule to Definition 4:

F2 If s is a natural number, ϕ is a formula, x̄ and ȳ are two k-tuples of variables,
and ū and v̄ are two k-tuples of terms, then [DTCx̄,ȳ ϕ]s(ū, v̄) is a formula.

The semantics of a DTC-formula [DTCx̄,ȳ ϕ]s(ū, v̄) is similar to that of a DTC-
formula in (FO+DTC), except that now, in order to reach v̄ from ū via a deter-
ministic ϕ-path, we may compose this path from ϕ-edges which connect points
in HFs(A)k rather than Ak only. (Recall that HFs(A) is the set of objects in
HF(A) of size ≤ s.) More precisely, consider a hereditarily finite extension A+

of some finite σ-structure A and interpretations X̄ ∈ HF(A) of the free variables
in [DTCx̄,ȳ ϕ]s(ū, v̄). Let Rs denote the restriction of ϕ(A+,X̄) to HFs(A), where
the 2k-ary relation ϕ(A+,X̄) is the image of (A+, X̄) under the global relation ϕ.
By definition, (A+, X̄) |= [DTCx̄,ȳ ϕ]s(ū, v̄) iff (ū(A+,X̄), v̄(A+,X̄)) ∈ DTC(Rs).

Definition 9. Let C be a class of finite σ-structures and let Π be a nullary
program over Υ (σ, {R}) that halts on all A ∈ C. The global relation computed
by Π on C, also denoted Π , maps every A ∈ C to the relation ΠA := R, where
(U,R) is the output of Π on input A. ut

Logspace Reducibility via Abstract State Machines 1749

Lemma 10. Every global relation computable by a nullary program is definable
in (FO+BS+DTC).

Lemma 11. There is a class C of finite graphs and a nullary program Π so
that the global relation computed by Π on C is not definable in (FO+DTC).

Proof. (Sketch.) For every finite digraph G = (V,E) let 2G := (2V, 2E) be its
doubled version, where 2V := V × {0, 1} and 2E :=

{(
(a, i), (b, j)

)
: (a, b) ∈

E, 0 ≤ i, j ≤ 1
}
. Consider a graph G consisting of two disjoint (directed) cycles

of the same even diameter. Suppose that in only one of the cycles there is a node
labeled start and a node labeled goal . The distance between start and goal is
maximal. Let C1 be the collection of all 2G. Now, modify G to G′ by moving
the label goal to the other cycle. Let C2 be the collection of all 2G′. There is
a path from node (start , 0) to node (goal , 0) in every graph in C1. No graph in
C2 has this property. Due to Immerman [Imm92] (see also [GM95]) there is no
(FO+DTC)-sentence ϕ such that 2G |= ϕ for all 2G ∈ C1 and 2G′ 6|= ϕ for all
2G′ ∈ C2. Nevertheless, the nullary program Π displayed below accepts every
graph in C1 and rejects every graph in C2. Hence, let C := C1 ∪ C2.

Π := if mode = initial then
pebbles := {(start , 0)}2
mode := move pebble

if mode = move pebble then
if (goal , 0) 6∈ pebbles ∧ (start , 1) 6∈ pebbles then

pebbles := {x ∈ Atoms : (∃y ∈ pebbles)2E(y, x)}3
if (goal , 0) ∈ pebbles then Accept
if (start , 1) ∈ pebbles then Reject ut

The last two lemmas imply that (FO+BS+DTC) is more expressive than
(FO+DTC). The next lemma shows that (FO+BS+DTC) is not too expressive.

Lemma 12. Every nullary global relation definable by a sentence in the logic
(FO+BS+DTC) is logspace computable.

Logspace computability of every nullary program now follows by Lemma 10.
The converse, i.e., that every logspace computable global relation is computable
by a nullary program, does not hold in general (see Theorem 22). The situation
changes if we restrict attention to ordered structures.

On ordered input structures.

Lemma 13. Every logspace computable global relation on ordered structures can
be computed by a nullary program.

Proof. (Sketch.) Due to Fact 1 it suffices to show that every global relation
definable in (FO+DTC) can be computed by a nullary program. We did most

1750 Erich Grädel and Marc Spielmann

of the work in Example 7. By induction on the construction of a (FO+DTC)-
formula ϕ(x̄) one can define a nullary rule Πϕ which accepts an input (A, ā) iff
A |= ϕ[ā]. The desired nullary program computing ϕA on input A then simply
runs Πϕ for all possible ā ∈ Ak and writes the accepted ā into an output relation
R. The details are left to the reader. ut

As pointed out in the discussion following Example 7, there is no obvious
way to tell whether a given nullary program Π halts on all structures of a given
class C. However, if the input is ordered then one can set up a counter (like
counter in Example 7) that terminates Π once the maximal number of possible
configurations of Π has been reached.

Lemma 14. Every nullary program can be altered by a syntactic manipulation
so that it halts on all ordered inputs and computes exactly the same output as
the original program, whenever the latter halts.

In the next section we will upgrade nullary programs to bounded memory
programs. This will improve the handling of programs in practice as well as their
expressive power (when no order is present).

5 Bounded Memory Programs

Nullary programs considered so far do not properly reflect two important prop-
erties of logspace computable functions, namely that such functions are closed
under composition and ‘distributed execution’. Nullary programs cannot simply
be composed, because output relations must not occur in guards. But what do
we mean with distributed execution? Consider, e.g., a logspace Turing machine
M(x) which takes (encodings of) finite structures as input together with a node
x of the input structure as parameter. For two different nodes a and b of the
input structure the computations of M(a) and M(b) do not interfere with each
other. Thus, in order to compute M(a) for every node a of the input structure,
we may execute all the instances of M(x) in parallel on distributed processors.
This distributed execution is still in (sequential) logspace. We obtain the same
result with a logspace Turing machine N that enumerates all nodes a in some
order and simulates M(x) with x = a.

We add both composition and distributed execution to nullary programs.

Definition 15. Let Υ ∗(σ, τ) denote a program vocabulary where σ and τ are not
necessarily disjoint, i.e., where some relation symbols may be input and output
at the same time. We define distributed programs over Υ ∗(σ, τ) inductively:

– Every nullary program is a distributed program.
– Distributed execution: Let x̄ be a tuple of variables and letΠ be a nullary

rule all of whose free variables but none of whose bounded variables occur
among x̄. For each xi in x̄ choose a closed range term ri, i.e., either a closed
(FO+BS)-term over σ or a set symbol in σ+. Let Πx̄ denote the result of
replacing in Π every occurrence of a dynamic function f with the term f(x̄).
Then (do forall x̄ ∈ r̄ Πx̄) is a distributed program.

Logspace Reducibility via Abstract State Machines 1751

– Guarded distributed execution: Let x̄, r̄, and Π be as in the previous
rule. In addition, let α1, . . . , αn be atomic FO-formulae over τ all of whose
free variables occur among x̄. Suppose that Π satisfies for each αi, if αi =
R(t̄) and R(t̄′) is an atomic subrule of Π then t̄ = t̄′. (This ensures that all
updates in Π of an output relation R occurring in some αi affect only the
tuple t̄ specified by αi.) Then the following is a distributed program:

do forall x̄ ∈ r̄
unless α1 ∨ . . . ∨ αn

Πx̄

– IfΠ0 andΠ1 are distributed programs, thenΠ0||Π1 is a distributed program.

(Observe that a distributed program obtained from a nullary rule Π by applying
(guarded) distributed execution may have a different vocabulary than Π . This
is because transforming Π to Πx̄ increases the arity of every dynamic function.
Notice also that every distributed program has the form Π1|| . . . ||Πp, where each
Πi is either a nullary program or a (guarded) distributed execution of a nullary
rule. Since || is associative and commutative, we can view every distributed
program as a set of programs Πi.)

Let Π = {Π1, . . . , Πp} be a distributed program over some vocabulary
Υ ∗(σ′, τ ′) and let σ and τ be disjoint finite relational vocabularies. A (σ, τ)-
stratification of Π is a partition (Π∗1 , . . . , Π

∗
q) of Π such that

– each Π∗i is a distributed program over some vocabulary Υ ∗(σi, τi) where σi

and τi are disjoint,
– σi = σ ∪ τ1 ∪ . . . ∪ τi−1,
– τ ⊆ τ1 ∪ . . . ∪ τq,
– if Πk ∈ Π∗i is a guarded distributed execution then Π∗i = {Πk}.

A bounded memory program Π over (σ, τ) is a (σ, τ)-stratified distributed pro-
gram (Π∗1 , . . . , Π

∗
q). Each Π∗i is called a stratum of Π . ut

Let us first concentrate on bounded memory programs definable without us-
ing guarded distributed execution. One can show that every stratum Π∗i of such
a program is equivalent to a distributed program of the form (do forall x̄ ∈
r̄ Πx̄), whereΠx̄ was obtained from some nullary rule Π by replacing in Π every
occurrence of a nullary dynamic function symbol f with the term f(x̄) (proof
omitted). We will often write fx̄ instead of f(x̄) to indicate that f originated
from a nullary function.

Informally, the semantics of a bounded memory program Π = (Π∗1 , . . . , Π∗q)
is the sequential execution of its strata. Stratum Π∗i+1 starts on the halting
state of Π∗i and uses, aside from the input structure, the output relations of all
previous strata as input. To get an idea of the semantics of a single stratum Π∗i
assume that

Π∗i = do forall x ∈ rx, y ∈ ry
Πxy

1752 Erich Grädel and Marc Spielmann

The semantics of Π∗i is the parallel execution of instances of Πxy, where there
is one instance ΠXY for each pair (X,Y) ∈ rSx × rSy . That is, if ΠXY denotes
the ‘nullary program’ Πxy, where x and y are interpreted as the objects X and
Y , respectively, then one step of Π∗i can be thought of as one step of ||X,YΠXY ,
where X varies in rSx and Y varies in rSy . There is no direct interference between
different instances of Πxy because each instance ΠXY got its dynamic functions
‘tagged’ with X,Y . Π∗i halts when either all instances halt or one instance
produces an inconsistency.

To define the semantics of bounded memory programs formally, we first define
the semantics of distributed programs. Suppose that Π is a distributed program
over Υ ∗(σ, τ), where Υ ∗(σ, τ) may now contain dynamic function symbols of arity
> 0. As in the case of nullary programs, a state S of Π is a Υ ∗(σ, τ)-structure
with universe HF(A) for some finite set A of atoms. The sequel Π(S) of S with
respect to Π is defined as usual (see [Gur97]). The only new case is when Π was
obtained by means of guarded distributed execution.

do forall x̄ ∈ r̄
unless ϕ

Πx̄

 (S) :=

do forall x̄ ∈ r̄

if ¬ϕ then
Πx̄

 (S)

Now consider a bounded memory program Π = (Π∗1 , . . . , Π
∗
q) over (σ, τ),

where Π∗1 ∪ . . . ∪ Π∗q is a distributed program over Υ ∗(σ′, τ ′). Like a nullary
program, Π takes a finite σ-structure as input and, in case it halts, yields a
finite τ -structure as output. W.l.o.g., we can assume that σ ⊆ σ′ (since any
R ∈ σ − σ′ does not appear in Π). In the initial state S(A) of Π on an input
A all symbols in σ′ − σ are considered to be output symbols. Hence, S(A) is a
Υ ∗(σ, τ ′−σ)-structure and is defined as in Definition 2. In order to define the run
of Π on A, let us first consider the case q = 2, i.e., Π = (Π∗1 , Π

∗
2). For simplicity,

let us also assume that no dynamic function of stratum Π∗1 occurs in stratum
Π∗2 , and vice versa. (This can be achieved by renaming dynamic functions in a
suitable way.) The run of (Π∗1 , Π∗2) on A is either

– the infinite run of Π1 on S(A), or otherwise
– the composed run S0,S1, . . . ,Sk,Sk+1, . . . , where S0,S1, . . . ,Sk is the finite

run of Π1 on S0 := S(A), and Sk,Sk+1, . . . is the run of Π2 on Sk.

This generalizes to the case q > 2 in the obvious way. If the run of Π on A is
finite, then the output of Π is defined as for nullary programs.

Lemma 16. The class of partial functions computed by bounded memory pro-
grams is closed under composition.

Why use guarded distributed quantification? In the introduction we for-
mulated four necessary conditions for reductions among structures. One of them
was that on unordered structures our reductions should have at least the power
of (FO+DTC)-interpretations. The question is whether we can compute any
(FO+DTC)-definable global relation on unordered structures with a bounded
memory program. Recall Example 7 and the subsequent discussion concerning

Logspace Reducibility via Abstract State Machines 1753

the two shortcomings of nullary programs on unordered structures, namely the
problems of termination and systematic search. We already fixed the problem
of systematic search by adding do-forall to nullary programs. For example,
the following bounded memory program (resembling Π in Example 7) computes
DTC(E) on unordered graphs (V,E), although it may not terminate.

ΠDTC := do forall x ∈ V
if modex = initial then

pebblex := x
modex := move pebble

if modex = move pebble ∧ pebblex 6= ? then
DTC(x, pebblex)
pebblex := succ(pebblex)

Observe that an instance of the nullary body of ΠDTC may run into a cycle,
thus prevent ΠDTC from halting. It is still not clear how to ensure termination
without counting configurations.

Let us modify ΠDTC a little bit. The resulting program Π̄DTC (see below) is
a bounded memory program which uses guarded distributed execution to detect
and terminate every instance of the nullary body of ΠDTC that ‘hangs’ in a
cycle. In particular, Π̄DTC halts on all inputs. We assume that Cycle is a new
unary output relation.

Π̄DTC := do forall x ∈ V, y ∈ V
unless Cycle(x)

if modexy = initial then
pebblexy := x
modexy := move pebble

if modexy = move pebble ∧ pebblexy 6= ? then
DTC(x, pebblexy)
pebblexy := succ(pebblexy)

if pebblexy = y ∧ ¬reachedxy then reachedxy := true
if pebblexy = y ∧ reachedxy then Cycle(x)

Let Πxy denote the nullary body of Π̄DTC . The new guard “unless Cycle(x)”
for Πxy in Π̄DTC ensures that only those instances of Πxy contribute in the next
computation step, for which Cycle(x) does not hold. All other instances of Πxy

are disabled. Here is the idea behind Π̄DTC . Fix a node a ∈ V and concentrate
on the deterministic E-path starting at a. We run Πab for every node b ∈ V in
parallel. Each b can be seen as a probe. When pebbleab is placed on b the first
time, we set a dynamic function reachedab to true, indicating that b has been
touched once. If b is pebbled a second time we know that the deterministic path
starting at a leads to a cycle through b. In that case there will be no further new
output to DTC(a, y), so that we can stop all Πac whose first subscript a is the
same as that of Πab, which detects the cycle. As a stop signal for each Πac we
set Cycle(a) to true. On the other hand, if there is no b such that Πab places
pebbleab on b twice, then the deterministic path starting at a does not lead to a
cycle. All Πac will come to a halt simultaneously when the path ends.

1754 Erich Grädel and Marc Spielmann

The cycle detection technique described above is also the main crux in the
proof of the following lemma.

Lemma 17. Every global relation definable in (FO+DTC) is computable by a
bounded memory program.

6 Choiceless Logspace

In this section we define Choiceless Logarithmic Space (C̃Logspace) as the
class of graph properties decidable by means of bounded memory programs.
C̃Logspace is a fragment of all logspace computable graph properties and can
be seen as the Logspace counterpart of Choiceless Polynomial Time (C̃Ptime),
the choiceless fragment of all polynomial-time computable graph properties.
C̃Ptime was recently defined by Blass, Gurevich, and Shelah [BGS97] using
polynomial-time bounded ASM-programs. Our programs are ‘choiceless’ in the
sense that they can form and handle bounded sets of objects (like nodes in an
input graph) without ever actually choosing one particular element of a set.
Essentially this capability makes bounded memory programs more expressive
than the logic (FO+DTC) (cf. the proof of Lemma 11). We conclude the section
with the observation that bounded memory programs are not as powerful as
the polynomial-time bounded programs of [BGS97]. This separates Ptime and
Logspace on the choiceless level.

There are two points to clarify in order to make the upcoming definition of
C̃Logspace reasonable:

– C̃Logspace is supposed to be fragment of Logspace. Thus we have to show
that every bounded memory program actually is logspace computable.

– We cannot simply define C̃Logspace by means of all bounded memory
programs (which use, e.g., a Boolean output constants Accept to indicate
acceptance), since some of these programs may not halt on all inputs and thus
do not decide their input. The question is (still) how to ensure termination
of bounded memory programs?

We will first solve the problem of termination by describing a syntactic manipu-
lation of arbitrary bounded memory programs, so that the resulting “standard”
bounded memory programs halt on all inputs.

Termination of bounded memory programs. We lift the cycle-detection
construction leading from ΠDTC to Π̄DTC in the previous section to arbitrary
strata of the form

Π∗ := do forall x̄ ∈ r̄
unless ϕ

Πx̄

where Πx̄ was obtained from some nullary rule Π . (On can show that every
stratum of a bounded memory program can be replaced with a stratum of that

Logspace Reducibility via Abstract State Machines 1755

form.) Let f1, . . . , fd be an enumeration of the dynamic functions inΠ . Consider
an instance ΠX̄ of Πx̄. The sequel of a state (S, X̄) of ΠX̄ is entirely determined
by the input embedded in S and the dynamic part fS1 (X̄), . . . , fSd (X̄) of (S, X̄).
We can detect a cycle in the computation ofΠX̄ if we runΠX̄ in parallel for every
possible dynamic part, and stop the computation once we pass the same dynamic
part twice. That is, for all possible values Y1, . . . , Yd of fS1 (X̄), . . . , fSd (X̄) in all
possible states of ΠX̄ we run an instance of ΠX̄,y1,... ,yd

in parallel. (Πx̄,y1,... ,yd
is

obtained fromΠx̄ by replacing every occurrence of a fi(x̄) with fi(x̄, y1, . . . , yd).)
If one of these instances, say, ΠX̄,Y1,... ,Yd

, finds for the second time that the
current values of f1, . . . , fd match its private values Y1, . . . , Yd, then ΠX̄,Y1,... ,Yd

may stop all other instances of ΠX̄,y1,... ,yd
. Here is the standard form of stratum

Π∗ that detects repeating configurations and thus terminates on all inputs:

Π̄∗ := do forall x̄ ∈ r̄, y1, . . . , yd ∈ t
unless ϕ ∨ Cycle(x̄)

Πx̄ȳ

if
∧

i fix̄ȳ = yi ∧ ¬reachedx̄ȳ then reachedx̄ȳ := true
if

∧
i fix̄ȳ = yi ∧ reachedx̄ȳ then Cycle(x̄)

where the range term t is such that fS1 (X̄), . . . , fSd (X̄) ∈ tS for all possible states
(S, X̄) of ΠX̄ (on any input).

Unfortunately, we may not be able to find such a range term t for every
stratum Π∗. This is because the range of a dynamic function fi can in general
be any subset of HFs(A), where s ≥ 1 is the maximum of all explicit size bounds
of set terms occurring in Π∗. For instance, the range of fi might be {{a} : a ∈
A} ⊆ HF2(A) and it is easy to see that there is no (FO+BS)-term denoting (a
superset of) {{a} : a ∈ A}. The next lemma provides a way out of this dilemma.

Lemma 18. For every s ≥ 1 there exist (FO+BS)-terms objects(x, y1, . . . , ys)
and Formss over {?} such that for every state S with universe HF(A), HFs(A) =
{objects(F, m̄)S : F ∈ FormsSs , m̄ ∈ As}.

Proceeding toward a standard form of stratum Π∗ that does not depend on
the existence of a range term t, modify the definition of Π̄∗ as follows: (1) Replace
“y1, . . . , yd ∈ t” with “F1, . . . , Fd ∈ Formss, m̄1, . . . , m̄d ∈ Atoms”, where each
Fi is a new variable and each m̄i is a tuple of s new variables. (2) Replace
“
∧

i fix̄ȳ = yi” with “
∧

i fix̄ȳ = objects(Fi, m̄i)”, where ȳ now abbreviates the
tuple F1, . . . , Fd, m̄1, . . . , m̄d of variables. The newly defined Π̄∗ halts on all
inputs and computes the same output as Π∗.

Lemma 19. Every bounded memory program can be altered by a syntactic ma-
nipulation so that it halts on all inputs and computes exactly the same output as
the original program, whenever the latter halts.

Using Lemma 18 we can also show the next theorem, which in turn implies
logspace computability of bounded memory programs (recall Lemma 12).

Theorem 20. A nullary global relation is definable by a sentence in the logic
(FO+BS+DTC) iff it is computable by a bounded memory program.

1756 Erich Grädel and Marc Spielmann

Choiceless Logarithmic Space. We call bounded memory programs altered
according to Lemma 19 standard. A bounded memory acceptor Π is a standard
bounded memory program over (σ, {Accept}). Π accepts a finite σ-structure A
if Π outputs Accept on input A. Otherwise Π rejects A.

Definition 21. A class C of finite σ-structures is in C̃Logspace iff it is closed
under isomorphisms and there exists a bounded memory acceptor Π such that
Π accepts every structure in C and rejects every finite σ-structure not in C. ut

The following theorem summarizes our main results of last three sections
(taking into account the main result of [BGS97]).

Theorem 22. (FO+DTC) ((FO+BS+DTC) = C̃Logspace (Logspace.

We conclude this section by showing that the same problem which separates
C̃Ptime and (FO+LFP) also separates C̃Ptime and C̃Logspace. This prob-
lem, which we call Small Subset Parity, is the following one. Given a finite
structure A = (A,S) with S a subset of A such that |S|! ≤ |A|, decide whether
|S| is even. It is easy to see that Small Subset Parity is in C̃Ptime [BGS97].
Here we prove that Small Subset Parity is not in C̃Logspace, implying that
C̃Logspace is a proper subclass of C̃Ptime.

First, let us recall some definitions from [BGS97]. Consider a finite relational
σ-structure A whose universe A consists of atoms.

– A set X of atoms is called a support of an object Y ∈ HF(A), if every
automorphism of A that pointwise fixes X also fixes Y . For example, AY :=
A ∩ TC(Y) is the trivial support of Y .

– Let k ≥ 1 be a natural number. Call an object Y ∈ HF(A) k-symmetric,
if every Z ∈ TC(Y) has a support of cardinality ≤ k. Obviously, any Y is
|AY |-symmetric.

– Let Ā denote the (σ ∪ {∈,?})-reduct of A+ (see Definition 8) and Āk the
restriction of Ā to all k-symmetric objects.

Suppose that σ contains only unary relation symbols, say, P1, . . . , Pc. A finite
σ-structureA is called a colored set, if the colors P1, . . . , Pc partition the universe
of A.

Fact 23 ([BGS97]). Fix some positive integers c, k,m. If A and B are colored
sets, in each of which all the colors P1, . . . , Pc are sufficiently large, then Āk and
B̄k are Lm

∞,ω-equivalent.

Corollary 24. Small Subset Parity 6∈ C̃Logspace.

Proof. (Sketch.) Towards a contradiction assume that there is a sentence ϕ in
(FO+BS+DTC) over vocabulary {S} which defines Small Subset Parity.
That is, for every finite structure A = (A,S) satisfying |S|! ≤ |A|, A+ |= ϕ iff
|S| is even. From ϕ we can extract a size bound s, such that the above relation
still holds if we restrict A+ to any U ⊇ HFs(A). ϕ can be translated into an

Logspace Reducibility via Abstract State Machines 1757

equivalent Lm
∞,ω-sentence ϕ′ over {S,∈ ?} (for some m) by unfolding DTC-

subformulae. If |S|! ≤ |A| and U ⊇ HFs(A), then (U, S,∈,?) |= ϕ′ iff |S| is even.
Now choose a positive instance A and a negative instance B of Small Subset
Parity, in each of which the colors S and SC (the complement of S) are so large,
such that Ās and B̄s are Lm∞,ω-equivalent. Since for every object Y ∈ HFs(A)
the trivial support AY has cardinality at most s, every such Y is s-symmetric.
Hence, HFs(A) is a subset of the set of all s-symmetric objects and Ās |= ϕ′. A
similar argument shows B̄s 6|= ϕ′. But this contradicts ϕ′ ∈ Lm∞,ω. ut
Acknowledgements. We are grateful to Andreas Blass, Yuri Gurevich and Eric
Rosen for numerous discussions and suggestions. In particular Yuri suggested
the development of a logspace reduction theory among structures and proposed
nullary ASM-programs as an initial model. Yuri’s persistent propaganda for the
ASM-model kept our interest alive.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addision-
Wesley, 1995.

[BGS97] A. Blass, Y. Gurevich, and S. Shelah. Choiceless Polynomial Time. Technical
Report CSE-TR-338-97, University of Michigan, May 1997.

[BH98] E. Börger and J. Huggins. Abstract State Machines 1988–1998: Commented
ASM Bibliography. Bulletin of the EATCS, 64:105–127, February 1998.

[CH82] A. Chandra and D. Harel. Structure and Compexity of Relational Queries.
Journal of Computer and System Sciences, 25:99–128, 1982.

[EF95] H. D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.
[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation

– P-Completeness Theory. Oxford University Press, 1995.
[GM95] E. Grädel and G. McColm. On the Power of Deterministic Transitive Clo-

sures. Information and Computation, 119:129–135, 1995. See also: Deter-
ministic versus Nondeterministic Transitive Closure Logic, in Proceedings of
7th IEEE Symposium on Logic in Computer Science (LICS ‘92), 58–63.

[Gur88] Y. Gurevich. Logic and the Challenge of Computer Science. In E. Börger,
editor, Current Trends in Theoretical Computer Science, pages 1–57. Com-
puter Science Press, 1988.

[Gur91] Y. Gurevich. Evolving Algebras: An attempt to discover semantics. Bulletin
of the EATCS, 43:264–284, 1991. a slightly revised version in G. Rozenberg
and A. Salomaa, editors, Current Trends in Theoretical Computer Science,
pages 266–292, World Scientific, 1993.

[Gur95] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor,
Specification and Validation Methods, pages 9–36. Oxford University Press,
1995.

[Gur97] Y. Gurevich. May 1997 Draft of the ASM Guide. Technical Report CSE-
TR-336-97, University of Michigan, May 1997.

[Hod93] W. Hodges. Model Theory. Cambridge University Press, 1993.
[Imm87] N. Immerman. Languages that capture complexity classes. SIAM Journal

of Computing, 16:760–778, 1987.
[Imm92] N. Immerman. Personal communication, 1992.
[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Publish-

ing Company, 1994.

Formal Methods for Extensions to CAS

Martin N. Dunstan?, Tom Kelsey, Ursula Martin, and Steve Linton

Division of Computer Science,
University of St Andrews,

North Haugh, St Andrews, UK
{mnd,tom,um,sal}@dcs.st-and.ac.uk

Abstract. We demonstrate the use of formal methods tools to provide a
semantics for the type hierarchy of the AXIOM computer algebra system,
and a methodology for Aldor program analysis and verification. We give
a case study of abstract specifications of AXIOM primitives, and provide
an interface between these abstractions and Aldor code.

1 Introduction

In this paper we report on the status of our work at St Andrews on the appli-
cation of formal methods and machine assisted theorem proving techniques to
improve the robustness and reliability of computer algebra systems (CAS). We
present a case study which demonstrates the use of formal methods for extend-
ing existing CAS code. This paper is an extension of the work described in [9].
We have adopted the Larch [16] system of formal methods languages and tools,
and applied them to the AXIOM [19] computer algebra system. NAG Ltd, who
develop AXIOM and partially fund this project, are optimistic that our formal
methods approach will aid system users.

We have constructed a formal model of the AXIOM algebraic category hier-
archy, and developed a methodology for formally verifying type assertions con-
tained in the AXIOM library. We have also created a Larch behavioural interface
specification language (BISL) called Larch/Aldor and a prototype verification
condition generator for the AXIOM compiled language, Aldor (see Section 2.4).
This work enables interface specifications (also known as annotations) to be
added to Aldor programs. These can be used for

– clear, concise, unambiguous and machine checkable documentation.
– lightweight verification (described in more detail in Section 3): helps users

to identify mistakes in programs which compilers are unable to detect.
– compiler optimisations: specifications could be used to select between differ-

ent function implementations, as described in [29].
– method selection: users could interrogate libraries for functions which per-

form a particular task under specific conditions, as described in [31].

? Funded by NAG Ltd

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1758–1777, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Formal Methods for Extensions to CAS 1759

Although we have chosen to follow the Larch methodology which is based
on a two-tiered specification system, we do not preclude the use of other formal
methods such as VDM [20], or Z [27]. Other proof tools, especially those with
higher order functionality such as PVS [25] or HOL [14], could be used. Nor
do we rule out the application to other CAS such as Maple [4] and Mathemat-
ica [32]; in fact the weaker type systems of these and other CAS may benefit
more from our approach than AXIOM has. Our approach is to use an automated
theorem prover as a tool for debugging formal specifications used in the design
and implementation of libraries for CAS. Our goal is to increase the robustness
of CAS.

In the rest of this introduction we motivate our work and discuss the uses
of verification conditions (VC’s) generated from annotations. In Section 2 we
introduce Larch and its algebraic specification language LSL. Then in Section 2.2
we explain how proofs of LSL specifications can be used to investigate claims
made in the documentation of AXIOM categories and domains. This is followed
by Sections 2.3 and 2.4 which describe Larch BISL’s, with particular reference
to Larch/Aldor. In Section 3 we describe the application of our technique of
specification lightweight verification and condition generation to CAS in general,
and to AXIOM in particular. Section 4 is a case study concerning AXIOM
complex numbers, which illustrates how incorrect behaviour within AXIOM can
be corrected both by abstract specification and the use of annotations. The final
section is an outline of our conclusions and related work.

1.1 Motivation

Computer algebra systems are environments for symbolic calculation, which pro-
vide packages for the manipulation of expressions involving symbols. These sym-
bols may, at some point, be assigned concrete numeric values. General purpose
computer algebra systems, such as AXIOM [19], Maple [4], or Mathematica [32],
as well as more specialised tools such as GAP [12] for computational discrete
mathematics or the AXIOM/PoSSo library for high-performance polynomial sys-
tem solving, are used by many different communities of users including educators,
engineers, and researchers in both science and mathematics. The specialised sys-
tems in particular are extremely powerful. The PoSSo library has been used to
compute a single Gröbner basis, used to obtain a solution of a non-linear sys-
tem, which (compressed) occupies more than 5GB of disk space, while GAP is
routinely used to compute with groups of permutations on millions of points.

After pioneering work in the 1960s CAS have become mainstream commer-
cial products: everyday tools not only for researchers but also for engineers and
scientists. For example Aerospatiale use a Maple-based system for motion plan-
ning in satellite control. The systems have become more complicated, providing
languages, graphics, programming environments and diverse sophisticated algo-
rithms for integration, factorisation and so on, to meet the needs of a variety of
users, many not expert in mathematics. All the usual software engineering issues
arise, such as modularity, re-use, interworking and HCI. NAG’s AXIOM [19] is
a sophisticated, strongly typed CAS: user and system libraries are written in

1760 Martin N. Dunstan et al.

the Aldor language which supports a hierarchy of built-in parameterised types
and algorithms for mathematical objects such as rings, fields and polynomials.
Aldor is interpreted in the AXIOM kernel which provides basic routines such as
simplification and evaluation: code developed in Aldor may also be compiled to
C for export to other products. Because such systems are large and complicated
(and the algorithms are often developed by domain experts with considerable
specialist knowledge) a body of library material has accrued, much of which is
widely used even if not necessarily well documented or even entirely understood.
For example, it may be known to experts that a certain routine is correct if the
input is a continuous function, but because continuity is undecidable this may
never be checked at run-time, and it may not even be noted in any obvious way
in the documentation, so that an inexpert user may easily make mistakes.

AXIOM/Aldor users can be grouped into three types:

– command line users, who have access to a comprehensive graphical hypertext
system of examples and documentation

– system developers, who may be expected to know about any pitfalls involving
the libraries

– library developers (writing Aldor programs), who need more support than
the description of routines in isolation, and who may be unaware of the
subtle dependencies and conditions contained in the AXIOM type system.

Our project aims to improve the provision of support for this third group of users.
It also encourages the reuse of software by providing unambiguous documenta-
tion for functions. We do not address the accuracy of the results of procedures;
computer algebra algorithms have been developed by experts and are generally
sound when applied correctly. However there can be hidden dependencies and
implicit side conditions present which can lead to erroneous or misinterpreted
results. Examples include inconsistent choice of branch cuts in integration al-
gorithms [7], invalid assumptions for the types of arguments of a function or
poorly documented side-conditions. Moreover CAS often contain several proce-
dures which perform the same task, but which are optimised for a particular
input domain. It is often not easy to select the best procedure without either a
detailed knowledge of the system or a lengthy perusal of the documentation.

1.2 Using Verification Conditions

Part of our work is concerned with the generation of verification conditions
(VC’s) from Aldor programs which have been annotated with Larch/Aldor spec-
ifications. VC’s are logical statements that describe the conditions under which
a program satisfies its specification; they may be created during attempts of
correctness proofs (see Section 3.1). However, once VC’s have been generated
one might ask what can we do with them? Ideally we would attempt to prove
or disprove them but in practice this may be infeasible. For example, the GAP4
CAS [12] contains a small module which would generate an apparently simple
verification condition. However, the proof of this VC relies on the “Odd Order

Formal Methods for Extensions to CAS 1761

Theorem” whose proof occupied an entire 255 page issue of the Pacific Journal of
Mathematics [11]. Other examples might include statements about continuity of
mathematical functions or computational geometry. Generating verification con-
ditions by hand is tedious even for tiny programs and so a mechanical program
would normally be used. Once the verification conditions have been generated
there are several options:

– trivial VC’s might be automatically discharged by the generator
– theorem provers or proof assistants might be utilised
– hand-proofs might be attempted
– the user may appeal to their specialist knowledge or authoritative sources
– VC’s may be ignored unless they are obviously unsatisfiable
– VC’s can be noted in the documentation as extra requirements

We believe that our suggestion that the user may wish to ignore VC’s unless
they are clearly invalid is justified because obvious mistakes can sometimes be de-
tected more quickly by inspection than by attempting to formally prove/disprove
them. For example the VC

(tanx) is-continuous-on (0, π)

is clearly false and this can be easily seen from the graph of tanx over the
specified interval (0, π). However, attempting to show that this is false within a
theorem prover is very difficult, requiring a model of the real numbers which is
a topic of active research [17, 18].

Proof attempts which fail to show whether a VC is valid or invalid may in-
dicate that the program annotations and/or the background theory needs to be
extended. VC’s which are found to be invalid mean that there is a mistake, prob-
ably in the program or the annotations but possibly in the theory used during
the proof. If all VC’s can be proved then the program satisfies its specification
and the user will have increased confidence that it will behave as expected.

2 Specification and the Larch Approach

In this section we describe the languages and tools which comprise the Larch for-
mal specification system, and propose a methodology for using Larch to specify
AXIOM and Aldor components. Examples of specifications which relate directly
to the AXIOM/Aldor CAS are provided.

Larch [16] is based on a two-tiered system. In the first tier users write alge-
braic specifications in a programming-language independent algebraic specifica-
tion language called the Larch Shared Language (LSL). These specifications pro-
vide the background theory for the problem domain and allow the investigation of
design options. The second tier consists of a family of behavioural interface speci-
fication languages (BISL’s), each tailored to a particular programming language.
User programs are annotated in the BISL of their choice. BISL specifications are
primarily concerned with implementation details such as side-conditions on func-
tions, memory allocation and pointer dereferencing. The Larch philosophy is to

1762 Martin N. Dunstan et al.

do as much work as possible at the LSL level, leaving implementation-specific
details to be described using the BISL. This allows BISL specifications to be
both concise and unambiguous.

2.1 The Larch Shared Language

The LSL tier allows the user to define operators and sorts (types) which provide
semantics for terms appearing in the BISL annotations. The basic unit of LSL
specification is a trait. The following example provides a basic abstraction of
complex numbers (providing a constructor of ordered pairs from a commutative
ring, and observers for the real and imaginary parts of a complex entity) which
will be used in the case study:

RequirementsForComplex (CR) : trait

assumes CommRingCat (CR)

introduces

complex : CR,CR ! T

imag, real : T ! CR

asserts

T partitioned by real, imag

T generated by complex

∀ x,y : CR

complex(x,y) = complex(u,v)) x = u ^ y = v;

imag(complex(x,y)) == y;

real(complex(x,y)) == x;

implies

∀ z : T

z == complex(real(z),imag(z))

The sections of the trait have the following meanings:

• assumes—textually include other traits (with renaming)
• introduces—declare new mix-fix operators
• asserts—define a set of axioms
• implies—statements implied by the axioms of this trait

The trait defines values of sort T, and is parameterized by the sort name CR. The
partitioned by clause states that all distinct values of sort T can be distin-
guished using real and imag. The generated by clause states that all T values
can be obtained using complex. What it means to be a value of sort CR is defined
in the assumed trait CommRingCat. This assumption generates a proof obligation:
any supplied argument must be shown to satisfy the axioms of a commutative
ring (the LSL includes command is used to inherit properties without justifica-
tion). LATEX is used for graphical symbols/operators, e.g. ∀ is written \forall.
The first assertion formalises equality for complex values; the reverse implication
is automatically true, since LSL operators always return equal results for equal
arguments. The remaining assertions provide straightforward semantics for the

Formal Methods for Extensions to CAS 1763

observers in terms of the constructor. The implies section is used as checkable
redundancy; proving the statements provides confidence that the axioms defined
are specified correctly. Failed proof attempts may indicate the presence of errors
or omissions in the original traits. This section can also provide extra informa-
tion and lemmas which might not be obvious from the rest of the trait, but are
useful properties for another trait to inherit.

A tool called lsl can be used to perform syntax and type checking of LSL
specifications. It can also convert LSL specifications into the object language of
the Larch Prover (LP), a proof assistant for a many-sorted first order logic with
induction which can be used to check properties of LSL specifications.

2.2 Specifying AXIOM Using LSL and LP

The specification of AXIOM categories in LSL was described in [9]. The next
stage is to specify AXIOM functors and debug these specifications using the
Larch Prover. The resulting abstract specifications provide concrete definitions of
the primitives which are used in interface specifications (annotations) to produce
verification conditions.

An AXIOM category is a set of operator names, signatures and methods
which provide an abstract framework for the definition of computer algebra
types. A category will, in general, have many models; each implemented model
is an AXIOM domain. For example, the AXIOM domains Matrix Integer and
Polynomial Integer are both implementations of the AXIOM category Ring.
We say that these domains have type Ring; their basic operators were defined
in the Ring category.

AXIOM domains are constructed by functors. These take domains as ar-
gument, and return a domain as output. In the above examples Matrix and
Polynomial are the functors, each taking the domain Integer as argument.
AXIOM assigns a type to each domain returned by a functor. This assignment
follows informal inbuilt rules which are not always valid. Thus AXIOM can as-
sign an incorrect type to a functor, and hence obtain incorrect results. We give
an example of this incorrect typing behaviour in our case study: AXIOM ax-
ioms asserts that a domain with non-zero zero divisors is a field. Prior to our
work, the only method of checking the correctness of these assignments was
experimentation with AXIOM code in conjunction with detailed examination
of AXIOM documentation. This method is unsatisfactory: even if each existing
AXIOM domain is tested, there remains the problem of testing domains not yet
implemented.

Our approach is to provide a generic methodology, applicable both to ex-
isting and potential implementations. We supply LSL specifications of functors
which allow us to formally verify that a given implementation is a model of
the categories which define the type of a resulting domain. These proofs can be
thought of as providing enhanced type-checking. Proof obligations are obtained
by adding the clause

implies TypeTrait(Sortname, Opnames for names)

1764 Martin N. Dunstan et al.

to the functor trait, where TypeTrait is a trait representing an AXIOM cate-
gory, Sortname is the sort name for the domain produced by the functor, and
Opnames for names replaces high level operator names with appropriate imple-
mentation level operator names.

The specifications also allow formal checks that implementations of operators
act as expected in the model. For example we can check that abstract algebraic
properties hold at the domain level, or that the implementation operators com-
bine together in a satisfactory manner. Moreover an LSL clause of the form
assumes CategoryName(CN) generates a proof obligation that a specification
of an argument domain (with sort name CN)) is a model of the specification
of CategoryName. Hence we can verify that argument domains are of the in-
tended type. Examples of enhanced type-checking, operator suitability proofs,
and argument correctness verification are given in Section 4.1

2.3 Larch BISL’s

Once the necessary theories have been defined in LSL (and checked with LP),
the user can proceed to write their program. In the ideal world implementations
would be developed in conjunction with the annotations but in the case of legacy
systems this may not be possible. For such systems specifying their behaviour
as it has been implemented may be the only option, at least as the first step.

To date there are around 14 different Larch BISL’S for languages ranging
from CLU [30] and Modula-3 [21] to C [16] and C++ [23]. Each has been designed
to investigate various aspects of imperative programming such as inheritance [23]
and concurrency [21] as well as different development methodologies such as
specification browsing [5] and interactive program verification [15]. The syntax
and use of BISL specifications is essentially the same in all languages. Functions
and procedures can be annotated with statements defining their pre- and post-
conditions as well as indicating any client-visible state which might be modified
when the function is executed.

Below is a simple example of an annotated Aldor function declaration for
iqsrt which computes the integer square root of a positive number:

++} requires :(x < 0);

++} ensures (r*r � x) ^ (x < (r+1)*(r+1));

++} modifies nothing;

iqsrt(x:Integer):(r:Integer);

Annotations are embedded in the program source code and appear as special
comments marked by lines beginning with “++}”. In the example above the
requires clause defines the pre-condition of the function and states that the
argument must be a non-negative integer. The ensures clause defines the post-
condition in terms of the return value “r” and places restrictions on the possible
set of values that “r” may hold such that

∀x • x ≥ 0⇒ isqrt(x) = b√xc

Formal Methods for Extensions to CAS 1765

The modifies clause specifies which parts of the client-visible state (such as
global variables) might be modified when this function is executed. A function
is permitted to mutate at most the objects listed in the modifies—it may alter
some or none of them if appropriate.

2.4 Larch/Aldor

As part of our work we have designed a Larch BISL for Aldor, the extension pro-
gramming language for AXIOM, which we are using to investigate how program
annotations can improve the reliability and robustness of computer algebra rou-
tines. Aldor programs may be annotated with Larch BISL specifications which
can be used as clear, concise and machine-checkable documentation; they may
also be used for verification condition generation (see Section 3). An example
of a Larch/Aldor program which implements the integer division algorithm is
given below.

++} requires :(g = 0);

++} ensures (f = ((result.q)*g + result.r))

++} ^ (abs(result.r) < abs(g));

++} modifies nothing;

integerDivide(f:INT, g:INT):Record(q:INT, r:INT) == {

local quo:INT := 0;

local rem:INT := f;

++} requires :(g = 0) ^ (quo^ = 0) ^ (rem^ = f);

++} ensures (f = (quo’*g + rem’)) ^ (abs(rem’) < abs(g));

++} invariant f = (quo*g + rem);

++} measure abs(rem);

++} modifies quo, rem;

while (abs(rem) � abs(g)) repeat {

quo := quo + sign(f)*sign(g);

rem := rem - sign(f)*abs(g);

}

record(quo, rem);

}

In the annotations of the example above, identifiers represent logical values
of the corresponding Aldor variables. The identifiers marked with a caret (^)
indicate that the value is with respect to the state of the program before the
function is executed (the pre-state) while the primed identifiers correspond to
values in the post-state. Unadorned identifiers are interpreted according to the
context and usually have the same value in the pre- and post-states. The iden-
tifier result is known as a specification or ghost-variable and its value is the
return value of the function. It is important to note that operators and functions
that appear in the annotations are LSL operators and not Aldor functions.

1766 Martin N. Dunstan et al.

3 Application of the Larch Method to CAS

The AXIOM computer algebra system has a large library containing numerous
functors, as described in Section 2.2. Although a few of these can be applied to
any type, such as List(T:Type), many have restrictions on the types of domains
which they can accept as arguments and which they will return. As shown in the
case study in Section 4, the functor Complex can only be applied to domains CR
which are of type CommutativeRing. This means that the operations defined by
Complex are able to rely on the fact that CR is a CommutativeRing, irrespective
of the concrete instance of CR. This creates the risk that functors may contain
errors that are not revealed by their application to any domain in the existing
library, but may appear when new domains are added.

3.1 Lightweight Verification Condition Generation

Our proposal is to formally specify the requirements of the categories and the
behaviour of functors, to allow checks that do not depend on specific domains.
The diagram below is intended to describe the development used for Larch/Aldor
programs. Users begin by writing LSL specifications which provide the theory for
their problem. Next the interface specifications and Aldor source are produced,
perhaps leaving some functions as stubs without a proper implementation. A
separate tool can then generate verification conditions which can be analysed
using LP, by hand or by some other theorem prover as appropriate. A prototype
VC generator for Larch/Aldor has been implemented in Aldor by the authors.

Larch
Prover

Verification

Conditions

LSL
Specification

BISL

Specification

Code
Source

We use the notation {P} C {Q} to state that the program fragment C has
the pre-condition P and post-condition Q; P and Q are the specification of C. If
{P} C {Q} is interpreted as a “partial correctness” statement then it is true, if
whenever C is executed in a state satisfying P and if the execution of C terminates,

Formal Methods for Extensions to CAS 1767

then it will be in a state which satisfies Q. If {P} C {Q} is interpreted as being
“totally correct” then it must be partially correct and C must always terminate
whenever P is satisfied. The approach often taken to prove that {P} C {Q} is
partially or totally correct is to reduce the statement to a set of purely logical
or mathematical formulae called verification conditions [13] or VC’s. This is
achieved through the use of proof rules which allow the problem to be broken
into smaller fragments. For example, the rule for assignment might be:

P ⇒ Q [e/v]
{P} v := e {Q}

which states that to prove the partial correctness of {P} v := e {Q} we need
to prove that P ⇒ Q [e/v] where Q [e/v] represents the formula Q with every
occurrence of v replaced with e. For example, the partial correctness proof of
{x = 0} x := x + 1 {x = 1} generates the VC (x = 0) ⇒ (x + 1) = 1; for total
correctness we must also show that the evaluation of e terminates.

Our approach to verification condition generation is different—the assign-
ment rule in the previous section is relatively simple but the construction of
rules for other features of a programming language such as Aldor is not so easy.
In particular, determining the verifications resulting from calling a procedure
which mutates the values of its arguments is difficult. In [9] we proposed the use
of lightweight formal methods to step around this problem in computer algebra
systems. Rather than undertaking long verification proofs, we suggest that the
correctness of a procedure may be taken on trust.

Using our notation, {P} C {Q} might represent the correctness of a standard
library procedure C. In any context which executes C we have the verification
condition that P is satisfied in this context; we can then assume that Q is satisfied
in the new context after C has terminated. Our justification for this is that we
believe it is more likely that programming errors will be due incorrect application
of functions or procedures than due to mistakes in the the implementation of
computer algebra routines. After all the algorithms upon which they are based
have almost certainly been well studied.

As an example, consider the ‘isqrt’ function specified in Section 2.3. With
our approach we trust that the implementation of this function satisfies its
specification, namely that if ¬(x < 0) then the result r satisfies r ∗ r ≤ x <
(r + 1) ∗ (r + 1). Now whenever we see a statement such as ‘a := isqrt(z)’ we
can generate the verification condition that ¬(z < 0) holds before the assign-
ment and from the post-condition we infer that a∗a ≤ z < (a+1)∗ (a+1) holds
afterwards. This inference may help to discharge other verification conditions.
Furthermore the user may wish to apply the VC generator to the implementation
of ‘isqrt’ to check that it does indeed satisfy its specification.

4 Case Study

In this section we analyse the behaviour of specific examples of the AXIOM cate-
gories and domains described in Section 2.2. We use these examples to illustrate

1768 Martin N. Dunstan et al.

incorrect AXIOM output. In Section 4.1 we provide LSL specifications which
provide a formal check on the type-correctness of the example domains. The use
of BISL’s to provide a complementary methodology for checking type-correctness
is described in Section 4.3.

Our case study concerns essential side-conditions for a functor in the AX-
IOM library. These conditions are present only as informal comments in the
documentation, which are themselves inaccurate. This can result in erroneous
AXIOM development in two ways: (i) the library developer may not be aware of
the comments and hence the existence of side-conditions, (ii) the library devel-
oper may take the side-conditions into account, but be misled by the inaccurate
comments. The AXIOM category ComplexCategory

– contains domains which represent the Gaussian integers (Complex Integer)
and Gaussian rationals (Complex Fraction Integer)

– contains analogous domains, also obtained by the use of the functor Complex
– defines the constants 0, 1, and the square root of −1
– defines multiplication, addition, and subtraction operators
– defines other useful operators, such as norm and conjugate.

The AXIOM functor Complex

– takes an AXIOM domain of type CommutativeRing, for example Integer
– represents ordered pairs as records of two elements
– implements the operators defined in ComplexCategory in terms of the record

representation and the structure of the argument domain
– returns an AXIOM domain of computation of type ComplexCategory.

AXIOM can behave incorrectly when the argument to Complex is an integral
domain or a field. An integral domain is a commutative ring in which the product
of two non-zero elements is always non-zero. This is known as the “no zero
divisors” axiom, and can be written as ∀x, y xy = 0 ⇒ x = 0 ∨ y = 0. For
example, Integer is an AXIOM integral domain. A field is an integral domain
in which each non-zero element has a multiplicative inverse.

In AXIOM, a domain of type ComplexCategory(K) (where K is either an in-
tegral domain or a field), is assigned type IntegralDomain or Field respectively.
However, the correctness of this type-assignment is dependent on

(i) x2 +y2 = 0 having no non-trivial solutions in K when K is an integral domain
(ii) x2 + 1 = 0 having no solutions when K is a field.

These properties do not hold for every integral domain and field. The follow-
ing AXIOM session demonstrates this: we take the field containing exactly five
elements, PrimeField 5, and show that Complex PrimeField 5 is incorrectly
given type Field, even though 3+ i and 3− i are zero divisors, contradicting one
of the field axioms. This behaviour is a consequence of the fact that x2 + 1 = 0
has the solutions 2 and 3 in PrimeField 5.

Formal Methods for Extensions to CAS 1769

(1) ! K := PrimeField 5

(1) PrimeField 5

Type: Domain

(2) ! Complex K has Field

(2) true

Type: Boolean

(3) ! a := 3 + %i :: Complex K

(3) 3 + %i

Type: Complex PrimeField 5

(4) ! b := 3 - %i :: Complex K

(4) 3 + 4%i

Type: Complex PrimeField 5

(5) ! a*b

(5) 0

Type: Complex PrimeField 5

Our solution to this incorrect type-assignation, presented in the following sec-
tion, is to (i) specify the AXIOM category, (ii) provide formal axiomatisations
and proofs of the conditions for type correctness, and (iii) import these into the
specification of the Complex functor. The Aldor library developer is then able to
view the conditions in the specification as conditional attributes of the particu-
lar argument domain under consideration. Section 4.2 illustrates the verification
techniques that we have developed. In Section 4.3 we show how interface spec-
ifications can reinforce the properties of the LSL specification of Complex by
allowing the generation of VC’s.

4.1 LSL Specification of the AXIOM Functor Complex

The LSL trait RequirementsForComplex (given in Section 2.1) defined, at a
high level of abstraction, the constructor and observer operations required by
an implementation of complex numbers. We specified that elements of sort T
have extractable real and imaginary parts, can be obtained only as a result of
applying the complex operator, and are equal iff they have equal real and imag-
inary parts. The trait assumed that the argument domain has AXIOM type
CommutativeRing. The ComplexCategory trait below lowers the level of ab-
straction by the provision of (i) constants of sort T, (ii) the useful shorthand
operators conjugate and norm, and (iii) multiplication, addition and subtrac-
tion over T. The assertions supply the standard algebraic notions of multiplica-
tion, addition and subtraction of complex ring elements represented (in terms of
complex) as ordered pairs of elements from the underlying ring. The operators
norm, conjugate and imaginary have standard mathematical definitions.
The implications of the trait are:

A Larch handbook [16] traits, which combine to require that T is shown to
be a commutative ring with unity. Hence Complex (CR) is shown to be a
commutative ring whenever CR is.

1770 Martin N. Dunstan et al.

ComplexCategory (CR) : trait

assumes CommRingCat (CR)

includes RequirementsForComplex (CR)
introduces
imaginary, 0, 1 : ! T

conjugate : T ! T

norm : T ! CR

__+__, __*__ : T,T ! T

-__ : T ! T

asserts ∀ w,z : T

imaginary == complex(0,1);

0 == complex(0,0);

1 == complex(1,0);

conjugate(z) == complex(real(z),-imag(z));

norm(z) == (real(z)*real(z)) + (imag(z)*imag(z));

w + z == complex(real(w)+real(z),imag(w)+imag(z));

w*z == complex((real(w)*real(z)) - (imag(w)*imag(z)),

(real(w)*imag(z)) + (imag(w)*real(z)));

-z == complex(-real(z),-imag(z))

implies

AC (*, T), AC (+, T), Distributive(+, *, T),

Group(T for T, + for ◦, 0 for unit, -__ for −1),

Monoid(T for T, * for ◦, 1 for unit)

9=
;A

∀ z,w : T

imaginary*imaginary == -1;
	

B

B A check that imaginary has been defined correctly as a square root of the
additive inverse of the multiplicative unity element of the underlying ring.

4.2 Proving Properties

Proving the implications labelled A and B shows directly that an AXIOM do-
main of type ComplexCategory will have inherited the correct properties as-
serted informally in the AXIOM documentation. These straightforward proof
goals normalise immediately in LP. We now address type correctness in the case
that the argument CR is an integral domain or a field.
The following trait provides the necessary conditions for type-correctness of an
AXIOM domain of type ComplexCategory. The implications are:

A if the argument type is a field in which x2 = −y2 ⇐⇒ x = 0, then the
resulting complex type will have multiplicative inverses

B if the argument type is a field in which x2 = −1 never holds, then the
complex type will have no zero divisors

C if the argument type is an integral domain in which x2 = −y2 ⇐⇒ x = 0,
then the complex type is an integral domain.

Formal Methods for Extensions to CAS 1771

TypeConditions (CR,T) : trait
includes
CommRingCat (CR), ComplexCategory (CR)

introduces
TypeCondition_1, TypeCondition_2 : ! Bool

InverseExistence : ! Bool

asserts ∀ a,b,c : CR

TypeCondition_1) (a := 0) a*a := -(b*b));

TypeCondition_2) (a*a := -1);

InverseExistence) (a := 0) 9 c (a*c = 1))

implies ∀ v,z,w : T

TypeCondition_1 ^ noZeroDivisors ^ InverseExistence

) (w := 0) 9 v (w*v = 1));

�
A

TypeCondition_2 ^ noZeroDivisors ^ InverseExistence

) (w*z=0) w=0 _ z=0);

�
B

TypeCondition_1 ^ noZeroDivisors) (w*z=0) w=0 _ z=0)
	

C

Proof of implication A:
Suppose that the relevant conditions hold, and that w = (a, b) is non-zero.
Then a2 + b2 6= 0 (by type condition 1), and so there exists a c such that
c(a2 + b2) = 1 (by inverse condition). By setting v = (ca, c(−b)) we obtain
vw = (ca,−cb)(a, b) = (ca2 + cb2,−cba + cba) = (c(a2 + b2), 0) = (1, 0) and
hence v is the required multiplicative inverse. 2
Proof of implications B and C:
Suppose the relevant conditions hold, and that z ∗ w = 0 with z = (a, b) and
w = (c, d). Then we have

ac − bd = 0
ad + bc = 0

}
(∗)

If a = 0 and b 6= 0, then bd = 0 and bc = 0, giving d = c = 0 and hence
w = (0, 0) = 0. Similar arguments hold whenever b, c, or d are zero, and the
implications are proved for all these cases. If a, b, c, and d are all nonzero then,
by equations (∗), ab(ac) = ab(bd), or a2(bc) = (−bc)b2 after substituting for
ad. Hence a2 = −b2 holds for non-zero a and b, immediately contradicting type
condition 1 for implication B. When b has the multiplicative inverse c, we have
that a2 = −b2 gives (ac)2 = −bcbc = −1, contradicting type condition 2 for
implication C. Hence the result is proved for both implications 2

The Aldor library developer, by using this specification, can check the condi-
tions for the particular domain of computation under consideration. For example,
neither type condition holds in PrimeField 5, so Complex PrimeField 5 will
have type CommutativeRing (justified by the implications of the specification
of ComplexCategory) but not type Field. Conversely, since type condition 1
holds in the type Integer, Complex Integer can correctly be assigned type
IntegralDomain, with implication C above as formal justification.

1772 Martin N. Dunstan et al.

Complex (CR) : trait

assumes CommRingCat(CR)

includes ComplexCat(CR), TypeConditions (CR,T)

BiRecord(T, CR, CR, .real for .first, .imag for .second)
introduces
coerce : CR ! T

__*__ : N,T ! T

isZero, isOne : T ! Bool

asserts ∀ x,y : CR, z : T, n : N

complex(x,y) == [x,y];

coerce(x) == [x,0];

n*z == [n*(z.real), n*(z.imag)];

isZero(z) == z = 0;

isOne(z) == z = 1
implies
RequirementsForComplex(CR, __.real for real, __.imag for imag)

∀ z, w : T

norm(z*w) == real((z*w)*conjugate(z*w));

imag((z*w)*conjugate(z*w)) == 0;

conjugate(z)*conjugate(w) == conjugate(z*w)

converts complex

We now wish to show that the record representation for complex numbers
used by AXIOM satisfies our high level requirements. The trait Complex(CR)
above is simply a copy of the AXIOM documentation with the element x + iy
represented by the record [x,y]. By implying RequirementsForComplex we
generate the required proof goal. The proof (although straightforward in LP)
is not trivial: we have included the specification of ComplexCategory, which it-
self includes RequirementsForComplex, but not under the renaming of operators
given in the implies clause. Hence we are checking that the record representation
is suitable, where suitability was defined in the trait RequirementsForComplex.
The same methodology would be used to show that a representation of x+ iy as
(r, θ) (i.e. the standard modulus/amplitude representation) satisfied our abstract
requirements. The remaining implications check that the combined operator def-
initions satisfy standard results from the abstract theory of complex numbers.

4.3 The Interface Specification

In the previous section we described how the AXIOM functor Complex(CR)
allows the user to construct an object which AXIOM considers to be a field
even though it is not. Here we show how interface specifications may be used
to deal with the problem in a different yet complementary way to that adopted
in the previous section. Since functors are functions from types to types, it is
quite natural to use interface specifications such as those described earlier to
describe their behaviour. In general a functor will not make any modifications
to client-visible state which simplifies any reasoning about them. However, since
the arguments and return values are types we may need to resort to a higher

Formal Methods for Extensions to CAS 1773

order logic to capture their meaning. This is not always the case as can be seen
here. In the example below we present the skeleton of a Larch/Aldor program
which describes the Complex(CR) domain.

++} requires isIntegralDomain(CR) ^ :(∃ x,y:CR • (x*x + y*y = 0));

++} ensures isIntegralDomain(%);

++} modifies nothing;

Complex(CR:CommutativeRing):CommutativeRing;

The predicate isIntegralDomain(CR) in the pre-condition corresponds to a
trait in our LSL theory and is true iff the domain CR satisfies the properties of
a mathematical integral domain; the statement ¬(∃x, y : CR • (x2 + y2 = 0)) is
intended to capture the notion of type correctness described in the previous sec-
tion. In the post-condition the concrete instance of Complex(CR) is represented
by the AXIOM symbol %.

If the user instantiates the domain Complex(Integer) we can generate the
verification condition

isIntegralDomain(Integer) ∧ ¬∃x, y : Integer • (x2 + y2 = 0)

Since Integer is an integral domain isIntegralDomain(Integer) holds; in
fact the interface specification for Integer will state this property as part of its
post-condition. This means that the VC can be simplified to

¬∃x, y : Integer • (x2 + y2 = 0)

and if the user is familiar with elementary mathematics, they will be able to
show that this is true. In doing so they will hopefully gain confidence that the
Complex(Integer) domain will behave in the way that they expect it to. In
addition to the verification condition we infer from the post-condition that

isIntegralDomain(Complex(Integer))

and as mentioned earlier, this may help to discharge other VC’s.
If we repeat the process with Complex(PrimeField 5) (which AXIOM con-

siders to be valid even though it isn’t an integral domain) we obtain a similar
VC to the one above

¬∃x, y : PrimeField 5 • (x2 + y2 = 0)

since PrimeField 5 is a finite integral domain (and hence a field). However, this
VC can be shown to be false by providing the witnesses x = 2 and y = 4.

5 Conclusions and Future Work

We have augmented our specification of the AXIOM algebraic category hierar-
chy with LSL specifications of AXIOM functors. The methodology used allows

1774 Martin N. Dunstan et al.

enhanced type-checking and verification of argument types, as well as proofs of
operator properties with respect to value representations. We have implemented
a prototype lightweight verification condition generator in Aldor for Larch/Aldor
programs. To achieve this the grammar of an Aldor compiler was extended to
allow Larch annotations to be recognised. Further modifications to the compiler
were made so that it could generate an external representation of the parse tree
complete with types and specifications. The prototype analyser uses the parse
tree to generate verification conditions and inferences from the user’s program.
For example, given the annotated Aldor program in Section 2.4 and the pro-
gram statement “ans := integerDivide(23, 6)” our tool could, in principle,
produce the VC ¬(6 = 0) which is obviously true and the inference that:

(23 = ((ans.q) ∗ 6 + ans.r)) ∧ (abs(ans.r) < abs(6))

The prototype VC generator is by no means completely finished and there is
scope for further improvement. Indeed it would be interesting to incorporate it
into the compiler itself so that existing control-flow functions and data-structures
could be utilised, and so that VC generation could be used to provide additional
compiler warnings. In spite of its limitations the authors feel that the prototype
is useful as a proof-of-concept and given time it could be extended to analyse
functions and domains as well. At present the LP proof assistant is more than
capable of discharging the simple verification conditions that it has generated so
far. However, we believe that more interesting case studies will probably require
the use of a more developed theorem prover such as HOL [14] or PVS [25].

5.1 Related Work

There are a number of other systems which are related to our work and from
which we have drawn upon for our ideas. Examples of ways in which CAS and
automated theorem proving technology have been used together include work
linking HOL and Maple [1] where simplification rules were added to HOL to
make selected Maple routines available; the Analytica system which implements
automated reasoning techniques in the Mathematica CAS [2]; the Theorema
project uses the rewriting engine of Mathematica as a logical system to provide
a single framework for both symbolic computation and proof [3]; REDLOG is an
extension of the REDUCE to allow symbolic manipulation of first order formulas
in a CAS [8]. These approaches differ in the amount of trust given to CAS and
ATP results, their overall goals (better ATP, better CAS, or possibly better
formalised mathematics), and in the hierarchy of the systems (for example ATP
slave to the CAS master or vice versa).

Closer to our work is that of [26] where the Aldor type system is being
extended to increase the potential of its dependent types. This work can be used
to incorporate pre- and post-conditions into type declarations and admit proofs
that properties in the documentation also hold at the computational level.

On the Larch side of our work (see Section 2) we are aware that many of
the Larch behavioural interface specification languages (BISL’s) do not have

Formal Methods for Extensions to CAS 1775

any program analysis tools associated with them—they are primarily used as
clear and concise documentation. One exception is Larch/Ada [15] which uses
a syntax-directed editor called Penelope [15] for the interactive development
and verification of Larch/Ada programs. Another exception is Larch/C [10] for
which the LcLint [10] static program checker has been written. This tool is able
to detect violations of subset of Larch/C interface specifications and check other
special program annotations. Also in the Larch world, Speckle [29] is an optimis-
ing compiler for the CLU language which uses Larch-style interface specifications
to select specialised procedure implementations.

The Extended Static Checking (ESC) system [6] provides automatic ma-
chine checking of Modula-3 programs to detect violations of array bounds, NIL
pointer dereferencing, deadlocks and race conditions through the use of simple
yet powerful annotations. ProofPower is a commercial tool developed by the
High Assurance Team at ICL [22] based on the HOL theorem prover and the Z
notation for a subset of Ada. Programs are prototyped and refined using Compli-
ance Notation into Ada. Verification conditions generated from the Compliance
Notation can be discharged via formal or informal arguments as required.

Also of note are the Eiffel [24] and Extended ML [28] programming languages.
In Eiffel pre- and post-conditions are an integral part of the language syntax.
These annotations can be converted into runtime checks by the compiler and
violations may be handled by the programmer via exception handlers. Extended
ML also incorporates specifications into its syntax—users can write algebraic
specifications describing the properties of functions and use stepwise refinement
(c.f. reification [20]) to obtain suitable implementations.

Acknowledgements

We acknowledge support of the UK EPSRC under grant number GR/L48256 and of

NAG Ltd. We also thank James Davenport of the University of Bath and Mike Dewar

from NAG for their interest and suggestions.

References

[1] Ballarin, C., Homann, K., and Calmet, J. Theorems and algorithms: An
interface between Isabelle and Maple. In Proceedings of International Symposium
on Symbolic and Algebraic Computation (1995), A.H.M.Levelt, Ed., ACM Press,
pp. 150–157.

[2] Bauer, A., Clarke, E., and Zhao, X. Analytica—an experiment in combining
theorem proving and symbolic computation. J. Automat. Reason. 21, 3 (1998),
295–325.

[3] Buchberger, B. Symbolic computation: computer algebra and logic. In Fron-
tiers of combining systems (Munich, 1996). Kluwer Acad. Publ., Dordrecht, 1996,
pp. 193–219.

[4] Char, B. W. Maple V language Reference Manual. Springer-Verlag, 1991.

1776 Martin N. Dunstan et al.

[5] Cheon, Y., and Leavens, G. T. A gentle introduction to Larch/Smalltalk
specification browsers. Tech. Rep. TR 94-01, Department of Computer Science,
Iowa State University, 226 Atanasoff Hall, Ames, Iowa 50011-1040, USA, Jan.
1994.

[6] Detlefs, D. L. An overview of the Extended Static Checking system. In Pro-
ceedings of The First Workshop on Formal Methods in Software Practice (Jan
1996), ACM (SIGSOFT), pp. 1–9.

[7] Dingle, A., and Fateman, R. J. Branch cuts in computer algebra. In Symbolic
and Algebraic Computation (1994), ISSAC, ACM Press.

[8] Dolzmann, A., and Sturm, T. REDLOG: Computer algebra meets computer
logic. ACM SIGSAM Bulletin 31, 2 (June 1997), 2–9.

[9] Dunstan, M., Kelsey, T., Linton, S., and Martin, U. Lightweight formal
methods for computer algebra systems. In ISSAC (1998).

[10] Evans, D. Using specifications to check source code. Master’s thesis, Department
of Electrical Engineering and Computer Science, MIT Lab. for Computer Science,
545 Technology Square, Cambridge, MA 02139, June 1994.

[11] Feit, W., and Thompson, J. G. Solvability of groups of odd order. Pacific
Journal of Mathematics 13 (1963), 775–1029.

[12] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.
Aachen, St Andrews, 1998. (http://www-gap.dcs.st-and.ac.uk/~gap).

[13] Gordon, M. J. C. Programming language theory and its implementation. Series
in Computer Science. Prentice Hall International, 1988.

[14] Gordon, M. J. C., and Melham, T. F., Eds. Introduction to HOL. Cambridge
University Press, Cambridge, 1993. A theorem proving environment for higher
order logic, Appendix B by R. J. Boulton.

[15] Guaspari, D., Marceau, C., and Polak, W. Formal verification of Ada pro-
grams. In First International Workshop on Larch (July 1992), U. Martin and
J. Wing, Eds., Springer-Verlag, pp. 104–141.

[16] Guttag, J. V., and Horning, J. J. Larch: Languages and Tools for Formal
Specification, first ed. Texts and Monograps in Computer Science. Springer-Verlag,
1993.

[17] Harrison, J., and Théry, L. Extending the HOL theorem prover with a com-
puter algebra system to reason about the reals. In Higher order logic theorem prov-
ing and its applications (Vancouver, BC, 1993). Springer, Berlin, 1994, pp. 174–
184.

[18] Jackson, P. Enhancing the NUPRL Proof Development System and Applying it
to Computational Abstract Algebra. PhD thesis, Department of Computer Science,
Cornell University, Ithaca, New York, Apr. 1995.

[19] Jenks, R. D., and Sutor, R. S. AXIOM. Numerical Algorithms Group Ltd.,
Oxford, 1992. The scientific computation system, With a foreword by David V.
Chudnovsky and Gregory V. Chudnovsky.

[20] Jones, C. B. Systematic Software Development using VDM, second ed. Computer
Science. Prentice Hall International, 1990.

[21] Jones, K. D. LM3: a Larch interface language for Modula-3, a definition and
introduction. Tech. Rep. 72, SRC, Digital Equipment Corporation, Palo Alto,
California, June 1991.

[22] King, D. J., and Arthan, R. D. Development of practical verification tools.
The ICL Systems Journal 1 (May 1996).

[23] Leavens, G. T., and Cheon, Y. Preliminary design of Larch/C++. In First
International Workshop on Larch (July 1992), U. Martin and J. M. Wing, Eds.,
Workshops in Computing, Springer-Verlag, pp. 159–184.

Formal Methods for Extensions to CAS 1777

[24] Meyer, B. Object-Oriented Software Construction. Computer Science. Prentice
Hall International, 1988.

[25] Owre, S., Shankar, N., and Rushby, J. M. User Guide for the PVS Specifi-
cation and Verification System. Computer Science Laboratory, SRI International,
Menlo Park, CA, Feb. 1993.

[26] Poll, E., and Thompson, S. Adding the axioms to Axiom: Towards a system
of automated reasoning in aldor. Technical Report 6-98, Computing Laboratory,
University of Kent, May 1998.

[27] Potter, B., Sinclair, J., and Till, D. An introduction to formal specification
and Z. Prentice Hall International, 1991.

[28] Sannella, D. Formal program development in Extended ML for the working
programmer. In Proceedings of the 3rd BCS/FACS Workshop on Refinement
(1990), Springer Workshops in Computing, pp. 99–130.

[29] Vandevoorde, M. T., and Guttag, J. V. Using specialized procedures and
specification-based analysis to reduce the runtime costs of modularity. In Proceed-
ings of the 1994 ACM/SIGSOFT Foundations of Software Engineering Conference
(1994).

[30] Wing, J. M. A two-tiered approach to specifying programs. Tech. Rep. LCS/TR–
299, Laboratory for Computer Science, MIT, May 1983.

[31] Wing, J. M., Rollins, E., and Zaremski, A. M. Thoughts on a Larch/ML and
a new application for TP. In First International Workshop on Larch (July 1992),
U. Martin and J. M. Wing, Eds., Workshops in Computing, Springer-Verlag,
pp. 297–312.

[32] Wolfram, S. Mathematica: A system for doing mathematics by computer, 2 ed.
Addison Wesley, 1991.

An Algebraic Framework for Higher-Order

Modules

Rosa Jiménez and Fernando Orejas

Dept. Leng. Sist. Inf., Univ. Polit. Catalunya
Barcelona, SPAIN

Abstract. This paper presents a new framework for dealing with higher-
order parameterization allowing the use of arbitrary fitting morphisms
for parameter passing. In particular, we define a category of higher-order
parameterized or module specifications and, then, following the approach
started in the ASL specification language, we define a typed λ-calculus,
as a formalism for dealing with these specifications, where arbitrary fit-
ting morphisms are allowed. In addition, the approach presented is quite
general since all the work is independent of the kind of basic specifica-
tions considered and, also, of the kind of operations used for building
basic specifications, provided that some conditions hold. In this sense
we are not especially bound to any set of basic specification-building
operations. We call our parameterized units modules to make clear the
distinction between the basic specification level that is not fixed a pri-
ori and the parameterized units level that is studied in the paper. The
kind of calculus presented can be seen as a variation/extension of the
simply typed λ-calculus, which means that we do not allow dependent
types. This would have been interesting, but it is not possible with the
semantics proposed. The main result of the paper shows the adequacy
of β-reduction with respect to the semantics given.

1 Introduction

There are two standard approaches for dealing with genericity in specification
or programming languages. On the one hand, parametric polymorphism is used,
especially, in functional languages like ML or Miranda. On the other, different
forms of generic units or modules are used in specification languages like Clear or
Act One or programming languages like OBJ or Ada. Each of these approaches
has a number advantages and disadvantages of different kind. Actually, some
languages like ML provide constructions for both kind of approaches. Among
the advantages in favor of generic modules is the additional power provided by
allowing modules to have “complex” formal parameters, i.e. parameters need not
to be just sorts but may be arbitrary interfaces. In addition, module instantiation
is usually defined in a flexible way by means of an arbitrary fitting morphism
identifying the “elements” (sorts, functions, predicates,...) in the interface with
corresponding elements in the actual parameter. Among the advantages in favour
of parametric polymorphism is the additional power provided by allowing to deal
with higher-order objects.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1778–1797, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

An Algebraic Framework for Higher-Order Modules 1779

There have been two approaches to provide a higher-order extension of the
basic constructions of some specification languages. One approach, consists in
extending the logic underlying a given specification language with higher-order
sorts (for instance extending first-order equational logic to higher-order equa-
tional logic). In this way, the structuring constructions of a specification lan-
guage remain the same, only the underlying formalism changes. This approach
has some disadvantages. The main one is that having a more complex under-
lying formalism implies a difficulty for building deductive tools. For instance,
when going from first-order to higher-order equational logic, unification becomes
undecidable. The other approach consists in (without changing the underlying
formalism) allowing the interfaces of generic units to be generic or parameterized
themselves. A simple way of doing this, which has its origins in the specifica-
tion language ASL [13], is based on considering that a generic specification is
any parameterized λ-expression built over some specification variables. Then,
instantiating a parameterization consists in substituting these variables by any
(adequate) specification. This can be seen as a form of β-reduction. One of the
advantages of this approach, besides its generality, is the simplicity for defining
higher-order parameterizations. In particular, given the parameterization:

MSP = λX : SP.E(X)

where E(X) denotes any expression defined in terms of the specification building
operations considered, over a “specification variable” X of “type” (formal pa-
rameter specification) SP . If we allow SP or E(X) to be arbitrary λ-expressions
then MSP would be a higher-order specification. This kind of typed λ-notation
may look a bit awkward since types and objects seem to denote the same thing
(specifications). However, the type of a variable and the result of an expression
denote different things. Being specific, when declaring X : SP , it is considered
that the type denoted by SP is the class (or category) of all the specifications
that are “more concrete” than SP , i.e. all the admissible actual parameters
for SP . Let us see an example of a higher-order parameterization using this
approach. Given the specifications:

ELEM = sorts elem

PSEQ = λX : ELEM. enrich X by
sorts seq
opns ε : → seq

app : seq elem→ seq

defining a parameterized specification of “linear” structures of a given type of
elements, the following specifications :

ELEM1 = enrich BOOL by
sorts elem
opns p : elem→ bool

1780 Rosa Jiménez and Fernando Orejas

PFILTER = λX : ELEM1.
λY : PSEQ.enrich Y [X]id by

opns filter : seq → seq
vars S : seq; V : val
axmsfilter(ε) = ε
p(V)= true⇒filter(app(S, V))=app(filter(S), V)
p(V)=false⇒filter(app(S, V))=filter(S)

define a specification describing how to ”filter” the elements of a linear structure
satisfying a given property p. Previous work following this approach can be found
in [12, 4]. However, in both works this extension is done without allowing the
use of arbitrary fitting morphisms in module instantiation. One of the problems
with using arbitrary fitting morphisms in this setting is that parameter passing
cannot just work as standard β-reduction. The reason can be seen in the following
example. Suppose that we have the specification:

λX : SP.rename X by h

This specification is considered correct if h is a morphism from the signature
of the specification SP into another signature. Now suppose that we apply this
parameterization to a specification SP1. The result would be:

rename SP1 by h

but, if we allow the use of arbitrary fitting morphisms for instantiation, it may
happen that the expression is now incorrect because the signatures of SP1 and
SP1 can be different. A second problem is that, if one wants to allow instan-
tiations through arbitrary morphisms one would have to define the adequate
notion of morphism between higher-order specifications (and, consequently, the
right category of higher-order specifications). In this sense, in [12] actual and
formal parameter specifications must share the same signature, which is quite
restrictive. Some more flexibility is given in [4],where inclusions of signatures are
allowed. However this is done using a quite more complex framework.

The work presented in this paper provides a solution to this problem. Us-
ing as a basis [12] and previous work of the authors for the first-order case
[10], we define a category of higher-order parameterized or module specifications
and, then, we define a typed λ-calculus, as a formalism for dealing with these
specifications, where arbitrary fitting morphisms are allowed. In particular, in
[12], a detailed study of different semantic issues concerning parameterized units
is presented showing, essentially, that two possible meanings can be assigned
to parameterizations depending on whether we consider them as parameterized
specifications or as specifications of parameterized programs. In this sense, in
this paper we consider just the former meaning, although the results could be
adapted to deal also with the latter case.

The approach presented is quite general since all the work is independent of
the kind of basic specifications considered and, also, of the kind of operations

An Algebraic Framework for Higher-Order Modules 1781

used for building basic specifications, provided that some conditions hold. In this
sense we are not especially bound to any set of basic specification-building op-
erations. We call our parameterized units modules to make clear the distinction
between the basic specification level that is not fixed a priori and the parameter-
ized units level that is studied in the paper. The kind of calculus presented can
be seen as a variation/extension of the simply typed λ-calculus, which means
that we do not allow dependent types [11]. This would have been interesting,
but it is not possible with the semantics proposed. The main result of the paper
shows the adequacy of β-reduction with respect to the semantics given. However,
it must be pointed out that this is not done for any arbitrary λ-expression but
only for expressions in η-long normal form. We do not think that this is a serious
limitation, since similar restrictions can be found in related frameworks.

The paper is organized as follows: in section 2, we describe the requirements
assumed on the basic specification language. Section 3 defines the category of
higher-order modules and a parameter passing operation for the objects in this
category. Finally, in section 4 we present the language of λ-expressions, we define
β-reduction and we obtain the main results.

2 Preliminaries

In this section we briefly present the abstract framework that we will use along
the paper to present all constructions and results. We assume on the reader
certain knowledge on the basic algebraic techniques used in the semantics of
specification languages. For details see, for instance, [1, 7, 15]. Also, we assume
some very basic knowledge on the λ-calculus. For details, see for example [2]. We
do not assume much about how basic specifications look like. We just assume
that specifications form a category, that we call Spec, satisfying certain proper-
ties and that we have a specification language to build them. This means that
specifications may consist of a signature and a set of axioms [7], or of a signature
and a set of models [13, 14] or they may be of any other form. In particular,
we do not need to bind them to an arbitrary institution or specification frame
[8, 9, 10]. The reason is that, in this work, we are not especially interested with
semantical aspects of basic specifications. The only assumption about Spec is
that it has multiple pushouts. Multiple pushouts were defined in [10] to define
parameter passing for arbitrary parameterized expressions, as a slight general-
ization of the use of pushouts when dealing with parameterizations defined in
terms of generic enrichments [3, 5, 6]. The difference with standard pushouts is
that two of the arrows of a standard pushout are here a family of morphisms
(which we call a multiple morphism). In the following section we will see a couple
of examples that show the need of multiple morphisms in this setting.

Definition 1. A multiple morphism in Spec F from SP0 to SP1, denoted F :
SP0 ⇒ SP1, is a family of morphisms in Spec, F = 〈f1, ..., fn : SP0 →
SP1, (n ≥ 0)〉. Multiple morphisms can be composed with standard morphisms:
If F is defined as above and f : SP1 → SP2 then f ◦ F : SP0 ⇒ SP2 is the

1782 Rosa Jiménez and Fernando Orejas

family 〈f ◦ f1, ..., f ◦ fn : SP0 → SP1, (n ≥ 0)〉. Similarly, if f : SP2 → SP0
then F ◦f = 〈f1◦f, ..., fn◦f : SP0→ SP1, (n ≥ 0)〉. Two additional operations
that one can define on multiple morphisms are composition and addition. If
F ′ = 〈f1′, ..., fm′ : SP1→ SP2〉 then

F ◦ F ′ = 〈f1 ◦ f1′, ..., f1 ◦ fm′, ..., fn ◦ fm′ : SP0→ SP2〉
and if F ′ = 〈f1′, ..., fm′ : SP0→ SP1〉 then

F ′ + F = 〈f1, ..., fn, f1′, ..., fm′ : SP0→ SP1〉

SP2

SP0

SP3

SP1

? -
-

?

-
-

f g

g1

gn

f1

fn

Fig. 1. Multiple pushout

Given a multiple morphism F : SP0 ⇒ SP1 as above and given f : SP0→
SP2 in Spec, the diagram in Figure 1 is called a multiple pushout of F and f if
we have:

1. (Graded Commutativity): g ◦ fi = gi ◦ f (for every i ≤ n)
2. (Universal Property): For each object SP3′ and morphisms g′, g1, ..., gn with

g′ ◦ fi = gi′ ◦ f (for every i = n) there is a unique morphism h such that
h ◦ g = g′ and h ◦ gi = gi′ (for every i ≤ n)

Remarks 2

1. In the case n = 1 a multiple pushout is a pushout. In the case n = 0 SP3 is
equal (up to isomorphism) to SP1 with g = 1SP1.

2. Multiple pushouts can be defined in terms of pushouts and (finite) coproducts
or, more generally, finite colimits.

Example 3. Consider the following specifications and morphisms:

SP0 = sorts s0 SP1 = sorts s1, s2
opns f1 : s1→ s1

f2 : s2→ s2

h1 : SP0→ SP1 h2 : SP0→ SP1
with h1(s0) = s1 with h2(s0) = s2

An Algebraic Framework for Higher-Order Modules 1783

SP2

SP0

SP3

SP1

SP3′

? -
-

?

-
-

PPPPPPPPPPPPPPq

PPPPPPPPPPPPPPPq

S
S
S
S
S
S
S
S
SSw

· · · · · · ·s

f g

g1

gn

f1

fn

g1′

gn′

g′

h

Fig. 2. Universal property of multiple pushouts

Now, if we define:

SP2 = sorts s0
opns a : → s0

c : s0→ s0

together with the inclusion i0 : SP0 → SP2, we can ”compute” the multi-
ple pushout shown in Figure 3, where SP3 would be (up to isomorphism) the
specification:

SP2

SP0

SP3

SP1

? -
-

?

-
-

i0 i1

h1′

h2′

h1

h2

Fig. 3. Multiple pushout

SP3 = sorts s1, s2
opns f1 : s1→ s1

f2 : s2→ s2
a1 : → s1
c1 : s1→ s1
a2 : → s2
c2 : s2→ s2

1784 Rosa Jiménez and Fernando Orejas

and the two morphisms, h1′ and h2′, would map, respectively, s, a and c to s1, a1
and c1 and to s2, a2 and c2.

In addition, we assume that we have a language for building specifications. We
may think of this language as a many-sorted signature including, at least, a sort
of specifications SPEC and a sort of morphisms MORPH and, as constants
of these sorts, all objects and morphisms in Spec, respectively (or just some
distinguished subsets). We will call this signature ΣSPEC. For example, an
operation in this signature may be:

combine : SPEC × SPEC × SPEC ×MORPH ×MORPH → SPEC

that given specifications SP0, SP1 and SP2 and morphisms h1 : SP0 → SP1
and h2 : SP0 → SP2 is intended to combine the specifications SP1 and SP2,
having a common subspecification SP0, where h1 and h2 make explicit how SP0
is included in SP1 and SP2, respectively. Typically, this combination would be
done by means of a pushout.

Hence, TΣSPEC is the class of specification expressions (syntactically) valid in
the given specification language. It may be noted that not every term in TΣSPEC

may denote a semantically valid construction and, therefore, have a meaning.
For instance, combine(SP0, SP1, SP2, h1, h2) would be semantically incorrect
if, for instance, h1 is not a morphism from SP0 into SP1. Anyhow, we assume
given a semantics for the specification language as a (partial) function, called
Sem, mapping (valid) terms in TΣSPEC of sort SPEC (respectively MORPH)
into objects (respectively morphisms) in Spec.

We assume that operations in ΣSPEC are incremental, in the sense that
given a variableX of sort SPEC and given a specification term t inTΣSPEC({X})
then for any specification SP such that t[SP/X] is valid (i.e. Sem(t[SP/X]) is
defined) we consider that there is a multiple specification morphism in Spec as-
sociated to t and SP , denoted tSP : SP ⇒ t([SP/X]), such that if h : SP → SP ′

and t([SP ′/X]) is valid then the diagram in Figure 4 is a multiple pushout.

SP ′

SP

Sem(t[SP ′/X])

Sem(t[SP/X])

? -
-

?

-
-

h

tSP ′

tSP

Fig. 4. Incrementality

This means that we are assuming that for every operation op in ΣSPEC
there is also a morphism between any possible argument for op of sort SPEC

An Algebraic Framework for Higher-Order Modules 1785

and the resulting specification. As a consequence, operations such as derive would
not be allowed to be in ΣSPEC. The reason for this, besides some technical
questions, is that we consider that hiding should be considered at the module
level. Anyhow, this is not considered in this paper. It could have been done by
defining modules with an additional export interface. We believe that the main
results would still hold, but at the price of an additional complication.

We also consider that there exists an operation assign that, given t in
TΣSPEC({X}∪V) of sort SPEC, where V is a (finite) set of variables, two spec-
ifications SP1 and SP2 and a morphism h : SP1→ SP2, it returns a new term,
denoted assign(t, h) such that for every assignment σ : V → Spec such that
σ∗(t[SP1/X]) is valid and the diagram in Figure 5 is a multiple pushout, where
σ∗(t) denotes the term obtained after substituting in t all its variables by the val-
ues assigned by σ. Moreover, if t[SP2/X] is valid then t[SP2/X] = assign(t, h).

SP2

SP1

Sem(σ∗(assign(t, h)))

Sem(σ∗(t[SP1/X]))

? -
-

?

-
-

h

σ∗(t)SP1

Fig. 5. The operation assign

3 The Category of Module Specifications MSpec

In this section, we introduce MSpec a category of module specifications that will
be used for giving semantics to module expressions. In particular, this category
includes, as a full subcategory, the category of basic specifications, Spec.

The objects in MSpec are either basic specifications, i.e. objects in Spec,
or triples 〈IMP, RES, F 〉 denoting parameterized objects. The intuition is that
IMP and RES, which are objects in MSpec, are, respectively, the imported
and the result specification of a module and F is a kind of mapping binding
the “elements” (e.g. sorts and operations) in IMP with corresponding elements
in RES. For instance, a standard case is when IMP and RES are basic spec-
ifications and RES is an enrichment of IMP , i.e. F would be a specification
morphism in Spec. Similarly, when considering modules defining first-order pa-
rameterized specifications defined by arbitrary specification expressions, as in
[10], F is a multiple specification morphism, F : IMP ⇒ RES. This is needed,
for instance, when dealing with expressions such as:

λX : SP.X tX

1786 Rosa Jiménez and Fernando Orejas

where SP1tSP2 denotes the coproduct of SP1 and SP2. In this case, the rela-
tion between the formal parameter and the result specification can be denoted by
two morphisms binding the formal parameter SP with the two copies included in
SP t SP , as shown in Figure 6. Also, given the parameterization λX : SP.SP ′,

SP SP t SP
-
-

h1

h2

Fig. 6. “Double” morphism

where SP ′ is a constant specification, then the relation between the formal pa-
rameter and the result specification can be denoted by the empty family of
morphisms. In the general case, when IMP or RES may be higher-order, the
relation between their elements can be established by a multiple morphism be-
tween their “ground versions”. For instance, consider the module specification
PFILTER given in the introduction, its import specification ELEM1 is not
first-order but its result is the specification denoted by the expression

λY : PSEQ.enrich Y [X]id by
opns filter : seq → seq
vars S : seq; V : val
axmsfilter(ε) = ε

p(V) = true⇒ filter(app(S, V)) = app(filter(S), V)
p(V) = false⇒ filter(app(S, V)) = filter(S)

Now, in order to bind the sorts and operations defined in ELEM1 with the
sorts and operations in the result specification we may, first, define its associated
ground specification as the specification denoted by the expression:

enrich PSEQ[ELEM1]id by
opns filter : seq → seq
vars S : seq; V : val
axmsfilter(ε) = ε

p(V) = true⇒ filter(app(S, V)) = app(filter(S), V)
p(V) = false⇒ filter(app(S, V)) = filter(S)

and, then, establish this binding in terms of a multiple specification morphism
(in this case a standard morphism is enough).

To be more precise, we will define a functor Body : MSpec → Spec that
associates to every module specification its ground version. Then F is a multi-

An Algebraic Framework for Higher-Order Modules 1787

ple morphism between Body(IMP) and Body(RES), i.e. F : Body(IMP) ⇒
Body(RES). This leads to the following inductive definition:

Definition 4. The category MSpec and the functor Body : MSpec→ Spec are
defined by simultaneous induction as follows:

– if SP is in Spec then SP is in MSpec and Body(SP) = SP
– if h : SP1 → SP2 is in Spec then h : SP1 → SP2 is in MSpec and

Body(h) = h
– if MSP1, MSP2 ∈ MSpec, and F is a multiple morphism in Spec, F :

Body(MSP1) ⇒ Body(MSP2), then MSP = 〈MSP1, MSP2, F 〉 is an
object in MSpec and Body(MSP) = Body(MSP2).

– if h1 : MSP21→ MSP11 and h2 : MSP12→ MSP22 are in MSpec and
the diagram in Figure 7 commutes (has graded commutativity) in MSpec:

Body(MSP21)

Body(MSP11)

Body(MSP22)

Body(MSP12)

6

--
?

--

Body(h1) Body(h2)

F2

F1

Fig. 7. Morphism in MSpec

then h = 〈h1, h2〉 : 〈MSP11, MSP12, F1〉 → 〈MSP21, MSP22, F2〉 is a
morphism in MSpec and Body(h) = Body(h2).

The morphisms in MSpec are defined with the aim of using them as parameter
passing or fitting morphisms. In this sense, morphisms between basic specifi-
cations are, as usual, standard specification morphisms. In the case of mor-
phisms between parameterized objects, 〈h1, h2〉 : MSP1 → MSP2, where
MSP1 = 〈IMP1, RES1, F1〉, MSP2 = 〈IMP2, RES2, F2〉, the idea is, as
usual, that MSP2 should be “less general” than MSP1. This means that the
result of MSP2, RES2, should be less general than RES1 and that the formal
parameter of MSP2, IMP2, should be more general than IMP1. In addition,
h1 and h2 should be coherent with respect to the binding between the elements
of MSP1 and MSP2. This is expressed by the commuting diagram above.

Remarks 5

1. MSpec and Body can be proved to be a category and a functor by defining
morphism composition in the most obvious way.

2. It may be noted that MSpec can not be shown to be a Cartesian Closed
Category (CCC) because of the choice of morphisms in its definition. The

1788 Rosa Jiménez and Fernando Orejas

problem is that, as explained above, morphisms in MSpec have been defined
with the aim of defining instantiation. A different choice would have been
defining morphisms in MSpec as multiple morphisms in Spec, i.e. if F :
Body(IMP) ⇒ Body(RES) then F : MSP1 → MSP2 is a morphism
in MSpec. This notion of morphism would have allowed the identification
between morphisms and functional objects which is the basis for the definition
of a CCC. Anyhow, we would have still needed a notion of fitting morphism
for parameter passing.

To end this section, we will show how parameter passing or module instantia-
tion can be defined in MSpec. Suppose that we have specifications MSP =
〈MSP1, MSP2, F 〉 and MSPact in MSpec and a morphism h : MSP1 →
MSPact in Mor(MSpec), then the result of instantiating MSP over MSPact via
h should be the specification obtained by “substituting” MSP1 by MSPact in
MSP2, with respect to the bindings defined by h and F . Now, in general, MSP2
will have the form 〈MSP21, 〈MSP22, ...〈MSP2n, MSP2n+1, Fn〉, Fn−1〉, ..., F1〉,
where MSP2n+1 = Body(MSP2). Then, if we consider that the parameters
MSP21, MSP22, ...MSP2n, are independent of MSP1, the result of the in-
stantiation should be a specification

MSPres = 〈MSP21, 〈MSP22, ...〈MSP2n, RES, F ′n〉, F ′n−1〉, ..., F ′1〉
where RES is the result of substituting Body(MSP1) by Body(MSPact) in
MSP2n+1, with respect to the bindings defined by Body(h) and F . This means
that RES can be defined in terms of the multiple pushout shown in Figure 8.

Body(MSPact)

Body(MSP1)

Body(MSPres)

Body(MSP2)

?
--

?

--

Body(h) f

F ′

F

Fig. 8. Multiple Pushout

On the other hand, F ′1, ..., F
′
n should bind the elements in MSP21,..., MSP2n,

respectively, to the corresponding elements in RES, i.e. F ′i = f ◦ Fi. It may be
noted that f can be extended into a specification morphism h′ : MSP2→ RES
by just defining h′ = 〈Id1, 〈Id2, ...〈Idn, f〉〉...〉, where Idi denotes the identity
morphism, Idi : MSP2i →MSP2i. Actually, in what follows we consider h′ as
part of the result of the operation of instantiation. This means, more precisely:

Definition 6. Given specifications MSP = 〈MSP1, MSP2, F 〉 and MSPact

in MSpec and a morphism h : MSP1 → MSPact in Mor(MSpec), the re-

An Algebraic Framework for Higher-Order Modules 1789

sult of the instantiation of MSP by MSPact via h is a parameterized spec-
ification, denoted MSPres = MSP (MSPact)h, and a specification morphism
h′ : MSP2→MSPres defined inductively:
– If MSP2 is in Spec then MSPres and h′ are defined in terms of the multiple

pushout shown in Figure 9.

Body(MSPact)

Body(MSP1)

Body(MSPres)

Body(MSP2)

?
--

?

--

Body(h) Body(h′)

F ′

F

Fig. 9. Multiple Pushout

– If MSP2 = 〈MSP21, MSP22, F2〉 then h′ = 〈Id : MSP21 → MSP21, h
′′〉

and MSPres = 〈MSP21, MSPres′ , Body(h′′) ◦ F2〉, where MSPres′ and h′′

are the result of the instantiation of 〈MSP1, MSP22, F 〉 by MSPact via h.

This parameter passing construction has the following universal property, which
means that h′ is unique up to isomorphism:
Proposition 7. Given MSP, MSPact, MSPres, h and h′ as in the previous def-
inition and given a specification MSP3, a morphism h3 : MSP2→MSP3 and
a multiple morphism F3 : Body(MSPact) ⇒ Body(MSP3) such that the dia-
gram in Figure 10 commutes, there exist a unique h3′ : MSPres →MSP3 such
that h3′ ◦ h′ = h3 and Body(h3′) ◦ F ′ = F3.

Body(MSPact)

Body(MSP1)

Body(MSP3)

Body(MSP2)

?
--

?

--

Body(h) Body(h3)

F3

F

Fig. 10. Multiple diagram

proof sketch The proposition is a consequence of the universal property of
multiple pushouts and of the fact that all the component specifications involved
as parameters in MSP2 and MSPres coincide. �

1790 Rosa Jiménez and Fernando Orejas

4 Parameterized Specification Expressions

In this section we define a concrete syntax for module specifications in terms of
a language of λ-expressions and we define its semantics in terms of the category
defined in the previous section. The class of all specification expressions will be
called SE . Since a λ-expression may involve specification morphisms we provide
a specific syntax for them in terms of a class of morphism expressions, denoted
ME . Finally, we define and study a β-reduction relation between λ-expressions.

Definition 8. The classes of specification expressions SE and morphism expres-
sions ME are defined inductively:

1. Variable : any variable X is in SE .
2. Application : E1(E2)M is in SE if E1 and E2 are in SE and M is in ME.
3. λ-abstraction : λX : E1.E2[X] is in SE if E2[X] is an expression over X

in SE and E1 is an expression in SE not including any free variable.
4. Basic specification expressions : Any expression E ∈ TΣSPEC(〈SE ,ME〉) of

sort SPEC is in SE .
5. Identities : idE is in ME if E is in SE.
6. Composition : M1 ◦M2 is in ME if M1 and M2 are in ME.
7. Basic morphism expressions : Any morphism expression M ∈

TΣSPEC(〈SE ,ME〉) of sort MORPH is in ME.
8. Higher-order morphisms : 〈M1, M2〉 is in ME if M1 and M2 are in ME.
9. Subcomponents : fst(M) and snd(M) are in ME if M is in ME.

10. Substitution morphism : [E1/E2]M is in ME if E1 and E2 are in SE and
M is in ME.

Remarks 9

1. The former definition describes the syntactically valid module expressions.
However, as before, not every syntactically valid expression can be considered
semantically well-formed. Instead, we could have given a definition, in terms
of formation rules in order to ensure syntactic and semantic validity.

2. Rules 1,2 and 3 are standard for the simply typed λ-calculus. Rule 3 allows
the use of expressions such as λX : E1.enrich X(E2)M by..., where an
operation in ΣSPEC is used (e.g. an enrichment) over an arbitrary specifi-
cation expression. As we will see below, this is considered semantically valid
only if the parameters of such operation denote basic specifications.

3. Rules 5-10 define the morphism expressions considered. In particular, rules
5, 6, 7 and 8 define the most direct ways of denoting morphisms in MSpec
i.e. using morphisms from Spec (rule 7), using a notation for the identities
and for composition or building higher-order morphisms as pairs of lower-
order ones. Rule 9 allows one to denote the components of a higher-order
morphism. Finally, rule 10 defines a morphism that is defined when perform-
ing an operation of substitution and is needed for defining β-reduction.

An Algebraic Framework for Higher-Order Modules 1791

In order to cope with expressions that may include free variables we will define
semantics with respect to a given environment, where an environment is, as
usual, a set of declarations of the form X : E where E is any closed specification
expression. The semantics will only be defined for semantically valid expressions.

Definition 10. Given a specification expression E and an environment Γ , the
semantics of E in the environment Γ , denoted Γ ` [[E]] (if no specific environ-
ment is assumed, e.g. if E is closed, we will just write [[E]]) is defined inductively:

1. If Γ ` [[E]] = MSP then Γ ∪ {X : E} ` [[X]] = MSP
2. If Γ ` [[E1]] = (IMP1, RES1, F1), Γ ` [[E2]] = MSP2 and Γ ` [[M]] = f is

a morphism from IMP1 to MSP2 then

Γ ` [[E1(E2)M]] = (IMP1, RES1, F1)(MSP2)f

.
3. If Γ ` [[E1]] = MSP1 and Γ ∪ {X : E1} ` [[E2[X]]] = MSP2 then

Γ ` [[λX : E1.E2[X]]]=〈MSP1, MSP2, F : Body(MSP1)⇒Body(MSP2)〉
where F depends on the form of E2[X]. In particular, F is defined as follows:
(a) If E2[X] = X, then F = 〈IdBody(MSP1)〉.
(b) If E2[X] = E1′(E2′)M then F = (F1′′◦F2)+(g◦F1), where Γ ` [[M]] =

h, Γ ∪{X : E1} ` [[E1′]] = MSP1′ = 〈MSP11′, MSP12′, F1′〉, Γ ∪{X :
E1} ` [[E2′]] = MSP2′, Γ ` [[λX : E1.E1′[X]]] = 〈MSP1, MSP1′, F1〉,
Γ ` [[λX : E1.E2′[X]]] = 〈MSP1, MSP2′, F2〉 and MSP2 is the ”re-
sult” of the instantiation defined by the multiple pushout in Figure 11.

Body(MSP2′)

Body(MSP11′)

Body(MSP2)

Body(MSP12′)

?
--

?

--

Body(h) g

F1′′

F1′

Fig. 11. Multiple Pushout

(c) If E2[X] = λY : E1′.E2′ then F is the multiple morphism defined in
Γ ` [[λX : E1.E2′[E1′/Y]]] = 〈MSP1, MSP2′, F 〉.

(d) If E2[X] = t[E1′/X1, ..., En′/Xn, M1/Y 1, ..., Mm/Y m][X], where t ∈
TΣSPEC({X1, ...Xn, Y 1, ...Y m}), let us assume that, for each i, Γ `
[[λX : E1.Ei′]] = (MSP1, MSPi′, F i′) and, for each j, Γ ` [[Mj]] = hj.
In addition, we know (see section 2) that for each i the multiple morphism

tiMSPi : MSPi′ ⇒ t[MSP1′/X1, ..., MSPn′/Xn, h1/Y 1, ..., hm/Y m]

1792 Rosa Jiménez and Fernando Orejas

where

ti = t[MSP1′/X1, ..., MSPi−1′/Xi−1, MSPi+1′/Xi+1, ..., Y m/hm]

Then
F = t1MSP1 ◦ F1′ + ... + tnMSPn ◦ Fn′

4. If, for every i, j (1 ≤ i ≤ n 1 ≤ j ≤ m), Γ ` [[Ei]] = SPi, Γ ` [[Mj]] = hj,
with SPi, hj in Spec and t ∈ TΣSPEC(〈{X1, ..., Xn}, {Y 1, ..., Y m}〉) of sort
SPEC then

Γ ` [[t[E1/X1, ..., Y m/Mm]]] = Sem(t[SP1/X1, ..., hm/Ym])

5. If Γ ` [[E]] = MSP then Γ ` [[idE]] = 1MSP .
6. If Γ ` [[M1]] = h1 : MSP1 → MSP2 and Γ ` [[M2]] = h2 : MSP2 →

MSP3 then Γ ` [[M2 ◦M1]] = h2 ◦ h1.
7. If, for every i, j (1 ≤ i ≤ n 1 ≤ j ≤ m), Γ ` [[Ei]] = SPi, Γ ` [[Mj]] = hj,

with SPi, hj in Spec and t ∈ TΣSPEC(〈{X1, ..., Xn}, {Y 1, ..., Y m}〉) of sort
MORPH then

Γ ` [[t[E1/X1, ..., Mm/Y m]]] = Sem(t[SP1/X1, ..., hm/Ym])

8. If Γ ` [[M1]] = h1 : MSP1′ → MSP1, Γ ` [[M2]] = h2 : MSP2 →
MSP2′ and F : Body(MSP1) ⇒ Body(MSP2), F ′ : Body(MSP1′) ⇒
Body(MSP2′) are such that the diagram in Figure 12 commutes in Spec,
then Γ ` [[〈M1, M2〉]] = 〈h1, h2〉.

Body(MSP1′)

Body(MSP1)

Body(MSP2′)

Body(MSP2)

?
--

?

--

Body(h1) Body(h2)

F ′

F

Fig. 12. Semantics of higher-order morphism expressions

9. If Γ ` [[M]] = 〈h1, h2〉 then Γ ` [[fst(M)]] = h1 and Γ ` [[snd(M)]] = h2
10. If Γ ∪ {X : E} ` [[E1]] = MSP1, Γ ` [[E]] = MSP , Γ ` [[E2]] = MSP2

and Γ ` [[M]] = h : MSP →MSP2 then Γ ` [[[E1/E2]M]] = h′ : MSP1→
MSP3, where MSP3 = Γ ` [[(λX : E.E1)(E2)M]] and h′ is the morphism
defined by the instantiation operation between MSP2 and the result of the
instantiation (see def. 6).

An Algebraic Framework for Higher-Order Modules 1793

Remark 11. In general, the idea underlying this semantics when dealing with an
expression including free variables is that, given an environment, the meaning of
the expression is defined as if the variables were substituted by the expressions
denoting their type. This is similar to what we explained about obtaining the
ground version of a specification in the example in section 3.

Now, once defined the syntax and semantics of module expressions the next
step is the definition of a β-reduction relation. Unfortunately, the most obvious
candidate does not work, as the following example shows:

Example 12. Consider the following semantically valid module expressions:

E = λX : (λY : SP1.E1).λZ : SP1.X(Z)id

E′ = λY : SP2.E2

where id is the identity morphism, id : SP1→ SP1, SP1 and SP2 denote two
different basic specifications and E1[SP1/Y] and E2[SP2/Y] are semantically
valid expressions. Then E and E′ are semantically valid and moreover:

[[E]]=((SP1,MSP1,F1),(SP1, MSP1, F1),id : Body(MSP1)→Body(MSP1))

[[E′]] = (SP2, MSP2, F2)

for some multiple morphisms Fi : SPi ⇒ Body(MSPi)(i = 1, 2), where {Y :
SP1} ` [[E1]] = MSP1 and {Y : SP1} ` [[E2]] = MSP2. Now, suppose that
〈h1, h2〉 is a morphism from (SP1, MSP1, F1) to (SP2, MSP2, F2). Then,
the expression E(E′)〈h1,h2〉 is semantically valid. Actually, [[E(E′)〈h1,h2〉]] =
(SP1, MSP2, h2 ◦ F1). However, if we β-reduce E(E′)h by substituting in λZ :
SP1.X(Z)id all occurrences of X by E′ the result is not valid anymore:

E(E′)〈h1,h2〉 →β λZ : SP1.(λY : SP2.E2[Y])(Z)id

The problem is that we have assumed that SP1 and SP2 are different and, as
a consequence, we cannot use id in the application (λY : SP2.E2[Y])(Z)id �

The problem shown by the example above can be avoided by defining β-reduction
(or, more precisely, the substitution operation which is the basis of β-reduction)
in a slightly more complex way. In particular we need also to change adequately
the morphisms involved. In the example above, the right β-reduction would be:

E(E′)〈h1,h2〉 →β λZ : SP1.(λY : SP2.E2[Y])(Z)h1

Unfortunately, there is still another, more subtle, problem in this approach as
the following example shows:

Example 13. Consider the following semantically valid module expressions:

E = λX : (λY : SP1.E1).X

E′ = λY : SP2.E2

1794 Rosa Jiménez and Fernando Orejas

where, as before, SP1 and SP2 denote two different basic specifications and
E1[SP1/Y] and E2[SP2/Y] are semantically valid expressions. Then E and E′

are semantically valid and moreover:

[[E]]=((SP1,MSP1,F1),(SP1,MSP1,F1),id : Body(MSP1)→Body(MSP1))

[[E′]] = (SP2, MSP2, F2)

for some multiple morphisms F1 : SP1 ⇒ Body(MSP1) and F2 : SP2 ⇒
Body(MSP2), where MSP1 = {Y : SP1} ` [[E1]] and MSP2 = {Y : SP1} `
[[E2]]. Now, suppose as in the previous example that 〈h1, h2〉 is a morphism from
(SP1, MSP1, F1) to (SP2, MSP2, F2). Then, the expression E(E′)〈h1,h2〉 is
semantically valid. Actually,

[[E(E′)〈h1,h2〉]] = (SP1, MSP2, h2 ◦ F1)

But, if we β-reduce E(E′)h in the only possible way, by substituting X by E′:

E(E′)〈h1,h2〉 →β E′

we have two not very satisfactory consequences. The first one is that β-reduction
does not preserve the semantics since [[E(E′)〈h1,h2〉]] 6= [[E′]]. The second one
is that the most reasonable definition of β-reduction still does not work. The
problem is similar to the one shown in the example above but the reasons are
slightly different. In particular, consider now the expression:

(E(E′)〈h1,h2〉)(SP1)id

This expression is semantically valid since [[E(E′)〈h1,h2〉]] = (SP1, MSP2, F2)
and, thus, it can be applied to SP1 via the identity. However, if we consider
a standard rule defining β-reduction, ,f E →β E′ then C[E] →β C[E′] for
any context C, then we would have that (E(E′)〈h1,h2〉)(SP1)id →β E′(SP1)id

Unfortunately, again, E′(SP1)id is not semantically valid. �

One may find the solution to the problem shown in the previous example by
making the observation that if we substitute the expression E from example 13
by the expression E of example 12 then the problem disappears, although their
meaning is the same (they are η-convertible).That is, if we take the expression

E = λX : (λY : SP1.E1).λZ : SP1.X(Z)id

from example 12 and we perform the β-reduction step on the subexpression
E(E′)〈h1,h2〉 as explained above, we have:

(E(E′)〈h1,h2〉)(SP1)id →β (λZ : SP1.E′(Z)h1)(SP1)id

which is a semantically valid expression. Being specific the problem with the ex-
pression E from example 13 is that the information about the ”type” is only
implicit, i.e. we know that the result of an expression such as λX : (λY :

An Algebraic Framework for Higher-Order Modules 1795

SP1.E1).X is not a basic specification only by looking to the variable dec-
larations and making some ”type inference” (in this case quite trivial). This
causes that if we β-reduce the expression and substitute some formal parame-
ters by actual parameters of slightly different type then the type of the result
may also change and, as a consequence, it may produce some type mismatches
with respect to the context of the expression. This is not the case when con-
sidering the expression E in example 12, where the type information about the
result λZ : SP1.X(Z)id is included in the result itself. Hence, substituting some
external formal parameters by actual parameters of slightly different type will
not change the type of the result and will not produce type mismatches. The
consequence is that, if we want to avoid this problem, we need to work only with
expressions including explicitly all the information necessary about their type.
This means that expressions must be ”sufficiently” η-expanded or, to say it in
other words, the expressions must be in η-long normal form, as it also happens
in some theorem proving tools based on some typed λ-calculus such as Isabelle.

As a consequence, in order to define adequately the β-reduction relation,
we first have to define a substitution operation avoiding the problem shown in
example 12 and, then, restrict ourselves to η-long λ-expressions. As usual, in
the sibstitution operation we assume that there is no problem with clashes of
variable names, using α-conversions when needed.

Definition 14. Given E1, E2[X] and E3, such that Γ ` [[E1]] = MSP1, Γ ∪
{X : E1} ` [[E2[X]]] = MSP2 and Γ ` [[E3]] = MSP3 and given a morphism
expression M , with Γ ` [[M]] = h : [[E1]] → [[E3]], the substitution of the expres-
sion E3 through M in E2[X], written Subst(E2[X], E3, M), is the expression:

1. If E2[X] = X, then Subst(E2[X], E3, M) = E3.
2. If E2[X] = E1′[X](E2′[X])M1, E5 = Subst(E1′[X], E3, M) and E6 =

Subst(E2′[X], E3, M), then Subst(E2[X], E3, M) = E5(E6)M1′ , where
M1′ = M6 ◦ M1 ◦ fst(M5) with M6 = [E2′[X]/E3]M and M5 =
[E1′[X]/E3]M

3. If E2[X] = λY : E1′.E2′, then Subst(E2[X], E3, M) = λY : E1′.E5 where
E5 = Subst(E2′, E3, M).

4. If E2[X] = t[E1′/X1, ..., En′/Xn], where t ∈ TΣSPEC({X1, ...Xn}) then

Subst(E2[X], E3, M) = assign(...assign(t[X1, ...Xn], M1), ...Mn)

where for every i Mi = [Ei′/E3]M .

Proposition 15. Given expressions E1, E2[X] and E3 and a morphism ex-
pression M , as in the previous definition, if Subst(E2[X], E3, M) = E4 then
Γ ` [[E4]] = MSP4, for some MSP4.

proof sketch Cases 1, 3 and 4 are very simple. With respect to case 2, we have
to see that if Γ ∪ {X : E1} ` [[E5]] = (IMP5, RES5, F) and Γ ∪ {X : E1} `
[[E6]] = MSP6 then Γ ∪ {X : E1} ` [[M1′]] : IMP5 → MSP6. We know that
M1′ = M6 ◦M1 ◦ fst(M5), but we also know that: Γ ∪ {X : E1} ` [[M6]] :

1796 Rosa Jiménez and Fernando Orejas

MSP2′ → MSP6, where MSP2′ = Γ ∪ {X : E1} ` [[E2′[X]]], Γ ∪ {X : E1} `
[[M1]] : IMP1′ → MSP2′, where (IMP1′, RES1′, F1′) = Γ ∪ {X : E1} `
[[E1′[X]]], Γ ∪ {X : E1} ` [[M5]] : (IMP1′, RES1′, F1′) → (IMP5, RES5, F),
implying Γ ∪ {X : E1} ` [[fst(M5)]] : IMP5→ IMP1′ �

With respect to the second problem described above, we must restrict our-
selves to expressions which are ”sufficiently” η-expanded, where η-expansion is
the inverse transformation to η-reduction:

C[(λX : E1.E2(X)id]→η C[E2]

where C is any arbitrary context. It is clear that, in general, one can η -expand
a term infinitely many times. For instance:

C[E2]η←C[(λX : E1.E2(X)id]η←C[(λX : E1.(λX : E1.E2(X)id)(X)id]η←

However, given an arbitrary term it is sufficiently to expand it finitely many
times to make explicit all the necessary information. In particular this leads to
the following notion of η-long normal form:

Definition 16. Given an expression E and a position p in E we say that E is
η-expanded at p if either the term at p is a λ-abstraction or a basic specification
expression or if the term at position q is an application and p = q · 1. An
expression E is in η-long normal form if E is η-expanded at every position.

As usual, we may see λ-expressions as trees and positions in a term as sequences
of positive integers where the position of the root is the empty string and if
p is a position in E then p · 1 is its leftmost son, p · 2 is its second son, etc.
For instance, the expression λX : (λY : SP1.E1).λZ : SP1.X(Z)id is in η-long
normal form, but the expression λX : (λY : SP1.E1).X is not. The following
proposition shows that if we use the substitution operation defined in 14 for
defining β-reduction the semantics of terms in η-long normal form is preserved.

Proposition 17. If E2 is in η-long normal form,Γ ` [[(λX :E1.E2[X])(E3)M]]=
MSP and Subst(E2[X], E3, M) = 〈E4, h4〉 then Γ ` [[E4]] = MSP .

proof sketch By induction on the order of E2: If MSP is a basic specification
in Spec the result holds by construction since Body(MSP) and Body(Γ ` [[E4]])
always coincide, even if E2 is not in η-long normal form. If MSP is higher-order
(and hence E2) then E2 must be a λ-abstraction. Thus, applying induction, one
would trivially prove the claim. �

Now, we can define the β-reduction relation (almost) as usual:

Definition 18. β-reduction is the least reflexive and transitive relation satisfy-
ing:

1. (λX : E1.E2[X])(E3)M →β Subst(E2[X], E3, M).
2. If E2[X]→β E2′[X] then λX : E1.E2[X]→β λX : E1.E2′[X].
3. If E1→β E1′ and E2→β E2′ then E1(E2)M →β E1′(E2′)M .
4. If E →β E′ and t[E] ∈ TΣSPEC(SE) then t[E]→β t[E′]

An Algebraic Framework for Higher-Order Modules 1797

The following theorem is a direct consequence of proposition 17 and states that β-
reduction preserves the semantics of λ−expressions and, in particular, semantic
validity. Also, this theorem may be seen as a proof that this calculus satisfies
the so-called subject reduction property for expressions in η-long normal form.

Theorem 19. Let E1 and E1′ be specification expressions in η-long normal
form, if E1→β E1′ then Γ ` [[E1]] = Γ ` [[E1′]] for every Γ such that Γ ` [[E1]]
is defined.

Acknowledgements This work initially started in cooperation with Hartmut
Ehrig. Although he gave it up after some time, afterwards we still had some useful
discussions. This work has been partially supported by Spanish CICYT projects
COSMOS (ref. TIC95-1016-C02-01) and HEMOSS (ref. TIC98-0949-C02-01).

References

[1] E. Astesiano, H.-J. Kreowski, B. Krieg-Bruckner (eds.) Algebraic Foundations of
System Specification, Springer-Verlag, To appear.

[2] H. Barendregt: Typed λ-calculi, in Handbook of Logic in Computer Science (S.
Abramski et. al, eds.), Oxford Univ. Press 1993.

[3] R.M. Burstall, J.A.Goguen. The semantics of Clear, a specification language, Proc.
Copenhagen Winter School on Abstract Software Specification, LNCS 86, 292–332,
Springer 1980

[4] M.V. Cengarle. Formal Specification with higher order parameterization, Ph. D.
Thesis, Ludwig-Maximilians Universitaet, Muenchen, 1994

[5] H.-D. Ehrich. On the theory of specification, implementation and parameteriza-
tion of abstract data types. J. of the ACM 29, 209–277, (1982)

[6] H. Ehrig, H.-J. Kreowski, J.W. Thatcher, E. Wagner, J. Wright. Parameter pass-
ing in algebraic specification languages. Theor. Comp. Science 28, 45–81 (1984)

[7] H. Ehrig, B. Mahr. Fundamentals of Algebraic Specifications 1, Springer 1985
[8] J.A. Goguen, R.M. Burstall. Introducing institutions. Proc. Logics of Program-

ming Workshop, Carnegie-Mellon. LNCS 164, 221–256, Springer 1984
[9] J.A. Goguen, R.M. Burstall. Institutions: Abstract model theory for specification

and programming, J. of the ACM 39(1), 95–146, (1992)
[10] R. Jiménez, F. Orejas, H. Ehrig. Compositionality and compatibility of parame-

terization and parameter passing in specification languages, Math. Structures in
Computer Science 5(2), 283–313 (1995)

[11] B. Krieg-Bruckner, D. Sannella: Structuring specifications in-the-large and in-the
small: higher-order functions, dependent types and inheritance in SPECTRAL,
in TAPSOFT’91 Vol 2, S. Abramski and T.S.E. Maibaum (eds.), Springer LNCS
494 (1991) pp. 313-336

[12] D. Sannella, S. Sokolowski, A. Tarlecki. Toward formal development of programs
from algebraic specifications: parameterisation revisited. Acta Informatica 29,
689–736 (1992)

[13] D.T. Sannella, M. Wirsing. A kernel language for algebraic specification and im-
plementation, Proc. FCT-83, LNCS 158, 413–427, Springer 1983

[14] M. Wirsing. Structured algebraic specifications: a kernel language. Theor. Comp.
Sc. 42,123–249 (1986)

[15] M. Wirsing. Algebraic Specification. Handbook of Theoretical Computer Science,
Vol 2: Formal Models and Semantics, pp. 675 – 788, Elsevier 1991

J. Wing, J. Woodcock, J. Davies (Eds.): FM'99, Vol. II, LNCS 1709, pp. 1798-1815, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Applying Formal Proof Techniques to Avionics Software:
A Pragmatic Approach

Famantanantsoa Randimbivololona1 and Jean Souyris1

Patrick Baudin2 , Anne Pacalet2 , Jacques Raguideau2 , Dominique Schoen2

1Aérospatiale Matra Airbus, M8621 - 316, route de Bayonne - 31060 Toulouse cedex, France
2CEA Saclay, LETI-DEIN, 91191 Gif-sur-Yvette cedex, France

Abstract. This paper reports an industrial experiment of formal proof
techniques applied to avionics software. This application became possible by
using Caveat, a tool dedicated to assistance in comprehension and formal
verification of safety critical applications written in C. With this approach it is
possible to reduce significantly the actual verification effort (based on test) in
achieving the verification objectives defined by the DO 178B [4].

1. Introduction

1.1. Purpose

The aim of this paper is to report an industrial experiment of formal verification.
The avionics software verification process must meet the DO 178B [4]

requirements. Due to the increasing software size and the hardware technology
evolution traditional verification techniques, i.e. the tests, tend to be less and less cost
effective in meeting the DO 178B [4] verification requirements.

An alternative and complementary approach consists in using static verification
techniques and particularly formal proof of property.

The work reported in this paper is a part of a project aiming at the introduction of
formal proof in the operational avionics software development. This introduction
must be effective in 2001.

All the experiments, and specially the case studies of this paper, have been made
by embedded software developers, sometimes with the assistance of formal proof
specialists.

1.2. Context

The corresponding applications belong to on-board computers involved in electrical
flight control, air/ground communication, alarm and maintenance systems. All these
applications have safety, reliability and availability requirements. The consequences
of these requirements on the software affect the architecture, fault detection
capabilities (functional verifications, asserts, hardware monitoring), recovery from
fault detection, etc...

The essential part of the verification cost is due to these features since they require
dedicated means.

 Applying Formal Proof Techniques to Avionics Software 1799

1.3. Proof of Property

Property -or program- proof is a well known technique, based on Hoare's [1] or
Dijkstra's [2] theories. An interesting characteristic of these theories is that they can
be computer aided, i.e. a tool can be developed to help prove properties.
In order to meet the objectives defined in section 1.1 the requirements for such a tool
are listed below.

Ability to prove avionics C code. This is the strongest requirement because formal
verification is dedicated to real software products.

Ease of learning and use. The main point, here, is the ability of the tool to be used
by "standard" software developers, not only by a team of formal proof specialists.

Early payback. Tool aided formal proof must be used in replacement (not in
addition) of the most tedious and expensive phases of the testing process.

Easy integration. The use of the tool should not break down the actual verification
process and environment.

A tool which meets this requirement is Caveat, developed by the French
Commissariat à l'énergie atomique (CEA). This tool -evaluated by Aerospatiale
during the European project LAW [3] - is a "verification assistant" able to perform
proof of property.

1.4. Avionics Software Characteristics

Functions. The different classes of functions of an avionics software product are
numerical computation, hardware handling, communication protocols,
security/protection mechanisms, fault-detection and recovery, Boolean computation.

Properties. An avionics software must have the following types of property :
functional, safety, robustness and temporal.

Architecture and sizes. The design and coding rules of an avionics software lead to a
modular architecture. They also limit the size and complexity of the individual
modules.
The size of an entire avionics software product may be up to 500,000 lines of code.

Algorithms. From that point of view, avionics software is never very complicated.
For instance, the loops are very simple (eg : array initialisation, search within an
array). So one of the great difficulties of automatic property proof, i.e the analysis of
loops, is simplified a lot.

1800 Famantanantsoa Randimbivololona et al.

1.5. Development Process of Aerospatiale Matra Airbus Avionics Software

This section gives an overview of the actual avionics software development process.
It is a typical "V" process.

We will see in section 3.1 how we intend to introduce formal proof in this process.

Specification. There are two families of specifications : Formal specifications using
the following specification languages : SAO, SCADE, LDS and textual
specifications, written in natural language.

The formal specifications are most of the time automatically coded.

Design. There is no design activity for the automatically coded pieces of code (from
formal specification).

In the case of textual specifications, the design process is based on the HOOD [5]
method.

Coding. As stated earlier, the code can be produced automatically when associated
with formal specifications (SAO, SCADE, etc) or "intellectually" produced from the
HOOD [5] design when the specification is in textual format. Several languages are
actually used, e.g. assembly languages, Intel PL/M, C, etc. Only the C language is
considered in this paper.

Verification process. With the exception of reviews and analyses, all the
verifications are performed by tests ; the basic principle of the test being the notion of
execution.

There are three sets of tests : Unit tests whose objective is to prove that each
module meets its requirements ; Integration tests are performed to prove -
progressively - that the modules interact correctly, on a host system first and then on
the target hardware ; finally, Validation tests performed in an environment whose
characteristics are very close to the aircraft finally prove that the software meets its
customer's requirements.

The typical software properties to be proven during these three verification phases
are : functional and safety sequential properties in Unit testing and in Integration
testing on the host platform ; real-time and hardware access properties in Integration
testing on the final target ; functional, safety and real-time properties in Validation
testing.

These properties are not treated as such, they lead to test case generation and test
execution.

2. Caveat

Caveat is a tool based on static analysis of source code, for comprehensive analysis
and formal verification; it is dedicated to safety critical applications written in C.

 Applying Formal Proof Techniques to Avionics Software 1801

Some technical aspects and formalisms used in Caveat and some industrial
constraints taken into account in the design of the tool are described below.

2.1. Technical Aspects and Formalisms

The tool is based on the following well-known techniques.

Static analysis of source code. Tables and internal trees coming from compilation,
are used to perform detection of anomalies, synthesis of properties and proofs.

A dedicated property language. Based on conventions coming from on Z[9] and
VDM[10], it allows properties of the first order logic to be expressed (generated or to
be proved).

Models for pointers and arrays are defined to describe such entities in the
predicate language; specific operators are added to facilitate the writing of predicates
dealing with structures, arrays or pointers of the C language.

Features are added to the property language in order to describe different kinds of
property : explicit and implicit operands of a function, class of operands (In , Out,
Inout), dependencies of outputs on inputs (From), postcondition (property that must
be satisfied at the end of a function : Post), precondition (property that is assumed to
be satisfied when the function is called : Pre), local-condition (property that must be
verified at a specific location inside a function : Assert).

Some of these properties are automatically computed by the tool during a property
synthesis phase. An example of the generated properties is given on figure 1.

Weakest precondition computation. The technique described by Hoare [1] is used
to compute the condition that must be satisfied by the inputs of the function to ensure
that the given property will be satisfied after execution of the code, if it terminates.

The semantics of each instruction is taken into account, modifying the initial
predicate towards the weakest precondition.

An algebraic simplifier. It is used during the weakest precondition computation, to
reduce, as soon as possible, the size of the formulae and during the demonstration
phase.

It is based on a set of about 2000 re-writing rules of the following shape :

left-term [left-proc] --> right-term [right-proc]

where left-proc and right-proc are optional C procedures that may help describe the
re-writing.

The tool looks for the matching rules in the initial predicate, computes the
substitutions and applies them to obtain the simplified expression.

The simplification strategy of a term proceeds recursively to its sub-terms.

1802 Famantanantsoa Randimbivololona et al.

The rules deal with associativity, commutativity, distributivity, equalities,
inequalities, arithmetical and boolean operations, numerical constants, and specific
notations.

An automatic theorem prover. It is fully integrated ito the tool : it takes, as an input,
the predicate coming from the weakest precondition computation (the goal) and the
result of the demonstration is expressed in the property language.

The aim of the theorem prover is to demonstrate the goal under some hypotheses.
There are two kinds of hypotheses :

. axioms specific to areas and independent from application,

. specific hypotheses in relation with the application : preconditions of the
function, postconditions of called functions.

The demonstration is performed by generation of sub-goals using some inference
rules. The choice of a rule depends on the syntactic structure of the initial goal. When
no decomposition into sub-goals is possible, other inference rules using hypotheses
are applied. The algebraic simplifier is also called.

Of course, being fully automatic (as opposed to of the Larch Prover [8]), it may
fail. The wish is to avoid asking for assistance from the user for the choice of such or
such a strategy during the demonstration phase, because it would suppose a specific
skill in that domain.

In case of failure, the result returned by the tool is the remaining part of the initial
goal that is not proved. Graphical facilities are provided to understand the structure of
the result.

Example and counter-example generation. In case of failure of the demonstration,
it is important for the user to know whether the failure comes from the tool or from a
real error in the code. The tool offers other possibilities, such as the generation of
examples or counter-examples for debugging purposes.

When the user asks the tool to generate counter-examples, the tool computes a
predicate giving conditions on inputs which refutes the property. These conditions,
after constraint solving, give input values with which the function may be executed to
exhibit the problem.

An interactive predicate transformer. Another possibility in case of failure is the
re-writing of the remaining predicate resulting from the demonstration. The
interactive predicate transfomer offers a list of possibilities to rewrite the remaining
formula, in order to facilitate reading, understanding, simplification and even
demonstration: the user may introduce "let" notations to reduce the size, break the
predicate into cases, rewrite it in a normal disjunctive or conjunctive form, etc. For
instance, the disjunctive normal form allows independant proofs to be performed on

 Applying Formal Proof Techniques to Avionics Software 1803

each member of the disjunction; if only one of the members is proved, the initial
property is proved.

Processed Language. Unlike other similar products (see 2.x), caveat performes
proofs on the source code, not in an intermediate code, because it is the lowest
representation of the executable code easily understandable by the user, on which
reasoning can be performed.

The chosen processed language is ANSI C, as defined in the ISO standard,
because of its widespread use in industry, but implementation makes it possible to
deal with other programming languages without restarting from scratch.

The current version of the tool has some restrictions in the use of ANSI C :
features like function pointers, recursive calls, alias are not implemented yet.

2.2. Industrial Constraints

The industrial constraints of the targeted applications match Caveat capabilities.

Suitability for processed language. The features of C language not addressed by
Caveat correspond to limitations of critical application coding rules in the
aeronautical and nuclear fields.

Size of application. Two other specificities give Caveat the ability to address
industrial applications : iterativity and interactivity. They both make it possible to
capture the right level of information from the user and give him back just the
necessary information to go further, avoiding getting him bogged down in details due
to the size of the application.

Verification work may be performed step by step, in an iterative process: the user
asks the tool to verify a property on a function without being obliged to describe
anything previously : as an answer, the tool exhibits just the missing information (if
any) for performing the proof. Interactivity allows the user to give the missing
information and go further in his verification process.

Facility of use. Iterativity and Interactivity are supported by the interface of the tool.
It is composed of three main windows (see figure 1) : on the left, the user can read the
C source he is working on; the right window displays the C function properties ; the
window below shows the result of the last proof done by the tool (if the proof is not
established). With a simple selection, it is possible to see the connections between
elements of the property or result windows and the source window.

A property file is associated with each C source module. Each function in the C
module has its dedicated block of properties. Some of these properties are
automatically generated during the initial analysis of sources (prototype of functions,
Implicit operands, From, classes of operands In, Out, InOut). During this property

1804 Famantanantsoa Randimbivololona et al.

synthesis, anomalies (if any) like uninitialized variables, dead branches are pointed
out; the call graph of the application is computed and may be displayed. The result of
this initial automatical analysis of sources is displayed in the property window.

The user may then use interactive facilities provided by the interface to add his
own properties, either for getting proof, example, counter-example (post, assert), or
for detailing the context in which the study is performed (pre), or for analysing the
result of failed proof (interactive predicate transformer).

Figure 1.

Figure 1 illustrates the capability of the tool to peerform proofs even if pieces of
information are not provided : for instance, a loop invariant is not necessary if the
loop does not modify the variables of the property. Figure 1 shows that P1 is satisfied
without providing any information about the C function ISQ_SiCreerIdent(). On the
other hand, the post property P2 fails : the tool indicates that information on the
output of the ISQ_SiCreerIdent() function is missing to perform the proof : this is an
example of the iterative work : the user is invited to add this information (and only
this) and may remain concentrated on his initial work.

Re-use of previous work. Many applications use identical software components.
Validation work performed on these components may be re-used by means of user's
libraries in which already demonstrated properties are memorized. This feature is part
of the iterative aspect of the proof process defined as a basis of the Caveat tool.

 Applying Formal Proof Techniques to Avionics Software 1805

Batch mode. The tool provides the possibility to record commands, and replay them
in batch mode. This is very useful when interactivity is no longer needed, for instance
for non-regression verification or when results on the verification process have to be
given to a licensing authority.

Tracking of dependencies. The tool performs proofs by using the properties of low
level components: axioms, semantics of operators, properties of the called functions...
The tool manages the links between properties. It is then possible to know the
consequences of the modification of low level properties on upper levels, and thus
evaluate the work that must be repeated.

2.3. Comparison with Other Tools

A verification tool. Caveat is merely a verification tool. It does not claim to cover the
whole software development life-cycle. Is is clearly dedicated to the last development
phases, the programmation and verification phases in which it aims to help the user to
analyse the code, understand it better and verify it regarding some properties.

Caveat is not a verification system like GVE [7] with a specification language and
translators into programming language.

No intermediate language. Unlike tools such as MALPAS[6], Caveat works directly
on the source code. This provides the advantage of eliminating any translation from
source code into an intermediate langage, so that the model on which proofs are
performed is as close as possible to the code. Consequently, the results are also as
close as possible to the initial source, and are thus easier to analyse.

Interactivity. Caveat seems much more interactive than other similar tools. The
preference is given to expressivity of properties and readability of results rather than
automaticity.

3. Using Caveat on Avionics Software

The main objective of this chapter is to show how the methodolgy being built around
Caveat allows the claims made in sections 1.1, i.e. cost reduction, and in section 1.3 to
be met.

Three significant examples illustrate the way we will use Caveat and the
associated methodology.

3.1. Methodological Approach

In section 1.3, we listed the requirements for a tool (and related methodology) able to
perform formal proof.

The following requirements are directly met by Caveat (See chapter 2 for the
substanciation of these claims) : ability to prove avionics C code, ease of learning and
use.

1806 Famantanantsoa Randimbivololona et al.

In order to meet the rest of the claims, i.e. cost reduction, early payback and easy
integration), a methodology is being developed.

After an analysis of existing avionics software, we defined the following courses
for the application of formal proof using Caveat : algorithm verification at unit
(module) level and safety analysis. Both approaches are related to properties which
can be expressed in the first order logic.

Algorithm verification at module level takes place in the current unit testing phase.
The objective here is to replace this main activity of unit test by formal proof. If
achieved, this objective will lead to spending significantly less time in verifying a
property, using less expensive specific hardware and related software (no execution
with formal proof) and, finally, detecting more problems earlier in the verification
process.

The first claim ("spend significantly less time...") is the consequence of the ease of
use of Caveat. With this tool, to prove that a C function has a certain property, the
user "only" has to express the property in the first order logic language of Caveat, run
the tool and analyse the result. To do the same, i.e. prove that a C function has the
required property, using unit testing techniques, one has to generate test cases, code a
test program, debug it if necessary, execute both test and tested programs linked
together and finally analyse the result. This comparison of these techniques allows us
to think that formal proof used in module verification is more cost effective than unit
testing.

The second claim ("use less expensive hardware") is due to the fact that, currently,
the execution of unit tests is performed on a target able to execute the same binary
code as the final embedded target (the on-board computer). So, in order to execute
unit tests generated with a dedicated commercial tool, we need a run-time per
execution hardware type. With formal proof using Caveat, there is no need for test
hardware and run-time dedicated to unit verification.

The third claim ("detect problems earlier...") is due to the exhaustivity of formal
proof versus tests.

Verification of dependability properties. This is the second application course of
the proof of property technique. Critical software have to meet dependability
objectives, derived from safety analyses performed at system and equipment levels.
Software safety properties concern higher levels of software functions and usually
they involve several modules. In this context, Caveat interactivity helps in building a
property step by step.

Consequences on the requirements. Using the formal proof technique on software
whose specification is textual (not formal) will improve the quality of the
requirements. They will tend to be more accurate because a lot of them will have to
be translated into first order formulae for verification. So, the formulation of these
requirements will have to be semantically close to first order logic formulae in order
to facilitate the translation into the property language of Caveat. The textual
specification will remain in natural language but with a slightly more logic form.

 Applying Formal Proof Techniques to Avionics Software 1807

3.2. Case Studies

The examples of this section illustrate the use of Caveat on critical embedded
software applications and give some methodological indications about the way to use
the proof of properties in this industrial context.

They are also representative of the kind of functions and code found in avionics
critical embedded software. They reveal the ability of the tool to cope with these sorts
of code.

Different types of function. The three examples are functions frequently met in
avionics software. The first one belongs to the logic computation family, which can
be met in on-board warning or maintenance on-board computers. The second example
is representative of the security mechanisms met in several computers into which
complex structured data (in a file, for instance) can be entered. The third one
represents the hardware interface. Because on-board computer hardware is completely
specific ("home made"), avionics software developers have to write hardware
interface layers. These layers allow hardware initialisation, input/ouput handling,
hardware monitoring, etc.

Coding characteristics. The first example, Boolean computation, shows what we can
call "strongly Boolean code" : a lot of boolean operators (AND, OR...), RS flip-flop,
confirms, etc. The specificity of the second one is the fact that it involves code
running on top of an embedded UNIX-like operating system. There are wo
consequences : firstly, the C modules include a lot of system headers defining plenty
of data types, constants, etc... ; secondly, the C modules call system or library
functions. As explained above, the third example is representative of the pieces of
code with inputs coming directly from the hardware. The particularity, here, is the
handling of bits present in data words read from hardware registers. The problem is
the same when bits are used to compact information into a few data words (in
operating systems for instance).

Properties. The examples described below are also representative of different kinds
of required properties. For logic computation (first example) it is important to prove
that some erroneous outputs or combinations of ouputs which can lead to dangerous
behaviours will not be generated. So, the properties for this kind of function are safety
properties. For the second example, the required properties are clearly security
properties. But as security is the main function of the family represented by the
second example, the properties it requires are also functional properties. The
properties required by the third example (hardware handling) are safety properties
because the objective, in that case, is to prove that a logic computation, based on the
value of hardware registers (bit-structured), is safe.

3.3.

Making the proof of a property requires the following steps (they are applied to the
examples) :
(1) Identification of the property in the requirements.

1808 Famantanantsoa Randimbivololona et al.

(2) Identification, in the design, of the code modules (C modules) involved in the
property.

(3) Identification, in the design, of the C function on which the property must be
verified.

(4) Creation of the Caveat project, i.e running Caveat on the "project" made of the
analysed modules.

(5) Translation of the property from natural language (the way it is written in the
requirements) to the property language of Caveat (based on the first order logic).
The property is then given to the tool at the appropriate point of the function
identified in step 3.

(6) Proof of the property by Caveat : Caveat computes the condition (in the first
order logic) which has to be TRUE at the beginning of the C function, in order to
be sure that the property is verified at the point of the function at which it was
introduced.

(7) Analysis of the result. Two cases :
Caveat says "V" ("Verified") : the remaining verification condition (See point 6)
is TRUE thus the property is verified by the code,
Caveat says "F" ("Failed") and gives the remaining condition. In this case, there
are two potential reasons why Caveat failed :
- The property is not verified by the code. In this case, it is possible to deduce
counter-examples from the remaining condition given by the tool. This can be
done with a constraint solver.
- The property is in fact verified by the code but the tool cannot prove it, i.e. the
remaining formula cannot be "simplified" to TRUE. In this case the proof has to
be completed "intellectually", aided by the Caveat Interactive Predicate
Transformer (IPT). Examples for tests can also be deduced from the remaining
verification condition.

3.4. Examples

Safety : Boolean computation.

This case comes from the requirements (in the avionics specification language called
SAO) of an on-board computer which performs a lot of logic computation. The
analysed SAO sheet produces ten Boolean outputs (out01...out0a) from 32 inputs
(In01..In20). It is composed of about 70 logic symbols like Boolean operators (AND,
OR) or flip-flop, confirms, etc.

This example is typical of the dependability verification course (see section 3.1).

Step 1 : An interesting safety property is : "At any time, at least one output must be
set".

Step 2, 3 and 4 have been performed. For the rest of the description, it is not
important to know the related names of the modules, functions or tool files.

 Applying Formal Proof Techniques to Avionics Software 1809

Step 5 : The ten outputs are declared as an array of unsigned char (out[10]) and only
two values can be given to its elements : 0 and 1. An output (eg : out[2]) is "set" when
its value is 1. In the property language of Caveat, we obtain :

Post :
↑(out+0) ≠ 0 ∨ ↑(out+1) ≠ 0 ∨ ↑(out+2) ≠ 0 ∨ ↑(out+3) ≠ 0

∨ ↑(out+4) ≠ 0 ∨ ↑(out+5) ≠ 0 ∨ ↑(out+6) ≠ 0 ∨ ↑(out+7) ≠ 0
(1)∨ ↑(out+8) ≠ 0 ∨ ↑(out+9) ≠ 0 ;

Note. ↑(out+0) in the Caveat property language is equivalent to out[0] in C.

Step 6 : The computation results in "V" ("Verified"). It means that the property is
always true, i.e. for all possible input values.

Considering the great number of inputs of the module (32), it is clear that the amount
of tests that would be necessary to prove the property leads to a far greater effort than
the one needed to perform the mathematical proof.

Security : Uploading checks.

This case study was extracted from another on-board computer. The origin of the
analysed piece of code is the uploading facility of this on-board computer. This
feature allows avionics applications to be uploaded into the computer, from a floppy
disk.
On this floppy disk, there are two sorts of file : a configuration file containing the
relevant characteristics of the files to be loaded and the files themselves.

The main actions of the uploading function are : loading the configuration file
from the media (using an on-board communication protocol) ; analysing the contents
of the configuration file in order to identify which files are to be loaded and to verify
if their associated characteristics allow them to be loaded ; loading the files ; updating
the internal configuration (internal configuration files).

The case presented here involves the module implementing some of the checks before
loading. As these checks are performed by a unique C function, this example
illustrates both methodological courses (see sect. 3.1) : algorithm (at module level)
and dependability verification.

Step 1 : In the case of software security checks, the interesting properties are
"mapped" on the requirements. Checks are there for security, so verifying their code
with the "safety point of view" is identical to verifying their function (the
requirements).
For this example, twenty properties have been identified. Nineteen of them express
reasons for stoping loading and the twentieth says : "If all the checks are OK, the
loading can carry on".

Two examples of properties :
(P1) "If the name of the file to be loaded exceeds 49 characters then stop loading"

1810 Famantanantsoa Randimbivololona et al.

(P2) "If the application to be loaded is an ABC one and the priority it requires for its
execution is not between 105 and 200 then stop loading".

Step 2, 3 and 4 : same as previous example.

Step 5 : The characteristics of the file to be loaded are read from the configuration file
and loaded in memory via a complex data structure. The checked characteristics are
fields of this complex data structure, called TFC_Ri_FichierConfig in source file.

The translation of both properties into the property language (see step 1) gives the
following post-conditions :

Property P1 :

Post P1 :
strlen?0(↑InfoComune(TFC_Ri_FichierConfig.Log+num_elem).NomDest)

≥³³³50
(1)⇒ TFC_Si_VerifElement=0;

Let us comment on this formula :

♦ "TFC_Si_VerifElement" is the name of the analysed function and
"⇒ TFC_Si_VerifElement=0" means "implies the value returned by
TFC_Si_VerifElement is 0".

♦ "strlen?0" in P1 stands for the return of the function strlen(). This function is
called by the analysed function.

♦ "↑InfoCommune(TFC_Ri_FichierConfig.Log+num_elem).NomDest" in P1
represents "TFC_Ri_FichierConfig.Log[num_elem].InfoCommune.NomDest" in C
language.

Property P2 :

Post P2 :
((↑TypeLog(TFC_Ri_FichierConfig.Log+num_elem)=0

∧ (↑InfoCommune(TFC_Ri_FichierConfig.Log+num_elem).Priorite<105
∨

↑InfoCommune(TFC_Ri_FichierConfig.Log+num_elem).Priorite>2
00))

(2)⇒ TFC_Si_VerifElement=0;

Step 6 : the computations of P1 and P2 but also the computations of the eighteen other
properties result in "V" ("Verified"). This clearly means that the analysed function
meets its requirements.

 Applying Formal Proof Techniques to Avionics Software 1811

Hardware handling. The case study presented here is symptomatic of a logic based
on bit-structured data. In this example, such data come from an hardware register (in
fact a CPU board status register). The function analysed in this case must convert
each configuration of a subset of the register bits into pre-defined integer values. The
computed value must be stored in a global resource because the value computed at a
given time must be greater than or equal to the one previously stored. Remark : the
global resource is shared with another piece of code which can reset it. This
comparison mechanism is used to set priorities among the actions associated with the
computed values.

Applying the method (see section 3.2) to this example, we get :

Step 1. The following property is considered : "If the stored value is the smallest
(among the possible ones) and the currently computed value (from the current
hardware register value) is not the smallest then the result cannot be the smallest".

Step 2, 3 and 4. Same principles as in previous examples.

Step 5. Hypotheses for the property : the current version of the tool does not
automatically recognize the values of const data. So, because the analysed C function
uses a const array to compute the integer value from the register data, the proof can be
performed only if we give Caveat the const array values. This is done using a pre-
condition.

Pre-condition giving Caveat the const array values :

Pre :
IIS_Ri_TabCoupure=Mk&Tab&DHT_T_TYPE_COUPURE

(4)(@IIS_Ri_TabCoupure, 16, 0,{0→17, 1→0, 2→33, 3→66, 4→0, 5→0,
6→0, 7→0, 8→0, 9→0,10→33, 11→66, 12→0, 13→0, 14→0, 15→66},);

Remark. With this property, Caveat considers that the array IIS_Ri_TabCoupure[16]
(used by the analysed function) has the values 17, 0, 33, ..., 66.

Another pre-condition Caveat has to know is the set of possible values of the
global resource used to store the previous computed value.

Pre :
(5)Stocke_dem=0 ∨ Stocke_dem=17 ∨ Stocke_dem=33 ∨

Stocke_dem=50 ∨ Stocke_dem=66 ∨ Stocke_dem=81;

The property : Writing a property containing a lot of operands and/or operators in
Caveat property language can be very difficult, because it leads to a very complicated
formula. It is not due to the tool but to the fact of expressing the property by a
mathematical formula. To solve this problem, the best way is to use Caveat
incrementally. The purpose here is to let Caveat generate a part of the formula. This
can be done using an Assert property. To introduce such a property into a C function,

1812 Famantanantsoa Randimbivololona et al.

it is necessary to put a label in the code at which the Assert property must be true.
Then Caveat can compute the condition on the function input operands that leads to
verifying the property.

Applying this method to the current example, an Assert is used to determine the
mathematical predicate equivalent to the proposition (which belongs to the property to
be verified) "the currently computed value (from the current hardware register value)
is not the smallest" (in the code, the smallest value is 17).

The assert property is :

(6)Assert : At label1 ↑(IIS_Ri_TabCoupure'+val) ≠ 17;

With this property, Caveat will compute the condition for obtaining a value not
equal to 17 from the const array IIS_Ri_TabCoupure.

Let C2 be the condition Caveat computed.

The result is :
C2 :
¬ (((if bit&32(↑(@ad12345678), 12)
then (if bit&32(↑(@ad12345678), 11)
then (if bit&32(↑(@ad12345678), 10)
then 17=↑(IIS_Ri_TabCoupure+~14)else
else 17=↑(IIS_Ri_TabCoupure+~6))
 else (if bit&32(↑(@ad12345678), 10)
 then 17=↑(IIS_Ri_TabCoupure+~10)
 else 17=↑IIS_Ri_TabCoupure+~2)))
 else (if bit&32(↑(@ad12345678), 11)
 then (if bit&32(↑(@ad12345678), 10)
 then 17=↑(IIS_Ri_TabCoupure+~12)
 else 17=↑(IIS_Ri_TabCoupure+~4))
 else (if bit&32(-(@ad12345678), 10)
 then 17=↑(IIS_Ri_TabCoupure+~8)
 else 17=↑(IIS_Ri_TabCoupure)))
⇒ bit&32(↑(@ad12345678), 13))
⇒ bit&32(↑(@ad12345678), 13)
 ∧ (if bit&32(↑(@ad12345678), 12)
 then (if bit&32(↑(@ad12345678), 11)
 then (if bit&32(↑(@ad12345678), 10)
 then 17=↑(IIS_Ri_TabCoupure+~15)
 else 17=↑(IIS_Ri_TabCoupure+~7))
 else (if bit&32(↑(@ad12345678), 10)
 then 17=↑(IIS_Ri_TabCoupure+~11)
 else 17=↑(IIS_Ri_TabCoupure+~3)))
 else (if bit&32(↑(@ad12345678), 11)

 Applying Formal Proof Techniques to Avionics Software 1813

 then (if bit&32(↑(@ad12345678), 10)
 then 17=↑(IIS_Ri_TabCoupure+~13)
 else 17=↑(IIS_Ri_TabCoupure+~5))
 else (if bit&32(↑(@ad12345678), 10)
 then 17=↑(IIS_Ri_TabCoupure+~9)
 else 17=↑(IIS_Ri_TabCoupure+~1))))
 ∨ bit&32(↑(@ad12345678), 17)
 ∨ bit&32(↑(@ad12345678), 22))

Notes. eg : the predicate "bit&32(↑(@ad12345678), 13)", in Caveat property
language, is TRUE if the bit 13 of the data stored at address 12345678 is set (=1).

As we can see, it is better to let Caveat provide the formula.

The property, as written in step 1, is composed of three propositions : "the stored
value is the smallest (among the possible ones) ", "the currently computed value
(from the current hardware register value) is not the smallest" and "the result cannot
be the smallest". With the Assert property computation, the second proposition has
just been computed. The other two are quite simple, they do not need any
intermediary computation.

So, the property is :

(7)Post : Stocke_dem'=17 ∧ C2 ⇒ TypeDemarrage ≠ 17;

where C2 is the condition computed by Caveat using the Assert property.
Step 6. Caveat proves this post-condition ("V").

This example shows that a logic based on bit-structured data coming from the
hardware can be efficiently verified without having to use real or even simulated
hardware. Again it allows a gain in terms of verification cost.

4. Conclusion

4.1. Lessons Learnt

Caveat and the way we have used it on these examples shows its ability to meet the
requirements stated in section 1.3 : (1) ability to prove avionics C code, (2) ease of
learning and use, (3) early payback, (4) easy integration.

Requirements 1 and 2 are directly met by Caveat, as explained in chapter 2.
Practical examples did not reveal any major difficulty around the C language used.

This examples also revealed that the initial training effort that a "standard"
software engineer needs to produce is not greater than for another industrial software
verification technique : one week's training is enough to be able to perform formal
proofs with Caveat.

1814 Famantanantsoa Randimbivololona et al.

Requirement 3 should be met if we consider that a lot of tests (mainly unit tests)
will be simply replaced by formal proof, and that each formal proof can be performed
in significantly less time and with less hardware than the corresponding tests. The
ease of learning and use will also help to meet this requirement.

Requirement 4 is met by the fact that the introduction of the formal proof
technique in our development methodology (see sect. 1.5 and 3.1) does not change it
fundamentally.

These examples also reveal the necessity for some enhancements of Caveat. They
will be implemented soon. The main point is the improvement to automaticity in
theorem proving.

4.2. Qualitative/Quantitative Results

Qualitative results.

♦ The good level of maturity of Caveat plus the enhancements planned for this year
(better automaticity in theorem proving) confirm its ability to improve the verification
of avionics applications significantly.

♦ The property language of Caveat can easily be used by a software developer.

♦ The incremental way to use Caveat helps manage the complexity of the
mathematical representation of the source code (see example 3 in section 3.3).
♦ The tool and the method for using it make it possible to detect software faults and
find counter-examples which can be used in debug sessions.

Quantitative results.

♦ The computation time of Caveat is compatible with an industrial usage.

♦ In terms of cost effectiveness the examples described in this document reveal the
three types of gain stated in section 3.1.

Example 1 is very expensive in terms of testing effort in the sense that the
required property depends on thirty-two inputs. So, by using the property proof
technique, it is no longer necessary to generate and execute a large amount of test
cases (first type of gain).

Example 2. In this case (and for this type of code, i.e. checks implemented by
"if..else.."), the gain, in terms of time spent, is around 20 %. If we consider that a lot
of avionics functions are similar, in terms of implementation, to example 2, it is
possible to replace unit testing on these functions and so, the gain on a quite large part
of an avionics software product would be about 20 %.

 Applying Formal Proof Techniques to Avionics Software 1815

Example 3 : in this case, the cost is reduced because less hardware is needed to
perform the verification. In a classical approach, the kind of verification of example 3
is performed during the integration phase, on the real hardware. So the third reason
why cost can be reduced is also true in this example.

After these experiments, and the finalisation of the formal proof methodology, it
will also be necessary, for the overall verification process (not only unit tests and
safety verification) to define a methodology which combines classical tests with
property proof.

References

1. C.A.R Hoare : An axiomatic basis for computer programming, Comm. ACM 12
(10), 576-580, 583 (Oct. 1969).
2. Dijkstra BW 1976, A discipline of programming, in Series Automatic Computation,
Prentice Hall.
3. Pavey D et al. 1997, LAW : Legacy Assessment Workbench, in the UK Reliability
and Metrics Club's news letter.
4. A joint RTCA-EUROCAE achievement : DO-178B / ED-12B, Software
considerations in airborne systems and equipment certification (Dec. 1992).
5. HOOD Technical Group, Jean-Pierre Rosen : HOOD - An industrial approach for
software design (1997).
6. A. Smith - MALPAS Userguide. Technical Report, Rex, Thomson & partners
Limited, 1991.
7. R. Cohen - Proving Gypsy Programs, in CLI Technical Reports, 1989.
8. Sj. Garland & Jv. Guttag - A guide to LP, the Larch Prover, MIT Laboratory for
Computer Science, 1991.
9. JM. Spivey - The Z Notation, A Reference manual. University of Oxford, 1988.
10. CB. Jones - Systematic Software Development Using VDM. Prentice Hall Int.,
1986.

Secure Synthesis of Code: A Process

Improvement Experiment

P. Garbett1, J.P. Parkes1, M. Shackleton1?, and S. Anderson2

1 Lucas Aerospace, York Road, Hall Green, Birmingham B28 8LN, UK,
shacklm@liyorkrd.li.co.uk,

Tel: +44 121 627 6600, Fax: +44 121 607 3619
2 Division of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, UK,

soa@dcs.ed.ac.uk,
Tel: +44 131 650 5191, Fax: +44 131 667 7209

Abstract. Arguments for and against the deployment of formal meth-
ods in system design are rarely supported by evidence derived from ex-
periments that compare a particular formal approach with conventional
methods [2]. We illustrate an approach to the use of formal methods for
secure code synthesis in safety-critical Avionics applications. The tech-
nique makes use of code components and uses sound introduction rules
for the components to ensure constraints on their use are enforced. The
approach we describe is the subject of a controlled experiment where it
is running in parallel with the conventional approach. We describe the
experiment and report some preliminary findings.

1 Introduction

Lucas Aerospace1 develop safety-critical avionics software. In particular, we
have a long history of constructing Full Authority Digital Engine Controllers
(FADECs) that control the fuel supply to aircraft engines. “Full Authority”
means that there is no reversionary (backup) control. This means the digital
control system is a critical function. In an earlier paper [8] we described Lucas
Aerospace’s overall approach to process improvement. Process improvement is
necessary in highly critical software production because we would like to see a re-
duction in life-cycle costs for new, more sophisticated designs while maintaining
or improving on the safety integrity of the product.

In mature development processes it is necessary to innovate in the process
to achieve significant improvements. Because untried techniques carry imple-
mentation risk we have developed an approach to process innovation based on

? Partially supported by the EU ESSI programme projects, no. 23743, Proof by Con-
struct using Formal Methods and no.27825, Implementing Design Execution using
Ada.

1 Lucas Aerospace is a TRW company.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1816–1835, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Secure Synthesis of Code: A Process Improvement Experiment 1817

experimentation with new techniques. This paper describes our approach to pro-
cess innovation in one facet of our current process and the ongoing experiment
to assess the effectiveness of the approach.

The aspect of our development process we consider here is the generation of
code from a specification. We use formal development to synthesise code from
the specification. The aim of the experiment is to see the extent to which using
formal methods can control errors arising in code production. We believe there
will be a measurable difference between our formal approach and the existing
approach.

1.1 Safety Critical Avionics Software

The main characteristics of safety-critical avionics software are: A high reliability
requirement, typically the required system reliability of software components is
better than one failure in 106 flying hours. The controller and equipment under
control are co-engineered, this leads to much greater variability of requirements
through the lifetime of the system. As aircraft employ more digital systems the
size and complexity of individual sub-systems tends to grow. Software produced
by Lucas Aerospace must certified to comply with Level A of DO178B [14].
Developing software that complies to such exacting standards take a great deal
of effort — safety critical software is expensive to produce.

In justifying any claim of high-reliability the producer of the system needs to
(explicitly or implicitly) make a safety case for the system. The safety case must
be: a demonstrable and valid argument that a system is adequately safe over its
entire lifetime [1]. Any safety case will deploy three different kinds of argument
in its support: Deterministic rule-based, logical arguments that are used to argue
that some state of affairs is certainly true. The current Lucas Aerospace process
rests to some extent on such elements[12]. Probabilistic arguments based on data
drawn from testing, field experience etc. Qualitative arguments based on showing
good practice or conformance to DO178B, and ISO 9000-3.

Generally a well-balanced safety case will involve diverse arguments of all
types. In the case of high-reliability systems diversity is essential. Lucas Aerospace
already have some experience in the use of formal verification to move the bur-
den of evidence in the safety case from test to proof. This experiment aims to
move the demonstration of the absence of certain classes of coding error from
testing to the point at which code is synthesised. We believe this could result
in significant cost reductions without compromising the safety and reliability
of the products. Earlier discovery of errors in requirements and development
rather than waiting until test is often claimed to be one of the principal benefits
of formal methods [5, 9]

The seeds of the applicability of formal methods lie in the restrictions inherent
in the approach to coding and design embodied in the current development
process. In the next section we highlight those aspects of the current process
that facilitate the use of formal methods.

1818 P. Garbett et al.

1.2 The Current Approach

The current development process used by Lucas Aerospace has been refined
for over a decade. It produces highly reliable systems and is stable and well
understood. We are therefore keen that any proposed change retains the best
features of existing processes whilst gaining the benefits of greater formality.

In the current approach, project staff implement requirements by composition
of highly verified microprocessor specific elements [3]. This is codified in the
domain specific language LUCOL2 [12].

LUCOL elements are developed by specialists. The development of these
elements is via a process which is mature, monitored by metrics which are used
for feedback, and supported by highly developed verification processes, including
formal verification [12]. That is, it satisfies many of the properties required to
achieve the higher levels of the Capability Maturity Model (CMM) [17].

The LUCOL language embodies many constraints that facilitate informal
validation and verification processes:

– Design is carried out at the level of combining LUCOL modules to provide
high-level functionality.

– Individual LUCOL modules consist of up to around 100 lines of assembler.
These are formally verified using the SPADE tool [3]. Loops can occur within
these modules and formal verification guarantees their partial correctness.
Confidence of termination derives from design guidelines, informal reasoning
and extensive test. These modules are also reused across projects and have
considerable operational evidence for correctness and reliability.

– LUCOL modules have determinate space, time and functional characteristics
and this is inherited by programs constructed from LUCOL modules.

– LUCOL programs are loop-free. The acyclic structure guarantees termina-
tion provided each module terminates. The acyclic structure is iterated by
a single control loop containing a cyclic executive that controls lower level
functions.

– LUCOL programs are executed cyclically. The program is similar to a large
filter that is executed at discrete time intervals (frequently enough to ensure
adequate control).

– Coding conventions ensure each variable is defined once and there are strong
controls over “non-functional” interactions between modules.

– Diagrammatic output can be generated from the code, and then compared
to the requirements, which are very often of a similar form.

Taken together, these constraints make the code very amenable to dynamic
test. This is particularly true if no historic data sources are kept. These amount
to the introduction of feedback loops in the LUCOL program. The absence of
loops means that there is no dependence on sequences of events or values, so the
function mapping inputs to outputs is time independent. This feature also eases
formal proof. Unfortunately it is impossible to eliminate feedback completely so

2 LUCOL is a trademark of Lucas Aerospace.

Secure Synthesis of Code: A Process Improvement Experiment 1819

we need good tools to analyse programs with feedback. We believe that formal
approaches provide such tools to control and analyse these feature of programs.

These considerations mean that LUCOL programs exhibit many of the char-
acteristics of circuits. This suggested that, in addition to considering formal
methods tools that support software development, we should consider formal
methods tools for hardware development. The resulting approach is aimed at
supporting the development of software whose structure is constrained in a man-
ner similar to LUCOL. The approach is language independent and the work is
intended to target either LUCOL or Ada.

2 Formal Code Synthesis

2.1 Choice of Formal Methods Tool

The following considerations shaped our choice of formal methods tool. The final
decision to choose LAMBDA3 [16, 15, 11, 7, 6] was taken because it appears to
be the most mature industrial-strength tool that matches most of these require-
ments.

– The core functionality of controllers is specified as a control law expressing
the relationship between input and output over time. Signals varying over
time are conveniently expressed as functions from time to data values. Thus a
language with conveniently expressible functional forms is attractive because
it is natural to describe our systems as functionals over a set of input and
output signals.

– Because we want to reason about functionals it is desirable to use some form
of higher logic or type theory.

– The cyclic nature of the system suggests that in most circumstances a loop
invariant is the most natural statement of the functional requirements.

– An assumption of the development process is that a top level decomposition
of the software into components would split this large invariant into sub-
pieces which apply to sub-components.

– The actual implementations we have, which have had exposure to millions
of hours of in-service life, show that it is possible to build extremely effec-
tive systems given highly restricted means of altering the flow of control,
in particular loopless construction. These structures are particularly easy to
formalise in higher-order logic.

– The majority (all but one) of loops can be placed in reusable components,
these can be modelled functionally using recursion. These are the most diffi-
cult of the specifications to construct (especially given that they are ideally
primitive recursive) so are best left to specialists. Ideally we would like to
make the internal structure of components (e.g. LUCOL modules) invisible
to designers who use the components to construct programs. The method
should support the factoring of proof effort between specialist and the de-
velopment team.

3 LAMBDA is a trade mark of Abstract Hardware Limited

1820 P. Garbett et al.

– An important aspect of any controller design is the control of when a com-
ponent is active. This is important both for scheduling activity and for se-
quencing of control modes of the system. An important requirement was
a simple method to specify activation/deactivation of components. This is
an essential prerequisite to allow the development of any part of a realistic
control system.

LAMBDA using poly/ML and the L2 logic was chosen as a vehicle for imple-
menting the functionally based specifications of the components and programs.
Although targeted at hardware techniques the method of specification is very
similar to that used for controllers. In choosing LAMBDA we felt that it fitted
our needs particularly well.

The LAMBDA hardware synthesis method is predicated on the approach
that formal techniques could be made as transparent as possible to the project
user. This therefore both technically and otherwise supports the factoring of
expertise which is a positive attribute of the existing development process. This
division of activity between formal methods experts and developers is reflected in
the following two sections. In Section 2.3 we consider the activity of developing a
formally verified “library” of code components along with formally defined rules
for their use. In Section 2.4 we consider using the predefined rules to structure
code synthesis.

In our preliminary investigations of the feasibility of the approach, software
involving reactive control components was used as a test case for the method.
The original motivation for this work was to capture control diagrams, and this
is where it is most effective. The essentially discrete switching logic controlling
these functional programs has been targeted by other formal methods, e.g. they
could be approached using formalisms based on state machine diagrams.

2.2 An Overview of LAMBDA

This section is intended to provide enough background to LAMBDA to allow the
reader to understand the notation used in the technical sections of the paper.
We split the account into three sections dealing with the things one can define
and manipulate in LAMBDA, how to express goals and theorems in LAMBDA
and how to represent the current state of a proof.

LAMBDA Terms The L2 logic used in LAMBDA is a type theory with higher
order objects. The language used to define terms in the logic is very similar to the
purely functional fragment of the Standard ML programming language [10]. This
provides a convenient means to define the behaviour of code components used in
the synthesis of controllers. The higher order features of the term language are
particularly useful in defining functions that have signals as inputs and generate
a signal as output. For example the function:

fun x ladd y = fn t => wrange(x t ++ y t) ;

Secure Synthesis of Code: A Process Improvement Experiment 1821

defines an infix operation ladd that takes two signals x and y as input and has
the signal whose value at time t is the sum of the values of signals x and y at
time t.

LAMBDA Sequents The truth of any proposition in the LAMBDA logic is always
relative to a context that defines the terms used in the proposition. The context
may have dependencies within it so the order of terms in the context is important.
For example the axiom asserting reflexivity is given by:

G // P $ H |- P

The context to the left of the turnstile is called the assumptions and the propo-
sition to the right of the turnstile is called the assertion. Often we want to think
of sequents as schematic. In the reflexivity axiom the P stands for an arbitrary
proposition and the G and H stand for the rest of the context to the left and right
of the assumption P.

LAMBDA Rules LAMBDA represents the state of an incomplete proof using the
notion of a derived rule in the LAMBDA logic. This notion was first introduced
by Paulson [13] in his proof assistant Isabelle. The mechanism of constructing
new schematic rules from the basic set of rules in the logic is fundamental to
LAMBDA. A typical rule is the and introduction rule:

G//H |- P
G//H |- Q

G//H |- P/\Q

This has the usual interpretation that if the two premises above the line are true
then the conclusion below the line is true. New derived rules are constructed by
unifying the conclusion of some rule with one of the premises of another rule.
The process of proving some theorem then proceeds by repeatedly carrying out
this procedure until the required rule is derived (provided it is derivable). For
more details we refer the reader to the references on LAMBDA.

2.3 Reduction of Code to Component Form

In this section we consider the activity of developing the basic library of com-
ponents from which programs will be synthesised and establishing sound intro-
duction rules in the LAMBDA logic that admit the use of the components in
synthesising code. This work requires detailed knowledge of the LAMBDA logic
and is usually carried out by formal methods experts.

The code synthesis technique can target either the LUCOL or Ada language.
Since Ada is the more generally known, the discussion will here be restricted to
Ada. It is worth mentioning in passing that because Ada is compiled language,
even if the Ada source is formally synthesised from its specification there is no
guarantee that the machine code emitted by the compiler will in turn conform

1822 P. Garbett et al.

to that specification. In contrast, no machine code is generated when targeting
to the LUCOL language; all of the code resides within the hand-coded modules
which are proved to conform to their pre- and postconditions. The LUCOL
approach eliminates the need to depend on a large and complex tool.

fun x ladd y = fn t => wrange(x t ++ y t) ;

function add (input1 : short_integer;

input2 : short_integer) return short_integer

--# pre true;

--# post add = wrange (input1 + input2);

is

outval : integer;

output : short_integer;

begin

outval := integer (input1) + integer (input2);

if outval < integer (short_integer’first) then

output := short_integer’first;

elsif integer (short_integer’last) < outval then

output := short_integer’last;

else

output := short_integer (outval);

end if;

return output;

end add;

Fig. 1. Specification of Protected Addition

Whilst functional programming languages possess many attractive qualities,
for the foreseeable future imperative languages will continue to be used in embed-
ded systems. Imperative functions without side effects or pre-conditions match
the semantics of their functional counterparts fairly closely. Figure 1 shows an ex-
ample of an L2 specification of a ”protected addition” and a counterpart written
in Ada. In this context protected means that overflows are mitigated by clamp-
ing at the appropriate extreme of the 16 bit two’s complement integer range.
The L2 specification takes two signals as arguments and generates a signal as
result. Recall that a signal is a map from time (here modelled by the natural
numbers) to data values. Despite the simplicity of the function, it is not immedi-
ately obvious that the imperative code and the applicative specification perform
the same operation. The formal comments (introduced by --#) in the Ada code
giving the precondition and postcondition for the add function are more useful in
this respect than the code itself, provided that they have been formally verified.
Having conducted such a proof, one might feel justified in believing that the Ada
function add implements the L2 ”software component” whose specification is

Secure Synthesis of Code: A Process Improvement Experiment 1823

val ADD#(input1 : int, input2 : int, output int) =
output == wrange(input1 ++ input2);

More will be said about this correspondence later when modelling the code in L2
is considered. For the moment the point is that one can replace a sub-expression
of the form

x ladd y

with the output z of the software component4

ADD#(x t, y t, z t)

knowing that there is some code available which corresponds to it.
Our approach is: To construct a detailed low-level specification of the re-

quired functions in L2. This specification is type correct and is close in form
to the informal requirements for the system. Then replace each subexpression
in the L2 specification by a software component which has an imperative im-
plementation. This is carried out under the control of LAMBDA and so each
replacement must be justified in the logic. Finally during code generation each
software component is replaced by the corresponding implementation to derive
the code for the system.

Because the limitations on what can be done efficiently in imperative code,
notably the limited integer word length, are captured accurately in LAMBDA’s
logic the specifier must take account of all boundary conditions and other im-
plementation constraints as they synthesise the component form from the L2
specification.

The replacement of subexpressions by software components is a process of
replacing L2 by L2 which is performed formally. Such replacements are achieved
by an ”introduction rule”. An introduction rule for the ADD# component might
be of the form

G // H |- P#(o)
--
G // forall t. ADD#(x t, y t, o t) $ H |- P#(x ladd y)

This rule says that if we connect up an ADD with inputs x and y and output o
then any occurrence of a sub-expression of the form x ladd y may be replaced
by o. In this instance we are committed to calling our ADD component for all time
ie. on every cycle of the program, which is not always what is required. Other
forms of introduction rules only require output from a component at times when
a given set of conditions holds.

Introduction rules are proved to be sound. This guarantees that a component
cannot be used incorrectly. The introduction rule for the ADD component is very

4 Note that we are being a little imprecise here. Strictly we would need to be replacing
(x ladd y) in a context where it is applied to t or the ADD# relation would have to
hold for all times t.

1824 P. Garbett et al.

easily proved since the component definition differs little from the L2 function
it replaces. In some cases the proof can be quite complex.

The simplicity of the ADD example suggests two things; firstly that this is not
getting us very far, and secondly that every sub-expression of the L2 specification
is going to end up as a subprogram. To illustrate that the former is not necessarily
the case we consider a slightly more interesting function. A major strength of
an L2 functional specification is that it is free of the state which exists in an
imperative program. Thus a simple rectangular integrator may be specified as

fun intgr x gain init 0 = init ++ gain ** x 0
| intgr x gain init 1’t = intgr x gain init t ++ gain ** x 1’t;

The corresponding software component might be

val INTGR#(input:int,gain:int,store:int signal,output:int,t:time)=
output == store t ++ gain ** input /\ store 1’t == output;

This is not easily implementable as imperative code, of course, because it requires
unbounded integer arithmetic and a practical definition of the L2 function intgr
would restrict word lengths, but it does illustrate the introduction of state into
the software component. The introduced state here is the integer signal store.
Whereas the L2 function is defined recursively, the software component intro-
duces a state variable to eliminate the recursion. The corresponding imperative
code would have the (infeasible due to limited length arithmetic) specification

procedure intgr(input: in short_integer; gain: in short_integer;
store: inout short_integer; output: out short_integer)

--# pre true;
--# post output = store~ + gain * input and store = output;

In order for the imperative code to be able to implement the requirement of the
software component that store 1’t == output, each use of the integrator func-
tion must have associated with it a separate statically allocated state variable
which preserves its value between successive calls to the procedure, recording
the value of output on the last iteration. Furthermore, the output of the L2
specification of intgr at time 0 requires that the state variable is initialised at
time 0. An introduction rule for this component might be

G // H |- P#(o) /\ store 0 == init
--
G // forall t. INTGR#(i t,gain,store,o t,t) $ H |-

P#(intgr x gain init)

This rule could not be proved without the extra condition that store is initialised
at time 0, and ensures that this initialisation constraint is introduced at the same
time as the software component. As development proceeds the formal structure
of LAMBDA gathers all such constraints and maintains them so the developer
has a clear statement of the constraints under which the code can implement
the L2 specification.

Secure Synthesis of Code: A Process Improvement Experiment 1825

When the target language is Ada, software components can be implemented
by inline code. For instance, the code fragment

--# pre divisor <> 0
output := input / divisor;
--# post output = input div divisor

can straightforwardly be used to implement integer division, assuming the pa-
rameters have the correct Ada types. Where preconditions are other than true,
as here, they appear as a side-condition in the corresponding introduction rule,
requiring their discharge as part of the code synthesis process.

So far, only component replacements for all time instants have been consid-
ered. For instance, when we compute

out1 t = if select t then fn1 in1 t else fn2 in1 t

it is certainly possible to compute the value of both fn1 and fn2 on all cycles
and then to discard the value which is not required according to the value of
boolean select t. This does not make for very efficient code. To avoid this we
need a nested introduction rule. For example, such a rule for the ADD component
is

G // H |- if select1 t then P#(o t) else Q
--
G // forall t. select1 t == true ->> ADD#(i1 t,i2 t, o t) $ H |-

if select1 t then P#((i1 ladd i2) t) else Q

Then we only have to “run” our ADD component at times when select1 t,
or rather when whatever variable it unifies with when the introduction rule is
used, is true. There are however a whole family of such rules catering for each
conceivable nesting of if .. then .. else statements, each of which requires
to be proved. The approach to this is to prove a base rule of a particular form
and from this base rule to sequentially prove the rules required for successive
nesting depths. An ML function

mkCond : rule->int->rule

has been developed which will generate introduction rules for any given nesting
depth when supplied with the base rule for the component and the required
depth. Whilst this is not totally general - a completely general function would
require not just an integer nesting depth but, say, a sequence of booleans to steer
to either the if or the else part of each successive nesting - it served its purpose
in our original small example of code synthesis.

The base rule for the ADD component is

G // H |- P#(o t)
--
G // ADD#(i1 t,i2 t,o t) $ H |- P#((i1 ladd i2) t)

1826 P. Garbett et al.

Whilst this works well for simple components, the technique falls down for com-
ponents such as the integrator. In this case a nested introduction of the com-
ponent is not possible; the component must be run on every cycle. To see this,
suppose select 1’t is true then if t <> 0, for the component to function cor-
rectly at time 1’t we must have

store 1’t == intgr x gain init t

which implies that the component was run on the previous iteration which in
turn assumes it was run on the iteration previous to that

If an integrator (or any component with introduced state) is not to be run on
all cycles then this must be reflected in its L2 functional specification. Adding
the boolean signal active to the function and changing the initialisation value to
a signal gives

fun intgr active x gain init 0 = init 0 ++ gain ** x 0
| intgr active x gain init 1’t =

if active 1’t then
let val ynm1 = if active t

then intgr active x gain init t
else init 1’t

in
ynm1 ++ gain ** x 1’t

end
else

intgr active x gain init t;

Here provision is made to re-initialise the integrator value whenever a state
transition occurs from inactive to active. The function, being total, also speci-
fies the output from the integrator when active is false. Here it holds to the
output value which obtained the last time active was true. Figure 2 shows two
possible implementations. Both introduce another state variable active_last
which keeps track of the last cycle’s value of active. This is used to determine
when a transition from inactive to active has occurred. The first of these im-
plementations is suitable for replacing an integrator for all time and respects
the requirement that the integrator hold its value when active is false. The
second implementation is suitable for a limited form of nested introduction rule
applicable only when the integrator is active. In this case the value output from
the component when the integrator is inactive is irrelevant and could equally
well be specified in the L2 component as any x:int.TRUE.

Proving introduction rules and verifying that code conforms to its stated
precondition and postcondition requires certain skills. Once a library of proven
software components is available however, the process of actually generating
code is quite straightforward (with the possible exception of proving the pre-
conditions) as will be explained in the Section 2.4. Thus this approach serves to
separate concerns between the formal methods analysts and the control systems
analysts.

Secure Synthesis of Code: A Process Improvement Experiment 1827

type time = natural;

type ’’a signal = time -> ’’a;

fun unchanged signal init 0 = signal 0 == init

| unchanged signal init 1’t = signal 1’t == signal t;

val INTGR1#(input:int signal,gain:int,store:int signal,output:int signal,

active:bool signal,active_last:bool signal,init:int signal) =

forall t:time. (if active t then

(active_last t == false ->> store t == init t) /\

INTGR#(input t,gain,store,output t, t)

else

unchanged output (init 0) t) /\

active_last 1’t == active t;

val INTGR2#(input:int signal,gain:int,store:int signal,output:int signal,

active:bool signal,active_last:bool signal,init:int signal) =

forall t:time. (active t == true ->>

(active_last t == false ->> store t == init t) /\

INTGR#(input t,gain,store,output t, t)) /\

active_last 1’t == active t;

Fig. 2. Two Integrator Implementations

2.4 Code Synthesis

Our method of specification differs from other model based systems (eg. Z, VDM,
AMN) in that it does not use a predicate-transformer style but specifies the
behaviour for all time. This approach is suited to the loopless, cyclic nature of
our software. In effect, the specification is a loop invariant.

To specify, a library of L2 functions which have corresponding software com-
ponents is required. Each of the functions must be implementable; they respect
the limited word length integer arithmetic available, and if they involve the in-
troduction of state variables then they must make suitable initialisations when
transitions from inactive to active occur. Whilst the first proviso may be regarded
as a nuisance, the second can be a positive benefit in ensuring that such initial-
isations are not forgotten; each component takes care of itself, helping to ensure
that state transitions are seamless. More complex functions are constructed from
these components.

The result of applying component introduction to a simple PID5 controller,
the subject of the initial HOLD II6 study, is shown in Figure 3. The conclusion
of the rule gives the initial starting point. It merely specifies a single output as a
function of time. Above the line, the first premiss is the result of expanding the

5 PID stands for Proportional Integrator and Differentiator
6 Higher Order Language Demonstrator, contract ref. FSIA/420, supported by the UK

Ministry of Defence.

1828 P. Garbett et al.

2: G // H |- active 0 == false

1: G // H

|- forall t.

(if active t

then

(if active_last t

then

SCALE#(fmvpe t,dfmvgi t,+1250,o13 t)

/\ SCALE#(fmvpv t,dfmvgf t,+500,o12 t)

/\ ADD#(o12 t,dfm2mn t,o11 t)

/\ ADD#(o12 t,dfm2mx t,o10 t)

/\ INTGR#(o13 t,store1,+2048,o10 t,o11 t,o1 t,t)

else

store t == difinit t /\ (o1 t == upper (intinit t)

/\ store1 (1’t) == intinit t))

/\ INLINE_DIV#(fmvpe t,+25,o9 t)

/\ DIFR#(o9 t,store,+25,o t,t)

else

unchanged o1 (upper (intinit 0)) t /\ unchanged o +0 t)

/\ SCALE#(fmvpv t,dfmvgf t,+500,o2 t) /\ SUB#(o1 t,o2 t,o3 t)

/\ INLINE_DIV#(fmvpe t,+500,o4 t) /\ ADD#(o3 t,o4 t,o5 t)

/\ ADD#(o5 t,o t,o6 t) /\ SCALE#(o6 t,+2,+1,o7 t)

/\ LIMIT#(o7 t,cfmcmx t,cfmcmn t,o8 t)

/\ active_last (1’t) == active t /\ output t == o8 t

G // H

|- forall t. output t == pid active difinit intinit fmvpe fmvpv

dfmvgf dfm2mn dfm2mx dfmvgi cfmcmx cfmcmn t

Fig. 3. Simple PID Controller

function definition and introducing the appropriate software component for each
of the sub-functions in the specification. The only software components which
have been discussed so far are the ADD and INLINE_DIV components, the latter
corresponding to an inlined divide with the simple preconditions here of 25 <> 0
and 500 <> 0.

Arithmetic is generally protected against overflow in the sense discussed ear-
lier and the SCALE component is useful in this respect in multiplying its input
by its second parameter to produce a double length result, then dividing by
its third parameter to produce a single length result with suitable adjustment
for any overflow. The integrator is similar to the one discussed, but has extra
parameters and a somewhat more complicated specification to make it practical.

Since they introduce state, the integrator and the differentiator (DIFR) both
introduce state variables active and active_last to determine when a state
transition occurs, as well as their individual storage locations. The functionality
of both of these components becomes distributed throughout the ”code”. Thus

Secure Synthesis of Code: A Process Improvement Experiment 1829

the two if expressions at the start of the component form are attributable jointly
to these components (there are no conditional expressions in the specification of
function pid, and both the integrator and the differentiator have been replaced
for all time).

Re-initialisation of the stores occurs when a transition from inactive to active
occurs - the update of the the integrator output o1 here is a consequence of the
way the integrator is specified. And, because the integrator and differentiator
are active for all time, their outputs are held unchanged when active is false.
The updating of active_last with the value of active also derives from these
two components.

The signals o, o1 to o13 which connect the software components together are
just a consequence of the usage of o as an output in the introduction rules. They
could be instantiated with more meaningful names, but this would not alter the
meaning of the premiss.

The second premiss, that at time 0 the function is inactive, is an artifice to
get round the problem of a lack of support for the integers in the LAMBDA
rule base. It enabled the introduction rules for the integrator and differentiator
to be proved with a dearth of rule support. A useful theory of the integers has
subsequently been put in place. This premiss will not be mentioned further.

The associated code which has been automatically generated from the first
premiss after reduction to software components is shown in Figure 4. The state
variables have been allocated statically. The requirement that the outputs of the
differentiator and integrator be unchanging when these components are inactive
leads to the static allocation of their outputs and their initialisation at time 0.
Since the initial value of the integrator, o1, depends on an input variable, it
is gated in on the first iteration. In other respects the Ada code matches the
software component form fairly closely.

There are, however, significant differences between the Ada code and the
software component form. The most obvious is that, whilst the order of the Ada
code statements leaves little scope for permutation if the meaning of the pro-
gram is to be preserved, conjunction is commutative and only the if expressions
impose any ordering at all on the component form. The other major difference
is that the variables in the component form are integers (and booleans), whereas
the Ada variables are signed two’s complement with a limited number of bits.
One, not completely satisfactory, way of dealing with this semantic gap is to
model the generated code in L2. Figure 5 shows an extract of a model of our
generated code. The code is thus a function which takes two labelled records
one of which contains the inputs, the other the state. The labelled record for
the state contains both the statically and dynamically allocated variables, but
the latter are undefined on input. The words and longwords in the state are
modelled as (isomorphic to) subtypes of the integers satisfying their range con-
straints. Applying function code with its inputs to the state represents one cycle
of execution of procedure pid. Functions used in the modelled code consist of
the basic software components, and functions which access and update the fields
of the labelled records. For example, the latter are of the form

1830 P. Garbett et al.

with modules ;

package body pid

is

active_last : boolean ; gate_at_time0 : boolean := true ;

o : short_integer := 0 ; o1 : short_integer ;

store : short_integer ; store1 : integer ;

procedure pid (active : boolean ; difinit : short_integer ;

intinit : integer ; fmvpe : short_integer ;

fmvpv : short_integer ; dfmvgf : short_integer ;

dfm2mn : short_integer ; dfm2mx : short_integer ;

dfmvgi : short_integer ; cfmcmx : short_integer ;

cfmcmn : short_integer ; output : out short_integer)

is

o2 : short_integer ; (* declaration of o3 - o12 omitted *)

begin

if gate_at_time0 then

o1 := modules.highw(intinit) ; gate_at_time0 := false ;

end if ;

if active then

if active_last then

o13 := modules.scale (fmvpe, dfmvgi, 1250) ;

o12 := modules.scale (fmvpv, dfmvgf, 500) ;

o11 := modules.add (o12, dfm2mn) ;

o10 := modules.add (o12, dfm2mx) ;

modules.intgr (o13, store1, 2048, o10, o11, o1) ;

else

store := difinit ; o1 := modules.highw(intinit) ;

store1 := intinit ;

end if ;

o9 := fmvpe / 25 ; modules.difr (o9, store, 25, o) ;

end if ;

o2 := modules.scale (fmvpv, dfmvgf, 500); o3 := modules.sub (o1, o2);

o4 := fmvpe / 500 ; o5 := modules.add (o3, o4) ;

o6 := modules.add (o5, o) ; o7 := modules.scale (o6, 2, 1) ;

o8 := modules.limit (o7, cfmcmx, cfmcmn) ; active_last := active ;

output := o8 ;

end pid ;

end pid ;

Fig. 4. Code Synthesis Example

Secure Synthesis of Code: A Process Improvement Experiment 1831

fun code (input:inrec) (st:state) : state =

let val st =

if state’gate_at_time0 st then

let val st = state’o1’up st (highw (inrec’intinit input))

val st = state’gate_at_time0’up st false

in

st

end

else [...]

in

st

end;

Fig. 5. Code Modelled in L2

state’o12 st (* Access field o12 of labelled record st:state *)
state’o12’up st value (* Update field o12 of st with ’value’ *)

The starting state at each iteration is then modelled. At time 0 all variables
in the state are undefined other than those which are explicitly initialised. At
times other than 0, the defined variables in the starting state are just those that
are statically allocated each of which have the value generated by the previous
execution of function code. The state at any time is then given by the function

fun st inp t = code (inp t) (start inp t);

Having got a model of the code and the state, the proof proceeds by replacing
the software components, which are expressed in integers, by even lower level
components which work with restricted word lengths. Thus the ADD component
has the rewrite rule

G // is_sw i1 /\ is_sw i2 $ H |-

ADD#(i1,i2,o) == (o == wordRep (add (wordAbs i1,wordAbs i2))

Here is_sw i1 declares i1 to be within the signed word range, and wordRep
and wordAbs convert from subtype word to integer and vice versa. The lower
level function add is given by

fun add (input1,input2) =
wordAbs (wrange (wordRep input1 ++ wordRep input2)) ;

The variables in the component form are instantiated with their values in the
state, e.g. variable o becomes: fn t => wordRep (state’o (st inp t)).

Following a case analysis on whether or not t == 0 and a path analysis of
the if expressions, our original rule is reducible to the form shown in Figure 6.
This says that if the output takes its value in the state, the inputs supply the
appropriate fields of the input record inp, and the inputs are range restricted to

1832 P. Garbett et al.

val INP#(inp : inrec signal, active : bool signal, difinit : int signal,

intinit : int signal, fmvpe : int signal, fmvpv : int signal,

dfmvgf : int signal, dfm2mn : int signal, dfm2mx : int signal,

dfmvgi : int signal, cfmcmx : int signal, cfmcmn : int signal)

= forall t. inp t ==

{active = active t, difinit = wordAbs (difinit t),

intinit = longAbs (intinit t), fmvpe = wordAbs (fmvpe t),

fmvpv = wordAbs (fmvpv t), dfmvgf = wordAbs (dfmvgf t),

dfm2mn = wordAbs (dfm2mn t), dfm2mx = wordAbs (dfm2mx t),

dfmvgi = wordAbs (dfmvgi t), cfmcmx = wordAbs (cfmcmx t),

cfmcmn = wordAbs (cfmcmn t)} /\

is_sw (difinit t) /\ is_sl (intinit t) /\ is_sw (fmvpe t) /\

is_sw (fmvpv t) /\ is_sw (dfmvgf t) /\ is_sw (dfm2mn t) /\

is_sw (dfm2mx t) /\ is_sw (dfmvgi t) /\ is_sw (cfmcmx t) /\

is_sw (cfmcmn t) ;

3: G // H |- forall t. output t == wordRep (state’output (st inp t))

2: G // H |- INP#(inp,active,difinit,intinit,fmvpe,fmvpv,dfmvgf,dfm2mn,

dfm2mx,dfmvgi,cfmcmx,cfmcmn)

1: G // H |- active 0 == false

--

G // H

|- forall t. output t ==

pid active difinit intinit fmvpe fmvpv dfmvgf dfm2mn dfm2mx dfmvgi

cfmcmx cfmcmn t

Fig. 6. Verification conditions for the synthesised code

values representable by signed words and signed longwords as appropriate, then
the code implements the specification. One should add the proviso: provided the
low level software components are implemented by the code.

2.5 Preliminary Experience

The preliminary work detailed in this section was carried out entirely by formal
methods specialists. The work addresses a particular class of errors, namely ini-
tialisation errors, arithmetic overflow/underflow, type mismatch and the control
of activation of components. On the basis of experience we believe that bet-
ter control of this class of errors has significant cost implications for the Lucas
Aerospace development process.

The approach provides very strong guarantees that these errors will not arise
in programs that are subjected to test after formal synthesis. This suggests
that test effort could either be redirected to providing improved testing of other
parts of the program or if that is shown to be unnecessary this could save on
development costs.

The approach seems to provide good partitioning between the specialist work
involved in building component libraries and proving introduction rules for the

Secure Synthesis of Code: A Process Improvement Experiment 1833

components. This requires specialist work and is time-consuming, however it
appears that components are reused in this approach and the cost of verification
of the introduction rules can be amortised across a number of projects.

The use of this approach will also change the balance of evidence in the safety
case. Formally developed systems will have significantly more deductive evidence
of the absence of errors this will lead to a more balanced case.

3 The Experiment

The preliminary case studies have demonstrated that this approach could reap
benefits and can be integrated into the existing development process. The next
stage in the process of introducing this innovation is a controlled experiment
in circumstances that are close to the “real world” situation. To be useful the
method must be usable by normal project staff given appropriate training.

Currently we are running a large scale process improvement experiment to
assess the utility of the approach. This is funded by the EU ESSI programme.
We anticipate the experiment will be complete by the autumn of 1999. This
project, known as PCFM, involves collection of metrics from both conventional
and formal development processes. The metrics are defined and collected in a
controlled manner, so that the two processes can be compared. Our aim is to
assess the new process objectively and in a way which de-risks the introduction
of new technology.

At the time of writing the project is incomplete. At the moment data is being
collected and we are beginning to have enough data to allow comparisons to be
made. By the time of the FM99 conference we will have a substantial body of
data.

3.1 The Problem

The system being developed is the signal selection and control laws for the
Fuel Metering Unit Smart Electronics Module (FMM SEM) on the HiPECS
project. This project is a demonstrator programme on distributed processing
being undertaken in collaboration with the UK Ministry of Defence. The FMM
SEM controls the fuel flow and shutoff valve positions to demands received from
the core electronics unit. The system is similar to the PID system described in
detail earlier but it includes more logic elements that accommodate for errors
in sensors and software. This is an interesting extension of the PID case study
because it explores the interface between control and logic elements.

3.2 Experimental Setup

The experiment is set up in parallel with a normal project team working to de-
velop a software component. Each project is well instrumented. Data are being
collected on where and when faults are uncovered and metrics are being gath-
ered to help compare progress in the two project teams. Data being gathered

1834 P. Garbett et al.

falls into two broad categories: Effort data measures developer time through
each of the stages of the development process. We believe we will see significant
redistribution of effort over the development process (in particular a move away
from test effort towards specification and design). The other broad category of
data being collected is on product quality. This includes error frequencies and
classification. We believe that the formal approach has the potential to greatly
reduce the incidence of the errors it is targeting.

3.3 Current Status

At the time of writing the development team have had formal methods training
in the use of LAMBDA and have begun to explore the formal specification of the
components using LAMBDA to provide simulation facilities and to informally
validate the specification against the requirement.

The formal methods experts have constructed a suitable library of formally
verified components and introduction rules. These are complete and are cur-
rently under review. Once this is complete work on formal code synthesis will
commence.

3.4 Preliminary Experience

At this time our experience with the approach in this experiment can only be
impressionistic. However we have seen some results that are worth recording:

Difficulties encountered by project staff in forming specifications show we
have some usability problems. Despite the similarities, pure functional forms
are based on such a different paradigm. Project staff find it hard to adjust to
this change. In a small number of cases (e.g. initialisation of historic stores)
the imperative model is deeply ingrained. The method being superficially so
similar to the conventional approach may paradoxically make it harder for staff
to identify and adjust to the differences. One possible line of attack for this
problem would be by use of a diagrammatic interface followed by generation of
the appropriate L2. DERA Malvern are pursuing some work in this direction [4].

The formal specification gives enhanced visibility of transfer functions. The
functional form of the specification means it can be animated to some extent
and this has raised some early validation issues.

The code generation method can be expanded to remove some routine cal-
culations (e.g. iteration rates to time constants) which are a potential source
of error and/or inconsistency. When available, a secure process should have an
easily justifiable business case simply in terms of the amount of reviewing costs
one could avoid because informal approach to identifying these inconsistencies
is very time consuming.

Being originally targeted at hardware, the LAMBDA environment lacks some
features which are essential for this work, but fortunately can be added in (e.g.
enhanced rules for manipulation of integers).

Secure Synthesis of Code: A Process Improvement Experiment 1835

References

[1] Adelard. ASCAD - Adelard Safety Case Development Manual. Adelard, 1998.
ISBN 0 9533771 0 5.

[2] Geoff Barrett. Formal methods applied to a floating-point number systems. IEEE
Transactions on Software Engineering, 15(5):611–621, May 1989.

[3] B. A. Carre, D. L. Clutterbuck, C. W. Debney, and I. M. O’Neill. SPADE -
the thampton Program Analysis and Development Environment. In Software
Engineering Environments, pages 129–134. Peter Peregrinus, 1986.

[4] P. Caseley, C. O’Halloran, and A. Smith. Explaining code with pictures – a
case study. Technical Report DERA/CIS/CIS3/TR990083/1.0 (DRAFT), DERA,
1997.

[5] S. Easterbrook, R Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton.
Experiences using lightweight formal methods for requirements modeling. IEEE
Transactions on Software Engineering, 24(1), Jan 1998.

[6] E.M. Mayger and M.P. Fourman. Integration of formal methods with system
design. In A. Halaas and P.B. Denyer, editors, International Conference on Very
Large Scale Integration, pages 59–70, Edinburgh, Scotland, August 1991. IFIP
Transactions, North-Holland.

[7] M. P. Fourman. Formal System Design, chapter 5, pages 191–236. North-Holland,
1990.

[8] P. Garbett, J. Parkes, M. Shackleton, and S. Anderson. A case study in innovative
process improvement: Code synthesis from formal specifications. In Avionics 98,
1998.

[9] R. Lutz. Targeting safety-related errors during software requirements analysis.
The Journal of Systems and Software, 34:223–230, Sept 1996.

[10] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, Cambridge, MA, 1989.

[11] M.P. Fourman and E.M. Mayger. Formally Based System Design - Interactive
hardware scheduling. In G. Musgrave and U. Lauther, editors, Very Large Scale
Integration, pages 101–112, Munich, Federal Republic of Germany, August 1989.
IFIP TC 10/WG10.5 International Conference, North-Holland.

[12] I.M. O’Neill, D.L. Clutterbuck, P.F. Farrow, P.G. Summers, and W.C. Dolman.
The formal verification of safety critical assembly code. In Safety of Computer
Control Systems, pages 115–120. Pergammon Press, 1988.

[13] L. C. Paulson. Isabelle: A generic theorem prover. Lecture Notes in Computer
Science, 828:xvii + 321, 1994.

[14] Requirements and Technical Concepts for Aviation. Software Considerations in
Airborne Systems and Equipment Certification, Dec 1992. (document RTCA
SC167/DO-178B).

[15] S. Finn, M.P. Fourman, and G. Musgrave. Interactive synthesis in HOL-abstract.
In M. Archer, J.J. Joyce, K.N. Levitt, and P.J. Windley, editors, International
Workshop on Higher Order Logic Theorem Proving and its Applications, Davis,
California, August 1991. IEEE Computer Society, ACM SIGDA, IEEE Computer
Society Press.

[16] S. Finn, M.P. Fourman, M.D. Francis, and B. Harris. Formal system design -
interactive synthesis based on computer assisted formal reasoning. In Luc J. M.
Claesen, editor, Applied Formal Methods For Correct VLSI Design, volume 1,
pages 97–110. IMEC-IFIP, Elsevier Science Publishers, 1989.

[17] H. Saiedan and L. M. Mc Clanahan. Frameworks for quality software process:
SEI capability maturity model. Software Quality Journal, 5(1):1, 1996.

Cronos: A Separate Compilation Toolset for

Modular Esterel Applications

Olivier Hainque1?, Laurent Pautet1, Yann Le Biannic2, and Éric Nassor2

1 École Nationale Supérieure des Télécommunications
46, rue Barrault - F-75013, Paris - France

hainque@inf.enst.fr - pautet@inf.enst.fr
2 Dassault-Aviation

78, quai Marcel Dassault - F-92214, Saint-Cloud Cedex - France
eric.nassor@dassault-aviation.fr - yann.lebiannic@dassault-aviation.fr

Abstract. Esterel is an imperative synchronous language designed for
the specification and the development of reactive systems. Recent studies
pointed out that its use for the development of avionics software can yield
great benefits but that the lack of support for separate compilation in the
current toolset may be an obstacle to the development of large systems.
This paper presents the Cronos framework which provides such support
for some specific cases of Esterel programs.

Technical Paper related to Industrial Applications

Keywords :
Esterel, Compilation, Synchronous Reactive Systems, Avionics Software

1 Introduction

Dassault-Aviation is a French aircraft manufacturer which has been studying
the industrial applicability of the Esterel synchronous language in the devel-
opment process of avionics software since 1989. Some recent experiments [4], [5]
showed that using Esterel in this context can actually yield great benefits but
that the current toolset is missing some separate compilation capabilities to be
applicable to large industrial systems. This paper presents the Cronos frame-
work developed by Dassault-Aviation to deal with this issue for some specific
cases of Esterel programs.

Sections 2 and 3 provide a short background about Esterel and a basic
example which will be used as an illustrative support for the following sections.
Section 4 describes the current compilation process and points out its major
weaknesses regarding its applicability to large systems. Sections 5 and 6 ex-
plains how the Cronos toolset balances these weaknesses and details the kind
of applications it can handle. Finally, sections 7 and 8 summarize the major
advantages of the approach and present the results of experiments conducted to
evaluate it.
? Contact author : O. Hainque - Tel : (+33) 1 47 11 36 94, Fax : (+33) 1 47 11 52 83

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1836–1853, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Cronos: A Separate Compilation Toolset for Modular Esterel Applications 1837

2 Basic Esterel Background

Esterel is an imperative synchronous language designed for the specification
and the development of reactive systems [1].

A reactive system is an entity which produces output signals and updates its
internal state when triggered by input events coming from its environment. The
environment generates the events at its own rate and each handling of an event
by the system is called a reaction.

In this context, the synchronous approach first makes the assumption that
the reaction execution time is null and defines a discrete logical time scale from
instants corresponding to each reaction (Fig. 1). Reactions are then said to be in-
stantaneous and all the associated triggering inputs can be considered as strictly
simultaneous. This strict characterization of the notions of instantaneity and si-
multaneity allows the definition of very precise semantics from which highly
deterministic behaviors can be derived. Naturally, the actual execution time of
a reaction is never null, but in practice the results are applicable as soon as it
is possible to ensure that a reaction is always complete before the occurrence of
the next event.

Reaction n

Physical Time

n

Outputs

Inputs
1 3 42

Fig. 1. Synchronous Reactive Systems : a discrete logical time scale

Esterel allows the description of a synchronous system as a set of inter-
connected modules. Inter-modules and system-environment communications are
achieved through signal based interfaces, with pure signals simply indicating in-
dividual events and valued signals able to carry additional data. The modules
behavior is specified thanks to a rich set of imperative constructs, including
support for exceptions, preemptions and parallelism. The full description of the
language and of its semantics is beyond the scope of this article but can be found
in [2], [3], and in the documentation distributed with the compiler.

3 A Simple Example

As an illustrative support for the following sections, we shall consider the case of a
simple system called ComCtl with a controller CTL and a controlled component
COM (Fig. 2). At the environment level, a Switch signal alternatively activates
or deactivates the component and a Status Rq signal requests the controller
to emit a COM Is Active or COM Is Inactive indication corresponding to the
current component state.

1838 Olivier Hainque et al.

We have specified this with three modules : one for COM, one for CTL
and one to combine them and build the system using a couple of internal sig-
nals, Activity Rq and Activity. Every time CTL receives Status Rq, it emits
Activity Rq to which COM instantaneously replies by an Activity indication if
the component is currently active. CTL then tests the presence of this indication
to emit one of the two expected system outputs.

With run, ; and || as respectively the module instantiation, sequencing and
parallelism operators, we obtain the organization and code on Fig. 2 :

 input Status_Rq;
 output COM_Is_Active;
 output COM_Is_Inactive;

 output Activity_Rq;
 input Activity;

 every Status_Rq do
 emit Activity_Rq;
 present Activity then
 emit COM_Is_Active
 else
 emit COM_Is_Inactive
 end present
 end every

% Input/Output Interface

% Module Body

module CTL :

 input Switch;

 input Activity_Rq;
 output Activity;

 loop
 await Switch;
 abort
 every immediate Activity_Rq do
 emit Activity
 end every
 when Switch
 end loop

% Module Body

% Input/Output Interface

module COM :

 input Status_Rq;
 output COM_Is_Active;
 output COM_Is_Inactive;

% Input/Output Interface

 input Switch;

 signal Activity_Rq, Activity in
 run CTL

 end signal

||
run COM

% System Body

module SYS :

Activity_Rq

Switch

Activity

Status_Rq COM_Is_InactiveCOM_Is_Active

CTL COM

SYS

Fig. 2. General organization of ComCtl

Fig. 3 shows an example sequence of reactions of this system, each represented
by a circle with the triggering inputs above and the emitted outputs below.

Cronos: A Separate Compilation Toolset for Modular Esterel Applications 1839

1 52 3 4

RqSwRq Sw Rq

I A I

I

A - COM_Is_Active

- COM_Is_Inactive

Rq

Sw

- Status_Rq

- Switch

Fig. 3. An example sequence of reactions for ComCtl

4 The Esterel Compilation Process

4.1 General Description

From a given specification, the latest V5 release of the Esterel compiler gen-
erates a boolean sequential circuit equivalent to a finite state machine for the
control aspects. The system inputs/outputs are connected to input/output wires
and a set of boolean latches encodes the state between two consecutive reactions
(Fig. 4). Data handling, such as if statements or variable assignments, is oper-
ated outside the circuit by operations called actions, triggered by wires evalu-
ated to true and possibly returning information back into the circuit through
another wire. The execution of a reaction basically consists in computing the
status (emitted or not) of every output and the next system state from the pro-
vided status (present or not) of all the inputs combined with the current state.
In this context, every signal which status is known (provided or computed) is
said to be determined.

State N+1

Outputs

State N

Inputs

Actions

Latches

Fig. 4. General form of a circuit generated by Esterel

This approach has two interesting advantages :

– The logical part of the circuit can be submitted to very efficient specialized
optimization tools,

– The state encoding enables to handle pretty huge state spaces (up to 1014

states reached in Dassault-Aviation applications).

1840 Olivier Hainque et al.

If we consider the CTL module as an independent system and submit it to
the Esterel toolset, we get an example on Fig. 5 :

Signals

Circuit

Latches

: Status_Rq present ?

: Activity Present ?

: Emit Activity_Rq

: Emit COM_Is_ActiveCII

: Emit COM_Is_Inactive

SRQ

CIA

ARQ

A

CIIARQ A

0

CIASRQ

boot

Fig. 5. Circuit translation for CTL

The corresponding generated C code includes one function for each input
signal and one function to request a reaction. This function executes considering
as present only the input signals which associated function has been called at
least once since the previous reaction. It evaluates the gates in topological order,
calls a user provided function for every emitted output, updates the registers
and resets the inputs status to false (absent) before returning.

The boot register visible on the figure has a 0 initial value and is subsequently
always set to 1. As its name suggests, it provides an indication of whether or
not we are running the very first reaction. It is there due to a specificity of
the Esterel every construct which starts looking at the condition only one
instant after its own activation, unless the condition is prepended by immediate.
Thus, our CTL module actually never emits anything at the first instant, even if
Status Rq is present, as ensured by the leftmost and gate in the circuit layout.
This is not a serious problem and provides a nice simple example of the use of
registers to encode the system state.

A very important point about this general scheme is that a reaction always
leads to the evaluation of all the gates. This approach significantly differs from
the one adopted for other synchronous languages such as Lustre or Signal
which only evaluate parts of an overall dataflow graph depending on the status
the system inputs ([12], [11], [10]).

4.2 Major Translation Steps

The Esterel compilation environment achieves the translation of a specification
through various intermediate tools and formats. It is not possible to precisely
describe them in this article, but some key points are important to understand
what the issues addressed by Cronos are and how the solutions will take ad-
vantage of the existing toolset.

Cronos: A Separate Compilation Toolset for Modular Esterel Applications 1841

Fig. 6 below shows the most important steps for our example and purpose of
presentation :

SYS.lc SYS.sc

strlic

strlic

iclc

CTL.ic

scssc SYS.blif

strlic

SYS.ic

sscblif
SYS.ctbl

COM.ic

sscc SYS.c

lcscCOM.strl

SYS.strl

CTL.strl

SYS.sc SYS.ssc

Fig. 6. Esterel to circuit translation for ComCtl

The first format (ic for Intermediate Code) enables the internal representa-
tion of all the necessary modules. The resulting files are linked together by iclc
to build a lc (Linked Code) representation of the entire system. lcsc then trans-
forms this representation into a boolean equation system associated with a set
of tables describing the actions and their relations with the equations (Software
Code). A topological sort of the equations by scssc yields a ssc file (Sorted sc),
from which sscc can directly produce a C emulation of the circuit.

Starting from a ssc file, it is also possible to get a pure description of the
circuit in the standard blif format (Berkeley Logic Interchange Format) associ-
ated with a ctbl file (Common Tables) for the tables. blif level optimizers are
then usable together with a blifssc processor to build a ssc file from which a
much more efficient C code can be obtained.

4.3 Weaknesses When Applied to Large Systems

As illustrated by Fig. 6, a representation of the entire system is built very early
during the translation process and is then submitted to a significant number of
operations. An immediate consequence is that any modification to any module
imposes to apply again almost the whole translation process to the entire system,
which is not reasonable when hundreds or thousands of modules are concerned.

Moreover, some compilation steps sometimes require the execution of costly
algorithms which should only be applied to a specific part of the system. For
instance, if the combinational part of the circuit contains cycles despite a seman-
tically correct specification, producing the ssc file requires the use of a causality
analyzer to compute an equivalent acyclic circuit (ScCausal : [8], [9]). The in-
volved analysis is complex and performed at the sc level, that is for the whole
system, even if only one specific module is the source of the anomaly.

Finally, the optimization processes we have mentioned are often necessary to
reach acceptable reaction execution times, but are sometimes computationally
not tractable when the system is too large.

1842 Olivier Hainque et al.

5 Separate Compilation with Cronos

5.1 Basic Assumptions and Ideas

Cronos basically consists in a set of code generation tools for Esterel which
enable to delay the modules assembly step until the very end the overall com-
pilation process. To achieve this goal at a reasonable cost, we first consider the
following restriction :
The root level description of the system only contains parallel module instantia-
tions with possible local signals for their interconnection. 1

This allows to consider the whole system circuit as a simple signal-level inter-
connection of the circuits for each module and to bind the separate compilation
issue to a two steps process :

1. Generating the code for each module from the representation of its circuit
which is trivially obtainable with the existing Esterel tools;

2. Generating the code for the interconnection of these circuits as it is specified
by the root level description of the system.

This may seem pretty simple at first sight but the possible occurrence of
instantaneous bidirectional communications between modules raises a critical
problem. As described in section 4.1, a full reaction of any module corresponds
to the evaluation of the whole associated circuit and requires all the module
inputs to be determined. Thus, instantaneous bidirectional communications pre-
vent to simply build a global system reaction from a sequence of module reactions
because no execution order satisfies all the signal determination precedence con-
straints. In the ComCtl case, for instance, the Activity/Activity Rq loop
would require each module to react before the other (CTL before COM to de-
termine Activity Rq and COM before CTL to determine Activity).

This problem has already been mentioned in [13] which proposed to reject
the interconnection if it does not include at least one logical delay to break
the instantaneity of the communications. We observed through several experi-
ments that this solution imposes serious restrictions upon applications structure.
Indeed, true causality problems come from instantaneous cyclic dependencies be-
tween signals, which are not implied by such dependencies between modules. An
alternative is to build a consistent system reaction from an ordered sequence
of partial evaluations of each module circuit, which is possible as soon as the
combinational part of the overall system circuit is acyclic. This requires a deep
analysis of the module circuits and a careful integration but greatly relaxes the
final constraints. We decided to support this in Cronos with a couple of tools
implementing the generation steps mentioned above and presented in the fol-
lowing sections. The first one is called mgen and generates the code enabling
the part by part evaluation of one module circuit as its inputs get determined.
The second one is called mbind and generates the code for a specific composition
of parallel modules previously submitted to mgen. It also checks for the overall
acyclicity constraint that will be further discussed.
1 We will now denote by “modules” the modules instantiated at the root level.

Cronos: A Separate Compilation Toolset for Modular Esterel Applications 1843

5.2 Individual Modules Analysis

This step consists in generating for each module the code that enables to eval-
uate its associated circuit incrementally as its inputs get determined. Such a
generation is the result of an analysis explained in this section and from which
is also produced an information file required to allow the further integration of
the modules into a system parallel composition.

The natural starting point for the generation of a circuit evaluation is the
description of the circuit itself, that is the blif/ctbl representation of the mod-
ule which can easily be obtained with the existing Esterel tools. The blif file
contains the description of the logical part of the circuit, including the boolean
registers. The ctbl file contains the description of the actions, of their connec-
tions with the circuit wires, and of some ordering constraints which have to
be enforced but which were only implicit at the ssc level. mgen analyzes them
and builds an internal representation of the circuit as a partially ordered graph
of evaluation nodes for gates and actions, with arcs expressing precedence con-
straints. Fig. 7 below provides an example of such graph for the CTL module.

ActivityStatus_Rq

e3

e2
e1 e4

0

Fig. 7. Cronos evaluation splitting for the CTL module

The figure shows four evaluation nodes for CTL, symbolized by the e1 to e4
ovals. e1 and e4 are a bit larger because they respectively perform latch reading
and latch update operations. The arrows inside the circuit box represent the
precedence constraints which determine the graph partial order. Arrows which
do not have their origin on a node but on an input wire indicate a precedence
constraint between the determination of this input and the possibility to evaluate
the node to which the arrow points.

In this specific case, e1 can be evaluated as soon as Status Rq is determined,
but not before because the gate it computes uses the corresponding wire. e2 and
e3 can only be evaluated once Activity is determined and after e1 for similar
reasons. Finally, because the rightmost or gate uses the wires computed by all the
others, the node which computes it shall only be evaluated after all the others.
The e1 to e4 precedence constraint is not on the figure and is actually removed by
mgen since it is trivially enforced by transitivity. The latches update corresponds
to an actual state transition and is always performed after everything else.

1844 Olivier Hainque et al.

The context into which a module will be instantiated is not known a-priori.
The order of its inputs determination is then undefined and some triggering
mechanism is required to schedule the nodes execution at run-time. This be-
comes costly as the graph gets larger and it is clear that one node for each gate
and action will easily yield a huge number of nodes. To deal with this, mgen
executes a graph compression algorithm which preserves all the dependencies as
well as the possibility to evaluate parts of the circuit progressively with input
determinations. In the CTL example, e2, e3 and e4 can be safely merged into an
evaluation group eg1 linked after e1 and the determination of Activity. This
does not change the basic principles regarding the separate compilation issue but
helps a lot in getting an industrially usable result in terms of memory footprints
and efficiency. For illustration purposes, we will keep considering the CTL graph
before the compression step because it is clearly closer to the structure of the
underlying circuit.

mgen first produces code which reflects this structure. Its detailed architecture
is not useful at this point of the paper and is presented in 5.4.

It also generates a textual representation of the module evaluation graph
and of all the related dependencies, as summarized by Fig. 8 for CTL. This
description additionally includes what we call output supports, which express
for each output signal of the module the inputs on which it depends via some
path in the graph.

e1 e4

e3

e2

COM_Is_Active

CTL

ActivityStatus_Rq

Activity_Rq

COM_Is_Inactive

Fig. 8. Cronos evaluation graph for the CTL module

All these information will be the base of the mbind processing to integrate
instances of the module into an outer parallel composition, as explained in the
following section.

One important aspect is that we actually achieve true separate compilation
since the code for each module is produced without any information about the
context into which it will be instantiated. This prevents from performing some
optimizations but allows to use the generated binaries in different contexts, which
is crucial when such binaries are involved in certification processes.

Cronos: A Separate Compilation Toolset for Modular Esterel Applications 1845

5.3 Binding the Modules Together

After the analysis of each module by mgen, the Cronos mbind tool enables to
bind them together accordingly with a purely parallel composition specification.
Since this specification is also an Esterel module, the basic goal is to generate
code with the same interface as the one produced by mgen and possibly integrable
into a still outer purely parallel system.

The starting point is the Esterel source file of the composition module,
which specifies the interconnection of all the instance interface signals. mbind
builds an internal representation of the whole system based on an analysis of this
specification and of the graph description files associated with each instantiated
module. At this stage, the only information used from these files is the list of
signals attached to each module.

Signal interconnections are represented with entities called nets, which ensure
the propagation of the status and possible value of signals as they are determined.
Fig. 9 below shows the result for ComCtl with circles to symbolize the nets :

Activity_Rq

SYS

Status_Rq COM_Is_Inactive Switch

COM_Is_Active

CTL COM

Activity

Fig. 9. Cronos global representation of ComCtl

The figure shows three kinds of nets : input nets which link a system input to
an instance input, output nets which link an instance output to a system output,
and internal nets which link an instance output to an instance input. They all
represent an information flow between some producer and some consumer to
which mbind associates an evaluation node performing the necessary propagation
operations.

mbind then uses for each module the dependencies between its inputs/outputs
and its partial evaluations to merge the evaluation graphs of all the instances
via the net evaluation nodes. Fig. 10 shows the result of this operation for the
ComCtl example, also indicating that the mgen compression produced a graph
with only one evaluation node.

As mgen, mbind finally performs a graph compression, generates a description
file of the result and produces the corresponding code.

1846 Olivier Hainque et al.

e1 e4

e3

e2
e1

n4

n3

n6

CTL

Status_Rq

n1 n5 n2

Activity_Rq

Activity

COM

SwitchCOM_Is_Inactive

COM_Is_Active

SYS

Fig. 10. Cronos graph integration for ComCtl

As already mentioned in 5.1, such a binding operation is only possible if the
overall circuit is acyclic. To ensure this, mbind checks that the system evaluation
graph is acyclic and indicates an error if it fails. In such cases, the cycles are
exhibited in terms of signal dependencies and their resolution is left to the user.

The following sections describe the overall architecture of the generated code
to provide a more concrete view of the process. The chosen target language is
Ada because of its numerous good properties for the real-time domain and since
its integration with other classical languages is easy anyway.

5.4 Module Code Architecture

From any Esterel module, mgen produces an Ada package which enables the
exploitation of the corresponding circuit through a simple interface.

This interface includes one accessor (Set I) for each input signal I, one ac-
cessor (O) for each output signal O, one accessor for each partial evaluation node
and four module-level entry points (Initialize, Reset, Run and Clear).

Initialize performs some internal initializations and shall be called once
before anything else. Clear sets to Absent the status of all the module inputs
and shall be called at least once before the beginning of any reaction. Reset sets
the circuit registers to their initial value and shall be called at least once before
the first reaction. Run triggers a one step complete reaction by calling all the
evaluation procedures in topological order.

For any reaction in the context of which an input I should be considered
present, Set I shall be called before all the evaluation procedures accessing its
status. The emission status of any output O can be retrieved via the correspond-
ing accessor, which should only be called once it is sure that O is determined.

Cronos: A Separate Compilation Toolset for Modular Esterel Applications 1847

Fig. 11 below shows the specification obtained for CTL :

 -- Accessors for input signals

 procedure Set_Status_Rq (M : in out CTL_T);
 procedure Set_Activity (M : in out CTL_T);

 -- Accessors for partial evaluations

 procedure Evaluation_1 (M : in out CTL_T);

 procedure Evaluation_2 (M : in out CTL_T);
 procedure Evaluation_3 (M : in out CTL_T);

 procedure Evaluation_4 (M : in out CTL_T);

 -- Accessors for output signals

 function COM_Is_Active (M : in CTL_T) return Boolean;
 function COM_Is_Inactive (M : in CTL_T) return Boolean;
 function Activity_Rq (M : in CTL_T) return Boolean;

 type Wires_Array is array (Wires_Range) of Boolean;
 subtype Wires_Range is 0 .. 6;

 subtype Latches_Range is Natural range 0 .. 0;
 type Latches_Array is array (Latches_Range) of Boolean;

 type CTL_T is limited record
 Wires : Wires_Array; -- Circuit Wires
 Latches : Latches_Array; -- Circuit Latches
 end record;

 -- Circuit internal representation

private

end CTL;

 procedure Initialize (M : in out CTL_T);
 procedure Reset (M : in out CTL_T);
 procedure Clear (M : in out CTL_T);
 procedure Run (M : in out CTL_T);

 -- General entry points

package CTL is

 type CTL_T is limited private;

Fig. 11. Cronos Ada specification for the CTL module

The abstraction of the module circuit is provided through a private record
type which contains all the circuit components and offers the possibility to safely
instantiate the same module several times when necessary.

The first possible use of such a package is the instantiation of the correspond-
ing module as an independent system. After a simple variable declaration with
the provided type, the instance has to be initialized with Initialize and Reset.
A sequence of reactions can then be triggered, each as a set of calls to Clear, to
Set for every input to be considered present, and to Run to process the complete
circuit evaluation. After every reaction the status of any output can be retrieved
with the provided accessors.

1848 Olivier Hainque et al.

Thus, mgen does not only allow the separate compilation of a module to be
integrated into an outer pure parallel system, but also provides an Ada code
generation alternative for any Esterel specification. Section 8 provides some
experiment results intended to evaluate its efficiency.

Fig. 12 below provides an overview of the package body for CTL :

is

e3

 return Boolean

procedure Reset (...)

function Activity_Rq (...)

end Propagate_Status_Rq;
 return M.Wires(3);

0

is

 M.Latches(0) := False;

begin
is

end Set_Status_Rq;
 M.Wires(1) := True;
begin

e4e1
e2

end Reset;

procedure Evaluation_1 (...)

end Evaluation_1;

begin

procedure Set_Status_Rq (...)

procedure Evaluation_4 (...)
is
begin
 M.Wires(0) := M.Latches(0);
 M.Wires(3) := (M.Wires(1)
 and M.Wires(0));

end Evaluation_4;

is
begin
 M.Wires(6) := (not M.Wires(3)
 or M.Wires(4)
 or M.Wires(5));
 M.Latches(0) := M.Wires(6);

Fig. 12. Cronos evaluation splitting for the CTL module

In case instances of the module are integrated into a parallel composition, it
is the responsibility of the code produced by mbind for this composition to use
the services offered by the package in a consistent way.

5.5 System Code Architecture

mbind generates an Ada package which offers exactly the same kind of interface
as the one provided by mgen for individual modules. The very detail of the system
record is not important, but it is interesting to notice that it contains a set of
fields for the instances from which the system is built and a set of variables for
the status/value of the system interface signals.

Cronos: A Separate Compilation Toolset for Modular Esterel Applications 1849

Initialize and Reset are propagated to each instance, as well as Clear
which additionally resets the status of the system interface signals. Fig. 13 shows
the sequence of reactions of Fig. 3 with the simplified code for the initialization
of the system and using Run for the logical instants 3 and 4.

Run
Set_Switch
Clear

Run
Set_Status_Rq
Clear

COM_Is_Inactive : False
COM_Is_Active : True

COM_Is_Inactive : False
COM_Is_Active : False

Initialize
Reset

I

Sw Rq Rq

Sw - Switch

A

I

A - COM_Is_Active

- COM_Is_Inactive

I

Rq - Status_RqSwRq

432 51

Fig. 13. Example sequence of reactions for ComCtl

As previously described, the system evaluation nodes are a combination of
net evaluation nodes and integrated instance nodes, possibly grouped by a com-
pression algorithm. Evaluation of instance nodes are translated into calls to the
corresponding evaluation procedure and Fig. 14 shows the translation for internal
nets achieving the signal propagations between modules.

Each system node is supported by an evaluation procedure and Run contains
a topologically ordered sequence of calls to these procedures which ensures the
respect of all the precedence constraints.

end if;

(Input) (Output)
COM.ActivityCTL.Activityif (Activity (M.Instances.COM))

then
 Set_Activity (M.Instances.CTL);

Activity

Fig. 14. An example of Cronos net evaluation node

The processing for input or output nets is similar, but uses the internal
record variables storing the status of the system interface signals. Handling val-
ued signals and signals with multiple producers and/or consumers, allowed by
Esterel, requires a little more processing, both at the mgen and mbind levels.
Such processing is available in Cronos but does not change any fundamental
aspect of our solution regarding the separate compilation issue, so we will not
provide information about it.

1850 Olivier Hainque et al.

6 Integration within the Esterel Toolset

Fig. 15 provides a user-level overview of the whole separate compilation process
for ComCtl. The .ads and .adb files are respectively Ada package specifications
and Ada package bodies. The .dep files are the graph description files produced
by mgen from its analysis of each module (dep stands for dependencies).

...

CTL.blif

CTL.ctbl

COM.blif

CTL.strl

COM.ads

COM.adb

CTL.adb

CTL.ads
CTL.dep

COM.dep

strlic

mgen

...COM.strl

mgen

strlic

SYS.ads

SYS.adb

COM.ctbl

COM.blif
sscblif

CTL.ctbl

CTL.blif

SYS.strl

mbind

sscblif

COM.ctbl

Fig. 15. Esterel/Cronos integration for separate compilation

This process clearly delays the modules assembly step and still uses the vast
majority of the existing tools, so Cronos will benefit from all their possible
future enhancements.

7 Major Advantages

Cronos both provides an Ada alternative to the existing C code production
from Esterel and separate compilation framework for specifications with pure
parallelism at the root level. Cronos also supports hierarchically organized sys-
tems, where the highest level modules are themselves written as pure parallel
module instantiations, and so possibly recursively.

The first benefits are classical regarding separate compilation in general : the
code for an unchanged module can be used directly in different contexts and does
not have to be generated again when a system is rebuilt. The operations applied
to a global representation of a system to rebuild it after a local modification
are minimized, and in case of a “from scratch” build, most of the translation
steps are only applied to one module at a time. The latter point is very strong
because algorithms such as the causality analysis mentioned in 4.3 are sometimes
too time and memory demanding for a large system as a whole. In such cases,
Cronos offers an alternative to succeed in obtaining a final result.

Moreover, since Cronos uses the blif representation of each module as a
starting point, it is possible to build a system from an optimized version of each
of its components. This may enable the production of a system of acceptable
size and performance when a global optimization is not possible.

Cronos: A Separate Compilation Toolset for Modular Esterel Applications 1851

Finally, the requirements about the root-level parallelism and the global
graph acyclicity seem to be reasonable in the case of carefully designed mod-
ular applications. Several large projects have actually been developed this way
by Dassault-Aviation and respecting these constraints has never been considered
as a true obstacle. Actually, some rare global cycles appeared, but always corre-
sponded to design flaws and have been easily solved thanks to their expression
in terms of interface signal dependencies without intra-module paths.

8 Experiments and Results

Two significant prototype applications have been developed in the context of our
studies. The first one handles a small part of the specification for the computing
system of one aircraft model. The second one is a model of fuel management used
in a more general simulation environment. They will be denoted by ACS for the
Aircraft Computing Subsystem and FMS for the Fuel Management Simulation.
Table 1 provides general information about their source :

Table 1. Source characteristics for ACS and FMS

System Lines Modules Instances

ACS 4500 14 14
FMS 4560 7 14

“Lines” indicates the number of Esterel lines involved, “Modules” the num-
ber of separately compiled modules, and “Instances” the number of instances of
such modules in the system. The Esterel code has been generated from Sync-
Charts [7] graphical specifications.

The next table is intended to compare the efficiency of the generated code
for four different compilation processes. The first one (further denoted by “C-
Mono”) is the standard Esterel scheme producing monolithic C code with-
out intermediary blif optimizations. The second one (“Ada-Mono”) produces
monolithic Ada code via mgen without prior blif optimization by consider-
ing the main Esterel source itself as a single module. The third one (“Ada-
Modular”) is a Cronos separate compilation without blif optimization. The
last one (“Ada-Opt-Modular”) is a Cronos separate compilation after some
optimizations performed on the blif representation of each module. In every
case, the system has first been submitted to a simulation test to ensure that
its behavior corresponds to a validation reference (what output sequence from a
set of reactions with predefined inputs). Then a simple main procedure has been
written for the target language to trigger 10000 reactions. Executables have been
generated with the same class of compiler/options and run several times on the
same machine (RS6000/41T-PowerPC-AIX 4.2.1) with no other user logged in.

1852 Olivier Hainque et al.

Table 2 below provides the mean per-reaction execution times observed :

Table 2. Mean reaction execution times for ACS and FMS

System C-Mono Ada-Mono Ada-Modular Ada-Opt-Modular

ACS 1.01 ms 0.93 ms 1.32 ms 0.41 ms
FMS 1.58 ms 1.36 ms 1.28 ms 0.35 ms

The comparison of the “C-Mono” and “Ada-Mono” columns shows that the
Ada code generation is efficient by itself since it yields slightly better results
starting from the same ssc representation of the entire system.

Comparing “Ada-Mono” and “Ada-Modular” requires a careful look at the
statistics from Table 1 : ACS instantiates each module only once whereas FMS
instantiates some modules several times. In the monolithic case, the instantiation
of the parallel modules is performed by the Esterel compiler which basically
expands the code for each instance. In the modular case, these instantiations
are translated into variable declarations, but the code for different instances of
the same module is not duplicated. Some portions of code are then shared in
FMS and not in ACS. The execution time increase between Mono and Modular
for ACS is due to the addition of the net evaluation nodes for inter-module
communications. Such nodes are naturally also present for FMS, but it seems
that the code sharing balances the overhead, probably because it results in a
better cache utilization.

Finally, the last column clearly demonstrates the interest of the possibility to
bind optimized modules, especially when a global optimization is not tractable
(which was indeed the case for these applications on our machine).

9 Conclusion and Work in Progress

Cronos both provides an efficient Ada alternative to the existing C code pro-
duction from Esterel and separate code generation schemes for modular speci-
fications. This greatly increases the maximum size of systems for which runnable
code can be obtained and provides a code production process more suitable to
large industrial applications. This enables to take advantage of the Esterel
determinism and formal verification features in the context of large avionics
software developments such as the ones Dassault-Aviation leads.

Much related work is still in progress in the company. The most important
activities are the development of an integrated graphical environment, a PhD
thesis about the distributed execution of separately compiled modules, and stud-
ies about a model of asynchronous interconnection of synchronous systems.

All of these projects are conducted in cooperation with the Esterel team
of École des Mines de Paris and Centre de Mathématiques Appliquées at Sophia
Antipolis, constantly improving the Esterel technology.

Cronos: A Separate Compilation Toolset for Modular Esterel Applications 1853

References

[1] Berry, G., The Foundations of Esterel, École des Mines de Paris (1998) 1

[2] Berry, G., The constructive semantics of pure Esterel - Draft V2.0, École des Mines
de Paris (May, 1996) 1

[3] Berry, G., The Esterel v5 Language Primer, École des Mines de Paris (1997) 1

[4] Berry, G., Bouali, A., Fornari, X., Ledinot, E., Nassor, E., and De Simone, R.,
Esterel : A Formal Method Applied to Avionic Software Development, To appear in
Journal of Science of Computer Programming (1998)

[5] Hainque, O., Pautet, L., Le Biannic, Y., and Nassor, E., Using Esterel for Avionics
Software Development : Motivation, Experiments and Work in progress, In Proc. of
the 1998 Workshop on Programming Languages for Real-Time Industrial Applica-
tions, (December, 1998), 9–18

[6] E.M. Sentovic, K.J. Singh and L. Lavagno, C. Moon , R. Murgai,A. Saldanha, H.
Savoj , P.R. Stephan, R.K. Brayton , andA.L. Sangiovanni-Vincentelli SIS : A Sys-
tem for Sequential Circuit Synthesis, University of California Berkeley : UCB/ERL
M92/41 (1992)

[7] C. André, M. Bourdellès and S. Dissoubray SyncCharts/Esterel : Un environnement
graphique pour la spécification et la programmation d’applications réactives com-
plexes, In Revue du Génie Logiciel (46) (1997)

[8] G. Berry, T.R. Shiple, H. Touati, Constructive Analysis of Cyclic Circuits, (March,
1996), ED-TC 328–333

[9] H.A. Toma, Analyse constructive et optimisation séquentielle des circuits générés à
partir du langage synchrone réactif Esterel, PhD thesis, École des Mines de Paris
(September, 1997) 1

[10] Amagbegnon, T.P., Forme canonique arborescente des horloges de Signal, PhD
thesis, Université de Rennes I (December, 1995)

[11] Beneviste, A., Le Guernic, P., and Jacquemot, C. Synchronous programming with
events and relations : the Signal language and its semantics, In Science of Computer
Programming, v.16, (1991)

[12] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. The Synchronous dataflow
programming language Lustre, Proceedings of the IEEE, 79(9):1305-1320, (Septem-
ber, 1991)

[13] André, C., Boulanger, F., Péraldi, M.-A., Rigault, J.P., and Vidal-Naquet, G. Ob-
jects and Synchronous Programming, In European Journal on Automated Systems,
v.31(3), 417–432, Hermes (1997)

1 Available at http://www.inria.fr/meije/esterel

J. Wing, J. Woodcock, J. Davies (Eds.): FM'99, Vol. II, LNCS 1709, pp. 1854-1854, 1999.
 Springer-Verlag Berlin Heidelberg 1999

Tool Support for Production Use of Formal Techniques

John C. Knight, P. Thomas Fletcher, and Brian R. Hicks

Department of Computer Science
University of Virginia, Charlottesville, VA 22903, USA

Abstract. Despite their popularity in academia and many claimed benefits, formal
techniques are still not widely used in commercial software development. We claim
that lack of effective tools is a major factor limiting the adoption of formal techniques.

Tools supporting formal techniques must integrate smoothly into the overall soft-
ware development process. To be accepted for regular use in engineering develop-
ment, innovative tool ideas must be combined with a multitude of essential though
routine facilities. Formal specifications using notations like Z include both formal and
informal content, and developers of such specifications appreciate the value of innova-
tive analysis but must be able to perform routine manipulations conveniently. How-
ever, implementing these routine facilities requires very extensive resources. This has
led to valuable tools being developed with very restricted routine facilities thereby
limiting the exploitation of their innovation in commercial software development.

To test the idea that high performance tools will promote the use of formal tech-
niques, we have developed a toolset (named Zeus) for the manipulation of Z specifica-
tions. Recent experience has shown that large package programs can be reused to
provide convenient access to routine facilities. Zeus is based on FrameMaker, a com-
mercial desktop publishing system, and as a result it provides all the document-pro-
cessing features that FrameMaker provides including WYSIWYG editing using the Z
character set and a wealth of formatting features, such as controlling page layouts. It
also provides the standard look and feel of Microsoft Windows applications and
access to all operating-system services and supported applications. Supplementing
these basic features, Zeus provides many Z-specific facilities. Graphic structures are
inserted automatically using a menu selection, move with the text to which they are
anchored, are resized as their contents change, and can be cut, copied and pasted as
desired. Zeus also provides convenient access to Z/EVES, a widely-used, high-
performance system for the analysis of Z specifications. Formal text from a
FrameMaker document can be selected and sent to Z/EVES for analysis, and the
document is annotated to show which text has been checked. The interface seen by a
Zeus user is a desktop publishing system that permits convenient manipulation of Z
text together with a relatively seamless connection to a powerful analysis capability
and access to all the other services supporting software development that are present
on the development platform, such as configuration management tools. Whether such
a system will promote the wider use of formal techniques in industry is the subject of
ongoing experimentation.

Information about Zeus is available at http://www.cs.virginia.edu/zeus.
This work was supported in part by the National Science Foundation under grant num-
ber CCR-9213427, and in part by NASA under grant number NAG1-1123-FDP.

Modeling Aircraft Mission Computer Task Rates

Jin Song Dong1, Brendan P. Mahony2, and Neale Fulton3

1 School of Computing, National University of Singapore
2 Defence Science and Technology Organisation (DSTO), Australia

3 Commonwealth Science and Industrial Research Organisation (CSIRO), Australia

Recently the Royal Australian Air Force (RAAF) has been considering an upgrade to
the F/A-18 aircraft in Australia. This upgrade may well involve the modification of
Mission Computer (MC) systems. Maintaining correct functionality for the upgraded
F/A-18 is therefore a major concern for the RAAF. This particular problem received
interest from CSIRO and DSTO to support a joint Research Fellowship to investigate
specification of hard real-time characteristics by formal method approaches.

Our initial approach [1] used Object-Z to model an aircraft MC Operational Flight Pro-
gram (OFP) pre-run time scheduler. However, the treatment of timing issues in this
approach is cumbersome and it is not well suited for modeling the OFP process con-
current interactions. From this experience, we realised that the state-based Object-Z
notation lacks adequate mechanisms for treating real-time and concurrency. Therefore
we have developed a notation called Timed Communicating Object Z (TCOZ) [2, 3, 4]
which integrates Object-Z with Timed CSP. The MC process definitions, concurrent in-
teractions, and task rate sequences have been effectively formalised in TCOZ. The ben-
efits of the TCOZ model have included consistent use of terminology, a well-defined
collection of synchronisation and concurrency primitives, and the ability to apply object
abstraction techniques to structure and simplify the description.

During the formalisation process, we also identified a number of ambiguities in the orig-
inal requirement documentation regarding the synchronisation relationships between
the MC processes. Understanding those critical inter-process synchronisations required
painstaking reading of different text sections with many clarifications from our local
aviation domain expert. Whence we precisely understand those critical inter-process
synchronisations differences, in the TCOZ model these differences are clearly captured
by using differing communication mechanisms, sensor/actuators or channels as appro-
priate. We also believe our approach to be complementary to the original requirement
documentation, in as much as the tables and diagrams provide a valuable visualisation
and comprehension aid to the formal TCOZ model.

References

[1] J.S. Dong, N. Fulton, L. Zucconi, and J. Colton. Formalising Process Scheduling Require-
ments for an Aircraft Operational Flight Program. ICFEM’97, November 1997. IEEE Press.

[2] J.S. Dong and B. Mahony. Active Objects in TCOZ. ICFEM’98, IEEE Press, December
1998.

[3] B. Mahony and J.S. Dong. Network Topology and a Case Study in TCOZ. ZUM’98, LNCS,
September 1998. Springer-Verlag.

[4] B. P. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: An introduction to TCOZ.
ICSE’98, April 1998. IEEE Press.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1855–1855, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Study of Collaborative Work: Answers to a

Test on Formal Specification in B

Henri Habrias1, Pascal Poizat1, and Jean-Yves Lafaye2

1 IRIN, Université de Nantes & École Centrale
2 rue de la Houssinière, B.P. 92208, F-44322 Nantes cedex 3, France

Henri.Habrias,Pascal.Poizat@irin.univ-nantes.fr

http://www.sciences.univ-nantes.fr/info/perso/permanents/poizat
2 L3I, Université de la Rochelle, France

avenue Marillac, F-17042, La Rochelle cedex 1, France
jylafaye@iut-univ-lr.fr

Objective It is commonly admitted that strength comes through unity. The point
we address here, is to discuss to what extent this applies to a pair of students
facing a test in formal specification (B notation). More precisely, we aim at
deciding whether collaborative work is of benefit for one, other, or both of the
collaborating students. We use data analysis to examine a sample of students and
derive some qualitative and quantitative information. What follows is a seminal
work: i.e., the sample is small. Here follow the main points of our contribution:

– Identification of a strategy to design a formal specification test and collect
data

– Proposal of a statistical approach to exploratory data analysis
– Application of graphical analysis and statistical hypothesis testing proce-

dures

Further analysis carried out in the same manner on larger samples may be of
interest and would provide for more accurate conclusions.

Sampling 26 students involved in the first year of a course (IUT1) in computer
science were first presented with a test in formal specification. The test was
made of incomplete source text for three B machines, and students were asked
to fill in the missing parts. Time for answering was limited but amply sufficient.
Individual results ranging between 0 and 20 were recorded.

Independently from these results, students were asked to discuss the previous
examination and the answers they provided. Each student was allowed to revise
his work and give an individual corrected final version. Once again, copies were
corrected and given a mark between 0 and 20. Individual and collective results
have been confronted and analysed.

1 Institut Universitaire de Technologie: two years study that trains computer science
technicians

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1856–1857, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A Study of Collaborative Work 1857

Statistical Analysis In brief, our main conclusions are the following:

– Collaborative work never is prejudicial except for one student in the sample.
The overall average mark is 8.5 without collaboration and around 13 after
collaboration. All pairs gained on average. According to Student’s means
comparison test procedure, all effects are significant (5%). One could advance
that better results might be assigned to more time for answering the test,
independently of any collaboration effect. This seems not to be sound since
time was not an actual constraint during the individual examination.

– We applied a linear regression model M2 = a0 + a1M ! + ε to capture the
relation between the independent variable (individual result before collabora-
tion: M1) and the dependent variable (individual result after collaboration:
M2). Doing so, we could compute an estimate for the general effect of col-
laboration (a0 ≈ 7) and one for an extra bonus related to the initial level
of the student (a1 ≈ 0.7). It is worth discussing the meaning of a1 which is
significantly not null and less than unity.

– Graphical plots suggest that heterogeneity of results within pairs of students
increased after collaboration. This intuition is not confirmed by a statistical
analysis (T test). More precisely, we concluded that collaborative work has
a consensus effect for groups over 8, while collaboration widens the gap for
groups under 8.

– Lastly, a correlation analysis showed that no significant relation existed be-
tween the difference within groups and the score of groups.

Archived Design Steps in Temporal Logic

Pertti Kellomäki1 and Tommi Mikkonen2

1 Tampere University of Technology, Finland, pk@cs.tut.fi,
2 Nokia Telecommunications, Finland, Tommi.Mikkonen@nokia.com

We demonstrate how solutions to recurring problems in the design of nontermi-
nating reactive systems can be archived and verified in an abstract form using
the DisCo specification method [1, 3].

DisCo is based on incremental development of temporal logic specifications
using superposition. Superposition is a form of refinement in which new state
variables and operations on them are added layerwise to a specification.

An archived specification L1 + L2 is applied to a specification S as depicted
in Fig. 1. The “+” symbol denotes superposition, and “≤” denotes refinement.

L1 + L2

L′
1 + L′

2 S + L′
2≤

S

+L′
2instantiate

Fig. 1. Applying an archived step.

The archived specification is first instantiated with concrete classes, types and
functions, yielding the specification L′1 +L′2. The layer L′2 is then superimposed
on S, yielding the specification S +L2. Establishing that S +L2 is a refinement
of L1 +L2 also establishes that S +L2 has the safety properties verified for the
archived specification. Establishing the refinement incurs proof obligations, but
these are relatively trivial because of the superposition methodology.

In an archived specification, L1 represents a problem and its context, and L2

a solution to the problem. They thus embody formally some of the information
contained in behavioral design patterns [2]. Assumptions about the behavior of
the context are formalized in an operational manner using the same formalism
used for specifying the solution.

This research was supported by the Academy of Finland, project 757473.

References

[1] The DisCo project WWW page. http://www.cs.tut.fi/ohj/DisCo/.
[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.

Addison Wesley, Reading, MA, 1995.
[3] Reino Kurki-Suonio. Fundamentals of object-oriented specification and modeling

of collective behaviors. In H. Kilov and W. Harvey, editors, Object-Oriented Be-
havioral Specifications, pages 101–120. Kluwer Academic Publishers, 1996.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1858–1858, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

A PVS-Based Approach for Teaching

Constructing Correct Iterations

Michel Lévy and Laurent Trilling

Laboratoire IMAG-LSR
B.P. 72, 38041 St Martin d’Hères, France

Michel.Levy@imag.fr, Laurent.Trilling@imag.fr

Just claiming the importance of formal methods is not enough, it is necessary to
teach programming using formal methods. Also, we have to convince students
to use them in their programming. To fill this goal, two points seem necessary:
a no-fault approach combined with (apparently) affordable proofs and the use
of automatic provers.

More than twenty years ago, David Gries and others said that the goal should
be to forbid the construction of incorrect programs by teaching constructions of
correct programs using a no-fault approach. This point of view appears to us to
be both simple and challenging for students, because teaching correct program
construction means teaching methodologies based on a process with well-defined
steps which decomposes into sub-tasks, each of which is human in scope. Human
scope means the sub-tasks are considered obvious or easy to prove by humans;
for example, easy to prove sub-tasks preferably do not require inductive proof.

Formal pen and paper teaching of program construction methodologies using
formal methods is not enough, since proofs by hand sometimes contain over-
looked errors and, by not facing this reality, students do not develop the con-
viction to use these methods systematically. What is needed here are computer
systems to check proof automatically. Using such systems challenges students to
write correct proofs, and, in turn, motivates students to employ formal methods
in their programming.

Our first objective relates to designing a system called CIA-PVS (for Con-
structions d’Itérations Assistées par PVS). This system is used in teaching a long
known and well known methodology for constructing simple programs, i.e. loops.
CIA-PVS is based on a well known proof-checker, PVS (for Prototype Verifica-
tion System), which was developed at SRI (Stanford Research Institute). What
is expected from the CIA-PVS system is that it reacts quasi-automatically to
prove the lemmas necessary for the construction of programs which are tradi-
tional exercises such as the Dutch National Flag and the dichotomic research in
an ordered list. What should be noted here is the simplicity of the lemmas to be
proved. The real difficulty in constructing the program should not be the proof
of these lemmas but the formalisation of the problem as the definition of the for-
mulas expressing the result of the program, the invariants and the termination
function of the iteration.

Our second objective relates to evaluating CIA-PVS for teaching program-
ming via a methodology employing formal methods. In particular, the evaluation

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1859–1860, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1860 Michel Lévy and Laurent Trilling

will be based on two criteria: automatic proof power and modelisation. Modeli-
sation refers to the capacity to model easily the formal methods methodology
so as to reduce as much as possible the gap between the formal teaching of the
methodology and the concrete use of it in programming.

Our work began by constructing a PVS theory, called CIA-PVS, which proves
the methodology itself. We need to prove it because, even if a methodology is, like
this one, very well-known and appears to everybody correct, it is still possible
that an error will arise as we attempt to formalise it precisely. Moreover, the
use of this theory reduces the proving task of students, as desired, because the
proof of the well-foundedness of the methodology is done once and for all. The
use of subtypes provided by PVS to construct CIA-PVS has been very useful
for reaching this goal. First experimentation on simple yet not trivial problems
is encouraging. Once CIA-PVS is proved, power is clearly impressive in many
cases and that is clearly positive. The remaining sensitive points are (1) some
proofs may become easier or more difficult depending the chosen modelisation
and (2) some proofs require a significant know-how level in PVS. The challenge
for teaching remains both to define a starting knowledge of PVS to be taught
to students and to extend CIA-PVS to deal with more sophisticated exchanges
with students.

J. Wing, J. Woodcock, J. Davies (Eds.): FM'99, Vol. II, LNCS 1709, pp. 1861-1861, 1999.
 Springer-Verlag Berlin Heidelberg 1999

A Minimal Framework for Specification Theory

Bernd Baumgarten

German National Research Center for Information Technology (GMD)
Rheinstr. 75, D-64295 Darmstadt, Germany

baumgart@darmstadt.gmd.de
http://www.darmstadt.gmd.de/~baumgart/aspekte.html

Abstract. Notions concerning the specification, implementation, verification
and testing of systems are ordinarily defined within a given context. We discuss
what could and should belong to such a specification context. We obtain a
unique practice-oriented specification semantics resp. conformance relation. We
expect our framework to permit the definition of a general vocabulary for spec-
ification, verification and testing, independent of specific models or languages.

Overview

When dealing with specifications, we are usually doing so within some context. In the
full paper we argue that a specification context should comprise some or all of the
following components:

• a set Systs of systems of interest,
• a set Obs of possible observations to be made of these systems,
• a set Props of potentially relevant system properties,
• a set Specs of specification terms (or specifications),
• a relation permits between systems and observations,
• a relation has_property between systems and properties, and
• a function obs_sem mapping each specification to a set of (permitted) observations.

In the full paper, we discuss in which regards these components form a useful
framework covering more aspects than might be suspected at first sight, as well as
special topics, for example why time is such an essential ingredient in observations.

Specification contexts have been used successfully

• to assess the significance of system requirements, and
• to give a formal meaning to formerly vague notions of testability.

We intend to use this framework to formalize a multitude of practically motivated
concepts in testing (for a typical list, cf. ISO 9646 Part 1), as a contribution towards
reliable and formally founded test generation procedures. We also plan to extend our
concepts to aspects of concurrency, probability, and security.

For the full paper and related information, see the web page given above.

A Model of Specification-Based Testing of

Interactive Systems

Ian MacColl and David Carrington

Software Verification Research Centre,
Department of Computer Science and Electrical Engineering,
The University of Queensland, Brisbane QLD 4072, Australia

ianm@csee.uq.edu.au

http://www.csee.uq.edu.au/∼ianm/

In this paper we present a model of specification-based testing of interactive
systems. This model provides the basis for a framework to guide such testing.

Interactive systems are traditionally decomposed into a functionality compo-
nent and a user interface component; this distinction is termed dialogue separa-
tion and is the underlying basis for conceptual and architectural models of such
systems. Correctness involves both proper behaviour of the user interface and
proper computation by the underlying functionality. Specification-based testing
is one method used to increase confidence in correctness, but it has had limited
application to interactive system development to date.

Our starting point is the York model of interactors in which an interactive
system (or component) is described in terms of functionality, presentation and
interaction viewpoints, with the first two specified in a model-based notation
and the last in a behaviour-based notation. Model-based specifications are rep-
resented as a state transition relation and behaviour-based specifications are
represented as event sequences.

For a model-based notation, such as Z or Object-Z, specification-based test-
ing is concerned with dividing the state transition relation, typically forming a
partition of the input space of each operation. A single point in each equivalence
class is used as a test input, and its projection onto the output space is a test
oracle, used to determine the result of the test.

The state transition relation of a model-based specification (or testing infor-
mation derived from it) can be interpreted as an implicit behavior-based speci-
fication. This is useful for test sequencing and to relate the testing information
for each of the operations.

For a behaviour-based notation, testing information is derived from the speci-
fication to show an implementation conforms to the specification in terms of some
relation, such as equivalence, quasi-equivalence or reduction for nondeterminis-
tic finite state machines, or equivalences based on trace or failure semantics for
notations based on labelled transition systems (such as CCS and CSP).

We are using the model presented in this paper to develop a framework for
specification-based testing of interactive systems. The framework aims to relate
the model-based testing information, which is useful for unit testing, and the
behaviour-based information, which is useful for system and usability testing.
The paper is available at http://www.csee.uq.edu.au/~ianm/model.ps.gz.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1862–1862, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Algebraic Aspects of the Mapping between

Abstract Syntax Notation One and CORBA IDL

Radu Ocică1 and Dan Ionescu1

School of Information Technology and Engineering
University of Ottawa, Ottawa, Ontario

With the advent of network computing, a distributed program computation is a
product of computations of single programs running on heterogeneous platforms,
written in different programming languages, and exchanging messages. In this
context, the need of a uniform abstract notation, machine and platform inde-
pendent, to be used for the message exchange between communicating software
entities, has given birth to ASN.1. This notation is a data type specification be-
yond the scope of any programming language. In the same context, the need of an
environment to program distributed applications at a high level of abstraction
with respect to communication protocols and operating systems architectures
has led to the emergence of the Common Object Request Broker Architecture
(CORBA). The core of CORBA is represented by the Interface Description Lan-
guage (IDL). IDL is used to define objects which can be accessed via the Object
Request Broker (ORB). Similar to the case of ASN.1, IDL has its own mech-
anisms to build complex data types, which can be mapped partially to those
of ASN.1. Such a mapping makes the subject of this paper. It allows building
applications that bridge the field of ASN.1 based communication protocols and
that of CORBA based distributed applications.

In the present work a high level formal specification in Z of both the ASN.1
and IDL syntax notations is given. Syntactic aspects of the two notations are
expressed in Z using free type definitions, while for the semantic features of
the two notations invariants are used. This framework is used for analyzing
the ambiguities of ASN.1 definitions as well as for finding the extent to which
the mapping between the two notations is possible. The target of the present
research is to formulate the ASN.1 - IDL translation rules, such that the diagram
(1) below commutes and to set the mechanisms for gateways between CORBA
based network management applications and agents using SNMP or CMIP; both
network management protocols relying on the ASN.1 notation. The mapping is
analyzed both at a high level, that of the abstract syntax as well as at a low
level, the one of the transfer syntax. So far these aspects have been investigated
for small isomorphic subsets of ASN.1 and IDL. The Z notation and the Z-
EVES theorem prover have been successfully used to prove that the diagram (1)
commutes.

ASNType
RelationalMap−−−−−−−−−→ IDLType

ASNImageOfType

y

yIDLImageOfType

ASNValue −−−−→ IDLValue

(1)

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1863–1863, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Retrenchment

R. Banach1 and M. Poppleton1,2

1 Computer Science Dept., Manchester University, Manchester, M13 9PL, U.K.
2 School of Mathl. and Inf. Sciences, Coventry University, Coventry, CV1 5FB, U.K.

banach@cs.man.ac.uk , m.r.poppleton@coventry.ac.uk

It has been noticed for some time, that when refinement is used as the sole
means of progressing from an abstract model to a concrete one, then certain
difficulties plague the development process due to the unforgiving nature of the
usual refinement proof obligations. In its familiar downward simulation setting,
refinement implies two things. Firstly that whenever the abstract model is able
to make a step, the concrete model must also be able to make some step. And
secondly that whenever the concrete model actually makes a step, there must
be an abstract step that simulates it, in order to preserve the user’s fiction, that
it is the abstract model that is doing the work. The abstract model says when a
step must be possible, while the concrete model dictates how the outcome may
appear. This close link may be counterproductive in certain situations.

Consider natural number arithmetic. Suppose the abstract model contains
some numerical state variables, modelled using Peano naturals. The concrete
model must reflect the finite nature of real resources, so that concrete variables
are finite naturals. Now there is no sensible refinement relation between these
models. For consider what happens when the values of some variables are at
their bounds. At the abstract level there is no problem as we can always do
a calculation. However the concrete model will throw some exception because
of the finite bounds. The POs of refinement require that a concrete calculation
takes place (because the abstract level can perform a step), but even if there is
a concrete calculation, its result will not correspond to the abstract result (by
the concrete finiteness assumption).

Refinement works fine in textbook examples, small enough that eg. awkward
limits can be captured at the abstract level without pain. In industrial scale
situations though, the complexity of the resulting descriptions diminishes their
usefulness, and makes refinement applicable close to code only — the bulk of the
development effort must remain informal. Retrenchment avoids these problems
by loosening the tight correspondence between abstract and concrete enforced
by the refinement POs. As well as the usual initialisation and internal consis-
tency POs, retrenchment demands:

G(u, v) ∧ P (i, j, u, v) ∧OpC(v, j, v′, p)⇒
∃u′, o •OpA(u, i, u′, o) ∧ (G(u′, v′) ∨ C(u′, v′, o, p, . . .))

where i, j are abstract/concrete inputs, u, v are state values, o, p are outputs,
OpA, OpC are operations, G is the retrieve relation, and P and C are the within
and concedes relations. P strengthens G, while C weakens G; ‘ . . .’ allows before
values to be refered to. (In total correctness, concrete termination is additionally
assumed, and abstract termination is derived.) Arbitrary I/O and state mixing

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1864–1865, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Retrenchment 1865

between levels facilitates specification evolution. P limits contact between lev-
els, allowing maximum simplicity in the abstract level. C allows exceptions and
non-refinement properties to be captured. The added flexibility allows radically
different models to be related, eg. a continuous abstract model and a discrete
concrete model, as is needed in the development of embedded systems, which
usually need to interface to continuous physical models. Retrenchment allows
formal techniques and mechanical checkability, to migrate higher into the devel-
opment process than refinement alone reaches. Contradicting previous properties
via C, allows high degrees of complexity to be introduced gradually, stepwise.
Banach R., Poppleton M.; Retrenchment: An Engineering Variation on Refinement. in:
Proc. B-98, Bert (ed.), Springer, 1998, 129-147, LNCS 1393.
Also: UMCS Tech. Rep. UMCS-99-3-2, http://www.cs.man.ac.uk/cstechrep
See also: http://www.cs.man.ac.uk/~banach/Recent. publications.html

Proof Preservation in Component Generalization

Anamaria Martins Moreira

Universidade Federal do Rio Grande do Norte (UFRN) — DIMAp
59078-970 Natal, RN, Brazil

http://www.dimap.ufrn.br/∼anamaria

Abstract. Formal specifications can provide significant support for soft-
ware component reuse, as they allow tools to “understand” the semantics
of the components they are manipulating. For instance, they can be of
great help on the generation of reusable components through the param-
eterization of more specific ones, supporting the process of creation and
maintenance of libraries of reusable components.
In this work1, we concentrate on the generalization of algebraic specifica-
tion components by their parameterization. Knowing that highly specific
components have small chances of being reused, but that, on the other
hand, if a component is too general, its reuse will often be useless; we
try to preserve some set of semantic properties of a component that are
considered “important” somehow. So, we propose means to identify the
requirements that a formal parameter should satisfy in order to preserve
part of the original component semantics in the generalization. To reach
this goal, we may (or may not) consider proofs for these properties in
the original context and identify the conditions under which these proofs
are reproducible after generalization. In our PhD Thesis, we considered
both cases; here, we concentrate in the case of known proofs. When these
known proofs are rewrite proofs, a set of equations can be extracted from
them and added to the formal parameter so that they are preserved in
the process. This simple technique provides sufficient conditions for the
validity of the considered properties in the models of the more general
specification, with the advantage of being easily computed by a simple
algorithm that we propose. This algorithm is to be applied in conjunction
with a generalization operator that safely effectivates the generalization
transformations in the component. This combination provides the means
to obtain a more general specification component from which the origi-
nal one is a specialization and that still satisfies a given set of equational
properties with their rewrite proofs.
We have also shown that more complex proofs can benefit from this
result, although only partially. One of the next steps in this work is to
improve the treatement of these other kinds of proofs.

Keywords. algebraic specifications, component parameterization and reuse,
proof generalization.

1 A full version of this article may be found in the author’s URL.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1866–1866, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Formal Modelling and Simulation of Train

Control Systems Using Petri Nets

Michael Meyer zu Hörste1 and Eckehard Schnieder1

Institut für Regelungs- und Automatisierungstechnik, Technische Universität
Braunschweig, Langer Kamp 8, D-38106 Braunschweig, Germany

{meyer|schnieder}@ifra.ing.tu-bs.de

Abstract. A formal model was prepared on behalf of the German rail-
ways (Deutsche Bahn AG) starting from an informal (natural language)
specifications of the European Train Control System (ETCS) system.
Proceeding from the existing models of the system design - the water-
fall and the spiral model - a model for the system design was developed
so as to use Petri nets as a universal means of description for all the
phases of the ETCS. Following a thorough and detailed comparison, it
was decided to use Petri nets as a means of description for this proce-
dure, as they permit universal application, the use of different methods
and formal analysis. The method developed is an integrated event- and
data-oriented approach, which shows the different aspects of the system
on their own net levels. The model comprises three sub-models with a
model of the environment developed next to the onboard and trackside
systems. This environment model covers all the additional systems con-
nected through the system interfaces, examples of which are interlocking
or regulation. Starting from a net representing the system context, the
process of the onboard and trackside sub-systems was modelled. Here, the
different operations and processes are visualized in the form of scenarios,
which in turn have access to additional refinements representing specific
functions. System modelling was supported by the tool Design/CPN. It
was chosen after a careful evaluation of several Petri net tools. ETCS
system modelling was taken to a point permitting partial model simula-
tion. On the basis of these models, additional options of the spiral model
of the system design now appear: the train and trackside models may
expand into specific visualizations, the algorithms can be further refined
and compared, the models can be used for different kinds of tests and also
for purposes of system quality assurance, which may go as far as furnish-
ing proof of safety standards. Additional phases of system development
may now be elaborated on the basis of the spiral model. Our experience
has shown that it is possible to take real-life and operational systems
specifications written in a natural language and express their content as
a formal specification. Our experience has also demonstrated that it is
possible to incorporate real life practices of software development cycles
(spiral model, waterfall model) into formal models. The paper makes an
overview of our experiences and highlights the various problems which
were encountered and solved.

References can be found at: www.ifra.ing.tu−bs.de/∼m31/etcsrefs.html

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1867–1867, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Formal Specification of a Voice Communication

System Used in Air Traffic Control

An Industrial Application of Light-Weight Formal
Methods Using VDM++

Johann Hörl and Bernhard K. Aichernig

Technical University Graz, Institute for Software Technology (IST),
Münzgrabenstr. 11/II, A-8010 Graz, Austria
{jhoerl|aichernig}@ist.tu-graz.ac.at

A joint project of the Austrian company Frequentis1 and the Technical Uni-
versity Graz demonstrates the applicability of executable formal models2. The
formal method VDM++ has been applied to specify a safety critical voice com-
munication system (VCS) for air-traffic control. Besides the expected improve-
ment of the informal specification documents, 64 defects have been found, the
efficiency of the system test-cases to cover the functionality of the VCS has
been analyzed. In order to get a test-coverage measure, the formal specification
has been animated with existing system test-cases using IFAD’s VDMTools. A

��������

	
�� ���

��
����������

������

����
�

��
����������

��
��
 ������

	
�� ���

��
����������

������

	
�� ���

��
����������

	
�� ���
���

��������
	
�� ���
���

����
������

��
���� �
� 	
��

���
�

��

�����

�
�

main result of this work was the realization that only 80% of the system’s radio
functionality had been covered by the former existing test cases. Consequently,
additional test cases have been derived from the formal specification. In addition,
the specification high-lighted how much more economic test cases could be de-
signed, in order to cover more system functionality in a single run. Furthermore,
an existing change request has been chosen in order to investigate the role of an
explicit model in the modification process. It turned out that the low abstraction
level of an executable specification is certainly an advantage in analysing the im-
pacts of change-requests: Since the object-oriented VDM++ model reflected the
system’s architecture, the impacts on the different components could be ana-
lyzed in the model. A further experience is that VDM’s well-known refinement
concepts, such as retrieve functions, are well suited to design the modifications.
1 http://www.frequentis.co.at/
2 See also ftp://www.ist.tu-graz.ac.at/pub/publications/IST-TEC-99-03.ps.gz

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1868–1868, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Model-Checking the Architectural Design

of a Fail-Safe Communication System
for Railway Interlocking Systems

Bettina Buth1 and Mike Schrönen2

1 BISS, Bremen Institute for Safe Systems,
bb@informatik.uni-bremen.de

2 Department of Electrical Engineering, University of Cape Town,
mschronen@eleceng.uct.ac.za

The design and development of safety-critical systems requires particular care in
order to ensure the highest level of confidence in the systems. A variety of life-
cycle models and development standards have evolved in various areas. Formal
methods are touted to be the best approach for the development on all levels.
Up to now, the lack of adequate tools, the lack of knowlegde on the developers
side, and the well-known problems of scalability have prevented a migration of
these methods into industries.

Schrönen proposes a methodology for the development of microprocessor
based safety-critical systems which takes into account the state-of-the-art meth-
ods and guidelines for this specific field. The use of formal methods for the
verification of the overall design as well as the specification of tests is proposed
and demonstrated, using the development of a fail-safe data transceiver (FSDT)
for Transnet, South Africa, as a case study. Here we report on the validation of
the system architecture based on CSP specification and refinement. The model-
checker FDR2 was used as a tool for this task.

The validation was a joint effort of the two authors, the one being the de-
veloper of the transceiver, the other an experienced user of FDR2 and thus a
prototypical setting for industrial projects: formal methods specialists take part
in the system development by supporting the modelling and validation process.
Experiences are positive in this respect, but also support the claim that it is not
possible in general to perform this kind of validation without cooperation with
the developer of a system.

On the technical side, experiences show that while it is possible to use FDR2
as a validation tool, there are some aspects of the case study which are not
easily captured in the CSP model. This is true for timing properties both for the
environment and internal actions as well as for the atomicity of internal actions.
In both cases, semaphores and flags were used for modelling on the CSP side.

The overall result of the work so far is positive even with the problems
mentioned above. We plan to continue the cooperation for further investigation
of the FSDT, starting with investigations related to exceptional behaviour such
as corrupted and lost data. In general it would be interesting to investigate how
far other model-checking tools as for example the SPIN tool, allow an easier
approach to modelling the system and formulating the desired properties.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1869–1869, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Analyzing the Requirements of an Access

Control Using VDMTools and PVS

Georg Droschl

IST – Technical University of Graz, Austria and
Austrian Research Center Seibersdorf (ARCS).

droschl@ist.tu-graz.ac.at, http://www.ist.tu-graz.ac.at

SSD is an access control, which is part of a comprehensive security system de-
veloped by the Austrian Research Center Seibersdorf. SSD is being re-developed
in a formal methods case study(cf Fig. 1). Since executable code has to be de-

Fig. 1. The Access Control and the Project Record of the Case Study.

veloped, a tool with an automatic code generator had to be chosen. VDMTools
for VDM-SL is such a tool. When testing the specification, a test case indicating
a contradiction in the requirements has been found. In order to achieve a better
understanding of the nature of the contradiction, the theorem prover PVS has
been used to formally prove properties of a certain aspect described by the re-
quirements1. The benefits of the PVS analysis include theorems which indicate
inconsistencies in the requirements. Subsequently, linking VDM and PVS has
been further investigated2. There are VDM and PVS specifications which share
the concept of events. However, they are used in a different manner in the two
formalisms. Another aspect is using VDM for event-based systems.
1 Droschl G. Using PVS for requirements analysis of an access control. Techni-

cal Report IST-TEC-99-05, IST, TU-Graz, Austria, February 1999. Available at
http://www.ist.tu-graz.ac.at/Publications

2 Droschl G. Events and Scenarios in VDM and PVS. To appear in the proceedings
of 3rd Irish Workshop in Formal Methods, Juli 1–2, Galway, Ireland, 1999.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1870–1870, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Cache Coherence Verification with TLA+

Homayoon Akhiani, Damien Doligez, Paul Harter, Leslie Lamport,
Joshua Scheid, Mark Tuttle?, and Yuan Yu

Compaq Computer Corporation

We used the specification language TLA+ to analyze the correctness of two
cache-coherence protocols for shared-memory multiprocessors based on two gen-
erations (EV6 and EV7) of the Alpha processor. A memory model defines the
relationship between the values written by one processor and the values read
by another, and a cache-coherence protocol manipulates the caches to preserve
this relationship. The cache-coherence protocol is a fundamental component of
any shared-memory multiprocessor design. Proving that the coherence protocol
implements the memory model is a high-leverage application of formal methods.
The analysis of the first protocol was largely a research project, but the analysis
of the second protocol was a part of the engineers’ own verification process.

The EV6-based multiprocessor uses a highly-optimized, very complicated
cache-coherence protocol. The protocol uses about sixty different types of mes-
sages, and the documentation for the protocol consists of a stack of twenty
documents about four inches tall, none of it complete or precise enough to be
the basis of a proof. After more than two man-years of effort, four of us were
able to write a 1900-line specification of the algorithm, a 200-line specification
of the Alpha memory model, and about 3000 lines of proof that the algorithm
implements the memory model. This was far from a complete proof, but enough
of a proof to subject the algorithm to a rigorous analysis, and to discover one
bug in the protocol and one bug in the memory model.

The cache-coherence protocol for EV7-based multiprocessors is dramatically
simpler, bringing a complete correctness proof within the realm of possibility. A
new tool, a model checker for TLA+ called TLC, increased the odds of success.
TLC enumerates the reachable states in a finite-state model of a specification
written in an expressive subset of TLA+, and it checks that an invariant written
in TLA+ holds in each of these states. When TLC discovers an error, a minimal-
length sequence of states leading from an initial state to a bad state is reported.
One of us wrote an 1800-line specification of the algorithm. Using TLC to check
multiple invariants uncovered about 66 errors of various kinds. The engineers
were also able to use state sequences output by TLC as input to their own RTL-
verification tools, an interesting case of formal methods helping engineers use
their own tools more efficiently.

We were pleased to see that the basic verification methodology, refined through
years of research, works pretty much as expected, although the proofs were hard.
The engineers had little difficulty learning to read and write TLA+ specifica-
tions. We hope TLA+ will play a role in other projects in the near future.
? Mark Tuttle, Cambridge Research Lab, Compaq Computer Corporation, One

Kendall Square, Building 700, Cambridge, MA 02139, mark.tuttle@compaq.com.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1871–1871, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Author Index 1873

Author Index

Aichernig B. K. II–1868
Åkerlund O. II–1384
Akhiani H. II–1871
Alexander P. II–1068
Altisen K. I–233
Alur R. I–212
Anderson S. II–1816
Arts T. I–682

Back R. I–431, II–1460
Backhouse R. II–1128
Baer A. II–1186
Baker A. L. II–1087
Banach R. II–1864
Baraona P. II–1068
Barbuti R. I–289
Baudin P. II–1798
Baumgarten B. II–1861
Behm P. I–369
Behnia S. I–509
Benoit P. I–369
Bhattacharjee A. K. II–983
de Boer F. S. II–1245
Boiten E. II–1477
du Bousquet L. I–622
Bozga M. I–307
Büchi M. I–431
Burdonov I. I–608
Buth B. II–1869
Butler M. I–490

Carrington D. II–1862
Cavalcanti A. II–1439
Cavalli A. I–915
Cengarle M. V. I–854
Chandy K. M. I–570
Chapman R. II–1527
Charpentier M. I–570
Chaudron M. II–1511
Chechik M. I–590
Chin S.-K. I–758
Choppy C. II–939
Cimatti A. II–1584
Clavel M. II–1684
Conquet E. I–57
Couvreur J.-M. I–253

Dam M. I–682
De Francesco N. I–289
Déharbe D. I–272
Dellacherie S. II–1147
Derrick J. II–1477
Devulder S. II–1147
Dhodapkar S. D. II–983
Diaconescu R. II–1644
Doligez D. II–1871
Dong J. S. II–1166, II–1855
Droschl G. II–1870
Dunne S. I–472
Dunstan M. N. II–1758
Durán F. II–1684
Dutertre B. I–116

Edelkamp S. I–195
Eertink H. I–76
Eker S. II–1684
Eschbach R. II–1720
Esposito J. I–212

Faivre A. I–369
Feijs L. M. G. II–1343
Fernandez J.-C. I–307
Fletcher P. T. II–1854
Focardi R. I–794
Fulton N. II–1855
Futatsugi K. II–1625, II–1644

Galter D. I–608
Garbett P. II–1816
Garlan D. II–1281
Gautier T. II–1364
George C. II–1008
Ghirvu L. I–307
Gilham F. I–701
Goguen J. II–1704
Grädel E. II–1738
Graf S. I–307
Gravell A. M. II–1497

Habrias H. II–1856
Hainque O. II–1836
Hammond J. II–1527

1874 Author Index

Hannemann U. II–1245
Harter P. II–1871
Haxthausen A. E. II–1546
He J. II–1420
Hehner E. C. R. I–530, II–1497
Herbert J. I–116
Hicks B. R. II–1854
Hoare C. A. R. I–1
Hörl J. II–1868
Huber F. II–1206
Husberg N. I–642

Iida S. II–1644
Ionescu D. II–1863
Ionescu M. I–915
Iyoda J. II–1400

Jackson M. I–56
Janssen W. I–76
Jiménez R. II–1778
Jones C. B. I–28
Jonkers H. B. M. II–1321

Kellomäki P. II–1858
Kelsey T. II–1758
Kessler V. I–718
Kesten Y. I–173
Kim M. I–212
King S. II–1527
Klay F. I–662
Klein A. I–173
Knight J. C. II–1854
Kossatchev A. I–608
Krieg-Brückner B. II–1186
Krimm J.-P. I–307
Kumar V. I–212
Kurki-Suonio R. I–134

Lafaye J.-Y. II–1856
Laibinis L. II–1301
Lambert J.-L. II–1147
Lamport L. II–1871
Lang F. II–963
Lartigue P. I–348
Leavens G. T. II–1087
Le Biannic Y. II–1836
Lee I. I–212
Le Guernic P. II–1364
Lescanne P. II–963
Lévy M. II–1859

Lincoln P. I–776
Linton S. II–1758
Liquori L. II–963
Liu S. I–896
Locuratolo E. I–388
Lotz V. I–718
Luttighuis P. O. I–76

MacColl I. II–1862
Mahony B. P. II–1166, II–1855
Mandel L. I–854
Manner T. I–642
Marchand H. II–1605
Martin A. II–1266
Martin U. II–1758
Martinelli F. I–794
Marty J.-L. I–57
Matskin M. I–551
Matthews B. I–388
Merz S. II–1226
Meseguer J. II–1684
Meyer E. I–875
Meyer zu Hörste M. II–1867
Meynadier J.-M. I–369
Mikhajlov L. II–1301
Mikhajlova A. II–1460
Mikkonen T. II–1858
Mitchell J. I–776
Mitchell M. I–776
Monin J.-F. I–662
Moreira A. M. I–272, II–1866
Mori A. II–1625
Mounier L. I–307
Müller-Olm M. II–1107
Muñoz C. I–452

Nadjm-Tehrani S. II–1384
Nakajima S. II–1664
Nassor É. II–1836
Naumann D. A. II–1439

Ocică R. II–1863
Olderog E.-R. II–1186
Orejas F. II–1778
Ostroff J. S. I–834

Pacalet A. II–1798
Paige R. F. I–530, I–834
Parkes J. P. II–1816
Pautet L. II–1836
Pavlović D. I–155

Author Index 1875

Peleska J. II–1186, II–1546
Penjam J. I–551
Petrenko A. I–608
Philipps J. I–96
Pieraccini P. L. II–1584
Pnueli A. I–173
Poizat P. II–939, II–1856
Polack F. II–1048
Poppleton M. II–1864
Pryor A. II–1527

Raanan G. I–173
Raguideau J. II–1798
Randimbivololona F. II–1798
Rangarajan M. II–1068
Reffel F. I–195
Riemenschneider R. A. I–116, I–701
de Roever W.-P. II–1245
Roşu G. II–1704
Rouzaud Y. I–411
Royer J.-C. II–939
Rumpe B. I–96
Rushby J. I–48, I–452

Sabatier D. I–348
Samaan M. II–1605
Sampaio A. II–1400
Santone A. I–289
Scedrov A. I–776
Schätz B. II–1206
Scheid J. II–1871
Schneider S. I–738
Schnieder E. II–1867
Schoen D. II–1798
Schrönen M. II–1869
Sebastiani R. II–1584
Sekerinski E. II–1301
Sere K. II–1564
Seshia S. A. II–983
Shackleton M. II–1816
Shyamasundar R. K. II–983

Sifakis J. I–52
Silva L. II–1400
Smarandache I. M. II–1364
Souquières J. I–875
Sousa J. P. II–1281
Souyris J. II–1798
Spielmann M. II–1738
Stavridou V. I–116, I–701
Stehr M.-O. II–1684
Stepney S. II–1048
Stubblebine S. G. I–814
Syverson P. F. I–814

Tabourier M. I–915
Teeuw W. I–76
Traverso P. II–1584
Tretmans J. II–1511
Trilling L. II–1859
Tripakis S. I–233
Troubitsyna E. II–1564
Tuttle M. II–1871
Tyugu E. I–551

Vaglini G. I–289
Verhoeven R. II–1128
Villafiorita A. II–1584
Vissers C. I–76

Waeselynck H. I–509
Walter G. I–718
Wang F. I–328
Wehrheim H. II–1028
Wijbrans K. II–1511
Wolf A. II–1107
Wong A. I–590
von Wright J. II–1460

Yong X. II–1008
Yu Y. II–1871

Zhou D. II–758

	Front matter
	Lecture Notes in Computer Science
	FM'99 - Formal Methods
	Preface
	Symposium Committee
	Congress Sponsors
	Table of Contents

	Chapter 1
	Introduction
	Case-Study Presentation
	A New Specification Method
	Code Generation
	Static Part Generation
	Dynamic Part Generation

	Conclusion

	Chapter 2
	Introduction
	The Context of ensuremath {ensuremath {lambda {{cal O}tmspace -thinmuskip {.1667em}{textit {bj}}}}^{+a}}
	Object-Based Calculi
	Explicit Substitution Calculi and Addresses
	The Framework

	Implementation of Object-Based Languages
	The texttt {clone} Operator
	Functional Object-Calculi
	Imperative Object-Calculi

	Some Ancestors of ensuremath {ensuremath {lambda {{cal O}tmspace -thinmuskip {.1667em}{textit {bj}}}}^{+a}}
	The Lambda Calculus of Objects with Self-Extension ensuremath {ensuremath {lambda {{cal O}tmspace -thinmuskip {.1667em}{textit {bj}}}}^+}
	The Weak Lambda Calculus with Explicit Substitution and Addresses ensuremath {`l`s_w^a}

	The Syntax and the Operational Semantics of ensuremath {ensuremath {lambda {{cal O}tmspace -thinmuskip {.1667em}{textit {bj}}}}^{+a}}
	The Simultaneous Rewriting
	The Module textsf {L}
	The Common Object Module textsf {C}
	The Functional Object Module textsf {F}
	The Imperative Object Module textsf {I}

	Understanding ensuremath {ensuremath {lambda {{cal O}tmspace -thinmuskip {.1667em}{textit {bj}}}}^{+a}}
	Examples of Terms
	Examples of Derivations
	Functional emph {vs.} Imperative (Non Mutable emph {vs.} Mutable)
	Cloning

	Related Work
	Conclusions

	Chapter 3
	Introduction
	Background
	Statecharts
	 {sc Statemate}
	{sc Esterel}

	The Translation
	AND-OR Tree Representation of Statecharts
	Labelling for Transition Conflict Resolution
	Code-Generation
	 History
	Illustrative Examples

	Conclusions and Related Work
	Related Work
	Summary of Work

	Chapter 4
	Introduction
	Adding Time to RSL
	Conservative Extension

	Operational Semantics
	The Core Syntax
	Definition
	Operational Rules
	Semantic Function : Merge
	Meaning of ``Sort$_d$'' and ``SORT$_d$''
	Commentary on Operational Rules

	Time Test Equivalence
	Definitions
	Equivalence of TRSL Expressions
	Commentary and Examples

	Soundness of Proof Rules
	Proof Rules of TRSL
	Soundness

	Discussion
	Future Work
	Related Work

	Chapter 5
	Introduction
	Prerequisites
	CSP-OZ
	Structure of Translated CSP-OZ Specifications
	CSP Semantics

	Data Abstraction
	First Example: An Optimal Abstraction
	Compositionality
	Composing Objects
	Combining Abstractions
	Illustrating Example

	Conclusion
	Brief Introduction to CSP Operators
	Proof of Theorem ref {th:abstract}

	Chapter 6
	Introduction
	The Case for Z, and Z Generics
	Generic Definitions in Defining Z Toolkits
	Generics for Secondary Toolkits
	Generic Systems

	System Development in Z
	Entity-Relationship Description of the Case Study
	Scenario
	Data Model
	Events and Processing

	Top-Level Generic Specification
	Unique Identifiers
	System State
	Sample Operations
	Discussion

	Design by Instantiation
	Traditional Specification of the Customer Entity
	Operator Definition
	Generic Specification of the Customer Entity
	Instantiating the State
	Operations
	Discussion

	Reusing and Elaborating through Instantiation
	Data Dictionary Modifications
	Structural Modifications

	Discussion

	Chapter 7
	Introduction
	The {sc vspec} Language
	Abstract Architectures
	Generating Semantic Models
	Verification
	{sc vspec} in Practice
	The Move Machine
	Find
	Pulse Interval Processor
	Real Time Monitor
	Evaluation Summary

	Related Work
	Conclusions and Current Status

	Chapter 8
	Introduction
	Background and Motivation
	Contribution
	Overview

	Liberal Specifications
	Case Analysis
	Framing
	Trashing

	Redundancy
	Redundant Postconditions
	Examples
	Redundant Preconditions
	Redundant Frames
	An Alternative Design for Redundancy

	History Constraints
	Other Related Work
	Conclusions

	Chapter 9
	Introduction
	On Correctness of Translations
	The Classical Setup
	Program Verification and Predicate Transformers
	Implementation Correctness

	The Relativized Setup
	Relative Correctness and Relativized Predicate Transformers
	Implementation Correctness

	Properties of ${sf wrp}$
	Programming Operators
	An Application
	Conclusion

	Chapter 10
	Introduction
	User Model
	An Example
	Mathematical Calculation
	PVS Verification

	Building the Interface
	Communication with PVS
	The {sf Math}$mskip -thinmuskip smallint mskip -thinmuskip ${sf pad} Infrastructure
	The PVS Interface Library
	The Definition File

	Related Work
	Conclusions

	Chapter 11
	Introduction
	Theoretical Principles
	The Model
	The Use of Linear Programming

	Some Case Studies
	A Telephony System
	An Access Control System
	A Bus Arbiter

	Conclusion

	Chapter 12
	Sensors and Actuators in TCOZ
	1 Introduction
	2 Aspects of TCOZ
	2.1 Declaring channels
	2.2 A model of time and quantity
	2.3 Deadlines and delays
	2.4 Guards and preconditions
	2.5 Active and passive objects
	2.6 Complex network topologies
	3 Adding continuous-function interfaces to TCOZ
	3.1 The digital temperature display
	3.2 The local virtues
	3.3 Generating a real-time clock timer
	3.4 Monitoring input signals
	4 Cruise control overview
	5 TCOZ model of the cruise control system
	5.1 The clock
	5.2 Car speed
	5.3 Cruise modes
	5.4 Throttle
	5.5 Cruise system
	6 Conclusion
	Acknowledgements
	References

	Chapter 13
	The UniForM Workbench,a Universal Development Environmentfor Formal Methods
	1 Introduction
	2 Combination of Methods
	2.1 Integration into the Software Life Cycle
	2.2 Combination of Formal Methods
	3 Tools for Development
	3.1 Development of PLC Software
	3.2 Tools for CSP-OZ
	3.3 Verification
	3.4 Development by Transformation
	3.5 Validation, Verification, and Test Environment for Reactive Real-TimeSystems
	4 Universal Development Environment
	5 Case Studies
	5.1 Control of a Single Track Segment
	5.2 Control of Jena Steinweg
	5.3 On-Board Computer for Railway Control
	6 References

	Chapter 14
	Integrating Formal Description Techniques
	1 Introduction
	1.1 View-based Systems Development
	1.1.1 Document Oriented Description
	1.1.2 Hierarchical Documents
	1.1.3 Integrated Documents
	1.1.4 System Structure Diagrams (SSDs)
	1.1.5 State Transition Diagrams (STDs)
	1.1.6 Datatype Definitions (DTDs)
	1.1.7 Component Data Declaration (CDDs)
	1.1.8 Extended Event Traces (EETs)
	2 Integration of Formalisms
	2.1 Conceptual Consistencies
	2.2 Semantic Consistencies
	2.2.1 Hierarchical Consistencies
	2.2.2 Inter-View Consistencies
	2.3 Lessons Learned
	3 Conceptual Models
	4 Views and Description Techniques
	5 Specification Modules
	5.1 Module Criteria
	5.1.1 Well-Formedness
	5.1.2 Consistency
	5.1.3 Completeness
	5.2 Module Definition
	5.2.1 Complete Modules
	5.2.2 Parameterized Modules
	5.3 Mathematical Model
	5.3.1 Model of Specification Modules
	5.3.2 Operations on Specification Modules
	5.4 Module Application
	5.4.1 Complete and Parameterized Specification Modules
	5.4.2 Module Instantiation
	5.5 User Interface
	5.5.1 Drag and Drop
	5.5.2 Contextual Menus
	5.5.3 Example
	6 Conclusion
	7 References

	Chapter 15
	Background
	A Generalized TLA
	Syntax and Semantics
	Stuttering Invariance

	An Axiomatization of GTLA
	Completeness of $Sigma _{{rm GTLA}}$
	A Homogeneous Axiomatization
	Quantification and Expressiveness
	Conclusion

	Chapter 16
	Introduction
	Syntax
	 Reactive Sequence Semantics
	The Rely-Guarantee Proof Method
	R-G Validity w.r.t. Reactive Sequences Semantics
	Aczel Semantics
	Reactive Sequences Reconsidered
	Completeness
	Conclusion, Future, and Related Work

	Chapter 17
	Introduction
	Z, Logical Calculi, and Semantics
	Languages and Logic
	Terminology
	Theorems

	Approaches to Logic and Semantics
	Schemas
	Undefinedness
	Approaches to Undefinedness
	Baumann's Question
	Issues of Methodology

	Future and Related Work
	Managing Complexity
	Other Logics

	Conclusions

	Chapter 18
	Introduction
	Related Research
	Enterprise JavaBeans$^{@mathrm {TM}}$
	Background
	Overview of Enterprise JavaBeans$^{@mathrm {TM}}$
	The Enterprise JavaBeans$^{@mathrm {TM}}$ Specification

	Wright
	Component or Connector?
	Formalizing Enterprise JavaBeans$^{@mathrm {TM}}$
	The Client
	The Container and the Bean

	Using the Model
	Conclusions and Future Work

	Chapter 19
	Introduction
	The Essence of the Component Re-entrance Problem
	Modular Reasoning Required
	Formalization of Components, Composition, and Refinement
	Statements and Statement Refinement
	Components and Composition
	Refining Components and Component Systems

	Modular Reasoning Theorem
	Formulating and Proving the Theorem
	Interpretation and Implications of the Theorem

	Discussion, Conclusions, and Related Work

	Chapter 20
	Introduction
	Basic Concepts
	Objects and Processes
	Interaction Points
	Interaction Objects
	Example of an Interaction Object
	Basic Interaction Operators
	Composite Interaction Operators

	Using Interaction Objects
	Using the Interaction Operators
	Specifying Interaction Objects
	Communicating Using Interaction Objects
	Implementing Interaction Objects
	Verifying Programs That Use Interaction Objects

	Related Work
	Conclusion

	Chapter 21
	Introduction
	Component Technology
	The $pi $-Calculus
	Modelling Approach
	The `Interface' Concept of COM
	Modelling Interface Behaviour in $pi $-Calculus
	Manipulating COM Interface Pointers
	Modelling COM Interface Manipulation in $pi $-Calculus
	Calculations
	Concluding Remarks

	Chapter 22
	Introduction
	Real-Time System Codesign
	Cospecification and Cosimulation of {sc Signal}-{sc Alpha} Systems
	Organisation of the Paper

	{sc Signal} and {sc Alpha} in Real-Time System Codesign
	Functional Cospecification and Cosimulation
	Implementation-Oriented Cospecification and Cosimulation

	Affine Calculus on Clocks in {sc Signal}
	Clock Calculus & Synchronisability
	Affine Relations in {sc Signal}
	Properties on Affine Relations & Synchronisability Rules
	Implementation of the Affine Clock Calculus

	Application
	Conclusion

	Chapter 23
	Introduction
	The Air Control Case Study
	Requirements Specifications

	Model of the Controller
	Lessons Learnt

	Models of the Physical Environment
	Transformations on the Model
	The Hybrid Automaton Model
	The Discrete Time Model
	Lessons Learnt

	Verification Techniques
	Compositional Verification
	One-Shot Verification

	Related Works

	Chapter 24
	The Hardware/Software Partitioning Problem
	A Language of Communicating Processes
	The Partitioning Approach
	The Splitting Strategy
	The Joining Strategy

	ParTS Implementation
	The Transformation Layer in SML
	The Graphical User Interface

	A Small Case Study
	Conclusions

	Chapter 25
	Introduction
	Specification Language
	Algebraic Laws
	Chop
	Parallel

	Healthiness Conditions
	Monotonicity
	DI Approachable
	Continuity
	Temporal Programs

	VERILOG Timing Controlled Statements
	Clock

	Chapter 26
	Introduction
	Language
	Typing
	Typing Environment
	Expressions and Predicates
	Parameterized Commands, Commands, and Programs
	Properties of Typing

	Semantics
	Environments, Data Types, and States
	Expressions and Predicates
	Commands and Parameterized Commands
	Programs and Method Calls
	Example

	Properties of the Semantics
	Refinement
	Discussion

	Chapter 27
	Introduction
	Contracts and Refinement
	Contract Notation
	Using Contracts
	User Interaction
	Semantics, Correctness, and Refinement of Contracts

	Iterative Choice and Its Modeling Capabilities
	Modeling Component Environment
	Modeling an Interactive Dialog Box

	Definition and Properties of Iterative Choice
	Angelic Iteration and Its Properties
	Iterative Choice and Its Properties
	Proving Correctness of the Interactive Dialog Box
	Data Refinement of Iterative Choice
	Data Refinement of Interactive Dialog Box

	Conclusions and Related Work

	Chapter 28
	Introduction
	A Relational View of Refinement in Z
	Simple Non-atomic Refinement
	Example - A Bank Account
	General Non-atomic Refinement
	Conditions for a Non-atomic Refinement

	Input and Output Transformations
	IO Refinement
	General IO Transformations

	Summary
	Conclusions

	Chapter 29
	Refinement Semantics and Loop Rules
	1 Introduction
	2 Notation
	3 Least Fixpoints
	4 Refinement Semantics
	5 Comparison of Least Fixpoint and Refinement Semantics
	6 Variant
	7 Rule of Invariants and Variants
	8 Terminating While-Loop Rule
	9 Loops with Exits
	10 For-Loops
	11 Comparison of the For-Loop Rules
	12 Examples
	13 Conclusions

	Chapter 30
	Introduction
	Case Description: The BOS System
	2.1 The Battle with the Sea
	2.2 The BOS System
	2.3 Building a Safety Critical System
	Putting Formal Methods into Practice
	The Degree of Formality
	The Selection of Formal Methods
	Combining Promela and Z
	Formal Methods in the Development Process
	Lessons Learned
	Quality
	Costs
	The Learning Phase
	Support from Academia
	Tools
	Planning and Monitoring
	People Management
	Communication with the Client
	Conclusions and Recommendations
	Acknowledgements

	Chapter 31
	Introduction
	The Application: SHOLIS
	The Programming Language: SPARK
	Proof in the SHOLIS Development Process
	The Development Process
	Proof Activities
	Proof Personnel
	Proof Validation
	Timing and Resource Usage

	Results, Experiences, and Lessons Learnt
	Quantitative Results
	Subjective Feedback on the Use of Proof
	The Types of Errors Found by Z Proofs
	SPARK 83 versus SPARK 95

	Related Work
	Conclusions
	Z Glossary

	Chapter 32
	Introduction
	Engineering Concept
	Domain Model
	Static Part of the Model
	Dynamic Part of the Model

	Safety Requirements
	Development of the Railway Control System: First Stage
	First Specification
	Second to Fourth Specification
	Fifth Specification
	Verification

	Development of the Railway Control System: Second Stage
	Discussion

	Chapter 33
	Introduction
	Action Systems
	Specifying Control Systems with Safety Consideration
	Representing a Fault Tree in a Specification
	Example: A Heater Controller
	Prioritising Hazards
	Concluding Remarks

	Chapter 34
	Introduction
	Informal Description of the Safety Layer
	The Project
	Requirements
	Phases
	Methodology

	Formal Specification of the Safety Layer
	Safety Layer = CM + 2 $cdot $ SL
	Overview of the CM Machine
	Overview of the SL Machine
	An Example of Transition Diagram

	Formal Validation
	Interactive Simulation
	Model Checking

	Conclusions

	Chapter 35
	Incremental Design of a Po wer TransformerStation Controller using a Controller SynthesisMethodology?
	1 Introduction & Motivations
	2 Overview of the power transformer station
	2.1 The power transformer station description
	2.2 The controller
	3 The Signal equational data ow real-time language
	3.1 The Signal language
	3.2 Speci�cation in Signal of the power transformer station
	4 Veri�cation of Signal programs
	4.1 Veri�cation of the power transformer network
	5 The automatic controller synthesis methodology
	5.1 Controllable polynomial dynamical system
	5.2 Traditional Control Objectives
	5.3 Numerical Order Relation Control Problem
	6 Conclusion
	References

	Chapter 36
	Introduction
	Hidden Algebra
	The Alternating Bit Protocol
	Cache Coherence Protocol
	Concluding Remarks
	A CafeOBJ Session for the Alternating Bit Protocol

	Chapter 37
	Overview of unhbox voidb @x hbox {sffamily CafeOBJ}
	unhbox voidb @x hbox {sffamily CafeOBJ} Main Features
	The unhbox voidb @x hbox {sffamily CafeOBJ} Specification and Verification Environment
	unhbox voidb @x hbox {sffamily CafeOBJ} Logical Foundations

	Behavioural Specification in unhbox voidb @x hbox {sffamily CafeOBJ}
	Basic Behavioural Specification
	Behavioural Specification with Hidden Constructors
	Behavioural Coherence Methodologies
	Behavioural Verification
	Behavioural Refinement

	Concurrent Object Composition in unhbox voidb @x hbox {sffamily CafeOBJ}
	Parallel Connection
	Dynamic Connection
	Synchronized Parallel Connection
	Compositionality of Verifications

	Conclusions and Future Work

	Chapter 38
	Introduction
	Trading Service Server
	The ODP Trader
	Trading Functions and Design Aspects

	Design and Implementation
	Overview of Development Process
	CafeOBJ Descriptions of Aspect Solutions
	Resultant Frameworks Written in Java
	Discussions

	Conclusion
	CafeOBJ: The Specification Language

	Chapter 39
	Introduction
	A Reflective Logical Framework
	Rewriting Logic and Reflection
	Formal Meta-tool Techniques

	Maude's Metalanguage Features
	The Module {tt META-LEVEL}
	Additional Metalanguage Features

	Using Maude as a Formal Meta-tool
	An Inductive Theorem Prover
	A Church-Rosser Checker
	Formal Interoperability Experiments
	A Proof Assistant for the Open Calculus of Constructions
	Implementing Formal Specification Languages

	Conclusions
	Acknowledgments

	Chapter 40
	Introduction
	Basic Hidden Algebra
	Coinduction

	Eliminating Behavioral Operations
	Behavioral Abstraction Is Information Hiding
	Two Institutions for Hidden Algebra

	Chapter 41
	Introduction
	Higher-Level Specification
	Domains of $ensuremath {@mathcal {A}}$
	Functions of $ensuremath {@mathcal {A}}$
	Modules of $ensuremath {@mathcal {A}}$
	Runs of $ensuremath {@mathcal {A}}$
	Constraints of $ensuremath {@mathcal {A}}$

	Lower-Level Specification
	Domains of $ensuremath {@mathcal {A}}'$
	Functions of $ensuremath {@mathcal {A}}'$
	Modules of $ensuremath {@mathcal {A}}'$
	Runs of $ensuremath {@mathcal {A}}'$
	Constraints of $ensuremath {@mathcal {A}}'$

	Verification
	Implementation
	$ensuremath {@mathcal {A}}'$ Implements $ensuremath {@mathcal {A}}$

	Conclusions

	Chapter 42
	Introduction
	Preliminaries
	Nullary Programs
	Logical Description of Computations
	Bounded Memory Programs
	Choiceless Logspace

	Chapter 43
	Introduction
	Motivation
	Using Verification Conditions

	Specification and the Larch Approach
	The Larch Shared Language
	Specifying AXIOM Using LSL and LP
	Larch BISL's
	Larch/Aldor

	Application of the Larch Method to CAS
	Lightweight Verification Condition Generation

	Case Study
	LSL Specification of the AXIOM Functor texttt {Complex}
	Proving Properties
	The Interface Specification

	Conclusions and Future Work
	Related Work

	Chapter 44
	Introduction
	 Preliminaries
	The Category of Module Specifications $relax $@@underline {hbox {MSpec}}mathsurround z @ $relax $
	Parameterized Specification Expressions

	Chapter 45
	Applying Formal Proof Techniques to Avionics Software:A Pragmatic Approach
	1. Introduction
	2. Caveat
	3. Using Caveat on Avionics Software
	4. Conclusion
	References

	Chapter 46
	Introduction
	Safety Critical Avionics Software
	The Current Approach

	Formal Code Synthesis
	Choice of Formal Methods Tool
	An Overview of LAMBDA
	Reduction of Code to Component Form
	 Code Synthesis
	Preliminary Experience

	The Experiment
	The Problem
	Experimental Setup
	Current Status
	Preliminary Experience

	Chapter 47
	Introduction
	Basic textsc {Esterel}{} Background
	A Simple Example
	The Esterel Compilation Process
	General Description
	Major Translation Steps
	Weaknesses When Applied to Large Systems

	Separate Compilation with textsc {Cronos}{}
	Basic Assumptions and Ideas
	Individual Modules Analysis
	Binding the Modules Together
	Module Code Architecture
	System Code Architecture

	Integration within the textsc {Esterel}{} Toolset
	Major Advantages
	Experiments and Results
	Conclusion and Work in Progress

	Chapter 48
	Tool Support for Production Use of Formal Techniques

	Chapter 49
	Modeling Aircraft Mission Computer Task Rates

	Chapter 50
	A Study of Collaborative Work: Answers to aTest on Formal Speci�cation in B

	Chapter 51
	Archived Design Steps in Temporal Logic

	Chapter 52
	A PVS-Based Approach for TeachingConstructing Correct Iterations

	Chapter 53
	A Minimal Framework for Specification Theory
	Overview

	Chapter 54
	A Model of Speci�cation-Based Testing ofInteractive Systems

	Chapter 55
	Algebraic Aspects of the Mapping betweenAbstract Syntax Notation One and CORBA IDL

	Chapter 56
	Retrenchment

	Chapter 57
	Proof Preservation in Component Generalization

	Chapter 58
	Formal Modelling and Simulation of TrainControl Systems Using Petri Nets

	Chapter 59
	Formal Speci�cation of a Voice CommunicationSystem Used in Air Tra�c ControlAn Industrial Application of Light-Weight FormalMethods Using VDM++

	Chapter 60
	Model-Checking the Architectural Designof a Fail-Safe Communication Systemfor Railway Interlocking Systems

	Chapter 61
	Analyzing the Requirements of an AccessControl Using VDMTools and PVS

	Chapter 62
	Cache Coherence Veri�cation with TLA+

	Back matter

