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PREFACE 

Although research in architectural synthesis has been conducted for 

over ten years it has had very little impact on industry. This in our view 

is due to the inability of current architectural synthesizers to provide 

area-delay competitive (or "optimal") architectures, that will support 

interfaces to analog, asynchronous, and other complex processes. They 

also fail to incorporate testability. The OASIC (optimal architectural 

synthesis with interface constraints) architectural synthesizer and the 

CATREE (computer aided trees) synthesizer demonstrate how these 

problems can be solved. 

Traditionally architectural synthesis is viewed as NP hard and there­

fore most research has involved heuristics. OASIC demonstrates by 

using an IP approach (using polyhedral analysis), that most input algo­

rithms can be synthesized very fast into globally optimal architectures. 

Since a mathematical model is used, complex interface constraints can 

easily be incorporated and solved. 

Research in test incorporation has in general been separate from syn­

thesis research. This is due to the fact that traditional test research has 

been at the gate or lower level of design representation. Nevertheless as 

technologies scale down, and complexity of design scales up, the push 

for reducing testing times is increased. On way to deal with this is to 

incorporate test strategies early in the design process. The second half of 

this text examines an approach for integrating architectural synthesis 

with test incorporation. Research showed that test must be considered 

during synthesis to provide good architectural solutions which minimize 

Xlll 



area delay cost functions. 

Though originally developed separately, OASIC and CATREE can 

be integrated so that OASIC simultaneously schedules and allocates the 

architecture and CATREE perfonns binding (and reallocating) of the 

architecture for testability. 

Part I introduces the motivation and current open problems with high 

level CAD. Part II provides the necessary background material on archi­

tectural synthesis and integer programming. This part includes a defini­

tion of problems in both areas and a brief review of previous approaches 

to solving these problems. Part III outlines the OASIC methodology, 

models, the solution techniques used, and some synthesized results. Part 

IV outlines the CATREE methodology, the algorithms and data struc­

tures used and some synthesized results. Part V provides a brief discus­

sion and concluding remarks concerning how we will interface with 

CAD tools of the future. 

The book can be used at the senior undergraduate and graduate levels 

in courses dealing with computer architectures, computer organization, 

VLSI design, computer-aided design, VLSI digital signal processing, 

testing, or integer programming. It will be also of value to resesarchers 

dealing with these topics. 

C.H. Gebotys 

M.I. Elmasry 

Waterloo, Ontario, Canada 
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PART I: INTRODUCTION 



1. 

GLOBAL VLSI DESIGN CYCLE 

The global VLSI (very large scale integration) systems design cycle 

is briefly discussed below with respect to relationships between design 

stages, bottlenecks, and current open issues for design automation (DA). 

The design cycle involves moving from an abstract design specification 

to gradually a more detailed single or multichip design that can be tested 

and fabricated. The VLSI design stages are very interdependent and 

therefore it is important to outline the purpose of each stage before one 

can address the problems of high level synthesis. Area, power, speed, 

timing issues, input and output pin limitations, testability, and many 

other criteria are important in the design process. Interfaces to other 

complex processes, design complexity with respect to implementation 

technologies and testability will also be discussed. In addition, an under­

standing of the current computer aided-design (CAD) bottlenecks and 

open issues will further emphasize the importance and impact of high 
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level architectural synthesis (the focus of this text) on the VLSI design 

cycle. 

1.1 VLSI DESIGN CYCLE 

The VLSI systems design cycle generally involves many transforma­

tions from a high level design specification to a low level of design 

representation. Stages include, but are not limited to : local and global 

transformations on the behavioral specification, partitioning of the 

behavior, architectural synthesis (transforming behavior into an architec­

ture), logic synthesis, functional level simulation, module generation, 

placement and routing, timing analysis, and final mask layout and verifi­

cation. The behavioral specification, also called the input algorithm, 

which is accompanied by a cost function that drives the design synthesis. 

For example the cost function may involve the minimization of chip area 

and power dissipation, or the maximization of chip speed and testability. 

The time required for each design stage may be quite large depend­

ing upon how much automation is provided or the designers expertise. 

Feedback from one stage to a previous stage is often quite frequent and 

time consuming due to incorrect early decisions or false assumptions. 

For example a partitioning decision may lead to a chip which exceeds its 

area requirements and therefore feedback is required to correct the earlier 

partition decision. Feedback is often inevitable since each design cycle 

step is interdependent upon the others. For example a decision made 

during behavioral scheduling affects all lower stages such as hardware 

allocation and the final VLSI design layout. Yet it is very difficult to 

predict the effects that early decisions will have since the behavior is 

technology independent It is believed to be impossible to simultaneously 

consider all stages (down to layout) due to the complexity and enormous 

amounts of data required. It is well known that early decisions made in 

the design cycle often have the greatest impact on the final design. Thus 
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the high level stages are currently viewed as being very important and of 

great interest in the VLSI community. 

Early steps of the VLSI design cycle have been defined as algorithm 

transformations, algorithm partitioning, and architectural synthesis. We 

will use the terms behavior or algorithm to describe the input into an 

architectural synthesizer. Decisions to partition the behavior among mul­

tiple chips (spatial), different analog and digital domains (technology), or 

into separate pipestages (time) are explored in these early steps. In 

industry these decisions are often done without the aid of design automa­

tion tools, yet it is this exploration which is considered critical for shor­

tening the design cycle time and of great importance for designing high 

performance architectures. 

Even though research on high level architectural synthesis tools has 

been conducted for more than ten years, it has not had a significant 

impact on industry. This can be attributed to the known fact that the 

acceptance of new technologies occurs much faster in industry 

(Langeler, 1989) than the acceptance of new DA tools. Currently the 

most common and mature DA tools in industry perform low level tedious 

tasks such as module generation, placement, routing, and layout. Figure 

1.1 illustrates the maturity of the various DA tools. More recently logic 

synthesis tools have been introduced into the CAD market for controller 

design. We believe there are several reasons why architectural synthesis 

and higher level tools have not found a place in industry. In order to 

understand why, we will first briefly introduce the subject of architec­

tural synthesis, and then look at issues which have not been adequately 

addressed by researchers and consequently contribute to preventing the 

introduction of synthesis in industry. Chapters three and four, in part II, 

will review the field of architectural synthesis and integer programming 

respectively. In chapter five through nine, of part III, we will introduce 

our formal and practical approach to solving these issues optimally for 
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architectural synthesis. 

Maturity 

t 
Relative 
Slate of 
the Art 

~ 
Infancy 

Slate of the Art 
Research Impact 

System Design CAE + Test Layout 

Figure 1.1. The maturity of various CAD tools for VLSI. 

Architectural synthesis of digital synchronous chips refers to the 

transformation from a behavioral (or algorithmic) input description to a 

hardware architecture which implements the behavior (according to a 

schedule). The Y chart (Gajski, 1983) shown in figure 1.2, is most com­

monly used to represent the transformations performed during the design 

cycle. The three axis of the Y chart, behavioral, structural and geometri­

cal axes, are used to represent different levels of design representation 

and the mappings required to design a chip. During the design of a sys­

tem one starts with a behavioral design specification (in theory) and 

moves successively down the chart to refine the design into greater levels 

of detail. However we will give a brief look at the different levels of 

hierarchy by starting at the lowest level and moving up. 

Starting at the inner bold dot in figure 1.2 on the behavioral axis, the 

lower level cells, such as a data storage element is defined. By moving 

up to the structural axis it becomes more refmed as an interconnection of 
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Structural Behavioral 

Geometrical 

Figure 1.2. The Y chart, illustrating design cycle transitions. The archi­
tectural synthesis is represented by the arc, at the top of the chart, 
from the behavioral axis to the structural axis. 

transistors which implements for example a master-slave flip-flop or 

register. Finally a transition to the geometrical axis defines the actual 

mask layers required to fabricate the register as part of a chip. When all 

cells are available in a library one can continue to the module level. 

Modules are larger design components that are made from a number of 

cells. An example of a module is a register file, which is composed of a 

number of registers and control circuitry. The behavioral axis, at the 

module level, defines the control and functionality of the register file. 

By moving again to the structural axis the definition of this module in 

tenns of an interconnection of cells is detailed. By moving again to the 

geometrical axis the module is defmed according to the mask definitions 

of its cells and their interconnection. One more level up the hierarchy 

defmes the behavior of a larger system of modules which could be a chip 

or system. 
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The transition from the behavioral axis to the structural axis, at the 

top of figure 1.2, represents architectural synthesis, the focus of this text. 

After performing architectural synthesis, a digital designer moves from 

the structural axis to the layout axis at the module and chip levels during 

the design cycle. This later procedure is now very well defined in indus­

try. For example a behavior may be described as a z-diagram for digital 

filters or a programming language (such as 'C' or Pascal). We define a 

code operation as a single specific arithmetic operation in the algorithm. 

Code operations in the behavioral description may receive data or 

transfer data in the form of bits, bytes, arrays or strings for computation. 

Additionally there may be very complex timing constraints on data 

transfers or communication with external processes. The term external 
process will be used to describe a process or operation that communi­

cates with the behavioral algorithm but is not being synthesized. The 

output of the high level architectural synthesizer is a hardware architec­

ture and a schedule. An architecture is composed of hardware com­

ponents, which include registers (memory), busses, and functional units 

(such as multipliers, arithmetic logic units (ALUs) , etc). The architec­

tural synthesis involves many tasks including scheduling and allocation. 

The schedule defines the mapping of code operations to control states. 

The allocation tasks determine the number of functional units, registers, 

and busses. The binding task defines the mapping of code operations to 

hardware components (functional units and registers), including data 

transfers to and from busses. Since synthesis is a one to many mapping, 

often a set of design constraints or a cost function are specified by the 

user to select among the design solutions or find the optimal one. For 

example each code operation can be mapped to many different control 

states and hardware components. The design constraints most often 

include area and speed (McFarland, 1986) , however other constraints 

such as power (Petersen, 1986, Haroun, 1989) and test (Gebotys, 1989) , 

may also be important. 
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One of the major purposes of architectural design synthesis is to 

decrease the VLSI design cycle time. In effect, because designs are syn­

thesized faster (than humans can design) there is more time for design 

exploration and thus yielding 'better' or optimal architectures (with 

respect to other solutions produced by the synthesizer during design 

exploration). This tool also provides a good method for handling last 

minute design specification changes, since new architectures can be 

quickly synthesized. 

Chip level design synthesis is viewed as an important stage in the 

VLSI design cycle. It follows the design specification stage, where 

designers define exactly what function their system will perform and how 

it will be partitioned among custom chips. It also precedes the layout 

stage. Since the synthesis stage, which determines the architecture of the 

design is estimated to be 30-40% of the total design effort (Fey, 1986) , 

automation plays an important part in saving time and manpower. 

As VLSI technologies scale up to ULSI (ultra-large-scale­

integration) levels the computational demands placed on DA tools 

increases. This burden affects synthesis tools directly. Behavioral 

design descriptions to be synthesized will be extremely complex and 

large. Very few synthesizers have synthesized more than 1000 lines of 

input code. Only synthesizers targeted for microprocessor designs 

(Rajan, 1989) have produced architectures for the M68000, using 2426 

lines of input code. Most have used far less than 1000 lines of input code 

to synthesize examples (see the high level synthesis benchmarks at elec­

tronic address hlsw@decwrl.dec.com (Borriello, 1988) ). It is not clear 

what limits these architectural synthesis tools exhibit as design sizes 

increase. Furthermore some subtasks associated with design synthesis, 

have been classified as NP-hard (Garey, 1979) . This means that there 

will exist some problems that will require exponential time to solve. In 

the future, better algorithmic techniques to handle the complexity of the 
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problem will be developed, such as partitioning and execution of syn­

thesis tasks on multiprocessor architecrures. The high level synthesis 

tools must be able to synthesize architecrures from partitioned code seg­

ments and from input algorithms with a high degree of regularity. These 

techniques will provide solutions to handling the computational com­

plexities and demands of large systems that need to be synthesized. 

1.2 HYBRID SYSTEMS DESIGN 

Lacking even more automation is analog and asynchronous design, 

although recent research has shown much promise for both areas. It is 

believed that about 30% of ASICS have analog components and by the 

year 2000 this number is expected to double (Carley, 1989) . Mixed 

analog/digital systems design may involve tightly coupled (embedded) 

hardware or loosely coupled (partitionable) mixed hardware components. 

An example of the former case is the implementation of the artificial 

neural netwolX algorithm (ANN) where both analog and digital com­

ponents can be used for different processing aspects. In some cases the 

advantages of analog or digital implementation may not be clearly iden­

tifiable for a particular application and design exploration will be 

extremely important to identify the optimized combination of digital sig­

nal processing (DSP) and analog signal processing (ASP). Loosely cou­

pled mixed designs more commonly occur when a Sequential pipeline of 

processing functions are synthesized. In these types of designs often the 

partition between analog and digital is well defined. For example a 

design to drive an RGB (red-green-blue) display may have DAC (digital 

to analog converter) circuitry on the same chip that provides digital 

graphics processing. It is believed that high level synthesis of analog and 

digital circuits is different enough to necessitate the use of separate CAD 

tools. Nevertheless the research in analog CAD tools greatly lags digital 

CAD tool research and high level synthesis tools have not been defined 

in analog design. However, it is important to have a formally defined 
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interface between analog and digital so that the concurrent execution of 

synthesizers can be perfonned. We defme an analog interface to a syn­

chronous digital circuit as a sequential synchronous data input/output at a 

fixed rate. For example data input to or output from a DAC or a ADC 

may be a part of the system behavior which is input to an architectural 

synthesizer. This model of interface will be discussed more in chapter 

2.2. 

Asynchronous designs are expected to increase due to the limits of 

global clocking of synchronous circuits including clock skew 

(Meng, 1989) . Asynchronous circuits have task dependent or data depen­

dent completion times. For example the next task cycle is started once 

the current task is completed. Asynchronous designs can be represented 

as bounded or unbounded delay circuits (Meng, 1989) . We define an 

asynchronous interface of a digital synchronous system as inputs syn­

chronized with the controllers (global) clock but are still indetenninate 

with respect to the control state (or control step) of the system (Hay­

ati, 1989) . We call the interface bounded if an earliest and a latest con­

trol state is defmed. Thus it is known that input data from the external 

asynchronous process will arrive at a control state greater than or equal to 

the earliest state and less than or equal to the latest state. Analogously 

the data could be output to an asynchronous process. In this case, the 

interface would be used to control the u~e of the register hold time for 

transferring output data. There are a number of designs for interfacing 

asynchronous circuits to digital synchronous systems such as data detec­

tors, spacers, multivalued circuits or other types of synchronizers. The 

design of these synchronizer components will not be addressed however 

more infonnation on these can be found in 

(Balraj, 1986, Brzozowski, 1990, Meng, 1989) . 
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In totally synchronous digital multichip designs, it may be very diffi­

cult to guarantee that the clock signal will arrive at the same time at all 

parts of the circuits (Brzozowski, 1990) . Thus external data inputs may 

be delayed by different amounts. Hence it is often necessary to consider 

asynchronous behavior, even in totally distributed synchronous systems. 

As geometries scale down, clock skew, slower transition times, and the 

capacitance and resistance effects will become increasingly dominant 

(Subrahmanyam,1988) . Preliminary analysis indicates that for large 

designs self timed disciplines may be necessary. Additionally in globally 

synchronous circuits there may also be asynchronous behavior when 

access to a shared resource is requested. Finally, the systems design may 

involve loosely coupled VLSI circuits which can be locally synchronous 

but globally self timed and therefore require asynchronous behavioral 

interfaces. Asynchronous designs offer many advantages such as 

increased operating speeds and they can be designed to handle bounded 

metastable states. 

The focus of this text will be on the automated architectural design of 

digital synchronous circuits with interface to both analog and asynchro­

nous circuits. 

1.3 IMPACT OF TECHNOLOGIES 

There are many tecimological factors which also may drive the per­

formance of VLSI designs. For example not only will constraints for 

data transfer between multichips on a printed circuit board (PCB) board 

be important for architectural synthesis but also data transfers on a sili­

con substrate (multichip modules) (Weber, 1989) , or on a wafer (wafer 

scale integration) will be important. An example of these data transfer 

constraints are die to die communication delays. Each new tecimology 

brings a new set of constraints which must be incorporated into 

automated architectural synthesis tools. 
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In addition to the medium of data transfer between chips, the imple­

mentation technology of the chip itself is also important. For example 

the area and delay characteristics of the module library will change when 

new technologies are introduced. Thus architectural synthesizers must 

have adaptable cost functions which will take these changes into con­

sideration in fmding optimal architectural solutions. These factors will 

also have a great impact on the types of architectures which may be 

suited for a technology. For example if interconnect is very expensive 

(ie. maybe the technology only allows two levels of metal) then busses 

must be minimized and used to yield a more efficient solution than the 

use of a random topology (ie.local interconnections). 

Another technological impact which affects architectural synthesizers 

is at the application end. For example artificial neural network (ANN) 

algorithms are being used in many systems applications such as pattern 

recognition (Treleavan, 1989) . The ability to embed these algorithms in 

a systems design has become very important. Systolic (Kung, 1988) and 

multiprocessor network implementations have already been investigated. 

Their use as input to architectural synthesizers however has not been 

explored. For example the VLSI implementation of the ANN may be 

one part of a larger design of analog signal processing (ASP) or digital 

signal processing (DSP). It is possible that the execution of the ANN 

does not conflict in time with other DSP postfiltering and thus the shar­

ing of hardware may be possible. 

Architectural synthesizers must be able to handle a wide range of 

algorithms. These types of algorithms have not been input to existing 

architectural synthesizers and are characterized by an extremely large 

number of data transfers between code operations. This factor leads to 

extremely large interconnect requirements. Since most synthesizers deal 

with interconnect during the final stages of the design it is possible that 

they would output unsuitable architectures (where the interconnect 
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complexity is too high). The architectural synthesizer we will present 

can optimize interconnect at an early stage. 

1.4 TEST CONSIDERATIONS 

Test is required to verify that the fabricated VLSI chip or multichip 

system works fault-free or operates satisfactorily (McCluskey, 1990) . In 

other words a test set or set of test vectors is used to detect faults present 

in the chip. These faults may be due to the fabrication process or layout 

errors. Test is not the same as design verification. Design verification, 

refers to proving that the synthesized design solution (not fabricated 

chip) is correct with respect to the behavioral input given. In our case we 

assume the user has already verified that the solution executes the 

behavior correctly by using a functional set of test vectors. One solution 

to testing chips is to create a set of test vectors to control and observe 

every fault possible in the chip design. This is called through the pins 

testing (McCluskey, 1986) . In other words we wish to detect at the out­

put pins the presence or absence of faults while applying proper stimu­

lants at the input pins. Another approach to test is called the structured 

design for test approach (Williams, 1983, McCluskey, 1986) . This 

approach, discussed in section 11.2.2, modifies the design to increase the 

testability or ease the generation of test vectors. 

There are two main reasons why test is important. One is the cost 

view. The cost to detect an error increases by a factor of 10 at each level 

of design (Williams, 1983,Goel,1980) . For example the chip design, 

board design, system design, and system design in the field are the four 

main levels where this cost factor increases, for example, from 10 at the 

chip level to 10,000 at the systems field level. Hence to avoid these large 

costs, testing at all design levels, from the chip to the system, is impor­

tant. Testing at the chip level, the most complex of the three levels, due 

to the large number of faults and inability to probe internal nodes, 
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requires detecting faults present at any of the internal nodes of the chip. 

Testing for faults on board-level wires and on connections between 

boards are required at the board and system level respectively. At these 

later two levels, the number of faults is smaller and most can be directly 

probed on board or at the system level interconnections between boards. 

We will concentrate our discussion in this book on chip level testing. 

The degree to which test is important may also depend upon the applica­

tion. For example in military, avionics or automobile applications the 

test requirements may be very high. 

Two related topics in test are redundancy and diagnosability. Redun­

dancy at the systems level is very useful for fault tolerant design. How­

ever at the chip level redundancy leads to undetectable faults thus caus­

ing problems. We will not discuss system level redundancy. Determin­

ing why a chip is failing or where the fault exists is the purpose of a diag­

nosis test tool. These test tools maintain diagnostic libraries which relate 

output responses to faulty nodes. Diagnosis will not be discussed in this 

book. 

The test stage is most traditionally viewed as occurring after the lay­

out stage (Agrawal, 1984) . In particular for through-the-pins-testing the 

test vectors may be generated after layout and often this test generation 

process could continue until the fabricated chips are returned from the 

foundry. For structured design techniques the incorporation of scan 

registers would occur after the structural design is completed before lay­

out. However the scan chain interconnection may occur after layout as in 

(AgraWal, 1984) . We could view the test process as a perpendicular line 

extending from the Y chart as shown in figure 1.3. In this figure the test 

stage can be performed after the system is laid out by arrow c. In struc­

tured test, transition a, b and c would occur. If test constraints are not 

met, the transition arrow, d, from the test axis to the structural axis illus­

trates the required redesign for testability. This may also occur if the 
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area and time constraints are exceeded during the test stage. 

Structural Behavioral 

Test 

Figure 1.3. Modification of the Y chart to include the test stage. 

The test problem is further complicated by tbe fact that as the 

number of transistors increase (from VLSI to ULSI) the number of pri­

mary inputs and outputs (or those accessible by pins of chip) do not pro­

portionately increase (Tsui, 1986) . Thus it becomes even more difficult 

to access internal nodes of the chip for control and observation by using 

through the pins testing. The test generation problem for combinational 

circuits is NP-complete (Ibarra, 1975, Fujiwara, 1982, Aho, 1974) . The 

structured design for test problem, discussed in section 11.3, has also 

been shown to be NP-complete (Craig, 1988) . Approaches to the test 

problem are discussed in detail in sections 11.2 and 11.3. Some 
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structured design for test techniques have been automated 

(Agrawal, 1984, Craig, 1988) and some research such as 

(Abadir, 1985, Beausang, 1987) and (Fung, 1986, Gebotys, 1989) have 

discussed and published their integration of synthesis with test. These 

will be discussed in section 11.3 and 11.6. 

1.5 BOTTLENECKS AND OPEN ISSUES 

One high level bottleneck of the VLSI design cycle is the integration 

and synthesis of analog and digital behavioral specifications of a VLSI 

system. Different design methodologies and complex interfaces between 

the two domains pose many challenges for the design automation indus­

try. There is a lack of DA tools to support these designs and currently 

industry relies on the communication between designers to define and 

design a correct interface. It has been estimated in the literature that it 

would take a larger effort than the design itself to take a self contained 

synchronous synthesized design and modify it to interface to other hybrid 

processes (Zahir, 1989) . 

Since the design cycle steps are interdependent, low level bottlenecks 

can be partially alleviated by better high level design exploration. For 

example an architecture with fewer interconnect will decrease the prob­

lems at the lower level by easing the layout task to be performed. This is 

one example of relationship between the technology and the high level 

design. 

In summary there exist a number of open problems in high level 

CAD for VLSI. The problems we will focus on are related to high level 

behavioral synthesis and are outlined below. In addition we believe 

these playa major role in currently preventing the high level tools from 

being accepted in industry. 
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1. Support for complex interfaces and timing constraints. 

2. Optimized architectures for area-delay cost functions. 

3. Long testing times for complex VLSI designs. 

Problem one defines a realistic need to provide practical and usable 

tools for the mixed analog and digital or large systems VLSI design. 

Problem two delineates the requirement to make better decisions at the 

high level by providing DA tools which can communicate between dif­

ferent methodologies and make accurate estimates of the effect of high 

level decisions on the final systems design. Area (Sarma, 1990) and 

delay optimized architectures must be synthesized by these tools. The 

third problem defmes a need to efficiently test a design to increase the 

probability that there exists no functional, logical, or performance errors 

in the fabricated chip. One possible solution to all these problems is to 

provide a rigorous adaptable mathematical framework. (Gebotys, 1991x) 

which can support optimized design exploration. In addition it should 

model complex timing constraints and interfaces which may be combina­

tions of of digital synchronous, asynchronous or analog processing units. 

State of the art synthesizers to date can find at best "locally optimal" 

architectures with respect to an area delay cost function, and support sim­

ple timing constraints. Very few synthesizers have demonstrated how to 

use regularity and hierarchy of input algorithms to decrease the problem 

complexity. Hardly any architectural synthesizers at all even consider 

testability. We will focus on these problems in the next section and later 

in the text present a methodology to solve and advance the state of the 

art. 



Global VLSI Design Cycle 19 

1.6 FOCUS OF TEXT 

The aim of this text is to attack the three open high level CAD issues 

addressed in the previous section. Our solution is to provide a digital 

synchronous architectural synthesis tool which supports interfaces 

between different domains such as separately clocked synchronous 

processes, asynchronous circuits, and analog signal processing modules. 

The new general contributions of this research are outlined in the five 

points below. 

1. Cost-constrained optimized high level VLSI architectural synthesis 

of digital synchronous systems. 

2. Both local and complex timing constraints are to be supported for 

interfacing to asynchronous, analog or other external processes. 

3. To provide a theoretical framework in which synthesis design auto­

mation tools can be developed for different types of architectures and 

clocking. 

4. To explore a new mathematical approach to solving the synthesis 

problem. This approach involves a polyhedral approach aimed at 

providing global optimum solutions. 

5. Ensure designs are testable at the architectural level through explor­

ing design for test plans and structures. 

We will not address other fields of synthesis such as logic (or con­

troller) synthesis. Higher level behavioral partitioning techniques and 

transformations (such as those used in optimizing compilers) will also 

not be addressed, except to show how we can use their output for con­

current architectural synthesis whose inputs are partitioned behaviors or 

transformed code. 
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In this chapter we have looked at how problems in architectural syn­

thesis impact higher level problems of system design and lower level 

problems such as routing. It was also outlined in general how improve­

ments in architectural synthesis will improve the overall VLSI design 

cycle time. The next chapter will look closer at architectural synthesis 

with respect to its input and output primitives. The definition of input 

primitives for defining interfaces to external processes such as analog or 

asynchronous signal processing are also presented. Support for these 

interfaces are necessary in order for architectural synthesizers to have an 

impact on industry. It is our opinion that generally they have not 

received enough attention. 



2. 

BEHAVIORAL AND STRUCTURAL INTERFACES 

This chapter will briefly discuss the structure of input and output 

primitives for high level architectural synthesis tools. The general struc­

ture of the behavioral input to an architectural synthesizer and a defini­

tion of its interface to external processes will follow below. Interface 

descriptions for analog and asynchronous or data dependent tasks are 

examined. Both the definition of a schedule and the specification of 

hardware primitives output from an architectural synthesizer are also 

included. 

2.1 INPUT TO AN ARCHITECTURAL SYNTHESIZER 

There have been many different languages and types of flow graphs 

constructed for describing behavioral input to previous architectural syn­

thesizers, however we will not review these in detail 
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(Barbacci, 1981, Kuchcinski, 1988) . Unfortunately there are no standards 

for input languages of architectural synthesis. We will examine why a 

generalized directed acyclic graph (or generalized DAG) is in our opinion 

the most useful input representation for architectural synthesis even if it 

is not explicitly constructed. The DAG also serves as an important 

medium for describing the function of different architectural synthesis 

subtasks (McFarland, 1988) . 

There are many different types of behavior (or input algorithms) 

ranging from matrix multiplication (and digital filters) to communication 

protocols. The representation of control in a behavioral description will 

also be outlined. The difference between controller synthesis and archi­

tectural synthesis is defined with respect to the input primitives, output 

primitives, and their mapping of software to hardware (driven by the 

implementation technology of output primitives). 

Flow Graphs 

Compilers have an intermediate form consisting of a mixture of flow 

graphs and DAGs. These intermediate forms play an important role in 

the efficient mapping of software to hardware especially for multiproces­

sor architectures. The DAGs in general provide an excellent medium for 

parallelism extraction and are used in conjunction with flow graphs in 

many optimizing compilers (Ellis, 1986) . The flow graphs, defined in 

compiler theory (Aho,1974) , are used to define the control of a 

software specification. The nodes of the flow graph represent computa­

tions to be performed. These computations are essentially basic blocks 

of code, represented by DAGs. Basic block of code represent straight 

line code, which is code that contains no branch or loop constructs. An 

algorithm for constructing a DAG from straight line code is given in 

(Aho,1974) . The arcs of the flow graph represent the flow of control. 

For example figure 2.1 illustrates the control and data flow graphs 
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merged for representation of an input algorithm. The loop has an arc ori­

ginating and terminating at the node representing the code inside the 

loop. 

1 
al=a+b; + 
c1=c-d; 
xl=al+cl; 
x=xl+y; 

I 

(a) (b) 

Figure 2.1. Merged DAG and flow graph for input representation for 

architectural synthesis. 

In architectural synthesis many researchers have tried to merge the 

two graphs so there exists one medium with both control and data con­

structs. At a higher level there have been a number of languages intro­

duced for input to architectural synthesis, such as ISPS (Barbacci, 1981) , 

Pascal (Kuchcinski,1988) , and many others such as VHDL (which is 

also used as a standard for all levels of CAD representation). These 

languages have intermediate forms which bare some resemblance to 

DAGs, such as the value trace (Walker, 1987) . 

In the following discussion we will demonstrate why DAGs in a flow 

graph can in fact represent more information than some higher level 

languages. Let us consider the following example of a matrix 
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multiplication. In a mathematical notation it is: AcT =b or ~ajJcj' Vi. 
j 

and in a algorithmic notation it is: for (i=l, .. ,m) {ba=Q;for (j=l, .. ,n) 

{bj =bj - 1+ajJCj} }. This can be represented as a number of different 

types of DAGs depending upon the order of operations. Each DAG may 
have significant differences in lower bounds on execution time. For 
example in (papadimitriou, 1990) execution time is to be minimized and 
an infinite or very large number of processors are available. Therefore in 
their DAG, a tree is formed with multiplication operations at the leaves 
(degree one) and other nodes (of degree three) are the addition opera­
tions. A DAG is formed for each b j calculation. This DAG is shown in 

figure 2.2b), where 9 clock periods are required for three multipliers and 

three adders. However in another application where accuracy of the 
computation is very important, the algorithm can be implemented as 
multiplier accumulator streams shown in figure 2.2a), requiring 8 clock 
periods for three adders and three multipliers. Each DAG may compute 
different values due to the ordering of the operations and error truncation. 
In this example and others the DAG offers the clearest representation for 
input to a high level architectural synthesizer as compared with 
languages that do not specify the order of operations. In summary we 
will focus on the mapping of the DAG to optimized hardware as opposed 
to the problem (ie. matrix multiplication) which may be represented by 
many different DAGs. 

Instead of using a single language that many readers may not be fam­
iliar with we will instead use the generalized DAG, illustrated in figure 
2.1, as the notation to represent an input primitive throughout this text 
This avoids the ambiguity of operation ordering in languages and pro­
vides a good example for illustrating the architectural synthesis subtasks. 
In summary the notation uses control nodes (for branches, joins, etc), 
operation nodes, arcs for data transfer (and hence implied partial order), 
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Figure 2.2. Impact of order of operations on the DAG fonnation. 

arcs for partial order alone, and the specification of timing constraints. 

2.2 INTERFACE PRIMITIVES FOR EXTERNAL PROCESSES 

25 

The definition of an interface is perhaps one of the most important 
features for behavioral input description for an architectural synthesizer, 
yet it has not been given enough attention in the architectural synthesis 
field. Previous researchers had assumed that the interface was not criti­
cal to the system perfonnance and post processing was used to synthesize 
circuitry (Borriello, 1987) . Interfaces are very important since most cus­
tom chips are not designed as standalone systems. Very often a correct 
architecture or schedule cannot be guaranteed unless interface constraints 
are obeyed. In such cases, interface constraints may have a significant 



26 Architectural Synthesis 

impact on the final speed or area of the chip. The complexity of an inter­

face may vary from a simple data transfer off of a chip, to requesting data 

from a cache controller that is shared with other processes. In the later 

case the transfer of the requested data may occur after an unknown 

amount of time. 

We will present four categories of interfaces and show how all other 

instances of interface constraints, that we know of, can be mapped into 

these categories. Secondly we will show that it is necessary to know or 

estimate the clock period of the design to be synthesized. The controller 

and architecture synthesized are responsible for transfer of data to and 

from interface circuitry at valid times in the most optimal manner. In the 

most optimal manner may mean to minimize the total execution time and 

therefore process the incoming data as soon as it arrives. 

The Boundary 

The four categories of interface constraints are (1) local, (2) analog, 

(3) asynchronous bounded and (4) asynchronous unbounded. Some local 

interface constraints are minimum, maximum or a combination of both 

timing constraints. The more complex constraints, (2) through (4), 

involve interfacing to analog or asynchronous processes. An example of 

the different layers of circuitry required to interface an external analog or 

asynchronous process with a digital synchronous process is shown in fig­

ure 2.3. The far left dashed line indicates the division of circuitry that we 

are concerned with. To the left of this line is the digital synchronous cir­

cuitry that will be synthesized. The multiplexor is used for illustrations 

purposes only. The first input to the multiplexor is an analog interface. 

An example of this interface is sampling an analog signal at a fixed rate 

and transforming this signal into a digital value (using an analog to digi­

tal converter circuit, ie. performing sample and hold (S&H) which out­

puts analog discrete time signals, and quantization (Q) which outputs 
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digital discrete time signals) to enable subsequent digital signal process­

ing. We will therefore defme an analog inteiface to a synchronous digital 

circuit as a sequential synchronous data input or data output at a fixed 

rate. The third and fourth categories of interfaces are asynchronous inter­

faces. An asynchronous inteiface of a digital synchronous system is 

defmed as inputs synchronized with the global clock but are indeter­

minate with respect to the control state of the system (Hayati, 1989) . In 

figure 2.3 a synchronizer (Synch.) is used to illustrate the possibility of 

having to synchronize the external signal with the clock of the digital 

component being synthesized. An example of an asynchronous interface 

is receiving data input from asynchronous circuitry or data dependent 

operations. Other examples of an asynchronous interface can result from 

transferring data between two synchronized processes, where each pro­

cess uses a different local clock. It may also be possible that the two 

processes are using the same global clock, but the processes are loosely 

coupled causing the delay in clock signal to vary and therefore behave as 

if it were an asynchronous interface. Another example is the transfer of 

data (not necessarily at a fixed rate) to an analog process (DAC) for ana­

log signal processing and subsequent receipt of the new analog processed 

output data (ADC). In this case we do not particularly care whether the 

external process is analog or digital. We can use an asynchronous inter­

face if the processing time is data dependent or we can use minimum and 

maximum constraints otherwise. 

Minimum and Maximum Delay Constraints 

There exist many examples of minimum and maximum timing con­

straints. These constraints may also be applied locally to a DAG for 

example to describe a delay of two clock periods (or control states) for a 

multiplication operation. In this case a minimum timing constraint 

between the multiplication operation and the next operation which 

receives the output data can be used to represent extra clock periods 
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Digital Synchronou~ Interface Circuitry 

Architectural Synthesis 

SandH 
Analog 

As nchronous 
~--------------~--~ Digital 

Signal Conversion 

Figure 2.3. Levels of Interface between digital synchronous circuitry and 

external processes. 

required by the multiplication to perform its function. In an interface 

scenario, the minimum and maximum timing constraints are also very 

important For example if the output data must be valid in an output port 

register for at least three clock periods, in order for an external process to 

read the data, then a minimum timing constraint of three clock periods is 

required on the storage of the variable. On the other hand if incoming 

data is only valid at an input port for three clock periods then a maximum 

timing constraint of three clock periods on all operations which use this 

variable is required. 

Analog Interface 

There exist many examples of analog interfaces, as dermed in this 

chapter. Let us assume that te is the period of the clock (in 

nanoseconds), and the incoming data, ds' is arriving at a fixed rate of one 

sample every js clock periods (or every ts nanoseconds), where 

js=r~/tc 1, ts~tc' If ts9 c then we assume a high speed interface will 

collect the data into a large register (or queue) which is available to the 
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synchronized system to be synthesized at each clock cycle. Other 

choices for the design with high speed interfaces will be discussed in 

chapter 5. Also let us assume that the digital synchronous behavior to be 

synthesized must ensure that all initial computations on the previous 

incoming data ds have already been completed before the next data value 

arrives. Operations which input ds must be scheduled after ds arrives 

and before ds+1 arrives. Assuming the same computation is to be per­

formed on each incoming data value then the algorithm would be a part 

of a loop, where at each iteration new data is received. Therefore a fixed 

timing constraint between operations which input dj in successive itera-

tions of i should be equal to the j s' 

Asynchronous Interfaces 

We will now study the impact of asynchronous interfaces on digital 

architectural synthesis. As discussed in the previous section this is not 

necessarily an interface with asynchronous circuitry , but may also 

include interfaces to data dependent processes (Ku, 1989a) . Two types of 

asynchronous interfaces are discussed below, bounded and unbounded. 

We will show that the later case can be transformed into a bounded and 

wait-state interface. These interfaces are quite complex and impact both 

the scheduling of the DAG and the allocation of hardware. We will 

further discuss these interactions in chapter 7. 

Bounded Delays. 

A bounded asynchronous interface is defined as an asynchronous 

interface where the lower bounds and upper bounds on the indeterminate 

control state are known. The bounded asynchronous interface can be 

represented by constructing a flow graph from the DAG with the asyn­

chronous interface. In figure 2.4 a) the DAG is transformed into the flow 

graph of 2.4b) where the bound of three clock periods for receiving data 
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from Ka is represented as a three way branch, starting after basic block 

(defined in section 2.1) A, with a delay of one cstep for each branch. 

Before the three way branch is placed in the DAG the operations must be 

partitioned into interface dependent and interface independent basic 

blocks. In the first case an operation is inteiface dependent if there exists 

a path from the vertex representing the asynchronous operation to the 

vertex of the specific code operation (ID and C are interface dependent in 

figure 2.4). If there is no path between these two operations in the DAG 

then the operation is interface independent (such as the basic block of 

code B in figure 2.4). The flow graph is constructed by placing interface 

dependent operations in a separate basic block. The interface indepen­

dent basic block may eventually end, at a particular control state, after 

which all code operations must precede the interface dependent code (in 

figure 2.4 basic block C is all interface dependent code). 

Unbounded Delays. 

Unbounded or 00 bounded asynchronous interfaces are asynchronous 

interfaces where the bound on the control states is not known; for exam­

ple designing with a synchronizer, or data dependent loops. An example 

of a general DAG with unbounded delays can be shown in figure 2.4c). 

Although most researchers discuss partitioning the graph at the 00 

bounded operation vertices, we will discuss a different partitioning into 

three groups of operations for DAGs where the interface independent 

basic block ends before the interface dependent operations as shown in 

figure 2.4b). In these cases the 00 bound can be removed and it is possi­

ble to decompose the unbounded interface into a bounded interface and a 

wait state. The bounded interface occurs from the earliest control state 

that the asynchronous operation may output data to the last control state 

required to complete the interface independent code. In figure 2.4c) this 

requires the three way branch. After this cstep, if data is still not avail­

able from the external process, the controller must essentially wait (ie. 
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(a) (b) (c) 

Figure 2.4. Bounded delay interface illustrated in (a) with code partition­

ing. In (b) the conditional branches are used to model this bounded 

delay and the wait state in (c) along with (b) are used to represent an 

00 bounded interface. 

perfonn no operations until the data is available from the asynchronous 

operation). In figure 2.4c) the schedule and allocation of DAGs with 

bounded or unbounded interfaces can have a significant impact on con­

troller complexity and area and delay of the architecture. 

2.3 OUTPUT PRIMITIVES FROM AN ARCIDTECTURAL 

SYNTHESIZER 

In this section we will discuss hardware architectural primitives that 

are used in architectural synthesis. Essentially the hardware primitives 

are output from the synthesizer and later refmed into more detailed 

modules to be placed and routed. The output primitives are divided into 

storage primitives, processing elements, and interconnect primitives. 

Each section below defines the generalized primitives which are 
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necessary to understand architectural synthesis. 

Processing Elements 

The processing elements receive input data and after a defined 

amount of time produce new output data. The processing elements per­

form computations which we will call functions. This terminology is 

used to avoid the confusion with the term operations, used to describe the 

nodes of the DAG or specification of the input algorithm. For example 

an adder (a processing element) performs the function addition. Some 

processing elements may have more than one function they can compute. 

The term junctional unit is used to refer to a particular processing ele­

ment and each functional unit has a corresponding module in the VLSI 

library of cells. Therefore each functional unit is defined by a set of 

functions that it can perform. The set of functions of two functional units 

mayor may not overlap. Additionally two functional units may have 

identical sets of functions but they may require different amounts of time 

to compute their outputs. To distinguish functional units by these 

characteristics we use the term, type. The type of a functional unit is the 

most detail we will use for high level synthesis. For example one type of 

functional unit is a two cycle multiplier and another is a pipelined multi­

plier. Both functional units compute the same function, however, their 

timing characteristics are different An ALU and an adder are two other 

types of functional units. For convenience we will. illustrate the func­

tional units using a circle or vertically placed rectangle. 

Storage Primitives 

There are many different types of storage primitives. In fact most 

systems have a hierarchy of storage starting at the bottom level with 

registers, register files, and moving up to memory caches, main memory, 

etc. The simplest and most common storage primitives for architectural 
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synthesis are the register and register flIes. Their difference is illustrated 

in figure 2.5. We will concentrate on registers. In phase one of the clock 

a master/slave register transfers the input data to the output of the regis­

ter. In other words, a new data value is placed at the inputs of the func­

tional unit. During phase two, the output from the functional unit is 

latched into the register. Note that the bus is only active during phase 

two. The register flIes can be visualized as splitting a register into two 

latches and moving one latch to a register file and keeping the other latch 

at the input of the functional unit. When this is done the busses can be 

used for data transfer during both phases of the clock. Transfer from the 

register file to the latch at the input of the functional unit occurs at phase 

one. Phase two transfers the output data from the functional unit onto the 

bus and into the register flIe. Phase one in the register file architecture is 

one example of a storage to storage primitive transfer. It is interesting to 

note that by using only one bus for input and output from each register 

file as in (Haroun, 1989) some variables must be stored in more than one 

register file for concurrent accesses with other variables. This can 

account for more latches in a register file architecture than registers in a 

register architecture. We will assume that we are dealing with the regis­

ter architecture, shown in (a), unless otherwise stated that the architecture 

is the register file architecture. For illustration purposes registers will be 

represented by a hOrizontally placed rectangle with a horizontal line 

through it to represent the two phase operation. 

Interconnect Primitives 

Interconnect primitives are an important part of architectural syn­

thesis, and often the most controversial. Interconnect primitives can 

include busses, mUltiplexors, demultiplexors, and multi-level combina­

tions of these interconnects. It is not clear how to measure interconnect 

so that high level architectural solutions (that have not been placed and 

routed) can be compared. In the most general terms we will defme a 
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(a) 

(b) 

Figure 2.S. An example'of (a) the random topology architecture and (b) 

the register file architecture. 

general bus as an interconnection with one or more inputs and one or 

more outputs. This is a good definition to use since it provides an exact 

number of general busses at a high level of abstraction, unlike other 

measures of busses (Haroun, 1989) which do not account for multiplex­

ors at the inputs to registers or functional units. These busses intercon­

nect storage elements to functional units, and vice versa. For example in 

figure 2.6a) there are 3 busses. The first bus connects registers a and c to 

functional unit f, the second bus connects register a and b to functional 

unit f, and finally the third bus connects functional unit f to register b in 

figure 2.6a). These three busses are also shown in figure 2.6c). In figure 

2.6b) there are 2 busses and 1 multiplexor. The two busses are illustrated 

with horizontal lines and the multiplexor connects both busses to one 

input latch of functional unit f in figure 2.6b). Using the general bus 

definition, the architecture in figure 2.6b) also has three busses. This is 

obtained by adding the number of busses (connecting functional units to 

register files) to the number of multiplexors (connecting register files to 
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inputs of functional units). Other measures of complexity have been pro­

posed as counting the number of bus drivers or multiplexor inputs, 

number of equivalent two to one multiplexors (Ly, 1990) or even the 

number of connections to busses or multiplexors (Goutier, 1990) . In 

general there is no standard for comparing interconnects even for solu­

tions using the same type of architecture, for example register architec­

tures. It is clear that for a schedule and an allocation of hardware 

resources (prior to binding) the only measure one can obtain is the 

number of general busses. Additionally interconnect primitives, which 

will not be explicitly analyzed in this manuscript are bus connections or 

bus drivers, since these are defined during binding. 

(a) 

(b) 

(c) 

Figure 2.6. A behavior implemented in (a) random topology and (b) 

register file architecture, and (c) a random topology with busses 

instead of multiplexors. 
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In this chapter we have defined specifically the input/output and 

interface specifications associated with architectural synthesis. Now that 

the reader has an idea of what goes in and comes out of an architectural 

synthesizer we can defme the transformations that must be performed in 

the next chapter. Chapter 3 also gives a brief introduction to previous 

research in architectural synthesis, concentrating on optimization 

approaches as opposed to the many heuristics that have been developed. 

Different approachs to solving architectural synthesis are examined from 

independent subtask optimizations to more recent simultaneous 

approaches are covered. 



PART II: REVIEW AND BACKGROUND 



3. 

ST ATE OF THE ART SYNTHESIS 

State of the art high level synthesis approaches will be reviewed in 

this chapter. Each section will provide a definition of the problems and 

an introduction to the mathematics involved in solving these problems. 

We examine previous research as it relates to each problem including 

independent subtask optimizations, simultaneous approaches to syn­

thesis, and mathematical models. In addition we will briefly discuss 

feasibility models, cost functions, high level partitioning tools and timing 

considerations in logic and architectural synthesis. 

3.1 TERMINOLOGY AND SUB TASK DEFINITIONS 

We define some frequently used terms the reader will find helpful in 

understanding the function of different subtasks of synthesis research. 

As briefly discussed in section 2.1 there exist various media for input 

representation. We will assume the most general (intermediate) form of 

an input algorithm, a directed acyclic graph (DAG), where the nodes 
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represent the code operations, and the directed edges (arcs) represent the 

variable transfers between code operations. Any algorithm or z-diagram 

can be represented by a DAG. Hardware output primitives for architec­

tural synthesis were defined in chapter 2. However we will review 

briefly some additional terminology here. Modules refer to hardware 

units which will be defmed (in functionality) with operations at some 

later point. Functional units refer to digital hardware units (for example 

an ALU) that perform a defined set of computations on the input data and 

provide new output data. For example one functional unit may be a 2 

cycle pipelined multiplier and another functional unit may be a 3 cycle 

non-pipelined multiplier. Scheduling refers to the assignment of code 

operations to time. Since processing is synchronized with a global clock, 

time is an integer value. We use the term control step (cstep) to represent 

the state of the synthesized architecture where control step 1 is present 

after the architecture is powered up and initialized. The execution time 

of the algorithm (Te) is defined as the minimum number of csteps 

required to execute the input algorithm or DAG on the synthesized archi­

tecture. Allocation is the determination of the number of hardware units 

such as functional units, registers, and busses. For example, four regis­

ters may be allocated, however the variables that are stored in each regis­

ter have not yet been determined. A schedule may require 3 modules, 

which may be defined (through binding code operations; addition and 

multiplication) as 2 adders and one add/multiply functional unit. If the 

add/multiply functional unit does not exist in the library then 4 functional 

units (3 adders and I multiplier) may be necessary. The number of 

modules is a lower bound on the number of functional units to be allo­

cated. In general the term resource will refer to functional units, busses, 

and registers. 

Additional terms will be used to compare with other synthesizer 

techniques. When one fixes a number of resources, for example one can 

fix the number of registers at ten, this means that one does not minimize 
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the number of registers, but places an upper bound on the number of 

registers of ten. Estimated refers to using some heuristic to minimize a 

particular resource. Calculated refers to an exact computation of a 

number of units after a schedule is found. A fixed schedule or hardware 

allocation means that the schedule or allocation has already been per­

formed by some earlier algorithm and therefore is a constraint on the 

remaining problem. 

The output of the architectural synthesizer that we will address are 

the following: 

• total number of control steps, functional units, busses and/or multi­

plexors, registers and/or register files, memory. 

• scheduling: code operations to control steps. 

• functional unit allocation and selection 

register allocation 

interconnect allocation 

The hardware units listed above were defined in section 2.3. One 

must also determine the type of hardware (type of functional units or 

memory versus registers) to be used in the final architecture. In some 

cases the former is done during architectural synthesis. The fmal 

schedule and binding produced by the architectural synthesizer can be 

transformed into a control table for input to a logic synthesizer. 

The architectural synthesis problem involves many subtasks such as 

scheduling (S), resource allocation (A), and resource binding (B). We 

will use the term resource to describe the hardware primitives or regis­

ters, functional units, and busses. However each of these steps are 

heavily interdependent. An example of the interdependence between the 

subtasks is shown in figure 3.1. For example a fixed schedule directly 

determines the minimum number of functional units and registers 
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(allocation). The subsequent binding of these resources directly deter­

mines the minimum number of multiplexors (allocation) required in a 

multiplexed architecture (S => A ¢::> B). Another design approach which 

illustrates the interdependence in figure 3.1 is to first perform resource 

allocation. This allocation will constrain the scheduling and subse­

quently constrain the binding (A => S => B). It is also easy to see that 

binding affects scheduling (B => S). For example operations bound to 

the same resource cannot be scheduled at the same time. 

Allocation 
A 

Binding 
B 

Figure 3.1. Subtask interdependence in architectural synthesis. 

Ideally the optimal approach to solving architectural synthesis is to 

simultaneously consider all tasks at the same time. However since this is 

a very complex approach most researchers have concentrated on one or a 

limited number of subtasks to be solved simultaneously. We will briefly 

review research in this field with emphasis on graph theoretical results 

and integer programming (IP) approaches. We will describe the com­

plexity of these subtasks and overview the iterative/simultaneous 

approaches to architectural synthesis. More detailed analysis of architec­

tural synthesis material can be found in papers such as 

(McFarland, 1988, McFarland, 1990) . 
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3.2 IUGH LEVEL TRANSFORMATIONS 

Many high level transfonnations of algorithms for architectural syn­

thesis have been borrowed from compiler research (Aho, 1974) We will 

concentrate on reviewing partitioning of behaviors and some (compiler­

like) transfonnations used within the context of architectural synthesis. 

Partitioning of behavioral descriptions for architectural synthesis of 

multichips has been investigated by a number of different researchers. 

APARTY (Lagnese,1989) evaluates different partitions of the DAG but 

schedules the graph entirely without partitions. The algorithm passes 

heuristic suggestions to other allocation and binding subtasks to use par­

titioning infonnation only during allocation. This occurs because it is 

not known how to define interfaces between the partitioned behavioral 

specifications in order that they be concurrently and independently syn­

thesized. Also in (Gupta, 1990) partitioning of behavioral specifications 

is perfonned after a binding (which defines hardware sharing) for mul­

tichip design. The hypergraph partitioning bounds the latency of the par­

titioned implementation. 

Other research (Depuydt, 1990) deals with partitioning large com­

plex signal flow graphs. Various clustering techniques are used to parti­

tion into more manageable sized flow graphs for separate scheduling 

using better or more optimal techniques which work well on smaller 

input flow graphs. 

Research at Carnegie Mellon University (Walker,1987) has exam­

ined implementation of behavioral code transfonnations in a user inter­

face environment that is tied into their architectural synthesizers, DAA. 

Although these transfonnations are the same as those found in optimiz­

ing compilers 1 (Ellis, 1986) , it is unknown what effect the transfonna­

tions have on the final architectural synthesized design. 

1 Optimizing compilers do not optimize, but they heuristically attempt to ex­
tract further parallelism from the input code. 



44 Architectural Synthesis 

flamel (Trickey, 1987) used an algorithm which perfonned many 

basic block 2 transfonnations to increase the parallelism of the input 

algorithm and then subsequently synthesize the architecture. Different 

types of merging basic blocks and unrolling loops were perfonned. The 

new transfonned input algorithm was then synthesized using an 

integrated scheduler and folding technique. This technique for increasing 

parallelism showed improved perfonnance by implementing programs 

that would run 22-200 times faster than a M68000 running the same pro­

gram. No hardware sharing of mutually exclusive code was perfonned. 

Although we will not directly address high level transfonnations in this 

text, some will be used in chapter 10 and 11 with respect to future 

research in global optimization of synthesis. 

Design Style and Clock Speed Selection 

The clock speed and design style selection are interdependent 

Design style defined in (Haroun, 1989) refers to the types of functional 

units, for example an adder or an ALU, to be used in synthesis. For 

example if one chooses a 115ns clock period and one type of multiplier 

with a lOOns propagation delay and 20ns delay adder, then one cycle is 

required by the multiplier and one cycle by the adder. However if the 

clock period is 130ns then it is possible to chain the multiplier and adder 

together, therefore defining a new type of functional unit (which can 

compute (x * a + b) in one clock period). Most DA systems assume that 

the clock period is defined before synthesis so that the operational 

characteristics of the functional unit are known. In fact after synthesis a 

finer grain selection of functional units can be perfonned to possibly 

further improve the design. 

2 Basic blocks are sections of code. called straight line code. that contain no 
branches or loops. 
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3.3 INDEPENDENT SUBTASK OPTIMIZATIONS 

In this section we will study the various subtasks associated with 

architectural synthesis. The graph theoretical problems, their complexity 

and solutions are discussed for independent and simultaneous solutions 

of subtasks. In chapter 4 we will outline the analogous integer program­

ming representations of some of these algorithms, and further show the 

advantages of using integer programming formulations in chapter 6 and 7 

for simultaneously solving more than one subtask and incorporating 

complex constraints. 

3.3.1 Scheduling 

The scheduling of a DAG without resource constraints can easily be 

performed in polynomial time (Foulds, 1981) using the well known criti­

cal path method (CPM). This algorithm calculates the critical path and 

the as soon as possible (asap) and as late as possible (alap) control steps 

(Foulds, 1981) for each node of the DAG. This algorithm executes in 

O(n2), where n is the number of nodes in the DAG. An example DAG, 

representing the operations w=y*z;.x=((a+b)+c*d+w) and illustrating 

the asap and alap schedules, are shown in figure 3.2 a) through c). The 

bottom empty circle is used to ensure that the variables x and w are out­

put at the end of the algorithm. The alap schedule can be calculated for 

any upper bound on the number of clock periods by incrementing the 

previous alap csteps by (TeUB-TCP) number of csteps, where Tcp stands 

for the minimum number of csteps in the critical path. The asap schedule 

obviously is valid for any upper bound on Te. Therefore this processing 

needs to be done only once per application (or input algorithm). 

The asap and alap schedule have not been used for subsequent 

resource allocation in architectural synthesis with much success because 

they do not always produce designs with an optimal number of resources. 

In figure 3.2 the asap and alap requires 3 modules (2 * and 1 +) and 2 
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(a) (b) (c) (d) 

Figure 3.2. DAG (a) and corresponding asap (b). alap (c). and critical 

path identification (d). 

modules (1 * and 1 +) respectively. However these schedules are very 

important for an initial analysis of the synthesis problem by providing 

the range of valid control steps (which do not violate any partial order 

constraints) for each code operation. 

3.3.2 Resource Allocation 

Almost all resource allocation in architectural synthesis problems for 

a fixed schedule have similar structure. We will represent a graph. 

G=(V,E) as a set of vertices e V and edges e E. In general the 

scheduled DAG is transformed into another (conflict. or compatability ) 

graph. By further classifying this graph (chordal. interval) one can either 

solve the problem optimally using a known polynomial time algorithm or 

heuristically using a similar algorithm. We will use register allocation as 

an example to illustrate the transformation and solution process that pre­

vious research (Tseng, 1986) has examined. Not only is register 
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allocation an interesting subtask. but as it will be further discussed in 

chapter 3.5 • its simple solution for basic blocks presented in this section 

becomes even more difficult (NP-complete) to solve simultaneously with 

the scheduling problem. 

Although for general graphs some of the problems. such as vertex 

coloring. presented in this section are NP-complete. they can be 

optimally solved using known algorithms in polynomial times if the 

graph is of a particular type (Golumbic.1980) . It is interestmg to note 

that the same types of characterizations exist in integer programming (IP) 

and often for the same problems. We will discuss integer programming 

aspects further in chapter 4. 

We assume that the DAG is scheduled in figure 3.3a) in four control 

steps (including the last cstep for the last node whose incident edges are 

the output variables). Each variable can be represented in an interval 

representation shown next to the DAG. In the interval representation. the 

lifetime of each variable is represented by a vertical edge starting at the 

cstep the variable is defined (output by a code operation) and ending at 

one cstep before the latest cstep where an operation uses the variable as 

input. This interval representation is convenient for register allocation 

because we have to find sets of variables. such that in each set the life­

times of the variables are disjoint (or in other words n,o two lifetimes of 

the same set have the same cstep). Thus each set represents a register. 

We will next define the graphs and then define the algorithms. 

The compatibility graph. GC • is formed from the interval representa­

tion. Each edge of the interval representation becomes a vertex of the 

graph GC • Edges are formed between all pairs of vertices in GC whose 

corresponding variable lifetimes are disjoint (originally called "compar­

able" vertices (Hashimoto. 1971». In other words two variable lifetimes 

are disjoint if there exists no cstep where the lifetime of both variables 

intersect The conflict or interval graph (Golumbic. 1980) • G i • uses the 
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1 2 

4 
3 

(a) (b) 

Figure 3.3. Scheduled DAG (a) and the variable lifetimes shown with an 

interval representation. 

same definition of vertices as GC however edges are fonned between all 

pairs of vertices whose variable lifetimes are not disjoint or in other 

words have overlapping lifetimes (or are "incomparable"). Another 

characteristic we can observe from these two graphs is that GC is the 

complement lOfG i . 

Register allocation is perfonned on GC by a clique partitioning algo­

rithm. Clique partitioning essentially removes edges from GC so that the 

remaining graph is a number of disconnected cliques. The algorithm 

tries to produce a minimum number of disconnected cliques. A clique of 

a graph G is a maximal complete subgraph. We will use the notation Kx 

to represent a clique on x nodes. For example in figure 3.4 there can be 3, 

4 or 5 cliques in a partition. For the minimum number of 3 cliques there 

1 The complement of graph G is G; (G=G). 
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are two different possible partitions that may be used. The number of 

cliques is equivalent to the number of registers. 

1 2 

4 
3 • 

5 

(a) (b) 

Figure 3.4. The compatibility (a) and interval graph (b) derived from the 

interval representation of figure 3.3 

Alternatively the register allocation problem can be solved on graph 

G i using vertex coloring. The vertex coloring of the interval graph, can 

be solved using a polynomial run time algorithm or the left edge algo­

rithm also presented for solving channel routing problems in (Hashi­

moto, 1971) . The number of colors is equivalent to the number of regis­

ters. In fact the minimum number of cliques in GC is equivalent to the 

minimum number of colors (or independent sets which cover the graph) 

in GV . These two algorithms are hence complementary. 

The clique partitioning approach was first presented in Facet 

(Tseng, 1986) . It was shown in (Springer, 1990) that a larger problems 

could be solved faster than using the interval graphs. 

In the presence of conditional code there may be more than one edge 

used to represent a variable's lifetime. For example a variable defined 

before a branch on conditional code, but whose last use is at different 

csteps inside each branch. Thus the graph is no longer an interval graph 
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and one cannot minimize registers in general. REAL (Kurdahi,1987) 

heuristically extended the left edge algorithm for conditional resource 

sharing register allocation. However in (Springer, 1990) specific types of 

conditional code that formed chordal graphs (of which interval graphs are 

a subset), were identified thus showing that one could for some cases 

minimize the number of registers in the presence of conditionals. Minim­

izing registers in loops, where variable lifetimes are defined on a circle, 

was also solved by using an arc coloring algorithm in (Haroun, 1989) . 

Functional unit Allocation and Bus Allocation. 

Functional unit allocation is.complicated by the fact that the mapping 

of operations to type of functional units may be a one to many mapping. 

In other words a selection of types of functional units for each operation 

must be performed. Many synthesis systems reduce this complexity to a 

one to one mapping, by preselecting the types of functional units, and 

therefore do not simultaneously select functional units when performing 

allocation. Facet (Tseng, 1986) performs functional unit allocation also 

using the clique partitiOning algorithm. The user provides a scheduled 

DAG and Facet solves each allocation task, including register, functional 

unit and interconnect allocation, independently using a clique partition­

ing heuristic algorithm. 

MIMOLA (Marwedel, 1986) uses a integer linear programming 

model (IP), with branch and bound solver, to obtain the number of func­

tional units required for a fixed schedule. However it could not apply 

this IP to bind operations to functional units due to its large model size. 

The problem of bus allocation with a fixed schedule is also very 

similar to register and functional unit allocation and busses are allocated 

after these allocations. The number of data transfers per cstep are used to 

calculate the number of busses. If one wants to allocated all general 

busses (multiplexors and busses) there is a problem with using global 

data broadcasts. A global data broadcast is a transfer of one data value 
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from one source to more than one destination. If one counts the number 

of distinct sources (accounting for a global data broadcast as one transfer) 

then this will not account for extra multiplexors which may be required 

at the inputs of functional units. On the other hand if one counts the data 

broadcast by the number of destinations then one may overestimate for 

the number of busses. In most synthesis systems it is assumed that the 

extra multiplexors required will be substituted later in the design process, 

and the number of sources for data transfers is counted. Interconnect 

optimization with a fixed schedule and a fixed number of functional 

units, (Stok, 1989) for register-transfer file architectures with separate 

read and write clock phases was examined using a simulated annealing 

approach. 

3.4 ITERATIVE AND SIMULTANEOUS APPROACHES 

Scheduling and functional unit allocation were the first two most 

common subtasks to be considered simultaneously. Previous research 

(Garey, 1979) for scheduling multiprocessor systems such as list schedul­

ing (Coffman, 1976) has had a large impact on the architectural synthesis 

application. We will use this application to introduce and defme the 

problem. A brief overview the architectural synthesis applications will 

then be performed. This scheduling and functional unit allocation prob­

lem is similar to the precedence constrained scheduling problem formally 

defmed in (Garey, 1979) as: 

" A set T of 'tasks' (each assumed to have 'length' 1), a partial 

order < • on T, a number of 'processors' and an overall 'dead­

line'DeZ+. 

Is there a 'schedule' O':T ---+ {O, 1 , .. ,D} such that, for each 

iE{O,I, ... ,D}, I{ tET: O'(t) = i }I ~ m, and such that, whenevert 

<. t', then O'(t) < 0'(t')1" 
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This problem was proved (Ullman, 1975) to be NP-complete. The 

precedence constrained scheduling problem for DAGs with an intree 

structure (Brucker,1977) were shown to have a polynomial time solu­

tion and outtree examples, both illustrated in figure 3.5, were shown to 

be NP-complete. This research was the start of a technique called list 

scheduling (Coffman, 1976) which has since been refined for architec­

tural synthesis, such as (pangde, 1987, Paulin, 1989) . 

(a) (b) 

Figure 3.5. Intree and outtree DAGs, which are schedulable in polyno­

mial and exponential time. 

In general models for previous scheduling research consisted of a 

variable tj where tj'S value is the time that job j is scheduled. Various 

objectives and additional variables representing release time, job time, or 

delivery time were used. These types of scheduling problems have been 

extensively studied in the literature and are an ongoing research topic 

(Hal, 1990) . 

The partial order of the quoted precedence constraint scheduling 

problem represents a data transfer in the architectural synthesis model. 

The partial orders can be also represented by arcs in a directed acyclic 

graph representation of the set of tasks. The extensions to the fonnal 
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scheduling problem for architectural synthesis include: limited mapping 

of tasks to processors; timing constraints; and complex task operation 

such as multi cycled or pipelined processors. 

Special Case Solutions 

Research in mapping algorithms onto multiprocessor structures also 

examines the precedence constrained scheduling problem (Garey, 1979) . 

For an infinite number of processors one can schedule a DAG to minim­

ize the makespan or execution time of the algorithm. In multiprocessor 

applications the assumption is made that each processing node of the 

DAG requires negligible time compared to the time for communication 

between processors. Therefore the problem in this research area is 

modeled as a function of the number of communication delays required 

to perform the algorithm (papadimitriou, 1990) . Other research has 

shown that if we limit our architecture to two modules then given any 

DAG we can calculate the minimum execution time (Lawler,1976) . 

This problem maps into a matching problem in a graph which is the com­

plement of the DAG. The matching problem is to maximize IMI, where 

M c E of a graph, G=(V,E), such that each vertex is incident to at most 

one edge EM. An example shown in figure 3.6 illustrates a matching, 

IMI =2, thus providing an optimal schedule of 3 control steps for a 2-pro­

cessor implementation of the five code operations (a,b,c,d,e). In fact a 

valid schedule could also be obtained using the matching algorithm. 

If we increase the number of modules beyond 2 the problem is again 

NP-complete, since we are then looking for a restricted set of cliques of 

size less than or equal to the number of modules (>2). It is however 

interesting to look at this application since it illustrates the limitations of 

purely graph theoretical approaches to solving complex problems. For 

example as new complex constraints arise during the design cycle using 

purely graph theoretical approaches may not be viable due to the 
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difficulty in adjusting these algorithms to the new constraints. We will 
now briefly review previous research that tries to simultaneously 
schedule and solve functional allocation tasks. 

Figure 3.6. lliustration of restricted optimal scheduling for two modules 

Previous Scheduling Research for Architectural Synthesis 

Variations of list scheduling techniques are very popular in architec­
tural synthesis as well as multiprocessor compiler design (Sarkar, 1989) . 
In general one fixes the number of functional units and then schedules 
operations in a prioritized order. The priority is set by the (alap - asap) 
value, where a smaller value has a larger priority. Operations are placed 
in a cstep based upon this priority until all functional units are exhausted. 
Then operations are placed in the next csteps in the same manner. HAL 
(paulin, 1989) uses an iterative refmement heuristic algorithm based on 

force directed list scheduling to perfonn scheduling and functional unit 
allocation. Recently extensions to provide heuristics to minimize regis­
ters and interconnect have been incorporated. The number of parallel 
data transfers, using transfers with distinct sources counting as one 
transfer, were used to heuristically approximate the number of busses. 
However the exact relationship to number of busses was not defined. 
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3.5 MATHEMATICAL APPROACHES 

The mathematical approaches to simultaneously solving more than 

one subtask of the architectural synthesis problem will be outlined in this 

section. In these examples the scheduling was simultaneously solved 

with more than one subtask. However no previous research to our 

knowledge has tried to simultaneously schedule and allocate busses, only 

estimates of busses are used to guide the scheduling task. These exam­

ples show how the previously studied independent subtasks, such as 

register allocation for a fixed schedule, now become very difficult to 

solve simultaneously with the scheduling subtask. 

3.5.1 Branch and Bound 

A MILP model in (Hafer,1983) , solves simultaneous scheduling, 

functional unit and register allocation using a MILP (mixed-integer LP) 

formulation. In addition scheduling is done in real time and both regis­

ters and functional units are selected from a library. A nonlinear model 

was first formed and then linearized by the addition of binary variables. 

Unfortunately only very small examples could be solved due to the size 

of the model and the inefficiencies of the branch and bound technique. 

For example an input algorithm with 4 code operations required 87 vari­

ables, of which 46 had to be integers. 

One of the first IP models for resource constrained scheduling was 

presented in (Baker,1974) . This same model was recently used in a two 

step methodology in (Lee, 1989) . The IP formulation was solved using a 

branch and bound algorithm to produce a schedule that minimizes the 

number of functional units in one step and the sum of the lifetimes of the 

variables of the DAG (which heuristically minimizes the execution time 

and in some instances the number of registers) in the second step. Figure 

3.7 shows an example where this heuristic fails to minimize the number 

of registers. Very fast execution times were obtained most likely due to 
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the improved computer technologies available today as compared to 20 

years ago. More importantly by using this two step methodology bounds 

are kept small by incrementally moving across the design space. How­

ever the bounding argument (which sets the previously solved number of 

functional units as an upper bound for the present optimization with a 

larger execution time possible) does not necessarily hold in all cases. For 

example very often as the execution time (or number of control steps) is 

increased the number of adders may increase at the added benefit of 

decreasing a more expensive functional unit such as a multiplier. These 

tight bounds, as will be discussed in chapter 3, are very important for 

solving any IP and in particular for branch and bound techniques (they 

greatly improve the performance). The model was later extended for 

functional pipelining in (Huang, 1990) and a heuristic partitioning stra­

tegy to decrease the size of the input algorithm, however register alloca­

tion could still not be incorporated. 

(a) (b) 

Figure 3.7. An example where sum of the lifetimes of the variables 

(sum) in the DAG does not decrease the number of registers but 

favors minimum execution time. In (a) Te=4 (minimum), sum = 7, 4 

registers, and in (b) Te=5, sum = 8, 3 registers are required. 
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3.5.2 Simulated Annealing 

A simulated annealing technique presented in (Devadas, 1989) 

solves simultaneous scheduling, functional unit allocation, and register 

minimization. The fonnulation includes a calculated number of registers, 

and an estimate of interconnect in its cost function. Since the cost func­

tions are used to evaluate two dimensional placements (or fixed schedule 

and functional unit allocation), the number of registers could be calcu­

lated using the left edge algorithm. The number of parallel data transfers 

was used as a heuristic estimate of the number of busses as defined in 

HAL, however again the relationship was not defined. Another part of 

the cost function was called links, which tried to estimate the number of 

bus drivers or multiplexor inputs required. Both fast simple and slower 

more accurate cost functions are used at different stages of the annealing 

to improve the efficiency of the annealing since many solutions are 

searched. Running times were achieved comparable to heuristic tech­

niques. However the rate of convergence to a global optimum 

(Nemhauser,1988) is exponential. It was stated that new constraints 

could be added by changes to the cost functions. 

3.5.3 Makespan Scheduling 

A graph theory approach to the simultaneous scheduling and 

resource (modules and registers) minimization problem (pfahler, 1987) 

was researched. A two dimensional placement of the data flow graph 

where makespan (or execution time), graph height (number of modules), 

and modified cutwidth measurement (estimated number of registers) 

were defmed was used to represent the scheduling problem. The prob­

lem is that the cutwidth which can be solved easily includes all edges in 

the graph and we only need the edges representing the variable lifetimes. 

Thus we need only consider the longest outdegree arc of each node to 

represent the lifetime of the variable. This is why a heuristic was needed 
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to solve the problem, since minimizing the lifetime defining edge (max­

imum length of all edges incident to a node) is NP-complete. A heuristic 

was used to solve this multiprocessor makespan scheduling problem. 

3.5.4 Feasibility Models 

The need for early area and delay prediction of different architectures 

for an input algorithm is very important Some tools were developed to 

try to predict these performance values. The tools had to be very fast, 

and the current synthesis tools could not appropriately be used because 

significant amounts of time would be required to synthesize designs and 

subsequently calculate area and delays. Furthermore as a design explora­

tion tool the synthesis would have to be done over a full range of the 

design space which would take too long. Thus feasibility models were 

created to help early prediction and to enable a better judgement of which 

area of the design space curve should be explored in detail. 

Feasibility models for nonpipelined and pipelined architectural syn­

thesis have been studied in (Jain, 1988) using simple mathematical equa­

tions for analysis before synthesis to narrow the design search space of 

interest. However these models only take into consideration the number 

of modules to be used in the architecture. The functional units, registers 

or interconnect were not considered in the mathematical equations. 

3.6 TIMING CONSTRAINED SYNTHESIS 

Timing constraints, as discussed in chapter 2, are very important for 

architectural synthesizers, even though few synthesizers 

(Nestor, 1986, Nestor, 1990) can handle these simultaneously with alloca­

tion subtasks. Not only are these important for supporting interfaces to 

external environments but they are also necessary for handling local 

application specific constraints within the synthesized architecture itself. 

For example timing constraints are required to model functional 
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pipelining or possibly for multicycled operations. 

The first synthesizer to consider timing constraints was Elf 

(Girczyc, 1985) where a timing constraint for a group of operations was 

specified. This constraint was generally a minimum or maximum execu­

tion time to be met. 

More recently the Carnegie Mellon University synthesis effort has 

updated the CSTEP scheduler to incorporate minimum and maximum 

timing (Dull, 1990) constraints. These constraints can be placed 

between any pair of operations in the algorithm. The list scheduler uses 

priority values for operations to decide if they must be placed in a certain 

control step. Timing constraints are checked and if a constraint is about 

to be violated by an operation not being placed in a control step then the 

priority value for this operation is modified to prevent the illegal assign­

ment from being made. 

Systems level partitioning research, APARTY, in (Lagnese, 1989) 

evaluates different partitions for the DAG but schedules the entire DAG 

without partitions. If the user requests two processes from the partitioner 

it will pass each partition separately to the scheduler but no responsibility 

for timing between the two processes is done and timing constraints are 

not used. 

Research at Stanford University (Ku, 1989a, Ku, 1989b) has exam­

ined timing constraints for high level scheduling and logic synthesis. 

They identify a fixed timing constraint and a unknown unbounded timing 

constraint. It is assumed that module binding and hardware allocation 

has already been done, and an iterative algorithm for relative scheduling 

is presented. The feasibility of timing constraints is defined and an algo­

rithm is also presented. 
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Other CAD areas which have identified timing constraints is logic or 

controller synthesis and design representation. Timing constraints and 

their effects on loops and conditional codes (Hayati, 1989) for a logic 

synthesis environment has been investigated. Asynchronous circuit syn­

thesis in (Borriello, 1988) or (Meng, 1989) has also been researched but 

no datapath is synthesized. Design representation in (Dun. 1990) has 

researched the use of charts to partition synchronous from asynchronous 

circuitry and perform partial binding of hardware. Other data representa­

tion such as the DDS in (Knapp, 1983) can be used to model both data 

and timing information. Finally in (Leiserson, 1970) interface timing 

constraints are modeled by using an external node called the host. A 

time t after or before the clock tick are used as constraints. 

3.7 COST FUNCTIONS FOR DESIGN EV ALVA TION 

The cost function is very important in architectural synthesis since it 

will influence the choice of the optimal architecture for a particular appli­

cation. Unfortunately it is not clear what form this cost function should 

take. Ideally we want to minimize some area and delay cost function. 

The area cost can be estimated as some function of the number of func­

tional units, registers, and busses (Devadas, 1989) . Assuming we have a 

model for estimating area (before placement and routing), we have to 

weigh this against the delay factor. For architectural synthesis the delay 

can be the number of control states to execute the algorithm or a more 

detailed value. The area cost and delay cost are two criteria. One now 

has to assign a weight to each and sum these to form an objective func­

tion. It is not clear how to weigh one over the other. Therefore research 

in multiple criteria optimization is relevant and very important for archi­

tectural synthesis. 
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Design evaluation with BUD (McFarland, 1987) showed that the 
area-delay curves vary a great deal when multiplexors and also layout 

and wiring are considered. The BUD algorithms used a cluster tree to 
provide a floorplan from which designs could be evaluated using a linear 
cost function. Their research in (McFarland, 1987) completed designs to 

layout to obtain accurate area-delay curves. Other research has incor­

porated floorplanning into design synthesis (Gebotys, 1989, Peng, 1987) 

Unfortunately placement and routing routines have not been modeled 

extensively to provide an area-delay model given a netlist or the allo­

cated number of functional units, registers, and busses. of characterized 
hardware modules, however it is believed 

(Devadas, 1989, McFarland, 1987) that these models will be nonlinear. 

In summary we have briefly discussed the different (locally optimal) 
approaches to state of the art architectural synthesis. The optimization of 
independent subtasks (of architectural synthesis) was shown to be limited 

for certain cases where the graph (obtained from the scheduled DAG) 
had a particular structure. It was also shown to be very difficult to 

extend this approach using graph theory for simultaneous solutions of 

more than one subtask. The previous integer programming approaches 
either were too large, and could not be solved, or were fonnulated to 
solve only a small part of architectural synthesis. Because of these com­
plexities and the fact that architectural synthesis is most likely NP-hard, 

many researchers have turned to heuristics. In the next chapter we will 

discuss the recent successes in integer programming research. In particu­

lar this research involves the study of polyhedral characteristics and their 
use in the solution of large scale integer programming problems. 

Secondly we will show that unlike graph theoretical techniques even con­

straints with no apparent structure can often be solved using these tech­
niques. Upon completing the next chapter the reader will be exposed to 

all the necessary background in architectural synthesis and integer pro­

gramming necessary for the remainder of the text. 



4. 

INTRODUCTION TO INTEGER PROGRAMMING 

General integer programming (IP) applications and solutions are 

briefly reviewed in this chapter. Section 4.1 outlines general formulation 

techniques for IP. Section 4.2 discusses state of the art solutions of gen­

eral IP problems including classical enumerative and heuristic 

approaches (ie. simulated annealing). Recent successes in polyhedral 

approaches to solving partially structured IPs are outlined in section 4.3. 

Finally the definition and partial structure of the node packing problem 

(the focus of architectural synthesis) is given in section 4.4. (TIle nota­

tion for a graph is G=(V,E), where V is the set of vertices and E is the set 

of edges). 
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4.1 APPLICATIONS AND MODELS 

Integer programming has an extremely large number of potential 

applications. Many VLSI design problems can be formulated as an IP 

problem and consequently there is a great deal of interest in this tech­

nique. Two important steps in integer programming are preprocessing 

and model formulation. Both the amount of preprocessing that can be 

done and the formulation of the model has a great impact on the final IP 

accuracy and solution efficiency. We will first look at one of the most 

simplest models, the assignment problem, that has many applications. A 

simple method for formulating constraints that can be represented as log­

ical inferences is discussed next, followed by the defmition of disjunctive 

constraints. 

The assignment problem is one of the easiest models to formulate. 

The variables of the model are binary and each represents the mapping of 

i elements to j elements. For example figure 4.1a) illustrates a possible 

mapping choice, where the variables are the edges of the graph, ej,j' If 

ej,j is 1, in the solution, then the assignment of i to j is optimal. Other­

wise, if the value is 0, there is no assignment produced by the solution. 

Although we have used a bipartite graph 3 for illustration this type of 

assignment or matching is not restricted to these types of graphs alone. 

A perfect matching problem is a set M c E such that each node is 

incident to exactly one edge of M. The binary variables are:xe=l if eeM 

or xe=O if e is not a member of M. Thus we wish to solve the following 

optimization problem, where 8(u) is the set of edges incident to vertex u. 

Chapter 4 will further discuss this optimization problem in the context of 

polyhedral characteristics. 

3 Bipartite graph is a graph with no odd cycle. It can always be partitioned into 
two groups X and Y (or i,j in figure 4.1). 
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j 

(a) (b) 

Figure 4.1. An assignment problem illustrated by a bipartite graph 

(G=(V,E» with two partitions i andj. A solution, Me E is shown in 

(b). 

Max ex 

L xe=l. V'UEV, xE{O,l}. 
e £ O(u) 

A representation of logical inferences by mathematical linear ine­

qualities has been examined by (Grossman, 1990) or (Ra,1990) . For 

example the logical expression or inference PI =::} P2 is equivalent to: 1) 

-, PI v P2 (Clocks in, 1984) and ; 2)I-PI+P2 ~ 1 or PI - P2 ~ 0 

(Ra, 1990) , where Pi are binary variables. For example if PI = 1 , then 

for the inequality to be satisfied, P2 must also be 1, which is the same as 

PI=::} P 2· Another example is -, YI v --. Y2 v z which is equivalent to the 

mathematical inequality (4.1). 
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(4.1) 

Integer variables can also be used to represent disjunctive constraints 
(Nemhauser, 1988) or model the activation or deactivation of a continu­
ous variable. For example, y = 1 :::) L ~ x ~ U and Y = 0 :::) x~, can be 
modeled by the inequality (4.2). This represents a disjunctive constraint 
on x or a (de)activation of a continuous variable x by a binary variable y. 

Ly ~x ~Uy (4.2) 

4.2 SOLUTION OF UNSTRUCTURED IPs 

We will now look at a few general techniques for solving IPs with no 
apparent structure (see chapter 4.3 for more details on structure). These 
IPs are called unstructured IPs. The first step to solving an IP is to 
transform the IP into a relaxed LP and solve the LP. We transform an IP 
into a relaxed LP by removing the integrality constraints on the variables 
and allowing them to be solved as real positive numbers. For example 
we can replace XeE{O, I} with l~e~O. If we obtain an all integral solu-

tion then we have found an optimal solution to our problem. Proof that 
the solution is globally optimal comes from the duality theory of LPs 
(Nemhauser, 1988) because we are solving the IP as an LP. In our LP 
solution if one or more variables are not integral then we. have to look for 

other procedures to solve for the integral variables. This section will 
address this problem. We will assume that we are solving for binary 
variables (since any integer variable can be represented by a sum of 
binary variables). 

We will first define some IP terms commonly used. There exists a 
bounded polyhedron for any rational bounded system of linear inequali­
ties. Figure 4.2a) gives an example of a polyhedron defined by its con­
straints, Ax ~ b. We will call the convex hull of integer vectors an 
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integral polyhedron. This is also illustrated in figure 4.2b), where the 

linear inequalities (now called facets) intersect at integer values 

(represented by the dots). These facets are of dimension one less than the 

dimension of the polyhedron. It was proved that for any bounded system 

of rational linear inequalities there exists an integral polyhedron, and in 

fact the facets are linear combinations of the inequalities defining the 

polyhedron. Unfortunately for most problems we do not know how to 

form these linear combinations or in other words we do not know what 

the facets look like. Furthermore even if we did there may be an 

exponential number of them. A final term to defme is a cut. A cut is a 

valid linear inequality that cuts away fractional values from the existing 

linear programming fractional solution. For example in figure 4.2c) the 

dotted lines represent cuts. 

(a) (b) (c) 

Figure 4.2. (a) illustrates a bounded polyhedron, (b) shows the 

corresponding integral polyhedron, and (c) identifies possible cuts, 

on the polyhedron of (a), as dotted lines. 



68 Architectural Synthesis 

General IPs may be difficult to solve (Nemhauser, 1988) due to 1) 

size of the formulation, 2) weakness of bounds, and 3) speed of the algo­

rithm. For example in 1) the number of variables or constraints may be 

very large, in 2) the difference of the lower bound and optimal solution 

of a variables may be great, or in 3) the algorithm for solving the prob­

lem may be very slow. Recent success in solving IPs have shown that 

(in addition to preprocessing) by tightening constraints, or more effec­

tively by using facets, (Nemhauser, 1988) one can dramatically improve 

the efficiency of solving IPs. We say that one constraint, Ox~o, is 

tighter, dominates, or is stronger than the other constraint, l;xs:~o, if 

{xER IOxS:Oo} c {xER Il;xs:~o}. One way to show this is to In other 

words let the polyhedron generated by the first set of constraints be pI 

and p2 for the second set of constraints, then pIc p2. One way to show 

this is to find a fractional point where XEpIrJ>2, therefore pI:#-p2, and 

(2) show that pl~p2. The efficiency of solving the IP is improved due 

to the fact that tighter models have a smaller set of feasible solutions 

which must be searched. Branch and bound algorithms can be used to 

solve IPs in practical times if additionally the model has a small number 

of variables and tight bounds are known. The most well known general 

solution techniques for integer programming are the enumerative tech­

niques such as branch and bound or heuristic variations. We will first 

review one of the oldest teChniques for solving IPs, called Gomory's cut­

ting planes algorithm. 

Gomory's cutting planes is more interesting from a theoretical point 

of view than from a practical point of view. Generally Gomory was able 

to prove that after a finite number of cuts on any bounded polyhedron P, 
an integral solution can be obtained. He found a general method for 

obtaining these cuts using the simplex tableau of the LP solution. Unfor­

tunately a very large number of cuts must be generated before an integral 

solution is found and few researchers use this technique on practical IPs 
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because it takes too long. 

The branch and bound method, or variation of it, may be used for a 

small number of variables «200). However it is possible that even for 

small problems the solution may not converge due to the shape of the 

polyhedron. For the example shown in figure 4.3 a long narrow needle 

shaped polyhedron may require a long time to converge with branch and 

bound techniques. The intersection of dashed lines represents the integer 

values. The bound on the objective function is also very bad, for exam­

ple the distance between X· and X. The objective of the branch and 

bound technique is to create new LPs by bounding each variable towards 

integral values. The tree fonned, by branching on a variable x~ r x· 1 
and x~ LX· J, is expanded only on nodes where the objective function is 

more optimum. From experience it has been found that an integral solu­

tion may be found quite early yet to finish the algorithm and therefore 

prove it is a global optimum takes a very large amount of time. 

Nevertheless it has been widely used for many small problems. Com­

mercial software uses branch and bound techniques and can generally 

handle up to 200 integer variables (Brooke, 1988) . 

There exist many heuristic techniques for solving IPs such as greedy 

algorithms, interchange heuristics, simulated annealing, and others 

(Nemhauser, 1988) . These techniques tradeoff optimality for efficiency. 

Tremendous success in solving many engineering problems with simu­

lated annealing has been achieved, even though the convergence to a glo­

bal optimum is exponential. Since combinatorial optimization problems 

have many local optima, some heuristic approaches, such as the greedy 

or interchange algorithm, are often run with random starting points. 

Simulated annealing is a different approach to avoiding local optima, by 

allowing the objective value to decrease only occasionally (for a minimi­

zation problem), to avoid getting stuck at a shallow local optimum and 

thus escaping towards another neighborhood with a smaller objective 
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Figure 4.3. An example polyhedron that may take a long time to con­

verge using a branch and bound techniques due to the needle shape 

of the polyhedron. 

value. 

A geometry of numbers approach (Cook, 1990) to solve particular 

JP's that cannot be solved using branch and bound has been researched. 

Generally JP's with not necessarily a large number of variables but those 

which exhibit a long needle-like polyhedron, as illustrated previously in 

figure 4.3, were solved using geometrical transformation. 

Using a quadratic potential function projected on a ellipsoid the 

recent work of Karmarkar (Karmarkar, 1990) has shown that large sized 

integer problems known as the satisfiability problems can be solved. 

However if an objective function is required only a locally optimal solu­

tion is possible and there exists no guarantee of finding a solution. Thus 
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this approach seems to be directed towards a problem characterized by a 

small number of integral optimal solutions. 

4.3 POLYHEDRAL APPROACHES TO SOLVING IPs 

In general solving an IP problem is NP hard (Garey. 1979) . How­

ever, analogous to special graphs in graph theory, there exist special 

techniques for solving some IPs. Thus all IPs are not equivalent in diffi­

culty in all respects. For example to solve a node packing IP problem on 

a graph which is claw-free (ie. 3 no KI,3 I) requires only polynomial 

time. using Minty's (Minty. 1980) algorithm. This is analogous to the 

graph theory approaches where polynomial algorithms are known to exist 

if the graph at hand is of a particular structure (ie. interval graph for poly­

nomial time algorithms that perfonn node coloring (Golumbic.1980) ). 

We say that these IPs have structure. Additionally IPs where some con­

straint has this property are said to have some structure. In IP we can 

often obtain good bounds on a particular problem and often solve for 

integer variables using this structure, even when no known graph theoret­

ical algorithms, heuristics or fonnulations may exist. But how can we 

find this structure? We can often do this through proper model fonnula­

tion. 

The research focus over the past 25 years in IP has been to study 

polyhedra characteristics of a problem and thus define structure which 

may help in its solution. This was motivated by the desire to obtain tight 

fonnulations of the problems rather than adhoc models, since IPs have 

exhibited extremely erratic perfonnance. A systematic way to obtain 

these fonnulations is to analyze facets. Unfortunately there exists no for­

mal method for obtaining facets of a given IP and even if we could find a 

I K x ,J is a complete bipartite graph with partition x,y. 
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method to generate all facets, most likely we couldn't solve the LP 

because there may be an extremely large number of them (possibly 

exponential). Balas and Padberg (Hammer,1979) have argued that its 

very useful to fmd facets or approximation of facets because only a few 

defme optimal points. Also it is known that if one used a branch and 

bound technique after extracting some facets, the algorithm would gen­

erate fewer live nodes (padberg, 1979) and terminate faster. This is 

mainly due to the better bound obtained from the use of facets. Thus by 

mapping a problem or subsets of a problem into a well studied class of 

problems, such as node packing, whose facets are partially characterized 

one may be able to improve the bounds of the problem and solve for 

integer variables more efficiently. 

Recent research has proven how important facets are. The tremen­

dous success of the use of facetial characteristics is demonstrated with 

the traveling salesman problem (Lawler, 1985) and large sparse unstruc­

tured IPs solved by using facets of subproblems in (Crowder, 1983) eta!. 

Further research (Lawler, 1985, Crowder, 1983) has also shown how it is 

highly advantageous to add facets to the LP until no new ones can be 

found even before you start to branch and bound. 

State of the art solutions of unstructured IP have been researched by 

(Crowder, 1983) using a combination of preprocessing, cutting planes 

(using knapsack facets of underlying polytopes), and 'branch and bound 

techniques to solve sparse 0-1 unstructured IPs of over 2000 variables in 

reasonable computation times (less than 1 cpu hour). The cutting planes 

which were facets of the underlying polytope (knapsack inequalities) 

were extremely useful and successful for exact solution of their class of 

problems. Their system was completely automatic, and represents state 

of the art for solving unstructured IPs. When a cut cannot be found a 

variable is selected to branch on. The definition and characterization of 

knapsack inequalities is given in section 4.5. 
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In 1980, Grotschel (Grotschel, 1980) demonstrated optimal solution 

of (over 7,000 integer variable) TSPs in 30 cpu sec to 2 cpu min to show 

the usefulness of the theoretical research in polyhedral characteristics. In 

all cases the problems could not be solved using existing branch and 

bound techniques, thus demonstrating the importance of polyhedral com­

binatorics in solving large scale optimization problems. In 1980 Padberg 

(padberg, 1980) solved for 50,000 integer variables of the TSP problem 

completely automatic to within 0.25% optimality in 30 minutes using 

automatically generated facets. Unfortunately the number of applications 

which can be modeled as a traveling salesman problem is not propor­

tional to the large amount of research that this problem has generated. 

Conversely there are other problems, such as fmding the maximum 

weighted directed cycle in a graph that have a large number of applica­

tions, but generated little research. This is also partially true for the node 

packing problem in a smaller sense as we shall see in section 4.4. 

4.4 THE NODE PACKING PROBLEM 

There exists a great deal of interest in the node packing problem 

because of a) the large number of practical applications and b) the 

stronger structural properties than the general integer programming prob­

lem (Padberg, 1973) . The node packing problem has also been called 

vertex packing and the stable set problem. It is also related to other prob­

lems in optimization such as the set covering, set packing, anti cliques, 

independent sets, and node covering, (padberg, 1973, Nemhauser, 1974) 

which we will not cover in this text. We will first illustrate the relation­

ship between integer programming, graph theory, and node packing, 

using a simple completely structured problem (that of maximum match­

ing). Secondly we will formally define the problem and then proceed to 

define the known facets of this problem. 
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Integer programming and graph theory have many areas of research 

which overlap. For example figure 4.4(a) illustrates a perfect matching 

problem. Each edge must be assigned a 0 or 1 value to maximize the 

sum of all edges with the restriction that each vertex is incident to at 

most one edge with a value 1. We can alternatively use the Hungarian 

Method or Kuhn Munkres (Bondy, 1976) algorithm to solve for a max­

imum matching in polynomial time. Alternatively one can solve an IP 

where constraints correspond to integral facets. In the later method we 

can solve the IP as an LP and be guaranteed to always obtain a solution 

with integer variables. TIle second constraint given below can be 

automatically generated as needed for a particular problem by at most 

2n-l min cut problems on the graph. In other words instead of generat­

ing this constraint for all odd sets of vertices we can solve the LP and 

automatically generate facets to cut away the fractional values and solve 

for integer variables using the relaxed LP. The complete model for 

weighted perfect matching is given below, where S(S) is the set of edges, 

where each edge has one vertex in S and the other vertex in S. 

Max ex 

I, xe=l, 'v'u£V. 
e£S(u) 

I, xe~l, 'v'ScV,ISlodd. 
e£8(S) 

The vertex representation of this problem (which we will define later 

as node packing) is shown in figure 4.4(b) where each edge is now a ver­

tex (variable) and edges of this new graph represent adjacent vertices of 

the matching graph in (a). The graph in figure 4.4(b) is a line graph 

obtained from (a), and it is known that the solution of this problem (node 

packing) on a line graph (Nemhauser, 1988) can be solved in polynomial 
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time. This example briefly illustrates the relationship between graph 

theory and integer programming (and node packing). However this rela­

tionship does not hold true for all cases. There exist some problems for 

which known polynomial algorithms exist (ie. it is well solved) however 

the associated polyhedron is nontrivial. An example of this is to find the 

edge in a node weighted graph whose sum of weights of its two incident 

vertices is maximum (Hammer, 1979) . 

XI,I j ij 1 2 3 

1 1 1 Xltt 
2 2 2 

3 3 3 

(a) (b) 

Figure 4.4. The matching problem represented by edge variables in (a) 

and vertex variables in (b). In the former case one assigns 0 or 1 to 

edges and in the later case one must solve a node packing problem, 

by assigning 0 or 1 to vertices. 

Like the traveling salesman problem characteristics of the integral 

facets are partially known (Nemhauser,1988) for the node packing prob­

lem. This problem is more formally stated below in two forms. One 

form is the graph theoretical view and the second is the mathematical 

linear system of equations view. 
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1. In graph theoretical form: Given a graph G = (V,E), maximize cx, 

such that 

Xu~ 0, 'iu e V. 

2 .. In linear systems of equations form: 

max ex 

Ax~e 

l'?x/?O,'ij eN ={l, ... ,n} 

where A is a mXn node edge (0,1) incidence matrix, c an arbitrary 

n-vector, and eT = (1, ... 1) is an m-vector (padberg, 1973) 

If all variable solutions are integral then a globally optimum solution 

to the problem has been found and we are done. A property unique to 

the node packing problem is that if not all variables solutions are 

integral, the variables that are integral remain integral (Nemhauser, 1988) 

in the optimum solution. Therefore the problem can be decomposed into 

a smaller problem to solve. However it is also known that this node 

packing formulation with node edge incidence constraints, generates very 

poor bounds (Padberg, 1979) . Furthermore studies which attempt to use 

this property to solve the problem have found that in most cases few 

integer variables are attained (Grimmett, 1985) . We will discuss the 

node packing problem using the graph theoretical formulation. 

Finding all integral facets for a particular node packing problem is 

NP-complete. This problem is known as the stable set polytope (SSP) 

problem, using graph theoretical tenninology. Nevertheless only integral 

facets over the region of the minimum objective function are required to 

obtain integral solutions. We will now defme some of these facets. 
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Known integral facets for the node packing problem are given in 

(4.3) and (4.4). 

LXu~l,/or all K cliques. 
uEK 

(4.3) 

A clique (or maximal complete subgraph) is a subset of nodes K for 

which there exists an edge in the graph for every pair of nodes in K. 

LXu~(IC 1-1)/2,/or all C odd cycles without chords. (4.4) 
u£C 

An odd cycle is an odd number of nodes in the graph, which form a 

subset, C, of the graph, such that the edges form a cycle. Without chords 

means that no 2 nodes of C can share an edge that doesn't belong to the 

cycle. Normally we use the term odd cycle for graphs with 5 or more 

nodes (connected in an odd cycle), and the term clique is used to describe 

the three node case (which also forms an odd cycle). In addition some 

odd cycles may be "lifted". The term lifting refers to placing a neighbour 

node (a node connected to several nodes of the odd cycle) into the ine­

quality with a positive coefficient Cj where Cj~1. This property makes 

node packing a more difficult problem than the matching problem where 

all coefficients of the integral polyhedron are 0 or 1. An example of lift­

ing an odd cycle, from a+b+c+d+e~2 to a+b+c+d+e+2f~2, is given 

in figure 4.5(c). Whenever node f is equal to one then all other nodes (a 

through e) must be zero therefore the odd cycle in 4.5(c) can be lifted by 

adding node f to the inequality with coefficient 2 (equal to the right hand 

side value). If edge (f,d) were removed from the graph of figure 4.5(c) 

then the coefficient of f in the inequality would be 1. 
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Figure 4.5. Node packing on the three graphs: an odd cycle facet in (a). 

An odd cycle with a chord which reduces to 3 edge inequalities and 

one clique facet in (b). (c) shows a lifted odd cycle facet. 

4.5 THE KNAPSACK PROBLEM 

In many IPs some constraints may fall into the category of knapsack 

inequalities. By generating known facets of this underlying (knapsack) 

polytope, one can often tighten the larger polytope represented by all ine­

qualities. This has been very successful as demonstrated by the award 

winning paper in (Crowder, 1983) . The definition and facet characteriza­

tion of the knapsack problem will be given in this section. 

Consider the following polytope, 

P={xl LajXj~,O!:xj~l},O-5:aj~,'VjfN. (4.5) 
jdV 

Minimization (or maximization) of some cost function subject to the ine­

quality (4.5) is known as the knapsack problem. We wish to find P[o the 

integral polyhedron for this problem. If we find the integral polyhedron 

then we can solve for the binary x variables for any cost function. 
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We will now introduce some notation. Let x be an integer vector in 

P. Then we can represent this fact by saying that the set S=(j IXj=1} is 

independent. In other words we say that a x vector is independent if it 

satisfies the inequality in (4.5). Now let C be a minimal dependent set. 

In other words we say that a x vector is dependent if it does not satisfy 

the inequality (4.5). The dependent set C refers to the set of subscripts j 

of the x vector such that Xj = 1. The dependent set C is minimal if and 

only if C \ {i} is independent 'V i £ C. In other words C is minimal if all 

of its subsets are independent The following inequality (4.6) is valid for 

PI· 

LXj~ICI-1. 
jEC 

(4.6) 

Now let us assume that in (4.5) al~2~ ... ~n. Given C. we can 

defme E(C)= C U{k:ak~aj.Vj£C}. 

Now the following inequality (4.7) is valid for PI and it is tighter 

than (4.6). 

L xj~ICI-1. 
jE£(C) 

(4.7) 

The inequality (4.7) is a facet of PI if and only if at least one of the 

four conditions given below are true. 

1. C=N 

2. E(C) = N and (i) C\{h,hJu{1} is independent. 

3. C = E(C) and (ii) C\{h}U{p}.p=min(jlj£N\E(C)} is indepen­

dent. 
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4. C c E(C) c N and (i) and (ii). 

Unfortunately if the a/s are 0,1,-1 these facets are not of much use. 

Generally if the a/s do vary in magnitude the facets are very useful. We 

will show how important these facets are for the application of architec­

tural synthesis in chapter to. 

This chapter has presented a brief look at research in integer pro­

gramming. In particular polyhedral characteristics and their use for solv­

ing structured and unstructured problems was emphasized. Due to the 

erratic behavior of integer programming problems, the use of polyhedral 

characteristics of a problem has a significant impact on solving the IP 

efficiently. Sufficient background material has now been presented to 

introduce the OASIC (for optimal architectural synthesis with interface 

constraints) methodology in the next chapter. Node packing facets, 

tightened constraints, and the use of knapsack inequalities which were 

introduced in this chapter are used in chapters 6 through 9 for the OASIC 

model. 



PART III: OPTIMAL ARCHITECTURAL 
SYNTHESIS WITH INTERFACES 



5. 

A METHODOLOGY FOR ARCHITECTURAL 
SYNTHESIS 

In this chapter we introduce the requirements for a high level syn­

thesis tool and outline exactly what constructs OASIC (Optimal Archi­

tectural Synthesis with Interface Constraints) the high level synthesis 

tool, to be defined in chapter 6 and 7, can support .. The high level sys­

tems design methodology and specific OASIC methodology are defined 

below. In summary we discuss the impact of the OASIC tool on indus­

trial CAD needs. 

5.1 REQUIREMENTS FOR HIGH LEVEL SYNTHESIS TOOLS 

Architectural synthesis is an important part of the VLSI design cycle. 

The objective of synthesizers is to transform an input algorithm into a 

hardware architecture that satisfies a set of constraints and minimizes or 

maximizes a given cost function. Synthesizers must produce globally 

optimal architectures and execute quickly in order to provide early 
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exploration of design tradeoffs. In addition synthesizers should be able 

to optimize linear or piecewise linear cost functions (for modeling area 

and delay), incorporate complex constraints (which may arise during 

design), interface to other hybrid processes (analog or asynchronous), 

and interface to tools for test incorporation. An architectural 

synthesizer's primary responsibility is to aid high level design explora­

tion which includes systems level design (more than one chip), where a 

number of different analog/asynchronous or digital paradigms exist 

Synthesizers must handle complex timing constraints for interfacing to 1) 

analog signal processing modules, 2) asynchronous modules (or data 

dependent operations), or 3) a different clocked domain of synchronous 

digital modules. Furthennore the DA synthesis tool should also support 

functional pipelining. 

The OASIe synthesizer, which will be described in chapters 6 and 7, 

perfonns simultaneous scheduling and allocation of functional units, 

registers, and interconnect. The following features are supported: 

• Timing constraints including minimum, maximum or fixed timing 

constraints. 

• Behavioral interface to unknown bounded and unbounded timing 

constraints, which may represent i) analog signal processing units, ii) 

other asynchronous processes, or iii) data dependent operations. 

• Piecewise linear area-delay cost functions 

• Random topologies 

• In addition to allocation, simultaneous selection of types of func­

tional units. 

• Pipelined, multicycle or single cycle functional units. 
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• Conditional code, implemented by sharing hardware resources, and 
loops. 

• Globally optimal synthesized architectural solutions with respect to 

cost function. 

• Functional pipelining for a fixed latency 

5.2 HIGH LEVEL METHODOLOGY 

A proposed fonnal methodology for high level systems design is 

shown in figure 5.1. The input to the methodology is a high level 

behavioral description, of the fonn described in chapter 2 or a mixed 

level (behavioral and structural) description of the system to be syn­

thesized. The final result of applying the methodology is one or more 

chips with a mixed analog or digital implementation. The high level par­

titioning may be perfonned by a partitioning tool or possibly by hand to 

detennine which design should be implemented in analog or digital and 

the later using synchronous or asynchronous logic. After the behavioral 

partitioning, the interface, as defined in chapter 2, between the digital 

synchronous and other analog or digital processes is defined. The mixed 

interface and behavioral specification is then input into the OASIC high 

level synthesis tool which maps the software into hardware. An optimal 

(and correct) schedule and allocation of hardware resources, forming an 

architecture, is synthesized by OASIC. 

The stage after OASIC perfonns a second optimization which binds 

operations to hardware to minimize the number of bus drivers or bus 

connections. This binding problem is addressed in chapter 12 of part IV 

in the context of test incorporation. The future extension of OASIC 

involves the optimization of the binding phase simultaneously with test 

incorporation. The OASIC stage is very important and must be per­

fonned before the binding stage. OASIC minimizes the larger com­

ponents of the design, ie. functional units, busses, and registers. Also 
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since OASIC can solve for globally optimal architectures and schedules 

we believe that one can obtain solutions very close to the global optimum 

of the simultaneous scheduling, allocation, and binding problem, with 

respect to minimizing an area delay cost function. The later problem has 

never been formulated or solved. Note that the model formulation of 

OASIC can be extended for solving this and other similar problems as 

discussed in the future research part V. In fact OASIC is the first metho­

dology to mathematically formulate and to solve simultaneous schedul­

ing and allocation of all possible hardware resources to global optimums. 

In a systems design methodology this provides early design exploration. 

Once a designer decides upon which area-delay cost best suits her/his 

design application using OASIC, she/he can justify using more time to 

solve the binding problem and therefore obtain an optimal architectural 

design solution. In the next section we will look at a more detailed view 

ofOASIC. 

5.3 OASIC METHODOLOGY 

In this section we will discuss the OASIC methodology in detail. 

Figure 5.2 illustrates the flow chart of OASIC. We assume that a DAG 

describing the behavior and interface constraints is input along with an 

area delay cost function. The OASIC methodology avoids early binding 

or making early design decisions which may be poor. An integer pro­

gramming model is used to specify the function of an architectural syn­

thesizer. Two models will be presented in chapters 6 and 7 and are illus­

trated in figure 5.2 as Xj,j,k and Xj,k respectively. The OASIC methodol-

ogy can be divided into preprocessing stages, and optimization stages. 

The preprocessing stages provide the application specific data for the IP 

model. As soon as possible and as late as possible schedules are 

obtained first. This is a well known problem whose solution was dis­

cussed in chapter 3.3.1. A set of functional units can be selected by 
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operation grouping or by the user. Other model specific preprocessing is 

discussed in section 5.5. The optimization phase can provide an early 

prediction or an optimized schedule and hardware allocation. The early 

prediction phase is used for early design exploration to study the area­

delay characteristics of the particular input algorithm. This phase is 

important since the cost function is an estimate of the area-delay parame­

ters. By varying the cost parameters one can explore optimal architec­

tures. After the designer has decided on which architectures they are 

interested in, they can proceed to the solution phase of OASIC to obtain 

the complete schedule and allocation of hardware. The OASIC metho­

dology is designed to avoid large amounts of feedback by using area­

delay cost functions, solving for globally optimal solutions, and support­

ing direct interface to external or analog/asynchronous operations which 

may have complex timing constraints. These optimized early decisions 

are believed to have a significant impact on the final VLSI implementa­

tion thus decreasing the need for feedback. 

5.4 AN INTRODUCTION TO OASIC 

In chapter 4 we provided the definition and previous research for dif­

ferent subtasks involved in the architectural synthesis problem. Now we 

will identify the two major architectural synthesis problems for which we 

present a model in chapters 6 and 7. An exact definition for these prob­

lems in the context of architectural synthesis is given below. 
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PROBLEM 1 

Produce a schedule, by mapping each code operation to a time (main­

taining the partial order among operations), and map each operation to a 

functional unit. Simultaneously select and allocate functional units, and 

schedule operations to minimize an area cost function. 

The structured model in chapter 6 solves problem 1 (see figure 5.2 

Xi,j,k). This problem has been called simultaneous scheduling, and 

selection and allocation offunctional units. 

PROBLEM 2 

Produce a schedule, by mapping each code operation to a time (main­

taining the partial order among operations) that minimizes a piecewise 

linear (area and delay) cost function of the number of functional units, 

registers, busses, and execution time (the total number of csteps 

required to execute the algorithm on the final architecture). 

The area-delay model in chapter 7 solves problem 2 (see figure 5.2 

Xj,k). This problem has been called simultaneous scheduling, and allo-

cation of functional units, busses, and registers. Unlike problem 1 this 

model does not select a type of functional unit. 

As discussed in chapter 3 the basis of both problems is precedence 

constraint scheduling. Our submodel for solving this subproblem is new 

and we will prove its advantages over previous research in the following 

chapters. Advances in computers providing faster computations and 

larger memories for mathematical software has also had a great impact 

on this modeling area. 
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The following algorithmic and complex constraints are also sup­

ported by OASIC's two models. The constraint fonnulations are 

presented in chapters 8 and 9. 

Additional Features to Support for Problems 1 and 2. 

The following features are to be supported: (1) Interface to analog 

and asynchronous processes, (2) Minimum and maximum timing con­

straints, (3) Conditional Code, (4) Functional Pipelining, (5) Make use of 

regularity and hierarchy, and (6) flexible piecewise linear cost functions. 

Many subtasks of architectural synthesis, such as minimizing regis­

ters in the presence of general conditional code, can not be solved to glo­

bal optima using previous algorithms. Thus not only is the larger prob­

lem of simultaneous scheduling and allocation being solved for the first 

time but many of its subproblems can now for the first time be solved 

optimally by OASIC. Furthennore as we shall demonstrate it is easy to 

incorporate these above features (shown in the box) into our model, 

whereas it may be difficult to make modifications to heuristics of previ­

ous synthesizers. We will show in chapter 10 that it is feasible to solve 

to global optima including these features in our model. 

5.5 OASIC TERMINOLOGY, ASSUMPTIONS, AND 

PREPROCESSING 

The tenninology used and assumptions made for this mathematical 

model will be described in this section. 
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5.5.1 Terminology 

1. k = code operation. A partial order (or precedence constraint) 

between kl and k2 is represented by kl <- k2 (Garey, 1979) , or in 

other words kl must execute before k2. Let K represent the total 

number of code operations in the input algorithm. Let A represent 

the number of arcs in the DAG. 

2. j = a time, or a control step estep, j=1,2, ... .,JUB, JUB = the upper 

bound on number of csteps given by the user. Te = total optimized 

number of csteps required to execute the DAG on the architecture. 

3. i = a functional unit. i=1,2, ... ,L/t UB, It = the number of functional 
t 

units of type t It UB is the upper bound on the number of functional 

units of type t. For example t=1 (for adders) or t=2 (for alus). We 

will also use kef to show that k can be mapped to functional unit 

type t. 

4. m = a register, m=1,2, ... ,RUB, R = the number of registers. 

5. 1= a bus, i=1,2, ... ,BUB, B = the number of busses. 

6. X;,j,k =1, represents the assignment of 

code operation k to functional unit i, at cstep j. 

7. j £ R (k) means that j is lower bounded by the asap scheduling time 

and upper bounded by the alap scheduling time for code operation k 

or je{jasap(k),Uasap(k)+l), ... ,jalap(kY-

8. time(k1, k~ :s; or ~ or = T, denotes the (maximum or minimum or 

fixed) timing constraint between two operations, or subsets of opera­

tions. In other words the number of csteps between kl and k2 is 

:S;,~,=T. 
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9. izeOp(Cz.Lz)' refers to the functional unit characteristics where Cz 

is the execution time (number of csteps from when the input data is 

ready to the time when the output data is available) , and Lz is the 

latency time (minimum time between successive data input values 

being accepted by the functional unit). We will use the following 

notation ( which assumes a one to one mapping of operations to 

types of functional units), because it is easier to write the constraints 

of the model, where ket, the notation will be kzeOp(Cz,Lz) as 

defmed above. 

10. In(t)= the number of inputs for functional unit type 1, In(t) = 0,1, or 

2. Out(t) = the number of outputs for functional unit type t, Out(t) 

=1 nonnally. Similarly for a one to one mapping we can use the 

notation In(k), where In(k) = In(t) I ket. 

5.5.2 Assumptions 

The current assumptions made in our model are listed below. Some 

of the extensions discussed in chapter 11 deal with removing these res­

trictions. 

• Functional units that are chained must be specified by the user. 

• Same bit width for bus allocation 

• global and local code transfonnations (ie. loop unrolling) and parti­

tioning of the DAG or input algorithm (into more than one chip) 

could be perfonned by other tools before OASIC. 

• Global data broadcasts are specified in the DAG by the user (see 

chapters 6 and 7). 
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5.5.3 Preprocessing 

Preprocessing that includes high level code transfonns (such as those 

produced by optimizing compilers), conditional code extraction of blocks 

or branches, and regularity extraction are perfonned at a level higher than 

OASIC. This is consistent with current higher level tools such as SAW 

(Walker,1987) ,that are user interactive. Architectural synthesizers are 

usually embedded underneath these tools. The only necessary prepro­

cessing that must be done before input to OASIC is easily automated. 

This includes asap and alap scheduling and was discussed in chapter 3. 

After preprocessing the user must input their choice of types of func­

tional units for allocation. Operation grouping is defined by the user 

before allocation to prevent illegal functional units from being allocated. 

An illegal functional unit is a group of operations which cannot all be 

perfonned by a single functional unit in the library. Our objective is then 

to identify legal code operation groups which may be executed by a 

hardware unit from an existing library. 

Upper bounds on variables of the objective function are not required, 

however they can improve perfonnance if specified (by the user) by 

decreasing the size of the search space. For example the area may not 

exceed a certain value or the number of clock periods required to execute 

one pass of the DAG (or to execute a conditional path) may not exceed a 

given number of cycles. 

In this chapter we have described the OASIC architectural synthesis 

methodology in the context of a high level methodology for mixed tech­

nology systems design. In the next two chapters we will present the 

basic OASIC model. In chapter 6 selection of the type of functional 

units is addressed, and facets of the node packing polytope are extracted. 

Chapter 7 presents a complete model obtained by trading off structure for 

a reduction in the number of variables. Facet extraction of subpolytopes 

and tightening of unstructured constraints are used to fonn the fmal 
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model. The use of the OASIC model for supporting general algorithmic 

constructions such as functional pipelining and for supporting behavioral 

interfaces are covered in chapters 8 and 9. 



6. 

SIMULT ANEOUS SCHEDULING, AND SELECTION 
AND ALLOCATION OF FUNCTIONAL UNITS 

A model for solving problem 1 of chapter 5 (section 5.4), simultane­

ous scheduling and selection and allocation of functional units, will be 

presented in this chapter. In general the problem is modeled as an 

assignment problem, where the variables represent a placement of code 

operations in two-dimensional space. The two-dimensional space is 

defmed by time (in terms of control steps) and area (in terms of func­

tional units). 

The OASIC assignment model is not unlike that used in the simu­

lated annealing algorithm (Devadas,1989) where our Xi,j,k variable 

represents the placement of operations on a two-dimensional grid. Thus 

the explosive nature of the problem is the same. However, in the simu­

lated annealing approach, they do not allocate interconnections but use a 

heuristic measure (the number of parallel data transfers counting only the 
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number of distinct sources for broadcasts data transfers). In addition the 

calculation of number of registers is included only in the cost function, 

and a mathematical formulation is not given. In addition the cost func­

tion is used to eliminate illegal solutions that their approach will 

encounter, whereas we use preprocessing to eliminate illegal designs 

before the design search begins. 

In Pfahlers graph representation (Pfahler,1987) interconnection is 

also not considered and proper calculation of registers cannot be per­

formed. Finally the OASIC model was developed because it was very 

simple to incorporate interconnect, in addition to complex timing con­

straints, to be discussed in chapter 9. Incorporation of interconnect allo­

cation has not been performed by any other simultaneous approaches. 

Only heuristics to estimate interconnect has been examined by previous 

methods (Devadas, 1989, Paulin, 1989) . 

6.1 THE FORMAL MODEL 

We will present the initial IP model formulated for solving problem 

1. We will show how one can translate this model into the node packing 

problem. Using the node packing graphs for simple DAGs, extracted 

facets were generalized and used to form the IP model for OASIC. The 

IP model uses variables Xj,j,k to represent the two dimensional placement 

of code operations and consists of three types of general constraints dis­

cussed below. 

Equation (6.1), called the operation assignment constraint, ensures 

that each code operation will be assigned to one control step, functional 

unit, and register. 
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L L Xj,j,k = I , 'Vk. (6.1) 
j j£R(k) 

Inequality (6.2), called the functional unit constraint, prevents more 

than one code operation from being assigned to the same functional unit 

at the same control step. 

jl=j+L-l 

L L Xj,jJ,k ~ 1 , 'Vi , j. (6.2) 
k jl=j 

k E Op(c,L) jl E R(k) 

Inequality (6.3), called the precedence constraint, prevents an opera­

tion, kl from being scheduled after operation k2 whenever there is a par-

tial order between these operations such that kl <. k2. 

~ (x· . k + X· . k ) < 1 ,£.J 1,11, I I,h, 2 - , 
(6.3) 

X· . k = 0 or 1. I,j, (6.4) 

When we relax (6.4) to O~~l, the system of linear inequalities 

becomes Ax ~ b, where A is a (0,1) matrix (or all entries in A are 0 or 1) 

and b is a unit vector. This problem, known as set packing 

(Nemhauser,1988) , can be transformed into a graph, G=(V,E) (called 

the node packing graph), from which we can extract some integral facets 

of the node packing problem. First we map each variable, Xj,j,k' into a 

vertex, UEV. Edges of the graph, E, are defined by the following pro­

cedure. For each row of the matrix A (representing a constraint), the 

variables (or columns) with a 'I' entry define a complete subgraph 2 (see 

chapter 4) in G (Nemhauser, 1988) The graph G represents the node (or 

2 A complete subgraph is a subgraph KeG ,K =(V 1 ,E 1), such that V 

U,VEV1, (u,v)EE l . 



100 Architectural Synthesis 

vertex) packing problem, which can be transfonned from any system of 

linear inequalities with a (0,1) constraint matrix (A) and a unit vector (b) 

on the right hand side. 

Known integral facets for the node packing problem are (as outlined 

in chapter 4) cliques and odd chordless cycles. 

LXu~l,'v'K cliques. 
u£l( 

(i) 

LXu~(IC l-l)/2,'v'C chordless odd cycles,IC 1~5. (ii) 
ute 

and others in (Nemhauser,1988) which involve a lifting procedure for 

odd cycles. For the architectural synthesis problem, clique (integral) 

facets were extracted from node packing graphs representing some small 

input algorithm examples. The facets were then generalized and placed 

in a relaxed LP model. The LP model was applied to some benchmark 

architectural synthesis examples and optimized for different cost func­

tions. 

The one-dimensional model (Xj,k) is used to illustrate the facet 

extraction and generalization. This model can be visualized as the place­

ment of code operations into control steps. For example consider two 

code operations with a partial order between them, 

{a,bla<-b, a,bEOp(l,l)}, and an upper bound of5 control steps. The 

node packing graph is shown in figure 6.1. The edges are fonned in the 

graph using inequality (6.3), or in other words all illegally scheduled 

combinations of a and b fonn edges in the graph. Some clique facets of 

this graph are shown in bold in figure 6.1a) and b). We can generalize 

this clique facet to (6.5), which we will call the precedence or partial 

order constraint. 
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L xh.k)+ L xh,k2"5: 1, (6.5) 
h!.j+Crl j!.h 
hfR(k) j~(k~ 

(a) (b) 

Figure 6.1. Node packing graph for 2 code operations (a<·b). showing 

in bold a clique facet for j=2 in (a) and j=3 in (b) of inequality (5). 

A different fonnulation of the one-dimensional precedence constraint 

fonnulation was presented in (Baker, 1974, Lee, 1989) as: 

L U)xj,k2- L U)Xj,k1"5:-1, Vk2<·k1· (6.5*) 
jfR(k~ jfR(k) 

Even though the set of integer feasible solutions are the same, the fonnu­

lation (6.5) is tighter than (6.5*) and the proof is given below. To the 

best of our knowledge inequality (6.5) has not previously been presented 

in the literature. As we will show in chapter 10 the tightness property is 

far more important with respect to solving the IP more efficiently than 

the number of constraints generated (which for 6.5* is less than for 6.5). 
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To Prove: (6.5) is Tighter Than (6.5*). 

Let p5 represent the scheduling polytope whose constraint set is 

only generated by (6.5) and similarly for p5*. This is equivalent to 

showing that p5 cP5* . 

1) p5:¢p5* 

Proof: Consider the following fractional solution to the schedul­

ing problem a,b la<·b, where the upper bound on the number 

of control steps is 4. 

k j=l j=2 j=3 j=4 

a .9 0 .1 

b .5 .5 0 
This solution is violated by (6.5)= (X3,a+X3,b +X2,b)= 

(.1)+(.5)+(.5) =1.1>1 
3 4 

and feasible for (6.5*)= LjXj,a - LjXj,b =1(.9) +3(.1) -2(.5) 
j=l j=2 

-3(.5) =-1.3S-1. Therefore p5¢p5* QED. 

2) p5~p5* 

Proof: 

X3,a+X2,a+Xl,a 

x3,a+x 2,a 

x3,a 

o 

=1 

~1-X2,b 

~1-X2,b-x3,b 

=1-X2,b-x 3,b-X4,b 

now we have to derive (6.5*): Xl,a+2 X2,a+3 x3,a 
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-2 x2,b -3 x3,b -4 x4,b ~-l 

lhs of (6.5*): ~-3X2,b-2x3,b-X4,b-2x2,b-3x3,b-4x4,b (by 

substitution) 

=4-5 (x2,b+X3,b+X4,b)=-1. 

Since we have shown that p5~p5* and p5#p5* therefore we 

have proved that p5cP5* . 

End of Proof. 

Thus (6.5) is a tighter formulation of the precedence constraint than 

(6.5*). Thus improvements in IP solution efficiency and better bounds 

on variables are expected with (6.5) since it is a tighter formulation 

(Nemhauser, 1988) On further analysis of the graph in figure 6.1, one can 

see that this graph is strictly characterized by cliques completely gen­

erated by (6.1) and (6.5), and G has no chordless odd cycles. Thus G is a 

perfect graph (by definition) and its integral polytope is completely 

characterized by inequalities (6.1) and (6.5). For tree structured DAGs, 

we can prove that the node packing graph generated by (6.1) and (6.5) is 

a perfect graph by proving that the graph is triangulated (and therefore 

perfect) using the algorithm in (Golumbic, 1980) We can further show 

that (6.1) and (6.5) generate all cliques and therefore represent integral 

polyhedrons for the scheduling problem. 

To illustrate how the model changes as we add one more dimension 

of complexity (functional unit allocation), consider three code operations 

{a,b,c la<·c ,b<·c ,a,b,cEOp(1,l)}, with an upper bound of 3 control 

steps and an upper bound of 2 functional units. The node packing graph 

for this example is given in figure 6.2. Clearly constraint (6.1) generates 

cliques and therefore corresponds to integral facets. Constraint (6.2) 

shown in bold in figure 6.2a) is a clique "i/ i, j= 1 (by definition), however 
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2 3 

(b) 

Figure 6.2. Node packing graph for 3 code operations 

{a,b,c I a<·c ,b<·c} showing in bold inequality (6.2) in a) and ine­

quality (6.6) in b). 

it is not a maximal complete subgraph 'V i, j=2. The additional vertex, 

x2,2,c is required 'V ij=2 in order to fonn a clique facet. Thus some gen-

eralized inequalities, such as (6.2), mayor may not generate facets in a 

specific algorithmic implementation. Constraint (6.5) for the two­

dimensional model can be modified by replacing Xj,k with DiJ,k as 
i 

shown in inequality (6.6). Inequality (3) is now reduDdant and can be 

removed from the model and replaced with inequality (6.6), which was 

proven to be a facet of the one-dimensional model. Inequality (6.6) also 

generates clique facets for the two-dimensional example shown in figure 

6.2b). Thus some facets of lower dimensional models, such as (6.5), 

remain facets when higher dimensions are added (6.6). 
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1:( 1: Xi,it,k, + 1: XiJ2,k) s: 1, (6.6) 
it Sj+Cr 1 jSh 
it£R(k,) h£R(kv 

Finally constraint (6.4) can be relaxed to the following constraint 

(6.7) since we now have some integral facets and can solve using linear 

programming. 

(6.7) 

It is also interesting to note that there are only two additional (lifted odd 

cycle) facets 3, not given or used in our model (compared with nine 

clique inequalities) • which are needed to completely characterize the 

integral polytope for the three code operation example in figure 6.2. 

Thus the general model for problem I, simultaneous scheduling and 

functional unit allocation. consists of variables Xi,j,k with constraints 

(6.1). (6.2), (6.6). and (6.7). 

6.2 COST FUNCTIONS 

The cost (or objective) function for the IP can be formulated as any 

linear or piecewise linear function of the variables. An example of the 

two types of cost functions are the following: 

3 The additional (lifted odd cycle) facets areX2,1,a+X2,l,b+Di,2,ks:2 and 
i,k 

Xl,l,a +Xl,l,b + Di,2,kS:2. 
i,k 
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i 1 / 

Minimize L L L(Xi,},k!(i,j,k)) 
iO l k 

i 1 / 

Maximize L L Lxi,},k 
iO l k 

In the first objective function, f(i,j,k), can be a linear or piecewise linear 

cost function. For example f(i,j,k) = c_fu(i) +c_time(j) can be used to 

explore the tradeoff of resources. The second objective function is called 

the feasibility cost function where all resources are fixed and the optim­

izer determines whether a synthesized hardware solution exists using 

these bounds. 

Many other forms are possible including an area and delay model 

similar to (Devadas, 1989) which requires additional variables. Two 

alternative formulations can be used for an area delay cost function. 

Both will be discussed below. 

The first formulation can be used for linear (or very simple piecewise 

linear) area delay cost functions and introduces the integer variable It, 

where It= the number of functional units of type t. The variable It can be 

formulated with the constraint shown below to minimize an area cost 

function Larea(t)II' where area(t) is the area of one functional unit of 

type t An extension for simple piecewise linear area cost functions is 

given in chapter 7 section 7.5. 

L L Xi,j,k ~ It> 'V j. 
k£t i £t 

The second formulation can be used for piecewise linear cost func­

tions. It uses variables Zit' where zit=1 represents the allocation of one 

(the ith) functional unit of type t. The activation of continuous variables 

defined in chapter 4 to threshold the summation of partial indices of the 
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variables is used to fonnulate the z variable (see inequality given below). 

The piecewise linear cost function is 2,zit a(it), where a(it) is the cost of 
it 

one (the ith) functional unit of type t. Since the inequality introduced by 

the binary variable z is not a node packing inequality, the problem is no 

longer strictly a node packing problem. 

ZitE{O,l}, Zit ~ 2ht,j,k> Zit ~ (Dit,j,k)IK, 't:Iit · 
j,k j,k 

6.3 FUNCTIONAL UNIT TYPE SELECTION 

The structured OASIC model can simultaneously select the type of 

functional units to optimize the particular cost functions. For example it 

is possible that for a specific area-delay cost function a pipelined multi­

plier provides a more optimal implementation as opposed to a multicy­

c1ed multiplier. We can use a different general constraint on each map­

ping of code operation to type of functional unit. For example to select a 

3 cycle (t=1) or 2 cycle (t=2) multiplying functional unit we generate two 

constraints using inequality (6.6). First we replace L with L for 
it 

k2<·k1, k2Et, of inequality (6.6) and use C2=3 fort=1 and C2=2 fort=2. 

Inequality (6.2) would also be used more than once for each code opera­

tion in the same manner. 

Constraints can also be fonnulated for chaining operations. For 

example the designer could optimally detennine whether it is advanta­

geous to select (simultaneously with allocation and scheduling) a func­

tional unit that chains operations. A new type of functional unit (t=3) is 

created (to represent the chained operations). For t=3 and kl <·k2 where 

kl and k2 E t=3, a fixed timing constraint between kl and k2 is used in 

place of inequality (6.6). The fixed timing constraint (to be discussed in 
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detail in chapter 9) essentially sets Xi3J,k\=Xi3J,kz,'Vi3,j. For example let 

us assume the functional unit solves «c*d) + (a+b» in one cstep by 

chaining the two additions and one multiplication together. Then the 

fixed timing constraints for k+ <·k+,k. <·k+ is formulated. Additionally 

we need the following constraints LXi3,j,k~,'Vi3,j and 
k 

k£+ 

LXi3,j,k~1,'Vi3,j to ensure only two adders and one multiplier are allo-
k 

kE.· 

cated. This formulation also allows any addition or chaining of two 

additions or any multiplication or «c*d) + e) or «c*d) + (a+b» to share 

the functional unit. 

The OASIC model for simultaneous scheduling and allocation and 

selection of functional units was presented in this chapter. The node 

packing characteristics, introduced in chapter 4, were used to extract 

facets of the polytope. The next model to be presented in chapter 7 

directly supports area-delay cost functions, which are a good vehicle for 

design exploration and an important part of the design methodology as 

discussed in chapter 3 and 5. In the OASIC model of the next chapter 

the very tight (node packing) precedence constraints, presented in this 

chapter, are kept and unstructured constraints are used for allocating the 

hardware resources. 



7. 

OASIC: AREA-DELAY CONSTRAINED ARCHITECTURAL 
SYNTHESIS 

The major difference between the model described in this chapter 

and the previous structured model in chapter 6 is that we cannot simul­

taneously optimize the selection of types of functional units without the 

introduction of nonlinear inequalitiest. In other words the mapping of 

operations to types of functional units must be a one to one (or many to 

one) mapping. 

The area-delay OASIC model directly supports area-delay cost func­

tions without disjunctive constraints, the latter required by the OASIC 

model in chapter 6. The area-delay model in general trades off structure 

t For example if A= 1 select a two cycle multiplier, ., else (A=O) select a 

pipelined multiplier, ·pl, ineqUality (7.3) becomes, Dj,k. +A Dj-l,k. g. 
k. k. 
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for size (in variables and equations). Although the constraints are 

unstructured we have identified application specific cases where we can 

lift some constraints and employed the use of knapsack inequalities to 

further tighten the model. 

Preprocessing now involves selection of functional unit types. Types 

of functional units can be selected by the designer by hand or by using 

the previous model (chapter 6) to simultaneously schedule and select and 

allocate functional units. The asap and alap preprocessing described in 

3.3.1 is also required for the area-delay model. 

Other preprocessing unique to this model involves edge reduction of 

the DAG for register allocation constraint and the identification of spe­

cial operations to be defined in section 7.6. The later is used for tighten­

ing constraints. The edge reduction algorithm will be described in this 

chapter. Finally after lower bounds are computed knapsack inequalities, 

defmed in chapter 4, can be automatically generated to improve these 

bounds. An automatic algorithm for extracting knapsack inequalities is 

explained in (Crowder,1983) . We will briefly discuss the variation for 

our particular application, architectural synthesis. 

7.1 THE PRECEDENCE CONSTRAINED SCHEDULING MODEL 

The operation assignment constraint, (7.1), ensures that each opera­

tion will be assigned to one cstep. The precedence constraint, (7.2), 

prevents an operation k2 from being scheduled after operation k1 when-

ever there is a partial order between these operations such that k2 <·k l' 

This constraint is the same as the precedence constraint (6.5) presented in 

chapter 6.2. 
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L Xj,k = 1, 'tIk. (7.1) 
j£R(k) 

L XjJ,k1+ L xh,k2~1, (7.2) 
jl~j,jlER(kl) j-(C2-1)~j2,j-foR(k2J 

7.2 FUNCTIONAL UNIT ALLOCATION 

The functional unit constraint, (7.3), ensures that no more than It 

functional units of type t (Lee, 1989, Baker, 1974) will be required in the 

solution. 

jl=j+{L-l) 

L L Xjl,k g " 'tIt,j. 
kfJ jl=j 

j£R(k) 

7.3 REGISTER ALLOCA nON 

(7.3) 

The register allocation constraint ensures that there are no more than 

R variables whose lifetimes overlap at any cstep. A variable lifetime can 

be represented by a (lifetime-defining) edge (k<·k/) between the defin-

ing operation, k, and the operation which last used the variable,k/. How­

ever in many algorithms each variable may be input to more than one 

code operation (k<.ke le>I). thus it is difficult to determine which ke 

should be the lifetime-defining edge. Two properties, transitivity and 

alap analysis, can be used to decrease the number of edges we must con­

sider for representing a variable lifetime. For example in figure 7.1a), 

(e=I,2) transitivity requires (k1 <·ki)=>(k2=k/) and in figure 7.1b) alap 

analysis requires (asap (ki)';?alap(k1))=> (k2=k/). This preprocessing 

can be done very fast and is outlined below: 
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Edge Reduction Algorithm 

Given the node-node adjacency matrix AjJ , where aj,j=1~i<.j, 

where ij are code operations. We will use this matrix to represent the 

DAG (or input algorithm). First a path matrix, T, is calculated. 

Secondly the asap/alap tables for each code operation and the path 

matrix are used to delete edges that cannot represent lifetimes. 

1) Compute matrix Tj,j' where tj,j=1~3 a path from code operation i 

to code operation j in the DAG. A depth first search of the DAG will 

find T. The general structure and pseudocode notation of this algo­

rithm was taken from (Golumbic, 1980) . 

Procedure DFSEARCH(v.L): 

begin 

mark v "visited" & set vEL 

for each w E Adj(v) do 

end 

if w is marked "unvisited" then 

begin 

set tv,w=1 'r;f vEL. 

DFSEARCH(w,L); 

end 

else if w is "visited" && 

tv,w == 0 then 

begin 

set tv,w=1 'r;f vEL 

tv,k=tw,k 'r;f k 

end 

2) Compute matrix Lj,j' where Ij,j=1~ edge i,j of the DAG cannot be 

eliminated by transitivity or alap analysis. Initially set L = A, and 

then eliminate entries 'r;f i, 
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'V h, h I h:¢:h, aj,h=ajJ2=1. 

If((th,h=l) v (asapUiy~alapUl)))=>lj,h::{). 

The L matrix is used to generated the register constraints since each 

entry represents a possible lifetime defining edge. 

We will now describe how the register allocation constraint (7.4) can 

ensure no more than R registers are allocated even with multiple edges 

representing a variable's lifetime. The following tenninology is used: (a) 

An arc. kn <-ke (whose head is kn and tail is ke). is said to cross cstep j 

if and only if R(kn)I'l{O,l, ... ,jj:¢:o and R(ke)I'l{j+l,j+2, ... ,Tej:¢:O; (b) 

e(n) = the number of arcs (kn <-ke,e~l). with head kn that cross at j 

(e(n) ~ e). For the general case where e(n)~l 'Vn. constraint (7.4) is gen­

erated, r:! e (n) times per cstep, for all maximal sets of arcs that cross j 

such that no two arcs in a set have the same head. For example if only 

one head (kj ) has e multiple arcs (kj<-kj,j=l, ... ,e.) that cross at j 

(e(i)=e), and the rest of the arcs have unique heads (e(n)=l'Vn:¢:i ), 
then (7.4) is generated e times (once for each kj ). In practise the number 

of constraints will not be a significant problem, because 1) the computa­

tion time for IP problems is not highly sensitive to the number of con­

straints (Nemhauser,1988) and 2) most algorithms will have small 

values of TIe(n) which intersect at the same cstep. The register alloca-n 
tion constraint (7.4), calculates two times the number of cut edges at each 

cstep, by dividing time and operations into four quadrants as shown in 

figure 7.2. For all ke E K:= {kelkn<-ke,e~l} or {kd means that the 

constraint (7.4) is generated for all maximal sets of arcs that cross j such 

that no two arcs in a set have the same head. 
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L ( L Xjl,k. + L Xj2,k.- L Xj3,k. (7.4) 
k. jl:S;j-(C.-l) j2>j j3:S;j 

k.<.k. jltR(k.) j2tR(k.) j3tR(k.) 

L Xj4,k) ~ 2 R, V j, ke E K: 
j4> j-(C.-l) 

j4tR(k.) 

(a) (b) 

Figure 7.1. Lifetime defining edges for the variable output from k are 

shown in bold using (a) transitivity analysis and (b) alap analysis 

(alap(kl)~sap(k2) ). 

7.4 BUS ALLOCATION 

Since we are interested in obtaining an exact measure of the number 

of busses (defined in chapter 2) of an architecture, we defme the number 

of parallel data transfers (pdt) as the maximum number of data transfers 

that occur at one time (counting transfers with distinct sources as the 

number of destinations as discussed in chapters 6 and 3) unlike previous 

(Devadas, 1989, Paulin, 1989) definitions. We constrain each hardware 

unit (register or functional unit) to have only one bus per input, unlike 

other heuristics (Huang, 1990) which cannot estimate additional multi­

plexors required later in the synthesis process. 
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Figure 7.2. Register allocation constraint illustrated with one cut edge, 

a<·b, at J (the other two edges cancel out because each edge has 

nodes in a ' +' and ' -' quadrant). 

As discussed in chapter 3 bus allocation even with fixed schedules is 

difficult due to the possibility of global data broadcasts. We will outline 

our approach to handling data broadcasts, that ensure an exact number of 

busses is calculated. In our model the user must identify operations 

which will be transmitted data by global data broadcasts. Data broad­

casts can therefore be modeled using fixed timing constraints 

(Gebotys, 1991c) on all pairs of destination operations and selecting one 

of the destination operations to contribute to the bus count. For the 

remainder of this chapter we will assume that these constraints have been 

incorporated and will not address data broadcasts further. Next the for­

mulation is presented for simultaneous scheduling and bus allocation. 

The bus allocation constraint, (7.5), ensures that at each cstep no 

more than B busses are required to transfer data between functional units 

and registers. An additional constraint (In(t))It ~B, 'rtt, or 

(In(t)+Out(t))ItGJ,'rttEop(1,l) is also used in the OASIC model to 

decrease the size of the search space. We will now show that this defined 

number of parallel data transfers is exactly equal to the number of busses 

in an optimal architectural solution for 1) module allocation, 2) 
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allocation of at most 2 types of functional units and 3) other cases. This 

is analogous to channel routing, where the left edge algorithm is 

guaranteed to fmd a route (architecture) that uses no more than B tracks 

(busses), calculated from the channel density (pdt), even if we require at 

most two sets (of data transfers to each of two inputs of a functional unit) 

of nets to be placed on distinct tracks (one distinct bus per input to each 

input of a functional unit). Previous research has not addressed this 

problem. As discussed in chapter 3, other synthesizers allocate busses 

after functional unit allocation. 

L (In(k)xj,k + L (Out(k1)xjl,k\ ~B, 'Vj. (7.5) 
k ~ 

jER(k) jlER(k\) 
jl=j-{C\-l) 

For t=3 the problem in the worst case requires l pdt/3 J additional 

busses and is NP complete. For example assume we have three (single 

cycled) functional units of different types (t=3) and all pairs of functional 

units are scheduled in parallel (but all 3 functional units are never 

scheduled at once). For example in figure 7.3a) the scheduled DAG is on 

the left and one possible architecture, with 3 types of functional units 

(+,*,-), is shown on the right The pdt would be calculated as (2*2+2=) 6, 

but (3*2+2=) 8 busses are required since each functional unit must have 

only one bus per input. Analogous to segmented channel routing, each 

of the three sets of data transfers into the three types of functional units 

must be placed on a separate segment (or input bus to that type of func­

tional unit). However the pdt is exact when not all pairs are scheduled at 

the same time (more than one type of functional unit can share a input 

bus with another different type of functional unit) or when all 3 are 

scheduled at least once in parallel or many other cases such as figure 

7.3b). Nevertheless since many DSP algorithms have only two types of 

functional units and in many practical applications the functional units 

have high utilization, the pdt will often be exactly equal to the number of 
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busses for t~3. 

(a) 

(b) 

Figure 7.3. Pdt for t=3 in (a) is not equal to B (pdt=6, B=8) and in (b) 

pdt is equal to B (pdt=B=7). 

We will now present proof that an architectural solution with B 

busses, R registers, and It functional units of type t (tQ) is always 

guaranteed to exist. We will prove this in two steps for the case where 

code operations are single cycle and therefore BinnB°ut==0, (where 

Bin(Bout) is the set of busses input to (output from) functional units, 
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IBinl+IBoutl=B). 

First we must show that an architecture exists with R registers, such 

that each register can have only one input bus chosen from Bout busses. 

This problem is independent of It functional units since each functional 

unit can output data to any bus (Bout) in theory. Each set of variables (a 

set has variables with nonoverlapping lifetimes ie. a register) can be 

merged (onto the same input bus) if no two variables have the same 

definition times. We can always obtain IBoutl merged sets, by swapping 

groups of variables between sets, and therefore both a minimum number 

of registers and busses is possible. In other words, analogous to channel 

routing this partitions R tracks into Bout busses or Bout = ~j) { # of 

variables defmed at cstep j} and R = 7 ~j) {# of overlapped lifetimes 

of variables assigned to bus 1 at cstep j}. 

Secondly we can show that an architecture with IBinl busses (where 

each input of a functional unit can only be assigned to one input bus) and 

It functional units can be guaranteed. This problem is independent of R 

since each register can output variables to any bus (Bin) in theory. The 

first observation is that input busses can only be shared between func­

tional units of different types (in order to guarantee a minimum of It 

functional units). For example if two ALUs can share input busses then 

they are never scheduled at the same time and therefore only one ALU is 

needed. Since we do not consider global data broadcasts here, functional 

units can share both input busses or none. We can now form a complete 

bipartite graph, KX,Y' where the X vertices represent functional units of 

type t=l, and the Y vertices represent functional units of type t=2. For 

each cstep of the schedule, we assign code operations to functional unit 

vertices of G and delete all edges between the assigned vertices. At each 

successive cstep we assign code operations to previously assigned 
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functional unit vertices and when this is no longer possible we assign 

them to new functional unit vertices and delete new edges. After all 

csteps have been exhausted. the cardinality of the maximum matching of 

the final graph. IMI. is the number of input busses shared by functional 

units (therefore IBinl=2(Ll"t-IMI). 

An extension to this proof (t=2) for multi cycle operations can also be 

done. In this case BinrJJ°ut=Bio~ (therefore whenever Bio is being 

used as an input bus. other functional units cannot output variables to 

Bi°cB°ut ) • however since BOut < Bin we can use the two separate 

proofs above to show that a minimum R and It can exist and pdt guaran-

tees that B busses are needed. The OASIC model is exact in allocation 

of all resources (t~) except bus drivers (which cannot be allocated 

before the binding phase. see Chapter 10). For the first time this pro­

vides us with an exact defined relationship between parallel data transfers 

and the number of busses required in the architecture. 

7.s COST FUNCTIONS 

Piecewise linear cost functions. defined in (Devadas. 1989) and for 

example shown in (7.6) below. are also supported. where 

Te=~U-l)xj,kOf4J. The special operation kout is used when there is more 
j 

than one operation which outputs a value at the end of the algorithm (or 

loop). Each of these last operations is defmed to precede kout. Then kout 

is used to define the last cstep of the algorithm or the end the loop. Simi­

lar to kin. kout is only used for the partial order and register allocation 

constraint and it does not participate in the functional unit allocation con­

straints. Other general piecewise linear functions. where for example the 

cost per register is different if there exists more than 5 registers are 

defmed in (Nemhauser.1988) and can be also modeled but require 
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additional binary variables. 

To illustrate a piecewise linear cost function assume we have a cost 

of to per register for the first 5 registers and a cost of 15 per register for 

the additional registers (Devadas, 1989) after the fifth. The register con­

straint (7.4) becomes ax ~ 2(R1+R2), RfB=5 and Rf'B=o, and part of 

the cost function becomes (10 15)(R1 R2l = c _reg R. 

7.6 APPLICATION SPECIFIC TIGHTENING OF CONSTRAINTS 

We additionally use ksep (and kout ) of the DAG to tighten functional 

unit and bus allocation constraints. These operations are present when­

ever one code operation, ksep ' precedes and/or is preceded by «. » all 

other operations. This operation is present at the beginning/end of loops, 

branches, and algorithms, and sometimes within basic blocks of code 

(such as the elliptic wave ftlter see chapter to). Tightened inequalities 

for functional unit allocation (7.7) and the bus allocation (7.8) are shown 

below. In (7.7) if ksep is not of type t then its coefficient is (ILB t) and in 

(7.8) if ksep is not a single cycle operation then its coefficient is 

(B LB -In(ksep))' 

jl=j+(L-l) LB . 
L L Xjl,k+(It -l)Xj,kupgI'Vt,j£R(ksep),ksepEt. (7.7) 
kfJ jl=j 

j£R(k) 
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L (In (k»Xj,k +(BLB-In(ksep)-Out(ksep»Xj,k,.p (7.8) 
k 

j£R(k) 

+ L 
k) 

jl£R(k1) 

jl=j-{C)-l) 

Knapsack inequalities of the bus constraint can be used to tighten the 

OASIC model whenever the coefficients of the x variables in (7.8) or 

(7.5) are different. This occurs whenever code operations of the DAG 

have different numbers of input variables or multicycle functional units 

are used. In the OASIC methodology the (integer rounded) lower bound 

calculation for the number of busses is fixed and knapsack inequalities 

are extracted. The relaxed linear program is then resolved to determine if 

it is still feasible. If it is infeasible then the lower bound on the number 

of busses is incremented. Chapter 10 will illustrate this procedure and 

show the cpu speed improvement attained. The number of inputs to 

operations may also be application dependent, for example if one input 

of all multiplication operations is obtained from memory then only one 

input bus needs to be allocated since we can directly connect the other 

inputs to specific memory. 

The register allocation constraint could be converted into a knapsack 

inequality (by changing the -1 coefficient into + 1 coefficient, ie. xl = 1 -

x), however poor results are expected since the variable coefficients are 

all one. Currently the register allocation constraints are not tightened. 

In this chapter we presented the OASIC model for area-delay cost 

functions. We also described how special operations and the type of 

functional units can be used to tighten and extract facets of the underly­

ing polytopes. The next chapter will examine how instances of these 

constraints are used to support algorithmic constructions such as 
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conditional code, loops, and functional pipelining in OASle. 



8. 

SUPPORT FOR ALGORITHMIC CONSTRUCTS 

We will discuss in this chapter model extensions for conditional 

code, loops and functional pipelining. In addition their effect on timing 

constraints will also be covered in relationship to the architectural syn­

thesis model and controller implications. These constructs are supported 

by both the structured and area-delay optimization models presented in 

chapter 6 and 7. We will present their fonnulation using the area-delay 

model for simplicity. However one can transfonn these into constructs 

for the structured model by substituting DiJ,k for Xj,k. 

8.1 CONDITIONAL CODE 

All the previous inequalities in chapter 6 and 7 apply to basic blocks 

where operations are not mutually exclusive. We will now address how 

the previous constraints presented in chapter 6 and 7 can be used to 
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support conditional code. Conditional code is supported by applying con­

straints (6.3).(6.4). and (6.5) to code operations in separate mutually 

exclusive code segments. If we let B j represent basic blocks of code (or 

straight line code) in the algorithm then we can derme a branch as a pre­

cedence constraint between blocks. For example blocks of code B 1 <-B2• 

B1<-B3• B2<-B4 and B3<-B4 can be used to represent the blocks of 

code in figure 8.1. The code operations in B2 and B3 are mutually 

exclusive. The inequalities for functional unit allocation are given in 

(8.1). The rest of the inequalities are also applied to these basic blocks. 

If we assume conditional branches have equal probability then we may 

have to add further data precedence constraints in order to a) prevent 

code motion (Ellis. 1986) or b) prevent conditional code operations 

being scheduled (illegally) before the branch or after the join of the 

branch. 

L XjJ,k~1. Vi,j ,z=1,2,3,4. 
kElJ. 

jdl(k) 

(8.1) 

OASle can be used to minimize the weighted sum of execution 

times for all conditional paths. Therefore one can schedule and allocate 

resources simultaneously with minimizing the execution time on dif­

ferent paths. This is similar to the kout placed at the end of loops and 

algorithms to measure the last cstep and ensure registers are allocated to 

hold these output values. For our case at the end of each branch if more 

than one operation outputs a value we use partial order constraint to 

ensure it is succeeded by keob or the end of branch operation. We can 

then use the scheduled time of keob in our objective function along with 

all other end of branch operations to minimize the individual conditional 

paths. 
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Figure 8.1. Conditional code illustrated with four basic blocks of code 

operations, where B2 and B3 are mutually exclusive. 

It is also interesting to note that conditional constructs do not present 

a problem for register allocation unlike the case for allocating registers 

for fixed schedules with conditionals. Thus for the first time we can 

minimize the number of registers in the presence of conditional code. 

Furthermore edge reduction is not required for cases where an edge ori­

ginates from one operation (before the branch) and terminates at opera­

tions in mutually exclusive basic blocks. Edge reduction is not necessary 

since the constraint generation is done on a per branch basis so in each 

inequality only one edge is seen. 

Only during functional pipelining (described in chapter 8.3), where 

the maximum execution time of each conditional path is not fixed, is it 

necessary to transform the DAG (with conditionals) into an outtree (see 

chapter 3.4) structure where there are only branches and no joins. How­

ever when the execution times of the conditional paths are known the 
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DAG transfonnation is not necessary, and time translation can be used to 

allocate resources from different pipestages. 

Timing constraints between operations before conditional branches 

and operations after conditional branches will not pose problems for 

scheduling. If conditional paths differ in length then one may have to 

append empty states to the controller in order to ensure that specific 

minimum timing constraints are met 

8.2 LOOPS 

Loops are easily supported in OASIC using special kin and kout 

operations which participate in all constraints except (7.3). These opera­

tions ensure that output (loop) variables are valid until the end of the 

(loop) algorithm, and input (loop) variables are valid until their last use 

inside the algorithm. For example variables input to the loop are 

represented by kin<·k1,'Vk1 and variables output from the loop are 

represented by k2<·kout,'Vk2. 

Timing constraints can also be incorporated within or across loops. 

For a minimum timing constraint, we assume the loop executes a 

minimum number of times. For a maximum timing constraint, we 

assume the loop executes a detenninate number of times as in (Hay­

ati, 1989) . 

8.3 FUNCTIONAL PIPELINING 

Functional pipelining for a fixed latency, I, can be incorporated into 

our model without additional variables. We use the tenn functional pipe­

lining to refer to executing a number of instances of the input algorithm 

in parallel but each successive instance is delayed in time. We call the 

delay in time, for each pair of successive instances, the latency. At most 

p instances (or pipestages) of the input algorithm are executing in parallel 
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at one time (at one clock period, or at one cstep). Furthermore each 

instance of the algorithm has the identical schedule of code operations 

except it is delayed by the latency. 

We assume Te = JUB and define r Tell 1 =p pipestages, and replace 
n=p 

L Xj,k of (7.3),(7.4),(7.5) with L L Xj+nl,k where addition 
klj£R(k) n=l k 

(j+nl)£R(k) 

U+nl) is modulo 1. Only constraints for 1 csteps need to be generated as 

shown in figure 8.2(a), where A through E represents sets of code opera­

tions scheduled over each successive group of 1 csteps. 

A A 

B A B A 

C B A C B A 

D C B A D C B 

IE D C B AI E D C 

E D C B E D 

E D C E 

E D 

E 

(a) (b) 

Figure 8.2 Pipelining constructs showing in boxes the number of csteps 

required to generate OASIC allocation constraints (I in (a) and 31 in 

(b». 
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A variation of the functional pipelining can also be used if only z 

pipestages with latency I are used. In this case z <p, only zl csteps are 

used to generate constraints representing the period from zl to JUB 

csteps as shown in figure 8.2(b), where JUB is the upper bound on the 

number of csteps for one pipestage. In this example three pipestages are 

used each with a latency equivalent to the number of csteps in A. 

We can also support functional pipelining in the presence of condi­

tional code. This construction generates the functional pipelining con­

straints for each combination of conditional branches which are possible 

over all pipestages at each cstep. 

General algorithmic constructs were presented in this chapter for the 

OASIC model. In the next chapter we examine the special constraints 

for interfacing to analog, asynchronous or other processes. The next 

chapter concludes the discussion on constraint formulation for OASIC. 



9. 

INTERFACE CONSTRAINTS 

Timing constraints can be used to represent interfaces with external 

processes or local constraints between pairs or groups of code operations. 

Five categories of timing constraints are analyzed below. We will 

assume timing constraints are given in terms of the clock period. Other­

wise we can convert using the following: we use r tit e 1 =T for minimum 

timing constraints and l t/ te J =T for maximum timing constraints, 

where te is the period of the clock (equal to one cstep) and t is the real 

time constraint given by the specification. We will investigate the fol­

lowing types of timing constraints for architectural synthesis: 

Fixed Timing 

Minimum Timing 
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• Maximum Timing 

• Unknown Timing 

• Special Timing Constraints 

Fixed timing constraints can be used to represent an analog interface. 

An example is the sampling of an analog signal (using an analog to digi­

tal converter), where successive digital data is input to the architecture to 

be synthesized after every T csteps. The minimum and maximum timing 

constraints could also specify an interface with some external process 

where after at least (or at most) T units of time (since a code operation 

output data to the external process), data will be available, from the 

external process, in an input register. Asynchronous interfaces occur 

when one deals with unknown delays. An unknown, bounded timing 

constraint is an example of an asynchronous type of interface. Bounded 

means that an interval of time (lower bound and upper bound) when data 

may be received for input to a code operation is known. For example a 

designer could know that anywhere from cstep 5 to cstep 10 the data will 

be input. A bounded data dependent loop also represents a bounded unk­

nown delay. Unbounded unknown delays, such as data dependent loops 

or synchronizers, will also be covered. In all examples below, T is the 

time constraint value. We use the notation time(k, k2) <~ T to represent 

the (minimum >, maximum <, or fixed =) time constraint between the 

two operations. Combinations of these constraints are also possible as 

discussed in section 9.5. 

9.1 GENERAL INTERFACE: MINIMUM AND MAXIMUM 

TIMING CONSTRAINTS 

Minimum and maximum timing constraints can be easily incor­

porated and have the same form as the precedence constraint and there­

fore are very tight. The minimum and maximum timing constraints 
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between the scheduled csteps of two code operations can be represented 

by the inequalities (9.1) and (9.2). This is equivalent to setting C2=T in 

inequality (6.6) of chapter 6. 

LXkhj+ L Xk2.j~1. Vh,time(kl,k~~T. (9.1) 
j>iI j!.h+T 

LXkhj+ L Xk2.j~1. Vh,time(kl,k2)~T. (9.2) 
j<jl j~jl+T 

9.2 ANALOG INTERFACE: FIXED TIMING CONSTRAINT 

Interface with analog processes can be modeled using fixed timing 

constraints, between operations which successively output data to DAC 

or receive input data from ADC. A fixed timing constraint of T (T~) 

between two operations can also be defined as the scheduled time for 

operation 2 is T cycles after operation 1. This can be represented by the 

following equality in our assigrunent model, Xkhj=X~.(j+T)' V j. How-

ever the tighter formulations of these constraint are the following node 

packing facets of the scheduling problem shown in (9.3). 

xkhiI+ L Xk2.j~1. Xk2.h+ L Xkhj~1. (9.3) 
j*h+T j*jl+T 

Vjl,time(k1,k2)=T 

The above facets are used along with minimum and maximwn tim­

ing constraints, time(k1,k2) ~ T and time(kl,k~ ~ T that were presented 

in the previous section 9.1. Figure 9.1. gives an example of these facets 

for T=O. A similar comparison can be made with Baker's (Baker, 1974) 

and Lee etal.'s (Lee, 1989) formulation as done in chapter 6.1, to show 

that our formulations are tighter than theirs. 
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j j 

(a) (b) 

Figure 9.1. Node packing graph for fixed timing constraint between 2 

code operations time(a ,b )=T=iJ. (a) shows the fixed timing con­

straint and (b) shows the minimum/maximum constraints, both are 

facets of the underlying polytope. 

93 ASYNCHRONOUS INTERFACE 

Interface with asynchronous processes can be modeled as bounded 

(or unbounded) unknown timing constraints. We will address different 

approaches to the bounded asynchronous interface in this section. Let 

tmax represent the latest possible time for the data to arrive (upper bound) 

and tmin the earliest possible time for the data to arrive (lower bound). 

Then p = (tmax-tmin) is the number of control steps when the data may 

arrive. We assume each control step has equal probability of arriving and 

we wish to minimize the overall algorithm execution time, the control 

store and total resources. We will use the terminology defined in chapter 

2 to describe the partition of operations resulting from the asynchronous 

interface, ie. interface dependent operations and interface independent 

operations. For example consider a code operation, kout, which outputs 

data to an asynchronous operation, Ka. Operation Ka performs data 
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dependent processing and returns its output data after some indetenninate 

(and bounded) number of csteps. Assume that the bound on the indeter­

minate number of csteps is p. We can expect to receive data from Ka at 

cstep = ir lasap(kout } +Cout+d ~jr~/ap(kout} +Cout -l+d+p, where 

d + 1 (or (d+p» is the minimum (or maximum) processing time of Ka. 

The following five solutions were considered below. 

a) Trivial Controller Wait State 

b) Partition Resources: Tradeoff Hardware for Control 

c) Maximum Resource Sharing: Tradeoff Control for Hardware 

d) Mutually Exclusive Pipelining 

e) As Late as Possible Approach: Tradeoff Execution time for 

Hardware & Control 

Each case will be discussed below with respect to synthesis complex­

ity, hardware versus controller area (number of words to store) and exe­

cution time tradeoffs. 

a) Trivial Controller Wait State 

In the trivial-controller-wait-state the controller waits from 

cstep=asap(kout}+Cout+d until data from Ka arrives. For architectural 

synthesis we can synthesize all code operations assuming that the data 

from the asynchronous operation is ready at asap(kout}+Cout+d. In 

OASIC a minimum timing constraint (Cout+d) is placed between kout 

and the asynchronous operation Ka (which is modeled in OASIC as a 

single cycle operation). 
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b) Partition Resources: Tradeoff Hardware for Control 

In this scenario we can assume that while part of the interface depen­

dent algorithm is waiting for the input data, the remaining interface 

independent algorithm is executing on the architecture until it becomes 

interface dependent, as illustrated in chapter 2, figure 2.4. We assume 

that the interface dependent code operations are executed on hardware 

that cannot be shared by interface independent code operations. Figure 

9.2a) shows the original data flow graph, where Ka is the asynchronous 

operation. The partitioned schedule for two separate controllers is in fig­

ure 9.2b). This can be estimated as a controller size of 6, since 6 words 

of control (or control states) are required. In this case data path synthesis 

can be partitioned into two routines, in (b), to be synthesized on separate 

hardware. 

c) Maximum Resource Sharing: Tradeoff Control for Hardware 

Solution (b) may be very inefficient if a large number of functional 

units are required for the interface dependent algorithm. Therefore in 

this section we investigate sharing the hardware between both algo­

rithms. This problem is now defmed as scheduling and allocating 

hardware for conditional code (representing interface dependent code) 

originating from each successive cstep within the bounded interval p. 

We can use p mutually exclusive branches (b=l, ... ,p) of interface depen­

dent code operations where each branch starts at d+b csteps after kow 

outputs data kout<eKa (using fixed timing constraints for b=1). This is 

shown in figure 9.3 (a) and (b). It can be seen that the controller in (b) 

may become very large because we allow independent scheduling of each 

branch to optimize the architecture, however only one schedule for the 

interface independent code is used. Separate variables are used to 

represent the scheduling of code operations in each mutually exclusive 

branch. 
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(a) (b) 

Figure 9.2 Partition of hardware for bounded unknown timing con­

straints. Three subtractors, three adders, and 6 control words are 

required. 

Another approach possibly requiring a larger controller, would allow 

the interface independent code operations to have different schedules 

depending upon when the data from Ka arrives. This new problem 

requires OASIC to be solved two times. The first OASIC solution 

assumes that (data from Ka) arrives at the latest possible cstep. By using 

this schedule for interface independent code operations the second 

OASIC problem to solve involves scheduling and allocating hardware for 

conditional code (now representing both interface independent and 

dependent code operations) originating fonn each successive cstep within 

the interval p. 
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(a) (b) 

Figure 9.3. Sharing hardware between interface independent and depen­

dent code operations. Two subtractors, two adders, and 11 control 

words are required. 

d) Mutually Exclusive Pipelining 

In the previous approach, c), we used p mutually exclusive branches 

(b=I, ... ,p) of interface dependent code operations where each branch 

starts at d+b csteps after kout outputs data kout <·Ka (using fixed timing 

constraints for b= 1). To minimize controller costs and without additional 

variables (unlike approach (c», we can alternatively schedule the mutu­

ally exclusive branches as pipestages. This can be done by replacing 

( L Xj,k) in (7.3),(7.4),(7.5) with the following equation: 
k 

j£R(k) 
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( 1: 
k 

j£R(k) 
k indep K. 

XkJ+ 1: Xj-b,k), 'Vb 
k 

K.,<-k 
U-b)£R(k) 
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, where k indep Ka represents code operations that execute in parallel 

and independent of the asynchronous process. This technique models the 
interface to asynchronous operations using p mutually exclusive pipes­
tages, each with latency = 1 (see chapter 8 for tenninology defInition). 
An example is shown in fIgure 9.4. 

To prevent the controller from becoming very large, as in l(c), we 
have placed a restriction on the schedule of the interface dependent code. 
The restriction requires that the schedule for the interface dependent code 
must be the same for initiation at any time E p. Thus only one schedule 
is required regardless of which time the data arrives and the algorithm is 
initiated. 

We also could extend this approach by allowing interface indepen­
dent code to have a different schedule depending upon when data from 
Ka arrives, as discussed in the previous section c). The same fonnula-

tion is used, except the schedules for interface dependent code operations 
are constrained to be the same. 

e) As Late as Possible Approach: TradeotT time for area 

In a) through d) we have assumed that as soon as the data from Ka 

arrives, the interface dependent algorithm is initiated immediately. How­
ever another approach is to wait for the data. The interface independent 
code operations are executed until the last cstep in interval p is reached. 

At this point the controller executes the interface dependent code opera­
tions along with the remaining interface independent code operations. 
This problem is very simple in OASIC and is modeled by placing a 

minimum timing constraint of (C out -1 +d+p ) between kout and Ka· 
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(b) 

Figure 9.4. Asynchronous interface modeled as p mutually exclusive 

pipestages. Two subtractors, three adders, and 6 control words are 

required. 

9.4 UNKNOWN UNBOUNDED DELAYS 

Examples of unknown unbounded delays were pre~ented in chapter 

2. In some cases an 00 bounded delay can be decomposed into a bounded 

delay and wait state. This partitioning was illustrated in figure 2.4 of 

chapter 2. In these cases we can use the previous models to determine 

which approach best matches the application. Otherwise when the parti­

tioning is not possible it can be implemented as a wait state. 

9.5 COMPLEX TIMING CONSTRAINTS 

Timing constraints may also be formulated across loops. In other 

words operation a of loop iteration i is to be scheduled T csteps before 

operation b of loop iteration i+ 1. This example can be fonnulated as the 
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following constraint (9.4), where ktop and khot are the top and bottom of 

the loop operations respectively as defined in chapter 8.2. 

1: U+l) Xj,top- 1: j Xj,a+ 1: j Xj,b (9.4) 
j£R(top) j£R(a) j£R(b) 

- 1: U-l)Xj,bot=T. 
j£R(bot) 

The node packing fonnulation could not be made unless the loop execu­

tion time is known. In this case one can fonnulate the constraint as a 

fixed timing constraint using J - T csteps for operation a to be scheduled 

after operation b of the same loop iteration. 

Other combinations of constraints such as time(a,b) S; 0 or time(a,b) 

~ 3 can also easily be incorporated. These constraints cannot be modeled 

using a combination of minimum and maximum timing constraints and 

therefore the fonnulation in (Baker,1974) and (Lee,1989) cannot be 

used. Figure 9.5 illustrates one facet for this application, which can 

easily be generalized. 

Other constraints such as ensuring that data is valid in a register for a 

least T csteps can be fonnulated using a dummy operation, kd' and set-

ting a minimum time constraint between it and the code operation «-kd ) 

which outputs the data. Alternatively if data is input from an external 

process and is only valid in an input register port for T csteps (after 

which point it may be oveIWritten), then the fonnulation is a maximum 

timing constraint between the dummy operation (representing the exter­

nal process) and all operations (->kd ) which directly access this data. 

In this chapter we outlined general and complex timing constraints 

that may be necessary for interfacing to external processes. We have 

described above for the first time, within the context of simultaneous 

scheduling and allocation, different approaches for dealing with 
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j j 

(a) (b) 

Figure 9.5. Node packing facets, in bold, for combination timing con­

straint time(a ,b)SO or time(a ,b )~3. 

interfaces to analog, asynchronous, and data-dependent processes. In the 

next chapter we will present applications and solutions of OASIC for 

various high level synthesis benchmarks and other algorithms, as well as 

demonstrating all types of interface constraints. 



10. 

OASIC SYNTHESIS RESULTS 

This chapter presents results for simultaneous scheduling and alloca­

tion of a number of high-level synthesis benchmark examples (sections 

10.1,10.3) (hlsw, 1988) , a digital neural network (perceptron with back 

propagation learning (Lippmann, 1987) ) (section 10.2), and other exam­

ples to demonstrate interface constraints (section 10.4). The abbrevia­

tions for these examples are given in table 10.1 and more examples can 

be found in (Gebotys, 1991x) . 

All the reported CPU times in chapter 10 are for solving the 1P prob­

lems using GAMS/MINOS (LP solver) and/or GAMS(ZOOM (branch 

and bound 1P solver) on a IBM PS/2 model 80 (386 PC). In examples 

where the GAMS/ZOOM branch and bound algorithm for 1P is used, 

both the absolute and relative termination tolerances were set to zero (and 

upper bounds on variables were not set), so that in both cases globally 

optimal solutions could be guaranteed. The only times not reported are 
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Table 10.1. Summary of OASIC Synthesized Examples 

Section Example 

10.1 EWF Elliptical Wave Filter 

10.2 ANN Neural Network 16X4X4X4 

10.3 CC Conditional Code Example 

10.4 IC Examples with Analog and 

Asynchronous Interfaces 

for preprocessing ie. translating the data flow graph or input algorithm 

into partial orders, calculating the asap and alap schedules, and reducing 

the edges for variable lifetime representation. The first translation of 

algorithm into partial orders can easily be done by traversal of the data 

flow graph or by writing a program to translate the input algorithm into a 

list of partial orders (Aho, 1974) . The asap and alap schedules algo­

rithms were run below on the examples to give an indication of how 

quicldy this processing can be done. The asap and alap schedules were 

run using the OASIC submodel (Xj,k), and some results are tabulated in 

table 10.2. We expect that by using graph theoretical algorthms such as 

the critical path method faster runtimes can be achieved. However it was 

more useful to demonstrate using the IP model to show that in fact all 

cases provided integer solutions, thus showing the tightness of the sub­

model. (It is also interesting to note that this is the first time an IP has 

been used to solve for these asap and alap schedules). 

Table 10.3 summarizes the use of IP techniques. The use of these 

inequalities are application dependent and therefore are outlined below. 

The definitions and examples of their use can be found in chapter 6 and 

7. The disjunctive constraints are only used with the structured OASIC 

model (chapter 6), whereas the tightened constraints and knapsack facets 

are only used with the area-delay OASIC model (chapter 7). The 
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Table 10.2. Preprocessing CPU seconds for EWF 

Preprocessing Te CPU sec 

Tgen Texec 

asap 21 186 46 
alap 21 186 44 

Table 10.3. Summary of Techniques Used in OASIC Examples 

Technique Sections/Examples 

10.1 10.2 10.3 10.4 

EWF ANN CC IC 

Tightening y n n y 

Disjunctive y n n y 

Knapsack y n n n 

Functional 

Pipelining n y n n 

Regularity n y n n 

functional pipelining and regularity decomposition can be applied to 

either model. 

The elliptical wave filter benchmark. was thoroughly analyzed. Not 

only is it an excellent example for synthesizers; it has been a very popu­

lar benchmark for over three years, however OASIC results show that the 

architectures obtained by previous state of the art synthesizers are not 

globally optimal. In comparison to other benchmarks it has been syn­

thesized much more often. Furthermore we have not seen any reported 

(published or unpublished) synthesized results for the matrix multiplica­

tion as performed in the kalman and artificial neural network examples. 
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10.1 ELLIPTICAL WAVE FILTER 

The EWF was originally selected from the data flow graph represen­

tation (transformed from the z-diagram representation) in (Kung, 1985) 

as a high level synthesis benchmark in 1987. The DAG was then 

corrected by Dr.P.Paulin in (Paulin, 1987) . The majority of synthesizers 

have used a random topology, with the exception of SPAID and some 

others (Lee, 1989) which used a register transfer file architecture. A 

comparison with the register transfer file architectures is made at the end 

of the chapter. 

The EWF is essentially a loop with 34 code operations and over 56 

precedence constraints. It remains a challenge for current synthesizers 

due to its complex interconnections. The large number of precedence 

constraints provides a good benchmark for demonstrating the register 

allocation constraints. As we will show OASIC provides for the first 

time globally optimal synthesized architectures with improvements over 

previous research in number of busses and registers. 

The number of registers allocated does not include the IN and OUT 

registers shown in (Kung, 1985) . It does not make sense to allocate 

these also since these are dedicated registers. The bus allocation includes 

only one input per multiplication operation since the multiplications 

obtain the other operand from the ROM or coefficient memory. 

10.1.1 Structured Model 

The synthesizers were compared by the types of subtasks they per­

form and the execution time in cpu minutes or seconds for the EWF. 

Table 10.4 has columns for scheduling (Sched), functional unit allocation 

(FU), and register allocation (Reg). A y (yes) means that the subtask is 

completely performed. A c (calculated) means that the number of 

resources is calculated exactly. A e (estimated) means that the resource 

is estimated using some heuristic or it is somehow considered during the 
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algorithm. The execution time in cpu minutes/seconds in table 10.4 are 

for the scheduling phase only for HAL (Paulin,1989) (using a Xerox 

1108 Lisp machine) and the simulated annealing (S.A.) runtimes (using a 

Vax 11/8650) (Devadas, 1989) . The OASIC cpu seconds are for the 

GAMS/MINOS (Brooke, 1988) model generation time plus execution 

time (Tgen+Texec) for a IBM PS/2 Model 80 (386 PC). The asap / alap 

or other preprocessing times were not included but are negligible (less 

than 1 cpu minute). All integer solutions were obtained using the 

OASIC in over 80% of these cases (using different cost functions). 

Table 10.4. Synthesizers Comparison for EWF 

Example Synthesizer cpu Subtasks Performed 

(Tgen+Texec) Sched FU Reg 

EWF S.A. 4min y y c 

HAL 4-6min y y e 

OASIC 53sec y y -
OASIC 90sect y y y 

t using unstructured register allocation a.x~ ,aCO, 1,-1). 

Table 10.5 and 10.6 give a more detailed examination of the perfor­

mance of the OASIC for synthesizing the EWF as the upper bound on the 

number of control steps (csteps) is increased and as the EWF loop is 

unrolled. The model generation time(Tgen), execution time(Texec) (both 

in cpu seconds), number of variables(Var), number of constraints(Eqn) 

and number of simplex iterations(Itns) to solve the LP are given. The 

number of two cycle multipliers (*), two cycle pipelined multipliers 

(*pl), and one cycle adders (+) are given. In tables 10.5 and 10.6 the fol­

lowing cost function was minimized 
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• where cosCadder(i)=(0.0.0.2.4.6) and cosCmultplr(i)=(31.62.93.0.0.0). 

All solutions in table 10.5 were completely integer after solving the 

LP once except row three (19 csteps). In this case the times reported in 

table 10.5 include enumerating by selecting variables by hand until a glo­

bally optimal all integer solution was obtained. We also tried to solve 

this example totally by extracting facets. Using additional facets (clique 

facets and lifted odd cycle facets) we could improve bounds by 0.8% 

from objective value =316 to 318.75. however it was faster to enumerate. 

We note that in section 10.1.2 we present a solution to this example in 

even faster runtimes using the unstructured model. 

Table 10.5. Synthesis using IP Model for EWF 

csteps *pl * + Tgen Texe Var Eqn Itns 

(sec) (sec) 

17 2 3 10 9 173 113 115 

18 1 3 15 11 267 157 193 

19 1 2 40 29t 355 201 754t 

17 3 3 10 10 184 127 111 

18 2 2 14 12 267 163 172 

19 2 2 14 20 355 207 263 

21 1 2 37 20 537 287 629 

t relaxed LP did not provide all xfiJ. cpu times include B+B. 
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In table 10.6 we unrolled the EWF two and three times to illustrate 

how well OASIC perfonns with a large number of code operations. In 

the later case simultaneous scheduling and functional unit allocation of 

over 100 code operations was executed in 90 cpu seconds. To our 

knowledge no other research has solved simultaneous scheduling and 

allocation to global optimums for this (large) number of code operations. 

Table 10.6. SyntheSis using IP Model for Unrolled EWF 

# of code Te *pl + Tgen Texe Var Eqn 

operations (sec) (sec) 

68 34 1 3 32 25 566 333 

102 50 1 3 51 39 859 506 

Figure 10.1 shows one solution for the elliptical wave filter example 

optimized for registers, functional units and execution time. This optim­

ized solution was obtained by minimizing the previous area cost function 

(10.1), with an upper bound of 19 control steps, three adders, three two­

cycle multipliers, and nine registers. The optimum solution with 2 two­

cycle multipliers, 2 adders, and 9 registers (not including the IN and 

OUT registers) required 200 cpu seconds for model generation and 18 

cpu seconds for LP execution (424 variables, 279 constraints, 536 itera­

tions). Lifetime defining edges for all but two variables were found 

using the transitivity and alap analysis. The multiple edges for the two 

variables required only 24 extra constraints. No previous research to our 

knowledge have quoted as low as 9 registers for the EWF which demon­

strates that global optimums have not been obtained by heuristic syn­

thesizers. Other synthesized results with a constraint on the number of 

registers is shown in table 10.7. 
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Figure 10.1. EWF schedule optimized for 1=19 control steps, with vari­

able lifetime defining edges. 
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Table 10.7. Structured Model with Register Allocation, a.x~. 

Te *pl * + R Var Eqn cput 
(sec) 

18 I 3 10 344 211 91 

19 2 2 9 424 279 219 

t Tgen+ Texec cpu times 

Table 10.8. Selection of Type of Functional Units 

Cost per Type * *pl + Tgen Texec 

* *pl (sec) (sec) 

12,25 31,62 2 2 16 13 

19,37 31,62 1 1 2 16 16 

Disjunctive Constraints 

150 250 2 2 18 (B+B)884 

150,160 250,260 2 2 19 (B+B)475 

Selection of Functional Unit Types. 

To demonstrate the usefulness of the XjJ.k model we solved the 

OASIC model for simultaneous selection and allocation of functional 

units and scheduling. The results are given in table 10.8. Special cost 

functions calculated as described in chapter 6.3 (row 1,2) and disjunctive 

constraints (row 3,4) were used to select the type of functional units to 

minimize the area cost In all cases the upper bound on csteps was 18 

and the branch and bound algorithm was used to solve for the disjunctive 

variables. In the last row the cost values were incremented by 10 for 

each additional unit This improved the cpu times and removed the 

ambiguity between choosing the first or second functional unit of the 
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same type each with the same cost. 

The selection of functional unit types is complicated by the fact that 

the lower bounds on the types of the functional units must be 0, ( thus 

allowing for the case where the particular type is not chosen). Also 

depending upon the cost function more than one type may be selected. 

For the first time we have a model which can simultaneously make these 

decisions. 

10.1.2 Area-Delay Optimized 

No other synthesizer can simultaneously schedule and allocate all 

resources with an area-delay cost function except for OASIC and the 

simulated annealing synthesizer in (Devadas, 1989) . Bearing this in 

mind we compared OASIC with simulated annealing (Devadas, 1989) 

and the only two completely published solutions in HAL (paulin, 1989) , 

and SAW (Lagnese,1989) . We minimized area-delay cost functions 

with different upper bounds on csteps. The improvement in the number 

of busses for OASIC was compared with other published solutions. We 

also show that these solutions are relatively stable with respect to large 

changes in cost parameters. 

Functional unit and bus allocation constraints were tightened where 

possible with ksep = +25, and kout of the EWF DAG shown in figure 

10.1, using the technique described in chapter 7.6. Two solution tech­

niques, LB and KP, were demonstrated with OASIC. The first method, 

LB, calculates lower bounds and branch and bounds to obtain a solution. 

The second method, KP, additionally uses knapsack inequalities to 

improve the bounds before branch and bounding. 

Lower bounds on the number of busses and previous research are 

plotted in figure 10.2. Lower bounds are calculated by integer rounding 

up the minimum value of B obtained from solving the relaxed LP. The 
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solid line in figure 10.2 is the lower bound (LB) for busses (without 

using 3I+gj ) , the dashed line is the improved lower bound (LB+) using 

constraint 3I+GJ, and the circle points are the solutions obtained by 

OASIC. Lower bounds for busses calculated by fixing the number of 

functional units for each cstep (17,18,19,20,21) provided lower bounds 

of (10,8,6,6,6) number of busses respectively 

(Gebotys, 1991c, Gebotys, 1991b) . 
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Figure 10.2. The graph of csteps versus the number of busses. The 

dashed arrow shows the improvement in busses using the OASIC 

model for designs with the same number and type of functional units. 
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The piecewise linear area-delay cost function (to.2), was minimized 

to synthesize architectures for the EWF, shown in rows OASIC of table 

to.9. These cost parameters were taken from (Devadas, 1989) . The 

values shown in (10.2) were actually divided by 100 to try to normalize 

the objective function and hence improve the performance of the LP 

(Gill, 1981) . For example the optimized solution for 18 csteps with this 

area-delay cost function is 1 two-cycle pipelined multiplier (*pl), 3 (sin­

gle cycle) adders, 9 busses, and to registers. 

501+ + 2501* + 15 R + 100B + 50 Te (to.2) 

Figure to.3 shows 7-18% improvement in area-delays over previous state 

of the art EWF solutions, SAW (Lagnese, 1989) and HAL (paulin, 1989) 

for cost function (to.2). These results are very good considering the 

EWF has been investigated for years. Secondly our solution is stable 

over different types of cost parameters on the number of registers and 

busses. 

Table to.9 shows a comparison of the cpu performance using 

OASICs LB and KP methods with previous research. The - in table to.9 

means that the KP approach could not improve the lower bound on the 

busses. The delay cost component was removed once the first LP was 

solved with lower bounds. The largest cstep with code operations (or 

fractional values of these) was used as the delay value. Then subsequent 

analysis was done with minimizing area cost functions. 

The only complete published solutions for the EWF were found in 

HAL (paulin, 1989) and SA W (Lagnese, 1989) . From the 17 cycle 

schedule given in (Devadas, 1989) , although not specified, the eighth 

row requires 11 busses and OASIC requires 10 busses. The 17 and 18 

csteps OASIC solutions for pipelined multipliers given in table to.9 

required 0.5 cpu minutes and 3 cpu minutes respectively where after 

branch and bounding on li,R.B variables, the initial LP provided all Xj,k 



OASIC Synthesis Results 

A3~.-----------------------~ 
r 
e 2600 
a 

D 2200 J----i 
e 
I 
a 1800 
y 

C 1400 
o 

~ 1~~--~--~----~--~--~--~ 
OASICSAW OASIC HAL 

Archi tectural Synthesizers 

153 

Figure 10.3. Comparison of synthesized solutions for EWF measured by 

area-delay cost(10.2) for architectural synthesizers OASIC, SAW and 

HAL. 

integer solutions. These cpu times are faster than the 2 cpu minutes and 

4 cpu minutes respectively quoted by HAL (paulin, 1989) and simulated 

annealing (Devadas, 1989) . 

HALs EWF synthesis for 19 csteps (paulin, 1989) requires 8 busses 

and 12 registers (in 6 cpu min), unlike the optimal OASIC with 7 busses 

and 9 registers. This architecture was synthesized in less than 6 cpu 

minutes (including lower bounds calculation and branch and bound cpu 

times) to produce the schedule shown in figure 10.4. The lower bounds 

calculated were exact (7=B,9=R). 

The area-delay optimized solution for two cycled multipliers (with 

an upper bound of 18 csteps) is shown in row seven of table 10.9 and 

plotted in figure 10.2. This is an interesting problem since it demon­

strates the differences in lower bound calculation (LB), the advantages of 

the knapsack inequalities (KP) and importance of tight bounds. We will 
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Table 10.9. EWF Synthesized Architecture Comparisons 

Synthesizer Te *pl * + R B Total cpu minutes 

LB KP 

OASIC 21 1 2 9 7 30 6 

SAW:\: 19 2 2 11 9 na 

HALt 19 1 2 12 8 6 

OASIC 19 1 2 9 7 5.8 -
HAL 18 1 3 12 na 4 

OASIC 18 1 3 10 9 3 -
OASIC 18 2 2 10 8 3 0.5 

HAL 17 2 3 12 na 2 

OASIC 17 2 3 10 10 0.5 -
OASIC 17 3 3 10 10 0.5 

t 6 busses + 2 local busses(Paulin,1989);:\: page 79 in (Lagnese,1989) 

na=not available;R does not include IN and OUT registers of filter. 

now discuss in further detail the results of the different approaches. 

By calculating lower bounds (2,2,9,7) for 18 csteps and branch and 

bounding on Ij,R,B variables, we obtained globally optimal schedule and 

allocation for this cost function in less than 3 cpu minutes total. In this 

case final relaxed LP with integer Ij,R,B variables also provided integer 

values for all Xj,k. In the LB method (row one of table 10.10) we 

required constraint, 3*I+gJ, to cut off the integer infeasible solution 

(I+=3J*=2,R=9,B=7). The cpu times for bound calculations were 

approximately 10 cpu sec (Texec) for each variable in both methods. 
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Figure 10.4. EWF schedule optimized for 1=19 csteps and shown with 

variable lifetime defining edges. The rest of the data transfers are 

shown with dashed lines. Two adders, one two-cycle pipelined multi­

plier, 9 registers and 7 busses were allocated. 
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Knapsack Inequalities. 

Since the lower bounds for 18 csteps (with two cycled multipliers) 

originally calculated were not exact (or equal to the fmal optimal values) 

we were able to use knapsack inequalities to improve the bound on 

busses. By fixing the lower bound of busses at 7, we were able to extract 

knapsack facets of this constraint and use it to show (by solving the 

relaxed LP) that the bound is not feasible. The bus allocation constraint 
with 7 busses is: 

3 Dj,+ + Dj,. + DU-l),. ~ 7, T/j. 
+ • • 

Consider the bus allocation constraint for j=15. Let xI5,k=Yk' and 

XI4,k=Yk". Let the coefficients of y be ck where k = + or k = *. Consider 

the following minimal dependent set, Ce {+1, +2, *1, *2}, 

(1:xc~ICI-l). 
k£C 

where +1= +5 , +2= +35 , *1= *16, *2= *40 (+5, +35, *16, *40 are 

names of EWF code operations and are shown in figure 10.1). We can 

now prove that the following tighter inequality, where keE (C) is a facet: 

1: Y + +Y.j+Y';2 ~ 3 
+ 

15ER(+) 

First we prove that: (1) (,\ {h,h} U {I} is independent, ie. 

Secondly we must prove (2) (,\ Ud U {p}lp:min j eN\E(C) is 

independent, ie. 
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We can generalize this inequality to choose all possible knapsack facets 

for the bus allocation constraint using: 

~ Xj,++Xj,.+X(j_l),.'/ ~ 3, 't*,*-l,jeR (*),j-leR (*-1). 
+ 

j£R(+) 

The other minimal dependent sets are redundant. With these knapsack 

inequalities we can solve the new relaxed LP (in 9 cpu sec) to detennine 

that the LP is infeasible. We therefore improved the bound to 8 busses 

and solved the branch and bound with new bounds to obtain an all 

integer solution in a total of 24 cpu sec. This shows the advantages of 

using knapsack facets in solving the IPs. The total time required includ­

ing all stages, generation and execution times, was 0.5 cpu min. 

The other knapsack inequalities were used for example with 21 

csteps. The initial lower bounds were 1+=2,1.=1, R=9, B=6. By using 

generalized knapsack inequalities extracted from the bus allocation con­

straint, we proved the bound to be infeasible. So by increasing the lower 

bound on busses to B=7, we could branch and bound to a completely 

integer solution in 6 minutes total. Without using the knapsack inequali­

ties we required 30 minutes of branch and bound to find the same glo­

bally optimal solution. Both solutions branch and bounded on the pipe­

lined multiplier operations to obtain an all integer solution. 

Variable Selection for Branch and Bound. 

For the upper bound of 21 csteps an arbitrary branch and bound 

(where the multipliers are not chosen first) required 38 cpu minutes (with 

knapsack improved bounds) to produce all integer solutions. However 

by branch and bounding only on the variable for multiplication opera­

tions an all integer solution in 351 cpu seconds. 
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Lower Bounds Calculation. 

Table 10.10 illustrates the perfonnance of using different techniques 

to calculate the bounds of the problem. We also tried fixing the number 

of functional units to calculate the bounds on the registers and busses. 

Clearly this approach for the EWF application produced exact bounds 

and overall good execution times. However this is not always 

guaranteed to produce globally optimal solutions. For example in some 

cases it may be possible to increase the number of functional units in 

order to decrease the number of registers or busses. Figure 10.5 illus­

trates an example where by increasing the number of functional units we 

can decrease the number of busses. In 10.5 a) two adders. two (two cycle 

pipelined) multipliers. and 7 busses are allocated. However at the 

expense of an extra multiplier we can decrease the number of busses by 

one. In this case b) would be the optimal solution if the cost of one mul­

tiplier was less than the cost of one bus. For piecewise linear cost func­

tions this decision will be more complicated (ie. will the cost of the b'h 

bus exceed the cost of the i 'h multiplier?) and therefore in general we 

cannot fix the functional unit lower bounds when calculating lower 

bounds for other resources. 

Comparison with Baker's Model. 

Table 10.11 shows the total cpu seconds required by the OASIC 

model for optimizing the area-delay cost function in (10.2) for functional 

units alone. In row one the relaxed LP with (integer rounded) lower 

bounds produced integer solutions in 36 cpu seconds (for model genera­

tion and LP execution). We also ran this same instance of the EWF 

problem using the precedence constraint (6.5*) (Baker. 1974. Lee. 1989) 

from chapter 6 which required branch and bound to find an integer solu­

tion in approximately 10 cpu minutes (BAKER) on the same 386 PC 

using the same GAMS solvers. In both cases solutions are globally 

optimal for this cost function. Row three illustrates how efficiently we 
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Figure 10.5. An example to illustrate the increase of functional units to 

decrease the number of busses. By increasing the number of multi­

pliers by 1 in b) we can decrease busses from 7 in a) to 6 in b). The 

numbers on the left hand side and right hand side of each a) and b) 

indicate the csteps and the number of parallel data transfers respec­

tively. 

can simultaneously schedule and allocate large algorithms such as the 

EWF which was unrolled three times creating 102 input code operations. 

Over 300 Xj,k variables were solved to integer values in the initial LP. 

These results illustrate how important good bounds and tight models are 

for solving integer programing problems. 

Cost Function Sensitivity. 

Changes in the cost parameters were also investigated to see how the 

cpu performance of the OASIC model varied. Furthermore this experi­

ment provided more information on the stability of the allocations. This 

is important to determine since the area cost parameters are only an esti­

mate of the final area values and if a great variation in allocations is pro­

duced by only a small change in the cost parameter then the designer 

must consider more than one allocation and schedule in the next binding 

phase and remaining design cycle. As shown in table 10.12, the 
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Table 10.10. IP Perfonnance Comparisons of LB, Fixed, and Knapsack Methods 

Method Lower Bounds cpu sec 

I. 1+ R B 

LB LB 2 2 8.6 6.7 

Method B+B 2 2 9 7 128 

FU fixed LB 2(fixed) 2(fixed) 9.3 7.3 

Method rLP 2(fixed) 2(fixed) 10 8 38 

FU fixed LB 2(fixed) 2(fixed) 9.3 7.3 

Method B+B 2 2 10 8 83 

KnapSack Ineq B+B 2 2 9 8(9.3sec) 24 

Application: EWF with an upper bound of 18 csteps and 2 cycle multipliers. 

Table 10.11. Comparison of cpu Seconds for EWF 

Synth # Code Te *pl + Var Eqns cpu 

Operations sec 

OASIC 34 19 1 2 130 160 36 

BAKER 34 19 1 2 130 120 600t 

OASIC 102 50 1 3 310 407 40 

t branch and bound is required. 

solutions are very stable for the range of cost parameters. 

Further Notes 

1. The bounds calculated by fixing the number of functional units is 

exact and can save significant cpu time. However these do not 

guarantee that the solution is globally optimal since tradeoffs in 

registers or busses for functional units is not possible. 
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Table 10.12. Sensitivity Analysis for Cost Parameters 

csteps cost coefficients of cpu 

I. 1+ R B seconds 

18 250 50 15 100 24 

18 250 100 15 300 26 

18 250 100 300 100 152 

2. A heuristic for 21 cycle EWF which assigned 7 partial orders 

between multipliers was used to solve the problem in even faster cpu 

times 14+78 cpu sec (execution + generation). It is possible that a 

branch and bound on partial orders would be even more efficient for 

these types of problems. 

Comparison with Register File Architectures. 

We could additionally make an estimated comparison with SPAID 

and other register fIle architectures. However as discussed in chapter 2 

this is not a fair comparison due to the difficulty in judging the overall 

areas. For example we can compare the number of registers in OASIC 

with the number of registers in the register fIles, however the later 

requires less area per register. In addition we can compare the number of 

busses in OASIC with the number of busses in SPAID (Haroun, 1989) , 

however SPAID additionally requires multiplexors which OASIC does 

not. It is additionally difficult since the SPAID and <ESC> (Stok, 1989) 

compilers do not quote the number of multiplexors. Nevertheless from 

the number of inputs to multiplexors (mi) we can calculate a lower bound 

on the number of multiplexors m = (mi/RF) and total number of busses 

(B + m) = (RF + mi/RF). Since OASIC schedules and allocates, ie does 

not bind, we do not have a number of inputs to multiplexors to compare 

with. Table 10.13 compares the OASIC busses with the SPAID and 



162 Architectural Synthesis 

<ESC> busses plus multiplexors and the OASIC registers with the 

SPAID registers in the register files (Haroun, 1989) . 

Table 10.13. Rough Comparison with Register File Architectures. 

Synth Te *pl + RF mi B+m R 

OASIC 19 1 2 0 0 7 9 

SPAID 19 1 2 5 17mi 9t 21 

OASIC 17 2 3 0 0 10 10 

SPAID 17 2 3 6 26mi llt 21 

<ESC> 17 - - 8 23mi llt -
t OASIC lower bound on m was used in the calculation. 

10.2 NEURAL NETWORK ALGORITHM 

We will present results of the OASIC synthesizer for a four layer per­

ceptron with back propagation learning (Lippmann, 1987) . It is an 

important example for synthesis since it is very different from the EWF 

in that it contains a great deal of regularity and has large loops. By using 

the regularity in the algorithm and by using functional pipelining con­

structs we can drastically reduce the number of code operations required 

to optimally schedule and allocate the filter. It is important to note that 

we are in fact not performing functional pipelining but only using the 

mathematical (functional pipelining) construction to reduce the number 

of code operations. The feedforward network is described first and we 

can show that the model is valid for all different sizes of neurons and 

layers. The second part of the results presents a model for back propaga­

tion. This is a more complex algorithm and analysis will vary depending 

upon the number of neurons in each layer. 
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The general algorithm for a four layer perceptron with back propaga­

tion learning is given in figure 10.6. If we let the input data width to be 

D bits (D~4) then a D X 4 X 4 X 4 network is used, (one input, hidden, 

and output layer, where each layer has four neurons). This size was 

chosen so that we could demonstrate what the schedule and allocation 

would look like. Nevertheless we can increase the number of neurons 

per layer as described in the later part of this section. 

main loop { 

for each layer (input to output) { 

for each neuron in a layer{ 

xl = !CDiWi,j - Sj) }} 
i 

for the output layer{ 

for the remaining layers (output-l to input) { 

8j =x] (I-X]) (L8k w/i+1}) 
k 

for (i=I, ... ,4) w·(t.+l) = w- . +,., 8· x,.!; }} 
',J ',J 'I J 

Figure 10.6. Algorithmic description of ANN translated from 

(Lippmann, 1987) . 
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In order to take advantage of the regularity present in the NN algo­

rithm we extracted a stream shown below in figure 10.7. In figure 10.7 

xd is the input data to the network, (f) and the next two lines are the for-

ward propagation, and (1) through (3) and the next three lines represent 

the backwards propagation. This stream (or column of activity) in effect 

illustrates the behavior of the first neuron of each layer. The input code 

describing this behavior is given below. Equation (f) describes the feed­

forward network that will be synthesized first The remaining equations 

(1) through (3) describe the back propagation learning. 

In order to avoid trivial analysis we examine a case with an even 

number of neurons per layer and we will allocate an odd number of mul­

tiplier and adder functional units. If we examine allocating an even 

number of functional units, F, and we have an even number of neurons 

per layer, N, then we can : (1) for F<N, execute N/F neurons in parallel 

using multiplier accumulator streams; (2) ~N, execute F wide multiplier 

accumulator trees. An example of a multiplier accumulator stream is 

shown in figure 2.2a) of chapter 2. A three wide multiplier accumulator 

tree is also shown in figure 2.2b) of chapter 2. 

Assuming we have 4 neurons per layer, we will examine the alloca­

tion of 3 functional units of each type (adders or multipliers). The initial 

multiplier accumulation is equivalent to matrix multiplication for a 0 X 

4 matrix. Let us assume for simplicity that 0=16. In the matrix multi­

plication, the summation loop was unrolled 16 times and the 4 columns 

were pipelined with a latency of 1. The 4 pipestages of 32 code opera­

tions (multiplier accumulator streams) were scheduled (using the func­

tional pipelining constraints) in 24 control steps to execute the 16X4 

multiplication, shown in figure 10.8. Three (two cycle) pipelined multi­

pliers and three adders were allocated which can complete one pass in 

215 control steps (requiring less than 2 cpu minutes to optimize). By 

making use of regularity, 4 pipe stages of multiplier/adder streams with 
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Figure 10.7. Stream of ANN code representing behavior of the first neu­

rons of each layer. 
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latency of one, required 41 Xj.k variables and 66 constraints, were used to 

model this matrix multiplication. Apart from the memory required for 

input vector and matrix storage, there are 7 local registers required and 

18 busses. OASIC could simultaneously schedule and allocate (3 multi­

pliers and 3 adders in 24 csteps), in less than one cpu minute total. This 

included 14 cpu sec and 5 cpu sec for the model generation and the LP 

execution times. Unfortunately we cannot compare with (Lag­

nese, 1989) which performed matrix multiplication in a different applica­

tion since they chain the multiplier and adder into one functional unit. 

No other published research has tackled matrix multiplication. This is 

most likely because of its size, complexity and the possible difficulties 

with applying heuristic synthesis techniques to an example with a great 

deal of regularity. Nevertheless the kalman filter example illustrates the 

flexibility of the IP model to support functional pipelining and synthesize 

different types of input algorithms. If each f(.)=table look up (since f(.) 

represents a nonlinear function) has the same number of csteps to pro­

duce an output then an upper bound of three f(.)s is also needed. The 

design exploration for this feed forward network is shown in table 10.14 

requiring 20 cpu seconds to minimize an area cost function (10.2). We 

will present in this section synthesized architectures for the complete 

algorithm shown above in figure 10.8. 

Back propagation involves perfonning equations (1) through (3) of 

figure 10.7, where (2) and (3) are repeated in a loop. It is not straightfor­

ward how one can schedule these equations due to their interdependence. 

A significant amount of parallelism is lost by separately synthesizing 

each equation separately. Furthermore unlike the feed forward results it is 

not obvious how one can extend this analysis to a 4X6layered network ( 

k=1, ... 6 and j=l, ... ,4). For these reasons we will demonstrate our syn­

thesis model on a 4X6 network. Equations (2) and (3) represent 4 weight 

updates for each of 6 neurons and a mutltiplier accumulator stream of 
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Figure 10.S. Part of the IP optimized schedule (shown for 4 control 

steps with 4 pipestages, latency=l, 7=R, 18=B) for the 16X4 matrix 

multiplication of the kalman filter benchmark example. 

Table 10.14. Forward Propagation OASIC Results. 

x·I = f( Ltd Wd .-e.) 1 ,I 1 

d 

Te * + R B f(.) -
24 3 3 7 18 - -
26 3 3 7 18 3 3 

28 3 3 7 18 1 1 
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length 6 for each of 4 neurons. The 4 weight updates over 6 neurons 

were transfonned into 6 weight updates over 4 neurons. In other words 

each of the first 4 neurons (PE, k=I, .. ,4) had two additional weights to 

update (representing part of the 5th and 6th neuron weight updating). 

This provided the model with four (neurons) symmetric streams of code 

to functionally pipeline. These were then functionally pipelined to 

represent behavior of all neurons in one layer. The results are given in 

table 10.15, and the schedule of weight calculation is presented in figure 

10.9. Each row of in figure 10.9 represents the accumulative summation 

over all k of Wj,k perfonned by PEj to calculate Bj , output at the 6th 

cstep. 

Table 10.15. Back Propagation OASIC Results for DX4X6 network. 

fi (i-I 4) (1+1) - B 1. or - , ... , Wj,k - Wj,k + 11 k Xj , (2) 
k=6 

B· =x·1 (I-x·1) (LB w{l+l» (3) 
J J J k J,k 

k=1 

Te * + R B Var Eqn Tgen Texec 

(cpu sec) 

12 5 6 12 29 62 108 24 6 

17 3 3 7 18 182 243 92 10 
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Cstep to calculate Wj,PE by PE 

j ,PE 1 2 3 4 

1 1,5 2,6 3 4 

2 4 1,5 2,6 3 

3 3 4 1,5 2,6 

4 2,6 3 4 1,5 

at cstep 5,6 Wj,k Ik=5,6 are calculated by PEs shown 

Figure 10.9. Schedule of weight calculations in back propagation for a 

4X6 network. 

10.3 CONDITIONAL CODE EXAMPLE 

The benchmark example for conditional code was originally 

presented in (Kurdahi, 1987, Park, 1986) . The example is shown in fig­

ure 10.10, and contains five nodes where branches are initiated, and 15 

code operations. It is a good example for synthesizing conditional code 

since there are partially ordered and independent conditional branches. 

We assume that each edge in the figure 10.10 represents a data transfer 

and conditional statements take 0 delay. 

In addition to minimizing the area of the architecture, we can formu­

late it to minimize the execution times of each path. Only one other syn­

thesizer (Camposano,I99I) can do this type of scheduling however it 

requires operations to be chained. Nevertheless this is very important 

since different paths will take different times and each may have an equal 

probability of being executed. If probabilities are not equal we can 

accordingly weigh the final execution time on each branch. 

There are three conditional blocks in this example, see figure 10.10. 

We set these up as k eC;, h=I,2,3. Each block has c number of branches 

possible. For example +1,+2,-2,+5 eel +1,+2,-2,-5 eel +1,+2,+3,-6 
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Figure 10.10. Conditional code example from (Kurdahi, 1987) showing 

a schedule for 2 adders, 2 subtractors, 3 registers, 9 busses, and 

Te=5. 

Eel +1,+2,-3,+6,-6 Ecl +4,-1 Eel -4,-1 Ecl +7,-7 Ecl and +7,+8 

EC i. Since b= 1 and b=2 are in parallel we formulated constraints for all 

possible combinations of branches within these two blocks. However 

b=3 succeeds the two blocks so we generate only constraints for all 

branches in this one block separately. 
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Table 10.16. CPU Times for Minimizing Total Csteps in Conditional Paths 

Te + - R B CPU sec Var Eqn 

Tgen Texec 

5 2 2 - - 13 10 90 302 

6 1 2 - - 13 10 90 302 

6 1 1 - - 13 10 90 302 

5 2 2 3 9 145 16 92 680 

6 1 2 3 9 145 16 92 680 

6 1 1 3 6 143 16 92 680 

1+1_ were fixed and the execution times for all paths minimized. 

Only one edge (originating from +2) was reduced by the algorithm 

since the variable lifetimes in different branches are calculated by the 

inequality. The remaining multiple edges in the DAG are part of a con­

ditional branch. In the OASIC register allocation inequality when one 

branch is chosen only one lifetime defining edge is selected during con­

straint generation. 

The allocation and schedule time for 1 adder, 2 subtractors, 6 csteps, 

3 registers, and 9 busses are shown in table 10.16. In (Kurdahi, 1987) 10 

csteps are used and 8 registers are used, however 8 inputs are used into 

the data flow graph. We omitted these inputs to show that our algorithm 

produces the optimal number of registers. 

10.4 ANALOG AND ASYNCHRONOUS INTERFACE 

EXAMPLES 

The use of OASIC with analog and asychronous interfaces is demon­

strated in this section. 
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10.4.1 Analog Interface 

To illustrate the use of the OASIC timing constraints to model an 

analog interface we used the successive inputs of IN in the EWF exam­

ple. For the 2Xs unrolled filter we placed a timing constraints between 

n+3n (see figure 10.1) in successive loops to be scheduled exactly 17 

csteps apart. The synthesized schedule and allocation with the fixed tim­

ing constraint required 60 cpu seconds (total generation + execution 

time) as shown in table 10.17, for the structured model (of chapter 6). 

The area cost function was minimized and the relaxed linear program 

produced all integer variables. One extra multiplier is required for this 

architecture due to the analog interface. The solution without fixed tim­

ing constraints was presented in table 10.17 of section 10.2.2. 

Table 10.17. Example of Analog Interface for unrolled EWF. 

Code Te *pl + CPU Var Eqns 

Opns sec 

68 34 2 3 60 566 337 

10.4.2 Asynchronous Interface 

To demonstrate how the asynchronous interface can be solved we 

used the EWF example and replaced +25 <. *24 with +25 <. ka and ka 

<. *24. The asynchronous process ka has a minimum data processing 

time of 2 csteps (d=2) and a maximum of 5 csteps before an output data 

value is produced (p=3, defined in chapter 9). We used an upper bound 

of 21 csteps for the new filter and minimized the area cost function using 

the OASIC model from chapter 7. 

First the asynchronous interface was modeled using 3 mutually 

exclusive pipestages (see chapter 9, section 9.3 d». Since the interface 

dependent code will be pipelined we only use variables to represent the 

first pipe stage where ka requires 2 csteps to produce output data. 
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Preprocessing for the interface dependent code is done as usual. The 

upper bound on csteps for the interface dependent code is JUB - 4 (to 

account for the 2 cstep delay of ka , and 2 csteps for the two other pipes-

tages). In this example the interface dependent code does not precede 

other interface independent code, so JUB is used as an upper bound for 

the interface independent code. 

Table 10.lS. Asynchronous Interface Example. 

ka Method Te * + CPU Var Eqns 

d,p LB UB sec 

2,0 Fixed 21 21 1 2 25t 196 233 

2,3 PL 19 21 2 2 38 140 230 

2,3 CC 20 21 2 2 137 217 331 

4,0 WC 21 21 2 2 20t 140 174 

2,3 PL 25 27 1 2 1618 311 454 

2,3 CC 23 23 1 2 45t 335 473 

4,0 WC 23 23 1 2 28t 206 260 

t Tgen+ Texec of relaxed LP where V x £B . (other CPU for B+B) 

The same example was scheduled with mutually exclusive condi­

tional code (CC, see chapter 9, section c» thus allowing for possible 

improvements in hardware at the expense of controller area. The com­

parisons of pipelined (PL) and conditional (CC) solutions for this exam­

ple are given in table 10.18 (see chapter 9 for a definition of d and p). In 

addition the solution without an asynchronous interface, but with a fixed 

timing constraint of 2 csteps (between +25 and *24) is given in the first 

row (Fixed). The fourth and last rows of table 10.18 show the worst case 

examples (WC), where ka requires 4 csteps to produce output data. In 

the CC case the schedule of each stream was not identical as in PL. In 
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one case by using the '+25' operation to tighten some inequalities the 

branch and bound required 13 nodes in the branch and bound tree and 

267 cpu seconds to determine that the IP was integer infeasible. Without 

using the tightened inequalities the same problem required 22 nodes in 

the branch and bound tree and 420 cpu seconds. We have shown that 

both approaches for asynchronous interfacing are practical with respect 

to its solution in the OASIC model. The schedule for the PL solution is 

shown in figure 10.11. 

OASIC allows the flexibility of analyzing different approaches to 

synthesizing architectures in the presence of complex interfaces. For 

example one possible methodology to follow may be to synthesize for 

minimum controller costs using the PL strategy and then calculate lower 

bounds with the CC strategy. If the lower bounds are equivalent to the 

PL schedule then there is no advantage to a larger controller. Alterna­

tively one may wish to investigate any savings with the CC method. 

In chapter 10 we have used OASIC to synthesize architectures and 

analyze a number of input algorithms or benchmarks. Globally optimal 

solutions which minimize an area or area-delay cost function have been 

synthesized in practical execution times. A summary and discussion of 

these results will be provided in the next chapter. Some concluding 

remarks and future extensions will also be discussed. 
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Figure 10.11. Optimized schedule and allocation for 1=21 control steps, 

with asynchronous interface to ka . Mutually exclusive schedules are 

shown separated by bold vertical lines. 



PART IV: TESTABLE ARCHITECTURAL SYNTHESIS 



11. 

TEST ABILITY IN ARCHITECTURAL 
SYNTHESIS 

The need for early test consideration during digital design is well 

recognized and documented by the VLSI Industry (Tsui, 1986) , (Willi­

ams,1983) , (Fung, 1986) , (Abadir, 1985) . However there have only 

been a few recent approaches to integrating these two areas: in particular 

architectural design synthesis and test incorporation (Fung, 1986) , 

(Abadir, 1985) , (Gebotys, 1989) . In this chapter we will define, discuss, 

and compare problems in both areas. This chapter is not a tutorial on 

testing, however test references are given to aid the reader. Topics 

affecting the test incorporation for complex VLSI digital designs and test 

issues affecting the design synthesis methodology are covered. 

Advances in test research have a direct effect on the way in which testa­

bility can be implemented in a synthesized design. It also directly effects 

the testable design synthesis methodology, as discussed in chapter 1. 

Approaches to previous research in test incorporation, section 11.2 and 
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11.3, the integration of design and test, section 11.4, and a list of remain­

ing problems in this area, section 11.5, will be covered in this chapter. 

11.1 DESIGN AND TEST 

The objective of integrating architectural synthesis and test incor­

poration is to provide an optimal architecture that is testable. Further­

more by integrating these two tasks, an architectural design solution will 

be found that satisfies both design and test constraints such as area, 

delay, testing time, and estimated fault coverage. 

The integration of design and test is aimed at decreasing the VLSI 

design cycle time and avoiding large time consuming test efforts at the 

end of the design cycle. Test should be considered early in the design 

cycle during design and not after. 

A comparison of the architectural synthesis problem and the struc­

tured design-for-test problem is given in table ILL The objectives, 

methods, difficulty, and levels of design representation for architectural 

synthesis and test incorporation are outlined. It is clear that some aspects 

of these problems are similar and overlap such as the problem con­

straints, and the problem tasks. 

The constraints are quite similar except the overllead in area and 

speed (OR) of the architecture due to the incorporation of test structures 

is used as a measure in the second column of table 11.1. The testing time 

is defined as the number of clock periods required to test the architecture. 

The fault coverage is an estimate of the fault coverage of the architecture 

that is achieved by incorporating testability. For example if one allows a 

very long testing time, many test vectors can be applied and therefore the 

fault coverage will be increased. 
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Table 11.1. Comparison of Synthesis and Test at the Architectural Level 

Problem Architectural Test 

Synthesis Incorporation 

Constraints Area, AreaOH, 

Speed, Speed OH, 

Execution Time Test Time 

Fault Coverage 

(Test Confidence) 

Task Schedule, Test Schedule, 

Allocate Allocate Test 

Hardware, Hardware, 

Binding. Bind Test. 

Verify Functional Fault 

Simulation Simulation 

Design Level Functional Combinational 

Units, Units, 

Registers, Sequential 

Units, 

Busses, Busses, 

Multiplexors. Multiplexors. 

Difficulty NPhard NPcomplete 
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The tasks for architectural synthesis have been already outlined in 

chapter 3 and part III of this text. Nevertheless it is very interesting to 

compare these with test incorporation tasks at the architectural level. In 

architectural synthesis code operations will be executed during a particu­

lar clock period. In test incorporation each hardware resource (bus, 

register, functional unit) will have a particular test phase during which it 

will be tested (or special vectors will be present at the inputs and pro­

cessed at the outputs). In architectural synthesis functional units, regis­

ters, and busses are allocated, whereas in test incorporation test registers 

(which do not replace existing design registers) and special interconnect 

(ie. single bit width for serially shifting test data or full word widths for 

parallel transfer of test data off or on the chip) may be allocated. In the 

later case allocation of test interconnect may include general bus struc­

tures, such as the allocation of mUltiplexors, which are only used during 

the testing of the chip. Binding in architectural synthesis refers to the 

assignment of code operations to functional units and variables to busses 

and registers. For test incorporation, we use the term test binding (see 

table 11.1) to refer to the assignment of registers to test registers. In other 

words existing design registers allocated from architectural synthesis, are 

replaced with test registers. Test registers is the generic term we use to 

identify special hardware that during the normal operation mode mayor 

may not act as registers (in the later case they are inactive), and during 

the test mode of the chip either produce or access test vectors for input to 

or output from functional units. These will be further defined in section 

11.2. We use the term test binding to differentiate from the allocating of 

test registers. In the later case each test register allocated does not 

replace any existing design registers. 

Verification can be performed through functional or fault simulation 

for architectural synthesis or test incorporation respectively. The design 

levels, shown in table 11.1, are similar since we are only interested in the 

architectural level of the design automation. Lower levels of testing and 



Testability in Architectural Synthesis 183 

design are briefly discussed in chapter 1. The architectural synthesis 

problem and test incorporation problem are NP hard and NP complete 

respectively. 

11.1.1 Choices in Design and Test 

There are three choices for incorporating test into architectural syn­

thesis. 

1. No test consideration during the design. 

2. Leave test consideration until after the design is synthesized. 

3. Try a structured simultaneous approach to both architectural syn­

thesis and test incorporation. 

Choice I uses the functional testing to provide a test, with no modifi­

cations to the hardware. Choices 2 and 3 are shown in figures 11.1 and 

11.2. Figure 11.1 shows five blocks: the architectural synthesis process 

is represented by the first two stages, followed by the test incorporation, 

and fmally the design placement, routing, and layout stage. The first two 

stages could also be represented as one stage in a synthesizer such as 

OASIC (see part III) which minimizes a area-delay cost function to syn­

thesize the architecture. Feedback in this case could be the selection of a 

different clock speed, and therefore different functional units or perform­

ing higher level input algorithm transformations to extract more parallel­

ism for the synthesizer. The separation of the design and test stage has 

been proposed for systems, such as (Abadir, 1985) , where the architec­

tural research (Granacki,1985) and test research is performed by 

separate groups. Other researchers have also proposed this, such as 

(Beausang, 1987) . The test overhead in figure 11.1 refers to the addi­

tiona! area and delay of the design required by the test incorporation. 

This change in constraints is viewed as an overhead because the syn­

thesis exploration is finished and the architectural solution before test is 
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essentially fixed, due to lack of feedback after test Figure 11.2 refers to 

further integrating architectural synthesis with test such that the design 

exploration is guided by test constraints in addition to the design syn­

thesis constraints. In this methodology there are no overheads since 

there is feedback after test. Only constraints for a testable design such as 

area, delay, and test cost (which may include estimated fault coverage 

and test time) are evaluated. In all cases test incorporation refers to the 

analysis, or modification of the design synthesized for test. In figure 

11.2 design and test are integrated together the presence of feedback after 

the test stage to the synthesis process as in (Gebotys, 1989) thus provid­

ing testable design exploration. Some systems (Fung,1986) have 

integrated design and test in a finite state machine environment however 

no methods for feedback are presented. The layout box actually refers to 

the remaining design activities required after an architectural solution is 

formed. For example this would include placement, module generation, 

routing, and final layout or mask generation for fabrication. Again these 

tasks vary depending upon the technology used (ie. gate array, standard 

cell) and level of design output from the synthesizer (including floorplan 

or whether a netlist only is provided). 

feedback 1 

Design 

Synthesis 

feedback 2 

Test 

Incorp. 
Layout 

Figure 11.1. The design synthesis process and independent test incor­

poration process shown with constraints guiding feedback. 
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Design 

Synthesis 

Test 

Incorp. 

feedback 
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Layout 

Figure 11.2. Integrated design synthesis and test incorporation. Feed­

back after test incorporation used for design exploration. 

When no test is considered during design, in choice 1., a functional 

simulation is used to test the designs. To verify that the synthesized 

design works correctly, a functional test whose vectors represent all pos­

sible inputs would be created. For combinational chips with M inputs 

2M test vectors would be required for full functionality. However this 

may not detect sequential faults, for example a slow-to-rise fault, present 

in the circuit. To test for sequential faults in theory one would require 

all possible orderings of all test vectors which is combinatorially explo­

sive. Furthennore the design may contain untestable constructs such as 

redundant circuitry because test was not considered during design. 

For functional testing of sequential chips the test would have to 

include all different sequences of pattern inputs each of which may be 

replicated an undetennined number of times. This clearly may not be 

practical, especially for circuits with more than 25 inputs 

(Susskind, 1984) . A minimum of 2N+M would be required, for M inputs 

and N latches in the design, but this set of vectors does not even modify 

the sequence of inputs, (Williams, 1983) . Furthennore in real applica­

tions where the chip is interfaced to unknown or complex external 

processes, the set of all functional tests possible may not always be 

obtainable. Thus a functional test is often not possible to define and is 

not sufficient to test the chip with confidence. 
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The second case, shown in figure 11.1, considers both architectural 

synthesis exploration and test exploration in a separate and unintegrated 

manner with no feedback between these two tasks. The main problem 

with this approach is that complicated designs may be impossible to test 

without changes to the hardware. These hardware changes may cause the 

design constraints to be exceeded or cause high test overheads. Thus a 

design solution found in the synthesis stage may no longer be valid or 

meet desired constraints after the test exploration stage. Thus with no 

feedback to the architectural synthesis the DA tool would fail to find a 

solution although one may exist. 

The exception to this, is the case where the synthesized design solu­

tion before test incorporation is well within its design constraints. In 

other words during architectural synthesis the minimum area and delay of 

the final architecture were less than the designers requirements. For 

example the synthesized architecture may be modified for testability by 

adding scan registers and additional interconnections. The area and delay 

values for the new testable architecture are then computed and may still 

meet the original design specifications. There are two problems with this 

approach. The first problem is how to estimate the test overheads, espe­

cially if the designer does not know which test method is to be applied. 

These overheads will vary depending upon the design solution and the 

test methodology to be implemented (Abadir, 1985) . Secondly since this 

method is overconstrainted. The synthesizer may not fmd a solution at 

all which meets the over constrained area and delay (ie. in OASIe, it 

may be integer infeasible). This approach avoids feedback after test 

incorporation through overconstraining. 

It is interesting to note that there would be no test overheads at all for 

the architectural synthesized solution if test vectors could be generated 

such that the test constraints are met. Although automatic test pattern 

generators (ATPG) have been developed to handle combinational 
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(Roth,1967) and sequential circuits (Marwedel, 1986, Agrawal, 1988) , 

these tasks require large computations in complex circuits. From experi­

ence (Goel, 1980) the computational complexity of test pattern genera­

tion has been shown to grow by the square of the gate count. For exam­

ple it may take 17K cpu seconds to achieve 91 % fault coverage for 1500 

gates of a chip design (Agrawal, 1988) . If they were suitable to be used 

for complex VLSI chips and could meet the test constraints without 

changes to the hardware, then feedback to design synthesis would not be 

necessary and the test stage would only consist of additional time for 

A TPG to meet test constraints. 

The final structured approach to the problem, choice 3, shown in fig­

ure 11.2, makes the best attempt to solve both the design and test prob­

lem. By integrating test incorporation into architectural synthesis a 

viable solution to the testable design problem is achieved through feed­

back providing testable design exploration. This approach is necessary 

for complex designs because functional testing is not practical nor suffi­

cient and test vector generation alone is time consuming and very com­

putationally demanding. 

In the second case, the two main effects of test on architectural syn­

thesis are: 

1. The effect of test on the design cost (ie. as discussed in section 

11.1.2 the testability of the design effects the cost of the chip, or the 

number of failed parts in the field) 

2. The effect of test on design constraint satisfaction (ie. as discussed in 

section 11.1.4, the area and delay overhead). 

In tum , the effect of the architectural synthesis on the test is 

1. Complexity and size of the architecture effects the difficulty of the 

test incorporation. 
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2. The architecture also effects the difficulty of producing test vectors 

(ie. chaining operations may produce poorly testable functional units 

which may require a large number of test vectors). 

Clearly design exploration and test exploration should be integrated 

in order to deal with complex chip design. 

11.2 APPROACHES TO TESTABILITY 

This section will outline the factors affecting the test (generation and 

evaluation)for a design. Test tools, such as fault simulation, automatic 

test generation, and controllability/observability tools, are generally dis­

cussed and referenced. Modifications to a design for testability will be 

discussed in section 11.2.2. Additional detailed information can be 

found in Proceedings of International Test Conference, Design Automa­

tion Conference, International Conference on Fault Tolerant Computing 

and the IEEE Transactions on Computers. 

11.2.1 Test Measures and Tools 

There are only approximate measures developed to indicate how 

testable a circuit design is. This first section will discuss the fault cover­

age measure, fault models, fault simulation, and test pattern generation 

very briefly to defme terms and assumptions. The next section, 11.2.2, 

will cover design for test approaches to aid testing complex VLSI chips 

and discuss two popular methods in more detail. 

Fault Coverage. 

The most common test measure is fault coverage. Given a circuit 

represented by a specific design level, a set of fault models (suited to the 

design level), and a set of test vectors, the fault coverage is calculated by 

dividing the number of faults detected (multiplied by 1(0), obtained from 

fault simulation, by the total number of possible faults in the design. 
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This measure will vary according to the design representation level, the 

fault models, the test sets and the method of calculation. In some cases, 

discussed in the next section, it is not possible to calculate fault coverage 

and estimations are made. Table 11.2 illustrates the relationship between 

design levels, fault models, test tools( fault simulation and test pattern 

generation(TPG) ), and some application areas where these techniques 

are common. The design representation levels for test measurement can 

be functional, gate, or switch levels , in order of increasing detail and 

accuracy. Different fault models can be used to represent faults at a node 

of the design. For example sa-O refers to stuck at zero fault at a node. 

Table 11.2. Test Options 

Tools Design Representation Levels 

Switch Gate Functional 

Fault Models stuck at- stuck at- stuck at-

O,l,x,z, O,l,x,z 0,1 

open,short on I/O nodes or 

state transitions. 

Fault y y y 

Simulation 

TPG ? y:automatic y:manually 

C/O ? ClOs info-flow 

measures 

Application small circuits most common microprocessors 
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There are many tradeoffs involved in selecting a design representa­

tion level to use. The highest level is the functional representation which 

is technology independent. It is often used for microprocessor design 

because it can be implemented through test microcode which can be 

easily down loaded and executed on the chip. However it is the most 

inaccurate and difficult to measure test effectiveness. In fact studies have 

shown that a 90% functional level fault coverage may actually only 

corresponds to a 60% gate level fault coverage. Although the switch 

level provides the most accurate fault coverage measurement it is also the 

most computationally demanding. Most fault simulators use gate level 

representations for test vector generation. Gate level fault simulation is 

extremely computational even with concurrent execution 

(Agrawal, 1988) , and circuit size reduction techniques such as gate col­

lapsing as discussed later in this section. 

Fault Models. 

The most common fault models include the single stuck-at 

(O,l,X,Z,open or closed) model. However not all failures can be 

modeled by stuck-at faults (Galiay,1980) . The stuck at O,I,X,Z faults 

are the most easiest to model and techniques of fault equivalence or fault 

collapsing can be used to decrease the total number of faults to consider. 

An example of fault collapsing is to represent a stuck at zero on an input 

to a nand gate as the equivalent of a stuck at one on the output of the 

nand gate since the fault has the same effect. Therefore only one of these 

two faults needs to be modeled. Stuck at open faults are more difficult 

since they essentially tum a combinational circuit into a sequential cir­

cuit. Bridging faults (more difficult to model due to layout infonnation 

needed), delay-type faults (slow-to-rise,etc), or structure specific faults 

such as cross point faults in PLAs or neighboring faults in memory can 

also be modelled. Other faults include pattern sensitive faults and some 

strange faults which cause new transistor structures to fonn (Shen,1985) 
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for which fault models do not exist. 

In order to reduce the number of fault models considered in a circuit 

some researchers (Shen, 1985, Galiay, 1980) have investigated the per­

centage and type of faults present in fabricated circuits. Shen found 43% 

Oine or transistor) stuck at faults, 21 % floating lines, and 30% bridging 

faults and 6 % miscellaneous (Shen, 1985) . Stuck at open were less than 

3 % (Shen, 1985) . In another study (Galiay, 1980) the obselVed failure 

modes consisted of 55% shorts, 20% open faults and the remaining 25% 

were inobselVable or insignificant 

Fault Simulation. 

Many approaches to fault simulation have been investigated. In gen­

eral, given a circuit with F faults and T test vectors, perfonn a fault simu­

lation to detennine the number of faults detected at the outputs of the cir­

cuit. F faults refers to the number of unique faults of the design, after 

fault equivalence techniques have been perfonned. The simulation 

requires F+ 1 circuit representations to be simulated concurrently. Each 

of the F circuits have one unique fault. The extra copy of the circuit 

represents the good circuit. As test vectors are applied at the circuit 

inputs, the circuit outputs are compared with the good circuit outputs. If 

the outputs differ then the fault is detectable. This algorithm continues 

until all faults have been detected or until all test vectors have been 

exhausted. The number of remaining circuits with undetected faults are 

summed and divided by F to detennine the fault coverage. Serial, paral­

lel, deductive and concurrent fault simulation algorithms have been 

implemented. 

Various attempts have been made to decrease the complexity of fault 

coverage estimation. These include decreasing the types of fault models 

considered, decreasing the number of nodes to test for faults, and modi­

fying the circuitry to ease fault detection or reduce the probability of 

faults being present. Another approach to decrease the number of nodes 
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to test for faults other than gate /fault collapsing is to select faulty nodes 

using statistical methods. 

Test Pattern Generation. 

Automatic pattern generation for combinational or sequential circuits 

have been programmed. Most A TPG work in conjunction with a fault 

simulator to decrease the execution time. For example after a number of 

vectors are calculated, using a path sensitization algorithm, a fault simu­

lation is run to delete other faults which are also detected by the new vec­

tors (Marwede1, 1986) . Ten times speed improvement is achieved over 

conventional concurrent fault simulators, through fault reduction tech­

niques. Automatic pattern generation for combinational units researched 

include (Roth, 1967) or other algorithms such as (Motohara, 1986) which 

is implemented on multiprocessor architecture. A TPGs for sequential cir­

cuits have been researched (Marwedel, 1986) or (Agrawal, 1988) . Both 

are used in conjunction with a concurrent fault simulator. 

Hierarchical test pattern generators have also been developed with 

limited success. (Ho,1984) illustrated this concept for testing a 

parametrized adder and (Varma, 1988) created a cell test generator and 

hierarchical test generator using Prolog for standard cells and iterative 

arrays. These approaches hold the most hope for integration of test pat­

tern generation knowledge into parametrized silicon compiler cell 

libraries. 

It has been shown that some control ability and observability (CO) 

measures (Goldstein, 1980) do not correlate well with testability of the 

design (Ratiu, 1982) . It has also been shown that a larger variety of COs 

do improve the perfonnance of an ATPG, however no CO measure is 

superior over the others (Chandra, 1989) . CO at the functional level is 

called infonnation flow. These measures have been used for functional 

measures of testability as in (Agrawal, 1980, Fung, 1982, Dussault, 1978) 

, and used in an automated test system in (Fung, 1986) . 
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Controllability/Observability. 

Controllability observability tools have been developed as another 

means for evaluating the testability of designs without doing time con­

suming fault simulation and as an aid to ATPG by simplifying the back­

tracking process as discussed above. These measurements are automati­

cally calculated for each node in the design. They identify nodes which 

will possibly be difficult to control (and therefore difficult to sensitize) 

or difficult to observe (and therefore difficult to propagate fault presence 

to outputs of the circuit). Both these tasks are important for testing the 

circuit. 

In summary, given a specific design composed of combinational and 

sequential circuits, the testing phases (without hardware modifications) is 

computationally demanding, and very complex. The next section will 

outline how design modification can aid the test problem. 

11.2.2 Design Modifications for Testability 

The most common and popular method used to reduce the complex­

ity of the test problem is to modify the circuit design for testability. 

There are generally two techniques to do this. One is the adhoc and the 

other is the structured approach (Williams, 1983, McCluskey, 1986) . 

These approaches do not avoid the problem of test generation and fault 

coverage, discussed in the previous section, however they do provide a 

method for dealing with the problem complexities through design parti­

tioning. We will concentrate on discussing some structured design for 

test approaches. The structured approaches provide the best solution for 

incorporation test in VLSI chip designs. 

The ad hoc approaches to test involve partitioning the circuit to gain 

access to smaller networXs of the design. For example through multi­

plexing in and out internal nodes of an embedded circuit, additional con­

trol and observability is obtained. Bus based architectural designs also 
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support the adhoc approach to test by providing partitions of the design 

and allowing access to several modules attached to the bus. This is very 

popular for testing microprocessors (Williams, 1983) in addition to the 

functional testing which uses test microcode described earlier. As long 

as the other modules outputs on the bus are in the high impedance state 

then the specific module can be isolated for testing using the bus for test 

vector transfer. The only problem with testing this design is the diffi­

culty in detecting the cause of a fault on the bus. 

The structured approach is recognized as the most suitable approach 

for complex chip, board, or system designs. In effect the circuit is modi­

fied so that all sequential circuitry, for example registers, are replaced by 

serial shiftable registers providing access to their storage elements by 

serially shifting vectors in and out of the chip. Only combinational cir­

cuitry remains which is now accessible through the serial shiftable test 

registers. This simplifies the circuitry to test since only a combinational 

test pattern generator is required for smaller partitions of the whole chip 

design. After A TPG is used on the extracted combinational logic 

islands, the test vectors are serialized and usable test vectors are created 

for the circuit. 

Designs composed of a data path and FSM or micro code controller 

may require two separate testing methodologies due to their circuit 

differences as in (Fung, 1986) . More than one test methodology may be 

applied to the datapath as in (Abadir, 1985) ,or different test methodolo­

gies could also be applied to the partitioned controllers as in 

(Fung, 1986) . This is called nonuniform test incorporation. An alterna­

tive is to apply the same test methodology to the whole data path as in 

(Krasniewski, 1985b, Craig, 1988) , called uniform test incorporation. 

The controller type test methodologies will not be discussed however 

more information can be found in (Abadir, 1985) . 
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Approaches in design for test differ in 

1. how to partition the circuit, 

2. with what test structures to replace the sequential registers, 

3. how to implement circuit and test clocking, and 

4. how to then calculate the test effectiveness or fault coverage. (Obvi­

ously the test overlleads will also vary as briefly shown in table 

11.3.) 

We will outline two basic test structures, scan path and built-in self 

test, in the next section. We chose these due to their simplicity and 

popUlarity. Other structures include LSSD , counting ones , syndrome 

testing (Savir, 1980) , walsh spectrum and many other types of structures 

(Williams, 1983) used for scan or built-in test. 

Scan Design. 

The scan design test methodology (Williams, 1983) replaces sequen­

tial circuitry or registers with serial shiftable registers. Examples of 

some implementations of the test registers or the 0 type master slave flip 

flop are shown in figure 11.3 (Williams, 1983) . 

By connecting the serial interconnect between the test registers, full 

controllability and observability of the memory elements is provided. 

Furthermore the test problem now becomes one of testing the remaining 

combinational circuits. During the test mode, each test vector must be 

shifted on chip, the system clocked once, and then the result of the com­

binational logic is then shifted off chip (simultaneous with shifting the 

next test pattern on chip). The test time is equal to the longest length of 

the scan chain multiplied by the number of test vectors. A full scan 

refers to changing all registers into scannable registers as in 

(Agrawal, 1984) . However not all registers need to be transformed into 

scannable registers in order to apply test vectors to all combinational 
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Figure 11.3. Examples a,b) of Scan register Design. 

units. For example CO software could be used to detennine which nodes 

should be controlled and observed in the scan registers as in 

(Fung, 1986) . For some applications additional scan registers could be 

used such as in the partitiOning algorithm of (Funatsu, 1975) where com­

binational networks are separated into smaller networks to aid test pattern 

generation, using a back tracing algorithm. 

More than one scan chain can be implemented to trade off test time 

with additional input and output pins. Thus test patterns can be shifted 

on and off the chip in parallel for more than one scan chain. Other simi­

lar techniques to the scan design exist, for example scan/set logic 

described in (Williams, 1983) where test scan registers are not part of the 

original design, and random access scan (Williams, 1983) where registers 

are accessed through addressing instead of through serial shifting. 
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Built In Self Test. 

Built-in self test provides a methodology for automatically generat­

ing pseudo random test vectors (called TPG) on/off the chip and having 

the responses compacted (by a SA) on/off chip. There are three modes of 

behavior for the BIST registers which again replace the sequential circui­

try. They are serial shifting, normal registers, and linear feedback regis­

ters (or TPG / SA mode). Essentially an initialization pattern (or seed) is 

shifted into the TPG and SA on the chip. Then the TPG starts to gen­

erate patterns and the SA compacts the combinational networks output 

responses. After T number of clock cycles the response is shifted off 

chip and the TPG/SAs are reinitialized for another testing period. 

Exhaustive testing, where T is the maximum sequence generated by the 

BIST structure, is often not practical (Wagner,1987) , so pseudo­

exhaustive testing may be performed. In the later case the pseudorandom 

numbers are generated for T clock cycles, where T is less than the maxi­

mal sequence. Analysis for fault coverage estimation and test confidence 

prediction have been researched (Wagner, 1987) for this case. 

The most common TPG or SA circuit is the LFSR which can be 

transformed from master slave D flipflops. An example is given in fig­

ures 11.4 of a LFSR register. Other structures have also been examined 

for use as a pattern generator or signature analyzer, such as counting 

techniques for SA and cellular automata for TPG. The differences of 

these structures lie in their area overhead, delay overhead, and fault cov­

erage estimation. 

Again the chip is transformed so that smaller combinational subnet­

works are being tested. BIST with TPG on chip has the advantage over 

scan path design for test of testing the chip at speed, instead of clocking 

once in the scan method to obtain one response at a time. However the 

LFSR has a larger area overhead than the scan register, especially if each 

combinational network has its own separate TPG and SA. For designs 



198 Architectural Synthesis 

Figure 11.4. An Example of a LFSR Design for BIST. 

that do not have scan paths, TPG and SAs may be added through multi­

plexors. The large area overhead may be avoided by using multiplexors 

to share the TPG among more than one combinational network. How­

ever the response compaction or signature analyzer circuits must be 

separate for each functional unit concurrently being tested. Another 

implementation of BIST allows scheduling combinational units for test­

ing at different times, called test phases. This method is often called 

BILBO, built in logic block observer 

(McQuskey, 1986, Williams, 1983) . This is nonnally implemented by 

translating a scan path is directly translated into BIST circuitry and 1(2 

the CUs are tested in one of two phases for orderly circuits (McQus­

key, 1986) . In this implementation more than one CU may be tested at 

the same time. Thus LFSRs will be created from existing registers and 
fed to CU inputs and from CU outputs separately. However a LFSR 

used as TPG in one phase may be used as a SA in another phase. 
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Measures of Test Overhead. 

The earlier DFf is implemented the better the designer can judge 

design overheads due to test. This provides earlier estimation of whether 

the final design will meet design constraints or whether the design will 

be testable enough to satisfy test constraints. In either case when this is 

known the designer can find another solution or continue fInishing the 

current design for fabrication. Table 11.3 illustrates some figures for 

overheads determined from experience of various researchers. Over­

heads vary greatly according to the design, technology, and the test 

implementation. 

Table 11.3. Some Quoted Overheads for ScanPath 

References 

(Agrawal 1984) 

(Williams 1983) 

(Susskind 1984) 

Overheads 

Area Speed 

% increase %decrease 

-12 -10 

4-20 small 

5-15 " 

The test approaches traditionally were viewed as a continuous effort 

to increase testability of the design through modifications and fault cov­

erage estimation. No feedback to the original designers intent or to 

design synthesis was examined apart from general layout rules 

(Galiay, 1980) to decrease chances of process errors causing faults, and 

the adhoc and structured methods to modify the circuit to avoid sequen­

tial circuit testing (Williams, 1983) or to increase ease of generating test 

vectors (Bhatt, 1986) . 
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11.3 PREVIOUS RESEARCH IN DESIGN FOR TEST 

We will concentrate on a discussion of previous research in struc­

tured design for test automation for digital designs. A large amount of 

research in ATPG, new test structures, new fault models, controllability 

and observability and other areas in the test field were referenced and 

outlined in the previous section. In this section reference to these tools 

only in the design for test (OFf) environment will be discussed. OFf 

research falls into two categories. OFf for special structures and for gen­

eral purpose digital systems. Each will be discussed below. 

Research in automating test decisions for special structures, such as 

PLAs, have demonstrated that the selection of how to test a circuit is not 

trivial, and nor are the tradeoffs clearly defmed (Zhu,1988) . No 

approach is clearly better and searching is often required to determine the 

best test approach given an application (Zhu, 1988) . 

Research in automating ad hoc design for test techniques have been 

investigated. For example in (Chen, 1985) controllability and observa­

bility measures are used to determine which nodes of a circuit should 

become primary inputs or primary outputs. Small circuits were used to 

demonstrate this techniques, however this has been extended to deter­

mine which nodes should become part of the scan chain in (Fung, 1986) 

instead of transforming them into primary inputs or outputs. Another 

example of automating ad hoc techniques is in (Bhatt, 1986) where com­

binational logic circuits are partitioned for improved testability. Block 

timing is maintained and modifications are made so that every output 

node depends on a small number of input nodes. 

Higher level automated methods of implementing structured design 

for test have also been investigated. Some examples of these are 

automated scan path design in TITUS (Agrawal,1984) , automated test 

for finite state machines in Silc (Fung, 1986) , automated nonuniform test 

for architectural design in TOES (Abadir, 1985) or for finite state 
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machine design (Zhu, 1988) , or extensions for BIST automation in 

(Craig, 1988) and BEST (Built in Exhaustive selft test) automation in 

(Krasniewski, 1985b) . The Silc and TOES systems will be discussed in 

further detail in section 11.4 because they also involve design synthesis 

in some form. 

TITUS (Agrawal, 1984) provides automated scan path incorporation 

for custom polycell based designs. All flipflops are connected into shift­

able registers during testmode so that the automatic test pattern generator 

for combinational logic can be used. Better delay optimization was 

observed by interconnecting the scan registers after layout. 

SUc (Fung, 1986) involves an integrated system that includes testa­

bility rules, testability expert, test structures and a testability evaluator. 

The input to the system is a description of a number of finite state 

machines. The testability evaluator uses (a) information theory 

(Agrawal, 1980) to identify hard to test finite state machines, (b) control­

lability observability measures at the structural level, and (c) a path trac­

ing technique to identify critical testing paths (ie components for scan 

testing). The testability expert makes the decisions about which test 

methodology to apply to a finite state machine in the design based upon 

the testability evaluator output, user requirements, and the test structure 

attributes. 

The TOES (Abadir, 1985) incorporates non-uniform test methodolo­

gies into a circuit design based upon the combination that gives the best 

multiple-criteria score of test attributes. The test attributes includes area 

overhead, test execution time, possibility of sharing BIT structures, 

amount of circuit tested for free, fault coverage, I/O requirements, exter­

nal test equipment requirements, and need for test generation. A struc­

tural design solution is used where kernels or combinational logic 

(requiring test) and interconnect paths, or I-paths (which may include 

busses, muxes or registers also), are identified in a graph data structure. 
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When the kernels cannot be embedded with known test templates, addi­

tional circuitry is added to modify the kernel to allow testing. Addition­

ally when an interconnect path is needed for testing by two different ker­

nels, this forces the two kernels to be in different test phases or can be 

solved using test steps as in (Abadir, 1985) . 

The other systems (Craig, 1988, Krasniewski, 1985b) provides uni­

form test incorporation of Bll..BO modules into the circuitry. In 

(Krasniewski, 1985b) the problem of test scheduling to minimize the test 

phases without adding new interconnect paths is investigated. In 

(Craig,1988) test control architectures were also investigated, using a 

star, bus, and multiple bus configuration for control. 

11.4 APPROACHES TO TEST WITH SYNTHESIS 

Although many researchers stress that testability should be con­

sidered during the early stages of design 

(Williams, 1983, McCluskey, 1986) , most testability research has been 

done after a structural design solution is defined with no feedback to the 

original synthesis process for finding more testable designs. Some testa­

bility research work relevant to our problem is outlined below. 

11.4.1 Previous Research 

Testability incorporation in the Silc silicon compiler (Fung, 1986) 

utilizes testability measures at the functional, and structural levels to 

guide test incorporation. The functional measures use information flow 

analysis, to group the finite state machines and incorporate testability. 

The structural testability involves calculating controlability and observa­

bility measures for circuit nodes of the data path. However no feedback 

to the synthesis process is provided and no other test methodology for the 

data path is considered apart from the scan path inclusion. 
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The TDES, or testability design expert system (Abadir, 1985) imple­

ments testability in a graph-based structural design by matching the sub­

circuits requiring testability with test design templates. The test design 

templates contain measures of test time, area overhead and the control 

sequence for a particular test strategy. Again no feedback to a synthesis 

process is used and the test implementation is based on local structural 

enhancements with no global infonnation. 

Built in exhaustive self test incorporation in data paths has been 

investigated at the University of Rochester (Krasniewski, 1985b) . Built 

in self test (BIST) module selection, placement, scan path organization, 

mode controller organization, and derivation of test procedure is handled 

by the software. Although speed estimates have been produced, no 

design synthesis or feedback is provided. 

11.4.2 Commercial Systems 

Silicon Compiler Systems Inc (Sabo, 1986, Johannsen, 1987) 

Genesil structural cell compiler provides three controls for the designer 

wishing to incorporate test into their design. They are none, full, or par­

tial test visibility. These refer to the number of registers in the design 

which will be transfonned into scannable registers for a scan path or 

LSSD test implementation. The option full refers to using all shiftable 

test latches in the design. The partial visibility requires the user to 

specify the sequential depth limit which is used to select the registers to 

be transfonned into scan registers for testing. Built in self testing is also 

provided by linear feedback shift registers, (Sabo, 1986) which are pro­

vided as an additional configuration of the shiftable test latch in the com­

pilers library. 

Silc Technologies Inc's (Rosales,1989) newer tool provides 

automatic test incorporation for synthesized designs by transfonning 

registers in feedback paths into scannable registers and ensuring other 
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register are inactive during test mode (clock and reset signals are inac­

tive). This transforms a design into a combinational logic design model 

which allows them to run an A TPG to produce test patterns for the 

design. Scan facilities are added automatically, and clocking control 

logic for the test circuitry is also added. The industrial tool described 

above is quite different from the original research discussed in the previ­

ous section (Fung, 1986) . 

11.5 INADEQUACIES OF CURRENT SYNTHESIS WITH TEST 

There are remaining problems with tools in both the synthesis 

domain and the test domain which were discussed in section 11.4 and 

11.3. We will discuss the problems with systems developed or 

researched as a means of integrating both design and test tools. These 

problems can be classified into three main categories each discussed 

below. The categories are feedback, integration, and constraint estima­

tion. 

11.5.1 Feedback 

Proposed systems which integrate design synthesis with test incor­

poration lack the capability of providing feedback to architectural syn­

thesis after test incorporation. This is an important means for exploring 

the testable design domain. For example if the test overheads cause the 

design constraints to be exceeded, then a solution cannot be found 

without feedback. If the user is to provide feedback, then it is very diffi­

cult to determine what changes are to be made by the user to the syn­

thesizer to produce better design solutions which will have lower test 

overheads. Since the testable design exploration is a very difficult task, 

automated feedback for synthesis exploration methods must be created. 
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U.5.2 Integration 

A lack of integration between the synthesis and test tools also causes 

problems for testable design synthesis. Apart from difficulties of imple­

menting automated feedback, the absence of integration causes isolated 

decisions to be made in synthesis in the absence of its effect on the test 

process. These isolated decisions may result in poor design solutions. 

The lack of integration in these two cases is largely due to the fact that 

the tools are produced by two different group of researchers. An 

unnecessary duplication of the data base is often created further hinder­

ing design automation tools. By considering integrated design and test 

synthesis simultaneously the overall constraints may be better satisfied 

and better solutions may be synthesized. 

U.5.3 Constraint Estimations 

Unfortunately there is a lack of standards in the area of constraint 

estimation. However the separation of synthesis constraints from testa­

bility constraints causes more problems during testable design explora­

tion. Since few synthesizers even consider area estimations or tloorplan­

Ding, it makes the problem even more difficult to estimate the overhead 

in area (and speed) due to test. Design and test tools must create area, 

delay and test constraint estimations using the same methods. Standards 

should be created for this purpose. 

Qearly these three problems (feedback, integration, and constraint 

estimation) are very important for further enhancing and improving 

architectural synthesis tools. One approach to solving the problems out­

lined above is presented in the next chapter. 



12. 

THE CATREE ARCHITECTURAL SYNTHESIS 
WITH TESTABILITY 

Two VLSI testable architectural synthesis methodologies with testa­

bility, area, and delay constraints are presented in this chapter. This 

research differs from other synthesizers by 

1) implementing testability as part of the synthesized VLSI architectural 

solution, 

2) providing feedback to the synthesis process, and 

3) by integrating test incorporation with architectural synthesis (specifi­

cally allocation and binding) using a binary tree data structure. 

These design and test synthesis approaches are vital to the acceptance 

of synthesis tools in industry by providing feedback to the synthesis 

search when constraints cannot be met. Furthennore they will help to 

decrease the VLSI design cycle times by considering test constraints 
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early in the design. 

Both testable design synthesis methodologies are presented in this 

chapter. The testable design synthesis algorithms are discussed and syn­

thesized examples help illustrate the techniques. Results from the first 

methodology, CATREE, show that the 'best' testable design solution is 

not always the same as that obtained from the 'best' design solution of an 

area and delay based synthesis search. Preliminary results of the second 

methodology, CATREE2, indicate that better design solutions are 

obtained by incorporating test during design synthesis as opposed to 

approaches which incorporate test after a structural design solution is 

formed. 

12.1 PROBLEM DESCRIPTION 

We propose a solution to the following problem. 

Given a general algorithmic description of a behavior with area, 

delay, and test constraints, perform a datapath design synthesis by 

mapping the algorithm into a chip design which satisfies the given 

constraints. 

If we assume that OASIC is used to provide an initial optimized 

schedule and allocation of hardware (before test incorporation) the prob­

lem then becomes the following. Given a scheduled DAG, perform allo­

cation and binding so that a testable architecture is synthesized. 

Our approach to solving both of these problems is called CATREE 

(for Computer Aided TREEs), and will be presented in the remainder of 

this text. For CA TREE the choice of test methodology is explored to 

further search for a design solution. In CA TREE2, one specific test 

methodology is incorporated. Both approaches will create a testable 

design using area, speed, and testability estimates to guide the search 

through the design space. Our testable design synthesis methodology 
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only considers synthesis of the data path, and not the controller. How­

ever a control table is output from the synthesizer which could eventually 

be translated to interface to finite state machine controller synthesizers as 

in (Wei, 1987) and also incorporated with test as in (Abadir,1985) . 

Design solutions use a two phased clock with master-slave registers as 

described in part II and III (OASIC). All functional units are assumed to 

be combinational logic. 

Design constraints include area, delay and testability estimates of the 

synthesized data path, further discussed in section 12.4.3 and 12.4.5. The 

area constraint includes the areas due to the hardware components and 

the interconnect of the architecture. CA TREE uses a binary tree data 

structure and heuristic algorithm which minimize resources. The two 

dimensional characteristic of the binary tree data structure aids the area 

estimations. The circuit delay refers to the period of the system clock (or 

inverse of the clock speed) and is more refmed than the delay in OASIC 

(which is an integer representing the number of clock periods). Our delay 

model is similar to (McFarland, 1986) where we include delays through 

registers, mUltiplexors, and functional units. Also the delay due to the 

interconnect length, and fanout is used. 

We define the testability constraint as a measure of the estimated 

fault coverage (estimated number of faults detected divided by the total 

number of faults in the chip) and the test time (or the number of clock 

cycles required to test the chip). We assume the synthesized chip design 

will have a test mode which is externally controlled by one pin. Our test 

models, further discussed in section 12.4.4, are a x-chained scan path, 

x-phased BIST, a shared BIST implementation, or a combination of 

these methods. For a scan path implementation 

(Williams, 1983, McCluskey, 1986) , test vectors are supplied externally 

and serially shifted on chip using one or more scan chains. For a BIST 

implementation (Williams, 1983, McOuskey, 1986) , the test generator 
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(LFSR) is located on the chip along with the signature analyzer. LFSR 

initialization seeds and signatures are loaded on and off the chip by serial 

shifting them through a single scan chain. 

The output or the synthesized architecture from CA TREE is com­

posed of a floorplan, netlist of hardware resources, and a mapping of 

code operations and variables to these hardware resources. These 

resources are registers, interconnect, buses, multiplexors, and functional 

units. The mappings of code operations to functional units and the map­

pings of the variables to registers and busses are output. The execution 

times of the code operations in the functional units and lifetimes of the 

variables in their registers are also given, as are the variable transfer­

times through interconnect and hardware components are output. 

Our testable design synthesis methodologies will search through 

various designs until a solution that satisfies the design constraints is 

found. The tool does not continue searching for a better solution once a 

design solution is found. However if a design solution cannot be found 

(for example due to an overconstrained specification) then the 'best' 

solution found by the tool is output Solutions are judged by a multiple­

criteria performance measure to be discussed in section 12.5. 

The CA TREE(2) methodologies can be applied to ASIC, cell/silicon 

compilers or full custom designs approaches. The customization for dif­

ferent cell libraries is done through the synthesizers library file. The 

library file contains the types of functional units supported (defined as a 

list of operations which it can perform), their propagation delay (from 

input data to output data) the delay between successive input data, and 

the area (or width and length) of the functional unit. After the syn­

thesized testable design solution is produced, its netlist and floorplan is 

output This could then be interfaced to a specific program for the fmal 

placement, routing and layout, such as (Bhandari, 1988) , as shown in 

figure 1.2 of chapter 1, to complete the VLSI design. The design would 
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then be ready for fabrication. In gate arrays or standard cell methodolo­

gies macro cells could be built out of various gates in the libraries and 

then placed and routed with the other components as in (pangrle, 1987) . 

The library file also contains testability infonnation for each func­

tional unit. We assume the functional units have been precharacterized 

for test, In other words one can assume that an automatic test pattern gen­

erator has previously been run on the library cells to characterize them 

for testability. In the future this could be extended to parameterizing the 

test characteristics (similar to parameterizing a module with 16 bit or 32 

bit data width inputs for generating the layout) of modules as suggested 

in (Fung, 1986) . This test precharacterization provides fast testability 

estimation, described in detail in section 12.4, and saves time by avoid­

ing regeneration of test patterns to estimate the testability for each new 

design during the synthesis exploration. The test data, stored for each 

functional unit in the library file, is shown in table 12.1 below. Different 

test sets may also be stored for each functional unit. For example a test 

set with 5000 vectors that achieves 90% fault coverage and another test 

set with 1700 vectors that achieves 80% fault coverage could be stored. 

Table 12.1 Test data for each functional unit in library file. 

Total # of faults of hardware unit 

Scan Path The test vectors (from A TPG) 

Total # of test vectors 

Total # of faults detected 

BIST The polynomial and initial seed 

The length of pseudo-random # sequence 

Total # of faults detected 
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12.2 COMPARISON WITH PREVIOUS RESEARCH 

Most research on architectural synthesis has not included testability 

incorporation. Only estimates of area and delay have been examined to 

provide feedback into the design search (McFarland, 1986) . The DAA 

(Thomas, 1983) ,FACET (Tseng, 1986) ,BUD (McFarland, 1986) and 

other approaches (McFarland,1988) provide architectural synthesis, 

however, no test incorporation is performed. 

Although many researchers stress that testability should be con­

sidered during the early stages of design (Fung, 1986) , most testability 

research has been done after a structural design solution is defined 

(Craig, 1988, Krasniewski, 1985b, Abadir, 1985) with no feedback 

(Fung, 1986) to the original synthesis process for finding more testable 

designs. 

For simplicity CA TREE uses a scan path or a BIST design for test 

methodology (Williams, 1983, McOuskey, 1986) to implement testabil­

ity. CATREE implements the test methodology so that all functional 

units are tested thus avoiding calculation of controllability and observa­

bility measures (Goldstein, 1980, Ratiu, 1982) for selection of nodes to 

test. However use of these controllability and observability measures 

may decrease test ovemeads as discussed in section 12.6. 

Silc (Fung,1986) provides automatic test incorporation; however, 

no feedback to the synthesis process is provided and no other test metho­

dology for the data path is considered apart from the scan path inclusion. 

Silc was discussed in further detail in Chapter 11. 

The testability design expert system, TOES 

(Abadir, 1985, Abadir, 1985, Zhu, 1988) , implements testability in a 

graph-based structural design; however, no feedback to a synthesis pro­

cess is used and the test implementation is based on local structural 

enhancements with no global information. It attempts to implement a 
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number of test methodologies for combinational logic blocks or kernels 

that fit into existing intercolUlection structures. TDES may try different 

test methodologies on a design but may schedule them separately or con­

currently depending upon the best test execution time and overall design 

score amongst other test embedded alternatives. TDES is driven bottom 

up by selecting the best test methodology for each kernel or part of the 

design. 

12.3 TWO SYNTHESIS WITH TEST METHODOLOGIES: 

CA TREE & CATREE2 

Our first testable design synthesis methodology. CA TREE 

(Gebotys.1987.Gebotys.1988a.Gebotys.1988c.Gebotys.1989) (for 

Computer Aided TREEs). enhances the state-of-the-art in the area of 

VLSI design synthesis with testability constraints by including the fol­

lowing features. 

• Testability is implemented as part of the VLSI architectural solution. 

Testability. area. and delay estimates are used to guide the design 

synthesis search. 

• A two dimensional binary tree data structure (McQueen. 1984) is 

used throughout architectural allocation. binding and testability 

incorporation. Design hierarchy. partitioning. and two­

dimensionality naturally represented with the data structure are used 

to advantage for design solution searches. constraint estimation. and 
test methodology incorporation. 

• This design and test methodology provides a larger. more complete. 

and flexible design search. 

CA TREE allows the exploration of the effects of different test 

methodologies on a specific design. and the effects of a specific test 

methodology on different design solutions. CA TREE uses nonuniform 
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test incorporation as a means of concurrently testing two or more dif­

ferent design partitions. It is also driven top down by the selection of test 

methodologies to incorporate. The CA TREE design synthesis with testa­

bility constraints approach is shown in figure 12.1. The circles represent 

the constraint estimation (area, delay, test), whereas the squares represent 

the tasks being perfonned. 

feedback 1 

Design 

Synthesis 

feedback 3 

feedback 2 

Test 

Incorp. 

Figure 12.1 The CA TREE VLSI design methodology with testability 

constraints. Test is incorporated after the design is synthesized. 

Our second testable design synthesis methodology, CATREE2 

(Gebotys, 1988b) (for Computer Aided TREEs version 2), an extension 

of CA TREE, provides simultaneous design with test synthesis, satisfying 

test, area, and delay constraints. The test methodology to be incor­

porated is fully specified by the user. Highlights of the CA TREE2 

design and test methodology, not found in CA TREE 

(Gebotys, 1988a, Gebotys, 1988c, Gebotys, 1987) and previous research 

(McFarland, 1988) , include the following. 

• Simultaneous architectural design and test synthesis allocation and 

binding algorithms. Early design decisions are based upon nonnal 

and test mode behavior. 
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• 

• 

Single feedback design synthesis methodology based on area, delay, 

and testability constraint estimations to guide the design search. 

Different sets of weights for cluster rules are used for exploring 

design tradeoffs. 

The CA TREE2 integrated design and test methodology is shown in 

figure 12.2. Finish design allocation refers to performing register, test 

register, and bus allocation. 

Schedule, 

FU­

Alloc. 

Test 

Incorp. 

Finish 

Design 

Alloc. 

feedback 

Figure 12.2. CATREE2 integrated design and test synthesis methodol­

ogy. Design and test information used to make design synthesis 

decisions. (FU-Alloc refers to functional unit allocation). 

CA TREE and CA TREE2 use the same binary tree data structure to 

integrate design and test synthesis. CA TREE2 uses different and 

improved synthesis algorithms which consider both design and test infor­

mation. It was developed after CA TREE. CA TREE2 is applicative to 

top-down system design where the test methodology is constrained from 

higher level design decisions. 

Both methodologies are vital to the acceptance of synthesis tools in 

industry by providing automatic feedback to the synthesis process when 

the design constraints can not be met due to test overheads. Otherwise 

the design problem is left unsolved with the emphasis on the user to 

determine what has been done by the synthesizer and how one may 
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reinvoke it to provide a different solution which will hopefully have 

lower test overheads. 

Both CA TREE and CA TREE2 testable design synthesizers will be 

discussed in this chapter. Examples will be given to illustrate their algo­

rithms. Results from the testable design synthesizers are presented and 

discussed. CATREE is presented in section 12.4 and CATREE2 in sec­

tion 12.7. A comparison of both approaches is given in section 12.8. 

Since the CA TREE and CA TREE2 methodologies schedule first and 

then perform allocation and binding of (test) registers, busses and bus 

drivers, one can use the OASIC synthesizer (presented in Part III) to pro­

vide an optimal schedule for input into CA TREE. This is also important 

because it immediately provides a minimum number of resources, from 

which test overheads can be calculated at the end of the CA TREE metho­

dology. 

12.4 CATREE DESIGN SYNTHESIS STAGES 

The CA TREE synthesis stage consists of parsing the input specifica­

tion, and binding of functional units, registers, and interconnect OASIC 

is used to obtain an optimized schedule and functional unit allocation, as 

well as an initial allocation of registers and busses from which over 

heads can be calculated. No test methodology consideration is made dur­

ing these design synthesis algorithms. 

Since the design for test problems are NP-hard 

(McFarland, 1988, Craig, 1988) , and therefore it is likely that no optimal 

solution can be found, we've attempted to solve these using heuristic 

algorithms. The allocation algorithms attempt to produce solutions with 

a minimum number of long interconnects which is important for future 

integrated circuit designs (Holton, 1986) . Each algorithm will be briefly 

discussed below. 
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12.4.1 Input Specification 

The input specification, written by the user, provides the algorithmic 

code sequence, design constraint specifications, design library identifica­

tion, initial schedule name, and a list of test methodologies to explore. 

Figure 12.3 gives an example of the input specification. Only straight 

line code segments are synthesized in CATREE for simplicity. Unlike 

OASIC a language was chosen instead of a data-flow graph because the 

interface (or parser) was faster to code and design constraint specification 

was also easily supported. Also mathematical and scientific applications 

for custom VLSI design synthesis are most easily found in algorithmic 

form (Trickey, 1987) . The user may specify extra constraints in the code 

sequence, using labels and arcs. The labels and arcs are used to force an 

operation to be executed before another operation. In particular this 

allows the user to examine tradeoffs between the cycle time and the 

number of functional units which will be discussed further in section 

12.4.3. OASIC performs the scheduling as described in part III. 

12.4.2 Design Allocation 

After scheduling and initial allocation in OASIC, the schedule is 

transferred to CA TREE. The binary tree data structure 

(McQueen, 1984) is used throughout CATREE including: design bind­

ing, test incorporation (test binding and test allocation), and constraint 

estimation stages. The binary tree data structure provides the following 

three characteristics important for design synthesis. First, the partition­

ing characteristic provides a solution to handling design complexity by 

dividing the large problem into smaller problems to solve. The second 

characteristic is the two-dimensional which is used for constraint estima­

tion, test incorporation, floorplanning and biasing solutions towards 

minimum number of long interconnect Finally the tree data structure 

has very simple and easily cod able algorithms. 
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module algo( inout : a,b,y,x,d: byte; 

in a,b,y,x : byte; 

out d : byte ); 

var a,b,f,x,y,j,kJ,d : byte; 

constraints area = 2000, delay = 500, 

faulccoverage = 95, tesClength = 20000; 

library generic; 

schedule asap; 

tescmethod bist, scanpath; 

label 1,2; 

arc 1 before 2; 

begin 

1: 

2: 

end. 

f:= a+ b; 

k:= f - x; 

j:= f* y; 

1:= f + j; 
d:= k/l 

Figure 12.3. A simple example of an algorithmic input specification for 

CATREE. 

Each node of the binary tree data structure has two son-nodes and 

one father-node. Root and leaf nodes are the exception. For example the 

root node has no father-node and the leaf nodes have no son-nodes. The 

root of the tree will be referred to as the top of the tree for our terminol­

ogy. We will refer to top down and bottom up tree algorithms defined as 

moving from the root node down the tree and from the leaf-node up to 

the root-node respectively. 
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The tree is fonned by placing operations into leaf-nodes of a tree 

using a heuristic tree fonnation algorithm. The operation and its input 

and output variables are stored at each leaf node. Scores are computed 

for all pairs of operations. The score is the number of common variables 

used as inputs or outputs of both operations. A list of operations in order 

of high to low total sum of scores is fonned. The two operations, first on 

the list (with the highest scores), fonn the initial tree. Then each of the 

other operations (in order of high to low sum of weights) is placed in the 

tree closest to existing operations in the tree to which they're most con­

nected. Generally operations which have a large number of common 

variables are placed close together in the tree. Since nodes will be 

swapped or moved and merged during the design synthesis search, the 

simple tree fonnation algorithm appears to be sufficient. The tree algo­

rithms attempt to decrease the complexity of the allocation algorithms by 

decreasing the wide range of cluster group choices. This is done by the 

partitioning of operations in the binary tree. The synthesized algorithms 

are biased towards solutions with minimum interconnect without sacrif­

icing qUality. The functional unit tree is also maintained through the 

methodology to ease functional unit searching during feedback as dis­

cussed in section 12.4.5. 

Functional Unit Binding. 

A bottom up tree traversal algorithm (Gebotys,1988b) collects 

operations from the leaf nodes with nonconflicting firetimes and valid 

functional unit representation. For example an operation may require 

two cycles to calculate its output. These two firetimes must be different 

from the firetimes of all other operations that it will be merged with. 

Also the group of operations, for example (+,-,>=,<), which produces a 

functional unit, for example an ALU, are stored in a library file which is 

checked during functional unit binding. The functional unit in the library 

that has the minimum amount of functionality required is chosen. This 
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algorithm works bottom-up so that operations which are close to each 

other in the tree will be merged into one functional unit functional units 

close to each other in the tree shared variables and therefore will help to 

reduce the future interconnections in the design as discussed during 

register and interconnect binding sections. 

The bottom up tree algorithm is approximately O(N), for small N, 

where N is the number of leaf nodes of the tree or operations in the algo­

rithm. In general these tree algorithms are fast and easy to code. An 

example of this algorithm is shown in figure 12.4. The operation and its 

variables are stored at each leaf node and the functional unit is identified 

at the tree node containing the subtree of its operations. The functional 

unit node in the binary tree represents the future use of design area. 

Reclustering of operation leaves can be performed to further minim­

ize the number of functional units until the number of functional units is 

equivalent to OASICs. An example is shown in figure 12.5. The flexi­

ble data structure allows exploring different functional unit configura­

tions for a particular schedule. Thus given a schedule we can explore 

functional unit allocations by reclustering the binary tree. 

Register Binding. 

Register binding uses a bottom-up tree traversal algorithm with vari­

able cluster rules activated at each node of the tree. The bottom up algo­

rithm is used so that variables will be clustered together first from adja­

cent highly connected functional units in the tree. This in effect will bias 

register allocation towards local registers (formed near functional units) 

and uniform registers (allocated throughout the tree or design area) 

amongst functional units. 

The output variable of each operation is placed in a list and pro­

pagated up from the leaf nodes. Generally, variables or clusters of vari­

ables are merged into one cluster if their lifetimes do not overlap. An 
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%functional unit binding 

% highest nodes with the list of operations such that 

% no firetime conflicts among operations and 

% function exists in library 

etc ... 

fu_alloc( [L,Root,R], [Ll,[Rootl[FU]],Rl], FU)<­

fu_alloc( L, Ll, Op_lisCL), 

fu_aIloc( R, Rl, Op_lisCR), 

can_form_fu( Op_lisCL, Op_lisCR, FU); 

% 

etc ... 

canjorm_fu( Opsl, Ops2, FU_lib)<­

no_firetime30nflicts( Opsl, Ops2, Fu), 

fu3xists_in_lib( Fu, FU_lib); 
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Figure 12.4. Bottom up tree algorithm to perform functional unit bind­

ing. 

example of variable clustering is shown in figure 12.6. Only output vari­

ables are clustered since each will be found at only one leaf in the tree 

(since they are defined only once in the algorithm). Input variables of 

operations at the leaf nodes were not clustered locally in this algorithm 

because each could be located at more than one leaf node of the tree and 

therefore allocated to more than one register. At the root of the tree the 

clustered list is merged one last time with a list of input only variables. 

Each register, represented by a cluster of variables, is placed in a new 

leaf node closest to the functional units to which it is most connected. 

Register leaf nodes represent the future use of design area. Constants are 

placed in tree nodes in the same manner. 
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merge(*34, * 12, *O)? 

>=-

+78 *34 

+78 *012 *34 >=-

Figure 12.5. Reclustering of functional units (fus), using a bottom up 

tree traversal, to facilitate functional unit minimization or feedback. 

In this example, (three) multipliers are collected for minimization 

(into two). 

Examples have shown that this algorithm can produce the minimwn 

nwnber of registers (Gebotys, 1988b) . This provides reasonable results 

for the test incorporation described in section 12.4.4. 

Interconnect Binding and Allocation. 

The objective of bus allocation is to minimize the nwnber and 

lengths of the busses. This is more refined than OASIC, since the floor­

planning information is now used and the length of the busses is impor­

tant. The objective of interconnect allocation for random topologies, is to 

minimize the total number of inputs to the mUltiplexors, which may be 
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%Register Binding Algorithm Using 

%Bottom Up Tree Traversal 

% 

registecalloc( [L,Root.RJ, Register3lusteClist) <­

registecalloc( L, Variable3lusteclistl), 

registecalloc( R, Variable3Iusteclist2), 

cluster_ variables( Variable3lusteclist I, 

Variable_clusteclist2, Registecclusteclist); 

% ... etc 
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Figure 12.6. Part of register binding algorithm,(written in Waterloo Pro­

log) showing bottom up tree traversal. 

located at inputs to functional units or registers. The allocation involves 

definition of cross variables in the tree structure, allocating interconnect, 

and minimizing the number of multiplexor inputs. 

Variables transferred between registers and functional units, called 

cross-variables, are recorded at nodes in the tree. The node, where each 

cross variable is stored, is defined as having each son-node, or subtree, 

hold either the register or the functional unit involved in the transfer. 

A top down tree algorithm allocates interconnect for a bus or random 

implementation by using cross-variable cluster rules activated at each 

tree node. A top down algorithm is used so that cross-variables at high 

nodes of the tree are first clustered together to minimize the interconnect 

at the root. There are four cluster rules which are listed below in table 

12.2. 

In each rule a check is made to ensure that there are no time conflicts 

between the cross variable transfers (unless it is the same cross variable). 

Also a check is made to ensure that they are allowed to be allocated to 
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Table 12.2. Interconnect Rules 

Rule :# Rule description for merging two cross variables 

1 equal destination and equal source 

2 equal source 

3 equal destination 

4 no time conflict 

the same side of the functional unit. The interconnect allocated is then 

stored at the lowest possible node in the tree such that the subtrees below 

the node will contain all components using that interconnect. Figure 

12.7 illustrate the top down interconnect allocation algorithm and its 

relationship to the interconnect located in the floorplan. 

A heuristic local multiplexor minimization algorithm, which swaps 

cross variables of commutative operations between clusters to minimize 

the number of multiplexor inputs, was also used. The algorithm attempts 

to reduce the inputs of multiplexors by swapping inputs of a functional 

unit whose operation is commutative. Each functional unit is examined 

to see if common variables exist on both sides of the functional unit. If 

so, they are swapped in an attempt to minimize the overall number of 

multiplexor inputs. Only single swaps are tried. The top down intercon­

nect algorithm attempts to minimize the number of long interconnect 

which are most likely to be located at high levels (such as the root node) 

in the tree. 

12.4.3 CATREE Area and Delay Estimates 

Area and delay estimations (Gebotys, 1987) are obtained by creating 

a floorplan, performing a bottom up area estimate, and then extracting 

delays of circuit paths defined in the tree. The objective is to determine 

if the synthesized design solution meets the constraints before test incor­

poration. This step was added to save time in the design exploration by 
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a 

(c) (d) 

Figure 12.7. Interconnect allocation using top down tree algorithm to 

minimize the number of long interconnect. In a), cross variables and 

their transfer times (var/time) located at various nodes in the tree are 

shown. (b) shows the corresponding variable transfer paths in the 

floorplan (c) shows the top down algorithm clustering cross variables 

into 4 interconnect. (d) illustrates the solution in the floorplan. Only 

two long (top level, [abgl] and [cdjk]) interconnections are allocated. 

(Note: 1,2,3,4,5 can be a register or fu). 

omitting test incorporation on designs that already do not meet the design 

constraints before test. A simplified floorplanning algorithm and con­

straint estimation technique is described below, to guide our prototype 

tool. However more sophisticated techniques as described in section 

12.6 could enhance our results. 
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The simple heuristic floorplan algorithm moves top down through 

the tree alternatively assigning X and Y split dimensions. It also assigns 

low or high subtrees to each node attempting to place nodes close to their 

neighbors to which they are most connected across each dimension. The 

problem of placement or floorplanning for custom designs is very diffi­

cult as discussed in chapter 5. 

An estimate of area and delay, similar to BUD (McFarland, 1986) , 

is calculated by using a bottom up tree traversal algorithm. At each tree 

node the propagated minimum bounding boxes or areas of functional 

units, interconnect, multiplexors and registers are combined or summed. 

Delay estimates are calculated by outputting paths through the design, 

consisting of functional units, fanout, registers, multiplexors and inter­

connect lengths, and computing their delays. The interconnect paths, or 

wires attaching a source to a destination, are defined as following the 

split lines encountered in the tree, in the direction of the destination. An 

example in Figure 12.7 and the equations below further describe the area 

and delay estimations. 

If estimates of area and delay do not meet the constraints, resynthesis 

is invoked by rescheduling operations and reallocating functional units. 

When the area constraint is not met, a bottom up tree traversal algorithm 

is used to collect functional units which can be merged together by 

rescheduling their conflicting operations. Also the user may selectively 

choose which functional units are to be merged or split if for example 

delay is not met. The 'best' solutions are stored in case no further benefi­

cial merging can occur. 

12.4.4 Test Incorporation 

If the area and delay estimates meet the design constraints, testability 

incorporation is explored. The test methodologies selected for imple­

mentation are given in the input specification and for simplicity can be 
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AREAt = Xt * Yt 

where: 

Xt,Yt = 
Max Xto,Xtl 

1 
~Xf. .Li I, 

i=O 

1 
~Yt· .Li I, 

i=O 

Max YtoYtl , 

Xti = X dimension of subtree ti' Ytj = Y dimension of subtree tj. 

t(to ,_,t I) = a tree, to, with subtrees, to and t I' 
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DELAY = Maxj { delay( Maxj {path(regj ~ lUi)} )+ delay(JUi) + 

delay(Maxj{path(fUj ~ reg)}) }. 

where: 

path(reg, fu) = delay(interconnect to fu) + delay(fanout at fu) + 
delay( mux at fu). 

path(fu, reg) = delay(fanout from fu) + delay(interconnect to reg) + 
delay(mux at reg). 

scan path and BIST. These two methodologies were chosen due to their 

popularity and ease of implementation. The test incorporation problem 

is defined as given a design structure and test methodology, implement 

the test such that the design meets the area, delay and test constraints. 

The objective is to minimize the test overheads (in area and delay) and 

maximize the testability of the design solution. Test methodologies can 

be scan path, BIST or a combination of both methods in a non-unifonn 

approach, as illustrated in Figure 12.8 in the context of our synthesized 
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designs. 

1 2 
1 2 

(a) (b) (c) (d) 

Figure 12.S. a) Scan Path (fu:l,2>2), b) BIST(fu:l,2>3), c) shared BIST 

(f1:1,2>3; f2:2,1>4), and d) 2-phased BIST (f1:1,2>3; f2:2,3>1) 

implementation examples for a synthesized data path. Where nota­

tion is: (functional unit: left input test register, right input test regis­

ter> output test register). 

The test implementation is done by identifying the circuit to test (ie 

selecting subtree if nonuniform test methodologies), and then using 

heuristic rules for assigning or allocating test registers such that all func­

tional units are testable. Test registers could be serial shift registers for 

scan or LFSR for BIST. The heuristic rules aim to minimize the over­

head in additional multiplexor extensions, additional multiplexors, or 

additional test registers. These three cases are shown in figure 12.9. 

This would consequently decrease the delay and area overheads 

(Tsui, 1986) required to meet the design specifications. It is currently 

assumed for simplicity that the test methodologies are implemented to 

allow test patterns to be applied to, generated at, or observed at, the 

inputs or outputs of all functional units, similar to other approaches 

(Abadir,1985) except their combinational units are called kernels. In 

other words all functional units have indirect (through shift registers and 
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multiplexors) controllable and obselVable inputs and outputs. Design 

partitioning, naturally represented in the binary tree data structure, is 

used to implement multiple scan chains, test scheduling, and nonunifonn 

test incorporation of these methodologies. 

(a) 

I 2 

(b) (c) 

Figure 12.9. Examples of a) multiplexor extension overhead, b) multi­

plexor overhead, and c) test register allocation (shown as double 

lines) required during test incorporation stage of CA TREE. Both (a) 

and (b) illustrate input test register assignment for a scan path test 

implementation. In (c) output test register allocation is illustrated for 

a BIST test implementation. All cases cause test overheads affecting 

area and delay. 
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Each test methodology will provide a different set of rules for assign­

ing test registers. Due to conflicts between register use among functional 

units, the allocation of new multiplexor extensions, multiplexors, and test 

registers (which become new leaves in the tree) can be done, as shown in 

figure 12.9. Single output and input registers of functional units are 

ranked highest in being transformed into test registers for that functional 

unit Next test registers are assigned from small to large sized multiplex­

ors at inputs or outputs of functional units. Finally additional test regis­

ters are allocated if necessary. Using these 3 rules, multiplexor exten­

sions are allocated before multiplexors or test registers, thus providing 

lower overheads (Tsui, 1986) . 

The implementation of multiple scan chains for a scan path or 

nonuniform test methodologies uses the same algorithm outlined above 

except it is applied to subtrees representing different partitions of the 

design. For example a double scan chain methodology applies the algo­

rithm to the functional units located in each of the two subtrees located 

one level below the tree root. If insufficient registers exist in a subtree, 

then the registers located outside of the subtree are assigned as test regis­

ters. When all design registers have been assigned, new test registers 

could then be allocated. Similarly for nonuniform test incorporation, dif­

ferent test methodologies can be applied to the two subtrees. For exam­

ple scan path could be implemented in one subtree and BIST could be 

implemented in the other functional unit subtree. The registers and func­

tional units located in a subtree are highly connected and therefore will 

be transformed into test registers with small overheads. 

The definition of single or multiple scan chains is obtained after test 

register assignment. The scan chain definition refers to the one bit wide 

interconnect between the scan registers. It is required to shift patterns on 

and off the chip for scan path and BIST methodologies. The objective of 

scan-chain definition is to minimize the interconnect length between 
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registers. This in turn will provide smaller scan delay overheads as 

demonstrated in (Agrawal,1984) , where scan definition after layout 

provided better performance than definition during logic design. A bot­

tom up traversal of the tree or subtree structure is done listing test regis­

ters as they are encountered. Scan chains are thus formed from the lower 

left to the upper right corners of the floorplan, due to the 2-D definition 

chosen in the tree. This order provides good results for the two examples 

used in this paper, however other orderings could be defined using the 

two-dimensional information of the data structure. The tree is ideally 

suited for these computations due to its natural partitioning and two­

dimensional characteristics. 

Test scheduling can also be implemented using the tree data struc­

ture. Test scheduling refers to the schedule for testing groups of func­

tional units sequentially in more than one test phase for BIST. An exam­

ple is shown in figure l2.8d), for two phased BIST. This algorithm 

works bottom up collecting subtrees of X or less functional units, where 

X represents the number of phases required to fully test the design. Each 

of the X functional units will be tested during separate phases. Reason­

ably low overheads are obtained since the functional units found within a 

subtree are highly connected to their local registers and therefore suited 

to sharing them. 

The partitioning and two-dimensionality of the binary tree data struc­

ture provides global information which aids in test· incorporation, test 

scheduling, and scan chain defInition. 

12.4.5 Feedback 

New area, speed, and test cost estimates are obtained after test incor­

poration. The area and delay estimates use the same algorithms outlined 

earlier on the current binary tree with test incorporation. A multiple cri­

terion performance measure (Abadir, 1985) is used to determine how 



232 Architectural Synthesis 

close the design solution is to meeting the desired constraints. In this 

way the 'best' design is updated and stored during the design explora­

tion. 

For illustration purposes the testability constraint estimation includes 

estimation of the fault coverage and test time of the VLSI design. Furth­

ermore it is assumed that each functional unit is combinational logic and 

is characterized in the VLSI data base with a measure of the total number 

of faults, and for each test technique, the fault coverage and the number 

of test vectors or pseudo-random sequences. We use this approach to 

illustrate the methodology similar to (Abadir, 1985) . 

In order to estimate the fault coverage we make the following 

assumptions. First, faults in the scan registers are all detectable (ie using 

alternating l's and O's test vectors (Agrawal, 1984) ). We can also 

obtain the number of faults detected for each functional unit, recorded for 

a set of test vectors in our data base (or calculated previously using an 

automatic test pattern generator (Agrawal,1984) ). The remaining 

undetected faults result from faults in the (non-test) registers not in the 

scan chain and multiplexors. For simplicity we assume that the faults 

traversed in the multiplexor during test mode are detectable. This pro­

vides a higher score for multiplexors exercised in more than one mode 

similar to (Abadir, 1985) where this circuitry is described as being tested 

for free. Furthermore since faults cannot be propagated properly through 

multiplexor control logic (Agrawal, 1984) this seems to be a reasonable 

assumption. One can then estimate the fault coverage globally by sum­

ming the total faults detected and dividing by the sum of the total faults 

in the design, as shown in figure 12.10. The test time is the sum of the 

time for the scan register testing followed by the time for applying the 

test vectors or sequences to all functional units. The following equations 

illustrate the test estimations. 
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FAULT COVERAGE = Fd{ff. 
m f r 

where: Fd = {1: Fd(muxj) + 1: Fd(juj) + 1: Fd(reg j) }. 
j~ j~ j~ 

m f r 
Tf= {1: Tf(muxj) + 1: Tf(juj ) + 1: Tf( regsj)}. 

j~ j~ j~ 

Fd(x) = # of faults detected (by a test method) in the hardware unit x. 

Tf(x) = # of total faults present in the hardware unit x. 

TEST TIME = Maxc { Lc • Maxj( TvU,c) )} :for scan chain 
p 

TEST TIME = 1: Maxj (Tv(j,x) )+£0. :forBIST. 
x~ 

where: Lc: length of (or number of bits in) scan chain c (c>=O). 

Tv(x.y): number of test vectors (or sequences) for fux on chain y 

(or active in phase y). 

In cases where the number of design registers before test is greater 

than the minimum number of test registers required, a different number 

of assigned test registers will vary the fault coverage and test time esti­

mates. Also if multiple scan chains or different test phases are imple­

mented the test time will vary. Finally depending upon how the test 

methodology was implemented the additional multiplexor extension, 

multiplexor, or test registers required will also vary the estimation of 

fault coverage in all cases and the test time in the last case. 

In CA TREE different test methodologies are applied in an attempt to 

satisfy the area, delay, and test cost constraints. If the test cost constraint 

has been met, the strategies outlined for feedback after stage two are 

used. This creates feedback path F3. However if the test cost constraint 
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b d 

(a) (b) 

tr = a,c. tr = a,b,c in «111 for fl 

tr = a,b,d in «112 for f2. 

Fd= Fd(fl)+Tf(tr)+O.5*Tf(mux). Fd= Tf(tr)+Tf(mux) 

+Fd(fl)+Fd(f2). 

Tf= Tf(fl)+ Tf(tr)+ Tf(b)+ Tf(mux). Tf= Tf(tr) 

+ Tf(mux)+ Tf(fl)+ Tf(f2). 

Tt= Tv(fl)*(S(tr». Tt= 3*(S(tr»+ T1(fl)+ T1(f2) 

(c) (d) 

Figure 12.10. An example of fault coverage (Fd/ft) and test time (Tt) 

estimation in (c) and (d), for synthesized designs in (a) a scan path 

and in (b) a double-phased BIST implementation respectively. 

Where:!(tr)=L!(tr),s(reg)=# of bits in register; TI(fu)=# of clock 
Ir 

cycles to test fu with BIST; Tv(fu)=# test vectors to test fu with scan 

path; tr = the test registers. 
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is not met another test methodology or variation is reimplemented using 

feedback path F2. When all test methodologies are exhausted and the 

constraints are still not met feedback path F3 is used to resynthesize the 

design similar to F2 discussed in section 12.4.3. This provides wide 

design exploration for testable designs. 

12.5 CATREE SYNTHESIS RESULTS 

Two examples presented for synthesis in 

(paulin, 1987,Pangrle, 1987) were used to illustrate the VLSI synthesis 

with testability constraints. The first example performs a differential 

equation using 11 operations. The second example is the elliptical wave 

filter previously introduced and synthesized by OASIC (see part III, 

chapter to). In figure 12.1, feedback path Fl representing the design 

synthesis search with area and delay constraints has been analyzed in 

several papers (Thomas, 1983, McFarland, 1986) . We will concentrate 

on showing results for feedback paths F2 and F3 of figure 12.1. Feed­

back path F2 illustrates the test methodology search of one design driven 

by area, delay and test cost whereas feedback path F3 shows the explora­

tion of testable design solutions driven by the area, delay and test cost 

constraints. 

To illustrate the effects of these feedback paths on the testable syn­

thesized design search, four criteria: fault coverage, test time, area, and 

delay values; were estimated, normalized, weighed, and summed 

(Breuer, 1985, Zhu, 1988) to obtain design scores for each solution. This 

design score with equal weights is the multiple criteria performance 

value also used to select and store the 'best' design found in the search in 

case all constraints cannot be met. The assumptions made to calculate 

these four parameters are given in (Gebotys, 1989) . We used the defini­

tion of score in (Breuer, 1985) , except our requirement vector was the 

poorest value of each attribute from all the design solutions. Values were 
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nonnalized between 0 and 100, and the sum of all weights chosen was 

one. For example a weight of 4411 represents assigning weights .4, .4, .1 

and .1 to fault coverage, test time, area and delay respectively. Thus the 

highest score represents the best design solution for those weights. 

Figure 12.11 shows the results of applying five different test metho­

dologies to one VLSI design solution of the differential equation. This 

corresponds to feedback path F2 of figure 12.1. Weights 0011 show that 

the scan path test methodology is the best when strictly area and delay 

are considered. Equally weighed parameters show that the scan path 

with two chains approach perfonns the best. However if the test cost is 

weighed most important as in score 4411, the shared BIST method 

becomes the best solution. An example of the CA TREE floorplan and 

register-transfer level solution is found in section 12.8, figure 12.11c,d), 

where it is compared with CA TREE2. 

Figure 12.12 and 12.13 show the CATREE differential equation 

design search with five test methodologies implemented for each solu­

tion. Actual testable design details for DO through 04 are in (Gebo­

tys, 1989) . Figure 12.12 shows the equally weighted area and delay 

based design scores. Both the design before test incorporation and the 

testable design are graphed. In figure 12.12, the best solution for the 

design search based upon area and delay only before test incorporation is 

design 04, shown by the solid line. When test cost, area, and delay are 

equally weighted, in figure 12.13, design D3 with the single chain scan 

path is the best solution. Design D3 is also the best solution for all other 

test methodologies except the double chain scan path. 

Figures 12.14 through 12.16 show the CATREE synthesized design 

solutions with test incorporation for the EWF. The multipliers were 

assumed to be two cycle pipelined multipliers. Testable design solution 

details for the EWF can be found in (Gebotys, 1987) . 
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Figure 12.11. Weighted scores of one design solution of differential 

equation (DE) with five different test methodologies (SPlch: scan 

path with 1 chain, SP2ch: scan path with 2 scan chains, BISTsh: 

BIST shared, BISTIp: BIST with 2 test passes, BIST3p: BIST with 

3 test passes). 

Figure 12.14 shows the design scores for five test methodologies 

applied to one EWF design solution. The scan path with two chains is 

the best testable design solution over all different weights. The second 

best solutions vary according to which element of the four measures is 

most important. The single chain scan path is desirable when area and 

delay are most important while the two phased BIST solution is prefer­

able when test cost is more important. 



238 Architectural Synthesis 

Design Scores: Area:l.Delay:l 
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D4 

Figure 12.12. Design Scores for equally weighted area and delay only of 

differential equation example. Synthesized refers to the solution 

before test incorporation. 

Figure 12.15 and 12.16 shows design scores for the four EWF design 

solutions based upon equally weighted area and delay, and equally 

weighted area, delay, fault coverage, and test time. Both solutions before 

test and after test are graphed. f4 is the best solution when only area and 

delay are considered before test incorporation, shown by the solid line of 

figure 12.15. In figure 12.16 the best test methodology over all fIlter 

design solutions is the double chain scan path. The second best is the 2 

phased BIST methodology. For all test methodologies in figure 12.16, 

solution f4 is the best testable design solution except in the case of the 3 
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Figure 12.13. Design Scores for equally weighted fault coverage, test 

length, area, and delay measures are shown for the five testable 

design solutions of the DE search. 

phased BIST implementation. The best testable design solution for this 

later test methodology is f3. This is due to a higher delay and lower test 

score associated with the 3 phased BIST test implementation of design f4 

as compared to f3. 

12.6 CA TREE DISCUSSION 

Several observations can be made from the differential equation and 

elliptical wave filter examples. When equally weighted parameters or 

only area and delay parameters are analyzed the scan path methodology 

appears to be the test methodology to explore. Another observation is 
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Figure 12.14: Weighted scores of one filter design solution, fPL4, with 

five different test methodologies. 

that weighing the test cost higher produces 'best' testable design solu­

tions using the BIST methodologies. In both cases the implementation 

details, such as number of chains or test schedule, will vary in each 

example, hence test implementation of a particular methodology should 

be fully explored. Also results will vary depending upon the specific 

library (or library file) the synthesizer is targeted to. Before test incor­

poration, a synthesis search, based upon area and delay only, produces 

D4 and f4 (as shown in figure 12.15) as the 'best' solutions of each 

example respectively. However when test methodologies are imple­

mented and all four parameters are weighed equally, the 'best' testable 

design solution is different in the differential equation example. This is 
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fPIA 

Figure 12.15: Design Scores of equally weighted area and delay only for 

the elliptical wave filter (EWF) example. 

attributable to area and delay, as well as fault coverage and test time, in 

all test methodologies except the double chain scan path. In the elliptical 

wave filter example the 'best' testable design solution is different, f3, for 

one BIST test methodology and the same, f4, in all other test methodolo­

gies (as in figure 12.16). For this example the difference in solutions is 

attributable to fault coverage and delay. 

In general we have seen that the best solution for the area-delay 

based synthesis alone does not always lead to the best testable design 

solution for all test methodologies. Thus feedback after test incorpora­

tion to the synthesis process, feedback path F3, is important for finding 
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Figure 12.16. Design Scores for equally weighted fault coverage, test 

length, area, and delay measures for the filter synthesized design 

search. 

good testable design solutions. Secondly, the best synthesized design 

solution from which the testable design is obtained will often vary for 

different test methodologies. Hence all test methodologies must be con­

sidered, feedback path F2, for all possible design synthesized solutions in 

a search for a testable design satisfying area, delay and test cost con­

straints. 

The actual weights assigned to the four parameters will directly 

effect which design becomes the best solution. In practise the weight 

values must be assigned according to which parameters are the most 
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critical, which in tum would depend upon the application. 

If a test-characterized data base library were not available then the 

test cost parameters, fault coverage and test time, would have to be deter­

mined from test software such as an automatic test pattern generator. 

Test cost could also be extended to include test confidence, input/output 

pin counts or other attributes (Zhu, 1988) . If the test cost constraint can­

not be met after exhaustive test implementations then one could use or 

create a more testable functional unit or interface to test software for fault 

coverage improvement or for decreasing the test time. Note as in section 

12.4.4, the assumption concerning implementation of the test methodol­

ogy, may cause ovemeads to be significant such that all constraints can­

not be satisfied. In these cases interface to test software which for exam­

ple selects a minimum number of nodes for the scan path or which 

includes only hard to test functional units on scan chains would be neces­

sary. Could also extend CA TREE to schedule test phases of non uniform 

test methodologies instead of restricting this to scheduling for BIST 

alone. 

The fioorplanning algorithm produces reasonable results for the 

design examples used, however other more sophisticated algorithms may 

improve results for other design examples. The use of a partitioning 

algorithm (Kernighan, 1970) during tree formation and fioorplanning 

(Gebotys,1988c) , may improve the test costs (for example by reducing 

test time), for larger design examples as done in CATREE2 discussed 

next. 

12.7 CATREE2 DESIGN SYNTHESIS STAGES 

The stages for CA TREE2 are shown in figure 12.2. The main differ­

ence between this methodology and CA TREE methodology is that the 

test incorporation is performed after functional unit allocation and bind­

ing. In CA TREE, test incorporation is perfonned after a full solution is 
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synthesized. The first stage of CA TREE2 involves fonning the tree data 

structure. OASIC again perfonns the scheduling and allocation of func­

tional units. The test incorporation stage involves functional unit parti­

tioning, test operation assignment and test scheduling. The finish design 

allocation block in figure 12.2 involves register and interconnect alloca­

tion followed by floorplanning and scan chain defInition. These alloca­

tion algorithms, unlike CA TREE, use both design and test infonnation. 

The area, delay, and test estimation stage is the same as in CA TREE. A 

new feedback procedure using weighted rule sets was also used in 

CATREE2. 

12.7.1 Tree Formation and Functional Unit Binding 

The input specification is similar to figure 12.3 except the test 

methodology specified as scanx or bistx, where x is the number of chains 

or test phases. Shared BIST and nonunifonn test methodologies, dis­

cussed for CA TREE, were not considered for CA TREE2, however could 

easily be incorporated. A better parser was developed in CA TREE2 to 

handle multiple operation expressions, which are reduced into a series of 

single operation expressions, and if-then-else code segments. This con­

ditional code is separated into one main trace (including the 'if' true 

code) and other traces (composed of the 'else' code). Currently arcs are 

placed between the nonnal code and conditional code segments for the 

scheduler to prevent code motion requiring bookkeeping. The scheduler 

and functional unit allocation is OASIC. 

A binary tree data structure is fonned from all operations. The min­

cut partitioning algorithm (Kernighan, 1970) is recursively applied to 

fonn a balanced operation tree based upon a computed score between 

each pair of operations. The score is obtained from a sum of assigned 

weights for the same operation type, shared variables, and non­

conflicting firetimes. 
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score(Operation1, Operation2) = 
4 
~w·*r· ~ I I 

;=1 

where: 

r; = # of times rule r is valid. 

w; = weight of rule r. 
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Operation! and Operation 2 are the nodes of the graph and the score is 

the weight on the edge between nodes in the partitioning algorithm. 

Weights are defined in table 12.3. 

Table 12.3. Rule set for Operation Partitioning. 

Rule # Rule Description Weight 

1 shared variables 2 

2 same operation 5 

3 different times in same trace 5 

4 exists in different traces 1 

This approach fmds trees with the OASIC minimum number of func­

tional units faster than basing the tree fonnation on variable connectivity 

only as in CA TREE. Functional unit binding uses a bottom up tree 

traversal algorithm to assign functional unit nodes to subtrees containing 

non-conflicting operations whose functionality exists in the library. 

Operations from different traces can be clustered together thus providing 

functional units for mutually exclusive operations. 

12.7.2 Test Incorporation 

Test incorporation occurs after the functional unit allocation in 

CATREE2. This stage involves the three following three tasks: 1) repar­

tition the functional unit tree, 2) add test operation leaves, and 3) perfonn 
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test scheduling. Test is incorporated into the binary tree such that the 

next stage which completes the design synthesis, uses both design and 

test infonnation to make synthesis decisions. 

The partitioning algorithm (Kernighan, 1970) is recursively applied 

to fonn a balanced mincut tree of functional units based upon their vari­

able connectivity. This provides a balancing of functional units useful 

for test scheduling, multiple chain definition (even number of chains), or 

nonunifonn test incorporation. The mincut fonnation is also useful for 

the tree allocation algorithms which attempt to produce unifonnly distri­

buted registers and a minimum number of long interconnect 

A test operation leaf is added to each functional unit subtree, as 

shown in figure 12.17. The test operations have test input and output 

variables which together describe the test mode behavior of the design. 

The test variable names are numerically assigned however their lifetimes 

are obtained from the test methodology and test schedule (for BIST). 

The test operation leaf holds the test operation and its input and output 

test variables. It is assumed for simplicity that the test methodologies are 

implemented to allow test patterns to be applied to, generated at or 

observed at, the functional unit inputs or outputs. 

For scan path test methodologies all test operations are assigned the 

same firetime. The input test variable lifetimes do not overlap with the 

output test variable lifetime. This allows an output test variable to share 

the same register as an input test variable as is commonly done in scan 

path testing (McCluskey, 1986) . For multiple scan chains, the subtrees 

located below the root node of the tree are used to partition the design 

into groups of functional units which will be tested on separate scan 

chains. 

Test scheduling is required for an x phased BIST implementation. 

Test operation firetimes are assigned by a bottom up tree traversal algo­

rithm which collects subtrees of x or less functional units. Each test 
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Figure 12.17. An example of CATREE2's functional unit tree before test 

incorporation in a) and the test tree. after test incorporation in b). 

Five horizontal lines represent 5 functional unit subtrees 

(*0.*34.*12.+78.-56>=9). The test operations are tx. where x=I •...• 5. 

operation of functional units in the subtrees are assigned a different test 

firetime. corresponding to a different test phase in which the functional 

unit will be tested. The BIST test input and output variable lifetimes are 

dermed to overlap. This ensures the input pseudo-random number gen­

erator or LFSR is a different 'test register' than the output signature 

analyzer during the same test phase (Williams. 1983) . 
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12.7.3 (Test) Register and Bus Binding 

Stage 3 involves the register and interconnect allocation and floor­

planning. Both design and test infonnation are used to make synthesis 

decisions during allocation. In addition the allocation algorithms differ 

from CA TREE by using a voting strategy to detennine the best possible 

clusterings at nodes of the tree. This voting is based on scores between 

the possible candidate clusters, which are calculated from a weighted rule 

set. 

Register allocation uses a bottom up tree traversal algorithm with 

conflict and weighted cluster rules applied to test variables and operation 

output variables of leaf nodes. Each cluster rule has a weight assigned to 

it, shown in table 12.4, that is used to compute a vote to detennine which 

cluster a variable (or cluster) will be placed (or merged). Cluster rules 

were used to allow further exploration of the design space. By changing 

the weights assigned to each rule one can change the synthesized alloca­

tions and also observe the effect the rules have on the synthesized solu­

tions. This is a more flexible and interesting method than the CA TREE 

fixed and ordered heuristic allocation rules, however it is a longer pro­

cess and computationally more expensive. Conflict rules prevent vari­

ables from clustering, for example, when two variables have conflicting 

lifetimes in the same trace. Variable lifetimes in all traces must be 

checked for conflicts. Variables with lifetimes in different traces will not 

conflict and can be clustered together. A final clustering with input only 

variables is done at the tree root at the end of the algorithm. 

Each cluster of variables representing a register is then placed into 

the tree closest to the functional units to which it is most connected. This 

attempts to maintain the mincut characteristic of the tree. The algorithm 

tends to produce registers which are evenly distributed among functional 

units and used in both the nonnal and the test mode of operation. 
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Table 12.4. Register allocation cluster rules. 

Rule # Rule Description Weight 

I same side inputs to a fu 5 
2 test variable with inputs for same fu 10 

3 output variables of a fu 2 

4 test variable with output for same fu 10 

5 test variable cluster with test variable 10 

6 test variable cluster with nonnal variable 0 

7 same value constants 10 

8 same size variables 10 

Interconnect allocation involves a top down tree traversal algorithm 

using conflict and weighted cluster rules on cross variables (xvars) 

located at different nodes in the tree. Cross variables represent transfers 

of a variable to a register from a functional unit or from a register to a 

functional unit. They are stored at nodes in the tree as defined in 

CA TREE. Cross variables of different traces will not conflict with one 

another. Currently a random or a uni/bi-directional bus topology can be 

allocated. The later two bus styles are specified in a configuration file 

which is then used to select appropriate conflict rules. An example of the 

cluster rules is shown in table 12.5. 

Table 12.5. Interconnect cluster rules for CA TREE2 synthesis. 

Rule # Rule Description Weight 

1 xvars share a register or fu 30 

2 xvars used in different traces 5 

3 xvars is regs ~ same fu on same side 5 

4 xvars is same reg ~ fus 5 
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Multiplexor allocation can be done in a local, distributed, or 2 level 

configuration. The aim is to minimize the number of multiplexor inputs. 

The local configuration is the same algorithm as described for CA TREE 

in section 6.4.2. The distributed configuration attempts to share multi­

plexors of registers between two functional units only if this decreases 

the number of multiplexor inputs is. The algorithm searches for multi­

plexors of the same type of registers. The 2 level configuration attempts 

to share an extra level of multiplexors whose output is input to two other 

multiplexors feeding functional units. Both algorithms are heuristic and 

attempt to decrease the total number of multiplexor inputs. 

The tree algorithm allocates interconnect paths for use in both test 

and normal modes of operation and is aimed at producing a minimum 

number of long interconnect. 

12.7.4 Feedback 

The floorplanning algorithm (Gebotys, 1987) currently assigns alter­

nating x and y dimensions at each level in the tree. Low and high sub­

trees of each node are also assigned based upon their connectivity to their 

neighbor nodes. This transforms the binary tree into a two dimensional 

binary tree as in CA TREE. 

Area, delay and test cost are computed in stage 4 and resynthesis is 

invoked if constraints are not met. These three parameters are computed 

as in CATREE (Gebotys, 1989) from the two dimensional tree and a 

library containing area, delay and test information for functional units, 

multiplexors and registers. 

Feedback can be performed automatically by using a bottom up tree 

traversal algorithm that attempts to merge functional units through 

rescheduling. It also may be done by changing the set of weights 

assigned to operation, variable or cross variable cluster rules, as shown in 

figure 12.18. This later method can be used to perform design tradeoffs 
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between test and area. For example if a high weight is assigned to the 

cluster rule allowing test variables to cluster with other test variables then 

a minimum number of test registers would most likely be allocated. In 

figure 12.18b) there are two test registers because t2 clustered with t1. 

This would decrease the overall area but also decrease the fault coverage 

if there were additional registers not used as test registers. By changing 

this weight to a lower value, the number of test registers would increase 

and consequently the fault coverage would increase. In figure 12.18a) 

there are three test registers since t2 clustered with c. Hence these 

weights can be used to explore design tradeoffs. Feedback can also be 

done manually through rescheduling or adding arcs in the input specifica­

tion. 

12.8 CATREE2 EXPERIMENTS 

A differential equation example previously presented for research 

(paulin, 1987,Pangrle, 1987) was used to illustrate the CATREE2 design 

and test synthesis and to compare with results from the CA TREE metho­

dology. Figure 12.19 show the CA TREE2 and CA TREE synthesized 

design solutions (the OASIC scheduler was not used). A random topol­

ogy, local multiplexor configuration and double scan chain (scan2) test 

methodology were implemented in both cases. TIle 4esign solutions had 

5 functional units and 10 test registers. CA TREE2 solution had l3 mul­

tiplexors or 30 multiplexor inputs. CA TREE produced a solution with 

higher area (it has 31 multiplexor inputs) and a poorer delay than the 

CA TREE2 solution. The critical path had an extra multiplexor input 

delay and an extra fanout delay. This extra interconnect was required 

due to the register allocation objective in design synthesis. Minimization 

of the number of design registers caused an output variable to be allo­

cated to register yl thus creating an extra multiplexor input. However 

during test incorporation in CA TREE, more test registers than the 

minimum number of design registers were required, causing the previous 
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Figure 12.18. An example of the resultant different synthesized designs 

made by changing rule sets for register allocation. The normal mode 

(NM) and test mode (TM) behavior and partial tree are shown. In a) 

the weight of the rule for combining test variables with other test 

variables is zero, to maximize testability. In b) this rule is given a 

high weight to decrease the number of test registers, or to minimize 

the area (c is not a test register). 

objective to be unnecessary. Thus the overhead was created since design 

synthesis was performed without test consideration. Since CA TREE2 

considered both design and test simultaneously a better solution was 

obtained. 

Figures 12.20 and 12.21 illustrate the decisions CATREE2 can make 

since both design and test information are used simultaneously during 

synthesis. In other test incorporation methods 

(Abadir,1985, Craig, 1988) which deal with structural information only, 

these decisions can not be made and therefore in the examples shown 

larger overheads are produced when they are unnecessary, as illustrated 

by CA TREE2s solutions. 
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Figure 12.19. An example of a double scan chained synthesized design 

solution from CATREE2 in a,b) and CATREE in c,d). 

Table 12.6 compares the CATREE2 runtimes (rtime), and the 

number of registers (reg) and busses (bus) of different test methodologies 

(scanx: x chains, bistx: x phases) with CA TREE2 synthesis with no test 

incorporation (none). All solutions had 5 functional units and imple­

mented a bus topology with weighted cluster rules for a minimum 

number of test registers. The average runtime overhead for test incor­

poration was 36%. The runtime values of table 9 are in cpu seconds for 

CA TREE2 written in Quintus Prolog running on a Sun 3/260. 
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Figure 12.20. Problem = to test both functional units (fl ,f2) in parallel: 

a) obtained from synthesis before test methods, cannot perform a 

parallel test (without hardware changes) because the 3 register multi­

plexor is shared; b) the hardware changes, required for parallel test­

ing of a), produce area and delay overheads; and c) the better solu­

tion obtained by CA TREE2, (preventing the sharing of the multi­

plexor during synthesis due to test conflicts). 

Table 12.7 shows the runtimes (rtime) and the number of operations 

(K, from the input algorithm) of various CATREE2 synthesized exam­

ples. All solutions used a bus topology and BIST test methodology 

implementation. The average runtime per operation is approximately 8 

cpu seconds. 

12.9 CA TREE2 DISCUSSION 

In summary, CATREE2 provided a better solution to the differential 

equation example than the CA TREE methodology because test was con­

sidered earlier during the design allocation. This simultaneous design 

and test methodology provided a higher degree of test and normal mode 

sharing of registers and interconnect. In this example CA TREE2 pro­

vided lower area and delay values than CA TREE. CA TREE required 

test register allocation in addition to test register assignment However 

another advantage to CA TREE2 is its ability to perform better design 

decisions by considering test simultaneously with design, as was shown 
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b c c b 
a a 

(a) (b) (c) 

Figure 12.21. Problem = to test the (commutative) functional unit (fu) 

using a BIST method (where test registers are shown as shaded 

boxes): a) obtained from synthesis before test incorporation, has no 

left input test register, see "?"; b) produces area and delay overhead 

to incorporate test in a) after synthesis; c) is the better solution 

obtained from CA TREE2 which synthesizes left and right test regis­

ters for the functional unit. 

Table 12.6. CA TREE2 testable design solutions for a diffeqn example. 

test: none scan 1 scan2 bistl bist2 bist3 

rtime 48 70 75 80 80 80 

regs 6 10 10 15 9 7 

bus 8 11 9 9 12 10 

in figure 12.20 and 12.21. Without this test knowledge design improve­

ments done during design synthesis may be eliminated during test incor­

poration or may possibly incur larger performance penalities on the fmal 

design (without resynthesis). 

CA TREE2 runtimes are quite reasonable and do not place a signifi­

cant burden on the synthesis process by simultaneously considering test 

If we use the runtime per operation values to extrapolate, it can be 
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Table 12.7. CA TREE2 runtime versus number of operations(K). 

Designs: test trace! diffe fIlter 

K 5 8 10 34 
rtime 35 53 77 345 
rtime/K 7 7 8 10 

expected that for a larger realistic algorithm. for example. one thousand 

operations. CA TREE2 would perform design synthesis in approximately 

a few cpu hours. This seems to be a reasonable amount of time making 

further design explorations feasible. Furthermore fully programmable 

code does not pose a problem for CA TREE2 synthesis since the runtime 

would approximately be proportional to the total number of operations. 

with the additional time required in the parser only for extracting traces. 

The test incorporation for full controllability and observability of all 

inputs and outputs of functional units may cause test overheads to be sig­

nificant such that design constraints cannot be met. A modification so 

that only the hard-to-test functional units are used for the test mode (thus 

requiring fewer test operations) could be made in CATREE2. Otherwise 

interface to test software or use of more testable functional units may be 

necessary as discussed in CA TREE section 6.6. 

Assuming that each functional unit has the same number of test vec­

tors. CA TREE2 creates a minimum test time by partitioning the tree into 

equal amounts of functional units. However often the number of test 

vectors for different functional units will vary as studied in (Craig. 1988) 

. Thus an extension to this research would be to minimize the test time 

for functional units with different test times. For example a smaller 

chain of functional units would be formed if these units required long test 

times. We could mOdify CATREE2 to form the final functional unit tree 

by partitioning based upon a weighted sum of attributes as in the 
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operation tree fonnation. The attributes would now be connectivity and 

test lengths. For example two functional units with similar test lengths, 

and therefore suitable for the same scan chain, would have a higher 

attraction value. Where as units with different test lengths, belonging on 

separate chains would have small attraction values. 

Also CA TREE2 has assumed that each fu has associated with it a set 

of test vectors (for ScanPath) or a pseudo-random sequence length (for 

BIST) and a fault coverage. These values were assumed to be precharac­

terized by test tools such as (Wagner,1987) . However this could be 

extended in the following way. Often different test vector sets or dif­

ferent polynomials (or seeds even for pseudorandom testing 

(Wagner, 1987) could exist for one functional unit in scan path or BIST 

applications. Thus the CA TREE2 problem would be extended to choose 

the proper set of vectors or best polynomial to achieve the design and test 

constraints. This extension towards a more realistic design and test 

library is illustrated in table 11. One final extension would then be to 

introduce different implementations of functional units as illustrated in 

the table 12.8 by Ie. Thus partitioning functional units, assigning test 

registers and choosing test sets or polynomials would become more com­

plicated and interesting to investigate. However a larger design and test 

space would be explored. 

In this chapter we have described two methodologies, CA TREE and 

CA TREE2, which integrate test incorporation with architectural syn­

thesis. Both approaches illustrated the impact of test on area and delay 

curves of the VLSI architectural design exploration phase. In the next 

chapter we will make some concluding remaIics to summarize the 

material presented in this text and discuss some future extensions for 

VLSI testable architectural synthesis. 
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Table 12.8. Extension of Pre-characterized CA TREE(2) Libraries 

Library FU Library Attributes 

CATREE(2) fu(i) tv( i) ,fc(i ),a(i) ,d( i) 

extension fu(i,[k]) tv(i,j,[k]),fc(i,j,[k)), 

a(i,[kJ),d(i,[k)) 

fuO functional unit 

tvO test vectors (ScanPath) or 

# of test sequences 

for a fixed polynomial (BIST) 

fcO (estimated) fault coverage 

aO area 

dO propagation delay 

j different test set (scanpath) or 

different polynomial(bist), 

fu(i,[k)) k versions of fu(i) 
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SUMMARY AND FUTURE RESEARCH 

Separate summaries of the OASIC and CA TREE methodologies, and 

concluding remarks (extensions of this research and future CAD tools) 

are presented in this final chapter of the text 

13.10ASIC 

The OASIC synthesized architectures, which have demonstrated all 

of the constraints presented in chapters 6 through 9, have been presented 

in chapter 10. The first three examples (differential equation, elliptical 

and kalman fIlter) were taken from the high level synthesis benchmark 

database. These examples along with the neural network (taken from 

literature outside of architectural synthesis field) and time constrained 

examples (also synthesized in chapter 10), provided a good basis for 

demonstrating the efficiency and flexibility of the OASIC synthesizer. 

The results of chapter 10 demonstrate how well OASIC can synthesize 
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architectures from input algorithms that range from having a large 

amount (neural network. algorithm) to a small amount (elliptical wave 

filter) of regularity. And more importantly results indicate that OASIC 

can efficiently and optimally synthesize architectures even in the pres­

ence of complex interface constraints. Other synthesis benclunarks were 

not selected because many were control dominated, or in other words 

they were more suited for controller synthesis. For example the architec­

ture itself could be trivially obtained from a few operations in the specifi­

cation, whereas the remaining operations are control operations useful for 

controller synthesis. 

There exist few published complete architectural solutions to the 

EWF, a benclunark. for over three years; most likely due to its compli­

cated interconnections. For the first time we can directly allocate busses 

at a very early stage (simultaneously with scheduling) and optimally syn­

thesize an architecture. Furthermore we have shown in chapter 10 that 

previous heuristic synthesizers (Paulin,1989) , (Devadas, 1989) , (Lag­

nese,1989) have not produced globally optimal schedules and alloca­

tions. 

Although the worst case complexity is exponential, we have found 

that many problems (ie Chapter 10) can be solved very fast to global 

optimums. As algorithms become larger we can take advantage of the 

mathematical flexibility of OASIC to model systems with hierarchy and 

regularity (such as the kalman filter and neural network algorithms) using 

a small number of variables (as demonstrated with functional pipelining). 

Larger algorithms may be partitioned into smaller code segments at ksep 

(which maintains optimality) or at other csteps (using partially relaxed 

OASIC with only objective and other variables EZ). Other partitioning 

techniques may also be easily incorporated. However more importantly 

we have demonstrated that over 100 code operations (ie unrolled filter) 

can be simultaneously scheduled and allocated in very fast cpu times. 
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This ability to synthesize large complex algorithms is a significant con­

tribution to the synthesis field. 

The use of node packing facets provided integer solutions in 16 times 

faster (defined as CPU time for solving IP without node packing facets 

divided by the CPU time for IP solution using facets, ie. CPU improved 

from 600s to 36s) in some cases than the use of previous scheduling con­

straints (Baker, 1974, Lee, 1989) . Knapsack facets used to improve the 

lower bounds on the number of busses provided 5 times faster CPU times 

(30m to 6m). The tightening of constraints was also shown in some 

cases to improve CPU performance by 1.6 times (420s to 267s). 

With respect to previous synthesized architectures, using the cost 

function (ct) (Devadas, 1989) , we obtained architectures with a 7% to 18 

% improvement in area-delay. These improvements come from the 

optimized number of registers and busses. Furthermore these results are 

stable over variations in the cost parameters for these two resources. 

Even when we generously compare with register file architectures we 

obtain improvements in area-delay. 

By scheduling simultaneously with general bus allocation in OASIC 

we can obtain better interconnect efficient architectures than previous 

heuristic synthesizers which allocate busses and multiplexors after the 

schedule is fixed (see figure 10.2). 

We can simultaneously solve interface constraints with scheduling 

and allocation to optimally make tradeoffs between architectural area, 

speed, and controller size. This is very important since the analysis has a 

significant effect on the area and delay of the final architecture as demon­

strated in this thesis. This is unlike other approaches which schedule 

after and independently of functional unit allocation (Ku, 1989a) or heu­

ristically readjust the schedule only for functional units (Nestor, 1990) . 

Secondly the OASIC computation time does not vary significantly in the 

presence of timing constraints, such as the analog interface (see table 
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10.21 and 10.8). 

We can easily minimize registers in the presence of conditional code 

unlike synthesizers which use heuristic algorithms (Kurdahi,1987) . 

Secondly because our model is mathmatically driven we can minimize 

the execution times of different mutually exclusive paths of code simul­

taneously with bus and register allocation, unlike some other synthesizers 

(Camposano, 1991) which cannot allocate these resources. 

List Of Contributions 

This section will outline the contributions to the high level synthesis 

field, high level design methodologies, and systems design methodolo­

gies. In addition the impact of this research on extensions for higher 

level transformations is outlined. 

Research Contributions To Architectural Synthesis. 

The contributions of this research to the architectural synthesis field 

are outlined below. The original and new research is highlighted in the 

following points. For the first time we have: 

1. Formulated a model for simultaneous scheduling and allocation of 

functional units, registers, and busses (Chapters 6 through 9). 

2. Solved for globally optimal schedules and allocations which minim­

ize an area and delay piecewise linear cost function (Chapter 10). 

3. Fonnulated timing constraints for interfaces to analog and asynchro­

nous processes (Chapter 9). 

4. Applied integer programming facetial techniques to solve architec­

tural synthesis (Chapters 6,7,9,10). 

5. Demonstrated that regularity and hierarchy of DAGs can be used to 

optimally synthesize architectures (Chapter 10). 
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Contributions To High Level Design Methodologies. 

The OASIC methodology has a significant impact on higher level 

methodologies. Not only does the OASIC model for interfaces support 

mixed analog/digital systems design, but also its use of regularity and 

hierarhcy is important. The OASIC mode helps to define how the higher 

level design automation tool will interact with the user. For example an 

interactive environment to enable analog/digital partitioning of the 

behavior, high level code motion, regularity identification, and changes 

in hierarchy should be part of the future DA tools. The direct impact of 

changes to the code can be examined, without the nuisance of the heuris­

tic analysis which often do not make use of available fme grain parallel­

ism in the input code. For the first time one can determine whether the 

"code optimizations" are in fact optimal or not with respect to the paral­

lelism they are supposed to generate. 

In summary this research synthesizes in practical execution times, 

and supports complex constraints including asynchronous/analog inter­

faces, bus calculation and area-delay cost functions. This is important 

for industry since its has been estimated it would take an effort larger 

than the synthesis itself to modify a self synchronized synthesized design 

to interface with other hybrid processes in a systems design. Also inter­

connect is seen as the key to high performance architectures and early 

decisions made during synthesis have the greatest impact on the fmal 

design. For the first time we can obtain exact globally optimal schedules 

and allocations for area-delay cost functions very early in the design 

cycle. Previous synthesizers could at best guarantee a locally optimal 

solution (which may not meet area-delay constraints) and could not han­

dle asynchronous/analog interfaces (simultaneously with scheduling and 

allocation). Finally we have demonstrated (see Chapter to) that OASIC 

can handle input algorithms with different types of structure, with over 

100 input code operations, and with complex constraints. In summary 
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this research provides globally optimal synthesized architectures, syn­

thesizes large input algorithms in practical execution times, and supports 

complex constraints and cost functions. 

13.2 CATREE 

The preliminary research tools, CA TREE and CA TREE2, are aimed 

at providing a framework. for integration of synthesis and testability. 

Previously research in these two areas have largely remained separate. 

These two new VLSI integrated design and test synthesis methodologies 

with area, delay, and test cost constraints, provide wider design explora­

tion, early performance feedback including test cost, and integration of 

design and test considerations. Preliminary results show that good 

testable design solutions are produced by simultaneously synthesizing 

the design's behavioral and test modes. This earlier consideration of test 

seems to make better design choices during allocation and allows confi­

dent design improvements taking both design and test information into 

consideration. 

This has implications for work. in both research and industrial 

environments. In industry, such a tool, when given an algorithm and test 

methodology, would provide wider exploration of solutions, with area, 

delay and test cost constraints satisfied earlier in the VLSI design cycle. 

Also valuable design cycle time would be saved by providing wider 

exploration of design solutions with area, delay and test cost constraints 

satisfied earlier in the VLSI design cycle. In research, it has been shown 

that testability should be considered an important part of the design syn­

thesis search along with area and delay. Thus feedback path F3 of 

CA TREE, along with FI and F2, should be used when synthesizing 

designs for an algorithmic description. Also the tight coupling of the 

design and test synthesis, provided by CA TREE2, can be used as a basis 

for further exploring improvements in design searches with area, delay, 
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and test cost constraints. 

In summary the CA TREE and CA TREE2 design synthesizers pro­

vide a useful approach towards incorporating testability within the syn­

thesis process using a two dimensional binary tree data structure. The 

tree data structure provides allocation algorithms of reasonable complex­

ity without saCrificing quality (Gebotys, 1987) . Integration of the VLSI 

data base is achieved through a common binary tree data structure used 

in complete synthesis with testability unlike a combination of separate 

synthesis and testability tools such as (Granado, 1985,McFarland, 1986) 

tools with (Abadir, 1985, Zhu, 1988) . The binary tree data structure also 

supports automated feedback to the synthesis process after test explora­

tion. Finally the two dimensionality naturally represented within the 

binary tree data structure supports testability incorporation and area­

delay estimation, unlike other structures lacking this property 

(Abadir, 1985,Zhu, 1988) . CATREE has been implemented in Quintus 

Prolog and is available as part of the Waterloo VLSI CAD Tool package 

(Elmasry, (null» . 

13.3 FUTURE EXTENSIONS 

The following is a list of future extensions for OASIC and CA TREE. 

These are divided into extensions for the model and extensions for the 

solution strategy. 

Model Extensions 

An extension of the OASIC model for register transfer architecture 

such as SPAID (Haroun,1989) could be perfonned. In this case one 

would minimize the size of register files, number of busses, and numbe r 

of multiplexors. 
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It would be useful to extend the bus allocation constraints for t~3, 

since our current OASIC model (chapter 7) only provides an exact 

number of busses for t= 1 ,2. 

An extension to allocate and select functional units representing 

chained operations and subsequently change the clock period would be 

very useful. Currently we can select chained operations, however we can­

not account for different clock periods. 

OASIC could also be extended to allocate storage and busses for dif­

ferent data sizes. Another extension for OASIC would be solution of the 

simultaneous scheduling, allocation and binding problem, where the 

number of bus drivers is modelled. 

Test incorporation performed simultaneously with a second binding 

optimization phase similar to (Gebotys, 1990) would be another interest­

ing extension. Future research would also include extending the syn­

thesis to fully programmable algorithmic input using trace scheduling 

techniques to optimize hardware implementation for high probability 

traces. Also completing the front end parser to extract traces, implement­

ing the trace scheduling approach, extending automatic feedback stra­

tegies, including controller costs, and automating testability measures 

earlier in the synthesis process, ie. evaluating test measures for chained 

operations, would be investigated in the future. 

Solution Strategies Extensions 

It would also be interesting to study the use of branch and bound on 

partial orders instead of variables of the model. We would expect good 

results since there are in some applications fewer partial orders than vari­

ables and the subpolytope of precedence constraints is very tight 
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Investigation and generalization of other facets for a branch and cut 

automated tool would also be another extension. The development of a 

heuristic strategy for selection of variables to branch on would also 

improve CPU times for architectural synthesis. This was discussed 

briefly in OASIC (chapter 10) where branching on the most constrained 

variables (the multiplication) provided significant CPU improvement. 

The use of the node packing decomposition technique could also be 

investigated for only a subset of OASIC (Xi,j,k)' Preliminary results 

found that all variables were set to 0.5. This was similar to other results 

in (Grimmett, 1985) . Secondly since bounds are known to be very poor 

with this model (padberg, 1973) and results with the facet model were 

very good, this approach was not pursued in this thesis, however could 

be further analyzed in future research. 

13.4 CONCLUDING REMARKS 

For the first time we have tightly integrated architectural synthesis 

with testability, which should have a large impact on decreasing the 

VLSI design cycle. In addition this research has for the first time formu­

lated a complete IP model for simultaneous scheduling and allocation 

including an exact allocation of busses. Secondly we are the first to 

apply facetial techniques to solve architectural synthesis. We have 

further shown that globally optimal architectures can be synthesized in 

faster CPU times than previous research. This is very important for 

industry because a mathematical basis (OASIC) is used for synthesis 

which supports correct architectures through formal verification of only 

the model and not the architectural solution as required by other heuristic 

synthesizers. The OASIC synthesizer uses very reliable and robust 

mathematical software which has been proven in other applications over 

a number of years. This model forms the basis of a CAD tool which can 

be brought to market very quickly because of this tested software. This 
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research is important since it has shown that the use of mathematical 

theory. developed over the last 25 years. can have significant impact on 

solving new VLSI problems. Secondly since our solution is mathemati­

cally driven we can easily support complex constraints and a wide range 

of different types of input algorithms. in contrast to previous heuristic 

approaches. The mathematical basis of the solution strategy combined 

with engineering creativity will enhance our ability to extend our tech­

nique to a wide range of problems in VLSI. 
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