
OPTIMAL VISI ARCHITEcruRAL

SYNTHESIS

Area, Performance and Testability

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VLSI, COMPUTER ARCHITECfURE AND
DIGITAL SIGNAL PROCESSING

Latest Titles

Consulting Editor
Jonathan Allen

Low-Noise Wide-Band Amplijiers in Bipolar and CM OS Technologies,
Z. Y.Chang, W.M.C.Sansen,

ISBN: 0-7923-9096-2
Iterative Idelllijication and Restoration of Images, R. L.Lagendijk, J. Biemond

ISBN: 0-7923-9097-0
VLSI Design of Neural Networks, U. Ramacher, U. Ruckert

ISBN: 0-7923-9127-6
SynchronkaJion Design for Digital SYsUms, T. H. Meng

ISBN: 0-7923-9128-4
HardwaIY Annealing in AMlog VLSI Neurocomputing, B. W. Lee, 8. J. Sheu

ISBN: 0-7923-9132-2
Neural Networks and Spuch Processing, D. P. Morgan, C.L Scofield

ISBN: 0-7923-9144-6
Silicon-on-lllSUlator Technology: Materials to VLSl, J.P. Colinge

ISBN: 0-7923-9150-0
Microwave Semiconductor Devices, S. Yngvesson

ISBN: 0-7923-9156-X
A Survey of High-Level Sylllhelis Systems, R. A. Walker, R. Camposano

ISBN: 0-7923-9158-6
Symbolic Analysis for Automated Design of Analog 11IIegrated Circuits,

G. Gielen, W. Sansen,
ISBN: 0-7923-9161-6

High-Level VLSl Sy1llhesis, R. Camposano, W. Wolf,
ISBN: 0-7923-9159-4

Integrating FunctioMI and Temporal DomaillS in Logic Design: The False Path
Problem and its ImplicatiollS, P. C. MeGeer, R. K. Brayton,

ISBN: 0-7923-9163-2
Neural Models and Algorithmsfor DigiJal Testing, S. T. Chakradhar,

v. D. Agrawal, M. L. Bushnell,
ISBN: 0-7923-9165-9

Monte Carlo Device Simulation: Full Band and Beyond, Karl Hess, editor
ISBN: 0-7923-9172-1

The Design of Communicating Systems: A System Engin"ring Approach,
C.J. Koomen

ISBN: 0-7923-9203-5
Parallel Algorithms and ArchiJecluIYs for DSP ApplicatiollS,

M.A. Bayoumi, editor
ISBN: 0-7923-9209-4

Digital Speech Processing: Speech Coding, Sy1llhelis and RecogniJion,
A. Neja t Inee, edi tor

ISBN: 0-7923-9220-5
Assessing Faull Model and Test Quality, Kenneth M. Butler, M. Ray Mercer

ISBN: 0-7923-9222-1

OPTIMAL VLSI
ARCHITECTURAL SYNTHESIS

Area, Performance and Testability

Catherine H. Gebotys
and

Mohamed I. Elmasry

University of Waterloo

Springer Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

Gebotys, Catherine H.
Optimal VLSI architectural synthesis: area, performance, and

testability / Catherine H. Gebotys and Mohamed I. Elmasry.
p. cm. -- (The Kluwer international series in engineering and

computer science. VLSI, computer architecture, and digital signal
processing)

Includes bibliographical references and index.
ISBN 978-1-4613-6797-0 ISBN 978-1-4615-4018-2 (eBook)
DOl 10.1007/978-1-4615-4018-2
1. Computer architecture. 2. Integrated circuits--Very large

scale integration. I. Elmasry, Mohamed 1.,1943- . II. Title.
III. Series.
QA76.9.A73G42 1992
004.2'2--dc20

Copyright 1992 Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1992
Softcover reprint of the hardcover 1st edition 1992

91-31898
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying, recording,
or otherwise, without the prior written permission of the publisher, Springer Science+
Business Media, LLC .

Printed on acid-free paper.

To

Robert Joseph and Kathleen Vanessa Gebotys

and

Elizabeth, Carmen, Samir, Nadia and Hassan Elmasry

Table of Contents

Preface Xill

PART I: INTRODUCTION ... 1

1. GLOBAL VLSI DESIGN CYCLE ... 3

1.1 VLSI DESIGN CYCLE ... 4

1.2 HYBRID SYSTEMS DESIGN .. 10

1.3 IMPACT OF TECHNOLOGIES .. 12

1.4 TEST CONSIDERATIONS ... 14

1.5 BOTTLENECKS AND OPEN ISSUES 17

1.6 FOCUS OF TEXT .. 19

2. BEHAVIORAL AND STRUCTURAL INTERFACES
21

2.1 INPUT TO AN ARCHITECTURAL SYNTHESIZER
21

2.2 INTERFACE PRIMITIVES FOR EXTERNAL
PROCESSES .. . 25

2.3 OUTPUT PRIMITIVES FROM AN ARCHITECTURAL
SYNTHESIZER 31

PART II: REVIEW AND BACKGROUND 37

3. STATEOFTHEARTSYNTHESIS .. 39

3.1 TERMINOLOGY AND SUBTASK DEFINITIONS
... 39

3.2 HIGH LEVEL TRANSFORMATIONS 43

3.3 INDEPENDENT SUBTASK OPTIMIZATION 45

Vll

3.3.1 Scheduling ... 45

3.3.2 Resource Allocation 46

3.4 ITERATIVE AND SIMULTANEOUS APPROACHES
... 51

3.5 MATHEMATICAL APPROACHES .. 55

3.5.1 Branch and Bound ... 55

3.5.2 Simulated Annealing ... 57

3.5.3 Makespan Scheduling .. 58

3.5.4 Feasibility Models ... 58

3.6 TIMING CONSTRAINED SYNTHESIS 59

3.7 COST FUNCTIONS FOR DESIGN EVALUATION
61

4. INTRODUCTION TO INTEGER PROGRAMMING
63

4.1 APPLICATIONS AND MODELS ... 64

4.2 SOLUTION OF UNSTRUCTURED IPs 66

4.3 POLYHEDRAL APPROACHES TO SOLVING IPs
... 71

4.4 THE NODE PACKING PROBLEM 73

4.5 THE KNAPSACK PROBLEM ... 78

PART m: OPTIMAL ARCIDTECTURAL SYNTHESIS
WIm INTERFACES ... 81

5. A METHODOLOGY FOR ARCHITECTURAL SYN-
THESIS ... 83

5.1 REQUIREMENTS FOR HIGH LEVEL SYNTHESIS
TOOLS .. 83

5.2 HIGH LEVEL METHODOLOGy... 85

Vlll

5.3 OASIC METHODOLOGY .. 88

5.4 AN INTRODUCTION TO OASIC .. 90

5.5 OASIC TERMINOLOGY. ASSUMPTIONS. AND
PREPROCESSING ... 92

5.5.1 Tenninology .. 92

5.5.2 Assumptions .. 94

5.5.3 Preprocessing.... 94

6. SIMULTANEOUS SCHEDULING, AND SELECTION
AND ALLOCATION OF FUNCTIONAL UNITS 97

6.1 THE FORMAL MODEL .. 98

6.2 COST FUNCTIONS .. 105

6.3 FUNCTIONAL UNIT TYPE SELECTION 106

7. OASIC: AREA-DELAY CONSTRAINED ARCHITEC-
TURAL SYNTHESIS ... 109

7.1 THE PRECEDENCE CONSTRAINED SCHEDULING
MODEL... 110

7.2 FUNCTIONAL UNIT ALLOCATION 111

7.3 REGISTER ALLOCATION ... 111

7.4 BUS ALLOCATION .. 114

7.5 COST FUNCTIONS ... 119

7.6 APPLICATION SPECIFIC TIGHTENING OF CON-
STRAINTS .. 120

8. SUPPORT FOR ALGORITHMIC CONSTRUCTS 123

8.1 CONDmONALCODE ... 123

8.2 LOOPS ... 126

8.3 FUNCTIONAL PIPELINING .. 126

ix

9. INTERFACE CONSTRAINTS .. 129

9.1 GENERAL INTERFACE: MINIMUM AND MAX-
IMUM TIMING CONSTRAINTS .. 130

9.2 ANALOG INTERFACE: AXED TIMING CON-
STRAINT 131

9.3 ASYNCHRONOUS INTERFACE ... 132

9.4 UNKNOWN UNBOUNDED DELAYS 138

9.5 COMPLEX TIMING CONSTRAINTS 138

10. OASIC SYNTHESIS RESULTS ... 141

10.1 ELLIPTICAL WAVE ALTER .. 144

10.1.1 Structured Model 144

10.1.2 Area-Delay Optimized ... 150

10.2 NEURAL NETWORK ALGORITHM 162

10.3 CONDITIONAL CODE EXAMPLE 169

10.4 ANALOG AND ASYNCHRONOUS INTERFACE
EXAMPLES

10.6.1 Analog Interface

10.6.2 Asynchronous Interface .. .

PART IV: TESTABLE ARCHITECTURAL SYNTHESIS

11. TESTABILITY IN ARCHITECI'URAL SYNTHESIS

11.1 DESIGN AND TEST .. .

11.1.1 Choices in Design and Test

11.2 APPROACHES TO TESTABILITy

11.2.1 Test Measures and Tools

x

171

172

172

177

179

180

183

188

188

11.2.2 Design Modifications for Testability

11.3 PREVIOUS RESEARCH IN DESIGN FOR TEST

11.4 APPROACHES TO TEST WITH SYNTHESIS

11.4.1 Previous Research

11.4.2 Commercial Systems

11.5 INADEQUACIES OF CURRENT SYNTHESIS WITH
TEST .. .

11.5.1 Feedback

11.5.2 Integration .. .

11.5.3 Constraint Estimation

12. THE CATREE ARCHITECTURAL SYNTHESIS WITH

193

200

202

202

203

204

204

205

205

TESTABILITY ... 207

12.1 PROBLEM DESCRIPTION .. 208

12.2 COMPARISON WITH PREVIOUS RESEARCH
212

12.3 TWO SYNTHESIS WITH TEST METHODOLOGIES:
CATREE & CATREE2 ... 213

12.4 CATREE DESIGN SYNTHESIS STAGES 216

12.4.1 Input Specification ... 217

12.4.2 Design Allocation .. 217

12.4.3 CA TREE Area and Delay Estimates 224

12.4.4 Test Incorporation .. 226

12.4.5 Feedback .. 231

12.5 CATREE SYNTHESIS RESULTS 235

12.6 CATREE DISCUSSION .. 239

xi

12.7 CATREE2 DESIGN SYNTHESIS STAGES 243

12.7.1 Tree Fonnation and Functional Unit Binding

12.7.2 Test Incorporation

244

245

12.7.3 (Test) Register and Bus Binding 248

12.7.4 Feedback .. 250

12.8 CATREE2 EXPERIMENTS .. 251

12.9 CATREE2 DISCUSSION .. 254

PART V: SUMMARY AND FUTURE RESEARCH
... 259

13. SUMMARY AND FUTURE RESEARCH 261

13.1 OASIC SUMMARy.. 261

13.2 CATREE SUMMARy... 266

13.3 FUTURE EXTENSIONS ... 267

13.4 CONCLUDING REMARKS 269

REFERENCES .. 271

INDEX .. 287

xu

PREFACE

Although research in architectural synthesis has been conducted for

over ten years it has had very little impact on industry. This in our view

is due to the inability of current architectural synthesizers to provide

area-delay competitive (or "optimal") architectures, that will support

interfaces to analog, asynchronous, and other complex processes. They

also fail to incorporate testability. The OASIC (optimal architectural

synthesis with interface constraints) architectural synthesizer and the

CATREE (computer aided trees) synthesizer demonstrate how these

problems can be solved.

Traditionally architectural synthesis is viewed as NP hard and there­

fore most research has involved heuristics. OASIC demonstrates by

using an IP approach (using polyhedral analysis), that most input algo­

rithms can be synthesized very fast into globally optimal architectures.

Since a mathematical model is used, complex interface constraints can

easily be incorporated and solved.

Research in test incorporation has in general been separate from syn­

thesis research. This is due to the fact that traditional test research has

been at the gate or lower level of design representation. Nevertheless as

technologies scale down, and complexity of design scales up, the push

for reducing testing times is increased. On way to deal with this is to

incorporate test strategies early in the design process. The second half of

this text examines an approach for integrating architectural synthesis

with test incorporation. Research showed that test must be considered

during synthesis to provide good architectural solutions which minimize

Xlll

area delay cost functions.

Though originally developed separately, OASIC and CATREE can

be integrated so that OASIC simultaneously schedules and allocates the

architecture and CATREE perfonns binding (and reallocating) of the

architecture for testability.

Part I introduces the motivation and current open problems with high

level CAD. Part II provides the necessary background material on archi­

tectural synthesis and integer programming. This part includes a defini­

tion of problems in both areas and a brief review of previous approaches

to solving these problems. Part III outlines the OASIC methodology,

models, the solution techniques used, and some synthesized results. Part

IV outlines the CATREE methodology, the algorithms and data struc­

tures used and some synthesized results. Part V provides a brief discus­

sion and concluding remarks concerning how we will interface with

CAD tools of the future.

The book can be used at the senior undergraduate and graduate levels

in courses dealing with computer architectures, computer organization,

VLSI design, computer-aided design, VLSI digital signal processing,

testing, or integer programming. It will be also of value to resesarchers

dealing with these topics.

C.H. Gebotys

M.I. Elmasry

Waterloo, Ontario, Canada

XlV

PART I: INTRODUCTION

1.

GLOBAL VLSI DESIGN CYCLE

The global VLSI (very large scale integration) systems design cycle

is briefly discussed below with respect to relationships between design

stages, bottlenecks, and current open issues for design automation (DA).

The design cycle involves moving from an abstract design specification

to gradually a more detailed single or multichip design that can be tested

and fabricated. The VLSI design stages are very interdependent and

therefore it is important to outline the purpose of each stage before one

can address the problems of high level synthesis. Area, power, speed,

timing issues, input and output pin limitations, testability, and many

other criteria are important in the design process. Interfaces to other

complex processes, design complexity with respect to implementation

technologies and testability will also be discussed. In addition, an under­

standing of the current computer aided-design (CAD) bottlenecks and

open issues will further emphasize the importance and impact of high

4 Architectural Synthesis

level architectural synthesis (the focus of this text) on the VLSI design

cycle.

1.1 VLSI DESIGN CYCLE

The VLSI systems design cycle generally involves many transforma­

tions from a high level design specification to a low level of design

representation. Stages include, but are not limited to : local and global

transformations on the behavioral specification, partitioning of the

behavior, architectural synthesis (transforming behavior into an architec­

ture), logic synthesis, functional level simulation, module generation,

placement and routing, timing analysis, and final mask layout and verifi­

cation. The behavioral specification, also called the input algorithm,

which is accompanied by a cost function that drives the design synthesis.

For example the cost function may involve the minimization of chip area

and power dissipation, or the maximization of chip speed and testability.

The time required for each design stage may be quite large depend­

ing upon how much automation is provided or the designers expertise.

Feedback from one stage to a previous stage is often quite frequent and

time consuming due to incorrect early decisions or false assumptions.

For example a partitioning decision may lead to a chip which exceeds its

area requirements and therefore feedback is required to correct the earlier

partition decision. Feedback is often inevitable since each design cycle

step is interdependent upon the others. For example a decision made

during behavioral scheduling affects all lower stages such as hardware

allocation and the final VLSI design layout. Yet it is very difficult to

predict the effects that early decisions will have since the behavior is

technology independent It is believed to be impossible to simultaneously

consider all stages (down to layout) due to the complexity and enormous

amounts of data required. It is well known that early decisions made in

the design cycle often have the greatest impact on the final design. Thus

Global VLSI Design Cycle 5

the high level stages are currently viewed as being very important and of

great interest in the VLSI community.

Early steps of the VLSI design cycle have been defined as algorithm

transformations, algorithm partitioning, and architectural synthesis. We

will use the terms behavior or algorithm to describe the input into an

architectural synthesizer. Decisions to partition the behavior among mul­

tiple chips (spatial), different analog and digital domains (technology), or

into separate pipestages (time) are explored in these early steps. In

industry these decisions are often done without the aid of design automa­

tion tools, yet it is this exploration which is considered critical for shor­

tening the design cycle time and of great importance for designing high

performance architectures.

Even though research on high level architectural synthesis tools has

been conducted for more than ten years, it has not had a significant

impact on industry. This can be attributed to the known fact that the

acceptance of new technologies occurs much faster in industry

(Langeler, 1989) than the acceptance of new DA tools. Currently the

most common and mature DA tools in industry perform low level tedious

tasks such as module generation, placement, routing, and layout. Figure

1.1 illustrates the maturity of the various DA tools. More recently logic

synthesis tools have been introduced into the CAD market for controller

design. We believe there are several reasons why architectural synthesis

and higher level tools have not found a place in industry. In order to

understand why, we will first briefly introduce the subject of architec­

tural synthesis, and then look at issues which have not been adequately

addressed by researchers and consequently contribute to preventing the

introduction of synthesis in industry. Chapters three and four, in part II,

will review the field of architectural synthesis and integer programming

respectively. In chapter five through nine, of part III, we will introduce

our formal and practical approach to solving these issues optimally for

6 Architectural Synthesis

architectural synthesis.

Maturity

t
Relative
Slate of
the Art

~
Infancy

Slate of the Art
Research Impact

System Design CAE + Test Layout

Figure 1.1. The maturity of various CAD tools for VLSI.

Architectural synthesis of digital synchronous chips refers to the

transformation from a behavioral (or algorithmic) input description to a

hardware architecture which implements the behavior (according to a

schedule). The Y chart (Gajski, 1983) shown in figure 1.2, is most com­

monly used to represent the transformations performed during the design

cycle. The three axis of the Y chart, behavioral, structural and geometri­

cal axes, are used to represent different levels of design representation

and the mappings required to design a chip. During the design of a sys­

tem one starts with a behavioral design specification (in theory) and

moves successively down the chart to refine the design into greater levels

of detail. However we will give a brief look at the different levels of

hierarchy by starting at the lowest level and moving up.

Starting at the inner bold dot in figure 1.2 on the behavioral axis, the

lower level cells, such as a data storage element is defined. By moving

up to the structural axis it becomes more refmed as an interconnection of

Global VLSI Design Cycle 7

Structural Behavioral

Geometrical

Figure 1.2. The Y chart, illustrating design cycle transitions. The archi­
tectural synthesis is represented by the arc, at the top of the chart,
from the behavioral axis to the structural axis.

transistors which implements for example a master-slave flip-flop or

register. Finally a transition to the geometrical axis defines the actual

mask layers required to fabricate the register as part of a chip. When all

cells are available in a library one can continue to the module level.

Modules are larger design components that are made from a number of

cells. An example of a module is a register file, which is composed of a

number of registers and control circuitry. The behavioral axis, at the

module level, defines the control and functionality of the register file.

By moving again to the structural axis the definition of this module in

tenns of an interconnection of cells is detailed. By moving again to the

geometrical axis the module is defmed according to the mask definitions

of its cells and their interconnection. One more level up the hierarchy

defmes the behavior of a larger system of modules which could be a chip

or system.

8 Architectural Synthesis

The transition from the behavioral axis to the structural axis, at the

top of figure 1.2, represents architectural synthesis, the focus of this text.

After performing architectural synthesis, a digital designer moves from

the structural axis to the layout axis at the module and chip levels during

the design cycle. This later procedure is now very well defined in indus­

try. For example a behavior may be described as a z-diagram for digital

filters or a programming language (such as 'C' or Pascal). We define a

code operation as a single specific arithmetic operation in the algorithm.

Code operations in the behavioral description may receive data or

transfer data in the form of bits, bytes, arrays or strings for computation.

Additionally there may be very complex timing constraints on data

transfers or communication with external processes. The term external
process will be used to describe a process or operation that communi­

cates with the behavioral algorithm but is not being synthesized. The

output of the high level architectural synthesizer is a hardware architec­

ture and a schedule. An architecture is composed of hardware com­

ponents, which include registers (memory), busses, and functional units

(such as multipliers, arithmetic logic units (ALUs) , etc). The architec­

tural synthesis involves many tasks including scheduling and allocation.

The schedule defines the mapping of code operations to control states.

The allocation tasks determine the number of functional units, registers,

and busses. The binding task defines the mapping of code operations to

hardware components (functional units and registers), including data

transfers to and from busses. Since synthesis is a one to many mapping,

often a set of design constraints or a cost function are specified by the

user to select among the design solutions or find the optimal one. For

example each code operation can be mapped to many different control

states and hardware components. The design constraints most often

include area and speed (McFarland, 1986) , however other constraints

such as power (Petersen, 1986, Haroun, 1989) and test (Gebotys, 1989) ,

may also be important.

Global VLSI Design Cycle 9

One of the major purposes of architectural design synthesis is to

decrease the VLSI design cycle time. In effect, because designs are syn­

thesized faster (than humans can design) there is more time for design

exploration and thus yielding 'better' or optimal architectures (with

respect to other solutions produced by the synthesizer during design

exploration). This tool also provides a good method for handling last

minute design specification changes, since new architectures can be

quickly synthesized.

Chip level design synthesis is viewed as an important stage in the

VLSI design cycle. It follows the design specification stage, where

designers define exactly what function their system will perform and how

it will be partitioned among custom chips. It also precedes the layout

stage. Since the synthesis stage, which determines the architecture of the

design is estimated to be 30-40% of the total design effort (Fey, 1986) ,

automation plays an important part in saving time and manpower.

As VLSI technologies scale up to ULSI (ultra-large-scale­

integration) levels the computational demands placed on DA tools

increases. This burden affects synthesis tools directly. Behavioral

design descriptions to be synthesized will be extremely complex and

large. Very few synthesizers have synthesized more than 1000 lines of

input code. Only synthesizers targeted for microprocessor designs

(Rajan, 1989) have produced architectures for the M68000, using 2426

lines of input code. Most have used far less than 1000 lines of input code

to synthesize examples (see the high level synthesis benchmarks at elec­

tronic address hlsw@decwrl.dec.com (Borriello, 1988)). It is not clear

what limits these architectural synthesis tools exhibit as design sizes

increase. Furthermore some subtasks associated with design synthesis,

have been classified as NP-hard (Garey, 1979) . This means that there

will exist some problems that will require exponential time to solve. In

the future, better algorithmic techniques to handle the complexity of the

10 Architectural Synthesis

problem will be developed, such as partitioning and execution of syn­

thesis tasks on multiprocessor architecrures. The high level synthesis

tools must be able to synthesize architecrures from partitioned code seg­

ments and from input algorithms with a high degree of regularity. These

techniques will provide solutions to handling the computational com­

plexities and demands of large systems that need to be synthesized.

1.2 HYBRID SYSTEMS DESIGN

Lacking even more automation is analog and asynchronous design,

although recent research has shown much promise for both areas. It is

believed that about 30% of ASICS have analog components and by the

year 2000 this number is expected to double (Carley, 1989) . Mixed

analog/digital systems design may involve tightly coupled (embedded)

hardware or loosely coupled (partitionable) mixed hardware components.

An example of the former case is the implementation of the artificial

neural netwolX algorithm (ANN) where both analog and digital com­

ponents can be used for different processing aspects. In some cases the

advantages of analog or digital implementation may not be clearly iden­

tifiable for a particular application and design exploration will be

extremely important to identify the optimized combination of digital sig­

nal processing (DSP) and analog signal processing (ASP). Loosely cou­

pled mixed designs more commonly occur when a Sequential pipeline of

processing functions are synthesized. In these types of designs often the

partition between analog and digital is well defined. For example a

design to drive an RGB (red-green-blue) display may have DAC (digital

to analog converter) circuitry on the same chip that provides digital

graphics processing. It is believed that high level synthesis of analog and

digital circuits is different enough to necessitate the use of separate CAD

tools. Nevertheless the research in analog CAD tools greatly lags digital

CAD tool research and high level synthesis tools have not been defined

in analog design. However, it is important to have a formally defined

Global VLSI Design Cycle 11

interface between analog and digital so that the concurrent execution of

synthesizers can be perfonned. We defme an analog interface to a syn­

chronous digital circuit as a sequential synchronous data input/output at a

fixed rate. For example data input to or output from a DAC or a ADC

may be a part of the system behavior which is input to an architectural

synthesizer. This model of interface will be discussed more in chapter

2.2.

Asynchronous designs are expected to increase due to the limits of

global clocking of synchronous circuits including clock skew

(Meng, 1989) . Asynchronous circuits have task dependent or data depen­

dent completion times. For example the next task cycle is started once

the current task is completed. Asynchronous designs can be represented

as bounded or unbounded delay circuits (Meng, 1989) . We define an

asynchronous interface of a digital synchronous system as inputs syn­

chronized with the controllers (global) clock but are still indetenninate

with respect to the control state (or control step) of the system (Hay­

ati, 1989) . We call the interface bounded if an earliest and a latest con­

trol state is defmed. Thus it is known that input data from the external

asynchronous process will arrive at a control state greater than or equal to

the earliest state and less than or equal to the latest state. Analogously

the data could be output to an asynchronous process. In this case, the

interface would be used to control the u~e of the register hold time for

transferring output data. There are a number of designs for interfacing

asynchronous circuits to digital synchronous systems such as data detec­

tors, spacers, multivalued circuits or other types of synchronizers. The

design of these synchronizer components will not be addressed however

more infonnation on these can be found in

(Balraj, 1986, Brzozowski, 1990, Meng, 1989) .

12 Architectural Synthesis

In totally synchronous digital multichip designs, it may be very diffi­

cult to guarantee that the clock signal will arrive at the same time at all

parts of the circuits (Brzozowski, 1990) . Thus external data inputs may

be delayed by different amounts. Hence it is often necessary to consider

asynchronous behavior, even in totally distributed synchronous systems.

As geometries scale down, clock skew, slower transition times, and the

capacitance and resistance effects will become increasingly dominant

(Subrahmanyam,1988) . Preliminary analysis indicates that for large

designs self timed disciplines may be necessary. Additionally in globally

synchronous circuits there may also be asynchronous behavior when

access to a shared resource is requested. Finally, the systems design may

involve loosely coupled VLSI circuits which can be locally synchronous

but globally self timed and therefore require asynchronous behavioral

interfaces. Asynchronous designs offer many advantages such as

increased operating speeds and they can be designed to handle bounded

metastable states.

The focus of this text will be on the automated architectural design of

digital synchronous circuits with interface to both analog and asynchro­

nous circuits.

1.3 IMPACT OF TECHNOLOGIES

There are many tecimological factors which also may drive the per­

formance of VLSI designs. For example not only will constraints for

data transfer between multichips on a printed circuit board (PCB) board

be important for architectural synthesis but also data transfers on a sili­

con substrate (multichip modules) (Weber, 1989) , or on a wafer (wafer

scale integration) will be important. An example of these data transfer

constraints are die to die communication delays. Each new tecimology

brings a new set of constraints which must be incorporated into

automated architectural synthesis tools.

Global VLSI Design Cycle 13

In addition to the medium of data transfer between chips, the imple­

mentation technology of the chip itself is also important. For example

the area and delay characteristics of the module library will change when

new technologies are introduced. Thus architectural synthesizers must

have adaptable cost functions which will take these changes into con­

sideration in fmding optimal architectural solutions. These factors will

also have a great impact on the types of architectures which may be

suited for a technology. For example if interconnect is very expensive

(ie. maybe the technology only allows two levels of metal) then busses

must be minimized and used to yield a more efficient solution than the

use of a random topology (ie.local interconnections).

Another technological impact which affects architectural synthesizers

is at the application end. For example artificial neural network (ANN)

algorithms are being used in many systems applications such as pattern

recognition (Treleavan, 1989) . The ability to embed these algorithms in

a systems design has become very important. Systolic (Kung, 1988) and

multiprocessor network implementations have already been investigated.

Their use as input to architectural synthesizers however has not been

explored. For example the VLSI implementation of the ANN may be

one part of a larger design of analog signal processing (ASP) or digital

signal processing (DSP). It is possible that the execution of the ANN

does not conflict in time with other DSP postfiltering and thus the shar­

ing of hardware may be possible.

Architectural synthesizers must be able to handle a wide range of

algorithms. These types of algorithms have not been input to existing

architectural synthesizers and are characterized by an extremely large

number of data transfers between code operations. This factor leads to

extremely large interconnect requirements. Since most synthesizers deal

with interconnect during the final stages of the design it is possible that

they would output unsuitable architectures (where the interconnect

14 Architectural Synthesis

complexity is too high). The architectural synthesizer we will present

can optimize interconnect at an early stage.

1.4 TEST CONSIDERATIONS

Test is required to verify that the fabricated VLSI chip or multichip

system works fault-free or operates satisfactorily (McCluskey, 1990) . In

other words a test set or set of test vectors is used to detect faults present

in the chip. These faults may be due to the fabrication process or layout

errors. Test is not the same as design verification. Design verification,

refers to proving that the synthesized design solution (not fabricated

chip) is correct with respect to the behavioral input given. In our case we

assume the user has already verified that the solution executes the

behavior correctly by using a functional set of test vectors. One solution

to testing chips is to create a set of test vectors to control and observe

every fault possible in the chip design. This is called through the pins

testing (McCluskey, 1986) . In other words we wish to detect at the out­

put pins the presence or absence of faults while applying proper stimu­

lants at the input pins. Another approach to test is called the structured

design for test approach (Williams, 1983, McCluskey, 1986) . This

approach, discussed in section 11.2.2, modifies the design to increase the

testability or ease the generation of test vectors.

There are two main reasons why test is important. One is the cost

view. The cost to detect an error increases by a factor of 10 at each level

of design (Williams, 1983,Goel,1980) . For example the chip design,

board design, system design, and system design in the field are the four

main levels where this cost factor increases, for example, from 10 at the

chip level to 10,000 at the systems field level. Hence to avoid these large

costs, testing at all design levels, from the chip to the system, is impor­

tant. Testing at the chip level, the most complex of the three levels, due

to the large number of faults and inability to probe internal nodes,

Global VLSI Design Cycle 15

requires detecting faults present at any of the internal nodes of the chip.

Testing for faults on board-level wires and on connections between

boards are required at the board and system level respectively. At these

later two levels, the number of faults is smaller and most can be directly

probed on board or at the system level interconnections between boards.

We will concentrate our discussion in this book on chip level testing.

The degree to which test is important may also depend upon the applica­

tion. For example in military, avionics or automobile applications the

test requirements may be very high.

Two related topics in test are redundancy and diagnosability. Redun­

dancy at the systems level is very useful for fault tolerant design. How­

ever at the chip level redundancy leads to undetectable faults thus caus­

ing problems. We will not discuss system level redundancy. Determin­

ing why a chip is failing or where the fault exists is the purpose of a diag­

nosis test tool. These test tools maintain diagnostic libraries which relate

output responses to faulty nodes. Diagnosis will not be discussed in this

book.

The test stage is most traditionally viewed as occurring after the lay­

out stage (Agrawal, 1984) . In particular for through-the-pins-testing the

test vectors may be generated after layout and often this test generation

process could continue until the fabricated chips are returned from the

foundry. For structured design techniques the incorporation of scan

registers would occur after the structural design is completed before lay­

out. However the scan chain interconnection may occur after layout as in

(AgraWal, 1984) . We could view the test process as a perpendicular line

extending from the Y chart as shown in figure 1.3. In this figure the test

stage can be performed after the system is laid out by arrow c. In struc­

tured test, transition a, b and c would occur. If test constraints are not

met, the transition arrow, d, from the test axis to the structural axis illus­

trates the required redesign for testability. This may also occur if the

16 Architectural Synthesis

area and time constraints are exceeded during the test stage.

Structural Behavioral

Test

Figure 1.3. Modification of the Y chart to include the test stage.

The test problem is further complicated by tbe fact that as the

number of transistors increase (from VLSI to ULSI) the number of pri­

mary inputs and outputs (or those accessible by pins of chip) do not pro­

portionately increase (Tsui, 1986) . Thus it becomes even more difficult

to access internal nodes of the chip for control and observation by using

through the pins testing. The test generation problem for combinational

circuits is NP-complete (Ibarra, 1975, Fujiwara, 1982, Aho, 1974) . The

structured design for test problem, discussed in section 11.3, has also

been shown to be NP-complete (Craig, 1988) . Approaches to the test

problem are discussed in detail in sections 11.2 and 11.3. Some

Global VLSI Design Cycle 17

structured design for test techniques have been automated

(Agrawal, 1984, Craig, 1988) and some research such as

(Abadir, 1985, Beausang, 1987) and (Fung, 1986, Gebotys, 1989) have

discussed and published their integration of synthesis with test. These

will be discussed in section 11.3 and 11.6.

1.5 BOTTLENECKS AND OPEN ISSUES

One high level bottleneck of the VLSI design cycle is the integration

and synthesis of analog and digital behavioral specifications of a VLSI

system. Different design methodologies and complex interfaces between

the two domains pose many challenges for the design automation indus­

try. There is a lack of DA tools to support these designs and currently

industry relies on the communication between designers to define and

design a correct interface. It has been estimated in the literature that it

would take a larger effort than the design itself to take a self contained

synchronous synthesized design and modify it to interface to other hybrid

processes (Zahir, 1989) .

Since the design cycle steps are interdependent, low level bottlenecks

can be partially alleviated by better high level design exploration. For

example an architecture with fewer interconnect will decrease the prob­

lems at the lower level by easing the layout task to be performed. This is

one example of relationship between the technology and the high level

design.

In summary there exist a number of open problems in high level

CAD for VLSI. The problems we will focus on are related to high level

behavioral synthesis and are outlined below. In addition we believe

these playa major role in currently preventing the high level tools from

being accepted in industry.

18 Architectural Synthesis

1. Support for complex interfaces and timing constraints.

2. Optimized architectures for area-delay cost functions.

3. Long testing times for complex VLSI designs.

Problem one defines a realistic need to provide practical and usable

tools for the mixed analog and digital or large systems VLSI design.

Problem two delineates the requirement to make better decisions at the

high level by providing DA tools which can communicate between dif­

ferent methodologies and make accurate estimates of the effect of high

level decisions on the final systems design. Area (Sarma, 1990) and

delay optimized architectures must be synthesized by these tools. The

third problem defmes a need to efficiently test a design to increase the

probability that there exists no functional, logical, or performance errors

in the fabricated chip. One possible solution to all these problems is to

provide a rigorous adaptable mathematical framework. (Gebotys, 1991x)

which can support optimized design exploration. In addition it should

model complex timing constraints and interfaces which may be combina­

tions of of digital synchronous, asynchronous or analog processing units.

State of the art synthesizers to date can find at best "locally optimal"

architectures with respect to an area delay cost function, and support sim­

ple timing constraints. Very few synthesizers have demonstrated how to

use regularity and hierarchy of input algorithms to decrease the problem

complexity. Hardly any architectural synthesizers at all even consider

testability. We will focus on these problems in the next section and later

in the text present a methodology to solve and advance the state of the

art.

Global VLSI Design Cycle 19

1.6 FOCUS OF TEXT

The aim of this text is to attack the three open high level CAD issues

addressed in the previous section. Our solution is to provide a digital

synchronous architectural synthesis tool which supports interfaces

between different domains such as separately clocked synchronous

processes, asynchronous circuits, and analog signal processing modules.

The new general contributions of this research are outlined in the five

points below.

1. Cost-constrained optimized high level VLSI architectural synthesis

of digital synchronous systems.

2. Both local and complex timing constraints are to be supported for

interfacing to asynchronous, analog or other external processes.

3. To provide a theoretical framework in which synthesis design auto­

mation tools can be developed for different types of architectures and

clocking.

4. To explore a new mathematical approach to solving the synthesis

problem. This approach involves a polyhedral approach aimed at

providing global optimum solutions.

5. Ensure designs are testable at the architectural level through explor­

ing design for test plans and structures.

We will not address other fields of synthesis such as logic (or con­

troller) synthesis. Higher level behavioral partitioning techniques and

transformations (such as those used in optimizing compilers) will also

not be addressed, except to show how we can use their output for con­

current architectural synthesis whose inputs are partitioned behaviors or

transformed code.

20 Architectural Synthesis

In this chapter we have looked at how problems in architectural syn­

thesis impact higher level problems of system design and lower level

problems such as routing. It was also outlined in general how improve­

ments in architectural synthesis will improve the overall VLSI design

cycle time. The next chapter will look closer at architectural synthesis

with respect to its input and output primitives. The definition of input

primitives for defining interfaces to external processes such as analog or

asynchronous signal processing are also presented. Support for these

interfaces are necessary in order for architectural synthesizers to have an

impact on industry. It is our opinion that generally they have not

received enough attention.

2.

BEHAVIORAL AND STRUCTURAL INTERFACES

This chapter will briefly discuss the structure of input and output

primitives for high level architectural synthesis tools. The general struc­

ture of the behavioral input to an architectural synthesizer and a defini­

tion of its interface to external processes will follow below. Interface

descriptions for analog and asynchronous or data dependent tasks are

examined. Both the definition of a schedule and the specification of

hardware primitives output from an architectural synthesizer are also

included.

2.1 INPUT TO AN ARCHITECTURAL SYNTHESIZER

There have been many different languages and types of flow graphs

constructed for describing behavioral input to previous architectural syn­

thesizers, however we will not review these in detail

22 Architectural Synthesis

(Barbacci, 1981, Kuchcinski, 1988) . Unfortunately there are no standards

for input languages of architectural synthesis. We will examine why a

generalized directed acyclic graph (or generalized DAG) is in our opinion

the most useful input representation for architectural synthesis even if it

is not explicitly constructed. The DAG also serves as an important

medium for describing the function of different architectural synthesis

subtasks (McFarland, 1988) .

There are many different types of behavior (or input algorithms)

ranging from matrix multiplication (and digital filters) to communication

protocols. The representation of control in a behavioral description will

also be outlined. The difference between controller synthesis and archi­

tectural synthesis is defined with respect to the input primitives, output

primitives, and their mapping of software to hardware (driven by the

implementation technology of output primitives).

Flow Graphs

Compilers have an intermediate form consisting of a mixture of flow

graphs and DAGs. These intermediate forms play an important role in

the efficient mapping of software to hardware especially for multiproces­

sor architectures. The DAGs in general provide an excellent medium for

parallelism extraction and are used in conjunction with flow graphs in

many optimizing compilers (Ellis, 1986) . The flow graphs, defined in

compiler theory (Aho,1974) , are used to define the control of a

software specification. The nodes of the flow graph represent computa­

tions to be performed. These computations are essentially basic blocks

of code, represented by DAGs. Basic block of code represent straight

line code, which is code that contains no branch or loop constructs. An

algorithm for constructing a DAG from straight line code is given in

(Aho,1974) . The arcs of the flow graph represent the flow of control.

For example figure 2.1 illustrates the control and data flow graphs

Behavioral and Structural Interfaces 23

merged for representation of an input algorithm. The loop has an arc ori­

ginating and terminating at the node representing the code inside the

loop.

1
al=a+b; +
c1=c-d;
xl=al+cl;
x=xl+y;

I

(a) (b)

Figure 2.1. Merged DAG and flow graph for input representation for

architectural synthesis.

In architectural synthesis many researchers have tried to merge the

two graphs so there exists one medium with both control and data con­

structs. At a higher level there have been a number of languages intro­

duced for input to architectural synthesis, such as ISPS (Barbacci, 1981) ,

Pascal (Kuchcinski,1988) , and many others such as VHDL (which is

also used as a standard for all levels of CAD representation). These

languages have intermediate forms which bare some resemblance to

DAGs, such as the value trace (Walker, 1987) .

In the following discussion we will demonstrate why DAGs in a flow

graph can in fact represent more information than some higher level

languages. Let us consider the following example of a matrix

24 Architectural Synthesis

multiplication. In a mathematical notation it is: AcT =b or ~ajJcj' Vi.
j

and in a algorithmic notation it is: for (i=l, .. ,m) {ba=Q;for (j=l, .. ,n)

{bj =bj - 1+ajJCj} }. This can be represented as a number of different

types of DAGs depending upon the order of operations. Each DAG may
have significant differences in lower bounds on execution time. For
example in (papadimitriou, 1990) execution time is to be minimized and
an infinite or very large number of processors are available. Therefore in
their DAG, a tree is formed with multiplication operations at the leaves
(degree one) and other nodes (of degree three) are the addition opera­
tions. A DAG is formed for each b j calculation. This DAG is shown in

figure 2.2b), where 9 clock periods are required for three multipliers and

three adders. However in another application where accuracy of the
computation is very important, the algorithm can be implemented as
multiplier accumulator streams shown in figure 2.2a), requiring 8 clock
periods for three adders and three multipliers. Each DAG may compute
different values due to the ordering of the operations and error truncation.
In this example and others the DAG offers the clearest representation for
input to a high level architectural synthesizer as compared with
languages that do not specify the order of operations. In summary we
will focus on the mapping of the DAG to optimized hardware as opposed
to the problem (ie. matrix multiplication) which may be represented by
many different DAGs.

Instead of using a single language that many readers may not be fam­
iliar with we will instead use the generalized DAG, illustrated in figure
2.1, as the notation to represent an input primitive throughout this text
This avoids the ambiguity of operation ordering in languages and pro­
vides a good example for illustrating the architectural synthesis subtasks.
In summary the notation uses control nodes (for branches, joins, etc),
operation nodes, arcs for data transfer (and hence implied partial order),

Behavioral and Structural Interfaces

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

(a)

(b)

Figure 2.2. Impact of order of operations on the DAG fonnation.

arcs for partial order alone, and the specification of timing constraints.

2.2 INTERFACE PRIMITIVES FOR EXTERNAL PROCESSES

25

The definition of an interface is perhaps one of the most important
features for behavioral input description for an architectural synthesizer,
yet it has not been given enough attention in the architectural synthesis
field. Previous researchers had assumed that the interface was not criti­
cal to the system perfonnance and post processing was used to synthesize
circuitry (Borriello, 1987) . Interfaces are very important since most cus­
tom chips are not designed as standalone systems. Very often a correct
architecture or schedule cannot be guaranteed unless interface constraints
are obeyed. In such cases, interface constraints may have a significant

26 Architectural Synthesis

impact on the final speed or area of the chip. The complexity of an inter­

face may vary from a simple data transfer off of a chip, to requesting data

from a cache controller that is shared with other processes. In the later

case the transfer of the requested data may occur after an unknown

amount of time.

We will present four categories of interfaces and show how all other

instances of interface constraints, that we know of, can be mapped into

these categories. Secondly we will show that it is necessary to know or

estimate the clock period of the design to be synthesized. The controller

and architecture synthesized are responsible for transfer of data to and

from interface circuitry at valid times in the most optimal manner. In the

most optimal manner may mean to minimize the total execution time and

therefore process the incoming data as soon as it arrives.

The Boundary

The four categories of interface constraints are (1) local, (2) analog,

(3) asynchronous bounded and (4) asynchronous unbounded. Some local

interface constraints are minimum, maximum or a combination of both

timing constraints. The more complex constraints, (2) through (4),

involve interfacing to analog or asynchronous processes. An example of

the different layers of circuitry required to interface an external analog or

asynchronous process with a digital synchronous process is shown in fig­

ure 2.3. The far left dashed line indicates the division of circuitry that we

are concerned with. To the left of this line is the digital synchronous cir­

cuitry that will be synthesized. The multiplexor is used for illustrations

purposes only. The first input to the multiplexor is an analog interface.

An example of this interface is sampling an analog signal at a fixed rate

and transforming this signal into a digital value (using an analog to digi­

tal converter circuit, ie. performing sample and hold (S&H) which out­

puts analog discrete time signals, and quantization (Q) which outputs

Behavioral and Structural Interfaces 27

digital discrete time signals) to enable subsequent digital signal process­

ing. We will therefore defme an analog inteiface to a synchronous digital

circuit as a sequential synchronous data input or data output at a fixed

rate. The third and fourth categories of interfaces are asynchronous inter­

faces. An asynchronous inteiface of a digital synchronous system is

defmed as inputs synchronized with the global clock but are indeter­

minate with respect to the control state of the system (Hayati, 1989) . In

figure 2.3 a synchronizer (Synch.) is used to illustrate the possibility of

having to synchronize the external signal with the clock of the digital

component being synthesized. An example of an asynchronous interface

is receiving data input from asynchronous circuitry or data dependent

operations. Other examples of an asynchronous interface can result from

transferring data between two synchronized processes, where each pro­

cess uses a different local clock. It may also be possible that the two

processes are using the same global clock, but the processes are loosely

coupled causing the delay in clock signal to vary and therefore behave as

if it were an asynchronous interface. Another example is the transfer of

data (not necessarily at a fixed rate) to an analog process (DAC) for ana­

log signal processing and subsequent receipt of the new analog processed

output data (ADC). In this case we do not particularly care whether the

external process is analog or digital. We can use an asynchronous inter­

face if the processing time is data dependent or we can use minimum and

maximum constraints otherwise.

Minimum and Maximum Delay Constraints

There exist many examples of minimum and maximum timing con­

straints. These constraints may also be applied locally to a DAG for

example to describe a delay of two clock periods (or control states) for a

multiplication operation. In this case a minimum timing constraint

between the multiplication operation and the next operation which

receives the output data can be used to represent extra clock periods

28

Digital Synchronou~ Interface Circuitry

Architectural Synthesis

SandH
Analog

As nchronous
~--------------~--~ Digital

Signal Conversion

Figure 2.3. Levels of Interface between digital synchronous circuitry and

external processes.

required by the multiplication to perform its function. In an interface

scenario, the minimum and maximum timing constraints are also very

important For example if the output data must be valid in an output port

register for at least three clock periods, in order for an external process to

read the data, then a minimum timing constraint of three clock periods is

required on the storage of the variable. On the other hand if incoming

data is only valid at an input port for three clock periods then a maximum

timing constraint of three clock periods on all operations which use this

variable is required.

Analog Interface

There exist many examples of analog interfaces, as dermed in this

chapter. Let us assume that te is the period of the clock (in

nanoseconds), and the incoming data, ds' is arriving at a fixed rate of one

sample every js clock periods (or every ts nanoseconds), where

js=r~/tc 1, ts~tc' If ts9 c then we assume a high speed interface will

collect the data into a large register (or queue) which is available to the

Behavioral and Structural Interfaces 29

synchronized system to be synthesized at each clock cycle. Other

choices for the design with high speed interfaces will be discussed in

chapter 5. Also let us assume that the digital synchronous behavior to be

synthesized must ensure that all initial computations on the previous

incoming data ds have already been completed before the next data value

arrives. Operations which input ds must be scheduled after ds arrives

and before ds+1 arrives. Assuming the same computation is to be per­

formed on each incoming data value then the algorithm would be a part

of a loop, where at each iteration new data is received. Therefore a fixed

timing constraint between operations which input dj in successive itera-

tions of i should be equal to the j s'

Asynchronous Interfaces

We will now study the impact of asynchronous interfaces on digital

architectural synthesis. As discussed in the previous section this is not

necessarily an interface with asynchronous circuitry , but may also

include interfaces to data dependent processes (Ku, 1989a) . Two types of

asynchronous interfaces are discussed below, bounded and unbounded.

We will show that the later case can be transformed into a bounded and

wait-state interface. These interfaces are quite complex and impact both

the scheduling of the DAG and the allocation of hardware. We will

further discuss these interactions in chapter 7.

Bounded Delays.

A bounded asynchronous interface is defined as an asynchronous

interface where the lower bounds and upper bounds on the indeterminate

control state are known. The bounded asynchronous interface can be

represented by constructing a flow graph from the DAG with the asyn­

chronous interface. In figure 2.4 a) the DAG is transformed into the flow

graph of 2.4b) where the bound of three clock periods for receiving data

30 Architectural Synthesis

from Ka is represented as a three way branch, starting after basic block

(defined in section 2.1) A, with a delay of one cstep for each branch.

Before the three way branch is placed in the DAG the operations must be

partitioned into interface dependent and interface independent basic

blocks. In the first case an operation is inteiface dependent if there exists

a path from the vertex representing the asynchronous operation to the

vertex of the specific code operation (ID and C are interface dependent in

figure 2.4). If there is no path between these two operations in the DAG

then the operation is interface independent (such as the basic block of

code B in figure 2.4). The flow graph is constructed by placing interface

dependent operations in a separate basic block. The interface indepen­

dent basic block may eventually end, at a particular control state, after

which all code operations must precede the interface dependent code (in

figure 2.4 basic block C is all interface dependent code).

Unbounded Delays.

Unbounded or 00 bounded asynchronous interfaces are asynchronous

interfaces where the bound on the control states is not known; for exam­

ple designing with a synchronizer, or data dependent loops. An example

of a general DAG with unbounded delays can be shown in figure 2.4c).

Although most researchers discuss partitioning the graph at the 00

bounded operation vertices, we will discuss a different partitioning into

three groups of operations for DAGs where the interface independent

basic block ends before the interface dependent operations as shown in

figure 2.4b). In these cases the 00 bound can be removed and it is possi­

ble to decompose the unbounded interface into a bounded interface and a

wait state. The bounded interface occurs from the earliest control state

that the asynchronous operation may output data to the last control state

required to complete the interface independent code. In figure 2.4c) this

requires the three way branch. After this cstep, if data is still not avail­

able from the external process, the controller must essentially wait (ie.

Behavioral and Structural Interfaces 31

(a) (b) (c)

Figure 2.4. Bounded delay interface illustrated in (a) with code partition­

ing. In (b) the conditional branches are used to model this bounded

delay and the wait state in (c) along with (b) are used to represent an

00 bounded interface.

perfonn no operations until the data is available from the asynchronous

operation). In figure 2.4c) the schedule and allocation of DAGs with

bounded or unbounded interfaces can have a significant impact on con­

troller complexity and area and delay of the architecture.

2.3 OUTPUT PRIMITIVES FROM AN ARCIDTECTURAL

SYNTHESIZER

In this section we will discuss hardware architectural primitives that

are used in architectural synthesis. Essentially the hardware primitives

are output from the synthesizer and later refmed into more detailed

modules to be placed and routed. The output primitives are divided into

storage primitives, processing elements, and interconnect primitives.

Each section below defines the generalized primitives which are

32 Architectural Synthesis

necessary to understand architectural synthesis.

Processing Elements

The processing elements receive input data and after a defined

amount of time produce new output data. The processing elements per­

form computations which we will call functions. This terminology is

used to avoid the confusion with the term operations, used to describe the

nodes of the DAG or specification of the input algorithm. For example

an adder (a processing element) performs the function addition. Some

processing elements may have more than one function they can compute.

The term junctional unit is used to refer to a particular processing ele­

ment and each functional unit has a corresponding module in the VLSI

library of cells. Therefore each functional unit is defined by a set of

functions that it can perform. The set of functions of two functional units

mayor may not overlap. Additionally two functional units may have

identical sets of functions but they may require different amounts of time

to compute their outputs. To distinguish functional units by these

characteristics we use the term, type. The type of a functional unit is the

most detail we will use for high level synthesis. For example one type of

functional unit is a two cycle multiplier and another is a pipelined multi­

plier. Both functional units compute the same function, however, their

timing characteristics are different An ALU and an adder are two other

types of functional units. For convenience we will. illustrate the func­

tional units using a circle or vertically placed rectangle.

Storage Primitives

There are many different types of storage primitives. In fact most

systems have a hierarchy of storage starting at the bottom level with

registers, register files, and moving up to memory caches, main memory,

etc. The simplest and most common storage primitives for architectural

Behavioral and Structural Interfaces 33

synthesis are the register and register flIes. Their difference is illustrated

in figure 2.5. We will concentrate on registers. In phase one of the clock

a master/slave register transfers the input data to the output of the regis­

ter. In other words, a new data value is placed at the inputs of the func­

tional unit. During phase two, the output from the functional unit is

latched into the register. Note that the bus is only active during phase

two. The register flIes can be visualized as splitting a register into two

latches and moving one latch to a register file and keeping the other latch

at the input of the functional unit. When this is done the busses can be

used for data transfer during both phases of the clock. Transfer from the

register file to the latch at the input of the functional unit occurs at phase

one. Phase two transfers the output data from the functional unit onto the

bus and into the register flIe. Phase one in the register file architecture is

one example of a storage to storage primitive transfer. It is interesting to

note that by using only one bus for input and output from each register

file as in (Haroun, 1989) some variables must be stored in more than one

register file for concurrent accesses with other variables. This can

account for more latches in a register file architecture than registers in a

register architecture. We will assume that we are dealing with the regis­

ter architecture, shown in (a), unless otherwise stated that the architecture

is the register file architecture. For illustration purposes registers will be

represented by a hOrizontally placed rectangle with a horizontal line

through it to represent the two phase operation.

Interconnect Primitives

Interconnect primitives are an important part of architectural syn­

thesis, and often the most controversial. Interconnect primitives can

include busses, mUltiplexors, demultiplexors, and multi-level combina­

tions of these interconnects. It is not clear how to measure interconnect

so that high level architectural solutions (that have not been placed and

routed) can be compared. In the most general terms we will defme a

34 Architectural Synthesis

(a)

(b)

Figure 2.S. An example'of (a) the random topology architecture and (b)

the register file architecture.

general bus as an interconnection with one or more inputs and one or

more outputs. This is a good definition to use since it provides an exact

number of general busses at a high level of abstraction, unlike other

measures of busses (Haroun, 1989) which do not account for multiplex­

ors at the inputs to registers or functional units. These busses intercon­

nect storage elements to functional units, and vice versa. For example in

figure 2.6a) there are 3 busses. The first bus connects registers a and c to

functional unit f, the second bus connects register a and b to functional

unit f, and finally the third bus connects functional unit f to register b in

figure 2.6a). These three busses are also shown in figure 2.6c). In figure

2.6b) there are 2 busses and 1 multiplexor. The two busses are illustrated

with horizontal lines and the multiplexor connects both busses to one

input latch of functional unit f in figure 2.6b). Using the general bus

definition, the architecture in figure 2.6b) also has three busses. This is

obtained by adding the number of busses (connecting functional units to

register files) to the number of multiplexors (connecting register files to

Behavioral and Structural Interfaces 35

inputs of functional units). Other measures of complexity have been pro­

posed as counting the number of bus drivers or multiplexor inputs,

number of equivalent two to one multiplexors (Ly, 1990) or even the

number of connections to busses or multiplexors (Goutier, 1990) . In

general there is no standard for comparing interconnects even for solu­

tions using the same type of architecture, for example register architec­

tures. It is clear that for a schedule and an allocation of hardware

resources (prior to binding) the only measure one can obtain is the

number of general busses. Additionally interconnect primitives, which

will not be explicitly analyzed in this manuscript are bus connections or

bus drivers, since these are defined during binding.

(a)

(b)

(c)

Figure 2.6. A behavior implemented in (a) random topology and (b)

register file architecture, and (c) a random topology with busses

instead of multiplexors.

36 Architectural Synthesis

In this chapter we have defined specifically the input/output and

interface specifications associated with architectural synthesis. Now that

the reader has an idea of what goes in and comes out of an architectural

synthesizer we can defme the transformations that must be performed in

the next chapter. Chapter 3 also gives a brief introduction to previous

research in architectural synthesis, concentrating on optimization

approaches as opposed to the many heuristics that have been developed.

Different approachs to solving architectural synthesis are examined from

independent subtask optimizations to more recent simultaneous

approaches are covered.

PART II: REVIEW AND BACKGROUND

3.

ST ATE OF THE ART SYNTHESIS

State of the art high level synthesis approaches will be reviewed in

this chapter. Each section will provide a definition of the problems and

an introduction to the mathematics involved in solving these problems.

We examine previous research as it relates to each problem including

independent subtask optimizations, simultaneous approaches to syn­

thesis, and mathematical models. In addition we will briefly discuss

feasibility models, cost functions, high level partitioning tools and timing

considerations in logic and architectural synthesis.

3.1 TERMINOLOGY AND SUB TASK DEFINITIONS

We define some frequently used terms the reader will find helpful in

understanding the function of different subtasks of synthesis research.

As briefly discussed in section 2.1 there exist various media for input

representation. We will assume the most general (intermediate) form of

an input algorithm, a directed acyclic graph (DAG), where the nodes

40 Architectural Synthesis

represent the code operations, and the directed edges (arcs) represent the

variable transfers between code operations. Any algorithm or z-diagram

can be represented by a DAG. Hardware output primitives for architec­

tural synthesis were defined in chapter 2. However we will review

briefly some additional terminology here. Modules refer to hardware

units which will be defmed (in functionality) with operations at some

later point. Functional units refer to digital hardware units (for example

an ALU) that perform a defined set of computations on the input data and

provide new output data. For example one functional unit may be a 2

cycle pipelined multiplier and another functional unit may be a 3 cycle

non-pipelined multiplier. Scheduling refers to the assignment of code

operations to time. Since processing is synchronized with a global clock,

time is an integer value. We use the term control step (cstep) to represent

the state of the synthesized architecture where control step 1 is present

after the architecture is powered up and initialized. The execution time

of the algorithm (Te) is defined as the minimum number of csteps

required to execute the input algorithm or DAG on the synthesized archi­

tecture. Allocation is the determination of the number of hardware units

such as functional units, registers, and busses. For example, four regis­

ters may be allocated, however the variables that are stored in each regis­

ter have not yet been determined. A schedule may require 3 modules,

which may be defined (through binding code operations; addition and

multiplication) as 2 adders and one add/multiply functional unit. If the

add/multiply functional unit does not exist in the library then 4 functional

units (3 adders and I multiplier) may be necessary. The number of

modules is a lower bound on the number of functional units to be allo­

cated. In general the term resource will refer to functional units, busses,

and registers.

Additional terms will be used to compare with other synthesizer

techniques. When one fixes a number of resources, for example one can

fix the number of registers at ten, this means that one does not minimize

State of the Art Synthesis 41

the number of registers, but places an upper bound on the number of

registers of ten. Estimated refers to using some heuristic to minimize a

particular resource. Calculated refers to an exact computation of a

number of units after a schedule is found. A fixed schedule or hardware

allocation means that the schedule or allocation has already been per­

formed by some earlier algorithm and therefore is a constraint on the

remaining problem.

The output of the architectural synthesizer that we will address are

the following:

• total number of control steps, functional units, busses and/or multi­

plexors, registers and/or register files, memory.

• scheduling: code operations to control steps.

• functional unit allocation and selection

register allocation

interconnect allocation

The hardware units listed above were defined in section 2.3. One

must also determine the type of hardware (type of functional units or

memory versus registers) to be used in the final architecture. In some

cases the former is done during architectural synthesis. The fmal

schedule and binding produced by the architectural synthesizer can be

transformed into a control table for input to a logic synthesizer.

The architectural synthesis problem involves many subtasks such as

scheduling (S), resource allocation (A), and resource binding (B). We

will use the term resource to describe the hardware primitives or regis­

ters, functional units, and busses. However each of these steps are

heavily interdependent. An example of the interdependence between the

subtasks is shown in figure 3.1. For example a fixed schedule directly

determines the minimum number of functional units and registers

42 Architectural Synthesis

(allocation). The subsequent binding of these resources directly deter­

mines the minimum number of multiplexors (allocation) required in a

multiplexed architecture (S => A ¢::> B). Another design approach which

illustrates the interdependence in figure 3.1 is to first perform resource

allocation. This allocation will constrain the scheduling and subse­

quently constrain the binding (A => S => B). It is also easy to see that

binding affects scheduling (B => S). For example operations bound to

the same resource cannot be scheduled at the same time.

Allocation
A

Binding
B

Figure 3.1. Subtask interdependence in architectural synthesis.

Ideally the optimal approach to solving architectural synthesis is to

simultaneously consider all tasks at the same time. However since this is

a very complex approach most researchers have concentrated on one or a

limited number of subtasks to be solved simultaneously. We will briefly

review research in this field with emphasis on graph theoretical results

and integer programming (IP) approaches. We will describe the com­

plexity of these subtasks and overview the iterative/simultaneous

approaches to architectural synthesis. More detailed analysis of architec­

tural synthesis material can be found in papers such as

(McFarland, 1988, McFarland, 1990) .

State of the Art Synthesis 43

3.2 IUGH LEVEL TRANSFORMATIONS

Many high level transfonnations of algorithms for architectural syn­

thesis have been borrowed from compiler research (Aho, 1974) We will

concentrate on reviewing partitioning of behaviors and some (compiler­

like) transfonnations used within the context of architectural synthesis.

Partitioning of behavioral descriptions for architectural synthesis of

multichips has been investigated by a number of different researchers.

APARTY (Lagnese,1989) evaluates different partitions of the DAG but

schedules the graph entirely without partitions. The algorithm passes

heuristic suggestions to other allocation and binding subtasks to use par­

titioning infonnation only during allocation. This occurs because it is

not known how to define interfaces between the partitioned behavioral

specifications in order that they be concurrently and independently syn­

thesized. Also in (Gupta, 1990) partitioning of behavioral specifications

is perfonned after a binding (which defines hardware sharing) for mul­

tichip design. The hypergraph partitioning bounds the latency of the par­

titioned implementation.

Other research (Depuydt, 1990) deals with partitioning large com­

plex signal flow graphs. Various clustering techniques are used to parti­

tion into more manageable sized flow graphs for separate scheduling

using better or more optimal techniques which work well on smaller

input flow graphs.

Research at Carnegie Mellon University (Walker,1987) has exam­

ined implementation of behavioral code transfonnations in a user inter­

face environment that is tied into their architectural synthesizers, DAA.

Although these transfonnations are the same as those found in optimiz­

ing compilers 1 (Ellis, 1986) , it is unknown what effect the transfonna­

tions have on the final architectural synthesized design.

1 Optimizing compilers do not optimize, but they heuristically attempt to ex­
tract further parallelism from the input code.

44 Architectural Synthesis

flamel (Trickey, 1987) used an algorithm which perfonned many

basic block 2 transfonnations to increase the parallelism of the input

algorithm and then subsequently synthesize the architecture. Different

types of merging basic blocks and unrolling loops were perfonned. The

new transfonned input algorithm was then synthesized using an

integrated scheduler and folding technique. This technique for increasing

parallelism showed improved perfonnance by implementing programs

that would run 22-200 times faster than a M68000 running the same pro­

gram. No hardware sharing of mutually exclusive code was perfonned.

Although we will not directly address high level transfonnations in this

text, some will be used in chapter 10 and 11 with respect to future

research in global optimization of synthesis.

Design Style and Clock Speed Selection

The clock speed and design style selection are interdependent

Design style defined in (Haroun, 1989) refers to the types of functional

units, for example an adder or an ALU, to be used in synthesis. For

example if one chooses a 115ns clock period and one type of multiplier

with a lOOns propagation delay and 20ns delay adder, then one cycle is

required by the multiplier and one cycle by the adder. However if the

clock period is 130ns then it is possible to chain the multiplier and adder

together, therefore defining a new type of functional unit (which can

compute (x * a + b) in one clock period). Most DA systems assume that

the clock period is defined before synthesis so that the operational

characteristics of the functional unit are known. In fact after synthesis a

finer grain selection of functional units can be perfonned to possibly

further improve the design.

2 Basic blocks are sections of code. called straight line code. that contain no
branches or loops.

State of the Art Synthesis 45

3.3 INDEPENDENT SUBTASK OPTIMIZATIONS

In this section we will study the various subtasks associated with

architectural synthesis. The graph theoretical problems, their complexity

and solutions are discussed for independent and simultaneous solutions

of subtasks. In chapter 4 we will outline the analogous integer program­

ming representations of some of these algorithms, and further show the

advantages of using integer programming formulations in chapter 6 and 7

for simultaneously solving more than one subtask and incorporating

complex constraints.

3.3.1 Scheduling

The scheduling of a DAG without resource constraints can easily be

performed in polynomial time (Foulds, 1981) using the well known criti­

cal path method (CPM). This algorithm calculates the critical path and

the as soon as possible (asap) and as late as possible (alap) control steps

(Foulds, 1981) for each node of the DAG. This algorithm executes in

O(n2), where n is the number of nodes in the DAG. An example DAG,

representing the operations w=y*z;.x=((a+b)+c*d+w) and illustrating

the asap and alap schedules, are shown in figure 3.2 a) through c). The

bottom empty circle is used to ensure that the variables x and w are out­

put at the end of the algorithm. The alap schedule can be calculated for

any upper bound on the number of clock periods by incrementing the

previous alap csteps by (TeUB-TCP) number of csteps, where Tcp stands

for the minimum number of csteps in the critical path. The asap schedule

obviously is valid for any upper bound on Te. Therefore this processing

needs to be done only once per application (or input algorithm).

The asap and alap schedule have not been used for subsequent

resource allocation in architectural synthesis with much success because

they do not always produce designs with an optimal number of resources.

In figure 3.2 the asap and alap requires 3 modules (2 * and 1 +) and 2

46 Architectural Synthesis

(a) (b) (c) (d)

Figure 3.2. DAG (a) and corresponding asap (b). alap (c). and critical

path identification (d).

modules (1 * and 1 +) respectively. However these schedules are very

important for an initial analysis of the synthesis problem by providing

the range of valid control steps (which do not violate any partial order

constraints) for each code operation.

3.3.2 Resource Allocation

Almost all resource allocation in architectural synthesis problems for

a fixed schedule have similar structure. We will represent a graph.

G=(V,E) as a set of vertices e V and edges e E. In general the

scheduled DAG is transformed into another (conflict. or compatability)

graph. By further classifying this graph (chordal. interval) one can either

solve the problem optimally using a known polynomial time algorithm or

heuristically using a similar algorithm. We will use register allocation as

an example to illustrate the transformation and solution process that pre­

vious research (Tseng, 1986) has examined. Not only is register

State of the Art Synthesis 47

allocation an interesting subtask. but as it will be further discussed in

chapter 3.5 • its simple solution for basic blocks presented in this section

becomes even more difficult (NP-complete) to solve simultaneously with

the scheduling problem.

Although for general graphs some of the problems. such as vertex

coloring. presented in this section are NP-complete. they can be

optimally solved using known algorithms in polynomial times if the

graph is of a particular type (Golumbic.1980) . It is interestmg to note

that the same types of characterizations exist in integer programming (IP)

and often for the same problems. We will discuss integer programming

aspects further in chapter 4.

We assume that the DAG is scheduled in figure 3.3a) in four control

steps (including the last cstep for the last node whose incident edges are

the output variables). Each variable can be represented in an interval

representation shown next to the DAG. In the interval representation. the

lifetime of each variable is represented by a vertical edge starting at the

cstep the variable is defined (output by a code operation) and ending at

one cstep before the latest cstep where an operation uses the variable as

input. This interval representation is convenient for register allocation

because we have to find sets of variables. such that in each set the life­

times of the variables are disjoint (or in other words n,o two lifetimes of

the same set have the same cstep). Thus each set represents a register.

We will next define the graphs and then define the algorithms.

The compatibility graph. GC • is formed from the interval representa­

tion. Each edge of the interval representation becomes a vertex of the

graph GC • Edges are formed between all pairs of vertices in GC whose

corresponding variable lifetimes are disjoint (originally called "compar­

able" vertices (Hashimoto. 1971». In other words two variable lifetimes

are disjoint if there exists no cstep where the lifetime of both variables

intersect The conflict or interval graph (Golumbic. 1980) • G i • uses the

48 Architectural Synthesis

1 2

4
3

(a) (b)

Figure 3.3. Scheduled DAG (a) and the variable lifetimes shown with an

interval representation.

same definition of vertices as GC however edges are fonned between all

pairs of vertices whose variable lifetimes are not disjoint or in other

words have overlapping lifetimes (or are "incomparable"). Another

characteristic we can observe from these two graphs is that GC is the

complement lOfG i .

Register allocation is perfonned on GC by a clique partitioning algo­

rithm. Clique partitioning essentially removes edges from GC so that the

remaining graph is a number of disconnected cliques. The algorithm

tries to produce a minimum number of disconnected cliques. A clique of

a graph G is a maximal complete subgraph. We will use the notation Kx

to represent a clique on x nodes. For example in figure 3.4 there can be 3,

4 or 5 cliques in a partition. For the minimum number of 3 cliques there

1 The complement of graph G is G; (G=G).

State of the Art Synthesis 49

are two different possible partitions that may be used. The number of

cliques is equivalent to the number of registers.

1 2

4
3 •

5

(a) (b)

Figure 3.4. The compatibility (a) and interval graph (b) derived from the

interval representation of figure 3.3

Alternatively the register allocation problem can be solved on graph

G i using vertex coloring. The vertex coloring of the interval graph, can

be solved using a polynomial run time algorithm or the left edge algo­

rithm also presented for solving channel routing problems in (Hashi­

moto, 1971) . The number of colors is equivalent to the number of regis­

ters. In fact the minimum number of cliques in GC is equivalent to the

minimum number of colors (or independent sets which cover the graph)

in GV . These two algorithms are hence complementary.

The clique partitioning approach was first presented in Facet

(Tseng, 1986) . It was shown in (Springer, 1990) that a larger problems

could be solved faster than using the interval graphs.

In the presence of conditional code there may be more than one edge

used to represent a variable's lifetime. For example a variable defined

before a branch on conditional code, but whose last use is at different

csteps inside each branch. Thus the graph is no longer an interval graph

50 Architectural Synthesis

and one cannot minimize registers in general. REAL (Kurdahi,1987)

heuristically extended the left edge algorithm for conditional resource

sharing register allocation. However in (Springer, 1990) specific types of

conditional code that formed chordal graphs (of which interval graphs are

a subset), were identified thus showing that one could for some cases

minimize the number of registers in the presence of conditionals. Minim­

izing registers in loops, where variable lifetimes are defined on a circle,

was also solved by using an arc coloring algorithm in (Haroun, 1989) .

Functional unit Allocation and Bus Allocation.

Functional unit allocation is.complicated by the fact that the mapping

of operations to type of functional units may be a one to many mapping.

In other words a selection of types of functional units for each operation

must be performed. Many synthesis systems reduce this complexity to a

one to one mapping, by preselecting the types of functional units, and

therefore do not simultaneously select functional units when performing

allocation. Facet (Tseng, 1986) performs functional unit allocation also

using the clique partitiOning algorithm. The user provides a scheduled

DAG and Facet solves each allocation task, including register, functional

unit and interconnect allocation, independently using a clique partition­

ing heuristic algorithm.

MIMOLA (Marwedel, 1986) uses a integer linear programming

model (IP), with branch and bound solver, to obtain the number of func­

tional units required for a fixed schedule. However it could not apply

this IP to bind operations to functional units due to its large model size.

The problem of bus allocation with a fixed schedule is also very

similar to register and functional unit allocation and busses are allocated

after these allocations. The number of data transfers per cstep are used to

calculate the number of busses. If one wants to allocated all general

busses (multiplexors and busses) there is a problem with using global

data broadcasts. A global data broadcast is a transfer of one data value

State of the Art Synthesis 51

from one source to more than one destination. If one counts the number

of distinct sources (accounting for a global data broadcast as one transfer)

then this will not account for extra multiplexors which may be required

at the inputs of functional units. On the other hand if one counts the data

broadcast by the number of destinations then one may overestimate for

the number of busses. In most synthesis systems it is assumed that the

extra multiplexors required will be substituted later in the design process,

and the number of sources for data transfers is counted. Interconnect

optimization with a fixed schedule and a fixed number of functional

units, (Stok, 1989) for register-transfer file architectures with separate

read and write clock phases was examined using a simulated annealing

approach.

3.4 ITERATIVE AND SIMULTANEOUS APPROACHES

Scheduling and functional unit allocation were the first two most

common subtasks to be considered simultaneously. Previous research

(Garey, 1979) for scheduling multiprocessor systems such as list schedul­

ing (Coffman, 1976) has had a large impact on the architectural synthesis

application. We will use this application to introduce and defme the

problem. A brief overview the architectural synthesis applications will

then be performed. This scheduling and functional unit allocation prob­

lem is similar to the precedence constrained scheduling problem formally

defmed in (Garey, 1979) as:

" A set T of 'tasks' (each assumed to have 'length' 1), a partial

order < • on T, a number of 'processors' and an overall 'dead­

line'DeZ+.

Is there a 'schedule' O':T ---+ {O, 1 , .. ,D} such that, for each

iE{O,I, ... ,D}, I{ tET: O'(t) = i }I ~ m, and such that, whenevert

<. t', then O'(t) < 0'(t')1"

52 Architectural Synthesis

This problem was proved (Ullman, 1975) to be NP-complete. The

precedence constrained scheduling problem for DAGs with an intree

structure (Brucker,1977) were shown to have a polynomial time solu­

tion and outtree examples, both illustrated in figure 3.5, were shown to

be NP-complete. This research was the start of a technique called list

scheduling (Coffman, 1976) which has since been refined for architec­

tural synthesis, such as (pangde, 1987, Paulin, 1989) .

(a) (b)

Figure 3.5. Intree and outtree DAGs, which are schedulable in polyno­

mial and exponential time.

In general models for previous scheduling research consisted of a

variable tj where tj'S value is the time that job j is scheduled. Various

objectives and additional variables representing release time, job time, or

delivery time were used. These types of scheduling problems have been

extensively studied in the literature and are an ongoing research topic

(Hal, 1990) .

The partial order of the quoted precedence constraint scheduling

problem represents a data transfer in the architectural synthesis model.

The partial orders can be also represented by arcs in a directed acyclic

graph representation of the set of tasks. The extensions to the fonnal

State of the Art Synthesis 53

scheduling problem for architectural synthesis include: limited mapping

of tasks to processors; timing constraints; and complex task operation

such as multi cycled or pipelined processors.

Special Case Solutions

Research in mapping algorithms onto multiprocessor structures also

examines the precedence constrained scheduling problem (Garey, 1979) .

For an infinite number of processors one can schedule a DAG to minim­

ize the makespan or execution time of the algorithm. In multiprocessor

applications the assumption is made that each processing node of the

DAG requires negligible time compared to the time for communication

between processors. Therefore the problem in this research area is

modeled as a function of the number of communication delays required

to perform the algorithm (papadimitriou, 1990) . Other research has

shown that if we limit our architecture to two modules then given any

DAG we can calculate the minimum execution time (Lawler,1976) .

This problem maps into a matching problem in a graph which is the com­

plement of the DAG. The matching problem is to maximize IMI, where

M c E of a graph, G=(V,E), such that each vertex is incident to at most

one edge EM. An example shown in figure 3.6 illustrates a matching,

IMI =2, thus providing an optimal schedule of 3 control steps for a 2-pro­

cessor implementation of the five code operations (a,b,c,d,e). In fact a

valid schedule could also be obtained using the matching algorithm.

If we increase the number of modules beyond 2 the problem is again

NP-complete, since we are then looking for a restricted set of cliques of

size less than or equal to the number of modules (>2). It is however

interesting to look at this application since it illustrates the limitations of

purely graph theoretical approaches to solving complex problems. For

example as new complex constraints arise during the design cycle using

purely graph theoretical approaches may not be viable due to the

54 Architectural Synthesis

difficulty in adjusting these algorithms to the new constraints. We will
now briefly review previous research that tries to simultaneously
schedule and solve functional allocation tasks.

Figure 3.6. lliustration of restricted optimal scheduling for two modules

Previous Scheduling Research for Architectural Synthesis

Variations of list scheduling techniques are very popular in architec­
tural synthesis as well as multiprocessor compiler design (Sarkar, 1989) .
In general one fixes the number of functional units and then schedules
operations in a prioritized order. The priority is set by the (alap - asap)
value, where a smaller value has a larger priority. Operations are placed
in a cstep based upon this priority until all functional units are exhausted.
Then operations are placed in the next csteps in the same manner. HAL
(paulin, 1989) uses an iterative refmement heuristic algorithm based on

force directed list scheduling to perfonn scheduling and functional unit
allocation. Recently extensions to provide heuristics to minimize regis­
ters and interconnect have been incorporated. The number of parallel
data transfers, using transfers with distinct sources counting as one
transfer, were used to heuristically approximate the number of busses.
However the exact relationship to number of busses was not defined.

State of the Art Synthesis 55

3.5 MATHEMATICAL APPROACHES

The mathematical approaches to simultaneously solving more than

one subtask of the architectural synthesis problem will be outlined in this

section. In these examples the scheduling was simultaneously solved

with more than one subtask. However no previous research to our

knowledge has tried to simultaneously schedule and allocate busses, only

estimates of busses are used to guide the scheduling task. These exam­

ples show how the previously studied independent subtasks, such as

register allocation for a fixed schedule, now become very difficult to

solve simultaneously with the scheduling subtask.

3.5.1 Branch and Bound

A MILP model in (Hafer,1983) , solves simultaneous scheduling,

functional unit and register allocation using a MILP (mixed-integer LP)

formulation. In addition scheduling is done in real time and both regis­

ters and functional units are selected from a library. A nonlinear model

was first formed and then linearized by the addition of binary variables.

Unfortunately only very small examples could be solved due to the size

of the model and the inefficiencies of the branch and bound technique.

For example an input algorithm with 4 code operations required 87 vari­

ables, of which 46 had to be integers.

One of the first IP models for resource constrained scheduling was

presented in (Baker,1974) . This same model was recently used in a two

step methodology in (Lee, 1989) . The IP formulation was solved using a

branch and bound algorithm to produce a schedule that minimizes the

number of functional units in one step and the sum of the lifetimes of the

variables of the DAG (which heuristically minimizes the execution time

and in some instances the number of registers) in the second step. Figure

3.7 shows an example where this heuristic fails to minimize the number

of registers. Very fast execution times were obtained most likely due to

56 Architectural Synthesis

the improved computer technologies available today as compared to 20

years ago. More importantly by using this two step methodology bounds

are kept small by incrementally moving across the design space. How­

ever the bounding argument (which sets the previously solved number of

functional units as an upper bound for the present optimization with a

larger execution time possible) does not necessarily hold in all cases. For

example very often as the execution time (or number of control steps) is

increased the number of adders may increase at the added benefit of

decreasing a more expensive functional unit such as a multiplier. These

tight bounds, as will be discussed in chapter 3, are very important for

solving any IP and in particular for branch and bound techniques (they

greatly improve the performance). The model was later extended for

functional pipelining in (Huang, 1990) and a heuristic partitioning stra­

tegy to decrease the size of the input algorithm, however register alloca­

tion could still not be incorporated.

(a) (b)

Figure 3.7. An example where sum of the lifetimes of the variables

(sum) in the DAG does not decrease the number of registers but

favors minimum execution time. In (a) Te=4 (minimum), sum = 7, 4

registers, and in (b) Te=5, sum = 8, 3 registers are required.

State of the Art Synthesis 57

3.5.2 Simulated Annealing

A simulated annealing technique presented in (Devadas, 1989)

solves simultaneous scheduling, functional unit allocation, and register

minimization. The fonnulation includes a calculated number of registers,

and an estimate of interconnect in its cost function. Since the cost func­

tions are used to evaluate two dimensional placements (or fixed schedule

and functional unit allocation), the number of registers could be calcu­

lated using the left edge algorithm. The number of parallel data transfers

was used as a heuristic estimate of the number of busses as defined in

HAL, however again the relationship was not defined. Another part of

the cost function was called links, which tried to estimate the number of

bus drivers or multiplexor inputs required. Both fast simple and slower

more accurate cost functions are used at different stages of the annealing

to improve the efficiency of the annealing since many solutions are

searched. Running times were achieved comparable to heuristic tech­

niques. However the rate of convergence to a global optimum

(Nemhauser,1988) is exponential. It was stated that new constraints

could be added by changes to the cost functions.

3.5.3 Makespan Scheduling

A graph theory approach to the simultaneous scheduling and

resource (modules and registers) minimization problem (pfahler, 1987)

was researched. A two dimensional placement of the data flow graph

where makespan (or execution time), graph height (number of modules),

and modified cutwidth measurement (estimated number of registers)

were defmed was used to represent the scheduling problem. The prob­

lem is that the cutwidth which can be solved easily includes all edges in

the graph and we only need the edges representing the variable lifetimes.

Thus we need only consider the longest outdegree arc of each node to

represent the lifetime of the variable. This is why a heuristic was needed

58 Architectural Synthesis

to solve the problem, since minimizing the lifetime defining edge (max­

imum length of all edges incident to a node) is NP-complete. A heuristic

was used to solve this multiprocessor makespan scheduling problem.

3.5.4 Feasibility Models

The need for early area and delay prediction of different architectures

for an input algorithm is very important Some tools were developed to

try to predict these performance values. The tools had to be very fast,

and the current synthesis tools could not appropriately be used because

significant amounts of time would be required to synthesize designs and

subsequently calculate area and delays. Furthermore as a design explora­

tion tool the synthesis would have to be done over a full range of the

design space which would take too long. Thus feasibility models were

created to help early prediction and to enable a better judgement of which

area of the design space curve should be explored in detail.

Feasibility models for nonpipelined and pipelined architectural syn­

thesis have been studied in (Jain, 1988) using simple mathematical equa­

tions for analysis before synthesis to narrow the design search space of

interest. However these models only take into consideration the number

of modules to be used in the architecture. The functional units, registers

or interconnect were not considered in the mathematical equations.

3.6 TIMING CONSTRAINED SYNTHESIS

Timing constraints, as discussed in chapter 2, are very important for

architectural synthesizers, even though few synthesizers

(Nestor, 1986, Nestor, 1990) can handle these simultaneously with alloca­

tion subtasks. Not only are these important for supporting interfaces to

external environments but they are also necessary for handling local

application specific constraints within the synthesized architecture itself.

For example timing constraints are required to model functional

Slate of the Art Synthesis 59

pipelining or possibly for multicycled operations.

The first synthesizer to consider timing constraints was Elf

(Girczyc, 1985) where a timing constraint for a group of operations was

specified. This constraint was generally a minimum or maximum execu­

tion time to be met.

More recently the Carnegie Mellon University synthesis effort has

updated the CSTEP scheduler to incorporate minimum and maximum

timing (Dull, 1990) constraints. These constraints can be placed

between any pair of operations in the algorithm. The list scheduler uses

priority values for operations to decide if they must be placed in a certain

control step. Timing constraints are checked and if a constraint is about

to be violated by an operation not being placed in a control step then the

priority value for this operation is modified to prevent the illegal assign­

ment from being made.

Systems level partitioning research, APARTY, in (Lagnese, 1989)

evaluates different partitions for the DAG but schedules the entire DAG

without partitions. If the user requests two processes from the partitioner

it will pass each partition separately to the scheduler but no responsibility

for timing between the two processes is done and timing constraints are

not used.

Research at Stanford University (Ku, 1989a, Ku, 1989b) has exam­

ined timing constraints for high level scheduling and logic synthesis.

They identify a fixed timing constraint and a unknown unbounded timing

constraint. It is assumed that module binding and hardware allocation

has already been done, and an iterative algorithm for relative scheduling

is presented. The feasibility of timing constraints is defined and an algo­

rithm is also presented.

60 Architectural Synthesis

Other CAD areas which have identified timing constraints is logic or

controller synthesis and design representation. Timing constraints and

their effects on loops and conditional codes (Hayati, 1989) for a logic

synthesis environment has been investigated. Asynchronous circuit syn­

thesis in (Borriello, 1988) or (Meng, 1989) has also been researched but

no datapath is synthesized. Design representation in (Dun. 1990) has

researched the use of charts to partition synchronous from asynchronous

circuitry and perform partial binding of hardware. Other data representa­

tion such as the DDS in (Knapp, 1983) can be used to model both data

and timing information. Finally in (Leiserson, 1970) interface timing

constraints are modeled by using an external node called the host. A

time t after or before the clock tick are used as constraints.

3.7 COST FUNCTIONS FOR DESIGN EV ALVA TION

The cost function is very important in architectural synthesis since it

will influence the choice of the optimal architecture for a particular appli­

cation. Unfortunately it is not clear what form this cost function should

take. Ideally we want to minimize some area and delay cost function.

The area cost can be estimated as some function of the number of func­

tional units, registers, and busses (Devadas, 1989) . Assuming we have a

model for estimating area (before placement and routing), we have to

weigh this against the delay factor. For architectural synthesis the delay

can be the number of control states to execute the algorithm or a more

detailed value. The area cost and delay cost are two criteria. One now

has to assign a weight to each and sum these to form an objective func­

tion. It is not clear how to weigh one over the other. Therefore research

in multiple criteria optimization is relevant and very important for archi­

tectural synthesis.

State of the Art Synthesis 61

Design evaluation with BUD (McFarland, 1987) showed that the
area-delay curves vary a great deal when multiplexors and also layout

and wiring are considered. The BUD algorithms used a cluster tree to
provide a floorplan from which designs could be evaluated using a linear
cost function. Their research in (McFarland, 1987) completed designs to

layout to obtain accurate area-delay curves. Other research has incor­

porated floorplanning into design synthesis (Gebotys, 1989, Peng, 1987)

Unfortunately placement and routing routines have not been modeled

extensively to provide an area-delay model given a netlist or the allo­

cated number of functional units, registers, and busses. of characterized
hardware modules, however it is believed

(Devadas, 1989, McFarland, 1987) that these models will be nonlinear.

In summary we have briefly discussed the different (locally optimal)
approaches to state of the art architectural synthesis. The optimization of
independent subtasks (of architectural synthesis) was shown to be limited

for certain cases where the graph (obtained from the scheduled DAG)
had a particular structure. It was also shown to be very difficult to

extend this approach using graph theory for simultaneous solutions of

more than one subtask. The previous integer programming approaches
either were too large, and could not be solved, or were fonnulated to
solve only a small part of architectural synthesis. Because of these com­
plexities and the fact that architectural synthesis is most likely NP-hard,

many researchers have turned to heuristics. In the next chapter we will

discuss the recent successes in integer programming research. In particu­

lar this research involves the study of polyhedral characteristics and their
use in the solution of large scale integer programming problems.

Secondly we will show that unlike graph theoretical techniques even con­

straints with no apparent structure can often be solved using these tech­
niques. Upon completing the next chapter the reader will be exposed to

all the necessary background in architectural synthesis and integer pro­

gramming necessary for the remainder of the text.

4.

INTRODUCTION TO INTEGER PROGRAMMING

General integer programming (IP) applications and solutions are

briefly reviewed in this chapter. Section 4.1 outlines general formulation

techniques for IP. Section 4.2 discusses state of the art solutions of gen­

eral IP problems including classical enumerative and heuristic

approaches (ie. simulated annealing). Recent successes in polyhedral

approaches to solving partially structured IPs are outlined in section 4.3.

Finally the definition and partial structure of the node packing problem

(the focus of architectural synthesis) is given in section 4.4. (TIle nota­

tion for a graph is G=(V,E), where V is the set of vertices and E is the set

of edges).

64 Architectural Synthesis

4.1 APPLICATIONS AND MODELS

Integer programming has an extremely large number of potential

applications. Many VLSI design problems can be formulated as an IP

problem and consequently there is a great deal of interest in this tech­

nique. Two important steps in integer programming are preprocessing

and model formulation. Both the amount of preprocessing that can be

done and the formulation of the model has a great impact on the final IP

accuracy and solution efficiency. We will first look at one of the most

simplest models, the assignment problem, that has many applications. A

simple method for formulating constraints that can be represented as log­

ical inferences is discussed next, followed by the defmition of disjunctive

constraints.

The assignment problem is one of the easiest models to formulate.

The variables of the model are binary and each represents the mapping of

i elements to j elements. For example figure 4.1a) illustrates a possible

mapping choice, where the variables are the edges of the graph, ej,j' If

ej,j is 1, in the solution, then the assignment of i to j is optimal. Other­

wise, if the value is 0, there is no assignment produced by the solution.

Although we have used a bipartite graph 3 for illustration this type of

assignment or matching is not restricted to these types of graphs alone.

A perfect matching problem is a set M c E such that each node is

incident to exactly one edge of M. The binary variables are:xe=l if eeM

or xe=O if e is not a member of M. Thus we wish to solve the following

optimization problem, where 8(u) is the set of edges incident to vertex u.

Chapter 4 will further discuss this optimization problem in the context of

polyhedral characteristics.

3 Bipartite graph is a graph with no odd cycle. It can always be partitioned into
two groups X and Y (or i,j in figure 4.1).

Integer Programming 65

j

(a) (b)

Figure 4.1. An assignment problem illustrated by a bipartite graph

(G=(V,E» with two partitions i andj. A solution, Me E is shown in

(b).

Max ex

L xe=l. V'UEV, xE{O,l}.
e £ O(u)

A representation of logical inferences by mathematical linear ine­

qualities has been examined by (Grossman, 1990) or (Ra,1990) . For

example the logical expression or inference PI =::} P2 is equivalent to: 1)

-, PI v P2 (Clocks in, 1984) and ; 2)I-PI+P2 ~ 1 or PI - P2 ~ 0

(Ra, 1990) , where Pi are binary variables. For example if PI = 1 , then

for the inequality to be satisfied, P2 must also be 1, which is the same as

PI=::} P 2· Another example is -, YI v --. Y2 v z which is equivalent to the

mathematical inequality (4.1).

66 Architectural Synthesis

(4.1)

Integer variables can also be used to represent disjunctive constraints
(Nemhauser, 1988) or model the activation or deactivation of a continu­
ous variable. For example, y = 1 :::) L ~ x ~ U and Y = 0 :::) x~, can be
modeled by the inequality (4.2). This represents a disjunctive constraint
on x or a (de)activation of a continuous variable x by a binary variable y.

Ly ~x ~Uy (4.2)

4.2 SOLUTION OF UNSTRUCTURED IPs

We will now look at a few general techniques for solving IPs with no
apparent structure (see chapter 4.3 for more details on structure). These
IPs are called unstructured IPs. The first step to solving an IP is to
transform the IP into a relaxed LP and solve the LP. We transform an IP
into a relaxed LP by removing the integrality constraints on the variables
and allowing them to be solved as real positive numbers. For example
we can replace XeE{O, I} with l~e~O. If we obtain an all integral solu-

tion then we have found an optimal solution to our problem. Proof that
the solution is globally optimal comes from the duality theory of LPs
(Nemhauser, 1988) because we are solving the IP as an LP. In our LP
solution if one or more variables are not integral then we. have to look for

other procedures to solve for the integral variables. This section will
address this problem. We will assume that we are solving for binary
variables (since any integer variable can be represented by a sum of
binary variables).

We will first define some IP terms commonly used. There exists a
bounded polyhedron for any rational bounded system of linear inequali­
ties. Figure 4.2a) gives an example of a polyhedron defined by its con­
straints, Ax ~ b. We will call the convex hull of integer vectors an

Integer Programming 67

integral polyhedron. This is also illustrated in figure 4.2b), where the

linear inequalities (now called facets) intersect at integer values

(represented by the dots). These facets are of dimension one less than the

dimension of the polyhedron. It was proved that for any bounded system

of rational linear inequalities there exists an integral polyhedron, and in

fact the facets are linear combinations of the inequalities defining the

polyhedron. Unfortunately for most problems we do not know how to

form these linear combinations or in other words we do not know what

the facets look like. Furthermore even if we did there may be an

exponential number of them. A final term to defme is a cut. A cut is a

valid linear inequality that cuts away fractional values from the existing

linear programming fractional solution. For example in figure 4.2c) the

dotted lines represent cuts.

(a) (b) (c)

Figure 4.2. (a) illustrates a bounded polyhedron, (b) shows the

corresponding integral polyhedron, and (c) identifies possible cuts,

on the polyhedron of (a), as dotted lines.

68 Architectural Synthesis

General IPs may be difficult to solve (Nemhauser, 1988) due to 1)

size of the formulation, 2) weakness of bounds, and 3) speed of the algo­

rithm. For example in 1) the number of variables or constraints may be

very large, in 2) the difference of the lower bound and optimal solution

of a variables may be great, or in 3) the algorithm for solving the prob­

lem may be very slow. Recent success in solving IPs have shown that

(in addition to preprocessing) by tightening constraints, or more effec­

tively by using facets, (Nemhauser, 1988) one can dramatically improve

the efficiency of solving IPs. We say that one constraint, Ox~o, is

tighter, dominates, or is stronger than the other constraint, l;xs:~o, if

{xER IOxS:Oo} c {xER Il;xs:~o}. One way to show this is to In other

words let the polyhedron generated by the first set of constraints be pI

and p2 for the second set of constraints, then pIc p2. One way to show

this is to find a fractional point where XEpIrJ>2, therefore pI:#-p2, and

(2) show that pl~p2. The efficiency of solving the IP is improved due

to the fact that tighter models have a smaller set of feasible solutions

which must be searched. Branch and bound algorithms can be used to

solve IPs in practical times if additionally the model has a small number

of variables and tight bounds are known. The most well known general

solution techniques for integer programming are the enumerative tech­

niques such as branch and bound or heuristic variations. We will first

review one of the oldest teChniques for solving IPs, called Gomory's cut­

ting planes algorithm.

Gomory's cutting planes is more interesting from a theoretical point

of view than from a practical point of view. Generally Gomory was able

to prove that after a finite number of cuts on any bounded polyhedron P,
an integral solution can be obtained. He found a general method for

obtaining these cuts using the simplex tableau of the LP solution. Unfor­

tunately a very large number of cuts must be generated before an integral

solution is found and few researchers use this technique on practical IPs

Integer Programming 69

because it takes too long.

The branch and bound method, or variation of it, may be used for a

small number of variables «200). However it is possible that even for

small problems the solution may not converge due to the shape of the

polyhedron. For the example shown in figure 4.3 a long narrow needle

shaped polyhedron may require a long time to converge with branch and

bound techniques. The intersection of dashed lines represents the integer

values. The bound on the objective function is also very bad, for exam­

ple the distance between X· and X. The objective of the branch and

bound technique is to create new LPs by bounding each variable towards

integral values. The tree fonned, by branching on a variable x~ r x· 1
and x~ LX· J, is expanded only on nodes where the objective function is

more optimum. From experience it has been found that an integral solu­

tion may be found quite early yet to finish the algorithm and therefore

prove it is a global optimum takes a very large amount of time.

Nevertheless it has been widely used for many small problems. Com­

mercial software uses branch and bound techniques and can generally

handle up to 200 integer variables (Brooke, 1988) .

There exist many heuristic techniques for solving IPs such as greedy

algorithms, interchange heuristics, simulated annealing, and others

(Nemhauser, 1988) . These techniques tradeoff optimality for efficiency.

Tremendous success in solving many engineering problems with simu­

lated annealing has been achieved, even though the convergence to a glo­

bal optimum is exponential. Since combinatorial optimization problems

have many local optima, some heuristic approaches, such as the greedy

or interchange algorithm, are often run with random starting points.

Simulated annealing is a different approach to avoiding local optima, by

allowing the objective value to decrease only occasionally (for a minimi­

zation problem), to avoid getting stuck at a shallow local optimum and

thus escaping towards another neighborhood with a smaller objective

70 Architectural Synthesis

, , , , , , -,- - - -,- - - -,- - - -,- - - -,- - - -,-, , , , , ,
, , x· , , , -,- - - -,- - - -,- - - -,- -, , , ,

, , , , , , -,- - - -,- - - - -,- - - -,- - - -,-, , , , , ,
-,- - - -,- - - -,- - - -,-, , , , , , , ,

, , , , , -,- - - -,- - - -,- - - -,- - - -,-
Figure 4.3. An example polyhedron that may take a long time to con­

verge using a branch and bound techniques due to the needle shape

of the polyhedron.

value.

A geometry of numbers approach (Cook, 1990) to solve particular

JP's that cannot be solved using branch and bound has been researched.

Generally JP's with not necessarily a large number of variables but those

which exhibit a long needle-like polyhedron, as illustrated previously in

figure 4.3, were solved using geometrical transformation.

Using a quadratic potential function projected on a ellipsoid the

recent work of Karmarkar (Karmarkar, 1990) has shown that large sized

integer problems known as the satisfiability problems can be solved.

However if an objective function is required only a locally optimal solu­

tion is possible and there exists no guarantee of finding a solution. Thus

Integer Programming 71

this approach seems to be directed towards a problem characterized by a

small number of integral optimal solutions.

4.3 POLYHEDRAL APPROACHES TO SOLVING IPs

In general solving an IP problem is NP hard (Garey. 1979) . How­

ever, analogous to special graphs in graph theory, there exist special

techniques for solving some IPs. Thus all IPs are not equivalent in diffi­

culty in all respects. For example to solve a node packing IP problem on

a graph which is claw-free (ie. 3 no KI,3 I) requires only polynomial

time. using Minty's (Minty. 1980) algorithm. This is analogous to the

graph theory approaches where polynomial algorithms are known to exist

if the graph at hand is of a particular structure (ie. interval graph for poly­

nomial time algorithms that perfonn node coloring (Golumbic.1980)).

We say that these IPs have structure. Additionally IPs where some con­

straint has this property are said to have some structure. In IP we can

often obtain good bounds on a particular problem and often solve for

integer variables using this structure, even when no known graph theoret­

ical algorithms, heuristics or fonnulations may exist. But how can we

find this structure? We can often do this through proper model fonnula­

tion.

The research focus over the past 25 years in IP has been to study

polyhedra characteristics of a problem and thus define structure which

may help in its solution. This was motivated by the desire to obtain tight

fonnulations of the problems rather than adhoc models, since IPs have

exhibited extremely erratic perfonnance. A systematic way to obtain

these fonnulations is to analyze facets. Unfortunately there exists no for­

mal method for obtaining facets of a given IP and even if we could find a

I K x ,J is a complete bipartite graph with partition x,y.

72 Architectural Synthesis

method to generate all facets, most likely we couldn't solve the LP

because there may be an extremely large number of them (possibly

exponential). Balas and Padberg (Hammer,1979) have argued that its

very useful to fmd facets or approximation of facets because only a few

defme optimal points. Also it is known that if one used a branch and

bound technique after extracting some facets, the algorithm would gen­

erate fewer live nodes (padberg, 1979) and terminate faster. This is

mainly due to the better bound obtained from the use of facets. Thus by

mapping a problem or subsets of a problem into a well studied class of

problems, such as node packing, whose facets are partially characterized

one may be able to improve the bounds of the problem and solve for

integer variables more efficiently.

Recent research has proven how important facets are. The tremen­

dous success of the use of facetial characteristics is demonstrated with

the traveling salesman problem (Lawler, 1985) and large sparse unstruc­

tured IPs solved by using facets of subproblems in (Crowder, 1983) eta!.

Further research (Lawler, 1985, Crowder, 1983) has also shown how it is

highly advantageous to add facets to the LP until no new ones can be

found even before you start to branch and bound.

State of the art solutions of unstructured IP have been researched by

(Crowder, 1983) using a combination of preprocessing, cutting planes

(using knapsack facets of underlying polytopes), and 'branch and bound

techniques to solve sparse 0-1 unstructured IPs of over 2000 variables in

reasonable computation times (less than 1 cpu hour). The cutting planes

which were facets of the underlying polytope (knapsack inequalities)

were extremely useful and successful for exact solution of their class of

problems. Their system was completely automatic, and represents state

of the art for solving unstructured IPs. When a cut cannot be found a

variable is selected to branch on. The definition and characterization of

knapsack inequalities is given in section 4.5.

Integer Programming 73

In 1980, Grotschel (Grotschel, 1980) demonstrated optimal solution

of (over 7,000 integer variable) TSPs in 30 cpu sec to 2 cpu min to show

the usefulness of the theoretical research in polyhedral characteristics. In

all cases the problems could not be solved using existing branch and

bound techniques, thus demonstrating the importance of polyhedral com­

binatorics in solving large scale optimization problems. In 1980 Padberg

(padberg, 1980) solved for 50,000 integer variables of the TSP problem

completely automatic to within 0.25% optimality in 30 minutes using

automatically generated facets. Unfortunately the number of applications

which can be modeled as a traveling salesman problem is not propor­

tional to the large amount of research that this problem has generated.

Conversely there are other problems, such as fmding the maximum

weighted directed cycle in a graph that have a large number of applica­

tions, but generated little research. This is also partially true for the node

packing problem in a smaller sense as we shall see in section 4.4.

4.4 THE NODE PACKING PROBLEM

There exists a great deal of interest in the node packing problem

because of a) the large number of practical applications and b) the

stronger structural properties than the general integer programming prob­

lem (Padberg, 1973) . The node packing problem has also been called

vertex packing and the stable set problem. It is also related to other prob­

lems in optimization such as the set covering, set packing, anti cliques,

independent sets, and node covering, (padberg, 1973, Nemhauser, 1974)

which we will not cover in this text. We will first illustrate the relation­

ship between integer programming, graph theory, and node packing,

using a simple completely structured problem (that of maximum match­

ing). Secondly we will formally define the problem and then proceed to

define the known facets of this problem.

74 Architectural Synthesis

Integer programming and graph theory have many areas of research

which overlap. For example figure 4.4(a) illustrates a perfect matching

problem. Each edge must be assigned a 0 or 1 value to maximize the

sum of all edges with the restriction that each vertex is incident to at

most one edge with a value 1. We can alternatively use the Hungarian

Method or Kuhn Munkres (Bondy, 1976) algorithm to solve for a max­

imum matching in polynomial time. Alternatively one can solve an IP

where constraints correspond to integral facets. In the later method we

can solve the IP as an LP and be guaranteed to always obtain a solution

with integer variables. TIle second constraint given below can be

automatically generated as needed for a particular problem by at most

2n-l min cut problems on the graph. In other words instead of generat­

ing this constraint for all odd sets of vertices we can solve the LP and

automatically generate facets to cut away the fractional values and solve

for integer variables using the relaxed LP. The complete model for

weighted perfect matching is given below, where S(S) is the set of edges,

where each edge has one vertex in S and the other vertex in S.

Max ex

I, xe=l, 'v'u£V.
e£S(u)

I, xe~l, 'v'ScV,ISlodd.
e£8(S)

The vertex representation of this problem (which we will define later

as node packing) is shown in figure 4.4(b) where each edge is now a ver­

tex (variable) and edges of this new graph represent adjacent vertices of

the matching graph in (a). The graph in figure 4.4(b) is a line graph

obtained from (a), and it is known that the solution of this problem (node

packing) on a line graph (Nemhauser, 1988) can be solved in polynomial

Integer Programming 75

time. This example briefly illustrates the relationship between graph

theory and integer programming (and node packing). However this rela­

tionship does not hold true for all cases. There exist some problems for

which known polynomial algorithms exist (ie. it is well solved) however

the associated polyhedron is nontrivial. An example of this is to find the

edge in a node weighted graph whose sum of weights of its two incident

vertices is maximum (Hammer, 1979) .

XI,I j ij 1 2 3

1 1 1 Xltt
2 2 2

3 3 3

(a) (b)

Figure 4.4. The matching problem represented by edge variables in (a)

and vertex variables in (b). In the former case one assigns 0 or 1 to

edges and in the later case one must solve a node packing problem,

by assigning 0 or 1 to vertices.

Like the traveling salesman problem characteristics of the integral

facets are partially known (Nemhauser,1988) for the node packing prob­

lem. This problem is more formally stated below in two forms. One

form is the graph theoretical view and the second is the mathematical

linear system of equations view.

76 Architectural Synthesis

1. In graph theoretical form: Given a graph G = (V,E), maximize cx,

such that

Xu~ 0, 'iu e V.

2 .. In linear systems of equations form:

max ex

Ax~e

l'?x/?O,'ij eN ={l, ... ,n}

where A is a mXn node edge (0,1) incidence matrix, c an arbitrary

n-vector, and eT = (1, ... 1) is an m-vector (padberg, 1973)

If all variable solutions are integral then a globally optimum solution

to the problem has been found and we are done. A property unique to

the node packing problem is that if not all variables solutions are

integral, the variables that are integral remain integral (Nemhauser, 1988)

in the optimum solution. Therefore the problem can be decomposed into

a smaller problem to solve. However it is also known that this node

packing formulation with node edge incidence constraints, generates very

poor bounds (Padberg, 1979) . Furthermore studies which attempt to use

this property to solve the problem have found that in most cases few

integer variables are attained (Grimmett, 1985) . We will discuss the

node packing problem using the graph theoretical formulation.

Finding all integral facets for a particular node packing problem is

NP-complete. This problem is known as the stable set polytope (SSP)

problem, using graph theoretical tenninology. Nevertheless only integral

facets over the region of the minimum objective function are required to

obtain integral solutions. We will now defme some of these facets.

Integer Programming 77

Known integral facets for the node packing problem are given in

(4.3) and (4.4).

LXu~l,/or all K cliques.
uEK

(4.3)

A clique (or maximal complete subgraph) is a subset of nodes K for

which there exists an edge in the graph for every pair of nodes in K.

LXu~(IC 1-1)/2,/or all C odd cycles without chords. (4.4)
u£C

An odd cycle is an odd number of nodes in the graph, which form a

subset, C, of the graph, such that the edges form a cycle. Without chords

means that no 2 nodes of C can share an edge that doesn't belong to the

cycle. Normally we use the term odd cycle for graphs with 5 or more

nodes (connected in an odd cycle), and the term clique is used to describe

the three node case (which also forms an odd cycle). In addition some

odd cycles may be "lifted". The term lifting refers to placing a neighbour

node (a node connected to several nodes of the odd cycle) into the ine­

quality with a positive coefficient Cj where Cj~1. This property makes

node packing a more difficult problem than the matching problem where

all coefficients of the integral polyhedron are 0 or 1. An example of lift­

ing an odd cycle, from a+b+c+d+e~2 to a+b+c+d+e+2f~2, is given

in figure 4.5(c). Whenever node f is equal to one then all other nodes (a

through e) must be zero therefore the odd cycle in 4.5(c) can be lifted by

adding node f to the inequality with coefficient 2 (equal to the right hand

side value). If edge (f,d) were removed from the graph of figure 4.5(c)

then the coefficient of f in the inequality would be 1.

78

a

b(\e
CUd

a+b+c+d+e<=2

(a)

a

bAe
CUd
a+b+e<=l
b+c<=1
c+d<=l
d+e<=l

(b)

Architectural Synthesis

a

b(1\e
Crnd

a+b+c+d+e+2f<=2

(c)

Figure 4.5. Node packing on the three graphs: an odd cycle facet in (a).

An odd cycle with a chord which reduces to 3 edge inequalities and

one clique facet in (b). (c) shows a lifted odd cycle facet.

4.5 THE KNAPSACK PROBLEM

In many IPs some constraints may fall into the category of knapsack

inequalities. By generating known facets of this underlying (knapsack)

polytope, one can often tighten the larger polytope represented by all ine­

qualities. This has been very successful as demonstrated by the award

winning paper in (Crowder, 1983) . The definition and facet characteriza­

tion of the knapsack problem will be given in this section.

Consider the following polytope,

P={xl LajXj~,O!:xj~l},O-5:aj~,'VjfN. (4.5)
jdV

Minimization (or maximization) of some cost function subject to the ine­

quality (4.5) is known as the knapsack problem. We wish to find P[o the

integral polyhedron for this problem. If we find the integral polyhedron

then we can solve for the binary x variables for any cost function.

Integer Programming 79

We will now introduce some notation. Let x be an integer vector in

P. Then we can represent this fact by saying that the set S=(j IXj=1} is

independent. In other words we say that a x vector is independent if it

satisfies the inequality in (4.5). Now let C be a minimal dependent set.

In other words we say that a x vector is dependent if it does not satisfy

the inequality (4.5). The dependent set C refers to the set of subscripts j

of the x vector such that Xj = 1. The dependent set C is minimal if and

only if C \ {i} is independent 'V i £ C. In other words C is minimal if all

of its subsets are independent The following inequality (4.6) is valid for

PI·

LXj~ICI-1.
jEC

(4.6)

Now let us assume that in (4.5) al~2~ ... ~n. Given C. we can

defme E(C)= C U{k:ak~aj.Vj£C}.

Now the following inequality (4.7) is valid for PI and it is tighter

than (4.6).

L xj~ICI-1.
jE£(C)

(4.7)

The inequality (4.7) is a facet of PI if and only if at least one of the

four conditions given below are true.

1. C=N

2. E(C) = N and (i) C\{h,hJu{1} is independent.

3. C = E(C) and (ii) C\{h}U{p}.p=min(jlj£N\E(C)} is indepen­

dent.

80 Architectural Synthesis

4. C c E(C) c N and (i) and (ii).

Unfortunately if the a/s are 0,1,-1 these facets are not of much use.

Generally if the a/s do vary in magnitude the facets are very useful. We

will show how important these facets are for the application of architec­

tural synthesis in chapter to.

This chapter has presented a brief look at research in integer pro­

gramming. In particular polyhedral characteristics and their use for solv­

ing structured and unstructured problems was emphasized. Due to the

erratic behavior of integer programming problems, the use of polyhedral

characteristics of a problem has a significant impact on solving the IP

efficiently. Sufficient background material has now been presented to

introduce the OASIC (for optimal architectural synthesis with interface

constraints) methodology in the next chapter. Node packing facets,

tightened constraints, and the use of knapsack inequalities which were

introduced in this chapter are used in chapters 6 through 9 for the OASIC

model.

PART III: OPTIMAL ARCHITECTURAL
SYNTHESIS WITH INTERFACES

5.

A METHODOLOGY FOR ARCHITECTURAL
SYNTHESIS

In this chapter we introduce the requirements for a high level syn­

thesis tool and outline exactly what constructs OASIC (Optimal Archi­

tectural Synthesis with Interface Constraints) the high level synthesis

tool, to be defined in chapter 6 and 7, can support .. The high level sys­

tems design methodology and specific OASIC methodology are defined

below. In summary we discuss the impact of the OASIC tool on indus­

trial CAD needs.

5.1 REQUIREMENTS FOR HIGH LEVEL SYNTHESIS TOOLS

Architectural synthesis is an important part of the VLSI design cycle.

The objective of synthesizers is to transform an input algorithm into a

hardware architecture that satisfies a set of constraints and minimizes or

maximizes a given cost function. Synthesizers must produce globally

optimal architectures and execute quickly in order to provide early

84 Architectural Synthesis

exploration of design tradeoffs. In addition synthesizers should be able

to optimize linear or piecewise linear cost functions (for modeling area

and delay), incorporate complex constraints (which may arise during

design), interface to other hybrid processes (analog or asynchronous),

and interface to tools for test incorporation. An architectural

synthesizer's primary responsibility is to aid high level design explora­

tion which includes systems level design (more than one chip), where a

number of different analog/asynchronous or digital paradigms exist

Synthesizers must handle complex timing constraints for interfacing to 1)

analog signal processing modules, 2) asynchronous modules (or data

dependent operations), or 3) a different clocked domain of synchronous

digital modules. Furthennore the DA synthesis tool should also support

functional pipelining.

The OASIe synthesizer, which will be described in chapters 6 and 7,

perfonns simultaneous scheduling and allocation of functional units,

registers, and interconnect. The following features are supported:

• Timing constraints including minimum, maximum or fixed timing

constraints.

• Behavioral interface to unknown bounded and unbounded timing

constraints, which may represent i) analog signal processing units, ii)

other asynchronous processes, or iii) data dependent operations.

• Piecewise linear area-delay cost functions

• Random topologies

• In addition to allocation, simultaneous selection of types of func­

tional units.

• Pipelined, multicycle or single cycle functional units.

The Architectural Synthesis Methodology 85

• Conditional code, implemented by sharing hardware resources, and
loops.

• Globally optimal synthesized architectural solutions with respect to

cost function.

• Functional pipelining for a fixed latency

5.2 HIGH LEVEL METHODOLOGY

A proposed fonnal methodology for high level systems design is

shown in figure 5.1. The input to the methodology is a high level

behavioral description, of the fonn described in chapter 2 or a mixed

level (behavioral and structural) description of the system to be syn­

thesized. The final result of applying the methodology is one or more

chips with a mixed analog or digital implementation. The high level par­

titioning may be perfonned by a partitioning tool or possibly by hand to

detennine which design should be implemented in analog or digital and

the later using synchronous or asynchronous logic. After the behavioral

partitioning, the interface, as defined in chapter 2, between the digital

synchronous and other analog or digital processes is defined. The mixed

interface and behavioral specification is then input into the OASIC high

level synthesis tool which maps the software into hardware. An optimal

(and correct) schedule and allocation of hardware resources, forming an

architecture, is synthesized by OASIC.

The stage after OASIC perfonns a second optimization which binds

operations to hardware to minimize the number of bus drivers or bus

connections. This binding problem is addressed in chapter 12 of part IV

in the context of test incorporation. The future extension of OASIC

involves the optimization of the binding phase simultaneously with test

incorporation. The OASIC stage is very important and must be per­

fonned before the binding stage. OASIC minimizes the larger com­

ponents of the design, ie. functional units, busses, and registers. Also

86 Architectural Synthesis

since OASIC can solve for globally optimal architectures and schedules

we believe that one can obtain solutions very close to the global optimum

of the simultaneous scheduling, allocation, and binding problem, with

respect to minimizing an area delay cost function. The later problem has

never been formulated or solved. Note that the model formulation of

OASIC can be extended for solving this and other similar problems as

discussed in the future research part V. In fact OASIC is the first metho­

dology to mathematically formulate and to solve simultaneous schedul­

ing and allocation of all possible hardware resources to global optimums.

In a systems design methodology this provides early design exploration.

Once a designer decides upon which area-delay cost best suits her/his

design application using OASIC, she/he can justify using more time to

solve the binding problem and therefore obtain an optimal architectural

design solution. In the next section we will look at a more detailed view

ofOASIC.

5.3 OASIC METHODOLOGY

In this section we will discuss the OASIC methodology in detail.

Figure 5.2 illustrates the flow chart of OASIC. We assume that a DAG

describing the behavior and interface constraints is input along with an

area delay cost function. The OASIC methodology avoids early binding

or making early design decisions which may be poor. An integer pro­

gramming model is used to specify the function of an architectural syn­

thesizer. Two models will be presented in chapters 6 and 7 and are illus­

trated in figure 5.2 as Xj,j,k and Xj,k respectively. The OASIC methodol-

ogy can be divided into preprocessing stages, and optimization stages.

The preprocessing stages provide the application specific data for the IP

model. As soon as possible and as late as possible schedules are

obtained first. This is a well known problem whose solution was dis­

cussed in chapter 3.3.1. A set of functional units can be selected by

The Architectural Synthesis Methodology

,.

Change

Partitions

Systems Behavioral

Description

~
Partition with

Analog and Digital

and Asynchronous

Boundaries

Synchronous

I

Digital
Behavior

Transform

toDAG

....

I OASIC I

I Binding

~
Test Incorporation

~
Placement

and Routing
..,
f

Global Design

Layout

I

Performance

Specification

Analog and
Asynchronous
Systems

I

Change

Cost
J

Figure 5.1. High Level Systems Design Methodology_

87

88 Architectural Synthesis

operation grouping or by the user. Other model specific preprocessing is

discussed in section 5.5. The optimization phase can provide an early

prediction or an optimized schedule and hardware allocation. The early

prediction phase is used for early design exploration to study the area­

delay characteristics of the particular input algorithm. This phase is

important since the cost function is an estimate of the area-delay parame­

ters. By varying the cost parameters one can explore optimal architec­

tures. After the designer has decided on which architectures they are

interested in, they can proceed to the solution phase of OASIC to obtain

the complete schedule and allocation of hardware. The OASIC metho­

dology is designed to avoid large amounts of feedback by using area­

delay cost functions, solving for globally optimal solutions, and support­

ing direct interface to external or analog/asynchronous operations which

may have complex timing constraints. These optimized early decisions

are believed to have a significant impact on the final VLSI implementa­

tion thus decreasing the need for feedback.

5.4 AN INTRODUCTION TO OASIC

In chapter 4 we provided the definition and previous research for dif­

ferent subtasks involved in the architectural synthesis problem. Now we

will identify the two major architectural synthesis problems for which we

present a model in chapters 6 and 7. An exact definition for these prob­

lems in the context of architectural synthesis is given below.

The Architectural Synthesis Methodology

s
Function

Change Cost

Lower Bounds

KP for Bus

Early
....--__ ...&...-__ ...,Prediction

Figure S.2. OASIC methodology for optimal architectural synthesis.

89

90 Architectural Synthesis

PROBLEM 1

Produce a schedule, by mapping each code operation to a time (main­

taining the partial order among operations), and map each operation to a

functional unit. Simultaneously select and allocate functional units, and

schedule operations to minimize an area cost function.

The structured model in chapter 6 solves problem 1 (see figure 5.2

Xi,j,k). This problem has been called simultaneous scheduling, and

selection and allocation offunctional units.

PROBLEM 2

Produce a schedule, by mapping each code operation to a time (main­

taining the partial order among operations) that minimizes a piecewise

linear (area and delay) cost function of the number of functional units,

registers, busses, and execution time (the total number of csteps

required to execute the algorithm on the final architecture).

The area-delay model in chapter 7 solves problem 2 (see figure 5.2

Xj,k). This problem has been called simultaneous scheduling, and allo-

cation of functional units, busses, and registers. Unlike problem 1 this

model does not select a type of functional unit.

As discussed in chapter 3 the basis of both problems is precedence

constraint scheduling. Our submodel for solving this subproblem is new

and we will prove its advantages over previous research in the following

chapters. Advances in computers providing faster computations and

larger memories for mathematical software has also had a great impact

on this modeling area.

The Architectural Synthesis Methodology 91

The following algorithmic and complex constraints are also sup­

ported by OASIC's two models. The constraint fonnulations are

presented in chapters 8 and 9.

Additional Features to Support for Problems 1 and 2.

The following features are to be supported: (1) Interface to analog

and asynchronous processes, (2) Minimum and maximum timing con­

straints, (3) Conditional Code, (4) Functional Pipelining, (5) Make use of

regularity and hierarchy, and (6) flexible piecewise linear cost functions.

Many subtasks of architectural synthesis, such as minimizing regis­

ters in the presence of general conditional code, can not be solved to glo­

bal optima using previous algorithms. Thus not only is the larger prob­

lem of simultaneous scheduling and allocation being solved for the first

time but many of its subproblems can now for the first time be solved

optimally by OASIC. Furthennore as we shall demonstrate it is easy to

incorporate these above features (shown in the box) into our model,

whereas it may be difficult to make modifications to heuristics of previ­

ous synthesizers. We will show in chapter 10 that it is feasible to solve

to global optima including these features in our model.

5.5 OASIC TERMINOLOGY, ASSUMPTIONS, AND

PREPROCESSING

The tenninology used and assumptions made for this mathematical

model will be described in this section.

92 Architectural Synthesis

5.5.1 Terminology

1. k = code operation. A partial order (or precedence constraint)

between kl and k2 is represented by kl <- k2 (Garey, 1979) , or in

other words kl must execute before k2. Let K represent the total

number of code operations in the input algorithm. Let A represent

the number of arcs in the DAG.

2. j = a time, or a control step estep, j=1,2,,JUB, JUB = the upper

bound on number of csteps given by the user. Te = total optimized

number of csteps required to execute the DAG on the architecture.

3. i = a functional unit. i=1,2, ... ,L/t UB, It = the number of functional
t

units of type t It UB is the upper bound on the number of functional

units of type t. For example t=1 (for adders) or t=2 (for alus). We

will also use kef to show that k can be mapped to functional unit

type t.

4. m = a register, m=1,2, ... ,RUB, R = the number of registers.

5. 1= a bus, i=1,2, ... ,BUB, B = the number of busses.

6. X;,j,k =1, represents the assignment of

code operation k to functional unit i, at cstep j.

7. j £ R (k) means that j is lower bounded by the asap scheduling time

and upper bounded by the alap scheduling time for code operation k

or je{jasap(k),Uasap(k)+l), ... ,jalap(kY-

8. time(k1, k~ :s; or ~ or = T, denotes the (maximum or minimum or

fixed) timing constraint between two operations, or subsets of opera­

tions. In other words the number of csteps between kl and k2 is

:S;,~,=T.

The Architectural Synthesis Methodology 93

9. izeOp(Cz.Lz)' refers to the functional unit characteristics where Cz

is the execution time (number of csteps from when the input data is

ready to the time when the output data is available) , and Lz is the

latency time (minimum time between successive data input values

being accepted by the functional unit). We will use the following

notation (which assumes a one to one mapping of operations to

types of functional units), because it is easier to write the constraints

of the model, where ket, the notation will be kzeOp(Cz,Lz) as

defmed above.

10. In(t)= the number of inputs for functional unit type 1, In(t) = 0,1, or

2. Out(t) = the number of outputs for functional unit type t, Out(t)

=1 nonnally. Similarly for a one to one mapping we can use the

notation In(k), where In(k) = In(t) I ket.

5.5.2 Assumptions

The current assumptions made in our model are listed below. Some

of the extensions discussed in chapter 11 deal with removing these res­

trictions.

• Functional units that are chained must be specified by the user.

• Same bit width for bus allocation

• global and local code transfonnations (ie. loop unrolling) and parti­

tioning of the DAG or input algorithm (into more than one chip)

could be perfonned by other tools before OASIC.

• Global data broadcasts are specified in the DAG by the user (see

chapters 6 and 7).

94 Architectural Synthesis

5.5.3 Preprocessing

Preprocessing that includes high level code transfonns (such as those

produced by optimizing compilers), conditional code extraction of blocks

or branches, and regularity extraction are perfonned at a level higher than

OASIC. This is consistent with current higher level tools such as SAW

(Walker,1987) ,that are user interactive. Architectural synthesizers are

usually embedded underneath these tools. The only necessary prepro­

cessing that must be done before input to OASIC is easily automated.

This includes asap and alap scheduling and was discussed in chapter 3.

After preprocessing the user must input their choice of types of func­

tional units for allocation. Operation grouping is defined by the user

before allocation to prevent illegal functional units from being allocated.

An illegal functional unit is a group of operations which cannot all be

perfonned by a single functional unit in the library. Our objective is then

to identify legal code operation groups which may be executed by a

hardware unit from an existing library.

Upper bounds on variables of the objective function are not required,

however they can improve perfonnance if specified (by the user) by

decreasing the size of the search space. For example the area may not

exceed a certain value or the number of clock periods required to execute

one pass of the DAG (or to execute a conditional path) may not exceed a

given number of cycles.

In this chapter we have described the OASIC architectural synthesis

methodology in the context of a high level methodology for mixed tech­

nology systems design. In the next two chapters we will present the

basic OASIC model. In chapter 6 selection of the type of functional

units is addressed, and facets of the node packing polytope are extracted.

Chapter 7 presents a complete model obtained by trading off structure for

a reduction in the number of variables. Facet extraction of subpolytopes

and tightening of unstructured constraints are used to fonn the fmal

The Architectural Synthesis Methodology 95

model. The use of the OASIC model for supporting general algorithmic

constructions such as functional pipelining and for supporting behavioral

interfaces are covered in chapters 8 and 9.

6.

SIMULT ANEOUS SCHEDULING, AND SELECTION
AND ALLOCATION OF FUNCTIONAL UNITS

A model for solving problem 1 of chapter 5 (section 5.4), simultane­

ous scheduling and selection and allocation of functional units, will be

presented in this chapter. In general the problem is modeled as an

assignment problem, where the variables represent a placement of code

operations in two-dimensional space. The two-dimensional space is

defmed by time (in terms of control steps) and area (in terms of func­

tional units).

The OASIC assignment model is not unlike that used in the simu­

lated annealing algorithm (Devadas,1989) where our Xi,j,k variable

represents the placement of operations on a two-dimensional grid. Thus

the explosive nature of the problem is the same. However, in the simu­

lated annealing approach, they do not allocate interconnections but use a

heuristic measure (the number of parallel data transfers counting only the

98 Architectural Synthesis

number of distinct sources for broadcasts data transfers). In addition the

calculation of number of registers is included only in the cost function,

and a mathematical formulation is not given. In addition the cost func­

tion is used to eliminate illegal solutions that their approach will

encounter, whereas we use preprocessing to eliminate illegal designs

before the design search begins.

In Pfahlers graph representation (Pfahler,1987) interconnection is

also not considered and proper calculation of registers cannot be per­

formed. Finally the OASIC model was developed because it was very

simple to incorporate interconnect, in addition to complex timing con­

straints, to be discussed in chapter 9. Incorporation of interconnect allo­

cation has not been performed by any other simultaneous approaches.

Only heuristics to estimate interconnect has been examined by previous

methods (Devadas, 1989, Paulin, 1989) .

6.1 THE FORMAL MODEL

We will present the initial IP model formulated for solving problem

1. We will show how one can translate this model into the node packing

problem. Using the node packing graphs for simple DAGs, extracted

facets were generalized and used to form the IP model for OASIC. The

IP model uses variables Xj,j,k to represent the two dimensional placement

of code operations and consists of three types of general constraints dis­

cussed below.

Equation (6.1), called the operation assignment constraint, ensures

that each code operation will be assigned to one control step, functional

unit, and register.

Simultaneous Scheduling and Functional Unit Allocation 99

L L Xj,j,k = I , 'Vk. (6.1)
j j£R(k)

Inequality (6.2), called the functional unit constraint, prevents more

than one code operation from being assigned to the same functional unit

at the same control step.

jl=j+L-l

L L Xj,jJ,k ~ 1 , 'Vi , j. (6.2)
k jl=j

k E Op(c,L) jl E R(k)

Inequality (6.3), called the precedence constraint, prevents an opera­

tion, kl from being scheduled after operation k2 whenever there is a par-

tial order between these operations such that kl <. k2.

~ (x· . k + X· . k) < 1 ,£.J 1,11, I I,h, 2 - ,
(6.3)

X· . k = 0 or 1. I,j, (6.4)

When we relax (6.4) to O~~l, the system of linear inequalities

becomes Ax ~ b, where A is a (0,1) matrix (or all entries in A are 0 or 1)

and b is a unit vector. This problem, known as set packing

(Nemhauser,1988) , can be transformed into a graph, G=(V,E) (called

the node packing graph), from which we can extract some integral facets

of the node packing problem. First we map each variable, Xj,j,k' into a

vertex, UEV. Edges of the graph, E, are defined by the following pro­

cedure. For each row of the matrix A (representing a constraint), the

variables (or columns) with a 'I' entry define a complete subgraph 2 (see

chapter 4) in G (Nemhauser, 1988) The graph G represents the node (or

2 A complete subgraph is a subgraph KeG ,K =(V 1 ,E 1), such that V

U,VEV1, (u,v)EE l .

100 Architectural Synthesis

vertex) packing problem, which can be transfonned from any system of

linear inequalities with a (0,1) constraint matrix (A) and a unit vector (b)

on the right hand side.

Known integral facets for the node packing problem are (as outlined

in chapter 4) cliques and odd chordless cycles.

LXu~l,'v'K cliques.
u£l(

(i)

LXu~(IC l-l)/2,'v'C chordless odd cycles,IC 1~5. (ii)
ute

and others in (Nemhauser,1988) which involve a lifting procedure for

odd cycles. For the architectural synthesis problem, clique (integral)

facets were extracted from node packing graphs representing some small

input algorithm examples. The facets were then generalized and placed

in a relaxed LP model. The LP model was applied to some benchmark

architectural synthesis examples and optimized for different cost func­

tions.

The one-dimensional model (Xj,k) is used to illustrate the facet

extraction and generalization. This model can be visualized as the place­

ment of code operations into control steps. For example consider two

code operations with a partial order between them,

{a,bla<-b, a,bEOp(l,l)}, and an upper bound of5 control steps. The

node packing graph is shown in figure 6.1. The edges are fonned in the

graph using inequality (6.3), or in other words all illegally scheduled

combinations of a and b fonn edges in the graph. Some clique facets of

this graph are shown in bold in figure 6.1a) and b). We can generalize

this clique facet to (6.5), which we will call the precedence or partial

order constraint.

Simultaneous Scheduling and Functional Unit Allocation 101

L xh.k)+ L xh,k2"5: 1, (6.5)
h!.j+Crl j!.h
hfR(k) j~(k~

(a) (b)

Figure 6.1. Node packing graph for 2 code operations (a<·b). showing

in bold a clique facet for j=2 in (a) and j=3 in (b) of inequality (5).

A different fonnulation of the one-dimensional precedence constraint

fonnulation was presented in (Baker, 1974, Lee, 1989) as:

L U)xj,k2- L U)Xj,k1"5:-1, Vk2<·k1· (6.5*)
jfR(k~ jfR(k)

Even though the set of integer feasible solutions are the same, the fonnu­

lation (6.5) is tighter than (6.5*) and the proof is given below. To the

best of our knowledge inequality (6.5) has not previously been presented

in the literature. As we will show in chapter 10 the tightness property is

far more important with respect to solving the IP more efficiently than

the number of constraints generated (which for 6.5* is less than for 6.5).

102 Architectural Synthesis

To Prove: (6.5) is Tighter Than (6.5*).

Let p5 represent the scheduling polytope whose constraint set is

only generated by (6.5) and similarly for p5*. This is equivalent to

showing that p5 cP5* .

1) p5:¢p5*

Proof: Consider the following fractional solution to the schedul­

ing problem a,b la<·b, where the upper bound on the number

of control steps is 4.

k j=l j=2 j=3 j=4

a .9 0 .1

b .5 .5 0
This solution is violated by (6.5)= (X3,a+X3,b +X2,b)=

(.1)+(.5)+(.5) =1.1>1
3 4

and feasible for (6.5*)= LjXj,a - LjXj,b =1(.9) +3(.1) -2(.5)
j=l j=2

-3(.5) =-1.3S-1. Therefore p5¢p5* QED.

2) p5~p5*

Proof:

X3,a+X2,a+Xl,a

x3,a+x 2,a

x3,a

o

=1

~1-X2,b

~1-X2,b-x3,b

=1-X2,b-x 3,b-X4,b

now we have to derive (6.5*): Xl,a+2 X2,a+3 x3,a

Simultaneous Scheduling and Functional Unit Allocation 103

-2 x2,b -3 x3,b -4 x4,b ~-l

lhs of (6.5*): ~-3X2,b-2x3,b-X4,b-2x2,b-3x3,b-4x4,b (by

substitution)

=4-5 (x2,b+X3,b+X4,b)=-1.

Since we have shown that p5~p5* and p5#p5* therefore we

have proved that p5cP5* .

End of Proof.

Thus (6.5) is a tighter formulation of the precedence constraint than

(6.5*). Thus improvements in IP solution efficiency and better bounds

on variables are expected with (6.5) since it is a tighter formulation

(Nemhauser, 1988) On further analysis of the graph in figure 6.1, one can

see that this graph is strictly characterized by cliques completely gen­

erated by (6.1) and (6.5), and G has no chordless odd cycles. Thus G is a

perfect graph (by definition) and its integral polytope is completely

characterized by inequalities (6.1) and (6.5). For tree structured DAGs,

we can prove that the node packing graph generated by (6.1) and (6.5) is

a perfect graph by proving that the graph is triangulated (and therefore

perfect) using the algorithm in (Golumbic, 1980) We can further show

that (6.1) and (6.5) generate all cliques and therefore represent integral

polyhedrons for the scheduling problem.

To illustrate how the model changes as we add one more dimension

of complexity (functional unit allocation), consider three code operations

{a,b,c la<·c ,b<·c ,a,b,cEOp(1,l)}, with an upper bound of 3 control

steps and an upper bound of 2 functional units. The node packing graph

for this example is given in figure 6.2. Clearly constraint (6.1) generates

cliques and therefore corresponds to integral facets. Constraint (6.2)

shown in bold in figure 6.2a) is a clique "i/ i, j= 1 (by definition), however

104

2

1

if

fj
1 2 3

(a)

2

1

if

fj
1

Architectural Synthesis

2 3

(b)

Figure 6.2. Node packing graph for 3 code operations

{a,b,c I a<·c ,b<·c} showing in bold inequality (6.2) in a) and ine­

quality (6.6) in b).

it is not a maximal complete subgraph 'V i, j=2. The additional vertex,

x2,2,c is required 'V ij=2 in order to fonn a clique facet. Thus some gen-

eralized inequalities, such as (6.2), mayor may not generate facets in a

specific algorithmic implementation. Constraint (6.5) for the two­

dimensional model can be modified by replacing Xj,k with DiJ,k as
i

shown in inequality (6.6). Inequality (3) is now reduDdant and can be

removed from the model and replaced with inequality (6.6), which was

proven to be a facet of the one-dimensional model. Inequality (6.6) also

generates clique facets for the two-dimensional example shown in figure

6.2b). Thus some facets of lower dimensional models, such as (6.5),

remain facets when higher dimensions are added (6.6).

Simultaneous Scheduling and Functional Unit Allocation 105

1:(1: Xi,it,k, + 1: XiJ2,k) s: 1, (6.6)
it Sj+Cr 1 jSh
it£R(k,) h£R(kv

Finally constraint (6.4) can be relaxed to the following constraint

(6.7) since we now have some integral facets and can solve using linear

programming.

(6.7)

It is also interesting to note that there are only two additional (lifted odd

cycle) facets 3, not given or used in our model (compared with nine

clique inequalities) • which are needed to completely characterize the

integral polytope for the three code operation example in figure 6.2.

Thus the general model for problem I, simultaneous scheduling and

functional unit allocation. consists of variables Xi,j,k with constraints

(6.1). (6.2), (6.6). and (6.7).

6.2 COST FUNCTIONS

The cost (or objective) function for the IP can be formulated as any

linear or piecewise linear function of the variables. An example of the

two types of cost functions are the following:

3 The additional (lifted odd cycle) facets areX2,1,a+X2,l,b+Di,2,ks:2 and
i,k

Xl,l,a +Xl,l,b + Di,2,kS:2.
i,k

106 Architectural Synthesis

i 1 /

Minimize L L L(Xi,},k!(i,j,k))
iO l k

i 1 /

Maximize L L Lxi,},k
iO l k

In the first objective function, f(i,j,k), can be a linear or piecewise linear

cost function. For example f(i,j,k) = c_fu(i) +c_time(j) can be used to

explore the tradeoff of resources. The second objective function is called

the feasibility cost function where all resources are fixed and the optim­

izer determines whether a synthesized hardware solution exists using

these bounds.

Many other forms are possible including an area and delay model

similar to (Devadas, 1989) which requires additional variables. Two

alternative formulations can be used for an area delay cost function.

Both will be discussed below.

The first formulation can be used for linear (or very simple piecewise

linear) area delay cost functions and introduces the integer variable It,

where It= the number of functional units of type t. The variable It can be

formulated with the constraint shown below to minimize an area cost

function Larea(t)II' where area(t) is the area of one functional unit of

type t An extension for simple piecewise linear area cost functions is

given in chapter 7 section 7.5.

L L Xi,j,k ~ It> 'V j.
k£t i £t

The second formulation can be used for piecewise linear cost func­

tions. It uses variables Zit' where zit=1 represents the allocation of one

(the ith) functional unit of type t. The activation of continuous variables

defined in chapter 4 to threshold the summation of partial indices of the

Simultaneous Scheduling and Functional Unit Allocation 107

variables is used to fonnulate the z variable (see inequality given below).

The piecewise linear cost function is 2,zit a(it), where a(it) is the cost of
it

one (the ith) functional unit of type t. Since the inequality introduced by

the binary variable z is not a node packing inequality, the problem is no

longer strictly a node packing problem.

ZitE{O,l}, Zit ~ 2ht,j,k> Zit ~ (Dit,j,k)IK, 't:Iit ·
j,k j,k

6.3 FUNCTIONAL UNIT TYPE SELECTION

The structured OASIC model can simultaneously select the type of

functional units to optimize the particular cost functions. For example it

is possible that for a specific area-delay cost function a pipelined multi­

plier provides a more optimal implementation as opposed to a multicy­

c1ed multiplier. We can use a different general constraint on each map­

ping of code operation to type of functional unit. For example to select a

3 cycle (t=1) or 2 cycle (t=2) multiplying functional unit we generate two

constraints using inequality (6.6). First we replace L with L for
it

k2<·k1, k2Et, of inequality (6.6) and use C2=3 fort=1 and C2=2 fort=2.

Inequality (6.2) would also be used more than once for each code opera­

tion in the same manner.

Constraints can also be fonnulated for chaining operations. For

example the designer could optimally detennine whether it is advanta­

geous to select (simultaneously with allocation and scheduling) a func­

tional unit that chains operations. A new type of functional unit (t=3) is

created (to represent the chained operations). For t=3 and kl <·k2 where

kl and k2 E t=3, a fixed timing constraint between kl and k2 is used in

place of inequality (6.6). The fixed timing constraint (to be discussed in

108 Architectural Synthesis

detail in chapter 9) essentially sets Xi3J,k\=Xi3J,kz,'Vi3,j. For example let

us assume the functional unit solves «c*d) + (a+b» in one cstep by

chaining the two additions and one multiplication together. Then the

fixed timing constraints for k+ <·k+,k. <·k+ is formulated. Additionally

we need the following constraints LXi3,j,k~,'Vi3,j and
k

k£+

LXi3,j,k~1,'Vi3,j to ensure only two adders and one multiplier are allo-
k

kE.·

cated. This formulation also allows any addition or chaining of two

additions or any multiplication or «c*d) + e) or «c*d) + (a+b» to share

the functional unit.

The OASIC model for simultaneous scheduling and allocation and

selection of functional units was presented in this chapter. The node

packing characteristics, introduced in chapter 4, were used to extract

facets of the polytope. The next model to be presented in chapter 7

directly supports area-delay cost functions, which are a good vehicle for

design exploration and an important part of the design methodology as

discussed in chapter 3 and 5. In the OASIC model of the next chapter

the very tight (node packing) precedence constraints, presented in this

chapter, are kept and unstructured constraints are used for allocating the

hardware resources.

7.

OASIC: AREA-DELAY CONSTRAINED ARCHITECTURAL
SYNTHESIS

The major difference between the model described in this chapter

and the previous structured model in chapter 6 is that we cannot simul­

taneously optimize the selection of types of functional units without the

introduction of nonlinear inequalitiest. In other words the mapping of

operations to types of functional units must be a one to one (or many to

one) mapping.

The area-delay OASIC model directly supports area-delay cost func­

tions without disjunctive constraints, the latter required by the OASIC

model in chapter 6. The area-delay model in general trades off structure

t For example if A= 1 select a two cycle multiplier, ., else (A=O) select a

pipelined multiplier, ·pl, ineqUality (7.3) becomes, Dj,k. +A Dj-l,k. g.
k. k.

110 Architectural Synthesis

for size (in variables and equations). Although the constraints are

unstructured we have identified application specific cases where we can

lift some constraints and employed the use of knapsack inequalities to

further tighten the model.

Preprocessing now involves selection of functional unit types. Types

of functional units can be selected by the designer by hand or by using

the previous model (chapter 6) to simultaneously schedule and select and

allocate functional units. The asap and alap preprocessing described in

3.3.1 is also required for the area-delay model.

Other preprocessing unique to this model involves edge reduction of

the DAG for register allocation constraint and the identification of spe­

cial operations to be defined in section 7.6. The later is used for tighten­

ing constraints. The edge reduction algorithm will be described in this

chapter. Finally after lower bounds are computed knapsack inequalities,

defmed in chapter 4, can be automatically generated to improve these

bounds. An automatic algorithm for extracting knapsack inequalities is

explained in (Crowder,1983) . We will briefly discuss the variation for

our particular application, architectural synthesis.

7.1 THE PRECEDENCE CONSTRAINED SCHEDULING MODEL

The operation assignment constraint, (7.1), ensures that each opera­

tion will be assigned to one cstep. The precedence constraint, (7.2),

prevents an operation k2 from being scheduled after operation k1 when-

ever there is a partial order between these operations such that k2 <·k l'

This constraint is the same as the precedence constraint (6.5) presented in

chapter 6.2.

OASIC: Area-Delay Constrained Architectural Synthesis 111

L Xj,k = 1, 'tIk. (7.1)
j£R(k)

L XjJ,k1+ L xh,k2~1, (7.2)
jl~j,jlER(kl) j-(C2-1)~j2,j-foR(k2J

7.2 FUNCTIONAL UNIT ALLOCATION

The functional unit constraint, (7.3), ensures that no more than It

functional units of type t (Lee, 1989, Baker, 1974) will be required in the

solution.

jl=j+{L-l)

L L Xjl,k g " 'tIt,j.
kfJ jl=j

j£R(k)

7.3 REGISTER ALLOCA nON

(7.3)

The register allocation constraint ensures that there are no more than

R variables whose lifetimes overlap at any cstep. A variable lifetime can

be represented by a (lifetime-defining) edge (k<·k/) between the defin-

ing operation, k, and the operation which last used the variable,k/. How­

ever in many algorithms each variable may be input to more than one

code operation (k<.ke le>I). thus it is difficult to determine which ke

should be the lifetime-defining edge. Two properties, transitivity and

alap analysis, can be used to decrease the number of edges we must con­

sider for representing a variable lifetime. For example in figure 7.1a),

(e=I,2) transitivity requires (k1 <·ki)=>(k2=k/) and in figure 7.1b) alap

analysis requires (asap (ki)';?alap(k1))=> (k2=k/). This preprocessing

can be done very fast and is outlined below:

112 Architectural Synthesis

Edge Reduction Algorithm

Given the node-node adjacency matrix AjJ , where aj,j=1~i<.j,

where ij are code operations. We will use this matrix to represent the

DAG (or input algorithm). First a path matrix, T, is calculated.

Secondly the asap/alap tables for each code operation and the path

matrix are used to delete edges that cannot represent lifetimes.

1) Compute matrix Tj,j' where tj,j=1~3 a path from code operation i

to code operation j in the DAG. A depth first search of the DAG will

find T. The general structure and pseudocode notation of this algo­

rithm was taken from (Golumbic, 1980) .

Procedure DFSEARCH(v.L):

begin

mark v "visited" & set vEL

for each w E Adj(v) do

end

if w is marked "unvisited" then

begin

set tv,w=1 'r;f vEL.

DFSEARCH(w,L);

end

else if w is "visited" &&

tv,w == 0 then

begin

set tv,w=1 'r;f vEL

tv,k=tw,k 'r;f k

end

2) Compute matrix Lj,j' where Ij,j=1~ edge i,j of the DAG cannot be

eliminated by transitivity or alap analysis. Initially set L = A, and

then eliminate entries 'r;f i,

OASIC: Area-Delay Constrained Architectural Synthesis 113

'V h, h I h:¢:h, aj,h=ajJ2=1.

If((th,h=l) v (asapUiy~alapUl)))=>lj,h::{).

The L matrix is used to generated the register constraints since each

entry represents a possible lifetime defining edge.

We will now describe how the register allocation constraint (7.4) can

ensure no more than R registers are allocated even with multiple edges

representing a variable's lifetime. The following tenninology is used: (a)

An arc. kn <-ke (whose head is kn and tail is ke). is said to cross cstep j

if and only if R(kn)I'l{O,l, ... ,jj:¢:o and R(ke)I'l{j+l,j+2, ... ,Tej:¢:O; (b)

e(n) = the number of arcs (kn <-ke,e~l). with head kn that cross at j

(e(n) ~ e). For the general case where e(n)~l 'Vn. constraint (7.4) is gen­

erated, r:! e (n) times per cstep, for all maximal sets of arcs that cross j

such that no two arcs in a set have the same head. For example if only

one head (kj) has e multiple arcs (kj<-kj,j=l, ... ,e.) that cross at j

(e(i)=e), and the rest of the arcs have unique heads (e(n)=l'Vn:¢:i),
then (7.4) is generated e times (once for each kj). In practise the number

of constraints will not be a significant problem, because 1) the computa­

tion time for IP problems is not highly sensitive to the number of con­

straints (Nemhauser,1988) and 2) most algorithms will have small

values of TIe(n) which intersect at the same cstep. The register alloca-n
tion constraint (7.4), calculates two times the number of cut edges at each

cstep, by dividing time and operations into four quadrants as shown in

figure 7.2. For all ke E K:= {kelkn<-ke,e~l} or {kd means that the

constraint (7.4) is generated for all maximal sets of arcs that cross j such

that no two arcs in a set have the same head.

114 Architectural Synthesis

L (L Xjl,k. + L Xj2,k.- L Xj3,k. (7.4)
k. jl:S;j-(C.-l) j2>j j3:S;j

k.<.k. jltR(k.) j2tR(k.) j3tR(k.)

L Xj4,k) ~ 2 R, V j, ke E K:
j4> j-(C.-l)

j4tR(k.)

(a) (b)

Figure 7.1. Lifetime defining edges for the variable output from k are

shown in bold using (a) transitivity analysis and (b) alap analysis

(alap(kl)~sap(k2)).

7.4 BUS ALLOCATION

Since we are interested in obtaining an exact measure of the number

of busses (defined in chapter 2) of an architecture, we defme the number

of parallel data transfers (pdt) as the maximum number of data transfers

that occur at one time (counting transfers with distinct sources as the

number of destinations as discussed in chapters 6 and 3) unlike previous

(Devadas, 1989, Paulin, 1989) definitions. We constrain each hardware

unit (register or functional unit) to have only one bus per input, unlike

other heuristics (Huang, 1990) which cannot estimate additional multi­

plexors required later in the synthesis process.

OASIC: Area-Delay Constrained Architectural Synthesis 115

Figure 7.2. Register allocation constraint illustrated with one cut edge,

a<·b, at J (the other two edges cancel out because each edge has

nodes in a ' +' and ' -' quadrant).

As discussed in chapter 3 bus allocation even with fixed schedules is

difficult due to the possibility of global data broadcasts. We will outline

our approach to handling data broadcasts, that ensure an exact number of

busses is calculated. In our model the user must identify operations

which will be transmitted data by global data broadcasts. Data broad­

casts can therefore be modeled using fixed timing constraints

(Gebotys, 1991c) on all pairs of destination operations and selecting one

of the destination operations to contribute to the bus count. For the

remainder of this chapter we will assume that these constraints have been

incorporated and will not address data broadcasts further. Next the for­

mulation is presented for simultaneous scheduling and bus allocation.

The bus allocation constraint, (7.5), ensures that at each cstep no

more than B busses are required to transfer data between functional units

and registers. An additional constraint (In(t))It ~B, 'rtt, or

(In(t)+Out(t))ItGJ,'rttEop(1,l) is also used in the OASIC model to

decrease the size of the search space. We will now show that this defined

number of parallel data transfers is exactly equal to the number of busses

in an optimal architectural solution for 1) module allocation, 2)

116 Architectural Synthesis

allocation of at most 2 types of functional units and 3) other cases. This

is analogous to channel routing, where the left edge algorithm is

guaranteed to fmd a route (architecture) that uses no more than B tracks

(busses), calculated from the channel density (pdt), even if we require at

most two sets (of data transfers to each of two inputs of a functional unit)

of nets to be placed on distinct tracks (one distinct bus per input to each

input of a functional unit). Previous research has not addressed this

problem. As discussed in chapter 3, other synthesizers allocate busses

after functional unit allocation.

L (In(k)xj,k + L (Out(k1)xjl,k\ ~B, 'Vj. (7.5)
k ~

jER(k) jlER(k\)
jl=j-{C\-l)

For t=3 the problem in the worst case requires l pdt/3 J additional

busses and is NP complete. For example assume we have three (single

cycled) functional units of different types (t=3) and all pairs of functional

units are scheduled in parallel (but all 3 functional units are never

scheduled at once). For example in figure 7.3a) the scheduled DAG is on

the left and one possible architecture, with 3 types of functional units

(+,*,-), is shown on the right The pdt would be calculated as (2*2+2=) 6,

but (3*2+2=) 8 busses are required since each functional unit must have

only one bus per input. Analogous to segmented channel routing, each

of the three sets of data transfers into the three types of functional units

must be placed on a separate segment (or input bus to that type of func­

tional unit). However the pdt is exact when not all pairs are scheduled at

the same time (more than one type of functional unit can share a input

bus with another different type of functional unit) or when all 3 are

scheduled at least once in parallel or many other cases such as figure

7.3b). Nevertheless since many DSP algorithms have only two types of

functional units and in many practical applications the functional units

have high utilization, the pdt will often be exactly equal to the number of

OASIC: Area-Delay Constrained Architectural Synthesis 117

busses for t~3.

(a)

(b)

Figure 7.3. Pdt for t=3 in (a) is not equal to B (pdt=6, B=8) and in (b)

pdt is equal to B (pdt=B=7).

We will now present proof that an architectural solution with B

busses, R registers, and It functional units of type t (tQ) is always

guaranteed to exist. We will prove this in two steps for the case where

code operations are single cycle and therefore BinnB°ut==0, (where

Bin(Bout) is the set of busses input to (output from) functional units,

118 Architectural Synthesis

IBinl+IBoutl=B).

First we must show that an architecture exists with R registers, such

that each register can have only one input bus chosen from Bout busses.

This problem is independent of It functional units since each functional

unit can output data to any bus (Bout) in theory. Each set of variables (a

set has variables with nonoverlapping lifetimes ie. a register) can be

merged (onto the same input bus) if no two variables have the same

definition times. We can always obtain IBoutl merged sets, by swapping

groups of variables between sets, and therefore both a minimum number

of registers and busses is possible. In other words, analogous to channel

routing this partitions R tracks into Bout busses or Bout = ~j) { # of

variables defmed at cstep j} and R = 7 ~j) {# of overlapped lifetimes

of variables assigned to bus 1 at cstep j}.

Secondly we can show that an architecture with IBinl busses (where

each input of a functional unit can only be assigned to one input bus) and

It functional units can be guaranteed. This problem is independent of R

since each register can output variables to any bus (Bin) in theory. The

first observation is that input busses can only be shared between func­

tional units of different types (in order to guarantee a minimum of It

functional units). For example if two ALUs can share input busses then

they are never scheduled at the same time and therefore only one ALU is

needed. Since we do not consider global data broadcasts here, functional

units can share both input busses or none. We can now form a complete

bipartite graph, KX,Y' where the X vertices represent functional units of

type t=l, and the Y vertices represent functional units of type t=2. For

each cstep of the schedule, we assign code operations to functional unit

vertices of G and delete all edges between the assigned vertices. At each

successive cstep we assign code operations to previously assigned

OASIC: Area-Delay Constrained Architectural Synthesis 119

functional unit vertices and when this is no longer possible we assign

them to new functional unit vertices and delete new edges. After all

csteps have been exhausted. the cardinality of the maximum matching of

the final graph. IMI. is the number of input busses shared by functional

units (therefore IBinl=2(Ll"t-IMI).

An extension to this proof (t=2) for multi cycle operations can also be

done. In this case BinrJJ°ut=Bio~ (therefore whenever Bio is being

used as an input bus. other functional units cannot output variables to

Bi°cB°ut) • however since BOut < Bin we can use the two separate

proofs above to show that a minimum R and It can exist and pdt guaran-

tees that B busses are needed. The OASIC model is exact in allocation

of all resources (t~) except bus drivers (which cannot be allocated

before the binding phase. see Chapter 10). For the first time this pro­

vides us with an exact defined relationship between parallel data transfers

and the number of busses required in the architecture.

7.s COST FUNCTIONS

Piecewise linear cost functions. defined in (Devadas. 1989) and for

example shown in (7.6) below. are also supported. where

Te=~U-l)xj,kOf4J. The special operation kout is used when there is more
j

than one operation which outputs a value at the end of the algorithm (or

loop). Each of these last operations is defmed to precede kout. Then kout

is used to define the last cstep of the algorithm or the end the loop. Simi­

lar to kin. kout is only used for the partial order and register allocation

constraint and it does not participate in the functional unit allocation con­

straints. Other general piecewise linear functions. where for example the

cost per register is different if there exists more than 5 registers are

defmed in (Nemhauser.1988) and can be also modeled but require

120 Architectural Synthesis

additional binary variables.

To illustrate a piecewise linear cost function assume we have a cost

of to per register for the first 5 registers and a cost of 15 per register for

the additional registers (Devadas, 1989) after the fifth. The register con­

straint (7.4) becomes ax ~ 2(R1+R2), RfB=5 and Rf'B=o, and part of

the cost function becomes (10 15)(R1 R2l = c _reg R.

7.6 APPLICATION SPECIFIC TIGHTENING OF CONSTRAINTS

We additionally use ksep (and kout) of the DAG to tighten functional

unit and bus allocation constraints. These operations are present when­

ever one code operation, ksep ' precedes and/or is preceded by «. » all

other operations. This operation is present at the beginning/end of loops,

branches, and algorithms, and sometimes within basic blocks of code

(such as the elliptic wave ftlter see chapter to). Tightened inequalities

for functional unit allocation (7.7) and the bus allocation (7.8) are shown

below. In (7.7) if ksep is not of type t then its coefficient is (ILB t) and in

(7.8) if ksep is not a single cycle operation then its coefficient is

(B LB -In(ksep))'

jl=j+(L-l) LB .
L L Xjl,k+(It -l)Xj,kupgI'Vt,j£R(ksep),ksepEt. (7.7)
kfJ jl=j

j£R(k)

OASIC: Area-Delay Constrained Architectural Synthesis 121

L (In (k»Xj,k +(BLB-In(ksep)-Out(ksep»Xj,k,.p (7.8)
k

j£R(k)

+ L
k)

jl£R(k1)

jl=j-{C)-l)

Knapsack inequalities of the bus constraint can be used to tighten the

OASIC model whenever the coefficients of the x variables in (7.8) or

(7.5) are different. This occurs whenever code operations of the DAG

have different numbers of input variables or multicycle functional units

are used. In the OASIC methodology the (integer rounded) lower bound

calculation for the number of busses is fixed and knapsack inequalities

are extracted. The relaxed linear program is then resolved to determine if

it is still feasible. If it is infeasible then the lower bound on the number

of busses is incremented. Chapter 10 will illustrate this procedure and

show the cpu speed improvement attained. The number of inputs to

operations may also be application dependent, for example if one input

of all multiplication operations is obtained from memory then only one

input bus needs to be allocated since we can directly connect the other

inputs to specific memory.

The register allocation constraint could be converted into a knapsack

inequality (by changing the -1 coefficient into + 1 coefficient, ie. xl = 1 -

x), however poor results are expected since the variable coefficients are

all one. Currently the register allocation constraints are not tightened.

In this chapter we presented the OASIC model for area-delay cost

functions. We also described how special operations and the type of

functional units can be used to tighten and extract facets of the underly­

ing polytopes. The next chapter will examine how instances of these

constraints are used to support algorithmic constructions such as

122 Architectural Synthesis

conditional code, loops, and functional pipelining in OASle.

8.

SUPPORT FOR ALGORITHMIC CONSTRUCTS

We will discuss in this chapter model extensions for conditional

code, loops and functional pipelining. In addition their effect on timing

constraints will also be covered in relationship to the architectural syn­

thesis model and controller implications. These constructs are supported

by both the structured and area-delay optimization models presented in

chapter 6 and 7. We will present their fonnulation using the area-delay

model for simplicity. However one can transfonn these into constructs

for the structured model by substituting DiJ,k for Xj,k.

8.1 CONDITIONAL CODE

All the previous inequalities in chapter 6 and 7 apply to basic blocks

where operations are not mutually exclusive. We will now address how

the previous constraints presented in chapter 6 and 7 can be used to

124 Architectural Synthesis

support conditional code. Conditional code is supported by applying con­

straints (6.3).(6.4). and (6.5) to code operations in separate mutually

exclusive code segments. If we let B j represent basic blocks of code (or

straight line code) in the algorithm then we can derme a branch as a pre­

cedence constraint between blocks. For example blocks of code B 1 <-B2•

B1<-B3• B2<-B4 and B3<-B4 can be used to represent the blocks of

code in figure 8.1. The code operations in B2 and B3 are mutually

exclusive. The inequalities for functional unit allocation are given in

(8.1). The rest of the inequalities are also applied to these basic blocks.

If we assume conditional branches have equal probability then we may

have to add further data precedence constraints in order to a) prevent

code motion (Ellis. 1986) or b) prevent conditional code operations

being scheduled (illegally) before the branch or after the join of the

branch.

L XjJ,k~1. Vi,j ,z=1,2,3,4.
kElJ.

jdl(k)

(8.1)

OASle can be used to minimize the weighted sum of execution

times for all conditional paths. Therefore one can schedule and allocate

resources simultaneously with minimizing the execution time on dif­

ferent paths. This is similar to the kout placed at the end of loops and

algorithms to measure the last cstep and ensure registers are allocated to

hold these output values. For our case at the end of each branch if more

than one operation outputs a value we use partial order constraint to

ensure it is succeeded by keob or the end of branch operation. We can

then use the scheduled time of keob in our objective function along with

all other end of branch operations to minimize the individual conditional

paths.

Support for Algorithmic Constructs 125

Figure 8.1. Conditional code illustrated with four basic blocks of code

operations, where B2 and B3 are mutually exclusive.

It is also interesting to note that conditional constructs do not present

a problem for register allocation unlike the case for allocating registers

for fixed schedules with conditionals. Thus for the first time we can

minimize the number of registers in the presence of conditional code.

Furthermore edge reduction is not required for cases where an edge ori­

ginates from one operation (before the branch) and terminates at opera­

tions in mutually exclusive basic blocks. Edge reduction is not necessary

since the constraint generation is done on a per branch basis so in each

inequality only one edge is seen.

Only during functional pipelining (described in chapter 8.3), where

the maximum execution time of each conditional path is not fixed, is it

necessary to transform the DAG (with conditionals) into an outtree (see

chapter 3.4) structure where there are only branches and no joins. How­

ever when the execution times of the conditional paths are known the

126 Architectural Synthesis

DAG transfonnation is not necessary, and time translation can be used to

allocate resources from different pipestages.

Timing constraints between operations before conditional branches

and operations after conditional branches will not pose problems for

scheduling. If conditional paths differ in length then one may have to

append empty states to the controller in order to ensure that specific

minimum timing constraints are met

8.2 LOOPS

Loops are easily supported in OASIC using special kin and kout

operations which participate in all constraints except (7.3). These opera­

tions ensure that output (loop) variables are valid until the end of the

(loop) algorithm, and input (loop) variables are valid until their last use

inside the algorithm. For example variables input to the loop are

represented by kin<·k1,'Vk1 and variables output from the loop are

represented by k2<·kout,'Vk2.

Timing constraints can also be incorporated within or across loops.

For a minimum timing constraint, we assume the loop executes a

minimum number of times. For a maximum timing constraint, we

assume the loop executes a detenninate number of times as in (Hay­

ati, 1989) .

8.3 FUNCTIONAL PIPELINING

Functional pipelining for a fixed latency, I, can be incorporated into

our model without additional variables. We use the tenn functional pipe­

lining to refer to executing a number of instances of the input algorithm

in parallel but each successive instance is delayed in time. We call the

delay in time, for each pair of successive instances, the latency. At most

p instances (or pipestages) of the input algorithm are executing in parallel

Support for Algorithmic Constructs 127

at one time (at one clock period, or at one cstep). Furthermore each

instance of the algorithm has the identical schedule of code operations

except it is delayed by the latency.

We assume Te = JUB and define r Tell 1 =p pipestages, and replace
n=p

L Xj,k of (7.3),(7.4),(7.5) with L L Xj+nl,k where addition
klj£R(k) n=l k

(j+nl)£R(k)

U+nl) is modulo 1. Only constraints for 1 csteps need to be generated as

shown in figure 8.2(a), where A through E represents sets of code opera­

tions scheduled over each successive group of 1 csteps.

A A

B A B A

C B A C B A

D C B A D C B

IE D C B AI E D C

E D C B E D

E D C E

E D

E

(a) (b)

Figure 8.2 Pipelining constructs showing in boxes the number of csteps

required to generate OASIC allocation constraints (I in (a) and 31 in

(b».

128 Architectural Synthesis

A variation of the functional pipelining can also be used if only z

pipestages with latency I are used. In this case z <p, only zl csteps are

used to generate constraints representing the period from zl to JUB

csteps as shown in figure 8.2(b), where JUB is the upper bound on the

number of csteps for one pipestage. In this example three pipestages are

used each with a latency equivalent to the number of csteps in A.

We can also support functional pipelining in the presence of condi­

tional code. This construction generates the functional pipelining con­

straints for each combination of conditional branches which are possible

over all pipestages at each cstep.

General algorithmic constructs were presented in this chapter for the

OASIC model. In the next chapter we examine the special constraints

for interfacing to analog, asynchronous or other processes. The next

chapter concludes the discussion on constraint formulation for OASIC.

9.

INTERFACE CONSTRAINTS

Timing constraints can be used to represent interfaces with external

processes or local constraints between pairs or groups of code operations.

Five categories of timing constraints are analyzed below. We will

assume timing constraints are given in terms of the clock period. Other­

wise we can convert using the following: we use r tit e 1 =T for minimum

timing constraints and l t/ te J =T for maximum timing constraints,

where te is the period of the clock (equal to one cstep) and t is the real

time constraint given by the specification. We will investigate the fol­

lowing types of timing constraints for architectural synthesis:

Fixed Timing

Minimum Timing

130 Architectural Synthesis

• Maximum Timing

• Unknown Timing

• Special Timing Constraints

Fixed timing constraints can be used to represent an analog interface.

An example is the sampling of an analog signal (using an analog to digi­

tal converter), where successive digital data is input to the architecture to

be synthesized after every T csteps. The minimum and maximum timing

constraints could also specify an interface with some external process

where after at least (or at most) T units of time (since a code operation

output data to the external process), data will be available, from the

external process, in an input register. Asynchronous interfaces occur

when one deals with unknown delays. An unknown, bounded timing

constraint is an example of an asynchronous type of interface. Bounded

means that an interval of time (lower bound and upper bound) when data

may be received for input to a code operation is known. For example a

designer could know that anywhere from cstep 5 to cstep 10 the data will

be input. A bounded data dependent loop also represents a bounded unk­

nown delay. Unbounded unknown delays, such as data dependent loops

or synchronizers, will also be covered. In all examples below, T is the

time constraint value. We use the notation time(k, k2) <~ T to represent

the (minimum >, maximum <, or fixed =) time constraint between the

two operations. Combinations of these constraints are also possible as

discussed in section 9.5.

9.1 GENERAL INTERFACE: MINIMUM AND MAXIMUM

TIMING CONSTRAINTS

Minimum and maximum timing constraints can be easily incor­

porated and have the same form as the precedence constraint and there­

fore are very tight. The minimum and maximum timing constraints

Interface Constraints 131

between the scheduled csteps of two code operations can be represented

by the inequalities (9.1) and (9.2). This is equivalent to setting C2=T in

inequality (6.6) of chapter 6.

LXkhj+ L Xk2.j~1. Vh,time(kl,k~~T. (9.1)
j>iI j!.h+T

LXkhj+ L Xk2.j~1. Vh,time(kl,k2)~T. (9.2)
j<jl j~jl+T

9.2 ANALOG INTERFACE: FIXED TIMING CONSTRAINT

Interface with analog processes can be modeled using fixed timing

constraints, between operations which successively output data to DAC

or receive input data from ADC. A fixed timing constraint of T (T~)

between two operations can also be defined as the scheduled time for

operation 2 is T cycles after operation 1. This can be represented by the

following equality in our assigrunent model, Xkhj=X~.(j+T)' V j. How-

ever the tighter formulations of these constraint are the following node

packing facets of the scheduling problem shown in (9.3).

xkhiI+ L Xk2.j~1. Xk2.h+ L Xkhj~1. (9.3)
j*h+T j*jl+T

Vjl,time(k1,k2)=T

The above facets are used along with minimum and maximwn tim­

ing constraints, time(k1,k2) ~ T and time(kl,k~ ~ T that were presented

in the previous section 9.1. Figure 9.1. gives an example of these facets

for T=O. A similar comparison can be made with Baker's (Baker, 1974)

and Lee etal.'s (Lee, 1989) formulation as done in chapter 6.1, to show

that our formulations are tighter than theirs.

132 Architectural Synthesis

j j

(a) (b)

Figure 9.1. Node packing graph for fixed timing constraint between 2

code operations time(a ,b)=T=iJ. (a) shows the fixed timing con­

straint and (b) shows the minimum/maximum constraints, both are

facets of the underlying polytope.

93 ASYNCHRONOUS INTERFACE

Interface with asynchronous processes can be modeled as bounded

(or unbounded) unknown timing constraints. We will address different

approaches to the bounded asynchronous interface in this section. Let

tmax represent the latest possible time for the data to arrive (upper bound)

and tmin the earliest possible time for the data to arrive (lower bound).

Then p = (tmax-tmin) is the number of control steps when the data may

arrive. We assume each control step has equal probability of arriving and

we wish to minimize the overall algorithm execution time, the control

store and total resources. We will use the terminology defined in chapter

2 to describe the partition of operations resulting from the asynchronous

interface, ie. interface dependent operations and interface independent

operations. For example consider a code operation, kout, which outputs

data to an asynchronous operation, Ka. Operation Ka performs data

Interface Constraints 133

dependent processing and returns its output data after some indetenninate

(and bounded) number of csteps. Assume that the bound on the indeter­

minate number of csteps is p. We can expect to receive data from Ka at

cstep = ir lasap(kout } +Cout+d ~jr~/ap(kout} +Cout -l+d+p, where

d + 1 (or (d+p» is the minimum (or maximum) processing time of Ka.

The following five solutions were considered below.

a) Trivial Controller Wait State

b) Partition Resources: Tradeoff Hardware for Control

c) Maximum Resource Sharing: Tradeoff Control for Hardware

d) Mutually Exclusive Pipelining

e) As Late as Possible Approach: Tradeoff Execution time for

Hardware & Control

Each case will be discussed below with respect to synthesis complex­

ity, hardware versus controller area (number of words to store) and exe­

cution time tradeoffs.

a) Trivial Controller Wait State

In the trivial-controller-wait-state the controller waits from

cstep=asap(kout}+Cout+d until data from Ka arrives. For architectural

synthesis we can synthesize all code operations assuming that the data

from the asynchronous operation is ready at asap(kout}+Cout+d. In

OASIC a minimum timing constraint (Cout+d) is placed between kout

and the asynchronous operation Ka (which is modeled in OASIC as a

single cycle operation).

134 Architectural Synthesis

b) Partition Resources: Tradeoff Hardware for Control

In this scenario we can assume that while part of the interface depen­

dent algorithm is waiting for the input data, the remaining interface

independent algorithm is executing on the architecture until it becomes

interface dependent, as illustrated in chapter 2, figure 2.4. We assume

that the interface dependent code operations are executed on hardware

that cannot be shared by interface independent code operations. Figure

9.2a) shows the original data flow graph, where Ka is the asynchronous

operation. The partitioned schedule for two separate controllers is in fig­

ure 9.2b). This can be estimated as a controller size of 6, since 6 words

of control (or control states) are required. In this case data path synthesis

can be partitioned into two routines, in (b), to be synthesized on separate

hardware.

c) Maximum Resource Sharing: Tradeoff Control for Hardware

Solution (b) may be very inefficient if a large number of functional

units are required for the interface dependent algorithm. Therefore in

this section we investigate sharing the hardware between both algo­

rithms. This problem is now defmed as scheduling and allocating

hardware for conditional code (representing interface dependent code)

originating from each successive cstep within the bounded interval p.

We can use p mutually exclusive branches (b=l, ... ,p) of interface depen­

dent code operations where each branch starts at d+b csteps after kow

outputs data kout<eKa (using fixed timing constraints for b=1). This is

shown in figure 9.3 (a) and (b). It can be seen that the controller in (b)

may become very large because we allow independent scheduling of each

branch to optimize the architecture, however only one schedule for the

interface independent code is used. Separate variables are used to

represent the scheduling of code operations in each mutually exclusive

branch.

Interface Constraints 135

(a) (b)

Figure 9.2 Partition of hardware for bounded unknown timing con­

straints. Three subtractors, three adders, and 6 control words are

required.

Another approach possibly requiring a larger controller, would allow

the interface independent code operations to have different schedules

depending upon when the data from Ka arrives. This new problem

requires OASIC to be solved two times. The first OASIC solution

assumes that (data from Ka) arrives at the latest possible cstep. By using

this schedule for interface independent code operations the second

OASIC problem to solve involves scheduling and allocating hardware for

conditional code (now representing both interface independent and

dependent code operations) originating fonn each successive cstep within

the interval p.

136 Architectural Synthesis

(a) (b)

Figure 9.3. Sharing hardware between interface independent and depen­

dent code operations. Two subtractors, two adders, and 11 control

words are required.

d) Mutually Exclusive Pipelining

In the previous approach, c), we used p mutually exclusive branches

(b=I, ... ,p) of interface dependent code operations where each branch

starts at d+b csteps after kout outputs data kout <·Ka (using fixed timing

constraints for b= 1). To minimize controller costs and without additional

variables (unlike approach (c», we can alternatively schedule the mutu­

ally exclusive branches as pipestages. This can be done by replacing

(L Xj,k) in (7.3),(7.4),(7.5) with the following equation:
k

j£R(k)

Interface Constraints

(1:
k

j£R(k)
k indep K.

XkJ+ 1: Xj-b,k), 'Vb
k

K.,<-k
U-b)£R(k)

137

, where k indep Ka represents code operations that execute in parallel

and independent of the asynchronous process. This technique models the
interface to asynchronous operations using p mutually exclusive pipes­
tages, each with latency = 1 (see chapter 8 for tenninology defInition).
An example is shown in fIgure 9.4.

To prevent the controller from becoming very large, as in l(c), we
have placed a restriction on the schedule of the interface dependent code.
The restriction requires that the schedule for the interface dependent code
must be the same for initiation at any time E p. Thus only one schedule
is required regardless of which time the data arrives and the algorithm is
initiated.

We also could extend this approach by allowing interface indepen­
dent code to have a different schedule depending upon when data from
Ka arrives, as discussed in the previous section c). The same fonnula-

tion is used, except the schedules for interface dependent code operations
are constrained to be the same.

e) As Late as Possible Approach: TradeotT time for area

In a) through d) we have assumed that as soon as the data from Ka

arrives, the interface dependent algorithm is initiated immediately. How­
ever another approach is to wait for the data. The interface independent
code operations are executed until the last cstep in interval p is reached.

At this point the controller executes the interface dependent code opera­
tions along with the remaining interface independent code operations.
This problem is very simple in OASIC and is modeled by placing a

minimum timing constraint of (C out -1 +d+p) between kout and Ka·

138 Architectural Synthesis

(b)

Figure 9.4. Asynchronous interface modeled as p mutually exclusive

pipestages. Two subtractors, three adders, and 6 control words are

required.

9.4 UNKNOWN UNBOUNDED DELAYS

Examples of unknown unbounded delays were pre~ented in chapter

2. In some cases an 00 bounded delay can be decomposed into a bounded

delay and wait state. This partitioning was illustrated in figure 2.4 of

chapter 2. In these cases we can use the previous models to determine

which approach best matches the application. Otherwise when the parti­

tioning is not possible it can be implemented as a wait state.

9.5 COMPLEX TIMING CONSTRAINTS

Timing constraints may also be formulated across loops. In other

words operation a of loop iteration i is to be scheduled T csteps before

operation b of loop iteration i+ 1. This example can be fonnulated as the

Interface Constraints 139

following constraint (9.4), where ktop and khot are the top and bottom of

the loop operations respectively as defined in chapter 8.2.

1: U+l) Xj,top- 1: j Xj,a+ 1: j Xj,b (9.4)
j£R(top) j£R(a) j£R(b)

- 1: U-l)Xj,bot=T.
j£R(bot)

The node packing fonnulation could not be made unless the loop execu­

tion time is known. In this case one can fonnulate the constraint as a

fixed timing constraint using J - T csteps for operation a to be scheduled

after operation b of the same loop iteration.

Other combinations of constraints such as time(a,b) S; 0 or time(a,b)

~ 3 can also easily be incorporated. These constraints cannot be modeled

using a combination of minimum and maximum timing constraints and

therefore the fonnulation in (Baker,1974) and (Lee,1989) cannot be

used. Figure 9.5 illustrates one facet for this application, which can

easily be generalized.

Other constraints such as ensuring that data is valid in a register for a

least T csteps can be fonnulated using a dummy operation, kd' and set-

ting a minimum time constraint between it and the code operation «-kd)

which outputs the data. Alternatively if data is input from an external

process and is only valid in an input register port for T csteps (after

which point it may be oveIWritten), then the fonnulation is a maximum

timing constraint between the dummy operation (representing the exter­

nal process) and all operations (->kd) which directly access this data.

In this chapter we outlined general and complex timing constraints

that may be necessary for interfacing to external processes. We have

described above for the first time, within the context of simultaneous

scheduling and allocation, different approaches for dealing with

140 Architectural Synthesis

j j

(a) (b)

Figure 9.5. Node packing facets, in bold, for combination timing con­

straint time(a ,b)SO or time(a ,b)~3.

interfaces to analog, asynchronous, and data-dependent processes. In the

next chapter we will present applications and solutions of OASIC for

various high level synthesis benchmarks and other algorithms, as well as

demonstrating all types of interface constraints.

10.

OASIC SYNTHESIS RESULTS

This chapter presents results for simultaneous scheduling and alloca­

tion of a number of high-level synthesis benchmark examples (sections

10.1,10.3) (hlsw, 1988) , a digital neural network (perceptron with back

propagation learning (Lippmann, 1987)) (section 10.2), and other exam­

ples to demonstrate interface constraints (section 10.4). The abbrevia­

tions for these examples are given in table 10.1 and more examples can

be found in (Gebotys, 1991x) .

All the reported CPU times in chapter 10 are for solving the 1P prob­

lems using GAMS/MINOS (LP solver) and/or GAMS(ZOOM (branch

and bound 1P solver) on a IBM PS/2 model 80 (386 PC). In examples

where the GAMS/ZOOM branch and bound algorithm for 1P is used,

both the absolute and relative termination tolerances were set to zero (and

upper bounds on variables were not set), so that in both cases globally

optimal solutions could be guaranteed. The only times not reported are

142 Architectural Synthesis

Table 10.1. Summary of OASIC Synthesized Examples

Section Example

10.1 EWF Elliptical Wave Filter

10.2 ANN Neural Network 16X4X4X4

10.3 CC Conditional Code Example

10.4 IC Examples with Analog and

Asynchronous Interfaces

for preprocessing ie. translating the data flow graph or input algorithm

into partial orders, calculating the asap and alap schedules, and reducing

the edges for variable lifetime representation. The first translation of

algorithm into partial orders can easily be done by traversal of the data

flow graph or by writing a program to translate the input algorithm into a

list of partial orders (Aho, 1974) . The asap and alap schedules algo­

rithms were run below on the examples to give an indication of how

quicldy this processing can be done. The asap and alap schedules were

run using the OASIC submodel (Xj,k), and some results are tabulated in

table 10.2. We expect that by using graph theoretical algorthms such as

the critical path method faster runtimes can be achieved. However it was

more useful to demonstrate using the IP model to show that in fact all

cases provided integer solutions, thus showing the tightness of the sub­

model. (It is also interesting to note that this is the first time an IP has

been used to solve for these asap and alap schedules).

Table 10.3 summarizes the use of IP techniques. The use of these

inequalities are application dependent and therefore are outlined below.

The definitions and examples of their use can be found in chapter 6 and

7. The disjunctive constraints are only used with the structured OASIC

model (chapter 6), whereas the tightened constraints and knapsack facets

are only used with the area-delay OASIC model (chapter 7). The

OASIC Synthesis Results 143

Table 10.2. Preprocessing CPU seconds for EWF

Preprocessing Te CPU sec

Tgen Texec

asap 21 186 46
alap 21 186 44

Table 10.3. Summary of Techniques Used in OASIC Examples

Technique Sections/Examples

10.1 10.2 10.3 10.4

EWF ANN CC IC

Tightening y n n y

Disjunctive y n n y

Knapsack y n n n

Functional

Pipelining n y n n

Regularity n y n n

functional pipelining and regularity decomposition can be applied to

either model.

The elliptical wave filter benchmark. was thoroughly analyzed. Not

only is it an excellent example for synthesizers; it has been a very popu­

lar benchmark for over three years, however OASIC results show that the

architectures obtained by previous state of the art synthesizers are not

globally optimal. In comparison to other benchmarks it has been syn­

thesized much more often. Furthermore we have not seen any reported

(published or unpublished) synthesized results for the matrix multiplica­

tion as performed in the kalman and artificial neural network examples.

144 Architectural Synthesis

10.1 ELLIPTICAL WAVE FILTER

The EWF was originally selected from the data flow graph represen­

tation (transformed from the z-diagram representation) in (Kung, 1985)

as a high level synthesis benchmark in 1987. The DAG was then

corrected by Dr.P.Paulin in (Paulin, 1987) . The majority of synthesizers

have used a random topology, with the exception of SPAID and some

others (Lee, 1989) which used a register transfer file architecture. A

comparison with the register transfer file architectures is made at the end

of the chapter.

The EWF is essentially a loop with 34 code operations and over 56

precedence constraints. It remains a challenge for current synthesizers

due to its complex interconnections. The large number of precedence

constraints provides a good benchmark for demonstrating the register

allocation constraints. As we will show OASIC provides for the first

time globally optimal synthesized architectures with improvements over

previous research in number of busses and registers.

The number of registers allocated does not include the IN and OUT

registers shown in (Kung, 1985) . It does not make sense to allocate

these also since these are dedicated registers. The bus allocation includes

only one input per multiplication operation since the multiplications

obtain the other operand from the ROM or coefficient memory.

10.1.1 Structured Model

The synthesizers were compared by the types of subtasks they per­

form and the execution time in cpu minutes or seconds for the EWF.

Table 10.4 has columns for scheduling (Sched), functional unit allocation

(FU), and register allocation (Reg). A y (yes) means that the subtask is

completely performed. A c (calculated) means that the number of

resources is calculated exactly. A e (estimated) means that the resource

is estimated using some heuristic or it is somehow considered during the

OASIC Synthesis Results 145

algorithm. The execution time in cpu minutes/seconds in table 10.4 are

for the scheduling phase only for HAL (Paulin,1989) (using a Xerox

1108 Lisp machine) and the simulated annealing (S.A.) runtimes (using a

Vax 11/8650) (Devadas, 1989) . The OASIC cpu seconds are for the

GAMS/MINOS (Brooke, 1988) model generation time plus execution

time (Tgen+Texec) for a IBM PS/2 Model 80 (386 PC). The asap / alap

or other preprocessing times were not included but are negligible (less

than 1 cpu minute). All integer solutions were obtained using the

OASIC in over 80% of these cases (using different cost functions).

Table 10.4. Synthesizers Comparison for EWF

Example Synthesizer cpu Subtasks Performed

(Tgen+Texec) Sched FU Reg

EWF S.A. 4min y y c

HAL 4-6min y y e

OASIC 53sec y y -
OASIC 90sect y y y

t using unstructured register allocation a.x~ ,aCO, 1,-1).

Table 10.5 and 10.6 give a more detailed examination of the perfor­

mance of the OASIC for synthesizing the EWF as the upper bound on the

number of control steps (csteps) is increased and as the EWF loop is

unrolled. The model generation time(Tgen), execution time(Texec) (both

in cpu seconds), number of variables(Var), number of constraints(Eqn)

and number of simplex iterations(Itns) to solve the LP are given. The

number of two cycle multipliers (*), two cycle pipelined multipliers

(*pl), and one cycle adders (+) are given. In tables 10.5 and 10.6 the fol­

lowing cost function was minimized

146 Architectural Synthesis

• where cosCadder(i)=(0.0.0.2.4.6) and cosCmultplr(i)=(31.62.93.0.0.0).

All solutions in table 10.5 were completely integer after solving the

LP once except row three (19 csteps). In this case the times reported in

table 10.5 include enumerating by selecting variables by hand until a glo­

bally optimal all integer solution was obtained. We also tried to solve

this example totally by extracting facets. Using additional facets (clique

facets and lifted odd cycle facets) we could improve bounds by 0.8%

from objective value =316 to 318.75. however it was faster to enumerate.

We note that in section 10.1.2 we present a solution to this example in

even faster runtimes using the unstructured model.

Table 10.5. Synthesis using IP Model for EWF

csteps *pl * + Tgen Texe Var Eqn Itns

(sec) (sec)

17 2 3 10 9 173 113 115

18 1 3 15 11 267 157 193

19 1 2 40 29t 355 201 754t

17 3 3 10 10 184 127 111

18 2 2 14 12 267 163 172

19 2 2 14 20 355 207 263

21 1 2 37 20 537 287 629

t relaxed LP did not provide all xfiJ. cpu times include B+B.

OASIC Synthesis Results 147

In table 10.6 we unrolled the EWF two and three times to illustrate

how well OASIC perfonns with a large number of code operations. In

the later case simultaneous scheduling and functional unit allocation of

over 100 code operations was executed in 90 cpu seconds. To our

knowledge no other research has solved simultaneous scheduling and

allocation to global optimums for this (large) number of code operations.

Table 10.6. SyntheSis using IP Model for Unrolled EWF

of code Te *pl + Tgen Texe Var Eqn

operations (sec) (sec)

68 34 1 3 32 25 566 333

102 50 1 3 51 39 859 506

Figure 10.1 shows one solution for the elliptical wave filter example

optimized for registers, functional units and execution time. This optim­

ized solution was obtained by minimizing the previous area cost function

(10.1), with an upper bound of 19 control steps, three adders, three two­

cycle multipliers, and nine registers. The optimum solution with 2 two­

cycle multipliers, 2 adders, and 9 registers (not including the IN and

OUT registers) required 200 cpu seconds for model generation and 18

cpu seconds for LP execution (424 variables, 279 constraints, 536 itera­

tions). Lifetime defining edges for all but two variables were found

using the transitivity and alap analysis. The multiple edges for the two

variables required only 24 extra constraints. No previous research to our

knowledge have quoted as low as 9 registers for the EWF which demon­

strates that global optimums have not been obtained by heuristic syn­

thesizers. Other synthesized results with a constraint on the number of

registers is shown in table 10.7.

148

" ,
+3

1

,

1

,

" "

, , ,

"

Architectural Synthesis

"
" " "

Figure 10.1. EWF schedule optimized for 1=19 control steps, with vari­

able lifetime defining edges.

OASIC Synthesis Results 149

Table 10.7. Structured Model with Register Allocation, a.x~.

Te *pl * + R Var Eqn cput
(sec)

18 I 3 10 344 211 91

19 2 2 9 424 279 219

t Tgen+ Texec cpu times

Table 10.8. Selection of Type of Functional Units

Cost per Type * *pl + Tgen Texec

* *pl (sec) (sec)

12,25 31,62 2 2 16 13

19,37 31,62 1 1 2 16 16

Disjunctive Constraints

150 250 2 2 18 (B+B)884

150,160 250,260 2 2 19 (B+B)475

Selection of Functional Unit Types.

To demonstrate the usefulness of the XjJ.k model we solved the

OASIC model for simultaneous selection and allocation of functional

units and scheduling. The results are given in table 10.8. Special cost

functions calculated as described in chapter 6.3 (row 1,2) and disjunctive

constraints (row 3,4) were used to select the type of functional units to

minimize the area cost In all cases the upper bound on csteps was 18

and the branch and bound algorithm was used to solve for the disjunctive

variables. In the last row the cost values were incremented by 10 for

each additional unit This improved the cpu times and removed the

ambiguity between choosing the first or second functional unit of the

150 Architectural Synthesis

same type each with the same cost.

The selection of functional unit types is complicated by the fact that

the lower bounds on the types of the functional units must be 0, (thus

allowing for the case where the particular type is not chosen). Also

depending upon the cost function more than one type may be selected.

For the first time we have a model which can simultaneously make these

decisions.

10.1.2 Area-Delay Optimized

No other synthesizer can simultaneously schedule and allocate all

resources with an area-delay cost function except for OASIC and the

simulated annealing synthesizer in (Devadas, 1989) . Bearing this in

mind we compared OASIC with simulated annealing (Devadas, 1989)

and the only two completely published solutions in HAL (paulin, 1989) ,

and SAW (Lagnese,1989) . We minimized area-delay cost functions

with different upper bounds on csteps. The improvement in the number

of busses for OASIC was compared with other published solutions. We

also show that these solutions are relatively stable with respect to large

changes in cost parameters.

Functional unit and bus allocation constraints were tightened where

possible with ksep = +25, and kout of the EWF DAG shown in figure

10.1, using the technique described in chapter 7.6. Two solution tech­

niques, LB and KP, were demonstrated with OASIC. The first method,

LB, calculates lower bounds and branch and bounds to obtain a solution.

The second method, KP, additionally uses knapsack inequalities to

improve the bounds before branch and bounding.

Lower bounds on the number of busses and previous research are

plotted in figure 10.2. Lower bounds are calculated by integer rounding

up the minimum value of B obtained from solving the relaxed LP. The

OASIC Synthesis Results 151

solid line in figure 10.2 is the lower bound (LB) for busses (without

using 3I+gj) , the dashed line is the improved lower bound (LB+) using

constraint 3I+GJ, and the circle points are the solutions obtained by

OASIC. Lower bounds for busses calculated by fixing the number of

functional units for each cstep (17,18,19,20,21) provided lower bounds

of (10,8,6,6,6) number of busses respectively

(Gebotys, 1991c, Gebotys, 1991b) .

B
u
s
s
e
s

10.00

9.00

8.00

7.00

6.00

5.00

17

Legend:

LB
LB+

+
I
I
I

.-....... -.......... :t -.... ~ .. , ,:

18 19
Csteps

20

• SAW
+ HAL

21

o OASIC(1O.2)

Figure 10.2. The graph of csteps versus the number of busses. The

dashed arrow shows the improvement in busses using the OASIC

model for designs with the same number and type of functional units.

152 Architectural Synthesis

The piecewise linear area-delay cost function (to.2), was minimized

to synthesize architectures for the EWF, shown in rows OASIC of table

to.9. These cost parameters were taken from (Devadas, 1989) . The

values shown in (10.2) were actually divided by 100 to try to normalize

the objective function and hence improve the performance of the LP

(Gill, 1981) . For example the optimized solution for 18 csteps with this

area-delay cost function is 1 two-cycle pipelined multiplier (*pl), 3 (sin­

gle cycle) adders, 9 busses, and to registers.

501+ + 2501* + 15 R + 100B + 50 Te (to.2)

Figure to.3 shows 7-18% improvement in area-delays over previous state

of the art EWF solutions, SAW (Lagnese, 1989) and HAL (paulin, 1989)

for cost function (to.2). These results are very good considering the

EWF has been investigated for years. Secondly our solution is stable

over different types of cost parameters on the number of registers and

busses.

Table to.9 shows a comparison of the cpu performance using

OASICs LB and KP methods with previous research. The - in table to.9

means that the KP approach could not improve the lower bound on the

busses. The delay cost component was removed once the first LP was

solved with lower bounds. The largest cstep with code operations (or

fractional values of these) was used as the delay value. Then subsequent

analysis was done with minimizing area cost functions.

The only complete published solutions for the EWF were found in

HAL (paulin, 1989) and SA W (Lagnese, 1989) . From the 17 cycle

schedule given in (Devadas, 1989) , although not specified, the eighth

row requires 11 busses and OASIC requires 10 busses. The 17 and 18

csteps OASIC solutions for pipelined multipliers given in table to.9

required 0.5 cpu minutes and 3 cpu minutes respectively where after

branch and bounding on li,R.B variables, the initial LP provided all Xj,k

OASIC Synthesis Results

A3~.-----------------------~
r
e 2600
a

D 2200 J----i
e
I
a 1800
y

C 1400
o

~ 1~~--~--~----~--~--~--~
OASICSAW OASIC HAL

Archi tectural Synthesizers

153

Figure 10.3. Comparison of synthesized solutions for EWF measured by

area-delay cost(10.2) for architectural synthesizers OASIC, SAW and

HAL.

integer solutions. These cpu times are faster than the 2 cpu minutes and

4 cpu minutes respectively quoted by HAL (paulin, 1989) and simulated

annealing (Devadas, 1989) .

HALs EWF synthesis for 19 csteps (paulin, 1989) requires 8 busses

and 12 registers (in 6 cpu min), unlike the optimal OASIC with 7 busses

and 9 registers. This architecture was synthesized in less than 6 cpu

minutes (including lower bounds calculation and branch and bound cpu

times) to produce the schedule shown in figure 10.4. The lower bounds

calculated were exact (7=B,9=R).

The area-delay optimized solution for two cycled multipliers (with

an upper bound of 18 csteps) is shown in row seven of table 10.9 and

plotted in figure 10.2. This is an interesting problem since it demon­

strates the differences in lower bound calculation (LB), the advantages of

the knapsack inequalities (KP) and importance of tight bounds. We will

154 Architectural Synthesis

Table 10.9. EWF Synthesized Architecture Comparisons

Synthesizer Te *pl * + R B Total cpu minutes

LB KP

OASIC 21 1 2 9 7 30 6

SAW:\: 19 2 2 11 9 na

HALt 19 1 2 12 8 6

OASIC 19 1 2 9 7 5.8 -
HAL 18 1 3 12 na 4

OASIC 18 1 3 10 9 3 -
OASIC 18 2 2 10 8 3 0.5

HAL 17 2 3 12 na 2

OASIC 17 2 3 10 10 0.5 -
OASIC 17 3 3 10 10 0.5

t 6 busses + 2 local busses(Paulin,1989);:\: page 79 in (Lagnese,1989)

na=not available;R does not include IN and OUT registers of filter.

now discuss in further detail the results of the different approaches.

By calculating lower bounds (2,2,9,7) for 18 csteps and branch and

bounding on Ij,R,B variables, we obtained globally optimal schedule and

allocation for this cost function in less than 3 cpu minutes total. In this

case final relaxed LP with integer Ij,R,B variables also provided integer

values for all Xj,k. In the LB method (row one of table 10.10) we

required constraint, 3*I+gJ, to cut off the integer infeasible solution

(I+=3J*=2,R=9,B=7). The cpu times for bound calculations were

approximately 10 cpu sec (Texec) for each variable in both methods.

OASIC Synthesis Results

+

!.. ,

, , , ,

155

Figure 10.4. EWF schedule optimized for 1=19 csteps and shown with

variable lifetime defining edges. The rest of the data transfers are

shown with dashed lines. Two adders, one two-cycle pipelined multi­

plier, 9 registers and 7 busses were allocated.

156 Architectural Synthesis

Knapsack Inequalities.

Since the lower bounds for 18 csteps (with two cycled multipliers)

originally calculated were not exact (or equal to the fmal optimal values)

we were able to use knapsack inequalities to improve the bound on

busses. By fixing the lower bound of busses at 7, we were able to extract

knapsack facets of this constraint and use it to show (by solving the

relaxed LP) that the bound is not feasible. The bus allocation constraint
with 7 busses is:

3 Dj,+ + Dj,. + DU-l),. ~ 7, T/j.
+ • •

Consider the bus allocation constraint for j=15. Let xI5,k=Yk' and

XI4,k=Yk". Let the coefficients of y be ck where k = + or k = *. Consider

the following minimal dependent set, Ce {+1, +2, *1, *2},

(1:xc~ICI-l).
k£C

where +1= +5 , +2= +35 , *1= *16, *2= *40 (+5, +35, *16, *40 are

names of EWF code operations and are shown in figure 10.1). We can

now prove that the following tighter inequality, where keE (C) is a facet:

1: Y + +Y.j+Y';2 ~ 3
+

15ER(+)

First we prove that: (1) (,\ {h,h} U {I} is independent, ie.

Secondly we must prove (2) (,\ Ud U {p}lp:min j eN\E(C) is

independent, ie.

OASIC Synthesis Results 157

We can generalize this inequality to choose all possible knapsack facets

for the bus allocation constraint using:

~ Xj,++Xj,.+X(j_l),.'/ ~ 3, 't*,*-l,jeR (*),j-leR (*-1).
+

j£R(+)

The other minimal dependent sets are redundant. With these knapsack

inequalities we can solve the new relaxed LP (in 9 cpu sec) to detennine

that the LP is infeasible. We therefore improved the bound to 8 busses

and solved the branch and bound with new bounds to obtain an all

integer solution in a total of 24 cpu sec. This shows the advantages of

using knapsack facets in solving the IPs. The total time required includ­

ing all stages, generation and execution times, was 0.5 cpu min.

The other knapsack inequalities were used for example with 21

csteps. The initial lower bounds were 1+=2,1.=1, R=9, B=6. By using

generalized knapsack inequalities extracted from the bus allocation con­

straint, we proved the bound to be infeasible. So by increasing the lower

bound on busses to B=7, we could branch and bound to a completely

integer solution in 6 minutes total. Without using the knapsack inequali­

ties we required 30 minutes of branch and bound to find the same glo­

bally optimal solution. Both solutions branch and bounded on the pipe­

lined multiplier operations to obtain an all integer solution.

Variable Selection for Branch and Bound.

For the upper bound of 21 csteps an arbitrary branch and bound

(where the multipliers are not chosen first) required 38 cpu minutes (with

knapsack improved bounds) to produce all integer solutions. However

by branch and bounding only on the variable for multiplication opera­

tions an all integer solution in 351 cpu seconds.

158 Architectural Synthesis

Lower Bounds Calculation.

Table 10.10 illustrates the perfonnance of using different techniques

to calculate the bounds of the problem. We also tried fixing the number

of functional units to calculate the bounds on the registers and busses.

Clearly this approach for the EWF application produced exact bounds

and overall good execution times. However this is not always

guaranteed to produce globally optimal solutions. For example in some

cases it may be possible to increase the number of functional units in

order to decrease the number of registers or busses. Figure 10.5 illus­

trates an example where by increasing the number of functional units we

can decrease the number of busses. In 10.5 a) two adders. two (two cycle

pipelined) multipliers. and 7 busses are allocated. However at the

expense of an extra multiplier we can decrease the number of busses by

one. In this case b) would be the optimal solution if the cost of one mul­

tiplier was less than the cost of one bus. For piecewise linear cost func­

tions this decision will be more complicated (ie. will the cost of the b'h

bus exceed the cost of the i 'h multiplier?) and therefore in general we

cannot fix the functional unit lower bounds when calculating lower

bounds for other resources.

Comparison with Baker's Model.

Table 10.11 shows the total cpu seconds required by the OASIC

model for optimizing the area-delay cost function in (10.2) for functional

units alone. In row one the relaxed LP with (integer rounded) lower

bounds produced integer solutions in 36 cpu seconds (for model genera­

tion and LP execution). We also ran this same instance of the EWF

problem using the precedence constraint (6.5*) (Baker. 1974. Lee. 1989)

from chapter 6 which required branch and bound to find an integer solu­

tion in approximately 10 cpu minutes (BAKER) on the same 386 PC

using the same GAMS solvers. In both cases solutions are globally

optimal for this cost function. Row three illustrates how efficiently we

OASIC Synthesis Results

1
2

3

(a)

B

2

3

7

1

2

3

(b)

159

B

3

3

6

Figure 10.5. An example to illustrate the increase of functional units to

decrease the number of busses. By increasing the number of multi­

pliers by 1 in b) we can decrease busses from 7 in a) to 6 in b). The

numbers on the left hand side and right hand side of each a) and b)

indicate the csteps and the number of parallel data transfers respec­

tively.

can simultaneously schedule and allocate large algorithms such as the

EWF which was unrolled three times creating 102 input code operations.

Over 300 Xj,k variables were solved to integer values in the initial LP.

These results illustrate how important good bounds and tight models are

for solving integer programing problems.

Cost Function Sensitivity.

Changes in the cost parameters were also investigated to see how the

cpu performance of the OASIC model varied. Furthermore this experi­

ment provided more information on the stability of the allocations. This

is important to determine since the area cost parameters are only an esti­

mate of the final area values and if a great variation in allocations is pro­

duced by only a small change in the cost parameter then the designer

must consider more than one allocation and schedule in the next binding

phase and remaining design cycle. As shown in table 10.12, the

160 Architectural Synthesis

Table 10.10. IP Perfonnance Comparisons of LB, Fixed, and Knapsack Methods

Method Lower Bounds cpu sec

I. 1+ R B

LB LB 2 2 8.6 6.7

Method B+B 2 2 9 7 128

FU fixed LB 2(fixed) 2(fixed) 9.3 7.3

Method rLP 2(fixed) 2(fixed) 10 8 38

FU fixed LB 2(fixed) 2(fixed) 9.3 7.3

Method B+B 2 2 10 8 83

KnapSack Ineq B+B 2 2 9 8(9.3sec) 24

Application: EWF with an upper bound of 18 csteps and 2 cycle multipliers.

Table 10.11. Comparison of cpu Seconds for EWF

Synth # Code Te *pl + Var Eqns cpu

Operations sec

OASIC 34 19 1 2 130 160 36

BAKER 34 19 1 2 130 120 600t

OASIC 102 50 1 3 310 407 40

t branch and bound is required.

solutions are very stable for the range of cost parameters.

Further Notes

1. The bounds calculated by fixing the number of functional units is

exact and can save significant cpu time. However these do not

guarantee that the solution is globally optimal since tradeoffs in

registers or busses for functional units is not possible.

OASIC Synthesis Results 161

Table 10.12. Sensitivity Analysis for Cost Parameters

csteps cost coefficients of cpu

I. 1+ R B seconds

18 250 50 15 100 24

18 250 100 15 300 26

18 250 100 300 100 152

2. A heuristic for 21 cycle EWF which assigned 7 partial orders

between multipliers was used to solve the problem in even faster cpu

times 14+78 cpu sec (execution + generation). It is possible that a

branch and bound on partial orders would be even more efficient for

these types of problems.

Comparison with Register File Architectures.

We could additionally make an estimated comparison with SPAID

and other register fIle architectures. However as discussed in chapter 2

this is not a fair comparison due to the difficulty in judging the overall

areas. For example we can compare the number of registers in OASIC

with the number of registers in the register fIles, however the later

requires less area per register. In addition we can compare the number of

busses in OASIC with the number of busses in SPAID (Haroun, 1989) ,

however SPAID additionally requires multiplexors which OASIC does

not. It is additionally difficult since the SPAID and <ESC> (Stok, 1989)

compilers do not quote the number of multiplexors. Nevertheless from

the number of inputs to multiplexors (mi) we can calculate a lower bound

on the number of multiplexors m = (mi/RF) and total number of busses

(B + m) = (RF + mi/RF). Since OASIC schedules and allocates, ie does

not bind, we do not have a number of inputs to multiplexors to compare

with. Table 10.13 compares the OASIC busses with the SPAID and

162 Architectural Synthesis

<ESC> busses plus multiplexors and the OASIC registers with the

SPAID registers in the register files (Haroun, 1989) .

Table 10.13. Rough Comparison with Register File Architectures.

Synth Te *pl + RF mi B+m R

OASIC 19 1 2 0 0 7 9

SPAID 19 1 2 5 17mi 9t 21

OASIC 17 2 3 0 0 10 10

SPAID 17 2 3 6 26mi llt 21

<ESC> 17 - - 8 23mi llt -
t OASIC lower bound on m was used in the calculation.

10.2 NEURAL NETWORK ALGORITHM

We will present results of the OASIC synthesizer for a four layer per­

ceptron with back propagation learning (Lippmann, 1987) . It is an

important example for synthesis since it is very different from the EWF

in that it contains a great deal of regularity and has large loops. By using

the regularity in the algorithm and by using functional pipelining con­

structs we can drastically reduce the number of code operations required

to optimally schedule and allocate the filter. It is important to note that

we are in fact not performing functional pipelining but only using the

mathematical (functional pipelining) construction to reduce the number

of code operations. The feedforward network is described first and we

can show that the model is valid for all different sizes of neurons and

layers. The second part of the results presents a model for back propaga­

tion. This is a more complex algorithm and analysis will vary depending

upon the number of neurons in each layer.

OASIC Synthesis Results 163

The general algorithm for a four layer perceptron with back propaga­

tion learning is given in figure 10.6. If we let the input data width to be

D bits (D~4) then a D X 4 X 4 X 4 network is used, (one input, hidden,

and output layer, where each layer has four neurons). This size was

chosen so that we could demonstrate what the schedule and allocation

would look like. Nevertheless we can increase the number of neurons

per layer as described in the later part of this section.

main loop {

for each layer (input to output) {

for each neuron in a layer{

xl = !CDiWi,j - Sj) }}
i

for the output layer{

for the remaining layers (output-l to input) {

8j =x] (I-X]) (L8k w/i+1})
k

for (i=I, ... ,4) w·(t.+l) = w- . +,., 8· x,.!; }}
',J ',J 'I J

Figure 10.6. Algorithmic description of ANN translated from

(Lippmann, 1987) .

164 Architectural Synthesis

In order to take advantage of the regularity present in the NN algo­

rithm we extracted a stream shown below in figure 10.7. In figure 10.7

xd is the input data to the network, (f) and the next two lines are the for-

ward propagation, and (1) through (3) and the next three lines represent

the backwards propagation. This stream (or column of activity) in effect

illustrates the behavior of the first neuron of each layer. The input code

describing this behavior is given below. Equation (f) describes the feed­

forward network that will be synthesized first The remaining equations

(1) through (3) describe the back propagation learning.

In order to avoid trivial analysis we examine a case with an even

number of neurons per layer and we will allocate an odd number of mul­

tiplier and adder functional units. If we examine allocating an even

number of functional units, F, and we have an even number of neurons

per layer, N, then we can : (1) for F<N, execute N/F neurons in parallel

using multiplier accumulator streams; (2) ~N, execute F wide multiplier

accumulator trees. An example of a multiplier accumulator stream is

shown in figure 2.2a) of chapter 2. A three wide multiplier accumulator

tree is also shown in figure 2.2b) of chapter 2.

Assuming we have 4 neurons per layer, we will examine the alloca­

tion of 3 functional units of each type (adders or multipliers). The initial

multiplier accumulation is equivalent to matrix multiplication for a 0 X

4 matrix. Let us assume for simplicity that 0=16. In the matrix multi­

plication, the summation loop was unrolled 16 times and the 4 columns

were pipelined with a latency of 1. The 4 pipestages of 32 code opera­

tions (multiplier accumulator streams) were scheduled (using the func­

tional pipelining constraints) in 24 control steps to execute the 16X4

multiplication, shown in figure 10.8. Three (two cycle) pipelined multi­

pliers and three adders were allocated which can complete one pass in

215 control steps (requiring less than 2 cpu minutes to optimize). By

making use of regularity, 4 pipe stages of multiplier/adder streams with

OASIC Synthesis Results

I xl = f(¥d W d,j-9j) (0 I

X ,I = ~(D,l w, ,-9,)
} I I,} }

j

xl = f(D] Wj,k-9k)
j

Bj =x] (I-x]) (l:Bk wlt1» (3)
k

~ (' 1 4) (t+1) - s:: I, or 1= , ••. , Wj,j - Wj,j +" Uj Xj ,

165

Figure 10.7. Stream of ANN code representing behavior of the first neu­

rons of each layer.

166 Architectural Synthesis

latency of one, required 41 Xj.k variables and 66 constraints, were used to

model this matrix multiplication. Apart from the memory required for

input vector and matrix storage, there are 7 local registers required and

18 busses. OASIC could simultaneously schedule and allocate (3 multi­

pliers and 3 adders in 24 csteps), in less than one cpu minute total. This

included 14 cpu sec and 5 cpu sec for the model generation and the LP

execution times. Unfortunately we cannot compare with (Lag­

nese, 1989) which performed matrix multiplication in a different applica­

tion since they chain the multiplier and adder into one functional unit.

No other published research has tackled matrix multiplication. This is

most likely because of its size, complexity and the possible difficulties

with applying heuristic synthesis techniques to an example with a great

deal of regularity. Nevertheless the kalman filter example illustrates the

flexibility of the IP model to support functional pipelining and synthesize

different types of input algorithms. If each f(.)=table look up (since f(.)

represents a nonlinear function) has the same number of csteps to pro­

duce an output then an upper bound of three f(.)s is also needed. The

design exploration for this feed forward network is shown in table 10.14

requiring 20 cpu seconds to minimize an area cost function (10.2). We

will present in this section synthesized architectures for the complete

algorithm shown above in figure 10.8.

Back propagation involves perfonning equations (1) through (3) of

figure 10.7, where (2) and (3) are repeated in a loop. It is not straightfor­

ward how one can schedule these equations due to their interdependence.

A significant amount of parallelism is lost by separately synthesizing

each equation separately. Furthermore unlike the feed forward results it is

not obvious how one can extend this analysis to a 4X6layered network (

k=1, ... 6 and j=l, ... ,4). For these reasons we will demonstrate our syn­

thesis model on a 4X6 network. Equations (2) and (3) represent 4 weight

updates for each of 6 neurons and a mutltiplier accumulator stream of

OASIC Synthesis Results 167

Figure 10.S. Part of the IP optimized schedule (shown for 4 control

steps with 4 pipestages, latency=l, 7=R, 18=B) for the 16X4 matrix

multiplication of the kalman filter benchmark example.

Table 10.14. Forward Propagation OASIC Results.

x·I = f(Ltd Wd .-e.) 1 ,I 1

d

Te * + R B f(.) -
24 3 3 7 18 - -
26 3 3 7 18 3 3

28 3 3 7 18 1 1

168 Architectural Synthesis

length 6 for each of 4 neurons. The 4 weight updates over 6 neurons

were transfonned into 6 weight updates over 4 neurons. In other words

each of the first 4 neurons (PE, k=I, .. ,4) had two additional weights to

update (representing part of the 5th and 6th neuron weight updating).

This provided the model with four (neurons) symmetric streams of code

to functionally pipeline. These were then functionally pipelined to

represent behavior of all neurons in one layer. The results are given in

table 10.15, and the schedule of weight calculation is presented in figure

10.9. Each row of in figure 10.9 represents the accumulative summation

over all k of Wj,k perfonned by PEj to calculate Bj , output at the 6th

cstep.

Table 10.15. Back Propagation OASIC Results for DX4X6 network.

fi (i-I 4) (1+1) - B 1. or - , ... , Wj,k - Wj,k + 11 k Xj , (2)
k=6

B· =x·1 (I-x·1) (LB w{l+l» (3)
J J J k J,k

k=1

Te * + R B Var Eqn Tgen Texec

(cpu sec)

12 5 6 12 29 62 108 24 6

17 3 3 7 18 182 243 92 10

OASIC Synthesis Results 169

Cstep to calculate Wj,PE by PE

j ,PE 1 2 3 4

1 1,5 2,6 3 4

2 4 1,5 2,6 3

3 3 4 1,5 2,6

4 2,6 3 4 1,5

at cstep 5,6 Wj,k Ik=5,6 are calculated by PEs shown

Figure 10.9. Schedule of weight calculations in back propagation for a

4X6 network.

10.3 CONDITIONAL CODE EXAMPLE

The benchmark example for conditional code was originally

presented in (Kurdahi, 1987, Park, 1986) . The example is shown in fig­

ure 10.10, and contains five nodes where branches are initiated, and 15

code operations. It is a good example for synthesizing conditional code

since there are partially ordered and independent conditional branches.

We assume that each edge in the figure 10.10 represents a data transfer

and conditional statements take 0 delay.

In addition to minimizing the area of the architecture, we can formu­

late it to minimize the execution times of each path. Only one other syn­

thesizer (Camposano,I99I) can do this type of scheduling however it

requires operations to be chained. Nevertheless this is very important

since different paths will take different times and each may have an equal

probability of being executed. If probabilities are not equal we can

accordingly weigh the final execution time on each branch.

There are three conditional blocks in this example, see figure 10.10.

We set these up as k eC;, h=I,2,3. Each block has c number of branches

possible. For example +1,+2,-2,+5 eel +1,+2,-2,-5 eel +1,+2,+3,-6

170 Architectural Synthesis

Figure 10.10. Conditional code example from (Kurdahi, 1987) showing

a schedule for 2 adders, 2 subtractors, 3 registers, 9 busses, and

Te=5.

Eel +1,+2,-3,+6,-6 Ecl +4,-1 Eel -4,-1 Ecl +7,-7 Ecl and +7,+8

EC i. Since b= 1 and b=2 are in parallel we formulated constraints for all

possible combinations of branches within these two blocks. However

b=3 succeeds the two blocks so we generate only constraints for all

branches in this one block separately.

OASIC Synthesis Results 171

Table 10.16. CPU Times for Minimizing Total Csteps in Conditional Paths

Te + - R B CPU sec Var Eqn

Tgen Texec

5 2 2 - - 13 10 90 302

6 1 2 - - 13 10 90 302

6 1 1 - - 13 10 90 302

5 2 2 3 9 145 16 92 680

6 1 2 3 9 145 16 92 680

6 1 1 3 6 143 16 92 680

1+1_ were fixed and the execution times for all paths minimized.

Only one edge (originating from +2) was reduced by the algorithm

since the variable lifetimes in different branches are calculated by the

inequality. The remaining multiple edges in the DAG are part of a con­

ditional branch. In the OASIC register allocation inequality when one

branch is chosen only one lifetime defining edge is selected during con­

straint generation.

The allocation and schedule time for 1 adder, 2 subtractors, 6 csteps,

3 registers, and 9 busses are shown in table 10.16. In (Kurdahi, 1987) 10

csteps are used and 8 registers are used, however 8 inputs are used into

the data flow graph. We omitted these inputs to show that our algorithm

produces the optimal number of registers.

10.4 ANALOG AND ASYNCHRONOUS INTERFACE

EXAMPLES

The use of OASIC with analog and asychronous interfaces is demon­

strated in this section.

172 Architectural Synthesis

10.4.1 Analog Interface

To illustrate the use of the OASIC timing constraints to model an

analog interface we used the successive inputs of IN in the EWF exam­

ple. For the 2Xs unrolled filter we placed a timing constraints between

n+3n (see figure 10.1) in successive loops to be scheduled exactly 17

csteps apart. The synthesized schedule and allocation with the fixed tim­

ing constraint required 60 cpu seconds (total generation + execution

time) as shown in table 10.17, for the structured model (of chapter 6).

The area cost function was minimized and the relaxed linear program

produced all integer variables. One extra multiplier is required for this

architecture due to the analog interface. The solution without fixed tim­

ing constraints was presented in table 10.17 of section 10.2.2.

Table 10.17. Example of Analog Interface for unrolled EWF.

Code Te *pl + CPU Var Eqns

Opns sec

68 34 2 3 60 566 337

10.4.2 Asynchronous Interface

To demonstrate how the asynchronous interface can be solved we

used the EWF example and replaced +25 <. *24 with +25 <. ka and ka

<. *24. The asynchronous process ka has a minimum data processing

time of 2 csteps (d=2) and a maximum of 5 csteps before an output data

value is produced (p=3, defined in chapter 9). We used an upper bound

of 21 csteps for the new filter and minimized the area cost function using

the OASIC model from chapter 7.

First the asynchronous interface was modeled using 3 mutually

exclusive pipestages (see chapter 9, section 9.3 d». Since the interface

dependent code will be pipelined we only use variables to represent the

first pipe stage where ka requires 2 csteps to produce output data.

OASIC Synthesis Results 173

Preprocessing for the interface dependent code is done as usual. The

upper bound on csteps for the interface dependent code is JUB - 4 (to

account for the 2 cstep delay of ka , and 2 csteps for the two other pipes-

tages). In this example the interface dependent code does not precede

other interface independent code, so JUB is used as an upper bound for

the interface independent code.

Table 10.lS. Asynchronous Interface Example.

ka Method Te * + CPU Var Eqns

d,p LB UB sec

2,0 Fixed 21 21 1 2 25t 196 233

2,3 PL 19 21 2 2 38 140 230

2,3 CC 20 21 2 2 137 217 331

4,0 WC 21 21 2 2 20t 140 174

2,3 PL 25 27 1 2 1618 311 454

2,3 CC 23 23 1 2 45t 335 473

4,0 WC 23 23 1 2 28t 206 260

t Tgen+ Texec of relaxed LP where V x £B . (other CPU for B+B)

The same example was scheduled with mutually exclusive condi­

tional code (CC, see chapter 9, section c» thus allowing for possible

improvements in hardware at the expense of controller area. The com­

parisons of pipelined (PL) and conditional (CC) solutions for this exam­

ple are given in table 10.18 (see chapter 9 for a definition of d and p). In

addition the solution without an asynchronous interface, but with a fixed

timing constraint of 2 csteps (between +25 and *24) is given in the first

row (Fixed). The fourth and last rows of table 10.18 show the worst case

examples (WC), where ka requires 4 csteps to produce output data. In

the CC case the schedule of each stream was not identical as in PL. In

174 Architectural Synthesis

one case by using the '+25' operation to tighten some inequalities the

branch and bound required 13 nodes in the branch and bound tree and

267 cpu seconds to determine that the IP was integer infeasible. Without

using the tightened inequalities the same problem required 22 nodes in

the branch and bound tree and 420 cpu seconds. We have shown that

both approaches for asynchronous interfacing are practical with respect

to its solution in the OASIC model. The schedule for the PL solution is

shown in figure 10.11.

OASIC allows the flexibility of analyzing different approaches to

synthesizing architectures in the presence of complex interfaces. For

example one possible methodology to follow may be to synthesize for

minimum controller costs using the PL strategy and then calculate lower

bounds with the CC strategy. If the lower bounds are equivalent to the

PL schedule then there is no advantage to a larger controller. Alterna­

tively one may wish to investigate any savings with the CC method.

In chapter 10 we have used OASIC to synthesize architectures and

analyze a number of input algorithms or benchmarks. Globally optimal

solutions which minimize an area or area-delay cost function have been

synthesized in practical execution times. A summary and discussion of

these results will be provided in the next chapter. Some concluding

remarks and future extensions will also be discussed.

OASle Synthesis Results

.. ,
+

*

0
0

~

175

ka

*

0
0

~
0

Figure 10.11. Optimized schedule and allocation for 1=21 control steps,

with asynchronous interface to ka . Mutually exclusive schedules are

shown separated by bold vertical lines.

PART IV: TESTABLE ARCHITECTURAL SYNTHESIS

11.

TEST ABILITY IN ARCHITECTURAL
SYNTHESIS

The need for early test consideration during digital design is well

recognized and documented by the VLSI Industry (Tsui, 1986) , (Willi­

ams,1983) , (Fung, 1986) , (Abadir, 1985) . However there have only

been a few recent approaches to integrating these two areas: in particular

architectural design synthesis and test incorporation (Fung, 1986) ,

(Abadir, 1985) , (Gebotys, 1989) . In this chapter we will define, discuss,

and compare problems in both areas. This chapter is not a tutorial on

testing, however test references are given to aid the reader. Topics

affecting the test incorporation for complex VLSI digital designs and test

issues affecting the design synthesis methodology are covered.

Advances in test research have a direct effect on the way in which testa­

bility can be implemented in a synthesized design. It also directly effects

the testable design synthesis methodology, as discussed in chapter 1.

Approaches to previous research in test incorporation, section 11.2 and

180 Architectural Synthesis

11.3, the integration of design and test, section 11.4, and a list of remain­

ing problems in this area, section 11.5, will be covered in this chapter.

11.1 DESIGN AND TEST

The objective of integrating architectural synthesis and test incor­

poration is to provide an optimal architecture that is testable. Further­

more by integrating these two tasks, an architectural design solution will

be found that satisfies both design and test constraints such as area,

delay, testing time, and estimated fault coverage.

The integration of design and test is aimed at decreasing the VLSI

design cycle time and avoiding large time consuming test efforts at the

end of the design cycle. Test should be considered early in the design

cycle during design and not after.

A comparison of the architectural synthesis problem and the struc­

tured design-for-test problem is given in table ILL The objectives,

methods, difficulty, and levels of design representation for architectural

synthesis and test incorporation are outlined. It is clear that some aspects

of these problems are similar and overlap such as the problem con­

straints, and the problem tasks.

The constraints are quite similar except the overllead in area and

speed (OR) of the architecture due to the incorporation of test structures

is used as a measure in the second column of table 11.1. The testing time

is defined as the number of clock periods required to test the architecture.

The fault coverage is an estimate of the fault coverage of the architecture

that is achieved by incorporating testability. For example if one allows a

very long testing time, many test vectors can be applied and therefore the

fault coverage will be increased.

Testability in Architectural Synthesis 181

Table 11.1. Comparison of Synthesis and Test at the Architectural Level

Problem Architectural Test

Synthesis Incorporation

Constraints Area, AreaOH,

Speed, Speed OH,

Execution Time Test Time

Fault Coverage

(Test Confidence)

Task Schedule, Test Schedule,

Allocate Allocate Test

Hardware, Hardware,

Binding. Bind Test.

Verify Functional Fault

Simulation Simulation

Design Level Functional Combinational

Units, Units,

Registers, Sequential

Units,

Busses, Busses,

Multiplexors. Multiplexors.

Difficulty NPhard NPcomplete

182 Architectural Synthesis

The tasks for architectural synthesis have been already outlined in

chapter 3 and part III of this text. Nevertheless it is very interesting to

compare these with test incorporation tasks at the architectural level. In

architectural synthesis code operations will be executed during a particu­

lar clock period. In test incorporation each hardware resource (bus,

register, functional unit) will have a particular test phase during which it

will be tested (or special vectors will be present at the inputs and pro­

cessed at the outputs). In architectural synthesis functional units, regis­

ters, and busses are allocated, whereas in test incorporation test registers

(which do not replace existing design registers) and special interconnect

(ie. single bit width for serially shifting test data or full word widths for

parallel transfer of test data off or on the chip) may be allocated. In the

later case allocation of test interconnect may include general bus struc­

tures, such as the allocation of mUltiplexors, which are only used during

the testing of the chip. Binding in architectural synthesis refers to the

assignment of code operations to functional units and variables to busses

and registers. For test incorporation, we use the term test binding (see

table 11.1) to refer to the assignment of registers to test registers. In other

words existing design registers allocated from architectural synthesis, are

replaced with test registers. Test registers is the generic term we use to

identify special hardware that during the normal operation mode mayor

may not act as registers (in the later case they are inactive), and during

the test mode of the chip either produce or access test vectors for input to

or output from functional units. These will be further defined in section

11.2. We use the term test binding to differentiate from the allocating of

test registers. In the later case each test register allocated does not

replace any existing design registers.

Verification can be performed through functional or fault simulation

for architectural synthesis or test incorporation respectively. The design

levels, shown in table 11.1, are similar since we are only interested in the

architectural level of the design automation. Lower levels of testing and

Testability in Architectural Synthesis 183

design are briefly discussed in chapter 1. The architectural synthesis

problem and test incorporation problem are NP hard and NP complete

respectively.

11.1.1 Choices in Design and Test

There are three choices for incorporating test into architectural syn­

thesis.

1. No test consideration during the design.

2. Leave test consideration until after the design is synthesized.

3. Try a structured simultaneous approach to both architectural syn­

thesis and test incorporation.

Choice I uses the functional testing to provide a test, with no modifi­

cations to the hardware. Choices 2 and 3 are shown in figures 11.1 and

11.2. Figure 11.1 shows five blocks: the architectural synthesis process

is represented by the first two stages, followed by the test incorporation,

and fmally the design placement, routing, and layout stage. The first two

stages could also be represented as one stage in a synthesizer such as

OASIC (see part III) which minimizes a area-delay cost function to syn­

thesize the architecture. Feedback in this case could be the selection of a

different clock speed, and therefore different functional units or perform­

ing higher level input algorithm transformations to extract more parallel­

ism for the synthesizer. The separation of the design and test stage has

been proposed for systems, such as (Abadir, 1985) , where the architec­

tural research (Granacki,1985) and test research is performed by

separate groups. Other researchers have also proposed this, such as

(Beausang, 1987) . The test overhead in figure 11.1 refers to the addi­

tiona! area and delay of the design required by the test incorporation.

This change in constraints is viewed as an overhead because the syn­

thesis exploration is finished and the architectural solution before test is

184 Architectural Synthesis

essentially fixed, due to lack of feedback after test Figure 11.2 refers to

further integrating architectural synthesis with test such that the design

exploration is guided by test constraints in addition to the design syn­

thesis constraints. In this methodology there are no overheads since

there is feedback after test. Only constraints for a testable design such as

area, delay, and test cost (which may include estimated fault coverage

and test time) are evaluated. In all cases test incorporation refers to the

analysis, or modification of the design synthesized for test. In figure

11.2 design and test are integrated together the presence of feedback after

the test stage to the synthesis process as in (Gebotys, 1989) thus provid­

ing testable design exploration. Some systems (Fung,1986) have

integrated design and test in a finite state machine environment however

no methods for feedback are presented. The layout box actually refers to

the remaining design activities required after an architectural solution is

formed. For example this would include placement, module generation,

routing, and final layout or mask generation for fabrication. Again these

tasks vary depending upon the technology used (ie. gate array, standard

cell) and level of design output from the synthesizer (including floorplan

or whether a netlist only is provided).

feedback 1

Design

Synthesis

feedback 2

Test

Incorp.
Layout

Figure 11.1. The design synthesis process and independent test incor­

poration process shown with constraints guiding feedback.

Testability in Architectural Synthesis

Design

Synthesis

Test

Incorp.

feedback

185

Layout

Figure 11.2. Integrated design synthesis and test incorporation. Feed­

back after test incorporation used for design exploration.

When no test is considered during design, in choice 1., a functional

simulation is used to test the designs. To verify that the synthesized

design works correctly, a functional test whose vectors represent all pos­

sible inputs would be created. For combinational chips with M inputs

2M test vectors would be required for full functionality. However this

may not detect sequential faults, for example a slow-to-rise fault, present

in the circuit. To test for sequential faults in theory one would require

all possible orderings of all test vectors which is combinatorially explo­

sive. Furthennore the design may contain untestable constructs such as

redundant circuitry because test was not considered during design.

For functional testing of sequential chips the test would have to

include all different sequences of pattern inputs each of which may be

replicated an undetennined number of times. This clearly may not be

practical, especially for circuits with more than 25 inputs

(Susskind, 1984) . A minimum of 2N+M would be required, for M inputs

and N latches in the design, but this set of vectors does not even modify

the sequence of inputs, (Williams, 1983) . Furthennore in real applica­

tions where the chip is interfaced to unknown or complex external

processes, the set of all functional tests possible may not always be

obtainable. Thus a functional test is often not possible to define and is

not sufficient to test the chip with confidence.

186 Architectural Synthesis

The second case, shown in figure 11.1, considers both architectural

synthesis exploration and test exploration in a separate and unintegrated

manner with no feedback between these two tasks. The main problem

with this approach is that complicated designs may be impossible to test

without changes to the hardware. These hardware changes may cause the

design constraints to be exceeded or cause high test overheads. Thus a

design solution found in the synthesis stage may no longer be valid or

meet desired constraints after the test exploration stage. Thus with no

feedback to the architectural synthesis the DA tool would fail to find a

solution although one may exist.

The exception to this, is the case where the synthesized design solu­

tion before test incorporation is well within its design constraints. In

other words during architectural synthesis the minimum area and delay of

the final architecture were less than the designers requirements. For

example the synthesized architecture may be modified for testability by

adding scan registers and additional interconnections. The area and delay

values for the new testable architecture are then computed and may still

meet the original design specifications. There are two problems with this

approach. The first problem is how to estimate the test overheads, espe­

cially if the designer does not know which test method is to be applied.

These overheads will vary depending upon the design solution and the

test methodology to be implemented (Abadir, 1985) . Secondly since this

method is overconstrainted. The synthesizer may not fmd a solution at

all which meets the over constrained area and delay (ie. in OASIe, it

may be integer infeasible). This approach avoids feedback after test

incorporation through overconstraining.

It is interesting to note that there would be no test overheads at all for

the architectural synthesized solution if test vectors could be generated

such that the test constraints are met. Although automatic test pattern

generators (ATPG) have been developed to handle combinational

Testability in Architectural Synthesis 187

(Roth,1967) and sequential circuits (Marwedel, 1986, Agrawal, 1988) ,

these tasks require large computations in complex circuits. From experi­

ence (Goel, 1980) the computational complexity of test pattern genera­

tion has been shown to grow by the square of the gate count. For exam­

ple it may take 17K cpu seconds to achieve 91 % fault coverage for 1500

gates of a chip design (Agrawal, 1988) . If they were suitable to be used

for complex VLSI chips and could meet the test constraints without

changes to the hardware, then feedback to design synthesis would not be

necessary and the test stage would only consist of additional time for

A TPG to meet test constraints.

The final structured approach to the problem, choice 3, shown in fig­

ure 11.2, makes the best attempt to solve both the design and test prob­

lem. By integrating test incorporation into architectural synthesis a

viable solution to the testable design problem is achieved through feed­

back providing testable design exploration. This approach is necessary

for complex designs because functional testing is not practical nor suffi­

cient and test vector generation alone is time consuming and very com­

putationally demanding.

In the second case, the two main effects of test on architectural syn­

thesis are:

1. The effect of test on the design cost (ie. as discussed in section

11.1.2 the testability of the design effects the cost of the chip, or the

number of failed parts in the field)

2. The effect of test on design constraint satisfaction (ie. as discussed in

section 11.1.4, the area and delay overhead).

In tum , the effect of the architectural synthesis on the test is

1. Complexity and size of the architecture effects the difficulty of the

test incorporation.

188 Architectural Synthesis

2. The architecture also effects the difficulty of producing test vectors

(ie. chaining operations may produce poorly testable functional units

which may require a large number of test vectors).

Clearly design exploration and test exploration should be integrated

in order to deal with complex chip design.

11.2 APPROACHES TO TESTABILITY

This section will outline the factors affecting the test (generation and

evaluation)for a design. Test tools, such as fault simulation, automatic

test generation, and controllability/observability tools, are generally dis­

cussed and referenced. Modifications to a design for testability will be

discussed in section 11.2.2. Additional detailed information can be

found in Proceedings of International Test Conference, Design Automa­

tion Conference, International Conference on Fault Tolerant Computing

and the IEEE Transactions on Computers.

11.2.1 Test Measures and Tools

There are only approximate measures developed to indicate how

testable a circuit design is. This first section will discuss the fault cover­

age measure, fault models, fault simulation, and test pattern generation

very briefly to defme terms and assumptions. The next section, 11.2.2,

will cover design for test approaches to aid testing complex VLSI chips

and discuss two popular methods in more detail.

Fault Coverage.

The most common test measure is fault coverage. Given a circuit

represented by a specific design level, a set of fault models (suited to the

design level), and a set of test vectors, the fault coverage is calculated by

dividing the number of faults detected (multiplied by 1(0), obtained from

fault simulation, by the total number of possible faults in the design.

Testability in Architectural Synthesis 189

This measure will vary according to the design representation level, the

fault models, the test sets and the method of calculation. In some cases,

discussed in the next section, it is not possible to calculate fault coverage

and estimations are made. Table 11.2 illustrates the relationship between

design levels, fault models, test tools(fault simulation and test pattern

generation(TPG)), and some application areas where these techniques

are common. The design representation levels for test measurement can

be functional, gate, or switch levels , in order of increasing detail and

accuracy. Different fault models can be used to represent faults at a node

of the design. For example sa-O refers to stuck at zero fault at a node.

Table 11.2. Test Options

Tools Design Representation Levels

Switch Gate Functional

Fault Models stuck at- stuck at- stuck at-

O,l,x,z, O,l,x,z 0,1

open,short on I/O nodes or

state transitions.

Fault y y y

Simulation

TPG ? y:automatic y:manually

C/O ? ClOs info-flow

measures

Application small circuits most common microprocessors

190 Architectural Synthesis

There are many tradeoffs involved in selecting a design representa­

tion level to use. The highest level is the functional representation which

is technology independent. It is often used for microprocessor design

because it can be implemented through test microcode which can be

easily down loaded and executed on the chip. However it is the most

inaccurate and difficult to measure test effectiveness. In fact studies have

shown that a 90% functional level fault coverage may actually only

corresponds to a 60% gate level fault coverage. Although the switch

level provides the most accurate fault coverage measurement it is also the

most computationally demanding. Most fault simulators use gate level

representations for test vector generation. Gate level fault simulation is

extremely computational even with concurrent execution

(Agrawal, 1988) , and circuit size reduction techniques such as gate col­

lapsing as discussed later in this section.

Fault Models.

The most common fault models include the single stuck-at

(O,l,X,Z,open or closed) model. However not all failures can be

modeled by stuck-at faults (Galiay,1980) . The stuck at O,I,X,Z faults

are the most easiest to model and techniques of fault equivalence or fault

collapsing can be used to decrease the total number of faults to consider.

An example of fault collapsing is to represent a stuck at zero on an input

to a nand gate as the equivalent of a stuck at one on the output of the

nand gate since the fault has the same effect. Therefore only one of these

two faults needs to be modeled. Stuck at open faults are more difficult

since they essentially tum a combinational circuit into a sequential cir­

cuit. Bridging faults (more difficult to model due to layout infonnation

needed), delay-type faults (slow-to-rise,etc), or structure specific faults

such as cross point faults in PLAs or neighboring faults in memory can

also be modelled. Other faults include pattern sensitive faults and some

strange faults which cause new transistor structures to fonn (Shen,1985)

Testability in Architectural Synthesis 191

for which fault models do not exist.

In order to reduce the number of fault models considered in a circuit

some researchers (Shen, 1985, Galiay, 1980) have investigated the per­

centage and type of faults present in fabricated circuits. Shen found 43%

Oine or transistor) stuck at faults, 21 % floating lines, and 30% bridging

faults and 6 % miscellaneous (Shen, 1985) . Stuck at open were less than

3 % (Shen, 1985) . In another study (Galiay, 1980) the obselVed failure

modes consisted of 55% shorts, 20% open faults and the remaining 25%

were inobselVable or insignificant

Fault Simulation.

Many approaches to fault simulation have been investigated. In gen­

eral, given a circuit with F faults and T test vectors, perfonn a fault simu­

lation to detennine the number of faults detected at the outputs of the cir­

cuit. F faults refers to the number of unique faults of the design, after

fault equivalence techniques have been perfonned. The simulation

requires F+ 1 circuit representations to be simulated concurrently. Each

of the F circuits have one unique fault. The extra copy of the circuit

represents the good circuit. As test vectors are applied at the circuit

inputs, the circuit outputs are compared with the good circuit outputs. If

the outputs differ then the fault is detectable. This algorithm continues

until all faults have been detected or until all test vectors have been

exhausted. The number of remaining circuits with undetected faults are

summed and divided by F to detennine the fault coverage. Serial, paral­

lel, deductive and concurrent fault simulation algorithms have been

implemented.

Various attempts have been made to decrease the complexity of fault

coverage estimation. These include decreasing the types of fault models

considered, decreasing the number of nodes to test for faults, and modi­

fying the circuitry to ease fault detection or reduce the probability of

faults being present. Another approach to decrease the number of nodes

192 Architectural Synthesis

to test for faults other than gate /fault collapsing is to select faulty nodes

using statistical methods.

Test Pattern Generation.

Automatic pattern generation for combinational or sequential circuits

have been programmed. Most A TPG work in conjunction with a fault

simulator to decrease the execution time. For example after a number of

vectors are calculated, using a path sensitization algorithm, a fault simu­

lation is run to delete other faults which are also detected by the new vec­

tors (Marwede1, 1986) . Ten times speed improvement is achieved over

conventional concurrent fault simulators, through fault reduction tech­

niques. Automatic pattern generation for combinational units researched

include (Roth, 1967) or other algorithms such as (Motohara, 1986) which

is implemented on multiprocessor architecture. A TPGs for sequential cir­

cuits have been researched (Marwedel, 1986) or (Agrawal, 1988) . Both

are used in conjunction with a concurrent fault simulator.

Hierarchical test pattern generators have also been developed with

limited success. (Ho,1984) illustrated this concept for testing a

parametrized adder and (Varma, 1988) created a cell test generator and

hierarchical test generator using Prolog for standard cells and iterative

arrays. These approaches hold the most hope for integration of test pat­

tern generation knowledge into parametrized silicon compiler cell

libraries.

It has been shown that some control ability and observability (CO)

measures (Goldstein, 1980) do not correlate well with testability of the

design (Ratiu, 1982) . It has also been shown that a larger variety of COs

do improve the perfonnance of an ATPG, however no CO measure is

superior over the others (Chandra, 1989) . CO at the functional level is

called infonnation flow. These measures have been used for functional

measures of testability as in (Agrawal, 1980, Fung, 1982, Dussault, 1978)

, and used in an automated test system in (Fung, 1986) .

Testability in Architectural Synthesis 193

Controllability/Observability.

Controllability observability tools have been developed as another

means for evaluating the testability of designs without doing time con­

suming fault simulation and as an aid to ATPG by simplifying the back­

tracking process as discussed above. These measurements are automati­

cally calculated for each node in the design. They identify nodes which

will possibly be difficult to control (and therefore difficult to sensitize)

or difficult to observe (and therefore difficult to propagate fault presence

to outputs of the circuit). Both these tasks are important for testing the

circuit.

In summary, given a specific design composed of combinational and

sequential circuits, the testing phases (without hardware modifications) is

computationally demanding, and very complex. The next section will

outline how design modification can aid the test problem.

11.2.2 Design Modifications for Testability

The most common and popular method used to reduce the complex­

ity of the test problem is to modify the circuit design for testability.

There are generally two techniques to do this. One is the adhoc and the

other is the structured approach (Williams, 1983, McCluskey, 1986) .

These approaches do not avoid the problem of test generation and fault

coverage, discussed in the previous section, however they do provide a

method for dealing with the problem complexities through design parti­

tioning. We will concentrate on discussing some structured design for

test approaches. The structured approaches provide the best solution for

incorporation test in VLSI chip designs.

The ad hoc approaches to test involve partitioning the circuit to gain

access to smaller networXs of the design. For example through multi­

plexing in and out internal nodes of an embedded circuit, additional con­

trol and observability is obtained. Bus based architectural designs also

194 Architectural Synthesis

support the adhoc approach to test by providing partitions of the design

and allowing access to several modules attached to the bus. This is very

popular for testing microprocessors (Williams, 1983) in addition to the

functional testing which uses test microcode described earlier. As long

as the other modules outputs on the bus are in the high impedance state

then the specific module can be isolated for testing using the bus for test

vector transfer. The only problem with testing this design is the diffi­

culty in detecting the cause of a fault on the bus.

The structured approach is recognized as the most suitable approach

for complex chip, board, or system designs. In effect the circuit is modi­

fied so that all sequential circuitry, for example registers, are replaced by

serial shiftable registers providing access to their storage elements by

serially shifting vectors in and out of the chip. Only combinational cir­

cuitry remains which is now accessible through the serial shiftable test

registers. This simplifies the circuitry to test since only a combinational

test pattern generator is required for smaller partitions of the whole chip

design. After A TPG is used on the extracted combinational logic

islands, the test vectors are serialized and usable test vectors are created

for the circuit.

Designs composed of a data path and FSM or micro code controller

may require two separate testing methodologies due to their circuit

differences as in (Fung, 1986) . More than one test methodology may be

applied to the datapath as in (Abadir, 1985) ,or different test methodolo­

gies could also be applied to the partitioned controllers as in

(Fung, 1986) . This is called nonuniform test incorporation. An alterna­

tive is to apply the same test methodology to the whole data path as in

(Krasniewski, 1985b, Craig, 1988) , called uniform test incorporation.

The controller type test methodologies will not be discussed however

more information can be found in (Abadir, 1985) .

Testability in Architectural Synthesis 195

Approaches in design for test differ in

1. how to partition the circuit,

2. with what test structures to replace the sequential registers,

3. how to implement circuit and test clocking, and

4. how to then calculate the test effectiveness or fault coverage. (Obvi­

ously the test overlleads will also vary as briefly shown in table

11.3.)

We will outline two basic test structures, scan path and built-in self

test, in the next section. We chose these due to their simplicity and

popUlarity. Other structures include LSSD , counting ones , syndrome

testing (Savir, 1980) , walsh spectrum and many other types of structures

(Williams, 1983) used for scan or built-in test.

Scan Design.

The scan design test methodology (Williams, 1983) replaces sequen­

tial circuitry or registers with serial shiftable registers. Examples of

some implementations of the test registers or the 0 type master slave flip

flop are shown in figure 11.3 (Williams, 1983) .

By connecting the serial interconnect between the test registers, full

controllability and observability of the memory elements is provided.

Furthermore the test problem now becomes one of testing the remaining

combinational circuits. During the test mode, each test vector must be

shifted on chip, the system clocked once, and then the result of the com­

binational logic is then shifted off chip (simultaneous with shifting the

next test pattern on chip). The test time is equal to the longest length of

the scan chain multiplied by the number of test vectors. A full scan

refers to changing all registers into scannable registers as in

(Agrawal, 1984) . However not all registers need to be transformed into

scannable registers in order to apply test vectors to all combinational

196

CO'

,0~-__ _

Architectural Synthesis

i ... ~ -... -

Figure 11.3. Examples a,b) of Scan register Design.

units. For example CO software could be used to detennine which nodes

should be controlled and observed in the scan registers as in

(Fung, 1986) . For some applications additional scan registers could be

used such as in the partitiOning algorithm of (Funatsu, 1975) where com­

binational networks are separated into smaller networks to aid test pattern

generation, using a back tracing algorithm.

More than one scan chain can be implemented to trade off test time

with additional input and output pins. Thus test patterns can be shifted

on and off the chip in parallel for more than one scan chain. Other simi­

lar techniques to the scan design exist, for example scan/set logic

described in (Williams, 1983) where test scan registers are not part of the

original design, and random access scan (Williams, 1983) where registers

are accessed through addressing instead of through serial shifting.

Testability in Architectural Synthesis 197

Built In Self Test.

Built-in self test provides a methodology for automatically generat­

ing pseudo random test vectors (called TPG) on/off the chip and having

the responses compacted (by a SA) on/off chip. There are three modes of

behavior for the BIST registers which again replace the sequential circui­

try. They are serial shifting, normal registers, and linear feedback regis­

ters (or TPG / SA mode). Essentially an initialization pattern (or seed) is

shifted into the TPG and SA on the chip. Then the TPG starts to gen­

erate patterns and the SA compacts the combinational networks output

responses. After T number of clock cycles the response is shifted off

chip and the TPG/SAs are reinitialized for another testing period.

Exhaustive testing, where T is the maximum sequence generated by the

BIST structure, is often not practical (Wagner,1987) , so pseudo­

exhaustive testing may be performed. In the later case the pseudorandom

numbers are generated for T clock cycles, where T is less than the maxi­

mal sequence. Analysis for fault coverage estimation and test confidence

prediction have been researched (Wagner, 1987) for this case.

The most common TPG or SA circuit is the LFSR which can be

transformed from master slave D flipflops. An example is given in fig­

ures 11.4 of a LFSR register. Other structures have also been examined

for use as a pattern generator or signature analyzer, such as counting

techniques for SA and cellular automata for TPG. The differences of

these structures lie in their area overhead, delay overhead, and fault cov­

erage estimation.

Again the chip is transformed so that smaller combinational subnet­

works are being tested. BIST with TPG on chip has the advantage over

scan path design for test of testing the chip at speed, instead of clocking

once in the scan method to obtain one response at a time. However the

LFSR has a larger area overhead than the scan register, especially if each

combinational network has its own separate TPG and SA. For designs

198 Architectural Synthesis

Figure 11.4. An Example of a LFSR Design for BIST.

that do not have scan paths, TPG and SAs may be added through multi­

plexors. The large area overhead may be avoided by using multiplexors

to share the TPG among more than one combinational network. How­

ever the response compaction or signature analyzer circuits must be

separate for each functional unit concurrently being tested. Another

implementation of BIST allows scheduling combinational units for test­

ing at different times, called test phases. This method is often called

BILBO, built in logic block observer

(McQuskey, 1986, Williams, 1983) . This is nonnally implemented by

translating a scan path is directly translated into BIST circuitry and 1(2

the CUs are tested in one of two phases for orderly circuits (McQus­

key, 1986) . In this implementation more than one CU may be tested at

the same time. Thus LFSRs will be created from existing registers and
fed to CU inputs and from CU outputs separately. However a LFSR

used as TPG in one phase may be used as a SA in another phase.

Testability in Architectural Synthesis 199

Measures of Test Overhead.

The earlier DFf is implemented the better the designer can judge

design overheads due to test. This provides earlier estimation of whether

the final design will meet design constraints or whether the design will

be testable enough to satisfy test constraints. In either case when this is

known the designer can find another solution or continue fInishing the

current design for fabrication. Table 11.3 illustrates some figures for

overheads determined from experience of various researchers. Over­

heads vary greatly according to the design, technology, and the test

implementation.

Table 11.3. Some Quoted Overheads for ScanPath

References

(Agrawal 1984)

(Williams 1983)

(Susskind 1984)

Overheads

Area Speed

% increase %decrease

-12 -10

4-20 small

5-15 "

The test approaches traditionally were viewed as a continuous effort

to increase testability of the design through modifications and fault cov­

erage estimation. No feedback to the original designers intent or to

design synthesis was examined apart from general layout rules

(Galiay, 1980) to decrease chances of process errors causing faults, and

the adhoc and structured methods to modify the circuit to avoid sequen­

tial circuit testing (Williams, 1983) or to increase ease of generating test

vectors (Bhatt, 1986) .

200 Architectural Synthesis

11.3 PREVIOUS RESEARCH IN DESIGN FOR TEST

We will concentrate on a discussion of previous research in struc­

tured design for test automation for digital designs. A large amount of

research in ATPG, new test structures, new fault models, controllability

and observability and other areas in the test field were referenced and

outlined in the previous section. In this section reference to these tools

only in the design for test (OFf) environment will be discussed. OFf

research falls into two categories. OFf for special structures and for gen­

eral purpose digital systems. Each will be discussed below.

Research in automating test decisions for special structures, such as

PLAs, have demonstrated that the selection of how to test a circuit is not

trivial, and nor are the tradeoffs clearly defmed (Zhu,1988) . No

approach is clearly better and searching is often required to determine the

best test approach given an application (Zhu, 1988) .

Research in automating ad hoc design for test techniques have been

investigated. For example in (Chen, 1985) controllability and observa­

bility measures are used to determine which nodes of a circuit should

become primary inputs or primary outputs. Small circuits were used to

demonstrate this techniques, however this has been extended to deter­

mine which nodes should become part of the scan chain in (Fung, 1986)

instead of transforming them into primary inputs or outputs. Another

example of automating ad hoc techniques is in (Bhatt, 1986) where com­

binational logic circuits are partitioned for improved testability. Block

timing is maintained and modifications are made so that every output

node depends on a small number of input nodes.

Higher level automated methods of implementing structured design

for test have also been investigated. Some examples of these are

automated scan path design in TITUS (Agrawal,1984) , automated test

for finite state machines in Silc (Fung, 1986) , automated nonuniform test

for architectural design in TOES (Abadir, 1985) or for finite state

Testability in Architectural Synthesis 201

machine design (Zhu, 1988) , or extensions for BIST automation in

(Craig, 1988) and BEST (Built in Exhaustive selft test) automation in

(Krasniewski, 1985b) . The Silc and TOES systems will be discussed in

further detail in section 11.4 because they also involve design synthesis

in some form.

TITUS (Agrawal, 1984) provides automated scan path incorporation

for custom polycell based designs. All flipflops are connected into shift­

able registers during testmode so that the automatic test pattern generator

for combinational logic can be used. Better delay optimization was

observed by interconnecting the scan registers after layout.

SUc (Fung, 1986) involves an integrated system that includes testa­

bility rules, testability expert, test structures and a testability evaluator.

The input to the system is a description of a number of finite state

machines. The testability evaluator uses (a) information theory

(Agrawal, 1980) to identify hard to test finite state machines, (b) control­

lability observability measures at the structural level, and (c) a path trac­

ing technique to identify critical testing paths (ie components for scan

testing). The testability expert makes the decisions about which test

methodology to apply to a finite state machine in the design based upon

the testability evaluator output, user requirements, and the test structure

attributes.

The TOES (Abadir, 1985) incorporates non-uniform test methodolo­

gies into a circuit design based upon the combination that gives the best

multiple-criteria score of test attributes. The test attributes includes area

overhead, test execution time, possibility of sharing BIT structures,

amount of circuit tested for free, fault coverage, I/O requirements, exter­

nal test equipment requirements, and need for test generation. A struc­

tural design solution is used where kernels or combinational logic

(requiring test) and interconnect paths, or I-paths (which may include

busses, muxes or registers also), are identified in a graph data structure.

202 Architectural Synthesis

When the kernels cannot be embedded with known test templates, addi­

tional circuitry is added to modify the kernel to allow testing. Addition­

ally when an interconnect path is needed for testing by two different ker­

nels, this forces the two kernels to be in different test phases or can be

solved using test steps as in (Abadir, 1985) .

The other systems (Craig, 1988, Krasniewski, 1985b) provides uni­

form test incorporation of Bll..BO modules into the circuitry. In

(Krasniewski, 1985b) the problem of test scheduling to minimize the test

phases without adding new interconnect paths is investigated. In

(Craig,1988) test control architectures were also investigated, using a

star, bus, and multiple bus configuration for control.

11.4 APPROACHES TO TEST WITH SYNTHESIS

Although many researchers stress that testability should be con­

sidered during the early stages of design

(Williams, 1983, McCluskey, 1986) , most testability research has been

done after a structural design solution is defined with no feedback to the

original synthesis process for finding more testable designs. Some testa­

bility research work relevant to our problem is outlined below.

11.4.1 Previous Research

Testability incorporation in the Silc silicon compiler (Fung, 1986)

utilizes testability measures at the functional, and structural levels to

guide test incorporation. The functional measures use information flow

analysis, to group the finite state machines and incorporate testability.

The structural testability involves calculating controlability and observa­

bility measures for circuit nodes of the data path. However no feedback

to the synthesis process is provided and no other test methodology for the

data path is considered apart from the scan path inclusion.

Testability in Architectural Synthesis 203

The TDES, or testability design expert system (Abadir, 1985) imple­

ments testability in a graph-based structural design by matching the sub­

circuits requiring testability with test design templates. The test design

templates contain measures of test time, area overhead and the control

sequence for a particular test strategy. Again no feedback to a synthesis

process is used and the test implementation is based on local structural

enhancements with no global infonnation.

Built in exhaustive self test incorporation in data paths has been

investigated at the University of Rochester (Krasniewski, 1985b) . Built

in self test (BIST) module selection, placement, scan path organization,

mode controller organization, and derivation of test procedure is handled

by the software. Although speed estimates have been produced, no

design synthesis or feedback is provided.

11.4.2 Commercial Systems

Silicon Compiler Systems Inc (Sabo, 1986, Johannsen, 1987)

Genesil structural cell compiler provides three controls for the designer

wishing to incorporate test into their design. They are none, full, or par­

tial test visibility. These refer to the number of registers in the design

which will be transfonned into scannable registers for a scan path or

LSSD test implementation. The option full refers to using all shiftable

test latches in the design. The partial visibility requires the user to

specify the sequential depth limit which is used to select the registers to

be transfonned into scan registers for testing. Built in self testing is also

provided by linear feedback shift registers, (Sabo, 1986) which are pro­

vided as an additional configuration of the shiftable test latch in the com­

pilers library.

Silc Technologies Inc's (Rosales,1989) newer tool provides

automatic test incorporation for synthesized designs by transfonning

registers in feedback paths into scannable registers and ensuring other

204 Architectural Synthesis

register are inactive during test mode (clock and reset signals are inac­

tive). This transforms a design into a combinational logic design model

which allows them to run an A TPG to produce test patterns for the

design. Scan facilities are added automatically, and clocking control

logic for the test circuitry is also added. The industrial tool described

above is quite different from the original research discussed in the previ­

ous section (Fung, 1986) .

11.5 INADEQUACIES OF CURRENT SYNTHESIS WITH TEST

There are remaining problems with tools in both the synthesis

domain and the test domain which were discussed in section 11.4 and

11.3. We will discuss the problems with systems developed or

researched as a means of integrating both design and test tools. These

problems can be classified into three main categories each discussed

below. The categories are feedback, integration, and constraint estima­

tion.

11.5.1 Feedback

Proposed systems which integrate design synthesis with test incor­

poration lack the capability of providing feedback to architectural syn­

thesis after test incorporation. This is an important means for exploring

the testable design domain. For example if the test overheads cause the

design constraints to be exceeded, then a solution cannot be found

without feedback. If the user is to provide feedback, then it is very diffi­

cult to determine what changes are to be made by the user to the syn­

thesizer to produce better design solutions which will have lower test

overheads. Since the testable design exploration is a very difficult task,

automated feedback for synthesis exploration methods must be created.

Testability in Architectural Synthesis 205

U.5.2 Integration

A lack of integration between the synthesis and test tools also causes

problems for testable design synthesis. Apart from difficulties of imple­

menting automated feedback, the absence of integration causes isolated

decisions to be made in synthesis in the absence of its effect on the test

process. These isolated decisions may result in poor design solutions.

The lack of integration in these two cases is largely due to the fact that

the tools are produced by two different group of researchers. An

unnecessary duplication of the data base is often created further hinder­

ing design automation tools. By considering integrated design and test

synthesis simultaneously the overall constraints may be better satisfied

and better solutions may be synthesized.

U.5.3 Constraint Estimations

Unfortunately there is a lack of standards in the area of constraint

estimation. However the separation of synthesis constraints from testa­

bility constraints causes more problems during testable design explora­

tion. Since few synthesizers even consider area estimations or tloorplan­

Ding, it makes the problem even more difficult to estimate the overhead

in area (and speed) due to test. Design and test tools must create area,

delay and test constraint estimations using the same methods. Standards

should be created for this purpose.

Qearly these three problems (feedback, integration, and constraint

estimation) are very important for further enhancing and improving

architectural synthesis tools. One approach to solving the problems out­

lined above is presented in the next chapter.

12.

THE CATREE ARCHITECTURAL SYNTHESIS
WITH TESTABILITY

Two VLSI testable architectural synthesis methodologies with testa­

bility, area, and delay constraints are presented in this chapter. This

research differs from other synthesizers by

1) implementing testability as part of the synthesized VLSI architectural

solution,

2) providing feedback to the synthesis process, and

3) by integrating test incorporation with architectural synthesis (specifi­

cally allocation and binding) using a binary tree data structure.

These design and test synthesis approaches are vital to the acceptance

of synthesis tools in industry by providing feedback to the synthesis

search when constraints cannot be met. Furthennore they will help to

decrease the VLSI design cycle times by considering test constraints

208 Architectural Synthesis

early in the design.

Both testable design synthesis methodologies are presented in this

chapter. The testable design synthesis algorithms are discussed and syn­

thesized examples help illustrate the techniques. Results from the first

methodology, CATREE, show that the 'best' testable design solution is

not always the same as that obtained from the 'best' design solution of an

area and delay based synthesis search. Preliminary results of the second

methodology, CATREE2, indicate that better design solutions are

obtained by incorporating test during design synthesis as opposed to

approaches which incorporate test after a structural design solution is

formed.

12.1 PROBLEM DESCRIPTION

We propose a solution to the following problem.

Given a general algorithmic description of a behavior with area,

delay, and test constraints, perform a datapath design synthesis by

mapping the algorithm into a chip design which satisfies the given

constraints.

If we assume that OASIC is used to provide an initial optimized

schedule and allocation of hardware (before test incorporation) the prob­

lem then becomes the following. Given a scheduled DAG, perform allo­

cation and binding so that a testable architecture is synthesized.

Our approach to solving both of these problems is called CATREE

(for Computer Aided TREEs), and will be presented in the remainder of

this text. For CA TREE the choice of test methodology is explored to

further search for a design solution. In CA TREE2, one specific test

methodology is incorporated. Both approaches will create a testable

design using area, speed, and testability estimates to guide the search

through the design space. Our testable design synthesis methodology

CA TREE Architectural Synthesis 209

only considers synthesis of the data path, and not the controller. How­

ever a control table is output from the synthesizer which could eventually

be translated to interface to finite state machine controller synthesizers as

in (Wei, 1987) and also incorporated with test as in (Abadir,1985) .

Design solutions use a two phased clock with master-slave registers as

described in part II and III (OASIC). All functional units are assumed to

be combinational logic.

Design constraints include area, delay and testability estimates of the

synthesized data path, further discussed in section 12.4.3 and 12.4.5. The

area constraint includes the areas due to the hardware components and

the interconnect of the architecture. CA TREE uses a binary tree data

structure and heuristic algorithm which minimize resources. The two

dimensional characteristic of the binary tree data structure aids the area

estimations. The circuit delay refers to the period of the system clock (or

inverse of the clock speed) and is more refmed than the delay in OASIC

(which is an integer representing the number of clock periods). Our delay

model is similar to (McFarland, 1986) where we include delays through

registers, mUltiplexors, and functional units. Also the delay due to the

interconnect length, and fanout is used.

We define the testability constraint as a measure of the estimated

fault coverage (estimated number of faults detected divided by the total

number of faults in the chip) and the test time (or the number of clock

cycles required to test the chip). We assume the synthesized chip design

will have a test mode which is externally controlled by one pin. Our test

models, further discussed in section 12.4.4, are a x-chained scan path,

x-phased BIST, a shared BIST implementation, or a combination of

these methods. For a scan path implementation

(Williams, 1983, McCluskey, 1986) , test vectors are supplied externally

and serially shifted on chip using one or more scan chains. For a BIST

implementation (Williams, 1983, McOuskey, 1986) , the test generator

210 Architectural Synthesis

(LFSR) is located on the chip along with the signature analyzer. LFSR

initialization seeds and signatures are loaded on and off the chip by serial

shifting them through a single scan chain.

The output or the synthesized architecture from CA TREE is com­

posed of a floorplan, netlist of hardware resources, and a mapping of

code operations and variables to these hardware resources. These

resources are registers, interconnect, buses, multiplexors, and functional

units. The mappings of code operations to functional units and the map­

pings of the variables to registers and busses are output. The execution

times of the code operations in the functional units and lifetimes of the

variables in their registers are also given, as are the variable transfer­

times through interconnect and hardware components are output.

Our testable design synthesis methodologies will search through

various designs until a solution that satisfies the design constraints is

found. The tool does not continue searching for a better solution once a

design solution is found. However if a design solution cannot be found

(for example due to an overconstrained specification) then the 'best'

solution found by the tool is output Solutions are judged by a multiple­

criteria performance measure to be discussed in section 12.5.

The CA TREE(2) methodologies can be applied to ASIC, cell/silicon

compilers or full custom designs approaches. The customization for dif­

ferent cell libraries is done through the synthesizers library file. The

library file contains the types of functional units supported (defined as a

list of operations which it can perform), their propagation delay (from

input data to output data) the delay between successive input data, and

the area (or width and length) of the functional unit. After the syn­

thesized testable design solution is produced, its netlist and floorplan is

output This could then be interfaced to a specific program for the fmal

placement, routing and layout, such as (Bhandari, 1988) , as shown in

figure 1.2 of chapter 1, to complete the VLSI design. The design would

CATREE Architectural Synthesis 211

then be ready for fabrication. In gate arrays or standard cell methodolo­

gies macro cells could be built out of various gates in the libraries and

then placed and routed with the other components as in (pangrle, 1987) .

The library file also contains testability infonnation for each func­

tional unit. We assume the functional units have been precharacterized

for test, In other words one can assume that an automatic test pattern gen­

erator has previously been run on the library cells to characterize them

for testability. In the future this could be extended to parameterizing the

test characteristics (similar to parameterizing a module with 16 bit or 32

bit data width inputs for generating the layout) of modules as suggested

in (Fung, 1986) . This test precharacterization provides fast testability

estimation, described in detail in section 12.4, and saves time by avoid­

ing regeneration of test patterns to estimate the testability for each new

design during the synthesis exploration. The test data, stored for each

functional unit in the library file, is shown in table 12.1 below. Different

test sets may also be stored for each functional unit. For example a test

set with 5000 vectors that achieves 90% fault coverage and another test

set with 1700 vectors that achieves 80% fault coverage could be stored.

Table 12.1 Test data for each functional unit in library file.

Total # of faults of hardware unit

Scan Path The test vectors (from A TPG)

Total # of test vectors

Total # of faults detected

BIST The polynomial and initial seed

The length of pseudo-random # sequence

Total # of faults detected

212 Architectural Synthesis

12.2 COMPARISON WITH PREVIOUS RESEARCH

Most research on architectural synthesis has not included testability

incorporation. Only estimates of area and delay have been examined to

provide feedback into the design search (McFarland, 1986) . The DAA

(Thomas, 1983) ,FACET (Tseng, 1986) ,BUD (McFarland, 1986) and

other approaches (McFarland,1988) provide architectural synthesis,

however, no test incorporation is performed.

Although many researchers stress that testability should be con­

sidered during the early stages of design (Fung, 1986) , most testability

research has been done after a structural design solution is defined

(Craig, 1988, Krasniewski, 1985b, Abadir, 1985) with no feedback

(Fung, 1986) to the original synthesis process for finding more testable

designs.

For simplicity CA TREE uses a scan path or a BIST design for test

methodology (Williams, 1983, McOuskey, 1986) to implement testabil­

ity. CATREE implements the test methodology so that all functional

units are tested thus avoiding calculation of controllability and observa­

bility measures (Goldstein, 1980, Ratiu, 1982) for selection of nodes to

test. However use of these controllability and observability measures

may decrease test ovemeads as discussed in section 12.6.

Silc (Fung,1986) provides automatic test incorporation; however,

no feedback to the synthesis process is provided and no other test metho­

dology for the data path is considered apart from the scan path inclusion.

Silc was discussed in further detail in Chapter 11.

The testability design expert system, TOES

(Abadir, 1985, Abadir, 1985, Zhu, 1988) , implements testability in a

graph-based structural design; however, no feedback to a synthesis pro­

cess is used and the test implementation is based on local structural

enhancements with no global information. It attempts to implement a

CA TREE Architectural Synthesis 213

number of test methodologies for combinational logic blocks or kernels

that fit into existing intercolUlection structures. TDES may try different

test methodologies on a design but may schedule them separately or con­

currently depending upon the best test execution time and overall design

score amongst other test embedded alternatives. TDES is driven bottom

up by selecting the best test methodology for each kernel or part of the

design.

12.3 TWO SYNTHESIS WITH TEST METHODOLOGIES:

CA TREE & CATREE2

Our first testable design synthesis methodology. CA TREE

(Gebotys.1987.Gebotys.1988a.Gebotys.1988c.Gebotys.1989) (for

Computer Aided TREEs). enhances the state-of-the-art in the area of

VLSI design synthesis with testability constraints by including the fol­

lowing features.

• Testability is implemented as part of the VLSI architectural solution.

Testability. area. and delay estimates are used to guide the design

synthesis search.

• A two dimensional binary tree data structure (McQueen. 1984) is

used throughout architectural allocation. binding and testability

incorporation. Design hierarchy. partitioning. and two­

dimensionality naturally represented with the data structure are used

to advantage for design solution searches. constraint estimation. and
test methodology incorporation.

• This design and test methodology provides a larger. more complete.

and flexible design search.

CA TREE allows the exploration of the effects of different test

methodologies on a specific design. and the effects of a specific test

methodology on different design solutions. CA TREE uses nonuniform

214 Architectural Synthesis

test incorporation as a means of concurrently testing two or more dif­

ferent design partitions. It is also driven top down by the selection of test

methodologies to incorporate. The CA TREE design synthesis with testa­

bility constraints approach is shown in figure 12.1. The circles represent

the constraint estimation (area, delay, test), whereas the squares represent

the tasks being perfonned.

feedback 1

Design

Synthesis

feedback 3

feedback 2

Test

Incorp.

Figure 12.1 The CA TREE VLSI design methodology with testability

constraints. Test is incorporated after the design is synthesized.

Our second testable design synthesis methodology, CATREE2

(Gebotys, 1988b) (for Computer Aided TREEs version 2), an extension

of CA TREE, provides simultaneous design with test synthesis, satisfying

test, area, and delay constraints. The test methodology to be incor­

porated is fully specified by the user. Highlights of the CA TREE2

design and test methodology, not found in CA TREE

(Gebotys, 1988a, Gebotys, 1988c, Gebotys, 1987) and previous research

(McFarland, 1988) , include the following.

• Simultaneous architectural design and test synthesis allocation and

binding algorithms. Early design decisions are based upon nonnal

and test mode behavior.

CA TREE Architectural Synthesis 215

•

•

Single feedback design synthesis methodology based on area, delay,

and testability constraint estimations to guide the design search.

Different sets of weights for cluster rules are used for exploring

design tradeoffs.

The CA TREE2 integrated design and test methodology is shown in

figure 12.2. Finish design allocation refers to performing register, test

register, and bus allocation.

Schedule,

FU­

Alloc.

Test

Incorp.

Finish

Design

Alloc.

feedback

Figure 12.2. CATREE2 integrated design and test synthesis methodol­

ogy. Design and test information used to make design synthesis

decisions. (FU-Alloc refers to functional unit allocation).

CA TREE and CA TREE2 use the same binary tree data structure to

integrate design and test synthesis. CA TREE2 uses different and

improved synthesis algorithms which consider both design and test infor­

mation. It was developed after CA TREE. CA TREE2 is applicative to

top-down system design where the test methodology is constrained from

higher level design decisions.

Both methodologies are vital to the acceptance of synthesis tools in

industry by providing automatic feedback to the synthesis process when

the design constraints can not be met due to test overheads. Otherwise

the design problem is left unsolved with the emphasis on the user to

determine what has been done by the synthesizer and how one may

216 Architectural Synthesis

reinvoke it to provide a different solution which will hopefully have

lower test overheads.

Both CA TREE and CA TREE2 testable design synthesizers will be

discussed in this chapter. Examples will be given to illustrate their algo­

rithms. Results from the testable design synthesizers are presented and

discussed. CATREE is presented in section 12.4 and CATREE2 in sec­

tion 12.7. A comparison of both approaches is given in section 12.8.

Since the CA TREE and CA TREE2 methodologies schedule first and

then perform allocation and binding of (test) registers, busses and bus

drivers, one can use the OASIC synthesizer (presented in Part III) to pro­

vide an optimal schedule for input into CA TREE. This is also important

because it immediately provides a minimum number of resources, from

which test overheads can be calculated at the end of the CA TREE metho­

dology.

12.4 CATREE DESIGN SYNTHESIS STAGES

The CA TREE synthesis stage consists of parsing the input specifica­

tion, and binding of functional units, registers, and interconnect OASIC

is used to obtain an optimized schedule and functional unit allocation, as

well as an initial allocation of registers and busses from which over

heads can be calculated. No test methodology consideration is made dur­

ing these design synthesis algorithms.

Since the design for test problems are NP-hard

(McFarland, 1988, Craig, 1988) , and therefore it is likely that no optimal

solution can be found, we've attempted to solve these using heuristic

algorithms. The allocation algorithms attempt to produce solutions with

a minimum number of long interconnects which is important for future

integrated circuit designs (Holton, 1986) . Each algorithm will be briefly

discussed below.

CA TREE Architectural Synthesis 217

12.4.1 Input Specification

The input specification, written by the user, provides the algorithmic

code sequence, design constraint specifications, design library identifica­

tion, initial schedule name, and a list of test methodologies to explore.

Figure 12.3 gives an example of the input specification. Only straight

line code segments are synthesized in CATREE for simplicity. Unlike

OASIC a language was chosen instead of a data-flow graph because the

interface (or parser) was faster to code and design constraint specification

was also easily supported. Also mathematical and scientific applications

for custom VLSI design synthesis are most easily found in algorithmic

form (Trickey, 1987) . The user may specify extra constraints in the code

sequence, using labels and arcs. The labels and arcs are used to force an

operation to be executed before another operation. In particular this

allows the user to examine tradeoffs between the cycle time and the

number of functional units which will be discussed further in section

12.4.3. OASIC performs the scheduling as described in part III.

12.4.2 Design Allocation

After scheduling and initial allocation in OASIC, the schedule is

transferred to CA TREE. The binary tree data structure

(McQueen, 1984) is used throughout CATREE including: design bind­

ing, test incorporation (test binding and test allocation), and constraint

estimation stages. The binary tree data structure provides the following

three characteristics important for design synthesis. First, the partition­

ing characteristic provides a solution to handling design complexity by

dividing the large problem into smaller problems to solve. The second

characteristic is the two-dimensional which is used for constraint estima­

tion, test incorporation, floorplanning and biasing solutions towards

minimum number of long interconnect Finally the tree data structure

has very simple and easily cod able algorithms.

218 Architectural Synthesis

module algo(inout : a,b,y,x,d: byte;

in a,b,y,x : byte;

out d : byte);

var a,b,f,x,y,j,kJ,d : byte;

constraints area = 2000, delay = 500,

faulccoverage = 95, tesClength = 20000;

library generic;

schedule asap;

tescmethod bist, scanpath;

label 1,2;

arc 1 before 2;

begin

1:

2:

end.

f:= a+ b;

k:= f - x;

j:= f* y;

1:= f + j;
d:= k/l

Figure 12.3. A simple example of an algorithmic input specification for

CATREE.

Each node of the binary tree data structure has two son-nodes and

one father-node. Root and leaf nodes are the exception. For example the

root node has no father-node and the leaf nodes have no son-nodes. The

root of the tree will be referred to as the top of the tree for our terminol­

ogy. We will refer to top down and bottom up tree algorithms defined as

moving from the root node down the tree and from the leaf-node up to

the root-node respectively.

CATREE Architectural Synthesis 219

The tree is fonned by placing operations into leaf-nodes of a tree

using a heuristic tree fonnation algorithm. The operation and its input

and output variables are stored at each leaf node. Scores are computed

for all pairs of operations. The score is the number of common variables

used as inputs or outputs of both operations. A list of operations in order

of high to low total sum of scores is fonned. The two operations, first on

the list (with the highest scores), fonn the initial tree. Then each of the

other operations (in order of high to low sum of weights) is placed in the

tree closest to existing operations in the tree to which they're most con­

nected. Generally operations which have a large number of common

variables are placed close together in the tree. Since nodes will be

swapped or moved and merged during the design synthesis search, the

simple tree fonnation algorithm appears to be sufficient. The tree algo­

rithms attempt to decrease the complexity of the allocation algorithms by

decreasing the wide range of cluster group choices. This is done by the

partitioning of operations in the binary tree. The synthesized algorithms

are biased towards solutions with minimum interconnect without sacrif­

icing qUality. The functional unit tree is also maintained through the

methodology to ease functional unit searching during feedback as dis­

cussed in section 12.4.5.

Functional Unit Binding.

A bottom up tree traversal algorithm (Gebotys,1988b) collects

operations from the leaf nodes with nonconflicting firetimes and valid

functional unit representation. For example an operation may require

two cycles to calculate its output. These two firetimes must be different

from the firetimes of all other operations that it will be merged with.

Also the group of operations, for example (+,-,>=,<), which produces a

functional unit, for example an ALU, are stored in a library file which is

checked during functional unit binding. The functional unit in the library

that has the minimum amount of functionality required is chosen. This

220 Architectural Synthesis

algorithm works bottom-up so that operations which are close to each

other in the tree will be merged into one functional unit functional units

close to each other in the tree shared variables and therefore will help to

reduce the future interconnections in the design as discussed during

register and interconnect binding sections.

The bottom up tree algorithm is approximately O(N), for small N,

where N is the number of leaf nodes of the tree or operations in the algo­

rithm. In general these tree algorithms are fast and easy to code. An

example of this algorithm is shown in figure 12.4. The operation and its

variables are stored at each leaf node and the functional unit is identified

at the tree node containing the subtree of its operations. The functional

unit node in the binary tree represents the future use of design area.

Reclustering of operation leaves can be performed to further minim­

ize the number of functional units until the number of functional units is

equivalent to OASICs. An example is shown in figure 12.5. The flexi­

ble data structure allows exploring different functional unit configura­

tions for a particular schedule. Thus given a schedule we can explore

functional unit allocations by reclustering the binary tree.

Register Binding.

Register binding uses a bottom-up tree traversal algorithm with vari­

able cluster rules activated at each node of the tree. The bottom up algo­

rithm is used so that variables will be clustered together first from adja­

cent highly connected functional units in the tree. This in effect will bias

register allocation towards local registers (formed near functional units)

and uniform registers (allocated throughout the tree or design area)

amongst functional units.

The output variable of each operation is placed in a list and pro­

pagated up from the leaf nodes. Generally, variables or clusters of vari­

ables are merged into one cluster if their lifetimes do not overlap. An

CA TREE Architectural Synthesis

%functional unit binding

% highest nodes with the list of operations such that

% no firetime conflicts among operations and

% function exists in library

etc ...

fu_alloc([L,Root,R], [Ll,[Rootl[FU]],Rl], FU)<­

fu_alloc(L, Ll, Op_lisCL),

fu_aIloc(R, Rl, Op_lisCR),

can_form_fu(Op_lisCL, Op_lisCR, FU);

%

etc ...

canjorm_fu(Opsl, Ops2, FU_lib)<­

no_firetime30nflicts(Opsl, Ops2, Fu),

fu3xists_in_lib(Fu, FU_lib);

221

Figure 12.4. Bottom up tree algorithm to perform functional unit bind­

ing.

example of variable clustering is shown in figure 12.6. Only output vari­

ables are clustered since each will be found at only one leaf in the tree

(since they are defined only once in the algorithm). Input variables of

operations at the leaf nodes were not clustered locally in this algorithm

because each could be located at more than one leaf node of the tree and

therefore allocated to more than one register. At the root of the tree the

clustered list is merged one last time with a list of input only variables.

Each register, represented by a cluster of variables, is placed in a new

leaf node closest to the functional units to which it is most connected.

Register leaf nodes represent the future use of design area. Constants are

placed in tree nodes in the same manner.

222 Architectural Synthesis

merge(*34, * 12, *O)?

>=-

+78 *34

+78 *012 *34 >=-

Figure 12.5. Reclustering of functional units (fus), using a bottom up

tree traversal, to facilitate functional unit minimization or feedback.

In this example, (three) multipliers are collected for minimization

(into two).

Examples have shown that this algorithm can produce the minimwn

nwnber of registers (Gebotys, 1988b) . This provides reasonable results

for the test incorporation described in section 12.4.4.

Interconnect Binding and Allocation.

The objective of bus allocation is to minimize the nwnber and

lengths of the busses. This is more refined than OASIC, since the floor­

planning information is now used and the length of the busses is impor­

tant. The objective of interconnect allocation for random topologies, is to

minimize the total number of inputs to the mUltiplexors, which may be

CA TREE Architectural Synthesis

%Register Binding Algorithm Using

%Bottom Up Tree Traversal

%

registecalloc([L,Root.RJ, Register3lusteClist) <­

registecalloc(L, Variable3lusteclistl),

registecalloc(R, Variable3Iusteclist2),

cluster_ variables(Variable3lusteclist I,

Variable_clusteclist2, Registecclusteclist);

% ... etc

223

Figure 12.6. Part of register binding algorithm,(written in Waterloo Pro­

log) showing bottom up tree traversal.

located at inputs to functional units or registers. The allocation involves

definition of cross variables in the tree structure, allocating interconnect,

and minimizing the number of multiplexor inputs.

Variables transferred between registers and functional units, called

cross-variables, are recorded at nodes in the tree. The node, where each

cross variable is stored, is defined as having each son-node, or subtree,

hold either the register or the functional unit involved in the transfer.

A top down tree algorithm allocates interconnect for a bus or random

implementation by using cross-variable cluster rules activated at each

tree node. A top down algorithm is used so that cross-variables at high

nodes of the tree are first clustered together to minimize the interconnect

at the root. There are four cluster rules which are listed below in table

12.2.

In each rule a check is made to ensure that there are no time conflicts

between the cross variable transfers (unless it is the same cross variable).

Also a check is made to ensure that they are allowed to be allocated to

224 Architectural Synthesis

Table 12.2. Interconnect Rules

Rule :# Rule description for merging two cross variables

1 equal destination and equal source

2 equal source

3 equal destination

4 no time conflict

the same side of the functional unit. The interconnect allocated is then

stored at the lowest possible node in the tree such that the subtrees below

the node will contain all components using that interconnect. Figure

12.7 illustrate the top down interconnect allocation algorithm and its

relationship to the interconnect located in the floorplan.

A heuristic local multiplexor minimization algorithm, which swaps

cross variables of commutative operations between clusters to minimize

the number of multiplexor inputs, was also used. The algorithm attempts

to reduce the inputs of multiplexors by swapping inputs of a functional

unit whose operation is commutative. Each functional unit is examined

to see if common variables exist on both sides of the functional unit. If

so, they are swapped in an attempt to minimize the overall number of

multiplexor inputs. Only single swaps are tried. The top down intercon­

nect algorithm attempts to minimize the number of long interconnect

which are most likely to be located at high levels (such as the root node)

in the tree.

12.4.3 CATREE Area and Delay Estimates

Area and delay estimations (Gebotys, 1987) are obtained by creating

a floorplan, performing a bottom up area estimate, and then extracting

delays of circuit paths defined in the tree. The objective is to determine

if the synthesized design solution meets the constraints before test incor­

poration. This step was added to save time in the design exploration by

CA TREE Architectural Synthesis 225

a

(c) (d)

Figure 12.7. Interconnect allocation using top down tree algorithm to

minimize the number of long interconnect. In a), cross variables and

their transfer times (var/time) located at various nodes in the tree are

shown. (b) shows the corresponding variable transfer paths in the

floorplan (c) shows the top down algorithm clustering cross variables

into 4 interconnect. (d) illustrates the solution in the floorplan. Only

two long (top level, [abgl] and [cdjk]) interconnections are allocated.

(Note: 1,2,3,4,5 can be a register or fu).

omitting test incorporation on designs that already do not meet the design

constraints before test. A simplified floorplanning algorithm and con­

straint estimation technique is described below, to guide our prototype

tool. However more sophisticated techniques as described in section

12.6 could enhance our results.

226 Architectural Synthesis

The simple heuristic floorplan algorithm moves top down through

the tree alternatively assigning X and Y split dimensions. It also assigns

low or high subtrees to each node attempting to place nodes close to their

neighbors to which they are most connected across each dimension. The

problem of placement or floorplanning for custom designs is very diffi­

cult as discussed in chapter 5.

An estimate of area and delay, similar to BUD (McFarland, 1986) ,

is calculated by using a bottom up tree traversal algorithm. At each tree

node the propagated minimum bounding boxes or areas of functional

units, interconnect, multiplexors and registers are combined or summed.

Delay estimates are calculated by outputting paths through the design,

consisting of functional units, fanout, registers, multiplexors and inter­

connect lengths, and computing their delays. The interconnect paths, or

wires attaching a source to a destination, are defined as following the

split lines encountered in the tree, in the direction of the destination. An

example in Figure 12.7 and the equations below further describe the area

and delay estimations.

If estimates of area and delay do not meet the constraints, resynthesis

is invoked by rescheduling operations and reallocating functional units.

When the area constraint is not met, a bottom up tree traversal algorithm

is used to collect functional units which can be merged together by

rescheduling their conflicting operations. Also the user may selectively

choose which functional units are to be merged or split if for example

delay is not met. The 'best' solutions are stored in case no further benefi­

cial merging can occur.

12.4.4 Test Incorporation

If the area and delay estimates meet the design constraints, testability

incorporation is explored. The test methodologies selected for imple­

mentation are given in the input specification and for simplicity can be

CA TREE Architectural Synthesis

AREAt = Xt * Yt

where:

Xt,Yt =
Max Xto,Xtl

1
~Xf. .Li I,

i=O

1
~Yt· .Li I,

i=O

Max YtoYtl ,

Xti = X dimension of subtree ti' Ytj = Y dimension of subtree tj.

t(to ,_,t I) = a tree, to, with subtrees, to and t I'

227

DELAY = Maxj { delay(Maxj {path(regj ~ lUi)})+ delay(JUi) +

delay(Maxj{path(fUj ~ reg)}) }.

where:

path(reg, fu) = delay(interconnect to fu) + delay(fanout at fu) +
delay(mux at fu).

path(fu, reg) = delay(fanout from fu) + delay(interconnect to reg) +
delay(mux at reg).

scan path and BIST. These two methodologies were chosen due to their

popularity and ease of implementation. The test incorporation problem

is defined as given a design structure and test methodology, implement

the test such that the design meets the area, delay and test constraints.

The objective is to minimize the test overheads (in area and delay) and

maximize the testability of the design solution. Test methodologies can

be scan path, BIST or a combination of both methods in a non-unifonn

approach, as illustrated in Figure 12.8 in the context of our synthesized

228 Architectural Synthesis

designs.

1 2
1 2

(a) (b) (c) (d)

Figure 12.S. a) Scan Path (fu:l,2>2), b) BIST(fu:l,2>3), c) shared BIST

(f1:1,2>3; f2:2,1>4), and d) 2-phased BIST (f1:1,2>3; f2:2,3>1)

implementation examples for a synthesized data path. Where nota­

tion is: (functional unit: left input test register, right input test regis­

ter> output test register).

The test implementation is done by identifying the circuit to test (ie

selecting subtree if nonuniform test methodologies), and then using

heuristic rules for assigning or allocating test registers such that all func­

tional units are testable. Test registers could be serial shift registers for

scan or LFSR for BIST. The heuristic rules aim to minimize the over­

head in additional multiplexor extensions, additional multiplexors, or

additional test registers. These three cases are shown in figure 12.9.

This would consequently decrease the delay and area overheads

(Tsui, 1986) required to meet the design specifications. It is currently

assumed for simplicity that the test methodologies are implemented to

allow test patterns to be applied to, generated at, or observed at, the

inputs or outputs of all functional units, similar to other approaches

(Abadir,1985) except their combinational units are called kernels. In

other words all functional units have indirect (through shift registers and

CATREE Architectural Synthesis 229

multiplexors) controllable and obselVable inputs and outputs. Design

partitioning, naturally represented in the binary tree data structure, is

used to implement multiple scan chains, test scheduling, and nonunifonn

test incorporation of these methodologies.

(a)

I 2

(b) (c)

Figure 12.9. Examples of a) multiplexor extension overhead, b) multi­

plexor overhead, and c) test register allocation (shown as double

lines) required during test incorporation stage of CA TREE. Both (a)

and (b) illustrate input test register assignment for a scan path test

implementation. In (c) output test register allocation is illustrated for

a BIST test implementation. All cases cause test overheads affecting

area and delay.

230 Architectural Synthesis

Each test methodology will provide a different set of rules for assign­

ing test registers. Due to conflicts between register use among functional

units, the allocation of new multiplexor extensions, multiplexors, and test

registers (which become new leaves in the tree) can be done, as shown in

figure 12.9. Single output and input registers of functional units are

ranked highest in being transformed into test registers for that functional

unit Next test registers are assigned from small to large sized multiplex­

ors at inputs or outputs of functional units. Finally additional test regis­

ters are allocated if necessary. Using these 3 rules, multiplexor exten­

sions are allocated before multiplexors or test registers, thus providing

lower overheads (Tsui, 1986) .

The implementation of multiple scan chains for a scan path or

nonuniform test methodologies uses the same algorithm outlined above

except it is applied to subtrees representing different partitions of the

design. For example a double scan chain methodology applies the algo­

rithm to the functional units located in each of the two subtrees located

one level below the tree root. If insufficient registers exist in a subtree,

then the registers located outside of the subtree are assigned as test regis­

ters. When all design registers have been assigned, new test registers

could then be allocated. Similarly for nonuniform test incorporation, dif­

ferent test methodologies can be applied to the two subtrees. For exam­

ple scan path could be implemented in one subtree and BIST could be

implemented in the other functional unit subtree. The registers and func­

tional units located in a subtree are highly connected and therefore will

be transformed into test registers with small overheads.

The definition of single or multiple scan chains is obtained after test

register assignment. The scan chain definition refers to the one bit wide

interconnect between the scan registers. It is required to shift patterns on

and off the chip for scan path and BIST methodologies. The objective of

scan-chain definition is to minimize the interconnect length between

CA TREE Architectural Synthesis 231

registers. This in turn will provide smaller scan delay overheads as

demonstrated in (Agrawal,1984) , where scan definition after layout

provided better performance than definition during logic design. A bot­

tom up traversal of the tree or subtree structure is done listing test regis­

ters as they are encountered. Scan chains are thus formed from the lower

left to the upper right corners of the floorplan, due to the 2-D definition

chosen in the tree. This order provides good results for the two examples

used in this paper, however other orderings could be defined using the

two-dimensional information of the data structure. The tree is ideally

suited for these computations due to its natural partitioning and two­

dimensional characteristics.

Test scheduling can also be implemented using the tree data struc­

ture. Test scheduling refers to the schedule for testing groups of func­

tional units sequentially in more than one test phase for BIST. An exam­

ple is shown in figure l2.8d), for two phased BIST. This algorithm

works bottom up collecting subtrees of X or less functional units, where

X represents the number of phases required to fully test the design. Each

of the X functional units will be tested during separate phases. Reason­

ably low overheads are obtained since the functional units found within a

subtree are highly connected to their local registers and therefore suited

to sharing them.

The partitioning and two-dimensionality of the binary tree data struc­

ture provides global information which aids in test· incorporation, test

scheduling, and scan chain defInition.

12.4.5 Feedback

New area, speed, and test cost estimates are obtained after test incor­

poration. The area and delay estimates use the same algorithms outlined

earlier on the current binary tree with test incorporation. A multiple cri­

terion performance measure (Abadir, 1985) is used to determine how

232 Architectural Synthesis

close the design solution is to meeting the desired constraints. In this

way the 'best' design is updated and stored during the design explora­

tion.

For illustration purposes the testability constraint estimation includes

estimation of the fault coverage and test time of the VLSI design. Furth­

ermore it is assumed that each functional unit is combinational logic and

is characterized in the VLSI data base with a measure of the total number

of faults, and for each test technique, the fault coverage and the number

of test vectors or pseudo-random sequences. We use this approach to

illustrate the methodology similar to (Abadir, 1985) .

In order to estimate the fault coverage we make the following

assumptions. First, faults in the scan registers are all detectable (ie using

alternating l's and O's test vectors (Agrawal, 1984)). We can also

obtain the number of faults detected for each functional unit, recorded for

a set of test vectors in our data base (or calculated previously using an

automatic test pattern generator (Agrawal,1984)). The remaining

undetected faults result from faults in the (non-test) registers not in the

scan chain and multiplexors. For simplicity we assume that the faults

traversed in the multiplexor during test mode are detectable. This pro­

vides a higher score for multiplexors exercised in more than one mode

similar to (Abadir, 1985) where this circuitry is described as being tested

for free. Furthermore since faults cannot be propagated properly through

multiplexor control logic (Agrawal, 1984) this seems to be a reasonable

assumption. One can then estimate the fault coverage globally by sum­

ming the total faults detected and dividing by the sum of the total faults

in the design, as shown in figure 12.10. The test time is the sum of the

time for the scan register testing followed by the time for applying the

test vectors or sequences to all functional units. The following equations

illustrate the test estimations.

CA TREE Architectural Synthesis 233

FAULT COVERAGE = Fd{ff.
m f r

where: Fd = {1: Fd(muxj) + 1: Fd(juj) + 1: Fd(reg j) }.
j~ j~ j~

m f r
Tf= {1: Tf(muxj) + 1: Tf(juj) + 1: Tf(regsj)}.

j~ j~ j~

Fd(x) = # of faults detected (by a test method) in the hardware unit x.

Tf(x) = # of total faults present in the hardware unit x.

TEST TIME = Maxc { Lc • Maxj(TvU,c))} :for scan chain
p

TEST TIME = 1: Maxj (Tv(j,x))+£0. :forBIST.
x~

where: Lc: length of (or number of bits in) scan chain c (c>=O).

Tv(x.y): number of test vectors (or sequences) for fux on chain y

(or active in phase y).

In cases where the number of design registers before test is greater

than the minimum number of test registers required, a different number

of assigned test registers will vary the fault coverage and test time esti­

mates. Also if multiple scan chains or different test phases are imple­

mented the test time will vary. Finally depending upon how the test

methodology was implemented the additional multiplexor extension,

multiplexor, or test registers required will also vary the estimation of

fault coverage in all cases and the test time in the last case.

In CA TREE different test methodologies are applied in an attempt to

satisfy the area, delay, and test cost constraints. If the test cost constraint

has been met, the strategies outlined for feedback after stage two are

used. This creates feedback path F3. However if the test cost constraint

234 Architectural Synthesis

b d

(a) (b)

tr = a,c. tr = a,b,c in «111 for fl

tr = a,b,d in «112 for f2.

Fd= Fd(fl)+Tf(tr)+O.5*Tf(mux). Fd= Tf(tr)+Tf(mux)

+Fd(fl)+Fd(f2).

Tf= Tf(fl)+ Tf(tr)+ Tf(b)+ Tf(mux). Tf= Tf(tr)

+ Tf(mux)+ Tf(fl)+ Tf(f2).

Tt= Tv(fl)*(S(tr». Tt= 3*(S(tr»+ T1(fl)+ T1(f2)

(c) (d)

Figure 12.10. An example of fault coverage (Fd/ft) and test time (Tt)

estimation in (c) and (d), for synthesized designs in (a) a scan path

and in (b) a double-phased BIST implementation respectively.

Where:!(tr)=L!(tr),s(reg)=# of bits in register; TI(fu)=# of clock
Ir

cycles to test fu with BIST; Tv(fu)=# test vectors to test fu with scan

path; tr = the test registers.

CA TREE Architectural Synthesis 235

is not met another test methodology or variation is reimplemented using

feedback path F2. When all test methodologies are exhausted and the

constraints are still not met feedback path F3 is used to resynthesize the

design similar to F2 discussed in section 12.4.3. This provides wide

design exploration for testable designs.

12.5 CATREE SYNTHESIS RESULTS

Two examples presented for synthesis in

(paulin, 1987,Pangrle, 1987) were used to illustrate the VLSI synthesis

with testability constraints. The first example performs a differential

equation using 11 operations. The second example is the elliptical wave

filter previously introduced and synthesized by OASIC (see part III,

chapter to). In figure 12.1, feedback path Fl representing the design

synthesis search with area and delay constraints has been analyzed in

several papers (Thomas, 1983, McFarland, 1986) . We will concentrate

on showing results for feedback paths F2 and F3 of figure 12.1. Feed­

back path F2 illustrates the test methodology search of one design driven

by area, delay and test cost whereas feedback path F3 shows the explora­

tion of testable design solutions driven by the area, delay and test cost

constraints.

To illustrate the effects of these feedback paths on the testable syn­

thesized design search, four criteria: fault coverage, test time, area, and

delay values; were estimated, normalized, weighed, and summed

(Breuer, 1985, Zhu, 1988) to obtain design scores for each solution. This

design score with equal weights is the multiple criteria performance

value also used to select and store the 'best' design found in the search in

case all constraints cannot be met. The assumptions made to calculate

these four parameters are given in (Gebotys, 1989) . We used the defini­

tion of score in (Breuer, 1985) , except our requirement vector was the

poorest value of each attribute from all the design solutions. Values were

236 Architectural Synthesis

nonnalized between 0 and 100, and the sum of all weights chosen was

one. For example a weight of 4411 represents assigning weights .4, .4, .1

and .1 to fault coverage, test time, area and delay respectively. Thus the

highest score represents the best design solution for those weights.

Figure 12.11 shows the results of applying five different test metho­

dologies to one VLSI design solution of the differential equation. This

corresponds to feedback path F2 of figure 12.1. Weights 0011 show that

the scan path test methodology is the best when strictly area and delay

are considered. Equally weighed parameters show that the scan path

with two chains approach perfonns the best. However if the test cost is

weighed most important as in score 4411, the shared BIST method

becomes the best solution. An example of the CA TREE floorplan and

register-transfer level solution is found in section 12.8, figure 12.11c,d),

where it is compared with CA TREE2.

Figure 12.12 and 12.13 show the CATREE differential equation

design search with five test methodologies implemented for each solu­

tion. Actual testable design details for DO through 04 are in (Gebo­

tys, 1989) . Figure 12.12 shows the equally weighted area and delay

based design scores. Both the design before test incorporation and the

testable design are graphed. In figure 12.12, the best solution for the

design search based upon area and delay only before test incorporation is

design 04, shown by the solid line. When test cost, area, and delay are

equally weighted, in figure 12.13, design D3 with the single chain scan

path is the best solution. Design D3 is also the best solution for all other

test methodologies except the double chain scan path.

Figures 12.14 through 12.16 show the CATREE synthesized design

solutions with test incorporation for the EWF. The multipliers were

assumed to be two cycle pipelined multipliers. Testable design solution

details for the EWF can be found in (Gebotys, 1987) .

CA TREE Architectural Synthesis

Design Scores: Fault Coverage,Test Length,Area.Delay
100.00 -r----_

80.00

60.00

40.00

20.00

0.00 1-----.-----r------r---~

SP1ch

Legend:

SP2ch BISTsh BISTIp
Five Test Methodologies Of DE Solution

~ ScoreOO11 ~ - - - ~ Score 4411
Score 1111

BIST3p

237

Figure 12.11. Weighted scores of one design solution of differential

equation (DE) with five different test methodologies (SPlch: scan

path with 1 chain, SP2ch: scan path with 2 scan chains, BISTsh:

BIST shared, BISTIp: BIST with 2 test passes, BIST3p: BIST with

3 test passes).

Figure 12.14 shows the design scores for five test methodologies

applied to one EWF design solution. The scan path with two chains is

the best testable design solution over all different weights. The second

best solutions vary according to which element of the four measures is

most important. The single chain scan path is desirable when area and

delay are most important while the two phased BIST solution is prefer­

able when test cost is more important.

238 Architectural Synthesis

Design Scores: Area:l.Delay:l
100.00

80.00

60.00

40.00

20.00

DO

Legend:

l(........ J(

0 0

D1 D2 D3
Design Search For DE

Synthesized
SPath-1ch
SPath-2ch

BIST-Sh
+---+ BIST-2
r---" BIST-3

D4

Figure 12.12. Design Scores for equally weighted area and delay only of

differential equation example. Synthesized refers to the solution

before test incorporation.

Figure 12.15 and 12.16 shows design scores for the four EWF design

solutions based upon equally weighted area and delay, and equally

weighted area, delay, fault coverage, and test time. Both solutions before

test and after test are graphed. f4 is the best solution when only area and

delay are considered before test incorporation, shown by the solid line of

figure 12.15. In figure 12.16 the best test methodology over all fIlter

design solutions is the double chain scan path. The second best is the 2

phased BIST methodology. For all test methodologies in figure 12.16,

solution f4 is the best testable design solution except in the case of the 3

CA TREE Architectural Synthesis

Design Scores: Fault Coverage:l,Test Length:l.Area:l.Delay:l
80.00

50.00

""::::::::::::::::::::::::3
.w; •••

o :,:::1' '''',
.........................0":'" ' ...

•••••• ... : ", " 1IIrIo,

........................ ,......... ·····0·····.... I',' -.... ,
". ,',' ". '" ____________ ••••• o.l ,,' " l1li,,_

.......... , •••••• .:0· " ,,' t
_..............." ".",.: ,,' "

... '",. ... '... ...,..... "
................ - "......,,' ,I'

.,....... '
", ... ' ',,'

.... :'!.... l

70.00

60.00

40.00

' .. ./
30.00 -t-----.-----;...----.------,

DO D1 D2 D3

Legend:
Design Search/or DE

)(........ 11 SPath-Ich
0 0 SPath-2ch

BIST-Sh

+---ot- BIST-2
r---" BIST-3

D4

239

Figure 12.13. Design Scores for equally weighted fault coverage, test

length, area, and delay measures are shown for the five testable

design solutions of the DE search.

phased BIST implementation. The best testable design solution for this

later test methodology is f3. This is due to a higher delay and lower test

score associated with the 3 phased BIST test implementation of design f4

as compared to f3.

12.6 CA TREE DISCUSSION

Several observations can be made from the differential equation and

elliptical wave filter examples. When equally weighted parameters or

only area and delay parameters are analyzed the scan path methodology

appears to be the test methodology to explore. Another observation is

240

100.00

80.00

60.00

40.00

20.00

Architectural Synthesis

Design Scores: Fault Coverage.Test Length.Area,De/ay

.............. ~:.:.>
.0- , 'III

..... " ... ~
....... ,I'

,// '.'<:.:.:.:.:.:~::::~:.:.~:::::.".
I

I
I

I

0.00 -t----.------¥----.------,
SPlch

Legend:

SP2ch BISTsh BIST2p _
Five Test Methodologies for Filter /pIA

Score 1111
~ Scoreoo11

:\ - - - ~ Score 4411

BIST3p

Figure 12.14: Weighted scores of one filter design solution, fPL4, with

five different test methodologies.

that weighing the test cost higher produces 'best' testable design solu­

tions using the BIST methodologies. In both cases the implementation

details, such as number of chains or test schedule, will vary in each

example, hence test implementation of a particular methodology should

be fully explored. Also results will vary depending upon the specific

library (or library file) the synthesizer is targeted to. Before test incor­

poration, a synthesis search, based upon area and delay only, produces

D4 and f4 (as shown in figure 12.15) as the 'best' solutions of each

example respectively. However when test methodologies are imple­

mented and all four parameters are weighed equally, the 'best' testable

design solution is different in the differential equation example. This is

CA TREE Architectural Synthesis

Design Scores: Area:} .Delay:}
100.00

80.00

60.00

40.00

20.00

fl

Legend:

)(•••••••• Jl

0········0

f2 fPL3
Design Search/or EWF

Synthesized
SPath-lch
SPath-2ch

BIST-Sh
+----1- BIST-2
r---'" BIST-3

241

fPIA

Figure 12.15: Design Scores of equally weighted area and delay only for

the elliptical wave filter (EWF) example.

attributable to area and delay, as well as fault coverage and test time, in

all test methodologies except the double chain scan path. In the elliptical

wave filter example the 'best' testable design solution is different, f3, for

one BIST test methodology and the same, f4, in all other test methodolo­

gies (as in figure 12.16). For this example the difference in solutions is

attributable to fault coverage and delay.

In general we have seen that the best solution for the area-delay

based synthesis alone does not always lead to the best testable design

solution for all test methodologies. Thus feedback after test incorpora­

tion to the synthesis process, feedback path F3, is important for finding

242 Architectural Synthesis

Design Scores: Fault Coverage:l.Test Length:l.Area:l.Delay:l
70.00

60.00

50.00

40.00

30.00

20.00

f1

Legend:

12 fPL3
Design Searchfor EWF

fPIA

JI I(SPath-lch
0··· ·0 SPath-2ch

BIST-Sh

+---+ BIST-2
,.---.. BIST-3

Figure 12.16. Design Scores for equally weighted fault coverage, test

length, area, and delay measures for the filter synthesized design

search.

good testable design solutions. Secondly, the best synthesized design

solution from which the testable design is obtained will often vary for

different test methodologies. Hence all test methodologies must be con­

sidered, feedback path F2, for all possible design synthesized solutions in

a search for a testable design satisfying area, delay and test cost con­

straints.

The actual weights assigned to the four parameters will directly

effect which design becomes the best solution. In practise the weight

values must be assigned according to which parameters are the most

CA TREE Architectural Synthesis 243

critical, which in tum would depend upon the application.

If a test-characterized data base library were not available then the

test cost parameters, fault coverage and test time, would have to be deter­

mined from test software such as an automatic test pattern generator.

Test cost could also be extended to include test confidence, input/output

pin counts or other attributes (Zhu, 1988) . If the test cost constraint can­

not be met after exhaustive test implementations then one could use or

create a more testable functional unit or interface to test software for fault

coverage improvement or for decreasing the test time. Note as in section

12.4.4, the assumption concerning implementation of the test methodol­

ogy, may cause ovemeads to be significant such that all constraints can­

not be satisfied. In these cases interface to test software which for exam­

ple selects a minimum number of nodes for the scan path or which

includes only hard to test functional units on scan chains would be neces­

sary. Could also extend CA TREE to schedule test phases of non uniform

test methodologies instead of restricting this to scheduling for BIST

alone.

The fioorplanning algorithm produces reasonable results for the

design examples used, however other more sophisticated algorithms may

improve results for other design examples. The use of a partitioning

algorithm (Kernighan, 1970) during tree formation and fioorplanning

(Gebotys,1988c) , may improve the test costs (for example by reducing

test time), for larger design examples as done in CATREE2 discussed

next.

12.7 CATREE2 DESIGN SYNTHESIS STAGES

The stages for CA TREE2 are shown in figure 12.2. The main differ­

ence between this methodology and CA TREE methodology is that the

test incorporation is performed after functional unit allocation and bind­

ing. In CA TREE, test incorporation is perfonned after a full solution is

244 Architectural Synthesis

synthesized. The first stage of CA TREE2 involves fonning the tree data

structure. OASIC again perfonns the scheduling and allocation of func­

tional units. The test incorporation stage involves functional unit parti­

tioning, test operation assignment and test scheduling. The finish design

allocation block in figure 12.2 involves register and interconnect alloca­

tion followed by floorplanning and scan chain defInition. These alloca­

tion algorithms, unlike CA TREE, use both design and test infonnation.

The area, delay, and test estimation stage is the same as in CA TREE. A

new feedback procedure using weighted rule sets was also used in

CATREE2.

12.7.1 Tree Formation and Functional Unit Binding

The input specification is similar to figure 12.3 except the test

methodology specified as scanx or bistx, where x is the number of chains

or test phases. Shared BIST and nonunifonn test methodologies, dis­

cussed for CA TREE, were not considered for CA TREE2, however could

easily be incorporated. A better parser was developed in CA TREE2 to

handle multiple operation expressions, which are reduced into a series of

single operation expressions, and if-then-else code segments. This con­

ditional code is separated into one main trace (including the 'if' true

code) and other traces (composed of the 'else' code). Currently arcs are

placed between the nonnal code and conditional code segments for the

scheduler to prevent code motion requiring bookkeeping. The scheduler

and functional unit allocation is OASIC.

A binary tree data structure is fonned from all operations. The min­

cut partitioning algorithm (Kernighan, 1970) is recursively applied to

fonn a balanced operation tree based upon a computed score between

each pair of operations. The score is obtained from a sum of assigned

weights for the same operation type, shared variables, and non­

conflicting firetimes.

CA TREE Architectural Synthesis

score(Operation1, Operation2) =
4
~w·*r· ~ I I

;=1

where:

r; = # of times rule r is valid.

w; = weight of rule r.

245

Operation! and Operation 2 are the nodes of the graph and the score is

the weight on the edge between nodes in the partitioning algorithm.

Weights are defined in table 12.3.

Table 12.3. Rule set for Operation Partitioning.

Rule # Rule Description Weight

1 shared variables 2

2 same operation 5

3 different times in same trace 5

4 exists in different traces 1

This approach fmds trees with the OASIC minimum number of func­

tional units faster than basing the tree fonnation on variable connectivity

only as in CA TREE. Functional unit binding uses a bottom up tree

traversal algorithm to assign functional unit nodes to subtrees containing

non-conflicting operations whose functionality exists in the library.

Operations from different traces can be clustered together thus providing

functional units for mutually exclusive operations.

12.7.2 Test Incorporation

Test incorporation occurs after the functional unit allocation in

CATREE2. This stage involves the three following three tasks: 1) repar­

tition the functional unit tree, 2) add test operation leaves, and 3) perfonn

246 Architectural Synthesis

test scheduling. Test is incorporated into the binary tree such that the

next stage which completes the design synthesis, uses both design and

test infonnation to make synthesis decisions.

The partitioning algorithm (Kernighan, 1970) is recursively applied

to fonn a balanced mincut tree of functional units based upon their vari­

able connectivity. This provides a balancing of functional units useful

for test scheduling, multiple chain definition (even number of chains), or

nonunifonn test incorporation. The mincut fonnation is also useful for

the tree allocation algorithms which attempt to produce unifonnly distri­

buted registers and a minimum number of long interconnect

A test operation leaf is added to each functional unit subtree, as

shown in figure 12.17. The test operations have test input and output

variables which together describe the test mode behavior of the design.

The test variable names are numerically assigned however their lifetimes

are obtained from the test methodology and test schedule (for BIST).

The test operation leaf holds the test operation and its input and output

test variables. It is assumed for simplicity that the test methodologies are

implemented to allow test patterns to be applied to, generated at or

observed at, the functional unit inputs or outputs.

For scan path test methodologies all test operations are assigned the

same firetime. The input test variable lifetimes do not overlap with the

output test variable lifetime. This allows an output test variable to share

the same register as an input test variable as is commonly done in scan

path testing (McCluskey, 1986) . For multiple scan chains, the subtrees

located below the root node of the tree are used to partition the design

into groups of functional units which will be tested on separate scan

chains.

Test scheduling is required for an x phased BIST implementation.

Test operation firetimes are assigned by a bottom up tree traversal algo­

rithm which collects subtrees of x or less functional units. Each test

CATREE Architectural Synthesis

*3 *4

(a) FU Tree

*12 t1

+78 t2 *34 t3

(b) Test Tree

247

Figure 12.17. An example of CATREE2's functional unit tree before test

incorporation in a) and the test tree. after test incorporation in b).

Five horizontal lines represent 5 functional unit subtrees

(*0.*34.*12.+78.-56>=9). The test operations are tx. where x=I •...• 5.

operation of functional units in the subtrees are assigned a different test

firetime. corresponding to a different test phase in which the functional

unit will be tested. The BIST test input and output variable lifetimes are

dermed to overlap. This ensures the input pseudo-random number gen­

erator or LFSR is a different 'test register' than the output signature

analyzer during the same test phase (Williams. 1983) .

248 Architectural Synthesis

12.7.3 (Test) Register and Bus Binding

Stage 3 involves the register and interconnect allocation and floor­

planning. Both design and test infonnation are used to make synthesis

decisions during allocation. In addition the allocation algorithms differ

from CA TREE by using a voting strategy to detennine the best possible

clusterings at nodes of the tree. This voting is based on scores between

the possible candidate clusters, which are calculated from a weighted rule

set.

Register allocation uses a bottom up tree traversal algorithm with

conflict and weighted cluster rules applied to test variables and operation

output variables of leaf nodes. Each cluster rule has a weight assigned to

it, shown in table 12.4, that is used to compute a vote to detennine which

cluster a variable (or cluster) will be placed (or merged). Cluster rules

were used to allow further exploration of the design space. By changing

the weights assigned to each rule one can change the synthesized alloca­

tions and also observe the effect the rules have on the synthesized solu­

tions. This is a more flexible and interesting method than the CA TREE

fixed and ordered heuristic allocation rules, however it is a longer pro­

cess and computationally more expensive. Conflict rules prevent vari­

ables from clustering, for example, when two variables have conflicting

lifetimes in the same trace. Variable lifetimes in all traces must be

checked for conflicts. Variables with lifetimes in different traces will not

conflict and can be clustered together. A final clustering with input only

variables is done at the tree root at the end of the algorithm.

Each cluster of variables representing a register is then placed into

the tree closest to the functional units to which it is most connected. This

attempts to maintain the mincut characteristic of the tree. The algorithm

tends to produce registers which are evenly distributed among functional

units and used in both the nonnal and the test mode of operation.

CA TREE Architectural Synthesis 249

Table 12.4. Register allocation cluster rules.

Rule # Rule Description Weight

I same side inputs to a fu 5
2 test variable with inputs for same fu 10

3 output variables of a fu 2

4 test variable with output for same fu 10

5 test variable cluster with test variable 10

6 test variable cluster with nonnal variable 0

7 same value constants 10

8 same size variables 10

Interconnect allocation involves a top down tree traversal algorithm

using conflict and weighted cluster rules on cross variables (xvars)

located at different nodes in the tree. Cross variables represent transfers

of a variable to a register from a functional unit or from a register to a

functional unit. They are stored at nodes in the tree as defined in

CA TREE. Cross variables of different traces will not conflict with one

another. Currently a random or a uni/bi-directional bus topology can be

allocated. The later two bus styles are specified in a configuration file

which is then used to select appropriate conflict rules. An example of the

cluster rules is shown in table 12.5.

Table 12.5. Interconnect cluster rules for CA TREE2 synthesis.

Rule # Rule Description Weight

1 xvars share a register or fu 30

2 xvars used in different traces 5

3 xvars is regs ~ same fu on same side 5

4 xvars is same reg ~ fus 5

250 Architectural Synthesis

Multiplexor allocation can be done in a local, distributed, or 2 level

configuration. The aim is to minimize the number of multiplexor inputs.

The local configuration is the same algorithm as described for CA TREE

in section 6.4.2. The distributed configuration attempts to share multi­

plexors of registers between two functional units only if this decreases

the number of multiplexor inputs is. The algorithm searches for multi­

plexors of the same type of registers. The 2 level configuration attempts

to share an extra level of multiplexors whose output is input to two other

multiplexors feeding functional units. Both algorithms are heuristic and

attempt to decrease the total number of multiplexor inputs.

The tree algorithm allocates interconnect paths for use in both test

and normal modes of operation and is aimed at producing a minimum

number of long interconnect.

12.7.4 Feedback

The floorplanning algorithm (Gebotys, 1987) currently assigns alter­

nating x and y dimensions at each level in the tree. Low and high sub­

trees of each node are also assigned based upon their connectivity to their

neighbor nodes. This transforms the binary tree into a two dimensional

binary tree as in CA TREE.

Area, delay and test cost are computed in stage 4 and resynthesis is

invoked if constraints are not met. These three parameters are computed

as in CATREE (Gebotys, 1989) from the two dimensional tree and a

library containing area, delay and test information for functional units,

multiplexors and registers.

Feedback can be performed automatically by using a bottom up tree

traversal algorithm that attempts to merge functional units through

rescheduling. It also may be done by changing the set of weights

assigned to operation, variable or cross variable cluster rules, as shown in

figure 12.18. This later method can be used to perform design tradeoffs

CA TREE Architectural Synthesis 251

between test and area. For example if a high weight is assigned to the

cluster rule allowing test variables to cluster with other test variables then

a minimum number of test registers would most likely be allocated. In

figure 12.18b) there are two test registers because t2 clustered with t1.

This would decrease the overall area but also decrease the fault coverage

if there were additional registers not used as test registers. By changing

this weight to a lower value, the number of test registers would increase

and consequently the fault coverage would increase. In figure 12.18a)

there are three test registers since t2 clustered with c. Hence these

weights can be used to explore design tradeoffs. Feedback can also be

done manually through rescheduling or adding arcs in the input specifica­

tion.

12.8 CATREE2 EXPERIMENTS

A differential equation example previously presented for research

(paulin, 1987,Pangrle, 1987) was used to illustrate the CATREE2 design

and test synthesis and to compare with results from the CA TREE metho­

dology. Figure 12.19 show the CA TREE2 and CA TREE synthesized

design solutions (the OASIC scheduler was not used). A random topol­

ogy, local multiplexor configuration and double scan chain (scan2) test

methodology were implemented in both cases. TIle 4esign solutions had

5 functional units and 10 test registers. CA TREE2 solution had l3 mul­

tiplexors or 30 multiplexor inputs. CA TREE produced a solution with

higher area (it has 31 multiplexor inputs) and a poorer delay than the

CA TREE2 solution. The critical path had an extra multiplexor input

delay and an extra fanout delay. This extra interconnect was required

due to the register allocation objective in design synthesis. Minimization

of the number of design registers caused an output variable to be allo­

cated to register yl thus creating an extra multiplexor input. However

during test incorporation in CA TREE, more test registers than the

minimum number of design registers were required, causing the previous

252

{c} {tl} NM: a*b=c.

{t2} TM: to*tl=t2.

(a)

c,

Architectural Synthesis

tI,

t2.

(b)

c.

Figure 12.18. An example of the resultant different synthesized designs

made by changing rule sets for register allocation. The normal mode

(NM) and test mode (TM) behavior and partial tree are shown. In a)

the weight of the rule for combining test variables with other test

variables is zero, to maximize testability. In b) this rule is given a

high weight to decrease the number of test registers, or to minimize

the area (c is not a test register).

objective to be unnecessary. Thus the overhead was created since design

synthesis was performed without test consideration. Since CA TREE2

considered both design and test simultaneously a better solution was

obtained.

Figures 12.20 and 12.21 illustrate the decisions CATREE2 can make

since both design and test information are used simultaneously during

synthesis. In other test incorporation methods

(Abadir,1985, Craig, 1988) which deal with structural information only,

these decisions can not be made and therefore in the examples shown

larger overheads are produced when they are unnecessary, as illustrated

by CA TREE2s solutions.

CATREE Architectural Synthesis 253

-* C!LI
r-- r---

-,-, p • ,,=1.1 •• H ill'
,-- Ip2 I

tTH .
I .,-, I'," ·0

4' r

.,-.. '. h.-_-.
I' l' , ,

Ip4

"'211·
-I.',~,

" +7+1 .
(1\) r _

,,~

(t)

(d)

Figure 12.19. An example of a double scan chained synthesized design

solution from CATREE2 in a,b) and CATREE in c,d).

Table 12.6 compares the CATREE2 runtimes (rtime), and the

number of registers (reg) and busses (bus) of different test methodologies

(scanx: x chains, bistx: x phases) with CA TREE2 synthesis with no test

incorporation (none). All solutions had 5 functional units and imple­

mented a bus topology with weighted cluster rules for a minimum

number of test registers. The average runtime overhead for test incor­

poration was 36%. The runtime values of table 9 are in cpu seconds for

CA TREE2 written in Quintus Prolog running on a Sun 3/260.

254 Architectural Synthesis

abc abc

~
(a) (b) (c)

Figure 12.20. Problem = to test both functional units (fl ,f2) in parallel:

a) obtained from synthesis before test methods, cannot perform a

parallel test (without hardware changes) because the 3 register multi­

plexor is shared; b) the hardware changes, required for parallel test­

ing of a), produce area and delay overheads; and c) the better solu­

tion obtained by CA TREE2, (preventing the sharing of the multi­

plexor during synthesis due to test conflicts).

Table 12.7 shows the runtimes (rtime) and the number of operations

(K, from the input algorithm) of various CATREE2 synthesized exam­

ples. All solutions used a bus topology and BIST test methodology

implementation. The average runtime per operation is approximately 8

cpu seconds.

12.9 CA TREE2 DISCUSSION

In summary, CATREE2 provided a better solution to the differential

equation example than the CA TREE methodology because test was con­

sidered earlier during the design allocation. This simultaneous design

and test methodology provided a higher degree of test and normal mode

sharing of registers and interconnect. In this example CA TREE2 pro­

vided lower area and delay values than CA TREE. CA TREE required

test register allocation in addition to test register assignment However

another advantage to CA TREE2 is its ability to perform better design

decisions by considering test simultaneously with design, as was shown

CA TREE Architectural Synthesis 255

b c c b
a a

(a) (b) (c)

Figure 12.21. Problem = to test the (commutative) functional unit (fu)

using a BIST method (where test registers are shown as shaded

boxes): a) obtained from synthesis before test incorporation, has no

left input test register, see "?"; b) produces area and delay overhead

to incorporate test in a) after synthesis; c) is the better solution

obtained from CA TREE2 which synthesizes left and right test regis­

ters for the functional unit.

Table 12.6. CA TREE2 testable design solutions for a diffeqn example.

test: none scan 1 scan2 bistl bist2 bist3

rtime 48 70 75 80 80 80

regs 6 10 10 15 9 7

bus 8 11 9 9 12 10

in figure 12.20 and 12.21. Without this test knowledge design improve­

ments done during design synthesis may be eliminated during test incor­

poration or may possibly incur larger performance penalities on the fmal

design (without resynthesis).

CA TREE2 runtimes are quite reasonable and do not place a signifi­

cant burden on the synthesis process by simultaneously considering test

If we use the runtime per operation values to extrapolate, it can be

256 Architectural Synthesis

Table 12.7. CA TREE2 runtime versus number of operations(K).

Designs: test trace! diffe fIlter

K 5 8 10 34
rtime 35 53 77 345
rtime/K 7 7 8 10

expected that for a larger realistic algorithm. for example. one thousand

operations. CA TREE2 would perform design synthesis in approximately

a few cpu hours. This seems to be a reasonable amount of time making

further design explorations feasible. Furthermore fully programmable

code does not pose a problem for CA TREE2 synthesis since the runtime

would approximately be proportional to the total number of operations.

with the additional time required in the parser only for extracting traces.

The test incorporation for full controllability and observability of all

inputs and outputs of functional units may cause test overheads to be sig­

nificant such that design constraints cannot be met. A modification so

that only the hard-to-test functional units are used for the test mode (thus

requiring fewer test operations) could be made in CATREE2. Otherwise

interface to test software or use of more testable functional units may be

necessary as discussed in CA TREE section 6.6.

Assuming that each functional unit has the same number of test vec­

tors. CA TREE2 creates a minimum test time by partitioning the tree into

equal amounts of functional units. However often the number of test

vectors for different functional units will vary as studied in (Craig. 1988)

. Thus an extension to this research would be to minimize the test time

for functional units with different test times. For example a smaller

chain of functional units would be formed if these units required long test

times. We could mOdify CATREE2 to form the final functional unit tree

by partitioning based upon a weighted sum of attributes as in the

CATREE Architectural Synthesis 257

operation tree fonnation. The attributes would now be connectivity and

test lengths. For example two functional units with similar test lengths,

and therefore suitable for the same scan chain, would have a higher

attraction value. Where as units with different test lengths, belonging on

separate chains would have small attraction values.

Also CA TREE2 has assumed that each fu has associated with it a set

of test vectors (for ScanPath) or a pseudo-random sequence length (for

BIST) and a fault coverage. These values were assumed to be precharac­

terized by test tools such as (Wagner,1987) . However this could be

extended in the following way. Often different test vector sets or dif­

ferent polynomials (or seeds even for pseudorandom testing

(Wagner, 1987) could exist for one functional unit in scan path or BIST

applications. Thus the CA TREE2 problem would be extended to choose

the proper set of vectors or best polynomial to achieve the design and test

constraints. This extension towards a more realistic design and test

library is illustrated in table 11. One final extension would then be to

introduce different implementations of functional units as illustrated in

the table 12.8 by Ie. Thus partitioning functional units, assigning test

registers and choosing test sets or polynomials would become more com­

plicated and interesting to investigate. However a larger design and test

space would be explored.

In this chapter we have described two methodologies, CA TREE and

CA TREE2, which integrate test incorporation with architectural syn­

thesis. Both approaches illustrated the impact of test on area and delay

curves of the VLSI architectural design exploration phase. In the next

chapter we will make some concluding remaIics to summarize the

material presented in this text and discuss some future extensions for

VLSI testable architectural synthesis.

258 Architectural Synthesis

Table 12.8. Extension of Pre-characterized CA TREE(2) Libraries

Library FU Library Attributes

CATREE(2) fu(i) tv(i) ,fc(i),a(i) ,d(i)

extension fu(i,[k]) tv(i,j,[k]),fc(i,j,[k)),

a(i,[kJ),d(i,[k))

fuO functional unit

tvO test vectors (ScanPath) or

of test sequences

for a fixed polynomial (BIST)

fcO (estimated) fault coverage

aO area

dO propagation delay

j different test set (scanpath) or

different polynomial(bist),

fu(i,[k)) k versions of fu(i)

PART V: SUMMARY AND FUTURE RESEARCH

13.

SUMMARY AND FUTURE RESEARCH

Separate summaries of the OASIC and CA TREE methodologies, and

concluding remarks (extensions of this research and future CAD tools)

are presented in this final chapter of the text

13.10ASIC

The OASIC synthesized architectures, which have demonstrated all

of the constraints presented in chapters 6 through 9, have been presented

in chapter 10. The first three examples (differential equation, elliptical

and kalman fIlter) were taken from the high level synthesis benchmark

database. These examples along with the neural network (taken from

literature outside of architectural synthesis field) and time constrained

examples (also synthesized in chapter 10), provided a good basis for

demonstrating the efficiency and flexibility of the OASIC synthesizer.

The results of chapter 10 demonstrate how well OASIC can synthesize

262 Architectural Synthesis

architectures from input algorithms that range from having a large

amount (neural network. algorithm) to a small amount (elliptical wave

filter) of regularity. And more importantly results indicate that OASIC

can efficiently and optimally synthesize architectures even in the pres­

ence of complex interface constraints. Other synthesis benclunarks were

not selected because many were control dominated, or in other words

they were more suited for controller synthesis. For example the architec­

ture itself could be trivially obtained from a few operations in the specifi­

cation, whereas the remaining operations are control operations useful for

controller synthesis.

There exist few published complete architectural solutions to the

EWF, a benclunark. for over three years; most likely due to its compli­

cated interconnections. For the first time we can directly allocate busses

at a very early stage (simultaneously with scheduling) and optimally syn­

thesize an architecture. Furthermore we have shown in chapter 10 that

previous heuristic synthesizers (Paulin,1989) , (Devadas, 1989) , (Lag­

nese,1989) have not produced globally optimal schedules and alloca­

tions.

Although the worst case complexity is exponential, we have found

that many problems (ie Chapter 10) can be solved very fast to global

optimums. As algorithms become larger we can take advantage of the

mathematical flexibility of OASIC to model systems with hierarchy and

regularity (such as the kalman filter and neural network algorithms) using

a small number of variables (as demonstrated with functional pipelining).

Larger algorithms may be partitioned into smaller code segments at ksep

(which maintains optimality) or at other csteps (using partially relaxed

OASIC with only objective and other variables EZ). Other partitioning

techniques may also be easily incorporated. However more importantly

we have demonstrated that over 100 code operations (ie unrolled filter)

can be simultaneously scheduled and allocated in very fast cpu times.

Summary and Future Research 263

This ability to synthesize large complex algorithms is a significant con­

tribution to the synthesis field.

The use of node packing facets provided integer solutions in 16 times

faster (defined as CPU time for solving IP without node packing facets

divided by the CPU time for IP solution using facets, ie. CPU improved

from 600s to 36s) in some cases than the use of previous scheduling con­

straints (Baker, 1974, Lee, 1989) . Knapsack facets used to improve the

lower bounds on the number of busses provided 5 times faster CPU times

(30m to 6m). The tightening of constraints was also shown in some

cases to improve CPU performance by 1.6 times (420s to 267s).

With respect to previous synthesized architectures, using the cost

function (ct) (Devadas, 1989) , we obtained architectures with a 7% to 18

% improvement in area-delay. These improvements come from the

optimized number of registers and busses. Furthermore these results are

stable over variations in the cost parameters for these two resources.

Even when we generously compare with register file architectures we

obtain improvements in area-delay.

By scheduling simultaneously with general bus allocation in OASIC

we can obtain better interconnect efficient architectures than previous

heuristic synthesizers which allocate busses and multiplexors after the

schedule is fixed (see figure 10.2).

We can simultaneously solve interface constraints with scheduling

and allocation to optimally make tradeoffs between architectural area,

speed, and controller size. This is very important since the analysis has a

significant effect on the area and delay of the final architecture as demon­

strated in this thesis. This is unlike other approaches which schedule

after and independently of functional unit allocation (Ku, 1989a) or heu­

ristically readjust the schedule only for functional units (Nestor, 1990) .

Secondly the OASIC computation time does not vary significantly in the

presence of timing constraints, such as the analog interface (see table

264 Architectural Synthesis

10.21 and 10.8).

We can easily minimize registers in the presence of conditional code

unlike synthesizers which use heuristic algorithms (Kurdahi,1987) .

Secondly because our model is mathmatically driven we can minimize

the execution times of different mutually exclusive paths of code simul­

taneously with bus and register allocation, unlike some other synthesizers

(Camposano, 1991) which cannot allocate these resources.

List Of Contributions

This section will outline the contributions to the high level synthesis

field, high level design methodologies, and systems design methodolo­

gies. In addition the impact of this research on extensions for higher

level transformations is outlined.

Research Contributions To Architectural Synthesis.

The contributions of this research to the architectural synthesis field

are outlined below. The original and new research is highlighted in the

following points. For the first time we have:

1. Formulated a model for simultaneous scheduling and allocation of

functional units, registers, and busses (Chapters 6 through 9).

2. Solved for globally optimal schedules and allocations which minim­

ize an area and delay piecewise linear cost function (Chapter 10).

3. Fonnulated timing constraints for interfaces to analog and asynchro­

nous processes (Chapter 9).

4. Applied integer programming facetial techniques to solve architec­

tural synthesis (Chapters 6,7,9,10).

5. Demonstrated that regularity and hierarchy of DAGs can be used to

optimally synthesize architectures (Chapter 10).

Summary and Future Research 265

Contributions To High Level Design Methodologies.

The OASIC methodology has a significant impact on higher level

methodologies. Not only does the OASIC model for interfaces support

mixed analog/digital systems design, but also its use of regularity and

hierarhcy is important. The OASIC mode helps to define how the higher

level design automation tool will interact with the user. For example an

interactive environment to enable analog/digital partitioning of the

behavior, high level code motion, regularity identification, and changes

in hierarchy should be part of the future DA tools. The direct impact of

changes to the code can be examined, without the nuisance of the heuris­

tic analysis which often do not make use of available fme grain parallel­

ism in the input code. For the first time one can determine whether the

"code optimizations" are in fact optimal or not with respect to the paral­

lelism they are supposed to generate.

In summary this research synthesizes in practical execution times,

and supports complex constraints including asynchronous/analog inter­

faces, bus calculation and area-delay cost functions. This is important

for industry since its has been estimated it would take an effort larger

than the synthesis itself to modify a self synchronized synthesized design

to interface with other hybrid processes in a systems design. Also inter­

connect is seen as the key to high performance architectures and early

decisions made during synthesis have the greatest impact on the fmal

design. For the first time we can obtain exact globally optimal schedules

and allocations for area-delay cost functions very early in the design

cycle. Previous synthesizers could at best guarantee a locally optimal

solution (which may not meet area-delay constraints) and could not han­

dle asynchronous/analog interfaces (simultaneously with scheduling and

allocation). Finally we have demonstrated (see Chapter to) that OASIC

can handle input algorithms with different types of structure, with over

100 input code operations, and with complex constraints. In summary

266 Architectural Synthesis

this research provides globally optimal synthesized architectures, syn­

thesizes large input algorithms in practical execution times, and supports

complex constraints and cost functions.

13.2 CATREE

The preliminary research tools, CA TREE and CA TREE2, are aimed

at providing a framework. for integration of synthesis and testability.

Previously research in these two areas have largely remained separate.

These two new VLSI integrated design and test synthesis methodologies

with area, delay, and test cost constraints, provide wider design explora­

tion, early performance feedback including test cost, and integration of

design and test considerations. Preliminary results show that good

testable design solutions are produced by simultaneously synthesizing

the design's behavioral and test modes. This earlier consideration of test

seems to make better design choices during allocation and allows confi­

dent design improvements taking both design and test information into

consideration.

This has implications for work. in both research and industrial

environments. In industry, such a tool, when given an algorithm and test

methodology, would provide wider exploration of solutions, with area,

delay and test cost constraints satisfied earlier in the VLSI design cycle.

Also valuable design cycle time would be saved by providing wider

exploration of design solutions with area, delay and test cost constraints

satisfied earlier in the VLSI design cycle. In research, it has been shown

that testability should be considered an important part of the design syn­

thesis search along with area and delay. Thus feedback path F3 of

CA TREE, along with FI and F2, should be used when synthesizing

designs for an algorithmic description. Also the tight coupling of the

design and test synthesis, provided by CA TREE2, can be used as a basis

for further exploring improvements in design searches with area, delay,

Summary and Future Research 267

and test cost constraints.

In summary the CA TREE and CA TREE2 design synthesizers pro­

vide a useful approach towards incorporating testability within the syn­

thesis process using a two dimensional binary tree data structure. The

tree data structure provides allocation algorithms of reasonable complex­

ity without saCrificing quality (Gebotys, 1987) . Integration of the VLSI

data base is achieved through a common binary tree data structure used

in complete synthesis with testability unlike a combination of separate

synthesis and testability tools such as (Granado, 1985,McFarland, 1986)

tools with (Abadir, 1985, Zhu, 1988) . The binary tree data structure also

supports automated feedback to the synthesis process after test explora­

tion. Finally the two dimensionality naturally represented within the

binary tree data structure supports testability incorporation and area­

delay estimation, unlike other structures lacking this property

(Abadir, 1985,Zhu, 1988) . CATREE has been implemented in Quintus

Prolog and is available as part of the Waterloo VLSI CAD Tool package

(Elmasry, (null» .

13.3 FUTURE EXTENSIONS

The following is a list of future extensions for OASIC and CA TREE.

These are divided into extensions for the model and extensions for the

solution strategy.

Model Extensions

An extension of the OASIC model for register transfer architecture

such as SPAID (Haroun,1989) could be perfonned. In this case one

would minimize the size of register files, number of busses, and numbe r

of multiplexors.

268 Architectural Synthesis

It would be useful to extend the bus allocation constraints for t~3,

since our current OASIC model (chapter 7) only provides an exact

number of busses for t= 1 ,2.

An extension to allocate and select functional units representing

chained operations and subsequently change the clock period would be

very useful. Currently we can select chained operations, however we can­

not account for different clock periods.

OASIC could also be extended to allocate storage and busses for dif­

ferent data sizes. Another extension for OASIC would be solution of the

simultaneous scheduling, allocation and binding problem, where the

number of bus drivers is modelled.

Test incorporation performed simultaneously with a second binding

optimization phase similar to (Gebotys, 1990) would be another interest­

ing extension. Future research would also include extending the syn­

thesis to fully programmable algorithmic input using trace scheduling

techniques to optimize hardware implementation for high probability

traces. Also completing the front end parser to extract traces, implement­

ing the trace scheduling approach, extending automatic feedback stra­

tegies, including controller costs, and automating testability measures

earlier in the synthesis process, ie. evaluating test measures for chained

operations, would be investigated in the future.

Solution Strategies Extensions

It would also be interesting to study the use of branch and bound on

partial orders instead of variables of the model. We would expect good

results since there are in some applications fewer partial orders than vari­

ables and the subpolytope of precedence constraints is very tight

Summary and Future Research 269

Investigation and generalization of other facets for a branch and cut

automated tool would also be another extension. The development of a

heuristic strategy for selection of variables to branch on would also

improve CPU times for architectural synthesis. This was discussed

briefly in OASIC (chapter 10) where branching on the most constrained

variables (the multiplication) provided significant CPU improvement.

The use of the node packing decomposition technique could also be

investigated for only a subset of OASIC (Xi,j,k)' Preliminary results

found that all variables were set to 0.5. This was similar to other results

in (Grimmett, 1985) . Secondly since bounds are known to be very poor

with this model (padberg, 1973) and results with the facet model were

very good, this approach was not pursued in this thesis, however could

be further analyzed in future research.

13.4 CONCLUDING REMARKS

For the first time we have tightly integrated architectural synthesis

with testability, which should have a large impact on decreasing the

VLSI design cycle. In addition this research has for the first time formu­

lated a complete IP model for simultaneous scheduling and allocation

including an exact allocation of busses. Secondly we are the first to

apply facetial techniques to solve architectural synthesis. We have

further shown that globally optimal architectures can be synthesized in

faster CPU times than previous research. This is very important for

industry because a mathematical basis (OASIC) is used for synthesis

which supports correct architectures through formal verification of only

the model and not the architectural solution as required by other heuristic

synthesizers. The OASIC synthesizer uses very reliable and robust

mathematical software which has been proven in other applications over

a number of years. This model forms the basis of a CAD tool which can

be brought to market very quickly because of this tested software. This

270 Architectural Synthesis

research is important since it has shown that the use of mathematical

theory. developed over the last 25 years. can have significant impact on

solving new VLSI problems. Secondly since our solution is mathemati­

cally driven we can easily support complex constraints and a wide range

of different types of input algorithms. in contrast to previous heuristic

approaches. The mathematical basis of the solution strategy combined

with engineering creativity will enhance our ability to extend our tech­

nique to a wide range of problems in VLSI.

References 271

REFERENCES

Abadir, M.S. and M.A. Breuer, "Constructing Optimal Test Schedules for VLSI
Circuits Having Built-In Test Hardware," International Symposium on
Fault Tolerant Computing, pp. 165-170,1985.

Abadir, M.S. and M.A. Breuer, "A Knowledge-Based System For Designing
Testable VLSI Chips," IEEE Design and Test, pp. 56-68, 1985.

Agrawal, V.D., "Information Theory in Digital Testing - A New Approach to
Functional Test Pattern Generation," In/' I Conf. on Computers and Cir­
cuits, pp. 928-931,1980.

Agrawal, V.D., S.K. Jain, and D.M. Singer, "Automation in Design For Testa­
bility," Custom Integrated Circuits Conference, pp. 159-163, 1984.

Agrawal, V.D., K. Cheng, and P. Agrawal, "CONTEST: A Concurrent Test
Generator for Sequential Circuits," Design Automation Conference, pp.
84-89, 1988.

Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design And Analysis of Com­
puter Algorithms. Addison-Wesley, 1974.

Baker, K.R., Introduction to Sequencing and Scheduling. John Wiley & Sons,
1974.

Balakrishnan, M., A.K. Majumdar, D.K. Banerji, lG. Linders, and J.e.
Majithia, "Allocation of Multiport Memories in Data Path Synthesis,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 7, no. 4, pp. 536-540, April 1988.

Balakrishnan, M. and P. Marwedel, "Integrated Scheduling and Binding: A
Synthesis Approach For Design Space Exploration," Design Automation
Conference, pp. 68-74,1989.

Balraj, T.S. and M.J. Foster, "Miss Manners Silicon Compiler for Synchroniz­
ers," Advances in Research in VLSI at MIT, 1986.

Barbacci, M.R., "Instruction Set Processor Specification (ISPS): The Notation
and Its Application"," IEEE Transactions on Computer, vol. C-30, pp.
24-40, 1981.

272 Architectural Synthesis

Beausang, J. and A. Albicki, "The Design For Testability Process: Definition
and Exploration," Int'l Con[on Computer Design, pp. 362-365,1987.

Bhandari, I., M. Hirsch, and D. Siewiorek, "The Min-Cut Shuffle: Toward a
Solution for the Global Effect Problem of Min-Cut Placement,"
ACMIIEEE Design Automation Conference, pp. 681-685,1988.

Bhatt, S.N., F.RK. Chung, and A.L. Rosenberg, "Partitioning Circuits for Im­
proved Testability," in Advanced Research in VLSI, Proceedings 0/4th
MlTConference, pp. 91-106, MIT Press, 1986.

Bondy, J.A. and U.S.R. Murty, Graph Theory with Applications, North Holland,
1976.

Borriello, G. and RH. Katz, "Synthesis and Optimzation of Interface Transduc­
er Logic," Int'l Conf on Computed Aided Design, pp. 274-277,1987.

Borriello, G. and E. Detjens, "High-Level Synthesis: Current Status and Future
Directions," Design Automation Conference, pp. 477-482, 1988.

Breuer, M.A. and X. Zhu, "A Knowledge based System for selecting a test
methodology for a PLA," Design Automation Conference, pp. 259-265,
1985.

Brewer, F. and D. Gajski, "Chippe: A System for Constraint Driven Behavioral
Synthesis," IEEE Transactions on Computer Aided Design, vol. 9, no. 7,
1990.

Brooke, A., D. Kendricke, and A. Meeraus, GAMSIMINOS Users Manual,
Scientific Press, 1988.

Brucker, P., M.R. Garey, and D.S. Johnson, "Scheduling Equal-Length Tasks
Under Treelike Precedence Constraints to Minimize Maximum Lateness,"
Mathematics 0/ Operations Research, vol. 2, no. 3, August 1977.

Brzozowski, J.A. and C-J.H. Seger, "Advances in Asynchronous Circuit Theory
- Part I: Gate & Unbounded Inertial Delay Models," Bulletin 0/ the Euro­
pean ASSOciation/or Theoretical Computer Science, p. pgs 52, Oct 1990.

Camposano, R, "Path Based Scheduling for Synthesis," IEEE Transactions on
Computer Aided Design, pp. 85-93,1991.

Carley, L.R., D. Garrod, R. Harjani, E. Ochotta, and R.A. Ruttenbar, "ACACIA
The CMU Analog Design System," Research Report No. CMUCAD-89-
64, November 1989.

References 273

Chandra, S.I. and J.H. Patel, "Experimental Evaluation of Testability Measures
for Test Generation," IEEE Transactions on Computer-Aided Design, vol.
8,no. l,pp.93-97, 1989.

Chen, T. and M.A. Breuer, "Automatic Design for Testability Via Testability
Measures," IEEE Transactions on Computer-Aided Design, vol. CAD-5,
no. l,pp.3-11, 1985.

Chen, X. and M.L. Bushnell, "A Module Area Estimator for VLSI Layout,"
IEEE Design Automation Conference, pp. 54-59,1988.

Clocksin, W.F. and C.S. Mellish, Programming In Prolog, Springer-Verlag,
1984.

Cloutier, R.I. and D.E. Thomas, "The Combination of a Scheduling, Allocation,
and Mapping in a Single Algorithm," Design Automation Conference, pp.
71-76,1990.

Coffman, E.G., Computer and Job Shop Scheduling Theory, J.Wiley and Sons,
1976.

Cook, B., Solving General Integer Programming, Talk at University of Water­
loo, Canada, May 1990.

Craig, G.L., C.R. Kime, and K.K. Saluja, "Test Scheduling and Control for
VLSI Built-In Self-Test," IEEE Transactions on Computer, vol. 37, no. 9,
1988.

Crowder, H., E.L. Johnson, and M. Padberg, "Solving Large Scale Zero-One
Linear Programming Problems," Operations Research, vol. 31, no. 5, pp.
803-834, September 1983.

Depuydt, F., G. Goossens, J. Van Meerbergen, F. Catthoor, and H. DeMan,
"Scheduling of Large Scale Signal Flow Graphs based on Metric Graph
Clustering," IFIP Conference on High Level Architectural Synthesis and
Logic Synthesis, 1990.

Devadas, S. and AR. Newton, "Algorithms for Hardware Allocation in Data
Path Synthesis," IEEE Transactions on Computer Aided Design of Cir­
cuits and Systems, July 1989.

Dussault, J.A, "A Testability Measure," Proc Semiconductor Test Conf, pp.
113-116,1978.

274 Architectural Synthesis

Dutt, N.D. and D.O. Gajski, "Designer Controlled Behavioral Synthesis,"
Design Automation Conference, pp. 754-757, 1990.

Ellis, J.R., Bulldog: A Compiler for VLIW Architectures. MIT Press, 1986.

Elmasry, M.I., For Information write to Professor M.l.Elmasry. Director of
VLSI Research Group. University of Waterloo. Waterloo. Ontario. Cana­
da.N2L3Gl ..

Fey, C.F. and D.E. Paraskevopoulos, "A Model of Design Schedules for Appli­
cation Specific IC's," Custom Integrated Circuits Conference, pp. 490-
496,1986.

Fogg, D.C., "Assisting Design Given Multiple Performance Criteria," VLSI
Memo No.88-479, Massachusets Institute of Technology, 1988.

Foulds, L.R., Optimization Techniques: An Introduction. Springer-Verlag, 1981.

Freeman, S., "Test Generation for Data-Path Logic: The F-Path Method," IEEE
Journal of Solid-State Circuits, pp. 421-427, 1988.

Fujiwara, H. and S. Toida, "The Complexity of Fault Detection Problem for
Combinational Logic Circuits," IEEE Trans. on Computers, vol. C-31,
no. 6,pp. 555-560, 1982.

Funatsu, S., N. Wakatsuki, and T. Arima, "Test Generation Systems in Japan,"
DA Symposium, pp. 114-122, 1975.

Fung, H.S. and J.Y.O. Fong, "An Information Flow Approach to Functional
Testability Measures," Int'! Conf on Circuits and Computers, pp. 460-
463,1982.

Fung, H.S. and S. Hirschhorn, "An Automatic OFT System for the Silc Silicon
Compiler," IEEE Design and Test, pp. 45-47, 1986.

Gajski, D.O. and R.H. Kuhn, "Guest Editors Introduction: New VLSI Tools,"
IEEE Computer Magazine, vol. 16, no. 12, pp. 11-14, 1983.

Gajski, D.O., N.D. DUll, and B.M. Pangrle, "Silicon Compilation (Tutorial),"
Custom Integrated Circuits Conf, pp. 102-109, 1986.

Galiay, J., Y. Crouzet, and M. Verigniault, "Physical vs Logical Fault Models,"
IEEE Trans on Computers, vol. C-29, no. 6, 1980.

References 275

Garey, and Johnson, Computers and Intractability. Freeman and Co., 1979.

Gebotys, C.H. and M.I. Elmasry, "VLSI Design Synthesis Exploration With
Testability Constraints," Tech. Rep . • UWIICR 87-14. Department of
Electrical Engineering. University of Waterloo. Waterloo. Ontario. Cana­
da,1987.

Gebotys, C.H. and M.1. Elmasry, "VLSI Design Synthesis with Testability,"
Design Automation Conference, pp. 16-21, 1988a.

Gebotys, C.H. and M.I. Elmasry, "Integrated Design and Test Synthesis,"
International Conference on Computer Design, pp. 398-401, 1988b.

Gebotys, C.H. and M.1. Elmasry, "Integration of Algorithmic VLSI Synthesis
with Testability Incorporation," IEEE Custom Integrated Circuits Confer­
ence, 1988c.

Gebotys, C.H. and M.1. Elmasry, "Integration of Algorithmic VLSI Synthesis
with Testability Incorporation," IEEE Journal of Solid-State Circuits, vol.
24,no.2,pp.409-416,1989.

Gebotys, C.H. and M.1. Elmasry, "A Global Optimization Approach to Archi­
tectural Synthesis," IEEE International Conference on Computer Aided
Design, 1990.

Gebotys, C.H. and M.1. Elmasry, "A Global Optimization Approach for Archi­
tectural Synthesis," UW/ICR 91-01, p. 28pgs, 1991a.

Gebotys, C.H. and M.1. Elmasry, "Simultaneous Scheduling and Allocation for
Cost Constrained Optimal Architectural Synthesis," ACMIIEEE Design
Automation Conference, 1991b.

Gebotys, C.H. and M.I. Elmasry, "High Performance Optimal Architectural
Synthesis," IEEE Custom Integrated Circuits Conf, 1991c.

Gebotys, C.H., "A Global Optimization Approach to Architectural Synthesis fo
VLSI Digital Synchronous Systems With Analog and Asynchronous In­
terfaces," Dept of ECE.Univ of Waterloo. PhD Thesis, July 1991x.

Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization. Academic
Press, 1981.

Girczyc, E.F., RJ.A. Buhr, and J.P. Knight, "Applicability of a Subset of Ada
as an Algorithmic Hardware Description Language for Graph-Based
Hardware Compilation," IEEE Transactions on Computer-Aided Design,

276 Architectural Synthesis

vol. CAD-4, 110. 2, pp. 134-142, 1985.

Goel, P., "Test Generation Costs Analysis and Projections," Design Automation
Conference, pp. 77-84, 1980.

Goldstein, L.H. and E.L. Thigpen, "SCOAP: Sandia
ControUability/Observability Analysis Program," Design Automation
Conference, pp. 190-196, 1980.

Golumbic, M.C., Algorithmic Graph Theory and Perfect Graphs, Academic
Press, 1980.

Gottlieb, E.S. and M.R. Rao, "The Generalized Assignment Problem: Valid Ine­
qualities and Facets," Mathematical Programming, vol. 46, pp. 31-52,
1990.

Granacla, J., D. Knapp, and A. Parker, "The ADAM Advanced Design Automa­
tion System: Overview, Planner and Natural Language Interface," Design
Automation Conference, pp. 727-730,1985.

Grimmett, and Pulleyblank, "Random Near Regular Graphs and the Node Pack­
ing Problem," Operations Research Letters, vol. 4, no. 4, 1985.

Grossman.. "Mixed Integer NonLinear Programming Techniques for the Syn­
thesis of Engineering Systems," EDRC-6-83-90, Engineering Design
Research Center, Carnegie Mellon University, 1990.

Grotschel, M., "On the Symmetric Travelling Salesman Problem: Solution of a
120 City Problem," Mathematical Programming Study, vol. 12, pp.
61-77, 1980.

Gupta, R. and G. DeMicheli, "Partitioning of Functional Modules of Synchro­
nous Digital Systems," Int'l Conf on Computed Aided Design, 1990.

Hafer, L. and A. Parker, "A formal Method for the Specification, Analysis and
Design of Register-Transfer-Level Digital Logic," IEEE Transactions on
Computer Aided Design of Circuits and Systems, vol. CAD-2, no. I, pp.
4-17, Jan 1983.

Hal, L. and D. Shmoys, "Near Optimal Sequencing with Precedence Con­
straints," Proc. of Integer Programming and Combinatorial Optimization
Conf,1990.

References 277

Hammer, P.L., EL. Johnson, and B.H. Korte, Annals of Discrete Mathematics 4,
Discrete Optimization I .. North Holland, 1979.

Harjani, R., R.A. Rutenbar, and L.R. Carley, "OASYS: A Framework for Ana­
log Circuit Synthesis," Res. Rept. # CMUCAD-89-65, p. 31pgs., Nov
1989.

Hamun, B. and M. Elmasry, "Architectural Synthesis for DSP Silicon Com­
pilers," IEEE Transactions on Computer Aided Design of Circuits and
Systems, vol. CAD-8, no. 4, April 1989.

Hashimoto, A. and J. Stevens, "Wire Routing by Optimizing Channel Assign­
ments with Large Apertures," Proc. 8th Design Automation Workshop,
pp. 155-169,1971.

Hayati, S. and A. Parker, "Automatic Production of Controller Specifications
from Control and Timing Behavioral Descriptions," Design Automation
Conference, pp. 75-80,1989.

hlsw, and B. Mayo (Coordinator), High-Level Synthesis Workshop Clearing­
house, email: hlsw-request@decwrl.dec.com. 1988.

Ho, C.Y., R.T. Jerdonek, S.E. Noujaim, and D. Schumacher, "A High Perfor­
mance 1.5 Micron CMOS 24X24 BIT Multiplier," Custom Integrated
Circuits Cont, pp. 30-33, 1984.

Holton, W.C. and R.K. Cavin, "A Perspective on CMOS Technology Trends,"
Proceedings of the IEEE, vol. 74, no. 12, 1986.

Holton, W.C. and R.K. Cavin, "A Perspective on CMOS Technology Trends,"
Proceedings of the IEEE, vol. 74, no. 12, 1986.

How, M.M. and B.Y.M. Pan, "Amber: A Knowledge-Based Area Estimation
Assistant," International Conference on Computer Design, pp. 180-183,
Oct. 1986.

Huang, C., Y. Chen, Y. Lin, and Y. Hsu, "Data Path Allocation Based on Bipar­
tite Weighted Matching," Design Automation Conference, pp. 499-504,
1990.

Hwang, C-T, J-H. Lee, and Y-C. Hsu, "A Formal Approach to the Scheduling
Problem in High-Level Synthesis," IEEE Transactions on CAD, vol. 10,
no. 4,pp. 464-475, 1991.

278 Architectural Synthesis

Ibarra, O.H. and S.K. Sahni, "Polynomially Complete Fault Detection Prob­
lems," IEEE Transactions on Computers, vol. C-24, no. 3, pp. 242-249,
1975.

IEEE, Computer, Special Issue on Artijical Neural Systems, March 1988.

Jain, R., A. Parleer, and N. Park, "Predicting Area-Time Tradeoffs for Pipelined
Designs," IEEE Design Automation Conference, pp. 35-41,1987.

Jain, R., MJ. MIinar, and A. Parker, "Area-Time Model for Synthesis of Non­
Pipelined Designs," Int'I Conf on Computed Aided Design, 1988.

Jain, R., MJ. MIinar, and N. Park, Area-Time Model for Synthesis of Non­
Pipe lined Designs, pp. 48-51,1988.

Johannsen, D.L., S.K. Tsubota, and K. McElvain, "An Intelligent Compiler
Subsystem for a Silicon Compiler," Design Automation Conference, pp.
443-450, 1987.

Karmarkar, N., "A new polynomial-time algorithm for linear programming,"
Combinatorica, vol. 4, pp. 373-395, 1984.

Karmarkar, N., "An Interior Point Approach to NP-Complete Problems," Proc.
of Integer Programming and Combinatorial Optimization Con!, pp. 351-
366, May 1990.

Kernighan, B. and S. Lin, "An Efficient Heuristic Procedure for Partitioning
Graphs," Bell Systems Technical Journal, pp. 291-307, 1970.

Knapp, D.W. and A.C. Parker, "A Data Structure for VLSI Synthesis and Verif­
ication," Digital Integrated Systems Center Report, DISCI83-6, Dept of
Electrical Engineering, University of Southern California, Los Angeles,
CA 90089-0871, Oct 1983.

Krasniewski, A. and A. AIbicki, "Simulation-Free Estimation of Speed Degra­
dation in NMOS Self-Testing Circuits for CAD Applications,"
ACMIIEEE Design Automation Conference, pp. 808-811, 1985a.

Krasniewski, A. and A. AIbicki, "Automatic Design of Exhaustively Self­
Testing Chips with BILBO Modules," International Test Conference, pp.
362-371, 1985b.

Ku, D.C. and G. DeMicheli, "Relative Scheduling Under Timing Constraints,"
CSL-TR-89-401, Stanford Technical Report, 1989a.

References 279

Ku, D.C. and G. DeMicheli, "Optimal Synthesis of Control Logic From
Behavioral Specifications," CSL-lR-89-402, Stanford Technical Report,
1989b.

Kuchcinski, K. and Z. Peng, "Parallelism Extraction from Sequential Programs
for VLSI Applications," Microprocessing and Microprogramming, pp.
87-92, 1988.

Kung, S.Y., H. Whitehouse, and T. Kalaith, VLSI and Modern Signal Process­
ing, Prentice-Hall, 1985.

Kung, S.Y. and IN. Hwang, "Parallel Architectures for aNN," International
Conference on Neural Networks, 1988.

Kurdahi, FJ. and A.C. Parker, "Plest: A Program for Area Estimation of VLSI
Integrated Circuits," Design Automation Conference, pp. 467-473,1986.

Kurdahi, F.J. and A.C. Parker, "REAL: A Program for Register allocation,"
Design Automation Conference, pp. 210-215, 1987.

Lagnese, E.D., "Architectural Partitioning for Systems Level Design of In­
tegrated Circuits," CMUCAD-89-27, Carnegie Mellon University, PhD
Thesis, 1989.

Langeler, G., "The Last Decade of Design Automation. and the next.," Design
Automation Conference, 1989.

Lawler, EL., Combinatorial Optimization Networks and Matroids, Holt­
Rinehart-Winston, 1976.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooykan, and D.B. Shmoys, The Travel­
ling Salesman Problem, A Guided Tour of Combinatorial Optimization,
Wiley-Interscience, 1985.

Lee, J., Y. Hsu, and Y. Lin, "A New Integer Linear Programming Formulation
for the Scheduling Problem in Data Path Synthesis," Int'l Cont on Com­
puted Aided Design, 1989.

Leiserson, C.E., F.M. Rose, and J.B. Saxe, Optimizing Synchronous Circuitry by
Retiming, pp. 87 - 116. 1970.

Lippmann. R.P .• "An Introduction to Computing with Neural Networks." IEEE
ASSP Magazine. pp. 4-22, April 1987.

280 Architectural Synthesis

Ly, T.A., W.L. Elwood, and E.F. Girczyc, "A Generalized Interconnect Model
for Data Path Synthesis," Design Automation Conference, 1990.

Mann" "Technologies for aNN," Custom Integrated Circuits Conference, 1988.

Marlett, R., "An Effective Test Generation Systems For Sequential Circuits,"
Design Automation Conference, pp. 250-256, 1986.

Marwedel, P., "A new Synthesis Algorithm for the MIMOLA software sys­
tem," Design Automation Conference, pp. 271-277, 1986.

McCluskey, E.]., "Design for Testability," in Fault-Tolerant Computing, ed D.
K. Pradhan, vol. I, Prentice-Hall, 1986.

McCluskey, E.1., "Why We Need Test," InO Symposium on Circuits and Sys­
tems, 1990.

McFarland, M., A. Parker, and R. Camposano, "Tutorial on High-Level Syn­
thesis," Design Automation Conference, pp. 330-336, 1988.

McFarland, M., A. Parker, and R. Camposano, "The High Level Synthesis of
Digital Systems," Proceedings of IEEE, vol. 78, pp. 301-318, 1990.

McFarland, M.C., "Using Bottom-Up Design Techniques in the Synthesis of
Digital Hardware from Abstract Behavioral Descriptions," Design Auto­
mation Conference, pp. 474-480, 1986.

McFarland, M.C., "Reevaluating the Design Spae for Register-Transfer
Hardware Synthesis," International Conference on Computer-Aided
Design, pp. 262-265,1987.

McQueen, C., "A Data Structure for VLSI Layout," M.A.Sc. Thesis, Dept of
Electrical Engineering, University of Toronto, Toronto, Ontario. Canada,
1984.

Meng, and Brodersen, "Asynchronous Circuit Synthesis," IEEE Transactions
on CAD, 1989.

Minty, G.]., "On Maximal Independent Sets of Vertices in a Claw-Free Graph,"
Journal of Combinatorial Theory, vol. B28, pp. 284-304,1980.

Motohara, A., K. Nishimura, H. Fujiwara, and I. Shirakawa, "A Parallel Scheme
for Test-Pattern Generation," International Conference on Computer­
Aided Design, pp. 156-159, 1986.

References 281

Nemhauser, GL. and L.E. Trotter, "Properties of Vertex Packing and Indepen­
dence System Polyhedra," Mathematical Programming, vol. 6, pp. 48-61,
1974.

Nemhauser, G.L. and L.E. Trotter, "Vertex Packings: Strcutural Properties and
Algorithms," Mathematical Programming, vol. 8, pp. 232-248, 1975.

Nemhauser, G.L. and L.A. Wolsey,l Confnteger and Combinatorial Optimiza­
tion, Wiley Interscience, 1988.

Nestor, I.A. and D.E. Thomas, "Behavioral Synthesis with Interfaces," Int'l
Conf on Computed Aided Design, 1986.

Nestor, I.A. and G. Krishnamoorthy, "SALSA: A New Approach to Scheduling
with Timing Constraints," Int'l Conf on Computed Aided Design, pp.
262-265, 1990.

Padberg, M.W., "On the Facial Structure of Set Packing Polyhedra,"
Mathematical Programming, vol. 5, pp. 199-215, 1973.

Padberg, M.W., "Covering, Packing, and Knapsack Problems," in Annals of
Discrete Mathematics, vol. 4, pp. 265-287, North-Holland, 1979.

Padberg, M.W. and S. Hong, "On the Symmetric Travelling Salesman Problem:
A computational Study," Mathematical Programming Studies, vol. 12,
pp. 61-77, 1980.

Pangrle, B.M. and D.O. Gajski, "Design Tools for Intelligent Silicon Compila­
tion," IEEE Transactions on Computer-Aided Design, vol. CAD-6, no. 6,
pp. 1098-1112, 1987.

Papadimitriou, C.H. and M. Yannakakis, "Analysis of Parallel Algorithms,"
SIAM,1990.

Park, N. and A. Parker, "SEHW A: A Program for Synthesis of Pipelines,"
Design Automation Conference, 1986.

Parker, A. and N. Parle, "Interface and I/O Protocol Descriptions," in Advances
in CAD for VLSI - Hardware Description Languages, ed. R.W. Harten­
stein, vol. 17, pp. 11 0-113, North Holland, 1987.

Paulin, P., discussion with Pierre Paulin, 1987.

282 Architectural Synthesis

Paulin, P.G. and J.P. Knight, "Scheduling and Allocation For Behavioral Syn­
thesis of Pipelined ASICs," Canadian Conference on VLSI, pp. 229-234,
1987.

Paulin, P.G., "Force Directed Scheduling," IEEE Transactions on CAD, pp.
661-679, 1989.

Peng, Z., "A Formal Methodology for Automated Synthesis of VLSI Systems,"
Linkoping Studies in Science and Technology. Dissertations, no. 170,
1987.

Petersen, B.R., B.A. White, DJ. Salomon, and M.I. Elmasry, "SPIL: A Silicon
Compiler with Performance Estimation," Int'I Conf on Computed Aided
Design, pp. 500-503, 1986.

Pfahler, P., "Automated Datapath Synthesis: A Compilation Approach," Pro­
cessing and Microprogramming, vol. 21, pp. 577-584, 1987.

Ra, and Grossman, "Relation Between MILP Modelling and Logical Inferences
for Chemical Process Synthesis," EDRC-06-87 -90, Engineering Design
Research Center, Carnegie Mellon University, 1990.

Rajan, J.V., "Automatic Synthesis of Microprocessors,"
Res.Rept.#CMUCAD89-2. Carnegie Mellon University. PhD Thesis,
1989.

Ratiu, I.M., A. San giovanni-VincentelIi, and D.O. Pederson, "VICTOR: A Fast
VLSI Testability Analysis Program," IEEE Test Conference, pp. 397-401,
1982.

Rosales, B.C., "Test and Synthesis: A Critical Coupling," Semicustom Design
Guide. High Performance Systems, p. 61,1989.

Roth, J.P., W.G. Bouricius, and P.R. Schneider, "Programmed Algorithms to
Computer Tests to Detect and Distinguish between Failures in Logic Cir­
cuits," IEEE Trans Electron. Comput., vol. EC-16, no. 5, pp. 567-580,
1967.

Sabo, D.G., D. Johannsen, and R. Yau, "Genesil Silicon Compilation and
Design For Testability," Custom Integrated Circuits Conference, pp.
416-420,1986.

References 283

Sarkar, V., Partitioning and Scheduling Parallel Programsfor MultiProcessors,
MIT Press, 1989.

Sanna, R.C., M.D. Dooley, N.C. Newman, and G. Hetherington, "High-Level
Synthesis Technology Transfer to Industry," Design Automation Confer­
ence,pp.549-554,199O.

Savir, J., "Syndrome-Testable Design of Combinational Circuits," IEEE Trans
on Computers, vol. C-29, no. 6, 1980.

Schrijver, A., Theory of Linear and Integer Programming, Wiley InterScience
Series in Discrete Mathematics and Optimization, 1986.

Shen, J.P., W. Maly, and FJ. Ferguson, "Inductive Fault Analysis of nMOS and
CMOS Integrated Circuits," SRC-CMU Center for CAD, Res. Rept.
CMUCAD-8S-SJ, 1985.

Shiva, S.G., "Automatic Hardware Synthesis," Proceedings of IEEE, vol. 71,
no. 1, Jan 1983.

Springer, D.L. and D.E. Thomas, "Exploiting the Special Structure of Conflict
and Compatibility Graphs in High Level Synthesis," Int'l Conf on Com­
puted Aided Design, pp. 254-257, 1990.

Stoic, L., "Interconnect Optimization During Data Path Allocation," Workshop
on High Level Synthesis, 1989.

Subrahmanyam, P.A., "A Framework for System Timing," in VLSI Specifica­
tion, Verification and Synthesis, ed. P.A. Subrahmanyam, Kluwer
Academic Publishers, Boston, 1988.

Susskind, A.K., "Testing by Walsh Coefficients," IEEE Trans on Computer,
vol. C-32, no. 2, pp. 198-201.

Susskind, A.K., "Survey of VLSI Test Strategies," Custom Integrated Circuits
Conference, pp. 276-280, 1984.

Thomas, D.E., C.Y. Hitchcock, TJ. Kowalski, J.V. Rajan, and R.A. Walker,
"Automatic Data Path Synthesis," IEEE Computer, pp. 59-70, 1983.

Treleavan, P., M. Pacheco, and M. Vellasco, "VLSI Architectures for Neural
Networks," IEEE Micro, pp. 8-42,1989.

284 Architectural Synthesis

Trickey, H., "Flamel: A High-Level Hardware Compiler," IEEE Transactions
on Computer Aided Design, pp. 259-269,1987.

Trotter, L.E., "A Class of Facet Producing Graphs for Vertex Packing Po­
lyhedron," Discrete Mathematics, vol. 12, pp. 373-388,1975.

Tseng, C. and D.P. Siewiorek, "Automated Synthesis of Data Paths in Digital
Systems," IEEE Transactions on Computer-Aided Design, pp. 379-395,
1986.

Tsui, F.F., LSIIVLSI Testability Design. McGraw-Hill, 1986.

Veda, K., H. Kitazawa, and I. Harada, "CHAMP:Chip Floor Plan for Hierarchi­
cal VLSI Layout Design," IEEE Transactions on Computer Aided
Design, Jan 1985.

Ullman, J.D., "NP-Complete Scheduling Problems," Journal of Computer and
Systems Science, vol. 10, pp. 384-393, 1975.

Varma, P. and Y. Tohma, "A Knowledge-Based Test Generator for Standard
Cell and Iterative Array Logic Circuits," IEEE Journal of Solid-State Cir­
cuits, vol. 23, no. 2, pp. 428435, 1988.

Wagner, K.D., C.K. Chin, and EJ. McCluskey, "Pseudorandom Testing," IEEE
Transactions on Computers, vol. C-36, no. 3, pp. 332-343, 1987.

Walker, RA. and D.E. Thomas, "Design Representation and Transformation in
The System Architect's Workbench," Research Report CMUCAD-87-34,
August 1987.

Weber, S., "For VLSI, Multichip Modules may become the Package of
Choice," Electronics, pp. 106-174, Apr 1989.

Wei, R and C. Tseng, "Column Compaction and Its Application to the Control
Path Synthesis," International Conference on Computer-Aided Design,
pp.320-323,1987.

Williams, T.W. and K.P. Parker, "Design for Testability - A Survey," Proceed­
ings of the IEEE, 1983.

Wolsey, L.A., "Further Facet Generating Procedures for Vertex Packing Po­
lytopes," Mathematical Programming, vol. 11, pp. 158-163, 1976.

References 285

Zahir, R. and W. Fichtner, "Making Use of Timing Constraints for Controller
Synthesis," Workshop on High Level Synthesis, 1989.

Zhu, X. and M.A. Breuer, "A Knowledge-Based System for Selecting Test
Methodologies," IEEE Design and Test, pp. 41-59,1988.

287

INDEX

allocation, 40

ANN, 10,142

area, 226,105-7,119-20,263

ASIC, 10

asap,alap,45-6

ASP, 10,13

behavior, 22

binding, 180,247

bottleneck, 17,18

branch and bound, 55,69

bus, 33,115

CAD, 3

CATREE,206

CATREE2,242

CA TREE & OASIC, 243-

4,214-8

chaining operations, 107-8

clock period, 44

cliques, 77,100-4

code operations, 8

compatibility graph, 47-9

conditional code, 123-5,169-71

cost function, 105-7,119-20

cut, 67,68

cycles, 77-78

odd cycles, 104-5

DA,3

DAG,22

delay,

20,226,263

27-8,105-7,119-

disjunctive constraints, 66

dominates, see tighter

DSP,lO,13

edge reduction, 112

EWF,112

execution time, see Te

facet, 67,100-4

feasible, 58

feedback, 230,249

flow graph, 22-4

functional tree, 246

functional unit (fu), 32,40

GAMS,141

general bus, see bus

heuristic for IP, 69

288

integer programming,IP, 63

integral polyhedron, 66-7

integral facets, see facet

interconnection, 33,41

interface, 25,129-40

interval representation, 47-8

knapsack(KP), 78-80

ksep ,20-22,150

lifetime, 47,56

loops, 126

makespan, 57

methodology, 85,182-3

MILP,55

modules, 40

multiplexor, 33

multiplier-accumulator

24-5,164-5

node packing, 75-8

OASIC,83-175

overhead, 178-9,197,228

order of operations, 24-5

partial order, 51

partition, 43,117,262

pdt, 116-9

piecewiselinear,84

pipelining,

functional pipelining, 126-8

pipelining of fu, 93,99,111

precedence constraint scheduling,

51

preprocessing, 94,112-3,121

polyhedron,polytope, 66-80

random topology, 34-5

register, 32

register file, 33-5

resource, see fu,bus,register,Te

scheduling, 40-5

set packing, 99

simulated annealing, 57,69

simultaneous scheduling and

selection and allocation of func­

tional units, 90,97-108

simultaneous scheduling and

allocation of functional

units, registers,

90,109-122

and busses,

stable set polytope, 76

state of art VLSI, 6,18,39

structure, 71

tasks,

design vs test, 179-80

integration of design and test,

198-203

Te,119

technology, 9,12

test consideration, 14,15,177

classic, 186-191

design for test, 191-7

test costs, 232

tighter, 68,102-3

application specific, 120-1

timing constraints, 58-60

min,max, 130-1

analog, 131-2

async~nous, 132-7

unkno\VO,unbounded,138

complex, 138-40

VLSI,3

VLSI design cycle, 4

worst case, 262

Y chart, 7

modified, 16

289

