
ptg5994185

ptg5994185

Praise for the The Art of Scalability

“This book is much more than you may think it is. Scale is not just about designing
Web sites that don’t crash when lots of users show up. It is about designing your
company so that it doesn’t crash when your business needs to grow. These guys have
been there on the front lines of some of the most successful Internet companies of our
time, and they share the good, the bad, and the ugly about how to not just survive,
but thrive.”

—Marty Cagan, Founder, Silicon Valley Product Group

“A must read for anyone building a Web service for the mass market.”

—Dana Stalder, General Partner, Matrix Partners

“Abbott and Fisher have deep experiences with scale in both large and small enter-
prises. What’s unique about their approach to scalability is they start by focusing on
the true foundation: people and process, without which true scalability cannot be
built. Abbott and Fisher leverage their years of experience in a very accessible and
practical approach to scalability that has been proven over time with their significant
success.”

—Geoffrey Weber, VP of Internet Operations/IT, Shutterfly

“If I wanted the best diagnoses for my health I would go to the Mayo Clinic. If I
wanted the best diagnoses for my portfolio companies’ performance and scalability I
would call Martin and Michael. They have recommended solutions to performance
and scalability issues that have saved some of my companies from a total rewrite of
the system.”

—Warren M. Weiss, General Partner, Foundation Capital

“As a manager who worked under Michael Fisher and Marty Abbott during my time
at PayPal/eBay, the opportunity to directly absorb the lessons and experiences pre-
sented in this book are invaluable to me now working at Facebook.”

—Yishan Wong, Director of Engineering, Facebook

ptg5994185

“The Art of Scalability is by far the best book on scalability on the market today. The
authors tackle the issues of scalability from processes, to people, to performance, to
the highly technical. Whether your organization is just starting out and is defining
processes as you go, or you are a mature organization, this is the ideal book to help
you deal with scalability issues before, during, or after an incident. Having built sev-
eral projects, programs, and companies from small to significant scale, I can honestly
say I wish I had this book one, five, and ten years ago.”

—Jeremy Wright, CEO, b5media, Inc.

 “Only a handful of people in the world have experienced the kind of growth-related
challenges that Fisher and Abbott have seen at eBay, PayPal, and the other companies
they’ve helped to build. Fewer still have successfully overcome such challenges. The
Art of Scalability provides a great summary of lessons learned while scaling two of
the largest internet companies in the history of the space, and it’s a must-read for any
executive at a hyper-growth company. What’s more, it’s well-written and highly
entertaining. I couldn’t put it down.”

—Kevin Fortuna, Partner, AKF Consulting

“Marty and Mike’s book covers all the bases, from understanding how to build a
scalable organization to the processes and technology necessary to run a highly scal-
able architecture. They have packed in a ton of great practical solutions from real
world experiences. This book is a must-read for anyone having difficulty managing
the scale of a hyper-growth company or a startup hoping to achieve hyper growth.”

—Tom Keeven, Partner, AKF Consulting

“The Art of Scalability is remarkable in its wealth of information and clarity; the
authors provide novel, practical, and demystifying approaches to identify, predict,
and resolve scalability problems before they surface. Marty Abbott and Michael
Fisher use their rich experience and vision, providing unique and groundbreaking
tools to assist small and hyper-growth organizations as they maneuver in today’s
demanding technological environments.”

—Joseph M. Potenza, Attorney, Banner & Witcoff, Ltd.

ptg5994185

The Art of Scalability

ptg5994185

This page intentionally left blank

ptg5994185

The Art of Scalability
Scalable Web Architecture, Processes,
and Organizations for the Modern
Enterprise

Martin L. Abbott
Michael T. Fisher

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg5994185

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Abbott, Martin L.
The art of scalability : scalable web architecture, processes, and organizations for the

modern enterprise / Martin L. Abbott, Michael T. Fisher.
p. cm.

Includes index.
ISBN-13: 978-0-13-703042-2 (pbk. : alk. paper)
ISBN-10: 0-13-703042-8 (pbk. : alk. paper)

1. Web site development. 2. Computer networks—Scalability. 3. Business enterprises—
Computer networks. I. Fisher, Michael T. II. Title.

TK5105.888.A2178 2010
658.4'06—dc22

2009040124

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-703042-2
ISBN-10: 0-13-703042-8
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing, December 2009

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Kelli Brooks

Indexer
Richard Evans

Proofreader
Debbie Liehs

Technical Reviewers
Jason Bloomberg
Robert Guild
Robert Hines
Jeremy Wright

Cover Designer
Chuti Prasertsith

Compositor
Rob Mauhar

ptg5994185

To my father for teaching me how to succeed, and to Heather for
teaching me how to have fun.

—Marty Abbott

To my parents for their guidance, and to my wife and son for their
unflagging support.

—Michael Fisher

ptg5994185

This page intentionally left blank

ptg5994185

ix

Contents

Foreword . xxi

Acknowledgments . xxiii

About the Authors . xxv

Introduction . 1

Part I: Staffing a Scalable Organization. 7

Chapter 1: The Impact of People and Leadership on Scalability 9

Introducing AllScale . 9
Why People . 10
Why Organizations . 11
Why Management and Leadership . 17
Conclusion . 20

Key Points. 20

Chapter 2: Roles for the Scalable Technology Organization 21

The Effects of Failure . 22
Defining Roles. 23
Executive Responsibilities . 25

CEO . 25
CFO . 26
Business Unit Owners, General Managers, and P&L Owners 27
CTO/CIO . 27

Organizational Responsibilities . 29
Architecture Responsibilities . 29
Engineering Responsibilities . 30
Production Operations Responsibilities. 30
Infrastructure Responsibilities. 31
Quality Assurance Responsibilities . 31
Capacity Planning Responsibilities . 32

Individual Contributor Responsibilities and Characteristics 32
Architect . 33

ptg5994185

x CONTENTS

Software Engineer . 33
Operator . 34
Infrastructure Engineer . 34
QA Engineer/Analyst. 35
Capacity Planner . 35

An Organizational Example . 35
A Tool for Defining Responsibilities . 37
Conclusion . 41

Key Points . 41

Chapter 3: Designing Organizations . 43

Organizational Influences That Affect Scalability 43
Team Size . 46

Warning Signs. 50
Growing or Splitting Teams . 52

Organizational Structure . 55
Functional Organization . 55
Matrix Organization. 57

Conclusion . 60
Key Points . 61

Chapter 4: Leadership 101 . 63

What Is Leadership? . 64
Leadership—A Conceptual Model. 66
Taking Stock of Who You Are . 67
Leading from the Front . 69
Checking Your Ego at the Door . 71
Mission First, People Always. 72
Making Timely, Sound, and Morally Correct Decisions 73
Empowering Teams and Scalability . 74
Alignment with Shareholder Value . 74
Vision . 75
Mission . 78
Goals. 79
Putting Vision, Mission, and Goals Together . 81
The Causal Roadmap to Success . 84
Conclusion . 86

Key Points . 87

ptg5994185

Contents xi

Chapter 5: Management 101. 89

What Is Management? . 90
Project and Task Management . 91
Building Teams—A Sports Analogy . 93
Upgrading Teams—A Garden Analogy . 94
Measurement, Metrics, and Goal Evaluation . 98
The Goal Tree . 101
Paving the Path for Success . 102
Conclusion . 103

Key Points. 104

Chapter 6: Making the Business Case . 105

Understanding the Experiential Chasm . 105
Why the Business Executive Might Be the Problem. 106
Why the Technology Executive Might Be the Problem 107

Defeating the Corporate Mindset . 109
Forming Relationships . 111
Setting the Example . 111
Educating Other Executives . 111
Using the RASCI Model . 112
Speaking in Business Terms. 112
Getting Them Involved . 113
Scaring the Executive Team with Facts . 113

The Business Case for Scale. 114
Conclusion . 117

Key Points. 117

Part II: Building Processes for Scale 119

Chapter 7: Understanding Why Processes Are Critical to Scale 121

The Purpose of Process . 122
Right Time, Right Process . 125

How Much Rigor . 126
How Complex . 128

When Good Processes Go Bad . 130
Conclusion . 131

Key Points . 132

ptg5994185

xii CONTENTS

Chapter 8: Managing Incidents and Problems . 133

What Is an Incident? . 134
What Is a Problem? . 135
The Components of Incident Management . 136
The Components of Problem Management . 139
Resolving Conflicts Between Incident and Problem Management 140
Incident and Problem Life Cycles . 140
Implementing the Daily Incident Meeting . 141
Implementing the Quarterly Incident Review . 143
The Postmortem Process . 143
Putting It All Together. 146
Conclusion . 148

Key Points . 148

Chapter 9: Managing Crisis and Escalations . 149

What Is a Crisis? . 149
Why Differentiate a Crisis from Any Other Incident? 150
How Crises Can Change a Company . 151
Order Out of Chaos . 152

The Role of the “Problem Manager” . 153
The Role of Team Managers . 155
The Role of Engineering Leads . 156
The Role of Individual Contributors . 157

Communications and Control . 157
The War Room . 158
Escalations . 160
Status Communications. 160
Crises Postmortems . 161
Crises Follow-up and Communication . 162
Conclusion . 163

Key Points . 163

Chapter 10: Controlling Change in Production Environments. 165

What Is a Change? . 166
Change Identification . 168
Change Management. 170

Change Proposal . 172
Change Approval . 174
Change Scheduling . 174

ptg5994185

Contents xiii

Change Implementation and Logging . 176
Change Validation . 176
Change Review . 177

The Change Control Meeting . 178
Continuous Process Improvement . 178
Conclusion . 179

Key Points. 180

Chapter 11: Determining Headroom for Applications. 183

Purpose of the Process. 184
Structure of the Process . 185
Ideal Usage Percentage . 189
Conclusion . 192

Key Points . 193

Chapter 12: Exploring Architectural Principles . 195

Principles and Goals . 196
Principle Selection . 199
AKF’s Twelve Architectural Principles . 200

N+1 Design. 200
Design for Rollback . 201
Design to Be Disabled . 201
Design to Be Monitored . 202
Design for Multiple Live Sites . 202
Use Mature Technologies . 202
Asynchronous Design . 202
Stateless Systems . 202
Scale Out Not Up . 203
Design for at Least Two Axes of Scale . 203
Buy When Non Core. 203
Use Commodity Hardware . 203

Scalability Principles In Depth. 204
Design to Be Monitored . 204
Design for Multiple Live Sites . 205
Asynchronous Design . 205
Stateless Systems . 206
Scale Out Not Up . 207
Design for at Least Two Axes of Scale . 207

Conclusion . 208
Key Points. 209

ptg5994185

xiv CONTENTS

Chapter 13: Joint Architecture Design . 211

Fixing Organizational Dysfunction . 211
Designing for Scale Cross Functionally . 214
Entry and Exit Criteria . 217
Conclusion . 219

Key Points . 220

Chapter 14: Architecture Review Board . 221

Ensuring Scale Through Review . 221
Board Constituency . 223
Conducting the Meeting . 225
Entry and Exit Criteria . 228
Conclusion . 230

Key Points . 231

Chapter 15: Focus on Core Competencies: Build Versus Buy 233

Building Versus Buying, and Scalability. 233
Focusing on Cost. 234
Focusing on Strategy . 235
“Not Built Here” Phenomenon . 236
Merging Cost and Strategy . 237

Does This Component Create Strategic Competitive
Differentiation?. 238

Are We the Best Owners of This Component or Asset?. 238
What Is the Competition to This Component? 239
Can We Build This Component Cost Effectively? 239

AllScale’s Build or Buy Dilemma . 240
Conclusion . 242

Key Points . 242

Chapter 16: Determining Risk . 243

Importance of Risk Management to Scale . 244
Measuring Risk . 245
Managing Risk . 252
Conclusion . 255

Key Points . 256

Chapter 17: Performance and Stress Testing . 257

Performing Performance Testing . 257
Criteria . 258

ptg5994185

Contents xv

Environment . 259
Define Tests . 260
Execute Tests . 261
Analyze Data . 261
Report to Engineers . 262
Repeat Tests and Analysis. 262

Don’t Stress Over Stress Testing . 264
Identify Objectives . 264
Identify Key Services . 265
Determine Load . 266
Environment . 266
Identify Monitors . 267
Create Load . 267
Execute Tests . 267
Analyze Data . 268

Performance and Stress Testing for Scalability . 270
Conclusion . 271

Key Points. 272

Chapter 18: Barrier Conditions and Rollback . 273

Barrier Conditions. 274
Barrier Conditions and Agile Development . 275
Barrier Conditions and Waterfall Development 277
Barrier Conditions and Hybrid Models. 278

Rollback Capabilities . 278
Rollback Window Requirements. 279
Rollback Technology Considerations . 281
Cost Considerations of Rollback. 281

Markdown Functionality—Design to Be Disabled. 282
Conclusion . 283

Key Points. 284

Chapter 19: Fast or Right? . 285

Tradeoffs in Business. 285
Relation to Scalability . 289
How to Think About the Decision . 290
Conclusion . 295

Key Points. 296

ptg5994185

xvi CONTENTS

Part III: Architecting Scalable Solutions 297

Chapter 20: Designing for Any Technology. 299

An Implementation Is Not an Architecture . 300
Technology Agnostic Design . 300

TAD and Cost. 301
TAD and Risk. 302
TAD and Scalability . 303
TAD and Availability . 306

The TAD Approach. 306
Conclusion . 308

Key Points . 308

Chapter 21: Creating Fault Isolative Architectural Structures 309

Fault Isolative Architecture Terms. 310
Benefits of Fault Isolation . 312

Fault Isolation and Availability—Limiting Impact. 312
Fault Isolation and Availability—Incident Detection and

Resolution . 315
Fault Isolation and Scalability . 315
Fault Isolation and Time to Market . 315
Fault Isolation and Cost . 316

How to Approach Fault Isolation . 317
Principle 1: Nothing Is Shared. 318
Principle 2: Nothing Crosses a Swim Lane Boundary 319
Principle 3: Transactions Occur Along Swim Lanes 319

When to Implement Fault Isolation . 319
Approach 1: Swim Lane the Money-Maker. 320
Approach 2: Swim Lane the Biggest Sources of Incidents 320
Approach 3: Swim Lane Along Natural Barriers 320

How to Test Fault Isolative Designs . 321
Conclusion . 322

Key Points . 322

Chapter 22: Introduction to the AKF Scale Cube. 325

Concepts Versus Rules and Tools . 325
Introducing the AKF Scale Cube . 326
Meaning of the Cube. 328
The X-Axis of the Cube. 328

ptg5994185

Contents xvii

The Y-Axis of the Cube. 331
The Z-Axis of the Cube. 333
Putting It All Together . 334
When and Where to Use the Cube. 336
Conclusion . 337

Key Points. 338

Chapter 23: Splitting Applications for Scale . 339

The AKF Scale Cube for Applications . 339
The X-Axis of the AKF Application Scale Cube 341
The Y-Axis of the AKF Application Scale Cube 343
The Z-Axis of the AKF Application Scale Cube 344
Putting It All Together . 347
Practical Use of the Application Cube . 349

Ecommerce Implementation . 350
Human Resources ERP Implementation . 351
Back Office IT System. 352
Observations. 353

Conclusion . 354
Key Points. 355

Chapter 24: Splitting Databases for Scale . 357

The AKF Scale Cube for Databases . 357
The X-Axis of the AKF Database Scale Cube . 358
The Y-Axis of the AKF Database Scale Cube . 362
The Z-Axis of the AKF Database Scale Cube . 365
Putting It All Together . 367
Practical Use of the Database Cube . 370

Ecommerce Implementation . 370
Human Resources ERP Implementation . 372
Back Office IT System. 372
Observations. 373
Timeline Considerations . 373

Conclusion . 374
Key Points. 375

Chapter 25: Caching for Performance and Scale . 377

Caching Defined . 378
Object Caches . 381

ptg5994185

xviii CONTENTS

Application Caches . 384
Proxy Caches . 384
Reverse Proxy Cache. 386
Caching Software . 388

Content Delivery Networks. 389
Conclusion . 390

Key Points . 391

Chapter 26: Asynchronous Design for Scale . 393

Synching Up on Synchronization . 393
Synchronous Versus Asynchronous Calls . 395

Scaling Synchronously or Asynchronously . 396
Example Asynchronous Systems . 398

Defining State . 401
Conclusion . 405

Key Points . 406

Part IV: Solving Other Issues and Challenges 409

Chapter 27: Too Much Data . 411

The Cost of Data. 412
The Value of Data and the Cost-Value Dilemma. 414
Making Data Profitable . 416

Option Value . 416
Strategic Competitive Differentiation . 416
Cost Justify the Solution (Tiered Storage Solutions) 417
Transform the Data . 419

Handling Large Amounts of Data . 420
Conclusion . 423

Key Points . 424

Chapter 28: Clouds and Grids . 425

History and Definitions . 426
Grid Computing . 428
Public Versus Private Clouds. 430

Characteristics and Architecture of Clouds . 430
Pay By Usage. 431
Scale On Demand . 431

xxiii

ptg5994185

Contents xix

Multiple Tenants. 432
Virtualization . 433

Differences Between Clouds and Grids . 434
Types of Clouds . 435

Conclusion . 436
Key Points . 437

Chapter 29: Soaring in the Clouds. 439

Pros and Cons of Cloud Computing . 440
Pros of Cloud Computing . 440
Cons of Cloud Computing . 443

Where Clouds Fit in Different Companies. 448
Environments . 448
Skill Sets . 449

Decision Process . 450
Conclusion . 453

Key Points. 454

Chapter 30: Plugging in the Grid. 455

Pros and Cons of Grids . 456
Pros of Grids. 456
Cons of Grids . 458

Different Uses for Grid Computing . 461
Production Grid . 461
Build Grid . 462
Data Warehouse Grid . 463
Back Office Grid . 464

Decision Process . 465
Conclusion . 467

Key Points. 468

Chapter 31: Monitoring Applications . 469

“How Come We Didn’t Catch That Earlier?”. 469
A Framework for Monitoring . 472

User Experience and Business Metrics. 476
Systems Monitoring . 477
Application Monitoring . 477

Measuring Monitoring: What Is and Isn’t Valuable?. 478
Monitoring and Processes . 480

ptg5994185

xx CONTENTS

Conclusion . 481
Key Points . 482

Chapter 32: Planning Data Centers . 483

Data Center Costs and Constraints . 483
Location, Location, Location . 485
Data Centers and Incremental Growth . 488
Three Magic Rules of Three . 490

The First Rule of Three: Three Magic Drivers of
Data Center Costs. 491

The Second Rule of Three: Three Is the Magic
Number for Servers. 491

The Third Rule of Three: Three Is the Magic Number
for Data Centers . 492

Multiple Active Data Center Considerations . 496
Conclusion . 498

Key Points . 499

Chapter 33: Putting It All Together . 501

What to Do Now?. 502
Case Studies . 505

eBay: Incredible Success and a Scalability Implosion 505
Quigo: A Young Product with a Scalability Problem. 506
ShareThis: A Startup Story . 507

References . 509

Appendices . 511

Appendix A: Calculating Availability . 513

Hardware Uptime . 514
Customer Complaints . 515
Portion of Site Down. 516
Third-Party Monitoring Service. 517
Traffic Graph . 518

Appendix B: Capacity Planning Calculations. 521

Appendix C: Load and Performance Calculations . 527

Index . 535

ptg5994185

xxi

Foreword

In 1996, as Lycos prepared for its initial public offering, a key concern among poten-
tial investors of that day was whether our systems would scale as the Internet grew;
or perhaps more frightening, would the Internet itself scale as more people came
online? And the fears of data center Armageddon were not at all unfounded. We had
for the first time in human history the makings of a mass communications vehicle
that connected not thousands, not millions, but billions of people and systems from
around the world, all needing to operate seamlessly with one another. At any point in
time, that tiny PC in San Diego needs to publish its Web pages to a super computer in
Taipei, while Web servers in Delhi are finding a path over the information highway to
a customer in New York. Now picture this happening across billions of computers in
millions of locations all in the same instant. And then the smallest problem anywhere
in the mix of PCs, servers, routers, clouds, storage, platforms, operating systems, net-
works, and so much more can bring everything to its knees. Just the thought of such
computing complexity is overwhelming.

This is exactly why you need to read The Art of Scalability.
Two of the brightest minds of the information age have come together to share

their knowledge and experience in delivering peak performance with the precision
and detail that their West Point education mandates. Marty Abbott and Mike Fisher
have fought some of the most challenging enterprise architecture demons ever and
have always won. Their successes have allowed some of the greatest business stories
of our age to develop. From mighty eBay to smaller Quigo to countless others, this
pair has built around-the-clock reliability, which contributed to the creation of hun-
dreds of millions of dollars in shareholder value. A company can’t operate in the dig-
ital age without flawless technical operations. In fact, the lack of a not just good, but
great, scalable Web architecture can be the difference between success and failure in a
company. The problem though, in a world that counts in nanoseconds, is that the
path to that greatness is rarely clear. In this book, the authors blow out the fog on
scaling and help us to see what works and how to get there.

In it, we learn much about the endless aspects of technical operations. And this is
invaluable because without strong fundamentals it’s tough to get much built. But
when I evaluate a business for an investment, I’m not only thinking about its prod-
ucts; more importantly, I need to dig into the people and processes that are its foun-
dation. And this is where this book really stands out. It’s the first of its kind to
examine the impact that sound management and leadership skills have in achieving
scale. When systems fail and business operations come crashing down, many are

ptg5994185

xxii FOREWORD

quick to look at hardware and software problems as the root, whereas a more honest
appraisal will almost always point to the underlying decisions people make as the
true culprit. The authors understand this and help us to learn from it. Their insights
will help you design and develop organizations that stand tall in the face of chal-
lenges. Long-term success in most any field is the result of careful planning and great
execution; this is certainly so with today’s incredibly complex networks and data-
bases. The book walks you through the steps necessary to think straight and succeed
in the most challenging of circumstances.

Marty and Mike have danced in boardrooms and executed on the frontlines with
many of the nation’s top businesses. These two are the best of the best. With The Art
of Scalability, they have created the ultimate step-by-step instruction book required
to build a top-notch technical architecture that can withstand the test of time. It’s
written in a way that provides the granular detail needed by any technical team but
that can also serve as a one-stop primer or desktop reference for the executive look-
ing to stand out. This is a book that is sure to become must-reading in the winning
organization.

Bob Davis
Managing Partner, Highland Capital Partners, and Founder/Former CEO, Lycos

ptg5994185

xxiii

Acknowledgments

The authors would like to recognize, first and foremost, the experience and advice of
our partner and cofounder Tom Keeven. The process and technology portions of this
book were built over time with the help of Tom and his many years of experience.
Tom started the business that became AKF Partners. We often joke that Tom has for-
gotten more about architecting highly available and scalable sites than most of us will
ever learn.

We further would like to recognize our colleagues and teams at Quigo, eBay, and
PayPal. These are the companies at which we really started to build and test many of
the approaches mentioned in the technology and process sections of this book. The
list of names within these teams is quite large, but the individuals know who they are.

We’d also like to acknowledge our teams and colleagues at GE, Gateway, and
Motorola. These companies provided us with hands-on engineering experience and
gave us our first management and executive positions. They were our introduction to
the civilian world and it is here that we started practicing leadership and manage-
ment outside of the Army.

We would also like to acknowledge the US Army and United States Military Acad-
emy. Together they created a leadership lab unlike any other we can imagine.

ptg5994185

This page intentionally left blank

ptg5994185

xxv

About the Authors

Martin L. Abbott
Marty Abbott is a founding partner at the growth and scalability advisory firm AKF
Partners. He was formerly COO of Quigo, an advertising technology startup sold to
AOL, where he was responsible for product strategy, product management, technol-
ogy development, and client services. Prior to Quigo, Marty spent nearly six years at
eBay, most recently as SVP of technology and CTO and member of the executive
staff. Prior to eBay, Marty held domestic and international engineering, management,
and executive positions at Gateway and Motorola. Marty serves on the boards of
directors for OnForce, LodgeNet Interactive (NASD:LNET), and Bullhorn; and is on
the advisory boards of Rearden Commerce, Goldmail, and LiveOps. Marty has a B.S.
in computer science from the United States Military Academy, an M.S. in computer
engineering from the University of Florida, is a graduate of the Harvard Business
School Executive Education Program, and is pursuing a doctorate in management
from Case Western Reserve University.

Michael T. Fisher
Michael T. Fisher is a founding partner at the growth and scalability advisory firm
AKF Partners. Michael’s experience includes two years as the chief technology officer
of Quigo, a startup Internet advertising company that was acquired by AOL in 2007.
He also served as Quigo’s president for a transition period post acquisition. Prior to
Quigo, Michael served as vice president of engineering and architecture for PayPal,
Inc., an eBay company, where he was responsible for the development organization
of over 200 engineers. Prior to joining PayPal, Michael spent seven years at General
Electric helping to develop the company’s technology strategy and processes. Michael
has a B.S. in computer science from the United States Military Academy, an M.S.
from Hawaii Pacific University, a Ph.D. in management information systems from
Kennedy Western University, and an M.B.A. from Case Western Reserve University.
Michael is a certified Six Sigma Master Black Belt and is pursuing a doctorate in
management from Case Western Reserve University.

ptg5994185

This page intentionally left blank

ptg5994185

1

Introduction

This book is about the art of scale, scalability, and scaling of technology organiza-
tions, processes, and platforms. The information contained within has been carefully
designed to be appropriate for any employee, manager, or executive of an organiza-
tion or company that provides technology solutions. For the nontechnical executive
or product manager, this book can help you formulate the right scalability questions
and focus on the right issue, whether that be people, process, or technology, in order
to help prevent scalability disasters. For the technical executive, manager, or individ-
ual engineer, we address the organizational and process issues that negatively impact
scale as well as provide technical models and advice to build more scalable platforms.

Our experience with scalability goes beyond academic study and research.
Although we are both formally trained as engineers, we don’t believe academic pro-
grams teach scalability very well. Rather, we learned about scalability from having
suffered through the challenges of scaling systems for a combined thirty plus years.
We have been engineers, managers, executives, and advisors for startups as well as
Fortune 500 companies. The list of companies that we have worked with includes
familiar names such as General Electric, Motorola, Gateway, eBay, and PayPal. The
list also includes hundreds of less-known startups that need to be able to scale as they
grow. Having learned the scalability lessons through thousands of hours diagnosing
problems and thousands more hours of designing preventions of those problems, we
want to share this combined knowledge. This was the motivation behind starting our
consulting practice, AKF Partners, in 2007 and continued to be the motivation for
producing this book.

Scalability: So Much More Than Just Technology
Pilots are taught and statistics show that many aircraft incidents are the result of mul-
tiple failures that snowball into total system failure and catastrophe. In aviation, these
multiple failures are often called an error chain and they often start with human rather
than mechanical failure. In fact, Boeing identified that 55% of the aircraft incidents
with Boeing aircraft between 1995 and 2005 had human factors related causes.1

1. Boeing (May 2006), “Statistical Summary of Commercial Jet Airplane Accidents Worldwide
Operations.”

ptg5994185

2 INTRODUCTION

Our experience with scalability-related issues follows a similar trend. The CTO or
executive responsible for scale of a technology platform may see scalability as purely
a technical endeavor. This is the first, and very human, failure in the error chain. As a
result, the process to identify a need to split a database into multiple databases doesn’t
exist: failure number two. When the user count or transaction volume exceeds a cer-
tain threshold, the entire product fails: failure number three. The team assembles to
solve the problem and because it has never invested processes to troubleshoot prob-
lems such as these the team misdiagnoses the failure as “the database just needs to be
tuned”: failure number four. The vicious cycle goes on for days, with people focusing
on different pieces of the technology stack and blaming everything from firewalls,
through the application, to the database, and even pointing fingers at each other.
Customers walk away, morale flat lines, and shareholders are left holding the bag.

The point here is that crises resulting from an inability to scale to end-user
demands are almost never technology problems alone. In our experience as business
and technology executives and advisors, scalability issues start with organizations
and people and then spread to process and technology. People, being human, make
ill-informed or poor choices regarding technical implementations, which in turn
sometimes manifest themselves as a failure of a technology platform to scale. People
also ignore the development of processes that might help them learn from past mis-
takes and sometimes put overly burdensome processes in place, which in turn might
force the organization to make poor decisions or make decisions too late to be effec-
tive. A lack of attention to the people and processes that create and support technical
decision making can lead to a vicious cycle of bad technical decisions, as depicted in
the left side of Figure 0.1. This book is the first of its kind focused on creating a vir-
tuous cycle of people and process scalability to support better, faster, and more scal-
able technology decisions, as depicted in the right side of Figure 0.1.

Art Versus Science
The use of the word art is a very deliberate choice on our part. Besides fitting nicely
into the title and allowing us to associate some of Sun Tzu’s teachings into our own
book, Merriam-Webster’s dictionary gives one definition of art as a “branch of learn-
ing.”2 Additional definitions offered by Merriam-Webster are “skill acquired by
experience, study, or observation” and “an occupation requiring knowledge or skill.”
All of these are true of the nature of scaling platforms, processes, and organizations.
But perhaps more important in our choice of art here are the images the word con-
jures up of being more fluid versus the view of science, which is more structured and

2. Merriam-Webster Online Dictionary. http://www.merriam-webster.com/dictionary/art.

ptg5994185

Introduction 3

static. It is this image that we are relying upon heavily within our title as our experi-
ence has taught us that there is no single approach or way to guarantee an appropri-
ate level of scale within a platform, organization, or process. Rather, the interactions
between platforms, organizations, and processes have profound impacts on the adap-
tation of any specific and highly structured approach. The approach to scaling must
be crafted around the ecosystem created by the intersection of the current technology
platform, the characteristics of the organization, and the maturity and appropriate-
ness of the existing processes. Consistent with this use of art, our book focuses on
providing skills and lessons regarding approaches rather than improperly teaching
that a one-size-fits-all approach will solve any need.

This is not to say that we don’t advocate the application of the scientific method in
nearly any approach, because we absolutely do. Art here is a nod to the notion that
you simply cannot take a cookie cutter approach for any potential system and expect
to meet with success.

Who Needs Scalability?
Any company that continues to grow ultimately will need to figure out how to scale
its systems, organizations, and processes. Although we focus on Web-centric systems

Figure 0.1 Vicious and Virtuous Technology Cycles

Bad People & Process Interaction = Poor Technology
Vicious Cycle

Good People & Process Interaction = Great Technology
Virtuous Cycle

T
ec

h
n

o
lo

g
y

T
ec

h
n

o
lo

g
y

People

People

Process

Process

ptg5994185

4 INTRODUCTION

through much of this book, we do so only because the greatest unprecedented growth
has been experienced by Internet companies like Google, Yahoo, eBay, Amazon,
Facebook, and the like. But many other companies have experienced problems result-
ing from an inability to scale to new demands (a lack of scalability) long before the
Internet came of age. Scale issues have governed the growth of companies from air-
lines and defense contractors to banks and collocation facility (data center) provid-
ers. We guarantee that scalability was on the mind of every bank during the
consolidation that occurred after the collapse of the banking industry.

The models and approaches that we present in our book are industry agnostic.
They have been developed, tested, and proven successful in some of the fastest grow-
ing companies of our time and they work not only in front-end customer facing
transaction processing systems but back-end business intelligence, enterprise resource
planning, and customer relationship management systems. They don’t discriminate
by activity, but rather help to guide the thought process on how to separate systems,
organizations, and processes to meet the objective of becoming highly scalable and
reaching a level of scale that allows your business to operate without concerns
regarding customer or end-user demand.

Book Organization and Structure
We’ve divided the book into four parts. Part I, Staffing a Scalable Organization,
focuses on organization, management, and leadership. Far too often, managers and
leaders are promoted based on their talents within their area of expertise. Engineer-
ing leaders and managers, for example, are very often promoted based on their tech-
nical acumen and often aren’t given the time or resources to develop business,
management, and leadership acumen. Although they might perform well in the archi-
tectural and technical aspects of scale, their expertise in organizational scale needs
are often shallow or nonexistent. Our intent is to arm these managers and leaders
with a foundation from which they can grow and prosper as managers and leaders.

Part II, Building Processes for Scale, focuses on the processes that help hyper-
growth companies scale their technical platforms. We cover topics ranging from technical
issue resolution to crisis management. We also discuss processes meant for governing
architectural decisions and principles to help companies scale their platforms.

Part III, Architecting Scalable Solutions, focuses on the technical and architectural
aspects of scale. We introduce proprietary models developed within our consulting
and advisory practice of AKF Partners. These models help organizations think
through their scalability needs and alternatives.

Part IV, Solving Other Issues and Challenges, discusses emerging technologies such
as grid computing and cloud computing. We also address some unique problems

ptg5994185

Introduction 5

within hyper-growth companies such as the immense growth and cost of data as well
as what to consider when planning data centers and how to evolve your monitoring
strategies to be closer to your customers.

The lessons in this book have not been designed in the laboratory nor are they
based on unapplied theory. Rather, these lessons have been designed and imple-
mented by engineers, technology leaders, and organizations through years of strug-
gling to keep their dreams, businesses, and systems a float. The authors have had the
great fortune to be a small part of many of these teams in many different roles—
sometimes as active participants, other times as observers. We have seen how putting
these lessons into practice has yielded success and the unwillingness or inability to do
so has led to failure. This book will teach these lessons and hopefully put you and
your team on the road to success. We believe the lessons herein are valuable for
everyone from engineering staffs to product staffs including every level from the indi-
vidual contributor to the CEO.

ptg5994185

This page intentionally left blank

ptg5994185

Part I

Staffing a Scalable
Organization

ptg5994185

This page intentionally left blank

ptg5994185

9

Chapter 1

The Impact of People and
Leadership on Scalability

Fighting with a large army under your command is nowise different from fighting with a small one; it is merely a
question of instituting signs and signals.

—Sun Tzu

People, organizational structure, management, and leadership all have an impact on
the scalability of your organization, your processes, and (as a result) the scalability of
your product, platform, or systems. They are at the heart of everything you do and
the core of everything you need to scale a company and a platform. Paradoxically,
they are the things we overlook most often when attempting to scale large systems:
Our people are overlooked and underappreciated; organization structure is a once-a-
year, check-the-box exercise written in haste in PowerPoint and managed by HR; and
our managers and leaders are often untrained or undertrained in the performance of
their duties. In this chapter, we will explain why the people of your organization, the
structure of the organization, the management, and the leadership in your organiza-
tion all have an enormous impact on your ability to scale your product, platform, or
services.

Introducing AllScale
Throughout The Art of Scalability, we will refer to a fictional company, AllScale.
AllScale started out as a custom software development company, contracting individ-
ual developers out by the hour for projects. Over time, the company started to bid on
special custom development projects for both back office IT systems and Web
enabled Software as a Service (SaaS) platforms. As the company matured, it started
developing tools for its own internal usage and then started selling these tools as a
service to other companies using the SaaS model.

ptg5994185

10 CHAPTER 1 THE IMPACT OF PEOPLE AND LEADERSHIP ON SCALABILITY

The tool with which AllScale has had the most traction is the human resources
management (HRM) system. The tool is an employee life cycle management system,
covering everything from recruiting to termination. The recruiting process is auto-
mated, with resumes held online and workflows depicting the status of each recruit
and notes on the interview process. After an employee is hired, all corporate training
material is performed online through the system. Employee reviews are performed
within the system and tracked over time. Associated merit increases, notes from one-
on-one sessions, previous jobs, and performance information are all contained within
the system. When an employee leaves, is terminated, or retires, the notes from the
exit interview are retained within the system as well.

AllScale is a private company with a majority ownership (51%) obtained by a sin-
gle venture capital (VC) company after a B-series round. The VC firm invested in
both rounds, having decided to make its initial investment after the company started
building SaaS product offerings and seeing how AllScale’s HRM software started to
rapidly penetrate the market with viral adoption.

AllScale is an aggregation of our experience with our clients and our experience
running technology organizations within Fortune 500 and startup companies. We
decided to focus on one imaginary company for the sake of continuity across people,
process, and technology issues. The evolution of AllScale from job shop contractor to
the developer of multiple SaaS offerings also allows us to take a look at several
unique challenges and how the management team might overcome them.

Why People
In our introduction, we made the statement that people are important when attempt-
ing to scale nearly anything; they are especially important when trying to scale tech-
nical platforms responsible for processing transactions under high user demand and
hyper growth.

Here, we are going to go out on a limb and assert that people are the most impor-
tant aspect of scale. First and foremost, without people, you couldn’t possibly have
developed a system that needs to scale at all (at least until such point as the HAL
9000 from 2001: A Space Odyssey becomes a reality). Without people, who designed
and implemented your system? Who runs it? Following from that, people are the
source of the successes and failures that lead to whatever level of scale you have
achieved and will achieve. People architect the systems, write or choose the software,
and they deploy the software payloads and configure the servers, databases, firewalls,
routers, and other devices. People make the tradeoffs on what pieces of the technol-
ogy stack are easily horizontally scalable and which pieces are not. People design (or
fail to design) the processes to identify scale concerns early on, root cause scale
related availability events, drive scale related problems to closure, and report on scale

ptg5994185

WHY ORGANIZATIONS 11

needs and initiatives and their business returns. Initiatives aren’t started without peo-
ple and mistakes aren’t made without people. People, people, people . . .

All of the greatest successes in building scalable systems have at their heart a great
set of people making many great decisions and every once in awhile a few poor
choices. Making the decision not to look at people as the core and most critical com-
ponent of scaling anything is a very large mistake and a step in a direction that will at
the very least make it very difficult for you to accomplish your objectives.

As people are at the heart of all highly scalable organizations, processes, and systems,
doesn’t it make sense to attract and retain the best people you can possibly get? As we
will discuss in Chapter 5, Management 101, it’s not just about finding the people with
the right and best skills for the amount you are willing to pay. It’s about ensuring that
you have the right person in the right job at the right time and with the right behaviors.

The VC firm backing AllScale has a saying amongst its partners that the “fish rots
from the head.” Although the firm’s representative on AllScale’s board of directors
and the remainder of the board feel that the current CEO and founder did a great job
of growing the company and identifying the HRM market opportunity, they also
know that the competencies necessary to run a successful SaaS company aren’t
always the same as those necessary to run and grow a successful consulting company.
After several quarters of impressive growth in the HRM market, the board becomes
concerned over stalling growth, missed numbers, and a lack of consistent focus on
the HRM product. The board brings in a seasoned SaaS veteran as the new CEO,
Christine E. Oberman, and moves the previous founder and CEO to the position of
chief strategy officer. Christine promises to bring in and retain the best people, struc-
ture the company for success along its current and future product offerings, and
focus on management and leadership excellence to supercharge and maximize share-
holder wealth.

The right person speaks to whether the person has the right knowledge, skills, and
abilities. Putting this person in the right job at the right time is about ensuring that he
or she can be successful in that position and create the most shareholder value possi-
ble while tending to his or her career and offering the things that we need to feel good
about and comfortable in our jobs. The right behaviors speaks to ensuring that the
person works and plays well with others while adhering to the culture and values of
the company. Bad behaviors are as good a reason for removing a person from the
team as not having the requisite skills, because bad behavior in any team member cre-
ates a vicious cycle of plummeting morale and productivity.

Why Organizations
It should follow that if people are important to the scalability of a system, their orga-
nizational structure should also be important. If this isn’t intuitively obvious, we

ptg5994185

12 CHAPTER 1 THE IMPACT OF PEOPLE AND LEADERSHIP ON SCALABILITY

offer a few things to consider regarding how organizational structure and responsi-
bilities can positively or negatively impact your ability to scale a system.

An important concept to remember when considering organizational design as it
relates to scale or any situation is that there rarely is a single right or wrong organiza-
tional structure. Once again, this is an art and not really a science. Each organizational
structure carries with it pros and cons or benefits and drawbacks relative to the goals
you wish to achieve. It’s important when considering options on how to structure
your organization to tease out the implicit and explicit benefits and drawbacks of the
organizational design relative to your specific needs.

Some questions you should ask yourself when developing your organizational
design are

• How easily can I add or remove people to/from this organization? Do I need to
add them in groups, or can I add individual people?

• Does the organizational structure help or hinder the development of metrics that
will help measure work done by the organization?

• How easily is this organization understood by the internal and external stake-
holders of the organization (i.e., my customers, clients, vendors, etc.)?

• How does this organizational structure minimize the amount of work I lose on a
per person basis as I add people to the organization?

• What conflicts will arise within the organizational structure as a result of the
structure and how will those conflicts hinder the accomplishment of my organi-
zation’s mission?

• Does work flow easily through the organization or is it easily contained within a
portion of the organization?

These aren’t the only questions one should ask when considering organizational
structure, but each has a very real impact to the scalability of the organization. The
question of how easily people are added is an obvious one as it is very difficult to sig-
nificantly increase the amount of work done by an organization if your organizational
structure does not allow the addition of people to perform additional or different
types of work. Additionally, you want the flexibility of adding people incrementally
rather than in large groups and the flexibility of easily removing people as market sit-
uations demand, such as a sudden increase in demands on the company or a market
recession requiring constriction of expenses.

The question regarding metrics is important because while you often need to be
able to scale an organization in size, you also want to ensure that you are measuring
the output of both the organization and the individual people within the organiza-
tion. An important point to remember here is that as you add people, although the
total output of the team increases, the average output per person tends to go down
slightly. This is the expected result of the overhead associated with communication

ptg5994185

WHY ORGANIZATIONS 13

between people to accomplish their tasks. Each person can only work so many hours
in a day and certainly no more than 24. If an organization consisting of a single per-
son were to work the maximum possible hours in a day, constrained either by law or
exhaustion, doing his or her primary task and absolutely nothing else, it stands to
reason that the same person when required to interface with other people will have
less time to accomplish his or her primary task and as a result produce less in the
same amount of time. Therefore, the more people with whom an individual needs to
interface to complete any given task, the more time it will take for that person to
complete that task as increasing amounts of time are spent interfacing and decreasing
amounts of time are spent performing the task.

The way to envision this mathematically is that if a single person can produce 1.0
unit of work in a given timeframe, a two-person organization might produce 1.99
units of the same work in the same timeframe. Each person’s output was slightly
reduced and while the team produced more overall, each person produced slightly
less on an individual basis. The resulting relative loss of .01 units of work in the
aforementioned timeframe represents the inefficiencies caused by coordination and
communication. We will cover this concept in more detail in Chapter 3, Designing
Organizations, where we discuss team size and how it impacts productivity, morale,
and customer relations.

If the structure of your organization is such that it disallows or makes difficult the
establishment of measurements on individual performance, you will not be able to
measure output. If you cannot measure the output of individuals and organizations,
you can’t react to sudden and rapid deteriorations in that output resulting from an
increase in size of the organization or a change in organizational structure.

“How easily is this organization understood by the internal and external stake-
holders of the organization” addresses the need for intuitive organizational constructs.
Written another way, this question becomes “Are you aligned with your stakeholders
or do you waste time getting requests from stakeholders to the right teams?” If you
want an organization to scale well and easily, you don’t want the external teams with
which you interface (your customers, vendors, partners, etc.) to be scratching their
heads trying to figuring out with whom they need to speak. Worse yet, you don’t
want to be spending a great deal of time trying to figure out how to parcel work out
to the right groups based on some stakeholder request or need. This might mean that
you need to develop teams within your organization to handle external communica-
tion or it might mean that teams are developed around stakeholder interests and
needs so that each external interface only works with a single team.

We discussed the question of “How does this organization structure minimize the
amount of work I lose on a per person basis as I add people to the organization?”
within our explanation of our question on metrics. You might have been in organizations
where you receive hundreds of internal emails a day and potentially dozens of meet-
ing invites/requests a week. If you’ve been in such a situation, you’ve no doubt spent

ptg5994185

14 CHAPTER 1 THE IMPACT OF PEOPLE AND LEADERSHIP ON SCALABILITY

time just to eliminate the emails and requests that aren’t relevant to your job respon-
sibilities. This is a perfect example of how as you add people, the output of each indi-
vidual within an organization goes down (refer back to our example of one person
producing 1.0 unit of work and 2 producing 1.99 units of work). In the preceding
example, as you add people, the email volume grows and time dedicated to reading
and discarding irrelevant emails goes up. Figure 1.1 is a depiction of an engineering
team attempting to coordinate and communicate and Table 1.1 shows the increase in
overall output, but the decrease in individual output between an organization of
three individuals and an organization consisting of one individual. In Table 1.1, we
show an individual loss of productivity due to communication and coordination of
.005, which represents 2.4 minutes a day of coordination activity in an 8-hour day.
This isn’t a lot of time, and most of us intuitively would expect that three people
working on the same project will spend at least 2.4 minutes a day coordinating their
activities even with a manager! One person on the other hand need not perform this
coordination. So, as individual productivity drops, the team output still increases.

Figure 1.1 Coordination Steals Individual Productivity

Table 1.1 Individual Loss of Productivity as Team Size Increases

Organization
Size

Communication and
Coordination Cost

Individual
Productivity

Organization
Productivity

1 0 1 1

3 0.005 0.995 2.985

One Person
Very Little Coordination
and Communication
Overhead

Three People Communicating
and Coordinating Tasks

You have the
file checked out!

You have the
code I need!

Your code
doesn’t work!

ptg5994185

WHY ORGANIZATIONS 15

You can offset but not completely eliminate this deterioration in a number of
ways. One possibility is to add management to limit interpersonal coordination.
Another possibility is to limit the interactions between individuals by creating smaller
self-sufficient teams. Both of these approaches have benefits and drawbacks that we
will discuss in Chapter 3. Many other approaches are possible and anything that
increases individual throughput without damaging innovation should be considered.

Another important point in organizational design and structure is that anywhere
you create organizational or team boundaries, you create organizational and team
conflict. The question “What conflicts will arise within the organizational structure
as a result of the structure and how will those conflicts hinder the accomplishment of
my organization’s mission?” attempts to address this problem, but there is really no
way around boundaries causing friction. Your goal then should be to minimize the
conflict created by organizational boundaries. The greatest conflict tends to be cre-
ated when you have organizations with divergent missions, measurements, and goals,
and an easy fix to this drawback is to ensure that every organization shares some set
of core goals that drive their behaviors. We’ll discuss this in more detail in Chapter 3
where we will cover the two basic types of organizational structures and what pur-
poses they serve.

“Does work flow easily through the organization or is it easily contained within a
portion of the organization?” is meant to focus on the suitability of your organiza-
tional design to the type of work you do. Does work flow through your organization
as efficiently as a well-defined assembly line? Does the type of work you do lend itself
easily to a pipeline, where one team can start its work at a predefined place marked
by where another team completes its work without a lot of communication over-
head? Or is the work largely custom and highly intellectual, requiring a single team
to work on it from start to finish without interruption? Are the components of what
you build or produce capable of operating through a well-defined interface such that
two teams can work on subcomponents at the same time?

Let’s take a look at our company, AllScale. AllScale recognizes that it has a need to
scale the number of people within the engineering team that is supporting the HRM
software in order to produce more products. Over the course of the last year, AllScale
has added several engineers and now has a total of three managers and ten engineers.
Each of the three managers reports to the chief technology officer (CTO) of AllScale.
These engineers are broken down into the following teams:

• Two engineers responsible for the provisioning of systems, networking devices,
databases, etc. for AllScale’s HRM product. This is the Operations team.

• Six engineers responsible for developing the applications that make revenue for
AllScale’s HRM product. This is the Engineering team.

• Two engineers responsible for testing AllScale’s HRM product for defects and
other quality related issues. This is the QA team.

ptg5994185

16 CHAPTER 1 THE IMPACT OF PEOPLE AND LEADERSHIP ON SCALABILITY

At a high level, we can intuit a few things from the structure of this organization.
The designer of the organization believes that the separation into teams by skill set or
functional job responsibility will not have an adverse impact on his or her ability to
develop and launch new product functionality. The designer evidently sees great
value in dedicating a group of people to testing the product to ensure it conforms to
the company’s quality standards. Benefits we would expect from such an organiza-
tion are the ability to recruit top talent with focused skill sets such as software engi-
neering in one or more programming languages, hardware/infrastructure experience,
and quality/testing experience. At a high level, it appears that we should be able to
relatively easily add engineers, operations/infrastructure engineers, and quality assur-
ance engineers—at least until a manager is saturated with direct reports. This organi-
zation should be easily understood by all of the stakeholders as it is structured by
relatively easily understood skills. Finally, work would seem to be able to flow easily
between the organizations as we should be able to define measurable criteria that will
qualify any given work product as being “ready” for the next phase of work. For
instance, code might be ready for QA after it has passed a peer review and all unit
testing is completed, and it might be ready for launching to the site and the Opera-

Figure 1.2 AllScale Org Chart

QA Manager
Engineering
Manager

Operations
Manager

CTO

Engineer

Engineer

Engineer

Engineer

Engineer

Engineer

Engineer

Engineer

Engineer

Engineer

ptg5994185

WHY MANAGEMENT AND LEADERSHIP 17

tions team after all priority one bugs are fixed and at least 90% of all other defects
found in the first pass are resolved.

There are some potential drawbacks of such an organizational structure, however.
For instance, how are you going to measure the throughput of the teams? Who is
responsible for causing a slowdown of new initiative (feature or product) develop-
ment? Will you measure your operations/infrastructure team by how many new fea-
tures are launched to the site; if not, what keeps them from slowing down feature
development in an attempt to increase a metric they will likely covet such as avail-
ability? When do you determine that something is “completed” for the purposes of
measuring your engineering throughput? Is it when the feature launches live to site
and if so, have you calculated the bug induced rework time in developing the feature?

Will the structure minimize the work loss on a per person basis as you grow the
team? To know this, we probably need to dig into exactly how the software engineers
are structured but we can probably also guess that coordination across teams is going
to be a source of some work. Who will perform this coordination? Are the managers
responsible for shepherding something from engineering to QA (Quality Assurance)
and finally into the production team (Operations)? Who is responsible for setting the
guidelines and criteria for when something moves from one place to another? Should
you create a project management team responsible for helping to do this or should
you instead reorganize your teams into self-contained teams that have all the skill sets
necessary to complete any given task?

There are likely to be a great many conflicts in this proposed structure, many of
them across the organizational boundaries we’ve defined. Operations will likely have
concerns over the quality of new code or systems deployed, QA is likely to have con-
cerns over the level of quality initially presented to them by Engineering, and Engi-
neering will complain that Operations does not meet their needs quickly enough with
respect to the creation of new systems, installation of new databases, and provision-
ing of new network devices. Who will be responsible for helping to resolve these con-
flicts, as each conflict takes time away from doing “real work.”

Other, larger questions we might have of such an organizational structure might
be “Who is responsible for ensuring that the product or platform has an appropriate
level of scale for our needs?” or “Who is responsible for identifying and resolving
issues of scale?” When considering the answer to this question, please note that a
scale issue might be the result of a network capacity constraint, a database capacity
constraint, or a software capacity constraint. Moreover, that constraint isn’t going to
be easily bucketed into one of these areas every time it comes up.

Why Management and Leadership
In our experience, relatively few managers and leaders have ever had a course on
management or leadership. Few universities offer such classes, unless you happen to

ptg5994185

18 CHAPTER 1 THE IMPACT OF PEOPLE AND LEADERSHIP ON SCALABILITY

have been a management major or have attended an MBA program with a manage-
ment curriculum. Given the lack of management and leadership courses in our uni-
versities, most people learn how to manage and how to lead informally: you watch
what others do in peer positions and positions of greater responsibility and you
decide what works and what doesn’t. Over time, we start to develop our own “tool-
boxes” and add tools from our professional readings or discard tools as they age and
become less relevant to our younger generations of employees. This general “life as a
lab” approach is how we’ve developed managers for years and, although it has its
benefits, it is unfortunate that the two areas don’t get better treatment in structured
curriculums within universities and within larger corporations.

Management and leadership either multiply or detract from your ability to scale
organizations in growth environments. They are often spoken of within the same
context, but they are really two very different disciplines with very different impact
on scalability. Many times, the same person will perform both the functions of a
leader and a manager. In most organizations, one will progress from a position of an
individual contributor into a primarily management focused role; and over time with
future promotions, that person will take on increasing leadership responsibilities.

In general and at a very high level, you can think of management activities as “push-
ing” activities and leadership as “pulling” activities. Leadership sets a destination and
“waypoints” toward that destination; management gets you to that destination.
Leadership would be stating “We will never have a scalability related downtime in
our systems” and management would be ensuring that it never happens. You abso-
lutely need both and if you are going to scale your organization, your processes, and
your systems well and cost effectively, you need to do both well.

Far too often, we get caught up in the notion of a “management style.” We might
believe that a person’s “management style” makes them more of a leader or more of
a manager. This notion of style is our perception of an individual’s bias toward the
tasks that define either leadership or management. We might believe that a person is
more operationally focused and is therefore more of a “manager” or more visionary
and therefore more of a “leader.” Although we all have a set of personality traits and
skills that likely make us more comfortable or more capable with one set of activities
over the other, there is no reason we can’t get better at both disciplines. Recognizing
that they are two distinct disciplines is a step toward isolating and developing both
our management and leadership capabilities to the benefit of our shareholders.

As we have indicated, management is about “pushing.” Management is about
ensuring that people are assigned to the appropriate tasks and that those tasks are
completed within the specified time interval and at an appropriate cost. Management
is about setting individual contributor goals along the path to the greater leadership
goals and helping a team to accomplish both the individual contributor and team
goals. It is also about ensuring that people get performance-oriented feedback in a

ptg5994185

WHY MANAGEMENT AND LEADERSHIP 19

timely manner and that the feedback includes both praise for great performance and
information regarding what they can improve. Management is about measuring and
improving everything that ultimately creates shareholder value, examples of which
are reducing the cost to perform an activity or increasing the throughput of an activ-
ity at the same cost. Management is communicating status early and often and clearly
identifying what is on track and where help is needed. Management activities also
include removing obstacles or helping the team over or around obstacles where they
occur on the path to an objective. Management is important to scale as it is how you
get the most out of an organization, thereby reducing cost per unit of work per-
formed. The definition of how something is to be performed is a management
responsibility and how something is performed absolutely impacts the scale of orga-
nizations, processes, and systems.

Management as it relates to people is about the practice of ensuring that we have
the right person in the right job at the right time with the right behaviors. From an
organizational perspective, it is about ensuring that the team operates well together
and has the proper mix of skills and experiences to be successful. Management as
applied to an organization’s work is about ensuring that projects are on budget, on
time, and meeting the expected results upon which their selection was predicated.
Management means measurement and a failure to measure is a failure to manage.
Failing to manage in turn is a guarantee to miss your organizational, process, and
systems scalability objectives as without management, no one is ensuring that you are
doing the things you need to do in the timeframe required.

Leadership has to do with all the pulling activities necessary to be successful in any
endeavor. If management is the act of pushing an organization up a hill, leadership is
the selection of that hill and then being first up it to encourage your organization to
follow. Leadership is about inspiring people and organizations to do better and hope-
fully great things. Leadership is creating a vision that drives people to do the right
thing for the company. Leadership is creating a mission that helps codify the afore-
mentioned vision and creating a causal mental roadmap that helps employees under-
stand how what they do creates value for the shareholder. Finally, leadership is about
the definition of the goals on the way to an objective. Leadership is important to
scale as it not only sets the direction (mission) and destination (vision) but it inspires
people and organizations to achieve that destination.

Any initiative lacking leadership (including initiatives meant to increase the scal-
ability of your company), while not doomed to certain failure, will likely only achieve
success through pure dumb luck and chance. Great leaders create a culture focused
on ensuring success through highly scalable organizations, processes, and products.
This culture is supported by incentives structured around ensuring that the company
scales cost effectively without user perceived quality of service or availability issues.

ptg5994185

20 CHAPTER 1 THE IMPACT OF PEOPLE AND LEADERSHIP ON SCALABILITY

Conclusion
We’ve asserted that people, organizations, management, and leadership are all impor-
tant to scalability. People are the most important element of scalability, as without
people there are no processes and there is no technology. The effective organization
of your people will either get you to where you need to be faster or hinder your
efforts in producing scalable systems. Management and leadership are the push and
pull, respectively, in the whole operation. Leadership serves to inspire people to
greater accomplishments, and management exists to motivate them to the objective.

Key Points

• People are the most important piece of the scale puzzle.

• The right person in the right job at the right time and with the right behaviors is
essential to scale organizations, processes, and systems.

• Organizational structures are rarely “right or wrong.” Any structure is likely to
have pros and cons relative to your needs.

• When designing your organization, consider

The ease with which you can add people to the organization

The ease with which you can measure organizational success and individual
contributions over time

How easy the organization is to understand for an outsider

How the organizational structure impacts individual productivity

What “friction” will exist between teams within the organization

How easily work flows through the organization

• Adding people to organizations may increase the organizational throughput, but
the average production per individual tends to go down.

• Management is about achieving goals. A lack of management is nearly certain to
doom your scalability initiatives.

• Leadership is about goal definition, vision creation, and mission articulation.
An absence of leadership as it relates to scale is detrimental to your objectives.

ptg5994185

21

Chapter 2

Roles for the Scalable
Technology Organization

When the general is weak and without authority; when his orders are not clear and distinct;
when there are no fixed duties assigned to officers and men, and the ranks are formed

in a slovenly haphazard manner, the result is utter disorganization.

—Sun Tzu

One of the easiest and most common ways for companies to fail in their scalability
related endeavors is to not have clarity around the matter of who is responsible for
what. Clearly defining high-level goals and objectives is a leadership responsibility
and defining the roles and responsibilities of executives, organizations, and individ-
ual contributors is a management responsibility. A lack of clarity can be disastrous
for the company and organization in a number of ways. In this chapter, we will start
by taking a look at two very real examples of what might happen without role clarity
and responsibility. We then will discuss the executive roles, the organizational
responsibilities, individual contributor’s roles, and conclude by introducing a tool
that is extremely useful to ensure that initiatives have all the proper roles filled.

This chapter is meant for companies of all sizes. For large companies, it can serve
as a checklist to ensure that you have covered all of the technology and executive
roles and responsibilities as they relate to scale. For small companies, it can help
jumpstart the process of ensuring that you have your scalability related roles properly
defined. For the technology neophyte, it is a primer for how technology organiza-
tions should work, and for seasoned technology professionals, it is a reminder to
review organizational structure to validate that you have your scalability related
needs covered. For all companies, it clearly defines the need for individual contribu-
tors through the chief executive to be involved with the scalability of the systems,
organizations, and platforms that run their company.

ptg5994185

22 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

The Effects of Failure
On one end of the spectrum, a lack of clarity around roles and responsibilities may
result in individuals or groups not performing a necessary task, which may in turn
result in one or more failures of your product, organization, or processes. Take for
instance the case where no team or individual is assigned the responsibility of capac-
ity planning. In this context, capacity planning is the comparison of expected demand
to systems capacity (supply or maximum capacity by type of request) resulting in a
set of proposed actions to ensure that capacity matches demand. Expected demand is
defined by the forecasted number of requests, by function, placed on the system in
question. The proposed set of actions may include requesting the purchase of addi-
tional servers, requesting architectural evaluation of system components to allow sys-
tems scale to meet demand, or a requesting that systems be modified to scale more
cost effectively.

The flow for this example may start with a business unit creating a demand fore-
cast and handing it off to the person responsible for capacity analysis and planning.
The capacity planner takes a look at the types of demand forecasted by the business
unit and translates those into the resulting product/system/platform requests. He then
also factors in the expected results of product/system changes that create new func-
tionality and determines where the system will need modifications in order to meet
new demand, new functionality, or functionality modifications. The resulting defi-
ciencies are then passed on to someone responsible for determining what actions
should be taken to correct the expected deficiencies. Those actions as previously iden-
tified may be the purchase of new systems, a change in the architecture of certain
components of the platform, such as the data model or the movement of demand
from one group of services to another group.

In this case, the absence of a team or person responsible for matching expected
demand to existing capacity and determining appropriate actions would be disas-
trous in an environment where demand is growing rapidly. Nevertheless, this failure
happens all the time—especially in young companies. Even companies that have a
person or organization responsible for capacity planning often fail to plan for their
newest system additions.

On the other end of the spectrum is a case where organizations are given similar
responsibilities but are not required or incented to work together to successfully com-
plete their objectives. If you are in a smaller company where everyone knows what
everyone else is doing, this may seem a bit ridiculous to you. Unfortunately, this
problem exists in many of our larger client companies and when it happens it not
only wastes money and destroys shareholder value, it can create long-term resent-
ment between organizations and destroy employee morale.

In this case, let’s assume that an organization is split between an engineering orga-
nization responsible primarily for developing software and an operations organiza-

ptg5994185

DEFINING ROLES 23

tion responsible primarily for building and deploying systems, creating and managing
databases, deploying networks, etc. Let’s further assume that we have a relatively
inexperienced CTO who has recently read a book on the value of shared goals and
objectives and has decided to give both teams the responsibility of scaling the plat-
form to meet expected customer demand. The company has a capacity planner who
determines that to meet next year’s demand the teams must scale the subsystem
responsible for customer contact management to handle at least twice the number of
transactions it is capable of handling today.

Both the engineering and operations teams have architects who have read the tech-
nology section of our book and both decide to make splits of the database supporting
the customer contact management system. Both architects believe they are empow-
ered to make the appropriate decisions without the help of the other architect as they
are unaware that multiple people have been assigned the same responsibility and
were not informed that they should work together. The engineering architect decides
that a split along transaction boundaries (or functions of a Web site such as buying
an item and viewing an item on an ecommerce site) will work best, and the opera-
tions architect decides that a split along customer boundaries makes the most sense,
where groups of customers all reside in separate databases. Both go about making
initial plans for the split, setting their teams about doing their work and then making
requests of the other team to perform some work.

This example may sound a bit ridiculous to you, but it happens all the time. At
best, the two teams stop there and resolve the issue having “only” wasted the valu-
able time of two architects. Unfortunately, what usually happens is that the teams
polarize to waste even more time in political infighting, and the result isn’t materially
better after all the wasted time than if a single person or team had the responsibility
to craft the best solution with the input of other teams.

Defining Roles
This section gives an example of how you might define roles to help resolve issues
such as those identified in the preceding. We have given examples of how roles might
be defined at the top leadership level of the company (the executive team), within
classic technology organizational structures, and at an individual contributor level.

Our examples of executive, organizational, and individual contributor responsibil-
ities are not meant to restrict you to specific job titles or organizational structure.
Rather, they are to help outline the necessary roles within a company. We’ve chosen
to define these roles by the organizations in which they have traditionally existed to
make it easier to understand for a majority of our audience. For instance, you may
decide that you want operations, infrastructure, engineering, and QA to exist within
the same teams with each dedicated to a specific product line. You may recall from

ptg5994185

24 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

our introductory discussion on organizational structure that there is no “right or
wrong” answer on the topic—simply benefits and drawbacks of any decision. The
important point is to remember that you include all of the appropriate responsibili-
ties in your organizational design and that you clearly define not only who is a
responsible decision maker but also who is responsible for providing input to any
decision, who should be informed of the decision and actions, and who is responsible
for making the decision happen. We’ll discuss this last point in a brief section on a
valuable tool later in this chapter.

A Brief Note on Delegation
Before launching into the proposed division of responsibilities within an organization, we
thought it important to include a brief note on delegation. In defining roles and responsibilities
within organizations, you are creating a blueprint of delegation. Delegation, broadly speaking,
is the act of empowering someone else to act on your behalf. For instance, by giving an archi-
tect or architecture team the responsibility to design a system, you are delegating the work of
creating that architecture to that team. You may also decide to delegate the authority to make
decisions to that team depending upon their capabilities, the size of your company, and so on.

Here’s a very important point. You can delegate anything you would like, but you can never
delegate the accountability for results. At best, the team or individual to whom you delegate can
inherit that responsibility and you can ultimately fire, promote, or otherwise reward or punish
the team for its results but you should always consider yourself responsible for the end result.
Great leaders get this intuitively and they put great teams ahead of themselves in success and
take public accountability for failures. Poor leaders assume that they can “pass the buck” for
failures and take credit for successes.

To codify this point in your mind, let’s apply “the shareholder test.” Assume that you are the
CEO of a company and you have decided to delegate the responsibility for one of your busi-
ness units to a general manager. Can you imagine telling your board of directors or your share-
holders (whom the board represents) that you will not be held accountable for the results of that
business? One step removed, do you think the board will not hold you at least partially respon-
sible if the business begins to underperform relative to expectations?

Again, this does not mean that you should make all the decisions yourself. As your com-
pany and team grow and scale, you simply won’t be able to do that and in many cases might
not be qualified to make the decisions. For instance, a nontechnical CEO should probably not
be making architecture decisions and a CTO of a 200-person engineering organization should
not be writing the most important code as he or she is needed in other executive tasks. It sim-
ply makes the point that you absolutely must have the best people possible to whom you can
delegate and that you must hold those people to the highest possible standards. It also means
that you should be asking the best questions possible about how someone came to his or her
decisions on the most critical projects and systems.

ptg5994185

EXECUTIVE RESPONSIBILITIES 25

Executive Responsibilities
The executives of a company as a team are responsible more than anyone else for
imprinting the company with “scale DNA” and creating a culture of scalability as
defined in our introductory chapter. Getting high-level executive responsibilities right
is the easiest thing to do and also the most overlooked aspect of ensuring that organi-
zations can scale to the need of the company and that further organizations support
the need to scale the technology that makes the company money.

CEO
The CEO is the chief scalability officer of the company. As with all other matters
within the company, when it comes to scale, he or she is the final decision maker and
arbiter of all things related to scale. A good technology company CEO needs to be
appropriately technically proficient, but that does not mean that he needs to be the
technology expert or the primary technology decision maker.

It is hard to imagine that someone would rise to the position of CEO and not
understand how to read a balance sheet, income statement, or statement of cash flow.
That same person, unless she has an accounting background or is a former CFO, is
not likely to understand the intricacies of each accounting policy nor should she need
to. The CEO’s job is to ask the right questions, get the right people involved, and get
the right outside help or advice to arrive at the right answer.

The same holds true in the technical world—the CEO’s job is to understand some
of the basics (the equivalent of the financial statements mentioned above), to know
which questions to ask, and to know where to get help. Here is some advice for
CEOs and other managers responsible for technical organizations who have not been
the chief technology officer or chief information officer of a company, do not have
technical degrees, or have never been an engineer:

Ask Questions and Look for Consistency in Explanations Part of your job is to be a
truth seeker, because only with the truth can you make sound and timely decisions.
Although we do not think it is commonplace for teams to lie to you, it is very com-
mon for teams to have different pieces and perceptions of the truth, especially when it
comes to issues of scale. When you do not understand something, or something does
not seem right, ask questions. When you are unable to discern fact from perception,
look for consistency in answers. If you can get over any potential ego or pride issues
with asking what might seem to be ignorant questions, you will find that you not
only quickly educate yourself but you will create and hone a very important skill in
finding truth.

This executive interrogation is a key ability shared by many successful leaders.
Knowing when to probe and where to probe and probing until you are satisfied with

ptg5994185

26 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

answers need not be limited to the CEO. In fact, managers and individual contribu-
tors should all hone this skill and start early in their careers.

Seek Outside Help Seek help from friends or professionals who are proficient and
knowledgeable in the area of scalability. Don’t bring them in and attempt to have
them sort things out for you—that can be very damaging. Rather, we suggest creating
a professional or personal relationship with a technically literate firm or peer. Lever-
age that relationship to help you ask the right questions and evaluate the answers
when you need to dive deeply.

Improve Your Scalability Proficiency Create a list of your weaknesses in technol-
ogy—things about which you have questions—and go get help to become smarter.
You can ask questions of your team and outside professionals. Read blogs on scale
related issues relevant to your company or product and attend workshops on tech-
nology for people without technical backgrounds. You probably already do this
through professional reading lists on other executive topics—add technology scal-
ability to the list. You do not need to learn a programming language, understand how
an operating system or database works, or understand how “Collision Detection
Multiple Access/Carrier Detect” is implemented. You just need to be able to get bet-
ter at asking questions and evaluating the issues your teams bring to you. Scalability
is a business issue, but to solve it, you need to at least be somewhat conversant in the
technology portion of the equation.

More than likely, the CEO will decide to delegate authority to several members of
his or her team including the chief financial officer (CFO), individual business unit
owners (a.k.a. general managers), and the head engineering and technology executive
(referred to as either the CTO or CIO in our book).

CFO
Most likely, the CEO has delegated the responsibility for budgeting to the CFO,
although this may not always be the case. Budgeting is informed by capacity planning
and, as we’ve seen in our previous example of how things can go wrong, capacity
planning is a very large part of successfully scaling a system. Ensuring that the team
and company have sufficient budget to scale the platform/product/system is a key
portion of the budgeting officer’s responsibility. The budget needs to be sufficiently
large to allow the company to scale to the expected demand by purchasing or leasing
servers and hiring the appropriate engineers and operations staff. That said, the bud-
get should not be so large that the company spends money on scale long before it
truly needs it because such spending dilutes near term net income for very little bene-
fit. Purchasing and implementing “just in time” systems and solutions optimizes the
company’s net income and cash flow.

ptg5994185

EXECUTIVE RESPONSIBILITIES 27

The CFO is also not likely to be very technical, but can benefit from asking the
right questions and creating an appropriate network, just as we described with the
CEO. Questions that the CFO might ask regarding scalability include asking what
other scale alternatives were considered in developing the proposed budget for scale
and what tradeoffs were made in deciding upon the existing approach. The intent
here is to ensure that the team considered more than one option. A bad answer would
be “This is the only way possible,” as that is rarely the case. (We want to say it is never
the case, but it is possible to have a case where only one route is possible.) A good
answer might be “of the options we evaluated, this one allows us to scale horizon-
tally at comparatively low cost while setting us up to scale even more cost effectively
in the future by laying a framework whereby we can continue our horizontal scale.”

Business Unit Owners, General Managers, and P&L Owners
More than any other position, the business unit general manager or owner of the
company or division’s profit and loss statement (also called the income statement or
P&L) is responsible for forecasting the platform/product/system dependent business
growth. In small- to medium-sized companies, it is very likely that the business unit
owner is the CEO and that he or she might delegate this responsibility to some mem-
ber of her staff. Nevertheless, demand projections are critical to the activity of deter-
mining what needs to be scaled so that the budget for scale doesn’t become too large
ahead of the corporate need.

Very often, we run into situations in which we hear the business unit owner claim-
ing that demand simply can’t be forecasted. Here, demand means the number of
requests that are placed against a system or product. This is a punting of responsibil-
ity that simply should not be tolerated within any company. In essence, the lack of
ownership on forecasting demand by the business gets moved to the technology orga-
nization, which in turn is very likely less capable of forecasting demand than the busi-
ness unit owner. Yes, it is very likely that your forecasts will be wrong, especially in
their infancy, but it is absolutely critical that you start the process early in the life
cycle of the company and mature it over time.

Finally, as with other senior executive staff of the company, the business unit
owner is responsible for helping to create a culture of scalability. Ensuring that he or
she is asking the right questions of her peer (or subordinate) in the technology orga-
nization and trying to ensure that the technology partner receives the funding and
support to properly support the business unit in question are all essential to the suc-
cess of scalability within the company.

CTO/CIO
Although the CEO is the chief scalability officer of the company, the chief technology
executive is the chief technology, technical process, and technology organization

ptg5994185

28 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

scalability officer. In some companies, particularly Internet companies, the chief tech-
nology executive is often titled the CTO or chief technology officer. In these compa-
nies, the CTO might be responsible for another technology executive responsible for
corporate technology, or the technology that runs the back office systems of the com-
pany, and this person is often titled the CIO or chief information officer. In older
companies, the chief technology executive is often titled the CIO, whereas the CTO is
very often the head engineer or head architect. We will use CTO and CIO throughout
this book to mean, interchangeably, the chief technology executive of the company.
He or she most likely has the best background and capabilities to ensure that the
company scales cost effectively ahead of the product/system or platform needs.

In essence, “the buck stops here.” Although it is true that the CEO can’t truly
“delegate” responsibility for the success of the platform scalability initiatives, it is
also true that the chief technology executive inherits that responsibility and shares it
with the CEO. A failure to properly scale will likely at least result in the termination
of the chief technology executive, portions of his or her organization, and potentially
even the CEO.

The CTO/CIO must create the technical vision of the company overall, and for the
purposes of our discussion, within a growth company that vision must include ele-
ments of scale. The chief technology executive is further responsible for setting the
aggressive, measurable, and achievable goals that nest to that vision and for ensuring
that his or her team is appropriately staffed to accomplish the associated scalability
mission of the organization. The CTO/CIO is responsible for the development of the
culture and processes surrounding scalability that will help ensure that the company
is always ahead of end-user demand.

The CTO/CIO will absolutely need to delegate responsibilities for certain aspects
of decision making around scalability as the company grows, but as we pointed out
previously this never eliminates his or her responsibility to ensure that it is done cor-
rectly, on time, and on budget. Additionally, in hyper-growth environments where
scale is critical to company survival, the CTO should never delegate the development
of the vision for scale. The term “lead from the front” is never more important than
here, and the vision does not need to be deeply technical.

Although the best CTOs we have seen have had technology backgrounds varying
from once having been an individual contributor to having been a systems analyst or
technical project manager, we have seen examples of successful CTOs without such
backgrounds. When you have a nontechnical CTO/CIO, it is absolutely critical that
he or she has some technical acumen and is capable of speaking the language and
understanding the critical tradeoffs within technology such as the relationship of
time, cost, and quality. Inserting a technology neophyte to lead a technical organiza-
tion is akin to throwing a nonswimmer overboard into a lake; you may be pleased
with your results assuming the person can swim, but more often than not you’re
going to need to find yourself a new partner in your boat.

ptg5994185

ORGANIZATIONAL RESPONSIBILITIES 29

Equally important is that the CTO have some business acumen. Unfortunately,
this is as difficult to achieve as finding a chief marketing officer with a Ph.D. in elec-
trical engineering (not that you’d necessarily want one)—they exist but they are diffi-
cult to find. Unfortunately, most technologists do not learn about business, finance,
or marketing within their undergraduate or graduate courses. Although the CTO
does not need to be an expert on capital markets (that’s likely the job of the CFO), he
should understand the fundamentals of the business in which the company operates.
For example, the CTO should be able to read and understand the relationships
between the income statement, balance sheet, and statement of cash flow. She should
also understand marketing basics to the level of at least a community college or com-
pany sponsored course on the subject. This is not to say that the CTO needs to be an
expert in any of these areas; rather, a basic understanding of these topics is critical to
making the business case for scalability and to being able to communicate effectively
in the business world. We’ll discuss these areas in later chapters.

Organizational Responsibilities
We are going to describe roles in terms of organizational responsibilities within a tra-
ditionally constructed technology team. These usually consist of teams responsible
for the overall architecture of the product (architecture), the software engineering of
the product (engineering), the monitoring and production handling of the product
(operations), design and deployment of hardware for the product (infrastructure
engineering), and the testing of the product (quality assurance).

The choice to define these within organizations was a tradeoff. We wanted to
ensure that everyone had a list of scalability related responsibilities that need to exist
within any organization. This could be accomplished with a simple list of responsibil-
ities that could be parceled out to any organizational structure. We also wanted a
number of teams to be able to use the responsibilities out of the book immediately,
which was best served by defining those responsibilities within the traditional organi-
zational constructs. In no way do we mean to imply, however, that this is the only
way to set up responsibilities for your organizations. You should develop the organi-
zational structure that best serves your needs and ensure that all of the responsibili-
ties included in the following sections are contained within one of your teams.

Architecture Responsibilities
The team responsible for architecture is responsible for ensuring that the design and
architecture of the system allow for scale in the timeframe appropriate to the busi-
ness. Here, we clearly indicate a difference between the intended design and the
actual implementation. The team or teams responsible for architecture decisions need

ptg5994185

30 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

to think well in advance of the needs of the business and have thought through how
to scale the system long before the business unit owners forecast demand exceeding
the platform capacity at any given time. For instance, the architecture team may have
developed an extensible data access layer (DAL) or data access object (DAO) that can
allow for multiple physical databases to be accessed with varying schemas as user
demand increases in any given area. The actual implementation may be such that
only a single database is used, but with some cost-effective modification of the DAL/
DAO and some work creating migration scripts, additional databases can be stood
up in the production environment in a matter of weeks rather than months should
the need arise. The architecture team is further responsible for creating the set of
architecture standards by which engineers design code and implement systems.

The architecture team, more than any other team, is responsible for designing a
system and having designs ready to solve any scale related issue. In Part II, Building
Processes for Scale, we identify a key process that the architecture team should adopt
to help identify scale related problems across all of the technology disciplines.

Architects may also be responsible for forming information technology (IT) gover-
nance, standards, and procedures, and enforcement of those standards through such
processes as the Architecture Review Board discussed in Chapter 14, Architecture
Review Board. When architects perform these roles, they do so at the request of the
chief technology executive. Some larger companies may create process engineering
teams responsible for procedure definition and standards enforcement.

Engineering Responsibilities
This team is “where the rubber meets the road.” The engineering team is the chief
implementer of the scalability mission and the chief tuner of the product platform.
Engineers take the architecture and create lower-level designs that they ultimately
implement within code. They are responsible for adhering to the company’s architec-
tural standards. Engineering teams are one of the two or three teams most likely to
truly understand the limits of the system as implemented given that they are one of
the teams with the greatest daily involvement with that system. As such, they are key
contributors to the process of identifying future scale issues.

Production Operations Responsibilities
The production operations team is responsible for running the hardware systems and
software systems necessary to complete the mission of the company. In the Software
as a Service and Web2.0 worlds, this is the team responsible for running and moni-
toring the systems that create the company’s revenue. In a classic information tech-
nology organization, such as those that might exist in a bank, these members are
responsible for running the applications and systems that handle the bank’s daily
transactions, and so on. In a company producing a manufactured product such as a

ptg5994185

ORGANIZATIONAL RESPONSIBILITIES 31

company in the automotive industry, this team is responsible for handling all of the
company’s manufacturing systems, enterprise resource planning systems, and so on.

This team is part of the group of three teams with excellent insight into the limita-
tions of the system as currently implemented. As the team interacts with how the sys-
tem runs every day and as it has daily insight into system utilization data, these team
members are uniquely qualified to identify bottlenecks within the system.

Often, this team is responsible for creating utilization reports, daily downtime,
and activity reports, and is responsible for escalating issues and managing issues to
resolution. As such, very often, capacity planning will fall onto this team, although
that is not an absolute necessity. Operations personnel are also typically responsible
for creating reports that show trended availability over time, bucketing root cause
and corrective actions, and determining mean time to resolution and mean time to
restoration for various problems.

Regardless of the composition of the team, the organization responsible for moni-
toring and reporting on the health of systems, applications, and quality of service
plays a crucial role in helping to identify scale issues. The processes that this group
employs to manage issue and problem resolution should feed information into other
processes that help identify scale issues in advance of major outages. The data that
the operations organization collects is incredibly valuable to those performing capac-
ity planning as well as those responsible for designing away systemic and recurring
issues such as scale related events. The architecture and engineering teams rely
heavily on product operations to help them identify what should be fixed and when.
We discuss some of these processes in Part II and more specifically in Chapter 8,
Managing Incidents and Problems, Chapters 13, Joint Architecture Design, and
Chapter 14, Architecture Review Board.

Infrastructure Responsibilities
This organization is typically comprised of database administrators, network engi-
neers, and systems administrators. They are often responsible for defining which sys-
tems will be used, when systems should be purchased, and when systems should be
retired. This group is also one of the three groups interacting with the holistic system,
platform, or product on a daily basis; as such, these members are uniquely qualified
to help identify where bottlenecks exist. Their primary responsibility is to identify
capacity constraints on the systems, network devices, and databases that they sup-
port and to further help in identifying appropriate fixes for scale related issues.

Quality Assurance Responsibilities
In the ideal scenario, the team responsible for testing an application to ensure it is
consistent with the company’s product or systems requirements will also play a role
in advanced testing for scale. New products, features, and functionality change the

ptg5994185

32 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

demand characteristics of a system, platform, or product. Most often, we are adding
new functions that by definition create additional demand on a system. Ideally, we
can profile that new demand creation to ensure that the release of our new function-
ality or features won’t have a significant impact to the production environment. The
QA organization also needs to be aware of all other changes going on around them
so that it can ensure that whatever scale related testing is done gets updated in a
timely fashion.

Capacity Planning Responsibilities
This organization or responsibility can reside nearly anywhere, but it needs access to
up-to-date information regarding system, product, and platform performance.
Capacity planning is a key to scaling efficiently and cost effectively. When performed
well, the capacity planning process results in the timely purchase of equipment where
systems are easily horizontally scaled, the emergency purchase of larger equipment
where systems cannot yet be scaled horizontally, and the identification of systems
that should be prioritized high on the list of scale related problems to correct.

You may notice that we use the word emergency when describing the purchase of
a larger system. Many companies take the approach that “scaling up” is an effective
strategy, but our position, as we will describe in Chapters 21 through 25, is that if
your scaling strategy relies on faster and bigger hardware, your solution does not
scale; rather, you are relying upon the scalability of your providers to allow you to
scale. Stating that you scale by moving to bigger and faster hardware is like stating
that you are fast by buying a bigger, faster car. You have not worked to become
faster, and you are only as fast as anyone else with similar wealth. Scalability is the
ability to scale independent of bigger and faster systems or the next release of an
application server or database.

Individual Contributor Responsibilities and Characteristics
Having just described the scalability related roles that should be covered by different
organizations within your company, we will now describe the roles of individuals
that might fit within different organizations. We will cover the role of the architect,
the software engineer, the operator, the infrastructure engineer, the QA analyst, and
the capacity planner. These roles may not need to be staffed by a single person or a
group of people if you are a small company; it is enough in small companies to have
the responsibilities defined within each of the roles assigned to different individuals
within your organization.

ptg5994185

INDIVIDUAL CONTRIBUTOR RESPONSIBILITIES AND CHARACTERISTICS 33

Architect
More than any other role, the architect is responsible for the availability, scalability,
and technical success of the product, platform, or system design. When it comes to
scalability, the great architect will have an answer for how he or she expects to scale
any given component of the system and be able to explain why his or her approach is
the most cost-effective solution available for that component.

The architect must know the end user, have a holistic view of the system, under-
stand the cost of operating the system in its current design and implementation, and
have a deep knowledge of all technologies employed to create the system, platform,
or product. Too often, architects will work out of “ivory towers” and not really
know how the product, platform, or system “really” operates. They may get too
much into “markitecture,” the creation of slides to impress others with their intelli-
gence, and stray too far from the nuts and bolts of how things really work.

The architect needs to be an evangelist for the appropriate way to solve scale
related issues. She needs to be aware of emerging technologies and how those might
be employed to win the scalability battle. Great architects understand and have a his-
tory with both the software and the systems that comprise the production environ-
ment and facilitate the product, platform, or holistic system in question.

When it comes to scale initiatives, the architect should be measured by the true
performance of the system. Has it had availability or performance related issues as a
result of the architect’s design?

For truly hyper-growth companies, we suggest the creation of a specialized archi-
tect focused on platform, product, or system scalability. We believe that there is suffi-
cient specificity in technical knowledge, perspective, and focus unique to scale
initiatives that companies undergoing extreme growth need someone with a focus
just on scaling the system. The ideal candidate for such a position should be able to
explain how to split both systems and applications along the lines we discuss in
Chapters 21 through 24. Furthermore, the architect ideally comes with a resume indi-
cating how he has performed such splits in the past. We call this unique position a
scalability architect.

Software Engineer
A software engineer is a member of the team responsible for implementing function-
ality and product changes and additions in software. The software engineer is also
responsible for coding any proprietary changes that allow a system to be more highly
scalable.

The software engineer, more than any other role, is responsible for the scalability
of his portion of the system as it is implemented. Here, we call out the difference
between design and implementation as very often an implementation will not be

ptg5994185

34 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

100% consistent with the design. For instance, if a design calls for a configurable
number (max number undefined) of similarly configured read databases, to which all
read transactions can be evenly distributed, and the software engineer implements a
system capable of handling up to five read databases, he or she has implemented a
system with a defined scale limit. Here, defined scale limit is the limitation the engi-
neer put on how many databases can be implemented (five).

A software engineer should understand the portion of the system that she sup-
ports, maintains, or for which she creates code. He should also understand the end
user and how the end user interacts with the software engineer’s portion of the sys-
tem. The software engineer is a contributor to many of the scalability processes we
define later in Part II.

Operator
The operator is responsible for handling the daily operations of the production sys-
tem, whether that system is a Web 2.0 system or a back office IT system. She is
responsible for monitoring the system against specific service levels, monitoring for
out of bounds conditions, alerting individuals based on service level or boundary
condition failures, and tracking incidents to closure. A form of operator, sometimes
called an incident manager, is responsible for managing major problems to closure
and issuing root cause and corrective action reports.

Infrastructure Engineer
Infrastructure engineer is a generic term used to identify database administrators,
network engineers, and systems administration professionals. The infrastructure
engineer is responsible for the selection, configuration, implementation, tuning, and
proper functioning of the devices or systems under his purview.

The infrastructure engineer, more than any other role, is responsible for the scal-
ability of the systems that he supports. As such, a database analyst is responsible for
identifying early when his database is going to fail based on capacity constraints and
to identify potential opportunities for scaling. A systems analyst is expected to do the
same for her systems and storage and a network engineer for the portions of the net-
work that she supports.

In addition to having a deep technical understanding of his specific discipline, a
skilled infrastructure engineer should understand the product he helps to support, be
conversant in the “sister” disciplines within the hardware and systems community (a
great systems administrator for instance should have a basic understanding of net-
works and a good understanding of how to troubleshoot basic database problems) in
order to aid in troubleshooting, a good knowledge of competing technologies to
those employed in his product or platform, and a good understanding of emerging
technologies within his field. The infrastructure engineer should also understand the

ptg5994185

AN ORGANIZATIONAL EXAMPLE 35

cost of operating his system and the opportunities to reduce that cost overtime.
Finally, the best infrastructure engineers are agnostic to the technologies they employ,
a point we will cover in Chapter 20, Designing for Any Technology.

QA Engineer/Analyst
The QA engineer or analyst is responsible for testing the application and the systems
infrastructure to ensure that it meets the product specifications. A portion of her time
should be dedicated to performance testing as it relates to scalability and as defined
in Chapter 17, Performance and Stress Testing.

Capacity Planner
We’ve discussed the role and activity of the capacity planner in earlier sections of this
chapter. Put simply, the capacity planner is responsible for matching the expected
demand (typically generated by the business unit) to the current system as imple-
mented to determine where additional changes need to be made in the system, plat-
form, or product. The capacity planner is not responsible for defining what these
changes are; rather, she outlines where changes need to occur.

In the case where a change needs to be made to a system that scales horizontally,
the capacity planner may have as part of her job description the responsibility to help
kick off the purchase order process to bring in new equipment. More often than not,
the capacity planner is also a critical part of the process of budgeting for new systems
and new initiatives to meet the business forecasted demand.

An Organizational Example
The new CEO of AllScale analyzes her team over the first 90 days. The company has
had a number of scalability related incidents with its flagship HRM product and
Christine determines that the current CTO (in AllScale’s case, the CTO is the highest
technology management position in the company) simply isn’t capable of handling
the development of new functionality and the stabilization of the existing platform.
Christine believes that one of the issues with the executive previously in charge of
technology was that he really had no business acumen and could not properly
explain the need for certain purchases or projects in business terms. The former CTO
simply did not understand simple business concepts like returns on investment and
discounted cash flow. Furthermore, he always expected the business folks to under-
stand the need for any of what business peers believed were his pet projects and
would simply say, “We either do this or we will die.” Although the technology team’s
budget was nearly 20% of the company’s $200 million in revenue, systems still failed

ptg5994185

36 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

and the old CTO would blame unfunded projects for outages and then blame the
business people for not understanding technology.

The CEO sits down with her new CTO, a person she picked from an array of can-
didates with graduate degrees in both business and electrical engineering or computer
science, and explains that while she will delegate the responsibility for technical deci-
sions to the CTO and empower him to make decisions within his budget limitations,
she will not and cannot delegate the accountability for his results. She explains that
she wants to create a culture of scalability in the company along the lines of the old
manufacturing mottos of “everyone is accountable for quality.” She will work to add
a nod toward scalability in the corporate vision and add a corporate belief surround-
ing the need to cost effectively scale to customer demands without quality of service
or availability (a.k.a. downtime) problems.

The new CTO, Johnny Fixer, asks for 30 days to review the organization, identify,
and put in motion some quick win projects and report back with a plan to make the
technology platform, organization, and processes highly scalable and highly avail-
able. He promises to keep Christine informed and communicate the issues he finds
and concerns he has. They agree to talk daily on the phone, exchange emails more
often, and meet personally at least once a week.

Johnny quickly identifies overlaps in jobs in certain areas and responsibilities that
are completely missing from his team. For instance, no one is responsible for develop-
ing a single cohesive capacity plan. Furthermore, teams do not work together to col-
laborate on designs, architects are not engaged with the engineering teams and do not
understand the current status of customer grief with the product, and quality defects
are blamed on a QA team with no engineering ownership of bugs.

Johnny works quickly to hire a capacity planner onto his team. As it is May and
the company’s budgeting for the next year must be complete by October, he knows he
must get good data about current system performance relative to peak theoretical
capacity and start to get next year’s demand projections from the business to help the
CFO create his next fiscal year budget. The newly hired capacity planner starts work-
ing with the engineering team to install the appropriate monitoring systems to collect
system data in order to identify capacity bottle necks and she works with finance to
understand both the current budget and to help provide information to generate the
next year’s budget.

Although the CTO is worried about all of his technology problems, he knows that
long term he is going to have to focus his teams on how they can work together and
create shareholder value. He implements a tool for defining roles and responsibilities
called RASCI for Responsible, Accountable, Supportive, Consulted, and Informed
(this tool is defined further in the next section) and implements Joint Architecture
Design and the Architecture Review Board (defined in Chapters 13 and 14) to help
resolve the lack of cooperation between organizations.

ptg5994185

A TOOL FOR DEFINING RESPONSIBILITIES 37

Johnny walks through the past 30 days of issues and identifies that the team is not
keeping track of outages, incidents, and their associated impact to the business. He
makes his head of technical operations responsible for all outage tracking and indi-
cates that together they will review all issues daily and track them to closure. He fur-
ther requires that all architects attend at least one of the daily operations meetings
per month to help get them closer to the customer and to better understand the pains
associated with the current system. While meeting with his engineering managers,
Johnny indicates that all bugs will be considered engineering and QA failures rather
than just QA failure and that the company will begin tracking defects (or bugs) per
feature produced with a goal to reducing all failures.

To help align his teams to the need for a more reliable and available site, Johnny
implements a site uptime or availability metric and a goal to achieve greater than
99.99% availability by month within the next four months. With the CEO’s advice
and permission, and with the help of his architects, engineers, and infrastructure engi-
neers, he reprioritizes some projects to attack the site outage incidents that appear
(given the small amount of data) to have caused the most grief to the company.

Johnny then implements a governance council for all engineering projects consist-
ing of the CEO, the CFO, and all of the business unit leaders. The council is respon-
sible for prioritizing projects, including availability projects, and for additionally
measuring their returns against the promised success and business metrics upon
which they were based.

After the first 30 days, Johnny covers his 30-, 60-, and 90-day forward plans with
the CEO and they jointly agree on a vision and set of goals for the engineering team
(see Chapter 4, Leadership 101). Christine then has an “all hands” meeting with the
entire company explaining that scalability and availability of the platform are of the
utmost priority and that it is “everyone’s job” to help ensure that the company and
its services scale to meet customer demands. To help incent the company toward an
appropriate culture that includes the notion of being “highly scalable,” she insists
that all managers have as part of their bonus compensation a scalability related goal
that represents no less than 5% of their bonus. She delegates the development of
those goals to her subordinates and asks to review them in the next 30 days.

A Tool for Defining Responsibilities
Many of our clients use a simple tool to help them define role clarity for any given
initiative. Often when we are brought in to help with scalability in a company, we
employ this tool to define who should do what, and to help eliminate wasted work
and ensure complete coverage of all scalability related needs. Although technically a
process, as this is a chapter on roles and responsibility, we felt compelled to include
this tool here.

ptg5994185

38 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

The tool we most often use is called RASCI. It is a responsibility assignment chart
and the acronym stands for Responsible, Accountable, Supportive, Consulted, and
Informed.

• R stands for Responsible. This is the person responsible for completing the
project or initiative.

• A stands for Accountable. This is the person to whom R is accountable and who
must approve the work before it is okay to complete. The A is sometimes
referred to as the approver of any initiative.

• S stands for Supportive. These people provide resources to complete the project
or initiative.

• C stands for Consulted. These people have data or information that can be use-
ful in completing the project.

• I stands for Informed. These people should be notified, but do not need to be
consulted or provide input to the project.

RASCI can be used in a matrix, where each activity or initiative is spelled out along
the y or vertical axis of the matrix and the individual contributors or organizations
are spelled out on the x-axis of the matrix. The intersection of the activity (y-axis)
and the organization (x-axis) contains one of the letters R, A, S, C, or I and may
include nothing if that individual or organization is not part of the initiative.

Ideally, in any case, there will be a single R and a single A for any given initiative.
This helps eliminate the issue we identified earlier in this chapter of having multiple
organizations or individuals feeling that they are responsible for any given initiative.
By having a single person or organization responsible, you are abiding by the “one
back to pat and one throat to choke” rule. A gentler way of saying this is that distrib-
uted ownership is ownership by no one.

This is not to say that others should not be allowed to provide input to the project
or initiative. The RASCI model clearly allows and enforces the use of consultants or
people within and outside your company who might add value to the initiative. An A
should not sign off on an R’s approach until such time as the R has actually consulted
with all of the appropriate people to develop the right course of action. And of course
if the company has the right culture, not only is the R going to want to seek those
people’s help, but the R is going to make them feel as if their input is valued and
value added to the decision making process.

You can add as many Cs, Ss, and Is as you would like and as add value or are
needed to complete any given project. That said, protect against going overboard
regarding who exactly you will inform. Remember our discussion in the previous
chapter about people being bogged down with email and communication that does
not concern them. It is common in young companies to allow everyone to feel that

ptg5994185

A TOOL FOR DEFINING RESPONSIBILITIES 39

they should be involved in every decision or informed of every decision. This infor-
mation distribution mechanism simply does not scale and results in people reading
emails rather than doing what they should be doing to create shareholder value.

A partially filled out example matrix is included in Table 2.1.
Taking some of our discussion thus far regarding different roles, let’s see how

we’ve begun to fill out this RASCI matrix.
We earlier indicated that the CEO absolutely must be responsible for the culture of

scalability, or the scale DNA of the company. Although it is theoretically possible for
her to delegate this responsibility to someone else within the company from a practi-
cal perspective, and as you will see in the chapter on leadership, she must live and
walk the values associated with scaling the company and its platform. As such, even
with delegation and as we are talking about how the company “acts” with respect to
scale, the CEO absolutely must “own” this. Therefore, we have placed an R in the
CEO’s column next to the Scalability Culture initiative row. The CEO is obviously
responsible to the board of directors and, as the creation of scale culture has to do with
overall culture creation, we have indicated that the board of directors is the A.

Table 2.1 RASCI Matrix

CEO
Business
Owner CTO CFO Arch Eng Ops Inf QA

Board of
Directors

Scalability
Culture

R A

Technical
Scalability
Vision

A C R C S S S S S I

Product
Scale Design

A R

Software
Scale
Implementation

A R S

Hardware
Scale
Implementation

A S R

Database
Scale
Implementation

A S R

Scalability
Implementation
Validation

A R

ptg5994185

40 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

Who are the Ss of the Scalability Culture initiative? Who should be informed and
who needs to be consulted? In developing your answer to this question, you are
allowed to have people who are Ss of any situation also be Cs in the development of
the solution. It is implied that Cs and Ss will be informed as a result of their jobs, so
it is generally not necessary to include an I any place that you feel you need to com-
municate a decision and a result.

We’ve also completely filled out the row for Technical Scalability Vision. Here, as
we’ve previously indicated, the CTO is responsible for developing the vision for scal-
ability for the product/platform/system. The CTO’s boss is very likely the CEO, so
she will be responsible for approving the decision or course. Note that it is not abso-
lutely necessary that the R’s boss be the A in any given decision. It is entirely possible
that the R will be performing actions on behalf of someone for whom he or she does
not work. In this case, however, assuming that the CTO works for the CEO, there is
very little chance that the CTO would actually have someone other than the CEO
approve his or her scalability vision or scalability plan.

Consultants to the scalability vision are the CTO’s peers—the people who rely on
the CTO for either the availability of the product or the back office systems that run
the company. These people need to be consulted because the systems that the CTO
creates and runs are the lifeblood of the business units and the heart of the back
office systems that the CFO needs to do his or her job.

We have indicated that the CTO’s organizations (Architecture group, Engineering
team, Operations team, Infrastructure team, and QA) are all supporters of the vision,
but one or more of them could also be consultants to the solution. The less technical
the CTO, the more he will need to rely upon his teams to develop the vision for scal-
ability. Here, we have assumed that the CTO has the greatest technical experience on
the team, which is obviously not always the case. The CTO may also want to bring in
outside help in determining the scalability vision and/or plan. This outside help may
be a retained advisory services firm or potentially the establishment of a technology
advisory and governance board that provides for the technology team the same gov-
ernance and oversight that a board of directors provides at a corporate level.

Finally, we have indicated that the board of directors needs to be Informed of the
scalability vision. This might be a footnote in a board meeting or a discussion around
what is possible with the current platform and how the company will need to invest
to meet the scalability objectives for the coming years.

The remainder of the matrix has been partially filled out. Important points with
respect to the matrix are that we have split up the tasks/initiatives to try to ensure
that there aren’t any overlaps in the R category. For instance, the responsibility for
infrastructure tasks has been split from the responsibility for software development
or architecture and design tasks. This allows for clear responsibility in line with our
“one back to pat and one throat to choke” philosophy. In so doing, however, the

ptg5994185

CONCLUSION 41

organization might tend to move toward designing in a silo or vacuum, which is
counter to what you would like to have long term. Should you structure your organi-
zation in a similar fashion, it is very important that you implement processes that
require teams to design together to create the best possible solution. Matrix orga-
nized teams do not suffer from some of the silo mentality that exists within teams
built in silos around functions or organizational responsibility, but they can still ben-
efit from RASCI. You should still have a single responsible organization; but you
want to ensure that collaboration happens. RASCI helps enforce that through the use
of the C attribute.

Please spend time working through the rest of the matrix in Table 2.1 to get com-
fortable with the RASCI model. It is a very effective tool in clearly defining roles and
responsibilities and can help eliminate duplicated work, unfortunate morale-deflating
fights, and missed work assignments.

Conclusion
Providing role clarity is the responsibility of leaders and managers. Individuals as
well as organizations need role clarity. We provided some examples of how roles
might be clearly defined to help in the organization’s mission of attaining higher
availability. We also argued that these are but one of many examples that might be
created regarding individuals and organizations and their roles. The real answer for
you may vary significantly as the roles should be developed consistent with company
culture and need. In attempting to create role clarity, attempt to stay away from over-
lapping responsibilities, as these can create wasted effort and value-destroying con-
flicts. Also attempt to ensure that no areas are missing, as these will result in failures.

We also introduced a tool called RASCI to help define roles and responsibilities
within the organization. Feel free to use RASCI for your own organizational roles
and for roles within initiatives. The use of RASCI can help eliminate duplicated work
and make your organization more effective, efficient, and scalable.

Key Points

• Role clarity is critical for scale initiatives to be successful.

• Overlapping responsibility creates wasted effort and value-destroying conflicts.

• Areas missing responsibility create vacuums of activity and failed scale initiatives.

• The CEO is the chief scalability officer of the company.

• The CTO/CIO is the chief technical scale officer of the company.

• Key scale related responsibilities for any organization include

ptg5994185

42 CHAPTER 2 ROLES FOR THE SCALABLE TECHNOLOGY ORGANIZATION

Creation of the scalability vision for the organization

Setting measurable scale related goals

Staffing the team with the appropriate skill sets necessary to meet the scalabil-
ity objectives

Defining a scalable architecture

Implementing that architecture in systems and code

Testing the implementation against current and future user demand

Gathering data on current platform and product utilization to determine
immediate needs for scale

Developing future demand projections and converting that demand projection
into meaningful system demand

Analyzing the demand projections against the system to determine where
changes are needed

Defining future changes based on the analysis

Developing processes to determine when and where systems will break and
prioritizing fixes for those issues

• RASCI is a tool that can help eliminate overlaps in responsibility and create
clear role definition. RASCI is developed in a matrix in which

R stands for the person Responsible for deciding what to do and running tive.

A is Accountable or the Approver of the initiative and the results.

S stands for Supportive, referring to anyone providing services to accomplish the
initiative.

C stands for those who should be Consulted before making a decision and
regarding the results of the initiative.

I stands for those who should be Informed of both the decision and the results.

ptg5994185

43

Chapter 3

Designing Organizations

Management of many is the same as management of few. It is a matter of organization.

—Sun Tzu

In the past two chapters, we have discussed how important it is to establish the right
roles within your team and to get the right people in those roles. This hopefully
makes perfect sense and is in line with everything you believe: accomplishing great
things starts with finding great people and getting them in the right roles. Now we
have come to the organizational structure, and you are probably wondering why this
has anything to do with the successful scaling of your application. The answer lies in
what factors are affected by an organizational structure and in turn how important
those factors are to the scalability of your application.

This chapter will highlight the factors that an organizational structure can influ-
ence and show how those are also key factors in an application’s or Web service’s
scalability. There are two determinants of an organization: team size and team struc-
ture. If you are given the size range of the teams and how the teams are related to
each other, you have a clear description of the organization. These two descriptors,
size and structure, will be covered in this chapter, providing insight into the various
dimensions of each, large versus small team sizes and silo versus matrix structures.

Organizational Influences That Affect Scalability
The most important factors that the organizational structure can affect are communi-
cation, efficiency, standards, quality, and ownership. Let’s take each factor and exam-
ine how the organization can influence it as well as why that factor is also important
to scalability. Thus, we can establish a causal relationship between the organization
and scalability.

As we will see in Part II, Building Processes for Scale, which deals with processes,
communication is central to all processes. Failed organizational communication is a

ptg5994185

44 CHAPTER 3 DESIGNING ORGANIZATIONS

certain guarantee for failures in the application. Not clearly communicating the
proper architectural design, the extent of the outage, the customer complaints, or the
changes being promoted to production can all be disastrous. If a single team has fifty
people on it with no demarcation or hierarchy, the chance that everyone knows what
everyone else is working on is remote. The possibility that an individual on this team
of fifty people knows who to ask what questions of or who to send what information
is unlikely. These breakdowns in smooth communication, on most days, may cause
only minor disruptions, such as having to spam all fifty people to get a question
answered. There will come a day when after being spammed for a year with ques-
tions that don’t apply to her, that engineer will miss a key request for information
that may prevent an outage or help to restore one quickly. Was that the engineer’s
fault for not being a superstar or was it the organizational structure’s fault for mak-
ing it impossible to communicate clearly and effectively?

The efficiency, the ratio of output produced compared to the input, of both people
and entire teams can be increased when an organizational structure streamlines the
workflow or decreased when projects get mired down in unnecessary organizational
hierarchy. In the Agile software development methodology, product owners are often
seated side-by-side engineers to ensure that product questions get answered immedi-
ately and not require long explanations via email. If the engineer arrives at a point in
the development of a feature that requires clarification to continue, she has two
choices. The engineer could guess which way to proceed or she could ask the product
owner and wait for the answer. Until the product owner replies with an answer, that
engineer is likely stuck not being able to proceed and can either try to context switch
to something unrelated, which wastes a lot of time setting up environments and
restudying material, or she can go to the game room and waste a few hours playing
video games. Having the product owner’s desk beside the engineer’s desk helps main-
tain a high efficiency by getting those questions answered quickly and preventing the
engineer from earning another high score on the video game. The problem with
degrading efficiency in terms of scalability is what it does from an organizational
resource perspective. As your resource pool dwindles, the tendency is to favor short-
term customer facing features over longer-term scalability projects. That tendency
helps meet quarterly goals at the expense of long-term platform viability.

The only standards that matter within an organization are those to which the
organization adheres. An organization that does not foster the creation, distribution,
and acceptance of standards in coding, documentation, specifications, and deploy-
ment is sure to decrease efficiency, reduce quality, and increase the risk of significant
production issues. Take an organization that is a complete matrix, where a very few
engineers, possibly only one, reside on each team along with product managers,
project managers, and business owners. Without an extreme amount of diligence
around communicating standards, it would be very simple for that solo engineer to
stop following any guidelines that were previously established. No other engineer or

ptg5994185

ORGANIZATIONAL INFLUENCES THAT AFFECT SCALABILITY 45

manager is there to check that the solo engineer has not forgotten to submit his docu-
mentation, and the short-term gain in efficiency might seem a great tradeoff to him.
The proper organization must help engineers understand and follow the established
guidelines, principles, and norms that the larger group has agreed to follow. As for
the potential impact of this noncompliance on scalability, imagine an engineer decid-
ing that the architectural principle of all services must run on three or more physi-
cally different instances is not really important. When it comes time to deploy the
service, this service can only run on a single server, thus increasing the likelihood of
an outage of that service as well as not being able to scale the service beyond the
capability of a single server.

As described earlier, an organization that does not foster adherence to norms and
standards has the effect of lowering quality of the product being developed. A brief
example of this would be an organization that has a solid unit test framework and
process in place but is structured either through size or team composition such that it
does not foster the acceptance and substantiation of this unit test framework. The
solo engineer, discussed earlier, may find it too tempting to disregard the team’s
request to build unit tests for all features and forgo the exercise. This is very likely to
lead to poorer quality code and thus an increase in major and minor defects. In turn,
this can possibly lead to downtime for the application or cause other availability
related issues. The resulting increase in bugs and production problems takes engi-
neering resources away from coding new features or scalability projects, such as
sharding the database. As we have seen before when resources become scarce, the
tradeoff of postponing a short-term customer feature in favor of a long-term scalabil-
ity project becomes much more difficult.

Longhorn
The Microsoft operating system code named Longhorn that publicly became known as Vista
serves as an example of the failure of standards and quality in an organization. Ultimately,
Vista became a successful product launch that achieved the ranking of being the second most
widely adopted operating system, but not without significant pain for both Microsoft and their
customers. The time period between the release of the previous desktop operating system XP
and Vista marked the longest in the company’s history between product launches.

In a front-page article on September 23, 2005, in The Wall Street Journal, Jim Allchin,
Microsoft’s copresident, admitted to telling Bill Gates that “It’s not going to work,” referring to
Longhorn. Jim Allchin continues in the article describing the development as “crashing to the
ground” due to haphazard methods by which features were introduced and integrated.1

1. Robert A Guth. “Battling Google, Microsoft Changes How It Builds Software.” Wall
Street Journal, September 23, 2005, http://online.wsj.com.

ptg5994185

46 CHAPTER 3 DESIGNING ORGANIZATIONS

One of the factors that helped revive the doomed product was enlisting the help of senior
executive Amitabh Srivastava who had a team of architects map out the operating system and
established a development process that enforced high levels of code quality across the organi-
zation. Although this caused great criticism from some of the individual developers, it resulted
in the recovery of a failed product.

The last major factor that the organization can affect that directly impacts the
application’s or service’s scalability is ownership. If we take the opposite extreme of an
organization from what we were using in our previous examples, and assume an orga-
nization where each team has fifty engineers and no separation or hierarchy, we may
very well see many different engineers working on the same part of the code base. When
lots of people work on the same code and there is no explicit or implicit hierarchy, no
one feels they own the code. When this occurs, no one takes the extra steps to ensure
others are following standards, building the requested functionality, or maintaining
the high quality desired in the product. Thus, we see the aforementioned problems
with scalability of the application that stem from issues such as less efficient use of
the engineering resources, more production issues, and poor communication.

Thus, we see that the organization does affect some key factors that impact the
scalability of the application. Now that we have a clear basis for caring about the
organization from a scalability perspective, it is time to understand the basic determi-
nants of all organization, size and structure.

Team Size
Before we explore the factors that influence optimal team size, first we should discuss
why team size is important. Consider a team of two people; the two know each
other’s quirks, they always know what each other is working on, and they never for-
get to communicate with each other. Sounds perfect right? Well, consider that they
also may not have enough engineering effort to tackle big projects, like scalability
projects of splitting databases, in a timely manner; they do not have the flexibility to
transfer to another team because each one probably knows stuff that no one else
does; and they probably have their own coding standards that are not common
among other two-person teams. Obviously, both small teams and large teams have
their pros and cons. They key is to balance each to get the optimal result for your
organization.

An important point is that we are looking for the optimal team size for your orga-
nization. As this implies, there is not a single magic number that is best for all teams.
There are many factors that should be considered when determining the optimal size

ptg5994185

TEAM SIZE 47

for your teams; and even among teams the sizes may vary. If forced to give a direct
answer to how many team members should optimally be on a team, we would pro-
vide a range and hope that suffices for a specific enough answer. Although there are
always exceptions even to this broad range of choices, our low boundary for team
size is six and our upper boundary is 15. What we mean by low boundary is that if
you have fewer than six engineers, there is probably no point in dividing them into
separate teams. For the upper boundary, if there are more than 15 people on a single
team, the size starts to hinder the management’s ability to actively manage and com-
munication between team members starts to falter. Having given this range, there are
always exceptions to these guidelines; more importantly, consider the following fac-
tors as aligned with your organization, people, and goals.

The first factor to consider when determining team size is the experience level of
the managers. The role of the engineering or operations manager can entail different
responsibilities in different companies. Some companies require managers to meet
one-on-one with every team member for at least 30 minutes each week to provide
feedback, mentoring, and receive updates; others have no such requirement. Manage-
rial responsibilities will be discussed later in this chapter as a factor by itself, but for
our purposes now we will assume that managers have a base level of responsibility,
which includes the three following items: ensuring engineers are assigned to projects,
either self directed or by edict of management; that administrative tasks, such as
resolving pay problems or passing along human resources information take place;
and that managers receive status updates on projects in order to pass them along to
upper management. Given this base level of responsibility, a junior manager who has
just stepped from the engineering ranks into management may find that, even with a
small team of six engineers, the administrative and project management tasks con-
sume her entire day. She may have time for little else because these tasks are new to
her and they require a significant amount of time and concentration compared with
her more senior counterparts who can handle all these tasks for a much larger team
and still have time for special projects on the side. This is perfectly normal for every-
one. New tasks typically take longer and require more intense concentration than
tasks that have been performed over and over again. The level of experience is a key
factor to consider when determining the optimal size for a given team.

In a similar vein, the tenure of the team itself is a factor to consider when contem-
plating team size. A team that is very senior in tenure both at the company and in
engineering will require much less overhead from both management as well as each
other to perform their responsibilities. Both durations are important, time at the
company and time in engineering, because they both influence different aspects of
overhead required. The more time at a particular company will generally indicate
that less overhead is required for the administrative and human resource tasks that
inundate new people such as signing up for benefits, getting incorrect paychecks
straightened out, or attending all the mandatory briefings. The more time practicing

ptg5994185

48 CHAPTER 3 DESIGNING ORGANIZATIONS

engineering the less time and overhead that will be required to explain specifications,
designs, standards, frameworks, or technical problems. Of course, every individual is
different and the seniority of the overall team must be considered. If a team has a
well-balanced group of senior, midlevel, and junior engineers, they can probably exist in a
moderate-sized team; whereas a team of all senior engineers, say on an infrastructure
project, might be able to exist with twice as many individuals because they should
require much less communication about nondevelopment related items and be much
less distracted by more junior type questions, such as how to check out code from the
repository. You should consider all of this when deciding on the optimal team size
because doing so will provide a good indicator of how large the team can effectively
be without causing disruption due to the overhead overwhelming the productivity.

As we mentioned earlier, each company has different expectations of the tasks that
a manager should be responsible for completing. We decided that a base level of man-
agerial responsibilities includes ensuring the following:

• Engineers are assigned to projects

• Administrative tasks take place

• Status updates are passed along

Obviously, there are many more managerial responsibilities that could be asked of
the managers, including one-on-one weekly meetings with engineers, coding of fea-
tures by managers themselves, reviewing specifications, project management, review-
ing designs, coordinating or conducting code reviews, establishment and ensuring
adherence of standards, mentoring, praising, and performance reviews. The more of
these tasks that are placed upon the individual managers the smaller the team that is
required in order to ensure the managers can accomplish all the assigned tasks. For
example, if one-on-ones are required, and we feel they should be, an hour-long meet-
ing with each engineer weekly for a team of ten engineers will consume 25% of a 40-
hour week. The numbers can be tweaked—shorter meetings, longer work weeks—
but the point remains that just speaking to each engineer on a large team can con-
sume a very large portion of a manager’s time. Speaking frequently with team mem-
bers is critical to be an effective manager and leader. So obviously, the number and
effort of these tasks should be considered as a major contributing factor to the size
that the optimal teams should be in your organization. An interesting and perhaps
enlightening exercise for upper management is to survey your front-line managers
and ask how much time they spend on each task for a week. As we indicated with the
one-on-one meetings, it is surprisingly deceptive how easy it is to fill up a manager’s
week with tasks.

The previous three factors, experience of management, tenure of team members,
and managerial responsibilities, are all constraints in that they limit the size of the
team based on necessity of maintaining a low enough overhead of communication

ptg5994185

TEAM SIZE 49

and disruptions to ensure projects actually get accomplished. The next and last factor
that we will discuss is one that pushes to expand the team size. This factor is the
needs or requirements of the business. The business owners and product managers, in
general, want to build more and larger customer facing projects in order that they
continue to fend off competitors, grow the revenue stream, and increase the customer
base. The two main problems with keeping team sizes small is first that large projects
require, depending on the product development life cycle methodology that is
employed, many more iterations or more time in development. The net result is the same,
projects take longer to get delivered to the customer. The second problem is that
increasing the number of engineers on staff requires increasing the number of support
personnel, including managers. Engineering managers may take offense at being called
support personnel but in reality that is what management should be, something that
supports the teams in accomplishing their projects. The larger the teams the fewer
managers are required. Obviously for those familiar with the concepts outlined in the
Mythical Man Month: Essays on Software Engineering by Frederick P. Brooks, Jr.,
there is a limit to the amount a project can be subdivided in order to expedite the
delivery. Even with this consideration, it is still valid that the larger the team size the
faster projects can be delivered and the larger projects can be undertaken.

The preceding discussion focused on what you should consider when planning
team structures, budgets, hiring plans, and product roadmaps. The four factors of
management experience, team member tenure in the company and in the engineering
field, managerial duties, and the needs of the business must all be taken into consider-
ation. Returning to our example at the concocted company of AllScale, Johnny Fixer,
the new CTO, had just finished briefing his 30-60-90 day plans. Among these was to
analyze his organizational structure and the management team. During one of his ini-
tial meetings, Mike Softe, the VP of engineering and a direct report of Johnny’s,
asked for some help determining the appropriate team size for several of his teams.
Johnny took the opportunity to help teach some of his concepts on team size and
went to the whiteboard drawing a matrix with four factors across the top (manager
experience, team member tenure, managerial duties, and business needs). He asked
Mike to fill in the matrix with information about the three teams that he was con-
cerned about. In Table 3.1, there are the three different teams that Mike is evaluating.

Table 3.1 Team Size Analysis

Manager
Experience

Team Member’s
Tenure

Managerial
Duties

Business
Needs

Team 1 High High Med High

Team 2 Low Low Med Med

Team 3 High Low Med Low

ptg5994185

50 CHAPTER 3 DESIGNING ORGANIZATIONS

For all the teams, Mike considered the managerial responsibilities to be medium
and consistent across all managers. This may or may not be the case in your organi-
zation. Often, a particularly senior manager may have special projects he is responsi-
ble for, such as chairing standards meetings, and junior managers are often required
to continue coding while they make the transition to management and hire their own
backfill. Mike Softe’s Team 1 has a very experienced manager and a long tenured
team; and the business needs are high, implying either large projects are on the road-
map or they need them as soon as possible, possibly both. In this case, Johnny
explains to Mike that Team 1 should be considered for a large team size, perhaps 12
to 15 engineers. Team 2 has a very inexperienced manager and team members. The
business requirements on Team 2 are moderate and therefore Johnny explains that
the team size should be kept relatively small, 6 to 8 members. Team 3 has a very
experienced manager with a new team. The business does not require large or fre-
quently delivered projects from this team at this time. Johnny explains that Mike
should consider letting the team members on this team gain more experience at the
company or in the practice of engineering and assist by keeping the team relatively
small even though the manager could handle more reports. In this case, Johnny states
with a smile, the manager might be a great candidate to take on an outside project
that would benefit the overall organization.

Warning Signs
Now that we have discussed the factors that must be considered when determining or
evaluating each team’s size, we should focus on signs that the team size is incorrect.
In the event that you do not have an annual or semiannual process for evaluating
team sizes, some indicators of how to tell if a team is too big or too small could be
helpful. If a team is too large, the indicators that you should look for are poor com-
munication, lowered productivity, and poor morale. Poor communication could take
many forms including engineers missing meetings, unresponsiveness to emails, missed
specification changes, or multiple people asking the same questions.

Lowered productivity can be another sign of the team size being too large. The
reason for this is that if the manager, architects, and senior engineers do not have
enough time to spend with the junior engineers, these newest team members are not
going to produce as many features as quickly. Without someone to mentor, guide,
direct, and answer questions, the junior engineers will have to flounder longer than
they normally would. The opposite is possibly the culprit as well. Senior engineers
might be too busy answering questions for too many junior engineers to get their
own work done, thus lowering their productivity. Some signs of lowered productivity
include missing release dates, lower function or story points (if measured), and push-
back on feature assignment. Function points and story points are two different meth-
ods that attempt to standardize the measurement of a piece of functionality. Function

ptg5994185

TEAM SIZE 51

points are from the user’s perspective and story points are from the engineer’s per-
spective. Engineers by nature are typically over-optimistic in terms of what they think
they can accomplish; if they are pushing back on an amount of work that they have
done in the past, this might be a clear indicator that they feel at some level their pro-
ductivity slipping.

Both of the preceding problems, poor communication and lowered productivity
due to lack of support, can lead to the third sign of a team being too large: poor
morale. When a normally healthy and satisfied team starts demonstrating poor
morale, this is a clear indicator that something is wrong. Although there may be
many causes for poor morale, the size of the team should not be overlooked. Similar
to how you approach debugging, look for what changed last. Did the size of the team
grow recently? Poor morale can be demonstrated in a variety of manners such as
showing up late for work, spending more time in the game room, arguing more in
meetings, and pushing back more than usual on executive level decisions. The reason
for this is straightforward, as an engineer when you feel unsupported, not communi-
cated with, or that you are not able to succeed in your tasks, it weighs heavily on
you. Most engineers love a challenge, even very tough ones that will take days just to
understand the nature of the problem. At the point that an engineer knows he cannot
solve the problem, suddenly he falls into despair. This is especially true of junior engi-
neers, so watch for these behaviors to occur first in the more junior team members.

Now that we have covered some of the signs to look for when a team becomes too
large, we can shift our focus to the opposite extreme and look for signs when a team
is too small. If the team is too small, the indicators to look for are disgruntled busi-
ness partners, micromanaging managers, and overworked team members. If the team
is too small, one of the first signs might be the business partners such as product
managers or business development spending more time around the manager com-
plaining that they need more products delivered. A team that is too small is just
unable to quickly deliver sizable features. Another tactic that disgruntled business
leaders can take is instead of complaining directly to the engineer or technology lead-
ership, they focus their energy in a more positive manner by supporting budget
requests for more engineers to be hired.

When a normally effective manager begins to micromanage team members, this is
a sign to look into the root cause of this behavior. There might be lots of explana-
tions, including the possibility that her team size is too small and she’s keeping busy
by hovering over her team members, second guessing their decisions, and asking for
status updates about the request for a status update. If this is the case, it is the perfect
opportunity to assign this manager some other tasks that will serve the organization,
help professionally develop her by expanding her focus, and give her team some relief
from her constant presence. Some ideas on special projects include chairing a stan-
dards committee, leading an investigation of a new software tool for bug tracking, or
establishing a cross team mentoring program for engineers.

ptg5994185

52 CHAPTER 3 DESIGNING ORGANIZATIONS

The third sign to look for when a team is too small is overworked team members.
Most teams are extremely motivated by the products they are working on and believe
in the mission of the company. They want to succeed and they want to do everything
they can to help. This includes accepting too much work and trying to accomplish it
in the expected timeframe. When the team members start to leave later and later or
start to consistently work weekends, these are signs that you might want to investi-
gate if you have enough engineers working on this particular team. This type of over-
working behavior is expected and even necessary for most startup companies but
working in this manner consistently month after month will eventually burn out the
team causing attrition, poor morale, and poor quality. It is much better to take notice
of the hours and days spent working on tasks and determine a corrective action early
as opposed to waking up to the problem when your most senior engineer walks in
your office to resign.

These are signs that we have seen in our teams when they were either too large or
too small. Some of these symptoms of course can be caused by other things besides
team size but it is often the case that managers jump to conclusions with the most
cursory of investigations into the real cause and often do not even consider the orga-
nizational structure as a possible cause. Often, the most frequently blamed is the
team leader and his inability to manage his team effectively or manage the customer’s
expectations effectively. Before you place the blame on his shoulders, be sure that the
organization that you have placed them in supports them as much as possible by
assisting in his success. Running a great junior leader out of management because
you placed him in a team that was too large for his current skill level would be dread-
ful. Invest in the future of your leadership team by building the proper supporting
structure around each manager, allowing his own skills and experience to develop.

Growing or Splitting Teams
For the teams that are too small, adding engineers, although not necessarily easy, is
straightforward. The steps include requesting and receiving budgetary approval for
hiring, writing up the job description, reviewing resumes, conducting interviews,
making offers, and on boarding the new hires. Although these simple steps may take
months to actually accomplish, they are generally easy to understand and fairly sim-
ple to implement. The much more difficult task is to split a team when it has become
too large. Splitting a team incorrectly can have dire consequences caused by confu-
sion of code ownership, even worse communication, and stress of working for a new
manager. Every team and organization is different, so there is no perfect, standard,
one-size-fits-all way of splitting teams. There are some factors to consider when
undergoing this organizational surgery in order to minimize the impact and quickly
get back to a productive and engaged existence among the team members.

Some of the things that you should think about when considering splitting a team
include how to split the code base, who is going to be the new manager, what

ptg5994185

TEAM SIZE 53

involvement will individual team members have, and how does this change the rela-
tionship with the business partners. The first item to concentrate on is based on the
code or the work. As we will discuss in much more detail in Part III, Architecting
Scalable Solutions, this might be a great opportunity to split the team as well as the
code base into what we term failure domains. These are domains that limit the
impact of failures by isolating services from one another.

The code used to be owned and assigned to a single team needs to be split between
two or more teams. In the case of an engineering team, this usually revolves around
the code. The old team perhaps owned all the services around the administrative part
of the application, such as account creation, login, billing, and reporting. Again,
there is no standard way of doing this, but a possible solution is to subdivide the ser-
vices into two or more groups: one handling account creation and login, the other
handling billing and reporting services. As you get deeper into the code, you will
likely hit base classes that require assignment to one team or the other. In these cases,
we like to assign general ownership to one team or even better to one engineer and
set up alerts through the source code repository that can alert each other if anything
is changed in that particular file or class, therefore everyone can be aware of changes
in their sections of the code.

The next item to consider is who will be the new manager. This is an opportunity
to hire someone new from the outside or promote someone internally into the posi-
tion. There are pros and cons of each option. An external hire brings new ideas and
experiences; whereas an internal hire provides a manager who is familiar with all the
team members as well as the processes. Because of the various pros and cons of each
option, this is a decision you do not want to make lightly and may want to ponder
for a long time. Making a well thought out decision is absolutely the correct thing to
do, but taking too much time can cause just as many problems. The stress of the
unknown can be dampening to spirits and cause unrest. Make a timely decision; if
that involves bringing in external candidates, do so as openly and quickly as possible.
Dragging out the selection process and wavering between an internal and external
candidate does nothing but cause trouble for the team.

The last of the big three items to consider when splitting a team is how the rela-
tionship with the business will be affected. If there is a one-to-one relationship
between engineering team, quality assurance, product management team, and busi-
ness team, this is something that will obviously change by splitting a team. A discus-
sion with all the affected leaders should take place before a decision is reached on
splitting the team. Perhaps all the counterpart teams will split simultaneously or indi-
viduals will be reassigned to interact more directly along team lines. There are many
possibilities with the most important thing being an open discussion taking place
beyond the engineering and beyond the technology teams.

We have covered the warning signs associated with teams that are too large and
too small. We also covered the factors to consider when splitting teams. One of the

ptg5994185

54 CHAPTER 3 DESIGNING ORGANIZATIONS

major lessons that should be gleaned from this section is that the team size and
changes to it can have tremendous impacts on everything from morale to productiv-
ity. Therefore, it is critical to keep in mind the team size as a major determining fac-
tor of how effective the organization is in relation to scalability of the application.

Checklist
Optimal team size checklist:

1. Determine the experience level of your managers

2. Calculate each engineer’s tenure at the company

3. Look up or ask each engineer how long he or she has been in the industry

4. Estimate the total effort for managerial responsibilities

a. Survey your managers for how much time they spend on tasks

b. Make a list of the core managerial responsibilities that you expect managers to
accomplish

5. Look for signs of disgruntled business partners and managers who are bored to indicate
teams that are too small

6. Look for losses in productivity, poor communication, and degrading morale to indicate
teams that are too large

Splitting a team checklist:

1. Determine how to separate the code base

a. Split by services

b. Divide base classes and services as evenly as possible with only one owner

c. Set up alerts in your repository to ensure everyone knows when items are being
modified

2. Determine who will be the new manager

a. Consider internal versus external candidates

b. Set an aggressive timeline for making the decision and stick to it

3. Analyze your team’s interactions with other teams or departments

a. Discuss the planned split with other department heads

b. Coordinate your team’s split with other teams to ensure a smoother transition

c. Use joint announcements for all departments to help explain all the changes
simultaneously

ptg5994185

ORGANIZATIONAL STRUCTURE 55

Organizational Structure
The organizational structure refers to the actual layout or how teams relate to each
other within an organization. This includes the separation of employees into depart-
ments, divisions, and teams as well as the management hierarchy that is used for
command and control of the forces. There are as many different structures as there
are companies, but there are two basic structures from which everything else stems.
These structures are functional and matrix. By understanding the pros and cons of
each structure, you will be able to choose one or the other; or, perhaps a more likely
scenario, create a hybrid of the two structures that best meets the needs of your com-
pany. In the ensuing paragraphs, we will cover the basic definition of each structure,
the benefits and drawbacks of each, and some ideas on when to use each one. Recog-
nize that the most important lesson is how to choose parts of one versus the other to
create the organizational structure that is best for your scenario.

Functional Organization
The functional organizational structure is the original structure upon which armies and
industries were based. This structure, as seen in Figure 3.1, separates departments

Figure 3.1 Functional Organization Chart

VP of Eng VP of QA
VP of

Product Mgmt

CTO

Eng Team
Lead

Eng Team
Lead

Eng 1 Eng 1

Eng 2 Eng 2

Eng 3

QA Team
Lead

QA Team
Lead

QA Eng 1 QA Eng 1

QA Eng 2 QA Eng 2

QA Eng 3

PM Team
Lead

PM Team
Lead

PM 1 PM 1

PM 2 PM 2

PM 3

ptg5994185

56 CHAPTER 3 DESIGNING ORGANIZATIONS

and divisions by their primary purpose or function. This was often called a silo
approach because each group of people was separated from other groups just as
grain or corn would be separated into silos based upon the type or grade of produce.
In a technology organization, this structure would result in the creation of separate
departments to house engineering, quality assurance, operations, project manage-
ment, and so forth. Along with this, there would exist the management hierarchy
within each department. Each would have a department head, such as the VP of engi-
neering, and a structure into each department that was homogeneous in terms of
responsibilities. Reporting into the VP of engineering would be other engineering
managers such as engineering directors and reporting into them would be engineering
senior managers and then engineering managers. This hierarchy was consistent in
that engineering managers reported to other engineering managers and quality assur-
ance managers reported to other quality assurance managers.

The benefits of the functional or silo organizational structure are numerous. Man-
agers almost always were raised through the ranks; thus, even if they were not good
individual performers, they at least knew what was entailed in performing the job.
Unless there had been major changes in the field over the years, there was very little
need to spend time explaining to bosses the more arcane or technical aspects of the
job because they were well versed in it. Team members were also consistent in their
expertise, engineers worked alongside engineers. Questions related to the technical
aspects of the job could be answered quickly by peers usually located in the next
cube. This entire structure is built along specificity. To use an exercise analogy, this
organizational structure is like a golfer practicing on the driving range. The golfer
wants to get better and perform well at golf and therefore surrounds himself with
other golfers, perhaps even a golf instructor, and practices the game of golf, all very
specific to his goal. Keep this analog in mind because we will use it to compare and
contrast the functional organizational structure with the matrix structure.

Other benefits of the functional organizational structure, besides the homogeneity
and commonality of management and peers, include simplicity of responsibilities,
ease of task assignment, and the greater adherence to standards. Because the organi-
zational structure is extremely clear, almost anyone, even the newest members, can
quickly grasp who is in charge of what team or phase of a project. This simplicity
also allows for very easy assignment of tasks. In a waterfall software development
methodology, the development phase is clearly the responsibility of the engineering
team in a functional organization. Because all software engineers report up to a single
head of engineering and all quality assurance engineers report up to a single quality
assurance head, standards can be established, decreed, agreed upon, and enforced
fairly easily. All of these are very popular reasons that the functional organization has
for so long been a standard in both the military and industries.

The problems with a functional or silo organization include no single project
owner and poor cross-functional communication. Projects almost never reside strictly

ptg5994185

ORGANIZATIONAL STRUCTURE 57

in the purview of a single functional team. Most projects always require tasks to be
accomplished by multiple teams. Take a simple feature request that must have a spec-
ification drafted by the product owner, a design and coding performed by the engi-
neers, testing performed by the quality assurance team, and deployment by the
operations engineers. Responsibility for all aspects of the project does not reside with
any one person in the management hierarchy until you reach the head of technology,
which has responsibility over the product managers, engineering, quality assurance,
and operations staffs. Obviously, this is a significant drawback having the CTO or
VP of technology the lowest person responsible for the overall success of the project.
When problems arise in the projects, it is not uncommon for each functional owner
to place blame for delays or overspends on other departments.

As simple as the functional organization is to understand, the communication can
be surprisingly difficult when attempting it across departments. As an example, a
software engineer who wants to communicate to a quality assurance engineer about a
specific test that must be performed to check for the proper functionality may spend
the time tracking up and down the quality assurance management hierarchy looking
for the manager who is assigning the testing of this feature and request that she make
known who the work will be assigned in order that the information be passed along.
More likely, the engineer will rely on established processes, which attempt to facili-
tate the passing along of such information through design and specification docu-
ments. As you can imagine, writing a line in a 20-page specification about testing is
exceedingly difficult communication as compared to a one-on-one conversation
between the development engineer and the testing engineer.

The benefits of the functional organization as just discussed include commonality
of managers and peers, simplicity of responsibility, and adherence to standards. The
drawbacks include no single project owner and poor communications. Given these
pros and cons, the scenarios in which you would want to consider a functional orga-
nizational structure are ones in which the advantages of specificity outweigh the
problems of overall coordination and ownership. An example of such a scenario
would be a scalability project that involves sharding a database. This is a highly tech-
nical project that requires some coordination among peer departments, but the over-
whelming majority of effort and tasks will be within the engineering discipline.
Decisions about how to split the database, how the application will handle the
lookup, and all other similar decisions will fall to the engineering team. The product
management team may be requested to provide information about specific customer
behavior or the cost to the business for changes to functionality, but it will not be as
involved as it would be for a new product line launch.

Matrix Organization
In the 1970s, organizational behaviorists and managers began rethinking the organi-
zational structure. As we discussed, although there are certain undeniable benefits to

ptg5994185

58 CHAPTER 3 DESIGNING ORGANIZATIONS

the functional organization, there are also certain drawbacks. Companies and even
militaries began experimenting with different organizational structures. The second
primary organizational structure that evolved from this was the matrix structure. The
principle concept in a matrix organization is that there are two dimensions to the
hierarchy. As opposed to a functional organization where each team has a single
manager and thus each team member reports to a single boss, in the matrix there are
at least two dimensions of management structure, whereby each team member may
have two or more bosses. Each of these two bosses may have different managerial
responsibilities—for instance, one (perhaps the team leader) handles administrative
tasks and reviews, whereas the other (perhaps the project manager) handles the
assignment of tasks and project status. In Figure 3.2, the traditional functional orga-
nization is augmented with a project management team on the side.

The right side of the organization in Figure 3.2 looks very similar to a functional
structure. The big difference comes from the left side, where the project management
organization resides. Notice that the Project Managers within the Project Manage-
ment Organization, PMO, are shaded with members of the other teams. Project
Manager 1 is shaded light gray along with Engineer 1, Engineer 2, Quality Assurance
Engineer 1, Quality Assurance Engineer 2, Product Manager 1, and Product Manager 2.
This light gray group of individuals comprises the project team that is working together
in a matrixed fashion. The light gray team project manager might have responsibility

Figure 3.2 Matrix Organization Chart

VP of Eng VP of QA
VP of

Product Mgmt
VP of

Product Mgmt

CTO

Eng Team
Lead

Eng Team
Lead

Eng 1 Eng 1

Eng 2 Eng 2

Eng 3

QA Team
Lead

QA Team
Lead

QA Eng 1 QA Eng 1

QA Eng 2 QA Eng 2

QA Eng 3

PM Team
Lead

PM Team
Lead

PM 1 PM 1

PM 2 PM 2

PM 3

Project
Mgr 1

Project
Mgr 2

Project
Mgr 3

ptg5994185

ORGANIZATIONAL STRUCTURE 59

for the assignment of tasks and the timeline. In larger and more complex matrix
organizations, many members of each team can belong to project teams.

Continuing with the project team responsible for implementing the new billing
feature, we can start to realize the benefits of such a structure. The two primary
problems with a functional organization are no project ownership and poor cross
team communication. In the matrix organization, the project team fixes both of these
problems. We now have a first level manager, Project Manager 1, who owns the bill-
ing project. This project team will likely meet weekly or more and certainly have fre-
quent email dialogues, which again solves one of the problems facing the functional
organization: communication. If the software engineer wants to communicate to the
QA engineer that a particular test needs to be included in the test harness, it is as sim-
ple as sending an email or mentioning it at the next team meeting, thus alleviating the
need to trudge through layers of management in search of the right person.

We can pick up our golf analogy that we used in the discussion of the functional
organization. You probably remember that we described a golfer who wants to get
better and perform well at golf. To that end, he surrounds himself with other golfers,
perhaps even a golf instructor, and practices the game of golf, all very specific to his
goal. This is analogous to the functional team where we want to perform a specific
function very well and so we surround ourselves with others like us and practice only
that skill. What sports trainers have found out in the recent past is that specificity is
excellent at developing muscle memory and basic skills but to truly excel, athletes
must cross-train. This is the concept of moving away from the golf course periodi-
cally and exercising other muscles such as through weight training or running. This
cross-training is similar to the matrix organization in that it doesn’t replace the basic
training of golf or engineering but it enhances it by layering another discipline such
as running or project management. For those astute individuals who have cross-
trained before, you might ask “can the cross-training actually hinder the athlete’s per-
formance?” In fact, if you are a golfer, you may have heard such talk around not
playing softball because it can cause havoc with your golf swing. We will discuss this
concept in the context of the drawbacks of matrix organizations.

If we have solved or at least dramatically improved the drawbacks of the func-
tional organizational structure through the implementation of the matrix, surely
there is a cost for this improvement. The truth is that while solving the problems of
project ownership and communication, we introduce other problems involving multi-
ple bosses and distraction from a person’s primary discipline. Reporting to two or
more people—yes, matrix structures can get complex enough to require a person to
participate on multiple teams—invariably causes stressors because of differences in
direction given by each boss. The engineer trapped between her engineering manager
telling her to code to a standard and her project manager insisting that she finish the
project on time is a setup that is asking for stress and someone not being pleased by

ptg5994185

60 CHAPTER 3 DESIGNING ORGANIZATIONS

her performance. Additionally, the project team requires overhead, as does any team
in the form of meetings and email communications. This does not replace the team
meetings that the engineer must attend for her engineering manager and thus takes
more time away from her primary responsibility of coding.

As you can see, while solving some problems, we have introduced new ones. This
really should not be too shocking because that is typically what happens and rarely
are we able to solve a problem without consequences of another variety. The next
question, given these pros and cons of the matrix organization, is “when would we
want to use such an organizational structure?” The appropriate times to use the
matrix structure are when the fate of the project is extremely important either
because of the timeline or other such factor. In these cases, having a project team sur-
rounding the project, where there is a clear owner and the team structure facilitates
cross team communication, is the right answer to ensure delivery.

Unfortunately you are likely to experience challenges across your organization
that are not always as straightforward as we have expressed in our simple examples.
Real life, especially in a technology organization, is always more complex. Here is
where the hybrid solutions become necessary. Your entire engineering organization
does not need to be part of a matrix structure. Instead, teams that are focused on very
cross team oriented projects may be in a matrix, but other teams working on infra-
structure projects might not be. Alternatively, you could use the multidimensional
nature of the matrix without actually creating the project team. An example of this
would be to collocate the project team together, in the same cube row, without actu-
ally implementing the matrix. There are many other examples of how to create
hybrid functional-matrix organizations. The key here is to use the organizational
structure to solve your problems that exist today. There is no single right answer that
is right for all companies at all times.

Conclusion
In this chapter, we highlighted the factors that an organizational structure can influ-
ence and showed how those are also key factors in an application or Web services
scalability. Thus, we established a link between the organizational structure and scal-
ability to point out that, just like hiring the right people and getting them in the right
roles, building a supporting organizational structure around them is just as impor-
tant. We discussed the two determinants of an organization: the team size and the
structure.

In regards to the team size, we covered why size mattered—too small and you can-
not accomplish enough; too large and you lose productivity and impact morale. We
further covered the four factors of management experience, team member tenure in

ptg5994185

CONCLUSION 61

the company and in the engineering field, managerial duties, and the needs of the
business. These all must be taken into consideration when determining the optimal
team size for your organization. We also covered the warning signs to watch for to
determine if your teams were too large or too small. For teams that were too large,
we stated that poor communication, lowered productivity, and poor morale were
symptoms. For teams that were too small, we stated that disgruntled business part-
ners, micromanaging managers, and overworked team members were all symptoms.
Lastly on the team size discussion, we covered what items to consider when growing
or splitting teams. Growing teams was pretty straightforward but splitting up teams
into smaller teams entailed much more. For splitting teams, we covered topics includ-
ing how to split the code base, who is going to be the new manager, what involve-
ment will individual team members have, and how does this change the relationship
with the business partners.

The team structure discussion covered the two basic structures: functional and
matrix. We described each, discussed the benefits, analyzed the drawbacks, and rec-
ommended scenarios to be used. The functional structure was the original organiza-
tional structure and essentially divided employees up by their primary function, such
as engineering or quality assurance. The benefits of a functional structure include the
homogeneity of management and peers, simplicity of responsibilities, ease of task
assignment, and the greater adherence to standards. The drawbacks of the functional
structure were no single project owner and poor cross-functional communication.
These problems were specifically targeted in the matrix organizational structure and
they were solved. The matrix structure started out looking very similar to the func-
tional structure but a second dimension was added that included a new management
structure. We provided examples of the matrix structure, which normally includes
project managers as the secondary dimension. The strengths of the matrix organiza-
tion are solving the problems of project ownership and communication but the draw-
backs include multiple bosses and distraction from a person’s primary discipline. We
concluded the organizational structure discussion with some thoughts on how hybrid
approaches are often the best because they are designed to fit the needs of your
organization.

Key Points

• Organizational structure can either hinder or aid a team’s ability to produce and
support scalable applications.

• Team size and structure are the two key attributes with regard to organizations.

• Teams that are too small do not provide enough capacity to accomplish the pri-
orities of the business.

• Teams that are too large can cause a loss of productivity and degrade morale.

ptg5994185

62 CHAPTER 3 DESIGNING ORGANIZATIONS

• Two basic organizational structures are functional and matrix.

• Functional organizational structures provide benefits such as the commonality
of management and peers, simplicity of responsibilities, ease of task assignment,
and greater adherence to standards.

• Matrix organizational structures provide benefits such as project ownership and
improved cross team communication.

• Both team size and organizational structure must be determined by the needs
and capabilities of your organization.

ptg5994185

63

Chapter 4

Leadership 101

A leader leads by example not by force.

—Sun Tzu

Why does a book on scalability have a chapter on leadership? The answer is pretty
simple: If you can’t lead, you can’t scale. You can have the smartest and hardest
working team in the world, but if you don’t set the right vision, goals, and objectives,
all of that work is going to be for naught. In our experience as executives, consult-
ants, and advisors, a failure to lead is one of the most common reasons for a failure
to scale. A failure to set the right vision, create the right culture, create the right goals
and objectives, and interact with your team in the right manner are all critical ingre-
dients to a scalability meltdown. Moreover, great leadership can create a multiplier to
your organization’s ability to scale your technical services or products. A great vision
inspires organizations to achieve new and higher levels of performance, which in turn
positively impacts the organization’s ability to produce more and scale more effec-
tively. Leading from the front and behaving morally and ethically creates an effective
can-do culture, where more is done for the shareholder.

We obviously can’t give you all the tools you need to make you a great leader in a
single chapter. But we can arm you with some thoughts and approaches and hope-
fully spark your intellectual curiosity to pursue more self-driven investigation. This
chapter is a mix of things you should do, things you should never do, and explana-
tions of concepts such as vision, mission, and goals.

The most important thing that we can tell you is this: Leadership isn’t a destina-
tion; it is a journey without an end and you of course are the leader of your individ-
ual journey. The journey is marked by a growth in awareness and capabilities over
time. You can spend 24 hours a day, 7 days a week, 52 weeks a year for every year
for the remainder of your life attempting to become a better leader and you will never
“reach the end.” There is always something new to discover, something new to try,
and some new and difficult challenge in trying to remake who you are and how you
approach leading people and organizations. The motivation behind our leadership

ptg5994185

64 CHAPTER 4 LEADERSHIP 101

journey is to continuously improve our ability to influence people and organizations
to ever increasing levels of success.

You needn’t be in a position with direct reports to be a leader; everyone can and
does lead from time to time, even if not put in a position of organizational responsi-
bility to lead. When you are attempting to influence behavior to accomplish an objec-
tive, you are practicing leadership. When displaying behaviors consistent with the
company culture and working diligently to solve a problem or complete a task, you
are practicing a form of leadership: leadership by example. And perhaps most impor-
tantly, if you aspire to become a CEO, CTO, general manager, director, manager, or
even a principal engineer, now is the time to start thinking about how to lead and
developing your leadership skills.

What Is Leadership?
As we hinted at in the opening of this chapter, for the purposes of this book, we will
define leadership as “influencing the behavior of an organization or a person to
accomplish a specific objective.” Leadership is perhaps most easily thought of along
the lines of “pulling activities.” The establishment of a vision that inspires an organi-
zation “pulls” that organization to the goal or objective. The setting of specific, mea-
surable, achievable, realistic, timely goals along the way to that vision create
milestones that both help “pull” the organization to the objective and help the orga-
nization correct its course along the way to ensure that it is taking the appropriate
path to the destination.

Leadership applies to much more than just an individual’s direct reports or organi-
zation. You can lead your peers, people in other organizations, and even your man-
agement. The definition of “influencing behavior of an organization or a person to
accomplish a specific objective” does not imply that one is the “boss” of the organi-
zation. Project managers, for instance, can “lead” a project team without being the
person responsible for writing the reviews of the members of that team. Role models
within an organization are leaders as well. As we will see, leadership is about what
you do and how you influence behaviors of those around you for the better or worse.

Leadership is very different from management and not everyone is good at both of
them. That said, everyone can get better at both with practice and focus. They are
both also necessary to varying degrees in the accomplishment of nearly any task.
Let’s take the general goal of ensuring that your product, platform, or system can
scale to handle all of the user demand that has been forecasted from the business unit
owner. You are obviously going to want to set a vision that exceeds that goal but that
also recognizes the real-world budgetary constraints that we all face. You also want
to make sure that every dollar you spend is creating shareholder value rather than

ptg5994185

WHAT IS LEADERSHIP? 65

destroying it, so it’s not enough just to be within budget—you don’t want to spend
more than you need to spend in any given area before you have to spend it.

With all of these things in mind, you might develop a vision for scale that includes
“a platform designed to be infinitely scalable and implemented to never have an
availability or response time incident tied to scale.” The indication of design versus
implementation implicitly acknowledges budgetary constraints. The nod to scalabil-
ity never impacting availability or response time is indeed an aggressive and poten-
tially achievable goal.

Including goals along the way to the objective, goals that ideally are meaningful to
each of the teams responsible for completing the objective, helps create a roadmap to
get to the final objective.

All of that is well and good, but without someone “managing” or pushing the
organization to the objective, the probability of accomplishing that objective is low.
Likewise, without the establishment of the vision and goals as described, there is little
sense in “managing” anything as you simply do not know where you are going.

Leaders—Born or Made?
No discussion of leadership, even in a brief chapter, would be complete without at least
addressing the topic of whether leaders are born or made. Our answer to this is that the ques-
tion is really irrelevant when you consider our conceptual model, described next.

A person’s ability to lead is a direct result of his ability to influence behavior in individuals
and organizations. That ability to influence behavior is a result of several things, some of which
are traits with which a person is born, some are a result of his environment and some are easily
modified tools and approaches the person has developed over time.

When people say that someone is a “born leader,” they are probably talking about the per-
son’s charisma and presence and potentially his looks. The latter (good looks) is unfortunate in
many respects (especially given the appearance of the authors), but it is an absolute truth that
most people would rather be around “good looking” people. That’s why there aren’t a whole lot
of ugly politicians (remember, we’re talking about looks here and not political views). The
former—charisma, personality, and presence—are all things that have developed over time and
are very hard to change. They are things we typically believe that people are “born with,” but
those characteristics are probably a result of not only genetics but also our environments.
Regardless, we pin those characteristics on the person as if it’s his birthright. We then jump to
the conclusion that a leader must be born because having good looks, a good personality,
great presence, and great charisma absolutely help when influencing the behaviors of others.

But looks, charisma, presence, charm, and personality are just a few of the components of
leadership; and although they help, there are other components that are just as important. As
we will discuss in the next section, many attributes of leadership can and should be constantly
worked at to gain proficiency and improve consistently.

ptg5994185

66 CHAPTER 4 LEADERSHIP 101

Leadership—A Conceptual Model
Let’s first discuss a model we can use to describe leadership in order to make it easier
for us to highlight components of leadership and how they impact scale. We believe
that the ability to lead or influence the behaviors of a person or organization to a
goal is a function of several characteristics and perceptions. This function can be
thought of producing a score that’s indicative of a person’s ability to affect change
and influence behaviors. This isn’t the only way to think about leadership, but it’s an
effective conceptual model to help illustrate how improvements in any given area can
not only improve your ability to lead, but also offset things that you may not be able
to change.

Some of these characteristics are things that the person “has.” Potentially, the per-
son has been born with them, like good looks. It’s unlikely, without significant time
under a surgeon’s scalpel, that you are going to change the way you look, so we usu-
ally discount spending much time or thought on the matter.

Some of these characteristics are likely products of a person’s upbringing or envi-
ronmental issues. Examples of these might be charm, charisma, personality, and pres-
ence. These characteristics and attributes can and should be addressed, but they are
difficult and tend to need constant attention to make significant and lasting change.
For instance, a person whose personality makes her prone to disruptive temper tan-
trums probably needs to find ways to hold her temper in check. A person who is inca-
pable of displaying anger toward failure probably needs to at least learn to “act”
upset from time to time, as the power of showing displeasure in a generally happy
person has a huge benefit within an organization. By way of example, you’ve proba-
bly at least once said something like, “I don’t think I’ve ever seen John mad like
that,” and more than likely it made a point to you that stuck for quite some time and
helped influence your actions.

Some aspects of leadership have to do with what you can create through either
innovation or perseverance. Are you innovative enough to create a compelling vision
or can you persevere to make enough attempts to create a compelling vision (assum-
ing that you are consulting with someone to try it out on them)? Innovation here
speaks to the ability to come up with a vision on the fly, whereas the perseverance
and intelligence to continue trying will take longer but can come up with exactly the
same result. In this case, we gave an example of both something with which you are
likely born (innovation) and something that you can absolutely improve upon
regardless of your natural tendencies (perseverance).

Some characteristics of leadership have to do with how you are perceived by oth-
ers. Are you perceived to be a giver or a taker? Are you selfish or selfless? Are you
perceived to be a very ethical person or morally bankrupt? There are two important

ptg5994185

TAKING STOCK OF WHO YOU ARE 67

points here: one is the issue of perception and the other is the effect of that perception
on the team you are leading.

Everyone has probably heard the statement “Perception is reality,” and you have
more than likely heard the statement “Leaders are under a microscope.” Everyone is
watching you all of the time and they will see you in your weakest moment and form
an opinion of you based on that. Get used to it. It’s not fair, but it’s the way things
work. If someone sees you accept tickets to the Super Bowl from a vendor, he is very
likely to jump to the conclusion that you are morally bankrupt or at the very least
that you have questionable ethics. Why, after all, would you accept tickets from a
vendor who is obviously trying to influence you to purchase his products? Someone
is going to catch you doing something at a low point in your day, and that something
might not even be “bad” but simply taken out of context. The only thing you can do
is be aware of this and attempt the best you can to limit the number of “low points”
that you have in any given day.

As to the effect of perception, we think the answer is pretty clear. Taking the
example of the Super Bowl tickets, it’s pretty simple to see that the perception that
you are willing to allow vendors to influence your decisions is going to have a nega-
tive impact on your ability to influence behaviors. Every vendor discussion you have
with your team is likely going to be tainted. After a meeting in which you indicate
you want to include the vendor with whom you went to the Super Bowl in some dis-
cussion, just imagine the team’s comments when you depart! You may have desired
the inclusion of that vendor for all the right reasons, but it just doesn’t matter. You’ve
caused significant damage to your ability to lead the team to the right answers.

The point of describing leadership as an equation is to drive home the view that
although there are some things you may not be able to change, you can definitely
work on many other things to become a better leader. More importantly, there is no
maximum boundary to the equation! You can work your whole life to become a bet-
ter leader and reap the benefits along the way. Make life your leadership lab and
become a lifelong student. By being a better leader, you will get more out of your
organizations and your organizations will make decisions consistent with your vision
and mission. The result is greater scalability, more benefit with less work (or rework),
and happier shareholders.

Taking Stock of Who You Are
Most people are not as good a leader as they think. We make this assertion from our
personal experience, and while relying on the Dunning-Kruger effect. Through their
studies, David Dunning and Justin Kruger witnessed that we often overestimate our
abilities and that the overestimation is most severe where we lack experience or have

ptg5994185

68 CHAPTER 4 LEADERSHIP 101

a high degree of ignorance.1 With very little formal leadership training available in
our universities or workplaces, we believe that leadership ignorance abounds and
that as a result, many people overestimate their leadership skills.

Few people are formally trained in how to be leaders. Most people have seen so
many poor leaders get promoted for all the wrong reasons that they emulate the very
behaviors they despise. Think we have it wrong? How many times in your career
have you found yourself saying, “I will never do what he did just now if I have his
job”? Now think through whether anyone in your organization is saying that about
you and whether it is something you’ve said before in a similar position. The answer
is almost definitely “Yes.” It’s happened to us, it will likely continue to happen to us
over time, and we can almost guarantee that it is happening to you.

But that’s not the end of it. You can lead entirely the wrong way and be successful
and then mistakenly associate that success with your leadership approach. Some-
times, this happens by chance; your team just happened to accomplish the right
things in spite of your approach. Sometimes, this happens because you get great per-
formance out of individuals for a short period of time by treating them poorly, but
ultimately your behaviors result in high turnover and an inability to attract and
retain the best people that you need to accomplish your mission.

At the end of the day, to reap the scalability benefits that great leadership can
offer, you need to measure where you are today. In their book Resonant Leadership,
Richard Boyatzis and Annie McKee discuss the three components necessary for
change in individuals as mindfulness, hope, and compassion.2 Mindfulness here is the
knowledge of one’s self, including feelings and capabilities, whereas hope and com-
passion help to generate the vision and drivers for change. Unfortunately, as the Dun-
ning-Kruger effect would argue, you probably aren’t the best person to evaluate
where you are today. All of us have a tendency to inflate certain self-perceived
strengths and potentially even misdiagnose weaknesses.

Elite military units strip a potential leader down to absolutely nothing and force
him to know his limits. They deprive the person of sleep and food and force the person
to live in harsh climates all to get the person to truly understand his strengths, weak-
nesses, and limitations. You likely don’t have time to go through such a process, nor

1. Kruger, Justin and David Dunning (1999). “Unskilled and Unaware of It: How Difficulties
in Recognizing One’s Own Incompetence Lead to Inflated Self-Assessments.” Journal of
Personality and Social Psychology. 77 (6): 1121–34. doi:10.1037/0022-3514.77.6.1121.
PMID 10626367.

Dunning, David and Kerri Johnson, Joyce Ehrlinger, and Justin Kruger (2003). “Why peo-
ple fail to recognize their own incompetence.” Current Directions in Psychological Science.
12 (3): 83–87.

2. Boyatzis, Richard and Annie McKee (2005). Resonant Leadership. Harvard Business
School Press.

ptg5994185

LEADING FROM THE FRONT 69

do the demands of your job likely require that you have that level of self-awareness.
Your best option is a good review by your boss, your peers, and most importantly
your subordinates! This process is often referred to as a 360-degree review process.

Ouch! An employee review sounds like a painful process, doesn’t it? But if you
want to know what you can do to get better at influencing the behavior of your team,
what better place to go than to your team to ask that question? Your boss will have
some insights, as will your peers. But the only people who can tell you definitively
how you can improve their performance and results are the people whom you are try-
ing to influence. Moreover, if you want good information, the process is going to
need to be anonymous. People’s input tends to be swayed if they believe that there is
the potential that you will get upset at them or potentially hold their input against
them. Finally, if you are really willing to go this far (and you should), you need to act
on the information. Sitting down with your team and saying, “Thanks for the input
and here’s what I have heard on how I can improve,” will go a long way to creating
respect. Adding the very necessary step of saying, “And here is how I am going to
take action to improve myself,” will go even further.

It should go without saying that a self-evaluation that does not result in a plan for
improvement is a waste of both your time and the time of your organization and
management. If leadership is a journey, the review process described helps set your
starting point. Now you need a personal destination and a plan (or route) to get
there. A number of books will suggest that you rely upon and build your strengths.
Others suggest that you eliminate or mitigate your weaknesses. We think that your
plan should include both a reliance and strengthening of your strengths and the miti-
gation of your weaknesses. Few people fail in their objectives because of their
strengths and few people win as a result of their weaknesses. We must reduce the dil-
utive aspects of our leadership by mitigating weaknesses and increase our accretive
aspects by multiplying and building upon our strengths.

Having discussed a model for leadership, and the need to be mindful of your
strengths and weaknesses, we will now look at several characteristics shared by some
of the greatest leaders with whom we’ve had the pleasure of working. These charac-
teristics include setting the example, leading without ego, driving hard to accomplish
the mission while being mindful and compassionate about the needs of the organiza-
tion, timely decision making, team empowerment, and shareholder alignment.

Leading from the Front
We’ve all heard the phrase “Set the example,” and if you are a manager you may
even have used it during performance counseling sessions. But what does “Set the
example” really mean, how do you do it, and how does it impact scalability?

ptg5994185

70 CHAPTER 4 LEADERSHIP 101

We think most people would agree that employees with an optimal work environ-
ment or culture will produce much more than a company with a less than desirable
work environment or culture. Producing more with a similar number of employees is
an element of scale as the company producing more at a comparable cost structure is
inherently more “scalable.” Terrible cultures can rob employees of productivity;
employees gather around the water cooler and discuss the recent misdeeds of the boss
or complain about how the boss abuses her position.

Evaluate the cultural norms that you expect of your team and determine once
again whether you are behaving consistently with these cultural norms. Do you
expect your organization to be above the temptations of vendors? If so, you had best
not take any tickets to a Super Bowl or any other event. Do you expect your organi-
zation to react quickly to events and resolve them quickly? If so, you should display
that same behavior. If a person is up all night working on a problem for the better-
ment of the organization and the company, do you still expect them at work the next
day? If so, you had better pull a few all-nighters yourself.

It’s not enough to say that you wouldn’t have your team do anything you haven’t
done. When it comes to behaviors, you should show your team that you aren’t asking
them to do anything that you don’t do now! People who are perceived to be great
leaders don’t abuse their position and they don’t assume that their progression to
their position allows them certain luxuries not afforded to the rest of the organiza-
tion. You likely already get paid more and that’s your compensation.

Having your administrative assistant get your car washed or pick your kids up
from school may seem to be an appropriate job related perk to you, but to the rest of
the company it may appear to be an abuse of your position. You may not care about
such perceptions, but they destroy your credibility with your team and impact the
result of the leadership equation we previously discussed. This destruction of the
leadership equation causes employees to waste time discussing perceived abuses and
moreover may make them think it’s acceptable to abuse their positions similarly,
which wastes time and money and reduces organizational scale. If such activities are
voted on by the board of directors or decided upon by your management as part of
your compensation, you should request that they be paid for separately and not rely
upon company employees to perform the functions.

The key here is that everyone can increase the value of their leadership score by
“leading from the front.” Act and behave ethically and do not take advantage of your
position of authority. Behave exactly as you expect your organization to behave. By
abiding by these rules, you will likely notice that your employees emulate your
behaviors and that their individual output increases, thereby increasing overall scale
of the organization.

ptg5994185

CHECKING YOUR EGO AT THE DOOR 71

Checking Your Ego at the Door
There is simply no place for a big ego in any position within any company. It is true
that there is a high degree of correlation between passionate inspirational leaders and
people who have a need to talk about how great, intelligent, or successful they are.
But we argue that it is also true that those people would be that much more success-
ful if they kept their need for publicity or public recognition to themselves. The con-
cept isn’t new and is embodied in Jim Collins’ concept of Level 5 Leadership within
his wonderful book Good to Great.

CTOs who need to talk about being the “smartest person in the room” and CEOs
who say “I’m right more often than I’m wrong” simply have no place in a high per-
forming team. As a matter of fact, they are working as hard as they can to destroy the
team by making such statements. Focusing on an individual rather than the team,
regardless of who that individual is, is the antithesis of scale; scale is about growing
cost effectively, and a focus on the one rather than the many is clearly a focus on con-
straints rather than scale. Such statements alienate the rest of a team and very often
push the very highest performing individuals—those actually getting stuff done—out
of the team and out of the company. These actions and statements run counter to
building the best team and over time will serve to destroy shareholder value. The best
leaders give of themselves selflessly in an ethical pursuit of creating shareholder
value. The right way to approach your job as a leader and a manager is to figure out
how to get the most out of your team in order to maximize shareholder wealth. You
are really only a critical portion of that long-term wealth creation cycle if your
actions evolve around being a leader of the team rather than an individual. Take
some time and evaluate yourself and your statements through the course of a week.
Identify how many times you reference yourself or your accomplishments during the
course of your daily discussions. If you find that you are doing it often, take some
time to step back and redirect your thoughts and your statements to things that are
more team oriented than self oriented.

It is not easy to make this type of change. There are people all around us who
appear to be rewarded for being egoists and narcissists, and it is easy to come to the
conclusion that humility is a character trait embodied by the unsuccessful business
person. But all you need to do is reflect on your career and identify the boss to whom
you had the greatest loyalty and for whom you would do nearly anything; that boss
most likely put the shareholders first and the team always. Be the type of person who
thinks first about how to create shareholder value rather than personal value and you
will succeed!

ptg5994185

72 CHAPTER 4 LEADERSHIP 101

Mission First, People Always
As young leaders serving in the Army, we were introduced to an important concept in
both leadership and management: Leaders and managers accomplish their missions
through their people. Neither getting the job done at all cost nor caring about your
people makes a great leader; great leaders know how to do both even in light of their
apparent contradictions. Broadly speaking, as public company executives, managers,
or individual contributors, “Getting our jobs done” means maximizing shareholder
value. We’ll discuss maximizing shareholder value in the section on vision and mis-
sion.

Effective leaders and managers get the mission accomplished—great leaders and
managers do so by creating a culture and environment in which people feel appreci-
ated and respected and wherein performance related feedback is honest and timely.
The difference here is that the latter leader—the one who creates a long-term nurtur-
ing and caring environment—is leading for the future and will enjoy the benefits of
greater retention, loyalty, and long-term performance. Caring about people means
giving thought to the careers and interests of your employees; giving timely feedback
on performance and in so doing recognizing that even stellar employees need feed-
back regarding infrequent poor performance (how else can they improve). Great
leaders ensure that those creating the most value are compensated most aggressively
and they ensure that people get the time off that they deserve for performance above
and beyond the call of their individual positions.

Caring about people does not mean creating a sense of entitlement or lifetime
employment within your organization. We will discuss this more in the management
chapter. Caring also does not mean setting easy goals, as in so doing you would not
be accomplishing your mission of creating shareholder value.

It is very easy to identify Mission First leaders because they are the ones who are
getting the job done even in the face of adversity. It is not so easy to identify Mission
First, People Always leaders because it takes a long time to test whether the individ-
ual leader has created a culture that inspires people and makes high performance
individuals want to follow the person from job to job because they are a caring indi-
vidual. The easiest People Always test to apply for a seasoned leader is to find out
how many direct reports have followed them consistently from position to position
within successful organizations. Mission First, Me Always leaders find that their
direct reports will seldom work for them in more than one or two organizations or
companies, whereas Mission First, People Always seldom have problems in getting
their direct reports to follow them through their careers.

Mission First, Me Always leaders climb a ladder with rungs made of their employ-
ees, stepping on them as they climb to the top. Mission First, People Always leaders
build ladders upon which all of the stellar performers can climb.

ptg5994185

MAKING TIMELY, SOUND, AND MORALLY CORRECT DECISIONS 73

Making Timely, Sound, and Morally Correct Decisions
Your team expects you to help resolve major issues quickly and with proper judg-
ment. Rest assured that you are going to make mistakes overtime. Welcome to
humanity. But on average, you should move quickly to make the best decision possi-
ble with the proper input without wasting a lot of time. Be courageous and make
decisions. That’s what being a leader is entirely about.

Why did we add “morally correct” in this point? Few things destroy shareholder
value or scale faster than issues with your personal ethics. We earlier asserted that
you are always under a microscope and that you are doubtlessly going to be caught
or seen doing things you wish you hadn’t done. Our hope is that those things are
nodding off at your desk because you’ve been working too hard, or running out to
your car to perform a personal errand during work hours because you work too late
at night to perform it. Hopefully, it does not include things like accepting tickets for
major sporting events for the reasons we’ve previously indicated. We also hope that it
doesn’t include allowing others within your team to do the same.

One of our favorite quotes goes something like “What you allow you teach and
what you teach becomes your standard.” Here, allowance means either yourself or
others. Nowhere does that ring more true than with ethical violations large and
small. We’re not sure how issues like Tyco or Enron ultimately start. Nor are we cer-
tain how a Ponzi scheme as large as Bernie Madoff’s, which destroyed billions of dol-
lars of wealth, can possibly exist for so many years. We do know, however, that they
could have been stopped long before the problems grew to legendary sizes and that
each of these events destroyed the size and scale of the companies in question along
with a great deal of shareholder value

We don’t believe that people start out plotting billion dollar Ponzi schemes and we
don’t believe that people start off by misstating tens or hundreds of millions of dol-
lars of revenue or embezzling tens of millions of dollars of money from a company.
We’re fairly certain that it starts small and slowly progresses. People get closer and
closer to a line they shouldn’t cross and then they take smaller and smaller steps into
the abyss of moral bankruptcy until it is just too late to do anything.

Our answer is to never start. Don’t take company pens, don’t take favors from
vendors who wish to sway your decision, and don’t use the company plane for per-
sonal business unless it is authorized by the board of directors as part of your com-
pensation package. Few things will destroy your internal credibility and therefore
your ability to influence an organization as the perception of impropriety. There is no
way you can align lying, cheating, or stealing with the creation of shareholder
wealth.

ptg5994185

74 CHAPTER 4 LEADERSHIP 101

Empowering Teams and Scalability
Perhaps no leadership activity or action impacts an organization’s ability to scale
more than the concept of team empowerment. Empowerment is the distribution of
certain actions, accountability, and ownership. Empowerment may include giving
some or all components of both leadership and management to an individual or an
organization.

The leadership aspects of empowerment come from the boost individuals, teams,
leaders, and managers get out of the feeling and associated pride of ownership. Indi-
viduals who believe they are empowered to make decisions and own a process in gen-
eral are more productive than those who believe they are following orders.
Mechanically, the leader truly practicing empowerment multiplies his organization’s
throughput as he or she is no longer the bottleneck for all activities.

When empowerment happens in statement only, such as when a leader continues
to review all decisions for a certain project or initiative that has been given to an
empowered team, the effect is disastrous. The leader may indicate that he is empow-
ering people, but in actuality he is constraining the organizational throughput by cre-
ating a chokepoint of activity. The teams immediately see through this and rather
than owning the solution, they feel as though they are merely consultants to the pro-
cess. Worse yet, they may feel absolutely no ownership and as a result neither gain
the gratitude that comes with owning a solution or division nor feel the obligation to
ensure that the solution is implemented properly or the division run well. The net
result is that morale, throughput, and trust are destroyed.

This is not to say that in empowering individuals and teams the leader is no longer
responsible for the results, because although a leader can distribute ownership she
can never abdicate her responsibility to achieve results for shareholders. When dele-
gating and empowering teams, one should be clear as to what the team is empowered
to do. The trick is to give the team or individual enough room to maneuver, learn,
and create value while still providing a safety net and opportunities to learn. For
instance, a small corporation is likely to limit budgetary decisions for managers to no
more than several thousand dollars, whereas a division chief of a Fortune 500 com-
pany may have latitude within his budget up a few million dollars. These limitations
should not come as a surprise in the empowerment discussions, as most boards or
directors require that large capital expenditures be approved by the board.

Alignment with Shareholder Value
Everything you do as a leader and manager needs to be aligned with shareholder
value. Although we probably shouldn’t absolutely need to say this, we’ve found in

ptg5994185

VISION 75

our practice that this concept isn’t raised enough within companies. Put simply, if you
are in a for-profit business, your job is to create shareholder wealth. More impor-
tantly, it is to maximize shareholder wealth. You probably get to keep your job if
your actions and the actions of your team make your shareholders wealthier. You are
the best if you make shareholders more money than anyone else. Even if you are in a
not-for-profit company, you are still responsible for creating a type of wealth. The
wealth in these companies is more often the emotional wealth creation of the people
who donate to the company if you are a charity, or the other type of “good” that you
do for the people who pay you if you are something other than a charity. Whatever
the reason, if you aren’t attempting to maximize the type of wealth the company sets
out to make, you shouldn’t be in the job.

As we discuss things like vision, mission, and goals, a test that you should apply is
“How does this create and maximize shareholder wealth?” You should be able to
explain this in relatively simple terms; later in this chapter, we will discuss something
that we call the “causal roadmap” and its impact to individuals within nearly any
job. Moreover, you should find ways to ask the shareholder-wealth-creation question
in other aspects of your job. Why would you ever do anything in your job that
doesn’t somehow help create shareholder wealth or keep natural forces like growth
and the resulting instability of your systems from destroying it? Why would you ever
hire a person who isn’t committed to creating shareholder wealth? Why would you
ever assign a task not related to the creation of shareholder wealth?

Vision
It is our experience that, in general, leaders don’t spend enough time on vision and
mission. Both of these tend to be something that gets done as a result of a yearly
planning session and the leader or the leader and her team might spend an hour or
two discussing it together. Think about that for a minute: You spend an hour or two
talking about the thing that is going to be the guiding light for your company or
organization? Does that sound right? Your vision is your destination; it’s something
that should inspire people within your company, attract outside talent, help retain the
best of your current talent, and help people understand what they should be doing in
the absence of a manager standing over their shoulders. You probably spend more
time planning your next vacation than you do the destination for your entire com-
pany. Hopefully, we’ve convinced you that the creation and communication of a
compelling vision is something that’s incredibly important to the success of your
company and nearly any initiative.

Vision is your description of a destination for a company, an organization, or an
initiative. It is a vivid description of the ideal future; the desired state or outcome clearly
defined, measurable, and easily committed to memory. Ideally, it is inspirational to

ptg5994185

76 CHAPTER 4 LEADERSHIP 101

the team and can stand alone as a beacon of where to go and what to do in the
absence of further leadership or management. It should be measurable and testable,
meaning that there is an easy way to determine whether you are actually at that point
when you get there. It should also incorporate some portion of your beliefs so that it
has meaning to the organization.

U.S. Pledge
By way of example, the U.S. Pledge of Allegiance has such an inspirational destination or
vision as one of its components. “One Nation under God, indivisible, with Liberty and Justice for
all” is a vivid description of an ideal future.

The pledge is certainly testable at any given point in time by dividing it into its subcompo-
nents and determining whether they have been met. Are we one nation—apparently as we are
still governed by a single government and the attempt during the Civil War to split the country
was not successful? Are we “under God”? This is debatable but certainly not everyone believes
in God if that were the intent of the passage and we’ll discuss this portion of the pledge in the
next paragraph. Do we have liberty and justice for all? We have laws, and everyone is theoreti-
cally governed by those laws and given some set of what we call “inalienable rights.” Of course,
there is a great amount of debate as to whether the laws are effective and whether we apply
them equally based on color, sex, beliefs, and so on but the system in general appears to work
as well as any system anywhere else. At the very least, you can agree that there is a test set up
in this vision statement—the debate would be about whether everyone who applies the test is
going to come up with the same answer.

An interesting side note here is that the phrase “under God” was added in the 1950s after
years of lobbying by the Knights of Columbus and other religious orders. Regardless of your
religious beliefs, the modification of the pledge of allegiance serves to stand that visions can be
modified over time to more clearly define the end goal. Vision, then, can be modified as the
desired outcome of the company, organization, or initiative changes. It does not need to be
static, but should not be so fluid that it gets modified constantly.

The entire pledge hints at a shared belief structure; elements such as the unity of the
nation, a nod toward religious belief, and the equal distribution of “Liberty” and “Justice.” As to
value creation, the value created here is really in supporting the shared values of the members
or citizens of the United States. Although not universally true even at the time of the creation of
the pledge, most people within the United States agree that equality in liberty and justice is
value creation in and of itself.

The U.S. Declaration of Independence is an example of vision, though a majority
of the document describes the vision in terms of the things we do not want to be. A
majority of the document spends time on things the King of Britain had done, which

ptg5994185

VISION 77

were not desirable in the ideal future. Although such an approach can certainly be
inspirational and effective in motivating organizations, it simply takes too much time
to define an end state by what the end state is not. For this reason, we suggest that
vision be brief and that it define what an end state is.

The beginning of the Preamble of the U.S. Constitution is another example of a
vision statement. It reads as follows: “We the People of the United States, in Order to
form a more perfect Union.” Although certainly a description of an ideal future, it is
difficult to determine whether you can really “know” that you are there when you
reach that future. What exactly is a “perfect union”? How do you test “perfection”?
Perfection certainly would create value as who wouldn’t want to live in and contrib-
ute to a “perfect union”? The preamble gets high marks for inspiration, memoriza-
tion, and value creation, but relatively low marks for measurability. It’s hard to
describe how vivid it is, because it is difficult to determine how you would know you
are truly there. Finally, the Preamble hints at certain beliefs but does not explicitly
incorporate them.

Perhaps the easiest way to envision a vision statement is to view it within the con-
text of giving someone directions. One of the things you are likely to do when giving
someone directions is to give them criteria to determine whether their journey to the
destination was a success. Let’s assume that someone is asking us to give them direc-
tions to a department store where they can find nearly anything they need at a rea-
sonable price for their new apartment. We decide that the best place to send them is
the local Walmart store. Let’s further assume that the people we are directing have
never been to a Walmart store (maybe they are space aliens or perhaps they just
emerged from a religious cult’s underground bomb shelter).

One of the first things we are likely to do in this case is give these rather strange
people an indication of how they know they are successful in their journey. Maybe
we say something like “The best place for you to go is Walmart as it has the lowest
prices within the 10 miles surrounding this area and I know you don’t want to travel
far. The local Walmart is a big white building with blue trim and huge letters on the
top that spell out WALMART. The address is 111 Sam Walton Street. The parking
lot is huge and within the parking lot you will find several other stores such as a
McDonald’s and a gas station. Across the street you will see two more gas stations and
a strip mall.” Such a description is not only vivid but it outlines a set of tests that will
indicate to our travelers exactly when they have arrived at their destination.

We’ve accomplished everything we wanted to do in creating our vision statement.
We gave our travelers an inspiration—“lowest prices within the 10 miles surrounding
this area” is inspiring because it meets their needs of being inexpensive and it is not
too distant. We’ve provided a vivid description of the ideal state—arriving at Wal-
mart and giving the travelers an indication of what it will look like when they arrive
there. We gave our travelers a set of tests to validate that their initiative was success-
ful in the vivid description and the beliefs were implicitly identified in the need for

ptg5994185

78 CHAPTER 4 LEADERSHIP 101

low prices. The vision is easily committed to memory. The travelers can look at the
street address and determine for certain that they’ve definitely arrived at the appro-
priate location.

We suggest that you research other statements of vision and use the rules we have
identified before creating your own. Apply these rules or tests and figure out which
ones work for you. Simply put, and as a reminder, a vision statement should be

• Vivid description of an ideal future

• Important to value creation

• Measurable

• Inspirational

• Incorporate elements of your beliefs

• Mostly static, but modifiable as the need presents itself

• Easily remembered

Mission
If vision is the vivid description of the ideal future or the end point of our journey,
mission is the general path or actions that will get us to that destination. The mission
statement focuses more on the present state of the company as that present state is
important to get to the desired state or “vision” of the company. The mission state-
ment should incorporate a sense of purpose, a sense of what needs to be done today,
and a general direction regarding how to get to that vision. As with a vision state-
ment, the mission statement should be testable. The test for the mission statement
should include the determination of whether, if properly executed, the mission state-
ment will help drive the initiative, organization, or company toward the vision of the
company.

Let’s return to our analysis of the Preamble of the U.S. Constitution to see if we
can find a mission statement. “. . . establish Justice, ensure domestic Tranquility, pro-
vide for the common defence, promote the general Welfare, and secure the Blessings
of Liberty to ourselves and our Posterity, do ordain and establish this Constitution
for the United States of America” appears to us to be the mission statement of the
preamble. The entire remainder of the quoted passage serves to implicitly establish an
existing state. By the need to “establish” these things, the founding fathers are indi-
cating that they do not exist today. The purpose of the United States is also explicitly
called out in the establishment of these things. These actions also serve to attempt to
identify the creation of the vision: a “perfect Union.” Testability, however, is weak
and suffers from the subjective analysis necessary to test any of the points. Have we
for instance ensured domestic tranquility after over 200 years of existence? We still

ptg5994185

GOALS 79

suffer from domestic strife along the boundaries of race, belief structure, and sex. We
have certainly spent a lot of money on defense and in general have probably per-
formed well relative to other nations, but have we truly met the initial goals? What
about general welfare? Does our rising cost of health care somehow play into that?
By now, you’ve probably gotten the point.

Now, we return to the directions that we were giving our rather strange travelers
who have never seen a Walmart. After providing the vision statement describing
where they need to go, and consistent with our definition of a mission statement, we
need to give them general directions or approach on how to get there. We need to
indicate present state, a sense of purpose, and a general direction. The mission state-
ment could then simply be “To get to Walmart from here, drive mostly SW roughly 7
miles.”

That’s it; we’ve accomplished everything within a single sentence. We’ve given the
travelers purpose by stating “To get to Walmart.” We’ve given the travelers an indica-
tion of current position “from here” and we’ve given them a general direction to the
vision “drive mostly SW roughly 7 miles.” The whole mission is testable, as they can
clearly see where they are (though most mission statements should be a bit more
descriptive), they already know how to understand their destination, and they have a
direction and limit to determine when they are out of bounds.

As a review, a mission statement should

• Be descriptive of the present state and actions

• Incorporate a sense of purpose

• Be measurable

• Include a general direction or path toward the vision

Now you might state, “But that doesn’t really get them to where they need to go!”
You are correct, and that’s a perfect segue into a discussion on goals.

Goals
If vision is our description of where we are going and mission is a general direction
on how to get there, goals are the guideposts or mile markers to ensure that we are
on track during our journey. In our minds, the best goals are achieved through the
SMART acronym.

SMART goals are

• Specific

• Measurable

• Attainable (but aggressive)

ptg5994185

80 CHAPTER 4 LEADERSHIP 101

• Realistic

• Timely (or contain a component of time)

Going back to the Constitution, we can look at many of the amendments as goals
that Congress desired to achieve en route to its vision. Let’s take the abolition of sla-
very in the 13th Amendment. This amendment was obviously meant as a goal en
route to the equality promised within the vision of a perfect union and the mission of
securing the blessings of liberty. The text of this amendment is as follows:

Section 1. Neither slavery nor involuntary servitude, except as a punishment for crime
where of the party shall have been duly convicted, shall exist within the United States, or
any place subject to their jurisdiction.

Section 2. Congress shall have the power to enforce this article by appropriate legislation.

It is specific in terms of who, what, and where, and it implies a “when.” Congress
has the power to enforce the article, and everyone is subject to the article’s rule. The
“where” is the United States and the “what” is slavery or any involuntary servitude
except as punishment for crimes.

The article is measurable in its effect as the presence of slavery is binary: it either
exists or it does not. The result is attainable as slavery is abolished, though from time
to time strange pockets pop up and are handled by law enforcement personnel. The
goal is realistic and it was time bounded as the amendment took immediate effect.

Returning now to our example of guiding our friends to their Walmart destination,
we look at how we might provide them with goals. Remember that goals don’t tell
someone how to do something but rather they give them an indication that they are
on track. You might remember that we defined a vision or ideal end state for them,
which was the local Walmart store. We also gave them a mission, or a general direc-
tion to get there: “To get to Walmart from here, drive mostly SW roughly 7 miles.”
Now we need to give them goals to ensure that they are on track in their destination.

We might give them two goals: one identifying the end state or vision and an
interim goal to help them on their way. The first goal might look like this: “Regard-
less of your path, you should be in the center of town as identified by the only traffic
light within 10 minutes of leaving here. That is roughly halfway to Walmart.” This
goal is specific, describing where you should be. It is measurable in that you can eas-
ily tell that you have achieved it. It is both attainable and realistic because if we
expect them to move at an average of 30 miles per hour and travel 7 miles, they
should be able to travel a mile every 2 minutes and anything over 10 minutes (5
miles) would put them somewhere other than where they should be. The inclusion of
a 10-minute time interval means that our goal is time bounded.

The last goal we give them will deal with the end vision itself. It is also a simple
goal as we’ve already described the location. “You should arrive at Walmart located
at 111 Sam Walton St. in no more than 20 minutes.” We are specific, measurable,
achievable, realistic, and time bounded. Bingo!

ptg5994185

PUTTING VISION, MISSION, AND GOALS TOGETHER 81

Have we given the travelers everything they need to be successful? Are we missing
anything? You are probably wondering why we haven’t given them directions. What
do you think the answer to this is? Okay, we won’t make you wait. You might recall
our definition of leadership versus management, where leadership is a “pulling”
activity and management is a “pushing” activity. Explaining or defining a path to a
goal or vision is a management activity and we’ll discuss that in the next chapter.

Putting Vision, Mission, and Goals Together
We’ve now spent several pages describing vision, mission, and goals. You might again
be asking yourself what exactly this has to do with scalability. Our answer is that it
has everything to do with scalability. If you don’t define where you are going and you
don’t provide a general direction to get there and a set of goals to help identify that
your team is on the right path, you are absolutely doomed. Yes, we took a bit of time
defining leadership, some characteristics of a good leader, and some things to con-
sider, but all of those things were absolutely important to the success of any initiative,
and we felt obliged to discuss them if even only at a high level.

Now that we’ve done so, let’s see how we can put these things to use in the devel-
opment of a vision, mission, and set of goals for a generic scalability plan and initia-
tive for a fictitious company. As an example, we will return to AllScale’s new CTO
Johnny Fixer.

Johnny decides to focus first on the vision of his organization. After all, what dif-
ference does it matter what direction you travel if you have absolutely no idea where
you are going and where you are today? Additionally, when defining a vision, it’s
really not necessary to take stock of where you are.

As you recall, AllScale is a company that has grown up from a consulting business
into a provider of SaaS services. The primary product today is a human resources
management (HRM) module with functionality that extends from recruiting services
to employee development software. Johnny is responsible for all aspects of engineer-
ing from hardware acquisition and deployment to software engineering and QA
across all current and future projects supporting existing and future applications and
platforms.

The company is just starting to experience another phase of rapid growth for the
HRM product. The company’s HRM product offering has always grown well, but
has suffered lately from availability and scalability issues resulting from a failure to
focus on properly architecting and maintaining the platform. In addition, several new
product launches including a customer resource management module have been
delayed as a result of existing problems in the HRM module. Both Johnny and Chris-
tine (the CEO) believe that these growing pains stem from a lack of focus on scalabil-
ity and result in impact to the company’s availability or “uptime.” Christine brought

ptg5994185

82 CHAPTER 4 LEADERSHIP 101

Johnny in as a scale expert and is willing to listen to him and support him in his
endeavor to ensure that the company can live up to its name. The CEO makes
Johnny the “R,” the person Responsible, in all things related to technology scale.

As part of your planning for your first 30, 60, and 90 days, Johnny decides to per-
form a SWOT (strengths, weaknesses, opportunities, and threats) analysis and deter-
mines that the greatest current threat is the lack of scale of the platform. As such, he
decides to define a catalyzing vision that can help move the company in the right
direction. Johnny recalls that the components of vision are

• Vivid description of an ideal future

• Important to shareholder value creation

• Measurable

• Inspirational

• Incorporate elements of your beliefs

• Mostly static, but modifiable as the need presents itself

• Easily remembered

Johnny knows that he needs to make the vision short and to the point for it to be
memorable. After all, people don’t act on what they can’t recall. He also figures that
he can’t really “create” value as much as ensure that value isn’t “destroyed,” and he
decides that to keep from destroying value he must ensure that the system is available
as much as possible for end users. Furthermore, Johnny is of the belief that it is possi-
ble with the right diligence and effort to ensure that issues of scale never cause a
problem with uptime or availability. Johnny decides to “keep it simple” and asks
Christine to review the following:

AllScale products will all achieve 99.999% availability. Our people, processes, and technol-
ogy will all be capable of handling at least double our current transactions without issue
and planning to ten times our current need.

Christine loves it and Johnny moves on to figuring out the mission. Johnny recalls
that a mission statement should

• Be descriptive of the present state and actions

• Incorporate a sense of purpose

• Be measurable

• Include a general direction or path toward the vision

Johnny decides to make the mission statement easily memorized. Ultimately, he
wants each of his employees to have the organization’s vision, mission, and goals
pinned up in their cubes next to the pictures of their families so that they serve as a
constant reminder of what they should be doing. He decides that he wants to remind

ptg5994185

PUTTING VISION, MISSION, AND GOALS TOGETHER 83

people of the dire straits in which the company finds itself while it quickly moves
toward a position of strength. Johnny develops the following mission:

To move from crisis to our vision of a highly available and scalable environment within 11
months.

While not pretty, it’s descriptive of the current state (crisis), is measurable, and
clearly moves to the vision. The sense of purpose is implied. We leave it to you to try
to refine this mission as an exercise.

Now that Johnny’s defined his organization’s vision, and the general direction he
wants to move, it’s time to give the team some goals. Johnny decides to give each of
the teams a few goals along the way. He remembers the SMART acronym; recall that
it stands for

• Specific

• Measurable

• Attainable (but aggressive)

• Realistic

• Timely (or contain a component of time)

Johnny decides to “stem the bleeding” within the production systems—those sys-
tems that actually handle customer demands. Johnny believes that that there is some
low hanging fruit in early identification of system over utilization that could yield
huge results. He recalls that goals are really guideposts along the way to a vision and
consistent with the stated mission. He decides to give the operations team goals that
increase monthly. Johnny’s analysis leads him to believe he can reduce his monthly
downtime (currently more than one hour per month) in half simply by catching issues
sooner. He gives the operations team the goal of taking three minutes of downtime
off per month. The first goal might be “Reduce scalability related downtime to no
more than 57 minutes in month 1, no more than 54 minutes in month 2, and so on.”

Johnny remembers that the objective of a goal isn’t to define how something
should happen, but rather what the end result should be. He believes this new goal is
attainable and realistic, that it is time bounded (in month 1), and that it is very spe-
cific and measurable. Johnny might get into a debate with the operations leader on
the topic but believes strongly that any goal related negotiation should never stand as
a reason for not creating shareholder value. Johnny makes the operations head the
“R” for determining how to accomplish the goal. He believes the operations team
can accomplish the goal on its own and additionally makes the operations team the
“S.” He defines the engineering team as the “C” to ensure that they have input on the
approach. The rest of the operations goals are left as an exercise for the reader.

Johnny knows that he must make architectural changes, but that those architec-
tural changes will take some time to implement. Johnny suspects that the intellectual

ptg5994185

84 CHAPTER 4 LEADERSHIP 101

isolation of the architecture team from daily operations is a major reason for some of
the poor decisions made in the past. He decides to make the architecture team account-
able for some implementations and issues three goals to the architecture team.

The first goal has to do with the leadership of the team. Johnny wants the man-
ager of the architecture team to develop a process to help eliminate new and future
scale issues within two months. Done! This hits all of the SMART elements in one
brief section.

Johnny also wants the architects to eliminate the largest cause of downtime within
the current system. The data in this area is a little sketchy and Johnny makes a note
to give the operations team another goal to create better incident tracking data.
Anecdotally, the issues appear to stem from login and registration services. All users
from all companies and organizations reside in a single monolithic database, and
Johnny knows that isn’t healthy long term. Johnny tells the architects that he wants a
plan to resolve this issue in 30 days as goal 2 and that he wants that plan imple-
mented within 4 months, which is goal 3.

Johnny’s on his way to turning things around! He has set a vision, a mission, and
some goals. Now Johnny just has to complete the creation of goals, ensure that roles
are appropriately defined, lead from the front, take care of his people, and check his
ego at the door! He will also need to create a causal roadmap to success, make timely
and morally correct decisions, and manage his people.

The Causal Roadmap to Success
One of the best and easiest things you can do as a leader to help ensure success within
an organization is help people understand how what they do every day contributes to
the vision of the organization and as a result the creation of shareholder value. We
call this creation of understanding the causal roadmap to success and our guess is
that you’ve never sat down with any of your employees and explained it to them.

There is an old management maxim that goes something like “People join compa-
nies and leave managers.” We think that’s true in general and we’ve seen a lot of it in
our time as managers, executives, and advisors within and to companies. But we’ve
also seen a lot of good people leave because they feel that they lack purpose; their job
doesn’t meet the need they have to add value to someone or something. Loosely
speaking, if the person otherwise appreciates her manager, she is still leaving her
manager because the manager didn’t give her that sense of purpose.

The causal roadmap is pretty easy to create for people, and if it isn’t, there is a
good reason to question whether the job should exist. We’ll start with a position
within a company that might otherwise be pretty difficult to dream up and then end
with some of the traditional positions within a technology organization.

ptg5994185

THE CAUSAL ROADMAP TO SUCCESS 85

As an extreme case of showing the causal roadmap to success, let’s first take the
example of a janitor employed by AllScale. AllScale has decided to hire employee jan-
itors rather than outsource the job. Unfortunately, we can’t disclose this very good
reason due to a binding fictional nondisclosure agreement with our fictitious com-
pany. AllScale has had a hard time keeping the best and brightest janitors—many of
them leaving the company for jobs in outsourced janitorial firms. What’s really
strange here is that AllScale offers its janitors something that few other companies
offer: stock options! After interviewing the janitors, we find that they are leaving
because they don’t feel they add value to the company. They believe that everyone has
jobs that contribute to the shareholders except for them. Not true!

The chief janitorial officer (CJO) begins to work with the janitors to help them
understand how they create shareholder value. First, he explains that while the jani-
tors are paid market rates and as much as they would be paid anywhere else, the
company saves money because it doesn’t have to pay the management overhead asso-
ciated with maintaining a team of janitors. This in turn contributes to the bottom line
of the company (profitability), which in turn is a piece most shareholders deem criti-
cal in calculating the valuation of the company. The greater the profits and the
greater the future expected profit growth, the more a shareholder is likely to pay for
a piece of the equity within the company.

But that’s not it, explains the CJO. Because the janitors create a clean and safe
workplace, fewer germs are transmitted between the engineers, accountants, market-
ing professionals, and so on. This comparatively germ-free environment results in
more time spent at work and more things getting done. Moreover, the cleanliness is
done at lower cost than having the other professionals worry about cleaning common
areas, and so on. Finally, sensitive documents are shredded by the proprietary janito-
rial team and as a result fewer trade secrets are lost thereby increasing barriers to
entry for competitors. The janitors now have purpose in life and they are significantly
happier with their jobs.

If we can develop a causal roadmap for janitors, it stands to reason that teams that
are closer to the creation of value should be even easier. For instance, an engineer
writes and designs the code that creates the product upon which your revenue is
predicated. An engineer working within a classic back office IT group is responsible
for writing code and developing systems that allow people to be more productive for
each hour that they spend at work, thereby decreasing unit cost of work produced
and either reducing the total cost structure of the organization or alternatively
increasing the throughput at similar cost. Either way, the bottom line is affected ben-
eficially, profits go up, and shareholders are willing to pay more for equity. The
increase in equity price creates shareholder value.

Operations teams are responsible for ensuring that systems are available when
they should be available in order to keep the company from experiencing lost oppor-
tunity with their systems. Doing that well also contributes to shareholder value by

ptg5994185

86 CHAPTER 4 LEADERSHIP 101

maximizing productivity or revenue, thereby increasing the bottom line either
through increasing the top line or reducing cost. Again, increasing the bottom line
(net income or profits) increases the price shareholders would be willing to pay and
increases shareholder value.

Quality assurance teams help reduce lost opportunity associated with the deploy-
ment of a product and the cost of developing that product. By ensuring that the prod-
uct meets predefined requirements, scalability needs, and so on of a product, the
organization manages the risk and as a result the potential lost revenue associated
with deploying a product with issues. Furthermore, because the team is dedicated to
testing tasks, it frees up engineers who would otherwise need to spend valuable engi-
neering hours (typically at a higher cost than QA) testing to perform engineering
tasks. This refocusing of engineering time results in a lower cost per unit of product
produced, thereby reducing the company’s cost structure and increasing net income.

Although we’ve painted some of the pictures here of how the causal roadmap
works in general, it is (and should be) a little more complicated than just blurting out
a paragraph of how an organization impacts the company’s profitability. The discus-
sion should be conducted one-on-one between a leader and each member of their
team individually. We do not mean that a CEO should talk to each of the 5,231 peo-
ple in her company, but rather that a manager of individual contributors should
speak to each and every one of her employees. The director in turn should speak to
each of her managers, the VP to her directors, and so on. The conversation is meant
to be personal and tailored to the individual. The underlying reasons will not change,
but the message should be tailored to exactly what that individual does.

Furthermore, people need to be reminded of what they do and how it impacts the
maximization of shareholder wealth. This isn’t a one-time conversation. It’s not as
much about performance feedback, though you can certainly work that in, as ensur-
ing that the person has purpose and meaning within his job. The impact to retention
is meaningful and it can potentially also help employees produce more. A happy
employee, after all, is a productive employee. And a productive employee is produc-
ing more to help you scale more!

Conclusion
We discussed what leadership is, a mental model for thinking of leadership, the com-
position of leaders, and how leadership impacts scalability of organizations and
teams. Leadership is the influencing of an organization or person to accomplish a
specific objective. Our model is a function consisting of personal characteristics,
skills, experiences, and actions. We also reviewed how to become a better leader and
argued that it all starts with knowing where you are weak and where you are strong
within our leadership function.

ptg5994185

CONCLUSION 87

Leadership can impact the scalability of your team and your company in many
ways. Poor leadership creates limitations on the growth and output of your company
and your team. Great leadership is an accelerator for growth, allowing organizations
to grow in total size and in output per individual. By becoming a better leader, you
can increase the capabilities and capacity of your organization and your company.

We then went on to describe several aspects of successful leaders. These include
leading by example, leaving your ego at the door, leading selflessly, and accomplish-
ing the mission while taking care of your team. We concluded by arguing that you
should always be thinking of how to lead ethically and that everything you do should
be aligned with shareholder value.

We described the components of vision, mission, and goals and suggested an acro-
nym (SMART) to be used in the creation of your scalability goals. Finally, we intro-
duced what we call the causal roadmap to success, which is the notion of helping
your organization to tie everything that it does back to what is important to the com-
pany: the maximization of shareholder value.

Key Points

• Leadership is influencing the behavior of an organization or a person to accom-
plish a specific objective.

• Leaders, whether born or made, can get better and the pursuit of getting better
should be a lifelong goal.

• Leadership can be viewed as a function consisting of personal characteristics,
skills, experiences, actions, and approaches. Increasing any aspect increases
your leadership “quotient.”

• The first step in getting better as a leader is to know where you stand. Get a
360-degree review from employees, peers, and your manager.

• Lead as you would have people follow—abide by the culture you wish to create.

• There is no place for ego when leading teams. Check your ego at the door.

• Leadership should be a selfless endeavor.

• Mission First, People Always. Get the job done on time, but ensure you are
doing it while taking care of your people.

• Be morally straight always. What you allow you teach and what you teach
becomes your standard.

• Align everything you do with shareholder value. Don’t do things that don’t cre-
ate shareholder value.

• Vision is a vivid description of an ideal future. The components of vision are

Vivid description of an ideal future

Important to shareholder value creation

ptg5994185

88 CHAPTER 4 LEADERSHIP 101

Measurable

Inspirational

Incorporate elements of your beliefs

Mostly static, but modifiable as the need presents itself

Easily remembered

• Mission is the general path or actions that will get us to our vision. The compo-
nents of mission are

Descriptive of the present state and actions

A sense of purpose

Measurable

General direction or path toward the vision

• Goals are the guideposts to your vision and are consistent with the path of your
mission. SMART goals are

Specific

Measurable

Attainable (but aggressive)

Realistic

Timely (or contain a component of time)

• The causal roadmap to success will help you frame your vision, mission, and
goals and help employees understand how they contribute to those goals and
how the employee aids in the creation of shareholder value.

ptg5994185

89

Chapter 5

Management 101

In respect of the military method, we have, firstly, Measurement; secondly, Estimation of quantity;
 thirdly, Calculation; fourthly Balancing of chances; fifthly, Victory.

—Sun Tzu

Why does a book on scalability have a chapter on management? Similar to our
answer in Chapter 4, Leadership 101, if you can’t direct your teams to the lofty goals
and vision you created as a leader, you are not likely to get to your destination. Recall
that we’ve set an inspirational and vivid description of the ideal future (our vision), a
general path to get to that vision (our mission), and a number of mileposts along the
way (our goals). Along with our behaviors, these provide the “pulling” activity that
will get us to our scalability objectives. But now, we need to plot the path that will
actually get there and to “push” or drive the organization to get there as quickly as
possible. We will undoubtedly stumble across unexpected barriers to our success and,
without the action of directing the team to the goal line, we would be relying solely
upon luck and providence to get there.

A team without management focused on achieving specific objectives is a team
without direction. A team without direction is dilutive to shareholder value. And as
we’ve stated throughout this book thus far, our jobs are to maximize—not destroy—
shareholder value. In this chapter, we will give our definition of management and
define some elements and characteristics of great managers. From there, we will
move on to describe the need for focusing on and continually improving and upgrad-
ing one’s team, and to provide a conceptual framework to accomplish that task. We’ll
then move to a description of the importance of measurements and metrics within
management and provide a tool for your consideration to tie metrics to the creation
of shareholder wealth (the ultimate metric). We end this chapter with the need for
management to remove obstacles for teams so that they can reach their objectives.

ptg5994185

90 CHAPTER 5 MANAGEMENT 101

What Is Management?
Merriam-Webster defines management as “the conducting or supervising of some-
thing” and as the “judicious use of means to accomplish an end.” We’ll make a
minor modification to this and add ethics to the mix ending with “the judicious and
ethical use of means to accomplish an end.” Why ethics? Today, more than ever, we
need managers and actions that show concern for the wealth of the shareholders of
our companies. How can ethics negatively influence scalability? When intellectual
property is pirated, licenses for third-party products duped, or erroneous public and
private statements about the scalability of a platform made, ethics are involved. Eth-
ics play a role in how we treat our people, how we incent them, and how we accom-
plish our mission. If we tell an under-performer that he is performing acceptable
work, we are not behaving ethically; we are both cheating the shareholders by not
giving critical performance related feedback to someone who needs it and cheating
the employee because he deserves to know how he is performing. The way in which a
mission is accomplished is every bit as important as the actual accomplishment of
that mission.

As we’ve previously stated, management and leadership differ in many ways, but
both are important. If leadership is a promise, management is action. If leadership is
a destination, management is the directions. If leadership is inspiration, management
is motivation. If leadership is a painting, management is the brush. Leadership is the
pulling activities and management the pushing activities. Both are necessary to be
successful in maximizing shareholder wealth.

Management includes the activities of measuring, goal evaluation, and metric cre-
ation. It also includes the personnel responsibilities of staffing, personnel evaluation,
and team construction (including skills, etc.). Finally, management includes all the
activities one might typically consider “project management” including driving the
team to work completion, aggressive dates, and so on.

What Makes a Good Manager?
Leadership and management are so significantly different that it is rare to find someone really
good at both disciplines. The people who are good at both were likely good at one and worked
at becoming good at both. As with leadership, the ability to manage projects, people, and orga-
nizations to a series of goals is truly a function of multiple criteria. Some variables within this
function are similar to those of the leadership function. Having a great personality, for instance,
is useful, as it can help influence individuals and organizations to get tasks done.

But many things that make truly great managers have little to do with the leadership equa-
tion. The best managers have an eye for detail and are incredibly task and goal oriented. The

ptg5994185

PROJECT AND TASK MANAGEMENT 91

best managers are the ones that, upon given a task or goal, immediately start to break down
that task or goal into everything that needs to happen for it to be successful. This activity con-
sists of so much more than just the actions; it includes the communication, organizational
structure and compensation, logistics, and capital to be successful. Very often, this detail orien-
tation is at odds with the innovative qualities that allow people to generate compelling visions.
Again, people can adjust themselves to do both, but it takes effort and time.

Great managers also develop a variety of people interaction skills that help them get the
most out of the people within their organizations. The very best of these managers don’t
describe themselves as having a specific “style” but rather understand that they might need to
employ any number of approaches to motivate certain individuals. Some people respond best
to terse descriptions and matter-of-fact approaches, whereas others prefer a bit of nurturing
and emotional support. Some people need a task master and still others a den mother.

Finally, the very best managers recognize the need for continual improvement and realize
that the only way to improve things is to measure them. “Measurement, measurement, mea-
surement” is the phrase by which they live. They measure the availability of their systems, the
output of their organizations, and the efficiency of everything.

Project and Task Management
Good managers get projects done on time, on budget, and meet the expectations of
shareholder value creation in the completion of their projects. Great managers do the
same thing even in the face of adversity. Both accomplish those tasks based on a
decomposition of goals into the component parts necessary to accomplish those
goals. They then enlist the appropriate help both within and outside of the organiza-
tion and measure progress along the path to goal accomplishment. Although this isn’t
a book on project management, and we will not be going into great detail on how to
effectively manage scale projects, it is important to understand the necessary actions
in those projects to be successful.

Tom Harde is the operations and infrastructure director within AllScale, and
Johnny Fixer has given him the goal of reducing scalability related downtime inci-
dents to no more than 57 minutes in a month. Tom decides that some component
tasks of this goal are to identify the root causes of incidents, categorize them, deter-
mine the cost and time to fix each, and implement a solution. Initially, he believes
there is a finish-to-start relationship between the identification of the incidents and
all other activities, meaning that he must identify the incidents to categorize all of
them, assign times and costs, and implement solutions. As Tom thinks more deeply
about the problem though, he realizes that he could identify a series of issues without
truly completing this step and move immediately to solution implementation. Given

ptg5994185

92 CHAPTER 5 MANAGEMENT 101

that he thinks he needs to identify something within two weeks to be able to affect a
change in the first month, Tom decides to spend no more time than one calendar
week trying to identify the largest causes of issues, and he will further focus on those
that have happened just within the last two months.

Tom organizes his team and employs RASCI to ensure that everyone has clearly
defined goals and objectives. One team consists of the folks responsible for logging
and tracking all incidents within the product, and Tom assigns them the tasks of
identifying issues from the last two months. Tom works closely with them, monitor-
ing their progress daily so that he can identify any quick hits that can be pulled out
and immediately worked. Within two days, Tom and the team identify one such can-
didate, the constant restarting of a group of application servers that are negatively
impacting the company’s ability to process all requests during peak demand. Leaving
the team to continue to focus on the categorization of the remainder of incidents for
future work, Tom moves on to work on this issue.

Tom quickly realizes that the fix for this solution will require more than just the
systems administrators, operators, network engineers, and database administrators
under Tom’s direct control, and asks Johnny Fixer for assistance. Tom presents his
business case, showing that he can shave about eight minutes of downtime a month
off with some configuration changes that will allow more database communication
threads to be opened during peak demand. Tom believes the changes could be made
within a week or so with the right focus, and Johnny assigns Tom an architect and
two engineers to focus on this for the next two weeks.

Working with the architect and engineers, Tom develops three potential solutions
for solving the restarts, two of which he would not have developed on his own. The
simplest approach appears to be to rate limit the requests within the application
rather than queuing those requests internally. This will require additional application
servers to be deployed, but with a slight increase in capital and a small modification
to code, a significant downtime savings can be realized. Tom creates a project plan
with responsibilities for deploying infrastructure assets, making code changes, and
testing all the changes together with daily milestones given the need for speed on this
project. Tom also decides to have a daily project status meeting to track the project to
completion. Additionally, Tom creates daily management meeting notes that include
the desired end state of the project, current status, and risks to completion.

As small issues arise that need immediate resolution, they are either raised in the
project status meeting or handled immediately on an exception basis. Tom communi-
cates daily with Johnny so that Johnny can help Tom resolve any major roadblocks.

Here, we’ve attempted to show you, through a story, how management is a very
active discipline. The decomposition of goals into tasks, the active management of
those tasks, the measurement of completion of those tasks, and the communication
of progress are all necessary to successfully manage a project to completion.

ptg5994185

BUILDING TEAMS—A SPORTS ANALOGY 93

Building Teams—A Sports Analogy
Professional football team coaches and management know that having the right team
to accomplish the mission is critical to reaching the Super Bowl in any given season.
Furthermore, they understand that the right team today might not be the right team
for next season; rookie players enter the sport stronger and faster than ever before;
offensive strategies and needs change; injuries plague certain players; and salary caps
create downward pressure on the total value of talent that can exist within any team
in any year.

Managing team skill sets and skill levels in professional sports is a constant job
requiring the upgrading of talent, moving personnel to different positions, manage-
ment of depth and bench strength, selection of team captains, recruiting new talent,
and coaching individual high performance players.

Imagine a coach or general manager faced with the difficult task of needing to
bring in a new player at a high salary to fill a specific weakness in his team. That
coach is likely already at or near the team’s salary cap. The choices are to remove an
existing player, renegotiate one or more players’ salaries to make room for the new
player’s salary, or not hire the necessary player into the critical position. What do you
think would happen to the coach who decides to take no action and not hire the new
player? If his owners find out, they would likely remove him and if they didn’t find
out sooner or later, the team would atrophy and consistently turn out substandard
seasons resulting in lower ticket sales and unhappy shareholders (owners).

Our jobs as managers and executives are really no different than the jobs of the
coaches of professional football teams. Our salary caps are the budgets that are
developed by the executive management team and are reviewed and approved by our
boards of directors. In order to ensure that we are cost effectively doing our jobs with
the highest possible throughput and an appropriate level of quality, we too must con-
stantly look for the best talent available at a price that we can afford. Yet most of us
don’t actively manage the skills, people, and composition of our teams, which in turn
means that we aren’t doing the right thing for our company and our shareholders.
Scalability in professional sports means scaling the output of individuals; profes-
sional football, for instance, will not allow you to add a twelfth player. In your orga-
nization, scaling individuals might mean the same thing. The output of your
organization is dependent both on the output of any individual as well as the size of
your team. Efficiency in output, another component of scale (or at least scaling cost
effectively), is a measurement of getting more for the same amount of money or (bet-
ter yet) more for less money. Scaling with people then is a function both of the indi-
vidual people, the number of people, and the organization of people.

Now think about a coach who refused to spend time improving his players. Can
you imagine such a coach keeping her job? Similarly, can you imagine walking into

ptg5994185

94 CHAPTER 5 MANAGEMENT 101

your next board of directors meeting and stating that part of your job is not to grow
and maintain the best team possible? Think about that last point for a minute. In our
last chapter on leadership, we made the case that everything you do needs to be
focused on shareholder value creation. Here, we have just identified a test to help you
know when you are not creating shareholder value. For any major action that you
make, would you go in and present it to the board of directors as something that
must be done? Remember that a decision to not do something is the same as deciding
to do something. Further, ignoring something that should be done is a decision not to
do it. If you have not spent time with the members of your team for weeks on end,
you have decided not to spend time with them and that is absolutely inexcusable and
not something that you would likely feel comfortable discussing with your board of
directors.

The parallels in professional sports to the responsibilities of team building for cor-
porate executives are clear but all too commonly ignored. To get our jobs done, we
must have the best talent (the best people) possible for our board authorized budgets.
We must constantly evaluate and coach our team to ensure that each member is add-
ing value appropriate to his level of compensation, find new and higher performing
talent, and coach the great talent that we have to even higher levels of performance.

Upgrading Teams—A Garden Analogy
Even a novice gardener knows that gardening is about more than just raking some
soil, throwing some seeds, and praying for rain. Unfortunately, if you are like most
managers, rake, throw, and pray is probably exactly what you do with your team.
Our team is a garden and our garden expects more of us than having manure spread
upon it at times convenient to us. As importantly, the scalability of our organization
as we described in our last metaphor is largely tied to how great our talent is on a per
person basis and how consistent their behaviors are with our corporate culture.

Gardens should be designed and so should our teams. Designing our teams means
finding the right talent that matches the needs of our vision and mission. Before
planting our garden or inserting new seeds or seedlings in our garden, we evaluate
how the different plants and flowers will interact. We should do the same with our
teams. Will certain team members steal too many nutrients? Will the soil (our cul-
ture) properly support their needs? Should the garden be full of only bright and bril-
liant flowers or will it be more pleasing with robust and healthy foliage to support
the flowers?

Managers in hyper-growth companies often spend a lot of time interviewing and
selecting candidates but usually not much time on a per candidate basis. Worst still,
these managers often don’t take the time to determine where they’ve gone wrong

ptg5994185

UPGRADING TEAMS—A GARDEN ANALOGY 95

with past hiring decisions and what they’ve done well in certain decisions. Finding
the right individual for your job requires paying attention to and correcting your past
failures and repeating your past hiring successes. We might interview for skills but
overlook critical items like cultural or team fit. Why have you had to remove people?
Why have people decided to leave?

Candidate selection also requires paying attention to the needs of the organization
from a productivity and quality perspective. Do you really need another engineer or
product manager, or do your pipeline inefficiencies indicate additional process defini-
tion needs, tools engineers, or quality assurance personnel?

Too often, we try to make hiring decisions after we’ve spent 30 to 60 minutes with
a candidate. We encourage you to spend as much time as possible with the candidate
and try to make a good hire the first time. Seek help in interviewing by adding people
whom you trust and who have great interviewing skills to your interview team. Call
previous managers and peers and be mindful to ask and prod for weaknesses of indi-
viduals in your background checks. Pay attention to more than just the skills and
determine whether you and your team will like spending a lot of time with the indi-
vidual. Interview the person to make certain that she will be a fit with your cultures
and that her behaviors are consistent with the behavioral expectations of the company.

The Cultural Interview
One of the most commonly overlooked components of any interview is interviewing a candidate
to ensure that he is a cultural and behavioral fit for your company. We recommend picking up a
book or taking a class on behavioral interviewing, but here are some things that you can do in
your next interview to find the right cultural and behavior fit for your company:

• Make a list of your company’s beliefs regarding people. They may be on the back of your
identification badge or on your intranet. Identify questions around these beliefs and dis-
tribute them to interview members.

• Identify interviewers who are both high performers within your team and a good match
with the cultures, beliefs, and behaviors of your company (or the behaviors to which your
company aspires).

• Gather after the interview and discuss the responses to the questions and the feelings of
the team.

It is as important to make the right cultural hire as it is to hire the right talent and experience.
Can you spend 9 to 12 hours a day with this person? Can the team do the same? Can you
learn from him? Will the candidate allow the team to teach him?

ptg5994185

96 CHAPTER 5 MANAGEMENT 101

Feeding your garden means spending time growing your team. Of all the practices
in tending to your team, this is the one that is most often overlooked for lack of time.
We might spend time picking new flowers (though not enough on a per flower basis),
but we often forget about the existing flowers needing nourishment within our garden.

The intent of feeding is to help grow the members of your team who are producing
to the expectations of your shareholders. Feeding consists of coaching, praising, cor-
recting technique or approach, adjusting compensation and equity, and anything else
that creates a stronger and more productive employee.

Feeding your garden also means taking individuals who might not be performing
well in one position and putting them into positions where they can perform well.
However, if you find yourself moving an employee more than once, it is likely that
you are avoiding the appropriate action of weeding.

Finally, feeding your garden means raising the bar on the team overall and helping
employees achieve greater levels of success. Great teams enjoy aggressive but achiev-
able challenges, and it is your job as a manager to challenge them to be the best they
can be.

Although you should invest as much as possible in seeding and feeding, we all
know that underperforming and nonperforming individuals choke team productivity
just as surely as weeds steal vital nutrients from the flowers within your garden. The
nutrients in this case are the time that you spend attempting to coach underperform-
ing individuals to an acceptable performance level and the time your team spends
compensating for an underperforming individual’s poor results. Weeding our gardens
is often the most painful activity for most managers and executives, and as a result it
is often the one to which we tend last.

Although you must abide by your company’s practices regarding the removal of
people who are not performing (these practices vary not only by country but by state
as well), it is vital that you find ways to quickly remove personnel who are keeping
you and the rest of your team from achieving your objectives. The sooner you remove
them, the sooner you can find an appropriate replacement and get your team where it
needs to be.

When considering performance as a reason for termination, one should always
include an evaluation of the person’s behaviors. It is possible to have an individual
within an organization who creates more and gets more done than any other team
member, but whose actions and behaviors bring the total output of the team down.
This is typically pretty obvious in the case of an employee creating a hostile work
environment, but it can also be the case for an employee who simply does not work
well with others. For instance, you might have an employee who gets a lot done, but
does so in a manner that absolutely no one wants to work with him. The result might
be that you spend a great deal of time soothing hurt feelings or finding out how to
assign the employee work that does not require teamwork. If the employee’s actions

ptg5994185

UPGRADING TEAMS—A GARDEN ANALOGY 97

are such that she limits the output of the team, that limitation is by definition a scale
limitation and one upon which you should immediately act.

We’ve found that it’s often useful to use the concept of a two-dimensional axis
with defined actions such as in Figure 5.1. The x-axis here is the behavior of the
employee and the y-axis is the employee’s performance. Many employee reviews,
when done properly, identify the actions on the y-axis. But many such reviews do not
consider the impact of the behavioral x-axis. The idea here is that the employees you
want to keep are in the upper-right portion of our graph. Those that should be imme-
diately “weeded” are in the bottom-left portion of the graph. You should coach those
individuals in the upper-left and lower-right portion of the graph, but be prepared to
weed them should they not respond to coaching. And of course, you want all of your
seeds or new employees to be targeted in the upper-right portion of the graph.

One thing that we have learned over time is that you will always wish you had
acted earlier in removing underperformers. There are a number of reasons why you
just can’t act quickly enough, including company travel, competing requests, meet-
ings, and so on. You shouldn’t waste time agonizing over whether you are acting too
quickly—that never happens. You will always wish you had acted even sooner when
you have completed the termination.

Figure 5.1 Evaluating Behaviors and Performance

P
er

fo
rm

an
ce

Unsatisfactory
Behavior

SuperiorGreat Performance
Bad Behavior

Poor Performance
Great Behavior

Poor Performance
Bad Behavior

Weed Immediately!

Coach or “Feed”—
If Unsuccessful,
Weed

Coach or “Feed”—
If Unsuccessful,
Weed

Feed!
Target for New
Hires

Great Performance
Great Behavior

ptg5994185

98 CHAPTER 5 MANAGEMENT 101

Seed, Feed, and Weed to Succeed
To continually upgrade or improve our team’s performance, we need to perpetually perform
three individual activities:

• Seeding is the addition of new and better talent to our organization.

• Feeding is the development of the people within our organization we want to retain.

• Weeding is the removal of underperforming individuals within our organization.

As managers, we often spend too little time interviewing and selecting our new employees,
too little time developing and coaching our high performing employees, and act too late to
remove employees who do not display behaviors consistent with our culture or have the drive
and motivation to create shareholder wealth.

Measurement, Metrics, and Goal Evaluation
We’re not certain who first said it, but one of our favorite sayings is “You can’t
improve that which you do not measure.” Amazingly, we’ve found ourselves in a
number of arguments regarding this statement. These arguments range from “Mea-
surement is too expensive” to “I know intuitively whether I’ve improved something.”
You can get away with both of these statements if you are the only shareholder of your
company, though we would still argue that your results are going to be suboptimal. If
you happen to be a manager in a company with external shareholders, however, you
must be able to prove that you are creating shareholder value, and the only way to do
that is with data. Data in return requires measurements in order to be produced.

We believe in creating cultures that support measurement of nearly everything that
is related to the creation of shareholder value. With respect to scale, however, we
believe in bundling our measurements thematically. The themes we most often rec-
ommend for scale related purposes are cost, availability and response times, engineer-
ing productivity and efficiency, and quality.

As we’ve previously indicated, cost has a direct impact to the scalability of your
platform. You undoubtedly are either given or have helped develop a budget for the
company’s engineering initiatives. A portion of that budget in a growth company ide-
ally is dedicated to the scalability of your platform or services. This alone is an inter-
esting value to measure over time as we would expect that good managers will be
able to reduce the cost of scaling their platforms over time. Let’s assume that you
inherit a platform with scalability problems that manifest themselves as availability
issues. You might decide that you need to spend 30% to 50% of your engineering
time and a significant amount of capital to fix a majority of these issues in the first

ptg5994185

MEASUREMENT, METRICS, AND GOAL EVALUATION 99

two to 24 months of your job. However, something is wrong if you can’t slowly start
giving more time back to the business for business initiatives (customer features) over
time. We recommend measuring the cost of scale as both a percentage of total engi-
neering spending and as a cost per transaction.

Cost of scale as a percentage of engineering time should go down over time. But it’s
easy to “game” this number. If in year 1 you have a team of 20 engineers and dedicate
10 to scalability initiatives, you are spending 50% of your engineering headcount
related budget on scalability. If in year 2 you hire 10 more engineers but still only dedi-
cate the original 10 to scale, you are now spending only 33% of your budget. Although it
would appear that you’ve reduced the cost of scale, you’ve really kept it constant, which
could argue for measuring and reporting on the relative and absolute cost of scale.

Rather than reporting the absolute cost of scale (10 engineers, or $1.2M per
annum), we often recommend normalizing the value by the activities that create
shareholder value. If you are a Software as a Service platform (SaaS) provider and
make money on a per transaction basis, either through advertising or the charging of
transaction fees, this might be accomplished by reporting the cost of scale on a per
transaction basis. For instance, if you have 1.2 million transactions a year and spend
1.2 million in headcount on scale initiatives, your cost of scale would be $1/transac-
tion. Ouch! That’s really painful if you don’t make at least a dollar a transaction!

Availability is another obvious choice when figuring out what to measure. If you
see a primary goal of scalability initiatives as eliminating scalability related down-
time, you must measure availability and report on how much of your downtime is
associated with scalability problems within your platforms or systems. The intent
here is to eliminate lost opportunity associated with users not being able to complete
their transactions. In the Internet world, this most often is a real impact to revenue;
whereas in the back office information technology world, it might result in a greater
cost of operations as people are required to work overtime to complete jobs when
systems become available again.

Closely related to measuring availability for the purposes of scalability is measuring
response time of your systems. In most systems, increasing user perceived response
times often escalate to brownouts followed by blackouts or downtime for the system.
Brownouts are typically caused by systems performing so slowly that most users will
abandon their efforts, whereas blackouts are a result of a system that completely fails
under high demand. The measurement of response times should be against an abso-
lute service level agreement (SLA), even if that agreement isn’t published to the end
users. Ideally, the measurement is performed using actual end-user transactions rather
than proxies for their interaction. In addition to the absolute measurement against
internal or external service levels, relative measurement against past month values
should be tracked over time for critical transactions. This data can later be used to
justify projects if a slowing of any given critical transaction is proven to be tightly
correlated with revenue associated with that transaction, abandon rates, and so on.

ptg5994185

100 CHAPTER 5 MANAGEMENT 101

Engineering productivity and efficiency is another important measurement when
considering scalability. Your first reaction may be that these two things have abso-
lutely nothing to do with the scalability of a platform. Consider an organization that
measures and improves the productivity of its engineers over time versus that of an
organization that has no such measurements. You would expect that the former will
start to produce more products and complete more initiatives at an equivalent cost to
the latter or that they would start to produce the same at a lower cost. Either of these
will help us in our scalability initiatives because if we produce more, by allocating an
equivalent percentage of our engineering team, we can get more done more quickly
and thereby reduce future scale demands on our engineering team. And if we can produce
the same at lower cost, we are increasing shareholder value as the net decrease in cost
structure to produce a scalable platform means greater profitability for the company.

The real trick in figuring out how to measure engineering productivity and effi-
ciency is to split it up into at least two component parts. The first part has to do with
whether your engineering teams are using as much of the available engineering days
as possible for engineering related tasks. To do this, assume that an engineer is avail-
able for 200 days/year minus your company’s sick time, vacation time, training time,
and so on. Maybe your company has 15 days of paid time off a year and expects
engineers to be in 10 days of training a year resulting in 175 engineering days/engi-
neer. This becomes the denominator within our equation. Then, subtract from this
denominator all of the hours and days spent “blocked” on issues related to unavail-
able build environments, nonworking test environments, broken tools or build envi-
ronments, missing source code or documentation, and so on. It shouldn’t surprise
you if you haven’t measured such value destroyers in the past to find out that you are
only getting to make use of 60% to 70% of your engineering days.

The second component part of engineering productivity and efficiency is to mea-
sure how much you get out of each of your engineering days. This is a much harder
exercise as it requires you to choose among a set of unattractive options. These
options range from measuring thousands of lines of code (KLOC) produced by an
engineer, to stories produced, function points produced, or use cases produced. The
options are unattractive as they all have “failures” within their implementation. For
instance, you may produce 100 lines of code per engineer per day, but what if you
really only need to write 10 to get the same job done? Function points on the other
hand are difficult and costly to calculate. Stories and use cases don’t really contain a
measure of complexity within their evaluation or use. As such, they all sound like bad
options. But a worse option is to decide not to measure this area at all. Training pro-
grams, after all, are intended to help increase individual output, and without some
sort of measurement of their effectiveness, there is no way to prove to a shareholder
that the money spent on training was well spent.

Quality rounds out our scalability management measurement suite. Quality has a
positive or negative impact on many of the other measurements. Poor product quality

ptg5994185

THE GOAL TREE 101

can cause scalability issues in the production environment and as a result can increase
downtime and decrease availability. Poor product quality causes an increase in cost
and a reduction in productivity and efficiency as rework is needed to meet the appro-
priate scalability needs. Although you obviously need to look at such typical metrics
as bugs KLOC in production and per release, absolute bug numbers for your entire
product, and the cost of your product quality initiatives, we also recommend further
breaking these out into the issues that affect scale. How many defects cause scalabil-
ity (response time or availability) problems for your team? How many do you release
per major or minor release of your code and how are you getting these to trend down
over time? How many do you catch in your quality assurance initiatives versus those
that are found in production, and so on?

The Goal Tree
One easy way to map organizational goals to company goals is through a goal tree. A
goal tree takes as its root one or more company or organizational goals and breaks it
down into the subordinate goals to achieve that major goal. Here, we will use the
computer science inverted view of a tree, where the root is at the top of the tree
rather than the bottom. For instance, AllScale may have a goal to “Achieve Profit-
ability by Q1.” As you can see in Figure 5.2, this company goal is at the “root” of the
tree. Johnny Fixer decides that the two ways he can increase profitability is by creating
more monetization opportunities and creating greater revenue at a reduced cost base.

Figure 5.2 Example Goal Tree for AllScale Networks

AllScale Goals
Achieve Profitability

by Q1

Greater Revenue at a Reduced Cost BaseMore Monetization Opportunities

Availability CostQuality Efficiency

Bugs per Push
0 P1
< 5 P2

Time to Verify Bugs
P1 < 1d
P2 < 2d
P3 < 5d

Coverage
100% regression per
push

Bugs/KLOC
0.15

Adserving 99.9%
Registration 99.99%
Scalability 99.99%
Response SLA 99.9%

$/1K Impression
Current $0.56
Goal $0.25

Days/Engineer
175/200 Days
KLOC/Day
.20/Day

Time to Market

Production SLA
New h/w 1wk
Hot fix 1d
Code push 1wk

ptg5994185

102 CHAPTER 5 MANAGEMENT 101

Johnny determines that quality and availability affect the opportunity to monetize
AllScale’s platform and adds a number of quality and availability goals. One avail-
ability goal has to do with scalability (no more than .01% downtime for the quarter
due to scalability), and he also adds a 99.9% adherence to the internal response time
SLAs for the platform. Quality goals are to reduce the number of bugs per push (with
measurable amounts), reduce the time to verify bugs, increase test suite coverage for
regression tests, and have fewer than .15 bugs/KLOC outstanding in production.

From a cost perspective, Johnny desires to reduce the cost per thousand pages
delivered by over 50%. Johnny also wants to impact time to market (TTM), thereby
decreasing the cost of delivery, and has specific goals for that. Finally, he desires to
increase his engineering productivity and decides to count both used man days versus
available man days and KLOC produced per day.

Paving the Path for Success
So far, we’ve painted the picture of a manager as being equal parts task master, tacti-
cian, gardener, and measurement guru. But a manager’s job isn’t done there. Besides
being responsible for ensuring the team is up to the job, deciding on the path to take
to a goal, and measuring progress, a manager is also responsible for ensuring that the
path to that goal is bulldozed and paved. A manager who allows a team to struggle
unnecessarily over rough terrain on the way to an objective when he can easily pave
the way means reducing the output of the team. This reduction in output means the
team can’t scale efficiently, as less work is applied to the end goal. Less efficiency
means lower shareholder return for an investment.

Bulldozed is a rather aggressive term and we don’t mean to imply that a manager
should act as a fullback attempting to lay out a linebacker so that a halfback can
make a touchdown. Although that type of aggressive play might be required from
time to time, employing it all the time will get you a reputation that you’d rather not
have. Additionally, it may be absolutely unacceptable in some cultures. What we
mean here is that managers are responsible for removing obstacles to the success of
an organization and its objectives.

It is very easy for people to confuse this idea with “anything that stands in my way
is an obstacle to my success and should be removed.” Sometimes, the obstacles in
your way serve to ensure that you are performing the correct functions. For instance,
if you have a need to release something to your production environment, you might
see the quality assurance organization as an obstacle. This observation is at odds
with our definition of obstacle, as the QA organization serves to help you ensure that
you are meeting the shareholder’s needs for a higher quality product. The obstacle in
this case is actually you and your perception.

ptg5994185

CONCLUSION 103

Obstacles are issues that arise and for which the team is not equipped to handle.
Examples might be a failure of a partner to deliver software or hardware in a time
consistent with your needs or issues in getting testing support or capital to be freed
up for a project. The team isn’t working for you but rather with you. You may be the
captain of the team, but you are still a critical part of its success. Great managers
actually get their hands dirty and “help” the team accomplish its goals.

Conclusion
Management is about execution and all of the activities necessary to reach goals,
objectives, and vision, while adhering to the mission of the company. It should be
thought of as a “judicious and ethical use of means to accomplish an end.” Being
good at management, as is the case with leadership, requires a focus and commitment
to learning and growing as a manager. Management requires a focus on tasks, peo-
ple, and measurements to accomplish the desired goals.

Project and task management is essential to successful management. It includes the
disaggregation of goals into their associated projects and tasks, the assignment of
individuals and organizations to those tasks, the measurement of progress, communi-
cation of status, and resolution of issues. In larger projects, it will include the rela-
tionship of tasks to each other in order to determine which tasks should happen
when and to help determine timelines.

People management has to do with the composition and development of organiza-
tions and the hiring, firing, and development of individuals. We often spend too much
time with our underperformers and wait too long to eliminate them from the team.
The result is that we don’t spend enough time growing the folks who are truly adding
value. In general, we need to spend more time giving timely feedback to the individuals
on our team to ensure that they have an opportunity to create greater shareholder
value. We also spend a great deal of time interviewing new candidates in total, but
often not enough on a per candidate basis. Too often, our new team members have
spent 30 minutes to an hour with six to seven people before a hiring decision is made.
Spend enough time with people to be comfortable with welcoming them into your family.

Measurement is critical to management success. Without measurements and met-
rics, we cannot hope to improve, and if there is no hope for improvement, why
employ people as managers? We gave a number of measurement suggestions in
“Measurement, Metrics, and Goal Evaluation,” and we highly recommend a review
of these from time to time as you develop your scalability program.

Managers need to help their team complete its tasks. This means ensuring that
issues are resolved in a timely fashion and helping to ensure that issues don’t arise
whenever possible. Good managers will work to immediately remove barriers to suc-
cess and great managers keep them from arising in the first place.

ptg5994185

104 CHAPTER 5 MANAGEMENT 101

Key Points

• Management is the judicious and ethical use of means to accomplish an end.

• As with leadership, the pursuit of management excellence is a lifelong goal and
as much a journey as it is a definition.

• As with leadership, management can be viewed as a function consisting of per-
sonal characteristics, skills, experiences, actions, and approaches. Increasing any
aspect increases your management “quotient.”

• Project and task management are critical to successful management. They
require the ability to decompose a goal into component parts, determine rela-
tionships of those parts, assignment of ownership with dates, and the measure-
ment of progress to those dates.

• People and organization management is broken into “seeding, feeding, and
weeding:”

Seeding is the hiring of people into an organization with the goal of getting
better and better people. Most managers spend too little time on the interview
process and don’t aim high enough. Cultural and behavioral interviewing
should be included when looking to seed new employees.

Feeding is the development of people within an organization. We can never
spend enough time giving good performance related feedback to our employees.

Weeding is the elimination of underperforming people within an organization.
It is almost impossible to do this “soon enough,” though we should feel obli-
gated to give someone performance related feedback first.

• We can’t improve that which we do not measure. Scalability measurements
should include measurements of availability, response time, engineering produc-
tivity and efficiency, cost, and quality.

• Goal trees are an effective way to map organizational goals to company goals
and help form the “causal roadmap to success.”

• Managers are responsible for paving the path to success. The most successful
managers see themselves as critical parts of their teams working toward a com-
mon goal.

ptg5994185

105

Chapter 6

Making the Business Case

In war, the general receives his command from the sovereign.

—Sun Tzu

So far in Part I, Staffing a Scalable Organization, we have talked about how impor-
tant it is to choose the right people, get them in the right roles, exercise great leader-
ship and management, and finally establish the right organization size and structure.
To pull this all together, we need to talk about the final link in the scalable organiza-
tion chain. This is how to make the business case for hiring resources, allocating
resources, and staying focused on scalability as a business initiative. In this chapter,
we are going to cover these topics and explain some of the reasons that many compa-
nies and their executive teams are so reluctant to listen to the lamentations of their
technology staff until it is too late. Most importantly we will give you some tips on
how to turn these problems around and become successful at making the proper
business case for scalability.

Understanding the Experiential Chasm
It is our belief that a great deal of the problem existing between many general manag-
ers and their technical teams is a result of a huge and widening chasm in education
and experience that causes a type of “destructive interference” in communication.
The education of the two individuals are often very different with the technical exec-
utive likely having taken an increasingly difficult and complex engineering curricu-
lum in college, whereas the general manager might have had a less math intensive
liberal arts undergraduate degree. The behaviors of the two executives may vary with
the technical executive likely having been promoted rightly or wrongly based on his
focused, somewhat introverted behavior (“put him in a dark room alone and he can
get anything done”) and with the general manager being much more extroverted,

ptg5994185

106 CHAPTER 6 MAKING THE BUSINESS CASE

friendly, and “sales-person like.” The work experience likely varies with the general
manager having been promoted to her position through closing deals, selling propos-
als, and making connections. The technical executive might have been promoted
either based on technical brilliance or the ability to get product complete and poten-
tially shipped on time.

This mismatch in education and experience causes difficulty in communication for
several reasons. First, with very little in common, there is often little reason outside of
work specific tasks for the two people to communicate or have a relationship. They
might not enjoy the same activities and might not know the same people. Without
this common bond outside of work, the only way to build trust between the two indi-
viduals is through mutual success at work. Success may in the end create a bond that
kindles a relationship that can last through hard times, but when mutual success has
not yet been achieved, the spark that occurs kindles the opposite of trust; and with-
out trust, the team is doomed.

Second, without some previous relationship, communication does not happen on
mutual footing. Questions are often rightfully asked from a business perspective, and
the answers are often given in technical terms. The general manager may for instance
ask, “When can we ship the Maxim 360 Gateway for revenue release?” to which the
technical executive may respond, “We are having problems with the RF modulation
and power consumption and we are not sure if it is a software potentiometer or a
hardware rheostat. That said, I do not think we are off more than two weeks of the
original delivery schedule to QA.” Although the technical executive here gave a full
and complete response, it probably only frustrated the general manager as she likely
has no idea what a soft-pot or a rheostat is and may not even know what RF is. The
information came so fast and was intermixed with so many important, but to her
meaningless pieces of information that it just became confusing.

This resulting mismatch in communication actually quite often gives way to a
more destructive form of communication, which we call destructive interference.
Questions begin to be asked in a finger-pointing fashion—for example, “What are
you doing to keep this on track?” or “How did you let it slip a week?”—rather than
in a fashion meant to resolve issues early—such as, “Let us see if together we cannot
work to find out how we can get the project back on the timeline.” This is not to say
that you should not keep and hold high expectations of your management team, but
doing so should not create a destructive team dynamic. It is possible to both have high
standards and actually be a participative, supporting, and helpful leader and executive.

Why the Business Executive Might Be the Problem
Some questions can be asked to determine if the likely culprit of poor communication
is the business executive. Do not fret; we will give a similar set of questions to point
the blame at the technology executive. The most likely result is that some amount of

ptg5994185

UNDERSTANDING THE EXPERIENTIAL CHASM 107

fault resides with both, business and technology. Understanding this is a major step
toward fixing the problems and improving communication.

• Has the head of technology been replaced more than once?

• Do different people in the technology team give the business the same explana-
tions but they are still not believed?

• Do business leaders spend as much time attempting to understand technology as
they have spent learning to read financial statements?

• Do the business leaders understand how to ask questions to know whether dates
are both aggressive and achievable?

• Does the business spend time in the beginning of a product life cycle figuring out
how to measure success?

• Do business leaders lead by example or do they point fingers?

Chances are that at least one, and likely several, of the preceding points hits home.
We do not mean to imply that the business leaders are the only problem. However, if
they absolutely refuse to accept culpability in the problem, this is a huge warning
sign. The best leaders accept that they are at least part of the problem, and we believe
that the very best leaders believe that they are the source of most problems. It abso-
lutely may be the case, and often is the case, that other people need to be fired in
order to get the problem fixed. But if the business is constantly hiring and firing tech-
nology leaders, at the very least, they owe it to the shareholders to consider them-
selves part of the problem.

To get back on point, however, note how many of the preceding questions can be
easily traced back to education and experience. For instance, if you are getting con-
sistent answers throughout from your team, maybe it is the case that you just do not
understand what they are saying. There are two ways to resolve that: You can either
gain a better understanding of what it is they are telling you, or you can work with
them to speak a language that you better understand. Better yet, do both!

Why the Technology Executive Might Be the Problem
For nearly all of the reasons that the business executives are responsible for their own
frustration with the technology teams, so is the technical executive responsible. She is
standing on the opposite side of the chasm and is participating in the “staring game.”
Each is looking at the other and attempting to find ways to communicate effectively,
each ultimately falling into the mode of destructive interference that destroys trust
and organizations.

As promised, here are the questions to ask your technology leadership to see how
much of the communication problem it is responsible for.

ptg5994185

108 CHAPTER 6 MAKING THE BUSINESS CASE

• Does the technology team provide you early feedback on the likelihood of mak-
ing key dates?

• Is that feedback consistently incorrect?

• Is the business experiencing the same problems over and over, either in produc-
tion or in product schedules?

• Does the technology team measure themselves against metrics that are meaningful?

• Are the technology choices couched in terms of technical merit rather than busi-
ness benefit and cost?

• Does the technology team understand what drives your business, who your
competitors are, and how your business will be successful?

• Does the technology team understand the business challenges, risks, obstacles,
and strategy?

Just as the business executives have not spent as much time understanding how to
run technical projects or how to “speak tech” as the technology leaders have spent
learning to read financial statements, it is also likely that the technical executive has
not spent a lot of time learning what truly drives your business. To be sure, he proba-
bly believes he knows. A good test is to have him define the technology metrics in
terms of things that are important to your business: revenue, profit, time to market,
barriers to entry, customer retention, and so on. It is critical for the technology exec-
utive to understand how the business makes money, the drivers of that revenue equa-
tion, the current financial reality within the business, and the current year’s financial
goals for the business.

In AllScale, as discussed in Chapter 2, Roles for the Scalable Technology Organi-
zation, the previous CTO was promoted based on his technical acumen. As the CEO
Christine quickly learned, the previous CTO had no business acumen and could not
properly explain the need for purchases or projects in business terms. This frustrated
the remainder of the company’s executives as technology initiatives were never tied to
business goals or needs. When other departments were cutting travel to save money,
the old CTO was buying extra terabytes of storage area network (SAN) space costing
hundreds of thousands of dollars that no one could explain the need for. The old
CTO would rely on the threat of “we either do this or we will die” to get all the other
executives in line. Although this worked for the short term, it left all the other execu-
tives feeling that something was not right with the decision that had to be forced on
them. Christine quickly saw this situation and put an end to it. She brought on board
the new CTO, Johnny Fixer, who understands both technology and business. Johnny
in only his first couple of months has been able to put metrics in place that represent
the business goals and can explain all of his team’s initiatives in terms of revenue gen-
eration or cost cutting. He has definitely been a welcome relief to the executive team.

ptg5994185

DEFEATING THE CORPORATE MINDSET 109

Defeating the Corporate Mindset
Lots of companies claim that technology is a key differentiator, critical to the busi-
ness, or in military lingo, a force multiplier, but the reality is that many of them,
including Software as a Service (SaaS) companies, treat technology as a support ser-
vice. There are two basic forms that a technology organization can take within a
business. One is to be a support service where technology supports the business pro-
cesses of manufacturing, sales, or any number of other business lines. The other form
that technology can take within a business is to be the product for the business, such
as with SaaS, infrastructure as a service (IaaS), hardware product companies, or Web
2.0 companies.

Being a support service and supporting other key business processes is a fine call-
ing. As a technologist, being the product that the business is founded around, while
often more stressful, is great as well. The terms usually applied to these are cost cen-
ter for the support service and profit center for the product development organiza-
tions. Cost center, as the name implies, is a center or organization that adds cost to
the income statement of a business usually at the Selling General and Administrative
expense line. A profit center is an organization that derives revenue for the business.
The problem arises when one type of company thinks of itself, or worse acts as if, it
were the other type. To understand this more, we need to dive into the two forms
deeper. All different types of organizations require technology support to ensure their
processes are efficient and consistent. Today’s manufacturing would be lost without
technology from computer numerical control (CNC) machines to ladder logic. These
types of companies and technology departments are hopefully upfront and aware of
how technology is viewed. It is a support service or cost center that will likely always
be viewed as a cost line item in the budget. No matter how scalable, artful, impres-
sive, or on time the tech is, the best these technology systems and projects can strive
for is a reduction of cost or improvement in efficiency for the business. We label this
view of technology as the “corporate mindset” because most very large corporations
whose primary business is not technology, Corporate America, have this view.

On the other hand, businesses that were founded on the technology as the product
hopefully see things quite differently. In companies such as eBay, PayPal, Amazon,
and Google, one would expect that executives view technology as being directly cor-
related with the revenue and treat them as a profit center. If a new feature is
requested for the system or platform, that feature should be predicated on a change
in revenue and a return on investment. These companies should understand in their
DNA that the technology is the business. This should not, however, give the technol-
ogy team carte blanche to spend any amount or not relate technology projects into
business terms; in fact, the opposite is true. These technology leaders owe it to the
business to justify and explain themselves just as thoroughly.

ptg5994185

110 CHAPTER 6 MAKING THE BUSINESS CASE

If you are in Corporate America and the business has a corporate mindset about
technology, as it does with all other support functions such as human resources and
finance (assuming it is not an HR or CPA services company), the problems are much
more straightforward. If you want a technology project approved, you know you
need to cost justify it through cost cutting explanations. Although the problem is
clear cut, you will certainly have a more difficult challenge convincing your business
partners that improving the scalability of a particular platform is necessary. In this
case, you should pay particular attention to the next section where we will provide
some mechanisms to help you justify the projects.

The real challenges with corporate mindset come when it exists in a SaaS or Web
2.0 company. When the primary business of the company is selling the technology
product or service, yet the business leaders think the technology team simply sup-
ports their brilliant product ideas or sales initiatives, we have real problems. These
business executives are the ones who, if they were willing to answer, would answer
“yes” to all the questions in the preceding subsection “Why the Business Executives
Might Be the Problem.” Unfortunately, these executives are also probably not
insightful or self-reflective enough to think they could be part of the problem and
therefore need to be fixed. Having worked in a few and having been a spectator to
many of these types of environments, our first reaction is to run away. And if you are
lucky enough during the interview process to catch a vibe of this, our recommenda-
tion is to run away. These are uphill battles that we are getting ready to describe and
if you can avoid the confrontation, you are probably better off. We know, however,
that this is not always an option for any of us. Sometimes, you find yourself commit-
ted before you recognize this problem and you are faced with confronting and fixing
it rather than turning your back on it.

To solve the corporate mindset problem, we have seven ideas that you should con-
sider implementing. These are all things that as a technology leader are in your con-
trol. Waiting for your colleagues to wake up and realize their deficiencies will not
work. Take responsibility into your own hands and make the organization the type of
place that you want it to be. Here is the list of ideas:

1. Form relationships

2. Set the example

3. Educate other executives

4. Use the RASCI model

5. Speak in business terms

6. Get them involved

7. Scare the executive team with facts

ptg5994185

DEFEATING THE CORPORATE MINDSET 111

Forming Relationships
One of the best ways to start changing the business executives is to begin forming a
relationship with them. As discussed in the section “Understanding the Experiential
Chasm” of this chapter, a relationship is the key to communication. Start building
those relationships today. Schedule monthly lunches with each member of the execu-
tive staff. Spend time over a meal getting to know these team members, their careers,
their families, their business challenges. Pay attention and get to know them on mul-
tiple levels. Open up and share your background as well; let them get to know you.
The best teams in the world spend thousands of hours training with each other and
maybe even living together. When you think of great teams, you probably think of
professional sports teams or Navy SEALS or Delta Force. The one thing all of these
organizations have in common is a set of shared experiences and shared trials created
over thousands and thousands of hours of training time. You aren’t likely to spend as
much time creating relationships through shared experiences in your entire career as
these teams spend in a single year. The lesson here is that you need to force yourself
to create relationships with the people who are your peers and your boss.

Setting the Example
There may be finger pointing or, worse, backstabbing, politics, or gamesmanship
already existing on the executive staff or between departments. Avoid getting pulled
into this. Be the better person and set the example for how you want to see people
interact. Instead of jumping to defend your team, ask the person or group how can
we work together to solve this and learn from it. Pulling a concept from emotional
intelligence, start by asking if they are willing to accept that there is a better way.
This is supposed to be a very disarming question that opens people up to discussing
alternatives.

It surely will be tempting for most to jump in and start playing the games, setting
each other up for failure, and defending your actions. Avoid this if at all possible, but
remain on strong footing by looking for solutions. The worse case is that you are not
able to change the culture and you are eventually another technology executive that
pays the price for the business’s incompetence. Although this seems dire for you and
your career, leaving or being asked to leave a no-win scenario is better in the long run
than sticking it out and ultimately having the business fail, which is a likely outcome.

Educating Other Executives
One of the best things that you can do for your colleagues is to educate them about
technology and the role it plays in the business. There are many ways that you can
accomplish this. Some of them are covered below in the section below entitled “The
Business Case for Scale.” Some other ways include teaching classes on technology.

ptg5994185

112 CHAPTER 6 MAKING THE BUSINESS CASE

This can be brownbag sessions over lunch or asking for 15 minutes each staff meet-
ing to discuss a technology subject. The more they understand how things work, how
complicated, and how different parts affect customers, the more likely they are to
being sympathetic and understanding when it comes to discussions about technology.

Another creative way to educate business executives is to invite them for a “tech-
nology ride-along.” This concept is similar to what police departments have set up
for private citizens to ride along with them on patrol. Usually, the citizens walk away
from this with a renewed respect for the police officers and the incredibly stressful
and tough job that they perform. Hopefully, this is what the business executives will
take away from the evening as well. To most business executives outside of technol-
ogy, what the technology team and system does is black magic and most likely they
are afraid to ask for fear of looking stupid. Get over this by reaching out to them and
inviting them to spend the night alongside you as you release the next version of the
product or patch bug fixes. As they come in the next morning from being up late,
they will likely appreciate the many late nights and intellectually challenging prob-
lems that you and your team face on a daily and weekly basis.

Using the RASCI Model
As we have covered in Chapter 2, we highly recommend the use of the RASCI model
for helping define role clarity for initiatives. As a quick review, R is Responsible, A is
Accountable, S is Supportive, C is Consulted, and I is Informed. The I is often given
lip service but generally not followed up on as intensely as the other roles. For help-
ing to solve the corporate mindset, we recommend reconsidering the importance of
the I. Technology initiatives are a great way to involve other business executives by
adding them to the list of those to keep informed about a particular project. Weekly
emails, monthly report outs, whatever manner your team deems necessary to keep
this group informed will aid in your initiative to fix the corporate mindset problem.

Speaking in Business Terms
Just because the business has not bothered to learn your native tongue, the language
of technology, does not mean that you should not try to speak in a language that they
can understand. If you have ever traveled internationally and you ran across native
people who attempted to speak English in order to make you feel more comfortable
and understood, you can relate to how your business counterparts will feel when you
start explaining things in their language. By making the effort to speak the universal lan-
guage of business, you will earn the gratitude and respect of your business counterparts.

Remember our points regarding the maximization of shareholder value. If you
hold a technology management or executive position, you are first and foremost a
manager or executive of that business. You must learn to speak the language of busi-
ness and you must also learn what drives your business. You cannot possibly maxi-

ptg5994185

DEFEATING THE CORPORATE MINDSET 113

mize shareholder value if you do not understand the concepts that drive all businesses
at a macro level and equally important your business at a micro level.

Translate projects, goals, and initiatives to business metrics such as revenue, cus-
tomer acquisition, customer retention, and so on. When providing an update on an
initiative, instead of describing the project as “the initiative to shard the database by
mod of customer_id,” try describing it as “the database project that will allow the
business to double revenue over the next year as the growth projections indicate.”
The last description will get them a lot more excited and help them understand it a
lot better.

Getting Them Involved
Even better than keeping the business executives informed about major technology
initiatives, get them involved. Moving them from no involvement to owning projects
is probably not going to happen overnight, but you can start by getting them
involved. Ask for members from their teams as Cs. The idea is that the more stakes
they have in the projects the more they will be interested and support you.

Another way to get the business executives involved is asking them to mentor your
top folks. It is always great for technologists to learn about the business, so this
should not be seen as unreasonable. The dual benefit is that while your key staff
members get exposure and education from the business leaders, your team members
are teaching the business leaders about technology and keeping them updated on
projects. It is a great win-win situation.

Scaring the Executive Team with Facts
Our last idea, when all else has failed and your business colleagues continue to not
give you support for necessary scalability projects, is to use the next outage as an
example of what will happen without a consistent and focused support on scalability.
The reality is that if you are not focused on continuous improvements and the scal-
ability of your applications, there will be a downtime event. Crisis is a catalyst for
change. It is easier to get people’s attention and get their support for change if they
have witnessed or experienced a calamity.

Note that this should never be your first choice and in most organizations should
truly be seen as a failure for the executive team to make the right calls. The only time
this is an appropriate approach is if all other options have failed. The only way this
approach will work is if you can show the case over time you’ve been attempting to
make for the need for scale. Additionally, this approach will only work one time. If
you are consistently using the “scared straight” method over and over to get your
way, you are in effect Chicken Little claiming that the sky is falling. You are either in
the wrong company or you are the wrong person for the job.

ptg5994185

114 CHAPTER 6 MAKING THE BUSINESS CASE

That concludes the list of ideas that you should consider when attempting to rem-
edy the corporate mindset problem. Take notice that these are all actionable and put
you in control. Do not wait for your colleagues to wake up and realize they are part
of the problem. Be proactive, take responsibility, and make the organization what
you want it to be.

The Business Case for Scale
So far in this chapter, we have covered why there may be a communication break-
down between you and your business colleagues, perhaps even your boss. Next, we
covered the corporate mindset and why this may be a big problem for your business.
Lastly, we provided some ideas on how to change the corporate mindset and get your
business colleagues involved and supportive of your scalability projects. Now that
you have a clear understanding of why a problem might exist, how this problem can
negatively affect your efforts to build a scalable platform, and what to do about it, it
is time to focus on the last piece of the puzzle: the business case for scale. After you
have your boss’ and colleagues’ attention and support, wrap the whole thing up by
explaining in clear business related terminology the need for scalability. In this sec-
tion, we are going to cover some ideas on how to accomplish this.

Your business is unique and therefore your business case will need to be tailored
for your platform or application. Through these examples, you should hopefully see
the pattern and how you should be able to relate almost any aspect of your applica-
tion to metrics and goals that the business cares about. The most straightforward
concept is that downtime equals lost revenue, assuming you are past the early stage
of giving away your product and are actually generating revenue. When the site is not
available, the company does not make money. Simply take the projected revenue for
the quarter or month and calculate what that is per hour or minute. This is the
amount associated with the downtime. There are way more complicated methods of
doing this if you are so inclined, but a simple straight line projection is useful to get
the point across.

For a more accurate example of downtime cost calculation, you can use the graph
of your site’s normal daily and weekly traffic. Take last week’s traffic graph, assum-
ing last week was a normal week, and put over top of it the traffic graph depicting
the outage. The amount of area between the two lines should be considered the per-
centage of downtime. This method is particularly useful for partial outages, which
you should have if you follow our advice in Chapter 21, Creating Fault Isolative
Architectural Structures.

In Figure 6.1, AllScale’s HRM Outage Graph, the solid gray line is AllScale’s nor-
mal day’s traffic and the dashed black line is the traffic from yesterday when there

ptg5994185

THE BUSINESS CASE FOR SCALE 115

was an outage of the HRM SaaS system. Johnny, the CTO, has requested that his
operations team pull this graph together in order that they understand the exact cus-
tomer impact of downtime. The outage began at 4:00 PM and lasted until approxi-
mately 9:00 PM when the site was fully recovered. The area between the lines from
4:00 to 9:00 PM would be considered the outage percentage and could be used in the
calculation of downtime and cost associated with it. However, notice the dashed line
from 9:00 PM to 12:00 AM goes much higher than the normal traffic in solid. This is
typical of sites for consumer user bases where there is a pent-up demand for the ser-
vice and a spike usually occurs afterward. Unfortunately, this is a busy time of the
year for AllScale’s HRM system. A lot of its customer base is performing annual eval-
uations and have tight deadlines for getting their evaluations in the system. There
were likely many managers that needed to get personnel files uploaded and had to
stay up late to get their work done. To most accurately account for the cost of the
downtime, this area, highlighted in dark gray, must be added back into the outage
percentage, because it was recovered revenue or recovered service depending on the
actual business model. In this example, the area under the solid gray line is 100% of
the daily traffic; the area between the solid gray line and dashed black line during the
outage, highlighted in light gray, is approximately 27%. The dark gray highlighted
area is approximately 9%. The percentage of missed traffic and potential revenue due
to the outage would be 27% – 9% = 18% of the daily total. Johnny can now take

Figure 6.1 AllScale’s HRM Outage Graph

0

5

10

15

20

25

30

35

40

45

1
2

:0
0

:0
0

 A
M

1
:0

0
:0

0
 A

M

2
:0

0
:0

0
 A

M

3
:0

0
:0

0
 A

M

4
:0

0
:0

0
 A

M

5
:0

0
:0

0
 A

M

6
:0

0
:0

0
 A

M

7
:0

0
:0

0
 A

M

8
:0

0
:0

0
 A

M

9
:0

0
:0

0
 A

M

1
0

:0
0

:0
0

 A
M

1
1

:0
0

:0
0

 A
M

12
:0

0:
00

 P
M

1:
00

:0
0

P
M

2:
00

:0
0

P
M

3:
00

:0
0

P
M

4:
00

:0
0

P
M

5:
00

:0
0

P
M

6:
00

:0
0

P
M

7:
00

:0
0

P
M

8:
00

:0
0

P
M

9:
00

:0
0

P
M

10
:0

0:
00

 P
M

11
:0

0:
00

 P
M

1
2

:0
0

:0
0

 A
M

ptg5994185

116 CHAPTER 6 MAKING THE BUSINESS CASE

this percentage and use it to calculate the cost or impact of the outage, although this
does not take into account the frustration that AllScale’s customers had to put up
with having the system unavailable during peak work hours.

Amazon Outage
As an extreme example of how downtime translates into revenue dollars, let us take a service
such as Amazon and see what its downtime costs are. Now, we do not mean to single Amazon
out in any negative way because it typically has great uptime and almost any other large Inter-
net service has seen equal or more downtime. But Amazon does make a great case study
because it is so large and is a public company (NASD: AMZN).

According to the New York Times technology blog “Bits,” on June 6, 2008, Amazon experi-
enced over an hour outage of its site. Using the expected revenue from Q2 of $4 billion, this
calculates as a straight line projection to $1.8 million in lost sales per hour. One can make the
argument that customers who could not purchase during that hour will come back, but it is also
likely that they made their purchases elsewhere. Even if the company only ultimately lost 50%
or 25% of that revenue, it is still a significant amount. This lost revenue calculation is what you
should be doing for your outages, not only to drive home to your technology team the impor-
tance of keeping the system available but also as a fact to help explain to your business coun-
terparts the cost of not investing in the proper people and projects to keep the site available
and scaling properly.

Another approach to capturing platform issues in terms of business metrics is to
relate it to customer acquisition cost. If your business spends marketing dollars to
attract users to visit the site or sign up, most likely there is a cost associated with each
customer acquired. This way, the marketing team can determine which media offers
the lowest cost per user. When the site is down, the marketing spend does not stop—
usually these campaigns cannot be started and stopped immediately and very rarely
do people think about this until after the fact. Because the marketing continues, users
are still being lured to the site even though they cannot experience the wonders of the
service. When this occurs, it is very unlikely that a customer will ever show back-up
when their first experience was terrible. Downtime can be directly responsible for the
lost customers during the outage. Extending beyond this, if you keep track of return-
ing users, another metric to look at is how many users stop returning after an outage.
If you have 35% of your users returning to the site once per month, watch this metric
post outage. If the numbers drop, you may have just lost those users permanently.

The last idea for describing the outages or potential for outages in business terms
is to translate it to cost within the organization. This can be in terms of operations

ptg5994185

CONCLUSION 117

staff, engineers, or customer support staff, the last being the most immediately
noticeable by the business. When downtime occurs and engineers and operations
staff must attend to it, they are not working on other projects such as customer fea-
tures. A dollar amount can be associated to this by determining the total engineering
budget for salaries and support and associate the number of engineers and time spent
on the outage as a percentage of the total budget. As noted previously, the factor clos-
est to the business would be customer support staff that are either not able to work
due to the support tools being unavailable during the outage or having to handle
extra customer complaints during the outage and for hours afterward. For companies
with large support staffs, this amount of work can add up to significant amounts of
money.

Although determining the actual cost of an outage may be a painful exercise for
the technology staff, it serves several purposes. The first is that it puts in real dollar
values what downtime costs the business. This should be helpful in your arguments
for needing support and staffing for scalability projects. The second purpose is that it
helps educate the technology staff to what it really costs the business to not have the
platform available. This can be a huge motivator to engineers when they understand
how profitability, bonuses, budgets, hiring plans, and so on are all tied together
dependent on the platform.

Conclusion
In this chapter, we wrapped up Part I by pulling together the final link in the scalable
organization chain: how to make the business case for hiring resources, allocating
resources, and staying focused on scalability as a business initiative. We covered the
experiential chasm that exists between most technologists and their business counter-
parts, including most likely the CTO’s boss, and we explored the idea of a business
having a “corporate mindset.” We have given some ideas on how to cross the chasm
and undo the corporate mindset in order that the business be receptive to the need to
focus on scalability, especially from a people and organizational perspective, which
include hiring the right people, putting them in the right roles, demonstrating the nec-
essary leadership and management, as well as building the proper organizational
structure around the teams.

Key Points

• There is an experiential chasm between technologists and other business leaders
due to education and experiences that are missing from most nontechnology
executive’s careers.

ptg5994185

118 CHAPTER 6 MAKING THE BUSINESS CASE

• Technologists must take responsibility for crossing over into the business in
order to bridge the chasm.

• In order to garner support and understanding scaling, initiatives must be put in
terms the business leaders can understand.

• Calculating the cost of outages and downtime can be an effective method of
demonstrating the need for a business culture focused on scalability.

ptg5994185

Part II

Building Processes
for Scale

ptg5994185

This page intentionally left blank

ptg5994185

121

Chapter 7

Understanding Why Processes
Are Critical to Scale

After that, comes tactical maneuvering, than which there is nothing more difficult. The difficulty of tactical maneu-
vering consists in turning the devious into the direct, and misfortune into gain.

—Sun Tzu

In Part II, Building Processes for Scale, we are going to spend some time discussing
processes. As with Part I, Staffing a Scalable Organization, you may be asking your-
self, “What do processes have to do with scalability?” The same answer applies here
as it did with our focus on people, “Process has a lot to do with scalability.” Admit-
tedly, we started with people because we think people are the most important aspect
to building and sustaining a scalable system. Do not think that you can hire great
people and forget about everything else. Undervalue process at the peril of your team,
your system, and yourself.

Great people can only accomplish a limited amount as an individual; they need to
be part of teams in order to accomplish goals beyond what a single individual can
achieve. Working in teams dictates the use of processes that govern, control, suggest,
guide, teach, and advise team members.

In Part II, we are going to spend time explaining various essential processes and
the roles they should play in your organizations, depending on the size, maturity, culture,
and duration of your business. We will cover this in much more detail but we believe
there is a right time and right place for processes and not every process should be a
part of every organization. Some of the processes that we will cover in Part II include

• How to properly control change in your production environment

• What to do when things go wrong or when there is a crisis

• How to design scalability into your products from the beginning

• How to understand and manage risk

ptg5994185

122 CHAPTER 7 UNDERSTANDING WHY PROCESSES ARE CRITICAL TO SCALE

• When to build and when to buy

• How to determine the amount of scale in your systems

• When to go forward with a release and when not to

• When to roll back and how to prepare for that eventuality

Before we dive into the individual processes that will constitute the remaining
chapters in Part II, we will cover, in this chapter, how processes affect scalability, both
positively and negatively. We are going to look first at what is the purpose of processes
in general, and then discuss the importance of coordinating the right amount of pro-
cess rigor or repeatability to the right time in an organization’s life cycle, and wrap
up our focus on the generalities of process with a look at what happens when the
wrong process is implemented. By focusing on these topics, we will derive a causal
link between the ability of an organization to scale to the processes that support it.

The Purpose of Process
As defined by Wikipedia, a business process is a “collection of related, structured
activities or tasks that produce a specific service or product (serve a particular goal)
for a particular customer or customers.”1 These processes can be directly related to
providing a customer with a product or service, such as manufacturing, or can be a
supporting process, such as accounting. The Software Engineering Institute defines
process as what holds together three critical dimensions of organizations: people,
methods, and tools. In their published Capability Maturity Model for Development
v. 1.2, the Software Engineering Institute states that processes “. . . allow you to
address scalability and provide a way to incorporate knowledge of how to do things
better.” Processes allow your teams to react quickly to crisis, determine the root
cause of failures, determine capacity of systems, analyze scalability needs, implement
scalability projects, and many more fundamental needs for a scalable system. These
are vital if you want your system to scale with your growth. As an example, if you
rely on an ad hoc response to restore your service when an outage occurs, you are
going to experience much more downtime than if you have a clear set of steps that
your team should take to respond, communicate, debug, and restore services.

As we discussed in Chapter 5, Management 101, managing is a critical function
for teams to perform efficiently and effectively, which in turn allows them to focus on
the most critical scalability projects as well as properly prioritize work. As important
as managers are, they cannot stand around all day waiting for someone to have a
question about what to do in a certain situation, such as when an engineer is check-
ing in code to the source code repository and unsure of the proper branch. Although

1. Wikipedia: http://en.wikipedia.org/wiki/Business_process.

ptg5994185

THE PURPOSE OF PROCESS 123

it might be helpful to have this sort of management for the engineer, it is not cost effi-
cient. Instead, perhaps the engineering team can decide that bug fixes go into the
maintenance branch and new features go into the main branch. To make sure every-
one on the team knows this, someone might write it up and send it around to the
team, post it on their wiki, or tell everyone about it at their next all-hands meeting.
Congratulations, the team just developed a process. And, that is one of the principle
purposes of processes, to manage people when the manager is not available or it is
not cost-effective for the manager to spend time providing the same guidance to the
team over and over for the same task. Good process supplements management and
augments its reach.

Back to our example of an engineer checking in code to the source code reposi-
tory: What would happen if the engineer did not have a process to reference, could
not find her manager, and did not have a process established for dealing with proce-
dural uncertainties? Assuming she checked all the logical manager hangouts like the
game room, kitchen, and water cooler, she would have to make a decision for herself.
Today, she decides that she should check her bug fix into the maintenance branch.
This seems pretty logical because the branch is called “maintenance” and the bug fix
is maintaining the application. A couple days later, long enough for her to forget
about her decision of where to check in the bug fix, she has been assigned another
bug to fix. She quickly identifies the problem and makes the correction. All ready to
check in the fix, she has the same question: which branch? She again looks for her
manager and cannot find him; he must have a very clever hiding spot in which to
watch his favorite game show. She also cannot seem to remember what she did last
time in this situation. She does remember hearing that code is being promoted from
the main branch tonight and it seems logical that the product team and her boss
would want this fix in as soon as possible. Therefore, she checks in her bug fix to the
main branch and proceeds with her new feature development. See the problem? Yes,
without a clear process, there is room for everyone to make their own decisions
about how to accomplish certain tasks. In some cases, this might be the right thing
for organizations; we’ll talk about too much process later in this chapter. But in most
cases that deal with recurring tasks that everyone should repeat in the same manner, a
process is just the ticket. Two key reasons that we create and maintain processes are
the standardization of how to perform tasks and what to do in the event of proce-
dural uncertainty.

In our consulting practice, we are often faced with teams that mistakenly believe
that the establishment of processes will stifle creativity. The reality is quite different;
in fact, well-placed processes can have just the opposite effect and foster creativity
among team members. For those with little experience working in an environment
where someone has done a great job identifying the proper tasks suitable for processes,
selecting the proper granularity and rigidness of the process, and effectively docu-
menting and disseminating the steps, this may come as a completely counterintuitive

ptg5994185

124 CHAPTER 7 UNDERSTANDING WHY PROCESSES ARE CRITICAL TO SCALE

statement. Let us explain. There is only so much time in each work day and only so
many tasks that your engineers can concentrate on. Equally important, people tend
to only have a limited amount of creativity within them before they must “recharge
their batteries.” If an engineer has to spend time and some amount of creative
thought on menial tasks, we lose that time and creative power that could be spent on
the really important tasks, like designing your new user interface. A well-structured
environment of processes can take away the distractions and leave the engineer time
and energy to focus on being creative.

Now that we have covered the purpose of process, we can focus on how to deter-
mine what is the right process or amount of process for a particular task in your par-
ticular organization. Although processes do help augment management and
standardize repetitive or unclear tasks, not all organizations need or can tolerate the
same amount of process. Just as some organizations are not as efficient, productive,
or able to produce as high of quality products as other organizations, not all organi-
zations are able to handle levels of process and rigor.

CMMI
The origin of the Capability Maturity Model (CMM) in software engineering can be traced back
to a military funded research project at Carnegie-Mellon Software Engineering Institute for a
method of evaluating software subcontractors. Founded as a pure software engineering model,
many CMMs were later developed as a general assessment of the process capability maturity
of many different technology arenas such as systems engineering, information technology, and
acquisitions. The propagation of CMMs gave birth to the Capability Maturity Model Integration
(CMMI) project with the intent of creating a general CMM framework. This framework supports
“constellations,” which are collections of CMMI components. There are currently three constel-
lations: CMMI for Development, CMMI for Services, and CMMI for Acquisitions.

CMMI uses levels to describe an evolutionary path of process improvement described as
either a “capability level” for organizations utilizing continuous improvement or “maturity level”
for those using a staged representation. These levels are shown in Figure 7.1 and described in
Tables 7.1 and 7.2.

Figure 7.1 CMMI Levels

Capability Maturity Model Integrated

Level 1
Performed

Level 2
Managed

Level 3
Defined

Level 4
Quantitatively

Managed

Level 5
Optimizing

Level 0
Incomplete

Continuous
Capability Levels

Level 1
Initial

Level 2
Managed

Level 3
Defined

Level 4
Quantitatively

Managed

Level 5
Optimizing

Level 0
N/A

Staged
Maturity Levels

ptg5994185

RIGHT TIME, RIGHT PROCESS 125

Right Time, Right Process
All organizations are comprised of different people, with different backgrounds, dif-
ferent experiences, different relationships with each other, and different environ-
ments. Therefore, all organizations are different. Even if you left your old job for a
terrific new position and brought all your old buddies with you, you won’t be able to

Table 7.1 Capability Levels

Level
Number

Capability
Level Description

0. Incomplete When a process is not completed or is only partially
completed

1. Performed When a process is performed that satisfies the stated goal of
the process

2. Managed When processes that have basic infrastructure to support and
are retained during times of stress

3. Defined When the standards and procedures are consistent and
described rigorously

4. Quantitatively
Managed

When a process is controlled using statistical or other quanti-
tative techniques

5. Optimizing When processes are improved through incremental and inno-
vative improvements

Table 7.2 Maturity Levels

Level
Number

Maturity
Level Description

1. Initial This first level consists of processes that are characterized as
being reactive and chaotic.

2. Managed In this level, project management has been established and
some amount of process discipline exists.

3. Defined In the third level, processes have been documented and insti-
tutionalized.

4. Quantitatively
Managed

The penultimate level is characterized by the quantitative mea-
surements of processes that are used for improvements.

5. Optimization This level is where processes are continuously improved
based on incremental and innovative advances.

ptg5994185

126 CHAPTER 7 UNDERSTANDING WHY PROCESSES ARE CRITICAL TO SCALE

transport your previous company’s culture. You are all somewhat older now, have
had new experiences in and out of work, have new business peers, and a new office
environment. Regardless of whether you left your old job, even that organization is
forever in flux. People quit, new people get hired, the business climate changes, peo-
ple get promoted, and so on. The same organization two years ago compared to
today is different. There is no stopping the change that is forever taking place.

If all organizations are different and all organizations are in a constant state of
change, what does this mean for an organization’s processes? The answer is that
there is no single right answer when it comes to processes. Each and every process
must be evaluated first for general fit within the organization in terms of its rigor or
repeatability and then specifically for what steps are right for your particular team in
terms of complexity. As an example, when you first founded your company and it
was you and one other engineer with very few customers, the crisis management pro-
cess would have simply been that you get out of bed in the middle of the night and
reboot the server. If you missed the alert, you would reboot it the morning because
there were likely no customers wanting to use your service in the middle of the night.
Using that same process when your team is 50 engineers and you have thousands of
customers would result in pure chaos and lost revenue. You now need to have a pro-
cess that spells out to everyone the necessary steps to take when a significant incident
arises and that process needs to be consistently repeatable.

How Much Rigor
As a guideline for discussing the rigor or repeatability of a process, we like to refer to
the capability and maturity levels from the Capability Maturity Model Integrated
(CMMI) framework. This section is in no way a full or complete explanation of the
CMMI framework, much more information can be found at the Software Engineer-
ing Institute’s site, http://www.sei.cmu.edu. We are introducing this framework as a
way to simply standardize terminology for process improvement and repeatability.
The CMMI levels are an excellent way to express how processes can exist in a num-
ber of states from ill-defined to one that uses quantitative information to make
improvements. These extreme states are marked in Figure 7.2 with the O and the X
points along the gradient depicting the capability and maturity levels.

As introduced in the CMMI sidebar, the levels are used to describe an evolutionary
path of process improvement described as either a “capability level” for organiza-
tions utilizing continuous improvement or “maturity level” for those using a staged
representation. Although it may be idyllic to have all level 5 processes in your busi-
ness, it is unlikely, especially at a startup, that you will have enough resources to
focus on establishing, managing, documenting, measuring, and improving processes
to accomplish this. It is much more reasonable that you should periodically focus on

ptg5994185

RIGHT TIME, RIGHT PROCESS 127

evaluating your process level of maturity and determine if this can and should be
improved given your competing priorities.

To answer the question of where should you focus on process improvement, we
could ask the employees or managers involved whether they need a more repeatable
process, but it is often difficult to know without some yardstick against which to
measure your current behavior or performance. We feel there are some warning signs
or guidelines that you can use to help decide whether the existing capability or matu-
rity level of process is working for your organization or if you should consider
improving the process. These signs are derived from the three purposes of processes.

The first is if there is repetitive management of the same task. Recall that processes
augment the management of our teams and employees; therefore, a sure sign that a
process could be effective is if you or your managers are constantly managing people
through certain tasks. Observe your managers to see if they are spending an inordi-
nate amount of time assisting people in determining which source code repository
branch to check their code into or what steps to take during and after an incident
with the production environment. If they or you are spending time on these again and
again, this is a good sign that you could use some amount of process.

Another sign of the impending need for process improvement is if every engineer
seems to be doing the same task differently. For instance, if one engineer checks bug
fixes into the main branch and another checks them into the maintenance branch and
still others don’t bother checking it in but build packages on their local machine, this
is probably a great place for a process. If you need to standardize people’s behaviors
or actions, consider improving the process as a means to achieve this.

The third sign that you might need some process in your organization is if employ-
ees are being overly burdened by mundane stuff. These distractions take away from
their time, energy, and creativity. Some ways that this might manifest itself would be
first complaining from your teams. Engineers generally are not the type of person to
keep quiet if they feel hindered from performing their jobs or if they feel they have a
better idea of how to accomplish something. Another way this warning sign might
appear would be rushed or poorer quality designs. Having to reinvent the proper way

Figure 7.2 Extremes of Possible Process Levels

Capability Maturity Model Integrated

Level 1
Performed

Level 2
Managed

Level 3
Defined

Level 4
Quantitatively

Managed

Level 5
Optimizing

Level 0
Incomplete

Continuous
Capability Levels

Level 1
Initial

Level 2
Managed

Level 3
Defined

Level 4
Quantitatively

Managed

Level 5
Optimizing

Level 0
N/A

Staged
Maturity Levels

X

ptg5994185

128 CHAPTER 7 UNDERSTANDING WHY PROCESSES ARE CRITICAL TO SCALE

to set up a development environment for every sprint—because every engineer is
doing it differently and, depending on who you are working with, you have to com-
ply with their practices—takes way more time than should be required. Establishing a
more mature process around environment variables, development databases, and so
on would save a lot of engineering time and energy.

How Complex
The second part of establishing the right process at the right time for your organiza-
tion is the level of complexity of the process. As we discussed previously, organiza-
tions are constantly changing, new employees are added, others leave, people mature,
people learn lessons, and sometimes they forget lessons. Choosing the right level of
process complexity is not a matter of determining it forever, but rather choosing the
right level of complexity for today. Tomorrow, this might need to be reevaluated. To
restate the problem statement, you need to determine the right amount of process
complexity for your organization at this time.

We have two suggestions for ways to determine the right amount of process com-
plexity. Before we explore these two methods, let’s provide an example of the differ-
ences in complexity of processes. In Figure 7.3, we see another gradient, this time it is
depicting complexity from simple to complex with two examples of a process for
incident management. The first one on the left depicts the very simple three-step pro-
cess that is most applicable for a small startup with just the couple of engineers. The
process on the right is a much more complex process that is more applicable to a
larger organization that has a staffed operations team. As depicted by the gradient,
there can be a large variety of levels of complexity for a given process.

Now that we understand how there can be many different variations on the same
process, we need to explore some methods of how to determine which of these multi-

Figure 7.3 Process Complexity

Page team1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

Establish phone bridge
Assign problem owner
Begin documenting steps
Initiate brainstorming session
Communicate with customers
Solve crisis
Communicate with customers
After action review
Determine root cause
Fix root cause

1.
2.
3.

Notify partner
Solve crisis
Post on blog

ComplexSimple

ptg5994185

RIGHT TIME, RIGHT PROCESS 129

tudes is right for our organization. We mentioned that we have two suggested meth-
ods of determining the process level; these have worked well for us in the past and
can be used in combination or separately:

• The first is to start with the smallest amount of process complexity and itera-
tively move to the more complex and sophisticated processes periodically. The
advantage of this is that there is very little chance of overwhelming the team
with the new process because it is likely to be much simpler than what is
required or that they can tolerate (remember culture is a factor in how much
process should exist on a team). The disadvantages of this approach are that it
takes time to narrow in on the optimal amount of process, it requires that you
remember to revisit the process periodically, and it requires you to change the
process that people are used to on a frequent basis. If these disadvantages are
too much, you may consider using our second method.

• The second method of narrowing in on the optimal process for your organiza-
tion is to let the team decide for itself. This approach can either be democratic,
where everyone gets a voice, or representative, where a chosen few speak for the
group. Either way, this approach will get you closer to the optimal amount of
process much quicker than the preceding small to large approach. It also has the
advantage that it makes the team feel a sense of ownership making the adoption
of the process much easier.

You can choose to implement one method or the other to find your optimal pro-
cess, or you can mix them together. In a mixed method, you could have the team
decide on the process and then step it down slightly in order to ensure the adoption is
even quicker. If the team feels they need a very strict branching process, you could
suggest that to start you would like them to ease up just slightly and allow for some
flexibility on the naming convention and timing of pulling branches just until every-
one is familiar with the process. After the process is fully established, after a release
or two, modify the process and adopt the original suggestions for naming conven-
tions and timing.

Johnny Fixer, the new CTO at AllScale, was facing a process problem with his
operations staff headed up by the Director of Infrastructure and Operations, Tom
Harde. Tom had been around since the early days of AllScale and had provisioned
and racked many of the original servers himself. As Tom brought on board other sys-
tems administrators to help with the work load, he didn’t revisit the provisioning
process for getting servers ready to load the HRM software. Still today with four sys-
tems administrators, this work is done ad hoc with no defined tasks or established
policies. This has caused numerous problems from missing deadlines for having hard-
ware ready for deployment to bad configurations that took hours of engineering time
to debug. Johnny asked Tom to fix this process and explained the two approaches
that had worked best for him in the past, either start with the smallest process that

ptg5994185

130 CHAPTER 7 UNDERSTANDING WHY PROCESSES ARE CRITICAL TO SCALE

meets the goals or let the team decide. Tom was skeptical but liked the second
approach best and decided that he would gather the systems administrators in a room
for an afternoon, allowing them to figure out the best process. Tom thought at least
one of the systems administrators would derail the meeting with a rant about hating
process. To his surprise, the senior systems administrator was completely on board
and as soon as he threw his vote behind the establishment of a standard process,
everyone else was eager to help. Within a few short hours, they had decided on a set
of standard steps that they would all adhere to for provisioning equipment. Although
the steps were well defined, they provided enough leeway to allow the administrators
to continue using some of their favorite scripts as long as the goals were met.

When Good Processes Go Bad
Until this point, we have discussed all the noble attributes of processes and, as much
as we would like to believe that there is no downside, the reality is that processes can
cause issues themselves. Similar to how a poorly designed monitoring system can
cause downtime on the production site due to load issues, processes can, when the
complexity and level of rigor are not carefully considered, cause issues within the
organization. These challenges are generally not the fault of the processes themselves,
or even due to having a process; rather, they are due to the fit between the process
and the team. You see this often with technology, designs, and architectures. There
are almost no purely wrong technologies: flat network (sure, we can find a use for that),
stateful apps (yes, even that can have a purpose), singletons (yes, they have a place in
our world). But use these in the wrong place and you’re sure to have problems.

One of the biggest problems with a bad fitted process is the culture clash. When a
Wild West culture meets a very complex hundred-step process, sparks are sure to fly.
The result is that the teams will either ignore the process, in which case it is actually
causing more problems than it is helping, or they will spend a lot of time complaining
about the process. Both of these results are probably worse than not having the pro-
cess at all. If you witness this on your teams, you must act quickly—the process is not
only hurting the team in the short term but it is likely causing even more of a buildup
in the resistance to process or change, which will make implementing any process in
the future more difficult.

Another of the big problems associated with poor fit between the organization and
the process is the dreaded “b” word: bureaucracy. This term is defined by the Merriam-
Webster Online Dictionary as “a system of administration marked by officialism, red
tape, and proliferation.” The last thing we want to do with process is create red tape
or officialism. The result of bureaucracy as you might expect is lowered productivity
and poorer morale. As we mentioned before, engineers love challenges and thrive on

ptg5994185

CONCLUSION 131

being asked to do difficult things. When they are so hindered as to be unable to suc-
ceed, it is easy for engineers to become demoralized. This is why engineers are typi-
cally so ready to speak out about things that hinder their ability to perform their jobs
effectively. The challenge for you as a manager and leader is to decide when the com-
plaining is just a matter of not liking change or an engineer being a curmudgeon
instead of a real problem that needs to be addressed. The best way to tell the differ-
ence is to know the team and how it generally reacts.

To prevent the culture clash and bureaucracy, or in the event that you already have
them, there are three key areas to focus on. The first is listening to your teams. When
you have learned the nuances of each team member’s personality, including those of
your managers if you have a multilayered organization, you will be able to tell when
something is really bothering them versus when something is just a mild disturbance.

The second is implementing the process using one of the two methods we
described earlier. Either move small to large on the process continuum or let the team
decide what the right amount of process is to establish. Either or both of these, if you
elect to use them in conjunction with each other, should result in a good fit between
the team and their processes.

The third area to focus on is performing periodic maintenance on your processes.
As we have repeatedly stated, there is no right or wrong process, just right processes
for the right organization at the right time. And, organizations change over time.
This implies that as the organization changes, processes must be reevaluated to
ensure they are still the optimal process. Performing periodic maintenance on the
process is critical to ensure it does not turn into a culture clash or start to become
bureaucratic.

Conclusion
We have covered quite a bit about processes in general in this chapter. We started by
looking at the purpose of processes and determined that they serve three general pur-
poses: they augment the management of our teams and employees, they standardize
employee’s actions while performing repetitive tasks, and they free employees up
from daily mundane decisions to concentrate on grander, more creative ideas. With-
out processes such as crisis management or capacity planning and without them fit-
ting our teams well in terms of complexity and repeatability, we cannot scale our
systems effectively.

We then took a look at how there are many variations in terms of complexity and
process maturity that exist. We also concluded that organizations are all different and
they are even different from themselves over time because they change as people get
hired or leave or mature or learn. The real challenge is fitting the right amount of the

ptg5994185

132 CHAPTER 7 UNDERSTANDING WHY PROCESSES ARE CRITICAL TO SCALE

right process to the organization at the right time. We offered two suggestions on
how to ensure you achieve this goal. The first idea was to start off with a very low
amount of process and then slowly start increasing the granularity and stricter defini-
tions around the process. This manner of wading into the process can be effective for
easing one’s way into the world of processes. The other manner is to let the team
decide what the right process is for a given task. Assign either one person to figure
this out or ask the entire team to sit in a room for a couple hours to make the decision.

We finished off the chapter by discussing the problems that can arise for ill-fitting
processes. These include culture clashes and bureaucracy. We gave some warning
signs to look for to identify these problems and some corrective actions to take to
resolve them. We also provided some ideas on how to avoid these problems through
periodic maintenance of your processes. Reviewing the fit for each process on an
annual basis or as the organization undergoes a significant change such as a large
amount of new hires will help ensure you have the right process for the organization
at the right time.

The rest of Part II of this book is going to deal with the details of specific processes
that we feel are very important for scalability. For each one of these, you should
remember the lessons learned in this chapter and think about how this would affect
the way to introduce and implement each process.

Key Points

• Processes, such as application design or problem resolution, are a critical part of
scaling an application.

• Processes assist in management tasks and standardization, and free employees
up to focus on more creative endeavors.

• There is a multitude of process variations that exist to choose from for almost
any given process.

• Determining to implement any process at all is the first step. After that has been
decided, next is deciding the optimal amount of process to implement.

• There are two suggested methods for determining the optimal amount of pro-
cess: migrating from small to large through periodic changes or let the teams
decide on the right amount.

• A bad fit between a process and an organization can result in culture clashes or
bureaucracy.

• Avoid problems between processes and organizations by letting the team deter-
mine the right amount of process, or start slowly and ramp up over time.

• Maintenance of processes is also critical to ensure organizations do not outgrow
processes.

ptg5994185

133

Chapter 8

Managing Incidents and
Problems

Again, if the campaign is protracted, the resources of the State will not be equal to the strain.

—Sun Tzu

The management of issues and problems is critical to creating a highly scalable plat-
form or system. This chapter describes the bare minimum processes that all compa-
nies must have to help correctly resolve production incidents and minimize the rate at
which they reoccur. Recurring incidents are the enemy of scalability. Each time we
allow an incident with the same root cause to recur in our production environments,
we steal time away from our teams that would be better used developing systems and
features that maximize shareholder value. This theft of engineering time runs counter
to our scalability goals as we are increasing the cost of producing our service or prod-
uct when the goal of scalability is to produce more with less.

Our past performance is the best indicator we have of our future performance,
and our past performance is best described by the incidents we’ve experienced and
the underlying problems causing those incidents. To the extent that we currently have
problems scaling our systems to meet end-user demand, or concerns about our ability
to scale these systems in the future, our recent incidents and problems are very likely
great indications of our current and future limitations. By defining appropriate pro-
cesses to capture and resolve incidents and processes, we can significantly improve
our ability to scale. Failing to recognize and resolve our past failures means a failure
to learn from our past mistakes in architecture, engineering, and operations. Failing
to recognize past mistakes and learn from them with the intent of ensuring that we
do not repeat them is disastrous in any field or discipline. For that reason, we’ve ded-
icated a chapter to incident and problem management.

Throughout this chapter, we will rely upon the United Kingdom’s Office of Gov-
ernment Commerce (OGC) Information Technology Infrastructure Library (ITIL) for
definitions of certain words and processes. The ITIL and the Control Objectives for

ptg5994185

134 CHAPTER 8 MANAGING INCIDENTS AND PROBLEMS

Information and related Technology (COBIT) created by the Information Systems
Audit and Control Association are the two most commonly used frameworks for
developing and maturing processes related to managing the software, systems, and
organizations within information technology. This chapter is not meant to be a com-
prehensive review or endorsement of either the ITIL or COBIT. Rather, we try to
summarize some of the most important aspects of the parts of these systems as they
relate to managing incidents and their associated problems and identify the portions
that you absolutely must have regardless of the size or complexity of your organiza-
tion or company.

Whether you are a large company expecting to complete a full implementation of
either the ITIL or COBIT or a small company looking for a fast and lean process to
help identify and eliminate recurring scalability related issues, the following are abso-
lutely necessary:

• Recognize the difference between incidents and problems and track them
accordingly.

• Follow an incident management life cycle (such as DRIER identified shortly) to
properly catalog, close, report on, and track incidents.

• Develop a problem management tracking system and life cycle to ensure you are
appropriately closing and reacting to scalability related problems.

• Implement a daily incident and problem review to support your incident and
problem management processes.

• Implement a quarterly incident review to learn from past mistakes and help
identify issues repeatedly impacting your ability to scale.

• Implement a robust postmortem process to get to the heart of all problems.

What Is an Incident?
The ITIL definition of an incident is “Any event which is not part of the standard
operation of a service and which causes, or may cause, an interruption to, or a reduc-
tion in, the quality of that service.” That definition has a bit of “government speak”
in it. Let’s give it a more easily understood meaning of “Any event that reduces the
quality of our service.”1 An incident here then could be a downtime related event, an
event that causes slowness in response time to end users, or an event that causes
incorrect or unexpected results to be returned to end users.

Issue management, as defined by the ITIL, is “to restore normal operations as
quickly as possible with the least possible impact on either the business or the user, at

1. ITIL Open Guide, Incident Management portion. http://www.itilibrary.org/index.php?page=
incident_management.

ptg5994185

WHAT IS A PROBLEM? 135

a cost-effective price.” Thus, management of an issue really becomes the management
of the impact of the issue. We love this definition and love the approach as it separates
cause from impact. We want to resolve an issue as quickly as possible, but that does
not necessarily mean understanding its root cause. Therefore, rapidly resolving an inci-
dent is critical to the perception of scale, as once a scalability related incident occurs,
it starts to cause the perception (and of course the reality) of a lack of scalability.

Now that we understand that an incident is an unwanted event in our system that
impacts our availability or service levels and that incident management has to do
with the timely and cost-effective resolution of incidents to force the system into per-
ceived normal behavior, let’s discuss problems and problem management.

What Is a Problem?
The ITIL defines a problem as “the unknown cause of one or more incidents, often
identified as a result of multiple similar incidents.” The ITIL further defines a
“known error” as an identified root cause of a problem. Finally, “The objective of
Problem Management is to minimize the impact of problems on the organization.”2

Again, we can see the purposeful separation of events (incidents) and their causes
(problems). This simple separation of definition in incident and problem helps us in
our everyday lives by forcing us to think about their resolution differently. If for
every incident we attempt to find root cause before restoring service, we will very
likely have lower availability than if we separate the restoration of service from the
identification of cause. Furthermore, the skills necessary to restore service and man-
age a system back to proper operation may very well be different from those neces-
sary to identify root cause of any given incident. If that is the case, serializing the two
processes not only wastes engineering time but further destroys shareholder value.

Take, for example, the case that a Web site makes use of a monolithic database
structure and is unavailable in the event that the database fails. This Web site has a
database failure where the database simply crashes and all processes running the
database die and produce varying core files during its peak traffic period from 11
AM to 1 PM. One very conservative approach to this problem may be to say that you
never restart your database until you know why it failed. This could take hours and
maybe even days while you go through log and core files and bring in your database
vendor to help you analyze everything. The intent is obvious—you don’t want to
cause any data corruption in restarting the database.

But most databases these days can recover from nearly any crash without significant
data hazards. A quick examination could tell you that no processes are running, that
you have several core and log files, and that a restart of the database may actually

2. ITIL OPEN Library. http://www.itilibrary.org/index.php?page=problem_management.

ptg5994185

136 CHAPTER 8 MANAGING INCIDENTS AND PROBLEMS

help you understand what type of problem you are experiencing. Maybe you start up
the database and run a few quick “health checks” like the insertion and updating of
some dummy data to verify that things are likely to work well, then put the database
back into service. Obviously, this approach, assuming the database will restart, is
likely to result in less downtime associated with scalability related events than serial-
izing the management of the problem (identifying root cause) and the management of
the incident (restoration of service).

We’ve just highlighted a very real conflict between these two processes that we’ll
address later in this chapter. Specifically, this problem is that incident management
(the restoration of service) and problem management (the identification and resolu-
tion of root cause) are often in conflict with each other. The rapid restoration of ser-
vice often conflicts with the forensic data gathering necessary for problem
management. Maybe the restart of servers or services causes the destruction of criti-
cal data. We’ll discuss how to handle this later. For now, recognize that there is a ben-
efit in thinking about the differences in actions for the restoration of service and the
resolution of problems.

The Components of Incident Management
The ITIL defines the activities essential to the incident management process as

• Incident detection and recording

• Classification and initial support

• Investigation and diagnosis

• Resolution and recovery

• Incident closure

• Incident ownership, monitoring, tracking, and communication

Implicit to this list is an ordering such that nothing can happen before incident
detection, classification comes before investigation and diagnosis, resolution and
recovery must happen only after initial investigation, and so on. We completely agree
with this list of necessary actions, but if you are not an organization strictly governed
by the OGC and you do not require any OGC related certification, there are some
simple changes you can make to this order that will speed issue recovery. First, we
wish to create our own simplified definitions of the preceding activities.

Incident detection and recording is the activity of identifying that there is an inci-
dent affecting users or the operation of the system and then recording it. Both of
these are very important, and many companies have quite a bit they can do to make
both actions better and faster. Incident detection is all about the monitoring of your
systems. Do you have customer experience monitors in place to identify problems

ptg5994185

THE COMPONENTS OF INCIDENT MANAGEMENT 137

before the first customer complaint? Do they measure the same things customers do?
It is very important in our experience to perform actual customer transactions within
your system and measure them over time both for the expected results (are they
returning the right data?) and for the expected response times (are they operating as
quickly as you would expect?).

A Framework for Maturing Monitoring
Far too often, we see clients attempting to implement monitoring solutions intended to tell them
the root cause of any potential problem they might be facing. This sounds great, but this moni-
toring panacea rarely works and the failures are largely attributed to two issues:

• The systems they are attempting to monitor aren’t designed to be monitored.

• The company does not approach monitoring in a planned, methodical evolutionary (or
iterative) fashion.

You should not expect a monitoring system (or incident identification system) to correctly
identify the faults within your platform if you did not design your platform to be monitored. The
best designed systems build the monitoring and notification of incidents into their code and
systems. As an example, world class real-time monitoring solutions have the capability to log
the times and errors for each internal call to a service. Here, the service may be a call to a data
store or another Web service that exposes account information, and so on. The resulting times,
rates, and types of errors might be plotted in real time in a statistical process control chart
(SPC) with out-of-bound conditions highlighted as an alert on some sort of monitoring panel.

Designing a system to be monitored is necessary but not sufficient to identify and resolve
incidents quickly. You also need a system that identifies issues from the perspective of your
customer and helps to identify the underlying system causing that problem.

Far too many companies bypass the step of monitoring their systems from a customer per-
spective. Build or incorporate a real time system that interacts with your platform in the same
fashion as your customers and performs the most critical transactions. Throw an alert when the
system is outside of internally generated service levels for response time and availability.

Next, implement something to help identify which system is causing the incident. In the
ideal world, you will have developed a fault isolative architecture to create failure domains that
will isolate failures and help you determine where the fault is occurring (we discuss failure
domains and fault isolative architectures in Chapter 21, Creating Fault Isolative Architectural
Structures). Failing that, you need monitoring that can help indicate the rough areas of concern.
These are typically aggregated system statistics such as load, CPU, or memory utilization.

Note that our first step here is not only issue identification but also the recording
of the issues. Many companies that correctly identify issues don’t immediately record

ptg5994185

138 CHAPTER 8 MANAGING INCIDENTS AND PROBLEMS

them before taking other actions or don’t have systems implemented that will record
the problems. The best answer is to have an automated system that will immediately
record the issue and its timestamp, leaving operators free to handle the rest of the
process.

The ITIL identifies classification and initial support as the next step, but we
believe that in many companies this can really just be the step of “getting the right
people involved.” Classification is an activity that can happen in hindsight in our
estimation—after the issue is resolved.

Investigation and diagnosis is followed by resolution and recovery. Put simply,
these are the steps of identifying what has failed and then taking the appropriate
steps to put that service back into proper working order. As an example, they may be
the steps that determine that application server 5 is not responding (investigation and
diagnosis), at which point we immediately attempt a reboot (a resolution step) and
the system recovers (recovery).

Incident closure is the logging of all information associated with the incident. The
final steps include assigning an owner for follow-up, communication, tracking, and
monitoring.

We often recommend an easily remembered acronym when implementing incident
management (see Figure 8.1). Our acronym, although not supported by the ITIL,
supports ITIL implementations and for smaller companies can be adopted with or
without an ITIL implementation. The acronym is DRIER and it stands for

• Detect an incident through monitoring or customer contact

• Report the incident, or log it into the system responsible for tracking all inci-
dents, failures, etc.

• Investigate the incident to determine what should be done

Figure 8.1 DRIER Process

Incident
Identified by
Customer or

Monitors

Log Incident

Start Time,
Services
Affected

Initial and
Ongoing

Investigation

Log Actions

Escalate Based
on Impact and

Time

Review in Daily
and Quarterly
Status Meeting

DETECT REPORT INVESTIGATE ESCALATE RESOLVE

Ready
to

Resolve
?

Yes

No

End Time and
Actions

Incident Management System Entries

ptg5994185

THE COMPONENTS OF PROBLEM MANAGEMENT 139

• Escalate the incident if not solved in a timely fashion

• Resolve the incident by restoring end-user functionality and log all information
for follow up

In developing DRIER, we’ve attempted to make it easier for our clients to under-
stand how issue management can be effectively implemented. Note that although
we’ve removed the classification of issues from our acronym, we still expect that
these activities are being performed in order to develop data from the system and
help inform other processes. We recommend that the classification of issues happens
within the Daily Incident Management meeting identified later in this chapter.

The Components of Problem Management
The ITIL defined components of problem management are a little more difficult to nav-
igate than those for incident management. The ITIL definitions define a number of pro-
cesses that control other processes and in anything but a large organization this can be
a bit cumbersome. We attempt to highlight steps that will help in the resolution of
problems within this section without the deep treatment of all of the supporting pro-
cesses. Remember that problems are the causes of incidents and as such, within the
context of scalability, they are likely to be the reasons you are not scaling to meet end
customer demand, are not scaling cost effectively, or will not scale easily in the future.

Problems in our model start concurrent with an issue and last until the root cause
of an incident is identified. As such, most problems last longer than most incidents,
though a problem can be the cause of many incidents.

Just as with incidents, we need a type of workflow that supports our problem res-
olutions. We need a system or place to keep all of the open problems and ensure that
they can be associated with the incidents they cause. We also need to be able to track
these problems to closure identified in the ideal world by the fix being applied to
whatever system is experiencing the incident. Our reasoning for this definition of
“closure” is that a problem exists until it no longer causes incidents. This meaning is
the meaning holding the most value for our shareholders as they have a very high
expectation of us and our teams in the maximization of their value.

In our mind, problems are either small enough to be handled by a single person or
large enough that they require a team to resolve them. Both are similar in that the
workflow and closure criteria remain the same, but they differ in the amount of
involvement both from individual contributors and management. Small problems can
be handed to a single person, and when ready for closure, they can go through what-
ever QA and testing criteria is appropriate and then validated as closed by the appro-
priate management or owner of the system experiencing the incidents and problems.

Larger problems are more complex and need specialized processes to help ensure
rapid resolution. A large problem may be the subject of a postmortem (described

ptg5994185

140 CHAPTER 8 MANAGING INCIDENTS AND PROBLEMS

later in this chapter), which in turn will drive another of investigative or resolution
action items to individuals. The outcome of these action items should be reviewed on
a periodic basis, either by a dedicated team of project managers responsible for prob-
lem resolution, by a manager with responsibility for tracking problem resolution, or
within the confines of a meeting dedicated to handling incident tracking and problem
resolution such as our recommended daily incident meeting.

Resolving Conflicts Between Incident and Problem Management
We previously mentioned an obvious and very real tension between incident manage-
ment and problem management. Very often, it is the case that the actions necessary to
restore a system to service will potentially destroy evidence necessary to determine
root cause (problem resolution). Our experience is that incident resolution (the resto-
ration of service) should always trump root cause identification unless an incident
has a high frequency of recurrence without root cause and problem resolution.

That said, we also believe it is important to have thought your approach through
before you are in the position of needing to make calls on when to restore service and
when to continue root cause analysis. We have some suggestions:

• Determine what needs to be collected by the system before system restoration.

• Determine how long you are willing to collect diagnostic information before
restoration.

• Determine how many times you will allow a system to fail before you require
that root cause analysis is more important than system restoration.

• Determine who should make the decision as to when systems should be restored
if there is a conflict (who is the R and who is the A).

If an incident occurs and you don’t get a good root cause from it during the prob-
lem management process, it is wise to determine the preceding for that incident in
addition to ensuring that you clearly identify all of the people who should be
involved the next time the incident happens to get better diagnostics about the inci-
dent more quickly.

Incident and Problem Life Cycles
There is an implied life cycle and relationship between incidents and problems. An
incident is open or ongoing until the system is restored. This restoration of the system
may cause the incident to be closed in some life cycles, or it may move the incident to
“resolved” in other life cycles. Problems are related to incidents and are likely opened

ptg5994185

IMPLEMENTING THE DAILY INCIDENT MEETING 141

at the time that an incident happens, potentially “resolved” after root cause is deter-
mined, and “closed” after the problem is corrected and verified within the produc-
tion environment. Depending upon your approach, incidents might be closed after
service is restored, or several incidents associated with a single problem might not be
finally closed until their associated problems are fixed.

Regardless of what words you associate to the life cycles, we often recommend the
following simple phases be tracked in order to collect good data about incidents,
problems, and what they cost you in production:

Incident Life Cycle

Open Upon an incident or when an event happens in production

Resolved When service is restored

Closed When the associated problems have been closed in production

Problem Life Cycle

Open When associated to an incident

Identified When a root cause of the problem is known

Closed When the problem has been “fixed” in production

Our approach here is to ensure that incidents remain open until the problems that
cause them have root causes identified and fixed in the production environment.
Note these life cycles don’t address the other data we like to see associated with inci-
dents and problems, such as the classifications we recommend adding in the Daily
Incident Meeting that follows.

We recommend against reopening incidents as it makes it more difficult to query
your incident tracking system to identify how often an incident reoccurs. That said,
having a way to “reopen” a problem is useful as long as you can determine how often
you reopen the problem. Having a problem reoccur after it was thought to be closed
is an indication that you are not truly finding root cause and is an important data
point to any organization. Consistent failure to correctly identify root cause results in
continued incidents and is disastrous to your scalability initiatives as it steals time
away from your organization, causes repeated failures for your customers and is dilu-
tive to shareholder wealth and all other initiatives having to do with high availability
and an appropriate quality of service for your end users.

Implementing the Daily Incident Meeting
We previously discussed the Daily Incident Meeting or Daily Incident Management
Meeting. This is a meeting and process we encourage all of our clients to use and
adopt as quickly as possible. This meeting occurs daily in most high transaction and

ptg5994185

142 CHAPTER 8 MANAGING INCIDENTS AND PROBLEMS

rapid growth companies and serves to tie together the incident management process
and the problem management process.

All incidents from the previous day are reviewed during this meeting to assign
ownership of problem management to an individual, or if necessary a group. The fre-
quency with which a problem occurs as well as its resulting impact serves to prioritize
the problems to be root caused and fixed. We recommend that incidents be given
classifications meaningful to the company within this meeting. Classifications may
include severity, systems affected, customers affected, and so on. Ultimately, the clas-
sification system employed should be meaningful in future reviews of incidents to
determine impact and areas of the system causing the company the greatest pain.
This last point is especially important to identify scalability related issues throughout
the system.

Additionally, the open problems are reviewed. Open problems are problems asso-
ciated with incidents that may be in the open or identified state but not completely
closed (problem not root caused and fixed in the production environment). The prob-
lems are reviewed to ensure that they are prioritized appropriately, that progress is
being made in identifying their cause, and that no help is required of the owners
assigned the problems. It may not be possible to review all problems in a single day; if
that is the case, a rotating review of problems should start with the highest priority
problems (those with the greatest impact) being reviewed most frequently. Problems
should also be classified in this meeting in a manner consistent with business need
and indicative of type of problem (e.g., internal versus vendor-related), subsystem
(e.g., storage, server, database, login application, buying application, and so on) and
type of impact (e.g., scalability, availability, response time, and so on). This last clas-
sification is especially important to be able to pull out meaningful data to help inform
our scale efforts in processes and meanings described later in this portion of the
book. Problems should inherit the impact determined by their incidents, including the
aggregate downtime, response time issues, and so on.

Let’s pause to review the amount of workflow we’ve discussed thus far in this sec-
tion. We’ve identified the need to associate incidents with systems and other classifi-
cations, the need to associate problems with incidents and still more classifications,
and the need to review data over time. Furthermore, owners need to be assigned at
least to problems and potentially to incidents and status needs to be maintained for
everything. Most readers have probably figured out that a system to aid in this collec-
tion of information would be really useful. Most open source and third-party “prob-
lem ticketing” solutions have a majority of this functionality enabled with some small
configuration right out of the box. We don’t think you should wait to implement an
incident management process, a problem management process, and a daily meeting
until you have a tracking system. However, it will certainly help if you work to put a
tracking system in place shortly after the implementation of these processes.

ptg5994185

THE POSTMORTEM PROCESS 143

Implementing the Quarterly Incident Review
No set of incident and problem management processes would be complete without a
process of reviewing their effectiveness and ensuring that they are successful in elimi-
nating recurring incidents and problems.

We mentioned earlier in “Incident and Problem Life Cycles” that you may find
yourself incorrectly identifying root cause for some problems. This is almost guaran-
teed to happen to you at some point and you need to have a way for determining
when it is happening. Is the same person incorrectly identifying root cause? This may
require some coaching of the individual, a change in the person’s responsibilities, or
the removal of the person from the organization. Is the same subsystem consistently
being misdiagnosed? If so, perhaps you have insufficient training or documentation
on how the system really behaves. Are you consistently having problems with a single
partner or vendor? If so, you may need to implement a vendor scorecard process or
give the vendor other performance related feedback.

Additionally, to ensure that your scalability efforts are applied to the right systems,
you need to review past system performance and evaluate the frequency and impact
of past events on a per system or subsystem basis. This evaluation helps to inform the
prioritization for future architectural work and becomes an input to processes such
as the Headroom Process or 10x process that we describe in Chapter 11, Determin-
ing Headroom for Applications.

The output of the quarterly incident review also gives you the data that you need
to define the business case for scalability investments in Chapter 6, Making the Busi-
ness Case. Being able to show the business where you are going to put your effort
and why, prioritized by impact, is a powerful way of securing the resources necessary
to run your systems and maximize shareholder wealth. Furthermore, using that data
to paint the story of how your efforts are resulting in fewer scalability associated out-
ages and response time issues makes the case that past investments are paying divi-
dends and helps give you the credibility you need to continue doing a good job.

The Postmortem Process
Earlier in this chapter, we identified that some large problems require a special
approach to help resolve them. Most often, these large problems will require a cross-
functional brainstorming meeting, often referred to as a postmortem or after action
review meeting. Although the postmortem meeting is valuable in helping to identify
root cause for a problem, if run properly, it can also help identify issues related to
process and training. It should not be used as a forum for finger pointing.

ptg5994185

144 CHAPTER 8 MANAGING INCIDENTS AND PROBLEMS

The first step in developing a postmortem process is to determine for what size of
an incident or group of incidents a postmortem should be required. Postmortems are
very useful but costly events as you are taking several people away from their assigned
tasks and putting them on the special duty of helping to determine what failed and
what can work better within a system, process, or organization. When thinking back
to our section on metrics and measurements within Chapter 5, Management 101, the
use of people in a postmortem would reduce our engineering efficiency metric as they
would be spending hours away from creating product and scaling systems. We want
to use the postmortem on items that have hugely and negatively impacted us, but not
on every single incident we face (unless those incidents are all large).

The input to the postmortem process is a timeline that includes data and time-
stamps leading up to the end-user incident, the time of the actual customer incident,
all times and actions taken during the incident, and everything that happened up
until the time of the postmortem. Ideally, all actions and their associated timestamps
have been logged in a system during the restoration of the service, and all other
actions have been logged either in the same system or other places to cover what has
been done to collect diagnostics and fix the root cause. Logs should be parsed to grab
all meaningful data leading up to the incidents with timestamps associated to the col-
lected data.

The attendees of the postmortem should consist of a cross-functional team from
software engineering, systems administration, database administration, network
engineering, operations, and all other technical organizations that could have valuable
input like capacity planning. A manager trained in facilitating meetings and who also
has some technical background should be assigned to run the meeting. Figure 8.2
introduces the process that the team should cover during the postmortem meeting.

Figure 8.2 Example Postmortem Process

Generate
Initial

Incident
Timeline

Initial
Incident
Timeline

Discuss and
Augment
Timeline

Assemble
Team

Augmented
Timeline

Identify Issues
Using Timeline

Issues List

Assign Actions
and Owners

Enter Problems
into Problem
Management

System

Review in Daily
and Quarterly
Status Meeting

Problem
Management

System

Timeline Phase Issue Phase Action Phase
After

Postmortem
Before

Postmortem

ptg5994185

THE POSTMORTEM PROCESS 145

The first step in the postmortem process is to cover the initial timeline and ensure
that it is complete. We call this the Timeline Phase of the postmortem. Attendees of
the postmortem might identify that critical dates, times, and actions are missing. For
instance, the team might identify that an alert from an application was thrown and
not acted upon two hours before the first item identified in the initial incident time-
line. Note that during this phase of the process only times, actions, and events should
be recorded. No problems or issues should be identified or debated.

The next step in the postmortem meeting is to cover the timeline and identify
issues, mistakes, problems, or areas where additional data would be useful. We call
this phase the Issue Phase. Each of these areas is logged as an issue, but no discussion
over what should happen to fix the issue happens until the entire timeline is discussed
and all of the issues are identified. The facilitator of the meeting needs to ensure that
she is creating an environment in which all ideas and concerns over what might be
issues are encouraged without concern for retribution or retaliation. She should also
ensure that no reference to ownership is made. For instance, it is inappropriate in a
postmortem to say, “John ran the wrong command there.” Instead, the reference
should be “at 10:12 AM, command A was incorrectly issued.” Ownership can be
identified later by management if there is an issue with someone violating company
policy, repeatedly making the same mistake, or simply needing some coaching. The
postmortem is not meant to be a public flogging of an individual and if it is used as
such a forum, the efficacy of the process will be destroyed.

After a first run through the timeline is made and an issues list generated, a second
pass through the timeline should be made with an eye toward whether actions were
taken in a timely manner. For instance, let’s consider the case where a system starts to
exhibit high CPU utilization at 10 AM and no action is taken. At noon, customers
start to complain of slow response times. A second pass through the timeline might
result in someone indicating that the early indication of CPU might be correlated
with slow response times later and an issue generated indicating as such.

After a complete list of issues is generated from at least one and preferably two
passes through the timeline, we are ready to begin the creation of the task list. This
final phase is called the Action Phase of the postmortem. The task list is generated
from the issues list with at least one task identified for each issue. Where a specific
action to fix some issue can’t be agreed upon by the team, an analysis task can be cre-
ated to identify additional tasks to solve the issue.

After the task list is created, owners should be assigned for each task. Where neces-
sary, use the RASCI methodology outlined earlier to clearly identify who is responsible
for completing the task and who is the Approver of the task, and so on. Attempt to use
the SMART criteria for the tasks, making them specific, measurable, aggressive/attainable,
realistic, and timely. Though initially intended for goals, the SMART acronym can
also help ensure that we are putting time limits on our tasks. Ideally, these items are
logged into a problem management system or database for future follow-up.

ptg5994185

146 CHAPTER 8 MANAGING INCIDENTS AND PROBLEMS

Putting It All Together
Putting the components of issue management, process management, the daily inci-
dent management meeting, and the quarterly incident review together along with a
well-defined postmortem process and a system to track and report on all systems and
problems will give us a good foundation for identifying, reporting, prioritizing, and
taking action against past scalability issues.

Any given incident will follow our DRIER process of detecting the issue, reporting
upon the issue, investigating the issue, escalating the issue, and resolving the issue.
The issue is immediately entered into a system we’ve developed to track incidents and
problems. Investigation leads to a set of immediate actions and if help is needed, we
escalate according to our escalation processes. Resolving the issue changes the issue
status to “resolved” but does not close the incident until root cause is identified and
fixed within our production environment.

The problem is assigned to an individual or organization during our daily status
review unless it is of the size that it needs immediate assignment. During that daily
review, we also review incidents and their status from the previous day and the high
priority problems that remain open in the system. We also validate the closure of
problems and assign categories for both incidents and problems in our daily meeting.

Problems, when assigned, get worked by the team or individual assigned to them
in priority order. After root cause is determined, the problem moves to the “identi-
fied” status, and when fixed and validated in production, it moves to “closed.” Large
problems go through a well-defined postmortem process with the focus being the
identification of all possible issues within the process and technology stacks. Prob-
lems are tracked within the same system and reviewed in our daily meeting.

Quarterly, we review incidents and problems to determine whether our processes
are correctly closing problems and to determine the most common occurrences of
incidents. This data is collected and used to prioritize architectural, organizational,
and process changes to aid in our mission of increasing scalability. Additional data is
collected to determine where we are doing well in reducing scale related problems
and to help create the business case for scale initiatives.

Let’s look at how Johnny and his team employ these processes by following an
incident through its life cycle. Late one Tuesday evening, the network operations cen-
ter is notified of an event by the customer support organization that is characterized
by several customers complaining that they cannot get access to some professional
training documents within the HRM product offering. The issue has now been
detected within the DRIER process, so the operations team logs (or reports) it into
the incident management system. The company uses an open source ticket system to
track incidents through their life cycle. The network operations team can’t immedi-
ately identify the root cause of the problem, even though they suspect a recent
change, so pursuant to company policy for an incident of this size (medium) after

ptg5994185

PUTTING IT ALL TOGETHER 147

Investigating for 10 minutes, they escalate to the next level of support. The team logs
all of their investigations and opens up a chat room for communication as well as a
phone line/conference bridge for coordination.

Level two support, consisting of software engineers, systems administrators, and
database administrators, work the problem for the next 20 minutes and identify that
a network attached storage device containing the training documents identified by
the complaining customers has had several training documents renamed. The team
identifies the appropriate names for the documents and changes the names. Working
with customer support, the team determines that the problem is resolved by renaming
the documents. They close the incident knowing that the problem will remain open
until after the morning incident review.

The next morning, during the daily incident review, as Johnny Fixer is reviewing
the previous day’s problems and all open issues with his team, he determines that the
size of the previous night’s document incident is large enough to demand a postmor-
tem. Johnny requires postmortems for any incident impacting more than 10% of his
customer base for 15 minutes or more. He assigns ownership for running the post-
mortem to his infrastructure and operations manager, Tom Harde.

Tom and his team generate an initial timeline for the postmortem from items in the
incident management system that were logged by the operations team and the team
attempting to resolve the problem. Additionally, they identify that there were applica-
tion errors being thrown two hours prior to the first customer contact and that cus-
tomer support did not contact the operations center for two hours after the first
customer contact was received. Additionally, they find several changes logged against
the network attached storage device in question. They schedule the postmortem with
members of the level two support team, the teams logging the changes, and customer
support representatives.

Stepping through the postmortem process, the team covers the timeline. Several
members attempt to jump to adding issues but Tom focuses the team initially on
completing the timeline. Several data points are added to the timeline before moving
along to the next part of the postmortem. During the second phase of the postmor-
tem, Tom and the team identify issues. Again, team members attempt to jump to
actions but Tom focuses them on just identifying issues. The delays between the first
alerts from the software and the first customer contact and the delay from first cus-
tomer contact to first report are included in the issues. The team also identifies a pro-
cess issue with one of the changes that caused the files to be improperly changed. In
the next phase of the postmortem, they identify actions and owners.

One month later, during Johnny Fixer’s quarterly incident review, Johnny notes
with his team that the issues with files apparently missing on the network attached
storage devices happen at least twice a quarter and sometimes even more than that.
Although several root causes have been identified, the problem continues to happen.
Johnny assigns Tom to look into the issue and starts to track it again in the morning
incident reviews with the hope of finding the true root cause.

ptg5994185

148 CHAPTER 8 MANAGING INCIDENTS AND PROBLEMS

Conclusion
We have focused on one of the most important processes within any technology orga-
nization: the process of resolving, tracking, and reporting on incidents and problems.
We learned that incident resolution and problem management should be thought of
as two separate and sometimes competing processes. We also discussed the need for
some sort of system to help us manage the relationships and the data associated with
these processes.

We gave examples of how a few simple meetings can help meld the incident and
problem management processes. The daily incident management meeting helps manage
incident and problem resolution and status, whereas the quarterly incident review
helps to create a continual process improvement cycle. Finally, we discussed supportive
processes such as the postmortem process to help drive major problem resolution.

Key Points

• Incidents are issues in our production environment and incident management is
the process focused on timely and cost-effective restoration of service in the pro-
duction environment.

• Problems are the cause of incidents and problem management is the process
focused on determining root cause of and correcting problems.

• Incidents can be managed using the acronym DRIER, standing for detect,
report, investigate, escalate, and resolve.

• There is a natural tension between incident and problem management. Rapid
restoration of service may cause some forensic information to be lost that would
otherwise be useful in problem management. Thinking through how much time
should be allowed to collect data and what data should be collected will help
ease this tension for any given incident.

• Incidents and problems should have defined life cycles. An example is for an
incident to be open, resolved, and closed, whereas a problem is open, identified,
and closed.

• A daily incident meeting should be organized to review incidents and problem
status, assign owners, and assign meaningful business categorizations.

• A quarterly incident review should look back at past incidents and problems in
order to validate proper first-time closure of problems and thematically analyze
both problems and incidents to help prioritize scalability related architecture,
process, and organization work.

• The postmortem process is a brainstorming process used for large incidents and
problems to help drive closure and identify supporting tasks.

ptg5994185

149

Chapter 9

Managing Crisis and Escalations

There is no instance of a country having benefitted from prolonged warfare.

—Sun Tzu

A crisis is an incident on steroids. If not handled properly and if approached in the
same fashion you would approach smaller incidents, a crisis will drive your custom-
ers away and tear your organization and company apart. Crisis situations, if handled
properly, including ensuring that you learn from them and that they never happen
again, can redefine a company and help set it on the right track. Assuming that the
crisis was not a result of a gross lack of judgment and assuming that the company
lives through it, it can serve to galvanize the company and become a source of
strength. In this chapter, we discuss how to handle major crises and more specifically
crises related to scalability. We will show you how to go up, over, around, or if neces-
sary through the brick wall of scale.

What Is a Crisis?
We prefer the medical definitions of crisis from Merriam-Webster’s dictionary: “the
turning point for better or worse in an acute disease or fever” and “a paroxysmal
attack of pain, distress or disordered function.” Wow! In our experience, these two
definitions define a crisis of scale better than any we know.

The first definition offered by Merriam-Webster is our favorite as it is so true of
our personal experiences. A crisis can be both cathartic and galvanizing. It can be
your Nietzsche event, allowing you to rise from the ashes like the mythical Phoenix.
It can in one fell swoop fix many of the things we described in Chapter 6, Making the
Business Case, and force the company to focus on scale. Ideally, you will have gotten
the company interested in fixing the problems before the crisis occurs. More impor-
tantly, we hope you’ve led ethically and not landed at this crisis to prove a point to

ptg5994185

150 CHAPTER 9 MANAGING CRISIS AND ESCALATIONS

peers or management, as that would be the epitome of the wrong thing to do! But if
you’ve arrived here and take the right actions, you can become significantly better.

The actual definition of a crisis that is relevant to your business is based on busi-
ness impact and impact to the competitive landscape. It might be the case that a 30-
to 60-minute failure between 1 AM and 1:30 AM is not really a crisis situation for
your company, whereas a three-minute failure at noon is a major crisis. Your business
may be such that you make 30% of your annual revenue during the three weeks sur-
rounding Christmas. As such, downtime during this three-week period may be an
order of magnitude more costly than downtime during the remainder of the year. In
this case, a crisis situation for you may be any downtime between the first and third
weeks of December, whereas at any other point during the year you are willing to tol-
erate 30-minute outages. Your business may rely upon a data warehouse supporting
hundreds of analysts between the hours of 8 AM and 7 PM and with nearly no usage
after 7 PM in the evening and during weekends. A crisis for you in this case may be
any outage during working hours that would idle the expensive time of your analysts.

That’s not to say that all crises are equal, and obviously not everything should be
treated as a crisis. Certainly, a brownout of activity on your Web site for three min-
utes Monday through Friday during “prime time” (peak utilization) is more of a cri-
sis than a single 30-minute event during relatively low user activity levels. Our point
here is that after you determine what the crisis threshold is for your company, every-
thing that exceeds that should be treated the same way. Losing a leg is absolutely
worse than losing a finger, but both require immediate medical attention. The same is
true with crises; after the predefined crisis threshold is passed, they should all be
approached the same way.

You may recall from Chapter 8, Managing Incidents and Problems, that recurring
problems (those problems that occur more than once) rob you of time and therefore
destroy your ability to scale your services and scale your organization. Crises also
ruin scale as they steal even more resources; and allowing the root cause of a crisis to
surface more than once will not only steal vast resources and keep you from scaling
your organization and services, it has the possibility of destroying your business.

Why Differentiate a Crisis from Any Other Incident?
You can’t treat a crisis as any normal incident because it won’t treat you the way an
incident would treat you. This is the time to pull out all of the stops during and after
the end of the crisis. This is the time to fix the problem faster than you’ve ever fixed a
problem before, and then continue working the real root causes to remove every bit
of cholesterol that has clogged your scalability arteries and caused this technology
heart attack. When the operation is done, it’s time to change your life—including the

ptg5994185

HOW CRISES CAN CHANGE A COMPANY 151

technical, process, and organizational equivalent of exercise, diet, and discipline to
ensure that you never have a crisis again.

Although we are generally believers that there is a point at which adding resources
to a project has diminishing returns, in a crisis, you are looking for the shortest possi-
ble time to resolution rather than the efficiency or return on those resources. While in
a crisis, it is not the time to think about future product delivery as such thoughts and
their resulting actions will only increase the duration of the crisis. As a matter of fact,
you need to lead by example and be at the scene of the crisis for as long as it is
humanly possible and eliminate all other distractions from your schedule. Every
minute that the crisis continues is another minute that destroys shareholder value.

Your job is to stop the crisis from causing a negative trend within your business. If
you can’t fix it quickly by getting enough people on the problem to ensure that you
have appropriate coverage, two things are going to happen. The first is that the crisis
will perpetuate: Events will happen again and again and you will lose customers, rev-
enue, and maybe your business. The second is that in allowing the crisis to continue
to take precious time out of your organization over a prolonged period, you will
eventually lose traction on other projects anyway. The very thing you were trying to
avoid by not putting “all hands on deck” happens anyway and you allowed the prob-
lem to go on longer than necessary.

How Crises Can Change a Company
Perhaps you now agree that not all incidents are created equal and that some inci-
dents actually have the possibility through duration or frequency to potentially kill a
company. You may be wondering how any of that can be good. How is it possible
that something that bad might actually turn out to benefit the company?

The answer is that it only benefits the company if the crisis, or series of crises,
serves to change the direction, culture, organization, processes, and technology of the
company. It’s not like you are going to wake up three days after the crisis and every-
thing will magically be better. As a matter of fact, the resolution of the crisis is going
to pale in comparison to the blood, sweat, and tears you will shed trying to change
everything. But the crisis or series of crises can serve as the catalyst for change. It will
serve to focus shareholders, directors, executives, and managers on the horrors of
failing to meet the scalability needs of the company.

Again, we can’t urge you enough to manage and lead in such a way that such a cri-
sis can be avoided. The pain of such an event is incredible and it can cost sharehold-
ers millions (or more) in market capitalization. Steering a company toward a crisis as
a method of changing culture is like putting a gun to your head to solve a headache.
It’s just not the right thing to do.

ptg5994185

152 CHAPTER 9 MANAGING CRISIS AND ESCALATIONS

The eBay Scalability Crisis
As proof that a crisis can change a company, consider eBay in 1999. In its early days, eBay
was the darling of the Internet and up to the summer of 1999, few if any companies had experi-
enced its exponential growth in users, revenue, and profits. Through the summer of 1999, eBay
experienced many outages including a 20-plus hour outage in June of 1999. These outages
were at least partially responsible for the reduction in stock price from a high in the mid $20s
the week of April 26, 1999, to a low of $10.42 the week of August 2, 1999.

The cause of the outages isn’t really as important as what happened within the company
after the outages. Additional executives were brought in to ensure that the engineering organi-
zation, the engineering processes, and the technology they produced could scale to the
demand placed on them by the eBay community. Initially, additional capital was deployed to
purchase systems and equipment (though eBay was successful in actually lowering both its
technology expense and capital on an absolute basis well into 2001). Processes were put in
place to help the company design systems that were more scalable, and the engineering team
was augmented with engineers experienced in high availability and scalable designs and archi-
tectures. Most importantly, the company created a culture of scalability. The lessons from the
summer of pain are still discussed at eBay, and scalability has become part of eBay’s DNA.

eBay continued to experience crises from time to time, but these crises were smaller in
terms of their impact and shorter in terms of their duration as compared to the summer of 1999.
The culture of scalability netted architectural changes, people changes, and process changes.
One such change was eBay’s focus on managing each and every crisis in the fashion
described in this chapter.

Order Out of Chaos
Bringing in and managing several different organizations within a crisis situation is
difficult at best. Most organizations have their own unique subculture and often-
times, even within a technology organization, those subcultures don’t even truly
speak the same language. It is entirely possible that an application developer will use
terms with which a systems engineer is not familiar, and vice versa.

Moreover, if not managed, the attendance of many people and multiple organizations
within a crisis situation will create chaos. This chaos will feed on itself creating a
vicious cycle that can actually prolong the crisis or worse yet aggravate the damage
done in the crisis through someone taking an ill-advised action. Indeed, if you cannot
effectively manage the force you throw at a crisis, you are better off using fewer people.

Your company may have a crisis management process that consists of both phone
and chat (instant messaging or IRC) communications. If you listen on the phone or

ptg5994185

ORDER OUT OF CHAOS 153

follow the chat session, you are very likely to see an unguided set of discussions and
statements as different people and organizations go about troubleshooting or trying
different activities in the hopes of finding something that will work. You may have
questions asked that go unanswered or requests to try something that go without
authorization. You might as well be witnessing a grade school recess, with different
groups of children running around doing different things with absolutely no coordi-
nation of effort. But a crisis situation isn’t a recess; it’s a war, and in war such a lack
of coordination results in an increase in the rate of friendly casualties through
“friendly fire.” In a technology crisis, these friendly casualties are manifested through
prolonged outages, lost data, and increased customer impact.

What you really want to see in such a situation is some level of control applied to
the chaos. Rather than a grade school recess, you hope to see a high school football
game. Don’t get us wrong, you aren’t going to see an NFL style performance, but you
do hope that you witness a group of professionals being led with confidence to iden-
tify a path to restoration and a path to identification of root cause.

Different groups should have specific objectives and guidelines unique to their
expertise. There should be an expectation that they are reporting their progress
clearly and succinctly in regular time intervals. Hypotheses should be generated,
quickly debated, and either prioritized for analysis or eliminated as good initial can-
didates. These hypotheses should then be quickly restated as the tasks necessary to
determine validity and handed out to the appropriate groups to work them with
times for results clearly communicated.

Someone on the call or in the crisis resolution meeting should be in charge, and
that someone should be able to paint an accurate picture of the impact, what has
been tried, the best hypotheses being considered and the tasks associated with those
hypotheses, and the timeline for completion of the current set of actions, as well as
the development of the next set of actions. Other members should be managers of the
technical teams assembled to help solve the crisis and one of the experienced
(described in organizations as senior, principal, or lead) technical people from each
manager’s teams. We will now describe these roles and positions in greater detail.
Other engineers should be gathered in organizational or cross-functional groups to
deeply investigate domain areas or services within the platform undergoing a crisis.

The Role of the “Problem Manager”
The preceding paragraphs have been leading up to a position definition. We can
think of lots of names for such a position: outage commander, problem manager,
incident manager, crisis commando, crisis manager, issue manager, and from the mili-
tary, battle captain. Whatever you call the person, you had better have someone
capable of taking charge on the phone. Unfortunately, not everyone can fill this kind
of a role. We aren’t arguing that you need to hire someone just to manage your major

ptg5994185

154 CHAPTER 9 MANAGING CRISIS AND ESCALATIONS

production incidents to resolution, though if you have enough of them you might
consider that; rather, ensure you have at least one person on your staff who has the
skills to manage such a chaotic environment.

The characteristics of someone capable of successfully managing chaotic environ-
ments are rather unique. As with leadership, some people are born with them and
some people nurture them over time. The person absolutely needs to be technically
literate but not necessarily the most technical person in the room. He should be able
to use his technical base to form questions and evaluate answers relevant to the crisis
at hand. He does not need to be the chief problem solver, but he needs to effectively
manage the process of the chief problem solvers gathered within the crisis. The per-
son also needs to be incredibly calm “inside” but be persuasive “outside.” This might
mean that he has the type of presence to which people naturally are attracted or it
may mean that he isn’t afraid to yell to get people’s attention within the room or on
the conference call.

The crisis manager needs to be able to speak and think in business terms. She
needs to be conversant enough with the business model to make decisions in the
absence of higher guidance on when to force incident resolution over attempting to
collect data that might be destroyed and would be useful in problem resolution
(remember the differences in definitions from Chapter 8). The crisis manager also
needs to be able to create succinct business relevant summaries from the technical
chaos that is going on around her in order to keep the remainder of the business
informed.

In the absence of administrative help to document everything said or done during
the crisis, the crisis manager is responsible for ensuring that the actions and discus-
sions are represented in a written state for future analysis. This means that the crisis
manager will need to keep a history of the crisis as well as help ensure that others are
keeping histories to be merged. A shared chat room with timestamps enabled is an
excellent choice for this.

In terms of Star Trek characters and financial gurus, the person is 1/3 Scotty, 1/3
Captain Kirk, and 1/3 Warren Buffet. He is 1/3 engineer, 1/3 manager, and 1/3 busi-
ness manager. He has a combat arms military background, an M.B.A., and a Ph.D. in
some engineering discipline. Hopefully, by now, we’ve indicated how difficult it is to
find someone with the experience, charisma, and business acumen to perform such a
function. To make the task even harder, when you find the person, she probably isn’t
going to want the job as it is a bottomless pool of stress. You will either need to
incent the person with the right merit based performance package or you will need to
clearly articulate how it is that they have a future beyond managing crises in your
organization. However you approach it, if you are lucky enough to be successful in
finding such an individual, you should do everything possible to keep him or her for
the “long term.”

ptg5994185

ORDER OUT OF CHAOS 155

Although we flippantly suggested the M.B.A., Ph.D., and military combat arms
background, we were only half kidding. Such people actually do exist! As we men-
tioned earlier, the military has a role that they put such people in to manage their bat-
tles or what most of us would view as crises. The military combat arms branches
attract many leaders and managers who thrive on chaos and are trained and have the
personalities to handle such environments. Although not all former military officers
have the right personalities, the percentage within this class of individual who have
the right personalities are significantly higher than the rest of the general population.
Moreover, they have life experiences consistent with your needs and specialized train-
ing on how to handle such situations. Finally, as a group, they tend to be highly edu-
cated, with many of them having at least one and sometimes multiple graduate
degrees. Ideally, you would want one who has been out of the military for awhile and
running engineering teams to give him the proper experience.

The Role of Team Managers
Within a crisis situation, a team manager is responsible for passing along action items
to her teams and reporting progress, ideas, hypotheses, and summaries back to the
crisis manager. Depending upon the type of organization, the team manager may also
be the “senior” or “lead” engineer on the call for her discipline or domain.

A team manager functioning solely in a management capacity is expected to man-
age his team through the crisis resolution process. A majority of his team is going to
be somewhere other than the crisis resolution (or “war”) room or on a call other
than the crisis resolution call if a phone is being used. This means that the team man-
ager must communicate and monitor the progress of his team as well as interacting
with the crisis manager. Although this may sound odd, the hierarchical structure with
multiple communication channels is exactly what gives this process so much scale.
This structured hierarchy affects scale in the following way: If every manager can
communicate and control 10 or more subordinate managers or individual contribu-
tors, the capability in terms of manpower grows by one or more orders of magnitude.
The alternative is to have everyone communicating in a single room or in a single
channel, which obviously doesn’t scale well as communication becomes difficult and
coordination of people becomes near impossible. People and teams would quickly
drown each other out in their debates, discussions, and chatter. Very little would get
done in such a crowded environment.

Furthermore, this approach to having managers listen and communicate on two
channels has been very effective for many years in the military. Company command-
ers listen to and interact with their battalion commanders on one channel and issue
orders and respond to multiple platoon leaders on another channel (the company
commander is at the upper-left of Figure 9.1). The platoon leaders then do the same
with their platoons; each platoon leader speaks to multiple squads on a frequency

ptg5994185

156 CHAPTER 9 MANAGING CRISIS AND ESCALATIONS

dedicated to the platoon in question (see the center of Figure 9.1 speaking to squads
shown in upper-right). So although it may seem a bit awkward to have someone lis-
tening to two different calls or being in a room and while issuing directions over the
phone or in a chat room, the concept has worked well in the military since the advent
of the radio and we have employed it successfully in several companies. It is not
uncommon for military pilots to listen to four different radios at one time while fly-
ing the aircraft: two tactical channels and two air traffic control channels.

The Role of Engineering Leads
The role of a senior engineering professional on the phone can be filled by a deeply
technical manager. Each engineering discipline or engineering team necessary to
resolve the crisis should have someone capable of both managing that team and
answering technical questions within the higher level crisis management team. This
person is the lead individual investigator for her domain experience on the crisis
management call and is responsible for helping the higher-level team vet information,
clear and prioritize hypotheses, and so on. This person can also be on both the calls
of the organization she represents and the crisis management call or conference, but
her primary responsibility is to interact with the other senior engineers and the crisis
manager to help formulate appropriate actions to end the crisis.

Figure 9.1 Military Communication

Company Commander
to Multiple Platoon
Leaders

Platoon Leader to
Multiple Squads

40.50

40.50

50.25

50.25

ptg5994185

COMMUNICATIONS AND CONTROL 157

The Role of Individual Contributors
Individual contributors within the teams assigned to the crisis management call or
conference communicate on separate chat and phone conferences or reside in sepa-
rate conference rooms. They are responsible for generating and running down leads
within their teams and work with the lead or senior engineer and their manager on
the crisis management team. Here, an individual contributor isn’t just responsible for
doing work assigned by the crisis management team. The individual contributor and
his teams are additionally responsible for brainstorming potential problems causing
the incident, communicating them, generating hypotheses, and quickly proving or
disproving those hypotheses. The teams should be able to communicate with the
other domains’ teams either through the crisis management team or directly. All sta-
tus, however, should be communicated to the team manager who is responsible for
communicating it to the crisis management team.

Communications and Control
Shared communication channels are a must for effective and rapid crisis resolution.
Ideally, the teams are moved to be located near each other at the beginning of a crisis.
That means that the lead crisis management team is in the same room and that each
of the individual teams supporting the crisis resolution effort are located with each
other to facilitate rapid brainstorming, hypothesis resolution, distribution of work,
and status reporting. Too often, however, crises happen when people are away from
work; because of this, both synchronous voice communication conferences (such as
conference bridges on a phone) and asynchronous chat rooms should be employed.

The voice channel should be used to issue commands, stop harmful activity, and
gain the attention of the appropriate team. It is absolutely essential that someone
from each of the teams be on the crisis resolution voice channel and be capable of
controlling her team. In many cases, two representatives, the manager and the senior
(or lead) engineer, should be present from each team on such a call. This is the com-
mand and control channel in the absence of everyone being in the same room. All
shots are called from here, and it serves as the temporary change control authority
and system for the company. The authority to do anything other than perform non-
destructive “read” activities like investigating logs is first “OK’d” within this voice
channel or conference room to ensure that two activities do not compete with each
other and either cause system damage or result in an inability to determine what
action “fixed” the system.

The chat or IRC channel is used to document all conversations and easily pass
around commands to be executed so that time isn’t wasted in communication. Com-
mands that are passed around can be cut and pasted for accuracy. Additionally, the

ptg5994185

158 CHAPTER 9 MANAGING CRISIS AND ESCALATIONS

timestamps within the IRC or chat can be used in follow-up postmortems. The crisis
manager is responsible for ensuring that he is not only putting his notes in the chat
room and writing his decisions in the chat room for clarification, but for ensuring
that status updates, summaries, hypotheses, and associated actions are put into the
chat room.

It is absolutely essential in our minds that both the synchronous voice and asyn-
chronous chat channels are open and available for any crisis. The asynchronous
nature of chat allows activities to go on without interruption and allows individuals
to monitor overall group activities between the tasks within their own assigned
duties. Through this asynchronous method, scale is achieved while the voice allows
for immediate command and control of different groups for immediate activities.
Should everyone be in one room, there is no need for a phone call or conference call
other than to facilitate experts who might not be on site and updates for the business
managers. But even with everyone in one room, a chat room should be opened and
shared by all parties. In the case where a command is misunderstood, it can be buddy
checked by all other crisis participants and even “cut and pasted” into the shared
chat room for validation. The chat room allows actual system or application results
to be shared in real time with the remainder of the group and an immediate log with
timestamps is generated when such results are cut and pasted into the chat.

The War Room
Phone conferences are a poor but sometimes necessary substitute for the “war room”
or crisis conference room we had previously mentioned. So much more can be com-
municated when people are in a room together, as body language and facial expres-
sions can actually be meaningful in a discussion. How many times have you heard
someone say something, but when you read or look at the person’s face you realize he
is not convinced of the validity of his statement? That isn’t to say that the person is
lying, but rather that he is passing along something that he does not wholly believe.
For instance, someone might say, “The team believes that the problem could be with
the login code,” but she has a scowl on her face that shows that something is wrong.
A phone conversation would not pick that up, but you have the presence of mind in
person to say, “What’s wrong, Sue?” Sue might answer that she doesn’t believe it’s
possible given that the login code hasn’t changed in months, which may lower the
priority for investigation. Sue might also respond by saying, “We just changed that
damn thing yesterday,” which would increase the prioritization for investigation.

In the ideal case, the war room is equipped with phones, a shared desk, terminals
capable of accessing systems that might be involved in the crisis, plenty of work
space, projectors capable of displaying key operating metrics or any person’s termi-
nal, and lots of whiteboard space. Although the inclusion of a white board might ini-

ptg5994185

THE WAR ROOM 159

tially appear to be at odds with the need to log everything in a chat room, it actually
supports chat activities by allowing graphics, symbols, and ideas best expressed in
pictures to be drawn quickly and shared. Then, such things can be reduced to words
and placed in chat, or a picture of the whiteboard can be taken and sent to the chat
members. Many new whiteboards even have systems capable of reducing their con-
tents to pictures immediately. Should you have an operations center, the war room
should be close to that to allow easy access from one area to the next.

You may think that creating such a war room would be a very expensive proposi-
tion. “We can’t possibly afford to dedicate space to a crisis,” you might say. Our
answer is that the war room need not be expensive or dedicated to crisis situations. It
simply needs to be given a priority to any crisis and as such any conference room
equipped with at least one and preferably two lines or more will do. Individual man-
agers can use cell phones to communicate with their teams if need be, but in this case,
you should consider the inclusion of low-cost cell phone chargers within the room.
There are lots of low-cost whiteboard options available including special paint that
“acts” like a whiteboard and is easily cleanable, and windows make a fine white-
board in a pinch.

Moreover, the war room is useful for the “ride along” situation we described in
Chapter 6. If you want to make a good case for why you should invest in creating a
scalable organization, scalable processes, and a scalable technology platform, invite
some business executives into a well-run war room to witness the work necessary to
fix scale problems that result in a crisis. One word of caution here: If you can’t run a
crisis well and make order out of its chaos, do not invite people into the conference.
Instead, focus your time on finding a leader and manager who can run such a crisis
and then invite other executives into it.

Tips for a Successful War Room
A good war room has the following:

• Plenty of white board space

• Computers and monitors with access to the production systems and real-time data

• A projector for sharing information

• Phones for communication to teams outside the war room

• Access to IRC or chat

• Workspace for the number of people who will occupy the room

War rooms tend to get loud, and the crisis manager must maintain control within the room to
ensure that communication is concise and effective. Brainstorming can and should be used,
but limit communication during discussion to one individual at a time.

ptg5994185

160 CHAPTER 9 MANAGING CRISIS AND ESCALATIONS

Escalations
Escalations during crisis events are critical for several reasons. The first and most
obvious is that the company’s job in maximizing shareholder value is to ensure that it
isn’t destroyed in these events. As such, the CTO, CEO, and other execs need to hear
quickly of issues that are likely to take significant time or have significant negative
customer impact. In a public company, it’s all that much more important that the
senior execs know what is going on as shareholders demand that they know about
such things, and it is possible that public facing statements will need to be made.
Moreover, executives have a better chance at helping to marshal all of the resources
necessary to bring a crisis to resolution, including customer communications, vendor,
and partner relationships, and so on.

The natural tendency for engineering teams is to feel that they can solve the prob-
lem without outside help or help from their management teams. That may be true,
but solving the problem isn’t enough—it needs to be resolved the quickest and most
cost-effective way possible. Often, that will require more than the engineering team
can muster on their own, especially if third-party providers are at all to blame for
some of the incident. Moreover, communication throughout the company is impor-
tant as your systems are either supporting critical portions of the company or in the
case of Web companies they are the company. Someone needs to communicate to
shareholders, partners, customers, and maybe even the press. That job is best handled
by people who aren’t involved in fighting the fire.

Think through your escalation policies and get buy-in from senior executives
before you have a major crisis. It is the crisis manager’s job to adhere to those escala-
tion policies and get the right people involved at the time defined in the policies
regardless of how quickly the problem is likely to be solved after the escalation.

Status Communications
Status communications should happen at predefined intervals throughout the crisis
and should be posted or communicated in a somewhat secure fashion such that the
organizations needing information on resolution time can get the information they
need to take the appropriate actions. Status is different than escalation. Escalation is
made to bring in additional help as time drags on during a crisis, and status commu-
nications are made to keep people informed. Using the RASCI framework, you esca-
late to Rs, As, Ss, and Cs, and you post status communication to Is.

A status should include start time, a general update of actions since the start time,
and the expected resolution time if known. This resolution time is important for sev-
eral reasons. Maybe you support a manufacturing center and the manufacturing

ptg5994185

CRISES POSTMORTEMS 161

manager needs to know if she should send home her hourly employees. Potentially,
you provide sales or customer support software in a SaaS fashion, and those companies
need to be able to figure out what to do with their sales and customer support staff.

Your crisis process should clearly define who is responsible for communicating to
whom, but it is the crisis manager’s job to ensure that the timeline for communica-
tions is followed and that the appropriate communicators are properly informed. A
sample status email is shown in Figure 9.2.

Crises Postmortems
Just as a crisis is an incident on steroids, so is a crisis postmortem a juiced-up post-
mortem. Treat this postmortem with extra special care. Bring in people outside of
technology because you never know where you are going to get advice critical to
making the whole process better. Remember, the systems that you helped create and
manage have just caused a huge problem for a lot of people. This isn’t the time to get
defensive; this is the time to be reborn. This is the meeting that will fulfill or destroy
the process of turning around your team, setting up the right culture, and fixing your
processes.

Figure 9.2 Status Communication

To: Crisis Manager Escalation List

Subject: September 22 Login Failures

Issue: 100% of internet logins from our customers started failing at 9:00 AM on

Thursday, 22 September. Customers who were already logged in could continue to

work unless they signed out or closed their browsers.

Cause: Unknown at this time, but likely related to the 8:59 AM code push.

Impact: User activity metrics are off by 20% as compared to last week, and 100% of all

logins from 9 AM have failed.

Update: We have isolated potential causes to one of three candidates within the code

and we expect to find the culprit within the next 30 minutes.

Time to Restoration: We expect to isolate root cause in the code, build the new code

and roll out to the site within 60 minutes.

Fallback Plan: If we are not live with a fix within 90 minutes we will roll the code back

to the previous version within 75 minutes.

Johnny Onthespot
Crisis Manager
AllScale Networks

ptg5994185

162 CHAPTER 9 MANAGING CRISIS AND ESCALATIONS

Absolutely everything should be evaluated. The very first crisis postmortem is
referred to as the “master postmortem” and its primary task is to identify subordi-
nate postmortems. It is not to resolve or identify all of the issues leading to the inci-
dent; it is meant to identify the areas for which subordinate postmortems should be
responsible. You might have postmortems focused on technology, process, and orga-
nization failures. You might have several postmortems on technology covering differ-
ent aspects—one on your communication process, one on your crisis management
process, and one on why certain organizations didn’t contribute appropriately early
on in the postmortem.

Follow the same timeline process as the postmortem described in Chapter 8, but
focus on creating other postmortems and tracking them to completion. The same
timeline should be used, but rather than identifying tasks and owners, you should
identify subordinate postmortems and leaders associated with them. You should still
assign dates as you normally would, but rather than tracking these in the morning
incident meeting, you should set up a weekly recurring meeting to track progress. It is
critically important that executives lead from the front and be at these weekly meet-
ings. Again, we need to change our culture or, should we have the right culture,
ensure that it is properly supported through this process.

Crises Follow-up and Communication
Just as you had a communication plan during your crisis, so must you have a com-
munication plan until all postmortems are complete and all problems identified and
solved. Keep all members of the RASCI chart updated and allow them to update their
organizations and constituents. This is a time to be completely transparent. Explain,
in business terms, everything that went wrong and provide aggressive but achievable
dates in your action plan to resolve all problems. Follow up with communication in
your staff meeting, your boss’ staff meeting, and/or the company board meeting.
Communicate with everyone else via email or whatever communication channel is
appropriate for your company. For very large events where morale might be
impacted, consider using a company all hands meeting followed by weekly updates
via email or on a blog.

A Note on Customer Apologies
When you communicate to your customers, buck the recent trend of apologizing without actu-
ally apologizing and try sincerity. Actually mean that you are sorry that you disrupted their busi-
nesses, their work, and their lives! Too many companies use the passive voice, point the
fingers in other directions, or otherwise misdirect customers as to true root cause. If you find

ptg5994185

CONCLUSION 163

yourself writing something like “Can’tScale, Inc. experienced a brief 6-hour downtime last week
and we apologize for any inconvenience that this may have caused you,” stop right there and
try again. Try the first person “I” instead of “we,” drop the “may” and “brief,” try acknowledging
that you messed up what your customers were planning on doing with your application, and try
getting this posted immediately not “last week.”

It is very likely that you have significantly negatively impacted your customers. Moreover,
this negative customer impact is not likely to have been the fault of the customer. Acknowledge
your mistakes and be clear as to what you are going to do to ensure that it does not happen
again. Your customers will appreciate it, and assuming that you can make good on your prom-
ises, you are more likely to have a happy and satisfied customer.

Conclusion
We’ve discussed how not every incident is created equally and how some incidents
require significantly more time to truly identify and solve all of the underlying prob-
lems. We call these incidents crisis and you should have a plan to handle them from
inception to end. We define the end of this crisis management process as the point at
which all problems identified through postmortems have been resolved.

We discussed the roles of the technology team in responding to, resolving, and
handling the problem management aspects of a crisis. These roles include the prob-
lem manager/crisis manager, engineering managers, senior engineers/lead engineers,
and individual contributor engineers from each of the technology organizations.

We explained the four types of communication necessary in crisis resolution and
closure, including internal communications, escalations, and status reports during
and after the crisis. We also discussed some handy tools for crisis resolution such as
conference bridges, chat rooms, and the war room concept.

Key Points

• Crises are incidents on steroids and can either make your company stronger or
kill your business. Crisis, if not managed aggressively, will destroy your ability
to scale your customers, your organization, and your technology platform and
services.

• To resolve crises as quickly and cost effectively as possible, you must contain the
chaos with some measure of order.

• The leaders most effective in crises are calm on the inside but are capable of
forcing and maintaining order through those crises. They must have business
acumen and technical experience and be calm leaders under pressure.

ptg5994185

164 CHAPTER 9 MANAGING CRISIS AND ESCALATIONS

• The crisis resolution team consists of the crisis manager, engineering managers,
and senior engineers. In addition, teams of engineers reporting to the engineer-
ing managers are employed.

• The role of the crisis manager is to maintain order and follow the crisis resolu-
tion, escalation, and communication processes.

• The role of the engineering manager is to manage her team and provide status to
the crisis resolution team.

• The role of the senior engineer from each engineering team is to help the crisis
resolution team create and vet hypotheses regarding cause and help determine
rapid resolution approaches.

• The role of the individual contributor engineer is to participate in his team and
identify rapid resolution approaches, create and evaluate hypotheses on cause,
and provide status to his manager on the crisis resolution team.

• Communication between crisis resolution team members should happen face to
face in a crisis resolution or war room; or when face-to-face communication
isn’t available, the team should use a conference bridge on a phone. A chat room
should also be employed.

• War rooms, ideally adjacent to operations centers, should be developed to help
resolve crisis situations.

• Escalations and status communications should be defined during a crisis. After a
crisis, the crisis process should define status updates at periodic intervals until
all root causes are identified and fixed.

• Crisis postmortems should be strict and employed to identify and manage a
series of follow-ups on postmortems that thematically attack all issues identified
in the master postmortem.

ptg5994185

165

Chapter 10

Controlling Change in
Production Environments

If you know neither the enemy nor yourself, you will succumb in every battle.

—Sun Tzu

In engineering and chemistry circles, the word stability is a resistance to deterioration
or constancy in makeup and composition. Something is “highly instable” if its com-
position changes regardless of the actual rate of activity within the system, and it is
“stable” if its composition remains constant and it does not disintegrate or deterio-
rate. In the hosted services world, and with enterprise systems, one way to create a
stabile service is simply to not allow activity on it and to limit the number of changes
made to the system. Change, in the previous sentence, is an indication of activities
that an engineering team might take on a system, such as modifying configuration
files or updating a revision of code on the system. Unfortunately for many of us, the
elimination of changes within a system, while potentially accomplishing stability, will
limit the ability of our business to grow. Therefore, we must allow and enable
changes with the intent of limiting impact and managing risk, thereby creating a sta-
ble platform or service.

If unmanaged, a high rate of change will cause you significant problems and will
result in the more modern definition of instability within software: something that
does not work or is not reliable consistently. The service will deteriorate or disinte-
grate (that is, become unavailable) with unmanaged and undocumented change. A
high rate of change, if not managed, will cause the events of Chapters 8, Managing
Incidents and Problems, and 9, Managing Crisis and Escalations, to happen as a
result of your actions. And, as we discussed in Chapters 8 and 9, incidents and crises
run counter to your scalability objectives. It follows that you must manage change to
ensure that you have a scalable service and happy customers.

In our experience, one of the greatest consumers of scalability is change, especially
when a change includes the implementation of new functionality. An implementation

ptg5994185

166 CHAPTER 10 CONTROLLING CHANGE IN PRODUCTION ENVIRONMENTS

that supports two times the current user demand on Tuesday may be in the position
of barely handling all the user requests after a release that includes a series of new
features is made on Wednesday. Some of the impact may be a result of poorly tuned
queries or bugs, and some may just be a result of unexpected user demand after the
release of the new functionality. Whatever the reason, you’ve now put yourself in a
very desperate situation for which there may be no easy and immediate solution.

Similarly, infrastructure changes can have significant and negative impact to your
ability to handle user demand, and this presents yet another scalability concern. Per-
haps you implement a new tier of firewalls and as a result all customer transactions
take an additional 10 milliseconds to complete. Maybe that doesn’t sound like a lot
to you, but if your departure rate of the requests now taking an additional 10 milli-
seconds to complete is significantly less than the arrival rate of those requests, you
are going to have an increasingly slow system that may eventually fail altogether. If
the terms departure rate and arrival rate are confusing to you, think of departure rate
as the rate (requests over time) that your system completes end-user requests and
arrival rate is the rate (requests over time) at which new requests arrive. A reduction
in departure rate resulting from an increase in processing time might then mean that
you have fewer requests completing within a given timeframe than you have arriving.
Such a situation will cause a backlog of requests and should such a backlog continue
to grow over time, your systems might appear to end users to stop responding to new
requests.

If your scalability goals include both increasing your availability and increasing
the percentage of time that you adhere to internally or externally published service
levels for critical functions, having processes that help you manage the effect of your
changes are critical to your success. The absence of any process to help manage the
risk associated with change is a surefire way to cause both you and your customers a
great deal of heartache. Thinking back to our “shareholder” test, can you really see
yourself walking up to one of your largest shareholders and saying, “We will never
log our changes or attempt to manage them as it is a complete waste of time”? The
chances are you would make such a statement and if you wouldn’t make such a state-
ment, then you agree that the need to monitor and manage change is important to
your success.

What Is a Change?
Sometimes, we define a change as any action that has the possibility of breaking
something. There are two problems with this definition in our experience. The first is
that it is too “subjective” and allows too many actions to be excluded such as giving
people the luxury of saying that “this action wouldn’t possibly cause a problem.”

ptg5994185

WHAT IS A CHANGE? 167

The second issue is that it is sometimes too inclusive as it is pretty simple to make the
case that all customer transactions could cause a problem if they encounter a bug.
This latter choice is often cited as a reason not to log changes. The argument is that
there are too many activities that induce “change” and therefore it simply isn’t worth
trying to capture them all.

We are going to assume that you understand that all businesses have some amount
of risk. By virtue of being in business, you have already accepted that you are willing
to take the risk of allowing customers to interact with your systems for the purpose
of generating revenue. In the case of back office IT systems, we are going to assume
that you are willing to take the risk of stakeholder interactions in order to reduce cost
within your company or increase employee productivity.

Although you wish to manage the risk of customer or stakeholder interactions
causing incidents, we assume that you manage that risk through appropriate testing,
inspections, and audits. Further, we are going to assume that you want to manage the
risk of interacting with your system, platform, or product in a fashion for which it is
not designed. In our experience, such interactions are more likely to cause incidents
than the “planned” interactions that your system is designed to handle. The intent of
managing such interactions then is to reduce the number and duration of incidents
associated with the interactions. We will call this last set of interactions “changes.” A
change then is any action you take to modify the system or data outside normal cus-
tomer or stakeholder interactions provided by that system.

Changes include modifications in configuration, such as modifying values used
during startup or run time of your operating systems, databases, proprietary applica-
tions, firewalls, network devices, and so on. Changes also include any modifications
to code, additions of hardware, removal of hardware, connection of network cables
to network devices, and powering on and off systems. As a general rule, any time any
one of your employees needs to touch, twiddle, prod, or poke any piece of hardware,
software, or firmware, it is a change.

What If I Have a Small Company?
Every company needs to have some level of process around managing and documenting
change. Even a company of a single individual likely has a process of identifying what has
changed, even if only as a result of that one individual having a great memory and being able to
instinctively understand the relationship of the systems she has created in order to manage her
risk of changes.

The real question here is how much process you need and how much needs to be documented.
The answer to that is the same answer as with any process: You should implement exactly
enough to maximize the benefit of the process. This in turn means that the process should
return more to you in benefit than you spend in time to document and adhere to the process.

ptg5994185

168 CHAPTER 10 CONTROLLING CHANGE IN PRODUCTION ENVIRONMENTS

A small company with few employees and few services or systems interactions might get
away with only change identification. A large company with a completely segmented services
oriented architecture and moderate level of change might also only need change identification,
or maybe it implements a very lightweight change management process. A large company with
a complex system with several dependencies and interactions in a hosted SaaS environment
likely needs complex change identification and change management.

Change Identification
The very first thing you should do to limit the impact of changes is to ensure that
each and every change that goes into your production environment gets logged with

• Exact time and date of the change

• System undergoing change

• Actual change

• Expected results of the change

• Contact information of person making the change

An example of the minimum necessary information for a change log is included in
Table 10.1.

To understand why you should include all of the information from these five bul-
lets, let’s examine an event at AllScale. The HRM system login functionality starts to
fail and all attempted logins result in a “website not found” error. The AllScale defi-
nition of a crisis is that any rate of failure above a 10% failure rate for any critical
component (login is considered to be critical) is a crisis. The crisis manager is paged,
and she starts to assemble the crisis management team with the composition that we
discussed in Chapter 9. When everyone is assembled in a room or on a telephonic

Table 10.1 Example Excerpt from AllScale Change Log

Date Time System Change Expected Results Performed By

1/31/09 00:52 search02 Add watchdog.sh
to init.d

Watchdog daemon starts
on startup

mabbott

1/31/09 02:55 login01 Restart login01 Hung system restored to
service

mfisher

1/31/09 12:10 db01 Add @autoextend
to config.db

Tables automatically
extend when out of space

tkeeven

1/31/09 14:20 lb02 Run syncmaster Sync state from master
load balancer

hbrooks

ptg5994185

CHANGE IDENTIFICATION 169

conference bridge, what do you think should be the first question out of the crisis
manager’s mouth?

We often get answers to this question ranging from “What is going on right now?”
to “How many customers are impacted?” and “What are the customers experienc-
ing?” All of these are good questions and absolutely should be asked, but they are
not the question most likely to reduce the time and amount of impact of your current
incident. The question you should ask first is “What most recently changed?” In our
experience, more than any other reason, changes are the cause of most incidents in
production environments. It is possible that you have an unusual environment where
some piece of faulty equipment fails daily, but after that type of incident is fixed, you
are most likely to experience that your interaction with your system causes more cus-
tomer impact issues than any other situation.

Asking “What most recently changed?” gets people thinking about what they did
that might have caused the problem at hand. It gets your team focused on attempting
to quickly undo anything that is correlated in time to the beginning of the incident. In
our experience, it is the best opening question for any discussion around any ongoing
incident from a small customer impact to a crisis. It is a question focused on restora-
tion or service rather than problem resolution.

One of the most humorous answers we encounter time and again after asking
“What most recently changed?” goes like this: “We just changed the configuration of
the (insert system or software name here) but that can’t possibly be the cause of this
problem!” Collectively, we’ve heard this phrase hundreds if not thousands of times in
our career and we can almost guarantee you that if you ever hear that phrase you will
know exactly what the problem is. Stop right there! Cease all work! Focus on the
action identified in the (insert system or software name here) portion of the answer
and “undo” the change! In our experience, the person might as well have said “I
caused this—sorry!” We’re not sure why there is such a high correlation between
“that can’t possibly be the cause of this problem” and the actual cause of the prob-
lem, but it probably has something to do with our subconscious knowing that it is
the cause of the problem while our conscious mind hopes that it isn’t the case. Okay,
back to more serious matters.

It is not likely that when you ask “What most recently changed?” that you will
have everyone who performed all changes on the phone or in the room with you
unless you are a very small company. And even if you are a small company of say
three engineers, it is entirely possible that you’d be asking the question of yourself in
the middle of the night while your partners are sound asleep. As such, you really need
a place to easily collect the information identified earlier. The system that stores this
information does not need to be an expensive, third-party change management and
logging tool. It can easily be a shared email folder, with all changes identified in the
subject line and sent to the folder at the time of the actual change by the person mak-
ing the change. Larger companies probably need more functionality including a way

ptg5994185

170 CHAPTER 10 CONTROLLING CHANGE IN PRODUCTION ENVIRONMENTS

to query the system by the subsystem being affected, type of change, and so on. But
all companies need a place to log changes in order to quickly recover from those that
have an adverse customer or stakeholder impact.

Change Management
Change identification is a component of a much larger and more complex process
called change management. The intent of change identification is to limit the impact
of any change by being able to determine its correlation in time to the start of an
event and thereby its probability of causing that event; this limitation of impact
increases your ability to scale as less time is spent working on value destroying inci-
dents. The intent of change management is to limit the probability of changes causing
production incidents by controlling them through their release into the production
environment and logging them as they are introduced to production. Great compa-
nies implement change management not to reduce the rate of change, but rather to
allow the rate of change to increase while decreasing the number of change related
incidents and their impact on shareholder wealth creation. Increasing the velocity
and quantity of change while decreasing the impact and probability of change related
incidents is how change management increases the scalability of your organization,
service, or platform.

Change Management and Air Traffic Control
Sometimes, it is easiest to view change management as the same type of function as the Fed-
eral Aviation Administration (FAA) provides for aircraft at busy airports. Air Traffic Control (ATC)
exists to reduce and ideally eliminate the frequency and impact of aircraft accidents during
takeoff and landing at airports just as change management exists to reduce the frequency and
impact of changes within your platform, product, or system.

ATC works to order aircraft landings and takeoffs based on the availability of the aircraft, its
personal needs (does the aircraft have a declared emergency, is it low on fuel, and so on), and
its order in the queue for takeoffs and landings. Queue order may be changed for a number of
reasons including the aforementioned declaration of emergencies.

Just as ATC orders aircraft for safety, so does the change management process order
changes for safety. Change management considers the expected delivery date of a change, its
business benefit to help indicate ordering, the risk associated with the change, and its relation-
ship with other changes to attempt to deliver the fewest accidents possible.

ptg5994185

CHANGE MANAGEMENT 171

Change identification is a point-in-time action, where someone indicates a change
has been made and moves on to other activities. Change management is a life cycle
process whereby changes are

• Proposed

• Approved

• Scheduled

• Implemented and logged

• Validated as successful

• Reviewed and reported on over time

The change management process may start as early as when a project is going
through its business validation (or return on investment analysis) or it may start as
late as when a project is ready to be moved into the production environment. Change
management also includes a process of continual process improvement whereby met-
rics regarding incidents and resulting impact are collected in order to improve the
change management process.

Change Management and ITIL
The Information Technology Infrastructure Library (ITIL) defines the goal of change manage-
ment as follows:

The goal of the Change Management Process is to ensure that standardized methods and proce-
dures are used for efficient and prompt handling of all changes, in order to minimize the impact of
change-related incidents upon service quality, and consequently improve the day-to-day operations of
the organization.

Change management is responsible for managing change process involving

• Hardware

• Communications equipment and software

• System software

• All documentation and procedures associated with the running, support, and mainte-
nance of live systems

The ITIL is a great source of information should you decide to implement a robust change
management process as defined by a recognized industry standard. For our purposes, we are
going to describe a lightweight change management process that should be considered for any
medium-sized enterprise.

ptg5994185

172 CHAPTER 10 CONTROLLING CHANGE IN PRODUCTION ENVIRONMENTS

Change Proposal
As described, the proposal of a change can occur anywhere in your cycle. The IT Service
Management (ITSM) and ITIL frameworks hint at identification occurring as early in the
cycle as the business analysis for a change. Within these frameworks, the change pro-
posal is called a request for change. Opponents to ITSM actually cite the inclusion of
business/benefit analysis within the change process as one of the reasons that the
ITSM and ITIL are not good frameworks. These opponents state that the business
benefit analysis and feature/product selection steps have nothing to do with managing
change. Although we agree that these are two separate processes, we also believe that
a business benefit analysis should be performed somewhere. If business benefit analy-
sis isn’t conducted as part of another process, including it within the change manage-
ment process is a good first step. That said, this is a book on scalability and not
product and feature selection, so we will leave it that a benefit analysis should occur.

The most important thing to remember regarding a change proposal is that it kicks
off all other activities. Ideally, it will occur early enough to allow some evaluation as
to the impact of the change and its relationship with other changes. For the change to
actually be “managed,” we need to know certain things about the proposed change:

• The system, subsystem, and component being changed

• Expected result of the change

• Some information regarding how the change is to be performed

• Known risks associated with the change

• Relationship of the change to other systems, recent or planned changes

You may decide to track significantly more information than this, but we consider
this the minimum information necessary to properly plan change schedules.

The system undergoing change is important as we hope to limit the number of
changes to a given system during a single time interval. Consider that a system is the
equivalent of a runway at an airport. We don’t want two changes colliding in time on
the same system because if there is a problem during the change, we won’t immedi-
ately know which change caused it. As such, we need to know the item being
changed down to the granularity of what is actually being modified. For instance, if
this is a software change and there is a single large executable or script that contains
100% of the code for that subsystem, we need only identify that we are changing out
that executable or script. On the other hand, if we are modifying one of several hun-
dred configuration files, we should identify which exact file is being modified. If we
are changing a file, configuration, or software on an entire pool of servers with simi-
lar functionality, the pool is the most granular thing being changed and should be
identified here; the steps of the change including rolling to each of the systems in the
pool would be identified in information regarding how the change will be performed.

ptg5994185

CHANGE MANAGEMENT 173

Architecture here plays a huge role in helping us increase change velocity. If we
have a technology platform comprised of a number of noncommunicating services,
we increase the number of airports or runways for which we are managing traffic; as
a result, we can have many more “landings” or changes. If the services communicate
asynchronously, we would have a few more concerns, but we are also likely more
willing to take risks. On the other hand, if the services all communicate synchro-
nously with each other, there isn’t much more fault tolerance than with a monolithic
system (see Chapter 21, Creating Fault Isolative Architectural Structures) and we are
back to managing a single runway at a single airport.

The expected result of the change is important as we want to be able to verify later
that the change was successful. For instance, if a change is being made to a Web
server and that change is to allow more threads of execution in the Web server, we
should state that as the expected result. If we are making a modification to our pro-
prietary code to correct an error where the capital letter Q shows up as its hex value
51, we should indicate such.

Information regarding how the change is to be performed will vary with your
organization and system. You may need to indicate precise steps if the change will
take some time or requires a lot of work. For instance, if a server needs to be stopped
and rebooted, that might impact what other changes can be going on at the same
time. The larger and more complex the steps for the change in production, the more
you should consider requiring those steps to be clearly outlined.

Identifying the known risks of the change is an often overlooked step. Very often,
requesters of a change will quickly type in a commonly used risk to speed through the
change request process. A little time spent in this area could pay huge dividends in
avoiding a crisis. If there is the risk that should a certain database table not be
“clean” or truncated prior to the change that data corruption may occur, that should
be pointed out during the change. The more risks that are identified, the more likely
it is that the change will receive the proper management oversight and risk mitigation
and the higher the probability of success for the change. We will cover risk identifica-
tion and management in a future chapter in much more detail.

Complacency often sets in quickly with these processes and teams are quick to feel
that identifying risks is simply a “check the box” exercise. A great way to incent the
appropriate behaviors and to get your team to analyze risks is to reward those that
identify and avoid risks and to counsel those who have incidents occur outside of the
risk identification. This isn’t a new technique, but rather the application of tried and
true management techniques. Reminding the team that a little time spent managing
risks can save a lot of time in managing incidents and even showing the team data
from your environment as to how that is true is a great tactic.

Finally, identifying the relationship to other systems and changes is a critical step.
For instance, take the case that a requested change requires a modification to the login

ptg5994185

174 CHAPTER 10 CONTROLLING CHANGE IN PRODUCTION ENVIRONMENTS

service of AllScale’s site and that this change is dependent upon another change to the
account services module in order for the login service to function properly. The requester
of the change should identify this dependency in her request. Ideally, the requester
will identify that if the account services module is not changed, the login service will
not work or will corrupt data or whatever the case might be given the dependency.

Depending upon the process that you ultimately develop, you may or may not
decide to include a required or suggested date for your change to take place. We
highly recommend developing a process that allows individuals to suggest a date;
however, the approving and scheduling authorities should be responsible for deciding
on the final date based on all other changes, business priorities, and risks.

Change Approval
Change approval is a simple portion of the change management process. Your
approval process may simply be a validation that all of the required information nec-
essary to “request” the change is indeed present, that the change proposal has all
required fields filled out appropriately. To the extent that you’ve implemented some
form of the RASCI model, you may also decide to require that the appropriate A, or
owner of the system in question, has signed off on the change and is aware of it. The
primary reason for the inclusion of this step in the change control process is to vali-
date that everything that should happen prior to the change occurring has in fact
happened. This is also the place at which changes may be questioned with respect to
their priority relative to other changes.

An approval here is not a validation that the change will have the expected results;
it simply means that everything has been discussed and that the change has met with
the appropriate approvals in all other processes prior to rolling out to your system,
product, or platform. Bug fixes, for instance, may have an abbreviated approval pro-
cess compared to a complete reimplementation of your entire product, platform, or
system. The former is addressing a current issue and might not require the approval
of any organization other than QA, whereas the latter might require the final sign-off
of the CEO.

Change Scheduling
The process of scheduling changes is where most of the additional benefit of change
management occurs over the benefit you get when you implement change identifica-
tion. This is the point where the real work of the “air traffic controllers” comes in.
Here, a group tasked with the responsibility of ensuring that changes do not collide
or conflict applies a set of rules identified by its management team to maximize
change benefit while minimizing change risk.

The business rules very likely will include limiting changes during peak utilization of
your platform or system. If you have the heaviest utilization between 10 AM and 2 PM

ptg5994185

CHANGE MANAGEMENT 175

and 7 PM and 9 PM, it probably doesn’t make sense to be making your largest and
most disrupting changes during this timeframe. You might limit or eliminate altogether
changes during this timeframe if your risk tolerance is low. The same might hold true
for specific times of the year. Sometimes though, as in very high volume change envi-
ronments, we simply don’t have the luxury of disallowing changes during certain
portions of the day and we need to find ways to manage our change risks elsewhere.

The Business Change Calendar
Many businesses, from large to small, put the next three to six months and maybe even the
next year’s worth of proposed changes into a shared calendar for internal viewing. This concept
helps communicate changes to various organizations and often helps reduce the risks of changes
as teams start requesting dates that are not full of changes already. Consider the Change Cal-
endar concept as part of your change management system. In very small companies, a change
calendar may be the only thing you need to implement (along with change identification).

This set of business rules might also include an analysis of risk of a type discussed
in Chapter 16, Determining Risk. We are not arguing for an intensive analysis of risk
or even indicating that your process absolutely needs to have risk analysis. Rather, we
are stating that if you can develop a high level and easy risk analysis for the change,
your change management process will be more robust and likely yield better results.
Each change might include a risk profile of say high, medium, and low during the
change proposal portion of the process. The company then may decide that it wants
no more than three high risk changes happening in a week, six medium risk changes,
and 20 low risk changes. Obviously, as the amount of change requests increase over
time, the company’s willingness to accept more risk on any given day within any
given category will need to go up or changes will back up in the queue and the time
to market to implement any change will increase. One way to help both limit risk
associated with change and increase change velocity is to implement fault isolative
architectures as we describe in Chapter 21.

Another consideration during the change scheduling portion of the process might
be the beneficial business impact of the change. This analysis ideally is done in some
other process, rather than being done first for the benefit of change. Someone, some-
where decided that the initiative requiring the change was of benefit to the company,
and if you can represent that analysis in a lightweight way within the change process,
you will likely benefit from it. If the risk analysis measures the product of the proba-
bility of failure multiplied by the effect of failure, benefit would then analyze the
probability of success with the impact of success. The company would be incented to

ptg5994185

176 CHAPTER 10 CONTROLLING CHANGE IN PRODUCTION ENVIRONMENTS

move as many high value activities to the front of the queue as possible while being
wary not to starve lower value changes.

An even better process would be to implement both processes with each recogniz-
ing the other in the form of a cost-benefit analysis. Risk and reward might offset each
other to create some value the company comes up with and with guidelines to imple-
ment changes in any given day with a risk-reward tradeoff between two values. We’ll
cover the concepts of risk and benefit analysis in Chapter 16.

Key Aspects of Change Scheduling
Change scheduling is intended to minimize conflicts and reduce change related incidents. Key
aspects of most scheduling processes are

• Change blackout times/dates during peak utilization or revenue generation

• Analysis of risk versus reward to determine priority of changes

• Analysis of relationships of changes for dependencies and conflicts

• Determination and management of maximum risk per time period or number of changes
per time period to minimize probability of incidents

Change scheduling need not be burdensome, it can be contained within another meeting and
in small companies can be quick and easy to implement without additional headcount.

Change Implementation and Logging
Change implementation and logging is basically the function of implementing the
change in a production environment in accordance with the steps identified within
the change proposal and consistent with the limitations, restrictions, or requests iden-
tified within the change scheduling phase. This phase consists of two steps: starting
and logging the start time of the change and completing and logging the completion
time of the change. This is slightly more robust than the change identification process
identified earlier in the chapter, but also will yield greater results in a high change
environment. If the change proposal does not include the name of the individual per-
forming the change, the change implementation and logging steps should name the
individuals associated with the change.

Change Validation
No process should be complete without verification that you accomplished what you
expected to accomplish. While this should seem intuitively obvious to the casual
observer, how often have you asked yourself “Why the heck didn’t Sue check that

ptg5994185

CHANGE MANAGEMENT 177

before she said she was done?” That question follows us outside of the technology
world and into everything in our life: The electrical contractor completes the work on
your new home, but you find several circuits that don’t work; your significant other
says that his portion of the grocery shopping is done but you find five items missing;
the systems administrator claims that he is done with rebooting and repairing a faulty
system but your application doesn’t work.

Our point here is that you shouldn’t perform a change unless you know what you
expect to get from that change. And it stands to reason that should you not get that
expected result, you should consider undoing the change and rolling back or at least
pausing and discussing the alternatives. Maybe you made it halfway to where you
want to be if it was a tuning change to help with scalability and that’s good enough
for now.

Validation becomes especially important in high scalability environments. If you
are a hyper-growth company, we highly recommend adding a scalability validation to
every significant change. Did you change the load, CPU utilization, or memory utili-
zation for worse on any critical systems as a result or your change? If so, does that
put you in a dangerous position during peak utilization/demand periods? The result
of validation should either be an entry as to when validation was complete by the
person making the change, a rollback to the change if it did not meet the validation
criteria, or an escalation to resolve the question of whether to roll back the change.

Change Review
The change management process should include a periodic review of its effectiveness.
Looking back and remembering Chapter 5, Management 101, you simply cannot
improve that which you do not measure. Key metrics to analyze during the change
review are

• Number of change proposals submitted

• Number of successful change proposals (without incidents)

• Number of failed change proposals (without incidents but change unsuccessful
and didn’t make it to validation phase)

• Number of incidents resulting from change proposals

• Number of aborted changes or changes rolled back due to failure to validate

• Average time to implement a proposal from submission

Obviously, we are looking for data indicating the effectiveness of our process. If
we have a high rate of change but also a high percentage of failures and incidents,
something is definitely wrong with our change management process and something is
likely wrong with other processes, our organization, and maybe our architecture.
Aborted changes on one hand should be a source of pride for the organization that

ptg5994185

178 CHAPTER 10 CONTROLLING CHANGE IN PRODUCTION ENVIRONMENTS

the validation step is finding issues and keeping incidents from happening; on the
other hand, it is a source for future corrections to process or architecture as the pri-
mary goal should be to have a successful change.

The Change Control Meeting
We’ve several times referred to a meeting wherein changes are approved and sched-
uled. The ITIL and ITSM refer to such meetings and gatherings of people as the
Change Control Board or Change Approval Board. Whatever you decide to call it,
we recommend a regularly scheduled meeting with a consistent set of people. It is
absolutely okay for this to be an additional responsibility for several individual con-
tributors and/or managers within your organization; oftentimes, having a diverse
group of folks from each of your technical teams and even some of the business
teams helps to make the most effective reviewing authority possible.

Depending upon your rate of change, you should consider a meeting once a day,
once a week, or once a month. Attendees ideally will include representatives of each
of your technical organizations and hopefully at least one team outside of technology
that can represent the business or customer needs. Typically, we see the head of the
infrastructure or operations teams “chairing” the meeting as he most often has the
tools to be able to review change proposals and completed or failed changes.

The team should have access to the database wherein the change proposals and
completed changes are stored. The team should also have a set of guidelines by which
it analyzes changes and attempts to schedule them for production. Some of these
guidelines were discussed previously in this chapter.

Part of the change control meetings, on a somewhat periodic basis, should include
a review of the change control process using the metrics we’ve identified. It is abso-
lutely acceptable to augment these metrics. Where necessary, postmortems should be
scheduled to analyze failures of the change control process. These postmortems
should be run consistently with the postmortem process we identified in Chapter 8.
The output of the postmortems should be tasks to correct issues associated with the
change control process, or feed into requests for architecture changes or changes to
other processes.

Continuous Process Improvement
Besides the periodic internal review of the change control process identified within
the preceding “Change Control Meeting” section, you should implement a quarterly
or annual review of the change control process. Are changes taking too long to imple-

ptg5994185

CONCLUSION 179

ment as a result of the process? Are change related incidents increasing or decreasing
as a percentage of total incidents? Are risks being properly identified? Are validations
consistently performed and consistently correct? As with any other process, the
change control process should not be assumed to be correct. Although it might work
well for a year or two given some rate of change within your environment, as you
grow in complexity, rate of change, and rate of transactions, it very likely will need
tweaking to continue to meet your needs. As we discussed in Chapter 7, Understand-
ing Why Processes Are Critical to Scale, no process is right for every stage of your
company.

Change Management Checklist
Your change management process has, at a minimum, the following phases:

• Change Proposal (the ITIL Request for Change or RFC)

• Change Approval

• Change Scheduling

• Change Implementation and Logging

• Change Validation

• Change Review

Your change management meeting should be comprised of representatives from all teams
within technology and members of the business responsible for working with your customers or
stakeholders.

Your change management process should have a continual process improvement loop that
helps drive changes to the change management process as your company and needs mature
and also drives changes to other processes, organizations, and architectures as they are iden-
tified with change metrics.

Conclusion
We’ve discussed two separate change processes for two very different companies.
Change identification is a very lightweight process for very young and small compa-
nies. It is powerful in that it can help limit the customer impact of changes when they
go badly. However, as companies grow and their rate of change grows, they often
need a much more robust process that more closely approximates our air traffic con-
trol system.

ptg5994185

180 CHAPTER 10 CONTROLLING CHANGE IN PRODUCTION ENVIRONMENTS

Change management is a process whereby a company attempts to take control of
its changes. Change management processes can vary from lightweight processes that
simply attempt to schedule changes and avoid change related conflicts to very mature
processes that attempt to manage the total risk and reward tradeoff on any given day
or hour within a system. As your company grows and as your needs to manage
change associated risks grows, you will likely move from a simple change identifica-
tion process to a very mature change management process that takes into consider-
ation risk, reward, timing, and system dependencies.

Key Points
• A change happens any time any one of your employees needs to touch, twiddle,

prod or poke any piece of hardware, software, or firmware.

• Change identification is an easy process for young or small companies focused
on being able to find recent changes and roll them back in the event of an incident.

• At a minimum, an effective change identification process should include the exact
time and date of the change, the system undergoing change, the expected results
of the change, and the contact information of the person making the change.

• The intent of change management is to limit the impact of changes by control-
ling them through their release into the production environment and logging
them as they are introduced to production.

• Change management consists of the following phases or components: change
proposal, change approval, change scheduling, change implementation and log-
ging, change validation, and change efficacy review.

• The change proposal kicks off the process and should contain as a minimum the
following information: system or subsystem being changed, expected result of
the change, information on how the change is to be performed, known risks,
known dependencies, and relationships to other changes or subsystems.

• The change proposal in more advanced processes may also contain information
regarding risk, reward, and suggested or proposed dates for the change.

• The change approval step validates that all information is correct and that the
person requesting the change has the authorization to make the change.

• The change scheduling step is the process of limiting risk by analyzing depen-
dencies, rates of changes on subsystems and components, and attempting to
minimize the risk of an incident. Mature processes will include an analysis of
risk and reward.

• The change implementation step is similar to the change identification light-
weight process, but it includes the logging of start and completion times within
the changes database.

ptg5994185

CONCLUSION 181

• The change validation step is responsible for ensuring that the change had the
expected result. A failure here might trigger a rollback of the change, or an esca-
lation if partial benefit is achieved.

• The change review step is the change management team’s internal review of the
change process and the results. It looks at data relating to rates of changes, fail-
ure rates, impact to time to market, and so on.

• The change control meeting is the meeting in which changes are approved,
scheduled, and reviewed after implementation. It is typically chaired by the head
of operations and/or infrastructure and has as its members participants from
each engineering team and customer facing business teams.

• The change management process should be reviewed by teams outside the
change management team to determine its efficacy. A quarterly or annual review
is appropriate and should be performed by the CTO/CIO and members of the
executive staff of the company.

ptg5994185

This page intentionally left blank

ptg5994185

183

Chapter 11

Determining Headroom for
Applications

Knowing the place and the time of the coming battle, we may concentrate
from the greatest distances in order to fight.

—Sun Tzu

If you were blindfolded and dropped off in the middle of the woods with a map and
compass, what is the first thing you would do? If you are an experienced outdoors
person or even better an orienteering expert, you would probably try to determine
your exact location. You might accomplish this by looking around you at the terrain
such as mountains, streams, or roads and trying to match that to a position on the
map that has similar terrain elements depicted. If there is a stream to your east and a
mountain to your north, you look on the map for streams and find where a likely
position is along that stream where you would have a mountain to the north. The
reason you do this is that in order to have a better chance at navigating your way out
of the woods, you need to know the point from which you are starting.

Scalability is like the preceding scenario. You need to know where you are starting
from in order to move confidently to a better place. In scalability terms, this means
understanding your application’s headroom. We use the term headroom to mean the
amount of free capacity that exists within your system before you start having prob-
lems such as a degradation of performance or an outage. Because your application is
a system that involves many different components such as databases, firewalls, and
application servers, in order to truly understand headroom, you need to first under-
stand the headroom for each of these. There are many scenarios in which you will
need to determine the headroom of an application. Your company might have
acquired another company and now you have responsibility for an application that
you know nothing about. Or, you are designing a brand-new system that you need to
be able to scale because of an expected influx of traffic. Or, you have an existing
application that is starting to have outages and you need to determine how to scale

ptg5994185

184 CHAPTER 11 DETERMINING HEADROOM FOR APPLICATIONS

the application. Most commonly, you will make several changes to your existing
application such that it no longer looks or behaves like the previous version for
which you determined headroom. All of these and many more are scenarios that you
may encounter that will require you to determine the headroom of an application in
order for it to scale.

This chapter will walk you through the process of determining headroom for your
application. We will start with a brief discussion of the purpose of headroom and
where it is used. Then, we will talk about how to determine the headroom of some
common components found in systems. Lastly, we will discuss the ideal conditions
that you want to look for in your components in terms of loads or performance.

Purpose of the Process
The purpose of determining the headroom of your application, as we started to dis-
cuss, is to understand where your system stands in terms of its capability to continue
to serve the needs of your customers as that customer base grows or the demands for
the service grows. If you do not plot out where you are in terms of capacity usage and
determine what your growth path looks like, you are likely to be blindsided by a
surge in capacity from any number of sources. There are a number of different places
within the product development life cycle where you will find a good use for your
headroom calculations or projections.

One of the very earliest places that you will probably use your headroom projec-
tions is when planning an annual budget. If you are planning on capital investments
or expense expenditures for increased capacity in the form of application servers,
database servers, network gear, or network bandwidth, you need a good idea of your
application’s headroom in all those various areas. If you don’t have a good handle on
what amount of headroom you have, you are just guessing when it comes to a budget
of how much you will need to spend next year. It is unfortunate if you approach bud-
geting this way, but you are not alone; and we will show you a better way. Many
organizations do a rough, back-of-the-envelope calculation by saying, for example,
they grew x% this year and spent $y, so therefore if they expect to grow x% again
next year, they should spend $y again. Although this passes as a planned budget in
many organizations, it is guaranteed to be wrong. Not taking into account different
types of growth, existing headroom capacity, and optimizations, there is no way your
projections could be accurate other than by pure luck.

Another area very early in the planning process where you will need headroom
projections is when putting together a hiring plan. Determining how many engineers
versus network engineers versus database administrators can either be left to the
squeaky wheel method or actually planned out based on probable workloads. We

ptg5994185

STRUCTURE OF THE PROCESS 185

prefer putting a little bit of science behind the plan. If you understand that you have
plenty of headroom on your application servers and on your database but you are
bumping up against the bandwidth capacity of your firewalls and load balancers, you
may want to add another network engineer to the hiring plan instead of another sys-
tems administrator.

As you design and plan for new features during your product development life
cycle, you should be considering very early what hardware implications the new fea-
tures will cause. If you are building a brand-new service, you will likely want to run it
on its own pool of servers. If this feature is an enhancement of another service, you
should consider what ramifications it will have on the headroom of the current serv-
ers. Will the new feature require the use of more memory, larger log files, intensive
CPU operations, the storage of external files, or more SQL calls? Any of these can
impact the headroom projections for your entire application from network to data-
base to application servers.

The last area that you can and should use your headroom projections for is priori-
tization of headroom or scalability projects. As you establish the processes outlined
in this book, you will begin to amass a list of projects to improve and maintain your
scalability. Without a way to prioritize this list, the projects that people like the most
or that are someone’s pet project are the ones that will get worked on. The proper
way of selecting the project priority is to use a cost-and-benefits analysis. The cost is
the estimated time in engineering and operations effort to complete the project. The
benefit is the increase in headroom or scale that the projects will bring. After reading
through the chapter on risk management, you may want to add a third comparison,
and that is risk. How risky is the project in terms of impact to customers, completion
within the timeline, or impact to future feature development?

Those are the four principle areas that you should consider using headroom pro-
jections when planning. Budgets, headcount, feature development, and scalability
projects all can benefit from the introduction of headroom calculations. Using head-
room data, you will start making much more data driven decisions and become much
better at planning and predicting.

Structure of the Process
The process of determining your application’s headroom is straightforward but not
simple. It requires research, insight, and calculations. The more attention to detail
that you pay during each step of the process the better and more accurate your head-
room projections will be. There will be enough ambiguity in the numbers already, but
if you cut corners when you should spend the time to find the right answer, you will
ensure that the variability will be so large as to make the numbers worthless. You

ptg5994185

186 CHAPTER 11 DETERMINING HEADROOM FOR APPLICATIONS

already have to account for unknown user behavior, undetermined future features,
and many more variables that are not easy to pin down. Do not add more variation
by not doing the homework or legwork in some cases.

The very first step in the headroom process is to identify the major components of
the system. Typically, there are items such as application servers, database servers,
network infrastructure that should be broken down even further if at all possible. If
you have a Service Oriented Architecture and different services reside on different
servers, treat each pool separately. A sample list might look like this:

• Account management service application servers

• Reports and configuration services application servers

• Firewalls

• Load balancers

• Bandwidth

• Oracle database cluster

After you have the major component list of your system, assign responsibility to
the appropriate party to determine the actual usage over time, preferably the past
year, and the maximum capacity in whatever is the appropriate measurement. For
most of the components, there will be multiple measurements. The database, for
example, would include the number of SQL transactions (based on the current query
mix), the storage, and the server loads. These assignees should be the people respon-
sible for the health and welfare of these components whenever possible. The database
administrators are most likely the best candidates for the database analysis, the sys-
tems administrators for the application servers.

The next step can be done by a manager, CTO, product manager, project manager,
or anyone with insight into the business plans for the next 12 or more months. This
person should determine the growth rate of the business. This growth rate is made up
of many parts. The first rate of growth is the natural or intrinsic growth. This is how
much growth would occur if nothing else was done to the system or by the business
(no deals, no marketing, no advertising, and so on) except basic maintenance. This
would include the rate of walkup users that occur naturally and the increase or
decrease usage by existing users. The second growth rate is the expected increase in
growth caused by business activities such as developing new or better features, mar-
keting, or signing deals that bring more customers or activities.

The natural growth rate can be determined by analyzing periods of growth with-
out any business activity explanations. For instance, if in June the application has a
5% increase in traffic and there was no big signed deal in the prior month nor release
of customer facing features to explain the increase, this could be taken as a natural
monthly growth rate. Determining the business activity growth rate requires knowl-

ptg5994185

STRUCTURE OF THE PROCESS 187

edge of the planned feature initiatives, business department growth goals, marketing
campaigns, increases in advertising budgets, and any other similar metric or goal that
may influence how quickly the application usage will grow. In most businesses, the
business profit and loss (P&L), general manager, or business development team is
assigned a goal to meet for the upcoming year in terms of customer acquisition, reve-
nue, usage, or any combination. To meet these goals, they put together plans that
include signing deals with customers for distribution, developing products to entice
more users or increased usage, or marketing campaigns to get the word out about
their fabulous products. These plans should have some correlation to their business
goals and can be the background for determining how these will affect the applica-
tion in terms of usage and growth.

After you have a very solid projection of natural and man-made growth projec-
tions, you can move on to understanding the seasonality effect. Some retailers see
75% of their revenue in the last 45 days of the year due to the holiday season. Some
see the summer doldrums as people spend more time on vacations and less time
browsing sites or purchasing books. Whatever is the case for your application, you
should take this into account in order to understand what point of the seasonality
curve you are on and how much you can expect this curve to raise or lower the
demand. If you have at least one year’s worth of data, you can begin projecting sea-
sonal differences. The way to accomplish this is to strip out the average growth rate
from the numbers and see how the traffic or usage changed from month to month.
You are looking for a sine wave or something similar to Figure 11.1.

Now that you have seasonality data, growth data, and actual usage data, you need
to determine how much headroom you are likely to retrieve through your scalability
initiatives next year. Similar to the way we used the business growth rates for cus-
tomer facing features, you need to determine an amount of headroom that you will
gain by developing infrastructure features, or scalability projects, as these are sometimes
called. These infrastructure features could be projects such as splitting a database or
adding a caching layer. For this, you can use various approaches such as historic

Figure 11.1 Seasonality Trend

Ja
nu

ar
y

F
eb

ru
ar

y

M
ar

ch

A
pr

il

M
ay

Ju
ne

Ju
ly

A
ug

us
t

S
ep

te
m

be
r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

ptg5994185

188 CHAPTER 11 DETERMINING HEADROOM FOR APPLICATIONS

gains from similar projects or multiple estimations by several architects as you would
for an estimated effort for story points. When organized into a timeline, these
projects will give you a projected increase in headroom throughout the year. Some-
times, projects have not been identified for the entire next 12 months; in that case,
you would use an estimation process similar to what you would do for business
driven growth. Use historic data to provide the most likely outcome of future projects
weighted with an amount of expert insight from your architects or chief engineers
who best understand the system.

The last step is to bring all the data together to calculate the headroom. The for-
mula for doing this is shown in Figure 11.2.

This equation states that the headroom of a particular component of your system
is equal to the ideal usage percentage of the maximum capacity minus the current
usage minus the sum over a time period (here it is 12 months) of the growth rate
minus the optimization. We will cover the ideal usage percentage in the next section
of this chapter; for now, let’s use 50% as the number.

If the headroom number is positive, you have enough headroom for the period of
time used in the equation. If it is negative, you do not. Let’s return to our team at
AllScale and follow them through a headroom calculation to illustrate this and what
it means. Tom Harde, the director of infrastructure and operations, had never per-
formed a headroom analysis, so Johnny Fixer, the CTO, has offered to guide Tom
and his team through the steps. The exercise was to calculate the headroom of the
HRM database in terms of SQL queries. Tom’s DBA stated that assuming a similar
query mix (reads, writes, use of indexes, and so on), they could service 100 queries
per second. The HRM application is currently running 25 queries per second on this
database node and has a combined (natural and man-made) growth of 10 more que-
ries per second over the next year. Johnny explains to Tom and the team that the real
growth rate is likely to be different each month depending on seasonality as well as
when certain projects get released to production, but using this projection is a good
estimate. Continuing with the exercise, Tom expects that they can reduce the queries
per second by 5 through some infrastructure projects and database tuning. Johnny
goes to the whiteboard and uses the following units of measure abbreviations: “q/s”
is queries per second and “t p” is time period (in this exercise, “t p” is one year or 12
months). Johnny writes the following equation:

Figure 11.2 Headroom Equation

Headroom Ideal Usage Percentage Maximum Capacity) Current= × −(Usage

Growth(t) Optimization Projects(t))
t

− −
=
∑(

1

12

ptg5994185

IDEAL USAGE PERCENTAGE 189

Headroomq/s = 0.5 100q/s – 25q/s – (10 – 5)q/s/t p 1t p

And then Johnny begins solving the equation, resulting in the following:

Headroomq/s = 50q/s – 25q/s – 5q/s = 20q/s

Johnny explains that because the number is positive, they have enough headroom
to make it through the next 12 months; this was the time period that the growth, sea-
sonality, and optimization covered.

Tom raised the question that was on most of his team members’ minds: What does
the headroom number 20q/s mean? Johnny explained that strictly speaking this means
that the HRM application has 20 queries per second of spare capacity. Additionally,
this number when combined with the summation clause (growth, seasonality, and
optimization over the time period) tells the team how much time it has before the
application runs out of headroom. Johnny goes back to the whiteboard and writes
the equation for this, as shown in Figure 11.3.

Johnny continues with the exercise stating that they have Headroom Time = 20q/s /
5q/s/t p = 4.0t p. Because the time period is 12 months or one year, Johnny states that if
their projected growth rates continue as predicted for the first 12 months, they have
four years of headroom remaining on this database server. Tom and his team are
pretty impressed with not only this answer but the entire process of calculating head-
room and are excited to try it on their own for some other components in the HRM
system. Johnny cautions them that although this is a great way to determine how
much longer an application can grow on a particular set of hardware, it involves lots
of estimates and those should be rechecked periodically.

Ideal Usage Percentage
If you recall, we used a variable in our headroom calculations that we called the ideal
usage percentage. This is a pretty fancy name, but its definition is really simple. We
are describing the amount of capacity for a particular component that should be
planned for usage. Why not 100% of capacity, you ask? Well, there are several reasons
for not wanting to plan on using every spare bit of capacity that you have in a compo-
nent, whether that is a database server or load balancer. The first reason is that you
might be wrong. I know it’s hard to believe, but you and your fine team of engineers

Figure 11.3 Headroom Time Equation

Headroom Time Headroom Growth(t Optimization Projects)
t

= −
=

/ ()
11

12

∑

ptg5994185

190 CHAPTER 11 DETERMINING HEADROOM FOR APPLICATIONS

and database architects might be wrong about the actual maximum capacity because
stress testing is not always equal to real-world testing. We’ll cover the issues with
stress testing in Chapter 17, Performance and Stress Testing. The other way you
might be wrong is that your projections could be off. Either way, you should leave
some amount of room in the plan for being off in your estimates.

The second reason that you do not want to use 100% of your capacity is that as
you approach maximum usage, unpredictable things start happening, such as thrash-
ing, which is the excessive swapping of data or program instructions in and out of
memory. Unpredictability in our hardware and software, when discussed as a theo-
retical concept, is entertaining, but when it occurs in the real world, there is nothing
entertaining about it. Sporadic behavior is a factor that makes a problem incredibly
hard to diagnose.

Thrashing
As one example of unpredictable behavior, let’s look at thrashing or excessive swapping. You
are probably familiar with the concept, but as a quick review, almost all operating systems have
the ability to swap programs or data in and out of memory if the program or data that is being
run is larger than the allocated physical memory. Some operating systems divide memory into
pages, and these pages are swapped out and written to disk. This capability to swap is very
important for two reasons: the first being that some items used by a program during startup are
used very infrequently and should be removed from active memory. Secondly, when the pro-
gram or dataset is larger than the physical memory, swapping the needed parts into memory
makes the execution much faster. This speed difference between disk and memory is actually
what causes problems. Memory is accessed in nanoseconds, whereas disk access is typically
in milliseconds. The difference is thousands of times slower.

Thrashing occurs when a page is swapped out to disk but is soon needed and must be
swapped back in. After it is in memory, it gets swapped back out in order to let something else
have the freed memory. The reading and writing of pages to disk is very slow compared to
memory; therefore, the entire execution begins to slow down while processes wait for pages to
land back in memory. There are lots of factors that influence thrashing, but closing in on the lim-
its of capacity on a machine is a very likely cause.

What is the ideal percentage of capacity to use for a particular component? As
with most things, the answer is that it depends. It depends on a number of variables,
one of the most important being the type of component. Certain components, most
notably networking gear, are notoriously predictable as demand ramps. Application
servers are in general much less predictable, not because of the hardware being infe-

ptg5994185

IDEAL USAGE PERCENTAGE 191

rior, but because of their general use nature. They can and usually do run a wide vari-
ety of processes, even when dedicated to single services. Therefore, you may decide to
use a higher percentage in the headroom equation for your load balancer than you do
on your application server.

As a general rule of thumb, we like to start at 50% as the ideal usage percentage
and work up from there as the arguments dictate. Your app servers are probably your
most variable component so someone could make arguments that the servers dedi-
cated to API traffic are less variable and therefore could run higher toward the true
maximum usage, perhaps 60%. And then there is the networking gear that we dis-
cussed earlier that you may feel comfortable running as high as 75% of maximum.
We’re open to these changes, but as a guideline, we recommend starting at 50% and
having your teams or yourself make the arguments why you should feel comfortable
running at a higher percentage. We would not recommend going above 75% because
you have to still account for error in your estimates of growth.

Another way that you can arrive at the usage percentage or how close you can run
to the maximum capacity of a component is by using statistics. The concept is to fig-
ure out how much variability resides in your services running on the particular com-
ponent and then use that as a guide to buffer away from the maximum capacity. If
you are planning on using this method, you should consider revisiting these numbers
often, especially after releases with major features because the performance of ser-
vices can change dramatically based on user behavior or new code. For this method,
we look at weeks’ or months’ worth of performance data such as load on a server
and then calculate the standard deviation of that data. We then subtract 3 the stan-
dard deviation from the maximum capacity and use that in the headroom equation as
the substitute for the Ideal Usage Percentage Maximum Capacity.

In Table 11.1, Load Averages, we have three weeks worth of maximum load val-
ues on our application servers. The standard deviation for this sample data set is
1.49. If we take 3 that amount, 4.48, and subtract the maximum load capacity that
we have established for this server class, we then have the amount of load capacity
that we can plan to use up to but not exceed. In this case, our systems administrators
believe that 15 is the maximum, therefore 15 – 4.48 = 10.5 is the maximum amount
we can plan for. This is the number that we would use in the headroom equation to
replace the Ideal Usage Percentage Maximum Capacity.

Table 11.1 Load Averages

Mon Tue Wed Thu Fri Sat Sun

5.64 8.58 9.48 5.22 8.28 9.36 4.92

8.1 9.24 6.18 5.64 6.12 7.08 8.76

7.62 8.58 5.6 9.02 8.89 7.74 6.61

ptg5994185

192 CHAPTER 11 DETERMINING HEADROOM FOR APPLICATIONS

Headroom Calculation Checklist
These are the major steps that should be followed when completing a headroom calculation:

1. Identify major components.

2. Assign responsibility for determining actual usage and maximum capacity.

3. Determine intrinsic or natural growth rate.

4. Determine business activity based growth rates.

5. Determine peak seasonality affects.

6. Estimate headroom or capacity reclaimed by infrastructure projects.

7. Make headroom calculation:

• If positive, you have capacity for the timeframe analyzed.

• If negative, you do not have capacity over the specified timeframe.

8. Divide headroom by the (growth rate + seasonality – optimizations) to get the amount of
time remaining to use up the capacity.

Conclusion
In this chapter, we started our discussion by investigating the purpose of the head-
room process. We decided that there are four principle areas where you should con-
sider using headroom projections when planning: budgets, headcount, feature
development, and scalability projects.

We then covered the basic structure of the headroom process. This process consists
of many steps, which are detail oriented, but overall the process is very straightfor-
ward. The steps include identifying major components, assigning responsible parties
for determining actual usage and maximum capacity for those components, deter-
mining the intrinsic growth rate as well as the growth rate caused by business activi-
ties, accounting for seasonality, making estimates for improvement in usage based on
infrastructure projects, and then performing the calculations.

The last topic we covered in this chapter was the ideal usage percentage for com-
ponents. We stipulated that in general we prefer to use a simple 50% as the amount
of maximum capacity that should be planned on using. The reason is that this
accounts for variability or mistakes in determining the maximum capacity as well as
errors in the growth projects. We capitulated that we could be convinced to increase
this percentage if the administrators or engineers could make sound and reasonable

ptg5994185

CONCLUSION 193

arguments for why the system is very well understood and not very variable. An
alternative method of determining this maximum usage capacity is to subtract three
standard deviations of actual usage from the believed maximum and use that number
as the planning maximum.

Key Points

• The reason that you should want to know your headroom for various compo-
nents is that you need this information for budgets, hiring plans, release plan-
ning, and scalability project prioritization.

• Headroom should be calculated for each major component within the system
such as each pool of application servers, networking gear, bandwidth usage, and
database servers.

• Without a sound and factually based argument for deviating, we recommend
not planning on using more than 50% of the maximum capacity on any one
component.

ptg5994185

This page intentionally left blank

ptg5994185

195

Chapter 12

Exploring Architectural
Principles

He wins his battles by making no mistakes. Making no mistakes is what establishes the certainty of victory, for it
means conquering an enemy that is already defeated.

—Sun Tzu

If your company has been around for awhile, there is a good chance that you have
signs posted about the company and Web pages devoted to things like “core values”
or “beliefs.” These are intended to remind people of the desired culture and often-
times when they resonate with the employees you will see them printed off from the
corporate intranet site and pinned up in cubicles or framed in offices. Sometimes,
they are even printed on the back of employee badges as reminders of how the com-
pany hopes to operate or as an embodiment of what the corporation holds dear. We
can’t attest to the effectiveness of such materials, but it certainly “feels” like one of
those things that you should do and that can only help create and support the culture
the company desires.

In this chapter, we present an analog to these corporate values or beliefs; one that
is inherently more testable and not only can be embodied within framed materials
and Web pages but that can actually help drive and be the heart of your scalability
initiatives. We call this analog architectural principles, and they are to your scalabil-
ity initiatives what core beliefs are to a company’s culture. The primary difference is
that they are also a critical portion of several processes we will discuss later in Chap-
ter 13, Joint Architecture Design, and Chapter 14, Architecture Review Board. More-
over, if implemented properly, they truly become part of your everyday engineering
life and over the long term can support the culture of scale necessary to be successful
in any hyper-growth company.

ptg5994185

196 CHAPTER 12 EXPLORING ARCHITECTURAL PRINCIPLES

Principles and Goals
Let’s review the high-level goal tree we defined in Chapter 5, Management 101, pre-
sented in Figure 12.1.

You might recall that the tree indicates two general themes: the creation of more
monetization opportunities and greater revenue at a reduced cost base. These general
themes were further broken out into thematic leafs such as quality, availability, cost,
time to market, and efficiency. Johnny Fixer, the CTO of AllScale, wants to develop a
set of principles by which his team will design and implement systems to support
these overall themes. Recognizing the goals might change, he wants to take his time
and develop principles that will be supportive of increasingly aggressive and poten-
tially ever broadening goals and initiatives.

In so doing, Johnny decides that he will group the principles thematically to sup-
port the goals identified in his goal tree. Further, given the current issues facing
AllScale, although he has goals surrounding both time to market and efficiency, he
really wants his teams focusing their architectural efforts on reducing cost, increasing
availability, and increasing scalability. Johnny believes that many of those efforts are
likely to decrease time to market as well, but he believes that the time to market issue
is a project management and management issue more than it is an architectural issue.

Having developed themes for our architectural principles, Johnny schedules a two-
day offsite with his architects, senior engineers, and managers from each of the engi-
neering teams. On day one of the offsite, they begin to brainstorm the set of princi-

Figure 12.1 AllScale Goal Tree

AllScale Goals
Achieve Profitability

by Q1

Greater Revenue at a Reduced Cost BaseMore Monetization Opportunities

Availability CostQuality Efficiency

Bugs per Push
0 P1
< 5 P2

Time to Verify Bugs
P1 < 1d
P2 < 2d
P3 < 5d

Coverage
100% regression per
push

Bugs/KLOC
0.15

Adserving 99.9%
Registration 99.99%
Scalability 99.99%
Response SLA 99.9%

$/1K Impression
Current $0.56
Goal $0.25

Days/Engineer
175/200 Days

KLOC/Day
.20/Day

Time to Market

Production SLA
New h/w 1wk
Hot fix 1d
Code push 1wk

ptg5994185

PRINCIPLES AND GOALS 197

ples that will best enable their teams’ future efforts from a scalability, availability,
and cost perspective. As a framework, Johnny starts with the goal tree and explains
his reasoning for selecting cost, scalability, and availability as the goals. Johnny tells
the team that because he believes some of the principles are likely to affect two or
more of the themes (e.g., cost and scalability or availability and scalability), he
decided to represent the principles in a Venn diagram as depicted in Figure 12.2.

Johnny places large depictions of the Venn diagram around the room and breaks
the assembled group of people into teams of three or four individuals. Each team has
representation from software engineering, quality assurance, and at least one of the
infrastructure disciplines. Architects are spread among the teams, but some teams do
not have architects. Johnny gives each team several sticky notes on which they are to
write the team’s choices for architectural principles to guide future development. The
teams are then to affix the sticky notes on their own copy of the Venn diagrams
placed around the room. At the end of several hours, each of the teams presents their
Venn diagram for several minutes, each including the reasons for choosing each of
the principles and for choosing what “theme” they support within the Venn diagram.

Because Johnny wants the resulting architectural principles to be easily remem-
bered for the maximum opportunity to truly guide behavior, he decides that each
team can choose no more than twelve principles. Johnny also doesn’t want to spend
time discussing reasons why other themes should be present so he asks that any other
comments be written in a “parking lot,” or whiteboard outside of the team’s areas.
Johnny tells the teams that the entire group can discuss other themes for principles at
the end of the meeting and that he is open to adding themes but that he is also abso-
lutely certain that scalability, cost, and availability are the most important themes to
discuss today.

Figure 12.2 Architectural Principles Venn Diagram

Availability

CostScalability

ptg5994185

198 CHAPTER 12 EXPLORING ARCHITECTURAL PRINCIPLES

Finally, Johnny reminds the teams that he wants the principles to embody as many
of the SMART characteristics discussed in Chapter 4, Leadership 101, as possible.
Although he realizes a principle can’t really be “time bounded” or timely, you do
believe that principles can be specific, measurable, attainable, and realistic. Most impor-
tantly, Johnny really wants them to be “testable” and usable in discussions around
future and current implementations. Johnny does not wish to have any principles that
are so lofty and nebulous that you cannot test a design against the principle.

As an example, Johnny tells the team that he doesn’t want a principle that says
something to the effect of “infinitely scalable.” Infinitely scalable is a goal of a group
of principles but on its own isn’t truly measurable, isn’t specific, and can’t be used to
test any given design effectively. The principles should be meaningful and easily
applied in everyday use both to test whether something meets the intended criteria
and to help guide decision making. Instead, Johnny tells them that he hopes for the
goals to be similar to “scale out not up.” In this case, Johnny explains, the principle
is easy to test. Something is either designed to run and work on multiple systems at
once or it requires larger and faster hardware as demands grow on the system.
Johnny’s team spends the better part of the day broken into smaller teams and then
joins together at the end of the day for the team presentations.

Good Principles Are . . .
Principles should help influence the behavior and the culture of the team. They should help
guide designs and be capable of being used to determine if designs meet the goals and needs
of the company. Ideally, principles are tightly aligned with goals, vision, and mission to be effec-
tive. A good principle is

• Specific. A principle should not be confusing in its wording.

• Measurable. Words like “infinitely” (which is not really a measurement) should not be
included in a principle.

• Achievable. Although principles should be inspirational, they should be capable of being
achieved in both design and implementation.

• Realistic. The team should have the capabilities of meeting the objective. Some princi-
ples are achievable but not without more time or talent than you have.

• Testable. A principle should be capable of being used to “test” a design and validate that
it meets the intent of the principle.

Make sure your principles follow the SMART guidelines.

ptg5994185

PRINCIPLE SELECTION 199

Principle Selection
On day two of Johnny’s team offsite, Johnny gives each team an opportunity to refine
its principles. Each team then does a short presentation summarizing yesterday’s
principles presentation and any changes that were made during the morning session.
Amazingly, many of the principles start to converge and many of the team’s Venn dia-
grams start to look alike.

In the afternoon session, Johnny mediates a session that starts with identifying and
ranking the principles based on the number of times they occur in each of the team’s
presentations. After the morning session, there are now six common principles that are
present in each of the team’s presentations, and everyone agrees that these should be
adopted outright. There are approximately twenty other principles represented among all
of the teams and at least eight of these are present in more than one team’s presentations.

Johnny writes each of the remaining twenty principles on the whiteboard and asks
everyone to come up and vote for exactly six principles, giving the team a total of
twelve. After the votes, Johnny ranks the principles and draws a line after the sixth
principle on the list. Of the twenty remaining principles, six did not get votes, leaving
fourteen with one or more votes. Now Johnny decides to allow debates between the
top ten principles receiving votes and asks representatives for each of the eight princi-
ples receiving votes below the six receiving the most votes to come and explain why
one of those should displace the top six. After a few hours of debate, the team votes
to accept twelve principles consisting of the six identified within each of the original
presentations and then another six developed through voting, ranking debating, and
a final ranking. Amazingly, the twelve principles look much like the twelve principles
we most often recommend to our clients that we will share with you next.

Engendering Ownership of Principles
You want the team to “own” the architectural principles that guide your scalability initiatives. The
best way to do this is to have them intimately involved with the development of the principles
and to mediate the process. A good process to follow in principle development is to

• Ensure representation from all parties that would apply the principles.

• Provide context for the principles by tying them into the vision, mission, and goals of the
organization and the company. Create that causal map to success.

• Develop themes or buckets for the principles. Venn diagrams are useful to show overlap
of principles within different themes.

• Break the larger team into smaller teams to propose principles. Although principles will
likely be worded differently, you will be surprised at how much overlap occurs.

ptg5994185

200 CHAPTER 12 EXPLORING ARCHITECTURAL PRINCIPLES

• Bring the team together for small presentations and then break them back up into smaller
teams to modify their principles.

• Perform another round of presentations and then select the overlap of principles.

• Place the remaining principles on the wall and allow individuals to vote on them.

• Rank order the principles and make the cut line at some easily remembered number of
principles (six to twelve) consisting of the overlap from earlier and the next N highest
ranking principles equaling your preferred number.

• Allow debate on the remaining principles and then perform a final rank ordering and ask
the team to “ratify” the principles.

Be sure to apply RASCI to the process of development as you don’t want the team thinking
that there isn’t a final decision maker in the process. Failing to include key team members and
having only architects develop principles may create the perception an “ivory tower” architec-
ture culture wherein engineers do not believe that architects are appropriately connected to the
needs of the clients and architects feel that engineers are not owning and abiding by architec-
tural standards.

AKF’s Twelve Architectural Principles
In this section, we introduce twelve architectural principles. Many times after engage-
ments, we will “seed” the architectural principle gardens of our clients with our
twelve principles and then ask them to run their own process, taking as many of ours
as they would like, discarding any that do not work for them, and adding as many as
they would like. We only ask that they let us know what they are considering so that
we can modify our principles over time if they come up with an especially ingenious
or useful principle. The Venn diagram shown in Figure 12.3 depicts our principles as
they relate to scalability, availability, and cost. We will discuss each of the principles
at a high level and then dig more deeply into those that are identified as having an
impact on scalability.

N+1 Design
Simply stated, this principle is the need to ensure that anything you develop has at
least one additional instance of that system in the event of failure. Apply the rule of
three that we will discuss in Chapter 32, Planning Data Centers, or what we some-
times call ensuring that you build one for you, one for the customer, and one to fail.
This principle holds true for everything from large data center design to Web Services
implementations.

ptg5994185

AKF’S TWELVE ARCHITECTURAL PRINCIPLES 201

Design for Rollback
This is a critical principle for Web services, Web 2.0, or Software as a Service (SaaS)
companies. Whatever you build, ensure that it is backward compatible. Make sure
that you can roll it back if you find yourself in a position of spending too much time
“fixing forward.” Some companies will indicate that they can roll back within a spe-
cific window of time, say the first couple of hours. Unfortunately, some of the worst
and most disastrous failures don’t show up for a few days, especially when those fail-
ures have to do with customer data corruption. In the ideal case, you will also design
to allow something to be rolled, pushed, or deployed while your product or platform
is still “live.” The rollback process will be covered in more detail in Chapter 18, Bar-
rier Conditions and Rollback.

Design to Be Disabled
When designing systems, especially very risky systems that communicate to other sys-
tems or services, design them to be capable of being “marked down” or disabled.
This may give you additional time to “fix forward” or ensure that you don’t go down
as a result of a bug that introduces strange out of bounds demand characteristics on
your system.

Figure 12.3 AKF Architecture Principles

Availability

CostScalability

Design for Rollback

Design for Multiple
Live Sites

Design to be Disabled

Design to be Monitored

Buy When Non Core

Use Commodity Hardware

Asynchronous Design

Scale Out Not Up
(Horizontal Scale)

Stateless Systems

Use Mature Technologies

Design for Rollback

N+1 Design

Design for at Least Two Axes
of Scale

ptg5994185

202 CHAPTER 12 EXPLORING ARCHITECTURAL PRINCIPLES

Design to Be Monitored
As we’ve discussed earlier in this book, systems should be designed from the ground
up to be monitored. This goes beyond just applying agents to a system to monitor the
utilization of CPU, memory, or disk I/O. It also goes beyond simply logging errors.
You want your system to identify when it is performing differently than it normally
operates in addition to telling you when it is not functioning properly.

Design for Multiple Live Sites
Many companies have disaster recovery centers with systems sitting mostly idle or
used for QA until such time as they are needed. The primary issue with such solu-
tions is that it takes a significant amount of time to fail over and validate the disaster
recovery center in the event of a disaster. A better solution is to be serving traffic out
of both sites live, such that the team is comfortable with the operation of both sites.
Our rule of three applies here as well and in most cases you can operate three sites
live at equal to or lower cost than the operation of a hot site and a cold disaster
recovery site. We’ll discuss this topic in greater detail later in the chapter.

Use Mature Technologies
When you are buying technology, use technology that is proven and that has already
had the bugs worked out of it. There are many cases where you might be willing or
interested in the vendor promised competitive edge that some new technology offers.
Be careful here, because if you become an early adopter of software or systems, you
will also be on the leading edge of finding all the bugs with that software or system. If
availability and reliability are important to you and your customers, try to be an
early majority or late majority adopter of those systems that are critical to the opera-
tions of your service, product, or platform.

Asynchronous Design
Whenever possible, systems should communicate in an asynchronous fashion. Asyn-
chronous systems tend to be more fault tolerant to extreme load and do not easily fall
prey to the multiplicative effects of failure that characterize synchronous systems. We
will discuss the reasons for this in greater detail in the next section of this chapter.

Stateless Systems
Although some systems need state, state has a cost in terms of availability, scalability,
and overall cost of your system. When you store state, you do so at a cost of memory
or disk space and maybe the cost of databases. This results in additional calls that are
often made in synchronous fashion, which in turn reduces availability. As state is
often costly compared to stateless systems, it increases the per unit cost of scaling
your site. Try to avoid state whenever possible.

ptg5994185

AKF’S TWELVE ARCHITECTURAL PRINCIPLES 203

Scale Out Not Up
This is the principle that addresses the need to scale horizontally rather than verti-
cally. Whenever you base the viability of your business on faster, bigger, and more
expensive hardware, you define a limit on the growth of your business. That limit
may change with time as larger scalable multiprocessor systems or vendor supported
distributed systems become available, but you are still implicitly stating that you will
grow governed by third-party technologies. When it comes to ensuring that you can
meet your shareholder needs, design your systems to be able to be horizontally split
in terms of data, transactions, and customers.

Design for at Least Two Axes of Scale
Whenever you design a major system, you should ensure that it is capable of being
split on at least two axes of the cube that we introduce in Chapter 22, Introduction to
the AKF Scale Cube, to ensure that you have plenty of room for “surprise” demand.
This does not mean that you need to implement those splits on day one, but rather
that they are thought through and at least architected so that the long lead time of
rearchitecting a system is avoided.

Buy When Non Core
We will discuss this a bit more in Chapter 15, Focus on Core Competencies: Build
Versus Buy. Although we have this identified as a cost initiative, we can make argu-
ments that it affects scalability and availability as well as productivity even though
productivity isn’t a theme within our principles. The basic premise is that regardless
of how smart you and your team are, you simply aren’t the best at everything. Fur-
thermore, your shareholders really expect you to focus on the things that really create
competitive differentiation and therefore shareholder value. So only build things
when you are really good at it and it makes a significant difference in your product,
platform, or system.

Use Commodity Hardware
We often get a lot of pushback on this one, but it fits in well with the rest of the prin-
ciples we’ve outlined. It is similar to our principle of using mature technologies.
Hardware, especially servers, moves at a rapid pace toward commoditization charac-
terized by the market buying predominately based on cost. If you can develop your
architecture such that you can scale horizontally easily, you should be buying the
cheapest hardware you can get your hands on, assuming that the cost of ownership
of that hardware (including the cost of handling higher failure rates) is lower than
higher end hardware.

ptg5994185

204 CHAPTER 12 EXPLORING ARCHITECTURAL PRINCIPLES

Scalability Principles In Depth
Now that we’ve had an overview of our suggested principles, let’s dig deeper into the
ones that we believe support scalability the most.

Design to Be Monitored
Monitoring, when done well, goes beyond the typical actions of identifying services
that are alive or dead, examining or polling log files, collecting system related data
over time, and evaluating end-user response times. When done well, applications and
systems are designed from the ground up to be if not self-healing then at least self-
diagnosing. If a system is designed to be monitored and logs the correct information,
you can more easily determine the headroom remaining for the system and take the
appropriate action to correct scalability problems earlier.

For instance, you know at the time of design of any system what services and sys-
tems it will need to interact with. Maybe the service in question repeatedly makes use
of a database or some other data store. Potentially, the service makes a call, prefera-
bly asynchronously, to another service. You also know that from time to time you
will be writing diagnostic information and potentially errors to some sort of volatile
or stable storage system. All of this knowledge can be used to design a system that can
give you more information about future scale needs and increase your availability.

People by their very nature are self diagnosing. In examples where we clearly have
problems such as running a fever or breaking a leg, we are likely to seek immediate
help. In the systems world, this would be similar to throwing “hard errors” and cry-
ing for help immediately. But how about when we just appear to be working slower
than before over a period of time? Maybe we feel that we are consistently forgetting
more names, losing our appetite, or taking longer to digest our food. It would be dif-
ficult and costly to develop after the fact monitoring agents for such illnesses if we
didn’t subconsciously keep track of such things in our minds.

We argue that you should build systems that help you identify potential or future
issues. Going back to our system and its calls to a database, we should log the
response time of that database over time, the amount of data, and maybe the rate of
errors. Rather than just reporting on that data, our system could be designed to show
“out of bounds” conditions plotted from a mean of the last thirty Tuesdays (assum-
ing today is Tuesday) for our five-minute time of day. Significant standard deviations
from the mean could be “alerted” for future or immediate action depending upon the
value. This approach leverages a control chart from statistical process control.

We could do the same with our rates of errors, the response time from other services,
and so on. The information could then feed into our capacity planning process to
help us determine where we might start to have demand versus supply problems such
that we can know which systems we should focus on for future architectural changes.

ptg5994185

SCALABILITY PRINCIPLES IN DEPTH 205

Design for Multiple Live Sites
As previously indicated, having multiple sites is a must to assure your shareholders
that you can weather any geographically isolated disaster or crisis. The time to start
thinking about how to run data center strategies isn’t when you are attempting to
deploy your services, but rather when you are designing them. There are all sorts of
design tradeoffs that will impact whether you can easily serve data out of more than
one geographically dispersed data center while you are live. Does your application
need or expect that all data will exist in a monolithic database? Does your applica-
tion expect that all reads and writes will occur within the same database structures?
Must all customers reside in the same data structures? Are other services called in
synchronous fashion and are they intolerant to latency?

Ensuring that your system’s designs can be hosted nearly anywhere and operate
independently from other sites if need be is critical to being able to deploy new sys-
tems rapidly without the constraints of space or power in a single facility. You may
have an incredibly scalable application and platform, but if your physical environ-
ment and your operating contracts keep you from scaling quickly as demand grows,
you are just as handicapped as the company with nearly infinite space and a platform
that needs to be rearchitected for scale. Scalability is about much more than just
ensuring that the system is designed to allow for scale; it is about ensuring that the
environment in which you operate, including your contracts, partners, and facilities
will allow you to scale. Therefore, your architecture must allow you to make use of
several facilities (both existing and potentially new facilities) on an on-demand basis.

Asynchronous Design
Systems designed to interact synchronously have a higher failure rate than those
designed to act asynchronously. In addition, their ability to scale is tied directly to the
slowest system in the chain of communications. If one system or service slows, the
entire chain prior to that system slows, and as a result output occurs less frequently
and throughput is lowered. Thus, synchronous systems are more difficult to scale in
real time.

Asynchronous systems are more tolerant of such slowdowns. Let’s take the case
that a system can serve 40 simultaneous requests synchronously. When all 40
requests are in flight, no more can be handled until at least one completes. Asynchro-
nous systems handle the request and do not block for the response. Rather, they have
a service that waits for the response while handling the next request. Although
throughput is roughly the same, they are more tolerant to slowness as requests can
continue to be processed. Responses are slowed, but the entire system does not grind
to a halt. Thus, if you only have a periodic slowness, it allows you to work through
that slowness without stopping the entire system. This approach may buy you several
days in order to “fix” a scale bottleneck as compared to a synchronous system.

ptg5994185

206 CHAPTER 12 EXPLORING ARCHITECTURAL PRINCIPLES

There are many places where you are seemingly “forced” to use a synchronous
system. For instance, many database calls would be hampered and the results poten-
tially flawed if subjected to an asynchronous passing of messages. Imagine two serv-
ers requesting similar data from a database, both of them asking for the current bid
price on a car, as in Figure 12.4.

System A makes a request followed by system B making a request. B receives the
data first and then makes a bid on the car thereby changing the car’s price. A then
receives data that is out of date. Although this seems undesirable, we can make a
minor change to our logic that allows this to happen without significant impact to
the entire process.

We only need to change the case where A subsequently makes a bid. If the bid
value by A is less than the bid made by B, we simply indicate that the value of the car
has changed and display the now current value. A can then make up her mind as to
whether she wants to continue bidding. We have taken something most people would
argue needs to be synchronous and made it asynchronous.

Stateless Systems
Stateful systems are those in which operations are performed within the context of
previous and subsequent operations. As such, information on the past operations of
any given thread of execution or series of requests must be maintained somewhere. In
maintaining state for a series of transactions, engineering teams typically start to
gather and keep a great deal of information about the requests. State costs money,
processing power, availability, and scalability. Although there are many cases where
state is valuable, it should always be closely evaluated for return on investment. State
often implies the need for additional systems and sometimes synchronous calls that
would not exist in a stateless system. It also makes designing for multiple live data
centers more difficult—how can you possibly handle a transaction with state stored
in data center X in data center Y without replicating that state between data centers?
The replication of that data would not only need to occur in near real time, implying
that the data centers need to be relatively close, but it represents a doubling of space
necessary to store relatively transient data.

Whenever possible, stateful applications should be avoided in engineering applica-
tions for extreme scale. Where it is necessary, consider attempting to store state with
the end user rather than within your system. If that is not possible, consider a central-

Figure 12.4 Asynchronous Ordering of Bidding Events

A Request B Request B Delivered B Bids A Delivered

ptg5994185

SCALABILITY PRINCIPLES IN DEPTH 207

ized state caching mechanism that keeps state off of the application servers and
allows for distribution across multiple servers. Where state needs to be multitenant
for any reason, attempt to segment the state by customer or transaction class to allow
distribution across multiple data centers and try to maintain persistency for that cus-
tomer or class of transaction within a single data center with only the data that is
necessary for failover being replicated.

Scale Out Not Up
A good portion of this book is about the need to be able to scale horizontally. If you
want to achieve near infinite scale, you must disaggregate your systems, organization,
and processes to allow for that scale. Forcing transactions through a single person,
computer, or process is a recipe for disaster. Many companies rely upon Moore’s law
for their scale and as a result continue to force requests into single system (or some-
times two systems to eliminate single points of failures), relying upon faster and
faster systems to scale. Moore’s law isn’t so much a law as it is a prediction that the
number of transistors that can be placed on an integrated circuit will double roughly
every two years. The expected result is that the speed and capacity of these transistors
(in our case, a CPU and memory) will double within the same time period. But what if
your company grows faster than this, as did eBay, Yahoo, Google, Facebook, MySpace,
and so on? Do you really want to become the company that is limited in growth
when Moore’s Law no longer holds true?

Could Google, Amazon, Yahoo, or eBay run on a single system? Could any of
them possibly run on a single database? Many of them started out that way, but the
technology of the day simply could not keep up with the demands that their users
placed on them. Some of them faced crises of scale associated with attempting to rely
upon bigger, faster systems. All of them would have faced those crises had they not
started to scale out rather than up.

Design for at Least Two Axes of Scale
Leaders, managers, and architects are paid to think into the future. You are designing
not just for today, but attempting to piece together a system that can be used, with
some modification, for some time to come. As such, we believe that you should
always consider how you will perform your next set of horizontal splits even before
the need arrives.

“Scaling out not up” speaks to the implementation of the first set of splits. Perhaps
you are splitting transaction volume across cloned systems. You may have five appli-
cation servers with five duplicate read only caches consisting of startup information
and nonvolatile customer information. With this configuration, you might be able to
scale to 1 million transactions an hour across 1,000 customers and service 100% of
all your transactions from login to logout and everything in between. But what will

ptg5994185

208 CHAPTER 12 EXPLORING ARCHITECTURAL PRINCIPLES

you do when you have 75 million customers? Will startup times of the application
suffer? Will memory access times begin to degrade or can you even keep all of the
customer information within memory?

For any service, you should consider how you will perform your next type of split.
In this case, you might divide your customers into N separate groups and service cus-
tomers out of N separate pools of systems with each pool handling 1/Nth of your
customers. Or maybe you move some of the transactions (like login and logout or
updating account information) to separate pools if that will lower the number of
startup records necessary within the cache. Whatever you do, for major systems
implementations, you should think about it during the initial design even if you only
implement one axis of scale.

Twelve Architectural Principles
The twelve principles we most often recommend are

1. N+1 Design. Never less than two of anything, and remember the rule of three.

2. Design for Rollback. Ensure you can roll back any release of functionality.

3. Design to Be Disabled. Be able to turn off anything you release.

4. Design to Be Monitored. Think about monitoring during design, not after.

5. Design for Multiple Live Sites. Don’t box yourself into one-site solutions.

6. Use Mature Technologies. Use things you know work well.

7. Asynchronous Design. Communicate synchronously only when absolutely necessary.

8. Stateless Systems. Use state only when the business return justifies it.

9. Scale Out Not Up. Never rely on bigger, faster systems.

10. Design for at Least Two Axes. Think one step ahead of your scale needs.

11. Buy When Non Core. If you aren’t the best at building it and it doesn’t offer competitive
differentiation, buy it.

12. Commodity Hardware. Cheaper is better most of the time.

Conclusion
In this chapter, we discussed architectural principles and how they impact the culture
of your organization. Principles should be aligned with the vision, mission, and goals
of your organization. They should be developed with your team to ensure that the

ptg5994185

CONCLUSION 209

team feels ownership over the principles and they should be the foundation for your
scalability focused processes such as the Joint Architecture Design process and the
Architecture Review Board.

Key Points
• Principles should be developed from your goals and be aligned to your vision

and mission.

• Principles should be broad enough that they are not continually revised but
should also be SMART and thematically bundled or grouped.

• To ensure ownership and acceptance of your principles, consider having your
team help you develop them.

• Ensure that your team understands the RASCI of principle development and
modification.

• Keep your principles to a number that is easily memorized by the team to increase
utilization of the principles. We suggest having no more than twelve principles.

ptg5994185

This page intentionally left blank

ptg5994185

211

Chapter 13

Joint Architecture Design

Thus it is that in war the victorious strategist only seeks battle after the victory has been won,
whereas he who is destined to defeat first fights and afterwards looks for victory.

—Sun Tzu

So far in Part II, Building Processes for Scale, we have focused on many reactionary
processes such as managing issues, crisis management, and determining headroom. In
this chapter and the next, we are going to introduce two processes that are proactive,
not reactive. We are going to shift from reaction (what to do when something goes
wrong) to discuss how to build the application in a scalable manner in the first place.
These two processes are cross functional and are interwoven within the product
development life cycle. They are the Joint Architecture Design (JAD) and the Archi-
tecture Review Board (ARB). In this chapter, we are going to focus on JAD, which
comes earlier in the product development life cycle than does ARB and sets the stage
for designing a system that scales.

Using a very simple sport analogy of running, JAD would be equivalent to the
training or preparation for the race. ARB, continuing the analogy, would be the
actual race. JAD is a collaborative design process wherein all engineering assets nec-
essary to develop some new major functionality work together to define a design con-
sistent with the architectural principles of the organization. ARB Board is a review
board of select architects from each of the functional or business areas, whose job is
to ensure that prior to final sign-off of a design, all company architectural principles
have been incorporated, and that best practices have been applied.

Fixing Organizational Dysfunction
In the introduction, we mentioned that the JAD process was cross functional. In dys-
functional organizations, the implementation of JAD is challenging but absolutely

ptg5994185

212 CHAPTER 13 JOINT ARCHITECTURE DESIGN

necessary to help cure the dysfunction. If you are part of one of those organizations
where engineers do not trust operations staff and vice versa, unfortunately you are
among the majority. It is sad but common to have distrust and even animosity
between teams. Before we can figure out how we can overcome this dysfunction and
start building scalable applications through the use of cross-functional teams, we
need to understand why this problem exists.

In most software development shops, it is not too difficult to find an engineer who
feels that the architects and the operations staff, database administrators, systems
administrators, and network engineers are either not knowledgeable about coding or
don’t fully understand the software development process. The reverse distrust is also
prevalent where operations staff or architects feel that software engineers only know
how to code and do not understand higher level design or total systems concepts.
Even worse, each believes that the other’s job is in direct opposition to accomplishing
his own goals. Operations staff can often be heard mumbling that “they could keep
the servers up if the developers would stop putting code on them” and developers
mumble back that “they could develop and debug much faster if they didn’t have
operations making them follow silly policies.” This set of perceptions and misgivings
is destructive to the scalability of the application and organization. They also show
how the “experiential chasm,” which we discussed in Chapter 6, Making the Busi-
ness Case, can exist among technology teams as easily as it can between the business
and technology teams.

As a brief refresher on the experiential chasm, we proposed that the differences in
education and experience between the two groups of people cause a type of destruc-
tive interference in communication. The formal education of a software developer
and a systems administrator at an undergraduate level may be very similar—same
computer science degree—or they may vary significantly—computer science versus
computer engineering. The on-the-job education is where the really large differences
begin to emerge. Systems administrators or database administrators typically get
mentored by more senior administrators for several years until they become profi-
cient with a specific technology, ever increasing their specialization in that field. Soft-
ware engineers typically follow a similar path but are focused on a particular
programming language. What server the application runs on or what database the
application calls is for the most part abstracted away for the software engineers so
they can concentrate on feature development.

With the experiential chasm as the starting point between the two groups, when
we add differing and sometimes opposing goals, these groups start becoming so far
apart they see no common ground. Most organizations do not share goals across
teams. This is problematic if the intent is to get these teams working together instead
of fighting each other. The operations team usually is saddled with the goal of uptime
or availability for the site. Any downtime gets taken out of their bonuses. The devel-
opment team is usually given the goal of feature delivery. A missed delivery date

ptg5994185

FIXING ORGANIZATIONAL DYSFUNCTION 213

results in lower bonuses for them. At the CTO level, the CTO thinks that all of his
goals are being handled by one of his teams and therefore everything is covered. The
reality is that separating goals like this actually causes strife among his teams.

The development goal of feature delivery pushes them to want to get code out fast,
and if it breaks, they figure they can fix it on-the-fly. This is by far the fastest way to
achieve initial delivery of code, which is usually all that is measured. In the long run,
this approach actually takes more time because fixing problems takes a lot of time to
find, fix, and redeploy. As we mentioned earlier, this post-delivery time is usually
never measured and therefore is missed as being part of the delivery goal.

The operations team wants to keep the site up and increase the availability as per
its goal. It is therefore motivated to keep changes out of production because changes
are the primary cause of issues. It decides that the fewer code pushes or changes made
to the production environment the more likely the team is able to meet its goal.
Whether consciously or not, the team is suddenly not so motivated to get code
pushed out and in fact will start to find any reason for delays.

As you can hopefully see by now, you have two or more groups that have incredi-
bly valuable knowledge about how systems and architectures work in general and
specific knowledge about how your system operates, but they are naturally weary of
each other and are likely being incented to not work together. How can you fix this?
The JAD process is a great place to start. As we’ll discuss in the next section of this
chapter, JAD is a collaborative process that pulls cross-functional team members
together with a common goal. The JAD team either succeeds or fails together and this
reflects on its organizations and its leadership team.

The basic process of JAD is to assign a major feature to not only a software engi-
neer but also to an architect, at least one operations engineer (database administrator,
systems administrator, or network engineer), and optionally a product manager,
project manager, and quality assurance engineer as needed for this specific feature.
The responsibility of this team is to come up with a design that follows the estab-
lished architecture principles of the organization that will allow the system to con-
tinue to scale, that allows the feature to meet the product requirements, and that will
be able to pass the ARB. This team is comprised of the people who will ultimately
present the design to the ARB, which we will discuss in the next chapter is made up
of peers and managers who get to decide if this design satisfies the exit criteria. Fortu-
nately, this collusion does not just stop at the design; because these individuals have
put their credentials on the line with this feature, they are now motivated to watch it
through the entire life cycle to ensure it is a success. Engineers are now being held
responsible for the design and how it performs in production. The database adminis-
trators are being held accountable for designing this feature to not only scale but to
also meet the business requirements. Now we have the developers, architects, and
operations staff working together, jointly, with a shared goal.

ptg5994185

214 CHAPTER 13 JOINT ARCHITECTURE DESIGN

Designing for Scale Cross Functionally
We discussed briefly the structure and mechanism of JAD. Now, we can get into more
detail. JAD is a collaborative design process wherein all engineering assets necessary
to develop some new major functionality or architectural modification work together
to define a design consistent with the architectural principles and best practices of the
company to implement the business unit requirements. This group of engineering
assets is comprised of the software engineer responsible for ultimately coding the fea-
ture, an architect, at least one but possibly multiple operations staff, and, as needed
based on the feature, the product manager, a project manager, and a quality assur-
ance engineer. As mentioned earlier, each brings unique knowledge, perspectives,
experiences, and goals that augment each other as well as counter-balance each other.
Although the operations engineer now has the goal of designing a feature that meets
the business requirements, she also still has the goal from her organization of main-
taining availability. This helps ensure that she is vigilant as ever about what goes into
production.

Involving each of the technology groups, tradeoffs between hardware, software,
middleware, and build versus buy approaches can help shave time to market, cost of
development and cost of operations, and increase overall quality. The software engi-
neer has typically been abstracted from the hardware by the services of the opera-
tions team. So trying to have the software engineer design a feature for image
storage—see the “Image Storage Feature” sidebar for the complete example—with-
out knowledge of the storage device that can and should be used is asking to fail in
meeting the requirements, fail in the cost-effectiveness, or fail in the scalability of the
system. Shared goal of scalability ensures the culture is pervasive; when there are
issues or crises, all hands are on deck because of shared ownership.

This JAD approach is not limited to waterfall development methodologies where
one phase of product development must take place before the other. JAD can and has
been successfully used in conjunction with all types of development methodologies
such as iterative or agile, in which specifications, designs, and development evolve as
greater insights are gained about the product feature. Each time a design is being
modified or appended to, a JAD can be called to help with it. The type of architecture
does not preclude the use of JAD either. Whether it is a traditional three-tier Web
architecture, Service Oriented Architecture, or simply a monolithic application, the
collaboration of engineering, operations, and architects to arrive at a better design is
simply taking advantage of the fact that solutions arrived at by teams are better than
individuals. The more diverse the background of the team members, the more holistic
the solution is likely to be.

The actual structure of the JAD is very informal. After the team has been assigned
to the feature, one person takes the lead on coordinating the design sessions; this is

ptg5994185

DESIGNING FOR SCALE CROSS FUNCTIONALLY 215

typically the software engineer or the project manager, if assigned. There are usually
multiple design sessions that can last between one and several hours depending on
people’s schedules. For very complex features, multiple design sessions for various
components of the feature should be scheduled. For example, a session focused on
the database should be set up, and then another one on the cache servers should be
set up separately.

Typically, the sessions start with a discussion covering the background of the fea-
ture and the business requirements. During this phase, it is a good idea to have the
product manager present and then on call for any clarifications as questions come up.
After the product requirements have been discussed, a review of the architectural
principles that relate to this area of the design is usually a good idea. Following this,
the teams brainstorm about various solutions and typically arrive at a few different
possible solutions. These are written up at the end of the meeting and sent around for
people to ponder over until the next session. Usually only a session or two are
required to come to an agreement on the best approach for the design of the feature.
The final design is written down and documented for presentation at that ARB.

Image Storage Feature
At our fictional company AllScale, a feature for the human resource management (HRM) appli-
cation has been requested that will allow for the storage of pictures of personnel to be dis-
played in their personnel folders that the HR and hiring managers bring up to conduct reviews,
salary adjustments, and so on. The software engineer, Sam Codur, who has been assigned to this
feature, has very little idea of the hardware or storage devices that are used in production. He has
overheard the operations folks talk about a SAN or NAS but he is really clueless about the dif-
ferences. Furthermore, he has never even heard of different classes of storage and has never
given a single minute of thought to backup and recovery of storage in the event of data corrup-
tion, hardware failure, or natural disasters. Figure 13.1 depicts Sam trying to decide on all the
nuances of hardware, software, and network devices alone without any other experts to aid him

Figure 13.1 Software Engineer Pondering Classes of Storage

ptg5994185

216 CHAPTER 13 JOINT ARCHITECTURE DESIGN

The product manager has specified for this feature that any standard image format be
acceptable, that all past profile images be available, and that the size be less than 500KB per
image. To Sam, the software engineer, this seems reasonable and instead of soliciting guid-
ance from the operations staff, he decides that he can code the feature and let ops worry about
how and where the images actually get stored. The result, after ten days of coding and another
five days of quality assurance testing, is the feature gets noticed in the notes for the upcoming
release by Tom Harde, VP of operations. Tom sends a set of questions to Mike Softe, VP of
engineering, asking how this feature was designed, the response time requirements, and the
storage estimates per year. After this email gets passed back and forth several times, it eventu-
ally gets escalated to Johnny Fixer, the CTO, with both sides demanding that the other is being
unreasonable. Johnny now has to get involved and make some hard decisions to either delay
the release in order that the feature be redeveloped to meet the operation team’s standards
(images less than 100KB, no multiple images, timeouts coded for response times greater than
200msec, no guarantee of image storage, etc.) or push the feature out as developed and worry
about it causing issues across the site.

Johnny decides to pull the feature from the release, which requires some retesting to be
performed and the delay of a day for the release date. Instead of just fixing this single feature,
Johnny decides that he needs to fix the process to make sure there are not more features like
this one in the future. Johnny gathers Mike and Tom to introduce the Joint Architecture Design
process. He explains that when an engineer is developing a feature and it is either part of the
core modules/services of the HRM system or it is estimated to take more than five days of
development, then a JAD must take place. The participants will be the engineer developing the
feature, a systems architect, and an operations staff member assigned by Tom or his manag-
ers. Johnny continues to explain that this team of individuals own the design and will be held
accountable for the success or failure of the feature in terms of its performance, availability, and
scalability. Tom and Mike see this process as a way to achieve a win-win situation and depart
quickly to explain it to their teams.

JAD Checklist
Here is a quick checklist for how to conduct the JAD sessions to ensure you do not skip any of
the most important steps. As you feel more comfortable with this process, feel free to modify
this and create your own JAD checklist for your organization to follow:

1. Assign participants.

2. Mandatory. Software engineer, architect, operations engineer (database administrator,
systems administrator, and/or network engineer).

3. Optional. Product manager, project manager, quality assurance engineer.

4. Schedule one or more sessions. Divide sessions by component if possible: database,
server, cache, storage, etc.

ptg5994185

ENTRY AND EXIT CRITERIA 217

5. Start the session by covering the specifications.

6. Review the architectural principles related to this session’s component.

7. Brainstorm approaches. No need for complete detail.

8. List pros and cons of each approach.

9. If multiple sessions are needed, have someone write down all the ideas and send around
to the group.

10. Arrive at consensus for the design. Use voting, rating, ranking, or any other decision
technique that everyone can support.

11. Create the final documentation of the design in preparation for the ARB.

Don’t be afraid to modify this checklist as necessary for your organization.

Entry and Exit Criteria
With the JAD process, we recommend that specific criteria must be met before a fea-
ture can begin the JAD process. Likewise, certain criteria must be met in order for
that feature to move out of JAD. By holding fast to these entrance and exit criteria,
you will preserve the integrity of the JAD process and not weaken it. Some examples
of how allowing these criteria to be bypassed are introducing features that aren’t
large enough to require a team effort to design or allowing a feature without an oper-
ations engineer on the team to start JAD because the operations team is swamped
handling a crisis. Giving in to these one off requests will ultimately devalue the JAD
and participants will believe that they can stop attending meetings or that they are
not being held accountable for the outcome. Do not even start down this slippery
slope; make the entrance and exit criteria rigorous and unwavering, no exceptions.

The entrance criteria for JAD are the following:

• Feature Significance. The feature must be significant enough to require the focus
of a cross-functional team. The exact nature of significance can be debated. We
suggest measuring this in three ways:

1. The first is size. For size, we use the amount of effort to develop as the mea-
surement. Features requiring more than 10 days of total effort are considered
significant. To calculate this for features that have multiple engineers assigned
to them, sum all engineering days estimated for the feature.

2. The second is potential impact on the overall application or system. If the
feature touches many of the core components of the system, this should be
considered significant enough to design cross functionally.

ptg5994185

218 CHAPTER 13 JOINT ARCHITECTURE DESIGN

3. The third is complexity of the feature. If the feature requires components that
are not typically involved in features such as caching or storage, it should go
through JAD. A feature that runs on the same type of application server as
the rest of the site and retrieves data from the database is not complex
enough to meet this requirement.

• Established Team. The feature must have representatives assigned and present
from engineering, architecture, and operations (database and system admin,
possibly network). If needed, members from quality assurance, project manage-
ment, and product management should be assigned. If these required team
members are not assigned and made available to attend the meetings, the feature
should not be allowed to participate in JAD.

• Product Requirements. The feature must have product requirements and a busi-
ness case in order to participate. The reason is that tradeoffs are likely to be
made based on different architectural solutions, and the team will need to know
the critical requirements from the nice-to-have ones. Also understanding the rev-
enue generated by this feature will help when deciding how much investment
should be considered for different solutions.

• Empowered. The JAD team must be empowered to make decisions that will not
be second-guessed by other engineers or architects. The only team that can
approve or deny the JAD design is the ARB, who gets final review of the archi-
tecture. In RASCI terminology, the JAD team is the R (Responsible) for the
design and the ARB is the A (Accountable).

The exit criteria for a feature coming out of JAD are the following:

• Architectural Principles. The final design of the feature must follow all architec-
tural principles that have been established in the organization. If there are
exceptions to this rule, they should be documented and expected to be ques-
tioned in ARB, resulting in a possible rejection of the design. We will talk more
about the ARB process in the next chapter.

• Consensus. The entire team should be in agreement and support the final
design. Time for dissention is during the team meetings and not afterward. If
someone from the JAD team begins second-guessing team decisions, this should
be grounds for requiring the JAD to be conducted again and any development
on the feature should be stopped immediately.

• Tradeoffs Documented. If there were any significant tradeoffs made in the
design with respect to the requirements, cost, or principles, these should be
spelled out and documented for the ARB to review and for any other team mem-
ber to reference when reviewing the design of the feature.

• Final Design Documented. The final design must be documented and posted for
reference. The design may or may not be reviewed by ARB, but the design must

ptg5994185

CONCLUSION 219

be made available for all teams to review and reference in the future. These
designs will soon become system documentation as well as design patterns that
engineers, architects, and operations folks can reference when they are partici-
pating in future JADs.

• ARB. The final step in the JAD process is to decide whether the feature needs to
go to ARB for final review and approval. We will talk in more detail in the next
chapter about what features should be considered for ARB but here are our
basic recommendations. If this feature meets any of the following, it should pro-
ceed through ARB:

1. Noncompliance with architectural principles. If any of the architectural prin-
ciples were violated, this feature should go through ARB.

2. Projects that cannot reach consensus on design. If the team fails to reach con-
sensus, it can either be reassigned to a new JAD team or it can be sent to ARB
for a final decision on the competing designs.

3. Significant tradeoffs made. If tradeoffs had to be made in terms of product
requirements, cost, or other nonarchitectural principles, this should flag a
feature to proceed to ARB.

4. High risk features. We will discuss how to assess risk in much more detail in
Chapter 16, Determining Risk, but if the feature is considered a high risk fea-
ture, it should go through ARB. A quick way of determining if this is high
risk is to look at how many core components the feature touches or how dif-
ferent it is from other features. The more core components that are touched
or the greater the difference from other features, the higher the risk.

Conclusion
In this chapter, we covered the Joint Architecture Design (JAD) process. We started
by understanding the dysfunction in technology organizations that causes features to
be designed in silos. We revisited the experiential chasm as it played a role in this dys-
function. We also saw how differing goals among different technology teams can add
to this problem. The fix is forcing the teams to work together for a shared goal. This
occurs with the JAD process.

We then covered in detail the JAD process, including who were mandatory partic-
ipants in the process and who were some of the optional team members. We
described how the design meetings should be structured based on components and
how important it was to start by making sure every team member was familiar with
the business requirements of the feature as well as the applicable architecture princi-
ples of the organization.

ptg5994185

220 CHAPTER 13 JOINT ARCHITECTURE DESIGN

We shared with you a JAD checklist that will be useful to get you and your organi-
zation started quickly with the JAD process. Our recommendation for using this was
to start with our standard steps but fill it out as necessary to make it part of your
organization. And then of course document the process so it becomes fixed in your
organization’s culture and processes.

We closed the chapter with the entry and exit criteria of JAD. The entry criteria
are focused on the preparation to ensure the JAD will be successful and to ensure that
the integrity of the process remains. Letting features slip into a JAD without all the
required team members is a sure way to cause the process to lose focus and not be as
effective as it should be. The exit criteria are focused on ensuring that the feature
design has been agreed upon by all members of the team and that if necessary it is
prepared to be presented in the Architecture Review Board (ARB), which we will dis-
cuss in the next chapter.

Key Points

• Designing applications in a vacuum leads to problems; the best designs are done
involving multiple groups offering different perspectives.

• The JAD is the best way to involve a cross-functional team that may not be
incented to work together.

• The JAD team must include members from engineering, architecture, and opera-
tions (database administrators, systems administrators, or network engineers).

• The optional members of the JAD team include project management, product
management, and quality assurance. These people should be added to the team
as required by the feature.

• JAD is most successful when the integrity of the process is respected and entry
and exit criteria are rigorously upheld.

ptg5994185

221

Chapter 14

Architecture Review Board

We shall be unable to turn natural advantage to account unless we make use of local guides.

—Sun Tzu

We started the last chapter by explaining our shifting focus from reactive processes,
such as what we do when things go wrong, to proactive processes, such as how we
design features to have fewer problems. The first proactive process that we intro-
duced was the Joint Architecture Design (JAD) process. JAD ensures the design of
features, and projects are conducted in a cross-functional manner, bringing the best
of all technology knowledge to work on the problem. We concluded with the men-
tion of a review process for certain JAD projects. This review process is known as the
Architecture Review Board (ARB). The ARB has many purposes, but the primary
goal is to validate the design of the JAD.

We used a very simple sport analogy of running to provide a high-level idea of the
difference between JAD and ARB. If you will recall in our analogy, JAD was the
equivalent to the training and ARB was the actual race. JAD can take place over sev-
eral days or weeks, whereas ARB is generally a single meeting that provides a focused
discussion on the outcome of the JAD, including not only the design but the tradeoffs
as well. ARB is by our definition a review board of select architects and leaders from
each of the functional or business areas, whose job is to ensure that all company
architectural principles have been incorporated and that best practices have been
applied. ARB is also one of the barrier condition processes that we will discuss within
Chapter 18, Barrier Conditions and Rollback.

Ensuring Scale Through Review
We have asked you repeatedly through this book how a certain process or focus
might have an impact on scalability. It shouldn’t come as any surprise that the answer

ptg5994185

222 CHAPTER 14 ARCHITECTURE REVIEW BOARD

is generally the same: the people and processes within your organization will make or
break the scalability of your application. Chances are nil that you will luck into an
architecture that scales as required by your business and supports itself without the
proper team in place and with that team following the proper processes. As we dis-
cussed in the last chapter, having a cross-functional team design the application
ensures that people with different knowledge work together to find the best solution.
Additionally, these people now have a combined goal of making this feature a suc-
cess. Without those two critical pieces in place, the missing knowledge and experien-
tial chasm prevalent in most organizations ensure that periodically features will fail
and cause availability and scalability issues for your business.

The JAD process is an excellent major step in guaranteeing that you have designed
a feature that takes into account all the various technology aspects as well as one that
helps to break down the cross team barriers that typically exist. The second step in
this process is to make certain that there is some oversight and governance on the
JAD teams as well as provide a check to ensure consistency across the JAD teams.
This oversight and consistency check comes in the form of the ARB.

Architectural principles are similar to coding standards; if they are documented
and taught to all engineers, they should be consistently followed. But if you don’t fol-
low up and check on your engineers, some of them, even those with the best inten-
tions, may cut some corners with the intention of fixing things later. Unfortunately,
with competing demands for engineers’ time, the likelihood is that they won’t fix
those corners that were cut, no matter how well intentioned they are. If standards are
not reviewed by peers or managers, they will slip. Unfortunately, it is a natural phe-
nomenon among almost every team. We will discuss this more in Chapter 19, Fast or
Right? when we cover whether to do things quickly or correctly. In a perfect world,
there would be no other pressures on the engineers except to get the projects done
correctly, but that is rarely the case. There are almost always additional pressures
that must be balanced. The other factor with standards is that someone will likely
misinterpret even the clearest of them. Especially as you have new engineers coming
on to the team, you need to ensure that they all properly understand the standards
and can implement them. Discussion on hypothetical examples and even testing can
be good predictors, but validating with real-world examples is always the best way to
ensure the standards are truly understood.

Validation of the use and interpretation of architectural principles is the primary
purpose of the ARB. By reviewing certain JAD designs, you will ensure that teams
stay focused on performing the best designs possible, not cutting corners, and that
across all the teams there is a consistent understanding and implementation of the
principles. Through a continuous use of the architectural principles, you will guarantee
that your application is designed from the start to scale. This is the direct correlation
between architecture principles and scalability that we talked about in Chapter 12,

ptg5994185

BOARD CONSTITUENCY 223

Exploring Architectural Principles. JAD is used to set the standard that these princi-
ples should consistently be followed and ARB is the check to make sure this is done.

Board Constituency
There are certain people or roles that you will want on the ARB, but more impor-
tantly are the traits that these people need to display. Let’s talk about these traits first
and then we will discuss the roles. Hopefully, these two spheres overlap completely
and all the proper roles are filled with people who display all the proper attributes.
To start with, you want people who are respected in the organization. They may be
respected because of their position, their tenure, or possibly because of their expertise
in a particular area of technology or business.

People who hold a particular position can be important to the ARB in order to
provide the gravitas to uphold their decisions. You do not want the JAD team to be
asked by ARB to redesign something only to have them petition to the CTO or VP of
engineering to have that decision overthrown. The ARB needs to be comprised of the
right people to make the right decision and to be given the final authority of that
decision. If this requires VPs to be on the ARB, they should be. If the VPs delegate the
ARB to managers or architects, the VPs need to support them and not second-guess
them. The ARB, in these matters, would be considered the A (Accountable) within
our RASCI process.

There are always leaders in an organization that are not in the management ranks.
These can be senior engineers or architects, anyone who demonstrates leadership in
some manner. These are the people that the team looks to in meetings to sway opin-
ions and provide guidance. These people are the ones we describe in our chapter on
leadership as naturally gifted in understanding people and how to motivate them, or
they have worked very hard to become good at that. Either way, the trait of leader-
ship is one that you want to look for when selecting people to place on the ARB.

Expertise, whether in engineering disciplines, architecture, or business, is a charac-
teristic that people should display if they are participants on the ARB. These people
usually are in roles such as architects, senior engineers, or business analysts but can
be found in lots of other places as well. They are the type of people that get sought
out when there is a tough question to answer or a crisis to be solved. Their expertise
comes in a variety of subjects and could include expertise on the platform itself
because of a long tenure working with the product or perhaps with a specific technol-
ogy such as caching or even with a specific large customer of the business.

To summarize, the traits or characteristics that we want to look for in ARB mem-
bers are leaders who are respected and who have domain expertise. Some members

ptg5994185

224 CHAPTER 14 ARCHITECTURE REVIEW BOARD

may have a greater amount of one characteristic than another. For instance, a senior
director of engineering may be well respected and display great leadership but may
not have true domain expertise. This senior director may still be an excellent candi-
date for the review board. Here are some roles within the organization that you
should consider looking at as possible candidates as members of the ARB.

• Chief architects

• Scalability architects

• Infrastructure architects

• VP or directors of engineering

• VP or directors of operations or infrastructure

• Senior systems administrators, database administrators, or network engineers

• Senior engineers

• CTO or CIO

• General manager of business unit

• Business analysts

This list is not inclusive but should provide you with an idea of where to look for
members who display our three key traits of respectability, leadership, and domain
expertise. As with most topics that we have discussed, the real test is whether it works
for and within your organization. The number of members of the ARB can vary
depending on the organization, the number of people available, and the variety of
skill sets required. We recommend the board consist of between four and eight members.

Membership on the ARB should be considered an additional responsibility to an
individual’s current role. It is always considered voluntary, so if necessary a member
can ask to be excused. We ideally would like to see the ARB team remain in place for
a significant period of time so that it can establish tenure in terms of assessing
projects and designs. There are many ways that you can modify the permanent or
nonpermanent nature of this membership and several factors that you may want to
consider when deciding on who should be a permanent member and who should be
rotational.

One factor to start considering is how many suitable members do you have in your
organization? If there are only four people who display the traits that we mention
previously as necessary for serving on this board, you will probably have to insist
that these be permanent positions. Another factor that will determine how perma-
nent, semipermanent, or rotational this role should be is how often you have features
that need to proceed through ARB. If you have enough engineers and enough JAD
projects that you are meeting more than once per week, you may need to rotate peo-
ple or even consider having two different ARB teams that can alternate. A third fac-

ptg5994185

CONDUCTING THE MEETING 225

tor, besides the quantity of candidates and quantity of ARB meetings, is specificity of
expertise. If there are multiple technologies or technology stacks or separate applica-
tions, you should consider rotating people in and out of the board depending on the
feature being discussed.

There are various methods of rotation for the ARB positions. One straightforward
method is to change the constituency of the board every quarter of the year. Depend-
ing on how many people are fit for this service, they could rotate on the board every
six months or once each year or even beyond. Another method for rotation of ARB
members is to leave some members permanent, such as the architects, and rotate the
management (VP of engineering, VP of operations, CTO, etc.) and the team members
(senior engineer, senior systems administrator, senior network engineer, etc). Any of
these methods will work fine as long as there is consistency in how each team
approaches its decisions and is given the authority of approving or rejecting the JAD
proposals.

Conducting the Meeting
The ARB meeting can be as formal or informal as your organizational culture feels
that it is necessary. Our experience is that these meetings can be very intimidating for
line engineers, database administrators, and other JAD members; therefore, a very
informal setting is our preference. The formality should come from the fact that there
will be a go or no-go decision made on the architecture of the feature; that should be
enough to establish the need for a well thought out and well-presented design by the
JAD team.

Regardless of how formal or informal you determine the meeting should be, they
should all include the following steps:

1. Introduction. Some members of the JAD may not know members of the ARB if
the engineering organization is large.

2. State Purpose. Someone on the ARB should state the purpose of the meeting so
that everyone understands what the goal of the meeting is. We suggest you point
out that the ARB will be making a judgment on the proposed architecture and
not people on the JAD team. If the design is sent back with major or minor revi-
sions requested, the decision should not be taken as a personal attack. Everyone
in the organization should have as their agenda to ensure the proper governance
of the IT systems and ensure the scalability of the system.

3. Architecture Presentation. The JAD team should present to the ARB its pro-
posed design. A well-structured presentation should walk the ARB members
through the thought process starting with the business requirements; follow this

ptg5994185

226 CHAPTER 14 ARCHITECTURE REVIEW BOARD

with the tradeoffs, alternative designs, and finally the recommended design with
strengths and weaknesses.

4. Q&A. The ARB should spend some time asking questions about the design to
clarify any points that were vague from the presentation.

5. Deliberation. The ARB members should dismiss the JAD team and deliberate on
the merits of the proposed design. This can be in many forms, such as cast an ini-
tial vote to weigh where each member stands or choose someone to lead the discus-
sion point by point through the pros and cons of the design before casting ballots.

6. Vote. The ARB should have an established process for determining when prod-
uct features get approved and when they get rejected. We have often seen ARBs
that reject a design if a single member votes Nay. You may want to adopt a 3/4
rule if you believe getting a 100% agreement will be unlikely and unproduc-
tively arduous. If this is the case, we recommend that you reconsider who makes
up the constituency of the board. Members should most highly consider what is
best for the company. Someone who abuses his power and consistently hassles
JAD teams is not looking out for the company and should be replaced on the
ARB team.

7. Conclusion. When a decision is made, the ARB should call back in the JAD and
explain its decision. This decision could be one of four courses:

• Approval. The first decision could be an approval to move forward as out-
lined in the proposal.

• Rejection. The second decision could be a rejection of the design and a
request for a completely new design to be constructed. This second choice is
an absolute rarity. Almost always there is something from the proposed
design that can be salvaged.

• Conditional Approval. The third option is an approval to move forward but
with some changes. This would indicate that the team does not need to resub-
mit to ARB but can proceed under its own guidance.

• Rejection of Components. The fourth choice is a rejection of the proposed
design but with specific requests for either more information or redesigned
components. This fourth option is the most common form of rejection and
the specific request for more information or a change in the design usually
comes from specific members of the ARB. This fourth decision does require a
resubmission to ARB for final approval prior to beginning development on
the feature.

These steps can be modified as necessary to accommodate your team size, exper-
tise, and culture. The most important item to remember (and you should remind the
team of) is that it should first and foremost put what is best for the company before

ptg5994185

CONDUCTING THE MEETING 227

personal likes, distastes, or agendas, such as something causing more work for their
team. And, what is best for the company is to get more products in front of the cus-
tomers while ensuring the scalability of the system.

Image Storage Feature
At our fictional company AllScale, a feature for the human resource management (HRM) appli-
cation that allows for the storage of pictures of personnel had been developed. The software
engineer, Sam Codur, was not knowledgeable about storage hardware and designed the fea-
ture without any input from the operations team. When it was time to deploy the feature, the VP
of operations, Tom Harde, had some tough questions that could not be answered in terms of
the system level requirements of the storage such as SLAs, retrieval time, and so on. After lots
of discussion with the VP of engineering, Mike Softe, the issue was escalated to Johnny Fixer,
the CTO. He decided to pull the feature from the release and redesign it properly. As part of the
after action review or postmortem of this issue, Johnny decided to introduce the teams to the
concept of Joint Architecture Design. Both the engineering and operations teams embraced
this process as a way to improve the product features being developed as well as strengthen
the working relationships between the teams.

Johnny was very pleased with how the teams had really taken to the JAD process. He knew
there was more that he could do and thought now was the time to continue improving his
teams’ processes. Johnny asked Tom and Mike to join him for lunch and introduced the idea of
an Architectural Review Board. The idea, he explained, was to allow us, the leadership team,
as well as our senior technical folks, a chance to review all of the large or riskier features. With
both the teams having availability and scalability as goals, which affected their bonuses, both
Tom and Mike were anxious to implement a process that would allow them to have a direct say in
the design and architecture of key features. The three of them worked the rest of the afternoon
to rough out the process, including who should be permanent members of the board (the three
of them) and who should be revolving (the engineering architects and operations directors).

After introducing the new ARB process to their teams, it was decided that the first feature
that would go through the ARB process was the image storage feature that had been the inspi-
ration for the JAD process. Sam Codur, the engineer responsible for the image storage feature,
and Mark Admeen, the operations systems administrator, assigned the responsibility of partici-
pating in the JAD, worked on their presentation of the feature’s design. They were a bit nervous
when it came time for the meeting, but Johnny, Tom, Mike, and the other board members
present quickly put them at ease by asking questions and taking up the conversation them-
selves to discuss the merits of various approaches. Sam and Mark concluded their presenta-
tion and were asked to wait outside for a few minutes while the board discussed the matter.

After the door closed, Johnny began by asking each member in turn his or her opinion of
the design. Knowing that this was his or her chance to sign off or reject the proposed design,
each person started quite cautiously. By the end of the discussion, all members had agreed

ptg5994185

228 CHAPTER 14 ARCHITECTURE REVIEW BOARD

that they were impressed with the level of detail and thought that had been put into the feature
design and had unanimously voted to approve the feature to move forward to the development
phase. They brought Sam and Mark back into the room and shared the good news with them,
congratulating them on being the first to present to the ARB and on being the first to pass the
ARB with flying colors.

Entry and Exit Criteria
Similar to the JAD process, we recommend that specific criteria must be met before a
product feature can begin the ARB process. As such, certain criteria must be met in
order for that feature to move out of ARB and for development to begin. These crite-
ria should be held up as strict standards to ensure that the ARB process is respected
and decisions emanating from the board are adhered. Failure to do so results in a
weak process that wastes everyone’s time and is eventually bypassed in favor of
quicker routes to design and development.

The entry criteria for a feature coming out of JAD into ARB are the following:

• Established Board. The Architecture Review Board must be established based
upon the criteria mentioned earlier in terms of roles and behaviors that the
members should demonstrate.

• JAD Complete. The feature should meet the exit criteria outlined in the last
chapter for JAD. This includes the following:

Consensus. The JAD team should be in agreement and all members should
support the final design. If this is absolutely not possible, a feature may be
submitted to ARB with this fact acknowledged and the two or more proposed
designs each presented.

Tradeoffs Documented. If there were any significant tradeoffs made in the design
with respect to the requirements, cost, or principles, these should be documented.

Final Design Documented. The final design must be documented and posted
for reference.

• Feature Selection. The feature having completed JAD should be considered as a
candidate for ARB. If this feature meets any of the following, it should proceed
through ARB:

Noncompliance with architectural principles. If any of the architectural prin-
ciples were violated, this feature should go through ARB.

Projects that cannot reach consensus on design. If the team fails to reach con-
sensus, it can either be reassigned to a new JAD team or it can be sent to ARB
for a final decision on the competing designs.

ptg5994185

ENTRY AND EXIT CRITERIA 229

Significant tradeoffs made. If tradeoffs had to be made in terms of product
requirements, cost, or other nonarchitectural principles, this should flag a fea-
ture to proceed to ARB.

High risk features. We will discuss how to assess risk in much more detail in a
future chapter, but if the feature is considered a high risk feature, it should go
through ARB. A quick way of determining if this is high risk is to look at how
many core components the feature touches or how different it is from other
features. Either of these will result in an increase amount of risk.

Depending on the decision made by the ARB, there are different exit criteria for a
feature. Here are the four decisions and what must be done following the ARB session:

• Approval. Congratulations, nothing more, required of the team from ARB.
Now the tough part begins by having to actually develop and implement the
project as it has been designed.

• Rejection. If the design is completely rejected, the ARB provides a number of
reasons for its decision. In this case, the same JAD team may be asked to rede-
sign the feature or a new team may be formed to do this second design. The
team should remain in place to provide the design if the current team has the
right expertise and if it is still motivated to succeed.

• Conditional Approval. If the ARB has conditionally approved the design, the
team should incorporate the conditions into its design and begin to produce the
feature. The team may return to the ARB in person or via email if there are any
questions or feel it needs further guidance.

• Rejection of Components. If the ARB rejects the design of certain components,
the same JAD team should come up with alternative designs for these compo-
nents. Because ARB is most often treated as a discussion, the JAD team should
have a good idea of why each component was rejected and what would be
needed to satisfy the board. In this case, the JAD team does need to reschedule
with the ARB to receive final signoff on its design.

Checklist—Keys for ARB Success
The following is a checklist of key attributes or actions that you should follow to ensure your
ARB is a success:

• Proper board composition

• Successfully complete JAD with the feature

• Ensure the right features get sent to ARB

• Do not allow political pressures to bypass features from ARB

ptg5994185

230 CHAPTER 14 ARCHITECTURE REVIEW BOARD

• Ensure everyone understands the purpose of ARB—improved scalability through rigor-
ous design

• JAD team should be well prepared for its presentation and Q&A session

• Establish ahead of time the ARB criteria for passing (100% of members is recommended)

• No petitions allowed on the board’s decisions

By following this checklist, you should be able to ensure the success and proper outcome of
the ARB process.

Conclusion
In this chapter, we covered the Architecture Review Board in detail. We started by
discussing why it is important to review the outputs of processes such as designs from
JAD or code from development. Without review, it is too common for people with
the best of intentions to allow the standards to slip, inadvertently misunderstand the
standards, or misapply them. Review solves both of these problems and does not cre-
ate an overly burdensome process step.

We then talked about the ARB constituency. We detailed the three behaviors or
traits that we felt were essential for members of the ARB regardless of their positions.
These behaviors are respect, leadership, and expertise. We offered some suggestions
on specific roles that individuals may hold within your organization who would
likely meet these criteria. Lastly in this section, we discussed whether the ARB mem-
bership should be a rotational role or a permanent one. Either way, the ARB position
should be in addition to one’s primary job in the organization.

Next, there was an outline of how the ARB meeting should be conducted. The
amount of formality in the ARB is dependent on the culture of the organization, but
we recommended for as much informality as possible in order for it not to be too
intimidating and to foster a discussion about the design.

We concluded this chapter with the entry and exit criteria for ARB. The entry cri-
teria are focused on ensuring that the right feature is being sent through ARB, that
the right ARB team is formed, and that the feature is as prepared as possible to pro-
ceed through ARB. Selecting the right feature is not always easy; therefore, we rec-
ommended four tests for whether a feature should proceed through ARB. These were
noncompliance with architectural principles, significant tradeoffs having to be made
to the business requirements, inability of the JAD team to reach consensus, and high
risk features.

Through the proper establishment of ARB, adherence to the criteria, and follow-
ing the proper process steps, your organization can be ensured of better designs that
are purposefully made for improving your scalability.

ptg5994185

CONCLUSION 231

Key Points

• A final review of the application’s architecture ensures buy-in and acknowledge-
ment as well as prevents finger pointing.

• The proper constituency of the ARB is critical for it to uphold the purpose of a
final architecture signoff as well as for the decisions to be respected.

• Members of the ARB should be seen as leaders, well respected, and have exper-
tise in some area of the application or architecture.

• ARB membership can be on a rotational basis but the position is always seen as
incremental to current duties.

• The ARB should be as informal as possible as long as it is taken seriously and
the decisions are understood to be final.

• All ARBs should start with a discussion of the purpose of the ARB—to ensure
designs that support the business needs including scalability.

• Entry into an ARB should only be granted to features that are sufficiently prepared.

• Decisions by the ARB should be considered final. Some organizations may
include an appeals process if it is deemed necessary.

ptg5994185

This page intentionally left blank

ptg5994185

233

Chapter 15

Focus on Core Competencies:
Build Versus Buy

Thus far, we’ve made the case that if you are truly undergoing hyper growth and need
to scale indefinitely, you need to take charge of your architecture; relying on third-
party solutions alone is a recipe for disaster. This is not to say that third-party solu-
tions are evil; in fact, we believe just the opposite. The point we make in this chapter
is that you should absolutely purchase software and systems where you are not the
best qualified to build such software and systems, but you should not rely upon them
as the means for your scalability. In the extreme case, you cannot possibly subject
your shareholders to restricting the growth of your business until after the next
release of some partner’s software or hardware. In past chapters, we have offered
suggestions on how to make the business case for scalability initiatives (Chapter 6,
Making the Business Case) and to measure and increase your productivity to allow
for scalability initiatives (Chapter 5, Management 101). We also added, as one of our
suggested architectural principles, Buying When Non Core. Although we did not spe-
cifically indicate Buying When Non Core as a scalability principle, your build and
purchase will absolutely have an indirect impact on your scalability. In this chapter,
we are going to discuss when you should build and when you should buy systems and
software. Although the concepts apply to all of your decisions within technology, we
are going to put a special emphasis on scalability.

Building Versus Buying, and Scalability
As a rule, when you decide to build something that is commercially available, it has
two impacts to your organization and your company. The first is that the item you
build typically ends up costing more after you factor in engineering time to support
and maintain the system that you’ve built. The second, and in many cases more
important, point is that you have finite development resources and anything you
build uses some of that development capacity. Obviously, if you were to build every-

ptg5994185

234 CHAPTER 15 FOCUS ON CORE COMPETENCIES: BUILD VERSUS BUY

thing from your computers to your operating systems and databases, you would find
yourself with little to no capacity remaining to work on the application that makes
your company money.

How does this impact scalability? The more time that you spend architecting and
implementing supportive components of your site the less time you have in architecting
and implementing an overall architecture that allows the entire platform, product, or
system to scale. As we will discuss in Chapter 20, Designing for Any Technology, build-
ing scalable architectures is about architecting solutions that grow horizontally as user
demand increases for any given system or service. When architectures are built to scale
horizontally and agnostically, the question of whether to build or buy something becomes
one of competitive differentiation and cost rather than religion and capabilities.

When you have created an agnostic architecture, you further reduce the value and
minimize the returns associated with dedicating internal and expensive resources to
any piece of your architecture. Building a database now has very low shareholder
value as compared to the alternative of using several commodity databases. Need
more database power? Design your application to make use of any number of data-
bases rather than spending incredible amounts of time developing your own super
fast database. Need encryption capabilities? Determine the additional value of your
encryption software versus the next best solution available to the public.

Any time you can buy something rather than build it, you free up engineering
resources that can be applied to business projects and projects focused on allowing
your platform to scale. You don’t have an infinite number of resources, so why would
you ever want to focus them on things that do not create shareholder value?

You may recall from past education or even some of our discussions within this
book that shareholder value is most closely associated with the profits of the com-
pany. Rising profits often result in changes to dividends, increases in stock prices, or
both. Profits, in turn, are a direct result of revenues minus costs. As such, we are
going to focus our build versus buy discussions along the paths of decreasing cost
and increasing revenue through focusing on strategy and competitive differentiation.

Focusing on Cost
Cost focused approaches center on lowering the total cost to the company for any
build versus buy analysis. These approaches range from a straight analysis of total
capital employed over time to a discounted cash flow analysis that factors in the cost
of capital over time. Your finance department likely has a preferred method for helping
to decide how to determine the lowest cost approach of any number of approaches.

Our experience in this area is that most technology organizations have a bias
toward building components. This bias most often shows up in an incorrect or

ptg5994185

FOCUSING ON STRATEGY 235

incomplete analysis showing that building a certain system is actually less expensive
to a company than purchasing the same component. The most common mistakes in
this analysis are an underestimation of the initial cost of building the component, and
missing or underestimating future costs of maintenance and support. It is not uncom-
mon for a company to underestimate the cost of support by an order of magnitude as
it does not have the history or DNA to know how to truly develop or support critical
infrastructure on a 24 7 basis.

If you adopt a cost focused strategy to determine build versus buy of any system, a
good way to test whether your strategy is working is to evaluate how often the process
results in a build decision. Your decision process is probably spot on if nearly all deci-
sions result in a buy decision. The exception to this rule is in the areas where your com-
pany produces the product in question. Obviously, you are in business to make money
and to make money you must produce something or provide a service to someone.

A major weakness of cost focused strategies is that they do not focus on strategic
alignment or competitive differentiation. The focus is purely to reduce or limit the
cost incurred by the company for anything that is needed from a technology perspec-
tive. Very often, this strategy is employed by groups implementing back office infor-
mation technology systems. Focusing on cost alone though can lead to decisions to
build something when a commercial off the shelf (COTS) or vendor provided system
will be more than adequate.

Focusing on Strategy
Strategy focused approaches look at build versus buy from a perspective of alignment
to the vision, mission, supporting strategy, and goals of the company. In most cases,
there is a two-part question involved with the strategy focused approach:

• Are we the best or among the best (top two or three) providers or builders of the
technology in question?

• Does building or providing the technology in question provide sustainable com-
petitive differentiation?

To be able to answer the first question, you need to be convinced that you have the
right and best talent to be the best at what you are doing. Unfortunately, here again,
we find that too many technology organizations believe that they are the best at pro-
viding, well, you name it! Counter to the way some parents have decided to raise
their children, not everyone can be the best, not everyone deserves a trophy, and not
everyone deserves to feel good about their accomplishments. In the real world, there
are only two or three providers of anything with the claim of being the best or at least
in the top two to three. Given the number of candidates out there for nearly any service,

ptg5994185

236 CHAPTER 15 FOCUS ON CORE COMPETENCIES: BUILD VERSUS BUY

unless you are the first provider of some service, the chances are slim that your team
really is the best. It can be good, but it probably is not the best. Your team is defi-
nitely not the best if you haven’t been applying the management principles of “seed,
feed, and weed” from Chapter 5.

Being the Best
The only people unbiased enough to really make a determination of whether you can be the
best provider of anything are those that start from the position of belief that you are not the best
provider. No one gets to be the best at anything without proving it, and proving it requires at
least some work toward the achievement of a goal. Stating something emphatically is not proof
enough of anything but your belief. Against whom or what are you comparing yourself or your
team? Just because this is the best group of people you have ever worked with does not justify
the title. What are the metrics and measurements that you are using?

And being the best does not necessarily mean having the best technology. You have to win
the entire game, from technology to marketing to partnerships that will make you successful.
Beta was arguably a better technology than VHS, yet it still lost. Apple’s Macintosh had a more
intuitive interface than the PC, yet the PC won based on the ecosystem of providers and tools
available for it.

To be able to answer the second question, you really need to be able to explain how,
by building the system in question, you are raising switching costs, lowering barriers
to exit, increasing barriers to entry, and the like. How is it that you are making it
harder for your competitors to compete against you? How does this help you to win
new clients, keep existing clients, and operate more cost effectively than any of your
competitors? What keeps them from copying what you are doing in very short order?

“Not Built Here” Phenomenon
If we seem a little negative in this chapter, it is because we are. We see a lot of value
destroyed in a lot of companies from executives and technology teams deciding that
they should build something based on incorrect information or biased approaches.
We very often find ourselves in discussions on why a company absolutely has to build
this or that, when the thing being discussed has absolutely nothing to do with how
they make money. We’ve used the examples of databases and encryption methodolo-
gies and we weren’t talking about the use of open source databases (we completely
support the use of those). In our consulting practice at AKF Partners, we’ve had cli-

ptg5994185

MERGING COST AND STRATEGY 237

ents running commerce sites who built their own databases from the ground up!
We’ve also seen proprietary load balancers, entity and object caches, heavily modi-
fied and sometimes nearly entirely proprietary operating systems, and so on. Most
often, the argument is “we can build it better and we need something better, so we
built it” followed closely by “it was cheaper for us to build it than to buy it.”

We call this the “Not Built Here” phenomenon and not only is it dangerous from
the perspective of scalability, it is crippling from a shareholder perspective. When
applied to very small things that take only a portion of your development capacity, it
is just an annoyance. When applied to critical infrastructure, it very often becomes
the source of the company’s scalability crisis. Too much time is spent managing the
proprietary system that provides “incredible shareholder value” and too little making
and creating business functionality and working to really scale the platform.

To clarify this point, let’s take a well known real-world example like eBay. If eBay
had a culture that eschewed the use of third-party or COTS products, it might focus
on building critical pieces of its software infrastructure such as application servers.
Application servers are a commodity and can typically be acquired and implemented
at very little cost. Assuming that eBay spends 6% to 8% of its revenue on building
applications critical to the buying and selling experience, a portion of that 6% to 8%
will now be spent building and maintaining its proprietary application server. This
means that either less new product functionality will be created for that 6% to 8% or
it will need to spend more than 6% to 8% in order to both maintain its current prod-
uct roadmap and build its proprietary application server. Either way, shareholders
suffer. eBay, by the way, does not have such a culture and in fact has a very robust
build versus buy analysis process to keep just such a problem from happening.

Although the application server scenario might seem a bit ridiculous to you, the
scenario happens all the time in our advisory practice. We see customers focused on
building proprietary databases, proprietary encryption programs, proprietary appli-
cation servers, and even proprietary load balancing programs. In almost every case,
it’s a result of the team feeling it can build something that’s better without a focus on
whether “better” truly adds any shareholder value. In most cases, in our experience,
these approaches destroy shareholder value.

Merging Cost and Strategy
Now that we’ve presented the two most common approaches to analyzing build versus
buy decisions, we’d like to present what we believe to be the most appropriate solu-
tion. Cost centric approaches miss the questions of how a potential build decision
supports the company’s objectives and do not consider the lost opportunity of devel-
opment associated with applying finite resources to noncompetitive differentiating

ptg5994185

238 CHAPTER 15 FOCUS ON CORE COMPETENCIES: BUILD VERSUS BUY

technologies. Strategy centric approaches fail to completely appreciate the cost of
such a decision and as such may end up being dilutive to shareholder value.

The right approach is to merge the two approaches and develop a set of tests that
can be applied to nearly any build versus buy decision. We also want to acknowledge
a team and a company’s natural bias to build and we want to protect against that at
all costs. We’ve developed a very simple, non-time-intensive, four-part test to help
decide whether you should build or buy the “thing” you are considering.

Does This Component Create Strategic Competitive Differentiation?
This is one of the most important questions within the build versus buy analysis process.
At the heart of this question is the notion of shareholder value. If you are not creating
competitive differentiation, thereby making it more difficult for your competition to
win deals or steal customers, why would you possibly want to build the object in
question? Building something that makes your system “faster” or reduces customer
perceived response time by 200 milliseconds may sound like a great argument for
building the component in question, but how easy is it for your competitors to get to the
same place? Does 200 milliseconds really make a big difference in customer experience?

Are you increasing switching costs for your customers or making it harder for
them to leave your product or platform? Are you increasing the switching costs for
your suppliers? Are you changing the likelihood that your customers or suppliers will
use substitutes rather than you or a competitor? Are you decreasing exit barriers for
the competition or making it harder for new competitors to compete against you?
Does this create new economies of scale for you? These are but some of the questions
you should be able to answer to be comfortable with a build over a buy decision. In
answering these questions, or going through a more formal analysis, recognize your
natural bias toward believing that you can create competitive differentiation. You
should answer “No” more often than “Yes” to this question and stop your analysis
in its tracks. There is no reason to incur the lost opportunity associated with dedicat-
ing engineers to something that is not going to make you significantly better than
your competition.

Are We the Best Owners of This Component or Asset?
Simply stated, do you really have the right team to develop and maintain this? Do
you have the support staff to give yourself the support you need when the system
breaks? Can you ensure that you are always covered? Very often, a good question to
truly test this is “If you are the best owners of this asset, should you consider selling
it?” Think long and hard about this follow-up question because many people get the
answer wrong or at best half right. It may be enough to be the best, or potentially in
the top two or three, but there is rarely a good justification for being “one of the top
10” providers of anything, especially if it is not closely aligned with your core business.

ptg5994185

MERGING COST AND STRATEGY 239

If you answer “No, because it creates differentiation for us and we want to win
with our primary product,” you are only half right. A fully correct answer would
also include “and it won’t make us more money than we make with our primary
product,” or “the value in selling it does not offset the cost of attempting to sell it,”
or something along those lines.

Here’s something else to consider: Given that there can only be one best at any
given “thing,” how likely is it that your team can be the best at both what you do to
make money and the new component you are considering building? If you are a small
company, the answer is nearly none. If it was statistically unlikely you are the best at
the thing you started on, how can it be more probable that you are the best at both
that old thing and this new thing?

If you are an online commerce company, it’s entirely possible that you are the best at
logistics planning or the best at presenting users what they are most likely to buy. It is
not very likely at all that you can be the best at one of those things and be the best
developer of databases for your internal needs or the best at developing your special
firewall or your awesome load balancer. More than likely someone else is doing it better.

What Is the Competition to This Component?
If you have gotten this far in the questionnaire, you already believe that the compo-
nent you are building creates competitive differentiation and that you are the best
owners and developers of the component. Now the question is how much differentia-
tion can you truly create? To answer this, you really need to dig in and find out who
is doing what in this space and ensure that you are so sufficiently different from them
as to justify using your valuable engineering resources. Recognize that over time most
technologies that are sold become commodities, meaning that the feature set con-
verges with very little differentiation from year to year and that buyers purchase
mostly on price. How long do you have before a competing builder of this technol-
ogy, who also specializes in this technology, can offer it to your primary competitors
at a lower cost than you need to maintain your proprietary system?

Can We Build This Component Cost Effectively?
And our last question is about cost. We hinted at the cost component within the anal-
ysis of the existing competition for our new component, but here we are talking
about the full fledged analysis of cost over time. Ensure that you properly identify all
of the maintenance costs that you will incur. Remember that you need at least two
engineers to maintain anything, even if at least part time, as you need to ensure that
someone is around to fix problems when the other person is on vacation. Evaluate
your past project delivery schedules and make sure you adjust for the likelihood that
you are overly aggressive in your commitments. Are you generally off by 10% or
100%? Factor that into the cost analysis.

ptg5994185

240 CHAPTER 15 FOCUS ON CORE COMPETENCIES: BUILD VERSUS BUY

Make sure you treat the analysis as you would a profit and loss statement. If you
are dedicating engineers to this project, what projects are they not working and what
revenue are you deferring as a result, or which scalability projects won’t get done and
how will that impact your business?

Checklist—Four Simple Questions
Use this simple checklist of four questions to help you in your build versus buy decisions:

• Does this component create strategic competitive differentiation? Are we going to have long-
term sustainable differentiation as a result of this in switching costs, barriers to entry, etc.?

• Are we the best owners of this component or asset? Are we the best equipped to build it
and why? Should we sell it if we build it?

• What is the competition to this component? How soon until the competition catches up to
us and offers similar functionality?

• Can we build this component cost effectively? Are we reducing our cost and creating
additional shareholder value and are we avoiding lost opportunity in revenue?

Remember that you are always likely to be biased toward building so do your best to protect
against that bias. The odds are against you that you can build a better product than those
already available and you should tune your bias toward continuing to do what you do well
today—your primary business.

AllScale’s Build or Buy Dilemma
AllScale decides to expand its services beyond the HRM platform and begins to build
a customer relationship management (CRM) system focused initially at staffing and
recruiting companies. After the product has been defined at a business level, a team
of engineers, architects, and product managers begin to work on the high-level archi-
tecture of the platform that will support the CRM functionality. One piece of func-
tionality within the system will be the capability for companies to extend the system
by adding their own functionality. A debate soon begins over whether AllScale
should build an interpreter for a proprietary AllScale scripting language that custom-
ers would need to learn and use.

The engineers think the project to build such an interpreter would be very exciting
and quickly they set about defining why the interpreter should be proprietary rather
than using one of the many existing interpreters ranging from Visual Basic to Python
or PERL. The engineers all believe that they can make an interpreter specific to the
needs of AllScale’s needs and as a result the interpreter dubbed ScaleTalk will run

ptg5994185

ALLSCALE’S BUILD OR BUY DILEMMA 241

faster and more efficiently than any interpreted language they would otherwise
implement. Johnny Fixer, CTO, on the other hand, is concerned about the time it
would take to develop such an interpreted language and is dubious regarding the
potential returns of such a system. Christine E. Oberman, CEO, is always talking
about how they should think in terms of shareholder value creation, so Johnny
decides to discuss the opportunity with her.

Together, Johnny and Christine walk through the four-part build versus buy
checklist. They decide that using a proprietary language increases the switching costs
for customers because for a customer to leave AllScale for another provider of CRM
technology, AllScale would need to rewrite its ScaleTalk scripts. The barriers to entry
are also raised, as other companies adopting readily available interpreters for similar
functionality would lack some of the functionality specific to the AllScale product.
They agree that there is a strong business case for creating strategic competitive dif-
ferentiation through an interpreter that customers can use to extend and modify the
functionality of the AllScale CRM product.

Johnny and Christine disagree on whether they are the best builders and owners of
the asset. Although they agree that it can create shareholder value, Christine doubts
that the engineers they have today have the best skills to build such an interpreter.
Christine pushes Johnny to experienced help in interpreters should they decide to
move forward and build ScaleTalk. Johnny reluctantly agrees to do so.

Christine and Johnny agree that there is little direct competition to ScaleTalk as it
is defined. There are lots of substitutes that would offer 60% of the intended func-
tionality, but nothing that would allow them to give customers the flexibility and
power of ScaleTalk within the AllScale CRM system. Johnny believes that it could
take years for someone else to build an interpreter for their own platforms, but Chris-
tine pushes back indicating that it would probably take less time for a competitor to
copy AllScale’s solution than for AllScale to build it. Her reasoning is that the com-
petitor needn’t innovate but rather copy nearly wholesale the features and functional-
ity of AllScale’s intended interpreted language. Johnny decides that she has a good
point but indicates that AllScale would continue to innovate and give customers addi-
tional language functionality over time.

Christine asks Johnny to estimate how long it would take to build the interpreter
for ScaleTalk and to determine how much they would save in license fees, support fees,
and other costs of the system over the course of five years. Johnny does a back-of-the-
envelope calculation indicating that five engineers over seven months should be able
to create the interpreter for a net headcount of expense of roughly $300,000.00. He
further indicates that the company will need to dedicate one engineer full time for the
life of the system to maintain it for an ongoing expense of $80,000.00 per year. He
believes the company will save about $60,000.00 per year in license and support fees
for a similar product and about $200,000.00 in initial purchase costs. That leaves a
$100,000.00 gap in initial development costs and an ongoing deficit of $20,000.00

ptg5994185

242 CHAPTER 15 FOCUS ON CORE COMPETENCIES: BUILD VERSUS BUY

per year. Johnny believes both of these will be made up in three years by needing fewer
systems to support a similar number of transactions and in faster time to market.

Although not a perfect scenario, Christine and Johnny jointly decide that ScaleTalk
for the AllScale CRM application is worth pursuing. Christine asks to be kept in the loop
regarding development timeframe and issues as she is concerned about cost overruns.
Johnny agrees and makes a note to clearly call out ScaleTalk progress in his weekly
status meetings and monthly product updates. Christine makes a note to create a slide
or two for the upcoming board of directors meetings to discuss the ScaleTalk decision.

Conclusion
Build versus buy decisions have an incredible capability to destroy shareholder value
if not approached carefully. Incorrect decisions can steal resources to scale your plat-
form, increase your cost of operations, steal resources away from critical customer
facing and revenue producing functionality, and destroy shareholder value. We noted
that there is a natural bias toward building over buying and we urged you to guard
strongly against that bias.

We presented the two most common approaches, cost centric and strategy centric.
We offered a third approach that merges the benefits of both approaches and avoids
most of the problems each approach has individually. Finally, we offered a four-part
checklist for your build versus buy decisions to help you make the right choice.

Key Points
• Making poor build versus buy choices can destroy your capability to scale cost

effectively and can destroy shareholder value.

• Cost centric approaches to build versus buy focus on reducing overall cost but
suffer from a lack of focus on lost opportunity and strategic alignment of the
component being built.

• Strategy centric approaches to build versus buy focus on aligning the decision
with the long-term needs of the corporation but do not account for total cost.

• Merging the two approaches results in a four-part test that has the advantages
of both approaches but eliminates the disadvantages.

• To reach a “buy” decision, you should be able to answer the following:

Does this component create strategic competitive differentiation?

Are we the best owners of this asset?

What is the competition to the component?

Can we build the component cost effectively?

ptg5994185

243

Chapter 16

Determining Risk

Hence in the wise leader’s plans, considerations of advantage and disadvantage will be blended together.

—Sun Tzu

In the previous 15 chapters, we have often mentioned risk management or suggested
that you analyze the amount of risk, but we have not given you a detailed explana-
tion of what we mean by these phrases and terminology. This chapter is going to be
all about how to determine the amount of risk in a feature, release, bug fix, configu-
ration change, or other technology related action. Managing risk is one of the most
fundamentally important aspects of increasing and maintaining availability and scal-
ability. To manage risk, you first must know how to calculate risk and determine how
much risk exists in some action or lack of action.

In this chapter, we will first discuss why risk plays such a large part in scalability.
This discussion will build upon all the other times so far in the book that we have
mentioned risk management and its importance. After we have clearly articulated the
importance of risk management, we will discuss how to measure the amount of risk
and finally how to manage the overall risk in a system. Here, the use of system means
not only the application, but the entire product development life cycle, technology
organization, and all the processes that make these up. There are many different
ways of calculating the amount of risk, and we will cover some of the best ones that
we have seen, including the pros and cons of each method.

At the end of this chapter, you will have a much better grasp of risk and under-
stand how to determine the amount of risk involved in something, as well as how to
manage the overall level of risk that the business is willing to take. These are funda-
mental skills that need to exist in the organization at almost every level to ensure that
the scalability of the system is not impaired by improper decisions and behaviors.

ptg5994185

244 CHAPTER 16 DETERMINING RISK

Importance of Risk Management to Scale
Why is the ability to manage risk so important to scalability? The answer to this
question lies in the fact that business is inherently a risky endeavor. For example, the
risk that customers will not want products that you offer, that the tradeoffs made
between speed and quality don’t exceed the threshold for customers, that skipped
steps for cost savings don’t result in catastrophic failure, the risk that the business
model will ever work, and so on and so on. To be in business, at least for any amount
of time, you must be able to identify and balance the risks with the rewards. It is
risky to demo for a potential huge customer your newest untested product, but if it
works that customer might sign up; is that a risk worth taking? The capability to bal-
ance risk and reward are essential to survive as a business, especially a startup. This
balance of risk and reward is exactly what entrepreneurs do every day and what tech-
nologists in companies must do. Pushing the new release has inherent risks, but it
should also have expected rewards. Knowing how to determine the amount of risk
that exists allows you to solve this risk–reward equation and make the right decisions
about when to take the risk in turn for rewards.

If risk is an inherent part of any business, especially a hyper-growth SaaS Web 2.0
company, are the successful companies necessarily great at managing risk? The
answer is probably not, but they probably have either someone who innately man-
ages risk or they have been extremely lucky so far and will likely run out of luck at
some point. There are certain people who can naturally feel and manage risk; we’ll
talk more about this in the section of this chapter about ways to measure risk. These
people may have developed this skill from years of working around technology and
having an acute sense of when things are likely to go wrong. They also might just
have an inborn ability to sense risk. It’s great if you have someone like this, but even
in that case you want the rest of the organization to be able to identify risk and not
have to rely on a single individual as the human risk meter. Remember that single-
tons, especially if that singleton is a person, do not scale well. If you are one of the
lucky organizations who have been successful without any focus or understanding of
risk, you should be even more worried. You could argue that risk demonstrates a
Markov property, meaning that the future states are determined by the present state
and are independent of past states. We would argue that risk is cumulative to some
degree, perhaps with an exponential decay but still additive. A risky event today can
result in failures in the future, either because of direct correlation such as today’s
change breaks something else in the future, or via indirect methods such as an
increased risk tolerance by the organization leading to riskier behaviors in the future.
Either way, actions can have near- and long-term consequences.

Because risk management is important to scalability, we need to understand the
components and steps of the risk management process. We’ll cover this in more detail

ptg5994185

MEASURING RISK 245

in this chapter but a high-level overview of the risk management process entails first
and foremost as accurately as possible determining the risk of a particular action.
There are many ways to go about trying to accurately determine risk, some more
involved than others and some often more accurate than others. The important thing
is to select the right process for your organization, which means balancing the rigor
and required accuracy to what makes sense for your organization. After the amount
of risk has been determined or estimated, you must actively manage the amount of
risk both acutely and overall within the system. Acute risk is the amount of risk asso-
ciated with a particular action, such as changing a configuration on a server. Overall
risk is the amount that is cumulative within the system because of all the actions that
have taken place over the previous days, weeks, or possibly even months.

Measuring Risk
The first step in being able to manage risk is the ability to as accurately as necessary
determine what amount of risk is involved in a particular action. The reason we use
the term necessary and not possible is that you may be able to more accurately deter-
mine risk, but it might not be necessary given the current state of your product or
your organization. For example, a product in beta, where customers are expecting
some glitches, may dictate that a sophisticated risk assessment is not necessary and
that a cursory analysis is sufficient at this point. There are many different ways to
analyze, assess, or estimate risk. The more of these that are in your tool belt, the
more likely you will use the most appropriate one for the appropriate time and activ-
ity. We are going to cover three methods of determining risk. With each of these, we
will discuss the advantages and disadvantages as well as the accuracy.

The first assessment method is the gut feel method. This is when someone either
because of his position, VP of operations, or because of his innate ability to feel risk,
is given the job of making go/no-go decisions on actions. As we mentioned earlier,
some people inherently have this ability and it is great to have someone like this in
the organization. However, we would caution you on two very important concerns.
First, does this person really have the ability to understand risk at a subconscious
level or do you just wish he did? In other words, have you tracked this person’s accu-
racy? If you haven’t, you should before you consider this as anything more than a
method of guessing. Secondly, if indeed this person has some degree of accuracy with
regard to determining risk, you do not want your organization to be dependent on
one person. You need multiple people in your organization to understand how to
assess risk. Ideally, everyone in the organization is familiar with the significance of
risk and the methodologies that exist for assessing and managing it.

As an example of the gut feel method, let us say that the VP of operations, Tom
Harde, for our fictitious company AllScale is revered for his ability to make on-the-spot

ptg5994185

246 CHAPTER 16 DETERMINING RISK

decisions about problems and go/no-go decisions. As far as anyone can remember, his
decisions have never been questioned and have always been correct, at least that is
what the team recalls. The team has just finished preparing a release to go to produc-
tion for the HRM application and has asked Tom for permission to push the code
this evening. This Wednesday evening between 10 PM and midnight has in the past
been designated as a maintenance window; not for down time, but because of the low
traffic, it is a suitable time to perform the higher risk actions. Tonight, there is a data-
base split taking place during this window that has already been planned and
approved. Tom decides, without explanation to the engineering team, that they can-
not push code tonight and should expect to be allowed to push it the next night. The
team accepts this decision because even though they are engineers and skeptical by
nature, no one has ever questioned a go/no-go decision from Tom. Later that night,
the database split goes disastrously wrong and the team is forced to work late into
the morning rolling back the changes. The engineering team hears about this in the
morning and is very glad for the no-go decision last night.

The advantages of the gut feel method of risk assessment is that it is very fast. A
true expert who fundamentally understands the amount of risk inherent in certain
tasks can make decisions in a matter of a few seconds. The disadvantages of the gut
feel method are, as we discussed, the person might not have this ability but may be
fooled into thinking he does because of a few key saves. The other disadvantage is
that this method is rarely replicable. People tend to develop this ability over years of
working in the industry and honing their expertise, not something that can be taught in
an hour-long class. Another disadvantage of this method is that it leaves a lot of decision
making up to the whim of one person as opposed to a team or group that can ques-
tion each others’ data and conclusions. The accuracy of this method is highly variable
depending on the person, the action, and a host of other variables. This week a per-
son might be very good at assessing the risk and next week strike out completely.

The second method that we are going to cover is the traffic light method. In this
method, you determine the risk of an action by breaking down the action into the
smallest components and assigning a risk level to them of green, yellow, or red. The
smallest component could be a feature in a release or a configuration change in a list
of maintenance steps, the granularity depends on several factors including the time
available and the amount of practice the team has in performing these assessments.
After each component has been assigned a color of risk, there are two ways of arriv-
ing at the overall risk of the action. The first method is to assign a risk value to each
color, count the number of each color, and multiply the count by the risk value. Then,
sum these multiplied values and divide by the total count of items or actions. What-
ever risk value this is closest to gets assigned the overall color. Figure 16.1 depicts the
risk rating of three features that provides a cumulative risk of the overall release.

The assessment of risk for the individual items in the action, release, or mainte-
nance is done by someone very familiar with the low-level component and they

ptg5994185

MEASURING RISK 247

decide on green, yellow, or red by analyzing various factor such as the difficulty of
the task, the amount of effort required for the task (the more effort generally the
higher the risk), the interaction of this component with others (the more connected or
centralized this item is the higher the risk), and so on. Table 16.1 shows some of the
most common attributes and their associated risk factors that can be used by engi-
neers or other experts to gauge the risk of a particular feature or granular item in the
overall list.

Figure 16.1 Traffic Light Method of Risk Assessment

Table 16.1 Risk-Attribute Correlation

Attribute Risk

Effort Low = Green; High = Red

Difficulty Low = Green; High = Red

Complexity Low = Green; High = Red

Connectivity to other components Low = Green; High = Red

Likelihood of errors Low = Green; High = Red

Ability to detect issues High = Green; Low = Red

Feature 1

Feature 2

Overall Release

Feature 3

=

ptg5994185

248 CHAPTER 16 DETERMINING RISK

Traffic Light Release Example
Mike Softe, VP of engineering at AllScale, has adopted the traffic light method of risk assess-
ment. He has decided to assign numeric equivalents to the colors, assigning 1 to green, 3 to
yellow, and 9 to red. Mike knows that he could use any arbitrary scale but he prefer this one
because it causes higher risk items to dramatically stand out, which is very conservative. Mike
is producing a risk assessment for an upcoming release for the HRM application. He has four
items that are green, two that are yellow, and one that is red; the math for calculating the overall
risk number/color is depicted in Figure 16.2.

Therefore, our total risk for the HRM release is 2.7, which is closest to 3 or yellow. We’ll dis-
cuss what Mike should do with this number or color in the next section when we talk about how
to manage risk. For now, we are satisfied that Mike has performed some level of risk assess-
ment on the action.

One large advantage of the traffic light method is that it begins to become method-
ical, which implies that it is repeatable, able to be documented, and able to be
trained. Many people can conduct the risk assessment so you are no longer depen-
dent on a single individual. Again, because many people can perform the assessment,
there can be discussion about the decisions that people arrive at and as a group they
can decide whether someone’s argument has merit. The disadvantages of this method
is that it does take more time than the gut feel method and it is an extra step in the
process. Another disadvantage is that it relies on each expert to choose which
attributes she will use to assess the risk of individual components. Because of this
possible variance among the experts, the accuracy of this risk assessment is mediocre.
If the experts are very knowledgeable and have a clear understanding of what consti-
tutes risky attributes for their particular area, this method can be fairly accurate. If
they do not have a clear understanding about what attributes are important to look
at when performing the assessment, the risk level may be off quite a bit. We will see
in the next risk assessment methodology how this potential variance is fixed allowing
the assessments to be more accurate.

Figure 16.2 Traffic Light Equation

4 1 2 3 1 19

19
4 2 1

2 7

× + × + =

+ +
=

()
.

ptg5994185

MEASURING RISK 249

The third method of assessing the amount of risk in a particular action is known
as the Failure Mode and Effects Analysis (FMEA). This methodology was originally
developed for use by the military in the late 1940s.1 Since then, it has been used in a
multitude of industries including automotive, manufacturing, aerospace, and soft-
ware development. The method of performing the assessment is similar to the traffic
light method in that components are broken up into the smallest parts that can be
assessed for risk; for a release, this could be features, tasks, or modules. Each of these
components is then identified with one or more possible failure modes. Each failure
mode has an effect that describes the impact if this particular failure occurred.

For example, a signup feature may fail by not storing the new user’s information
properly in the database or by assigning the wrong set of privileges to the new user or
a variety of other failure scenarios. The effect would be the user not being registered
or having the ability to see data she was not authorized to see. These failure scenarios
are scored on three factors: likelihood of failure, severity of that failure, and the abil-
ity to detect if that failure occurs. Again, we choose to use a scoring scale of 1, 3, and
9 because it allows us to be very conservative and differentiate items with high risk
factors well above those with medium or low risks. The likelihood of failure is essen-
tially the probability of this particular failure scenario coming true. The severity of
the failure is the total impact to the customer and the business if this occurs. This can
be in monetary terms or in reputation (good will) or any other business related mea-
surement. The ability to detect the failure is rating whether you will be likely to
notice the failure if it occurs. As you can imagine, a very likely failure that has disas-
trous consequences that is practically undetectable is the worst possible of all three.

After the individual failure modes and effects have been scored, the scores are mul-
tiplied to provide a Total Risk Score that is equal to the Likelihood Score Severity
Score Ability to Detect Score. This score shows the overall risk that a particular
component has within the overall action. The next step in the FMEA process is to
determine mitigation steps that you can perform or put in place that will lower the
risk of a particular factor. For instance, if a component of a feature had a very high
ability to detect score, meaning that it would be hard to notice if the event occurred,
the team might decide ahead of time to write some queries to check the database
every hour post-release for signs of this failure, such as missing data or wrong data.
This mitigation step has a lowering effect on this risk factor of the component and
should then indicate what the risk was lowered to.

In Table 16.2, there are two features that the AllScale team is planning on releas-
ing as part of its HRM application. One is a new signup flow for its customers and
the other is changing to a new credit card processor. Each of the features has several

1. Procedure for performing a failure mode effect and criticality analysis. November 9, 1949.
United States Military Procedure, MIL-P-1629.

ptg5994185

250 CHAPTER 16 DETERMINING RISK

failure modes identified. Walking through one as an example, let’s look at the Credit
Card Payment feature and focus on the Credit Card billed incorrectly failure mode
with the effect of either a payment too large or too small being charged to the card.
The engineering expert, Sam Codur, has ranked this as very unlikely to occur, proba-
bly because Mike Softe, VP of engineering at AllScale, has ensured that this feature
received extensive code review and quality assurance testing due to the fact that it
was dealing with credit cards. The engineer, Sam, gave the failure mode a 1 for likeli-
hood. Sam also scored this failure mode as having disastrous severity, giving it a 9.
This seems reasonable because a wrongly billed credit card would result in customers
being very upset, charge backs, which cost money, and probably refunds, which cost
more money. Should this failure occur, Sam feels that it will be somewhat hard to
detect but not impossible so he gave it a score of 3. The Total Risk score for this fail-
ure mode is 27, arrived at by multiplying 1 3 9. Sam also identified the fact that if
this new payment processor were rolled out in beta for a limited customer set, the
severity would be much lower because only a few select customers would be
impacted and if anything went wrong the overall monetary and publicity amounts
would be limited. If this remediation action is taken, the risk would be lowered to a 3
for severity and the Revised Risk Score would be only a 9, much better than before.

The advantage of the FMEA as a risk assessment process is that it is very methodi-
cal, which allows it to be documented, trained, evaluated, and modified. Another
advantage is the accuracy. Especially over time as your team becomes better at identi-
fying failure scenarios and accurately assessing the risk, this will become the most
accurate way for you to determine risk. The disadvantage of the FMEA method is
that it takes time and thought. The more time and effort put into this yields better
and more accurate results. This method is very similar to test-driven development.
Failure modes can often be determined up front from the specification, and the more
identified the better understanding you will have of the feature and how it should be
designed to minimize the risk of these failures.

As we will discuss in the next section, these scores, especially ones from a FMEA
can be used to manage the amount of risk in a system across any time interval or in
any one release/action. The next step in the risk assessment is to have someone or a
team of people review the assessment for accuracy and to question any decision. This
is the great part about using a methodical approach such as the FMEA: Everyone can
be trained on and thus can police each other to ensure the highest quality assessment
is performed. The last step in the assessment process is to revisit the assessment after
the action has taken place to see how accurate you and the experts were in determin-
ing the right failure modes and in assessing their factors. If a problem arose that was
not identified as possible, have that expert review the situation in detail and provide a
reason this was not identified ahead of time and a warning to other experts to watch
out for this type of failure.

ptg5994185

251

Ta
b

le
 1

6.
2

Fa
ilu

re
 M

od
e

an
d

E
ff

ec
t

A
na

ly
si

s
E

xa
m

pl
e

Fe
at

ur
e

Fa
ilu

re
 M

od
e

E
ff

ec
t

L
ik

el
ih

oo
d

of
 F

ai
lu

re

O
cc

ur
ri

ng
(1

 =
 L

ow
,

3
=

M
ed

iu
m

,
9

=
H

ig
h)

Se
ve

ri
ty

 if

Fa
ilu

re
O

cc
ur

s
(1

 =
 M

in
im

al

3
=

Si
gn

ifi
ca

nt
,

9
=

E
xt

re
m

e)

A
bi

lit
y

to

D
et

ec
t

Sh
ou

ld

Fa
ilu

re
 O

cc
ur

(1

 =
 E

as
y,

3

=
M

ed
iu

m
,

9
=

D
if

fi
cu

lt
)

T
ot

al

R
is

k
Sc

or
e

R
em

ed
ia

ti
on

 A
ct

io
ns

R
ev

is
ed

R
is

k
Sc

or
e

Si
gn

 U
p

U
se

r
da

ta
 n

ot

in
se

rt
ed

 in
to

th

e
da

ta
ba

se

pr
op

er
ly

U
se

rs
 n

ot

re
gi

st
er

ed
3

3
3

27

•
Te

st
 a

ll
re

gi
st

ra
ti

on
 p

at
hs

 (
re

du
ce

lik

el
ih

oo
d

sc
or

e
to

 1
)

•
W

ri
te

 q
ue

ri
es

 t
o

us
e

po
st

-l
au

nc
h

fo
r

da
ta

 v
al

id
at

io
n

(r
ed

uc
e

de
te

ct
io

n
to

 1
)

3

U
se

rs
 g

iv
en

 t
he

w

ro
ng

 s
et

 o
f

pr
iv

ile
ge

s

U
se

rs
 h

av
e

ac
ce

ss
 t

o
ot

he
r

us
er

s’
in

fo
rm

at
io

n

1
9

3
27

•
W

ri
te

 a
 q

ue
ry

 t
o

ru
n

ev
er

y
ho

ur
 p

os
t-

la
un

ch
 t

o
ch

ec
k

fo
r

ne
w

 r
eg

is
tr

an
ts

w

it
h

un
us

ua
l p

ri
vi

le
ge

s
(r

ed
uc

e
de

te
c-

ti
on

 s
co

re
 t

o
1)

9

U
se

rs
 n

ot
 s

en
t

pa
ss

w
or

ds
U

se
rs

 u
na

bl
e

to

lo
gi

n
3

1
1

3
N

/A
3

C
re

di
t

C
ar

d

C
re

di
t

ca
rd

bi

lle
d

in
co

rr
ec

tly

C
ha

rg
es

 t
o

cr
ed

it
 c

ar
ds

 a
re

to

o
m

uc
h

or
 to

o
lit

tl
e

1
9

3
27

•
R

ol
l c

re
di

t
ca

rd
 f

ea
tu

re
 o

ut
 in

 b
et

a
fo

r
lim

it
ed

 c
us

to
m

er
s

(r
ed

uc
e

se
ve

ri
ty

sc

or
e

to
 3

)
9

A
ut

ho
ri

za
ti

on
nu

m
be

r
no

t
st

or
ed

U
na

bl
e

to

re
ch

ar
ge

 c
re

di
t

ca
rd

 w
it

ho
ut

re

en
te

ri
ng

nu
m

be
r

1
1

1
1

N
/A

1

C
re

di
t

ca
rd

nu

m
be

rs
 n

ot

en
cr

yp
te

d

A
llo

w
s

po
ss

ib
il-

it
y

of
 s

om
eo

ne

gr
ab

bi
ng

 c
re

di
t

ca
rd

 n
um

be
rs

1
9

1
9

N
/A

9

ptg5994185

252 CHAPTER 16 DETERMINING RISK

Risk Assessment Steps
If you are planning on using any methodical approach to risk assessment, these are the steps
for a proper risk assessment. These steps are appropriate for the traffic light method or the
FMEA method that were discussed:

1. Determine the proper level of granularity to assess the risk.

2. Choose a method that you can reproduce.

3. Train the individuals who will be performing the risk assessment.

4. Have someone review each assessment or a team can review the entire assessment.

5. Choose an appropriate scoring scale (1, 3, 9) that takes into account how conservative
you need to be.

6. Review the risk assessments after the action, release, or maintenance has occurred to
determine how good the risk assessment was at identifying the types of failures as well
as how likely, severe, and detectable they were.

Whether you are using the traffic light method, the FMEA, or another risk assessment meth-
odology, be sure to follow these steps to ensure a successful risk assessment that can be used
in the overall management of risk.

Managing Risk
As we discussed earlier in this chapter we fundamentally believe that risk is cumula-
tive. As you take more risky actions or pile on risky changes, there will come a point
where the risk is realized and there will be problems in the system. In our practice at
AKF Partners, we teach our clients to manage both acute and overall risk in a system.
The acute risk is how much risk exists from a single change or combination of
changes in a release. The overall level of risk comes from the accumulation of risk
over hours, days, or weeks of performing risky actions on the system. Either type of
risk, acute or overall, can result in a crisis scenario in the system. We will discuss how
to manage both these types of risk to ensure you are making good decisions about
what should and what should not be allowed to change within your system at any
given point in time.

Acute risk is managed by monitoring the risk assessments performed on proposed
changes to the system such as releases. You may want to establish ahead of time some
limits to the amount of risk that any one concurrent action can have or that you are
willing to allow at a particular time of day or customer volume. For instance, you

ptg5994185

MANAGING RISK 253

may decide that any single action that contains a risk above 50 points, as calculated
through the FMEA methodology, must be remediated below this amount or split into
two separate actions. Or, you may want only actions below 25 points taking place on
the system before midnight, everything higher must occur after midnight. Even though
this is a discussion about the acute risk of a single action, this too is cumulative in
that the more risky items contained in a risk, the higher the likelihood of a problem
and the more difficult the detection or determination of the cause because so many
things changed.

As a thought experiment, imagine a release with one feature that has two failure
modes identified compared to a release with 50 features, each with two or more fail-
ure modes. Firstly it is way more likely for a problem to occur because of the number
of opportunities. As an analog consider flipping 50 pennies at the same time. While
each coin is an independent probability of landing on heads, you are more likely to
have at least one head in the total results. Secondly, with 50 features, the likelihood
of changes affecting each other or touching the same component, class, or method in
an unexpected way is higher. Therefore, both from a cumulative opportunity as well
as from a cumulative probability of negative interactions, there is an increased likeli-
hood of a problem occurring. If a problem arises after these releases, it is also a lot
easier to determine the cause of the problem when the release contains one feature
than when it contains 50, assuming that all the features are somewhat proportional
in complexity and size.

For managing acute risk, we recommend that you determine a chart such as the
one in Table 16.3 that outlines all the rules and associated risk levels that are accept-
able. This way, it is clear cut. You should also decide on an exceptions policy such as
anything outside of these rules must be approved by the VP of engineering and the
VP of operations or the CTO alone.

For managing the overall risk amount, there are two factors that can cause issues.
The first is the cumulative amount of changes that have taken place in the system and
the corresponding increase in the amount of risk associated with each of these
changes. Just as we discussed in the earlier section on acute risks, combinations of

Table 16.3 Acute Risk Management Rules

Rules Risk Level

New feature release < 150 pts

Bug fix release < 50 pts

6 AM – 10 PM < 25 pts

10 PM – 6 AM < 200 pts

Maintenance patches < 25 pts

Configuration changes < 50 pts

ptg5994185

254 CHAPTER 16 DETERMINING RISK

actions can have unwanted interactions as well. The more releases or database splits
or configuration changes that are made, the more likely one will cause a problem or
the interaction of them will cause a problem. If the development team has been work-
ing in a development environment with a single database and two days before the
release the database is split into a master and read host, it’s pretty likely that the next
release is going to have a problem unless there has been a ton of coordination and
remediation work done.

The second factor that should be considered in the overall risk analysis is the
human factor. As people perform riskier and riskier activities, their level of risk toler-
ance goes up. This human conditioning can work for us very well when we need to
become adapted to a new environment, but when it comes to controlling risk in a sys-
tem, this can lead us astray. If a sabre-toothed tiger has moved into the neighborhood
and you still have to leave your cave each day to hunt, the ability to adapt to the new
risk in your life is critical to your survival. Otherwise, you might stay in your cave all
day and starve. Pushing more and more changes to your production environment
because you haven’t been burnt yet and you feel somewhat invincible is a good way
to cause serious issues.

We recommend that to manage the overall amount of risk in a system, you adopt a
set of rules such as in Table 16.4, which lays out the amount of risk, as determined by
at FMEA, for specific time periods. If you are using a different methodology than
FMEA, you need to adjust the risk level column with some scale that makes sense,
such as instead of < 150 pts you could use < 5 green or 3 yellow actions. Like the
acute risk management process, you will need to account for objections and over-
rides. You should plan ahead and have an escalation process established. An idea
would be that a director can grant an extra 50 points to any risk level, a VP can grant
100 points, and the CTO can grant 250 points, but not cumulative. Any way you
decide to set this up, it matters most that it makes sense for your organization and
that it is documented and adhered to strictly.

Table 16.4 Overall Risk Management Rules

Rules Risk Level

6-hour period < 150 pts

12-hour period < 250 pts

24-hour period < 350 pts

72-hour period < 500 pts

7-day period < 750 pts

14-day period < 1200 pts

ptg5994185

CONCLUSION 255

Conclusion
In this chapter, we have focused on risk. Our discussions started with the purpose of
risk management and how that related to scalability. We concluded that risk is preva-
lent in all businesses, especially startups. To be successful, you have to take risks in
the business world. In the Web 2.0 and SaaS world, scalability is part of this risk/
reward structure. You must take risks in terms of your system’s scalability or else you
will overbuild your system and not deliver products that will make the business suc-
cessful. By actively managing your risk, you will increase the availability and scalabil-
ity of your system.

Our next discussion in this chapter was focused on how to assess risk. Although
there are many different approaches used for this, we offered three different ones.
The first was the gut feeling, which we abdicated that some are naturally gifted at but
many others are credited for but actually lack the ability and are simply mislabeled.

The second method was the traffic light, which assessed components as low risk
(green), medium risk (yellow), or high risk (red). The combination of all components
in an action, release, change, or maintenance was the overall risk level. We provided
some examples of how this overall number could be calculated.

The third and our recommended approach is the Failure Mode and Effect Analysis
methodology. In this method, experts are asked to assess the risk of components by
identifying the failure modes that are possible with each component or feature and
the impending effect that this failure would cause. An example given was a credit
card payment feature that could fail by charging a wrong amount to the credit card,
the effect being a charge that was too large or too small to the customer. These failure
modes and effects were scored by their likelihood of occurrence, the severity if they
were to occur, and the ability to detect if it did occur. These were multiplied for a
total risk score. The experts would then recommend remediation steps that would
reduce the risk of one or more of the factors and thus reduce the overall risk score.

After the risk assessment was completed, the management of risk needed to begin.
We broke this up into the management of acute risk and the management of overall
risk. The acute risk dealt with single actions, releases, maintenances, and so on,
whereas the overall risk dealt with all changes over periods of time such as hours,
days, or weeks. For both acute and overall, we recommended the adoption of rules
that specified predetermined amounts of risk that would be tolerated for each action
or time period. Additionally, in preparation for objections, we recommended an esca-
lation path be established ahead of time so that the first crisis does not create its own
path without thought and proper input from all parties.

As with most processes, the most important aspect of both the risk assessment and
the risk management is the fit within your organization at this particular time. As
your organization grows and matures, there may be a need to modify or augment

ptg5994185

256 CHAPTER 16 DETERMINING RISK

these processes. For risk management to be effective, it must be used, and in order for
it to be used, it needs to be a good fit for your team.

Key Points

• Business is inherently risky; the changes that we make to improve scalability of
our systems can be risky as well.

• Managing the amount of risk in a system is key to availability and ensuring the
system can scale.

• Risk is cumulative with some degree of degradation over time.

• For best results, use a method of risk assessment that is repeatable and measureable.

• Risk assessments like other processes can be improved over time.

• There are advantages and disadvantages to various risk assessment approaches.

• There is a great deal of difference in the accuracy of various risk assessment
approaches.

• Risk management can be viewed as both acute and overall.

• Acute risk management deals with single instances of change such as a release or
a maintenance procedure.

• Overall risk management is about watching and administering the total level of
risk in the system at any point in time.

• For the risk management process to be effective, it must be used and followed.

• The best way to ensure a process is adhered to is to make sure it is a good fit for
the organization.

ptg5994185

257

Chapter 17

Performance and Stress Testing

If you know neither the enemy nor yourself, you will succumb in every battle.

—Sun Tzu

After peripherally mentioning performance and stress testing in previous chapters, we
now turn our attention to these tests and discuss how they differ in purpose and out-
put and how they impact scalability. Your organization may currently be using nei-
ther, one, or both of these tests. Either way, this chapter should give you some fresh
perspectives on the purpose and viability of testing that you can use to either revamp
or initiate a testing process in your organization.

An important thing to remember up front is that no matter how good your testing
is, including performance and stress testing, nothing will replace good design and
proper development in terms of a quality and scalable product. Just as you cannot
test quality into a product, you cannot load test scalability into one either. You need
to establish very early in the product development life cycle that there will be a focus
on scalability and quality from the start. This doesn’t mean that you should skip per-
formance testing any more than you should skip quality testing; they are both essen-
tial, but they are verification and validation steps that ensure the proper work was
done up front. You should not expect to build the required quality or scalability in at
the end of the life cycle.

Performing Performance Testing
Performance testing, by definition, according to Wikipedia, covers a broad range of
engineering evaluations, where the emphasis is on the final measurable performance
characteristics instead of the actual material or product.1 With respect to computer

1. This definition is from Wikipedia: http://en.wikipedia.org/wiki/Performance_testing.

ptg5994185

258 CHAPTER 17 PERFORMANCE AND STRESS TESTING

science, performance testing is focused on determining the speed, throughput, or
effectiveness of a device or piece of software. Performance testing is often called load
testing and to us the terms are interchangeable. Some professionals will argue that
performance testing and load testing have different goals but similar techniques. To
avoid a pedantic argument, we will use a broader goal for defining performance test-
ing in order that it incorporates both.

By our definition, the goal of performance testing is to identify, document, and,
where possible, eliminate bottlenecks in the system. This is done through a strict con-
trolled process of measurement and analysis. Load testing is utilized as a method in
this process.

Handling the Load with Load Testing
Load testing is the process of putting load or user demand on a system to measure its
response and stability, the purpose of which is to verify that the application can meet the
desired performance objectives often specified as a service level agreement (SLA). A load test
measures such things as response time, throughput, and resource utilization. It is not intended
to identify the system’s breaking point unless this point occurs below the peak load condition
that is expected by the specifications, requirements, or normal operating conditions. If that
should occur, you have a serious issue that must be addressed prior to release.

Example load tests include

• Test a mail server with the load of the expected number of users’ email accounts.

• Test the same mail server with the expected load of email messages.

• Test a SaaS application by sending many and varied simulated user requests to the
application over an extended period of time—the more like production traffic the better.

• Test a load balanced pair of app servers with a scaled down load of user traffic.

Criteria
Before we can begin our performance testing to identify bottlenecks, we must first
clearly identify the specifications of the system. This is the first step in performance
testing, establishing the success criteria. For Web 2.0 and SaaS systems, this is often
based on the concurrent usage and response time metrics. Unless this is the very time
conducting performance testing, these specifications will have already been estab-
lished. The first time you conducted performance testing, hopefully prior to the first
release, you should have increased the load until the application either stopped
responding or responded in an unpredictable manner—at which point, you would
have established a benchmark for the performance of the application.

ptg5994185

PERFORMING PERFORMANCE TESTING 259

There are other ways that you can establish these benchmarks or requirements,
such as having specifications detailed ahead of time for the particular project. This is
often the case when developing a replacement system or doing a complete redesign.
The old system may have handled a certain number of concurrent users and in order
to not have to purchase more hardware, the project has a major requirement of main-
taining or improving this metric. Other times, the business is growing beyond the
current system and a decision is made to completely redesign the system from the
ground up. In this case, the usage and response time requirements generally go way
up based on the amount of investment necessary to completely redevelop the system.

Environment
After you have these benchmarks, the second step is to establish your environment.
The environment encapsulates the network, servers, operating system, and third-
party software that the application is running on. It is typical to have separate envi-
ronments for development, quality assurance testing, performance testing, staging,
and production. The environment is important because you need a stable, consistent
environment to conduct the test repeatedly over some extended duration. There are a
wide variety of tests that we will discuss in the next step of defining the test; for now,
know that there can be many tests to test the breadth of components. Additionally,
some of these tests need to be run over certain time periods, such as 24 hours, to pro-
duce the load expected for batch routines. The other reason that the environment is
important is that for the tests results to be accurate and meaningful, the environment
must mirror production as much as possible.

The reason it is important that the performance testing environment mimic pro-
duction as much as possible is because environmental settings, configurations, differ-
ent hardware, different firewall rules, and much more can all dramatically affect test
results. Even different patch versions of the operating system, which seems trivial,
can have dramatically different performance characteristics for applications. This
does not mean that you need a full copy of your production environment; although
that would be nice, few companies can afford such a luxury. Instead, make wise
tradeoffs but stick to the same basic architecture and implementation as possible. For
example, pools of servers that in production have 40 servers in them can be scaled
down in a test environment to only two or three servers. Databases are often very dif-
ficult to scale down because the amount of data affects the query performance. In
some cases, you can “trick” the database into believing it has the same amount of
data as the production database in order to ensure the queries execute with the same
query plans. Spend some time deciding on a performance testing environment and
discuss the tradeoffs that you are making. Balance the cost with the effectiveness and
you will be able to make the best decisions in terms of what the environment should
look like and how accurate the results will be.

ptg5994185

260 CHAPTER 17 PERFORMANCE AND STRESS TESTING

Define Tests
The third step in performance planning is to define the tests. As mentioned earlier,
there are a multitude of tests that can be performed on all the various services and
features. If you try to run all of them, you may never release any products. The key is
to use the Pareto Distribution or Rule of 80/20. Find the 20% of the tests that will
provide you with 80% of the information. System’s tests almost always follow some
similar distribution when it comes to the amount or value of information provided.
This is because the features are not all used equally, and some are more critical than
others. A feature handling user payments is more important than one handling a
user’s search for friends, and thus can be tested more vigorously.

Vilfredo Pareto
Vilfredo Federico Damaso Pareto was an Italian economist who lived from 1848 to 1923 and
was responsible for contributing several important advances to economics. One of the most
notable insights that almost everyone has heard of today is the Pareto Distribution. Fascinated
by power and wealth distribution in societies, he studied the property ownership in Italy and
observed in his 1909 publication that 20% of the population owned 80% of the land, thus giving
rise to his Pareto Distribution.

Technically, the Pareto Distribution is a power law of probability distribution, meaning that it
has a special relationship between the frequency of an observed event and the size of the
event. Another power law is Kleiber’s Law of metabolism, which states that the metabolic rate
of an animal scales to the 3/4 power of the mass. As an example, a horse that is 50 times larger
than a rabbit will have a metabolism 18.8 times greater than the rabbit.

There are lots of other rules of thumb that you can use, but the Pareto Distribution is very
useful, when it applies, for getting the majority of a result without the majority of the effort. The
caution of course is to make sure the probability distribution applies before using it. If you have
a scenario where the information is one for one with the action, you cannot get 80% of it by only
performing 20% of the action; you will have to perform the percentage work that you need to
achieve the equivalent percentage information.

When you do define the tests, be sure to include tests of various types. Some types
or categories of tests include endurance, load, most used, most visible, and compo-
nent (app, network, database, cache, and storage). The endurance test is used to
ensure that a standard load experienced over a prolonged period of time does not
have any adverse effects due to such problems as memory leaks, data storage, log file
creation, or batch jobs. A normal user load with as realistic traffic patterns and activ-
ities as possible is used here. It is often difficult to come up with actual or close to

ptg5994185

PERFORMING PERFORMANCE TESTING 261

actual user traffic. A minimum substitute for this is a series of actions such as a sign
up process followed by a picture upload, a search for friends, and a log out, written
into a script that can be executed over and over. More of an ideal scenario is to gather
actual users’ traffic from a network device or app server and replay these in the exact
same order varying the time period. At first, you can run the test over the same time
period that the users generated the traffic, and then you can increase the speed and
ensure the application performs as expected with the increased throughput.

Execute Tests
The load test is essentially putting a user load on the system up to the expected or
required level to ensure the application is stable and responsive according to internal
or external service level agreements. A most used test scenario is testing the most
common path that users take through the application. In contrast, a most visible test
scenario is testing the part of the application that is seen the most such as the home
page or a new landing page. The component test category is a broad set of tests that
are designed to test individual components in the system. One such test might be to
exercise a particularly long running query on the database to ensure it can handle the
prescribed amount of traffic. Similarly, traffic requests through a load balancer or
firewall are other component tests that you might consider.

After you have finalized your test plan based on the size of the system, the relative
value of the information that you will gain from each test, the amount of time that
you have available, and the amount of risk that the organization is willing to accept,
you are ready to move on to step four, which is to actually execute the tests. In this
step, you work through the test plan executing the tests methodically in the environ-
ment established for this testing and begin recording various measurements such as
transaction times, response times, outputs, and behavior. All available data is gath-
ered; data is your friend in performance testing, and you really can’t have too much.
It is important to keep this data from release to release. As we will talk about in the
next step, comparison between various releases is critical to understanding the data
and determining if the data indicates normal operating ranges or if there could be a
problem.

Analyze Data
Step five in the performance testing process is to analyze the data gathered. This anal-
ysis can be done in a variety of manners depending on such things as the expertise of
the analyst, the expectations of thoroughness, the acceptable risk level, and the time
allotted. Perhaps the simplest analysis is a comparison of this candidate release with
past releases. A query that can only execute 25 times per second without increased
response time compared to last release when it could execute 50 times per second
with no noticeable degradation in performance indicates a potential problem. The

ptg5994185

262 CHAPTER 17 PERFORMANCE AND STRESS TESTING

fun begins in the next step trying to figure out why this change has occurred.
Although decreases in capacity of throughput or increases in response time are clearly
things that should be noted for further investigation, the opposite is true as well. A
sudden dramatic increase in capacity might indicate that a particular code path has
been dropped or SQL conditionals have been lost and should be noted as well for
explanation. We hope that in these scenarios an engineer has refactored and
improved the performance, but it is best to note this and ask the questions.

A more detailed analysis involves graphing the data for visual reference. Some-
times, it is much easier when data is graphed on line, bar, or pie charts to recognize
anomalies or differences. Although these may or may not be truly significant, they
are generally quick ways of making judgments about the release candidate. A further
detailed analysis involves performing statistical analysis on the data. There is a multi-
tude of statistical tests that can be used, such as control charts, t-tests, factor analysis,
main effects plot, analysis of variance, and interaction plots. The general purpose of
conducting any of this analysis is to determine what factors are causing the observed
behavior, is it statistically significantly different from other releases, and will it meet
the service level agreements that are in place.

Report to Engineers
The sixth step in the performance testing process is to report the results to the engi-
neering team responsible for the release. This is generally done in an informal manner
and can be done either at one time with all parties present or in smaller teams. The
goal of the meeting is to have each item that gets raised as a possible anomaly han-
dled in one of three ways. The first case would be that the anomaly gets explained
away by the engineer. In this case, the engineer must make a good enough argument
for why the results of the test are different than expected to make the tester as well as
the engineering leadership feel comfortable passing this test without investigating fur-
ther. The second case is for a bug to be filed against the engineer in order that he
investigate the issue further and either fix it or explain it. The third option is for the
engineering team to ask for additional tests with the expectation that more data will
help narrow down the actual problem.

Repeat Tests and Analysis
The last step in the performance process is to repeat the testing and reanalyze the
data. This can either be because a fix was provided for a bug that was logged in step
six or because there is additional time, and the code base is likely always changing
due to functional bug fixes. If there are time and resources available, these tests
should definitely be repeated to ensure the results have not changed dramatically
from one build to another for the candidate release and to continue probing for
potential anomalies.

ptg5994185

PERFORMING PERFORMANCE TESTING 263

Summary of Performance Testing Steps
When conducting performance testing, the following steps are the critical steps to completing it
properly. You can add steps as necessary to fit your organization’s needs, but these are the
ones you must have to ensure you achieve the results that you expect.

1. Criteria. Establish what criteria are expected from the application, component, device, or
system that is being tested.

2. Environment. Make sure your testing environment is as close to production as possible to
ensure that your test results are accurate.

3. Define tests. There are many different categories of tests that you should consider for
inclusion in the performance test. These include endurance, load, most used, most visi-
ble, and component.

4. Execute tests. This step is where the tests are actually being executed in the environ-
ment established in Step 2.

5. Analyze data. Analyzing the data can take many forms—some as simple as comparing to
previous releases, others include stochastic models.

6. Report to engineers. Provide the analysis to the engineers and facilitate a discussion
about the relevant points.

7. Repeat tests & analysis. As necessary to validate bug fixes or as time and resources per-
mit, continue testing and analyzing the data.

Follow these seven steps and any others that you need to add for your specific situations
and organization. The key to a successful process is making it fit the organization.

Performance testing covers a broad range of testing evaluations, but they share the
focus on the necessary characteristics of the system rather than the individual materi-
als, hardware, or code. Staying focused on ensuring the software meets or exceeds the
specified requirements or service level agreements is what performance testing is all
about. We covered the seven steps of a successful performance testing process and
identified that the key to this, as with all processes, is a good fit within the organiza-
tion. Additional important aspects of performance testing include a methodical
approach from the very beginning of establishing the benchmarks and success criteria
to the very end of repeating the tests as often as possible for validation purposes.
Because there are always necessary tradeoffs between testing, time, and monetary
investments, a methodical, scientific approach is the way to ensure success with per-
formance testing.

ptg5994185

264 CHAPTER 17 PERFORMANCE AND STRESS TESTING

Don’t Stress Over Stress Testing
Stress testing is a process that is used to determine an application’s stability when
subjected to above normal loads. As opposed to load testing, where the load is only
as much as specified or normal operations require, stress testing goes well beyond
these, often to the breaking point of the application, in order to observe the behav-
iors. There are different methods of stress testing, the two most common are positive
testing and negative testing. Positive testing is where the load is progressively
increased to overwhelm the system’s resources. Negative testing takes away resources
such as memory, threads, or connections. Besides determining the exact point of
demise or in some instances the degradation curve of the application, the other pur-
pose is to drive the application beyond its capacity to make sure that when it fails it
can recover gracefully. This is testing the application’s recoverability.

As an example, let’s revisit our fictitious AllScale human resources management
(HRM) application again. The application has a service that provides searching func-
tionality for managers to find employees. This is particularly useful for HR managers
who might have hundreds of employees that they are responsible for in terms of HRM.
Kevin Qualman, the director of quality assurance, has asked his team to develop a
stress test for this service. One method that Kevin’s team has come up with is to sub-
ject the service to an increasing number of simultaneous requests. At each progressive
step, the team would want to monitor and record response time, returned results, and
the behavior of various components such as the buffer pool of the database or the
freshness of a caching layer. When the team gets to a point that response time begins
to degrade beyond the specifications, it makes note of this and continues to monitor
specifically to ensure that the system degrades nicely. Kevin’s team members do not
want the service to topple over and stop serving any requests. If this is the case, there
is a problem in the system that should be fixed. Instead, they want to see the system
handle this inability to service incoming requests in some acceptable manner such as
reject requests that exceed its capacity or queue them to be serviced later. At this
point in the test, they should begin tapering off the requests back to an acceptable and
manageable level for the service. They should expect to see that as the requests are
tapered off the system will clean up the queued or rejected requests and continue pro-
cessing. This is the recoverability that they expect in the service.

Identify Objectives
We have identified eight separate steps in a basic stress test. You may choose to add to
this as required by the needs of your organization, but this basic outline will get you
started or help refine your process if it exists already. The first step is to identify what you
want to achieve with the test. As with all projects, time and resources are limited; there-
fore, by identifying up front the goals, you can narrow the field of tests that you will

ptg5994185

DON’T STRESS OVER STRESS TESTING 265

perform. This is crucial to saving a great deal of time or worse, executing the tests and
then having the data not tell you want you need to know about the application or service.

There are four categories of goals that a stress test can provide results for analysis.
These categories are establishing a baseline, testing failure and recoverability, nega-
tive testing, and system interactions. The goal of establishing baseline behavior of a
service is usually the goal when you have never done stress testing and you need to
establish the peak utilization possible or degradation curve. The second category of
goals for stress testing is to test the service’s behavior during failure and then its sub-
sequent recoverability. The service may have been modified or enhanced and you
want to ensure it still behaves properly during periods of extreme stress. These two
goals involve positive stress testing because you are putting a continually increasing
positive load on the service. The third category of goals that you might have for a
stress test is negative testing. In this case, you are interested in determining what hap-
pens should you lose cache or have a memory leak or any other resource becomes
limited or restricted. The final category of goals that you may have for your stress
test is testing the interactivity of the system’s services. Here, you are trying to ensure
that some given functionality continues to work when one or more other services are
overloaded. Between these four categories of goals, you should be able to define spe-
cifically the purpose of your stress test.

Identify Key Services
After you have identified the goal or objective of your stress test, the second step is to
identify the services that you will be testing. Again, we have limited time and
resources and must choose which services are to be tested to ensure we achieve our
goals established in the first step. Some factors that you should consider are criticality
to the overall system, ones most likely to affect performance, and those identified
through load testing as bottlenecks. Let’s talk about each one individually. The first
factor to use in determining which services should be selected for stress testing is the
criticality of each service to the overall system performance. If there is a central ser-
vice such as a data abstract layer (DAL) or user authorization, this should be
included as a candidate for stress testing because the stability of the entire application
depends on this service. If you have architected your application into fault tolerant
“swim lanes,” which will be discussed in Chapter 21, Creating Fault Isolative Archi-
tectural Structures, you still likely have core services that have been replicated across
the lanes. The second consideration for determining services to stress test is the likeli-
hood that a service affects performance. This decision will be influenced by knowl-
edgeable engineers but should also be somewhat scientific. You can rank services by
the usage of things such as synchronous calls, I/O, caching, locking, and so on. The
more of these higher risk processes that are included in the service the more likely
they will have an effect on performance. The third factor for selecting services to be

ptg5994185

266 CHAPTER 17 PERFORMANCE AND STRESS TESTING

stress tested is those services identified during load testing as a bottleneck. Hopefully,
if a service has been identified as a bottleneck, this constraint will have already been
fixed but you should recheck them during stress testing. These three factors should
provide you with strong guidelines for selecting the services on which you should
focus your time and resources to ensure you get the most out of your stress testing.

Determine Load
The third step in stress testing is to determine how much load is actually necessary.
Determining the load is important for a variety of reasons. First, it is helpful to know
at approximately what load the application will start exhibiting strange behaviors so
that you don’t waste time on much lower loads. Second, you need to understand if
you have enough capacity on your test systems to generate the required load. The
load that you decide to place upon a particular service should stress it sufficiently
beyond the breaking point in order to enable you to observe the behavior and conse-
quences of the stress. One way to accomplish this is to identify the load under which
the service begins to exhibit poor behavior, and incrementally increase the load
beyond this point. The important thing is to be methodical, record as much data as
possible, and create a significant failure of the service. Stress can be placed upon the
service in a variety of manners, such as increasing the requests, shortening any delays,
or reducing the hardware capacity. An important factor to remember is that loads,
whether identified in production or in load testing, should always be scaled to the
appropriate level based on the differences in hardware between the environments.

Environment
As with performance testing, establishing the appropriate environment is critical.
This is the fourth step in stress testing. The environment must be stable, consistent,
and as close to production as possible. This last item might be hard to accomplish
unless you have an unlimited budget. If you are one of the less fortunate technology
managers, constrained by a budget like the rest of us, you will have to scale this
down. Large pools of servers in production can be scaled down to small pools of two
or three servers, but the fact that there are multiple servers load balanced behind the
same rules is important. The class of servers should be the same if at all possible or a
scale factor must be introduced. A production environment with 7.2K rpm SATA
disks and a test environment with 5.4K rpm SATA disks may cause the application to
have different performance characteristics and different load capacities. It is impor-
tant to spend some time deciding on a stress testing environment, just as you did for
your performance testing environment. Understand the tradeoffs that you are making
with each difference between your production and testing environment. Balance the
risk and rewards to make the best decisions in terms of what the environment should
look like and how useful the tests will be.

ptg5994185

DON’T STRESS OVER STRESS TESTING 267

Identify Monitors
The fifth step in the stress testing process is to identify what needs to be monitored or
what data needs to be collected. It is as equally important to identify what needs to
be monitored and captured as it is to properly choose the service, load, and tests. You
certainly do not want to go to the trouble of performing the tests only to find that
you did not capture the data that you needed to perform a proper analysis. Some
things that might be important to consider as potential data points are the results or
behavior of the service, the response time, CPU load, memory usage, disk usage,
thread deadlocks, SQL count, transactions failed, and so on. The results of the ser-
vice are important in the event that the application provide erroneous results. Com-
parison of the expected and actual results should be considered as a very good
measure of the behavior of the service under load.

Create Load
The next step in the process is to create the simulated load. This sixth step is impor-
tant because this often takes more work than running the actual tests. Creating suffi-
cient load to stress the service may be very difficult if you have services that have
been well architected to handle especially high loads. The best loads are those that
are replicated from real user traffic. Sometimes, it is possible to gather this from
application or load balancer logs. If this is possible and the source of your load data,
it is likely that you will need to coordinate other parts of the system such as the data-
base to coincide with the load data. For example, if you are testing a signup service
and plan on replaying actual user registrations from your production logs, you will
need to not only extract the registration requests from your logs but also have the
data in the test database set to a point before the user registrations began. The reason
for this is that if the user is already registered in the database, it will cause a different
code path to be executed than normal for a user registration. This difference will sig-
nificantly skew your testing results and is not an accurate test. If you cannot get real
user traffic to simulate your load, you can revert to writing scripts that simulate a
series of steps that exercise the service as close to normal user traffic as possible.

Execute Tests
After you have finalized your test objectives, identified the key services to be tested,
determined the load necessary, set up your environment, identified what needs to be
monitored, and created the simulated load that will be used, you are ready for the
seventh step, which is to actually execute the tests. In this step, you will methodically
progress through your identified services performing the stress tests under the loads
determined and methodically record the data that you identified as being important
to perform a proper analysis. Like with performance testing, you should keep data
from release to release. Comparison between various releases is a great way to
quickly understand the changes that have taken place from one release to another.

ptg5994185

268 CHAPTER 17 PERFORMANCE AND STRESS TESTING

Analyze Data
The last step in stress testing is to perform the analysis on the data gathered during
the tests. The analysis for the stress test data is similar to that done for the perfor-
mance tests in that a variety of methods can be implemented depending on factors
such as the amount of time allocated, the skills of the analyst, the acceptable amount
of risk, and the level of details expected. The other significant determinant in how the
data should be analyzed is the objectives or goals determined in Step 1. If the object is
to establish a baseline, little analysis needs to be done, perhaps just to validate that
the data accurately depicts the baseline, that it is statistically significant, and that it
only has common cause variation. If the object is to identify the failure behavior, the
analysis should focus on comparing results from when the load was below the break-
ing point and above it. This will help identify warning signs of an impending problem
as well as if there is a problem or inappropriate behavior of the system at certain
loads. If the objective is to test for the behavior when the resource is removed com-
pletely from the system, the analysis will probably want to include a comparison of
response times and other system metrics between various resource-constrained sce-
narios and post-load to ensure that the system has recovered as expected. For the
interactivity objective, the data from many different services may have to be looked
at together. This type of examination may include multivariate analysis such as prin-
cipal component or factor analysis. The objective identified in the very first step will
be the guidepost for the analysis. A successful analysis will meet the objectives set
forth for the tests. If a gap in the data or missing test scenario prevents you from
completing the analysis, you should reexamine your steps and ensure you have accu-
rately followed the eight-step process outlined earlier.

Summary of Stress Testing Steps
When performing stress testing, the following steps are the critical steps to completing it properly.
As with performance testing, you can add additional steps as necessary to fit your organization’s needs.

1. Identify objectives. Identify why you are performing the test. These goals usually fall into
one of four categories: establish a baseline, identify behavior during failure and recovery,
identify behavior during loss of resources, and determine how the failure of one service
will affect the entire system.

2. Identify key services. Time and resources are limited so you must select only the most
important services to test.

3. Determine load. Calculate or estimate the amount of load that will be required to stress
the application to the breaking point.

4. Environment. The environment should mimic production as much as possible to ensure
the validity of the tests.

ptg5994185

DON’T STRESS OVER STRESS TESTING 269

5. Identify monitors. You don’t want to execute tests and then realize you are missing data. Plan
ahead by using the objectives identified in Step 1 as criteria for what must be monitored.

6. Create load. Create the actual load data, preferably from user data.

7. Execute tests. This step is where the tests are actually being executed in the environ-
ment established previously.

8. Analyze data. The last step is to analyze the data.

Follow these eight steps and any others that you need to add for your specific situations and
organization. Ensure the process fits the needs of the organization.

We need to take a break in our description and praise of the stress testing process
to discuss the downside. Although we encourage the use of stress testing, it is admit-
tedly one of the hardest types of testing to perform properly; and if you don’t per-
form it properly, the effort is almost always wasted. As we discussed in Step 4 about
setting up the proper environment, if you switch classes of storage or processor
speeds, these can completely throw off the validity of the test results. Unfortunately,
the environment is relatively easy to get correct, especially when compared to the
sixth step, creating the load. This is by far the hardest and most likely place that you
or your team will mess up the process and cause erroneous or inaccurate results. It is
very, very difficult to accurately capture and replay real user behavior. As we dis-
cussed, this often necessitates the synchronization of data within caches and stores,
such as database or files, because inconsistencies will exercise different code paths
and render inaccurate results. Additionally, creating a very large load itself can often
be problematic from a capacity standpoint, especially when trying to test the interac-
tivity of multiple services. For reasons such as these, we caution the use of stress test-
ing as your only safety net. As we will discuss in the next chapter on go/no-go
decisions and rollback, you must have multiple relief valves in the event problems
arise or disaster strikes. We will also cover this subject more in Part III, Architecting
Scalable Solutions, with the discussion of how to use swim lanes and other applica-
tion splitting methods to improve scalability and stability.

As we stated in the beginning, the purpose of stress testing is to determine an
application’s stability when subjected to above normal loads. Differentiated from
load testing, where the load is only as much as specified, in stress testing we go well
beyond this to the breaking point and watch the failure and the recovery of the ser-
vice or application. To more thoroughly understand the stress testing process, we
covered an eight-step process starting with defining objectives and ending with ana-
lyzing the data. Each step in the process is critical to ensuring a successful test yield-
ing the results that you desire. As with our other processes, we recommend starting
with this one intact and adding to it as necessary for your organization’s needs.

ptg5994185

270 CHAPTER 17 PERFORMANCE AND STRESS TESTING

Performance and Stress Testing for Scalability
We usually lead off our chapters with the rhetorical question of how a particular pro-
cess could possibly have anything to do with scalability. This time, we’ve waited until
we covered the processes in depth to have this discussion; hopefully, as a result, you
can already start listing the reasons that performance testing and stress testing have a
great place among the multitude of factors that affect scalability. The three areas that
we are going to focus on for exploring the relationship are the headroom, change
control, and managing risk.

As we discussed in Chapter 11, Determining Headroom for Applications, it is crit-
ical to scalability that you know where you are in terms of capacity for a particular
service within your system. This is for you to calculate how much time and growth
you have left to scale. This is fundamental for planning headroom or infrastructure
projects, splitting databases/applications, and making budgets. The way to ensure
your calculations remain accurate is to conduct performance testing on all your
releases to ensure you are not introducing unexpected load increases. It is not uncom-
mon for an organization to implement a maximum load increase allowed per release.
As you start to become more sophisticated in capacity planning, you will come to see
the load added by new features and functionality as a cost that must be accounted for
in the cost/benefit analysis. Additionally, stress testing is necessary to ensure that the
expected breakpoint or degradation curve is still at the same point as previously iden-
tified. It is possible to leave the normal usage load unchanged but decrease the total
load capacity through new code paths or changes in logic. For instance, an increase
in a data structure lookup of 90 milliseconds would likely be unnoticed in total
response time for a user’s request, but if this service is tied synchronously to other
services, as the load builds, hundreds or thousands of 90-millisecond delays adds up
to decrease the peak capacity that services can handle.

When we talk about change management, as defined in Chapter 10, Controlling
Change in Production Environments, we are really discussing more than the lightweight
change identification process for small startup companies, but instead the fuller featured
process by which a company is attempting to actively manage the changes that occur in
their production environment. We defined change management as consisting of the fol-
lowing components: change proposal, change approval, change scheduling, change
implementation and logging, change validation, and change efficacy review. Performance
testing and stress testing augment this change management process by providing a prac-
tice implementation and most importantly a validation of the change. You would never
expect to make a change without verifying that it actually affected the system the way
that you think it should, such as fix a bug or provide a new piece of functionality. As part
of performance and stress testing, we validate the expected results in a controlled envi-
ronment prior to production. This is an additional step in ensuring that when the change
is made in production it will also work as it did during testing under varying loads.

ptg5994185

CONCLUSION 271

The most significant factor that we should consider when relating performance
testing and stress testing to scalability is the management of risk. As outlined in
Chapter 16, Determining Risk, risk management is one the most important processes
when it comes to ensuring your systems will scale. The precursor to risk management
is risk analysis, which attempts to calculate an amount of risk in various actions or
components. Performance testing and stress testing are two methods that can signifi-
cantly decrease the risk associated with a particular service change. For example, if
we were using a failure mode and effects analysis tool and identified a failure mode
of a particular feature to be the increase in query time, the mitigation recommended
could be to test this feature under actual load conditions, as with a performance test,
to determine the actual behavior. This could also be done with extreme load condi-
tions as with a stress test to observe behavior above normal conditions. Both of these
would provide much more information with regard to the actual performance of the
feature and therefore would lower the amount of risk. These two testing processes
are powerful tools when it comes to reducing and thus managing the amount of risk
within the release or the overall system.

From these three areas, headroom, change control, and risk management, we can
see the inherent relationship between successful scalability of your system and the
adoption of the performance and stress testing processes. As we cautioned previously
in the discussion of the stress test, the creation of the test load is not easy, and if done
poorly can lead to erroneous data. However, this does not mean that it is not worth
pursuing the understanding, implementation, and (ultimately) mastery of these
processes.

Conclusion
In this chapter, we discussed in detail the performance testing and stress testing pro-
cesses. We also discussed how these processes related to scalability for the system.
For the performance testing process, we defined a seven-step process. The key to the
process is to be methodical and scientific about the testing.

For the stress testing process, we defined an eight-step process. These were the
basic steps we felt necessary to have a successful process. It was suggested that other
steps be added as necessary for the proper fit within your organization.

We concluded this chapter with a discussion on how performance testing and
stress testing fit with scalability. We concluded that based on the relationship between
these testing processes and three factors (headroom, change control, and risk man-
agement), that have already been established as being causal to scalability, these pro-
cesses too are directly responsible for scalability.

ptg5994185

272 CHAPTER 17 PERFORMANCE AND STRESS TESTING

Key Points

• Performance testing covers a broad range of engineering evaluations where the
emphasis is on the final measurable performance characteristic.

• The goal of performance testing is to identify, document, and where possible
eliminate bottlenecks in the system.

• Load testing is a process used in performance testing.

• Load testing is the process of putting load or user demand on a system in order
to measure its response and stability.

• The purpose of load testing is to verify that the application can meet a desired
performance objective often specified as a service level agreement (SLA).

• Load and performance testing are not substitutes for proper architecture.

• The seven steps of performance testing are as follows:

1. Establish the criteria expected from the application.

2. Establish the proper testing environment.

3. Define the right test to perform.

4. Execute the tests.

5. Analyze the data.

6. Report to the engineers.

7. Repeat as necessary.

• Stress testing is a process that is used to determine an application’s stability
when subjected to above normal loads.

• Stress testing, as opposed to load testing, goes well beyond the normal traffic,
often to the breaking point of the application, in order to observe the behaviors.

• The eight steps of stress testing are as follows:

1. Identify the objectives of the test.

2. Choose the key services for testing.

3. Determine how much load is required.

4. Establish the proper test environment.

5. Identify what must be monitored.

6. Actually create the test load.

7. Execute the tests.

8. Analyze the data.

• Performance testing and stress testing impact scalability through the areas of
headroom, change control, and risk management.

ptg5994185

273

Chapter 18

Barrier Conditions and
Rollback

He will conquer who has learned the artifice of deviation. Such is the art of maneuvering.

—Sun Tzu

Whether you develop with an agile methodology, a classic waterfall methodology, or
some hybrid, good processes for the promotion of systems into your production envi-
ronment have the capability of protecting you from significant failures; whereas poor
processes may end up damning you to near certain technical death. Checkpoints and
barrier conditions within your product development life cycle can increase quality and
reduce the cost of developing your product by detecting early when you are off course.
But processes alone are not always enough. Even the best of teams, with the best pro-
cesses and great technology make mistakes and incorrectly analyze the results of certain
tests or reviews. If your platform implements a service, either Software as a Service
play or a traditional back office IT system, you need to be able to quickly roll back
significant releases to keep scale related events from creating availability incidents.

Developing effective go/no-go processes or barrier conditions, ideally within a
fault isolative infrastructure, and coupling them with a process and capability to roll
back production changes, are necessary components within any highly available ser-
vice and are critical to the success of your scalability goals. The companies focused
most intensely on cost effectively scaling their systems while guaranteeing high avail-
ability create several checkpoints in their development processes. These checkpoints
are an attempt to guarantee the lowest probability of a scalability related event and
to minimize the impact of that event should it occur. They also make sure that they
can quickly get out of any event created through recent changes by ensuring that they
can always roll back from any major change.

ptg5994185

274 CHAPTER 18 BARRIER CONDITIONS AND ROLLBACK

Barrier Conditions
You might read this heading and immediately assume that we are proposing that
waterfall development cycles are the key to success within highly scalable environ-
ments. Very often, barrier conditions or entry and exit criteria are associated with the
phases of waterfall development and sometimes identified as a reason for the inflexi-
bility of a waterfall development model. Our intent here is not to promote the water-
fall methodology, but rather to discuss the need for standards and protective
measures regardless of your approach to development. For the purposes of this dis-
cussion, assume that a barrier condition is a standard against which you measure suc-
cess or failure within your development life cycle. Ideally, you want to have these
conditions or checkpoints established within your cycle to help you decide whether
you are indeed on the right path for the product or enhancements that you are devel-
oping. Remember our discussion on goals in Chapters 4, Leadership 101, and 5,
Management 101, and the need to establish and measure these goals. Barrier condi-
tions are static goals within a development at regular “heartbeats” to ensure that
what you are developing aligns with your vision and need. Barrier conditions for
scalability might include desk checking a design against your architectural principles
within an Architecture Review Board before the design is implemented, code review-
ing the implementation to ensure it is consistent with the design, or performance test-
ing an implementation within QA and then measuring the impact to scalability upon
release to the production environment.

Example Scalability Barrier Conditions
We often recommend that the following barrier conditions be inserted into your development
methodology or life cycle. Each has a purpose to try to limit the probability of occurrence and
resulting impact of any scalability issues within your production environment:

1. Architecture Review Board. From Chapter 14, Architecture Review Board, the ARB exists
to ensure that designs are consistent with architectural principles. Architectural princi-
ples, in turn, ideally address one or more key scalability tenets within your platform. The
intent of this barrier is to ensure that time isn’t wasted implementing or developing sys-
tems that are difficult or impossible to scale to your needs.

2. Code Reviews. Modifying what is hopefully an existing and robust code review process to
include ensuring that architectural principles are followed within the implementation of
the system in question is critical to ensuring that code can be fixed for scalability prob-
lems before being identified within QA and being required to be fixed later.

ptg5994185

BARRIER CONDITIONS 275

3. Performance Testing: From Chapter 17, Performance and Stress Testing, performance
testing helps you identify potential issues of scale before introducing the system into a
production environment and potentially impacting your customers with a scalability
related issue.

4. Production Monitoring and Measurement. Ideally, your system has been designed to be
monitored as discussed within Chapter 12, Exploring Architectural Principles. Even if it is
not, capturing key performance data from both a user perspective, application perspec-
tive, and system perspective after release and comparing it to previous releases can help
you identify potential scalability related issues early before they impact your customers.

Your processes may include additional barrier conditions that you’ve found useful over time,
but we consider these to be the bare minimum to help manage the risk of releasing systems
that negatively impact customers due to scalability related problems.

Barrier Conditions and Agile Development
In our practice, we have found that many of our clients have a mistaken perception
that the including or defining standards, constraints, or processes in agile processes,
is a violation of the agile mindset. The very notion that process runs counter to agile
methodologies is flawed from the outset as any agile method is itself a process. Most
often, we find the Agile Manifesto quoted out of context as a reason for eschewing
any process or standard.1 As a review, and from the Agile Manifesto, agile methodol-
ogies value

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Organizations often take the “Individuals and interactions over processes and
tools” out of context without reading the line that follows these bullets, which states,
“That is, while there is value in the items from the right, we value the items on the
left more.”2 It is clear with this line that processes add value, but that people and
interactions should take precedent over them where we need to make choices. We
absolutely agree with this approach and prefer to inject process into agile development
most often as barrier conditions to test for an appropriate level of quality, scalability,
and availability, or to help ensure that engineers are properly evaluated and taught
over time. Let’s examine how some key barrier conditions enhance our agile method.

1. This information is from the Agile Manifesto at www.agilemanifesto.org.

2. Ibid.

ptg5994185

276 CHAPTER 18 BARRIER CONDITIONS AND ROLLBACK

We’ll first start with valuing working software over comprehensive documenta-
tion. None of the suggestions we’ve made from ARB and code reviews to perfor-
mance testing and production measurement violate this rule. The barrier conditions
represented by ARB and Joint Architecture Design (JAD) are used within agile meth-
ods to ensure that the product under development can scale appropriately. ARB and
JAD can be performed orally in a group and with limited documentation and there-
fore are all consistent with the agile method.

The inclusion of barrier conditions and standards to help ensure that systems and
products work properly in production actually supports the development of working
software. We have not defined comprehensive documentation as necessary in any of
our proposed activities, although it is likely that the results of these activities will be
logged somewhere. Remember, we are interested in improving our processes over
time so logging performance results for instance will help us determine how often we
are making mistakes in our development process that result in failed performance
tests in QA or scalability issues within production.

The processes we’ve suggested also do not in any way hinder customer collabora-
tion or support contract negotiation over customer collaboration. In fact, one might
argue that they foster a better working environment with the end customer in that by
inserting scalability barrier conditions you are actually looking out for your cus-
tomer’s needs. Your customer is not likely capable of performing the type of design
evaluation, reviews, testing, or measuring that is necessary to determine if your prod-
uct will scale to its needs. Your customer does, however, expect that you are deliver-
ing a product or service that will meet not only its business objectives but its
scalability needs as well. Collaborating to develop tests and measurements that will
help ensure that your product meets customer needs and to insert those tests and
measurements into your development process is a great way to take care of your cus-
tomers and create shareholder value.

Finally, the inclusion of the barrier conditions we’ve suggested helps us to respond
to change by helping us identify when that change is occurring. The failure of a bar-
rier condition is an early alert to issues that we need to address immediately. Identify-
ing that a component is incapable of being scaled horizontally (scale out not up from
our recommended architectural principles) in an ARB session is a good indication of
potential issues for our customer. Although we may make the executive decision to
launch the feature, product, or service, we had better ensure that future agile cycles
are used to fix the issue we’ve identified. However, if the need for scale is so dramatic
that a failure to scale out will keep us from being successful, should we not respond
immediately to that issue and fix it? Without such a process and series of checks, how
would we ensure that we are meeting our customer’s needs?

Hopefully, we’ve convinced you that the addition of criteria against which you can
evaluate the success of your scalability objectives is a good idea within your agile
implementation. If we haven’t, please remember our “board of directors” test within

ptg5994185

BARRIER CONDITIONS 277

Chapter 5, Management 101. Would you feel comfortable stating that you absolutely
would not develop processes within your development life cycle to ensure that your
products and services could scale? Imagine yourself saying, “In no way, shape, or form
will we ever implement barrier conditions or criteria to ensure that we don’t release
products with scalability problems!” How long do you think you would have a job?

Cowboy Coding
Development without any process, without any plans, and without measurements to ensure
that the results meet the needs of the business is what we often refer to as cowboy coding. The
complete lack of process in cowboy-like environments is a significant barrier to success for any
scalability initiatives.

Often, we find that teams attempt to claim that cowboy implementations are “agile.” This
simply isn’t true. The agile methodology is a defined life cycle that is tailored to be adaptive to
your needs over time, versus other models that tend to be more predictive. The absence of pro-
cesses, such as any cowboy implementation, is neither adaptive nor predictive. Agile methodol-
ogies are not arguments against measurement or management. They are methodologies tuned
to release small components or subsets of functionality quickly. They were developed to help
control chaos through managing small, easily managed components rather than trying to
repeatedly fail at attempting to predict and control very large complex projects.

Do not allow yourself or your team to fall prey to the misconception that agile methodologies
should not be measured or managed. Using a metric such as velocity to improve the estimation
ability of engineers but not to beat them up over, is a fundamental part of the agile methodol-
ogy. A lack of measuring dooms you to never improving and a lack of managing dooms you to
getting lost en route to your goals and vision. Being a cowboy when it comes to designing
highly scalable solutions is a sure way to get thrown off of the bucking scalability bronco!

Barrier Conditions and Waterfall Development
The inclusion of barrier conditions within waterfall models is not a new concept.
Most waterfall implementations include a concept of entry criteria and exit criteria
for each phase of development. For instance, in a strict waterfall model, design may
not start until the requirements phase is completed. The exit criteria for the require-
ments phase in turn may include a signoff by key stakeholders and a review of
requirements by the internal customer (or an external representative) and a review by
the organizations responsible for producing those requirements. In modified, over-
lapping, or hybrid waterfall models, requirements may need to be complete for the
systems to be developed first but may not be complete for the entire product or sys-
tem. If prototyping is employed, potentially those requirements need to be mocked
up in a prototype before major design starts.

ptg5994185

278 CHAPTER 18 BARRIER CONDITIONS AND ROLLBACK

For our purposes, we need only inject the four processes we identified earlier into
the existing barrier conditions. The Architecture Review Board lines up nicely as an
exit criterion for the design phase of our project. Code reviews, including a review
consistent with our architectural principles, might create exit criteria for our coding
or implementation phase. Performance testing should be performed during the vali-
dation or testing phase with requirements being that no more than a specific percent-
age change be present for any critical system resources. Production measurements
being defined and implemented should be the entry criteria for the maintenance
phase and significant increases in any measured area if not expected should trigger
work to reduce the impact of the implementation or changes in architecture to allow
for more cost-effective scalability.

Barrier Conditions and Hybrid Models
Many companies have developed models that merge agile and waterfall methodolo-
gies, and some continue to follow the predecessor to agile methods known as rapid
application development (RAD). For instance, some companies may be required to
develop software consistent with contracts and predefined requirements, such as
those that interact with governmental organizations. These companies may wish to
have some of the predictability of dates associated with a waterfall model, but desire
to implement chunks of functionality quickly as in agile approaches.

The question for these models is where to place the barrier conditions for the
greatest benefit. To answer that question, we need to return to the objectives of the
barrier conditions. Our intent with any barrier condition is to ensure that we catch
problems or issues early in our development so that we reduce the amount of rework
to meet our objectives. It costs us less in time and work, for instance, to catch a prob-
lem in our QA organization than it does in our production environment. Similarly, it
costs us less to catch an issue in ARB than to allow it to be implemented and caught
in a code review.

The answer to the question of where to place the barrier conditions, then, is to
place the barrier conditions where they add the most value and incur the least cost to
our processes. Code reviews should be placed at the completion of each coding cycle
or at the completion of chunks of functionality. The architectural review should
occur prior to the beginning of implementation, production metrics obviously need
to occur within the production environment, and performance testing should happen
prior to the release of a system into the production environment.

Rollback Capabilities
You might argue that an effective set of barrier conditions in your development pro-
cess should obviate the need for being able to roll back major changes within your

ptg5994185

ROLLBACK CAPABILITIES 279

production environment. We can’t really argue with that thought or approach as
technically it is correct. However, arguing against the capability to roll back is really
an argument against having an insurance policy. You may believe, for instance, that
you don’t have a need for health insurance because you are a healthy individual and
fairly wealthy. Or, you may argue against automobile insurance because you are, in
the words of Dustin Hoffman in Rain Man, “an excellent driver.” But what happens
when you contract a treatable cancer and don’t have the funds for the treatment, or
someone runs into your vehicle and doesn’t have liability insurance? If you are like
most people, your view of whether you need (or needed) this insurance changes
immediately when it would become useful. The same holds true when you find your-
self in a situation where fixing forward is going to take quite a bit of time and have
quite an adverse impact on your clients.

Rollback Window Requirements
Rollback requirements differ significantly by business. The question to ask yourself
in determining how to establish your specific rollback needs, at least from the per-
spective of scalability, is to decide by when you will have enough information regard-
ing performance to determine if you need to undo your recent changes. For many
companies, the bare minimum is to allow a weekly business day peak utilization
period to have great confidence in the results of your analysis. This bare minimum
may be enough for modifications to existing functionality, but when new functional-
ity is added, it may not be enough.

New functions or features often have adoption curves that take more than one day
to get enough traffic through that feature to determine its resulting impact on system
performance. The amount of data gathered over time within any new feature may also
have an adverse performance impact and as a result negatively impact your scalability.

Let’s return to Johnny Fixer and the HRM application at AllScale. Johnny’s team
has been busy implementing a “degrees of separation” feature into the resume track-
ing portion of the system. The idea is that the system will identify people within the
company who either know a potential candidate personally or who might know peo-
ple who know the candidate with the intent being to enable background checking
through individual’s relationships. The feature takes as inputs all companies at which
current employees have worked and the list of companies for any given candidate.
Johnny’s team initially figures that a linear search should be appropriate as the list of
potential companies and resulting overlaps are likely to be small.

The new feature is released and starts to compute relationship maps over the
course of the next few weeks. Initially, all goes well and Johnny’s team is happy with
the results and the runtime of the application. However, as the list of candidates
grows, so does the list of companies for which the candidates have worked. Addition-
ally, given the growth of AllScale, the number of employees has grown as have their
first and second order relationship trees. Soon, many of the processes relying upon

ptg5994185

280 CHAPTER 18 BARRIER CONDITIONS AND ROLLBACK

the degrees of separation function start timing out and customers are getting
aggravated.

The crisis management process kicks in and Johnny’s team quickly identifies the
culprit as the degrees of separation functionality. Working with the entire team,
Johnny feels that the team can make a change to this feature to perform a more cost-
effective search algorithm within a day and get it tested and rolled out to the site
within 30 hours. Christine, the CEO, is concerned that the company will see a signif-
icant departure in user base if the problem is not fixed within a few hours.

If Johnny had followed our advice and made sure that he could roll back his last
release, he could simply roll the code back and then roll it back out when the fix is
made, assuming that his rollback process allowed him to roll back code released
three days ago. Although this may cause some user confusion, proper messaging
could help control that and within two days, Johnny could have the new code out
and functioning properly without impact to his current scalability. If Johnny didn’t
take our advice, or Johnny’s rollback process only allowed rolling back within the
first six hours of a release, our guess is that Johnny would be a convert to ensuring he
always has a rollback insurance policy to meet his needs.

The last major consideration for returning your rollback window size deals with
the frequency of your releases and how many releases you need to be capable of roll-
ing back. Maybe you have a release process that has you releasing new functionality
to your site several times a week. In this case, you may need to roll back more than
one release if the adoption rate of any new functionality extends into the next release
cycle. If this is the case, your process needs to be slightly more robust, as you are con-
cerned about multiple changes and multiple releases rather than just one release to
the next.

Rollback Window Requirements Checklist
To determine your timeframe necessary to perform a rollback, you should consider the follow-
ing things:

• How long between your release and the first heavy traffic period for your product?

• Is this a modification of existing functionality or a new feature?

• If this is a new feature, what is the adoption curve for this new feature?

• For how many releases do I need to consider rolling back based on my release fre-
quency? We call this the rollback version number requirement.

Your rollback window should allow you to roll back after significant adoption of a new feature
(say up to 50% adoption) and after or during your first time period of peak utilization.

ptg5994185

ROLLBACK CAPABILITIES 281

Rollback Technology Considerations
We often hear during our discussions around the rollback insurance policy that cli-
ents in general agree that being able to roll back would be great but that it is techni-
cally not feasible for them. Our answer to this is that it is almost always possible; it
just may not be possible with your current team, processes, or architecture.

The most commonly cited reason for an inability to roll back in Web enabled plat-
forms and back office IT systems is database schema incompatibility. The argument
usually goes that for any major development effort, there may be significant changes
to the schema resulting in an incompatibility with the way old and new data is
stored. This modification may result in table relationships changing, candidate keys
changing, table columns changing, tables added, tables merged, tables disaggregated,
and tables removed.

The key to fixing these database issues is to grow your schema over time and keep
old database relationships and entities for at least as long as it would require you to
roll back to them should you run into significant performance issues. In the case
where you need to move data to create schemas of varying normal forms, either for
functionality reasons or performance reasons, consider using data movement pro-
grams potentially started by a database trigger or using a data movement daemon or
third-party replication technology. This data movement can cease whenever you have
met or exceeded your rollback version number limit identified during your require-
ments. Ideally, you can turn off such data movement systems within a week or two
after implementation and validation that you do not need to roll back.

Ideally, you will limit such data movement, and instead populate new data in new
tables or columns while leaving old data in its original columns and tables. In many
cases, this is sufficient to accomplish your needs. In the case where you are reorganiz-
ing data, simply move the data from the new to old positions for the period of time
necessary to perform the rollback. If you need to change the name of a column or its
meaning within an application, you must first make the change in the application
leaving the database alone and then come back in a future release and change the
database. This is an example of the general rollback principle of making the change in
the application in release one and making the change in the database in a later release.

Cost Considerations of Rollback
If you’ve gotten to this point and determined that designing and implementing a roll-
back insurance policy has a cost, you are absolutely right! For some releases, the cost
can be significant, adding as much as 10% or 20% to the cost of the release. In most
cases and for most releases, we believe that you can implement an effective rollback
strategy for less than 1% of the cost or time of the release as very often you are really
just talking about different ways to store data within a database or other storage sys-
tem. Insurance isn’t free, but it exists for a reason.

ptg5994185

282 CHAPTER 18 BARRIER CONDITIONS AND ROLLBACK

Many of our clients have implemented procedures that allow them to violate the
rollback architectural principle as long as several other risk mitigation steps or pro-
cesses are in place. We typically suggest that the CEO or general manager of the
product or service in question sign off on the risk and review the risk mitigation plan
(see Chapter 16, Determining Risk) before agreeing to violating the rollback architec-
tural principle. In the ideal scenario, the principle is only violated with very small,
very low risk releases where the cost of being able to roll back exceeds the value of
the rollback given the size and impact of the release. Unfortunately, what typically
happens is that the rollback principle is violated for very large and complex releases
in order to hit time to market constraints. The problem with this approach is that
these large complex releases are often the ones for which you need rollback capability
the most.

Challenge your team whenever it indicates that the cost or difficulty to implement
a rollback strategy for a particular release is too high. Often, there are simple solu-
tions, such as implementing short lived data movement scripts, to help mitigate the
cost and increase the possibility of implementing the rollback strategy. Sometimes, the
risk of a release can be significantly mitigated by implementing markdown logic for
complex features rather than needing to ensure that the release can be rolled back. In
our consulting practice at AKF Partners, we have seen many team members who start
by saying, “we cannot possibly roll back.” After they accept the fact that it is possi-
ble, they are then able to come up with creative solutions for almost any challenge.

Markdown Functionality—Design to Be Disabled
Another of our architectural principles from Chapter 12 was designing a feature to
be disabled. This differs from rolling back features in at least two ways. The first is
that, if implemented properly, it is typically faster to turn a feature off than it is to
replace it with the previous version or release of the system. When done well, the
application may listen to a dedicated communication channel for instructions to dis-
allow or disable certain features. Other approaches may require the restart of the
application to pick up new configuration files. Either way, it is typically much faster
to disable functions causing scalability problems than it is to replace the system with
the previous release.

Another way functionality disabling differs from rolling back is that it might allow
all of the other functions within any given release, both modified and new, to con-
tinue to function as normal. If in our example of our dating site we had released both
the “has he dated a friend of mine” search and another feature that allowed the rat-
ing of any given date, we would only need to disable our search feature until it is fixed
rather than rolling back and in effect turning off both features. This obviously gives
us an advantage in releases containing multiple fixes, modified and new functionality.

ptg5994185

CONCLUSION 283

Designing all features to be disabled, however, can sometimes add an even more
significant cost than designing to roll any given release back. The ideal case is that the
cost is low for both designing to be disabled and rolling back and the company
chooses to do both for all new and modified features. Most likely, you will identify
features that are high risk, using a Failure Mode and Effects Analysis described in
Chapter 16, to determine which features should have mark down functionality
enabled. Code reuse or a shared service that is called asynchronously may help to sig-
nificantly reduce the cost of implementing functions that can be disabled on demand.
Implementing both rollback and feature disabling helps enable agile methods by cre-
ating an adaptive and flexible production environment rather than relying on predic-
tive methods such as extensive, costly, and often low return performance testing.

If implemented properly, designing to be disabled and designing for rollbacks can
actually decrease your time to market by allowing you to take some risks in produc-
tion that you would not take in their absence. Although not a replacement for load
and performance testing, it allows you to perform such testing much more quickly in
recognition of the fact that you can easily move back from implementations once
released.

The Barrier Condition, Rollback, and Markdown Checklist
Do you have the following?

• Something to block bad scalability designs from proceeding to implementation?

• Reviews to ensure that code is consistent with a scalable design or principles?

• A way to test the impact of an implementation before it goes to production?

• Ways to measure the impact of production releases immediately?

• A way to roll back a major release that impacts your ability to scale?

• A way to disable functionality that impacts your ability to scale?

Answering yes to all of these puts you on a path to identifying scale issues early and being
able to recover from them quickly when they happen.

Conclusion
This chapter covered topics such as barrier conditions, rollback capabilities, and
markdown capabilities that help companies manage the risk associated with scalabil-
ity incidents and recover quickly from them if and when they happen. Barrier condi-
tions (a.k.a. go/no-go processes) focus on identifying and eliminating risks to future

ptg5994185

284 CHAPTER 18 BARRIER CONDITIONS AND ROLLBACK

scalability early within a development process, thereby lowering the cost of identify-
ing the issue and eliminating the threat of it in production. Rollback capabilities
allow for the immediate removal of any scalability related threat, thereby limiting its
impact to customers and shareholders. Markdown and disabling capabilities allow
features impacting scalability to be disabled on a per feature basis, removing them as
threats when they cause problems.

Ideally, you will consider implementing all of these. Sometimes, on a per release
basis, the cost of implementing either rollback or markdown capabilities are excep-
tionally high. In these cases, we recommend a thorough review of the risks and all of
the risk mitigation steps possible to help minimize the impact to your customers and
shareholders. In the event of high cost of both markdown and rollback, consider
implementing at least one unless the feature is small and not complex. Should you
decide to forego implementing both markdown and rollback, ensure that you per-
form adequate load and performance testing and that you have all of the necessary
resources available during product launch to monitor and recover from any incidents
quickly.

Key Points

• Barrier conditions or go/no-go processes exist to isolate faults early in your
development life cycle.

• Barrier conditions can work with any development life cycle. They do not need
to be document intensive, though data should be collected to learn from past
mistakes.

• Architecture Review Board, code reviews, performance testing, and production
measurements can all be considered examples of barrier conditions if the result
of a failure of one of these conditions is to rework the system in question.

• Designing the capability to roll back into an application helps limit the scalabil-
ity impact of any given release. Consider it an insurance policy for your busi-
ness, shareholders, and customers.

• Designing to disable, or markdown, features complements designing by rollback
and adds the flexibility of keeping the most recent release in production while
eliminating the impact of offending features or functionality.

ptg5994185

285

Chapter 19

Fast or Right?

Thus, though we have heard of stupid haste in war, cleverness has never been seen associated with long delays.

—Sun Tzu

You have undoubtedly heard that from the choices of speed, cost, and quality, we can
only ever choose two. This is the classic refrain when it comes to business and tech-
nology. Imagine a product feature where the business sponsor has given your team
the requirements of delivery by a very aggressive date assuming the use of all of your
team, a quality standard consisting of absolutely zero defects, and the constraint of
only being able to use one engineer. Although this particular example is somewhat
silly, the time cost and quality constraints are omnipresent and very serious. There is
always a budget for hiring; even in the fastest growing companies, there is always an
expectation of quality, whether in terms of feature completion or bugs; and there is
always a need to deliver by aggressive deadlines.

In this chapter, we will discuss the general tradeoffs made in business and specifi-
cally the product development life cycle. We will also discuss how these tradeoffs
relate to scalability and availability. Finally, we will provide a framework for thinking
through these decisions on how to balance these three objectives or constraints,
depending on how you view them. This will give you a guide by which you can assess
situations in the future and hopefully make the best decision possible.

Tradeoffs in Business
The speed, quality, and cost triumvirate is often referred to as the project triangle as it
provides a good visual for how these three are inextricably connected and how you
cannot have all of them. There are several variations on this that also include scope
as a fourth element. This can be represented by putting quality in the middle and
defining the three legs of the triangle as speed, scope, and cost. We prefer to use the
traditional speed/cost/quality project triangle and define scope as the size of the trian-

ptg5994185

286 CHAPTER 19 FAST OR RIGHT?

gle. This is represented in Figure 19.1, where the legs are speed, cost, and quality,
whereas the area of the triangle is the scope of the project. If the triangle is small, the
scope of the project is small and thus the cost, time, and quality elements are propor-
tional. The representation is less important than the reminder that there is a balance
necessary between these four factors in order to develop products.

Ignoring any one of legs of the triangle will cause you to deliver a poor product. If
you ignore the quality of the product, it will result in either a feature without the
desired or required characteristics and functionality or it will be so buggy as to render
it unusable. If you choose to ignore the speed, your competitors are likely to beat you
to market and you will lose first mover advantage and your perception as an innova-
tor rather than a follower. The larger the scope of the project, the higher the cost, the
slower the speed to market, and the more effort required to achieve a quality stan-
dard. Any of these scenarios should be worrisome enough for you to seriously con-
sider how you and your organization actively balance these constraints.

To completely understand why these tradeoffs exist and how to manage them, you
must first understand each of their definitions. We will define cost as any related
expense or capital investment that is utilized by or needed for the project. Costs will
include such direct charges as the number of engineers working on the project, the
number of servers required to host the new service, and the marketing campaign for
the new service. It will also include indirect cost such as an additional database
administrator necessary to handle the increased workload caused by another set of
databases or the additional bandwidth utilized by customers of the feature. You will
probably ask why such costs would be included in the proverbial bucket of costs
associated to the feature, and the answer is that if you spend more time on the fea-
ture, you are very much more likely to figure out ways to shrink the cost of new
hardware, additional bandwidth, and all the other miscellaneous charges. Thus, there
is automatically a tradeoff between the amount of time spent on something and the
ultimate cost associated with it.

For the definition of quality, we will include not only the often thought of bugs
that mark poor quality, but also the fullness of the functionality. A feature launched

Figure 19.1 Project Triangle

Scope

Speed

Quality

C
os

t

ptg5994185

TRADEOFFS IN BUSINESS 287

with half of the specified functionality is not likely to generate as much interest nor
revenue from customers as one with all the functionality intact. Thus, the tradeoff
from launching a feature quickly can often result in lower quality in terms of func-
tionality. The same is true for utilizing fewer engineers on a project or assigning only
the most junior engineers on a project that requires senior engineers. As you would
expect, quality also includes the amount of time and resources provided during qual-
ity assurance. Resources within quality assurance can include not only testing engi-
neers but also proper environments and testing tools. Organizations that skimp on
tools for testing cannot as efficiently utilize their testing engineers.

For the definition of speed, we will use the amount of time that a feature or project
takes to move from the initial step in the product development life cycle to release in
production. We know that the life cycle doesn’t end with the release to production,
and in fact continues through support and eventually deprecation, but those phases
of the feature’s life are typically a result of the decisions made much earlier. For
example, a feature that is rushed through the life cycle without the ample time in
quality assurance or design will significantly increase the amount of time that a fea-
ture will need to be supported once in production. Features that are not given enough
or ample time to be designed properly, possibly in a Joint Architecture Design process
and then reviewed at an Architecture Review Board, are destined to be of lower qual-
ity or higher cost or possibly both.

For the definition of scope, we will consider the amount of product features being
developed as well as the level of effort required for the development of each product
feature. Often, the scope of a feature can be changed dramatically depending on the
requirements that are deemed necessary in order to achieve the business goals that
have been established for that feature. For example, take a particular feature that is a
new customer signup flow. The goal of this feature is to increase customer signup
completion by 10%, meaning that 10% more of the people who start the signup pro-
cess complete it. The initial scope of this feature might specify the requirement of
integration with another service provider’s single signon. The team might decide
through user testing that this functionality is not required and thus the scope of this
feature would be dramatically reduced.

We use the Project Triangle to represent the equality in importance of these con-
straints. As with Figure 19.2, change the emphasis of the project as well as the scope.
The two diagrams represent different focuses for different projects. The project on
the left has a clear predilection for faster speed and higher quality at the necessary
increase in cost. This project might be something that is critical to block a competitor.
Thus, it needs to be launched by the end of the month and be full featured in an
attempt to beat a competitor to market with a similar product. The cost of adding
more engineers, possibly more senior engineers and more testing engineers, is worth
the advantage in the marketplace with your customers.

ptg5994185

288 CHAPTER 19 FAST OR RIGHT?

The project on the right in Figure 19.2 has a focus on increased speed to market with
a lower cost point at the expense of reduced quality. This project might be something
necessary for compliance where it is essential to meet a deadline to avoid penalties.
There are likely no revenue generating benefits for the feature; therefore, it is essen-
tial to keep the costs as low as possible. This project might be the equivalent to a
Y2K bug where the fix does not need to be full functioned but just needs to perform
the basic functionality by the specified date with minimal cost.

For anyone who has been in business for any amount of time, it should not come
as a surprise that there are tradeoffs that must be made. It is expected in business that
leaders make decisions everyday about how to allocate their precious resources, be
they engineers, dollars, or time. Often, these decisions are made with a well thought
out process in order to understand the pros and cons of giving more or less time,
money, or people to certain projects. As we will discuss later in this chapter, there are
several processes that you can use to analyze these decisions, some more formal than
others. Knowing that business is almost a constant tradeoff that the product develop-
ment life cycle is part of, this is to be expected. Decisions must be made on allocating
engineers to features, cutting out functionality when estimates prove not to be accu-
rate, and deciding go/no-go criteria in terms of open bugs that remain in the candi-
date release.

The cost, quality, speed, and scope constraints that comprise the Project Triangle
are all equally important overall but may vary significantly from project to project in
terms of their importance and effort to manage. Projects that require higher quality
may or may not be easier to achieve higher quality than other projects. Also, just
because it cost more to achieve, does not make it necessarily required. So, just
because we need higher quality in our project does not mean that the cost of this is a
linear relationship. A 1% improvement in quality might cost 5%, but once you are
past a 20% improvement in quality, this cost might go up to 10%. This is why each
project uses its own Allocation Circle placed over the Project Triangle that designates
where the focus should be for this project. You can create this diagram for every
project as part of the specification if you feel it provides valuable information for
everyone involved in the project, or you can just do the tradeoff analysis without the
diagram.

Figure 19.2 Project Triangle Choices

Speed

Quality

C
os

t
Scope

Speed
Quality

C
os

t

Scope

ptg5994185

RELATION TO SCALABILITY 289

Relation to Scalability
How can these tradeoffs between cost, quality, speed, and scope affect a system’s
scalability? As hinted at in the last chapter, it can be a very straightforward relation-
ship of tradeoffs made directly for scalability or infrastructure projects. Another
more indirect way that scalability is affected by the tradeoffs made between these
constraints is that decisions made on feature projects can in the long term affect the
scalability of that feature as well as of the entire system.

A scalability project that needs to split the primary database, just like a feature
development release, will have to balance the four constraints. Will you take your
most senior engineers off feature development for this? Will you give the team six
months or eighteen months to complete the project? Will you include the built-in
functionality to allow further database splits as necessary, or will you cut the project
short and have it only provide a single split? All of these questions are ones that you
will have to make over the course of the project and are a balance of the speed, cost,
quality, and scope Project Triangle.

These constraints can also affect scalability indirectly. Let’s take for example a
payment feature at AllScale where the focus is placed more heavily on the side of
speed. This feature must be released by the end of the month in order to be ready for
the end-of-month billing cycle. Missing this date would result in days of manual
work to process the payments, which would introduce many more errors resulting in
charge backs and lost revenue. The engineering manager, Mike Softe, pulls three
senior engineers off another project to place them on this payment project in order to
get it done on time. All goes well and the feature is released the weekend before
month-end allowing it to process the billing as planned.

Six months later, the AllScale HRM site’s volume has increased over 100% and an
even larger percentage of users are participating in the end-of-month billing cycle
producing a total increase in load on the billing feature of close to 150% from when
it was launched. Thus far, it has held up stoically with processing times of no more
than 12 hours. However, this month’s increase in users put it over the edge and the
processing time jumps to over 38 hours. Designed as an add-on feature to a singleton
application, this service cannot be run on multiple servers. Now the consequences of
decisions made six months ago start to be seen. The AllScale operations team must
reallocate a much larger server, planned to be used as a database server, for this appli-
cation in order to get through next month’s processing cycle. Of course, this nega-
tively affects the hardware budget. The operations team also has to spend a lot of
time monitoring, provisioning, configuring, and testing the server for this move.
Engineers and quality assurance engineers are likely brought in to this project to pro-
vide advice on changes as well as final validation that the application works on the
new hardware. This new hardware project has to take place during a maintenance

ptg5994185

290 CHAPTER 19 FAST OR RIGHT?

window because of the high risk to the users and takes up a good portion of the risk
allocation that is authorized for the system this particular week. The database split
project has to be postponed because new hardware has to be ordered, which adds
more risk of problems arising from the database being overloaded.

As you can see from our example, the decisions made during initial feature devel-
opment can have many unseen affects on scalability of the entire system. Does this
mean that the decisions and tradeoffs were incorrect? No, in fact, even with the ben-
efit of hindsight, you might still feel the decision to push to quickly get the feature
into production was the right decision, and we probably agree in this scenario. The
important learning here is not that one decision is right or wrong but rather that the
decisions have short- and long-term ramifications that you may not be able to ever
completely understand.

How to Think About the Decision
Now that we have described how these tradeoffs are being made every day in your
organization and how these can affect the scalability of the individual features as well
as the overall system, it is time for us to discuss how to properly make these deci-
sions. There are a variety of methods to choose from when you need to determine the
proper tradeoff. You can choose to rely on one of these methods or you can learn
them all in order that you use them each in the most appropriate manner. Unfortu-
nately, no decision process is going to be able to guarantee that you reach a correct
decision because often there is no correct decision; rather, there are just ones that
have different pros and cons than others. Just as with risk management, managing
tradeoffs or risk or even people is an ongoing process that keeps managers on their
toes. Today’s seemingly straightforward decision becomes a quagmire tomorrow with
the addition of one more factor. A bug fix identified as low risk suddenly becomes
high risk as the engineer digs into the code and realizes that a complete rewrite of a
base class is necessary. A great idea to rush a payments feature into production today
becomes a mess when headroom calculations predict that it will outgrow the pay-
ment server in two months.

Our goal here is to arm you with several methodologies that won’t always give
you the correct answer, because that can be elusive, but rather will help you rigor-
ously process the information that you do have in order for you to make the best
decision based on the information that you have today. There are three general meth-
ods that we have seen used. The first one is essentially the same gut feel method that
we described in Chapter 16, Determining Risk. The second method is a list of pros
and cons for each constraint. The third is what we call a decision matrix and involves
constructing a well thought out analysis of what factors are important, both short
and long term, ranking these factors compared to each other, defining the actual

ptg5994185

HOW TO THINK ABOUT THE DECISION 291

tradeoffs being considered, and determining how directly the tradeoffs impact the
factors. If that last one sounds confusing, don’t worry; we’ll go through it in more
detail in a few paragraphs.

First, let’s discuss the gut feel method for making tradeoffs. As we discussed with
regards to risk, there are some people who have an innate ability or well-honed skill
to determine the pros and cons of decisions. This is great, but as we pointed out
before, this method is not scalable and not accurate. That doesn’t mean that you need
to abandon this method; in fact, you probably already use this method the most of
any other method and you probably do it on a daily basis. We use the gut method
every time we decide to walk the ten blocks to the market instead of getting a cab,
allocating more to the cost saving constraint and less on the speed to market con-
straint. You use this in business everyday as well. You decide to hire one person who
will require slightly more salary but will hopefully produce faster and higher quality
work. It’s doubtful that you conduct a formal analysis about each hire that is a cou-
ple percentage points over the budgeted salary; it is more likely that you are like
other managers who have become used to conducting quick tradeoff analysis in their
heads or relying on their “guts” to help them make the best decisions given the infor-
mation that they have at the time.

The second and more formal method of tradeoff analysis is the comparison of
pros and cons. In this method, you would either by yourself or with a team of indi-
viduals knowledgeable about the project gather your thoughts on paper. The goal is
to list out the pros and cons of each tradeoff that you are making. For example, at
AllScale, when Mike Softe was deciding to rush the payment feature into production
by reallocating three engineers who were working on other projects, he could list out
as many tradeoffs as he could come up with. Then, Mike would identify the pros and
cons of each tradeoff, which would look something like this:

1. Engineers reallocated

• Pros: Faster payment feature development; better feature design

• Cons: Other features suffer from reallocation; cost allocated to feature increases

2. Speed feature into production

• Pros: Fulfill business need for no more manual processing

• Cons: Possibly weaker design; fewer contingencies thought through; increased
cost in hardware

3. Reduce quality testing

• Pros: Meet business timeline

• Cons: More bugs

After the tradeoffs that are being considered have been identified and the pros and
cons of each listed, Mike is ready to move to the next step. This step is to analyze the

ptg5994185

292 CHAPTER 19 FAST OR RIGHT?

pros and cons to determine which ones outweigh the others for each tradeoff. Mike
can do this by simply examining them or by allocating a score to them in terms of
how bad or good they are. For instance, with the reduce quality testing tradeoff, the
pros and cons can simply be looked at and a determination made that the pros out-
weigh the cons in this case. With the tradeoff of reallocating the engineers, the pros
and cons would probably have to be analyzed in order to make the decision. In this
case, Mike may feel that the features the engineers have been pulled from were all
low-to-medium priority and can be postponed or handed off to more junior engi-
neers. In the event that Mike decides to let more junior engineers work on the fea-
tures, he can mitigate the risk by having an architect review the design and mark this
feature for a code review. Because he can mitigate the risk and the benefit is so great,
he would likely decide to proceed with this tradeoff. This process of listing out the
tradeoffs, determining pros and cons, and then analyzing each one is the second
method of performing a tradeoff analysis.

The third method of tradeoff analysis is a more formal process. In this process,
you will take the tradeoffs identified and add to them factors that are important in
accomplishing the project. What you will have at the end of the analysis is a score
that you can use to judge each tradeoff based on the most important metrics to you.
As stated earlier, this cannot guarantee that you will make a correct decision, because
factors that may impact you in the future might not be known at this point. However,
this method will help you be assured that you have made a decision based on data
and it is the best decision you can make at this time.

Let us continue the example that we were using with the AllScale payment feature.
The tradeoffs that Mike Softe, VP of engineering, had decided on for the payment
feature were reallocating engineers, speeding the feature to production, and reducing
the quality of testing. He now needs to identify the factors that are most important to
him while accomplishing this project. This list can be generated by one person or
with a group of people familiar with the project and general needs of the business
and technology organizations. For our example, Mike has composed the following
list of important factors:

• Meet the business goals of launching by the EOM

• Maintain availability of the entire system at 99.99%

• The feature should scale to 10x growth

• The other product releases should not be pushed off track by this

• We want to follow established processes as much as possible

He then needs to rank order these to find out what factors are the most important.
Mike considers the preceding order stated as the order of importance. In Figure 19.3,
you can see that Mike has listed the tradeoffs down the left column and placed the

ptg5994185

HOW TO THINK ABOUT THE DECISION 293

factors across the top of the matrix. These factors are sorted and he has added a
weight below each factor. For simplicity, Mike used 1 through 5, as there are five fac-
tors. For more elaborate matrixes, you can use a variety of scales, such as 1, 3, 9, or
allocation out of a 100 value sum, where you have 100 points to allocate among the
factors (one may get 25, whereas others may get 3).

After the matrix is created, you need to fill in the middle, which is the strength of
support that a tradeoff has on a factor. Mike is using a scale from –9 to 9, with incre-
ments of 1, 3, –3, and –1. If a tradeoff fully supports a factor, it would receive a score
of 9. If it somewhat supports, it gets a 3. If it is unsupportive of the factor, and in
which case it would cause the opposite of the factor, it gets a negative score; the
higher the more it is unsupportive. For example, the tradeoff of Reduce the Quality
Testing for the feature has a –9 score for Follow Established Processes because it
clearly does not follow established processes of testing. After the matrix is filled out,
Mike can perform the calculations on them. The formula is to multiply each score in
the body of the matrix by the weight of each factor and then sum these products for
each tradeoff producing the total score. Using the Engineers Reallocated tradeoff,
Mike has a formula as depicted in Figure 19.4.

The total score for this tradeoff in the equation in Figure 19.4 is 67. This formula is
calculated for each tradeoff. With this final score, Mike and his team can analyze each
tradeoff individually as well as all the tradeoffs collectively. From this sample analy-
sis, Mike has decided to find a way to allow more time spent in quality testing while
proceeding with reallocating engineers and expediting the feature into production.

Figure 19.3 Decision Matrix

Figure 19.4 Total Calculation

Fa
ct

o
rs Meet Business

Goal of Launch
by EOM

Maintain
Availability at

99.99%

Feature Scales
to 10x

Keep Other
Releases on Track

Follow
Established
Processes

Total

Tradeoffs W
ei

gh
t

5 4 3 2 1

Engineers Reallocated 9 1 9 –3 –3 67

Speed Feature to Production 9 –3 –3 3 –3 27

Reduce Quality of Testing 1 –3 –1 9 –9 –1

–9 Highly Unsupportive
–3 Very Unsupportive
–1 Unsupportive

1 Supportive
3 Very Supportive
9 Highly Supportive

Scale

Total = × + × + × + − × + − ×() () () () ()9 5 1 4 9 3 3 2 3 1

ptg5994185

294 CHAPTER 19 FAST OR RIGHT?

Fast or Right Checklist

• What does your gut tell you about the tradeoff?

• What are the pros and cons of each alternative?

• Is a more formal analysis required because of the risk or magnitude of the decision?

• If a more formal analysis is required:

What are the most important factors? In Six Sigma parlance, these are critical to quality
indicators.

How do these factors rank compared to each other—that is, what is the most important
one of these factors?

What are the actual tradeoffs being discussed?

How do these tradeoffs affect the factors?

• Would you feel comfortable standing in front of your board explaining your decision
based on the information you have today?

We have given you three methods of analyzing the tradeoffs from balancing the
cost, quality, and speed constraints. It is completely appropriate to use all three of
these methods at different times or in increasing order of formality until you believe
that you have achieved a sufficiently rigorous decision. The two factors that you may
consider when deciding which method to use are the risk of the project and the mag-
nitude of the decision. The risk should be calculated by one of the methods described
in Chapter 16. There is not an exact level of risk that corresponds to a particular
analysis methodology. Using the traffic light risk method, projects that would be con-
sidered green could be analyzed by gut feeling, whereas yellow projects should at
least have the pros and cons compared as described in the pro and con comparison
process earlier. Examples of these tradeoff rules are shown in Table 19.1. Of course,
red projects should be candidates for a fully rigorous decision matrix. This is another
great intersection of processes where a set of rules to work by would be an excellent
addition to your documentation.

Table 19.1 Risk and Tradeoff Rules

Risk Traffic Light Risk FMEA Tradeoff Analysis Rule

Green < 100 pts No formal analysis required

Yellow < 150 pts Compare pros/cons

Red > 150 pts Fill out decision matrix

ptg5994185

CONCLUSION 295

Conclusion
In this chapter, we tackled the tough and ever present balancing act between cost,
quality, speed, and scope. The Project Triangle is used to show how each of these
constraints are equally important to pay attention to. Each project will have a differ-
ent predilection for satisfying one or more of these constraints. Some projects need to
more satisfy the need to reduce cost; in others, it is imperative that the quality of the
feature be maintained at the detriment of cost, speed, and scope.

We first looked at the definitions of cost, quality, speed, and scope. We determined
that the cost of a feature or project included the direct and indirect costs. This can
become fairly exhaustive to attempt to allocate all costs with a particular feature, and
this exercise is generally not necessary. It is sufficient to be aware that there are many
levels of cost and these occur over both short and long terms. For quality, we used a
definition that included both the amount of bugs in the feature but also the amount
of full functionality. A feature that did not have all the functions specified is of poorer
quality than one that has all the specified features. For speed, we defined this term as
the time to market or the pace in which the feature moves through the product devel-
opment life cycle into production but not beyond. Post-production support was a spe-
cial case that was more a cause of the cost, quality, speed tradeoff, rather than a part
of it.

Armed with the definitions, we concluded that as business leaders and technology
managers, we are constantly making tradeoff decisions between the three constraints
of cost, quality, and speed. Some of these decisions we are aware of and others we are
not. Some occur consciously, whereas others are subconscious analyses that are done
in a matter of seconds.

We then discussed how the tradeoffs were related to scalability. We concluded that
there was a direct relationship when these constraints were made for infrastructure or
scalability projects. There was also an indirect relationship when decisions made for
features affect the overall scalability of the system many months or years later
because of predictable and in some cases unforeseen factors.

Because there is a very strong relationship with decisions made in these tradeoffs
to scalability, it is important to make the best decision possible. To help you make
these decisions, we provided three methods for decision analysis. These methods
were the gut feel method first introduced in our earlier discussion on risk, a pro and
con comparison, and finally a rigorous decision matrix that involved formulas for us
to calculate scores for each tradeoff. Although we conceded that there is no correct
answer possible due to the unknowable factors, there are best answers that can be
achieved through rigorous analysis and data driven decisions.

As we consider the actual decisions made on the tradeoffs to balance cost, quality,
speed, and scope as well as the method of analysis used to arrive at those decisions,

ptg5994185

296 CHAPTER 19 FAST OR RIGHT?

the fit within your organization at this particular time is most important. As your
organization grows and matures, there may be a need to modify or augment these
processes, make them more formal, document them further, or add steps that custom-
ize it more for your needs. For any process to be effective, it must be used, and for it
to be used, it needs to be a good fit for your team.

Key Points

• There is a classic balance between cost, quality, and speed in almost all business
decisions.

• Technology decisions, especially in the product development life cycle, must bal-
ance these three constraints daily.

• Each project or feature can have a different allocation across cost, quality, and
speed.

• Cost, quality, and speed are known as the Project Triangle because a triangle
represents the equal importance of all three constraints.

• We describe a circle that cannot quite fit over the entire Project Triangle as the
Allocation Circle. This demonstrates the challenge of having to select equal
weighting to all but not complete coverage of any, or a skewed allocation
heavily geared toward one or the other constraints.

• There are short- and long-term ramifications of decisions and tradeoffs made
during feature development.

• These tradeoffs made on individual features can affect the overall scalability of
the entire system.

• Technologists and managers must understand and be able to make the right
decisions in the classic tradeoff between speed, quality, and cost.

• There are at least three methods of performing a tradeoff analysis. These are gut
feel, pro/con comparison, and decision matrix.

• The risk of the project should help decide which method of tradeoff analysis
should be performed.

• A set of rules to govern which analysis method should be used when would be
extremely useful for your organization.

ptg5994185

Part III

Architecting Scalable
Solutions

ptg5994185

This page intentionally left blank

ptg5994185

299

Chapter 20

Designing for Any Technology

Success in warfare is gained by carefully accommodating ourselves to the enemy’s purpose.

—Sun Tzu

Have you ever heard someone describe a design or platform architecture by using the
names of the third-party or open source systems used to implement that platform or
architecture? The discussion starts with a question, “How are you architected?” and
ends with a statement like,

We use ACME Web servers running on Platinum computers connected to our own internal
application running on Ace application servers. We use Bestco databases running on Fastco
SMP servers to maintain state and store information. The Fastco servers are connected to a
Bestsan storage area network. All of our network gear is Fastgear and Datasafe provides
our firewalls.

Nice product plugs. Each of the speaker’s vendors and partners no doubt love how
he described his implementation. And yes, we meant to say implementation because
the preceding statement is neither a design nor an architecture. The implementation
speech sounds like one long product plug covering multiple vendors and might be
fine if the company is getting paid by the reference, but that is not likely the case.
Describing architectures through implementation is akin to constructing a picture of
your current or desired soulmate from pictures cut out of US Magazine; the result
may paint a good picture of what you have or want, but it in no way describes how it
is that the soulmate will meet your current or future needs.

This chapter describes the difference between architecture and implementation.
We further make the argument that the best architectures are not accomplished
through vendor partnerships but rather through vendor and technology agnostic
“boxes” and descriptions.

ptg5994185

300 CHAPTER 20 DESIGNING FOR ANY TECHNOLOGY

An Implementation Is Not an Architecture
Sometimes it is easiest, albeit indirect, to describe what something is by defining that
something by what it is not. For instance, in attempting to teach a child what a dog
is, you might be required from time to time to explain that a cat is not a dog and that
a dog is not a cat. This approach is especially useful when two things are often con-
fused in popular speech and literature. An example of such a popular confusion
exists within the definition of an implementation and an architecture.

Put simply, and with the “bottom line up front,” an implementation is not an
architecture nor is an architecture an implementation. The best architects of build-
ings and houses do not describe trusses, beams, and supports using the vendor’s
name, but describe them in terms of size, load capacity, and so on. This is because the
architect realizes that in most cases the items in question are commodities and that
the vendor solution will likely be selected based on price, reputation, and quality. In
essence, the house architect intuitively or as a result of education understands that
describing something with a vendor’s name is an implementation, whereas describing
something through specifications and requirements is an architecture. Similarly, elec-
trical design engineers do not typically reference vendor names when describing a
design; they are more likely to reference a resistor and its level of resistance rather
than indicating a specific vendor and part number.

Implementations define what you are today and represent the choices you have
made due to cost considerations, build versus buy decisions, returns on investment,
skill sets within your team, and so on. The use of C++ or Java or PHP as a coding
language is not indicative of your architecture; they are choices of tools and materials
to implement components of your architecture. The choice of a Microsoft database
over Sybase or Oracle as a database is not an architecture, but rather an implementa-
tion of a database component of your architecture. The decision to go open source
versus a vendor provided solution is another example of an implementation decision, as
is the decision to use a Microsoft operating system over using some variant of UNIX.

Technology Agnostic Design
Mature organizations looking to produce the most highly scalable and reliable sys-
tems, platforms, and products understand that there is a very big difference between
architecture and implementation. The architecture of a platform describes how some-
thing works in generic terms with specific requirements, and the implementation
describes the specific technologies or vendor components employed. Physical archi-
tectures tend to describe the components performing the work, whereas logical archi-
tectures tend to define the activities and functions necessary to do the work. We like

ptg5994185

TECHNOLOGY AGNOSTIC DESIGN 301

to discuss architectures from a system’s perspective, where the logical architecture is
mapped to its physical components such that both can be evaluated in the same view
to the extent possible.

The implementation is a snapshot of the architecture and may not even be consis-
tent with the end or desired state of any given architecture. For instance, take an
architecture that has a write database as a subcomponent of the system, to which all
writes and updates go, and several read databases, from which all reads occur, in a
load balanced fashion. For a very small site, it may make sense for a single database
to accomplish all of these things (with an additional database for high availability of
course). The implementation in this case would be a single database, whereas the site
is potentially architected for more than one. Further consider the case where the
architecture calls for nearly any database to be used with the application connecting
through an abstracted data access layer (DAL) or data access object (DAO). The spe-
cific implementation at a point in time might be a database from Microsoft, but with
some modifications to the DAL/DAO could ultimately become an open source data-
base or database from IBM, Oracle, or Sybase.

The aim of technology agnostic design (TAD) and technology agnostic architec-
ture (TAA) is to separate design and architecture from the technology employed and
the specific implementation. This separation decreases both cost and risk while
increasing scalability and availability of your product, system, or platform. Some of
our clients even incorporate TAD or TAA into their architectural principles.

TAD and Cost
As we mentioned earlier, architects of houses and buildings rarely describe their work
through the names of the vendors providing materials. Certain components, such as
2 4s may have similar characteristics, but many finishing components that differenti-
ate houses do not, such as cabinetry, sinks, toilets, and kitchen appliances. For these
components, architects often attempt to describe them in terms of “fit and finish,”
giving dimensions and design characteristics. These architects understand that if they
architect something appropriately, they open up several opportunities for negotia-
tions among competing providers of the aforementioned materials. These negotia-
tions in turn help drive down the cost of building (or implementing) the house. Each
vendor is subject to a competitive bidding process, where price, quality, and reputa-
tion all come into play.

Technology solutions, much like building materials, suffer the effects of commoditi-
zation over time. A good idea or implementation that becomes successful in an industry
is bound to attract competitors. The competitors within the solution space initially
compete on differences in functionality and service, but over time, these differences
decrease as useful feature sets get adopted by all competitors. In an attempt to fore-
stall the effects of commoditization through increased switching costs, providers of

ptg5994185

302 CHAPTER 20 DESIGNING FOR ANY TECHNOLOGY

systems and software try to produce proprietary solutions or tools that interact spe-
cifically and exclusively with their systems.

Avoiding getting trapped by extensive modification of any provider’s solution or
adoption of tightly integrated provider tools allows you the flexibility of leveraging
the effects of commoditization. As competitors within a solution space begin to con-
verge on functionality and compete on price, you remain free to choose the lowest
cost of ownership for any given solution. This flexibility results in capital outlay,
which minimizes the impact to cash flow and lowers amortized costs, which posi-
tively impacts profits on a net income basis. The more your architecture allows you
to bring in competing providers or partners, the lower your overall cost structure.

Several times within your career, you are likely to find a provider of technology
that is far superior in terms of features and functionality to other providers. You may
determine that the cost of implementing this technology is lower than the other pro-
viders because you have to build less to implement the product. In making such a
decision, you should feel comfortable that the “lock in” opportunity cost of choosing
such a provider exceeds the option cost of switching to another provider in the
future. In other words, recognize that other providers will move quickly to close the
functionality gap and do your best to ensure that the integration of the service in
question can be replaced with other providers down the road.

TAD and Risk
In 2009, several American institutions suddenly collapsed; only five years earlier,
those institutions would have been considered indestructible. Most independent
investment banks that long led the storied march of American capitalism collapsed in
a matter of weeks or were devoured by larger banks. Many people started to question
the futures of Citibank and Bank of America as the government moved to prop them
up with federal funds. Fannie Mae and Freddie Mac both received government funds
and became the object of additional government legislation. Other industries, peren-
nially teetering on the edge of disaster, such as the American automobile industry,
struggled to find ways to remake themselves.

Imagine that you have built a wonderful business producing specialty vans for
handicapped people from Ford vehicles. One hundred percent of your business is
built around the Ford Econoline Van, and you can’t easily retool your factory for
another van given the degree of specialization, your tools, the types of parts necessary
to perform your conversions, and your deep relationship with Ford. What do you do
if Ford goes out of business? What happens if Ford stays in business but increases its
prices, significantly changes the Econoline Van family, or increases the interest rate
on the loans you use to purchase and customize the vans?

Now, apply a similar set of questions to your implementation (again, not an archi-
tecture) should you choose to become tightly integrated in design and implementa-
tion with a database or application server provider. Maybe you have used a

ptg5994185

TECHNOLOGY AGNOSTIC DESIGN 303

proprietary set of APIs for some specific asynchronous functionality unique to the
database in question or maybe you have leveraged a proprietary set of libraries
unique to the application server you’ve chosen. What do you do when one or both of
those providers go out of business? What if the provider of either technology finds
itself being sued for some portion of its solution? What if the viability and mainte-
nance of the product relies upon the genius of a handful of people within the com-
pany of the provider and those people leave? What if the solution suddenly starts to
suffer from quality problems that aren’t easily fixed?

Technology agnostic design reduces all of these risks by increasing your ability to
quickly move to other providers. By reducing your switching costs, you not only have
reduced your cost, but you have reduced the risk to your customers and shareholders
as well.

TAD and Scalability
TAD aids scalability in two ways. The first way is that it forces your company and
organization to create disciplines around scale that are not dependent upon any sin-
gle provider or service. This discipline allows you to scale in multiple dimensions
through multiple potential partners, the result of which is a more predictable scalable
system independent of any single solution provider. As stated earlier, your risks and
costs of scalability are decreased.

A common misperception is that by implementing a certain solution, you are reli-
ant upon that solution. Just because you use Rapidware’s database replication tech-
nology does not mean that you are dependent upon it alone for scale. True, on any
given day, you rely upon the application to work for proper functioning of your site,
but that is not the same as saying that the architecture relies upon it for scale. Again,
we separate architecture from implementation. Architecture is a design and should
not rely upon any given vendor for implementation. Implementation is a point-in-
time description of how the architecture works on that day and at that moment. The
proper architecture in this replication scenario would call for a replication mecha-
nism with requirements that can be fulfilled by a number of vendors, of which Rapid-
ware is one. If you have done a thorough analysis of the provider landscape and
know that you can either switch databases or replication technology providers easily
(again, not without some work), you have a scalable solution that is independent of
the provider.

You should not get caught in the trap of saying that you must personally build all
components to be truly independently scalable. Remember our discussion in Chapter
15, Focus on Core Competencies: Build Versus Buy. Scalable design allows you to
drop in commodity solutions to achieve an implementation. Furthermore, nearly all
technologies ultimately move toward commoditization or attract open source alter-
natives. The result is that you rarely need to build most things that you will need out-
side of those things that truly differentiate your product or platform.

ptg5994185

304 CHAPTER 20 DESIGNING FOR ANY TECHNOLOGY

Review of the Four Simple Questions from Chapter 15
These are the four questions from Chapter 15 that we recommend be used to guide any build
versus buy decision:

• Does this component create strategic competitive differentiation? Are we going to have
long-term sustainable differentiation as a result of this in switching costs, barriers to
entry, and so on?

• Are we the best owners of this component or asset? Are we the best equipped to build it
and why? Should we sell it if we build it?

• What is the competition to this component? How soon until the competition catches up to
us and offers similar functionality?

• Can we build this component cost effectively? Are we reducing our cost and creating
additional shareholder value and are we avoiding lost opportunity in revenue?

Remember that you are always likely to be biased toward building so do your best to protect
against that bias. The odds are against you that you can build a better product than those
already available and you should tune your bias toward continuing to do what you do well
today—your primary business.

The second way that TAD supports scalability is actually embedded within the
four questions from Chapter 15. Can you see it? Let’s ask two questions to get to the
answer. Do you believe there will be a rapid convergence of the functionality in ques-
tion? Do you need to deeply integrate the solution in question to leverage it? If you
believe that competitors will rapidly converge on functionality and you do not need
deep integration to the selected provider’s solution, you should consider using the
solution. In doing so, you avoid the cost of building the solution over the long term.
The key, as hinted at by the second question, is to keep away from deep integration.
You should not be building logic deep within your system to benefit from a providers
solution. Building such logic ties you into the solution provider and makes it more
difficult for you to benefit from commoditization.

We argue that deep integration of a third-party solution provider is almost never
critical to scale if you’ve properly architected your system, platform, or product. In
our experience, we have never come across such a situation that absolutely demands
that a company be deeply tied with a third-party provider in order to scale to the
company’s needs. In most cases, this misconception is fueled by a poor decision
somewhere else in the architecture. You may, however, find yourself in a situation
where it is faster to resolve a pending or existing crisis by leveraging unique function-
ality provided by a third party. Should you find yourself in that situation, we recom-
mend the following course of action:

ptg5994185

TECHNOLOGY AGNOSTIC DESIGN 305

1. Abstract the integration into a service so that future changes to eliminate the
integration are limited to the service and not deeply integrated with your sys-
tems. Such an abstraction will limit the switching costs after your crisis is over.

2. Make a commitment to resolve the dependency as soon as possible after the crisis.

To illustrate our first point, the abstraction of a service, let’s consider AllScale’s
selection of a database within its technology stack. AllScale desires to leverage a fea-
ture from BaseData’s new database offering that allows the database to be immedi-
ately replicated to multiple locations without replication delay and further allows any
replicated database to be the primary database of record for all writes to the database.
At the time of the decision, no other database provider or open source alternative has
this capability, and in implementing the BaseData’s offering, the AllScale team
believes it can save more than one hundred thousand dollars in internal development
costs for similar functionality. Time to market is key here, so Johnny, Christine, and
the technology team decide to purchase the database and quickly implement it.

Christine insists that the team protect the company from being locked into Base-
Data’s offerings. She does not want BaseData to put a gun to AllScale’s head for long-
term licensing and maintenance fees. Johnny and the team decide to abstract the
database access into a service or “layer” of the architecture. By structuring all data-
base access within a single layer or object, they limit the amount of work necessary to
change the database at a future date. Although some functions are unique to Base-
Data, the team believes it can simply modify or rewrite this single layer without
extensive code modifications throughout the AllScale HRM system. Only a certain
number of developers are allowed to write code that will ultimately access the data-
base, and the rest of the development team is required to use a developer API to
request data objects from the database.

Resolving Build Versus Buy and TAD Conflicts
Don’t be confused with the apparent conflicts between a build versus buy decision and design-
ing agnostically; the two are actually complementary when viewed properly. We’ve stated that
you should own and have core competencies within your team around architecting your plat-
form, service, or product to scale. This does not mean that you need to build each discrete
component of your architecture. Architecture and design are completely separate disciplines
from development and implementation. Build versus buy is an implementation or development
decision and TAD/TAA are design and architecture decisions.

A proper architecture allows for many choices within the build versus buy decision, and the
build versus buy decision should only result in buying if sustainable competitive advantage can
be created.

ptg5994185

306 CHAPTER 20 DESIGNING FOR ANY TECHNOLOGY

TAD and Availability
TAD and TAA affects availability in a number of ways, but the most obvious is the
way in which it supports the ability to switch providers of technology when one pro-
vider has significantly greater availability or quality than other providers. Often, this
leadership position changes over time between providers of services, and you are best
positioned to take advantage of that leadership position by being agnostic as to the
provider. Again, agnosticism in design and architecture leads to benefits to customers
and shareholders.

The TAD Approach
Now that we’ve discussed the reasons for TAD and TAA, let’s discuss how to
approach TAD and TAA. Implementing TAD/TAA is fairly simple and straightfor-
ward. At its core, it means designing and architecting platforms using concepts rather
than solutions. Pieces of the architecture are labeled with their generic system type
(database, router, firewall, payment gateway, and so on) and potentially further
described with characteristics or specific requirements (gigabit throughput, 5 terabytes
of storage, ETL cloud, and so on).

The approach for TAD is straightforward and consists of three easily remembered
rules. The first is to think and draw only “boxes,” as in what you might find in a
wire diagram. For a physical architecture, these boxes depict the type of system
employed but never the brand or model. Router, switch, server, storage, database,
and so on are all appropriate boxes to be employed in a physical architecture. Logical
architectures define the activities, functions, and processes of the system and should
also avoid the inclusion of vendor names. For this step, it does not matter that your
company might have contracts with specific providers or have an approved provider
list. This step is just about ensuring that the design is agnostic, and contracts and
approved providers are all implementation related issues.

We hinted at the second step in the first step. Scrub and remove all references to
providers, models, or requirements that demand either a provider or model. It’s
appropriate to indicate requirements in a design, such as a switch that is capable of
10 gigabit throughput; but it is not appropriate to indicate a switch capable of run-
ning a Cisco proprietary protocol. Again, interface requirements have to do with
implementation. If you have something running in your production environment that
requires the same brand of system in other places, you have already locked yourself
into a vendor and violated the TAD approach.

The final step is to describe any requirements specific to your design in agnostic
terms. Use SQL transactions per second instead of a proprietary vendor database
term. Use storage in terms of bytes, spindles, or speeds rather than anything specific

ptg5994185

THE TAD APPROACH 307

to any given vendor like a proprietary storage replication system, and so on. When in
doubt, ask yourself whether your design has forced you into a vendor for any given
reason, or whether the description of the design is biased by any given vendor or
open source solution.

The TAD Approach—Three Simple Steps
Here are three simple steps to help guide you in TAD designs:

• In the design itself, think in terms of boxes and wire diagrams rather than prose. Leave
the detail of the boxes to the next step.

• In defining boxes and flows, use generic terms. Application server, Web server, RDBMS,
and so on. Don’t use vendor names.

• Describe requirements in industry standards. Stay away from proprietary terms specific
to a vendor.

Allow your instinct to help guide you. Should you “feel” as though you are being pulled
toward a vendor in a description or design statement, attempt to “loosen” that statement to
make it agnostic.

A very simple test to determine if you are violating a technology agnostic design is
to check whether any component of your architecture is identified with the name of a
vendor. Data flows, systems, transfers, and software that are specifically labeled as
coming from a specific provider should be questioned. Ideally, even if for some rea-
son a single provider must be used (remember our arguments that this should never
be the case), the provider’s name should be eliminated. You simply do not want to
give any provider a belief that you have already chosen its solution or you handicap
yourself in negotiations.

Technology agnosticism is as much about culture as it is a process or principle dur-
ing design. Engineers and administrators tend to be very biased toward specific pro-
gramming languages, operating systems, databases, and networking devices. This
bias is very often a result of past experiences and familiarity. An engineer who knows
C++ better than Java, for instance, is obviously going to be biased toward developing
something within C++. An engineer who understands and has worked with Cisco
networking equipment her entire career is obviously going to prefer Cisco over a
competitor. This bias is simply human nature, and it is difficult to overcome. As such,
it is imperative that the engineers and architects understand the reasons for agnosti-
cism. Bright, talented, and motivated individuals who understand the causality
between agnosticism and the maximization of flexibility within scalability and the

ptg5994185

308 CHAPTER 20 DESIGNING FOR ANY TECHNOLOGY

maximization of shareholder wealth will ultimately begin parroting the need for
agnosticism.

Conclusion
This chapter made the case for technology agnostic design and architecture. Technol-
ogy agnostic design (TAD) lowers cost, decreases risk, and increases both scalability
and availability. If implemented properly, TAD complements a build versus buy deci-
sion process.

TAD is as much of a cultural initiative as it is a process or principle. The biggest
barrier to implementing TAD will likely be the natural biases of the engineers and
architects for or against certain providers. Ensuring that the organization under-
stands the benefits and reasons for TAD will help overcome these biases. Review the
section in Chapter 4, Leadership 101, covering the causal roadmap to success.

Key Points
• The most scalable architectures are not implementations and should not be

described as implementations. Vendors, brand names, or open source identifica-
tions should be avoided in describing architectures as these are descriptions of
implementations.

• TAD and TAA reduce cost by increasing the number of options and competitors
within a competitive selection process.

• TAD and TAA reduce risk by lowering switching costs and increasing the speed
with which providers or solutions can be replaced in the event of intellectual
property issues or issues associated with business viability of your providers.

• TAD and TAA increase scalability through the reduction of cost to scale and the
reduction of risk associated with scale. Where technology solutions are likely to
converge, TAD and TAA can help you achieve rapid and cost-effective scale by
buying rather than building a solution yourself.

• TAD and TAA increase availability by allowing you to select the highest quality
provider and the provider with the best availability at any point in time.

• TAD and TAA are as much cultural initiatives as they are processes or princi-
ples. To effectively implement them, you need to overcome the natural human
bias for and against technologies with which we are more or less conversant,
respectively.

ptg5994185

309

Chapter 21

Creating Fault Isolative
Architectural Structures

The natural formation of the country is the soldier’s best ally.

—Sun Tzu

Part III, Architecting Scalable Solutions, focuses on the technology aspects of scale. If
you purchased this book and flipped immediately to Part III, we entreat you to
review the introduction and Parts I, Staffing a Scalable Organization, and II, Building
Processes for Scale, of this book. The ties between technology and architecture and
scalability are obvious, but where companies most often go wrong is in also address-
ing the issues of process and organization. In our minds, a failure to treat the issues
within your process and organization is akin to treating acquired diabetes with insu-
lin and not addressing exercise and diet as well.

This chapter focuses on architecting to isolate and limit the effects of failure within
any system. In the days before full duplex and 10 gigabit Ethernet, when repeaters
and hubs were used within CSMA/CD (carrier sense multiple access with collision
detection) networks, collisions among transmissions were common. Collisions
reduced the speed and effectiveness of the network as collided packets would likely
not be delivered on their first attempt. Although the Ethernet protocol (then an
implementation of CSMA/CD) used collision detection and binary exponential back
off to protect against congestion in such networks, network engineers additionally
developed the practice of segmenting networks to allow for fewer collisions and a
faster overall network. This segmentation into multiple collision domains also cre-
ated a fault isolative infrastructure wherein a bad or congested network segment
would not necessarily propagate its problems to each and every other peer or sibling
network segment. With this approach, collisions were reduced, overall speed of deliv-
ery in most cases was increased, and failures in any given segment would not bring
the entire network down.

ptg5994185

310 CHAPTER 21 CREATING FAULT ISOLATIVE ARCHITECTURAL STRUCTURES

This same general approach can be applied to not just networks, but every other
component of your system’s architecture. When we use the term system’s architec-
ture, we are referring to the way in which your holistic product or platform works.
The platform is composed of several entities or subcomponents: a network, propri-
etary software, servers, databases, operating systems, firewalls, third-party software,
application servers, Web servers, and so on. The concept of creating a fault isolative
architecture can be applied to each of these individual components and to the sys-
tem’s architecture as a whole.

Fault Isolative Architecture Terms
In our practice, we often refer to fault isolative architectures as swim lanes. Although
we did not coin the term, we believe it to be a great metaphor for what it is we want
to create within architectures. For swimmers, the swim lane represents both a barrier
and a guide. The barrier exists to ensure that the swimmer does not cross over into
another lane and interfere with another swimmer. In a race, this helps to ensure that
no interference happens to unduly influence the probability that any given swimmer
will win the race. In practice, or in exercise pools, the barriers exist to ensure that
novice swimmers do not interfere with swimmers of greater capabilities. Addition-
ally, the lanes help guide the swimmer toward her objective with minimal effort on
the part of the swimmer; in strokes requiring the submersion of a swimmer’s head,
she can see the lanes as the head is turned or raised for air.

Swim lanes in architecture protect your systems operations similarly to how swim
lanes protect swimmers and ensure safe and efficient operation of a pool. Operations
of a set of systems within a swim lane are meant to stay within the guide ropes of that
swim lane and not cross into the operations of other swim lanes. Furthermore, swim
lanes provide guides for architects and engineers designing new functionality to help
them decide what set of functionality should be placed in what type of swim lane for
progress toward the architectural goal of high scalability.

The term swim lane, however, is not the only fault isolative term used within the
technical community. Terms like a pod are often used to define fault isolative
domains representing a group of customers or set of functionality. Podding is the act
of splitting some set of data and functionality into several groups of fault isolation.
Sometimes pods are used to represent groups of services and sometimes they are used
to represent separation of data. Thinking back to our definition of fault isolation as
applied to either components or systems, the separation of data or services alone
would be fault isolation at a component level only. Although this has benefits to the
overall system, it is not a complete fault isolation domain from a systems perspective
and as such only protects you for the component in question.

ptg5994185

FAULT ISOLATIVE ARCHITECTURE TERMS 311

Shard is yet another term that is often used within the technical community. Most
often, it describes a database structure or storage subsystem. Sharding is the splitting
of these systems into failure domains with the failure of a single shard not bringing
the remainder of the system down as a whole. A storage system comprised of 100
shards may have a single failure that allows the other 99 shards to continue to oper-
ate. As with pods, however, this does not mean that the systems addressing those
remaining 99 shards will function properly. We will discuss this concept in more
detail later in this chapter.

Slivers, chunks, and pools are also terms with which we have become familiar over
time. Slivers are often used as a replacement for shards. Chunks often are used as a
synonym for pods. Pools most often reference a group of servers that perform similar
tasks, this is a fault isolation term but not in the same fashion as swim lanes as we’ll
discuss later. Most often, these are application servers or Web servers performing
some portion of functionality for your platform. All of these terms most often repre-
sent components of your overall system design, though the term can easily be
extended to mean the entire system or platform rather than just its subcomponent.

Ultimately, there is no single “right” answer regarding what you should call your
fault isolative architecture. Choose whatever word you like the most or make up
your own descriptive word. There is, however, a “right” approach and that’s to
design to allow for scale and graceful failure under extremely high demand.

Common Fault Isolation Terms
Swim lane is most often used to describe a fault isolative architecture from a platform or com-
plete system perspective.

Pod is most often used as a replacement for swim lane, especially when fault isolation is per-
formed on a customer or geographic basis.

Shard is a fault isolation term most often used when referencing the splitting of databases or
storage subcomponents.

Sliver is a synonym for pod, often also used for storage and database subcomponents.

Chunk is a synonym for pods.

Pool is a fault isolation term commonly applied to software services but is not necessarily a
swim lane in implementation.

ptg5994185

312 CHAPTER 21 CREATING FAULT ISOLATIVE ARCHITECTURAL STRUCTURES

Benefits of Fault Isolation
Fault isolative architectures offer many benefits within a platform or product. These
benefits range from the obvious benefits of increased availability and scalability to
the less obvious benefits of decreased time to market and cost of development. Com-
panies find it easier to roll back releases, as we described in Chapter 18, Barrier Con-
ditions and Rollback, and push out new functionality while the site, platform, or
product is “live” and serving customers.

Fault Isolation and Availability—Limiting Impact
As the name would seem to imply, fault isolation greatly benefits the availability of
your platform or product. When a fault isolation domain or swim lane fails at the
platform or systems architecture level, you only lose the functionality, geography, or
set of customers that the swim lane serves. Of course, this assumes that you have
architected your swim lane properly and that other swim lanes are not making calls to
the swim lane in question. Of course, the choice of a swim lane in this case can result in
having no net benefit to your availability, so the architecting of swim lanes becomes
very important. To explain this, let’s look at a swim lane architecture that supports
high availability and contrast it with a poorly architected swim lane architecture.

Our fictitious company AllScale, which we have been using to provide examples
for various topics, is at it again. The AllScale team decides to apply the concept of
creating swim lanes to both the newly developed customer relationship management
(CRM) and the existing human resources management (HRM) system. Both are SaaS
(Software as a Service) platforms. Johnny Fixer, CTO, and his team develop the
CRM platform from scratch to allow for multitenancy at a company level, meaning
that multiple companies can reside within the same physical database to reduce your
overall cost and make the most efficient use of your capital. The AllScale architects
also recognize the need for scalability long term as their customer base grows over
time. As such, they decide that they will split the application and databases along cus-
tomer boundaries for both the newly developed CRM solution and the existing HRM
solution. Johnny and the AllScale team decide that the smallest customer segment
they will ever need to split upon is a division within a company. The AllScale archi-
tects also decide to run multiple live data centers throughout the United States.

The AllScale architects select a swim lane, or fault isolative architecture, that
places somewhere between a very large company division and several smaller compa-
nies into a single data center with all of the services necessary to run those customers
out of that data center. The swim lane construction is depicted in Figure 21.1. The
data center location is selected based on proximity to the corporate headquarters of
the companies the data center will serve. No services are allowed to communicate
between data centers. As a result, when any set of components from the database to

ptg5994185

BENEFITS OF FAULT ISOLATION 313

the border routers fail within a data center, only the customers contained within that
data center are impacted for the period of outage or service degradation.

The AllScale architects further identify a way to scale with fault isolation within a
data center. With virtual local area network segmentation and multiple databases,
more than one division or group of companies can be placed into one of many fault
isolation domains within the data center. This allows for fault isolation of systems
and services below the internal router and inclusive of network LANs, databases,
application servers, and so on. Again, services are not allowed to communicate across
these fault isolation domains. Here too, the result is that any equipment failure other
than shared network components such as routers and border routers will be isolated
to the customers within a single zone or domain within the data center. In implemen-
tation, the design exceeds expectations and allows the company to roll beta products
to isolated customer segments, thereby further decreasing risk.

Contrast the preceding approach with an approach where fault isolation domains
are created on a services level. Let’s imagine that the AllScale team created fault isola-
tive structures along the boundaries of services rather than customer boundaries. In
this case, the team might create a swim lane for the login service, one for the popula-
tion and updating of leads, one for the reading of leads, one for reporting on lead
metrics, and so on. This initially seems like an appropriate approach to achieve some
level of scale within the system and isolate faults. The issue with this approach is that
the failure of at least one of these services is going to have an unintended downstream

Figure 21.1 Swim Lane by Customer

Swim Lane 1:
Customers 1 and 2

Swim Lane 2:
Customers 3 thru 8

Swim Lane 3:
Customers 9 thru 20

…

Web Servers

…

App Servers

Databases

…

Web Servers

…

App Servers

Databases

…

Web Servers

…

App Servers

Databases

ptg5994185

314 CHAPTER 21 CREATING FAULT ISOLATIVE ARCHITECTURAL STRUCTURES

effect on the other services. For instance, in the preceding example, a login service
failure will prevent access to the system, and although many of the other services may
still be available, you would expect system utilization to decay over time as new log-
ins won’t be accepted. This in turn affects 100% of the AllScale clients attempting to
interact with the platform after the login failure.

This is not to say that such a service-oriented isolation approach should never be
used. Quite the contrary, it is an excellent way to isolate your code base, speed time
to market through the isolation, and reduce the scalability requirements on caching
for action specific services. But whenever you have services that rely upon another
service, either synchronously as described earlier or simply in a time oriented series
when one service is called before another, you subject yourself to a higher rate of fail-
ure. You can either ensure that the first order service (the first one to be called before
any other service can be used such as a login) is so highly available and redundant as
to minimize the risk or you can perform multiple splits to further isolate failures.

The former approach of making the service even more highly available can be
accomplished by adding significantly more capacity than is typically needed. In addi-
tion, the incorporation of markdown functionality (see the following sidebar “Mark-
down Logic Revisited” or Chapter 18 for a review) on a per company basis might help
us isolate certain problems. Forcing a small percentage of customers through a spe-
cialized login pool service for new login code might reduce AllScale’s risk with new
rollouts, and establishing connection limits on the servers might help them keep some
customers logging in properly when they have slowdowns in service for some reason.

Markdown Logic Revisited
You may recall from Chapter 18 that we provided an implementation of the architectural princi-
ple Design to be Disabled in what we called markdown functionality. Markdown functionality
enables certain features within a product to be turned off without affecting other features. The
typical reason companies invest in markdown functionality is to limit the negative impact of new
feature releases on either availability or scalability.

Proper markdown functionality allows a new release to remain in a production environment
while the offending code or system is fixed and without rolling the entire release back. The
offending code or system is simply taken offline typically through a software “toggle” and is
brought back online after the cause of unintended behavior is rectified.

The latter approach of performing multiple splits to isolate failures is our pre-
ferred method of addressing both scalability and availability. In this method, AllScale
could combine the splits of services and splits of customers on a per company basis.

ptg5994185

BENEFITS OF FAULT ISOLATION 315

AllScale could have the services oriented split of logins be the primary method of split
and isolation by implementing a login service swim lane and then make a customer
oriented split with swim lanes by companies within the services swim lane. Alternatively,
AllScale could swap the approach and create a customer pod (or swim lane) for groups
of companies; within that pod, it could break out its services by swim lanes, one of
which would be a login service. Either method is fine, though most companies find
that the customer oriented split is a little more intuitive. We will discuss these types of
splits in greater detail in Chapters 22, Introduction to the AKF Scale Cube, 23, Split-
ting Applications for Scale, and 24, Splitting Databases for Scale, where we address the
AKF Scale Cube and how to apply it to services, databases, and storage structures.

Fault Isolation and Availability—Incident Detection and Resolution
Fault isolation also increases availability because incidents are easier to detect, iden-
tify, and resolve. If you have several swim lanes, each dedicated to a group of custom-
ers, and only a single swim lane goes down, you know quite a bit about the failure
immediately; it is limited to a set of customers. As a result, your questions to resolve
the incident are nearly immediately narrowed. More than likely, the issue is a result
of systems or services that are servicing that set of customers alone. Maybe it’s a data-
base unique to that customer swim lane. You might ask, “Did we just roll code out to
that swim lane or pod?” or more generally, “What were the most recent changes to
that swim lane or pod?” As the name implies, fault isolation has incredible benefits to
incident detection and resolution. Not only does fault isolation isolate the incident
from propagation throughout your platform, it focuses your incident resolution pro-
cess like a laser and shaves critical time off the restoration of service.

Fault Isolation and Scalability
This is a book on scalability and it should be no surprise, given that we’ve included
fault isolation as a topic, that it somehow benefits your scalability initiatives. The
subject of exactly how fault isolation affects scalability has to do with how you split
your services, as we’ll discuss in Chapters 22 through 24, and has to do with the
architectural principle of scaling out rather than up. The most important thing to
remember is that to have a swim lane it must not communicate synchronously into
any other swim lane. It can make asynchronous calls with the appropriate timeouts
and discard mechanisms to other swim lanes, but you cannot have a connection ori-
ented communication to any other service outside of the swim lane. We’ll discuss
how to construct and test swim lanes later in this chapter.

Fault Isolation and Time to Market
Creating architectures that allow you to isolate code into service oriented or resource
oriented systems gives you the flexibility of focus and the ability to dedicate engineers

ptg5994185

316 CHAPTER 21 CREATING FAULT ISOLATIVE ARCHITECTURAL STRUCTURES

to those services. When you are a small company, this probably doesn’t make much
sense. But as your company grows, the lines of code, number of servers, and overall
complexity of your system will grow. To handle this growth in complexity, you will
need to focus your engineering staff. Failing to specialize and focus your staff will result
in too many engineers having too little information on the entire system to be effective.

If you run a commerce site, you might have code, objects, methods, modules, serv-
ers, and databases focused on checkout, finding, comparing, browsing, shipping,
inventory management, and so on. By dedicating teams to these areas, each team will
become an expert on a codebase that is itself complex, challenging, and growing. The
resulting specialization will allow for faster new feature development and a faster
time to resolve known or current incidents and problems. All of this increase in speed
to delivery may result in a faster time to market for bug fixes, incident resolution,
and new feature development.

Additionally, this isolation of development and ideally isolation of systems or ser-
vices will reduce the merge conflicts that would happen within monolithic systems
development. Here, we use the term monolithic systems development to identify
source that is shared across all set of functions, objects, procedures, and methods
within a given product. Duplicate checkouts for a complex system across many engi-
neers will result in an increase in merge conflicts and errors. Specializing the code and
the engineering teams reduce these conflicts.

This is not to say that code reuse should not be a focus for the organization; it
absolutely should be a focus. Shared libraries should be developed, and potentially
you should consider a dedicated team responsible for shared library development and
oversight. These libraries can be implemented as services to services, as shared
dynamically loadable libraries, or compiled and/or linked during the build of the
product. Our preferred approach, however, would be to have shared libraries dedicated
to a team, and should a nonshared library team develop a useful and potentially shar-
able component, that component should be moved to the shared library team.

Recognizing that engineers like to continue to be challenged, you might be con-
cerned that engineers will not want to spend a great deal of time on a specific area of
your site. You can slowly rotate engineers to get them a better understanding of the
entire system and in so doing stretch and develop them over time. Additionally, you
start to develop potential future architects with a breadth of knowledge regarding
your system or fast reaction SWAT team members that can easily get into and resolve
incidents and problems.

Fault Isolation and Cost
In the same ways and for the same reason that fault isolation reduces time to market,
it can also reduce cost. One way to look at it is as you get greater throughput for each
hour and day spent on a per engineer basis, your per unit cost goes down. For

ptg5994185

HOW TO APPROACH FAULT ISOLATION 317

instance, if it normally took you 5 engineering days to produce the average story or
use-case in a complex monolithic system, it might now take you 4.5 engineering days
to produce the average story or use-case in a disaggregated system with swim lanes.
The average per unit cost of your engineering endeavors was just reduced by 10%!

You can do one of two things with this per unit cost reduction, both of which
impact net income and as a result shareholder wealth. You might decide to reduce
your engineering staff by 10% and produce exactly the same amount of product
enhancements, changes, and bug fixes at a lower absolute cost than before. This
reduction in cost increases net income without an increase in revenue.

Alternatively, you might decide that you are going to keep your current cost struc-
ture and attempt to develop more products at the same cost. The thought here is that
you will make great product choices that increase your revenue. If you are successful,
you also increase net income and as a result your shareholders will become wealthier.

You may correctly believe that additional sites usually end up costing more capital
than running out of a single site and that operational expenses may increase.
Although this is true, most companies aspire to have products capable of weathering
geographically isolated disasters and invest to varying levels in disaster recovery initi-
atives that help mitigate the effects of such disasters. As we will discuss in Chapter 32,
Planning Data Centers, assuming you have an appropriately fault isolated architecture,
the capital and expense associated with running three or four properly fault isolated
data centers can be significantly less than two completely redundant data centers.

Another consideration in justifying fault isolation is the effect that it has on reve-
nue. Referring back to Chapter 6, Making the Business Case, you can attempt to cal-
culate the lost opportunity (lost revenue) over some period of time. Typically, this
will be the easily measured loss of a number of transactions on your system added to
the future loss of a higher than expected customer departure rate and the resulting
reduction in revenue. This loss of current and future revenue can be used to deter-
mine if the cost of implementing a fault isolated architecture is warranted. In our
experience, some measure of fault isolation is easily justified through the increase in
availability and the resulting decrease in lost opportunity.

How to Approach Fault Isolation
The most fault isolative systems are those that make absolutely no calls and have no
interaction with anything outside of their functional or data boundaries. The best
way to envision this is to think of a group of lead lined, concrete structures, each
with a single door. Each door opens into a long isolated hallway that has a single
door at each end; one door accesses the lead lined concrete structure and one door
accesses a shared room with an infinite number of desks and people. In each of these

ptg5994185

318 CHAPTER 21 CREATING FAULT ISOLATIVE ARCHITECTURAL STRUCTURES

concrete structures is a piece of information that one of the people sitting at the many
desks might want. To get that information, he has to travel the long hallway dedi-
cated to the room with the information he needs and then walk back to his desk.
After that journey, he may decide to get a second piece of information from the room
he just entered, or travel down another hallway to another room. It is impossible for
a person to cross from one room to the next; he must always make the long journey.
If too many people get caught up attempting to get to the same room down the same
hallway, it will be immediately apparent to everyone in the room and they can either
decide to travel to another room or simply wait.

In this example, we’ve not only illustrated how to think about fault isolative
design, but we’ve demonstrated two benefits of such a design. The first benefit is that
a failure in capacity of the hallway does not keep anyone from moving on to another
room. The second benefit is that everyone knows immediately which room has the
capacity problem. Contrast this with an example where each of the rooms is con-
nected to a shared hallway and there is but one entrance to this shared hallway from
our rather large room. Although each of the rooms is isolated, should he back up into
the hallway, it becomes both difficult to determine which room is at fault and impos-
sible to travel to the other rooms. This example also illustrates our first principle of
fault isolative architecture.

Principle 1: Nothing Is Shared
The first principle of fault isolative design or architecture is that absolutely nothing is
shared. Of course, this is an extreme and may not be financially feasible in some
companies, but it is nevertheless the starting point for fault isolative design. If you
want to ensure that capacity or system failure does not cause problems for multiple
systems, you need to isolate system components. This may be very difficult in several
areas, like border or gateway routers. That said, and recognizing both the financial
and technical barriers in some cases, the more thoroughly you apply the principle, the
better your results.

One often overlooked area is URIs/URLs. For instance, consider using different sub-
domains for different groups. If grouping by customers, consider cust1.allscale.com to
custN.allscale.com. If grouping by services, maybe view.allscale.com, update.allscale.com,
input.allscale.com, and so on. The domain grouping ideally also references isolated
Web and app servers as well as databases and storage unique to that URI/URL. If
financing allows and demand is appropriate, dedicated load balancers, DNS, and
access switches should be used.

If you identify two swim lanes and have them communicate to a shared database,
they are the same swim lane in the big picture. You may have two smaller fault isola-
tion zones from a service’s perspective (for instance, the application servers), which
will help when one application server fails; but should the database fail, it will bring
down both of these service swim lanes.

ptg5994185

WHEN TO IMPLEMENT FAULT ISOLATION 319

Principle 2: Nothing Crosses a Swim Lane Boundary
This is another important principle in designing fault isolative systems. If you have
systems communicating synchronously and even asynchronously, they can cause a
potential fault. Although it is true that asynchronous systems are less likely to cause
such a fault, they have caused plenty of issues in extremely high demand scenarios
when timeouts aren’t aggressive enough to bump unlikely to complete processes.

You cannot build a fault isolation zone and have that zone communicate to any-
thing outside of the zone. Think back to our concrete room analogy: the room and its
hallway were the fault isolation zone or domain. The large shared room was the
Internet. There was no way to move from one room to the next without travelling
back to the area of the desk (our browser) and then starting down another path. As a
result, we know exactly where bottlenecks or problems are immediately and we can
figure out how to handle those problems.

Any communication between zones, or paths between rooms in our scenario, can
cause problems with our fault isolation. A backup of people in one hallway may be
the cause of the hallway connected to that room or any of a series of rooms con-
nected by other hallways. How can we tell easily without a thorough diagnosis? Con-
versely, a backup in any room may have an unintended effect in some other room; as
a result, our room availability goes down.

Principle 3: Transactions Occur Along Swim Lanes
Given the name and the previous principle, this principle should go without saying;
but we learned long ago not to assume anything. In technology, assumption is the
mother of catastrophe. Have you ever seen swimmers line up facing the length of a
pool, but seen the swim lane ropes running widthwise? Of course not, but the result-
ing water obstacle course would probably be great fun to watch.

The same is true for technical swim lanes. It is incorrect to say that you’ve created
a swim lane of databases, for instance. How would transactions get to the databases?
Communication would have to happen across the swim lane; and per Principle 2,
that should never happen. In this case, you may well have created a pool, but because
transactions cross a line, it is not a swim lane as we define it.

When to Implement Fault Isolation
If only money grew on trees Fault isolation isn’t free and it is not even cheap.
Although it has a number of benefits, attempting to design every single function of your
platform to be fault isolative would likely be cost prohibitive. Moreover, the share-
holder return just wouldn’t be there. And that’s the answer to the preceding heading.
After twenty and a half chapters, you probably can sense where we are going.

ptg5994185

320 CHAPTER 21 CREATING FAULT ISOLATIVE ARCHITECTURAL STRUCTURES

You should implement just the right amount of fault isolation in your system to
generate a positive shareholder return. “OK, thanks, how about telling me how to do
that?” you might ask.

The answer, unfortunately, is going to depend on your particular needs, the rate of
growth and unavailability and causes of unavailability in your system, customer
expectation with respect to availability, contractual availability commitments, and a
whole host of things that result in a combinatorial explosion, which make it impossi-
ble for us to describe for you what you need to do in your environment.

That said, there are some simple rules to apply to increase your scalability and
availability. We present some of the most useful here to help you in your fault isola-
tion endeavors.

Approach 1: Swim Lane the Money-Maker
Whatever you do, always make sure that the thing that is most closely related to
making money is appropriately isolated from the failures and demand limitations of
other systems. If you are a commerce site, this might be your purchase flow from the
“buy” button and checkout process through the processing of credit cards. If you are
a content site and you make your money through proprietary advertising, ensure that
the advertising system functions separately from everything else. If you are a recur-
ring registration fee based site, ensure that the processes from registration to billing
are appropriately fault isolated.

It stands to reason that you might have some subordinate flows that are closely
tied to the money making functions of your site and you should consider these for
swim lanes as well. For instance, in a commerce site, the search and browse function-
ality might need to be in swim lanes. In content sites, the most heavily trafficked
areas might need to be in their own swim lanes or several swim lanes to help with
demand and capacity projections. Social networking sites may create swim lanes for
the most commonly hit profiles or segment profile utilization by class.

Approach 2: Swim Lane the Biggest Sources of Incidents
If in your recurring quarterly incident review (Chapter 8, Managing Incidents and
Problems), you identify that certain components of your site are repeatedly causing
other incidents, you should absolutely consider these for future headroom projects
(Chapter 11, Determining Headroom for Applications) and isolate these areas. The
whole purpose of the quarterly incident review is to learn from our past mistakes,
and if demand related issues are causing availability problems on a recurring basis,
we should isolate those areas from impacting the rest of our product or platform.

Approach 3: Swim Lane Along Natural Barriers
This is especially useful in multitenant SaaS systems and most often relies upon the z-
axis of scale discussed later in Chapters 22 to 24. The sites and platforms needing the

ptg5994185

HOW TO TEST FAULT ISOLATIVE DESIGNS 321

greatest scalability often have to rely on segmentation along the z-axis, which is most
often implemented on customer boundaries. Although this split is often first accom-
plished along the storage or database tier of architecture, it follows that we should
create an entire swim lane from request to data storage or database and back.

Very often, multitenant indicates that you are attempting to get cost efficiencies
from common utilization. In many cases, this approach means that you can design
the system to run one or many “tenants” in a single swim lane. If this is true for your
platform, you should make use of it. If you have a tenant that is very busy, assign it a
swim lane. A majority of your tenants have very low utilization? Assign them all to a
single swim lane. You get the idea.

Fault Isolation Design Checklist
The design principles for fault isolative architectures are

• Principle 1: Nothing Is Shared (a.k.a. share as little as possible). The less that is shared
within a swim lane, the more fault isolative the swim lane becomes.

• Principle 2: Nothing Crosses a Swim Lane Boundary. Communication never crosses a
swim lane boundary or the boundary is drawn incorrectly.

• Principle 3: Transactions Occur with Swim Lanes. You can’t create a swim lane of ser-
vices as the communication to those services would violate Principle 2.

The approaches for fault isolative architectures are

• Approach 1: Swim Lane the Money-Maker. Never allow your cash register to be compro-
mised by other systems.

• Approach 2: Swim Lane the Biggest Sources of Incidents. Identify the recurring causes
of pain and isolate them.

• Approach 3: Swim Lane Natural Barriers. Customer boundaries make good swim lanes.

Although there are a number of approaches, these will go a long way to increasing your
scalability while not giving your CFO a heart attack.

How to Test Fault Isolative Designs
The easiest way to test a fault isolative design is to draw your platform at a high level
on a whiteboard. Draw a dotted line for any communication between systems, and a
solid line for where you believe your swim lanes exist or should exist. Anywhere a
dotted line crosses a solid line, you have a violation of a swim lane. From a purist

ptg5994185

322 CHAPTER 21 CREATING FAULT ISOLATIVE ARCHITECTURAL STRUCTURES

perspective, it does not matter if that communication is synchronous or asynchro-
nous, though synchronous transactions and communications are a more egregious
violation from both a scalability and an availability perspective. This test will test
against the first and second principles of fault isolative designs and architectures.

To test the third principle, simply draw an arrow from the user to the last system
on your whiteboard. The arrow should not cross any lines for any swim lane; if it
does, you have violated the third principle.

Conclusion
In this chapter, we discussed the need for fault isolative architectures, principles of
implementation, approaches for implementation, and finally a design test. We most
commonly use swim lanes to identify a completely fault isolative component of an
architecture, though terms like pods and slivers are often used to mean the same
thing.

Fault isolative designs increase availability by ensuring that subsets of functional-
ity do not hamper the overall functionality of your entire product or platform. They
further aid in increasing availability by allowing for immediate detection of the areas
causing problems within the system. They lower both time to market and cost by
allowing for dedicated, deeply experienced resources to focus on the swim lanes and
by reducing merge conflicts and other barriers and costs to rapid development. Scal-
ability is increased by allowing for scale in multiple dimensions as discussed in Chap-
ters 22 through 24.

The principles of swim lane construction include a principle addressing sharing,
one addressing swim lane boundaries, and one addressing swim lane direction. The
fewer things that are shared within a swim lane, the more isolative and beneficial that
swim lane becomes to both scalability and availability. Swim lane boundaries should
never have lines of communication drawn across them. Swim lanes always move in
the direction of communication and customer transactions and never across them.

Always address the transactions making the company money first when considering
swim lane implementation. Then, move functions causing repetitive problems into
swim lanes. Finally, consider the natural layout or topology of the site for opportuni-
ties to swim lane, such as customer boundaries in a multitenant SaaS environment.

Key Points

• Swim lane is a term used to describe a fault isolative architecture construct in
which a failure in the swim lane is not propagated and does not affect other
platform functionality.

ptg5994185

CONCLUSION 323

• Pods, shards, and chunks are often used in place of the term swim lane, but
often they do not represent a “full system” view of functionality and fault isolation.

• Fault isolation increases availability and scalability while decreasing time to
market and cost of development.

• The less you share in a swim lane, the greater its benefit to availability and
scalability.

• No communication or transaction should ever cross a swim lane boundary.

• Swim lanes go in the direction of and never across transaction flow.

• Swim lane the functions that directly impact revenue, followed by those that
cause the most problems and any natural boundaries that can be defined for
your product.

ptg5994185

This page intentionally left blank

ptg5994185

325

Chapter 22

Introduction to the
AKF Scale Cube

Ponder and deliberate before you make a move.

—Sun Tzu

Chapter 21, Creating Fault Isolative Architectural Structures, focused on making
things more fault isolative so that when something failed, either as a result of incred-
ible demand or technical glitches, our entire product or service didn’t go away. There,
we referred several times to the AKF Scale Cube to highlight methods by which com-
ponents of our architecture might be split into swim lanes or failure domains. In this
chapter, we are going to reintroduce the AKF Scale Cube. We developed the scale
cube to help our clients think about how to split services, data, and transactions, and
to a lesser degree as outlined in the introduction, teams and processes. As with our
principles, we gave the AKF Scale Cube to our clients as a way to think about scale.
Feel free to use it within your own company or for your own purposes.

Concepts Versus Rules and Tools
Before we reintroduce the cube, we thought it important to discuss why we devel-
oped the AKF Scale Cube versus a set of steps, rules, or tools that one might employ.
The reason for the development of the cube has its roots in our beliefs regarding the
difference between engineers and technicians. Engineers are taught why something
works and this understanding typically starts at a level much lower than the specific
discipline of engineering in question. Most engineers spend nearly two years learning
the building blocks that they will later apply in the latter two years of a four-year
degree. Often, the engineer really doesn’t understand why she is learning something,
and unfortunately professors don’t create the causal roadmap to success between
what is learned during freshman calculus and how it will ultimately apply to say

ptg5994185

326 CHAPTER 22 INTRODUCTION TO THE AKF SCALE CUBE

Faraday’s law and the calculation of electromagnetic force (EMF) in a sophomore
physics class or a junior core electrical engineering class. Nevertheless, concepts and
building blocks are stressed first, and to graduate to the application of these con-
cepts, one must first master the concepts themselves.

Technicians, on the other hand, are often handed a set of rules and equations and
given a rote course focused on understanding the rough interrelationships and are
taught how something works. How is predicated on a set of rules that does not
require understanding why those rules exist or the method by which one would prove
the rules work. Why doesn’t start at the level of the rules, but rather deep below
those rules with the physics and chemistry that ultimately become the building blocks
for those rules.

Electricians are not in the business of deriving the equations they apply; their
expertise is in knowing a set of rules that explains how something works. They are
experts in applying those rules and coming up with an action. Electricians are great at
planning electrical infrastructure for projects requiring the application of the same set
of tools and the same set of products or components. It is rare, however, to find an
electrician or a technician who is going to create a paradigm shift based on the under-
standing of the whys for any given system when they haven’t been taught the reasons
for the whys. More likely, when looking for major changes to the way something
operates and to allow that something to achieve new and higher levels of perfor-
mance, you are going to need an engineer.

As such, we developed a cube that consists of concepts rather than rules. The cube
on its own serves as a way to think about the whys of scale and helps create a bridge
to the hows. The cube also serves to facilitate a common language for discussing dif-
ferent strategies, just as physics and math serve as the underlying languages for engi-
neering discussions.

Introducing the AKF Scale Cube
Imagine first, if you will, a Rubik’s cube or classic colored children’s building block.
Hold this imaginary block directly in from of you, or stare down directly at it so that
you can only see a single face of the six faces. At this point, the cube is nothing more
than a two-dimensional square, similar to the square seen in Figure 22.1.

Figure 22.1 Starting Point of the AKF Scale Cube

ptg5994185

INTRODUCING THE AKF SCALE CUBE 327

Now take the cube in your hand and rotate it one-eighth of a turn to the left, such
that the face to the right of the cube is visible and roughly the same size as the origi-
nal face you had viewed of the cube. Note that you should not yet see the top or bot-
tom of the cube or block in your hand, but rather two roughly equal faces, each of
them moving at a 45-degree angle away from you to the right and to the left.

Now for one last turn. Turn the cube roughly one-eighth a turn down. To accom-
plish this, you want to take the lower point of the edge created between the two sides
that you can currently see and rotate it downward or to the 6 o’clock position. The
result is that you should now see roughly three sides of the cube: the original face,
which is now one-eighth of a turn to your left and pointing off at roughly a 45-degree
angle away from you, the right face, which was exposed in the first rotation to the
left, and the top of the cube, which was exposed in the last rotation. The result
should look something like in the cube show in Figure 22.2.

On its own, this cube doesn’t offer us much, so we need to add reference points to
help us in our future discussion. To do this, we will add the traditional three-dimen-
sional axes. Adding an x-axis moving from left to right, a y-axis moving up and
down the page, and a z-axis that points out directly behind the cube gives us some-
thing that looks like Figure 22.3.

We will call the point of intersection of our three axes the initial point, as refer-
enced by the values x = 0, y = 0, and z = 0.

Figure 22.2 AKF Scale Cube Without Axes

Figure 22.3 AKF Scale Cube with Axes

0 0

0 x

y

z

ptg5994185

328 CHAPTER 22 INTRODUCTION TO THE AKF SCALE CUBE

Meaning of the Cube
The initial point, with coordinates of (0,0,0), is the point of least scalability within
any system. It consists of a single monolithic application and storage retrieval system
likely running on a single physical system. It might scale “up” (which would violate
one of our principles of scale as defined in Chapter 12, Exploring Architectural Prin-
ciples) with larger and faster hardware, but it won’t scale “out”; as a result, it will
limit your growth to the growth allowed by the hardware and software available in
open source or through third-party providers.

As you move along any axis, making modifications, the scalability of your system
is increased. One axis might benefit certain scale characteristics more than others.
For instance, a split along the x-axis might allow transaction growth to scale very
well but not materially impact your ability to store, retrieve, and search through cus-
tomer, account, or catalog information. To address such a storage or memory con-
straint, you might need to consider a y-axis implementation or split. Y-axis splits, on
the other hand, might allow you to split information for the purposes of searching
through it faster, but may hinder your efforts when the joining of information is
required, and for this you might need to consider z-axis splits.

The use of one axis does not preclude you from making use of other axes. In the
ideal case where financial considerations and the need to ensure profitability did not
impact our decisions, we would design for near infinite splits along all three axes.
Doing so would give us theoretically infinite scale from a design perspective. In
implementation, we could choose the lowest cost approach to meeting our real-time
scalability needs by selecting the cheapest solution from a split in the x-, y-, or z-axis.
Of course, designing for near infinite scale, although cheaper than implementing such
a design, still has costs in terms of engineering and architecture time spent and lost
opportunity of revenue associated with the delay in time to market. Furthermore, only
the fastest growing of hyper-growth platforms really need to consider such a move,
which is why we suggested thinking of at least two axes for any given implementation.

In the following sections, we discuss the meaning of each of the axes at a very high
level. In Chapters 23, Splitting Applications for Scale, and 24, Splitting Databases for
Scale, we will dig deeper into the most common applications of each of these axes:
splitting services and splitting databases.

The X-Axis of the Cube
The x-axis of the AKF Scale Cube represents cloning of services and data with abso-
lutely no bias. Perhaps the easiest way to represent such a split is to think first in

ptg5994185

THE X-AXIS OF THE CUBE 329

terms of people and organizations. Let’s first consider the days in which typing pools
handled the typing of meeting minutes, letters, internal memos, and so on. Note the
use of the term pool as far back as 50 or more years identifying a service distributed
among several entities (in this case people). Work would be sent to the typing pool
largely without a bias as to what individual typist performed the work. Some typists
might be faster than others and as a result would get more work sent their way and
accomplish more work within the course of a day, but ideally it would not matter
where any individual piece of work went within the pool. Everyone could type and
everyone was capable of typing one of the set of internal memos, external letters, or
meeting minutes. In effect, other than the speed of the hardware (typewriter) used
and the speed of the person, everyone was a clone and capable of doing the work.
This distribution of work among clones is a perfect example of x-axis scalability.

Another people example to illustrate our point might be within the accounts
receivable or accounts payable portion of your company’s finance organization. Ini-
tially, for small to medium companies, and assuming that the work is not outsourced,
the groups might be comprised of a few people, each of whom can perform all of the
tasks within his area. The accounts payable staff can all receive bills and generate
checks based on a set of processes and send those checks out or get them counter-
signed depending upon the value of the check written. The accounts receivable staff is
capable of generating invoices from data within the system, receiving checks, making
appropriate journal entries, and depositing the checks. Each person can do all of the
tasks, and it does not matter to whom the work goes.

All three of these examples illustrate the basic concept of the x-axis, which is the
unbiased distribution of work across clones. Each clone can do the work of the other
clones and there is no bias with respect to where the work travels (other than individ-
ual efficiency). Each clone has the tools and resources to get the work done and will
perform the work given to it as quickly as possible.

The x-axis seems great! When we need to perform more work, we just add more
clones. Is the number of memorandums exceeding your current typing capacity? Sim-
ply add more typists! Is your business booming and there are too many invoices to
make and payments coming in? Add more accounts receivable clerks! Why would we
ever need any more axes? Let’s return to our typing pool first to answer this question.

Let’s assume that in order to write some of our memorandums, external letters,
and notes a typist needs to have certain knowledge to complete them. Let’s say that
as the company grows, the services offered by the typing pool increases. The pool
now performs some 100 different types and formats of services and the work is not
evenly distributed across these types of services. External client letters have several
different formats that vary by the type of content included within the message, mem-
orandums vary by content and intent, and meeting notes vary by the type of meeting,
and so on. Now an individual typist may get some work done very fast (the work

ptg5994185

330 CHAPTER 22 INTRODUCTION TO THE AKF SCALE CUBE

that is most prevalent throughout the pool) but be required to spend time looking up
the less frequent formatting, which in turn slows down the entire pipeline of work.
As the type of work increases for any given service, more time may be spent trying to
get work of varying sizes done; and the instruction set to accomplish this work may
not be easily kept in any given typist’s head. These are all examples of problems asso-
ciated with the x-axis of scale; it simply does not scale well with an increase in data,
either as instruction sets or reference data. The same holds true if the work varies by
the sender or receiver. For instance, maybe vice presidents and above get special for-
matting or are allowed to send different types of communication than directors of the
company. Perhaps special letterhead or stock is used that varies by the sender. Maybe
the receiver of the message causes a variation in tone of communication or paper
stock. Account delinquent letters may require a special tone not referenced within the
notes to be typed, for instance.

As another example, consider again our accounts receivable group. This group
obviously performs a very wide range of tasks from the invoicing of clients to the
receipt of bills, the processing of delinquent accounts, and finally the deposit of funds
into our bank account(s). The processes for each of these grows as the company
grows and our controller is going to want some specific process controls to exist so
that money doesn’t errantly find its way out of the accounts receivable group and
into one of our employees pockets before payday! This is another place where scaling
for transaction growth alone is not likely to allow us to scale cost effectively into a
multibillion dollar company! We will likely need to perform splits based on the ser-
vices this group performs and/or the clients or types of clients they serve. These splits
are addressed by the y- and z-axes of our cube, respectively.

The x-axis split tends to be easy to understand and implement and fairly inexpen-
sive in terms of capital and time. Little additional process or training is necessary, and
managers find it easy to distribute the work. Our people analogy holds true for sys-
tems as well, which we will see in Chapters 23 and 24. The x-axis works well when
the distribution of a high volume of transactions or work is all that we need to do.

Summarizing the X-Axis
The x-axis of the AKF Scale Cube represents the cloning of services or data such that work
can easily be distributed across instances with absolutely no bias.

X-axis implementations tend to be easy to conceptualize and typically can be implemented
at relatively low cost.

X-axis implementations are limited by growth in instructions to accomplish tasks and growth
in data necessary to accomplish tasks.

ptg5994185

THE Y-AXIS OF THE CUBE 331

The Y-Axis of the Cube
The y-axis of the cube of scale represents a separation of work responsibility by
either the type of data, the type of work performed for a transaction, or a combina-
tion of both; one way to view these splits is a split by responsibility for an action. We
often refer to these as service or resource oriented splits. In a y-axis split, the work for
any specific action or set of actions, as well as the information and data necessary to
perform that action, is split away from other types of actions. This type of split is the
first split that addresses the monolithic nature of work and the separation of the same
into either pipelined work flows or parallel processing flows. Whereas the x-axis is
simply the distribution of work among several clones, the y-axis represents more of
an industrial revolution for work; we move from a “job shop” mentality to a system
of greater specialization, just as Henry Ford did with his automobile manufacturing.
Rather than having 100 people creating 100 unique automobiles, with each person
doing 100% of the tasks, we now have 100 unique individuals performing subtasks
such as engine installation, painting, windshield installation, and so on.

Let’s return to our previous example of a typing service pool. In our x-axis exam-
ple, we identified that the total output of our pool might be hampered as the number
and diversity of tasks grew. Specialized information might be necessary based on the
type of typing work performed: an internal memorandum might take on a signifi-
cantly different look than a memo meant for external readers, and meeting notes
might vary by the type of meeting, and so on. The vast majority of the work may be
letters to clients of a certain format and typed on a specific type of letterhead and
bond. When someone is presented with one of the 100 or so formats that only repre-
sent about 10% to 20% of the total work, they may stop and have to look up the
appropriate format, grab the appropriate letterhead and/or bond, and so on. One
approach to this might be to create much smaller pools specializing in some of the
more common requests within this 10% to 20% of the total work and a third pool
that handles the small minority of the remainder of the common requests. Both of
these new service pools could be sized appropriate to the work.

The expected benefit of such an approach would be a significant increase in the
throughput of the large pool representing a vast majority of the requests. This pool
would no longer “stall” on a per typist basis based on a unique request. Furthermore,
for the next largest pool of typists, some specialization would happen for the next
most common set of requests, and the output expectations would be the same; for
those sets of requests typists would be familiar with them and capable of handling
them much more quickly than before. The remaining set of requests that represent a
majority of formats but a minority of request volume would be handled by the third
pool and although throughput would suffer comparatively, it would be isolated to a
smaller set of people who might also at least have some degree of specialization and

ptg5994185

332 CHAPTER 22 INTRODUCTION TO THE AKF SCALE CUBE

knowledge. The overall benefit should be that throughput should go up significantly.
Notice that in creating these pools, we have also created a measure of fault isolation
as identified within Chapter 21. Should one pool stall due to paper issues and such,
the entire “typing factory” does not come to a halt.

It is easy to see how the separation of responsibilities would be performed within
our running example of the accounts receivable department. Each unique action
could become its own service. Invoicing might be split off into its own team or pool,
as might payment receiving/journaling and deposits. We might further split late pay-
ments into its own special group that handles collections and bad debt. Each of these
functions has a unique set of tasks that require unique data, experience, and instruc-
tions or processes. By splitting them, we reduce the amount of information any spe-
cific person needs to perform his job, and the resulting specialization should allow us
to perform processing faster. The y-axis industrial revolution has saved us!

Although the benefits of the y-axis are compelling, y-axis splits tend to cost more
than the simpler x-axis splits. The reason for the increase in cost is that very often to
perform the y-axis split there needs to be some rework or redesign of process, rules,
software, and the supporting data models or information delivery system. Most of us
don’t think about splitting up the responsibilities of our teams or software when we
are a three-person company or a Web site running on a single server. Additionally, the
splits themselves create some resource underutilization initially that manifests itself as
an initial increase in operational cost.

The benefits are numerous, however. Although y-axis splits help with the growth
in transactions, they also help to scale what something needs to know to perform
those transactions. The data that is being operated upon as well as the instruction set
to operate that data decreases, which means that people and systems can be more
specialized, resulting in higher throughput on a per person or per system basis.

Summarizing the Y-Axis
The y-axis of the AKF Scale Cube represents separation of work by responsibility, action, or
data.

Y-axis splits are easy to conceptualize but typically come at a slightly higher cost than the x-
axis splits.

Y-axis splits aid in scaling not only transactions, but instruction size and data necessary to
perform any given transaction.

ptg5994185

THE Z-AXIS OF THE CUBE 333

The Z-Axis of the Cube
The z-axis of the cube is a split biased most often by the requestor or customer. The
bias here is focused on data and actions that are unique to the person or system per-
forming the request, or alternatively the person or system for which the request is
being performed. Z-axis splits may or may not address the monolithic nature of
instructions, processes, or code, but they very often do address the monolithic nature
of the data necessary to perform these instructions, processes, or code.

To perform a z-axis split of our typing service pool, we may look at both the peo-
ple who request work and the people to whom the work is being distributed. In ana-
lyzing the request work, we can look at segments or classes of groups that might
require unique work or represent exceptional work volume. It’s likely the case that
executives represent a small portion of our total employee base but also represent a
majority or supermajority of the work for internal distribution. Furthermore, the
work for these types of individuals might be somewhat unique in that executives are
allowed to request more types of work to be performed. Maybe we limit internal
memorandums to executive requests, or personal customer notes might only be
requested from an executive. This unique volume of work and type of work might be
best served by a specialist pool of typists. We may also dedicate one or more typists
to the CEO of the company who likely has the greatest number and variety of
requests. All of these are examples of z-axis splits.

In our accounts receivable department, we might decide that some customers
require specialized billing, payment terms, and interaction unique to the volume of
business they do with us. We might dedicate a group of our best financial account
representatives and even a special manager to one or more of these customers to han-
dle their unique demands. In so doing, we would reduce the amount of knowledge
necessary to perform a vast majority of our billing functions for a majority of our
customers while creating account specialists for our most valuable customers. We
would expect these actions to increase the throughput of our standard accounts
group as they need not worry about special terms, and the relative throughput for
special accounts should also go up as these individuals specialize in that area and are
familiar with the special processes and payment terms.

Z-axis splits are very often the most costly for companies to implement, but the
returns (especially from a scalability perspective) can be phenomenal. Specialized
training in the previous examples represent a new cost to the company, and this train-
ing is an analog to the specialized set of services one might need to create within a
systems platform. Data separation can become costly for some companies, but when
performed can be amortized over the life of the platform or the system.

An additional benefit that z-axis splits create is the ability to separate services by
geography. Want to have your accounts receivable group closer to the accounts they

ptg5994185

334 CHAPTER 22 INTRODUCTION TO THE AKF SCALE CUBE

support to decrease mail delays? Easy to do! Want your typing pool close to the exec-
utives and people they support to limit interoffice mail delivery (remember these are
the days before email)? Also simple to do!

Summarizing the Z-Axis
The z-axis of the AKF Scale Cube represents separation of work by customer or requestor.

As with x- and y-axis splits, the z-axis is easy to conceptualize, but very often is the most
difficult and costly to implement for companies.

Z-axis splits aid in scaling transactions and data and may aid in scaling instruction sets and
processes if implemented properly.

Putting It All Together
Why would we ever need more than one, or maybe two, axes of scale within our plat-
form or organizations? The answer is that your needs will vary by your current size
and expected annual growth. If you expect to stay small and grow slowly, you may
never need more than one axis of scale. If you grow quickly, however, or growth is
unexpected and violent, you are better off having planned for that growth in
advance. Figure 22.4 depicts our cube, the axes of the cube, and the appropriate
labels for each of the axes.

The x-axis of scale is very useful and easy to implement, especially if you have
stayed away from creating state within your system or team. You simply clone the
activity among several participants. But scaling along the x-axis starts to fail when

Figure 22.4 AKF Scale Cube

0 0

0

y

All Work Evenly Distributed

W
or

k
D

is
tr

ib
ut

ed
 b

y
Ty

pe
 o

f A
ct

io
n

W
or

k D
ist

rib
ut

ed
 by

Cus
to

m
er

 L
oc

at
ion

ptg5994185

PUTTING IT ALL TOGETHER 335

you have a lot of different tasks requiring significantly different information from
many potential sources. Fast transactions start to run at the speed of slow transac-
tions and everything starts to work suboptimally.

State Within Applications and the X-Axis
You may recall from Chapter 12 that we briefly defined stateful systems as “those in which
operations are performed within the context of previous and subsequent operations.” We indi-
cated that state very often drives up the cost of the operations of systems as most often the
state (previous and subsequent calls) is maintained within the application or a database asso-
ciated with the application. The associated data often drives up memory utilization, storage uti-
lization, and potentially database usage and licenses.

Stateless systems often allow us to break affinity between a single user and a single server.
Because subsequent requests can go to any server clone, the x-axis becomes even easier to
implement. No affinity between customer and server means that we need not design systems
specific to any type of customer and so forth. Systems are now free to be more uniform in compo-
sition. This topic will be covered in more detail in Chapter 26, Asynchronous Design for Scale.

The y-axis helps to solve that by isolating transaction type and speed to systems
and people specializing in that area of data or service. Slower transactions are now
bunched together, but because the data set has been reduced relative to the X only
example, they run faster than they had previously. Fast transactions are also sped up
as they are no longer competing with resources for the slower transactions and their
data set has also been reduced. Monolithic systems are reduced to components that
operate more efficiently and can scale for data and transaction needs.

The z-axis helps us scale not only transactions and data, but may also help with
monolithic system deconstruction. Furthermore, we can now move teams and sys-
tems around geographically and start to gain benefits from this geographic disper-
sion, such as disaster recovery.

Looking at our pool of typists, we can separate the types of work that they per-
form by the actions. We might create a customer focused team responsible for general
customer communication letters, an internal memos team, and team focused on
meeting minutes—all of these are examples of the y-axis. Each team is likely to have
duplication to allow for growth in transactions within that team, which is an exam-
ple of x-axis scale. Finally, we might specialize some members of the team relevant to
specific customers or requestors such as an executive group. Although this is a z-axis
split, these teams may also have specialization by task (y-axis) and duplication of
team members (x-axis). Aha! We’ve put all three axes together.

ptg5994185

336 CHAPTER 22 INTRODUCTION TO THE AKF SCALE CUBE

For our accounts receivable department we have split them by invoicing, receiving,
and deposits, all of which are y-axis splits. Each group has multiple members per-
forming the same task, which is an x-axis split. We have created special separation of
these teams focused on major accounts and recurring delinquent accounts and each
of these specialized teams (a z-axis split) has further splits by function (y-axis) and
duplication of individuals (x-axis).

AKF Scale Cube Summary
Here is a summary of the three axes of scale:

• The x-axis represents the distribution of the same work or mirroring of data across multi-
ple entities.

• The y-axis represents the distribution and separation of work responsibilities or data
meaning among multiple entities.

• The z-axis represents distribution and segmentation of work by customer, customer
need, location, or value.

Hence, x-axis splits are mirror images of functions or data, y-axis splits separate data based
on data type or type of work, and z-axis splits separate work by customer, location, or some
value specific identifier (like a hash or modulus).

When and Where to Use the Cube
We will discuss the topic of where and when to use the AKF Scale Cube in Chapters
23, Splitting Applications for Scale, and 24, Splitting Databases for Scale. That said,
the cube is a tool and reference point for nearly any discussion around scalability.
You might make a representation of it within your scalability, 10x, or headroom
meetings—a process that was discussed in Chapter 11, Determining Headroom for
Applications. The AKF Scale Cube should also be presented during Architecture
Review Board (ARB) meetings, as discussed in Chapter 14, Architecture Review
Board, especially if you adopt a principle requiring the design of more than one axis
of scale for any major architectural effort. It can serve as a basis for nearly any con-
versation around scale as it helps to create a common language among the engineers
of an organization. Rather than talking about specific approaches, teams can focus
on concepts that might evolve into any number of approaches.

You may consider requiring footnotes or light documentation indicating the type
of scale for any major design within Joint Architecture Design (JAD) introduced in

ptg5994185

CONCLUSION 337

Chapter 13, Joint Architecture Design. The AKF Scale Cube can also come into play
during problem resolution and postmortems in identifying how intended approaches
to scale did or did not work as expected and how to fix them in future endeavors.

The AKF Scale Cube is a tool best worn on your tool belt rather than placed in
your tool box. It should be carried at all times as it is lightweight and can add signif-
icant value to you and your team. If referenced repeatedly, it can help to change your
culture from one that focuses on specific fixes and instead discusses approaches and
concepts to help identify the best potential fix. It can switch an organization from
thinking like technicians to acting like engineers.

Conclusion
This chapter reintroduced the concept of the AKF Scale Cube. Our cube has three
axes, each of which focused on a different approach toward scalability. Organiza-
tional construction was used as an analogy for systems to help better reinforce the
approach of each of the three axes of scale. The cube is constructed such that the ini-
tial point (x = 0, y = 0, z = 0) is a monolithic system or organization (single person)
performing all tasks with no bias based on the task, customer, or requestor.

Growth in people or systems performing the same tasks represents an increase in
the x-axis. This axis of scale is easy to implement and typically comes at the lowest
cost but suffers when the number of types of tasks or data necessary to perform those
tasks increases.

A separation of responsibilities based on data or the activity being performed is
growth along the y-axis of our cube. This approach tends to come at a slightly higher
cost than x-axis growth but also benefits from a reduction in the data necessary to
perform a task. Other benefits of such an approach include some fault isolation and
an increase in throughput for each of the new pools based on the reduction of data or
instruction set.

A separation of responsibility biased on customer or requestor is growth along the
z-axis of scale. Such separation may allow for reduction in the instruction set for
some pools and almost always reduces the amount of data necessary to perform a
task. The result is that throughput is often increased, as is fault isolation. Cost of z-
axis splits tends to be the highest of the three approaches in most organizations,
though the return is also huge. The z-axis split also allows for geographic dispersion
of responsibility.

Not all companies need all three axes of scale to survive. Some companies may do
just fine with implementing the x-axis. Extremely high growth companies should
plan for at least two axes of scale and potentially all three. Remember that planning
(or designing) and implementing are two separate functions.

ptg5994185

338 CHAPTER 22 INTRODUCTION TO THE AKF SCALE CUBE

Ideally the AKF Scale Cube, or a construct of your own design, will become part
of your daily toolset. Using such a model helps reduce conflict by focusing on con-
cepts and approaches rather than specific implementations. If added to JAD, ARB,
and headroom meetings, it helps focus the conversation and discussion on the impor-
tant aspects and approaches to growing your technology platform.

Key Points

• The AKF Scale Cube offers a structured approach and concept to discussing and
solving scale. The results are often superior to a set of rules or implementation
based tools.

• The x-axis of the AKF Scale Cube represents the cloning of entities or data and
an equal unbiased distribution of work across them.

• The x-axis tends to be the least costly to implement, but suffers from constraints
in instruction size and dataset.

• The y-axis of the AKF Scale Cube represents separation of work biased by activ-
ity or data.

• The y-axis tends to be more costly than the x-axis but solves issues related to
instruction size and data set in addition to creating some fault isolation.

• The z-axis of the AKF Scale Cube represents separation of work biased by the
requestor or person for whom the work is being performed.

• The z-axis of the AKF Scale Cube tends to be the most costly to implement but
very often offers the greatest scale. It resolves issues associated with dataset and
may or may not solve instruction set issues. It also allows for global distribution
of services.

• The AKF Scale Cube can be an everyday tool used to focus scalability related
discussions and processes on concepts. These discussions result in approaches
and implementations.

• ARB, JAD, and headroom are all process examples where the AKF Scale Cube
might be useful.

ptg5994185

339

Chapter 23

Splitting Applications for Scale

Whether to concentrate or to divide your troops must be decided by circumstances.

—Sun Tzu

The previous chapter introduced the model by which we describe splits to allow for
nearly infinite scale. Now we’re going to apply the concepts we discussed within
Chapter 22, Introduction to the AKF Scale Cube, to our realworld technology plat-
form needs. To do this, we will separate the platform into pieces that address our
application and service offerings (covered in this chapter) and the splits necessary to
allow our storage and databases to scale (covered in the next chapter). The same
model and set of principles hold true for both approaches, but the implementation
varies enough that it makes sense for us to address them in two separate chapters.

The AKF Scale Cube for Applications
The underlying meaning of the AKF Scale Cube really doesn’t change when discuss-
ing either databases or applications. However, given that we are now going to use
this tool to accomplish a specific purpose, we are going to add more specificity to the
axes. These new descriptions, although remaining absolutely true to our original def-
initions, will make it more useful for us to apply the AKF Scale Cube to the architect-
ing of applications to allow for greater scalability. Let’s first start with the AKF Scale
Cube from the end of Chapter 22.

In Chapter 22, we defined the x-axis of our cube as the cloning of services and
data with absolutely no bias. In the x-axis approach to scale, the only thing that is
different between one system and 100 systems is that the transactions are evenly split
between those 100 systems as if each of them was a single instance capable of han-
dling 100% of the original requests rather than the 1% that they actually handle. We
will rename our x-axis to Horizontal Duplication/Cloning of Services to make it
more obvious how we will apply this to our architecture efforts.

ptg5994185

340 CHAPTER 23 SPLITTING APPLICATIONS FOR SCALE

The y-axis from Chapter 22 was described as a separation of work responsibility
by either the type of data, the type of work performed for a transaction, or a combi-
nation of both. We most often describe this as a service oriented split within an appli-
cation and as such we will now label this axis as a split by function or service. Here,
function and service are indicative of the actions performed by your platform, but
they can just as easily be resource oriented splits such as the article upon which an
action is being taken. A function or service oriented split should be thought of as being
split along action or “verb” boundaries, whereas a resource oriented split is most
often split along “noun” boundaries. We’ll describe these splits later in this chapter.

The z-axis from Chapter 22 was described as being focused on data and actions
that are unique to the person or system performing the request, or alternatively the
person or system for which the request is being performed. In other words, these are
requests that are split by the person or system making a request or split based on the
person or system for whom the data is intended. We also often refer to the z-axis as
being a “lookup oriented” split in applications. The lookup here is an indication that
users or data are subject to a non action oriented bias that is represented somewhere
else within the system. We store the relationships of users to their appropriate split or
service somewhere, or determine an algorithm such as a hash or modulus of user_id
that will reliably and consistently send us to the right location set of systems to get
the answers for the set of users in question.

The new AKF Scale Cube for applications now looks like Figure 23.1.

Figure 23.1 AKF Application Scale Cube

One,
Monolithic
System/Service

Many Systems,
Each a Clone
and Load
Balanced

X-Axis—Horizontal Duplication

Y-Axis—Split
by Function or
Service

No Splits

Split by
Service or
Similar
Information

Z-A
xis

—
Cus

to
m

er
/R

eq
ue

sto
r

Orie
nt

ed
 S

pli
ts

No Splits

Further Slice
Data or Users

Near Infinite Scale

Starting Point

ptg5994185

THE X-AXIS OF THE AKF APPLICATION SCALE CUBE 341

The X-Axis of the AKF Application Scale Cube
The x-axis of the AKF Application Scale Cube represents cloning of services with
absolutely no bias. As described previously, if we have a service or platform that is
scaled using the x-axis alone and consisting of N systems, each of the N systems can
respond to any request and will give exactly the same answer as the other (N-1) sys-
tems. There is no bias to service performed, customer, or any other data element.
Login functionality exists in the same location and application as shopping cart,
checkout, catalog, and search functionality. Regardless of the request, it is sent to one
of the N systems that comprise our x-axis split.

The x-axis approach is simple to implement in most cases. You simply take exactly
the same code that existed in a single instance implementation and put it on multiple
servers. If your application is not “stateful,” meaning per our previous definitions
that you are not using a user’s previous transactions to inform future decisions, sim-
ply load balance all of the inbound requests to any of the N systems. If you are main-
taining data associated with user state or otherwise are requiring persistence from a
user to an application or Web server, both of which increase the cost of implementa-
tion for a number of reasons, the implementation is slightly more difficult, but the
same basic approach is used. In the cases where persistency or state is necessary (or
persistency resulting from the need for state), a series of transactions from a single
user is simply pegged to one of the N instances of the x-axis split. This can be accom-
plished with session cookies from a load balancer. Additionally, as we will discuss
more in Chapter 26, Asynchronous Design for Scale, there are methods of centraliz-
ing session management to still allow any of N systems to respond to an individual
user’s request without requiring persistency to that system.

The x-axis split has several benefits and drawbacks. As a benefit, this split is rela-
tively simple to envision and implement. Other benefits include that it allows for near
infinite scale from a number of transactions perspectives and when hosting your
applications or services it does not increase the complexity of your hosting environ-
ment. Drawbacks of the x-axis approach include the inability of this split to address
scalability from a data/cache perspective or instruction complexity perspective.

As just stated, x-axis splits are easy to envision and implement. As such, when put
in a position of needing a quick solution to any scale initiative, x-axis splits should be
one of the first that you consider. Because it is generally easy to clone services, the
impact to cost in terms of design expense and implementation expense is low. Fur-
thermore, the impact to time to market to release functionality with an x-axis split is
generally low compared to other implementations as you are, after all, merely cloning
the services in question.

X-axis splits also allow us to easily scale our platforms with the number of
inbound transactions or requests. If you have a single user or small number of users
who grow from making 10 requests per second to 1000 requests per second, you

ptg5994185

342 CHAPTER 23 SPLITTING APPLICATIONS FOR SCALE

need only add roughly 100 times the number of systems or cloned services to handle
the increase in requests. There isn’t a lot of engineering magic involved—simply input the
demand increase and a spreadsheet can tell you how many systems to buy and when.

Finally, the team responsible for managing the services of your platform does not
need to worry about a vast number of uniquely configured systems or servers. Every
system performing an x-axis split is roughly equivalent to every other system per-
forming the same split. Configuration management of all servers is relatively easy to
perform and new service implementation is as easy as cloning an existing system or
generating a new system from a “jumpstart server” and assigning it a unique name or
address. Configuration files do not vary and the only thing the operations group
needs to be concerned about is the total number of systems in an x-axis implementa-
tion and that each is getting an appropriate amount of traffic.

Although x-axis splits scale well with increased transaction volumes, they do not
address the problems incurred by increasing amounts of data. If your system requires
that you cache a great deal of data to serve client requests, as that data grows, your
time to serve any given request will likely increase, which is obviously bad for the
customer experience. Additionally, you might find yourself constrained on the server
or application itself if your data gets too unwieldy. Even if you don’t need to cache
any data, searching through data on other storage or database systems will likely
increase as your customer base and/or product catalog increases in size.

X-axis splits also don’t address the complexity of the software implementing your
system, platform, or product. Everything in an x-axis split alone is assumed to be
monolithic in nature; as a result, applications will likely start to slow down as servers
page instruction/execution pages in and out of memory to perform different func-
tions. As your product becomes more feature rich, monolithic applications slow
down and become more costly and less easily scaled either as a result of this instruc-
tion complexity or the data complexity mentioned earlier.

Summarizing the Application X-Axis
The x-axis of the AKF Application Scale Cube represents the cloning of an application or ser-
vice such that work can easily be distributed across instances with absolutely no bias.

X-axis implementations tend to be easy to conceptualize and typically can be implemented
at relatively low cost. They are the most cost-effective way of scaling transaction growth. They
can be easily cloned within your production environment from existing systems or “jumpstarted”
from “golden master” copies of systems. They do not tend to increase the complexity of your
operations or production environment.

X-axis implementations are limited by the growth of a monolithic application, which tends to
slow down the processing of transactions. They do not scale well with increases in data or
application size.

ptg5994185

THE Y-AXIS OF THE AKF APPLICATION SCALE CUBE 343

The Y-Axis of the AKF Application Scale Cube
The y-axis of the cube of scale represents a separation of work responsibility within
your application. When discussing application scale, we most frequently think of this
in terms of functions, methods, or services within an application. The y-axis split
addresses the monolithic nature of an application by separating that application into
parallel or pipelined processing flows. A pure x-axis split would have 100 instances
of the exact same application performing exactly the same work on each of the N
transactions that a site received over T time. Each of the 100 instances would receive
N/100 of the work. In a y-axis split, we might take a single monolithic application
and split it up into 100 distinct services such as login, logout, read profile, update
profile, search profiles, browse profiles, checkout, display similar items, and so on.

Y-axis splits are a bit more complicated to implement than x-axis splits. At a very
high level, it is possible to implement a y-axis split in production without actually
splitting the code base itself. You can do this by cloning a monolithic application and
setting it on multiple physical or virtual servers. Let’s assume that you want to have
four unique y-axis split servers, each serving 1/4th of the total number of functions
within your site. One server might serve login and logout functionality, another read
and update profile, another server handles “contact individual” and “receive con-
tacts,” and the last server handles all of the other functions of your platform. You
may assign a unique URL or URI to each of these servers, such as login.allscale.com
and contacts.allscale.com, and ensure that any of the functions within the appropri-
ate grouping always get directed to the server in question. This is a good, first
approach to performing a split and helps work out the operational kinks associated
with splitting applications. Unfortunately, it doesn’t give you all of the benefits of a
full y-axis split made within the codebase itself.

Y-axis splits are most commonly implemented to address the issues associated
with a code base and dataset that have grown significantly in complexity or size.
They also help scale transaction volume, as in performing the splits you must add vir-
tual or physical servers. To get most of the benefits of a y-axis split, the code base
itself needs to be split up from a monolithic structure to the services that comprise the
entire platform.

Operationally, y-axis splits help reduce the time necessary to process any given
transaction as the data and instruction sets that are being executed or searched are
smaller. Architecturally, y-axis splits allow you to grow beyond the limitations that
systems place on the absolute size of software or data. Y-axis splits also aid in fault
isolation as identified within Chapter 21, Creating Fault Isolative Architectural Struc-
tures; a failure of a given service does not bring down all of the functionality of your
platform.

From an engineering perspective, y-axis splits allow you to grow your team more
easily by focusing teams on specific services or functions within your product. You

ptg5994185

344 CHAPTER 23 SPLITTING APPLICATIONS FOR SCALE

can dedicate a person or a team to searching and browsing, a team toward the devel-
opment of an advertising platform, a team to account functionality, and so on. New
engineers come up to speed faster as they are dedicated to a specific section of func-
tionality within your system. More experienced engineers become experts at a given
system and as a result can produce functionality within that system faster. The data
elements upon which any y-axis split works will likely be a subset of the total data on
the site; as such, engineers better understand the data with which they are working
and are more likely to make better choices in creating data models.

Y-axis splits also have drawbacks. They tend to be more costly to implement in
engineering time than x-axis splits because engineers either need to rewrite or at the
very least disaggregate services from the monolithic application. The operations and
infrastructure teams will now need to support more than one configuration of server.
This in turn might mean that there is more than one class or size of server in the oper-
ations environment to get the most cost-efficient systems for each type of transaction.
When caching is involved, data might be cached differently in different systems, but
we highly recommend that a standard approach to caching be shared across all of the
splits. URL/URI structures will grow, and when referencing other services, engineers
will need to understand the current structure and layout of the site or platform to
address each of the services.

Summarizing the Application Y-Axis
The y-axis of the AKF Application Scale Cube represents separation of work by service or func-
tion within the application.

Y-axis splits are meant to address the issues associated with growth and complexity in code
base and datasets. The intent is to create both fault isolation as well as reduction in response
times for y-axis split transactions.

Y-axis splits can scale transactions, data sizes, and code base sizes. They are most effec-
tive in scaling the size and complexity of your code base. They tend to cost a bit more than x-
axis splits as the engineering team either needs to rewrite services or at the very least disag-
gregate them from the original monolithic application.

The Z-Axis of the AKF Application Scale Cube
The z-axis of the Application Scale Cube is a split based on a value that is “looked
up” or determined at the time of the transaction; most often, this split is based on the
requestor or customer of the transaction. The requestor and the customer may be
completely different people. The requestor, as the name implies, is the person submit-

ptg5994185

THE Z-AXIS OF THE AKF APPLICATION SCALE CUBE 345

ting a request to the product or platform, whereas the customer is the person who
will receive the response or benefit of the request. Note that these are the most com-
mon implementations of the z-axis, but not the only possible implementation. For In
order for the z-axis split to be valuable, it must help partition not only transactions,
but the data necessary to operate on those transactions. A y-axis split helps us reduce
data and complexity by reducing instructions and data necessary to perform a service;
a z-axis split attempts to do the same thing through nonservice oriented segmentation.

To perform a z-axis split, we look for similarities among groups of transactions
across several services. If a z-axis split is performed in isolation of the x- and y-axis,
each split will be a monolithic code base. If N unique splits are identified, it is possi-
ble that each of the N instances will be the same exact code base, but this does not
necessarily need to be the case. We may, for example, decide that we will allow some
number of our N servers to have greater functionality than the remainder of the serv-
ers. This might be the case if we have a “free” section of our services and a “paid”
section of our services. Our paying customers may get greater functionality and as a
result be sent to a separate server or set of servers. The paying code base may then be
a super set of the free code base.

How do we get benefits in a z-axis split if we have the same monolithic code base
across all instances? The answer lay in the activities of the individuals interacting
with those servers and the data necessary to complete those transactions. So many
applications and sites today require extensive caching that it becomes nearly impossi-
ble to cache all the necessary data for all potential transactions. Just as the y-axis split
helped us cache some of this data for unique services, so does the z-axis split help us
cache data for specific groups or classes of transactions biased by user characteristics.

Let’s take AllScale’s customer resource manager (CRM) solution as an example. It
would make a lot of sense that a set of sales personnel within a given company would
have a lot in common and as a result that we might get considerable benefit from
caching data unique to that company within a z-axis split. In the event that a com-
pany is so small that it doesn’t warrant having a single system dedicated to it, we
implement multitenancy and allow multiple small companies to exist on a single
server. We gain the benefit of caching unique to the companies in question while also
leveraging the cost benefits of a multitenant system. Furthermore, we don’t subject
the larger companies to cache misses resulting from infrequent accesses from small
companies that force the larger company data out of the cache.

We also gain the benefit of fault isolation first identified in Chapter 21. When one
of our servers fails, we only impact a portion of our customers. Moreover, we now
have a benefit that allows us to roll out code to a portion of our customer base when-
ever we are releasing new features. This, in turn, allows us to performance test the
code, validate that the code does not create any significant user incidents, and ensure
that the expected benefits of the release are achieved before we roll or push to the
remainder of our clients.

ptg5994185

346 CHAPTER 23 SPLITTING APPLICATIONS FOR SCALE

Because we are splitting transactions across multiple systems, in this particular
case identified by companies, we can achieve a transactional scale similar to that
within the x-axis. Unfortunately, as with the y-axis, we increase our operational com-
plexity somewhat as we now have pools of services performing similar functions for
different clients, requesters, or destinations. And unlike the y-axis, we don’t likely get
the benefit of splitting up our architecture in a service oriented fashion; our engineers
do not necessarily become more proficient with areas of the code just as a result of a
z-axis split. Finally, there is some software cost associated with z-axis splits in that
the code must be able to recognize that requests are not all equivalent for any given
service. Very often, an algorithm to determine where the request should be sent is cre-
ated, or a “lookup” service is created that can determine to what system or pod a
request should be sent.

The benefits of a z-axis split then are that we increase fault isolation, increase
transactional scalability, and increase the cache-ability of objects necessary to com-
plete our transactions. You might also offer different levels of service to different cus-
tomers, though to do so you might need to implement a y-axis split within a z-axis
split. The end results we would expect from these are higher availability, greater scal-
ability, and faster transaction processing times.

The z-axis, however, does not help us as much with code complexity, nor does it
help with time to market. We also add some operational complexity to our produc-
tion environment; we now need to monitor several different systems with similar
code bases performing similar functions for different clients. Configuration files may
differ as a result and systems may not be easily moved once configured depending
upon your implementation.

Because we are leveraging characteristics unique to a group of transactions, we
can also improve our disaster recovery plans by geographically dispersing our ser-
vices. We can, for instance, locate services closer to the clients using or requesting
those services. Thinking back to our sales lead system, we could put several small
companies in one geographic area on a server close to those companies; and for a
large company with several sales offices, we might split that company into several
sales office systems spread across the company and placed near the offices in ques-
tion.

Summarizing the Application Z-Axis
The z-axis of the AKF Application Scale Cube represents separation of work based on
attributes that are looked up or determined at the time of the transaction. Most often, these are
implemented as splits by requestor, customer, or client.

Z-axis splits tend to be the most costly implementation of the three types of splits. Although
software does not necessarily need to be disaggregated into services, it does need to be writ-

ptg5994185

PUTTING IT ALL TOGETHER 347

ten such that unique pods can be implemented. Very often, a lookup service or deterministic
algorithm will need to be written for these types of splits.

Z-axis splits aid in scaling transaction growth, may aid in scaling instruction sets, and aids in
decreasing processing time by limiting the data necessary to perform any transaction. The z-
axis is most effective at scaling growth in customers or clients.

Putting It All Together
We haven’t really modified our original AKF Scale Cube from the introduction within
this chapter, but we have attempted to clarify it from an application perspective. We
did not redefine the axes, but rather focused the previous meaning to the context of
splitting applications for scale.

The observant reader has probably also figured out by now that we are going to
explain why you need multiple axes of scale. To mix things up a bit, we will work
backward through the axes and first explain the problems with implementing them in
isolation.

A z-axis only implementation has several problems when implemented in isola-
tion. Let’s assume the previous case where you make N splits of your customer base
in a sales lead tracking system. Because we are only implementing the z-axis here,
each instance is a single virtual or physical server. If it fails for hardware or software
reasons, the services for that customer or set of customers have become completely
unavailable. That availability problem alone is reason enough for us to implement an
x-axis split for each of our z-axis splits. If we split our customer base N ways along
the z-axis, with each of the N splits having at least 1/Nth of our customers initially,
we would put at least two “cloned” or x-axis servers in each of the N splits. This
ensures that should a server fail we still service the customers in that pod. Reference
Figure 23.2 as we discuss this implementation further.

Figure 23.2 Z- and X-Axis Split

Customers A − F

X-Axis Split Z-Axis Split

Customers G − N

X-Axis Split

Customers O − Z

X-Axis Split

ptg5994185

348 CHAPTER 23 SPLITTING APPLICATIONS FOR SCALE

It is likely more costly for us to perform continued customer oriented splits to
scale our transactions than it is to simply add servers within one of our customer ori-
ented splits. Operationally, it should be pretty simple, assuming that we do not have
a great deal of state enabled to simply add a cloned system to our service for any
given customer. Therefore, in an effort to reduce overall cost of scale, we will proba-
bly implement a z-axis split with an x-axis split within each z-axis split. We can also
now perform x-axis scale within each of our N number of z-axis pods. If a customer
grows significantly in transactions, we can perform a cost-effective x-axis split (the
addition of more cloned servers) within that customer’s pod.

Finally, as we have previously mentioned, the z-axis split really does not help us
with code complexity. As our functionality increases and the size of our application
grows, performing x-and z-axis splits alone will not allow us to focus and gain expe-
rience on specific features or services. Our time to market will likely suffer. We may
also find that the large monolithic z- and x-axis splits will not help us enough for all
of the functions that need cached data. A single, very active customer, focused on
many of his own clients within our application, may find that a monolithic applica-
tion is just too slow. This would force us to focus more on y-axis splits as well.

The y-axis split has its own set of problems when implemented in isolation. The
first is similar to the problem of the x-axis split in that a single server focused on a
subset of functionality results in the functionality being unavailable when the server
fails. As with the z-axis split, we are going to want to increase our availability by
adding another cloned or x-axis server for each of our functions. We also save money
by adding servers in an x-axis fashion for each of our y-axis splits versus continuing
to split along the y-axis. Rather than modifying the code and further deconstructing
it, we simply add servers into each of our y-axis splits and bypass the cost of further
code modification.

The y-axis split also does not scale as well with customer growth as the z-axis
split. Y-axis splits focus more on the cache-ability of similar functions and work well
when we have an application growing in size and complexity. Imagine, however, that
you have decided to perform a y-axis split of your login functionality and that many
of your client logins happen between 6 AM to 9 AM Pacific Time. Assuming that you
need to cache data to allow for efficient logins, you will likely find that you need to
perform a z-axis split of the login process to gain a higher cache hit ratio. As stated
before, y-axis splits help most with growth in the application and functionality, x-
axis splits are most cost-effective for transaction growth, and z-axis splits aid most in
the growth of customers and users.

As we’ve stated previously, the x-axis approach is often the easiest to implement
and as such is very often the very first type of split within systems or applications. It
scales well with transactions, assuming that the application does not grow in com-
plexity and that the transactions come from a defined base of slowly growing cus-

ptg5994185

PRACTICAL USE OF THE APPLICATION CUBE 349

tomers. As your product becomes more feature rich, you are forced to start looking
at ways to make the system respond more quickly to user requests. You do not want,
for instance, long searches to slow down the average response time of short duration
activities such as logins. To resolve average response time issues caused by competing
functions, you need to implement a y-axis split.

The x-axis also does not handle a growth in customer base elegantly. As your cus-
tomers increase and as the data elements necessary to support them within an appli-
cation increases, you need to find ways to segment these data elements to allow for
maximum cost effective scale such as with y- or z-axis splits.

AKF Application Scale Cube Summary
Here is a summary of the three axes of scale:

• The x-axis represents the distribution of the same work or mirroring of an application
across multiple entities. It is useful for scaling transaction volume cost effectively, but
does not scale well with data volume growth.

• The y-axis represents the distribution and separation of work responsibilities by verb or
action across multiple entities. The y-axis can benefit development time as services are
now implemented separately. It also helps with transaction growth and fault isolation. It
helps to scale data specific to features and functions, but does not greatly benefit cus-
tomer data growth.

• The z-axis represents distribution and segmentation of work by customer, customer
need, location, or value. It can create fault isolation and scale along customer bound-
aries. It does not aid in the growth of data specific to features or functions nor does it aid
in reducing time to market.

Hence, x-axis splits are mirror images of functions, y-axis splits separate applications based
on the work performed, and z-axis splits separate work by customer, location, or some value
specific identifier (like a hash or modulus).

Practical Use of the Application Cube
Let’s examine the practical use of our application cube for three unique purposes.
The first business we will discuss is an ecommerce auction site, the second is
AllScale’s human resources management (HRM) solution, and the third is AllScale’s
back office IT implementation.

ptg5994185

350 CHAPTER 23 SPLITTING APPLICATIONS FOR SCALE

Ecommerce Implementation
The engineering team at AllScale has been hard at work developing ecommerce func-
tionality in addition to its CRM and HRM functionality. The new platform provides
functionality to sell goods, which range from argyle sweaters to ZZ Top CDs.
AllScale intends to sell it all, and it also allows other folks to list their goods for sale
on its site. AllScale’s platform has all the functionality you can imagine, including
searching, browsing, shopping carts, checkout, account and order status functional-
ity, and so on. The platform also offers multiple buying formats from auctions to
fixed price sales.

The AllScale architects ultimately decide that the system is going to be constrained
in three dimensions: transaction growth, functionality growth, and the third dimen-
sion consisting of both catalog growth and customer growth. As such, they are going
to need to rely on all three axes of the AKF Application Scale Cube.

The architects decide that it makes most sense to split the application primarily by
the functions of the site. Most of the major functions that don’t directly rely on cus-
tomer information will get a swim lane of functionality (see Chapter 21). Browsing,
searching, catalog upload, inventory management, and so on and every other verb
that can be performed without needing to know specific information about a particu-
lar customer becomes a branch of functionality within the site and its own code base.
These splits allow these services to grow with transaction volume regardless of cus-
tomer growth as the number of customers isn’t important when delivering the results
of a search, or a catalog upload, and so on.

All applications regarding customers will be split into N pods, where N is a config-
urable number. Each of these pods will host roughly 1/Nth of our customers. This is a
z-axis split of our customer base. Within each of these z-axis splits, the architects are
going to perform y-axis splits of the code base. Login/logout will be its own function,
checkout will be its own function, account status and summary will be its own func-
tion, and so on. Note that AllScale doesn’t have N M (where M is the number of y-
axis splits and N is the number of z-axis splits) separate code bases here; it is simply
replicating the M code bases across N pods for a total of M new code splits for cus-
tomer functionality. In deciding to split by both the y- and z-axis in this case, AllScale
can scale its number of customers and the amount of code functionality dedicated to
them independently. No single y-lane will need to know about more than 1/Nth the
customers; as a result, caching for things like login information will be much more
lightweight and much faster. The resulting splits are shown in Figure 23.3.

Finally, AllScale will apply x-axis splits everywhere to scale the number of transac-
tions through any given segmentation. Search is an area about which we are con-
cerned, as AllScale wants very fast searches and is concerned about the response
times. This, however, is more of a data scaling issue, so we will address this in Chap-
ter 24, Splitting Databases for Scale.

ptg5994185

PRACTICAL USE OF THE APPLICATION CUBE 351

Human Resources ERP Implementation
Recall the AllScale HRM solution, which does absolutely everything for HR organi-
zations including recruiting, training, career progression counseling, performance
reviews, succession planning, compensation analysis, termination automation, and so
on. If an HR professional needs it, AllScale does it, all in a SaaS environment. AllScale’s
largest customer happens to be the largest company in the world, FullScale Oil, and
its smallest client is a 20-person startup in New York City, FullScale Attitude.

The architects decide that what they want to build appears to be one large applica-
tion to their customers but with each module capable of growing in complexity without

Figure 23.3 Three Axis Split Example

Customers A − F

Checkout

Checkout

Checkout

X-Axis Split Z-Axis Split

Customers G − N

X-Axis Split

Customers O − Z

X-Axis Split

Browse

Browse

Browse

X-Axis Split

Y-
A

xi
s

S
pl

it

Y-
A

xi
s

S
pl

it

Y-
A

xi
s

S
pl

it
X-Axis Split

X-Axis Split

Login

Login

Login

X-Axis Split

X-Axis Split

X-Axis Split

ptg5994185

352 CHAPTER 23 SPLITTING APPLICATIONS FOR SCALE

affecting other modules in the system. They also want to be able to work on one or
more modules without taking the system down; as a result, they decide to use the
y-axis of the AKF Application Scale Cube and separate their services by major func-
tionality. Performance and Career Planning, Learning and Education, Compliance
Tracking, Recruiting, Compensation Planning, and Succession Planning all become
modules with other modules scheduled for the future.

The team also recognizes the need to be able to scale its application within a com-
pany and that transactions and personnel will all be impacted by company size. As
such, they will scale using the x-axis to allow for transaction growth and the z-axis to
allow for employee growth. The team employs a configurable number, N, as a modu-
lus to employee number to determine which pod an employee will be sent within any
given company or group of companies.

Back Office IT System
The AllScale architects are asked to design a system to create personalized marketing
emails for its current and future client bases. The team can expect that it will have
several different email campaigns under development or shipping at any given time
and that each of these campaigns will need to select from a diverse mailing list that
includes attributes about many potential and current customers. These attributes are
elements such as age, sex, geographic area, past purchases, and so on.

The list is very large, and the team decides to split it up by classes of data relevant
to each of the existing and potential customers. The team needs to ensure that mail
campaigns launch and finish within a few hours, so they are going to need a fairly
aggressive split of their mail system given the number of mails that we send.

The architects select four elements including recency, frequency, monetization, and
class of purchase as criteria, and the product of these values result in 100 unique clas-
sifications. Each of these classifications contains roughly 1/100th of the people, with
the exception of the customers for whom we have no sales data and therefore just
represent a contact list. This set of customers actually represents the largest group by
population, and for them the team simply splits on contact_id, which is a unique key
within the system. The AllScale architects select a configurable number N for this
split and set N initially to 100. As such, it has 199 unique Z splits: 100 splits for cus-
tomers who have yet purchased anything from AllScale and for whom we have no data,
and 99 splits for all other customers split by a product of their recency, frequency,
monetization (aggregate value), and classification of purchases. These splits corre-
spond primarily to the mail and tracking farms (described in the following section)
but also to the data repositories that we will describe in further detail in Chapter 24.

The y-axis splits then become the functions of the AllScale marketing system. The
team will need a creative development system, a mail sending system, a mail viewing
system, a mail reporting system, and a customer tracking system to view the efficacy
of its campaigns and a data warehouse to handle all past campaign reporting. These

ptg5994185

PRACTICAL USE OF THE APPLICATION CUBE 353

are all y-axis splits to give the system additional scale in transactions and to allow the
team to modify components independent of each other.

Most systems will have at least one extra system for availability, but some will
have multiple clones such as the mail sending system within each of the Z splits.

Observations
You may have noticed that while we use each of the axes in the preceding examples,
the distribution of the axes appears to change by company or implementation. In one
example, the z-axis may be more predominant and in others the Y appears to be the
most predominant split. This is all part of the “Art of Scalability.” Referring back to
the introduction, the determination in the absence of data about where you start in
your scalability initiatives are as much about gut feel as anything else. As you grow
and collect data, you will ultimately, hopefully, determine in advance where you
made incorrect assumptions.

Where to draw the line with y-axis splits is not always easy. If you have tens of
thousands of features or “verbs,” it doesn’t make sense to have tens of thousands
splits. You want to have manageable sizes of code bases in each of your splits but not
so many splits that the absolute number itself becomes unmanageable. You also want
your cache sizes in your production environment to be manageable. Both of these
become considerations for determining where you should perform splits and how
many you should have.

Z-axis splits are a little easier from a design perspective. Ideally, you will simply
design a system that has flexibility built into it. We previously mentioned a config-
urable number N in both the ecommerce and back office IT systems. This number is
what allows us to start splitting application flows by customer within the system. As
we grow, we simply increase N to allow for greater segmentation and to help smooth
load across our production systems. Of course, there is potentially some work in data
storage (where those customers live) that we will discuss in Chapter 24, but we
expect that you can develop tools to help you manage that. The y-axis, unfortunately,
is not so easy to design flexibility into the system.

As always, the x-axis is relatively easy to split and handle because it is always just
a duplicate of its peers. In all of our previous cases, the x-axis is always subordinate
to the y- and z-axis. This is almost always the case when you perform y- and z-axis
splits. To the point, the x-axis becomes relevant within either a y- or z-axis split.
Sometimes, the y- or z-axis, as was the case in more than one of the examples, is sub-
ordinate to the other, but in nearly all cases, the x-axis is subordinate to either y or z
whenever the y or z or both are employed.

What do you do if and when your business contracts? If you’ve split to allow for
aggressive hyper growth and the economy presents your business with a downward
cycle not largely under your control, what do you do? X-axis splits are easy to
unwind as you simply remove the systems you do not need. If those systems are fully

ptg5994185

354 CHAPTER 23 SPLITTING APPLICATIONS FOR SCALE

depreciated, you can simply power them off for future use when your business
rebounds. Y-axis splits might be hosted on a smaller number of systems, potentially
leveraging virtual machine software to carve a set of physical servers into multiple
servers. Z-axis splits should also be capable of being collapsed onto similar systems
either through the use of virtual machine software or just by changing the boundaries
that indicate which customers reside on which systems.

Conclusion
This chapter discussed the employment of the AKF Scale Cube to applications within
a product, service, or platform. We modified the AKF Scale Cube slightly, narrowing
the scope and definition of each of the axes so that it became more meaningful to
application and systems architecture and the production deployment of applications.

Our x-axis still addresses the growth in transactions or work performed by any
platform or system. Although the x-axis handles the growth in transaction volume
well, it suffers when application complexity increases significantly (as measured
through the growth in functions and features) or when the number of customers with
cacheable data needs grows significantly.

The y-axis addresses application complexity and growth. As we grow our product
to become more feature rich, it requires more resources. Furthermore, transactions
that would otherwise complete quickly start to slow down as demand laden systems
mix both fast and slow transactions. Our ability to cache data for all features starts
to drop as we run into system constraints. The y-axis helps address all of these while
simultaneously benefiting our production teams. Engineering teams get to focus on
smaller portions of our complex code base. As a result, defect rates decrease, new
engineers come up to speed faster, and expert engineers can develop software faster.
Because all axes address transaction scale as well, the y-axis also benefits us as we
grow the transactions against our system, but it is not as easily scaled in this dimen-
sion as the x-axis.

The z-axis addresses growth in customer base. As we will see in Chapter 24, it can
also help us address growth in other data elements such as product catalogs and so
forth. As transactions and customers grow, and potentially as transactions per cus-
tomer grow, we will find ourselves in a position that we might need to address the
specific needs of a class of customer. This might be solely because each customer has
an equal need for some small cache space, but it might be that the elements you cache
by customer are distinct by some predefined customer class. Either way, segmenting
by requester, customer, or client helps us solve that problem. It also helps us scale
along the transaction growth path, though not as easily as with the x-axis.

As indicated in Chapter 22, not all companies need all three axes of scale to sur-
vive. When more than one axis is employed, the x-axis is almost subordinate to the

ptg5994185

CONCLUSION 355

other axes. You might for instance have multiple x-axis splits, each occurring within
a y- or z-axis split. When employing y-and z-axis splits together (typically with an
x-axis split), either split can become the “primary” means of splitting. If you split
first by customer, you can still make y-axis functionality implementations within each
of your z-axis splits. These would be clones of each other such that login in z-axis
customer split 1 looks exactly like login for z-axis customer split N. The same is true
for a y-axis primary split; the z-axis implementations within each functionality split
would be similar or clones of each other.

Key Points

• X-axis application splits scale linearly with transaction growth. They do not
help with the growth in code complexity, customers, or data. X-axis splits are
“clones” of each other.

• The x-axis tends to be the least costly to implement, but suffers from constraints
in instruction size and dataset.

• Y-axis application splits help scale code complexity as well as transaction
growth. They are mostly meant for code scale because as they are not as efficient
as x-axis in transaction growth.

• Y-axis application splits also aid in reducing cache sizes where caches sizes scale
with function growth.

• Y-axis splits tend to be more costly to implement than x-axis splits as a result of
engineering time necessary to separate monolithic code bases.

• Y-axis splits aid in fault isolation.

• Y-axis splits can be performed without code modification, but you might not get
the benefit of cache size reduction and you will not get the benefit of decreasing
code complexity.

• Z-axis application splits help scale customer growth, some elements of data
growth (as we will see in Chapter 24), and transaction growth.

• Z-axis application splits can help reduce cache sizes where caches scale in rela-
tion to the growth in users or other data elements.

• As with y-axis splits, z-axis splits aid in fault isolation. They too can be imple-
mented without code changes but may not gain the benefit of cache size reduc-
tion without some code modification.

• The choice of when to use what method or axis of scale is both art and science.
Intuition is typically the initial guiding force, whereas production data should be
used over time to help inform the decision.

ptg5994185

This page intentionally left blank

ptg5994185

357

Chapter 24

Splitting Databases for Scale

So in war, the way is to avoid what is strong and to strike at what is weak.

—Sun Tzu

Chapter 22, Introduction to the AKF Scale Cube, introduced the scale cube and
described the concepts by applying them to organizational structures. Chapter 23,
Splitting Applications for Scale, showed how the cube could be applied to applica-
tions and systems. In this chapter, we are going to focus the AKF Scale Cube on data-
bases and persistent storage systems. By the end of the chapter, you will have all the
concepts necessary to apply the cube to the needs of your own business. Armed with
Chapters 21, Creating Fault Isolative Architectural Structures, through 24, you
should be able to create a fault isolative architecture capable of nearly infinite scale,
thereby increasing customer satisfaction and shareholder returns.

The AKF Scale Cube for Databases
As we discussed in Chapter 23, the AKF Scale Cube really doesn’t change when
applied to databases and other persistent storage systems. We will, however, want to
focus the names and themes of the axes to make them more easily used as a tool to
help us scale our data. As with our application focused descriptions, these new
descriptions won’t deviate from the original cube but will rather enable them with
greater meaning when applied to databases and data. For the following discussion,
please reference Figure 22.4 (in Chapter 22) and Figure 24.1.

The x-axis, as you will recall from Chapter 22, focuses on the cloning of services
and data with absolutely no bias. Each x-axis implementation requires the complete
cloning or duplication of an entire data set. We will rename our x-axis to be called
Horizontal Duplication/Cloning of Data to make it more obvious how we will apply
this to our data scalability efforts.

ptg5994185

358 CHAPTER 24 SPLITTING DATABASES FOR SCALE

The y-axis was described as a separation of work responsibility by either the type
of data, the type of work performed for a transaction, or a combination of both.
When applied to data, this definition remains completely true. Y-axis data splits
either focus on splitting data thematically with a bias to the type of data being split or
with a bias toward the work that is performed on that data. This latter definition is a
services oriented split similar to those discussed in Chapter 23.

The z-axis of our database cube continues to have a customer or requestor bias.
When applied to databases and data, the z-axis very often requires the implementa-
tion of a lookup service or lookup algorithm. We store the relationships of user data
to their appropriate split within a service or a database, or we calculate the location
based on an algorithm such as a hash, modulus, or other deterministic means.

The new AKF Scale Cube for databases now looks like Figure 24.1.

The X-Axis of the AKF Database Scale Cube
The x-axis of the AKF Database Scale Cube represents cloning of data with abso-
lutely no bias. If we have a data tier scaled using the x-axis alone and consisting of N

Figure 24.1 AKF Database Scale Cube

One,
Monolithic Data
Architecture

Reads on
Replicas, Writes
on a Single
Node

X-Axis—Horizontal Duplication
Cloning of Data

Y-Axis—Split
by Function,
Service, or
Resource

No Splits

Split by
Service or
Data Affinity

Z-A
xis

—
Lo

ok
up

 o
r F

or
m

ula
ic

Spli
ts

No Splits

Large
Modulus or
Hash

Near Infinite Scale

Starting Point

ptg5994185

THE X-AXIS OF THE AKF DATABASE SCALE CUBE 359

systems, each of the N databases will have exactly the same data as other (N-1) sys-
tems, with some minor differences resulting from replication delay. There is no bias
to the transactions performed on this data, or to customer or any other data element;
customer metadata and account information exists alongside product catalog data,
inventory information, contact information, and so on. A request for data can be
served from any of the N databases or storage implementations. Typically, writes are
made to a single node within the replicated copies of data, primarily to reduce read
and write contention on the nodes that make up this data tier.

As with the application cube, the x-axis approach is simple to implement in most
cases. Typically, you will implement some sort of replication system that allows for
the near real-time replication of data within the database or storage systems across
some scalable and configurable number N replicated databases or persistent storage
systems. Your database likely has this replication capability built into it natively, but
you can also likely find third-party tools to allow you to perform the replication.

Replication Delay Concerns
Many companies with which we work initially display some level of concern when we bring up
the topic of replication delay. The most common theme within this concern is the perceived
need to be able to immediately access the most current data element for any write. In the most
extreme case, we’ve had clients immediately read a piece of datum out of a database to vali-
date that what was just written was in fact correct.

In most cases, we are successful in helping our clients identify a large portion of their data
that need only be current within the last single digit number of seconds. Database native and
third-party replication tools within a single data center, even under high volume, can typically
keep replicated copies of databases in synch with a master within five seconds, and sometimes
even within a second of the master copy. Geographically distant data centers can often be syn-
chronized in less than 10 seconds.

The tests and questions that we most often recommend in determining if replicated data is
sufficient include the following:

• How often is this particular data element updated? If the ratio of views to updates is high,
replication delay is probably acceptable. If updates are frequent and views are infrequent
or very low in number, there is little benefit in replication.

• Will the element that is read be used in a calculation for a future write? If so, replication
delays might not be acceptable.

• What is the difference in value for decision making purposes? If, for instance, the newest
update changes a value insignificantly will it really make a difference in a resulting deci-
sion on the part of the person viewing the data?

ptg5994185

360 CHAPTER 24 SPLITTING DATABASES FOR SCALE

When considering database replication options, look first for functionality native to your
database. It almost never makes sense to build replication functionality yourself, and with most
databases having replication built-in, there is seldom a need to purchase third-party software.

Writes typically happen to a single node within the replicated x-axis data tier. By
writing to a single node, we reduce the read and write conflicts across all nodes and
force a single node to do the work of ensuring the ACID properties (Atomicity, Con-
sistency, Isolation, and Durability) of the database or to ensure that the storage sub-
system can be optimized for writes or reads only. Many times, the “write” copy of
the storage tier is used only to write, but sometimes a small number of reads is sched-
uled to that node if the time sensitivity of the read in question will not allow for the
minor delay inherent to replication.

We often teach that distributed object caches and other database related caches, at
least those intended to reduce load on a database, can be examples of x-axis splits.
Some might argue that if the data is represented in a format intended to be more eas-
ily consumed by service that they are examples of y-axis splits. Rather than discuss-
ing either in this chapter, we will have a broad treatment of caches in Chapter 25,
Caching for Performance and Scale.

The x-axis split has several benefits and drawbacks. Consistent with Chapters 22
and 23, this split is easy to envision and implement. Many databases have native rep-
lication technologies that allow for “write and read only” copies or “master and
slave” copies of a database. These native replication engines usually allow for multi-
ple read or “slave” copies of the database. Another x-axis implementation is cluster-
ing. Most open source or licensed relational database management systems have this
capability. By clustering we mean two or more physically separated databases that
appear to the application as a single instance.

Should a storage system without a database be the target of this technique, there
are many logical and physical replication systems existing in both open source and
third-party supported systems. The system allows for linear scale with transactions,
but most replication processes have limits to the number of targets or read only nodes
allowed. While this approach allows for linear transaction growth, it does not
address data growth and the impact of that data growth on request processing time
or the impact of that data growth to addressable storage within any given storage
subsystem.

Because x-axis splits are easy to envision and implement, they should typically be
your first approach to scale any system when the number of transactions is the pri-
mary driver of growth. The impact to cost in terms of loss opportunity associated
with engineering effort is low and although the first time setup cost to implement the
additional datasets and begin replication is not trivial, it is still low relative to the
other methods of data scalability. As with the application x-axis split, the impact to

ptg5994185

THE X-AXIS OF THE AKF DATABASE SCALE CUBE 361

time to market to release functionality is generally low, as typically you are imple-
menting a third-party, native, or open source replication technology.

X-axis splits also allow us to easily scale our data with the number of inbound
transactions or requests. As request growth increases, we simply add more read
nodes. Capacity planning is easy as well because each of our nodes, if served from
similar hardware, can likely handle a similar number of requests. There is likely a
limit to the number of systems that can be employed and this limit will normally
drive us to other methods of scale as our transaction growth continues to increase.
Sometimes, we cannot even achieve the vendor or system supported limit due to the
increase in replication time delays because additional read only nodes are deployed.
Usually, each node has some small impact to the time that it takes to replicate data
from the write node. In some implementations, this impact may not manifest itself as
a delay to all nodes but rather a consistently unacceptable delay to one of the nodes
within the cluster as we start to reach our maximum target. As such, we cannot sim-
ply rely on the x-axis for scale even in systems of relatively low data growth if trans-
action growth is going to accelerate over time.

One final benefit of the x-axis is that the team managing the infrastructure of your
platform does not need to worry about a vast number of uniquely configured sche-
mas or storage systems. Every system performing an x-axis split is exactly equivalent
to every other system performing the same split, with the exception of a single system
dedicated to “writing.” Configuration management of all nodes is relatively easy to
perform and new service implementation is as easy as replicating the data within an
existing system. Your application, when written to read from a “read service” and
write to a “write service,” should scale without further involvement from your engi-
neering team. Ideally, the multiple read systems are addressed through a third-party
load balancing system rather than the alternative of having your team write even a
small routine to “load balance” or evenly apportion the reads.

There are two primary drivers that move us away from scaling along the x-axis
alone. The first was discussed while addressing the limitations of existing replication
technology. The second driver is that x-axis scale techniques do not address the scale
issues inherent to an increase in the size or amount of data. As with the caching con-
cern in Chapter 23, when you increase the size of data within a database, the
response times even in indexed tables increase. This increase is not a linear relation-
ship if you are properly using an index, but it represents a cost in response time and
processing time nonetheless. This increase in response time may ultimately drive you
to other splits. In nondatabase storage systems, the complexity of storage relation-
ships for very large volumes of data will likely drive you to segmentation for ease of
maintenance and operations.

Another drawback to x-axis replication is the cost of replicating large amounts of
data. Typically, x-axis implementations are complete clones of a primary database,
which in turn means that we might be moving lots of data that is seldom read relative

ptg5994185

362 CHAPTER 24 SPLITTING DATABASES FOR SCALE

to data within the same replication set that is read frequently. A solution to this con-
cern is to select only the data for replication that has a high volume of reads associ-
ated with it. Many of the replication technologies for databases allow such a
selection to occur on a by table basis, but to our knowledge few, if any, allow col-
umns within a table to be selected.

Other drawbacks include data currency concerns, data consistency concerns, and
the reliance on third parties to scale. We addressed data currency in our earlier side-
bar “Replication Delay Concerns.” Consistency is typically managed by the native or
third-party product that you choose to perform your replication and seldom in our
experience does it create a problem even in the highest request volume products.
More often, we see that the consistency manager stops replication due to some con-
cern, which in turn creates a larger data currency issue. These issues are usually able
to be solved in a relatively short time frame. As for scaling through third parties, as
long as you are designing your solution such that any replication technology can sup-
port your needs, you can always switch an underperforming partner out for another
commodity solution.

Summarizing the Database X-Axis
The x-axis of the AKF Database Scale Cube represents the replication of data such that work
can easily be distributed across nodes with absolutely no bias.

X-axis implementations tend to be easy to conceptualize and typically can be implemented
at relatively low cost. They are the most cost-effective way of scaling transaction growth,
though they usually have limitations in the number of nodes that can be employed. They can be
easily created from a monolithic database or storage system, though there typically is an
upfront cost to do so. They do not tend to significantly increase the complexity of your opera-
tions or production environment.

X-axis implementations are limited by the aforementioned replication technology limitations
and the size of data that is being replicated. In general, x-axis implementations do not scale
well with data size and growth.

The Y-Axis of the AKF Database Scale Cube
The y-axis of the AKF Database Scale Cube represents a separation of data meaning
within your database schema or data storage system. When discussing database scale,
we are usually aligning data with a predetermined application y-axis split. The y-axis
split addresses the monolithic nature of the data architecture by separating the data
into schemas that have meaning relative to the applications performing work on that

ptg5994185

THE Y-AXIS OF THE AKF DATABASE SCALE CUBE 363

data or reading from that data. A pure x-axis split might have 100 instances of the
exact same data with one write and 99 read instances. In a y-axis split, we might split
the data into the same “chunks” as we split our application in Chapter 23. These
might be exactly the data necessary to perform such separate functions as login,
logout, read profile, update profile, search profiles, browse profiles, checkout, dis-
play similar items, and so on. Obviously, there might be overlap in the data such as
customer specific data present in the login/logout functionality, as well as the update
profile functionality. We’ll address ways to handle this later.

You might also consider splitting data from a “noun” perspective, rather than
leading with the y-axis services based split first. The difference here is that we think
of how we might partition our data in a resource oriented fashion rather than in a
service (or verb) oriented fashion as in our application example. This change in
approach might lead us to put customer data in one spot, product data in another,
user generated content in a third, and so on. This approach has the benefit of leverag-
ing the affinity data elements often have with each other and leveraging the talents of
database architects who are familiar with entity relationships within relational data-
bases. The drawback of this approach is that we must either change our approach for
splitting applications to also be resource based (that is, “all services that interact with
customer data in one application”) or suffer the consequences of not having a swim
lane based application and as a result non fault isolative architecture. More to the
point, if we split our data along resource meaningful boundaries and split our appli-
cation along service meaningful boundaries, we will almost certainly have services
talking to several resources. As we discussed in Chapter 21, this will absolutely lower
our availability, which likely runs counter to our overall company objectives. For this
reason, we strongly suggest sticking with resource oriented or services oriented splits
for both your application and your data.

Consistent with our past explanations of split complexities in Chapters 22 and 23,
y-axis data splits are more complex than x-axis data splits. You can lower some of
the initial cost and prove your concepts by performing splits of virtual data storage or
databases without an actual physical split. In a database, this might be implemented
by moving tables and data to a different schema or even to another database instance
within the same physical hardware. Although this move saves you the initial capital
expense of purchasing additional equipment, it unfortunately does not allow you to
forego the engineering cost of changing your code to address different storage imple-
mentations or databases. For the physical split you can, temporarily, use tools that
link the separate physical databases together so that if your engineers missed any
tables being moved they have the opportunity to fix the code before breaking the
application. After you are sure that the application is properly accessing the moved
tables, you should remove these links because they can cause a chain reaction of
degraded performance in some instances.

ptg5994185

364 CHAPTER 24 SPLITTING DATABASES FOR SCALE

Y-axis splits are most commonly implemented to address the issues associated
with a dataset that has grown significantly in complexity or size and which is likely
to continue to grow. These splits also help scale transaction volumes because as you
perform the splits you are moving requests to multiple physical or logical systems and
in turn decreasing logical and/or physical contention for the data. Ultimately, in
hyper-growth environments where both the data and transaction volume grows, the
splits need to happen to separate physical instances of a database or storage on sepa-
rate hardware instances.

Operationally, y-axis splits help reduce the time necessary to process any given
transaction as the data being searched and very likely retrieved is smaller and tailored
to the service performing the transaction. Conceptually, y-axis splits allow you to
better understand vast amounts of data by thematically bundling that data, rather
than lumping everything into the same “storage” container. Y-axis splits also aid in
fault isolation as identified within Chapter 21; a failure of a given data element does
not bring down all of the functionality of your platform (assuming that you have
properly implemented the swim lane concept).

When bundled with similar splits at an application level, y-axis splits allow you to
grow your team more easily by focusing teams on specific services or functions
within your product and the data relevant to those functions and services. As dis-
cussed in Chapter 23, you can dedicate a person or a team to searching and brows-
ing, a team toward the development of an advertising platform, a team to account
functionality, and so on. All of the engineering benefits including “on boarding” and
the application of experience to a problem set discussed in Chapter 23 are realized
when both the data and the services acting on that data are split together.

Y-axis splits also have drawbacks. They are absolutely more costly to implement
in engineering time than x-axis splits. Not only do services need to be rewritten to
address different data storage systems and databases, but the actual data likely needs
to be moved if you have a product that has already launched. The operations and
infrastructure teams will now need to support more than one schema. This in turn
might mean that there is more than one class or size of server in the operations envi-
ronment to get the most cost-efficient systems for each type of transaction.

Summarizing the Database Y-Axis
The y-axis of the AKF Database Scale Cube represents separation of data meaning, often by
service, resource, or data affinity.

Y-axis splits are meant to address the issues associated with growth and complexity in data
size and its impact to requests or operations on that data. If implemented and architected to be
consistent with an application y-axis split, it can create fault isolation as described in Chapter 21.

ptg5994185

THE Z-AXIS OF THE AKF DATABASE SCALE CUBE 365

Y-axis splits can scale with both the growth in number of transactions and the size of data.
They tend to cost more than x-axis splits as the engineering team needs to rewrite services
and determine how to move data between separate schemas and systems

The Z-Axis of the AKF Database Scale Cube
As with the Application Scale Cube, the z-axis of the AKF Database Scale Cube con-
sists of splits based on values that are “looked up” or determined at the time of the
transaction. This split is most commonly performed by looking up or determining the
location of data based on a reference to the customer or requestor. However, it can
also be applied to any split of data within a resource or service where that split is
done without a bias to affinity or theme. Examples would be a modulus or hash of
product number if that modulus or hash was not indicative of the product type. For
instance, if an ecommerce company sold jewelry and decided to split its data into
groups such as watches, rings, bracelets, and necklaces, such splits would not be
z-axis splits; such splits are actually y-axis splits as they are splits relevant to themes
or affinity of the resource in question. On the other hand, if the company decided to
split its product catalog by a modulus (say mod 10) of the unique product number
for each item, and the resulting databases storing the items each had a roughly equal
quantity of watches, rings, necklaces, and so on, the item would be a z-axis split.

The easiest way to think of the difference between y- and z-axis splits is to differenti-
ate between things that we know before a request happens and things we must look up
or determine at the time of the transaction. For instance, if we were to split watches
from our jewelry retailer into their own database, we know that any call for watches
goes to the watches database. On the other hand, if we split watches across several
databases and combine them with other pieces of jewelry by performing a modulus
of the product id, we must look at the product id sent in the request, perform our
modulus on that product id, and determine the database in which the watch is located.

A similar relationship can be made to customer information. Let’s consider the
case where we split customers by geography. Technically speaking, if we predeter-
mine the geographic location of a customer and that customer is always guaranteed
to be in the Northwest U.S. database and we make that determination prior to the
request (say through a URL), that split is a y-axis split. However, if we make that
determination at the time of the request by looking up the username and determining
the password or performing a geo-location test of the requestor IP address, we have
performed a z-axis split. For the sake of simplicity, we usually just reduce this to the
most common case that all customer based splits are z-axis splits.

As with the Application Scale Cube, for the z-axis split to be valuable, it must help
us scale our transactions and the data upon which those transactions are performed.

ptg5994185

366 CHAPTER 24 SPLITTING DATABASES FOR SCALE

A z-axis split attempts to accomplish the benefits of a y-axis split without a bias to
the action (service) or resource itself. In doing so, it also tends to offer a more bal-
anced demand across all of your data than a y-axis split in isolation. If you assume
that each datum has a relatively equal opportunity to be in high demand, average
demand, or low demand, and if you apply a deterministic and unbiased algorithm to
store and locate such data, you will likely get a relatively equal distribution of
demand across all of your databases or storage systems. This is not true for the y-axis
split, which may cause certain systems to have unique demand spikes based on their
contents. For instance, the rings database may have incredibly high utilization rela-
tive to the watches database during the peak wedding month of August, whereas a
z-axis split that implemented a modulus would spread that peak demand for rings
across all of the databases. There might in fact be one ring with very high demand,
but the more likely case is that a few rings would exhibit high demand and those
would have a good chance of being on different databases.

Because we are splitting our data and as a result our transactions across multiple
systems, we can achieve a transactional scale similar to that within the x-axis. Further-
more, we aren’t inhibited to the replication constraints of the x-axis because in a z-axis
only split we are not replicating any data. Unfortunately, as with the y-axis, we increase
our operational complexity somewhat as we now have many unique databases or data
storage systems; the schema or setup of these databases is similar, but the data is
unique. Unlike the y-axis, we don’t likely get the benefit of splitting up our architecture
in a service or resource oriented fashion. Schemas or setups are monolithic in z-axis
only implementations, though the data is segmented as with the y-axis split. Finally,
there is some software cost associated with z-axis splits in that the code must be able to
recognize that requests are not all equivalent. As with our application splits, very often
an algorithm to determine where the request should be sent is created, or a lookup ser-
vice is created that can determine to what system or pod a request should be sent.

The benefits of a z-axis split are that we increase fault isolation, increase transac-
tional scalability, increase data scalability, and increase our ability to adequately pre-
dict demand across multiple databases as our load will likely be fairly evenly
distributed. The end results we would expect from these are higher availability,
greater scalability, faster transaction processing times, and a better capacity planning
function within our organization.

The z-axis, however, is more costly given the need to develop new code. We also
add some operational complexity to our production environment; we now need to
monitor several different systems with similar code bases performing similar func-
tions for different clients. Configuration files may differ as a result and systems may
not be easily moved when configured depending upon your implementation.

As stated in Chapter 23, because we are leveraging characteristics unique to a
group of transactions, we can also improve our disaster recovery plans by geographi-
cally dispersing our services.

ptg5994185

PUTTING IT ALL TOGETHER 367

Summarizing the Database Z-Axis
The z-axis of the AKF Database Scale Cube represents separation of work based on attributes
that are looked up or determined at the time of the transaction. Most often, these are imple-
mented as splits by requestor, customer, or client, though they can also be splits within a prod-
uct catalog and determined by product id or any other split that is determined and looked up at
the time of the request.

Z-axis splits are often the most costly implementation of the three types of splits. Software
needs to be modified to determine where to find, operate on, and store information. Very often,
a lookup service or deterministic algorithm will need to be written for these types of splits.

Z-axis splits aid in scaling transaction growth, aid in decreasing processing time by limiting
the data necessary to perform any transaction, and aid the capacity planning function by more
evenly distributing demand across systems. The z-axis is most effective at evenly scaling
growth in customers, clients, requesters, or other data elements that can be evenly distributed.

Putting It All Together
You may have noticed that Chapters 22, 23, and 24 have all had similar messages
with very little deviation. That’s because the AKF Scale Cube is a very powerful and
flexible tool. Of all the tools we’ve used in our consulting practice, our clients have
found it to be the most useful in figuring out how to scale their systems, databases,
and even their organizations. Because it represents a common framework and lan-
guage, little energy is wasted in defining what is meant by different approaches.
Groups can now argue over the relative merits of an approach rather than spending
time trying to understand how something is being split. Furthermore, teams can
rather easily and quickly start applying the concepts within any of their meetings
rather than struggle with the options on how to scale something. As with Chapter 23,
in this section, we will discuss how the cube can be applied to create near infinite
scalability within your databases and storage systems.

A z-axis only implementation of the AKF Database Scale Cube has several prob-
lems when implemented in isolation. Let’s assume the previous case where you make
N splits of your customer base in a jewelry ecommerce platform. Because we are only
implementing the z-axis here, each instance is a single virtual or physical server. If it
fails for hardware or software reasons, the services for that customer or set of cus-
tomers have become completely unavailable. That availability problem alone is rea-
son enough for us to implement an x-axis split for each of our z-axis splits. At the
very least, we should have one additional database that we can use in the event that
our primary database for any given set of customers fails. The same holds true if the

ptg5994185

368 CHAPTER 24 SPLITTING DATABASES FOR SCALE

z-axis is used to split our product catalog. If we split our customer base or product
catalog N ways along the z-axis, with each of the N splits having at least 1/Nth of
our customers initially, we would put at least two “cloned” or x-axis servers in each
of the N splits. This ensures that should a server fail we still service the customers in
that pod.

It is likely more costly for us to perform continued customer or product catalog
oriented splits to scale our transactions than it is to simply add databases within one
of our customer or product oriented splits. The reason for this is that each time we
perform a split, we need to update our code to recognize where the split information
is or at the very least update a configuration file giving the new modulus or hash val-
ues. Additionally, we need to create programs or scripts to move the data to the
expected positions within the newly split database or storage infrastructure. There-
fore, in an effort to reduce overall cost of scale, we will probably implement a z-axis
split with an x-axis split within each z-axis split. We can also now perform x-axis
scale within each of our z-axis splits. If a customer grows significantly in transac-
tions, we can perform a cost-effective x-axis split (the addition of more replicated
databases) within that customer’s pod.

Y-axis splits, in conjunction with z-axis splits can help us create fault isolation. If
we led an architectural split by splitting customers first, we could then create fault
isolative swim lanes by function or resource within each of the z-axis splits. We might
have product information in each of the z-axis splits separate from customer account
information and so on.

The y-axis split has its own set of problems when implemented in isolation. The
first is similar to the problem of the z-axis split in that a single database focused on a
subset of functionality results in the functionality being unavailable when the server
fails. As with the z-axis split, we are going to want to increase our availability by
adding at least another cloned or x-axis server for each of our functions. We also save
money by adding servers in an x-axis fashion for each of our y-axis splits versus con-
tinuing to split along the y-axis. As with our z-axis split, it costs us engineering time
to continue to split off functionality or resources, and we likely want to spend as
much of that time on new product functionality as possible. Rather than modifying
the code and further deconstructing our databases, we simply add replicated data-
bases into each of our y-axis splits and bypass the cost of further code modification.
Of course, this assumes that we’ve already written the code to write to a single data-
base and read from multiple databases.

The y-axis split also does not scale as well with customer growth, product growth,
or some other data elements as the z-axis split. Y-axis splits in databases help us dis-
aggregate data, but they have a finite number of splits determined by the affinity of
data and your application architecture. Take the case that you split all product infor-
mation off from the rest of your data. You now have your entire product catalog sep-

ptg5994185

PUTTING IT ALL TOGETHER 369

arated from everything else within your data architecture. You may be able to
perform several y-axis splits in this area similar to our previous discussion in this
chapter of splitting watches from rings, necklaces, and so on. But what happens
when the number of rings available grows to a point that it becomes difficult for you
to further split them by categories? What if the demand on a subset of rings is such
that you need to be careful about which hardware serves them? A z-axis split can
help out quite a bit here by allowing the rings to exist across several databases with-
out regard to the type of ring. As we’ve previously indicated, the load will likely also
be relatively uniformly distributed.

As we’ve stated previously, the x-axis approach is often the easiest to implement
and as such is very often the very first type of split within data architectures. It scales
well with transactions, but very often has a limit to the number of nodes to which
you can scale. As your transaction volume grows and the amount of data that you
serve grows, you will need to implement another axis of scale. The x-axis is very
often the first axis of scale implemented by most companies, but as the product and
transaction base grows, it typically becomes subordinate to either the y- or z-axis.

Ideally, as we indicated in Chapter 12, Exploring Architectural Principles, you will
plan for at least two axes of scale even if you only implement a single axis. Planning
for y or z in addition to initially implementing an x-axis of scale is a good approach.
If you find yourself in a hyper-growth situation, you will want to plan for all three. In
this situation, you should determine a primary implementation (say a z-axis by cus-
tomer), a secondary (a y-axis by functionality), and an x-axis for redundancy and
transaction growth. Then, apply a fault isolative swim lane per Chapter 21 and even
a swim lane within a swim lane concept. You may swim lane your customers in a z-
axis, and then swim lane each of the functions within each z-axis in a y-axis fashion.
The x-axis then exists for redundancy and transaction scale. Voila! You are both
highly available and highly scalable.

AKF Database Scale Cube Summary
Here is a summary of the three axes of scale:

• The x-axis represents the distribution of the same data or mirroring of data across multi-
ple entities. It typically relies upon replication and has a limit to how many nodes can be
employed.

• The y-axis represents the distribution and separation of the meaning of data by service,
resource, or data affinity.

• The z-axis represents distribution and segmentation of data by attributes that are looked
up or determined at the time of request processing.

ptg5994185

370 CHAPTER 24 SPLITTING DATABASES FOR SCALE

Hence, x-axis splits are mirror images of data, y-axis splits separate data thematically, and
z-axis splits separate data by a lookup or modulus. Often, z-axis splits happen by customer, but
may also happen by product id or some other value.

Practical Use of the Database Cube
Let’s examine the practical use of our application cube for three unique purposes. We
will look at the same implementations as we discussed in Chapter 23, continuing
with our fictitious company AllScale.

Ecommerce Implementation
The AllScale data architects ultimately decide that the data architecture is going to be
impacted along three dimensions: transaction growth upon the databases, decisions
made in Chapter 23 to scale the application, and growth in customers and products. As
such, they are going to need to rely on all three axes of our AKF Application Scale Cube.

In Chapter 23, the team decided to split functionality of the site to allow for
growth and complexity in the application. You may recall that browsing, searching,
catalog upload, inventory management, and so on, and every other verb that can be
performed without needing to know specific information about a particular cus-
tomer, became a branch of functionality within the site and its own code base. Apply-
ing the principles of Chapter 21, the team decides to make these swim lanes; each
swim lane needs to have data relevant to the needs of the application. The team rec-
ognizes that in so doing it is changing the normal form of its data architecture and
there will be elements of data replicated throughout the architecture. It is very impor-
tant that the team ensures that for any given data element there is a single “point of
truth” that holds the most current and up-to-date value for this data. Ideally, the
team limits the updates to one lane, with some form of asynchronous updates hap-
pening outside of the customer transactions to update the elements in other portions
of their architecture.

Per our decisions in Chapter 23, all customer information will be split into N
pods, where N is a configurable number. Each of these pods will host roughly 1/Nth
of our customers. This is a z-axis split of the customer base. Within each of these z-
axis splits, the team is going to perform y-axis splits of the code base and the data
necessary to handle those splits. Login/logout will be its own function, checkout will
be its own function, account status and summary will be its own function, and the
data necessary to support each of these will be split appropriately with the applica-
tion. No single Y lane will need to know about more than 1/Nth the customers; as a
result, caching for things like login information will be much more lightweight and
much faster.

ptg5994185

PRACTICAL USE OF THE DATABASE CUBE 371

Finally, the team applies x-axis splits everywhere to scale the number of transac-
tions through any given segmentation.

Search causes the AllScale data and software architects some concern, so they ulti-
mately decide to focus a bit of attention on this area. They are going to leverage the
x-, y-, and z-axes of the scale cube to address the search needs and to make search
results very fast for their end customers. Splitting search off alone is a y-axis split so
we will focus on the x- and z-axes next. Please reference Figure 24.2 for the discus-
sion in the following paragraphs.

The team decides to use an aggregator concept to help it make search requests
speedy. The aggregators are responsible for growth in the number of transactions and
each is a clone of the others, creating an x-axis implementation. They ultimately
make requests of systems that have 1/Nth of the total items for sale in a modulus of
the product catalog, where N is the modulus applied to the product catalog. This N
way split is a z-axis split along the product id. Additionally, each N-way z-axis split
has M replicated datasets further allowing transaction growth.

A search request is load balanced across any one of the aggregators. That aggrega-
tor in turn makes N separate requests, one to each of our N tiers of product data-
bases. Each of these has 1/Nth the data (product id mod N). Each tier in turn has M

Figure 24.2 Fast Read or Search Subsystem

Aggregators1 2 3 x

D
at

a
S

to
re

s
1

2

3

m

D
at

a
S

to
re

s
1

2

3

m

D
at

a
S

to
re

s
1

2

3

m

D
at

a
S

to
re

s
1

2

3

m

1 2 3 . . . Data Stores . . . n

Load Balancers

Load Balancers

Search
Request

ptg5994185

372 CHAPTER 24 SPLITTING DATABASES FOR SCALE

replicated copies of the 1/Nth the data and the request to that tier is load balanced to
one of the M copies. As each N tier returns a result, the aggregator compiles the com-
plete list of elements and when complete returns the ordered list to the requester.

Returns from each of the N z-axis splits are very fast as the data can be kept in
memory and each database is searching only 1/Nth the data. The system is com-
pletely redundant given the multiple aggregators and the M x-axis copies of each of
the N z-axis splits. The system scales easily with transactions by adding more aggre-
gators and x-axis copies of the data. If necessary, aggregators of aggregators can be
added should the aggregators need to talk to too many z-axis splits at once.

Human Resources ERP Implementation
The AllScale HRM database architecture needs to support the decisions the team
made in Chapter 23. In Chapter 23, the architects decided that they wanted to build
what appeared to be one large application to their customers but with each module
capable of growing in complexity without affecting other modules in the system. The
service separations or y-axis splits in Chapter 23 need to have data that supports
them so the architects will split our data up accordingly. The architects remember our
advice to ensure that there is only one updated copy of any piece of data, with asyn-
chronous updates to all copies in other tiers of data. Performance and Career Plan-
ning, Learning and Education, Compliance Tracking, Recruiting, Compensation
Planning, and Succession Planning all become modules with other modules scheduled
for the future.

Each company has its own database, which is a z-axis split of the product, and
additionally the architects allow for employee splits within a company split. As such,
companies are split in z fashion, data supporting products are split in a y fashion, and
employees within those products are split in a z fashion. This follows the architect’s
code decisions from Chapter 23. Additionally, the AllScale architects employ read
databases where necessary, which is an x-axis implementation.

Back Office IT System
Remember the system defined in Chapter 23 that is focused on developing personal-
ized marketing emails for AllScale’s current and future client base. The team decided
to split the system up by classes of data relevant to each of the existing and potential
customers. The team needs to ensure that mail campaigns launch and finish within a
few hours so it is going to need a fairly aggressive split of the mail system given the
number of mails that it sends.

The team’s first split was a z-axis split defined by the recency, frequency, monetiza-
tion, and class of purchase as a criterion. The team had an additional split for all peo-
ple for whom it has data and who did not purchase from AllScale. All told, the team
had 199 unique splits consisting of 99 unique customer splits and 100 potential cus-

ptg5994185

PRACTICAL USE OF THE DATABASE CUBE 373

tomer splits. The data for these needs to be split consistent with the z-axis splits for
the AllScale services.

In Chapter 23, the team created y-axis functional splits of its application consis-
tent with the functions of the marketing system. Creative development, mail sending,
mail viewing, bounce reporting, and so on all became separate Y splits within the end
customer oriented Z splits and as such the team will need to have the data relevant to
these functions split within their databases.

The team needs to ensure that each of the databases is highly available so at the
very least it will make a single x-axis split or replicated copy of each of the databases
identified earlier.

Observations
We’ve twice now discussed when to use which axis of scale. We discussed it first in
the “Observations” section of Chapter 23 and again earlier in this chapter after we
discussed each of the axes. The next obvious question you are probably asking is
“When do I decide to allow the application considerations to lead my architectural
decisions and when do I decide to allow the data concerns to drive my decisions?”

The answer to that question is not an easy one, and again we refer back to the
“Art” portion of our title. In some situations, the decision is easier to make, such as
the decision within data warehousing discussions. Data warehouses are most often
split by data concerns, though this is not always the case. The real question to ask is
“What portion of my architecture most limits my scale?”

You may have a low transaction, low data growth environment, but an application
that is very complex. An example may be encryption or cipher breaking systems. Here,
the application likely needs to be broken up into services to allow specialists to develop
the systems in question effectively. Alternatively, you may have a system such as a content
site where the data itself (the content) is the thing that drives most of your scale concerns,
and as such you would likely design your architecture around the data concerns.

If you are a site with transaction growth, complexity growth, and growth in data,
you will probably switch between application leading design and database leading
design to meet your needs. You choose the one that is most limiting for any given
area and allow it to lead your architectural efforts. The most mature teams see them
as one holistic system.

Timeline Considerations
One of the most common questions we get asked is, “When do I perform an x-axis
split, and when should I consider y- and z-axis splits?” Put simply, the question really
addresses whether there is an engineered maturity to the process of the AKF Scale
Cube. In theory, there is no general timeline for these splits, but in implementation,
most companies follow a similar path.

ptg5994185

374 CHAPTER 24 SPLITTING DATABASES FOR SCALE

Ideally, a technology or architecture team would select the right axes of scale for
its data and transaction growth needs and implement them in a cost-effective manner.
Systems with high transaction rates, low data needs, and a high read to write ratio
are probably most cost effectively addressed with an x-axis split. Such a system or
component may never need more than simple replication in both the data tier and the
systems tier. Where customer data growth, complex functionality, and high transac-
tion growth intersect, a company may need to perform all three axes.

In practice, what typically happens is that a technology team will find itself in a
bind and need to do something quickly. Most often, x-axis splits are easiest to imple-
ment in terms of time and overall cost. The team will rush to this implementation,
and then start to look for other paths. Y- and z-axis splits tend to follow, with y
implementations tending to be more common as a second step than z implementa-
tions, due to the conceptual ease of splitting functions within an application.

Our recommendation is to design your systems with all of the axes in mind. At the
very least, make sure that you are not making decisions that will preclude you from
easily splitting customers or functions in the future. Attempt to implement your prod-
uct with x-axis splits for both the application and the database and have designs
available to split the application and data by both functions and customers. In this
fashion, you can rapidly scale should demand take off without struggling to keep up
with the needs of your end users.

Conclusion
This chapter discussed the employment of the AKF Scale Cube to databases and data
architectures within a product, service, or platform. We modified the AKF Scale Cube
slightly, narrowing the scope and definition of each of the axes so that it became
more meaningful to databases and data architecture.

Our x-axis still addresses the growth in transactions or work performed by any
platform or system. Although the x-axis handles the growth in transaction volume
well, it suffers by the limitations of replication technology and does not handle data
growth well.

The y-axis addresses data growth as well as transaction growth. Unfortunately, it
does not distribute demand well across databases as it focuses on data affinity. As
such, we will often get irregular demand characteristics, which might make capacity
modeling difficult and will likely result in x- or z-axis splits.

The z-axis addresses growth in data and is most often related to customer growth
or inventory element (product) growth. Z-axis splits have the ability to more evenly
distribute demand (or load) across a group of systems.

Not all companies need all three axes of scale to survive. When more than one axis
is employed, the x-axis is almost subordinate to the other axes. You might, for

ptg5994185

CONCLUSION 375

instance, have multiple x-axis splits, each occurring within a y- or z-axis split. Ideally,
all such splits occur in relationship to application splits with either the application or
the data being the reason for making a split.

Key Points

• X-axis database splits scale linearly with transaction growth but usually have
predetermined limits as to the number of splits allowed. They do not help with
the growth in customers or data. X-axis splits are mirrors of each other.

• The x-axis tends to be the least costly to implement.

• Y-axis database splits help scale data as transaction growth. They are mostly
meant for data scale because in isolation they are not as effective as the x-axis in
transaction growth.

• Y-axis splits tend to be more costly to implement than x-axis splits as a result of
engineering time necessary to separate monolithic databases.

• Y-axis splits aid in fault isolation.

• Z-axis application splits help scale transaction and data growth.

• Z-axis splits allow for more even demand or load distribution than most y-axis
splits.

• As with y-axis splits, z-axis splits aid in fault isolation.

• The choice of when to use what method or axis of scale is both art and science
as is the decision of when to use an application leading architecture split or a
data leading architecture split.

ptg5994185

This page intentionally left blank

ptg5994185

377

Chapter 25

Caching for Performance
and Scale

What the ancients called a clever fighter is one who not only wins, but excels in winning with ease.

—Sun Tzu

What is the best way to handle large volumes of traffic? This is, of course, a trick
question and at this point in the book hopefully you answered something like “estab-
lish the right organization, implement the right processes, and follow the right archi-
tectural principles to ensure the system can scale.” That’s a great answer, but we
think the absolute best way to handle large traffic volumes and user requests is to not
have to handle it at all. That probably sounds too good to be true but there is a way
to achieve this. Although not an actual architectural principle, the guideline of “don’t
handle the traffic if you don’t have to” should be a mantra of your architects. The
key to achieving this is through the pervasive use of something called a cache.

In this chapter, we are going to cover caching and how it can be one of the best
tools in your tool box for scalability. There are numerous forms of caching already
present in our environments, ranging from CPU cache to DNS cache to Web browser
cache. Covering all forms of caching is beyond the scope of this book, but this should
not dissuade you from pursuing a further study of all types of caching. Understand-
ing these various caches will allow you to take better advantage of them in your
applications and services. We are going to stick to three levels of caching that are
most under your control from an architectural perspective. These are caching at the
object, application, and content delivery network (CDN) levels. We will start with a
simple primer on caching and then discuss each of these levels of caching in order
that you understand their fundamental purposes and you begin considering how to
leverage them for your system.

ptg5994185

378 CHAPTER 25 CACHING FOR PERFORMANCE AND SCALE

Caching Defined
Cache is an allocation of memory by a device or application for the temporary stor-
age of data that is likely to be used again. The term was first used in 1967 in the pub-
lication IBM Systems Journal to label a memory improvement described as a high-speed
buffer.1 Don’t be confused by this point; caches and buffers have similar functionality
but are different in purpose. Both buffers and caches are allocations of memory and
have similar structures. A buffer is memory that is used temporarily for access
requirements, such as when data from disk must be moved into memory in order for
processor instructions to utilize it. Buffers can also be used for performance, such as
when reordering of data is required before writing to disk. A cache, on the other
hand, is used for the temporary storage of data that is likely to be accessed again,
such as when the same data is read over and over without the data changing.

The structure of a cache is very similar to data structures, such as arrays with key-
value pairs. In a cache, these tuples or entries are called tags and datum. The tag speci-
fies the identity of the datum, and the datum is the actual data being stored. The data
stored in the datum is an exact copy of the data stored in either a persistent storage
device, such as a database or as calculated by an executable application. The tag is the
identifier that allows the requesting application or user to find the datum or determine
that it is not present in the cache. In Table 25.1, the cache has three items cached from
the database, items with tags 3, 4, and 0. The cache can have its own index that could
be based on recent usage or other indexing mechanism to speed up the reading of data.

1. According to the caching article in Wikipedia: http://en.wikipedia.org/wiki/Cache.

Table 25.1 Cache Structure

(a) Database
Index Data

0 $3.99

1 $5.25

2 $7.49

3 $1.15

4 $4.45

5 $9.99

(b) Cache
Index Tag Datum

0 3 $1.15

1 4 $4.45

2 0 $3.99

ptg5994185

CACHING DEFINED 379

When the requesting application or user finds the data that it is asking for in the
cache, this is called a cache-hit. When the data is not present in the cache, the appli-
cation must go to the primary source to retrieve the data. Not finding the data in the
cache is called a cache-miss. The number of hits to requests is called a cache ratio or
hit ratio. This ratio is important to understand how effective the cache is being in off-
setting load from the primary storage or executable. If the ratio is low, meaning there
are very few hits, there may be a serious degradation in performance due to the over-
head of first checking a cache that does not have the data being requested.

There are a couple methods of updating or refreshing data in a cache. The first is
an offline process that periodically reads data from the primary source and com-
pletely updates the datum in the cache. There are a variety of uses for such a refresh
method. One of the most common situations when this method would be utilized are
upon startup when the cache is empty and when the data is recalculated or restored
on a fixed schedule, such as through batch jobs.

Batch Cache Refresh
As an example, let’s assume there is a batch job in the AllScale system called price_recalc.
Part of AllScale’s human resources management (HRM) service is acting as a reseller of online
tutorials provided by third parties. These tutorials are used by customers for training their staff
or employees on tasks such as interviewing and performance counseling. This batch job calcu-
lates the new price of a tutorial based on input from the vendors who sometimes change their
prices daily or monthly as they run specials on their products. Instead of running a pricing cal-
culation on demand, it has been determined that based on the business rules, it is sufficient to
calculate this every 20 minutes.

Although we have saved a lot of resources by not dynamically calculating the price, we still
do not want the other services to request it continuously from the primary data source, the
database. Instead, we need a cache that stores the most frequently used items and prices. In
this case, it does not make sense to dynamically refresh the cache because price_recalc runs
every 20 minutes. It makes much more sense to refresh the cache on the same schedule that
the batch job runs.

Another method of updating or refreshing data in a cache is when a cache-miss
occurs, the application or service requesting the data retrieves it from the primary
data source and then stores it in the cache. Assuming the cache is filled, meaning that
all memory allocated for the cache is full of datum, storing the newly retrieved data
requires some other piece of data to be ejected from the cache. The decision on which
piece of data to eject is an entire field of study. The algorithms that are used to make this
determination are known as caching algorithms. One of the most common algorithms

ptg5994185

380 CHAPTER 25 CACHING FOR PERFORMANCE AND SCALE

used in caching is the least recently used (LRU) heuristic which removes the data that
has been accessed furthest in the past.

In Figure 25.1, the service has requested Item #2 (step 1), which is not present in
the cache and results in a cache-miss. The request is reiterated to the primary source,
the database (step 2), where it is retrieved (step 3). The application then must update
the cache (step 4), which it does, creating the new cache by ejecting the least recently
used item (index 2 tag 0 datum $3.99). This is a sample of a cache-miss with update
based on the least recently used algorithm.

Another algorithm is the exact opposite of LRU and is the most recently used
(MRU). LRU is pretty commonsensical in that it generally makes sense that some-
thing not being used should be expunged to make room for something needed right
now. The MRU at first take seems nonsensical, but in fact it has a use. If the likeli-
hood that a piece of data will be accessed again is most remote when it first has been
read, MRU works best. Let’s take our AllScale price_recalc batch job example again.
This time, we don’t have room in our cache to store all the item prices, and the appli-
cation accessing the price cache is a search engine bot. After the search engine bot has
accessed the page to retrieve the price, it marks it off the list and is not likely to revisit
this page or price again until all others have been accessed. Here, the MRU algorithm
is the most appropriate. As we mentioned earlier, there is an entire field of study ded-

Figure 25.1 Cache-Miss LRU

Service

Request: Item #2

Cache-Miss

Request: Item #2

Respond: $7.49

Set: Item #2 = $7.49

1

2

3

4

ss

ptg5994185

OBJECT CACHES 381

icated to caching algorithms. Some very sophisticated algorithms take factors, such
as differences in retrieval time, size of data, and user intent, into account when deter-
mining what data stays and what data goes.

Thus far, we’ve focused on reading the data from the cache and we’ve assumed
that only reads were being performed on the data. What happens when that data is
manipulated and must be updated to ensure that if it is accessed again it is correct? In
this case, we need to write data into the cache and ultimately get the data in the orig-
inal data store updated as well. There are a variety of ways to achieve this. One of the
most popular methods is a write-through policy. This is when the application manip-
ulating the data writes it into the cache and into the data store. The application has
responsibility for ensuring integrity between the stores. Another method is known as
write-back, where the cache stores the updated data until a certain point in the
future. In this case, the data is marked as dirty in order that it be identified and
understood that it has changed from the primary data source. Often, the future event
that causes the write-back is the data being ejected from the cache. The way this
would work is the data is retrieved by a service and is changed. This changed data is
placed back into the cache and marked as dirty. When there is no longer room in the
cache for this piece of data, it is expelled from the cache and written to the primary
data store. Obviously, this write-back method relieves the burden of writing to two
locations from the service, but as you can imagine, this increases the complexity of
many situations, such as when shutting down or restoring the cache.

In this brief overview of caching, we have covered the tag-datum structure of
caches; the concepts of cache-hit, cache-miss, and hit-ratio; the cache refreshing
methodologies of batch and upon cache-miss; caching algorithms such as LRU and
MRU; and write-through versus write-back methods of manipulating the data stored
in cache. Armed with this brief tutorial, we are going to begin our discussion of three
types of caches: object, application, and CDN.

Object Caches
Object caches are used to store objects for the application to be reused. These objects
usually come from either a database or have been generated by calculations or
manipulations of the application. The objects are almost always serialized objects,
which are marshaled or deflated into a serialized format that minimizes the memory
footprint. When retrieved, they must be inflated or unmarshalled to be converted into
its original data type. Marshalling is the process of transforming the memory repre-
sentation of an object into a byte-stream or sequence of bytes in order that it be
stored or transmitted. Unmarshalling is the process of decoding from the byte repre-
sentation into the original object form. For object caches to be used, the application
must be aware of them and have implemented methods to manipulate the cache.

ptg5994185

382 CHAPTER 25 CACHING FOR PERFORMANCE AND SCALE

The basic methods of manipulation of a cache include a way to add data into the
cache, a way to retrieve it, and a way to update the data. These are typically called set
for adding data, get for retrieving data, and replace for updating data. Depending on
the particular cache that is chosen, many programming languages already have built-
in support for the most popular caches. Memcached is one of the most popular
caches in use today. It is a “high-performance, distributed memory object caching
system, generic in nature, but intended for use in speeding up dynamic web applica-
tions by alleviating database load.”2 This particular cache is very fast-using non-
blocking network input/output (I/O) and its own slab allocator to prevent memory
fragmentation guaranteeing allocations to be O(1) or able to be computed in con-
stant time and thus not bound by the size of the data.

As indicated in the description of memcached, it is primarily designed to speed up
Web applications by alleviating requests to the database. This makes sense because
the database is almost always the slowest retrieval device in the application tiers. The
overhead of implementing ACID (Atomicity, Consistency, Isolation, and Durability)
properties in a relational database management system is larger, especially when data
has to be written and read from disk. However, it is completely normal and advisable
in some cases to use an object caching layer between other tiers of the system.

The way that an object cache fits into a typical two- or three-tier architecture is to
place it in front of the database tier. As indicated earlier, this is because it is usually
the slowest overall performing tier and also it is often the most expensive tier to
expand. In Figure 25.2, there is a typical three-tier system stack depicted with a Web
server tier, an application server tier, and a database tier. Instead of just one object
cache, there are two. One cache is in between the application servers and the data-
base, and one is between the Web servers and the application servers. This makes
sense if the application server is performing a great deal of calculations or manipula-
tions that are cacheable. This prevents the application servers from having to con-
stantly recalculate the same data and instead allows it to be cached and relieve the
load on the application servers. Just as with the database, this caching layer can help
scale the tier without additional hardware. It is very likely that the objects being
cached are a subset of the total data set from either the database or the application
servers. For example, it is possible that the application code on the Web servers make
use of the cache for user permission objects but not for transaction amounts, because
user permissions are rarely changed and are accessed frequently; whereas a transac-
tion amount is likely to be different with each transaction and accessed only once.

2. The description of memcached from the Web site http://www.danga.com/memcached/.

ptg5994185

OBJECT CACHES 383

ACID Properties of a Database
Atomicity, Consistency, Isolation, and Durability (ACID) are properties that a database manage-
ment system employ to ensure that transactions are considered completely reliable.

Atomicity is a property of a database management system to guarantee that all tasks of a
transaction are completely performed or the entire transaction is rolled back. Failures of hard-
ware or software will not result in half-completed transactions.

Consistency is the property that ensures that the database remains in a steady state
before and after a transaction. If a transaction is successful, it moves the database from one
state to another that is “consistent” with the rules.

Isolation is the property that prevents another transaction from accessing a piece of data
while another transaction is acting on it. Most database management systems use locks to
ensure this.

Durability is the property that after the system has marked the transaction as successful, it
will remain completed and not be rolled back. All consistency checks must be completed prior
to the transaction being considered complete.

Figure 25.2 Object Cache Architecture

Web Servers

Application Server
Object Cache

Database
Object Cache

Application Servers

Database Servers

Database

ptg5994185

384 CHAPTER 25 CACHING FOR PERFORMANCE AND SCALE

The use of an object cache makes sense if you have a piece of data either in the
database or in the application server that gets accessed frequently but is updated
infrequently. The database is the first place to look to offset load because it is gener-
ally the slowest and most expensive of your application tiers. However, don’t stop
there; consider other tiers or pools of servers in your system for an object cache.
Another very likely candidate for an object cache is as a centralized session manage-
ment cache. If you make use of session data, we recommend you first eliminate ses-
sion data as much as possible. Completely do away with sessions if you can as they
are costly within your infrastructure and architecture. If you cannot, we encourage
you to consider a centralized session management system that allows requests to
come to any Web server and the session be moved from one to another without dis-
ruption. This way, you can make more efficient use of the Web servers through a load
balanced solution, and in the event of a failure, users can be moved to another server
with minimal disruption. Continue to look at your application for more candidates
for object caches.

Application Caches
The next level of caching that we need to discuss is what we call application caching.
There are two varieties of application caching: proxy caching and reverse proxy cach-
ing. Before we dive into the details of each, let’s cover the concepts behind applica-
tion caching in general. The basic premise is that you want to either speed up
perceived performance or minimize the resources used. What do we mean by speed-
ing up perceived performance? End users interacting with a Web based application or
service don’t care how fast the Web server actually is returning their request or how
many requests per second each server can handle. All end users care about is how fast
the application appears to respond in their browser. The use of smoke and mirrors is
not only allowed but encouraged if it doesn’t degrade the experience and improves per-
formance. The smoke and mirror that people use is known as application caching. The
same logic is applied to minimizing resources utilized. As long as end users have the
same experience, they don’t care if you utilize 100% of the available system resources
or if you utilize 1%; they just want the pages to load quickly and accurately.

Proxy Caches
How do you speed up response time and minimize resource utilization? The way to
achieve this is not to have the application or Web servers actually handle the requests.
Let’s start out by looking at proxy caches. These types of caches are usually imple-
mented by Internet service providers, universities, schools, or corporations. The
terms forward proxy cache or proxy server are sometimes used to be more descrip-

ptg5994185

APPLICATION CACHES 385

tive. The idea is that instead of the Internet service provider (ISP) having to transmit
an end user’s request through its network to a peer network to a server for the URL
requested, the ISP can proxy these requests and return them from a cache without
ever going to the URL’s actual servers. Of course, this saves a lot of resources on the
ISP’s network from being used as well as speeds up the processing. The caching is
done without the end user knowing that it has occurred; to her, the return page looks
and behaves as if the actual site had returned her request.

Figure 25.3 shows an implementation of a proxy cache at an ISP. The ISP has
implemented a proxy cache that handles requests from a limited set of users for an
unlimited number of applications or Web sites. The limited number of users can be
their entire subscriber population or more than likely subsets of subscribers who are
geographically collocated. All of these grouped users make requests through the
cache; if the data is present, it is returned automatically; if the data is not present, the
authoritative site is requested and the data is potentially stored in cache in case some
other subscriber requests it. The caching algorithm that determines whether a page or
piece of data gets updated/replaced can be customized for the subset of users that are
using the cache. It may make sense for caching to only occur if a minimum number of
requests for that piece of data are seen over a period of time. This way, the most
requested data is cached and sporadic requests for unique data does not replace the
most viewed data.

Figure 25.3 Proxy Server Implementation

www.akfpartners.com

Internet

End Users

Proxy
Server Internet

Service
Provider

Database

ptg5994185

386 CHAPTER 25 CACHING FOR PERFORMANCE AND SCALE

Reverse Proxy Cache
The other type of application caching is the reverse proxy cache. With proxy caching,
the cache handles the requests from a limited number of users for a potentially unlim-
ited number of sites or applications. A reverse proxy cache is opposite in that it
caches for an unlimited number of users or requestors and for a limited number of
sites or applications. Another term used for reverse proxy caches is gateway caches.
These are most often implemented by system owners themselves in order to off load
the requests on their Web servers. Instead of every single request coming to the Web
server, another tier is added for all or part of the set of available requests in front of
the Web servers. Requests that are being cached can be returned immediately to the
requestor without processing on the Web or application servers. The cached item can
be anything from entire static pages to static images to parts of dynamic pages. The
configuration of the specific application will determine what can be cached. Just because
your service or application is dynamic does not mean that you cannot take advantage
of application caching. Even on the most dynamic sites, many items can be cached.

Figure 25.4 shows an implementation of a reverse proxy cache in front of a site’s
Web servers. The reverse proxy server handles some or all of the requests until the

Figure 25.4 Reverse Proxy Server Implementation

www.akfpartners.com

Internet

End Users

Reverse
Proxy
Server

Internet
Service
Provider

Database

ptg5994185

APPLICATION CACHES 387

pages or data that is stored in them is out of date or until the server receives a request
for which it does not have data (a cache miss). When this occurs, the request is passed
through to a Web server to fulfill the request and to refresh the cache. Any users that
have access to make the requests for the application can be serviced by the cache.
This is why a reverse proxy cache is considered the opposite of the proxy cache. A
reverse proxy cache handles any number of users for a limited number of sites.

HTML Headers and Meta Tags
Many developers believe that they can control the caching of a page by placing meta tags, such
as Pragma: no-cache, in the <HEAD> element of the page. This is only partially true. Meta tags in
the HTML can be used to recommend how a page should be treated by browser cache, but
most browsers do not honor these tags. Because proxy caches rarely even inspect the HTML,
they do not abide by these tags.

HTTP headers, on the other hand, give much more control over caching, especially with
regard to proxy caches. These headers cannot be seen in the HTML and are generated by the
Web server. You can control them by configurations on the server. A typical HTTP response
header could look like this:

HTTP/1.x 200 OK
Date: Tue, 24 Feb 2009 19:52:41 GMT
Server: Apache/2.2.3 (CentOS)
Last-Modified: Mon, 26 Jan 2009 23:03:35 GMT
Etag: "1189c0-249a-bf8d9fc0"
Accept-Ranges: bytes
Content-Length: 9370
p3p: policyref="/w3c/p3p.xml",
CP="ALL DSP COR PSAa PSDa OUR NOR ONL UNI COM NAV"
Connection: close
Cache-Control: no-cache
Content-Type: image/gif

Notice the Cache-Control header identifying no-cache. In accordance with the Request For
Comments (RFC) 2616 Section 14 defining the HTTP 1.1 protocol, this header must be obeyed
by all caching mechanisms along the request/response chain.

Another header that is useful in managing caching is the Etag and Last-Modified tags.
These are used to validate the freshness of the page by the caching mechanisms.

Understanding the request and response HTTP headers will allow you to more fully control
the caching of your pages. This is an exercise that is well worth doing to ensure your pages are
being handled properly by all the caching layers between your site and the end users.

ptg5994185

388 CHAPTER 25 CACHING FOR PERFORMANCE AND SCALE

Caching Software
Adequately covering even a portion of the caching software that is available both
from vendors and the open source communities is beyond the scope of this chapter.
However, there are some points that should be covered to guide you in your search
for the right caching software for your company’s needs. The first point is that you
should thoroughly understand your application and user demands. Running a site
with multiple GB per second of traffic requires a much more robust and enterprise-
class caching solution than does a small site serving 10MB per second of traffic. Are
you projecting a doubling of requests or users or traffic every month? Are you intro-
ducing a brand-new video product line that is going to completely change that type
and need for caching? These are the types of questions you need to ask yourself
before you start shopping the Web for a solution, or you could easily fall into the trap
of making your problem fit the solution.

The second point addresses the difference between add-on features and purpose-
built solutions and is applicable to both hardware and software solutions. To under-
stand the difference, let’s discuss the life cycle of a typical technology product. A
product usually starts out as a unique technology that sells and gains traction, or is
adopted in the case of open source, as a result of its innovation and benefit within its
target market. Over time, this product becomes less unique and eventually commod-
itized, meaning everyone sells essentially the same product with the primary differen-
tiation being price. High tech companies generally don’t like selling commodity
products because the profit margins continue to get squeezed each year. And open
source communities are usually passionate about their software and want to see it
continue to serve a purpose. The way to prevent the margin squeeze or the move into
the history books is to add features to the product. The more “value” the vendor
adds the more the vendor can keep the price high. The problem with this is that these
add-on features are almost always inferior to purpose-built products designed to
solve this one specific problem.

An example of this can be seen in comparing the performance of mod_cache in
Apache as an add-on feature with that of the purpose-built product memcached. This
is not to belittle or take away anything from Apache, which is a very common open
source Web server that is developed and maintained by an open community of devel-
opers known as the Apache Software Foundation. The application is available for a
wide variety of operating systems and has been the most popular Web server on the
World Wide Web since 1996. The Apache module, mod_cache, implements an HTTP
content cache that can be used to cache either local or proxied content. This module
is one of hundreds available for Apache, and it absolutely serves a purpose, but when
you need an object cache that is distributed and fault tolerant, there are better solu-
tions such as memcached.

Application caches are extensive in their types, implementations, and configura-
tions. You should first become familiar with the current and future requirements of

ptg5994185

CONTENT DELIVERY NETWORKS 389

your application. Then, you should make sure you understand the differences
between add-on features and purpose-built solutions. With theses two pieces of
knowledge, you are ready to make a good decision when it comes to the ideal caching
solution for your application.

Content Delivery Networks
The last type of caching that we are going to cover in this chapter is the content deliv-
ery networks (CDNs). This level of caching is used to push any of your content that is
cacheable closer to the end user. The benefits of this include faster response time and
fewer requests on your servers. The implementation of a CDN is varied but most
generically can be thought of as a network of gateway caches located in many differ-
ent geographical areas and residing on many different Internet peering networks.
Many CDNs use the Internet as their backbone and offer their servers to host your
content. Others, to provide higher availability and differentiate themselves, have built
their own network point to point between their hosting locations.

The advantages of CDNs are that they speed up response time, off load requests
from your application’s origin servers, and possibly lower delivery cost, although this
is not always the case. The concept is that the total capacity of the CDN’s strategi-
cally placed servers can yield a higher capacity and availability than the network
backbone. The reason for this is that if there is a network constraint or bottleneck,
the total throughput is limited. When these are eliminated by placing CDN servers on
the edge of the network, the total capacity is increased and overall availability
increases as well. The way this works is that you place the CDN’s domain as an alias
for your server by using a canonical name (CNAME) in your DNS entry. A sample
entry might look like this:

ads.akfpartners.com CNAME ads.akfpartners.akfcdn.net

Here, we have our CDN, akfcdn.net, as an alias for our subdomain ads.akfpart-
ners.com. The CDN alias could then be requested by the application, and as long as
the cache was valid, it would be served from the CDN and not our origin servers for
our system. The CDN gateway servers would periodically make requests to our
application origin servers to ensure that the data, content, or Web pages that they
have in cache is up-to-date. If the cache is out-of-date, the new content is distributed
through the CDN to their edge servers.

Today, CDNs offer a wide variety of services in addition to the primary service of
caching your content closer to the end user. These services include DNS replacement,
geo-load balancing, which is serving content to users based on their geographical
location, and even application monitoring. All of these services are becoming more
commoditized as more providers enter into the market. In addition to commercial

ptg5994185

390 CHAPTER 25 CACHING FOR PERFORMANCE AND SCALE

CDNs, there are more peer-to-peer P2P services being utilized for content delivery to
end users to minimize the bandwidth and server utilization from providers.

Conclusion
In this chapter, we started off by explaining the concept that the best way to handle
large amounts of traffic is to avoid handling them in the first place. You can best do
this by utilizing caching. In this manner, caching can be one of the best tools in your
tool box for ensuring scalability. We identified that there are numerous forms of
caching already present in our environments, ranging from CPU cache to DNS cache
to Web browser caches. In this chapter, we wanted to focus primarily on three levels
of caching that are most under your control from an architectural perspective. These
are caching at the object, application, and content delivery network levels.

We started with a primer on caching in general and covered the tag-datum struc-
ture of caches and how they are similar to buffers. We also covered the terminology
of cache-hit, cache-miss, and hit-ratio. We discussed the various refreshing methodol-
ogies of batch and upon cache-miss as well as caching algorithms such as LRU and
MRU. We finished the introductory section with a comparison of write-through ver-
sus write-back methods of manipulating the data stored in cache.

The first type of cache that we discussed was the object cache. These are caches
used to store objects for the application to be reused. Objects stored within the cache
usually come from either a database or have been generated by the application. These
objects are serialized to be placed into cache. For object caches to be used, the appli-
cation must be aware of them and have implemented methods to manipulate the
cache. The database is the first place to look to offset load through the use of an
object cache, because it is generally the slowest and most expensive of your applica-
tion tiers; but the application tier is often a target as well.

The next type of cache that we discussed was the application cache. We covered
two varieties of application caching: proxy caching and reverse proxy caching. The
basic premise of application caching is that you desire to speed up performance or
minimize resources used. Proxy caching is used for a limited number of users request-
ing an unlimited number of Web pages. This type of caching is often employed by
Internet service providers or local area networks such as in schools and corporations.
The other type of application caching we covered was the reverse proxy cache. A
reverse proxy cache is used for an unlimited number of users or requestors and for a
limited number of sites or applications. These are most often implemented by system
owners in order to off load the requests on their application origin servers.

The last type of caching that we covered was the content delivery networks
(CDNs). The general principle of this level of caching is to push content that is cache-

ptg5994185

CONCLUSION 391

able closer to the end user. The benefits include faster response time and fewer
requests on the origin servers. CDNs are implemented as a network of gateway
caches in different geographical areas utilizing different ISPs.

No matter what type of service or application you provide, it is important to
understand the various methods of caching in order that you choose the right type of
cache. There is almost always a caching type or level that makes sense with Web 2.0
and SaaS systems.

Key Points

• The most easily scalable traffic is the type that never touches the application
because it is serviced by cache.

• There are many layers to consider adding caching, each with pros and cons.

• Buffers are similar to caches and can be used for performance, such as when
reordering of data is required before writing to disk.

• The structure of a cache is very similar to data structures, such as arrays with
key-value pairs. In a cache, these tuples or entries are called tags and datum.

• A cache is used for the temporary storage of data that is likely to be accessed again,
such as when the same data is read over and over without the data changing.

• When the requesting application or user finds the data that it is asking for in the
cache this is called a cache-hit.

• When the data is not present in the cache, the application must go to the pri-
mary source to retrieve the data. Not finding the data in the cache is called a
cache-miss.

• The number of hits to requests is called a cache ratio or hit ratio.

• The use of an object cache makes sense if you have a piece of data either in the
database or in the application server that gets accessed frequently but is updated
infrequently.

• The database is the first place to look to offset load because it is generally the
slowest and most expensive of your application tiers.

• A reverse proxy cache is opposite in that it caches for an unlimited number of
users or requestors and for a limited number of sites or applications.

• Another term used for reverse proxy caches is gateway caches.

• Reverse proxy caches are most often implemented by system owners themselves
in order to off load the requests on their Web servers.

• Many CDNs use the Internet as their backbone and offer their servers to host
your content.

ptg5994185

392 CHAPTER 25 CACHING FOR PERFORMANCE AND SCALE

• Others, in order to provide higher availability and differentiate themselves, have
built their own network point to point between their hosting locations.

• The advantages of CDNs are that they lower delivery cost, speed up response
time, and off load requests from your application’s origin servers.

ptg5994185

393

Chapter 26

Asynchronous Design for Scale

In all fighting, the direct method may be used for joining battle,
but indirect methods will be needed in order to secure victory.

—Sun Tzu

This last chapter in Part III, Architecting Scalable Solutions, will address an often
overlooked problem when developing services or product—that is, overlooked until
it becomes a noticeable and costly inhibitor to scaling. This problem is the use of syn-
chronous calls in the application. We will explore the reasons that most developers over-
look asynchronous calls as a scaling principle and how converting synchronous calls to
asynchronous ones can greatly improve the scalability and availability of the system.

We will explore the use of state in applications including why it is used, how it is
often used, why it can be problematic, and how to make the best of it when neces-
sary. Examining the need for state and eliminating it where possible will pay huge
dividends within your architecture if it is not already a problem. If it already is a
problem in your system, this chapter will give you some tools to fix it.

Synching Up on Synchronization
Let’s start our discussion by covering some of the basics of synchronization, starting
with a definition and some different types of synchronization methods. The process
of synchronization refers to the use and coordination of simultaneously executed
threads or processes that are part of an overall task. These processes must run in the
correct order to avoid a race condition or erroneous results. Stated another way, syn-
chronization is when two or more pieces of work must be in a specific order to
accomplish a task. An example is a login task. First, the user’s password must be
encrypted; then it must be compared against the encrypted version in the database;
then the session data must be updated marking the user as authenticated; then the
welcome page must be generated; and finally the welcome page must be presented. If

ptg5994185

394 CHAPTER 26 ASYNCHRONOUS DESIGN FOR SCALE

any of those pieces of work are done out of order, the task of logging the user in fails
to get accomplished.

There are many types of synchronization processes that take place in program-
ming. One that all developers should be familiar with is the mutex or mutual exclu-
sion. Mutex refers to how global resources are protected from concurrently running
processes to ensure only one process is updating or accessing the resource at a time.
This is often accomplished through semaphores, which is kind of a fancy flag. Sema-
phores are variables or data types that mark or flag a resource as being in use or free.
Another classic synchronization method is known as thread join. Thread join is when
a process is blocked from executing until a thread terminates. After the thread termi-
nates, the other process is free to continue. An example would be for a parent pro-
cess, such as a “look up,” to start executing. The parent process kicks off a child
process to retrieve the location of the data that it is going to look up, and this child
thread is “joined.” This means that the parent process cannot complete until the
child process terminates.

Dining Philosophers Problem
This analogy is credited to Sir Charles Anthony Richard Hoare (a.k.a. Tony Hoare), as in the
person who invented the Quicksort algorithm. This analogy is used as an illustrative example of
resource contention and deadlock. The story goes that there were five philosophers sitting
around a table with a bowl of spaghetti in the middle. Each philosopher had a fork to his left,
and therefore each had one to his right. The philosophers could either think or eat, but not both.
Additionally, in order to serve and eat the spaghetti, each philosopher required the use of two
forks. Without any coordination, it is possible that all the philosophers pick up their forks simul-
taneously and therefore no one has two forks in which to serve or eat.

This analogy is used to show that without synchronization the five philosophers could
remain stalled indefinitely and starve just as five computer processes waiting for a resource
could all enter into a deadlocked state. There are many ways to solve such a dilemma. One is
to have a rule that each philosopher when reaching a deadlock state will place his fork down,
freeing up a resource, and think for a random time. If this solution sounds familiar, it might be
because it is the basic idea of retransmission that takes place in the Transmission Control Pro-
tocol (TCP). When no acknowledgement for data is received, a timer is started to wait for a
retry. The amount of time is adjusted by the smoothed round trip time algorithm and doubled
after each unsuccessful retry.

As you might expect, there are many other types of synchronization processes and
methods that are employed in programming. We’re not presenting an exhaustive list

ptg5994185

SYNCHRONOUS VERSUS ASYNCHRONOUS CALLS 395

but rather attempting to give you an overall understanding that synchronization is
used throughout programming in many different ways. Eliminating synchronization
is not possible, nor would it be advisable. It is, however, prudent to understand the
purpose and cost of synchronization so that when you use it you do so wisely.

Synchronous Versus Asynchronous Calls
Now that we have a basic definition and some examples of synchronization, we can
move on to a broader discussion of synchronous versus asynchronous calls within the
application. Synchronous calls perform their action completely by the time the call
returns. If a method is called and control is given to this method to execute, the point
in the application that made the call is not given control back until the method has
completed its execution and returned either successfully or with an error. In other
words, synchronous methods are called, they execute, and when they finish, you get
control back. As an example of a synchronous method, let’s look at a method called
query_exec from AllScale’s human resource management (HRM) service. This
method is used to build and execute a dynamic database query. One step in the
query_exec method is to establish a database connection. The query_exec method
does not continue executing without explicit acknowledgement of successful comple-
tion of this database connection task. Doing so would be a waste of resources and
time. If the database is not available, the application should not waste time creating
the query and waiting for it to become available. Indeed, if the database is not avail-
able, the team should reread Chapter 24, Splitting Databases for Scale, on how to
scale the database so that there is improved availability. Nevertheless, this is an
example of how synchronous calls work. The originating call is halted and not
allowed to complete until the invoked process returns.

A nontechnical example of synchronicity is communication between two individu-
als either in a face-to-face fashion or over a phone line. If both individuals are
engaged in meaningful conversation, there is not likely to be any other action going
on. One individual cannot easily start another conversation with another individual
without first stopping the conversation with the first person. Phone lines are held
open until one or both callers terminate the call.

Contrast the synchronous methods or threads with an asynchronous method.
With an asynchronous method call, the method is called to execute in a new thread,
and it immediately returns control back to the thread that called it. The design pat-
tern that describes the asynchronous method call is known as the asynchronous
design, or the asynchronous method invocation (AMI). The asynchronous call con-
tinues to execute in another thread and terminates either successfully or with error
without further interaction with the initiating thread. Let’s turn back to our AllScale

ptg5994185

396 CHAPTER 26 ASYNCHRONOUS DESIGN FOR SCALE

example with the query_exec method. After calling synchronously for the database
connection, the method needs to prepare and execute the query. In the HRM system,
AllScale has a monitoring framework that allows them to note the duration and suc-
cess of all queries by asynchronously calling a method for start_query_time and
end_query_time. These methods store a system time in memory and wait for the end
call to be placed in order to calculate duration. The duration is then stored in a mon-
itoring database that can be queried to understand how well the system is performing
in terms of query run time. Monitoring the query performance is important but not
as important as actually servicing the users’ requests. Therefore, the calls to the mon-
itoring methods of start_query_time and end_query_time are done asynchronously. If
they succeed and return, great—AllScale’s operations and engineering teams get the
query time in the monitoring database. If the monitoring calls fail or get delayed for
20 seconds waiting on the monitoring database connection, they don’t care. The user
query continues on without any concern over the asynchronous calls.

Returning to our communication example, email is a great example of asynchro-
nous communication. You write an email and send it, immediately moving on to
another task, which may be another email, a round of golf, or whatever. When the
response comes in, at an appropriate time, you read the response and potentially
issue yet another email in response. The communication chain blocks neither the
sender nor receiver for anything but the time to process the communication and issue
a response.

Scaling Synchronously or Asynchronously
Now we understand the difference between synchronous and asynchronous calls.
Why does this matter? The answer lies in scalability. Synchronous calls, if used exces-
sively or incorrectly, cause undue burden on the system and prevent it from scaling.
Let’s continue with our query_exec example where we were trying to execute a user’s
query. If we had implemented the two monitoring calls synchronously using the
rationale that (1) monitoring is important, (2) the monitoring methods are very
quick, and (3) even if we slow down a user query what’s the worst that could happen.
These are all good intentions, but they are wrong. As we stated earlier, monitoring is
important but it is not more important than returning a user’s query. The monitoring
methods might be very quick, when the monitoring database is operational, but what
happens when it has a hardware failure and is inaccessible? The monitoring queries
back up waiting to time out. This means the users’ queries are blocked waiting for
completion of the monitoring queries and are in turn backed up. When the user que-
ries are slowed down or temporarily halted waiting for a time out, it is still taking up
a database connection on the user database and is still consuming memory on the
application server trying to execute this thread. As more and more user threads start
stalling waiting for their monitoring calls to time out, the user database might run
out of connections preventing other nonmonitored queries from executing, and the

ptg5994185

SYNCHRONOUS VERSUS ASYNCHRONOUS CALLS 397

threads on the app servers get written to disk to free up memory, which causes swap-
ping on the app servers. This swapping in turn slows down all processing and may
result in the TCP stack of the app server reaching some maximum limit and refusing
subsequent connections. Ultimately, new user requests are not processed and users sit
waiting for browser or application timeouts. Your application or platform is essen-
tially “down.” As you see, this ugly chain of events can quite easily occur because of
a simple oversight on whether a call should be synchronous or asynchronous. The
worst thing about this scenario is the root cause can be elusive. As we step through
the chain it is relatively easy to follow but when the symptoms of a problem are that
your system’s Web pages start loading slowly and over the next 15 minutes this con-
tinues to get worse and worse until finally the entire system grinds to a halt, diagnos-
ing the problem can be very difficult. Hopefully, you have sufficient monitoring in
place to help you diagnose these types of problems, but these extended chains of
events can be very daunting to unravel when your site is down and you are frantic to
get it back into service.

Despite the fact that synchronous calls can be problematic if used incorrectly or
excessively, method calls are very often done synchronously. Why is this? The answer
is that synchronous calls are simpler than asynchronous calls. “But wait!” you say.
“Yes, they are simpler but often times our methods require that the other methods
invoked do successfully complete and therefore we can’t put a bunch of asynchro-
nous calls in our system.” Ah, yes; good point. There are many times when you do
need an invoked method to complete and you need to know the status of that in
order to continue along your thread. We are not going to tell you that all synchro-
nous calls are bad; in fact, many are necessary and make the developer’s life a thou-
sand times less complicated. However, there are times when asynchronous calls can
and should be used in place of synchronous calls, even when there is dependency as
described earlier. If the main thread could care less whether the invoked thread fin-
ishes, such as with the monitoring calls, a simple asynchronous call is all that is
required. If, however, you require some information from the invoked thread, but
you don’t want to stop the primary thread from executing, there are ways to use call-
backs to retrieve this information. An in-depth discussion of callbacks are beyond the
scope of this chapter. An example of callback functionality is interrupt handlers in
operating systems that report on hardware conditions.

Asynchronous Coordination
Asynchronous coordination and communication between the original method and the invoked
method requires a mechanism that the original method determines when or if a called method
has completed executing. Callbacks are methods passed as an argument to other methods
and allow for the decoupling of different layers in the code.

ptg5994185

398 CHAPTER 26 ASYNCHRONOUS DESIGN FOR SCALE

In C/C++, this is done through function pointers; in Java, it is done through object refer-
ences. There are many design patterns that use callbacks, such as the delegate design pattern
and the observer design pattern. The higher level process acts as a client of the lower level and
calls the lower level method by passing it by reference. An example of what a callback method
might be invoked for would be an asynchronous event like file system changes.

In the .NET Framework, the asynchronous communication is characterized by the use of
BeginBlah, where Blah is the name of the synchronous version of the method. There are four
ways to determine if an asynchronous call has been completed: first is polling (the IsCompleted
property), second is a callback Delegate, third is the AsyncWaitHandle to wait on the call to com-
plete, and fourth the EndBlah, which waits on the call to complete.

Different languages offer different solutions to the asynchronous communication and coordi-
nation problem. Understand what your language and frameworks offer so that you can imple-
ment them when needed.

In the preceding paragraph, we said that synchronous calls are simpler than asyn-
chronous calls and therefore they get used an awful lot more often. Although this is
completely true, it is only part of the reason that engineers don’t pay enough atten-
tion to the impact of synchronous calls. The second part of the problem is that devel-
opers typically only see a small portion of the application. Very few people in the
organization get the advantage of viewing the application in total from a higher level
perspective. Your architects should certainly be looking at this level, as should some
of your management team. These are the people that you will have to rely on to help
challenge and explain how synchronization might cause scaling issues.

Example Asynchronous Systems
To fully understand how synchronous calls can cause scaling issues and how you can
either design from the start or convert a system in place to use asynchronous calls, we
shall invoke an example system that we can explore. The system that we are going to
discuss is taken from an actual client implementation that we reviewed in our advi-
sory practice at AKF Partners, but obviously it is obfuscated to protect privacy and
simplified to derive the relevant teaching points quickly.

The client had a system, we’ll call it MailScale, that allowed subscribed users to
email groups of other users with special notices, newsletters, and coupons (see Figure
26.1). The volume of emails sent in a single campaign could be very large, as many as
several hundred thousand recipients. These jobs were obviously done asynchronously
from the main site. When a subscribed user was finished creating or uploading the
email notice, he submitted the email job to process. Because processing tens of thou-
sands of emails can take several minutes, it really would be ridiculous to hold up the
user’s done page with a synchronous call while the job actually processes. So far, so

ptg5994185

SYNCHRONOUS VERSUS ASYNCHRONOUS CALLS 399

good; we have email batch jobs that are performed asynchronously from the main
user site.

The problem was that behind the main site there were schedulers that queued the
email jobs and parsed them out to available email servers when they became avail-
able. These schedulers were the service that received the email job from the main site
when submitted by the user. This was done synchronously: a user clicked Send, the
call was placed to the scheduler to receive the email job, and a confirmation was
returned that the job was received and queued. This makes sense that you don’t want
this submission to fail without the user knowing it and the call takes a couple hun-
dred milliseconds usually, so this is just a simple synchronous method invocation.
However, the engineer who made this decision did not know that the schedulers were
placing synchronous calls to the mail servers.

When a scheduler received a job, it queued it up until a mail server became avail-
able. Then, the scheduler would establish a synchronous stream of communication
between itself and the mail server to pass all the information about the job and mon-
itor the job while it completed. When all the mail servers were running under maxi-
mum capacity, and there were the proper number of schedulers for the number of
mail servers, everything worked fine. When mail slowed down because of an exces-
sive number of bounce back emails or an ISP mail server was slow receiving the out-
bound emails, the MailScale email servers could slow down and get backed up. This
in turn backed up the schedulers because they relied on a synchronous communica-
tion channel for monitoring the status of the jobs. When the schedulers slowed down
and became unresponsive, this backed up into the main site, making the application

Figure 26.1 MailScale Example

MailScale Site

Schedulers
Process Mail Job

Submit Mail Job

Dashed-Line Arrows Are
Synchronous Calls

Mail Servers

Internet

End Users

Database

ptg5994185

400 CHAPTER 26 ASYNCHRONOUS DESIGN FOR SCALE

servers trying to synchronously insert and schedule email jobs to slow down. The
entire site became slow and unresponsive, all because of a chain of synchronous calls
that no single person was aware of.

The fix for this problem was to break the synchronous communication into asyn-
chronous calls, preferably at both the app to scheduler and scheduler to email serv-
ers, but at least at one of those places. There are a few lessons to be learned here. The
first and most important is that synchronous calls can cause problems in your system
in unexpected places. One call can lead to another call to another, which can get very
complicated with all the interactions and multitude of independent code paths
through most systems, often referred to as the cyclomatic complexity of a program.
The next lesson that we can take from this is that engineers usually do not have the
overall architecture vision, and this can cause them to make decisions that daisy
chain processes together. This is the reason that architects and managers are critical
to help with designs, constantly teach engineers about the larger system, and oversee
implementations in an attempt to avoid these problems. The last lesson that we can
take from this example is the complexity in debugging problems of this nature.
Depending on the monitoring system, it is likely that the first alert comes from the
slowdown of the site and not the mail servers. If that occurs, it is natural that every-
one start looking at why the site is slowing down the mail servers instead of the other
way around. These problems can take a while to unravel and decipher.

Another reason to analyze and remove synchronous calls is the multiplicative
effect of failure. If you are old enough, you might remember the old Christmas tree
lights. These were strings of lights where if you had a single bulb out in the entire
string of lights, it caused every other bulb to be out. These lights were wired in series,
and should any single light fail, the entire string would fail. As a result, the “avail-
ability” of the string of lights was the product of the availability (1—the probability
of failure) of all the lights. If any light had a 99.999% availability or a 0.001%
chance of failure and there were 100 lights in the string, the theoretical availability of
the string of lights was 0.99999100 or 0.999, reduced from 5-nine availability to 3-nine
availability. In a year’s time, 5-nine availability, 99.999%, has just over five minutes
of downtime, bulbs out, whereas a 3-nine availability, 99.9%, has over 500 minutes
of downtime. This equates to increasing the chance of failure from 0.001% to 0.1%.
No wonder our parents hated putting up those lights!

Systems that rely upon each other for information in a series and in synchronous
fashion are subject to the same rates of failure as the Christmas tree lights of yore.
Synchronous calls cause the same types of problems as lights wired in series. If one
fails, it is going to cause problems within the line of communication back to the end
customer. The more calls we make, the higher the probability of failure. The higher
the probability of failure, the more likely it is that we hold open connections and
refuse future customer requests. The easiest fix to this is to make these calls asynchro-
nous and ensure that they have a chance to recover gracefully with timeouts should

ptg5994185

DEFINING STATE 401

they not receive responses in a timely fashion. If you’ve waited two seconds and a
response hasn’t come back, simply discard the request and return a friendly error
message to the customer.

This entire discussion of synchronous and asynchronous calls is one of the often
missed but necessary topics that must be discussed, debated, and taught to organiza-
tions. Skipping over this is asking for problems down the road when loads start to
grow, servers start reaching maximum capacity, or services get added. Adopting prin-
ciples, standards, and coding practices now will save a lot of downtime and wasted
resources on tracking down and fixing these problems in the future.

Defining State
Another oft ignored engineering topic is stateful versus stateless applications. An
application that uses state is called stateful and it relies on the current condition of
execution as a determinant of the next action to be performed. An application or pro-
tocol that doesn’t use state is referred to as stateless. Hyper Text Transfer Protocol
(HTTP) is a stateless protocol because it doesn’t need any information about the pre-
vious request to know everything necessary to fulfill the next request. An example of
the use of state would be in a monitoring program that first identifies that a query
was requested instead of a cache request and then, based on that information, it cal-
culates a duration time for the query. In a stateless implementation of the same pro-
gram, it would receive all the information that it required to calculate the duration at
the time of request. If it was a duration calculation for a query, this information
would be passed to it upon invocation.

You may recall from a computer science computational theory class the descrip-
tion of Mealy and Moore machines, which are known as state machines or finite
state machines. A state machine is an abstract model of states and actions that is used
to model behavior; these can be implemented in the real world in either hardware or
software. There are other ways to model or describe behavior of an application, but
the state machine is one of the most common.

Mealy Moore Machines
A Mealy machine is a finite state machine that generates output based on the input and the
current state of the machine. A Moore machine, on the other hand, is a finite state machine that
generates output based solely on the current state. A very simple example of a Moore machine
is a turn signal that alternates on and off. The output is the light being turned on or off and is
completely determined by the current state. If it is on, it gets turned off. If it is off, it gets turned on.

ptg5994185

402 CHAPTER 26 ASYNCHRONOUS DESIGN FOR SCALE

Another very simple example, this time of a Mealy machine, is a traffic signal. Assume that
the traffic signal has a switch to determine whether a car is present. The output is the traffic
light red, yellow, or green. The input is a car at the intersection waiting on the light. The output
is determined by the current state of the light as well as the input. If a car is waiting and the cur-
rent state is red, the signal gets turned to green. Obviously, these are both overly simplified
examples, but you get the point that there are different ways of modeling behavior using states,
inputs, outputs, and actions.

Given that finite state machines are one of the fundamental aspects of theoretical
computer science as mathematically modeled by automatons, it is no wonder why
this is a fundamental structure of our system designs. But why exactly do we see state
in almost all of our programs, and are there alternatives? The reason that most appli-
cations rely on state is that the languages used for Web based or Software as a Service
(SaaS) development are almost all imperative based. Imperative programming is the
use of statements to describe how to change the state of a program. Declarative pro-
gramming is the opposite and uses statements to describe what changes need to take
place. Procedural, structured, and object-oriented programming all are imperative-
based programming methodologies. Example languages include Pascal, C/C++ and
Java. Functional or logical programming is declarative and therefore does not make
use of the state of the program. Standard Query Language (SQL) is a common exam-
ple of a logical language that is stateless.

Now that we have explored the definition of state and understand why state is
fundamental to most of our systems, we can start to explore how this can cause prob-
lems when we need to scale our applications. Having an application run as a single
instance on a single server, the state of the machine is known and easy to manage. All
users run on the one server, so knowing that a particular user has logged in allows the
application to use this state of being logged in and whatever input arrives, such as
clicking a link, to determine what the resulting output should be. The complexity of
this comes when we begin to scale our application along the X-axis by adding serv-
ers. If a user arrives on one server for this request and on another server for the next
request, how would each machine know the current state of the user? If your applica-
tion is split along the Y-axis and the login service is running in a completely different
pool than the report service, how does each of these services know the state of the
other? These are all questions that arise when trying to scale applications that require
state. These are not insurmountable, but they do require some thought, hopefully
before you are in a bind with your current capacity and have to rush out a new server
or split the services.

One of the most common implementations of state is the user session. Just because
an application is stateful does not mean that it must have a user sessions. The oppo-
site is true also. An application or service that implements a session may do so as a

ptg5994185

DEFINING STATE 403

stateless manner; consider the stateless session beans in enterprise java beans. A user
session is an established communication between the client, typically the user’s
browser, and the server that gets maintained during the life of the session for that
user. There are lots of things that developers store in user sessions, perhaps the most
common is the fact that the user is logged in and has certain privileges. This obvi-
ously is important unless you want to continue validating the user’s authentication at
each page request. Other items typically stored in session include account attributes
such as preferences for first seen reports, layout, or default settings. Again, having
these retrieved once from the database and then kept with the user during the session
can be the most economical thing to do.

As we laid out in the previous paragraph, there are lots of things that you may
want to store in a user’s session, but storing this information can be problematic in
terms of increased complexity for scaling. It makes great sense to not have to con-
stantly communicate with the database to retrieve a user’s preferences as they bounce
around your site, but this improved performance makes it difficult when there is a
pool of servers handling user requests. Another complexity of keeping session is that
if you are not careful the amount of information stored there will become unwieldy.
Although not common, sometimes an individual user’s session data reaches or
exceeds hundreds of kilobytes. Of course, this is excessive, but we’ve seen clients fail
to manage their session data and the result is a Frankenstein’s monster in terms of
both size and complexity. Every engineer wants his information to be quickly and
easily available, so he sticks his data in the session. After you’ve stepped back and
looked at the size and the obvious problems of keeping all these user sessions in
memory or transmitting them back and forth between the user’s browser and the
server, this situation needs to be remedied quickly.

If you have managed to keep the user sessions to a reasonable size, what methods
are available for saving state or keeping sessions in environments with multiple serv-
ers? There are three basic approaches: avoid, centralize, and decentralize. Similar to
our approach with caching, the best way to solve a user session scaling issue is to
avoid having the issue. You can achieve this by either removing session data from
your application or making it stateless. The other way to achieve avoidance is to
make sure each user is only placed on a single server. This way, the session data can
remain in memory on the server because that user will always come back to that
server for requests; other users will go to other servers in the pool. You can accom-
plish this manually in the code by performing a z-axis split (modulus or lookup) and
put all users with usernames A through M on one server and all users with usernames
N through Z on another server. If DNS pushes a user with username jackal to the sec-
ond server, it just redirects her to the first server to process her request. Another solu-
tion to this is to use session cookies on the load balancer. These cookies assign all
users to a particular server for the duration of the session. This way, every request
that comes through from a particular user will land on the same server. Almost all

ptg5994185

404 CHAPTER 26 ASYNCHRONOUS DESIGN FOR SCALE

load balancer solutions offer some sort of session cookie that provides this function-
ality. There are several solutions for avoiding the problem all together.

Let’s assume that for some reason none of these solutions work. The next method
of solving the complexities of keeping session on a myriad of servers when scaling is
decentralization of session storage. The way that this can be accomplished is by stor-
ing session in a cookie on the user’s browser. There are many implementations of this,
such as serializing the session data and then storing all of it in a cookie. This session
data must be transferred back and forth, marshalled/unmarshalled, and manipulated
by the application, which can add up to lots of time required for this. Remember that
marshalling and unmarshalling are processes where the object is transformed into a
data format suitable for transmitting or storing and converted back again. Another
twist to this is to store a very little amount of information in the session cookie and
use it as a reference index to a list of objects in a session database or file that contain
all the session information about each user. This way, the transmission and marshal-
ling costs are minimized.

The third method of solving the session problem with scaling systems is centraliza-
tion. This is where all user session data is stored centrally in a cache system and all
Web or app servers can access his data. This way, if a user lands on Web server 1 for
the login and then on Web server 3 for a report, both servers can access the central
cache and see that the user is logged in and what that user’s preferences are. A cen-
tralized cache system such as memcached that we discussed in Chapter 25, Caching
for Performance and Scale, would work well in this situation for storing user session
data. Some systems have success using session databases, but the overhead of connec-
tions and queries seem too much when there are other solutions such as caches for
roughly the same cost in hardware and software. The issue to watch for with session
caching is that the cache hit ratio needs to be very high or the user experience will be
awful. If the cache expires a session because it doesn’t have enough room to keep all
the user sessions, the user who gets kicked out of cache will have to log back in. As
you can imagine, if this is happening 25% of the time, it is going to be extremely
annoying.

Three Solutions to Scaling with Sessions
There are three basic approaches to solving the complexities of scaling an application that
uses session data: avoidance, decentralization, and centralization.

• Avoidance

Remove session data completely

Modulus users to a particular server via the code

Stick users on a particular server per session with session cookies from the load balancer

ptg5994185

CONCLUSION 405

• Decentralization

Store session cookies with all information in the browser’s cookie.

Store session cookies as an index to session objects in a database or file system with all
the information stored there.

• Centralization

Store sessions in a centralized session cache like memcached.

Databases can be used as well but are not recommended.

There are many creative methods of solving the session complexities when scaling applica-
tions. Depending on the specific needs and parameters of your application, one or more of
these might work better for you than others.

Whether you decide to design your application to be stateful or stateless and
whether you use session data or not are decisions that must be made on an applica-
tion by application basis. In general, it is easier to scale applications that are stateless
and do not care about sessions. Although this may aid in scaling, it may be unrealistic
in the complexities that it causes for the application development. When you do
require the use of state—in particular, session state—consider how you are going to
scale your application in all three axes of the AKF Scale Cube before you need to do
so. Scrambling to figure out the easiest or quickest way to fix a session issue across
multiple servers might lead to poor long-term decisions. These on the spot architec-
tural decisions should be avoided as much as possible.

Conclusion
In this last chapter of Part III, we dealt with synchronous versus asynchronous calls.
This topic is often overlooked when developing services or products until it becomes
a noticeable inhibitor to scaling. We started our discussion exploring synchroniza-
tion. The process of synchronization refers to the use and coordination of simulta-
neously executed threads or processes that are part of an overall task. We defined
synchronization as the situation when two or more pieces of work must be done to
accomplish a task. One example of synchronization that we covered was a mutex or
mutual exclusion. Mutex was a process of protecting global resources from concur-
rently running processes, often accomplished through the use of semaphores.

After we covered synchronization, we tackled the topics of synchronous and asyn-
chronous calls. We discussed synchronous methods as ones that, when they are called,
execute, and when they finish, the calling method gets control back. This was con-
trasted with the asynchronous methods calls where the method is called to execute in

ptg5994185

406 CHAPTER 26 ASYNCHRONOUS DESIGN FOR SCALE

a new thread and it immediately returns control back to the thread that called it. The
design pattern that describes the asynchronous method call is known as the asynchro-
nous method invocation (AMI). With the general definitions under our belt, we con-
tinued with an analysis of why synchronous calls can become problematic for scaling.
We gave some examples of how an unsuspecting synchronous call can actually cause
severe problems across the entire system. Although we did not encourage the com-
plete elimination of synchronous calls, we did express the recommendation that you
thoroughly understand how to convert synchronous calls to asynchronous ones.
Additionally, we discussed why it is important to have individuals like architects and
managers overseeing the entire system design to help point out to engineers when
asynchronous calls could be warranted.

Another topic that we covered in this chapter was the use of state in an applica-
tion. We started with what is state within application development. We then dove
into a discussion in computational theory on finite state machines and concluded
with a distinction between imperative and declarative languages. We finished the
stateful versus stateless conversation with one of the most commonly used implemen-
tations of state: that being the session state. Session as we defined it was an estab-
lished communication between the client, typically the user’s browser, and the server,
that gets maintained during the life of the session for that user. We noted that keeping
track of session data can become laborious and complex, especially when dealing
with scaling an application on any of the axes from the AKF Scale Cube. We covered
three broad classes of solutions—avoidance, centralization, and decentralization—
and gave specific examples and alternatives for each.

The overall lesson that this chapter should impart on the reader is that there are
reasons that we see engineers use synchronous calls and write stateful applications,
some due to carefully considered reasons and others because of the nature of modern
computational theory and languages. The important point is that you should spend
the time up front discussing these so that there are more, carefully considered deci-
sions about the uses of these rather than finding yourself needing to scale an applica-
tion and finding out that there are designs that prevent you from doing so.

Key Points

• Synchronization is when two or more pieces of work must be done in order to
accomplish a task.

• Mutex is a synchronization method that defines how global resources are pro-
tected from concurrently running processes.

• Synchronous calls perform their action completely by the time the call returns.

• With an asynchronous method call, the method is called to execute in a new
thread and it immediately returns control back to the thread that called it.

ptg5994185

CONCLUSION 407

• The design pattern that describes the asynchronous method call is known as the
asynchronous design and alternatively as the asynchronous method invocation
(AMI).

• Synchronous calls can, if used excessively or incorrectly, cause undue burden on
the system and prevent it from scaling.

• Synchronous calls are simpler than asynchronous calls.

• The second part of the problem of synchronous calls is that developers typically
only see a small portion of the application.

• An application that uses state is called stateful and it relies on the current state
of execution as a determinant of the next action to be performed.

• An application or protocol that doesn’t use state is referred to as stateless.

• Hyper Text Transfer Protocol (HTTP) is a stateless protocol because it doesn’t
need any information about the previous request to know everything necessary
to fulfill the next request.

• A state machine is an abstract model of states and actions that is used to model
behavior; these can be implemented in the real world in either hardware or
software.

• The reason that most applications rely on state is that the languages used for
Web based or SaaS development are almost all imperative based.

• Imperative programming is the use of statements to describe how to change the
state of a program.

• Declarative programming is the opposite and uses statements to describe what
changes need to take place.

• One of the most common implementations of state is the user session.

• Choosing wisely between synchronous/asynchronous as well as stateful/stateless
is critical for scalable applications.

• Have discussions and make decisions early, when standards, practices, and prin-
ciples can be followed.

ptg5994185

This page intentionally left blank

ptg5994185

Part IV

Solving Other Issues
and Challenges

ptg5994185

This page intentionally left blank

ptg5994185

411

Chapter 27

Too Much Data

The skillful soldier does not raise a second levy, nor are his supply wagons loaded more than once.

—Sun Tzu

Hyper growth, or even slow steady growth over time, presents some unique scalabil-
ity problems with data retention and storage. We might log information relevant at
the time of a transaction, insert information relevant to a purchase, or keep track of
user account changes. We may log all customer contacts or allow users to store data
ranging from pictures to videos. This size, as we will discuss later, has significant cost
implications to our business and can negatively affect our ability to scale, or at least
scale cost effectively.

Time also affects the value of our data in most systems. Although not universally
true, in many systems, the value of data decreases over time. Old customer contact
information, although potentially valuable, probably isn’t as valuable as the most
recent contact information. Old photos and videos aren’t likely accessed as often and
old log messages that we’ve made probably aren’t as relevant to us today. So as our
costs increase with all of the additional data being stored, the value on a per data unit
stored decreases, presenting unique challenges for most businesses.

The size of data alone can present issues for your business. Assuming that not all
elements of the data are valuable to all requests or actions against that data, we need
to find ways to process and store this data quickly and cost effectively.

This chapter is all about data size or the amount of data that you store. How do
we handle it, process it, and keep our business from being overly burdened by it?
What data do we get rid of and how do we store data in a tiered fashion that allows
all data to be accretive to shareholder value?

ptg5994185

412 CHAPTER 27 TOO MUCH DATA

The Cost of Data
Data is costly. Your first response to this might be that the costs of mass storage
devices have decreased steadily over time and with the introduction of cloud storage
services, storage has become “nearly free.” But free and nearly free obviously aren’t
the same thing as a whole lot of something that is nearly free actually turns out to be
quite expensive. As the price of storage decreases over time, we tend to care less
about how much we use and as a result our usage typically increases significantly.
Prices might drop by 50% and rather than passing that 50% reduction in price off to
shareholders as a reduction in our cost of operations, we may very likely allow the
size of our storage to double because it is “cheap.”

But the initial cost of this storage is not the only cost you incur with every piece of
data you store on it. The more storage you have, the more storage management you
need. This might be the overhead of systems administrators to handle the data, or
capacity planners to plan for the growth, or maybe even software licenses that allow
you to “virtualize” your storage environment and manage it more easily. As your
storage grows, so does the complexity of managing that storage.

Furthermore, as your storage increases, the power and space costs of handling that
storage increases as well. You might argue here that the advent of Massive Array of
Idle Disks (MAID) has offset those costs, or maybe you are thinking of even less
costly solutions such as cloud storage services. We applaud you if you have put your
infrequently accessed data on such a storage infrastructure. But the fact of the matter
is that if you run one massive array, it will cost you less than 10 massive arrays, and
less storage in the cloud will cost you less than more storage in the cloud. In the case
of MAID solutions, those disks spin from time to time, and they take power just to
ensure that they are “functioning.” Furthermore, you either paid for the power distri-
bution units (power sockets) into which they are plugged or you pay a monthly or
annual fee in the case of a collocation provider to have the plug and power available.
Finally, you either paid to build an infrastructure capable of some maximum power
utilization likely driven by a percentage of those drives being active or you pay some-
one else (again in the case of collocation) to handle that for you. And of course, if
you aren’t using MAID drives, the cost of your power to run systems that are always
spinning is even higher. If you are using cloud services, you still need the staff and
processes to understand where that storage is located and to ensure that you can
properly access it.

And that’s not it! If this data resides in a database upon which you are performing
transactions for end users, each query of that data increases with the size of the data
being queried. We’re not talking about the cost of the physical storage at this point,
but rather the time to complete the query. Although it’s true that if you are querying
upon a properly balanced index that the time to query that data is not linear (it is

ptg5994185

THE COST OF DATA 413

more likely log2N where N is the number of elements), it nevertheless increases with
an increase in the size of the data. Sixteen elements in binary tree will not cost twice
as much to traverse and find an element as eight elements—but it will still cost more.
This increase in steps to traverse data elements takes more processor time per user
query, which in turn means that fewer things can be processed within any given
amount of time. Let’s say that we have eight elements and it takes us on average 1.5
steps to find our item with a query. Let’s then say that with 16 elements it takes us on
average two steps to find our item. This is a 33% increase in processing time to han-
dle 16 elements versus the eight. Although this seems like a good leverage scaling
method, it is still taking more time. It doesn’t just cost more time on the database.
This increase in time, even if performed asynchronously, is probably time that an app
server is waiting for the query to finish, the Web server is waiting for the app server
to return the data, and the time your customer is waiting for a page to load.

Let’s now consider our peak utilization time of say 1 to 2 PM in the afternoon. If
each query takes us 33% more time on average to complete and we want to run at
100% utilization during our peak traffic period, we might need as many as 33%
more systems to handle twice the data (16 elements) versus the original eight elements
if we do not want the user response time adversely impacted. In other words, we
either let each of the queries take 33% more time to complete and affect the user
experience as new queries get backed up waiting for longer running queries to com-
plete given constrained capacity, or we add capacity to try to limit the impact to the
users. At some point of course, without disaggregation of the data similar to the trick
we performed with search in Chapter 24, Splitting Databases for Scale, user experience
will begin to suffer. Although you can argue that faster processors, better caching,
and faster storage will help the user experience, none of these really affect the fact
that more data costs you more in processing time than less data with similar systems.

If you think that’s the end of your costs relative to storage, you are probably
wrong again. You undoubtedly back up your storage from time to time, potentially
to an offsite storage facility. As your data grows, the amount of work you do to per-
form a “full backup” grows as well. Not only that, but you do that work over and
over again with each full backup. Much of your data probably isn’t changing, but
you are nevertheless rewriting it time and again. Although incremental backups
(backing up only the changed data) helps with this concern, you more than likely per-
form a periodic full backup to forego the cost of needing to apply a multitude of
incremental backups to a single full backup that might be years old. If you did only a
single full and then relied on incremental backups alone to recover some section of
your storage infrastructure, your recovery time objective (the amount of time to
recover from a storage failure) would be long indeed!

Hopefully, we’ve disabused you of the notion that storage is free. Storage prices
may be falling, but they are only a portion of your true cost to store information,
data, and knowledge.

ptg5994185

414 CHAPTER 27 TOO MUCH DATA

The Six Costs of Data
As the amount of data that you store increases, the following costs increase:

• Storage costs to store the data

• People and software to manage the storage

• Power and space to make the storage work

• Capital to ensure the proper power infrastructure

• Processing power to traverse the data

• Backup time and costs

Data isn’t just about the physical storage, and sometimes the other costs identified here can
even eclipse the actual cost of storage.

The Value of Data and the Cost-Value Dilemma
All data is not created equally in terms of its value to our business. In many busi-
nesses, time negatively impacts the value that we can get from any specific data ele-
ment. For instance, old data in most data warehouses is less likely to be useful in
modeling business transactions. Old data regarding a given customer’s interaction
with your ecommerce platform might be useful to you, but it’s not likely as useful as
the most current data that you have. Detail call records for the phone company from
years ago aren’t as valuable to the users as new call records, and old banking transac-
tions from three years ago probably aren’t as useful as the ones that occurred in the
last couple of weeks. Old photos and videos might be referenced from time to time,
but they aren’t likely accessed as often as the most recent uploads. Although we
won’t argue that as a law older data is less valuable than new data, we believe it
holds true often enough in most businesses to call it generally true and directionally
correct.

If the value of data decreases over time and the cost of keeping it increases over
time, why do we so very often keep so darn much of it? We call this question the
Cost-Value Data Dilemma. In our experience, most companies simply do not pay
attention to the deteriorating value of data and the increasing cost of data retention
over time. Often, new or faster technologies allow us to store the same data for lower
cost or store more data for the same cost. As the per unit cost of storage drops, our
willingness to keep more of it increases.

Moreover, many companies point to the option value of data. How can you possi-
bly know what you might use that data for in the future? It might become at some

ptg5994185

THE VALUE OF DATA AND THE COST-VALUE DILEMMA 415

point in the company’s future incredibly valuable. Nearly everyone can point to a
case at some point in her career where we have said, “if only we had kept that data.”
We use that experience or set of experiences to drive decisions about all future data;
if we needed one or a few pieces of data once and didn’t have it, that becomes a rea-
son to keep all other data for all time.

Another common reason is strategic advantage. Very often, this reason is couched
as, “We keep this data because our competition doesn’t keep it.” That becomes rea-
son enough as it is most often decided by the general manager or CEO and a number
of surveys support its implementation. In fact, it might be a source of competitive
advantage, though our experience is that the value of keeping data infinitely is not as
much of an advantage as simply keeping it longer than your competition (but not
infinitely).

Ignoring the Cost-Value Data Dilemma, citing the option value of data or claiming
competitive advantage through infinite data retention, all potentially have dilutive
effects to shareholder value. If the real upside of the decisions (or lack of decisions in
the case of ignoring the dilemma) does not create more value than the cost, the deci-
sion is suboptimal. In the cases where legislation or regulation requires you to retain
data, such as emails or financial transactions, you have little choice but to comply
with the letter of the law. But in all other cases, it is possible to assign some real or
perceived value to the data and compare it to the costs. Consider the fact that the
value is likely to decrease over time and that the costs of data retention, although
going down on a per unit basis, will likely increase in aggregate value in hyper-
growth companies.

As a real-world analog, your company may be mature enough to associate a cer-
tain value and cost to a class of user. Business schools often spend a great deal of time
discussing the concept of unprofitable customers. An unprofitable customer is a cus-
tomer that costs you more to keep than you make off of them through their relation-
ship life. Ideally, you do not want to service or keep your unprofitable customers
assuming that you have correctly identified them. For instance, a single customer may
be unprofitable to you on a standalone basis, but serves to bring in several profitable
customers whom you might not have without that single unprofitable relationship.
The science and art of determining and pruning unprofitable customers is more diffi-
cult in some businesses than others.

The same concept of profitable and unprofitable customers nevertheless applies to
your data. In nearly any environment, with enough investigation, you will likely find
data that adds shareholder value and data that is dilutive to shareholder value as the
cost of retaining that data on its existing storage solution is greater than the value
that it creates. Just as we may have customers that are more costly to service than
their total value to the company (even when considering the profitable customers that
they bring along), so do we have unprofitable and value destroying data.

ptg5994185

416 CHAPTER 27 TOO MUCH DATA

Making Data Profitable
The business and technology approach for what data to keep and how to keep it is
pretty straightforward: architect storage solutions that allow you to keep all data that
is profitable for your business, or is likely to be accretive to shareholder value, and
remove the rest. Let’s look at the most common reasons driving data bloat and then
examine ways to match our data storage costs to the value of the data contained
within that storage.

Option Value
All options have some value to us. The value may be determined by what we believe
the probability is that we will ultimately execute the option to our personal benefit.
This may be a probabilistic equation that calculates both the possibility that the
option will be executed and the likely benefit of the value of executing the option.
Clearly, we cannot claim that the option value is “infinite;” in so doing, we would be
saying that the option will produce an infinite value to our shareholders. If that were
the case, we should simply disclose our wealth of information and watch our share
price rise sharply. What do you think the chance of that is? The answer is that if you
were to make such a disclosure, your share price probably wouldn’t move noticeably;
at least it wouldn’t move noticeably as a result of your data disclosure.

The option value of our data then is some noninfinite number. We should start
asking ourselves questions like, How often have we used data in the past to make a
valuable decision? What was the age of the data used in that decision? What was the
value that we ultimately created versus the cost of maintaining that data? Was the net
result profitable?

Remember, we aren’t talking about flushing all data or advocating the removal of
all data from your systems. Your platform probably wouldn’t work if it didn’t have
some meaningful data in it. We are simply indicating that you should evaluate and
question your data retention to ensure that all of the data you are keeping is in fact
valuable and, as we will discuss later in this chapter, that the solution for storing that
data is priced and architected with the data value in mind. If you haven’t made use of
the data in the past to make better decisions, there is a good chance that you’re not
going to start using all of it tomorrow. Even when you start using your data, you
aren’t likely going to use all of it; as such, you should decide which data has real
value, which data has value but should be stored in a storage solution of lower cost,
and which data can be removed.

Strategic Competitive Differentiation
This is one of our favorite reasons to keep data. It’s the easiest to claim and the hardest
to disprove. The general thought is that you are better than all of your competitors

ptg5994185

MAKING DATA PROFITABLE 417

because they do not keep all of their data. You make better decisions, your customers
have access to more and better data, and as a result you will win in your market seg-
ment. You probably even have market research that shows that your approach is
appreciated by your clients.

Let’s address the market research first. What do you think the answer will be if
you ask your customers if they value having all of their “widgets” available for eter-
nity? Depending upon your industry, they are probably going to respond favorably.
There are at least a couple of reasons for this. The first is that they already have a bit
of conformational bias working by using your platform over a competitor’s and
you’ve just given them a reason to claim why they use your platform. Another reason
is that you haven’t presented a cost to them, at least not in the question, of having the
data infinitely. As such, with no associated cost, they are probably happy with the
near infinite storage.

On the other hand, what if we asked questions about what someone would be
willing to pay for near infinite storage? Our answers would likely be very different
indeed! How about if we were to ask why our customers use our product rather than
our competitors and forced them to write an answer in? Our guess is that you may
find out that the first thing that comes to mind is not the infinite storage.

The right question here is to determine what the incremental value of “infinite”
data storage is over, say, 10 years, or t years. What about the difference between 20
years and 10 years? Our guess is that as the retention period increases, each year adds
less value than the previous year. Year 19, for instance, is probably more valuable
than year 20, and year 1 is probably more valuable than year 2. As our years
increase, the value starts to dwindle to move to zero even as our costs increase relative
to the amount of storage. It’s starting to appear to us that the company that constrains
its storage is very likely going to have a competitive advantage over the company that
does not constrain storage. What is that advantage? Greater profitability!

Of course, the preceding comparisons all assume that storage is similarly priced,
that all storage solutions are equivalent, and that all types of access require the same
service levels for response time, and so on. After we recognize that some data has
immense value, some data has lower value, some data “might have value,” and some
data has no value at all, we can determine a tiered cost storage solution for data with
value and remove the data with very low or no value. We can also transform and
compact the data to make sure that we retain most of the value at significantly lower
costs.

Cost Justify the Solution (Tiered Storage Solutions)
Maybe you have some data that has meaningful business value, but where the cost of
storing that data exceeds the value or expected value of the data. This is the time to
consider a tiered storage solution. Many young companies settle on a certain type of

ptg5994185

418 CHAPTER 27 TOO MUCH DATA

storage based on the primary needs of their transaction processing systems. The
result of this decision is that just about everything else relies upon this (typically) pre-
mium storage solution. Not absolutely everything needs the redundancy, high avail-
ability, and response of your primary applications. For your lower value, but
nevertheless valuable, services and needs, consider moving to tiered storage solutions.

For instance, infrequently accessed data that does not necessarily require immedi-
ate response times might be provisioned on the aforementioned massive array of idle
disks. Or maybe you just move some of this data to less expensive and slower
response network attached storage systems. Potentially, you decide to simply split up
your architecture to serve some of these data needs from a y-axis split that addresses
the function of “serve archived data.” To conserve processing power, maybe the
requests to “serve archived data” are made in an asynchronous fashion and emailed
after the results are compiled.

You may decide to take all old emails on tape storage for the period of time man-
dated by current legislation or regulation within your industry. Perhaps you take
infrequently accessed customer data and put it on cloud storage systems. Data
accessed sometimes (where sometimes is more than infrequently but less than fre-
quently) might go to MAID farms. Data that is frequently accessed but has low cor-
porate value might go onto inexpensive slower speed devices and frequently accessed
data of high value might go on your “tier 1” high performance access systems.

Let’s return to our example of AllScale and examine how it approaches the prob-
lem within its human resource management (HRM) system. The HRM solution
allows all correspondence on HR matters to be stored within the company’s plat-
form. Some correspondence is searched frequently, and that correspondence tends to
be for events happening within the last couple of months. Returns from search results
over several months are seldom reviewed and if an email is older than two years, it is
almost never viewed. Furthermore, those correspondences are still held within the
customer’s email systems and are kept by the customer for the period of its user
agreements and/or regulatory requirements.

The team decides on a multitier architecture for all storage. Common searches will
be precalculated and cached within the platform. The data associated with these
searches will be stored in a tiered fashion with the most relevant search results being
on high speed local or storage area network storage devices. Less frequently accessed
data will be moved progressively to cheaper and slower storage including MAID
devices and cloud storage for very infrequently accessed solutions. Very old data sim-
ply has records of where the data can be found on the customer managed mail sys-
tem, and the actual correspondence itself is first archived to tape and permanently
purged after no more than five years.

The solution here is to match the cost or cost justify the solution with the value
that it creates. Not every system or piece of data offers the same value to the business.
We typically pay our employees based on their merit or value to the business, so why

ptg5994185

MAKING DATA PROFITABLE 419

shouldn’t we approach system design in the same fashion? If there is some, but not
much, value in some group of data, simply build the system to support the value.
This approach does have some downfalls, such as the requirement that the operations
staff will now need to support and maintain multiple storage tiers, but as long as
those additional costs are evaluated properly, the tiered storage solution works well
for many companies.

Transform the Data
Often, the data we keep for transactional purposes simply isn’t in a form that is con-
sumable or meaningful for our other needs. As a result, we end up processing the
data in near real time to make it meaningful to corporate decision making or to make
it useful to our product and platform for a better customer experience.

As an example of our former case, where we are concerned about making good
business decisions, consider the needs of a marketing organization concerned about
individual consumer behavior. Our marketing organization might be interested in
demographic analysis of purchases over time of any of a number of our products.
Keeping the exact records of every purchase might be the most flexible approach to
fulfill their needs, but the marketing organization is probably comfortable with being
able to match buyer purchases of products by month. All of a sudden, our data
requirements have shrunk because many of our customers are repeat purchasers and
we can collapse individual transaction records into records indicating the buyer, the
items purchased, and the month in which those items were purchased. Now, we
might keep online transaction details for four months to facilitate the most recent
quarterly reporting needs, and then roll up those transactions into summary transac-
tions by individual for marketing and by internal department for finance. Our data
storage requirements might go down by as much as 50%. Furthermore, as we would
otherwise perform this summarization during the time of the marketing request, we
have reduced the response time of the application generating this data (it is now pre-
populated), and as a result increased the efficiency of our marketing organization.

As an example of our latter case, we might want to make product recommenda-
tions to our customers while they are interacting with our platform. These product
recommendations might give insight as to what other customers bought who have
viewed or purchased similar items. It goes without saying that scanning all purchases
to develop such a customer affinity to product map would likely be too complex to
calculate and present while someone is attempting to shop. For this reason alone, we
would want to precalculate the product and customer relationships. However, such
calculation also reduces our need to store the details of all transactions over time. As
a result in developing our precalculated affinity map, we have not only reduced
response times for our customers, we have also reduced some of our long-term data
retention needs.

ptg5994185

420 CHAPTER 27 TOO MUCH DATA

The principles on which data transformation are based are couched within a pro-
cess data warehousing experts refer to as Extract, Transform, and Load (ETL). It is
beyond the scope of this book to even attempt to scratch the surface of data ware-
housing, but the concepts inherent to ETL can help obviate some of the need for storing
larger amounts of data within your transactional systems. Ideally, these ETL pro-
cesses, besides removing the data from your primary transaction systems, also reduce
your overall storage needs as compared to keeping the raw data over similar time
periods. Condensing expensive detailed records into summary tables and fact tables
focused on answering specific questions helps save space and saves processing time.

Handling Large Amounts of Data
Having spent several pages discussing the need to match storage cost with data value
and eliminating data of very low value, let’s now turn our attention to a more excit-
ing problem: What do we do when our data is valuable but there is just way too
much of it to process efficiently?

If you’ve ever had an algebra class, and chances are you have, you probably
already know the answer to this question. Remember your algebra or calculus
teacher or professor reminding you to simplify equations before attempting to solve
them? Well, the same advice that would make you successful in solving a math problem
will make you successful in solving problems associated with large amounts of data.

If the data is easily segmented into resources or can be easily associated with ser-
vices, we need only apply the concepts we learned in Chapters 22 through 24. The
AKF Scale Cube will solve your needs for these situations. But how about the case
when an entire data set needs to be traversed to produce a single answer, such as the
count by word within all of the works contained within the Library of Congress, or
potentially an inventory count within a very large and complex inventory system? If
we want to get through this work quickly, we are going to need to find a way to
distribute the work efficiently. This distribution of work might take the form of a
multiple pass system where the first pass analyzes (or maps) the work and the second
pass calculates (or reduces) the work. Google introduced a software framework to
support distributed processing of such large datasets called MapReduce.1 The follow-
ing is a description of that model and an example of how it can be applied to large
problems.

At a high level, MapReduce has a Map function and a Reduce function. The Map
function takes as its input a key-value pair and produces an intermediate key-value

1. Dean, Jeffrey and Sanjay Ghernawat. “Map Reduce: Simplified Data Processing on Large
Clusters.” http://labs.google.com/papers/mapreduce.html.

ptg5994185

HANDLING LARGE AMOUNTS OF DATA 421

pair. This might not immediately seem useful to the layperson, but the intent is that
this is a distributed process creating useful intermediate information for another dis-
tributed process to compile. The input key might be the name of a document, or
remembering that this is a document, the name, or pointer to a piece of a document.
The value could be content consisting of all the words within the document itself. In
our distributed inventory system, the key might be the inventory location and the
value all of the names of inventory within that location with one name for each piece
and quantity of inventory. For instance, if we had five screws and two nails, the value
would be screw, screw, screw, screw, screw, and nail, nail.

The canonical form of Map looks like this in pseudocode:2

map(String input_key, String input_value):
// input_key: document name or inventory location name
//input_value: document contents or inventory contents
For each word w (or part p) in input_value:
 EmitIntermediate(w, “1”) (or EmitIntermediate(p,”1”));

We’ve identified parenthetically that this pseudocode could work for both the
word count example (also given by Google) and the distributed parts inventory
example. Only one or the other would exist in reality for your application and you
would eliminate the parenthesis. The following input_key and input_values and out-
put keys and values are presented in Figure 27.1. The first example is a set of phrases
including the word “red” with which we are fond, and a small set of inventories for
different locations.

2. Dean, Jeffrey and Sanjay Ghernawat. “Map Reduce: Simplified Data Processing on Large
Clusters.” http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0004.html.

Figure 27.1 Input and Output Key-Value Pairs for Three Documents

Red Hair
Red Shoes
Red Dress

Blonde Hair
Yellow Shoes
Yellow Dress

Red Fence
Blue Dress
Black Shoes

Document: Red Document: Yellow Document: Other

Outputs:

Red 1, Hair 1, Red 1,
Shoes 1, Red 1, Dress 1

Blonde 1, Hair 1, Yellow 1,
Shoes 1, Yellow 1, Dress 1

Red 1, Fence 1, Blue 1,
Dress 1, Black 1, Shoes 1

ptg5994185

422 CHAPTER 27 TOO MUCH DATA

Note here how Map takes each of the documents and simply emits each word with
a count of 1 as we move through the document. For the sake of speed, we had a sep-
arate Map process working on each of the documents. Figure 27.2 shows the output
of this process.

Again, we have taken each of our initial key-value pairs with the key being the
location of the inventory and the value being the individual components listed with
one listing for each occurrence of that component per location. The output is the
name of the component and a value of 1 per each component listing. Again, we used
separate Map processes.

What is the value of such a construct? We can now feed these key-value pairs into
a distributed process that will combine them and create an ordered result of key-
value pairs, where the value is the number of items that we have of each type (either a
word or a part). The trick in our distributed system is to ensure that each key gets
routed to one and only one collector or reducer. We need this affinity to a reducer (or
tier of reducers as we will discuss in a minute) to ensure an accurate account. If the
part screw is going to go to reducer 1, all instances of screw must go to reducer 1.
Let’s see how the Google reduce function works in pseudocode:3

reduce(String input_key, Iterator intermediate_values):
// output_key: a word or a part name
//output_values: count
For each v in intermediate_values:
 Result += ParseInt(v);
 Emit(AsString(result));

Figure 27.2 Input and Output Key-Value Pairs for Inventory in Different Locations

3. Dean, Jeffrey and Sanjay Ghernawat. “Map Reduce: Simplified Data Processing on Large
Clusters.” See slide 4 at http://labs.google.com/papers/mapreduce-osdi04-slides/.

Outputs:

Nail, Screw, Pin, Nail Screw, Nail, Pin, Pin Pin, Screw, Nail,
Screw

Location: San Francisco Location: New York Location: Phoenix

Nail 1, Screw 1, Pin 1, Nail 1 Screw 1, Nail 1, Pin 1, Pin 1 Pin 1, Screw 1, Nail 1, Screw 1

ptg5994185

CONCLUSION 423

For our reduce function to work, we need to add a program to group the words or
parts and append the values for each in a list. This is a rather trivial program that will
sort and group the functions by key. This too could be distributed assuming that the
key-value pairs emitted from the Map function are sent to the same function intended
to sort and group and then submit to the reduce function. Passing over the trivial func-
tion of sorting and grouping, which is the subject of many computer science under-
graduate text books, we can display our reduce function as in Figure 27.3 for our
inventory system (we will leave the word count output as an exercise for our readers).

Multiple layers of sorting, grouping, and reducing can be employed to help speed
along the process. For instance, if there were 50-map systems, they could send their
results to 50 sorters, which could in turn send their results to 25 sorters and grou-
pers, and so on until we had a single sorted and grouped list of parts and value lists
to send to our multiple reducer functions. The system is highly scalable in terms of
the amount of processors and processing power you can throw at it. We highly rec-
ommend that you read the Google Labs MapReduce documentation.

Conclusion
This chapter discussed what to do with large datasets. On one end of the spectrum,
we have the paradoxical relationship of cost and value for data. As data ages and
data sizes grow, the cost to the organization increases. As this data ages in most com-
panies, its value to the company and platform typically decreases. The reasons for
clinging to data past its valuable life to a company include ignorance, perceived
option value, and perceived strategic competitive differentiation. Our remedies for
perceived option value and perceived competitive differentiation are based in applying

Figure 27.3 Reduce Output for Inventory System

Nail: 1, 1, 1, 1 Screw: 1, 1, 1, 1 Pin: 1, 1, 1, 1

Inputs to Sort and Group:

Nail 1, Screw 1, Pin 1, Nail 1 Screw 1, Nail 1, Pin 1, Pin 1 Pin 1, Screw 1, Nail 1, Screw 1

Sort and Group Outputs/Inputs
to Reduce:

Reduce Output:

Nail: 4 Screw: 4 Pin: 4

ptg5994185

424 CHAPTER 27 TOO MUCH DATA

real dollar values to these perceived values in order to properly justify the existence
(and the cost) of the data.

After we’ve identified the value and costs of data, we proposed implementing
tiered storage solutions that match the cost and access speed of data to the value that
it creates for shareholders. On one end of our tiered strategy are high-end, very fast
storage devices, and on the opposite end is the deletion or purging of low value data.
Data transformation and summarization can help reduce the cost and therefore
increase the profitability of data where the reduction in size does not significantly
change the value of the data.

Finally, we addressed one approach to parallelize the processing of very large
datasets. Google’s MapReduce approach is widely adopted by many industries as a
standard for how to process large datasets quickly in a distributed fashion.

Key Points

• Data is costly and the cost of data consists of more than just the cost of the stor-
age itself. People, power, capital costs of power infrastructure, processing
power, and backup time and costs all impact the cost of data.

• The value of data in most companies tends to decrease over time.

• Companies often keep too much data due to ignorance, perceived option value,
and perceived competitive differentiation.

• Perceived option value and perceived competitive differentiation should include
values and time limits on data to properly determine if the data is accretive or
dilutive to shareholder value.

• Eliminate data that is dilutive to shareholder value, or find alternative storage
approaches to make the data accretive. Tiered storage strategies and data trans-
formation are all methods of cost justifying data.

• Applying concepts of distributed computing to large datasets helps us process
those datasets quickly. Google’s MapReduce is a good example of a software
framework to act upon large datasets.

ptg5994185

425

Chapter 28

Clouds and Grids

We cannot enter into alliances until we are acquainted with the designs of our neighbors.

—Sun Tzu

At this point in the book, we need to discuss one of perhaps the most important
advances in application scaling that we have seen since hardware started to become
commoditized. This most important advancement is the advent of cloud computing.
Although most people think of this as a very new technology innovation, the reality is
that this has taken well over a decade to become a reality. In this chapter, we are
going to cover the history that led up to the launch of cloud computing, provide an
overview of both cloud and grid computing, discuss the common characteristics of
clouds, and finish the chapter with a comparison of grid and cloud computing.

Cloud computing is important to scalability because it offers the promise of cheap,
on-demand storage and compute capacity. As we will discuss in this chapter, this has
many advantages, and a few disadvantages, to physical hardware scaling. Grid com-
puting, similar to cloud computing, although utilized differently, offers a method of
scaling for computationally intensive applications. To be well versed in scaling appli-
cations, you must understand these concepts and how they could be implemented to
scale an application or service.

Although the development of the technology and concepts for cloud computing
have been in process for many years, the discussion and utilization of it in main-
stream technology organizations is still relatively new. Because of this, at times, even
definitions of the subject are not always completely agreed upon. We have been for-
tunate to be around the cloud environment through our clients for quite some time
and have seen many players become involved in this field. As with our discussion on
technology agnostic designs in Chapter 20, Designing for Any Technology, we believe
that it is the architecture and not the technology that is responsible for a product’s
capability to scale. As such, we consider clouds and grids as architectural compo-
nents and not as a technology. The particular vendor or type of service is the equiva-
lent of a type of technology chosen to implement the architecture. We will cover some

ptg5994185

426 CHAPTER 28 CLOUDS AND GRIDS

of the technology components so that you have examples and can become familiar
with them, but we will focus primarily on the architecture.

History and Definitions
The term cloud has been around for decades. No one is exactly sure when it was first
used in relation to technology, but it has been around at least as far back as when net-
work diagrams came into vogue. A network diagram is a graphic representation of the
physical or logic layout of a network, such as a telecommunications, routing, or neural.
The cloud on network diagrams was used to represent unspecified networks. In the
early 1990s, cloud became a term for ATM networks. Asynchronous Transfer Mode is
a packet switching protocol that breaks data into cells and provides OSI layer 2, the
data link. ATM was the core protocol used on the public switched phone network.
As the World Wide Web began in 1991 as a CERN project built on top of the Internet,
the cloud began to be used as a term and symbol for the underlying infrastructure.

OSI Model
The Open Systems Interconnection Reference Model, or OSI Model, is a descriptive abstrac-
tion of the layered model of network architecture. It is used to describe the different compo-
nents of the network and how they are interrelated. There are seven layers, and starting from
the lowest layer, they are as follows:

1. Physical. This layer contains the physical devices such as cards, cables, hubs, and repeaters.

2. Data Link. This layer is responsible for the functional transmission of data between
devices and includes protocols such as Ethernet.

3. Network. This layer provides the switching and routing functionality and includes proto-
cols such as Internet Protocol (IP).

4. Transport. This layer provides the reliability by keeping track of transmission, resending if
necessary. It includes the Transmission Control Protocol (TCP).

5. Session. This layer controls the communication by establishing, managing, and terminat-
ing connections between computers such as with sockets.

6. Presentation. This layer provides data presentation and encryption such as with Secure
Sockets Layer (SSL).

7. Application. This layer interacts between the software application and the network and
includes implementation such as Hyper Text Transfer Protocol (HTTP).

ptg5994185

HISTORY AND DEFINITIONS 427

Cloud computing can trace its lineage through the application service providers
(ASP) of the 1990s, which were the embodiment of the concept of outsourcing com-
puter services. This later became known as Software as a Service (SaaS). The ASP
model is an indirect descendant of the service bureaus of the 1960s and 1970s, which
were an attempt at fulfilling the vision established by John McCarthy in his 1961 speech
at MIT.1 John McCarthy is the inventor of the programming language Lisp, recipient
of the 1971 Turing Award, and credited with coining the term Artificial Intelligence.2

The idea of the modern cloud concept was extended in October 2001 by IBM in
its Autonomic Computing Manifesto.3 The essence of the paper was that the infor-
mation technology infrastructure was becoming too complex and that it could col-
lapse under its own weight if the management was not automated. Around this time,
the concept of Software as a Service (SaaS) started to grow. SaaS is a software model
whereby people pay for software based on usage and demand rather than upfront
and recurring license fees. Another confluent event occurred around this time at the
beginning of the 21st century, and this was the dot com bubble. As many tech startups
were burning through capital and shutting down, those that were ultimately going to
survive and thrive were tightening their belts on capital and operational expendi-
tures. Amazon.com was one such company that began modernizing its data centers
using early concepts of virtualization over massive amounts of commodity hardware.
Having lots of unused capacity most of the time, to deal with peak usage, Amazon
decided to sell this as a service.4

Out of the offering of spare capacity as a service came the concept and label of
Infrastructure as a Service (IaaS). This term started to appear around 2006 and typi-
cally refers to offerings of computer infrastructure such as servers, storage, networks,
and bandwidth as a service instead of by subscription or contract. This method was a
pay-as-you-use model for what previously required either capital expenditure to pur-
chase outright, long-term leases, or month-to-month subscriptions for partial tenancy
of physical hardware.

SaaS, PaaS, IaaS, and EaaS
All these concepts of Blah as a Service have common characteristics. Among these are paying
for what you use instead of buying it up front, scaling the amount you need without prior notice,
and multiple tenancy or having many different people use the same service.

1. According to Wikipedia, http://en.wikipedia.org/wiki/Application_service_provider.

2. John McCarthy’s home page at Stanford University, http://www-formal.stanford.edu/jmc/.

3. The original manifesto can be found at http://www.research.ibm.com/autonomic/manifesto/.

4. BusinessWeek article. Nov 13, 2006. http://www.businessweek.com/magazine/content/
06_46/b4009001.htm.

ptg5994185

428 CHAPTER 28 CLOUDS AND GRIDS

• Software as a Service (SaaS). This was the original Blah as a Service term and started
with software such as customer relationship management (CRM) software as some of
the earliest offerings. Almost any form of software can be offered in this manner and it
can be done either over the Web or via download.

• Platform as a Service (PaaS). This model provides all the required components for devel-
oping and deploying Web applications and services. These components include workflow
management, integrated development environments, testing, deployment, and hosting.

• Infrastructure as a Service (IaaS). This is the concept of offering computing infrastructure
such as servers, storage, network, and bandwidth for use as necessary by clients. Ama-
zon’s EC2 was one of the earliest offerings of this service.

• Everything as a Service (XaaS or *aaS). This is the idea of being able to retrieve on
demand small components or modules of software that can be pieced together to provide
a new Web based application or service. Components could include retail, payments,
search, security, and communications.

As these concepts evolve, they will continue to refine their definitions, and subcategories
are sure to develop.

From Infrastructure as a Service, we have seen an explosion of Blah as a Service
offerings. (Blah meaning feel free to fill in the blank with almost any word you can imag-
ine.) We even have Everything as a Service (EaaS) now. All of these terms actually do
share some common characteristics such as a purchasing model of pay as you go or
pay as you use it, on demand scalability of the amount that you use, and the concept
that there will be many people or multiple tenants using the service simultaneously.

Grid Computing
Grid computing as a concept has been around for almost two decades. It is used to
describe the use of two or more computers processing individual parts of an overall
task. The tasks that are most well structured for these types of solutions are ones that
are computationally intensive and divisible into smaller tasks. Ian Foster and Carl
Kesselman are credited as the fathers of the grid from their book The Grid: Blueprint
for a New Computing Infrastructure published in 1998 by Morgan Kaufmann Pub-
lishers.5 These two individuals along with others also were instrumental in develop-
ing Globus Toolkit. It is an open source product by Globus Alliance and is considered
the de facto standard for building grids.

For tasks and jobs to be performed in a grid environment, software must be used
to orchestrate the division of labor, monitor the computation of subtasks, and aggre-

5. As declared in the April 2004 issue of the University of Chicago Magazine. http://maga-
zine.uchicago.edu/0404/features/index.shtml.

ptg5994185

HISTORY AND DEFINITIONS 429

gation of completed jobs. This type of processing can be thought of as parallel pro-
cessing that occurs on a network distributed basis. Before the concept of grid
computing, the only way to achieve this scale of parallel processing was on a main-
frame computer system. Modern grids are often composed of many thousands of
nodes across public or private networks of computers.

Public networks range from volunteers on the Internet allowing the use of their
computers’ unused CPU clock cycles to pay for usage grids, such as the Sun Grid that was
launched in February 2005. Private networks include dedicated farms of small com-
modity servers used with grid middleware to allow for parallel computing. Other private
networks include corporate offices where personal computers are used after hours for
parallel computing. One of the most well known public network examples of grid
computing is the SETI@home project. This project uses computers connected to the
Internet in the Search for Extraterrestrial Intelligence (SETI). Individuals can participate
by running a program on their personal computers that downloads and analyzes radio
telescope data. It then sends the results back to the central system that aggregates com-
pleted jobs. This type of public network grid computing is known as CPU scavenging.

As we mentioned previously, there are several middleware providers for building
grid systems. One of the earliest is the Globus Toolkit, but others include the Sun
Grid Engine and UNICORE (UNiform Interface to COmputing REsources). Many of
these middleware products are used in university, governmental, and industrial appli-
cations to create grids.

With all this processing power, how fast can our applications run? Similar in con-
cept to Brooks’ Law from the book The Mythical Man-Month by Frederick P.
Brooks, Jr., applications can only be divided so many times. Although adding more
processors to the job probably won’t make it actually slow down, as projects do
when adding engineers late within a project, it does nothing to accomplish the job
faster. There is a law know as Amdahl’s Law developed by Gene Amdahl in 1967
that states that the portion of a program that cannot be parallelized will limit the
total speed up from parallelization.6 Stated another way, the nonsequential parts of a
program benefit from the parallelization, but the rest of the program does not. There
actually was no formula provided in the original paper, but it can be approximated,
as shown in Figure 28.1, by the total improvement, a factor of the original run time,
equaling the inverse of the sequential parts of the program (s).

6. Amdahl, G.M. “Validity of the single-processor approach to achieving large scale comput-
ing capabilities.” In AFIPS Conference Proceedings vol. 30 (Atlantic City, N.J., Apr. 18-
20). AFIPS Press, Reston, Va., 1967, pp. 483–485.

Figure 28.1 Amdahl’s Law

Improvement
s

= 1

ptg5994185

430 CHAPTER 28 CLOUDS AND GRIDS

If 75% of the program can be parallelized, leaving 25% that must be executed
sequentially, we should see approximately a 4 increase in the total runtime of the
application by running it in a parallel computing environment.

As you might expect, there are problems associated with running applications and
programs on grid systems. This is especially true on public networks, but can also be
problematic on private ones. One of the biggest problems is how to handle the data
that is required by the program to execute. Storage management of data, security of
the data, and transmission of the data are all areas of concern when dealing with net-
work distributed parallel processing or grid computing. Usually, the amount of data
that is sent along with the executable program is small enough that by itself it is nei-
ther valuable nor sensitive. Nevertheless, the perceived risk of sending data to com-
puter systems that you do not control can be a tough sell, especially when processing
sensitive information such as Personally Identifiable Information (PII).

Public Versus Private Clouds
Some of the largest names in technology are providing or have plans to provide cloud
computing services. These companies include Amazon.com Inc., Google Inc.,
Hewlett-Packard Company, and Microsoft Corporation. These are publicly available
clouds, of which anyone from individuals to other corporations can take advantage.
However, if you are interested in running your application in a cloud environment
but have concerns about a public cloud, there is the possibility of running a private
cloud. By private cloud, we mean implementing a cloud on your own hardware in
your own secure environment. With more open source cloud solutions becoming
available, such as Eucalyptus, this is becoming a realistic solution. There are obvi-
ously pros and cons with running your application in a cloud environment. We are
going to talk more about these in detail in Chapter 29, Soaring in the Clouds. Some
of the benefits and drawbacks are present regardless of whether it is a private or pub-
lic cloud. Some of the drawbacks are directly related to the fact that it is a public
cloud. Similar to the problem with data security in grid computing, even if the public
cloud is very secure, there is a perception that the data is not as protected as it would
be inside of your network. One of the pros of a cloud is that you can allocate just the
right amount of memory, CPU, and disk space to a particular application taking bet-
ter advantage and improving utilization of the hardware. So, if you want to improve
your hardware utilization and not have to deal with security concerns of a public
cloud, you may want to consider running your own private cloud.

Characteristics and Architecture of Clouds
At this point in the evolution of the cloud computing concept, there are some basic
characteristics that all cloud implementations share. These characteristics have been

ptg5994185

CHARACTERISTICS AND ARCHITECTURE OF CLOUDS 431

mentioned briefly before in this chapter, but it is time to understand them in more
detail. There are four general characteristics that we find in almost all public cloud
implementations, some of which do not apply to private clouds. These characteristics
are pay by usage, scale on demand, multiple tenants, and virtualization. Obviously,
scaling on demand is an important characteristic when viewing the use of clouds
from a scalability perspective, but don’t dismiss the other characteristics as unimpor-
tant. For cash strapped startup companies paying as you go instead of purchasing
hardware or signing multiyear contracts, this could be the difference between surviv-
ing long enough to be successful or not.

Pay By Usage
The idea of pay as you go or pay according to your usage is common of Software as a
Service (SaaS) and has been adopted by the cloud computing services. Before cloud
computing was available, in order to grow your application and have enough capac-
ity to scale, you had limited options. If you were a large enough organization, you
probably had servers that you owned or leased that were hosted in a data center or
collocation facility. This model requires lots of upfront capital expenditure as well as
a pretty healthy monthly expense to continue paying bandwidth, power, space, and
cooling costs. An alternative was a hosting service that provided the hardware for
you, and you paid them on either a long-term lease or high monthly cost for the use
of the hardware. Both models are reasonable and have benefits as well as drawbacks.
Many companies still use one or both of these models and will likely do so for many
years to come. The cloud offers another alternative. Instead of long-term leases or
high upfront capital outlays, the cloud model allows you to have no upfront cost for
purchasing hardware and pay by the utilization of either CPU, bandwidth, storage,
or possibly all of them.

Scale On Demand
Another characteristic of cloud computing is the ability to scale on demand. As a sub-
scriber or client of a cloud, you have the theoretical ability of scaling as much as you
need. This implies that if you need terabytes of storage or gigahertz or more, computing
these would be available to you. There are of course practical limits to this that include
how much actual capacity the cloud provider has to offer, but with the larger clouds,
it is reasonable that you can scale to the equivalent of several hundreds or thousands
of servers with no issues on most public clouds. Of course in a private cloud, this
becomes your organization’s limitations on physical hardware. The time that it takes
to do this is almost instant compared to the standard method of provisioning hard-
ware in a data center. Let’s look at the typical process first, as if you were hosting
your site at a collocation facility and then as if you were running in a cloud environment.

Adding hundreds of servers in a collocation facility or data center can take days,
weeks, or months, depending on an organization’s processes. For those who have

ptg5994185

432 CHAPTER 28 CLOUDS AND GRIDS

never worked in an organization that hosted with a collocation facility, this is a typi-
cal scenario that you might encounter. Most organizations have budgeting and
request processes regardless of where or how the site is hosted. After the budget or
the purchase order is approved, the process of provisioning a new server in a cloud
and one in a collocation facility are almost completely different. For a collocation
facility, you need to ensure that you have available the space and power to accommo-
date the new servers. This can entail going to a new cage in a collocation provider if
you do not have any more space or power available in your current cage. If a new
cage is required, contracts must be negotiated and signed for the lease of the new
space and cross connects are generally required to connect the cage’s networks. After
the space and power that are necessary are secured, purchase orders for the servers
can be placed. Of course, some companies will stockpile servers in anticipation of
capacity demand. Others wait until the operations team alerts that capacity is at a
point that expanding the server pools is required. If your organization waits, order-
ing and receiving the hardware can take weeks. After the hardware arrives at the col-
location facility, it needs to be placed in the racks and powered up. After this is
accomplished, the operations team can get started ghosting, jumpstarting, or kick
starting the server depending on the operating system. And when all this is finally
accomplished, the latest version of the software can be loaded and the server can be
added into the production pool. The total time for this process is at least days in the
most efficient operations teams who already have hardware and space available. In
most organizations, this process takes weeks or months.

Let’s take a look at how this process might go if you were hosting your site in a
cloud environment and decided that you needed 10 or 20 more servers for a particu-
lar pool. The process would start off similarly with the budget or purchase order
request to add to the monthly expense of the cloud services. After this was approved,
the operations team would use the control panel of the cloud provider to simply
request the number of virtual servers, specifying the size and speed. Within a few
minutes, the systems would be available to load the machine image of choice and the
latest application code could be installed. The servers could likely be placed into pro-
duction within a few hours. This ability to scale on demand is a common characteris-
tic of cloud computing.

Multiple Tenants
Although the ability to scale on demand is enticing, all that capacity is not just wait-
ing for you. Public clouds have many users running all sorts of applications on them
and the capacity is being shared. This is known as multitenanting or having multiple
tenants existing on the same cloud. If all works as designed, these users never interact
or impact each other. Data is not shared, access is not shared, and accounts are not
shared. Each client has its own virtual environment that is walled off from other vir-
tual environments. What you do share with other tenants in a cloud is the physical

ptg5994185

CHARACTERISTICS AND ARCHITECTURE OF CLOUDS 433

servers, network, and storage. You might have a virtual dual processor server with
32GB of RAM, but it is likely running on an eight processor with 128GB of RAM
that is being shared with several other tenants. Your traffic between servers and from
the servers to the storage goes across common networking gear. There are no routers,
switches, or firewalls dedicated to individual tenants. The same goes for the storage.
Tenants share storage on virtual network-attached storage (NAS) or storage area net-
work (SAN) devices making it appear as if they are the only ones using it. The reality
is that there are multiple tenants using that same physical storage device.

Virtualization
All cloud computing offerings implement some form of a hypervisor on the servers
that provides the virtualization. This concept of virtualization is the fourth common
cloud characteristic and is really the core architectural principle behind clouds. A
hypervisor is either a hardware platform or software service that allows multiple
operating systems to run on a single host server. This is also known as a virtual
machine monitor (VMM). There are many vendors that offer hardware and software
solutions, such as VMware, Parallels, and Oracle VM. As we covered in the multi-
tenant discussion, this virtualization is what allows multiple users to exist on com-
mon hardware without knowing and hopefully without impacting each other. There
are other virtualization, separation, or limitation techniques that are used to restrict
access of cloud clients to only amounts of bandwidth and storage that they have pur-
chased. The overall purpose of all of these techniques is to control access and provide
as much as possible an environment that appears to be completely the client’s own.
The better this is done the less likely that clients will notice each other’s presence.

Common Cloud Characteristics
There are four basic common characteristics of cloud computing services:

1. Pay as You Go. Users, subscribers, or clients only pay for the amount of bandwidth, stor-
age, and processing that they consume.

2. Scale on Demand. Cloud clients have access to theoretically unlimited capacity for scal-
ing their applications by adding more bandwidth, servers, or storage.

3. Multiple Tenants. Clouds service multiple, often many thousands, of clients. Clients share
hardware, networks, bandwidth, and storage. Physical devices are not dedicated to clients.

4. Virtualization. The way that multitenanting can be accomplished is through virtualization.
This is the process by which hardware can have multiple operating systems running on it
simultaneously.

ptg5994185

434 CHAPTER 28 CLOUDS AND GRIDS

Some of these characteristics may or may not be present in private clouds. Let’s
take a quick look at private cloud implementations. The concept of virtualization is
at the core of all clouds regardless of whether it is public or private. The idea of using
farms of physical servers in different virtual forms to achieve greater utilization, mul-
titenancy, or any other various reasons is the basic premise behind the architecture of
a cloud. The ability to scale as necessary is likely to be a common characteristic
regardless of whether it is a private or public cloud. There is a physical restriction on
the amount of scale that can occur. This physical restriction is dependent on how
large the cloud is and how much extra capacity is built into it.

Having multiple tenants is not required in a private cloud. Tenants in a private
cloud can mean different departments or different applications, not necessarily and
probably not different companies. Pay as you go is also not required but possible in
private clouds. Depending on how cost centers or departments are charged in an
organization, each department might have to pay based on usage of the private
cloud. If there is a centralized operations team that is responsible for building and
running its own profit and loss center, it may very well charge departments or divi-
sions for the services provided. This can include the computational, bandwidth, and
storage in a private cloud.

Differences Between Clouds and Grids
Now that we’ve covered some of the history and basic characteristics of clouds and
grids, we are going to conclude this chapter with a comparison of the two concepts.
The terms cloud and grid are often confused and misused. We are going to cover a
few of the differences and some of the similarities between the two to ensure that we
are all clear on when each should be considered for use in our systems.

Clouds and grids serve different purposes. Clouds offer virtual environments for
hosting user applications on one or many virtual servers. This makes clouds particu-
larly compelling for applications that have unpredictable usage demands. When you
are not sure if you need 5 or 50 servers over the next three months, a cloud can be an
ideal solution. We will cover more pros and cons in Chapter 30, Plugging in the Grid,
as well as how to decide if a cloud is really the correct hosting solution for your
applications. Clouds, again because of this virtualization architecture, allow users to
share the infrastructure. There can be many different users on the same physical
hardware consuming and sharing computational, network, and storage resources.

On the other hand, grids are infrastructures for dividing programs into small parts
to be executed in parallel across two or more hosts. These environments are ideal for
an application that needs computationally intensive environments. Grids are not nec-
essarily great infrastructures to share with multiple tenants. You are likely running on

ptg5994185

DIFFERENCES BETWEEN CLOUDS AND GRIDS 435

a grid to parallelize and significantly increase the computational bandwidth for your
application; sharing the infrastructure simultaneously defeats that purpose. Sharing
or multitenancy can occur serially, one after the other, in a grid environment where
each application runs in isolation; when completed, the next job runs. This challenge
of enabling multitenancy on grids is one of the core jobs of a grid operations team.
Grids are also ideal only for applications that can be divisible into elements that can
be simultaneously executed. The throughput of a monolithic application cannot be
helped by running on a grid. The same monolithic application can likely be replicated
onto many individual servers in a cloud, and the throughput can be scaled by the
number of servers added. Stated as simply as we can, clouds allow you to expand and
contract your architecture; grids decompose work into parallelizable units.

While serving different purposes, there are many crossovers and similarities. The
first major one is that some clouds run on top of a grid infrastructure. A good example
of this is AppLogic from 3Tera, which is a grid operating system that is offered as soft-
ware but is also used to power a cloud that is offered as a service. Other similarities
between clouds and grids include on demand pricing models and scalable usage. If you
need 50 extra servers in a cloud, you can get them allocated quickly and you pay for
them for the time that you are using them. The same is the case in a grid environment.
If you need 50 more nodes for improving the processing time of the application, you
can have this allocated rather quickly and you pay for only the nodes that you use.

At this point, you should understand that clouds and grids are fundamentally dif-
ferent concepts and serve different purposes but have similarities and share common
characteristics, and are sometimes intertwined in implementations. One last topic to
further analyze these different implementations is the three different types of clouds.

Types of Clouds
There really is no standard categorization for clouds. We like to use three categories
to explain the differences between various providers and vendors. These three are ser-
vice providers, backbones, and virtualization software. Of course, because there is no
standardization, many of the vendors cross between these categories.

Starting from the lowest level, the first category is the virtualization software pro-
viders. This is software that allows for the hypervisor or the ability to run multiple
operating systems on a single server. There are many vendors that offer software in
this category. One such software is VMWare. VMWare is used to split physical serv-
ers into multiple virtual servers that can be allocated memory, CPU cycles, and disk
as if it were a completely separate physical server. Another virtualization software is
AppLogic that is offered by 3Tera. AppLogic, as mentioned, is a grid operating sys-
tem that allows a cloud service to be provided on top of the grid.

The next category of clouds is the backbone providers. These are vendors that pro-
vide basic virtualization services, typically on a very large scale. We consider vendors’

ptg5994185

436 CHAPTER 28 CLOUDS AND GRIDS

offerings such as Amazon’s EC2, Rackspace’s cloud, Google Apps, and Microsoft’s
cloud to be in this category. These vendors utilize some form, either off-the-shelf, cus-
tomized, or mostly home grown, virtualization software to provide their clouds.

The last category of clouds is the service provider. Companies that fall in this cate-
gory offer services on top of backbones. One such vendor is RightScale, who offers
an improved management interface for Amazon’s EC2 and other services. Another
vendor is Mosso, who offers a service on top of Rackspace’s cloud. Both of these ser-
vices have attempted to improve the deployment and management of the backbone
offerings.

Many vendors could make an argument that they belong in more than one of these
environments. Although a service provider might have a different management inter-
face for a backbone, this doesn’t mean that the backbone provider itself does not also
have a GUI management interface that is fully functional. Even though this categori-
zation is often blurred in the real world, it does offer a basic framework to help
understand the multitude of vendors that have some sort of cloud related offering.

Conclusion
In this chapter, we started by covering the history that led up to the launch of cloud
computing and included the background of grid computing. This history dates back
several decades, and the concept of the modern-day cloud can be credited to IBM’s
manifesto. However, the evolution of cloud computing into what it is today has been
made possible by many different people and companies including one of the first
public cloud services, EC2. We covered many of the “as a Service” offerings includ-
ing Software as a Service and Infrastructure as a Service.

In the history section, we discussed how the concept of grid computing had been
around for almost two decades. Grid computing is used to describe the use of two or
more computers processing individual parts of an overall task. Tasks that are most well
suited for a grid solution are ones that require intensive computations and those that
are divisible. The maximum amount of improvement that can be made by dividing an
application up is limited by the amount of sequential processing that is required.

There are four common characteristics of public clouds. These are pay as you go,
scale on demand, multiple tenants, and virtualization. We covered each of these in
detail and also looked at what characteristics private clouds are likely to have. We
concluded that virtualization and scale on demand are two characteristics that pri-
vate clouds must have. Hosting multiple tenants and pay as you go are possible in
private clouds but not necessary.

We concluded the chapter with a comparison of grid and cloud computing. We
started by stating that clouds and grids serve different purposes. Clouds offer virtual

ptg5994185

CONCLUSION 437

environments for hosting user applications on one or many virtual servers. Grids, on
the other hand, are infrastructures for dividing programs into small parts to be exe-
cuted in parallel across two or more hosts. Clouds are compelling for applications
that have unpredictable usage demands, need to scale quickly, and can scale on inde-
pendent servers. Grids are more suited for applications that need computationally
intensive environments.

The last topic covered under the comparison of grids and clouds was the categori-
zation of cloud providers. We described a three-category hierarchy that started with
virtualization software providers, then moved up to backbone providers, and finally
ended with service providers. We conceded that although this categorization helps
understand all the various offerings, it is excessively restrictive and many vendors
cross over between these categories.

As we’ve pointed out repeatedly in this chapter, clouds and grids are important
technologies and concepts to scalability. With a thorough understanding of their
characteristics and uses, they can become effective weapons in your arsenal to fight
the scalability war.

Key Points

• The term cloud has been around for decades and was used primarily in network
diagrams.

• The idea of the modern cloud concept was put forth by IBM in its Autonomic
Computing Manifesto.

• Developing alongside the idea of cloud computing was the concept of Software
as a Service, Infrastructure as a Service, and many more “as a Service” concepts.

• Software as a Service refers to almost any form of software that is offered in a
pay as you use model.

• Infrastructure as a Service is the idea of offering infrastructure such as storage,
servers, network, and bandwidth in a pay as you use model.

• Platform as a Service provides all the required components for developing and
deploying Web applications and services.

• Everything as a Service is the idea of being able to have small components that
can be pieced together to provide a new service.

• Grid computing as a concept has been around for almost two decades. It is used
to describe the use of two or more computers processing individual parts of an
overall task.

• There are three types of cloud vendors: service providers, backbones, and virtu-
alization software providers.

ptg5994185

This page intentionally left blank

ptg5994185

439

Chapter 29

Soaring in the Clouds

This is called, using the conquered foe to augment one’s own strength.

—Sun Tzu

In the previous chapter, we covered the history, characteristics, and comparison of
cloud computing and grid computing. We also discussed how important they were to
scalability. In this chapter, we are going to cover the benefits and drawbacks of cloud
computing. After we’ve covered this in sufficient detail, we are going to discuss where
we think cloud computing makes the most sense in different companies. Lastly, we
are going to cover how we recommend you think through the decision of whether to
use a cloud computing service for various environments. This will provide you with
examples of how you can use cloud computing in your scaling efforts as well as give
you a framework for making the decision to use it or not.

There is a lot of excitement about cloud computing services and rightly so. Cloud
computing is a significant breakthrough in computing infrastructure and holds the
possibility of changing dramatically how many products and services are offered. The
reason we believe this and the reason we are going to spend so much time on cloud
computing in a book about scalability is that we think clouds are likely to be a key
scaling architectural principle in the future. At the same time, we want to be realistic
about where cloud computing is in terms of maturity at this point. Making such a
significant decision as to forgo a collocation facility in lieu of a cloud computing ser-
vice should not be done without careful consideration. If you are a Software as a Service
(SaaS) company or Web 2.0 business, the future of the entire company likely rests
with your system remaining consistently available.

Why is this decision so important? Ultimately, you are striving to maximize share-
holder value. If you make a decision to spend capital investing in hardware and data
center space, this takes cash away from other projects that you could be investing in.
Could that money be spent better by hiring more engineers? On the other hand, if
you don’t invest in the infrastructure, and you rely on a cloud service that doesn’t
provide the proper availability or scalability, that can negatively affect shareholder

ptg5994185

440 CHAPTER 29 SOARING IN THE CLOUDS

value. This decision is one that can make or break the company and one that you as a
leader or member of the technology organization will have the greatest influence over.

Pros and Cons of Cloud Computing
There are benefits and drawbacks to almost everything. Rarely is something just a
hundred percent beneficial or problematic. In most cases, the pros and cons can be
debated, which makes it more difficult to make decisions for your business. Making
it more complex is that the pros and cons do not affect all businesses equally. For
example, a software product might have passwords delivered in plain text over the
network; if you plan on using the software inside your three-person software shop,
this drawback might mean very little to you. If you are planning on using it with 500
engineers spread across three continents, this might be a much more important issue
for you. Each company must weigh each of the identified benefits and drawbacks for
its own situation. We will get more into how to use the pros and cons to make deci-
sions later in the chapter. To start with, we will cover what we consider the basic and
most important of both benefits and drawbacks to cloud computing. Later, we will
help put relative weightings to these as we discuss various implementations for differ-
ent hypothetical businesses.

Pros of Cloud Computing
There are three major benefits to running your infrastructure on a cloud: cost, speed,
and flexibility. Each one of these will have varying degrees of importance to your par-
ticular situation. You should weight each one in terms of how applicable the benefit
is to you. We are going to cover each one in some detail.

Cost The cost model of not outlaying a lot of capital and paying for what you use is
a great one. This model works especially well if you are a cash strapped startup. If
your business model is one that actually pays for itself as you grow and your expense
model is the same, you have effectively eliminated a great deal of risk for your com-
pany. There are certainly other models that have limited initial cash outlay, such as
managed hosted environments, but where they differ is that you have to purchase or
lease equipment on a per server basis and you cannot return it when you are not
using it. As a startup, being able to last long enough to become successful is the first
step to scaling. At any company, being able to manage cost to stay in line with the
volume of business is critical to ensure the ability to scale.

In Figure 29.1, you can see how a normal cost progression occurs. As demand
increases, you must stay ahead of that demand and purchase or lease the next server
or storage unit or whatever piece of hardware to ensure you are capable of meeting
demand. Most organizations are not great at capacity planning. This causes the gap

ptg5994185

PROS AND CONS OF CLOUD COMPUTING 441

between the cost and demand is either larger than necessary or worse, demand
exceeds the capacity and there is a scramble to purchase more equipment all the
while your customers are experiencing poor performance. The key when purchasing
or leasing in such a manner is to get the cost and demand lines as close as possible
without letting them cross. With a cloud cost model, where services are paid for only
when used, these lines can be much tighter, almost touching in most cases.

Speed The next benefit that we see from the cloud environment is the speed. Not
performance speed as discussed in the cons but rather procurement, provisioning,
and deployment speed. Of all the collocation, data centers, managed hosting, or
other infrastructure models, there is none faster when it comes to adding another
server than in a cloud environment. Because of the virtual nature, this deployment
and provisioning is very quick. If you are running a site that expects a spike of traffic
over the weekend because of some sporting event, you can throw a couple more vir-
tual hosts into the pool on Friday afternoon and release them back Monday morning.
You have them to use over the weekend to add capacity, but you don’t pay for them
the following week after the spike in traffic is over. The ability to increase an applica-
tion’s usage of virtual hosts very quickly can be used as an effective method of scaling
through peak traffic periods.

What clouds do not do yet for deployment and provisioning is augment capacity
automatically. Certainly, this is one of the longer term goals of the autonomous infra-
structure, but we are not there yet. Even without this happening automatically, it is
faster than it has ever been in the past with other models. But this is not to imply that
with either it is wise to scale only on the x-axis with additional hardware instances,
nor is it always available for applications to scale in this manner. If your application
has this capability and you’ve made a determination that this is a wise strategic archi-
tectural decision, this speed adds a lot to your ability to deploy more hosts quickly.

Figure 29.1 Stepwise Cost Function

Time

Cost Demand

ptg5994185

442 CHAPTER 29 SOARING IN THE CLOUDS

One example of when you may not be able to utilize such speed is if your application
maintained state and you do not have a mechanism for keeping users assigned to one
host or centralizing the stateful session data. Another example would be on the data-
base. If your application could not handle an x-axis split for read/write or a y-axis
split of schemas, being able to quickly add more hardware would not help you scale.
The bottom line is that this benefit of speedy deployments has to be able to work
with your application for you to take advantage of it.

Flexibility The third major benefit of cloud computing environments is flexibility.
What you give up in control you gain in the ability to implement multiple configura-
tions for different needs. For example, if today you need five quality assurance test
instances, you can set these up in the morning, test on them, and remove them
tonight. Tomorrow, you can set up a full staging environment to allow your custom-
ers to perform user acceptance testing before you roll the code to production. After
your customers are satisfied, you can remove the environment and stop paying for it.
If you need a load testing environment that requires a bunch of individual hosts to
provide multiple connections, the ramping up of a dozen virtual hosts for an hour of
load testing is easily done in most cloud environments. This flexibility to add,
remove, or change your environments almost at whim is something that we have
never had before in previous infrastructures. After a team gets used to this ability to
change and reconfigure, they are not going to want to be constrained by physical
devices.

Benefits of Cloud Computing
There are three major categories of pros or benefits that we see with cloud computing. These
are in no particular order:

• Cost. The pay as you use model allows the amount that you spend to stay closer to the
actual usage and is particularly helpful for cash strapped companies.

• Speed. The speed in procurement, deployment, and provisioning is unmatched with
other infrastructure models.

• Flexibility. The ability to change an environment from a quality assurance to a staging to
a load and performance while not having to pay for three separate environments is
advantageous.

The importance of any of these or how much you should weight them when determining
whether the cloud is the right environment for you and should be based on your particular com-
pany’s needs at a particular time.

ptg5994185

PROS AND CONS OF CLOUD COMPUTING 443

Cons of Cloud Computing
We think there are five major categories of concern or drawbacks for public cloud
computing. These five categories do not all apply to private clouds, but as the great-
est utility and greatest public interest is in the use of public clouds, we will stick to
using public clouds for our analysis. These categories are security, portability, con-
trol, limitations, and performance. These are obviously very broad categories so we
will have to delve into each one in more detail to fully understand them.

Security Not a month goes by without us hearing about leaked personal information
or a security breach. This causes us to ask the question, “how do cloud providers
store and safeguard our information?” The same question can be asked of many of
our SaaS vendors. The slight difference is that with a SaaS implementation, the ven-
dor often knows whether it is collecting and storing sensitive information such as
personally identifiable information (name, address, social security number, phone
number, and so on) and therefore it takes extra precautions and publishes its steps for
safeguarding this information. Cloud providers have no idea what is being stored on
their systems—that is, whether their customers are storing credit card numbers or
blogs—and therefore do not take any extra precautions to restrict or block access to
your data by their internal employees. Of course, there are ways around this, such as
not storing any sensitive information on the cloud system, but those workarounds
add more complexity to your system and potentially expose you to more risks. As
stated earlier, this may or may not be a very important aspect for your particular
company or application that you are considering hosting on a cloud.

Portability The next category is portability. We long for a day when you can port
your application from one cloud to another without code or configuration changes,
but this day has not yet arrived, nor do we think it will in the near future because it is
not beneficial to the cloud vendors to make this process easy. This is not to say that it
is impossible to migrate from one cloud to another or from a cloud to a physical
server hosting environment, but those can be nontrivial endeavors depending on the
cloud and particular services being utilized. For instance, if you are making use of
Amazon’s Simple Storage Solution and you want to move to another cloud or to a set
of physical servers, you are likely to rework your application to implement storage in
a simple database. Although not the most challenging engineering project, it does
take time and resources that could be used to work on product features. One of the
principles discussed in Chapter 12, Exploring Architectural Principles, was to Use
Commodity Hardware; this vendor agnostic approach to hardware is important to
scale in a cost-efficient manner. Not being able to port across clouds easily goes
against this principle and therefore is a con that should be considered.

ptg5994185

444 CHAPTER 29 SOARING IN THE CLOUDS

Control Any time that you rely solely on a single vendor for any part of your system,
you are putting your company’s future in the hands of another. We like to control our
own destiny as much as possible. Relinquishing a significant amount of control to a
third party is a difficult step for us to take. This is probably acceptable when it comes
to operating systems and relational database management systems, because hopefully
you are using a vendor or product line that has been around for years and you are
not likely to build or manage anything better with your engineering team, unless of
course you are in the business of operating systems or relational database manage-
ment systems. When it comes to the hosting environment, many companies move
away from managed environments because they get to a point where they have the
technical talent on staff to handle the operational tasks required for hosting your
own hardware and they get fed up with vendors messing up and causing them pain.
Cloud environments are no different. They are staffed by people who are not your
employees and who do not have a personal stake in your business. This is not to say
that cloud or hosting providers have inferior employees. Quite the opposite, they are
usually incredibly talented, but they do not know or understand your business. They
have hundreds or thousands of servers to keep up and running. They don’t know that
this one is any more important than that one; they are all the same. Giving up control
of your infrastructure adds an amount of risk into your business.

Continuing with the discussion of control, many cloud vendors are not even to the
point of being able to offer guaranteed availability or uptime. When vendors do not
stand behind their products with remuneration clauses built-in for failures, it would
be wise to always consider their service as best effort, which means you need to have
an alternative method of receiving that service. As we mentioned in the portability
section, running on or switching between multiple clouds is not a simple task.

Limitations The next cons or drawbacks that we see with cloud computing are limi-
tations due to the nature of virtual environments. The cloud vendors and other cloud
service providers are working feverishly to resolve some of these, but nonetheless
they still either exist in some or all current cloud environments. Three of the major
ones that we are concerned with are IP addresses, load balancing, and certification of
third-party software on the clouds. The first limitation on many of the early clouds is
lack of public and static IP addresses for your servers. Many clouds have begun to
solve this and offer static IP addresses for an additional cost. This still does not solve
the problem of not owning your IP space. This may seem a trivial problem to most
companies that are not ready to own and manage their own IP space, but for some
companies this is very important. As an example, if you send out lots of email and
have become a trusted email to major email networks such as AOL, you rely on static
IP addresses to accomplish reliable mail delivery. This trusted relationship, until the
trusted email open standard (TEOS), or something similar is adopted, is today based

ptg5994185

PROS AND CONS OF CLOUD COMPUTING 445

on a white list and black list of IP addresses for trusted and untrusted sources, respec-
tively. Remaining on a white list of mail servers is extremely important if you want to
continue sending significant amounts of email.

The next major limitation that concerns us with most cloud vendors is the lack of
physical load balancers. Most cloud vendors or service providers have implemented
software load balancers, but there are some limitations with this when compared to
physical devices. The feature sets of software load balancers are always changing and
advancing but in general some areas that physical load balancers do better at are dis-
tributed denial of service protection, compression, secure socket layer (SSL) termina-
tion, connection pooling, caching, and buffering. Like all the concerns that we are
raising, these issues might not be important to you. If you happen to be serving bil-
lions of advertisements or streaming video, the throughput of your load balancer is
going to be very important to you. However, these limitations are often offset in the
cloud environment by the capability to add more virtual hardware.

The last issue in the limitations category that we feel strongly about is the lack of
certification of other third-party software on cloud computing environments. This
third-party vendor software could really be anything that you utilize as a subcompo-
nent or part of your system, but primarily we have concerns over relational database
management systems and data warehousing management systems. A lot of these sys-
tems will work in virtual environments and more are working toward certifying their
systems, but if you have ever been on support calls where the answer to your problem
was to upgrade the database version, you can only imagine what the answer will be
running on a cloud. What this does is limit your choices of vendors for key compo-
nents of your system. This may or may not be a major issue for you. As for a data-
base, it probably matters how you are architected. If you are still relying on a very
large monolithic database, the limitation of vendors might be problematic. If you
already are running on small open source databases split along the x-, y-, or z-axes of
the AKF Scale Cube, this limitation probably matters less to you.

Performance The last major category of concerns that we have are regarding perfor-
mance. From our experiences with our clients on cloud computing infrastructures,
the expected performance from an equivalent piece of hard and virtual hardware is
not the same. This is obviously very important to the scalability of your application,
especially if you have singletons, single instances of batch jobs or parts of your appli-
cation running on only a single server. Obviously, running a single instance of any-
thing is not an effective way to scale, but it is common for a team to start on a single
server and not test the job or program on multiple servers until they are needed.
Migrating to a cloud and realizing on the new virtual server the processing of the job
is falling behind might put you in panic mode to test and validate that that job can
correctly run on multiple hosts.

ptg5994185

446 CHAPTER 29 SOARING IN THE CLOUDS

The virtual hardware underperforms in some aspects by orders of magnitude. The
standard performance metrics include memory speed, CPU, disk access, and so on.
There is no standard degradation or equivalence among virtual hosts; in fact, it often
varies within cloud environments and certainly varies from one vendor to another.
Most companies and applications either don’t notice this or don’t care, but for those
making a cost benefit analysis about switching to a cloud computing vendor, you
need to test this yourself with your application. Do not take a vendor’s word for an
equivalent virtual host. Each application has its own sensitivity and bottlenecks with
regard to host performance. Some applications are bottlenecked on memory and by
slowing down memory even 5% can cause the entire application to scale much more
poorly on certain hosts. This matters when you are paying thousands of dollars in
computing costs per month. What might have been a twelve month break even now
becomes eighteen or twenty-four months in some cases.

Drawbacks of Cloud Computing
There are five major categories of cons or drawbacks that we see with cloud computing. These
are in no particular order:

• Security. Unlike SaaS companies who know exactly what sensitive or personally identifi-
able information is being entered into their system, cloud providers don’t know and try not
to care; but this leaves a potential gap in the security of your data.

• Portability. As simple as clouds are to get up and running on, they can be difficult to move
to physical servers or other clouds depending on your application’s implementation.

• Control. Outsourcing your infrastructure is giving a third-party complete control over your
application being available or not. Unlike ISPs that can be redundant, redundancy is not
easy to accomplish with clouds at this point.

• Limitations. Three limitations that we see in some of the cloud vendors’ offerings are

1. IP addresses. The early clouds didn’t even offer static IP addresses but most do so
now. They still do not allow you to own your IP addresses, which may be important to
certain applications or services such as email.

2. Load balancers. Most clouds offer software load balancing, which is a great improve-
ment, but there are limitations between software and hardware load balancing.

3. Certification. Other third-party software vendors do not certify their software to run in a
cloud environment. This may cause you issues if you are trying to get support for their
software.

• Performance. Even though clouds are sold on computational equivalencies, the actual
performance varies significantly between vendors and physical and virtual hardware. You
have to test this yourself to see if it matters to your application.

ptg5994185

PROS AND CONS OF CLOUD COMPUTING 447

The importance of any of these or how much you should be concerned with them is deter-
mined by your particular company’s needs at a particular time.

We have covered what we see as the top drawbacks and benefits of cloud comput-
ing as they exist today. As we have mentioned throughout this section, how these
affect your decision to implement a cloud computing infrastructure will vary depend-
ing on your business and your application. In the next section, we are going to cover
some of the different ways in which you may consider utilizing a cloud environment
as well as how you might consider the importance of some of the factors discussed
here based on your business and systems.

UC Berkeley on Clouds
Researchers at UC Berkeley have outlined their take on cloud computing in a paper “Above the
Clouds: A Berkeley View of Cloud Computing.”1 They cover the top 10 obstacles that compa-
nies must overcome in order to utilize the cloud:

1. Availability of service

2. Data lock-in

3. Data confidentiality and audit ability

4. Data transfer bottlenecks

5. Performance unpredictability

6. Scalable storage

7. Bugs in large distributed systems

8. Scaling quickly

9. Reputation fate sharing

10. Software licensing

Their article concludes by stating that they believe cloud providers will continue to improve
and overcome these obstacles. They continue by stating that “. . . developers would be wise to
design their next generation of systems to be deployed into Cloud Computing.”

1. Armbrust, Michael, et al. “Above the Clouds: A Berkeley View of Cloud Computing.”
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf.

ptg5994185

448 CHAPTER 29 SOARING IN THE CLOUDS

Where Clouds Fit in Different Companies
The first item to cover is a few of the various implementations of clouds that we have
either seen or recommended to our clients. Of course, you can host your application’s
production environment on a cloud, but there are many other environments in
today’s software development organizations. There are also many ways to utilize dif-
ferent environments together, such as combining a managed hosting environment
along with a collocation facility. Obviously, hosting your production environment in
a cloud offers you the scale on demand ability from a virtual hardware perspective.
Of course, this does not ensure that your application’s architecture can make use of
this virtual hardware scaling, that you must ensure ahead of time. There are other
ways that clouds can help your organization scale that we will cover here. If your
engineering or quality assurance teams are waiting for environments, the entire prod-
uct development cycle is slowed down, which means scalability initiatives such as
splitting databases, removing synchronous calls, and so on get delayed and affect
your application’s ability to scale.

Environments
For your production environment, you can host everything in one type of infrastruc-
ture, such as a managed hosting, collocation, your own data center, a cloud comput-
ing environment, or any other. However, there are creative ways to utilize several of
these together to take advantage of their benefits but minimize their drawbacks. Let’s
look at an example of an ad serving application. The ad serving application consists
of a pool of Web servers to accept the ad request, a pool of application servers to
choose the right advertisement based on information conveyed in the original
request, an administrative tool that allows publishers and advertisers to administer
their accounts, and a database for persistent storage of information. The ad servers in
our application do not need to access the database for each ad request. They make a
request to the database once every 15 minutes to receive the newest advertisements.
In this situation, we could of course purchase a bunch of servers to rack in a colloca-
tion space for each of the Web server pool, ad server pool, administrative server pool,
and database servers. We could also just lease the use of these servers from a man-
aged hosting provider and let them worry about the physical server. Alternatively, we
could host all of this in a cloud environment on virtual hosts.

We think there is another alternative, as depicted in Figure 29.2. Perhaps we have
the capital to purchase the pools of servers and we have the skill set in our team
members to handle setting up and running our own physical environment, so we
decide to rent space at a collocation facility and purchase our own servers. But, we
also like the speed and flexibility gained from a cloud environment. We decide that
since the Web and app servers don’t talk to the database very often we are going to

ptg5994185

WHERE CLOUDS FIT IN DIFFERENT COMPANIES 449

host one pool of each in a collocation facility and another pool of each on a cloud.
The database will stay at the collocation but snapshots will be sent to the cloud to be
used as a disaster recovery. The Web and application servers in the cloud can be
increased as traffic demands to help us cover unforeseen spikes.

Another use of cloud computing is in all the other environments that are required
for a modern software development organizations. These environments include but
are not limited to production, staging, quality assurance, load and performance,
development, build, and repositories. Many of these should be considered for imple-
menting in a cloud environment because of the possible reduced cost, as well as flexi-
bility and speed of setting up when needed and tearing down when they are no longer
needed. Even enterprise class SaaS companies or Fortune 500 corporations who may
never consider hosting production instances of their applications on a cloud could
benefit from utilizing the cloud for other environments.

Skill Sets
What are some of the other factors when considering whether to utilize a cloud, and
if you do utilize the cloud, then for which environments? One consideration is the
skill set and number of personnel that you have available to manage your operations
infrastructure. If you do not have both networking and system administration skill
sets among your operations staff, you need to consider this when determining if you
can implement and support a collocation environment. The most likely answer in

Figure 29.2 Combined Collocation and Cloud Production Environment

Collocation Facility

Internet

End Users

Database

Cloud Environment

ptg5994185

450 CHAPTER 29 SOARING IN THE CLOUDS

that case is that you cannot. Without the necessary skill set, moving to a more sophis-
ticated environment will actually cause more problems than it will solve. The cloud
has similar issues; if someone isn’t responsible for deploying and shutting down
instances and this is left to each individual developer or engineer, it is very possible
that the bill at the end of the month will be much more than you expected. Instances
that are left running are wasting money unless someone has made a purposeful deci-
sion that the instance is necessary.

Another type of skill set that may influence your decision is capacity planning.
Whether your business has very unpredictable traffic or you do not have the neces-
sary skill set on staff to accurately predict the traffic, this may heavily influence your
decision to use a cloud. Certainly one of the key benefits of the cloud is the ability to
handle spiky demand by quickly deploying more virtual hosts.

All in all, we believe that cloud computing likely has a fit in almost any company.
This fit might not be for hosting your production environment, but may be rather for
hosting your testing environments. If your business’ growth is unpredictable, if speed
is of utmost urgency, and cutting costs is imperative to survival, the cloud might be a
great solution. If you can’t afford to allocate headcount for operations management
or predict what kind of capacity you may need down the line, cloud computing could
be what you need. How you put all this together to make the decision is the subject
of the next section in this chapter.

Decision Process
Now that we’ve looked at the pros and cons of cloud computing and we’ve discussed
some of the various ways in which cloud environments can be integrated into a com-
pany’s infrastructure, the last step is to provide a process for making the final deci-
sion. The overall process that we are recommending is to first determine the goals or
purpose of wanting to investigate cloud computing, then create alternative implemen-
tations that achieve those goals. Weigh the pros and cons based on your particular
situation. Rank each alternative based on the pros and cons. Based on the final tally
of pros and cons, select an alternative. Let’s walk through an example.

Let’s say that our company AlwaysScale.com is evaluating integrating a cloud
infrastructure into its production environment. The first step is to determine what
goals we hope to achieve by utilizing a cloud environment. For AlwaysScale.com, the
goals are lower operation cost of infrastructure, decrease the time to procure and
provision hardware, and maintain 99.99% availability for its application. Based on
these three goals, the team has decided on three alternatives. The first is to do noth-
ing, remain in a collocation facility, and forget about all this cloud computing talk.
The second alternative is to use the cloud for only surge capacity but remain in the
collocation facility for most of the application services. The third alternative is to

ptg5994185

DECISION PROCESS 451

move completely onto the cloud and out of the collocation space. This has accom-
plished steps one and two of the decision process.

Step three is to apply weights to all of the pros and cons that we can come up with
for our alternative environments. Here, we will use the five cons and three pros that
we outlined earlier. We will use a 1, 3, or 9 scale to rank these in order that we highly
differentiate the factors that we care about. The first con is security, which we care
somewhat about but we don’t store PII or credit card info so we weight it a 3. We
continue with portability and determine that we don’t really feel the need to be able
to move quickly between infrastructures so we weight it a 1. Next, is Control, which
we really care about so we rank it a 9. Then, the limitations of such things as IP
addresses, load balancers, and certification of third-party software are weighted a 3.
We care about the load balancers but don’t need our own IP space and use all open
source unsupported third-party software. Finally, the last of the cons is performance.
Because our application is not very memory or disk intensive, we don’t feel that this
is too big of a deal for us, so we weight it a 1. For the pros, we really care about cost
so we weight it a 9. The same with speed: It is one of the primary goals, so we care a
lot about it. Last is flexibility, which we don’t expect to make much use of, so we
rank it a 1.

The fourth step is to rank each alternative on a scale from 0 to 5 of how well they
demonstrate each of the pros and cons. For example, with the “use the cloud for only
surge capacity” alternative, the portability drawback should be ranked very low
because it is not likely that we need to exercise that option. Likewise, with the “move
completely to the cloud” alternative, the limitations are more heavily influential
because there is no other environment, so it gets ranked a 5.

The completed decision matrix can be seen in Table 29.1. After the alternatives are
all scored against the pros and cons, the numbers can be multiplied and summed. The

Table 29.1 Decision Matrix

Weight
(1, 3, or 9)

No
Cloud

Cloud for
Surge

Completely
 Cloud

Cons

Security –3 0 2 5

Portability –1 0 1 4

Control –9 0 3 5

Limitations –3 0 3 4

Performance –1 0 3 3

Pros

Cost 9 0 3 5

Speed 9 0 3 3

Flexibility 1 0 1 1

Total 0 9 –6

ptg5994185

452 CHAPTER 29 SOARING IN THE CLOUDS

weight of each pro is multiplied by the rank or score of each alternative; these prod-
ucts are summed for each alternative. For example, alternative #2, Cloud for Surge,
has been ranked a 2 for security, which is weighted a –3. All cons are weighted with
negative scores so the math is simpler. The product of the rank and the weight is –6,
which is then summed with all the other products for alternative #2, equaling 9 for a
total score: (2 –3) + (1 –1) + (3 –9) + (3 –3) + (3 –1) + (3 9) + (3 9) + (1
 1) = 9.

The final step is to compare the total scores for each alternative and apply a level
of common sense to it. Here, we have the alternatives with 0, 9, and –6 scores, which
would clearly indicate that alternative #2 is the better choice for us. Before automati-
cally assuming that this is our decision, we should verify that based on our common
sense and other factors that might not have been included, this is a sound decision. If
something appears to be off or you want to add other factors such as operations skill
sets, redo the matrix or have several people do the scoring independently to see how
a group of different people score the matrix differently.

The decision process is meant to provide you with a formal method of evaluating
alternatives. Using these types of matrixes, it becomes easier to see what the data is
telling you so that you make a well-informed and data based decision. For times
when a full decision matrix is not justified or you want to test an idea, consider using
a rule of thumb. One that we often employ is a high-level comparison of risk. In the
Web 2.0 and SaaS world, an outage has the potential to cost a lot of money. Consid-
ering this, a potential rule of thumb would be: If the cost of just one outage exceeds
the benefits gained by whatever change you are considering, you’re better off not
introducing the change.

Decision Steps
The following are steps to help make a decision about whether to introduce cloud computing
into your infrastructure:

1. Determine the goals or purpose of the change.

2. Create alternative designs for how to use cloud computing.

3. Place weights on all the pros and cons that you can come up with for cloud computing.

4. Rank or score the alternatives using the pros and cons.

5. Tally scores for each alternative by multiplying the score by the weight and summing.

This decision matrix process will help you make data driven decisions about which cloud
computing alternative implementation is best for you.

ptg5994185

CONCLUSION 453

The most likely question with regard to introducing cloud computing into your
infrastructure is not whether to do it but rather when and how is the right way to do
it. Cloud computing is not going away and in fact is likely to be the preferred but not
only infrastructure model of the future. We all need to keep an eye on how cloud
computing evolves over the coming months and years. This technology has the potential
to change the fundamental cost and organization structures of most SaaS companies.

Conclusion
In this chapter, we covered the benefits and drawbacks of cloud computing. We iden-
tified five categories of cons to cloud computing including security, portability, con-
trol, limitations, and performance. The security category is our concern over how our
data is handled after it is in the cloud. The provider has no idea what type of data we
store there and we have no idea who has access to that data. This discrepancy
between the two causes some concern. The portability addresses the fact that porting
between clouds or clouds and physical hardware is not necessarily easy depending on
your application. The control issues come from integrating another third-party ven-
dor into your infrastructure that has influence over not just one part of your system’s
availability but has control over probably the entirety of your site’s availability. The
limitations that we identified were inability to use your own IP space, having to use
software load balancers, and certification of third-party software on the cloud infra-
structure. Last of the cons was performance, which we noted as being varied between
cloud vendors as well as physical hardware. The degree to which you care about any
of these cons should be dictated by your company and the applications that you are
considering hosting on the cloud environment.

We also identified three pros: cost, speed, and flexibility. The pay per usage model
is extremely attractive to companies and makes great sense. The speed is in reference
to the unequaled speed of procurement and provisioning that can be done in a virtual
environment. The flexibility is in how you can utilize a set of virtual servers today as
a quality assurance environment: shut them down at night and bring them back up
the next day as a load and performance testing environment. This is a very attractive
feature of the virtual host in cloud computing.

After covering the pros and cons, we discussed the various ways in which cloud
computing could exist in different companies’ infrastructure. Some of these alterna-
tives included not only as part or all of the production environment but also in other
environments such as quality assurance or development. As part of the production
environment, the cloud computing could be used for surge capacity or disaster recov-
ery or of course to host all of production. There are many variations in the way that
companies can implement and utilize cloud computing in their infrastructure. These

ptg5994185

454 CHAPTER 29 SOARING IN THE CLOUDS

examples are designed to show you how you can make use of the pros or benefits of
cloud computing to aid your scaling efforts, whether directly for your production
environment or more indirectly by aiding your product development cycle. This
could take the form of making use of the speed of provisioning virtual hardware or
the flexibility in using the environments differently each day.

Lastly we talked about how to make the decision of whether to use cloud comput-
ing in your company. We provided a five-step process that included establishing
goals, describing alternatives, weighting pros and cons, scoring the alternatives, and
tallying the scores and weightings to determine the highest scoring alternative. The
bottom line to all of this was that even if a cloud environment is not right for your
organization today, you should continue looking at them because they will continue
to improve; and it is very likely that it will be a good fit at some time.

Key Points

• Pros of cloud computing include cost, speed, and flexibility.

• Cons of cloud computing include security, control, portability, inherent limita-
tions of the virtual environment, and performance differences.

• There are many ways to utilize cloud environments.

• Clouds can be used in conjunction with other infrastructure models by using
them for surge capacity or disaster recovery.

• You can use cloud computing for development, quality assurance, load and per-
formance testing, or just about any other environment including production.

• There is a five-step process for helping to decide where and how to use cloud
computing in your environment.

• All technologists should be aware of cloud computing; almost all organizations
can take advantage of cloud computing.

ptg5994185

455

Chapter 30

Plugging in the Grid

And if we are able thus to attack an inferior force with a superior one, our opponents will be in dire straits.

—Sun Tzu

In Chapter 28, Clouds and Grids, we covered the basics of grid computing. In this
chapter, we will cover in more detail the pros and cons of grid computing as well as
where such computing infrastructure could fit in different companies. Whether you
are a Web 2.0, Fortune 500, or Enterprise Software company, it is likely that you
have a need for grid computing in your scalability toolset. This chapter will provide
you with a framework for further understanding a grid computing infrastructure as
well as some ideas of where in your organization to deploy it. Grid computing offers
the scaling on demand of computing cycles for computationally intense applications
or programs. By understanding the benefits and cons of grid computing and provid-
ing you with some ideas on how this type of technology might be used, you should be
well armed to use this knowledge in your scalability efforts.

As a way of a refresher, we defined grid computing in Chapter 28 as the term used
to describe the use of two or more computers processing individual parts of an overall
task. Tasks that are best structured for grid computing are ones that are computation-
ally intensive and divisible, meaning able to be broken into smaller tasks. Software is
used to orchestrate the separation of tasks, monitor the computation of these tasks,
and then aggregate the completed tasks. This is parallel processing on a network dis-
tributed basis instead of inside a single machine. Before grid computing, mainframes
were the only way to achieve this scale of parallel processing. Today’s grids are often
composed of thousands of nodes spread across networks such as the Internet.

Why would we consider grid computing as a principle, architecture, or aid to an
organization’s scalability? The reason is that grid computing allows for the use of sig-
nificant computational resources by an application in order to process quicker or
solve problems faster. Dividing processing is a core component to scaling, think of the
x-, y-, and z-axes splits in the AKF Scale Cubes. Depending on how the separation of

ptg5994185

456 CHAPTER 30 PLUGGING IN THE GRID

processing is done or viewed, the splitting of the application for grid computing
might take the shape or one or more of the axes.

Pros and Cons of Grids
Grid environments are ideal for applications that need computationally intensive
environments and for applications that can be divisible into elements that can be
simultaneously executed. With that as a basis, we are going to discuss the benefits
and drawbacks of grid computing environments. The pros and cons are going to mat-
ter differently to different organizations. If your application can be divided easily,
either by luck or design, you might not care that the only way to achieve great bene-
fits is with applications that can be divided. However, if you have a monolithic appli-
cation, this drawback may be so significant as to completely discount the use of a
grid environment. As we discuss each of the pros and cons, this fact should be kept in
mind that some of each will matter more or less to your technology organization.

Pros of Grids
The pros of grid computing models include high computational rates, shared infra-
structure, utilization of unused capacity, and cost. Each of these is explained in more
detail in the following sections. The ability to scale computation cycles up quickly as
necessary for processing is obviously directly applicable to scaling an application, ser-
vice, or program. In terms of scalability, it is important to grow the computational
capacity as needed but equally important is to do this efficiently and cost effectively.

High Computational Rates The first benefit that we want to discuss is a basic
premise of grid computing—that is, high computational rates. The grid computing
infrastructure is designed for applications that need computationally intensive envi-
ronments. The combination of multiple hosts with software for dividing tasks and
data allows for the simultaneous execution of multiple tasks. The amount of parallel-
ization is limited by the hosts available—the amount of division possible within the
application and, in extreme cases, the network linking everything together. We cov-
ered Amdahl’s law in Chapter 28, but it is worth repeating as this defines the upper
bound of this benefit from the limitation of the application. The law was developed
by Gene Amdahl in 1967 and states that the portion of a program that cannot be par-
allelized will limit the total speed up from parallelization.1 This means that nonse-

1. Amdahl, G.M. “Validity of the single-processor approach to achieving large scale comput-
ing capabilities.” In AFIPS Conference Proceedings, vol. 30 (Atlantic City, N.J., Apr. 18-
20). AFIPS Press, Reston, Va., 1967, pp. 483-485.

ptg5994185

PROS AND CONS OF GRIDS 457

quential parts of a program will benefit from the parallelization, but the rest of the
program will not.

Shared Infrastructure The second benefit of grid computing is the use of shared
infrastructure. Most applications that utilize grid computing do so either daily,
weekly, or some periodic amount of time. Outside of the periods in which the com-
puting infrastructure is used for grid computing purposes, it can be utilized by other
applications or technology organizations. We will discuss the limitation of sharing
the infrastructure simultaneously in the “Cons of Grid Computing” section. This
benefit is focused on sharing the infrastructure sequentially. Whether a private or
public grid, the host computers in the grid can be utilized almost continuously
around the clock. Of course, this requires the properly scheduling of jobs within the
overall grid system so that as one application completes its processing the next one
can begin. This also requires either applications that are flexible in the times that they
run or applications that can be stopped in the middle of a job and delayed until there
is free capacity later in the day. If applications must run every day at 1 AM, the job
before it must complete prior to this or be designed to stop in the middle of the pro-
cessing and restart later without losing valuable computations. For anyone familiar
with job scheduling on mainframes, this should sound a little familiar, because as we
mentioned earlier, the mainframe was the only way to achieve such intensive parallel
processing before grid computing.

Utilization of Unused Capacity The third benefit that we see in some grid comput-
ing implementations is the utilization of unused capacity. Grid computing implemen-
tations vary, and some are wholly dedicated to grid computing all day, whereas
others are utilized as other types of computers during the day and connected to the
grid at night when no one is using them. For grids that are utilizing surplus capacity,
this approach is known as CPU scavenging. One of the most well-known grid scav-
enging programs has been SETI@home that utilizes unused CPU cycles on volunteers’
computers in a search for extraterrestrial intelligence in radio telescope data. There
are obviously drawbacks of utilizing spare capacity that include unpredictability of
the number of hosts and the speed or capacity of each host. When dealing with large
corporate computer networks or standardized systems that are idle during the
evening, these drawbacks are minimized.

Cost A fourth benefit that can come from grid computing is in terms of cost. One
can realize a benefit of scaling efficiently in a grid as it takes advantage of the distrib-
uted nature of applications. This can be thought of in terms of scaling the y-axis, as
discussed in Chapter 23, Splitting Applications for Scale, and shown in Figure 23.1.
As one service or particular computation has more demand placed on it, instead of
scaling the entire application or suite of services along an x-axis (horizontal duplication),

ptg5994185

458 CHAPTER 30 PLUGGING IN THE GRID

you can be much more specific and scale only the service or computation that
requires the growth. This allows you to spend much more efficiently only on the
capacity that is necessary. The other advantage in terms of cost can come from scav-
enging spare cycles on desktops or other servers, as described in the previous para-
graph referencing the SETI@home program.

Pros of Grid Computing
We have identified three major benefits of grid computing. These are listed in no particular
order and are not all inclusive. There are many more benefits, but these are representative of
the types of benefits you could expect from including grid computing in your infrastructure.

• High computation rates. With the amalgamation of multiple hosts on a network, an appli-
cation can achieve very high computational rates or computational throughput.

• Shared infrastructure. Although grids are not necessarily great infrastructure compo-
nents to share with other applications simultaneously, they are generally not used around
the clock and can be shared by applications sequentially.

• Unused capacity. For grids that utilize unused hosts during off hours, the grid offers a
great use for this untapped capacity. Personal computers are not the only untapped
capacity, often testing environments are not utilized during the late evening hours and
can be integrated into a grid computing system.

• Cost. Whether the grid is scaling the specific program within your service offerings or tak-
ing advantage of scavenged capacity, these are both ways to make computations more
cost-effective. This is yet another reason to look at grids as scalability solutions.

These are three of the benefits that you may see from integrating a grid computing system
into your infrastructure. The amount of benefit that you see from any of these will depend on
your specific application and implementation.

Cons of Grids
We are now going to switch from the benefits of utilizing a grid computing infra-
structure and talk about the drawbacks. As with the benefits, the significance or
importance that you place on each of the drawbacks is going to be directly related to
the applications that you are considering for the grid. If your application was
designed to be run in parallel and is not monolithic, this drawback may be of little
concern to you. However, if you have arrived at a grid computing architecture
because your monolithic application has grown to where it cannot compute 24
hours’ worth of data in a 24-hour time span and you must do something or else con-
tinue to fall behind, this drawback may be of a grave concern to you. We will discuss

ptg5994185

PROS AND CONS OF GRIDS 459

three major drawbacks as we see them with grid computing. These include the difficulty
in sharing the infrastructure simultaneously, the inability to work well with mono-
lithic applications, and the increased complexity of utilizing these infrastructures.

Not Shared Simultaneously The first con or drawback is that it is difficult if not
impossible to share the grid computing infrastructure simultaneously. Certainly, some
grids are large enough that they have enough capacity for running many applications
simultaneously, but they really are still running in separate grid environments, with
the hosts just reallocated for a particular time period. For example, if I have a grid
that consists of 100 hosts, I could run 10 applications on 10 separate hosts each.
Although you should consider this sharing the infrastructure, as we stated in the ben-
efits section earlier, this is not sharing it simultaneously. Running more than one
application on the same host defeats the purpose of massive parallel computing that
is gained by the grid infrastructure.

Grids are not great infrastructures to share with multiple tenants. You run on a
grid to parallelize and increase the computational bandwidth for your application.
Sharing or multitenancy can occur serially, one after the other, in a grid environment
where each application runs in isolation and when completed the next job runs. This type
of scheduling is common among systems that run large parallel processing infrastruc-
tures that are designed to be utilized simultaneously to compute large problem sets.

What this means for you running an application is that you must have flexibility
built into your application and system to either start and stop processing as necessary
or run at a fixed time each time period, usually daily or weekly. Because applications
need the infrastructure to themselves, they are often scheduled to run during certain
windows. If the application begins to exceed this window, perhaps because of more
data to process, the window must be rescheduled to accommodate this or else all
other jobs in the queue will get delayed.

Monolithic Applications The next drawback that we see with grid computing infra-
structure is that it does not work well with monolithic applications. In fact, if you
cannot divide the application into parts that can be run in parallel, the grid will not
help processing at all. The throughput of a monolithic application cannot be helped
by running on a grid. A monolithic application can be replicated onto many individual
servers, as seen in an x-axis split, and the capacity can be increased by adding servers.
As we stated in the discussion of Amdahl’s law, nonsequential parts of a program will
benefit from the parallelization, but the rest of the program will not. Those parts of a
program that must run in order, sequentially, are not able to be parallelized.

Complexity The last major drawback that we see in grid computing is the increased
complexity of the grid. Hosting and running an application by itself is often complex
enough considering the interactions that are required with users, other systems,

ptg5994185

460 CHAPTER 30 PLUGGING IN THE GRID

databases, disk storage, and so on. Add to this already complex and highly volatile
environment the need to run this on top of a grid environment and it becomes even
more complex. The grid is not just another set of hosts. Running on a grid requires a
specialized operating system that among many other things manages which host has
which job, what happens when a host dies in the middle of a job, what data the host
needs to perform the task, gathering the processed results back afterward, deleting
the data from the host, and aggregating the results together. This adds a lot of com-
plexity and if you have ever debugged an application that has hundreds of instances
of the same application on different servers, you can imagine the challenge of debug-
ging one application running across hundreds of servers.

Cons of Grid Computing
We have identified three major drawbacks of grid computing. These are listed in no particular
order and are not all inclusive. There are many more cons, but these are representative of what
you should expect if you include grid computing in your infrastructure.

• Not shared simultaneously. The grid computing infrastructure is not designed to be
shared simultaneously without losing some of the benefit of running on a grid in the first
place. This means that jobs and applications are usually scheduled ahead of time and
not run on demand.

• Monolithic app. If your application is not able to be divided into smaller tasks, there is little to
no benefit of running on a grid. To take advantage of the grid computing infrastructure, you
need to be able to break the application into nonsequential tasks that can run independently.

• Complexity. Running on a grid environment adds another layer of complexity to your
application stack that is probably already complex. If there is a problem, debugging
whether the problem exists because of a bug in your application code or the environment
that it is running on becomes much more difficult.

These three cons are ones that you may see from integrating a grid computing system into
your infrastructure. The significance of each one will depend on your specific application and
implementation.

These are the major pros and cons that we see with integrating a grid computing
infrastructure into your architecture. As we discussed earlier, the significance that
you give to each of these will be determined by your specific application and technol-
ogy team. As a further example of this, if you have a strong operations team that has
experience working with or running grid infrastructures, the increased complexity
that comes along with the grid is not likely to deter you. If you have no operations

ptg5994185

DIFFERENT USES FOR GRID COMPUTING 461

team and no one on your team had to support an application running on a grid, this
drawback may give you pause.

If you are still up in the air about utilizing grid computing infrastructure, the next
section is going to give you some ideas on where you may consider using a grid.
Although you read through some of the ideas, be sure to keep in mind the benefits
and drawbacks covered earlier, because these should influence your decision of
whether to proceed with a similar project yourself.

Different Uses for Grid Computing
In this section, we are going to cover some ideas and examples that we have either
seen or discussed with clients and employers for using grid computing. By sharing
these, we aim to give you a sampling of the possible implementations and don’t con-
sider this list inclusive at all. There are a myriad of ways to implement and take
advantage of a grid computing infrastructure. After everyone becomes familiar with
grids, you and your team are surely able to come up with an extensive list of possible
projects that could benefit from this architecture, and then you simply have to weigh
the pros and cons of each project to determine if any is worth actually implementing.
Grid computing is an important tool to utilize when scaling applications, whether in
the form of utilizing a grid to scale more cost effectively a single program in your pro-
duction environment or using it to speed up a step in the product development cycle,
such as compilation. Scalability is not just about the production environment, but the
processes and people that support it as well. Keep this in mind as you read these
examples and consider how grid computing can aid your scalability efforts.

We have four examples that we are going to describe as potential uses for grid
computing. These are running your production environment on a grid, using a grid
for compilation, implementing parts of a data warehouse environment on a grid, and
back office processing on a grid. We know there are many more implementations
that are possible, but these should give you a breadth of examples that you can use to
jumpstart your own brainstorming session.

Production Grid
The first example usage is of course to use grid computing in your production envi-
ronment. This may not be possible for applications that require real-time user inter-
actions such as Software as a Service companies. However, for IT organizations that
have very mathematically complex applications in use for controlling manufacturing
processes or shipping control, this might be a great fit. Lots of these applications have
historically resided on mainframe or midrange systems. Many technology organiza-
tions are finding it more difficult to support these larger and older machines from

ptg5994185

462 CHAPTER 30 PLUGGING IN THE GRID

both vendor support as well as engineering support. There are fewer engineers who
know how to run and program these machines and fewer who would prefer to learn
these skill sets instead of Web programming skills.

The grid computing environment offers solutions to both of the problems of machine
and engineering support for older technologies. Migrating to a grid that runs lots of
commodity hardware as opposed to one strategic piece of hardware is a way to reduce
your dependency on a single vendor for support and maintenance. Not only does this
push the balance of power into your court, it is possibly a significant cost savings for
your organization. At the same time, you should more easily be able to find already
trained engineers or administrators who have experience running grids or at the very
least find employees who are excited about learning one of the newer technologies.

Build Grid
The next example is using a grid computing infrastructure for your build or compila-
tion machines. If compiling your application takes a few minutes on your desktop,
this might seem like overkill, but there are many applications that, running on a sin-
gle host or developer machine, would take days to compile the entire code base. This
is when a build farm or grid environment comes in very handy. Compiling is ideally
suited for grids because there are so many divisions of work that can take place, and
they can all be performed nonsequentially. The later stages of the build that include
linking start to become more sequential and thus not capable of running on a grid,
but the early stages are ideal for a division of labor.

Most companies compile or build an executable version of the checked in code
each evening so that anyone who needs to test that version can have it available and
be sure that the code will actually build successfully. Going days without knowing
that the checked in code can build properly will result in hours (if not days) of work
by engineers to fix the build before it can be tested by the quality assurance engineers.
Not having the build be successful every day and waiting until the last step to get the
build working will cause delays for engineers and will likely cause engineers to not
check-in code until the very end, which risks losing their work and is a great way to
introduce a lot of bugs in the code. By building from the source code repository every
night, these problems are avoided. A great source of untapped compilation capacity
at night is the testing environments. These are generally used during the day and can
be tapped in the evening to help augment the build machines. This concept of CPU
scavenging was discussed before, but this is a simple implementation of it that can
save quite a bit of money in additional hardware cost.

For C, C++, Objective C, or Objective C++, builds implementing a distributed
compilation process can be as simple as running distcc, which as its site (http://
www.distcc.org) claims is a fast and free distributed compiler. It works by simply run-
ning the distcc daemon on all the servers in the compilation grid, placing the names
of these servers in an environmental variable, and then starting the build process.

ptg5994185

DIFFERENT USES FOR GRID COMPUTING 463

Build Steps
There are many different types of compilers and many different processes that source code goes
through to become code that can be executed by a machine. At a high level, there are either
compiled languages or interpreted languages. Forget about just in time (JIT) compilers and
bytecode interpreters; compiled languages are ones that the code written by the engineers is
reduced to machine readable code ahead of time using a compiler. Interpreted languages use an
interpreter to read the code from the source file and execute it at runtime. Here are the rudimen-
tary steps that are followed by most compilation processes and the corresponding input/output:

• In Source code

1. Preprocessing. This is usually used to check for syntactical correctness.

• Out/In Source code

2. Compiling. This step converts the source code to assembly code based on the lan-
guage’s definitions of syntax.

• Out/In Assembly code

3. Assembling. This step converts the assembly language into machine instructions or
object code.

• Out/In Object code

4. Linking. This final step combines the object code into a single executable.

• Out Executable code

A formal discussion of compiling is beyond the scope of this book, but this four-step process
is the high-level overview of how source code gets turned into code that can be executed by a
machine.

Data Warehouse Grid
The next example that we are going to cover is using a grid as part of the data ware-
house infrastructure. There are many components in a data warehouse from the pri-
mary source databases to the end reports that users view. One particular component
that can make use of a grid environment is the transformation phase of the extract-
transform-load step (ETL) in the data warehouse. This ETL process is how data is
pulled or extracted from the primary sources, transformed into a different form—
usually a denormalized star schema form—and then loaded into the data warehouse.
The transformation can be computationally intensive and therefore a primary candi-
date for the power of grid computing.

The transformation process may be as simple as denormalizing data or it may be as
extensive as rolling up many months’ worth of sales data for thousands of transactions.

ptg5994185

464 CHAPTER 30 PLUGGING IN THE GRID

Processing that is very intense such as monthly or even annual rollups can often be
broken into multiple pieces and divided among a host of computers. By doing so, this
is very suitable for a grid environment. As we covered in Chapter 27, Too Much
Data, massive amounts of data are often the cause of not being able to process jobs
such as the ETL in the time period required by either customers or internal users.
Certainly, you should consider how to limit the amount of data that you are keeping
and processing, but it is possible that the amount of data growth is because of an
exponential growth in traffic, which is what you want. A solution is to implement a
grid computing infrastructure for the ETL to finish these jobs in a timely manner.

Back Office Grid
The last example that we want to cover is back office processing. An example of such
back office processing takes place every month in most companies when they close
the financial books. This is often a time of massive amounts of processing, data
aggregation, and computations. This is usually done with an enterprise resource
planning (ERP) system, financial software package, homegrown system, or some
combination of these. Attempting to use off-the-shelf software processing on a grid
computing infrastructure when the system was not designed to do so may be chal-
lenging but it can be done. Often, very large ERP systems allow for quite a bit of cus-
tomization and configuration. If you have ever been responsible for this process or
waited days for this process to be finished, you will agree that being able to run this
on possibly hundreds of host computers and finishing within hours would be a mon-
umental improvement. There are many back office systems that are very computa-
tionally intensive—end-of-month processing is just one. Others include invoicing,
supply reordering, resource planning, and quality assurance testing. Use these as a
springboard to develop your own list of potential places for improvement.

We covered four examples of grids in this section: running your production environ-
ment on a grid, using a grid for compilation, implementing parts of a data warehouse
environment on a grid, and back office processing on a grid. We know there are
many more implementations that are possible, and these are only meant to provide
you with some examples that you can use to come up with your own applications for
grid computing. After you have done so, you can apply the pros and cons along with
a weighting score. We will cover how to do this in the next section of this chapter.

MapReduce
We covered MapReduce in Chapter 27, but we should point out here in the chapter on grid
computing that MapReduce is an implementation of distributed computing, which is another
name for grid computing. In essence, MapReduce is a special case grid computing framework
used for text tokenizing and indexing.

ptg5994185

DECISION PROCESS 465

Decision Process
Now we will cover the process for deciding which ideas you brainstormed should be
pursued. The overall process that we are recommending is to first brainstorm the
potential areas of improvement. Using the pros and cons that we outlined in this
chapter, as well as any others that you think of, weigh the pros and cons based on
your particular application. Score each idea based on the pros and cons. Based on the
final tally of pros and cons, decide which ideas if any should be pursued. We are
going to provide an example as a demonstration of the steps.

Let’s take our company AllScale.com. We currently have no grid computing imple-
mentations but we have read The Art of Scalability and think it might be worth
investigating if grid computing is right for any of our applications. We decide that
there are two projects that are worth considering because they are beginning to take
too long to process and are backing up other jobs as well as hindering our employees
from getting their work done. The projects are the data warehouse ETL and the
monthly financial closing of the books. We decide that we are going to use the three
pros and three cons identified in the book, but have decided to add one more con: the
initial cost of implementing the grid infrastructure.

Now that we have completed step one, we are ready to apply weights to the pros
and cons, which is step two. We will use a 1, 3, or 9 scale to rank these in order that
we highly differentiate the factors that we care about. The first con is that the grid is
not able to be used simultaneously. We don’t think this is a very big deal because we
are considering implementing this as a private cloud—only our department will uti-
lize it, and we will likely use scavenged CPU to implement. We weigh this as a –1,
negative because it is a con and this makes the math easier when we multiply and add
the scores. The next con is the inhospitable environment that grids are for monolithic
applications. We also don’t care much about this con, because both alternative ideas
are capable of being split easily into nonsequential tasks. We care somewhat about
the increased complexity because although we do have a stellar operations team, we
would like to not have them handle too much extra work. We weight this –3. The last
con is the cost of implementing. This is a big deal for us because we have a limited
infrastructure budget this year and cannot afford to pay much for the grid. We
weight this –9 because it is very important to us.

On the pros, we consider the fact that grids have high computational rates very
important to us because this is the primary reason that we are interested in the tech-
nology. We are going to weight this +9. The next pro on the list is that a grid is shared
infrastructure. We like that we can potentially run multiple applications, in sequence,
on the grid computing infrastructure, but it is not that important, so we weight it +1.
The last pro to weight is that grids can make us of unused capacity, such as with CPU
scavenging. Along with minimizing the cost being a very important goal for us, this

ptg5994185

466 CHAPTER 30 PLUGGING IN THE GRID

ability to use extra or surplus capacity is important also, and we weight it +9. This
concludes step 2, the weighting of the pros and cons.

The next step is to score each alternative idea on a scale from 0 to 5 to demon-
strate each of the pros and cons. As an example, we ranked the ETL project as shown
in Table 30.1, because it would potentially be the only application running on the
grid at this time; thus, it has a minor relationship with the con of “not simultaneously
shared.” The cost is important to both projects and because the monthly financial
closing project is larger, we ranked it higher on the “cost of implementation.” On the
pros, both projects benefit greatly from the higher computational rates, but the
month financial closing project requires more processing so it is ranked higher. We
plan on utilizing unused capacity such as in our QA environment for the grid, so we
ranked it high for both projects. We continued in this manner scoring each project
until the entire matrix was filled in.

Step four is to multiply the scores by the weights and then sum the products up for
each project. For the ETL example, we multiply the weight –1 by the score 1, add it
to the product of the second weight –1 by the score 1 again, and continue in this
manner with the final calculation looking like this: (1 –1) + (1 –1) + (1 –3) + (3
 –9) + (3 9) + (1 1) + (4 9) = 32.

As part of the final, we analyze the scores for each alternative and apply a level of
common sense to it. In this example, we have the two ideas—ETL and monthly
financial closing—scored as 32 and 44, respectively. In this case, both projects look
likely to be beneficial and we should consider them both as very good potentials for
moving forward. Before automatically assuming that this is our decision, we should
verify that based on our common sense and other factors that might not have been
included, this is a sound decision. If something appears to be off or you want to add

Table 30.1 Grid Decision Matrix

Weight
(1, 3, or 9) ETL

Monthly
Financial
Closing

Cons

Not simultaneously shared –1 1 1

Not suitable for monolithic apps –1 1 1

Increased complexity –3 1 3

Cost of implementation –9 3 3

Pros

High computational rates 9 3 5

Shared infrastructure 1 1 1

Unused capacity 9 4 4

Total 32 44

ptg5994185

CONCLUSION 467

other factors, you should redo the matrix or have several people do the scoring
independently.

The decision process is designed to provide you with a formal method of evaluat-
ing ideas assessed against pros and cons. Using these types of matrixes, the data can
help us make decisions or at a minimum lay out our decision process in a logical
manner.

Decision Steps
The following are steps to take to help make a decision about whether you should introduce
grid computing into your infrastructure:

1. Develop alternative ideas for how to use grid computing.

2. Place weights on all the pros and cons that you can come up with.

3. Score the alternative ideas using the pros and cons.

4. Tally scores for each idea by multiplying the score by the weight and summing.

This decision matrix process will help you make data driven decisions about which ideas
should be pursued to include grid computing as part of your infrastructure.

As with cloud computing, the most likely question is not whether to implement a
grid computing environment, but rather where and when you should implement it.
Grid computing offers a good alternative to scaling applications that are growing
quickly and need intensive computational power. Choosing the right project for the
grid for it to be successful is critical and should be done with as much thought and
data as possible.

Conclusion
In this chapter, we covered the pros and cons of grid computing, provided some real-
world examples of where grid computing might fit, and covered a decision matrix to
help you decide what projects make the most sense for utilizing the grid. We dis-
cussed three pros: high computational rates, shared infrastructure, and unused capac-
ity. We also covered three cons: the environment is not shared well simultaneously,
monolithic applications need not apply, and increased complexity.

We provided four real-world examples of where we see possible fits for grid com-
puting. These examples included the production environment of some applications,

ptg5994185

468 CHAPTER 30 PLUGGING IN THE GRID

the transformation part of the data warehousing ETL process, the building or com-
piling process for applications, and the back office processing of computationally
intensive tasks. Each of these is a great example where you may have a need for fast
and large amounts of computations. Not all similar applications can make use of the
grid, but parts of many of them can be implemented on a grid. Perhaps the entire
ETL process doesn’t make sense to run on a grid, but the transformation process
might be the key part that needs the additional computations.

The last section of this chapter was the decision matrix. We provided a framework
for companies and organizations to use to think through logically which projects
make the most sense for implementing a grid computing infrastructure. We outlined a
four-step process that included identifying likely projects, weighting the pros/cons,
scoring the projects against the pros/cons, and then summing and tallying the final
scores.

Grid computing does offer some very positive benefits when implemented cor-
rectly and the drawbacks are minimized. This is another very important technology
and concept that can be utilized in the fight to scale your organization, processes, and
technology. Grids offer the ability to scale computationally intensive programs and
should be considered for production as well as supporting processes. As grid comput-
ing and other technologies become available and more mainstream, technologists
need to stay current on them, at least in sufficient detail to make good decisions
about whether they make sense for your organization and applications.

Key Points

• Grid computing offers high computation rates.

• Grid computing offers shared infrastructure for applications using them
sequentially.

• Grid computing offers a good use of unused capacity in the form of CPU
scavenging.

• Grid computing is not good for sharing simultaneously with other applications.

• Grid computing is not good for monolithic applications.

• Grid computing does add some amount of complexity.

• Desktop computers and other unused servers are a potential for untapped com-
putational resources.

ptg5994185

469

Chapter 31

Monitoring Applications

Gongs and drums, banners and flags, are means whereby the ears and
eyes of the host may be focused on one particular point.

—Sun Tzu

No book on scale would be complete without addressing the unique monitoring
needs of systems that process a large volume of transactions. When you are small or
growing slowly, you have plenty of time to identify and correct deficiencies in the sys-
tems that cause customer experience problems. Furthermore, you aren’t really inter-
ested in systems to help you identify scalability related issues early, as your slow
growth obviates the need for such systems. However, when you are large or growing
quickly or both, you have to be in front of your monitoring needs. You need to iden-
tify scale bottlenecks quickly or suffer prolonged and painful outages. Further, small
deltas in response time that might not be meaningful to customer experience today
might end up being brownouts tomorrow when customer demand increases an addi-
tional 10%. In this chapter, we will discuss the reason why many companies struggle
in near perpetuity with monitoring their platforms and how to fix that struggle by
employing a framework for maturing monitoring over time. We will discuss what
kind of monitoring is valuable from a qualitative perspective and how that monitor-
ing will aid our metrics and measurements from a quantitative perspective. Finally,
we will address how monitoring fits into some of our processes including the head-
room and capacity planning processes from Chapter 11, Determining Headroom for
Applications, and incident and crisis management processes from Chapters 8, Man-
aging Incidents and Problems, and 9, Managing Crisis and Escalations, respectively.

“How Come We Didn’t Catch That Earlier?”
If you’ve been around technical platforms, technology systems, back office IT sys-
tems, or product platforms for more than a few days, you’ve likely heard questions

ptg5994185

470 CHAPTER 31 MONITORING APPLICATIONS

like, “How come we didn’t catch that earlier?” associated with the most recent fail-
ure, incident, or crisis. If you’re as old as or older than we are, you’ve probably for-
gotten just how many times you’ve heard that question or a similar one. The answer
is usually pretty easy and it typically revolves around a service, component, applica-
tion, or system not being monitored or not being monitored correctly. The answer
usually ends with something like, “. . . and this problem will never happen again.”

Even if that problem never happens again, and in our experience most often the
problem does happen again, a similar problem will very likely occur. The same ques-
tion is asked, potentially a postmortem conducted, and actions are taken to monitor
the service correctly “again.”

The question of “How come we didn’t catch it?” has a use, but it’s not nearly as
valuable as asking an even better question such as, “What in our process is flawed
that allowed us to launch the service without the appropriate monitoring to catch
such an issue as this?” You may think that these two questions are similar, but they
are not. The first question, “How come we didn’t catch that earlier?” deals with this
issue, this point in time, and is marginally useful in helping drive the right behaviors
to resolve the incident we just had. The second question, on the other hand, addresses
the people and process that allowed the event you just had and every other event for
which you did not have the appropriate monitoring. Think back, if you will, to
Chapter 8 wherein we discussed the relationship of incidents and problems. A prob-
lem causes an incident and may be related to multiple incidents. Our first question
addresses the incident, and not the problem. Our second question addresses the prob-
lem. Both questions should probably be asked, but if you are going to ask and expect
an answer (or a result) from only one question, we argue you should fix the problem
rather than the incident.

We argue that the most common reason for not catching problems through moni-
toring is that most systems aren’t designed to be monitored. Rather, most systems are
designed and implemented and monitoring is an afterthought. Often, the team
responsible for determining if the system or application is working properly had no
hand in defining the behaviors of the system or in designing it. The most common
result is that the monitoring performed on the application is developed by the team
least capable of determining if the application is performing properly. This in turn
causes critical success or failure indicators to be missed and very often means that the
monitoring system is guaranteed to “fail” relative to internal expectations in identify-
ing critical customer impact issues before they become crises.

Note that “designing to be monitored” means so much more than just understand-
ing how to properly monitor a system for success and failure. Designing to be moni-
tored is an approach wherein one builds monitoring into the application or system
rather than around it. It goes beyond logging that failures have occurred and toward
identifying themes of failure and potentially even performing automated escalation of
issues or concerns from an application perspective. A system that is designed to be

ptg5994185

“HOW COME WE DIDN’T CATCH THAT EARLIER?” 471

monitored might evaluate the response times of all of the services with which it inter-
acts and alert someone when response times are out of the normal range for that time
of day. This same system might also evaluate the rate of error logging it performs
over time and also alert the right people when that rate significantly changes or the
composition of the errors changes. Both of these approaches might be accomplished
by employing a statistical process control chart that alerts when rates of errors or
response times fall outside of N standard deviations from a mean calculated from the
last 30 similar days at that time of day. Here, a “similar” day would mean comparing
a Monday to a Monday and a Saturday to a Saturday.

When companies have successfully implemented a Designed to Be Monitored
architectural principle, they begin asking a third question. This question is asked well
before the implementation of any of the systems and it usually takes place in the
Architectural Review Board (ARB) or the Joint Applications Design (JAD) meetings
(see Chapters 14 and 13, respectively, for a definition of these meetings). The ques-
tion is most often phrased as, “How do we know this system is functioning properly
and how do we know when it is starting to behave poorly?” Correct responses to this
third question might include elements of our statistical process control solution men-
tioned earlier. Any correct answer should include something other than that the
application logs errors. Remember, we want the system to tell us when it is behaving
not only differently than expected, but when it is behaving differently than normal.
These are really two very different things.

Note that the preceding is a significant change in approach compared to having
the operations team develop a set of monitors for the application that consists of
looking for simple network management protocol (SNMP) traps or grepping through
logs for strings that engineers indicate are of some importance. It also goes well
beyond simply looking at CPU utilization, load, memory utilization, and so on.
That’s not to say that all of those aren’t also important, but they won’t buy you
nearly as much as ensuring that the application is intelligent about its own health.

The second most common reason for not catching problems through monitoring is
that we approach monitoring differently than we approach most of our other engi-
neering endeavors. We very often don’t design our monitoring or we approach it in a
methodical evolutionary fashion. Most of the time, we just apply effort to it and hope
that we get most of our needs covered. Often, we rely on production incidents and
crises to mature our monitoring, and this approach in turn creates a patchwork quilt
with no rhyme or reason. When asked for what we monitor, we will likely give all of
the typical answers covering everything from application logs to system resource uti-
lization, and we might even truthfully indicate that we also monitor for most of the
indications of past major incidents. Rarely will we answer that our monitoring is
engineered with the same rigors that we design and implement our platform or ser-
vices. The following is a framework to resolve this second most common problem.

ptg5994185

472 CHAPTER 31 MONITORING APPLICATIONS

A Framework for Monitoring
How often have you found yourself in a situation where, during a postmortem, you
identify that your monitoring system actually flagged the early indications of a poten-
tial scalability or availability issue? Maybe space alarms were triggered on a database
that went unanswered or potentially CPU utilization thresholds across several ser-
vices were exceeded. Maybe you had response time monitoring enabled between ser-
vices and saw a slow increase in the time for calls of a specific service over a number
of months. “How,” you might ask yourself, “did these go unnoticed?”

Maybe you even voice your concerns to the team. A potential answer might be
that the monitoring system simply gives too many false positives (or false negatives)
or that there is too much noise in the system. Maybe the head of the operations team
even indicates that she has been asking for months that they be given money to
replace the monitoring system or given the time and flexibility to reimplement the
current system. “If we only take some of the noise out of the system, my team can
sleep better and address the real issues that we face,” she might say. We’ve heard the
reasons for new and better monitoring systems time and again, and although they are
sometimes valid, most often we believe they result in a destruction of shareholder
value. The real issue isn’t typically that the monitoring system is not meeting the
needs of the company; it is that the approach to monitoring is all wrong. The team
very likely has a good portion of the needs nailed, but it started at the wrong end of
the monitoring needs spectrum.

Although having Design to Be Monitored as an architectural principle is necessary
to resolve the recurring “Why didn’t we catch that earlier?” problem, it is not suffi-
cient to solve all of our monitoring problems or all of our monitoring needs. We need
to plan our monitoring and expect that we are going to evolve it over time. Just as
Agile software development methods attempt to solve the problem associated with
not knowing all of your requirements before you develop a piece of software, so must
we have an agile and evolutionary development mindset for our monitoring plat-
forms and systems. This evolutionary method we propose answers three questions,
with each question supporting the delineation incidents and problems that we identi-
fied in Chapter 8.

The first question that we ask in our evolutionary model for monitoring is, “Is
there a problem?” Specifically, we are interested in determining whether the system is
not behaving correctly and most often we are really asking if there is a problem that
customers can or will experience. Many companies in our experience completely
bypass this very important question and immediately dive into an unguided explora-
tion of the next question we should ask, “Where is the problem located?” or even
worse, “What is the problem?”

In monitoring, bypassing “Is there a problem?” or more aptly, “What is the prob-
lem that customers are experiencing?” assumes that you know for all cases what sys-

ptg5994185

A FRAMEWORK FOR MONITORING 473

tems will cause what problems and in what way. Unfortunately, this isn’t often the
case. In fact, we’ve had many clients waste literally man years of effort in trying to
identify the source of the problem without ever truly understanding what the prob-
lem is. You have likely taken classes in which the notion of framing the problem or
developing the right question has been drilled into you. The idea is that you should
not start down the road of attempting to solve a problem or perform analysis before
you understand what exactly you are trying to solve. Other examples where this holds
true are in the etiquette of meetings, where the meeting typically has a title and purpose,
and in product marketing, where we first frame the target audience before attempting
to develop a product or service for that market’s needs. The same holds true with
monitoring systems and applications: We must know that there is a problem and how
the problem manifests itself if we are to be effective in identifying its source.

Not building systems that first answer, “Is there a problem?” result in two addi-
tional issues. The first issue is that our teams often chase false positives and then very
often start to react to the constant alerts as noise. This makes our system less useful
over time as we stop investigating alerts that may turn out to be rather large prob-
lems. We ultimately become conditioned to ignore alerts, regardless of whether they
are important.

This conditioning results in a second and more egregious issue: Customers inform-
ing us of our problems. Customers don’t want to be the one telling you about prob-
lems or issues with your systems or products, especially if you are a hosted solution
such as an application service provider (ASP) or Software as a Service (SaaS) pro-
vider. Customers expect that at best they are telling you something that you already
know and that you are deep in the process of fixing whatever issue they are experi-
encing. Unfortunately, because we do not spend time building systems to tell us that
there is a problem, often the irate customer is the first indication that we have a prob-
lem. Systems that answer the question, “Is there a problem?” are very often customer
focused systems that interact with our platform as if they are our customer. They may
also be diagnostic services built into our platform similar to the statistical process
control example given earlier.

The next question to answer in evolutionary fashion is, “Where is the problem?”
We now have built a system that tells us definitively that we have a problem some-
where in our system, ideally correlated with a single or a handful of business metrics.
Now we need to isolate where the problem exists. These types of systems very often
are broad category collection agents that give us indications of resource utilization
over time. Ideally, they are graphical in nature and maybe we are even applying our
neat little statistical process control chart trick. Maybe we even have a nice user inter-
face that gives us a heat map indicating areas or sections of our system that are not
performing as we would expect. These types of systems are really meant to help us
quickly identify where we should be applying our efforts in isolating what exactly the
problem is or what the root cause of our incident might be.

ptg5994185

474 CHAPTER 31 MONITORING APPLICATIONS

Before progressing, we’ll pause and outline what might happen within a system
that bypassed “Is there a problem?” to address, “Where is the problem?” As we’ve
previously indicated, this is an all too common occurrence. You might have an opera-
tions center with lots of displays, dials, and graphs. Maybe you’ve even implemented
the heat map system we alluded to earlier. Without first knowing that there is a cus-
tomer problem occurring, your team might be going through the daily “whack a
mole” process of looking at every subsystem that turns slightly red for some period of
time. Maybe it spends several minutes identifying that there was nothing other than
an anomalous disk utilization event occurring and potentially the team relaxes the
operations defined threshold for turning that subsystem red at any given time. All the
while, customer support is receiving calls regarding end users’s inability to log into
the system. Customer support first assumes this is the daily rate of failed logins, but
after 10 minutes of steady calls, customer support contacts the operations center to
get some attention applied to the issue.

As it turns out, CPU utilization and user connections to the login service were also
“red” in our systems heat map while we were addressing the disk utilization report.
Now, we are nearly 15 minutes into a customer related event and we have yet to
begin our diagnosis. If we had a monitoring system that reported on customer trans-
actions, we would have addressed the failed logins incident first before addressing
other problems that were not directly affecting customer experience. In this case, a
monitoring solution that is capable of showing a reduction of certain types of trans-
actions over time would have indicated that there was a potential problem (logins
failing) and the operations team likely would have then looked for monitoring alerts
from the systems identifying the location of the problem such as the CPU utilization
alerts on the login services.

The last question in our evolutionary model of monitoring is to answer, “What is
the problem?” Note that we’ve moved from identifying that there is an incident, con-
sistent with our definition in Chapter 8, to isolating the area causing that incident to
identification of the problem itself, which helps us quickly get to the root cause of
any issues within our system. As we move from identifying that something is going
on to determining the cause for the incident, two things happen. The first is that the
amount of data that we need to collect as we evolve from the first to the third ques-
tion grows. We only need a few pieces of data to identify whether something, some-
where is wrong. But to be able to answer, “What is the problem?” across the entire
range of possible problems that we might have, we need to collect a whole lot of data
over a substantial period of time. The other thing that is going on is that we are natu-
rally narrowing our focus from the very broad “something is going on” to the very
narrow “I’ve found what is going on.” The two are inversely correlated in terms of
size, as Figure 31.1 indicates. The more specific the answer to the question, the more
data we need to collect to determine the answer.

ptg5994185

A FRAMEWORK FOR MONITORING 475

To be able to answer precisely for all problems what the source is, we must have
quite a bit of data. The actual problem itself can likely be answered with one very
small slice of this data, but to have that answer we have to collect data for all poten-
tial problems. Do you see the problem this will cause? Without building a system
that’s intelligent enough to determine if there is a problem, we will allocate people at
several warnings of potential problems, and in the course of doing so will start to cre-
ate an organization that ignores those warnings. A better approach is to build a sys-
tem that alerts on impacting or pending events and then uses that as a trigger to guide
us to the root cause.

“What is the problem?” is usually a deeper iteration of “Where is the problem?”
Statistical process control can again be used in an even more granular basis to help
identify the cause. Maybe, assuming we have the space and resources to do so, we
can plot the run times of each of our functions within our application over time. We
can use the most recent 24 hours of data, compare it to the last week of data, and
compare the last week of data to the last month of data. We don’t have to keep the
granular by transaction records for each of our calls, but rather aggregate them over
time for the purposes of comparison. We can compare the rates of errors for each of
our services by error type for the time of day and day of week in question. Here, we
are looking at the functions, methods, and objects that comprise a service rather than
the operation of the service itself. As indicated earlier, it requires a lot more data, but
we can answer precisely what exactly the problem is for nearly any problem we are
experiencing.

Figure 31.1 Correlation of Data Size to Problem Specificity

Scope or Specificity of the Question

Amount of Data Necessary to Answer
the Question

Is There a Problem?

Where Is the Problem?

What Is the Problem??

ptg5994185

476 CHAPTER 31 MONITORING APPLICATIONS

Often, we can easily segment our three questions into three different types or
approaches to monitoring. “Is there a problem?” can often be implemented by find-
ing a handful of user experience or real-time business metrics monitors. “Where is
the problem?” can often be accomplished by implementing out of the box system
level monitors. “What is the problem?” often relies on the way in which we log and
collect data for our proprietary systems.

The preceding approach is methodical in that it forces us first to build systems that
identify problems before attempting to monitor everything within our platform or
product. We do not mean to imply that absolutely no work should be done in
answering “Where is the problem?” and “What is the problem?” until “Is there a
problem?” is finished; rather, one should focus on applying most of the effort first in
answering the first question. As “Where is the problem?” is so easy to implement in
many platforms, applying 20% of your initial effort to this question initially will pay
huge dividends, whereas forcing at least 50% of your initial effort to ensuring that
you always know and can answer “Is there a problem?” “What is the problem?” is
often more difficult and takes careful thought regarding the design and deployment
of your proprietary technology.

User Experience and Business Metrics
User experience and business metric monitors are meant to answer the question of
“Is there a problem?” Often, you need to implement both of them to get a good view
of the overall health of a system, but in many cases, you need only a handful to be
able to answer the question of whether a problem exists with a high degree of cer-
tainty. For instance, in an ecommerce platform wherein revenue and profits are gen-
erated primarily from sales, you may choose to look at revenue, searches, shopping
cart abandonment, and product views. You may decide to plot each of these in real
time against 7 days ago, 14 days ago, and the average of the last 52 similar weekdays.
Any significant deviation from a well-established curve may be used to alert the team
that a potential problem is occurring.

Advertising platforms may focus on cost per click by time of day, total clicks, cal-
culated click through rates, and bid to item ratios. These too may be plotted against
the values from 7 days ago, 14 days ago, and the average of the last 52 similar week
days. Again, the idea here is to identify major business and customer experience met-
rics that are both early and current indicators of problems.

Third-party providers also offer last mile and customer experience monitoring
solutions that are useful in augmenting business metrics and user experience monitor-
ing. Last mile and user agent monitoring solutions from Keynote and Gomez help us
better understand when customers at distant locations can’t access our services and
when those services are performing below our expectations. User experience solu-
tions such as CA’s Wily products and Coradiant’s products help us better understand
customer interactions, actions, and perceived response times.

ptg5994185

A FRAMEWORK FOR MONITORING 477

Other metrics and thresholds that might affect your business can be considered
such as response times and such, but often these are more indicative of “where the
problem is” rather than that a problem exists. The best metrics here are directly cor-
related to the creation of shareholder value. A high shopping cart abandonment rate
and significantly lower click through rates are both indicative of likely user experi-
ence problems that are negatively impacting your business.

Systems Monitoring
As we’ve hinted at earlier in this chapter, this is one of the areas that companies tend
to cover well. We use the term systems monitoring to identify any grouping of hard-
ware and software that share several components. We might have a service consisting
of several functions or applications running on a pool of servers and we lump this
loose group of hardware and software into a “system.” Most monitoring systems and
platforms have agents that do this type of monitoring fairly well right out-of-the-box.
You simply need to install the agents, configure them for your system, and plug them
into your monitoring framework. Where we tend to fail is in augmenting the tools to
help us identify where there is a problem. Often, we rely on threshold alerts or highly
calibrated eyeballs to identify issues.

The problem with thresholds is that they are too often based on arbitrary values.
“We shouldn’t go beyond 80% utilization for any given system.” A better approach
is for us to be alerted when a system is behaving significantly different than the way it
has behaved in the past. This variation in approach is the basis for our recommenda-
tions to investigate statistical process control, or at the very least, the plotting of values
as compared to past values for a similar date and time as a method for identifying issues.

We are relying on systems monitoring to tell us “where the problem is.” We have a
new problem identified by our end user and business monitoring and, as it is a new
problem, we are probably looking for something that is performing differently than it
performed before the problem started. Threshold monitoring tells us that something
is performing outside of our expectation, but what is even more valuable is for our
system to tell us what is performing significantly differently than it has performed in
the past.

Application Monitoring
Application monitoring is important to help identify “what is the problem?” Often, to
answer the question of “what is the problem?” we need to write some custom monitor-
ing code. To do this well, we probably need to build the code into our product offer-
ing itself. Although some out-of-the-box agents will tell us exactly what the problem
is, as in the case of a slow I/O subsystem caused by one or more bad disks, it is sel-
dom the case that an out-of-the-box agent can help us diagnose what part of our pro-
prietary application has gone awry. Although the thought of self-healing applications
are a bit of a pipe dream and not likely to be cost-effective in terms of development

ptg5994185

478 CHAPTER 31 MONITORING APPLICATIONS

time, the notion that an application can be self-diagnosing for the most common
types of failures is both an admirable and achievable aspiration.

For many companies, it is a relatively simple task, if undertaken early in develop-
ment, to produce a set of reusable tools to help determine the cause of failures. These
tools exist as services that are compiled or linked to the application or potentially just
services called by the application during runtime. Often, they are at critical chokepoints
within the application such as during the emission of an error or the calling of another
service or resource. Error logging routines can be augmented to classify error types in a
meaningful fashion and keep track of the rate of error counts over time. Methods or
functions can keep track of execution times by time of day and log them in a meaning-
ful fashion for other processes to perform calculations. Remote service calls can log the
response time of synchronous or asynchronous services on which an application relies.

Monitoring Issues and a General Framework
Most monitoring platforms suffer from two primary problems:

• The systems being monitored were not designed to be monitored.

• The approach to monitoring is bottom up rather than top down and misses the critical
question “Is there a problem affecting customers right now?”

Solving these problems is relatively easy:

• Designing your systems to be monitored before implementation.

• Developing monitors to first answer the question “Is there a problem?” These are typically
business metric and customer experience monitors.

• Developing monitors to next answer “Where is the problem?” These are typically systems
level monitors.

• When completed with the first two questions, developing monitors to answer the question
“What is the problem?” Often, these are monitors that you build into your application con-
sistent with your design principles.

It is very important to follow the steps in order, from top down, to develop a world-class
monitoring solution.

Measuring Monitoring: What Is and Isn’t Valuable?
Remember Chapter 27, Too Much Data? In that chapter, we argued that not all data
is valuable to the company and that all data has a cost. Well, guess what? The same is

ptg5994185

MEASURING MONITORING: WHAT IS AND ISN’T VALUABLE? 479

true for monitoring! If you monitor absolutely everything you can think of, there is a
very real chance that you will use very little of the data that you collect. All the while,
you will be creating the type of noise we described as being the harbinger of death for
most monitoring platforms. Moreover, you are wasting employee time and company
resources, which in turn cost your shareholders money.

The easiest way to help us understand which monitors provide us value and which
do not are to step through our evolutionary monitoring framework in a top-down
fashion and describe the value created by each of these tiers and how to limit the cost
of implementation.

Our first question was “Is there a problem?” As we previously indicated, there are
likely a handful, let’s say no less than three and no more than 10 monitors, that will
both serve as predictive and current indicators that there will be or currently is a
problem. As the number of items that we are tracking is relatively small, data reten-
tion should not be that great of a concern. It would be great to be able to plot this
data in minute or hourly records as compared to at least the last two weeks of similar
days of the week. If today is Tuesday, we probably want the last two Tuesdays’ worth
of data. We probably should just keep that data for at least the last two weeks but
maybe we expand it to a month before we collapse the data. In the grand scheme of
things, this data will not take a whole lot of space. Moreover, it will save us a lot of
time in predicting and determining if there will be or currently is a problem.

The next question we ask is “Where is the problem?” In Figure 31.1, our pyramid
indicates that although the specificity is narrowing, the amount of data is increasing.
This should cause us some concern as we will need many more monitors to accom-
plish this. It is likely that the number of monitors is somewhere between an order of
magnitude and two orders of magnitude (10 to 100) greater than our original sets of
monitors. In very large, complex, and distributed systems, this might be an even
larger number. We still need to compare information to previous similar days, ideally
at a granular level. But we are going to need to be much more aggressive in our rollup
and archival/deletion strategies. Ideally, we will summarize data potentially first by
the hour and then eventually just move the data into a moving average calculation.
Maybe we plot and keep graphs but remove the raw data over time. We certainly do
not want the raw data sitting around ad infinitum as the probability that most of it
will be used is low, the value is low, and the cost is high.

Finally, we come to the question of “What is the problem?” Again, we have at
least an order of magnitude increase from our previous monitoring. We are adding
raw output logs, error logs, and other data to the mix. This stuff grows quickly, espe-
cially in chatty environments. We probably hope to keep about two weeks of the
data, where two weeks is determined by assuming that we will catch most issues
within two weeks. You may have better information on what to keep and what to
remove, but again you simply cannot subject your shareholders to your desire to

ptg5994185

480 CHAPTER 31 MONITORING APPLICATIONS

check up on anything at any time. That desire has a near infinite cost and a very, very
low relative return.

Monitoring and Processes
Alas, we come to the point of how all of this monitoring fits into our operations and
business processes. Our monitoring infrastructure is the lifeblood of many of our
processes. The monitoring we perform to answer the questions of “Is there a prob-
lem?” to “What is the problem?” will likely create the data necessary to inform the
decisions within many of the processes we described in Part II, Building Processes for
Scale, and even some of the measurements and metrics we described within Chapter 5,
Management 101.

The monitors that produce data necessary to answer the question of “Is there a
problem?” produce critical data for measuring our alignment to the creation of
shareholder value. You might remember that we discussed availability as a metric in
Chapter 5. The goal is to be able to consistently answer “No” to the question of “Is
there a problem?” If you can do that, you have high availability. Measuring availabil-
ity from a customer perspective and from a business metric perspective, as opposed
to a technology perspective, gives you both the tools to answer the “Is there a prob-
lem?” question and to measure yourself against your availability goal. The difference
between revenue or customer availability and technology availability is important
and drives cultural changes that have incredible benefit to the organization. Technol-
ogists have long measured availability as a product of the availability of all the
devices within their care. That absolutely has a place and is important to such con-
cerns as cost, mean time between failures, headcount needs, redundancy needs, mean
time to restore, and so on. But it doesn’t really relate to what the shareholders or cus-
tomers care about most; what these constituents care about most is that the service is
available and generating the greatest value possible. As such, measuring the experi-
ence of customers and the generation of profits in real time is much more valuable for
both answering our first and most important monitoring question and measuring
availability. With only a handful of monitors we can satisfy one of our key management
measurements, help ensure that we are identifying and reacting to impending and
current events, and align our culture to the creation of shareholder and customer value.

The monitors that drive “Where is the problem?” are also very often the sources
of data that we will use in our capacity planning and headroom processes from
Chapter 11, Determining Headroom for Applications. The raw data here will help us
determine where we have constraints in our system and help us focus our attention
on budgeting to horizontally scale those platforms or drive the architectural changes
necessary to scale more cost effectively. This information also helps feed our incident

ptg5994185

CONCLUSION 481

and crisis management processes of Chapters 8 and 9. It is obviously useful during
the course of an incident or crisis and it definitely proves valuable during postmortem
activities when we are attempting to find out how we could have isolated the incident
earlier or prevented the incident from happening. The data also feeds into and helps
inform changes to our performance testing processes.

The data that answers the question of “What is the problem?” is useful in many of
the processes described for “Where is the problem?” Additionally, it is useful in help-
ing us test whether we are properly designing our systems to be monitored. The out-
put of our postmortems and operations reviews should be taken by the engineering
staff and analyzed against the data and information we produce to help us identify
and diagnose problems. The intent is that we feed this information back to our code
review and design review processes so that we are creating better and more intelligent
monitoring that helps us identify issues before they occur or isolate them faster when
they do occur.

That leaves us with the management of incidents and problems as identified within
Chapter 8 and the management of crises and escalations as identified in Chapter 9. In
the ideal world, incidents and crises are predicted and avoided by a robust and pre-
dictive monitoring solution, but at the very least, they should be identified at the
point at which they start to cause customer problems and impact shareholder value.
In many mature monitoring solutions, the monitoring system itself will be responsi-
ble not only for the initial detection of an incident but for the reporting or recording
of that incident. In this fashion, the monitoring system is responsible for both the
Detect and Report of our DRIER model identified in Chapter 8.

Conclusion
This chapter discussed monitoring. We posited that the primary reasons for most
monitoring initiatives and platforms failing repeatedly is that our systems are not
designed to be monitored and that our general approach to monitoring is flawed. Too
often, we attempt to monitor from the bottom up, starting with individual agents and
logs rather than attempting to first create monitors that answer the question of “Is
there a problem?”

The best organizations design their monitoring platforms from the top down. These
systems first are capable, with a high degree of accuracy, in answering the question of
“Is there a problem?” The types of monitors that answer these questions best are
tightly aligned with the business and technology drivers that create shareholder
value. Most often, these are real-time monitors on transaction volumes, revenue cre-
ation, cost of revenue, and customer interactions with the system. Third-party cus-
tomer experience systems can be employed to augment real-time business metric
systems to answer this most important question.

ptg5994185

482 CHAPTER 31 MONITORING APPLICATIONS

The next step, when we’ve properly built systems to answer “Is there a problem?”
is to answer build systems to answer “Where is the problem?” Often, these systems
are out-of-the-box third-party or open source solutions that you install on systems to
monitor resource utilization. Some application monitors might also be employed.
The data collected by these systems help inform other processes such as our capacity
planning process and problem resolution process. Care must be taken to avoid a
combinatorial explosion of data, as that data is costly and the value of immense
amounts of old data is very low.

Finally, we move to answer the question of “What is the problem?” This very
often requires us to rely heavily on our architectural principal Design to Be Moni-
tored. Here, we are monitoring individual components, and often these are propri-
etary applications for which we are responsible. Again, the concerns of data
explosion are present, and we must fight to ensure that we are keeping the right data
and not diluting shareholder value.

Focusing first on “Is there a problem?” will pay huge dividends throughout the life
of your monitoring system. It is not necessary to focus 100% of your monitoring
efforts on answering this question, but it is important to spend a majority (50% or
more) of your time on the question until you have it absolutely nailed.

Key Points

• Most monitoring platforms suffer from a failure to properly design systems to
be monitored and a bottom-up approach to monitoring that fails to answer the
most important questions first.

• Adding Design to Be Monitored as an architectural principle helps fix this problem.

• A change in approach to be top down rather than bottom up solves the second
half of the problem.

• Answering the questions of “is there a problem?”, “where is the problem?”, and
“what is the problem?” in that order when designing a monitoring system is an
effective top-down strategy.

• “Is there a problem?” monitors are best answered by aligning the monitors to
the measurements of shareholder and stakeholder value creation. Real-time
business metrics and customer experience metrics should be employed.

• “Where is the problem?” monitors may very well be out-of-the-box third-party
or open source solutions that are relatively simple to deploy. Be careful with
data retention and attempt to use real-time statistics when employing these
measurements.

• “What is the problem?” monitors are most likely homegrown and integrated
into your proprietary application.

ptg5994185

483

Chapter 32

Planning Data Centers

Having collected an army and concentrated his forces, he must blend and
harmonize the different elements thereof before pitching his camp.

—Sun Tzu

One of the biggest limitations to hyper-growth companies scaling effectively today is
the data center. You can absolutely nail everything else in this book including build-
ing and incenting the right team and behaviors, developing and implementing the
right processes, and architecting the best solutions, and completely fail your custom-
ers and shareholders by limiting growth due to ineffective data center planning.
Depending upon your needs, approach, and size, it can take anywhere from months
to years to bring additional data center or collocation space online. When contrasted
with the weeks or months that it might take to make significant architectural
changes, management and leadership changes, and process changes, it is easy to see
that the data center can very easily and very quickly become your greatest barrier to
scale and success.

This chapter will not give you everything you need to know to plan and manage a
data center or collocation build out or move; to do so in enough detail to be mean-
ingful to your efforts would require an entire book. Instead, we want to reinforce the
need for long-term data center planning as part of your engineering team efforts. We
will also highlight some approaches that we hope will be meaningful to reduce your
overall costs as you start to implement multiple data centers and mitigate your busi-
ness risks with disaster recovery and business continuity plans. We will also cover at
a high level some of the drivers of data center costs and constraints.

Data Center Costs and Constraints
In the last 15 years, something in data centers changed so slowly that few if any of us
caught on until it was just too late. This slow and steady movement should have been

ptg5994185

484 CHAPTER 32 PLANNING DATA CENTERS

obvious to us all as the data was right under our noses if we had only bothered to
look at it. But just as a military sniper moves very slowly into a firing position even as
the enemy watches but remains unaware of his presence, so did power consumption
and constraints sneak up on us and make us scramble to change our data center
capacity planning models.

For years, processors have increased in speed as observed by Gordon Moore and
as described in Moore’s Law. This incredible increase in speed resulted in computers
and servers drawing more power over time. The ratio of clock speed to power con-
sumption varies with the technologies employed and the types of chips. Some chips
employed technology to reduce clock speed and hence power consumption when idle,
and multicore processors allegedly have lower power consumption for higher clock
speeds. But given similar chip set architectures, a faster processor will typically mean
more power consumption.

Until the mid 1990s, most data centers had enough power capacity that the pri-
mary constraint was the number of servers one could shoehorn into the footprint or
square footage of the data center. As computers decreased in size in rack units or U’s
and increased in clock speed, the data center became increasingly efficient. Efficiency
here is measured strictly against the computing capacity per square foot of the data
center, with more computers crammed into the same square footage and with each
computer having more clock cycles per second to perform work. This increase in
computing density also increased power consumption on a per square foot basis. Not
only did the computers themselves draw more power per square foot, they also
required more HVAC to cool the area and as a result even more power was drawn. If
you were lucky enough to be in a collocation facility with a contract wherein you
were charged by square foot of space, you weren’t likely aware of this increase in
cost; the cost was eaten by the collocation facility owner causing decreased margins
for their services. If you owned your own data center, more than likely, the facilities
team identified the steady but slow increase in cost but did not pass that information
along to you until you needed to use more space and found out that you were out of
power.

Rack Units
A rack unit is a measurement of height in a 19-inch or 23-inch wide rack. Typically labeled as a
U and sometimes labeled as an RU, the unit equals 1.75 inches in height. A 2U server is there-
fore 3.5 inches in height. The term half rack is an indication of width rather than height and the
term is applied to a 19-inch rack. A half rack server or component, then, is 9.5 inches wide.

ptg5994185

LOCATION, LOCATION, LOCATION 485

This shift where power utilization suddenly constrained our growth caused a num-
ber of interesting problems. The first problem manifested itself in an industry once
based upon square footage assumptions. Collocation and managed server providers
found themselves in contracts for square footage largely predicated on a number of
servers. As previously indicated, the increase in power utilization decreased the mar-
gins for their services until the provider could renegotiate contracts. The buyers of
the collocation facilities in turn looked to move to locations where power density was
greater. Successful providers of services changed their contracts to charge for both
space and power, or strictly upon power used. The former allowed companies to flex
prices based on the price of power, thereby lowering the variability within their oper-
ating margins, whereas the former attempted to model power costs over time to
ensure that they were always profitable. Often, both would reduce the power and
space component to a number of racks and power utilization per rack within a given
footprint in a data center.

Companies that owned their own data centers and found themselves constrained
by power could not build new data centers quickly enough to allow themselves to
grow. As such, they would turn to implement their growth in services within colloca-
tion facilities until such time as they could build new data centers, often with more
power per square foot than the previous data centers.

Regardless of whether we owned or leased space, the world changed underneath
our feet and the new world order was that power, and not space, dictated our capac-
ity planning for data centers. This has led to some other important aspects of data
center planning, not all of which has been fully embraced or recognized by every
company.

Location, Location, Location
Most of us have heard of the real estate mantra “location, location, location.”
Nowhere is this mantra more important these days than in the planning of owned or
rented space for data centers. Data center location has an impact on nearly every-
thing you do from fixed and variable costs through quality of service and to the risk
you impose upon your business.

With the shift in data center constraints from location to power, so came a shift in
the fixed and variable costs of our product offerings. Previously, when space was the
primary driver and limitation of data center costs and capacity, location was still
important, but for very different reasons. When power was not as large a concern as
it is today, we would look to build data centers in a place where land and building
materials were cheapest. This would result in data centers being built in major metro-
politan areas where land was abundant and labor costs were low. Often, companies

ptg5994185

486 CHAPTER 32 PLANNING DATA CENTERS

would factor in an evaluation of geographic risk and as a result, areas such as Dallas,
Atlanta, Phoenix, and Denver became very attractive. Each of these areas offered
plenty of space for data centers, skills within the local population to build and main-
tain them, and low geographic risk.

Smaller companies that rented or leased space and services and were less con-
cerned about risk would look to locate data centers close to their employee popula-
tion. This led to collocation providers building or converting facilities in company
dense areas like the Silicon Valley, Boston, Austin, and the New York/New Jersey
area. These smaller companies favored ease of access to the servers supporting their
new services over risk mitigation and cost. Although the price was higher for the
space as compared to the lower cost alternatives, many companies felt the benefit of
proximity overcame the increase in relative cost.

When power became the constraining factor for data center planning and utiliza-
tion, companies started shifting their focus to areas where they could not only pur-
chase and build for an attractive price, but where they could obtain power at a
relatively low price, and perhaps as importantly, where they could use that power
most efficiently. This last point actually leads to some counterintuitive locations for
data centers.

Air conditioning, the AC portion of HVAC, operates most efficiently at lower ele-
vations above sea level. We won’t go into the reasons why, as there is plenty of infor-
mation available on the Internet to confirm the statement. Air conditioning also
operates more efficiently in areas of lower humidity, as less work is performed by the
air conditioner to remove humidity from the air being conditioned. Low elevation
above sea level and low humidity work together to produce a more efficient air con-
ditioning system; the system in turn draws less power to perform a similar amount of
work. This is why areas like Phoenix, Arizona, which is a net importer of power and
as such sometimes has a higher cost of power, are still a favorite of companies build-
ing data centers. Although the per unit cost of power is higher than some other areas,
and cooling demands are high in the summer, the efficiency of the HVAC systems
through the course of the year and the low winter month demand reduces overall
power consumption and makes Phoenix an attractive area to consider.

Some other interesting areas started to become great candidates for data centers
due to an abundance of low-cost power. The area served by the Tennessee Valley
Authority (TVA), including the state of Tennessee, parts of western North Carolina,
northwest Georgia, northern Alabama, northeast Mississippi, southern Kentucky,
and southwest Virginia is one such place. Another favorite of companies building
data centers is the region called the Columbia River Gorge between Oregon and
Washington. Both places have an abundance of low-cost power thanks to their
hydroelectric power plants.

Location also impacts our quality of service. We want to be in an area that has
easy access to quality bandwidth, an abundance of highly available power, and an

ptg5994185

LOCATION, LOCATION, LOCATION 487

educated labor pool. We would like the presence of multiple carriers to reduce our
transit or Internet pipe costs and increase the likelihood that we can pass traffic over
at least one carrier if one of the carriers is having availability or quality problems. We
want the power infrastructure not only to be comparatively low cost as described in
the preceding paragraphs, but to be highly available with a low occurrence of inter-
ruptions due to age of the power infrastructure or environmental concerns. Lastly, we
need to have an educated labor pool that can help us build the data center and oper-
ate it.

Finally, location affects our risk profile. If we are in a single location with a single
data center and that location has high geographic risk, the probability that we suffer
an extended outage as a result of that geographic risk increases. A geographic risk
can be anything that causes structural damage to our data center, power infrastruc-
ture failures, or network transport failures. The most commonly cited geographic
risks to data centers and businesses are earthquakes, floods, hurricanes, and torna-
does. But there are other location specific risks to consider as well. Crime rates of an
area have the possibility of interrupting services. Extremely cold or hot weather that
taxes the location’s power infrastructure can cause an interruption to operations.

Even within a general geography, some areas have higher risks than others. Prox-
imity to freeways can cause an increase in the likelihood of a major accident causing
damage to our facility or may increase the likelihood that our facility is evacuated
due to a chemical spill. Do we have quick and easy access to fuel sources in the area
should we need to use our backup generators? Does the area allow for easy access for
fuel trucks for our generators? How close are we to a fire department?

Although location isn’t everything, it absolutely impacts several areas critical to
our cost of operations, quality of service, and risk profile. The right location can
reduce our fixed and variable costs associated with power usage and infrastructure,
increase our quality of service, and reduce our risk profile.

In considering cost, quality of service, and risk, there is no single panacea. In
choosing to go to the Columbia River Gorge or TVA areas, you will be reducing your
costs at the expense of needing to train the local talent or potentially bringing in your
own talent as many companies have done. In choosing Phoenix or Dallas, you will
have access to an experienced labor pool but will be paying more for power than you
would be in either the TVA or Columbia River Gorge areas. There is no single right
answer for location; you should work to optimize your solution to fit your budget
and needs. There are, however, several wrong answers in our minds. We always sug-
gest to our clients that they never choose an area of high geographic risk unless there
simply is no other choice. Should they choose an area of high geographic risk, we
always ask that they create a plan to get out of that area. It only takes one major out-
age to make the decision a bad one, and the question is always when, rather than if,
that outage will happen.

ptg5994185

488 CHAPTER 32 PLANNING DATA CENTERS

Location Considerations
When considering a location for your data center or collocation partner, the following are some
things to ponder:

• What is the cost of power in the area? Is it high or low relative to other options? How effi-
ciently will my HVAC run in the area?

• Is there an educated labor force in the area from which I can recruit employees? Are they
educated and experienced in the building and operation of a data center?

• Are there a number of transit providers in the area and how good has their service been
to other consumers of their service?

• What is the geographic risk profile in the area?

Often, you will find yourself making tradeoffs between questions. You may find an area of
low power cost, but without an experienced labor pool. The one area we recommend never
sacrificing is geographic risk.

Data Centers and Incremental Growth
Data centers and collocation space present an interesting dilemma to incremental
growth, and interestingly that dilemma is more profound for companies of moderate
growth than it is for companies of rapid or hyper growth. Data centers are, for many
of our technology focused clients, what factories are for companies that manufacture
product; they are a way to produce the product, they are a limitation on the quantity
that can be produced, and they are either accretive or dilutive to shareholder value,
depending upon their level of utilization.

Taking and simplifying the automotive industry as an example, new factories are
initially dilutive as they represent a new expenditure of cash by the company in ques-
tion. The new factory probably has the newest available technology, which in turn is
intended to decrease the cost per vehicle produced and ultimately increase the gross
margin and profit margins of the business. Initially, the amortized value of the factory
is applied to each of the cars produced and the net effect is dilutive as initial production
quantities are low and each car loses money for the company. As the production quan-
tity is increased and the amortized fixed cost of the factory is divided by an increasing
volume of cars, the profit of those cars in aggregate start to offset the cost and finally
overcome it. The factory starts to become accretive when the cost of the factory is
lower per car produced than the next lowest cost per car factory. Unfortunately, to
hit that point, we often have to be using the factory at a fairly high level of utilization.

ptg5994185

DATA CENTERS AND INCREMENTAL GROWTH 489

The same holds true with a data center. The building of a data center usually rep-
resents a fairly large expenditure for any company. For smaller companies that are
leasing new or additional data center space, that space still probably represents a
fairly large commitment for the company in question. In many, if not most, of the
cases where new space, rather purchased or lease, is being considered, we will likely
put better and faster hardware in the space than we had in most of our other data
center space. Although increasing the power utilization and the associated power
costs, the hope is that we will reduce our overall spending by doing more with less
equipment for our new space. Still, we have to be using some significant portion of
this new space before the recurring lease and power costs or amortized property,
plant, and equipment costs are offset by the new transactions.

To illustrate this point, let’s make up some hypothetical numbers. For this discus-
sion, reference Table 32.1. Let’s say that you run the operations of AllScale Networks
and that you currently lease 500 square feet of data center and associated power at a
total cost of $3,000.00 per month “all in.” You are currently constrained by power
within your 500 square feet and need to consider additional space quickly before
your systems are overwhelmed with user demand. You have options to lease another
500 square feet at $3,000.00 per month, or 1,000 square feet at $5,000.00 per
month. The costs to build out the racks and power infrastructure (but not the server
or network gear) within the 500 square feet are $10,000.00 and $20,000.00 for the
1,000 square feet. The equipment that you expect to purchase and put into the new
space has been tested for your application, and you believe that it will handle about
50% more traffic or requests than your current systems (indexed at 1.5, the original
500 square foot Request Index in Table 32.1), but it will draw about 25% more
power to do so (indexed at 1.25% the original Request Index in Table 32.1). As such,
given the power density is the same between the cages, you can only rack roughly
80% of the systems you previously had as each system draws 1.25 the power of the
previous systems. These are represented as .8 and 1.6 under Space Index in Table
32.1 for the 500 square foot and 1,000 square foot options, respectively. The result-
ing performance efficiency is (.8 1.5 =) 1.2 the throughput for the 500 square foot
option and 2.4 for the 1,000 square foot option referenced as the Performance
Index. Finally, the performance per dollar spent, as indexed to the original 500
square foot cage, is 1.2 for the 500 square foot and 1.44 for the 1,000 square foot
options. This change is due to the addition of 500 square feet more at a reduced price
of $2,000 for the 1,000 square foot option. Note that we’ve ignored the original
build out cost in this calculation, but you could amortize that over the expected life
of the cage and include it in all of the numbers that follow. We also assume that you
are not going to replace the systems in the older 500 square foot cage and we have
not included the price of the new servers.

ptg5994185

490 CHAPTER 32 PLANNING DATA CENTERS

It previously took you two years to fill up your 500 square feet, and the business
believes the growth rate has doubled and should stay on its current trajectory. All
indicators are that you will fill up another 500 square feet in about a year. What do
you do?

We’re not going to answer that question, but rather leave it as an exercise for you.
The answer, however, is financially based if answered properly. It should consider
how quickly the data center becomes accretive or margin positive for the business
and shareholders. You should also factor in considerations of lost opportunity for
building out data center space twice rather than once. It should be obvious by now
that data center costs are “lumpy” in that they are high relative to many of your
other technology costs and take some planning to ensure that they do not negatively
impact your operations.

How about our previous assertion that the problem is larger for moderate-growth
companies than hyper-growth companies? Can you see why we made that statement?
The answer is that the same space purchased or leased by a hyper-growth company is
going to become accretive faster than that of the moderate-growth company. As such,
space considerations are much more important for slower growth companies unless
they expect to exit other facilities and close them over time. The concerns of the
hyper-growth company are more about staying well ahead of the demand for new
space than ensuring that the space hits the accretive point of utilization.

Three Magic Rules of Three
We love simple, easily understood and communicated rules, and one of these is our
Rules of Three as applied to data centers. There are three of these rules, hence “Three
Magic Rules of Three.” The first rule has to do with the costs of data centers, the sec-
ond has to do with the number of servers, and third has to do with the number of
data centers a company should consider implementing.

Table 32.1 Cost Comparisons

Cage
Cost per
Month

Request
Index

Power
Index

Space
Index

Performance
Index

Performance
Per Dollar

Original 500 sq. ft. $3,000 1.0 1.0 1.0 1.0 1.0

Additional 500 sq. ft. $3,000 1.5 1.25 .8 1.2 1.2

Additional 1,000 sq. ft. $5,000 1.5 1.25 1.6 2.4 1.44

ptg5994185

THREE MAGIC RULES OF THREE 491

The First Rule of Three: Three Magic Drivers of Data Center Costs
Our first rule of three concerns the cost of running a data center. The first and most
obvious cost within a data center is the cost of the servers and equipment that carries
requests and acts upon them. These are the servers and network equipment necessary
to run your application or platform. The second cost is the power to run these servers
and other pieces of equipment. The third and final cost is the power necessary to run
the HVAC for these servers. This isn’t a hard and fast rule. Rather, it is intended to
focus companies on the large costs of running a data center as too often these costs
are hidden within different organizations and not properly evaluated.

These costs tend to increase directly in relationship to the number of servers. Each
server obviously has its own cost, as does the power it draws. The HVAC needs also
typically increase linearly with the number of servers and the power consumption of
those servers. More servers drawing more power create more heat that needs to be
moved or reduced. In many companies, especially larger companies, this relationship
is lost within organizational budget boundaries.

There are other obvious costs not included within this first rule of three. For
instance, we need headcount to run the data center, or we are paying for a contract
for someone else to run the data center or it is included within our rental/lease agree-
ment. There are also network transit costs as we are going to want to talk to someone
else outside of our data center. There may also be security costs, the costs of main-
taining certain pieces of equipment such as FM-200 fire suppression devices, and so
on. These costs, however, tend to be well understood and are often either fixed by the
amount of area, as in security and FM-200 maintenance, or clearly within a single
organization’s budget such as network transit costs.

The Second Rule of Three: Three Is the Magic Number for Servers
Many of our clients have included this “magic rule” as an architectural principle.
Simply put, it means that the number of servers for any service should never fall
below three and when planning data center capacity, you should consider all of the
existing services and future or planned services and expect that there will be at least
three servers for any service. The thought here is that you build one for the customer,
one for capacity and growth, and one to fail. Ideally, the service is built and the data
center is planned in such a way that services can expand horizontally per our Scale
Out Not Up principle in Chapter 12, Exploring Architectural Principles.

Taken to its extreme for hyper-growth sites, this rule would be applied to data cen-
ter capacity planning not only for front-end Web services, but for data storage ser-
vices such as a database. If a service requires a database, and if finances allow, the
service should be architected such that at the very least there can be a write database
for writes and load balanced reads, an additional read database, and a database that

ptg5994185

492 CHAPTER 32 PLANNING DATA CENTERS

can serve as a logical standby in the case of corruption. In a fault isolative architec-
ture or swim lane architecture by service, there may be several of these database
implementations.

It’s important to note that no data center decisions should be made without con-
sulting the architects, product managers, and capacity planners responsible for defin-
ing, designing, and planning new and existing systems.

The Third Rule of Three: Three Is the Magic Number for Data Centers
“Whoa, hang on there!” you might say. “We are a young company attempting to
become profitable and we simply cannot afford three data centers.” At first blush,
this probably appears to be a ridiculous suggestion and we don’t blame you for hav-
ing such an initial adverse reaction to the suggestion. But what if we told you that
you can run out of three data centers for close to the cost that it takes you to run out
of two data centers? Few of you would probably argue that you can afford to run out
of a single data center forever as most of us recognize that running a single data cen-
ter for mission critical or revenue critical transactions is just asking for trouble. And
if you are a public company, no one wants to make the public disclosure that “Any
significant damage to our single data center would significantly hamper our ability to
remain a going concern.” Let’s first discuss the primary architectural shift that allows
you to run out of multiple data centers.

In Chapter 12, we suggested designing for multiple live sites as an architectural
principle. To do this, you need either stateless systems; or systems that maintain state
within the browser (say with a cookie) or pass state back and forth through the same
URL/URI. After you establish affinity with a data center and maintain state at that
data center, it becomes very difficult to serve the transaction from other live data cen-
ters. Another approach is to maintain affinity with a data center through the course
of a series of transactions, but allow a new affinity for new or subsequent sessions to
be maintained through the life of those sessions. Finally, you can consider segmenting
your customers by data center along a z-axis split, and then replicate the data for
each data center, split evenly through the remainder of the data centers. In this
approach, should you have three data centers, 50% of the data from data center A
would move to data centers B and C. This approach is depicted in Figure 32.1. The
result is that you have 200% of the data necessary to run the site in aggregate, but
each site only contains 66% of the necessary data as each site contains the copy for
which it is a master (33% of the data necessary to run the site) and 50% of the copies
of each of the other sites (16.5% of the data necessary to run the site for a total of an
additional 33%).

Let’s discuss the math behind our assertion. We will first assume that you agree
with us that you need to have at least two data centers to help ensure that you can
survive any disaster. If these data centers were labeled A and B, you might decide to

ptg5994185

THREE MAGIC RULES OF THREE 493

operate 100% of your traffic out of data center A and leave data center B for a warm
standby. Back-end databases might be replicated using native database replication or
a third-party tool and may be several seconds behind. You would need 100% of your
computing and network assets in both data centers to include 100% of your Web and
application servers, 100% of your database servers, and 100% of your network
equipment. Power needs would be similar and Internet connectivity would be similar.
You probably keep slightly more than 100% of the capacity necessary to serve your
peak demand in each location in order to handle surges in demand. So, let’s say that
you keep 110% of your needs in both locations. Any time you buy additional servers
for one place, you have to buy for the next. You may also decide to connect the data
centers with your own dedicated circuits for the purposes of secure replication of
data. Running live out of both sites would help you in the event of a major catastro-
phe as only 50% of your transactions would initially fail until you transfer that traf-
fic to the alternate site, but it won’t help you from a budget or financial perspective.
A high-level diagram of the data centers may look as depicted in Figure 32.2.

However, if we have three sites and we run live out of all three sites at once, our
cost for systems goes down. This is because for all nondatabase systems, we only
really need 150% of our capacity in each location to run 100% of our traffic in the
event of a site failure. For databases, we definitely need 200% of the storage as com-
pared to one site, but we only really need 150% of the processing power if we are

Figure 32.1 Split of Data Center Replication

A Data

.5 B

Site A
100% A Data
50% B Data
50% C Data

Site B
100% B Data
50% A Data
50% C Data

Site C
100% C Data
50% A Data
50% B Data

B Data

.5 C

.5 A .5 C .5 A.5 B

C Data

ptg5994185

494 CHAPTER 32 PLANNING DATA CENTERS

smart about how we allocate our database server resources. Power and facilities con-
sumption should also be at roughly 150% of the need for a single site, though obvi-
ously we will need slightly more people and there’s probably slightly more overhead
than 150% to handle three sites versus one. The only area that increases dispropor-
tionately are the network interconnects as we need two additional connections (ver-
sus one) for three sites versus two. Such a data center configuration is indicated in
Figure 32.3 and Table 32.2 shows the relative costs of running three sites versus two.
Note that in our Table 32.2, we have figured that each site has 50% of the server

Figure 32.2 Two Data Center Configuration, Hot and Cold Site

Figure 32.3 Three Data Center Configuration, Three Hot Sites

Site A “Hot Site”:
100% Servers (6)

100% Data and Databases

100% Site Data 100% Site Data

Site B “Cold Site”:
100% Servers (6)

100% Data and Databases

Site A
50% Server Capacity
66% Total Site Data

Site B
50% Server Capacity
66% Total Site Data

Site C
50% Server Capacity
66% Total Site Data

A Data.5 B .5 C

B Data.5 A .5 C C Data.5 A .5 B

ptg5994185

THREE MAGIC RULES OF THREE 495

capacity necessary to run everything, and 66% (66.66, but we’ve made it a round
number and rounded down rather than up in the figure) of the storage per Figure
33.3. You would need 300% of the storage if you were to locate 100% of the data in
each of the three sites.

Note that we get this leverage in data centers because we expect that the data cen-
ters are sufficiently far apart so as not to have two data centers simultaneously elimi-
nated as a result of any geographically isolated event. You might decide to stick one
near the West Coast of the United States, one in the center of the U.S., and another
near the East Coast. Remember, however, that you still want to reduce your data cen-
ter power costs and reduce the risks to each of the three data centers so you still want
to be in areas of low relative cost of power and low geographic risk.

Maybe now you are a convert to our three-site approach and you immediately
jump to the conclusion that more is better! Why not four sites, or five, or 20? Well,
more sites are better, and there are all sorts of games you can play to further reduce
your capital costs. But at some point, unless you are a very large company, the man-
agement overhead of a large number of data centers is cost prohibitive. Each addi-
tional data center will give you some reduction in the amount of equipment that you
need to have complete redundancy, but will increase the management overhead and
network connectivity costs. To arrive at the “right number” for your company, you
should take the example of Table 32.2 and add in the costs to run and manage the
data centers to determine the right number for your company. While you are per-
forming your cost calculations, remember that there are other benefits to multiple
data centers such as ensuring that those data centers are close to end customer con-
centrations in order to reduce customer response times. Our point is that you should
plan for at least three data centers to both give you disaster prevention and reduce
your costs relative to a two-site implementation.

Table 32.2 Cost Comparisons

Site
Configuration Network Servers Databases Storage

Network Site
Connections Total Cost

Single Site 100% 100% 100% 100% 0 100%

2 Site “Hot” and
“Cold”

200% 200% 200% 200% 1 200%

2 Site Live/Live 200% 200% 200% 200% 1 200%

3 Site Live/Live/
Live

150% 150% 150% 200% 3 ~166%

ptg5994185

496 CHAPTER 32 PLANNING DATA CENTERS

Multiple Active Data Center Considerations
We hinted at some of the concerns of running multiple active data centers in our ear-
lier discussion of why three is the magic number for data centers. We will first cover
some of the benefits and concerns of running multiple live data centers and then we
will discuss three flavors of approaches and the concerns unique to each of those
approaches.

The two greatest benefits of running multiple live data centers are the disaster
recovery, or as we prefer to call it, disaster prevention, aspects and the reduction in
cost when running three data centers versus two. Designing and running multiple
data centers also gives you the flexibility of putting data centers closer to your cus-
tomers and thereby reducing response times to their requests. A multidatacenter
approach does not eliminate the benefits you would receive by deploying a content
delivery network as described in Chapter 25, Caching for Performance and Scale, but
it does benefit those calls that are forced to go directly to the data center due to their
dynamic nature. If you are leasing data center space, you also get the benefit of being
able to multisource your collocation partners, and as a result, use the market to drive
down the negotiated price for your space. Should you ever need or desire to leave one
location, you can run live out of two data centers and move to a lower cost or higher
quality provider for your third data center. If you are a SaaS (Software as a Service)
company, you may find it easier to roll out or push updates to your site by moving
traffic between data centers and upgrading sites one at a time during off peak hours.
Finally, when you run live out of multiple data centers, you don’t find yourself ques-
tioning the viability of your warm or cold “disaster recovery site;” your daily opera-
tions proves that each of the sites is capable of handling requests from your
customers.

Multiple live data centers do add some complexity and will likely increase your
headcount needs as compared to running a single data center and maybe even two
data centers. The increase in headcount should be moderate, potentially adding one
to a few people to manage the contracts and space depending upon the size of your
company. Some of your processes will need to change, such as how and when you
roll code and how you ensure that multiple sites are roughly consistent with respect
to configuration. You will likely also find members of your team travelling more
often to visit and inspect sites should you not have full-time employees dedicated to
each of your centers. Network costs are also likely to be higher as you add network
links between sites for intersite communication.

From an architecture perspective, to gain the full advantage of a multisite configu-
ration, you should consider moving to a near stateless system with no affinity to a
data center. You may of course decide that you are going to route customers based on
proximity using a geo-locator service, but you want the flexibility of determining

ptg5994185

MULTIPLE ACTIVE DATA CENTER CONSIDERATIONS 497

when to route what traffic to what data center. In this configuration, where data is
present at all three data centers and there is no state or session data held solely within
a single data center, a failure of a service or failure of the entire data center allows the
end user to nearly seamlessly fail over to the next available data center. This results in
the highest possible availability for any configuration possible.

In the case where some state or affinity is required, or the cost of architecting out
state and affinity is simply too high, you need to make the choice of whether to fail
all transactions or sessions and force them to restart should a data center or service
go down or find a way to replicate the state and session to at least one more data cen-
ter. This increases the cost slightly as now you need to either build or buy a replica-
tion engine for the user state information and you will need additional systems or
storage to handle it.

Multiple Live Site Considerations
Multiple live site benefits include

• Higher availability as compared to a hot and cold site configuration

• Lower costs compared to a hot and cold site configuration

• Faster customer response times if customers are routed to the closest data center for
dynamic calls

• Greater flexibility in rolling out products in a SaaS environment

• Greater confidence in operations versus a hot and cold site configuration

Drawbacks or concerns of a multiple live site configuration include

• Greater operational complexity

• Small increase in headcount needs

• Increase in travel and network costs

• Increase in operational complexity

Architectural considerations in moving to a multiple live site environment include

• Eliminate the need for state and affinity wherever possible

• Route customers to closest data center if possible to reduce dynamic call times

• Investigate replication technologies for databases and state if necessary

ptg5994185

498 CHAPTER 32 PLANNING DATA CENTERS

Conclusion
This chapter discussed the unique constraints that data centers create for hyper-
growth companies, data center location considerations, and the benefit of designing
for and operating out of multiple live data centers. As such, when considering
options for where to locate data centers, one should consider areas that provide the
lowest cost of power with high quality and availability of power. Another major loca-
tion based criteria is the geographic risk in any given area. Companies should ideally
locate data centers in areas with low geographic risk, low cost of power, and high
power efficiency for air conditioning systems.

Data center growth and capacity need to be evaluated and planned out months or
even years in advance based on whether you lease or purchase data center space and
how much space you need. Finding yourself in a position needing to immediately
enter into contracts and occupy space puts your business at risk and at the very least
reduces your negotiating leverage and causes you to pay more money for space. A
failure to plan for data center space and power needs well in advance could hinder
your ability to grow.

When planning data centers, remember to apply the three magic rules of three.
The first rule is that there are three drivers of cost. The first driver is the cost of the
server, the second driver is the cost of power, and the third driver is the cost of
HVAC. The second rule is to always plan for at least three servers for any service and
the final rule is to plan for three or more live data centers.

Multiple active data centers provide a number of advantages for your company.
You gain higher availability and lower overall costs relative to the typical hot and
cold site disaster recovery configuration. They also allow you greater flexibility in
product rollouts and greater negotiation leverage with leased space. Operational con-
fidence in facilities increase as compared to the lack of faith most organizations have
in a cold or warm disaster recovery facility. Finally, customer perceived response
times go down for dynamic calls when routed to the closest data center.

Drawbacks of the multiple live data center configuration include increased opera-
tional complexity, increases in headcount and network costs, and an increase in
travel cost. That said, our experience is that the benefits far outweigh the negative
aspects of such a configuration.

When considering a multiple live data center configuration, you should attempt to
eliminate state and affinity wherever possible. Affinity to a data center closest to the
customer is preferred to reduce customer perceived response times, but ideally you
want the flexibility of seamlessly moving traffic. You will need to implement some
method of replication for databases and should you need to maintain state for any
reason, you should also consider using that technology for state replication.

ptg5994185

CONCLUSION 499

Key Points

• Power is typically the constraining factor within most data centers today.

• Cost of power, quality and availability of power, geographic risk, an experi-
enced labor pool, and cost and quality of network transit are all location based
considerations for data centers.

• Data center planning has a long time horizon. It needs to be done months and
years in advance.

• The three magic drivers of data center costs are servers, power, and HVAC.

• Three is the magic number for servers: Never plan for a service having less than
three servers initially.

• Three is the magic number for data centers: Always attempt to design for at
least three live sites.

• Multiple live sites offer higher availability, greater negotiating leverage, higher
operational confidence, lower cost, and faster customer response times than tra-
ditional hot/cold disaster recovery configurations.

• Multiple live sites tend to increase operational complexity, costs associated with
travel and network connectivity, and headcount needs.

• Attempt to eliminate affinity and state in a multiple life site design.

ptg5994185

This page intentionally left blank

ptg5994185

501

Chapter 33

Putting It All Together

The art of war teaches us to rely not on the likelihood of the enemy’s not coming,
but on our own readiness to receive him; not on the chance of his not attacking,

but rather on the fact that we have made our position unassailable.

—Sun Tzu

We started this book with a discussion of how scalability is a combination of art and
science. The art aspect of scaling is seen in the interactions between platforms, orga-
nizations, and processes, which impact any structured approach in a company. The
science of scalability is embodied within the method by which we measure our efforts
and in the application of the scientific method. A particular company’s approach to
scaling must be crafted around the ecosystem fashioned by the intersection of the
technology platform, the uniqueness of the organization, and the maturity and capa-
bilities of the existing processes. Because a one-size-fits-all implementation or answer
does not exist, we have focused this book on providing skills and lessons regarding
approaches.

It all begins with people. You can’t get better or even sustain without the right
team, the right leadership, the right management, and the right organizational struc-
ture. People are central to establishing and following processes as well as designing
and implementing the technology. Having the right people in terms of skill set, moti-
vation, and cultural fit are the essential building blocks. On top of this must be
placed the right roles. Even the best people must be placed in the right job that appro-
priately utilizes their skills. Additionally, these roles must be organized in the right
organizational structure and they must receive strong leadership and management in
order to perform at an optimal level.

Although people develop and maintain the processes within an organization, the
processes control how the individuals and teams behave. Processes are essential
because they allow your teams to react quickly to crisis, determine the root cause of
failures, determine capacity of systems, analyze scalability needs, implement scalability
projects, and many more fundamental needs for a scalable system. There is no single

ptg5994185

502 CHAPTER 33 PUTTING IT ALL TOGETHER

right answer when it comes to processes, and there are many wrong answers. Each
and every process must be evaluated first for general fit within the organization in
terms of its rigor or repeatability and then specifically for what steps are right for
your particular team in terms of complexity. Too much process can stifle innovation
and strangle shareholder value, whereas if you are missing the processes that allow
you to learn from both your past mistakes and failures, you will very likely at least
underachieve and potentially even fail as a company.

Last but not least is the technology that drives the business either as the product
itself or the infrastructure allowing the product to be brought to market. There are
many methodologies to understand and consider when implementing your scalable
solution such as splitting by multiple axes, caching, using asynchronous calls, devel-
oping a data management approach, and many others that we’ve covered in this
book. The key is to develop expertise in these approaches so that you appropriately
utilize them when necessary. The right people, who understand these approaches, and
the right processes, ones that insist on the evaluation of these approaches, are all put
together to develop scalable technology.

In the beginning of this book, we introduced the concept of virtuous and vicious
cycles (refer to Figure I.1 in the Introduction). The lack of attention to the people and
processes can cause poor technical decisions that are what we term a vicious cycle.
After you start down this path, teams are likely to ignore the people and process
more because of the demands on energy and resources to fix the technology prob-
lems. The exact opposite is what we called the virtuous cycle when the right people
and the right process feed each other and produce excellent, scalable technology, thus
freeing up resources to continue to improve the overall ecosystem within the organi-
zation. After you start down the vicious cycle, it is difficult to stop but with focused
intensity you can do it. In Figure 33.1, we have depicted this concept of stopping the
downward spiral and starting it back in the other direction.

What to Do Now?
The question that you might have now that you have made your way through all this
information about people, processes, and technology is “What to do now?” We have
a simple four-step process that we recommend for putting all this information into
practice. Note that this process holds true whether you are making technical, process,
organizational, or even personal changes (as in changes in you). These steps are

1. Assess your situation.

2. Determine where you need or want to be.

3. Annotate the difference between the two.

4. Make a plan.

ptg5994185

WHAT TO DO NOW? 503

The first step is to assess your current situation. Look at all three aspects of peo-
ple, process, and technology and make an honest assessment of where you are with
each. Answer questions such as what is the caliber of your people, is the structure of
your organization optimal, what parts of your technology scale, and are your pro-
cesses adequately supporting your goals? These assessments are difficult to do from
inside the organization. Sometimes, you are just too close to the situation. Our firm
AKF Partners is often asked to perform these assessments because we can provide an
objective third-party perspective.

After you have the assessment in hand, the second step is to determine where you
need to be along those three aspects of people, process, and technology. Do you need
to focus on infusing more experience in the engineering team or do you need to dedi-
cate time and energy to developing more robust processes? One approach to this is to

Figure 33.1 Vicious and Virtual Technology Cycles

Vicious Cycle Virtuous Cycle

F
oc

us
ed

In

te
ns

ity

Te
ch

n
o

lo
g

y

Te
ch

n
o

lo
g

y

People Process

Process

People

ptg5994185

504 CHAPTER 33 PUTTING IT ALL TOGETHER

start with your projected growth rate and assess how this will place a demand on the
technology, process, and people of your company. Additional factors such as acquisi-
tions or additional funding should be considered when determining this ideal state.

The third step is to compare the real and ideal situations within your company.
This will result in a list of items that are not at a sufficient level of skill, maturity, or
scalability. For example, you may decide in Step 1 that you have a young engineering
team with no experience in scaling large databases. In Step 2, you decide that based
on your projected growth rate, you will need to triple the amount of data stored in
your database in the next 18 months. In Step 3, you would identify this discrepancy
and mark down that you need to add people on your engineering team who have
experience scaling databases. The last part of Step 3 is to prioritize this list of items
from most important to least. We often start by breaking the list into two sets: those
discrepancies that we consider weaknesses and those that are opportunities to
improve.

The last step is to create an action plan for fixing the discrepancies identified in the
previous step. The timeframe for the action plan or plans will be determined by your
organization’s needs, the available resources, and the severity of the discrepancies.
We often suggest teams create two plans: one for addressing immediate concerns in a
30- to 45-day plan and one for addressing longer term issues in a 180-day plan. If
you have categorized the items into weaknesses and opportunities, these will corre-
spond to the short- and long-term action plans.

Four Steps to Action
A simple four-step process for putting this all together:

1. Perform an assessment. Rate your company on organization, processes, and architec-
ture. Use an outside agent if necessary.

2. Define where you need to be or your ideal state. How large is your company going to
grow in 12 to 24 months? What does that mean for your organization, processes, and
architecture?

3. List the differences between your actual and ideal situations. Rank order these differ-
ences from most to least severe.

4. Action plans. Put together an action plan to resolve the issues identified in the previous
steps. This can be in the form of a single prioritized plan, a short-term and long-term
plan, or any other planning increments that your company uses.

ptg5994185

CASE STUDIES 505

Case Studies
Throughout this book, we painted a picture of AllScale, a fictional company amal-
gamating our experiences as advisors and executives, to provide real-world examples.
As a last example of how our techniques can be employed to create scalable solu-
tions, we are going to leave AllScale and discuss three companies with which we have
personal experience. We chose these three companies to attempt to show how our
techniques can be applied to companies in various stages of growth and maturity.

eBay: Incredible Success and a Scalability Implosion
Search for “eBay outage 1999” and you’ll get a number of results centered between
May and July of 1999. Outages lasting more than five hours were fairly common
according to widely published news stories throughout the Internet. Had these out-
ages continued, there is no doubt that eBay would have lost the advantage it enjoyed
through at least 2005 as the largest online ecommerce site in gross merchandise sales.

In 1999, Internet commerce was still in its infancy. eBay, Amazon, and Yahoo were
blazing new trails in terms of commerce transaction volume on the Internet. Facilitat-
ing online auctions also had some attributes unique from other online sites: Time was
also a very important element. Regardless of the length of an auction, the most likely
time that the auction would be viewed and bid upon was the last several hours of that
auction’s life. If eBay was down for five hours, it is very likely that certain auctions
would close at a final price significantly lower than they would if the site remained
available. Unlike most Internet commerce sites, where demand would be scattered
over some subset of catalog items even during peak traffic, demand on eBay auctions
would be laser focused on an even smaller set of items at any given time. Imagine
1,000 buyers in a 10,000 square foot store all attempting to view and purchase an
item in the back corner of the store and for which the store only has a single copy or
piece. Further imagine that the number of buyers entering the store doubled some-
times daily and sometimes monthly. The items these buyers were interested in were
also doubling, or tripling. Although not unheard of today, this type of growth simply
had not been experienced before.

What happened? As we’ve attempted to point out in this book, it all starts with
people. eBay had some of the brightest engineers around in 1999 before and during
the outages. But these incredibly bright people didn’t have some of the experiences
necessary to run platforms at such scale and at such rapid growth. In fact, no one had
that type of experience. So, the executive team needed to find folks with different, yet
applicable experience to augment the existing team. Meg Whitman brought in May-
nard Webb as the President of Technology and Maynard in turn brought in Lynn
Reedy and Marty Abbott. The executives established a compelling yet achievable

ptg5994185

506 CHAPTER 33 PUTTING IT ALL TOGETHER

vision to be both highly available and highly scalable. Lynn and Marty hired a num-
ber of people to further augment the team over a period of several years including
Tom Keeven and Mike Fisher (both now partners in AKF), creating a perpetual cycle
of “seed, feed, and weed.” Experiences were added to the team and talent was
boosted. Great individual contributors and managers were recognized and promoted
and some people were asked to leave or left of their own volition if they did not fit
into the new culture.

While continuing to focus on ensuring that the teams had the right skills and expe-
riences, the executives simultaneously looked at processes. Most important were the
processes that would allow the organizations to learn over time. Crisis management,
incident management, postmortem, and change management and control processes
were all added within the first week. Morning operations meetings were added to
focus on open and recurring incidents and to drive incidents and problems to closure.
Project management disciplines were added to keep business and scalability related
projects on track.

And of course there was the focus on technology! It is important to understand
that although people, process, and technology were all simultaneously focused on,
the most important aspects for long-term growth stem from people first and process
second. As we’ve said time and time again, technology does not get better without
having the right team with the right experiences, and people do not learn without the
right (and appropriately sized) processes to reinforce lessons learned, thereby keeping
issues from happening repeatedly.

Databases and applications were split on the x-, y-, and z-axes of scale. What
started out as one monolithic database on the largest server available at the time was
necessarily split to allow for the system to scale to user demand. Data elements with
high read to write ratios were replicated using x-axis techniques. Customer informa-
tion was split from product information, product information was split into several
databases, and certain functions like “feedback” were split into their own systems
over the period of a few years.

Quigo: A Young Product with a Scalability Problem
Quigo started out as a company offering a service based on technology. Relying on a
proprietary relevance and learning engine, its first product promised to help increase
the returns in the nascent search engine marketing industry for direct response adver-
tisers. Leveraging this existing technology, the company branched out into offering a
private label contextual advertising platform for premium publishers. AdSonar was
born. Early premium branded publishers loved the product and loved the capability
to increase their revenue per page over the existing alternatives.

However, within months, the new advertising platform had problems. It simply
couldn’t handle the demand of the new publishers. How did a new product fail so

ptg5994185

CASE STUDIES 507

quickly? The product wasn’t anywhere near the scale of an eBay, Amazon, or Google;
it wasn’t even near the scale of competing ad networks. What went wrong and how
could it be fixed?

Again, the answer starts with people. The existing team was smart and dedicated,
just as with the eBay team. But it missed experience in large-scale operations and
designing platforms for hyper growth. This is when two future AKF Partners were
brought onboard. The new executives didn’t have direct experience with advertising
technology, but their experience with commerce and payment platforms was directly
applicable. More importantly, they knew how to focus teams on an objective and
how to create a culture that would support the needs of a highly scalable site. Consis-
tent with the layout of this book, it all starts with people. The new team created met-
rics and goals supporting availability, scalability, and cost. It created a compelling
vision of the ideal future and gave the team hope that it could be achieved. Where
necessary, it added great engineering and managerial talent.

The new executives also set about adding the right processes to support scalability.
Scalability summits, operations meetings, incident management processes, and
change management processes were all added within a couple of weeks. Joint Appli-
cation Design and Architecture Review Boards soon followed. Architectural princi-
ples focusing the team on the critical elements of scale were introduced and used
during Architectural Review Boards.

And of course the team focused on technology. Again, what ultimately became the
AKF Scale Cube was employed to split services, resources, and (where necessary)
data elements. Fault isolation was employed where possible to increase scalability.

What were the results of all of this work? Within two years, the company had
grown more than 100x in transactions and revenue and was successfully sold to AOL.

ShareThis: A Startup Story
ShareThis is a company that is all about sharing. Its products allow people to easily
share the things they find online, by consolidating address books and friend lists, so
that anything can be shared immediately, without even leaving a Web page. Within
six months of launching the ShareThis widget, there were already over 30,000 pub-
lishers using it. Witnessing this hyper growth, the cofounder and CEO Tim Schigel
met with the AKF Partners to talk about guidance with scalability concerns. Tim is a
seasoned veteran of startups having seen them for more than a decade as a venture
capitalist and was well aware of the need to address scalability early and from a
holistic approach. Michael Fisher from AKF Partners worked with Tim to lay out a
short- and long-term plan for scalability. At the top of the list was filling some open
positions on his team with great people. One of these key hires was Nanda Kishore as
the chief technology officer. Prior to ShareThis, Nanda was a general manager at

ptg5994185

508 CHAPTER 33 PUTTING IT ALL TOGETHER

Amazon.com and knew firsthand about how to hire, lead, design, and develop scal-
able organizations, processes, and products.

In addition to other key hires in operations, engineering, product management,
and the data warehouse team, there was a dedicated focus on improving processes.
Some of the processes that were put in place within the first few weeks were source
code control, on-call procedures, bug tracking, and product councils. After people
and process were firmly established, they could properly address scalability within
the technology.

With a keen focus on managing cost and improving performance, the team
worked on reducing the widget payload. It implemented a content delivery network
(CDN) solution for caching and moved all serving and data processing into Amazon’s
EC2 cloud. Because of the ShareThis architecture and need for large amounts of com-
pute processing for data, this combination of a CDN and public cloud worked excep-
tionally well. Under Nanda’s leadership, the team reduced the serving cost by more
than 56% while experiencing growth rates in excess of 15% per month. All of this
sharing activity resulted in terabytes of data that needs to be processed daily. The
team has produced a data warehousing solution that can scale with the ever increas-
ing amount of data while reducing the processing time by 1900% in the past six
months.

Less than two years after the launch, the ShareThis widget reached more than 200
million unique users per month and more than 120,000 publisher sites. ShareThis is a
scalability success story because of its focus on people, process, and technology.

Again, it’s worth repeating a recurring theme throughout this book: You can’t
scale without focusing on all three elements of people, process, and technology. Too
many books and Web sites feature the flavor of the day technical implementation to
fix all needs. Vision, mission, culture, team composition, and focus are the most
important elements to long-term success. Processes need to support the development
of the team and need to reinforce lessons learned as well as rapid learning. Technol-
ogy, it turns out, is the easiest piece of the puzzle, but unfortunately the one people
tend to focus on first. Just as with complex math equations, one simply needs to iter-
atively simplify the equation until the component parts are easy to solve.

People and organizations are more dynamic and demanding. Although there is no
single right solution for them, there is an approach that is guaranteed to work every
time. Start with a compelling vision mixed with compassion and hope, and treat your
organization as you would your garden. Add in goals and measurements and help the
team overcome obstacles.

Process development should focus on those things that help a company learn over
time and avoid repeating mistakes. Use process to help manage risks and repeat supe-
rior results. Avoid process that becomes cumbersome or significantly slows down
product development.

ptg5994185

REFERENCES 509

References
We have covered a lot of material in this book. Because of space limitations we have
often only been able to cover this material in a summary fashion. Following are a few
of the many resources that can be consulted for more information on concepts
related to scalability. Not all of these necessarily share our view points on many
issues, but that does not make them or our positions any less valid. Healthy discus-
sion and disagreement is the backbone of scientific advancement. Awareness of dif-
ferent views on topics will give you a greater knowledge of the concept and a more
appropriate decision framework.

Blogs

AKF Partners Blog: http://www.akfpartners.com/techblog

Silicon Valley Product Group by Marty Cagan: http://www.svpg.com/blog/files/
svpg.xml

All Things Distributed by Werner Vogels: http://www.allthingsdistributed.com

High Scalability Blog: http://highscalability.com

Joel On Software by Joel Spolsky: http://www.joelonsoftware.com

Signal vs Noise by 37Signals: http://feeds.feedburner.com/37signals/beMH

Scalability.org: http://scalability.org

Books

Building Scalable Web Sites: Building, Scaling, and Optimizing the Next Genera-
tion of Web Applications by Cal Henderson

Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable
Applications and Services by Neil J. Gunther

The Art of Capacity Planning: Scaling Web Resources by John Allspaw

Scalable Internet Architectures by Theo Schlossnagle

The Data Access Handbook: Achieving Optimal Database Application Perfor-
mance and Scalability by John Goodson and Robert A. Steward

Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems
(Addison-Wesley Object Technology Series) by Bruce Powel Douglass

Cloud Computing and SOA Convergence in Your Enterprise: A Step-by-Step
Guide (Addison-Wesley Information Technology Series) by David S. Linthicum

Inspired: How To Create Products Customers Love by Marty Cagan

ptg5994185

This page intentionally left blank

ptg5994185

Appendices

ptg5994185

This page intentionally left blank

ptg5994185

513

Appendix A

Calculating Availability

There are many ways of calculating a site’s availability. Included in this appendix are
five ways that this can be accomplished. In Chapter 6, Making the Business Case, we
made the argument that knowing your availability is extremely important in order to
make the business case that you need to undertake scalability projects. Downtime
equals lost revenue and the more scalability projects you postpone or neglect to
accomplish, the worse your outages and brownouts are going to be. If you agree with
all of that then why does it matter how you calculate outages or downtime or avail-
ability? It matters because the better job you do and the more everyone agrees that
your method is the standard way of calculating the measurement, the more credibility
your numbers have. You want to be the final authority on this measurement; you
need to own it and be the custodian of it. Imagine how the carpet could be pulled out
from under your scalability projects if someone disputed your availability numbers in
the executive staff meeting.

Another reason that a proper and auditable measurement should be put in place is
that for an Internet enabled service, there is no more important metric than being
available to your customers when they need your service. Everyone in the organiza-
tion should have this metric and goal as part of his personal goals. Every member of
the technology organization should know the impact on availability that every out-
age causes. People should question each other about outages and work together to
ensure they occur as infrequently as possible. With availability as part of the com-
pany’s goals, affecting employees’ bonus, salary, promotions, and so on, this should
be a huge motivator to care about this metric.

Before we talk about the five different methods of calculating availability, we need
to make sure we are all on the same page with the basic definition of availability. In our
vernacular, availability is how often the site is available over a particular duration. It
is simply the amount of time the site can be used by customers divided by the total
time. For example, if we are measuring availability over one week, we have 10,080
minutes of possibly availability, 7 days 24 hrs/day 60 min/day. If our site is avail-
able 10,010 minutes during that week, our availability is 10,010 / 10,080 = .9935.

ptg5994185

514 APPENDIX A CALCULATING AVAILABILITY

Availability is normally stated as a percentage, so our availability would be 99.35%
for the week.

Hardware Uptime
The simplest and most straightforward measurement of availability is calculating it
based on device (or hardware) uptime. Using simple monitoring tools that rely on
SNMP traps for catching when devices are having issues, organizations can monitor
the hardware infrastructure as well as keep track of when the site’s hardware was
having issues. On whatever time period availability is to be calculated, the team can
look back through the monitoring log and identify how many servers had issues and
for what duration. A simple method would be to take the total time of the outage and
multiply it by a percentage of the site that was impacted. The percentage would be
generated by taking the number of servers having issues and dividing by the total
number of servers hosting the site. As an example, let’s assume an access switch failed
and the hosts were not dual homed, so it took out 12 Web servers that were attached
to it for 1½ hours until someone was able to get in the cage and swap the network
device. The site is hosted on 120 Web servers. Therefore, the total downtime would
be 9 minutes calculated as follows:

Outage duration = 1½ hours

Servers impacted = 12

Total servers = 120

90 min 12/120 = 9 min

With the downtime figured, the availability can be calculated. Continuing our
example, let’s assume that we want to measure availability over a week and this was
our only outage during that week. During a week, we have 10,080 minutes of possibly
availability, 7 days 24 hrs/day 60 min/hr. Because this is our only downtime of the
week, we have 10,080 – 9 = 10,071 of uptime. Availability is simply the ratio of uptime
to total time expressed as a percentage, so we have 10,071 / 10,080 = 99.91%.

As we mentioned, this is a very simplistic approach to availability. The reason we
say this is that the performance of a Web server is not necessarily the experience of
your customers. Just because a server was unavailable does not mean that the site
was unavailable for the customers; in fact, if you have architected your site properly,
a single failure will likely not cause any customer impacting issues. The best measure
of availability will have a direct relation to the maximization of shareholder value;
this maximization in turn likely considers the impact to customer experience and the
resulting impact to revenue or cost for the company.

ptg5994185

CUSTOMER COMPLAINTS 515

This is not meant to imply that you should not measure your servers and other
hardware’s availability. You should, however, refer back to the goal tree in Chapter 5,
Management 101, shown in Figure 5.2. Device or hardware availability would likely
be a leaf on this tree beneath the availability of the adserving systems and the regis-
tration systems. In other words, the device availability impacts the availability of
these services, but the availability of the services themselves is the most important
metric. You should use device or hardware availability as a key indicator of your sys-
tem’s health but you need a more sophisticated and customer centric measurement
for availability.

Customer Complaints
The next approach to determining availability involves using the customers as a
barometer or yardstick for your site’s performance. This measurement might be in
the form of the number of inbound calls or emails to your customer support center or
the number of posts on your forums. Often, companies with very sophisticated cus-
tomer support services will have real-time tracking metrics on support calls and
emails. Call centers measure this every day and have measurements on how many
they receive as well as how many they can service. If there is a noticeable spike in
such service requests, it is often the fault of an issue with the application.

How could we turn the number of calls into an availability measurement? There
are many ways to create a formula for doing this, but they are all inaccurate. One
simple formula might be to take the number of calls received on a normal day and the
number received during a complete outage; these would serve as your 100% avail-
able and 0% available. As the number of calls increases beyond the normal day rate,
you start subtracting availability until you reach the amount indicating a total site
outage; at that point, you count the time as the site being completely unavailable.

As an example, let’s say we normally get 200 calls per hour from customers. When
the site is completely down in the middle of the day, the call volume goes to 1,000 per
hour. Today, we start seeing the call volume go to 400 per hour at 9:00 AM and
remain there until noon when it drops to 150 per hour. We assume that the site had
some issues during this time and that is confirmed by the operations staff. We mark
the period from 9:00 AM to noon as an outage. The percentage of downtime is 25%,
calculated as

Outage duration = 3 hours = 180 min

Normal volume = 200 calls/hr

Max volume = 1,000 calls/hr

Diff (Max – Norm) = 800 calls/hr

ptg5994185

516 APPENDIX A CALCULATING AVAILABILITY

Amount of calls above normal = 400 – 200 = 200 calls/hr

Percentage above normal = 200 / 800 = 1 / 4 = 25%

180 min 25% = 45 min

Although this is certainly closer to a real user experience metric, it is also fraught
with problems and inaccuracies. For starters, customers are not likely to call in right
away. Most service centers require people to stay on the phone for several minutes or
longer waiting before they are able to speak with a real person. Therefore, many cus-
tomers will not bother calling in because they don’t want to be put on hold. Not all
customers will call; probably only your most vocal customers will call. While at eBay,
for instance, we measured that the customer contact rate would be somewhere in the
vicinity of 1% to 5% of the customers actually impacted. This fact skews the metrics
toward functionality that is used by your most vocal customers, who are often your
most advanced. Another major issue with this measurement is that a lot of Web 2.0
or Software as a Service (SaaS) companies do not have customer support centers.
This leaves them with very little direct contact with customers; therefore, the delay in
understanding if there is a real problem, the significance of it, and the duration of it
are extremely difficult to detect. Another issue with this measurement is that cus-
tomer calls vary dramatically depending on the time of the day. To compensate for
this, you must have a scale for each hour to compare against.

Similar to the hardware measurement discussed earlier, the measurement of cus-
tomer contacts is a good measurement to keep track of but not a good one to solely
rely upon on to gauge your availability. The pulse of the customer or customer tem-
perature, whatever you wish to call this, is a great way to judge how your customer
base is responding to a new layout or feature set or payment model. This feedback is
invaluable for the product managers to ensure they are focused on the customers’
needs and listening to their feedback. For a true availability measurement, we again
recommend something more sophisticated.

Portion of Site Down
A third way of measuring availability is monitoring the availability of services on
your site. This is obviously more easily accomplished if your site has fault isolation
lanes, swim lanes, created to keep services separated. In either case, this is often
accomplished by monitoring the ability of a simulated user, usually in the form of a
script, to perform certain tasks such as logon, run reports, and so on. This simulated
user is then the measure of your availability. As an example, if you want to monitor
five services—login, report, pay, post, and logout—you could create five scripts that
run every five minutes. If any script fails, it notifies a distribution list. After the ser-

ptg5994185

THIRD-PARTY MONITORING SERVICE 517

vice is restored, the test script stops sending failure notices. This way, you have a
track through email of the exact downtime and what services were affected.

As an example, let’s say we have this monitoring method set up for our five ser-
vices. We receive problem emails for our login service starting at 9:45 AM and they
stop at 11:15 AM. This gives us 1½ hours of downtime on one of our services. A sim-
ple method of calculating the availability is to take 1/5 of the downtime, because one
of the five services had the problem. This would result in 18 minutes of downtime,
calculated as follows

Outage duration = 1½ hours

Services impacted = 1

Total services = 5

90 min 1/5 = 18 min

This method does have some limitations and downsides, but it can be a fairly
accurate way of measuring the impact of downtime upon customers. One of the
major limitations with this method is that it only monitors services that you have
scripts built for. If you either don’t build the scripts or can’t accurately simulate real
users, your monitoring is less affective. Obviously, you need to monitor the most
important services that you provide in your application. It’s likely not realistic to
monitor every single service, but the major ones should absolutely be monitored.
Another limitation is that not all users use all the services equally. For example, a
signup flow only gets used by new users, whereas a login flow gets used by all your
existing customers. Should each flow get weighted equally? Perhaps you could add a
weighting by importance or volume of usage to each flow to help more accurately
calculate the impact on your customers for the availability of each flow. Another lim-
itation of this is that if you monitor your application from inside of your network,
you are not necessarily experiencing the same customer impact as outside your net-
work. This is especially true if the outage is caused by your Internet service provider
(ISP). Even though this does have some limitations, it does offer a pretty good cus-
tomer centric availability measurement.

Third-Party Monitoring Service
The fourth measurement that we want to present for determining availability is using
a third-party monitoring service. This is very similar to the previous measurement
except that it overcomes the limitation of monitoring within your own network and
potentially has more sophisticated scripting to achieve a more realistic user experi-
ence. The principle concepts are very similar in that you set up services that you want

ptg5994185

518 APPENDIX A CALCULATING AVAILABILITY

to monitor and have it alert a distribution list when there is a problem. There is a
wide variety of vendors that offer services including Keynote, Gomez, Montastic, and
many others. Some of these services are free and others are fairly costly depending on
the sophistication and diversity of monitoring that you require. For example, some of
the premium monitoring services have the capability of monitoring from many differ-
ent peering networks as well as providing user simulation from user’s computers,
which is about as realistic of a user experience as you can achieve.

The key with using a third-party monitoring service is first determining your
requirements for monitoring. Things to consider are how difficult your application or
services are to monitor because of their dynamic nature and how many different geo-
graphical locations is your site monitored from. Some services are capable of moni-
toring from almost any Internet peering service globally. Some vendors offer special
monitoring for dynamic pages. Others offer dynamic alert that doesn’t need thresh-
olds set but instead “learns” what is normal behavior for your application’s pages
and alerts when they are “out of control,” statistically speaking.

Traffic Graph
The last measurement that we want to present was provided as an example in Chap-
ter 6. This is the method of using traffic graphs to determine the impact of an outage on
the customer usage of your site based off of network access or traffic graphs. To accom-
plish this, you must make use of traffic graphs that show the usage reports from your
site’s network. After you have this setup, each time there is an outage, you can com-
pare a normal day with the outage day and determine how much of your site’s traffic
and thus users were affected. The way to do this is determine the area between the
graphs, and this is representative of the amount of downtime that should be registered.

In Figure A.1, the solid line is a normal day’s traffic and the dashed line is the traf-
fic from the day with an outage. The outage began at 9:00 AM and lasted until
approximately 3:00 PM when the site was fully recovered. The area between the lines
from 9:00 AM to 3:00 PM, marked by light gray, would be considered the outage
percentage and could be used in the calculation of downtime. In this case, we would
calculate that this area is 40% of the normal traffic and therefore the site had a 40%
outage for six hours or 2.4 hours of downtime.

As a continuation of this measurement, we could use it to estimate the cost that
the outage caused by not allowing customers to purchase or browse or sign up. To
determine the cost that the outage caused, you need to add back in any traffic that
came back later in the day because the customers were unable to use the site during
the outage. The area marked by dark gray with the dashed line above the solid line
from 3:00 PM to 9:00 PM would be traffic that we recovered after the outage. In this

ptg5994185

TRAFFIC GRAPH 519

case, it is approximately 5% above normal traffic, so we could reduce the 40% by
5% and recalculate the cost of the outage.

Although this approach is much more mathematical and accurate, it still has its
limitations and drawbacks. One of these limitations is the reliance on traffic as a rep-
resentation of user behavior and revenue. This is not necessarily the case. Not all traf-
fic is equal. A new customer signup might be worth $50 in purchases and
advertisement revenue over the active span of the customer. A customer interrupted
from purchasing a shopping cart is not likely to return and that customer’s traffic
would be worth a lot more than a customer browsing. The average of all these should
equal an average hourly revenue rate, but this can skew the metric during partial out-
ages, such as when new user signup flows are broken but checkouts are still working.

As you can see, measuring availability is not straightforward and can be very complex.
The purpose of these examples is not to say which one is right or wrong, but rather to
give you several examples that you can choose from or combine together to make the
best overall availability metric for your organization. The importance of a reliable and
agreed upon availability metric should not be understated as it will be the basis for
many recommendations and scalability projects as well as a metric that should be tied
directly to people’s goals. Spend the time necessary to come up with the most accu-
rate metric possible that will become the authoritative measurement of availability.

Figure A.1 Outage Traffic Graph

0

5

10

15

20

25

30

35

40

45

12
:0

0:
00

 A
M

1:
00

:0
0

A
M

2:
00

:0
0

A
M

3:
00

:0
0

A
M

4:
00

:0
0

A
M

5:
00

:0
0

A
M

6:
00

:0
0

A
M

7:
00

:0
0

A
M

8:
00

:0
0

A
M

9:
00

:0
0

A
M

10
:0

0:
00

 A
M

11
:0

0:
00

 A
M

12
:0

0:
00

 P
M

1:
00

:0
0

P
M

2:
00

:0
0

P
M

3:
00

:0
0

P
M

4:
00

:0
0

P
M

5:
00

:0
0

P
M

6:
00

:0
0

P
M

7:
00

:0
0

P
M

8:
00

:0
0

P
M

9:
00

:0
0

P
M

10
:0

0:
00

 P
M

11
:0

0:
00

 P
M

12
:0

0:
00

 A
M

ptg5994185

This page intentionally left blank

ptg5994185

521

Appendix B

Capacity Planning Calculations

In Chapter 11, Determining Headroom for Applications, we covered how to deter-
mine the headroom or free capacity that was available for your application. In this
appendix, we will walk through a larger example of capacity planning for an entire
site, but we will follow the process outlined in Chapter 11. The steps to be followed are

1. Identify components

2. Determine actual and maximum usage rates

3. Determine growth rate

4. Determine seasonality

5. Compute amount of headroom gained through projects

6. State ideal usage percentage

7. Perform calculations

For our example, let’s use our made-up company AllScale.com, which provides
Software as a Service (SaaS) for human resources professionals. The site is becoming
very popular and growing rapidly. The growth is seen in bursts; as new companies
sign up for the service, the load increases based on the number of human resource
managers at the client company. So far, there are 25 client companies with a total of
1,500 human resource managers that have accounts on AllScale.com. The CTO
needs to perform a capacity planning exercise because she is planning for next year’s
budget and wants accurate cost projects.

Step 1 is to identify the components within the application that we care about suf-
ficiently to include in the analysis. The AllScale.com application is very straightfor-
ward with a Web server tier, application server tier, and single database with standbys
for failover. AllScale.com was migrated this past year to a new network and the net-
work devices, including the load balancers, routers, and firewalls, were all purchased
to scale to 6x current maximum traffic. We will skip the network devices in this
capacity planning exercise, but periodically they should be reanalyzed to ensure that
they have enough headroom to continue to scale for AllScale.com’s growth.

ptg5994185

522 APPENDIX B CAPACITY PLANNING CALCULATIONS

Step 2 is to determine the actual and maximum usage rates for each component.
AllScale keeps good records of this and we know the actual peak and average usage
for all our components. We also perform load and performance testing before each
new code release, and we know the maximum requests per second for each compo-
nent based on the latest code version.

In Figure B.1, there are the Web server and application server requests that are
being tracked and monitored for AllScale.com. You can see that there are around 125
requests per second at peak for the Web servers. There are also around 80 requests
per second at peak for the application servers. The reason for the difference is that
there are a lot of preprocessed static pages on the Web servers that do not require any
business logic computations to be performed. These pages include corporate pages,
landing pages, images, and so on. You could make an argument that different types
of pages scale differently and should be put on a different set of Web servers or at a
minimum be analyzed differently for capacity planning. For simplicity of this exam-
ple, we will continue to group them together as a total number of requests.

From the graphs, we have put together a summary in Table B.1 of the Web servers,
application servers, and the database server. You can see that we have for each com-
ponent the peak total requests, the number of hosts in the pool, the peak request per
host, and the maximum allowed on each host. The maximum allowed was deter-
mined through load and performance testing with the latest code base and is the
number at which we begin to see diminished response times that are outside of our
internal service level agreements.

Figure B.1 Web Server and Application Server Requests

0

20

40

60

80

100

120

12
:0

0:
00

 A
M

2:
00

:0
0

A
M

4:
00

:0
0

A
M

6:
00

:0
0

A
M

8:
00

:0
0

A
M

10
:0

0:
00

 A
M

12
:0

0:
00

 P
M

2:
00

:0
0

P
M

4:
00

:0
0

P
M

6:
00

:0
0

P
M

8:
00

:0
0

P
M

10
:0

0:
00

 P
M

12
:0

0:
00

 A
M

2:
00

:0
0

A
M

4:
00

:0
0

A
M

6:
00

:0
0

A
M

8:
00

:0
0

A
M

10
:0

0:
00

 A
M

12
:0

0:
00

 P
M

Web

App

ptg5994185

CAPACITY PLANNING CALCULATIONS 523

Step 3 is to determine the growth rate, and for this we turn to our traffic usage
graph that we monitor to show how much traffic the AllScale.com site has each day.
We also use the graph to show a percentage growth rate week-over-week. For our
traffic, we have a 2% week-over-week growth rate on average throughout the year.
This equates to a 280% growth rate annually or approximately 3x growth in traffic

Table B.1 Web Server and Application Server Requests Summary

(a) Web Server

Peak requests per second total 125

Number of servers 5

Peak requests per second per server 25

Maximum requests per second per server 75

(b) Application Server

Peak requests per second total 80

Number of servers 4

Peak requests per second per server 20

Maximum requests per second per server 50

(c) Database

Peak SQL per second total 35

Number of nodes 1

Peak requests per second per server 35

Maximum SQL per second per node 65

Figure B.2 Normal Traffic Graph

Normal Traffic

0

5

10

15

20

25

30

35

40

45

50

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri

ptg5994185

524 APPENDIX B CAPACITY PLANNING CALCULATIONS

each year. This is the combined growth that comes from existing clients using the
application more, natural growth, and the growth caused by our sales team signing
up new clients, man-made growth. These growth rates are sometimes calculated sep-
arately if the sales team can provide accurate estimates for the number of clients that
are going to be brought on board each year, or they can be extrapolated from previ-
ous year growth rates for new and existing customers.

Step 4 is to determine the seasonality affect on AllScale.com. Because of the nature
of the human resource work, a lot of tasks are accomplished during the early part of
the year. Items such as annual reviews, salary adjustments, and so on are all done in
quarter 1 and therefore that is the largest traffic period for us. AllScale was able to
generate the Figure B.3 seasonality graph by gathering traffic data for existing cus-
tomers but excluding new users. This way, we can eliminate the growth from new
users and just see the seasonality effect on existing users. This capacity planning exer-
cise is being conducted in August, which is typically a lower month, and therefore we
expect to see a 50% increase in traffic by January based on our seasonality effect.

Step 5 is to compute the headroom that we expect to gain through scalability or
headroom projects. The one project that AllScale.com has planned for the fall of this
year is to split the database by creating a write master with two read copies, an x-axis
split according to the AKF Database Scale Cube. This would increase the number of
nodes to three and therefore distribute the existing requests among the three nodes.
The write requests are more CPU intensive, but that is offset by the fewer write
requests as compared to the number of read requests. For our capacity planning pur-
poses, this will affectively drop the number of requests per node from 35 to 12.

Step 6 is to state the ideal usage percentage. We covered this in great detail in
Chapter 11, but to recap, the ideal usage percentage is the percentage of capacity that
you feel comfortable using on a particular component. The reasons for not using

Figure B.3 Seasonality Traffic Graph

0

100

200

300

400

500

600

700

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ptg5994185

CAPACITY PLANNING CALCULATIONS 525

100% are twofold. The first reason is that there is a percentage of error in our data
and calculations. As hard as we try and as much data as we collect, there are sure to
be inaccuracies in our capacity plans. Because of this, we need a buffer to accommo-
date the inaccuracies. The second reason is that as you approach using 100% capac-
ity of any hardware, the behavior becomes erratic and unpredictable. We want to
operate in the range of perfectly predictable behavior. For each component, there
may be a different Ideal Usage Percentage depending on how accurate you feel you
are and how much buffer you need. For our exercise, we are going to use 90% for the
database and 75% for the Web and application servers.

Step 7, our final step, is to perform the calculations. You may recall the formula
shown in Figure B.4. This formula states that the capacity or headroom of a particu-
lar component is equal to the Ideal Usage Percentage multiplied by the maximum
capacity of that component minus the current usage minus the sum over the time
period of the growth rate, which also includes seasonality, minus projected gains
from scalability projects.

As you can see in Table B.2, we have calculated the headroom or capacity for each
component. Let’s walk through the Web tier in detail. The calculation starts with the

Figure B.4 Headroom Equation

Table B.2 Capacity Calculation

(a) Web Server

Peak requests per second total 125

Number of servers 5

Peak requests per second per server 25

Maximum requests per second per server 75

Ideal usage percentage 75%

Scalability projects 0

Growth rate over 12 months 437.5

Headroom = (IUP max) – usage – sum (growth – projects) –281.25

(b) App Server

Peak requests per second total 80

Number of servers 4

Peak requests per second per server 20

(continues)

Headroom Ideal Usage Percentage Maximum Capacity Current= × −() Usage

Growth t Optimization t
t

− −
=
∑(() Projects())

1

12

ptg5994185

526 APPENDIX B CAPACITY PLANNING CALCULATIONS

Ideal Usage Percentage multiplied by the maximum usage; for the Web server tier, this
is 75% 75 requests per second per server 5 servers, which equals 281.25 requests
per second (req/s). This is the total capacity that the AllScale site can handle. The
next part of the calculation is to subtract the current usage of 125 req/s, equaling
156.25 req/s. This means that to date we have 156 req/s extra capacity. Now we need
to add in the future needs. Sum the growth rate minus any projects planned over the
time period to improve scalability. For the Web servers, we have a 3 growth rate
annually in traffic and a 50% growth rate from seasonality resulting in a 3.5 total
current usage, which equals 437.5 req/s. This final equation is

(75% 75 5) – 125 – (3.5 125) = –281.25 req/s

Because this is a negative number, we know that we do not have enough current
capacity based on the number of servers in the pool. We can do several things to cor-
rect this. We could add capacity projects over the next year that would increase our
capacity on the existing servers to handle the growing traffic. We could also purchase
more servers and grow our capacity through a continued x-axis split. The way to cal-
culate how many servers you need is to simply divide the capacity number, 281.25,
by the sum of the Ideal Usage Percentage and the maximum usage per server (75%
75) = 56.25. The result of this 281.25 / 56.25 = 5, means that you need five addi-
tional servers to handle the expected traffic growth.

Maximum requests per second per server 50

Ideal usage percentage 75%

Scalability projects 0

Growth rate over 12 months 280

Headroom = (IUP max) – usage – sum (growth – projects) –210

(c) Database

Peak SQL per second total 35

Number of nodes 3

Peak requests per second per server 11.67

Maximum SQL per second per node 65

Ideal usage percentage 90%

Scalability projects 0

Growth rate over 12 months 122.5

Headroom = (IUP max) – usage – sum (growth – projects) 18

Table B.2 Capacity Calculation (Continued)

ptg5994185

527

Appendix C

Load and Performance
Calculations

In Chapter 17, Performance and Stress Testing, we covered the definition, purpose,
variations on themes, and the steps to complete performance testing. We discussed
that performance testing covers a broad range of testing evaluations with each shar-
ing the focus on the necessary characteristics of the system rather than the individual
materials, hardware, or code. Focusing on ensuring the software meets or exceeds the
specified requirements or service level agreements is what performance testing is all
about. We emphasized that an important aspect of performance testing included a
methodical approach; from the very beginning, we argued for establishing bench-
marks and success criteria; and at the very end, we suggested repeating the tests as
often as possible for validation purposes. We believe that such a structured and repet-
itive approach is critical in order to achieve results in which you can be confident and
upon which you can base decisions. Here, we want to present an example perfor-
mance test in order to demonstrate how the tests are defined and analyzed.

Before we begin the example, we want to review the seven steps that we presented
for a performance test in Chapter 17. They are the following:

1. Criteria. Establish what criteria or benchmarks are expected from the applica-
tion, component, or system that is being tested.

2. Environment. The testing environment should be as close to production as pos-
sible to ensure that your results are accurate.

3. Define tests. There are many different categories of tests that you should con-
sider for inclusion in the performance test including endurance, load, most used,
most visible, and component.

4. Execute tests. Perform the actual tests and gather all the data possible.

5. Analyze data. Analyzing the data by such methods as comparing to previous
releases and stochastic models in order to identify what factors are causing variation.

ptg5994185

528 APPENDIX C LOAD AND PERFORMANCE CALCULATIONS

6. Report to engineers. Provide the analysis to the engineers for them to either take
action or confirm that it is as expected.

7. Repeat tests and analysis. As necessary and possible, validate bug fixes and con-
tinue testing.

Our fictitious company AllScale.com, which you may recall provides human
resource Software as a Service, has a new release of its code in development. This
code base, known internally as release 3.1, is expected out early next month. The
engineers have just completed development of the final features and it is now in the
quality assurance testing stage. We are joining AllScale just as it is beginning the per-
formance testing phase, which in its company occurs during the later phases of qual-
ity assurance after the functional testing has been completed.

The first step that we need to accomplish is determining the benchmarks for the
performance test. AllScale.com has performance tested all of its releases for the past
year so it has a good set of benchmarks against which comparisons can be made. In
the past, it has used the criteria that the new release must be within 5% of the previ-
ous release’s performance. This ensures that AllScale has sufficient hardware in pro-
duction to run the application without scaling issues as well as helping it control the
cost of hardware for new features. The team confirms with its management that the
criteria will remain the same for this release.

The second step is to establish the environment. The AllScale.com team does not
have a dedicated performance testing environment and must requisition the use of a
shared staging environment from the operations team when it needs to perform test-
ing. The team is required to give one week notice in order to schedule the environ-
ment and is given three days in which to perform the tests. Occasionally, if the
environment is being heavily used for multiple purposes, the testing is required to be
performed off hours, but this time the team has Monday at 9:00 AM through
Wednesday at midnight to perform the tests. The staging environment that is used is
a scaled down version of production; all of the physical and logical hosts are present,
but they are much smaller in size and total numbers than the production environ-
ment. For each component or service in production, there is a single server that repre-
sents a pool of servers in production. Although such a structure is not ideal and it is
preferable to have two servers in a test environment representing a larger pool in pro-
duction, the configuration is what AllScale.com can afford today and it is better than
nothing.

Step three is to define the tests. For the AllScale.com application, the most impor-
tant performance test to conduct is a load test on the two most critical components:
upload of employee information and reporting on employees. If the team completes
these two areas of testing and has extra capacity, it will often perform a load test on
the welcome screen because it is the most visible component in the application. Fur-
ther defining the tests that will be performed, there is only one upload mechanism,

ptg5994185

LOAD AND PERFORMANCE CALCULATIONS 529

but there are three employee reports that must be tested. These three reports are all
active employees’ information: All_Emp, Dep_Emp (department employee informa-
tion), and Emp_Tng (employee required training). The most computational and data-
base intensive report is the all_emp followed by the emp_tng. Therefore, they are the
most likely to have a performance problem and are prioritized in the testing
sequence.

The fourth step is to execute or conduct the tests and gather the data. AllScale.com
has automated scripts that run the tests and capture the data simultaneously. The
scripts run a fixed number of simultaneous executions of a standard data set or set of
instructions. This amount has been determined as the maximum amount of simulta-
neous executions that a particular service will need to be able to handle on a single
server. For the upload, the number is 10 simultaneous uploads with data sets ranging
from 5,000 to 10,000 employees. For the reports, the number is 20 simultaneous
requests per report server. The scripts capture the mean or average response time, the
standard deviation of the response times, the number of sql executions, and the num-
ber of errors reported by the application.

In Table C.1 are the response time results of the upload tests. The results are from
10 separate runs of the test, each with 10 simultaneous executions of the upload ser-
vice. In the chart are the corresponding response times.

In Table C.2 are the response times for the All_Emp report tests. The results are
from 10 separate runs of the test, each with 20 simultaneous executions of the report.
Completed report run times are in the chart area. You can see that the testing scripts
provided means and standard deviations for each run as well as for the overall data.

Table C.1 Upload Test Response Time Results

1 2 3 4 5 6 7 8 9 10 Overall

8.4 2.2 5.7 5.7 9.7 9.2 5.4 7.9 6.1 5.8

6.4 7.9 4.4 8.6 10.6 10.4 3.9 8.3 7.3 9.3

2.8 10 3 8.5 2 10.8 9.4 2.4 7.1 10.8

8.8 5.9 10.2 2.3 10.5 2.6 6 7.1 10.4 8.2

9 3.4 7.7 4 4.8 2.7 6.8 7.5 4.5 2.6

10.4 3.7 2 7.4 7.5 2.4 9 9.7 5 2.5

5.8 9.6 7.9 4.8 8.8 7.9 4.1 2.5 8 8.1

6.5 6.2 6.5 9.5 2.4 2.4 10.6 6.6 2.2 5.7

6.5 6.2 6.5 9.5 2.4 2.4 10.6 6.6 2.2 5.7

5.7 4.1 8.2 7.3 9.7 4.8 3.3 9.1 2.8 7.9

Mean 7.0 5.9 6.2 6.8 6.8 5.6 6.9 6.8 5.6 6.7 6.4

StDev 2.2 2.6 2.5 2.5 3.6 3.6 2.8 2.5 2.7 2.7 2.7

ptg5994185

530 APPENDIX C LOAD AND PERFORMANCE CALCULATIONS

In Table C.3 are the summary results of the upload and All_Emp report tests for
both the current version 3.1 as well as the previous version of the code base 3.0. For
the rest of the example, we are going to stick with these two tests in order to cover
them in sufficient detail and not have to continue repeating the same thing about all
the other tests that could be performed. The summary results include the overall
mean and standard deviation, the number of SQL that was executed for each test,
and the number of errors that the application reported. The third column for each
test is the difference between the old and new versions’ performance. This is where
the analysis begins.

Step five is to perform the analysis on the data gathered during testing. As we men-
tioned, Table C.3 has a third column showing the difference between the versions of

Table C.2 All_Emp Report Test Response Time Results

1 2 3 4 5 6 7 8 9 10 Overall

4.2 5.2 3.2 6.9 5.3 3.6 3.2 3.3 2.4 4.7

4.4 6.5 1.1 6.7 3.1 4.8 4.6 1.4 2 6.5

1.4 3 6.5 2.7 6.2 5.4 1.3 3.7 1.8 2.6

3.8 6.9 2.7 2.6 5.8 6.8 1 3.5 1.8 4.9

2 6.7 2 4.9 4.1 6 2.3 3.9 6.7 1.3

1.3 4.3 2.7 1.4 3.3 3.7 1.7 3.7 6.2 3.9

4 6.5 1.4 3.8 5.2 6 5.3 5.5 5.8 5.9

6.3 5.7 5.7 6.3 2 7 4.6 1.9 2.9 5.1

4.1 6.5 1.2 3.2 4.4 3.6 7 2.5 8.4 4.5

1.3 3.9 3.6 4.3 6.5 4.4 3.2 5.1 7.1 7.4

9 4.9 2.4 1.8 8.7 7.5 7.8 6.2 7 2.8

1.5 3.7 5.5 4 6.8 8.4 2.1 8.3 1.4 8.9

4.9 5.2 6.6 6.8 4.6 6.7 1.2 5.4 8 9

2.5 5.3 8.3 2.6 8.1 7.7 2 1.9 5.9 2.2

7.8 4.8 6 6.4 4.2 8.5 4.5 6.8 7.5 6.5

7.8 3.6 8.8 2.9 8.6 3.8 2.6 4.8 5.6 4.1

6.7 1.8 2.6 5.5 3.4 8.9 5.2 7.2 6.5 1.5

4.3 7.1 3.4 4.1 3.8 2 1.5 5 7.5 2.3

4.3 7.1 3.4 4.1 3.8 2 1.5 5 7.5 2.3

4.5 1.9 4 2.8 4.3 6.8 4.4 2.9 6.2 3.2

Mean 4.3 5.0 4.1 4.2 5.1 5.7 3.4 4.4 5.4 4.5 4.6

StDev 2.3 1.7 2.3 1.7 1.9 2.1 2.0 1.9 2.4 2.3 2.1

ptg5994185

LOAD AND PERFORMANCE CALCULATIONS 531

code for the upload and All_Emp tests. AllScale.com’s analysis of the data starts with
this comparison. As you can see, both of the tests had a 3% increase in the mean
response time. Our stated guidelines were no more than 5% increase per new code
version, so this is acceptable. The standard deviation, which measures the variability
within the data showing how large or small the spread of individual data points are
from the mean, shows that it has increased on the upload test but decreased on the
report test. This indicates that there is more variability in the upload than there was
previously and is something that we should probably consider looking into further.
The number of SQL executions went up on both tests. This information should defi-
nitely be pointed out to the engineers to make sure that they indeed added databases
queries to both services. If they did not, it should be investigated to determine why
the count has increased. The number of application reported errors has gone down
on the upload, which is a positive trend indicating that the engineers might have
added application logic to handle different data sets. On the report, the number has
increased significantly from a percentage standpoint, but the actual number is low,
from 2 to 3, so this is likely not a problem but should be pointed out to the engineers
and possibly product managers to determine the severity of an error on this report.

To continue the analysis on the variability of the upload data as seen in the
increased standard deviation, we can perform some simple statistical tests. One of the
first tests that AllScale.com has decided to perform is a paired t-test, which is a
hypothesis test for the mean difference between paired observations. The paired t-test
calculates the difference for each pair of measurements; for the upload test, this is
each test of the datasets. Then the paired t-test determines the mean of these weight
changes and determines whether this is statistically significant. We won’t go into the
details of how to perform this analysis other than to say that you formulate a hypoth-
esis and a null hypothesis. The hypothesis would be that the means of the data sets
(v3.1 to v3.0) are the same and the null or alternative hypothesis would be that they
are not the same. The result is that these two data sets are statistically different.

Table C.3 Summary Test Results

Upload Test All_Emp Test

 v 3.1 v 3.0 Diff v 3.1 v 3.0 Diff

Simultaneous Executions 10 10 20 20

Mean Response Time 6.4 6.2 3% 4.6 4.5 3%

Standard Dev Response Time 2.7 2.4 14% 2.1 2.4 –11%

SQL Executions 72 69 4% 240 220 9%

Number of Errors 14 15 –7% 3 2 50%

ptg5994185

532 APPENDIX C LOAD AND PERFORMANCE CALCULATIONS

Continuing the investigation of the increased variability in v3.1, AllScale.com sub-
jects the data to a control chart. A control chart is a statistical test that measures for
special cause variation. There are two types of variation: common cause and special
cause. Common cause variation as the name implies is normal variation in a process
that exists because of common causes, such as the “noise” inherent in any process.
Special cause variation is caused by noncommon causes, such as differences in hard-
ware or software. If a process only has common cause variation, it is considered to be
“in control.” When special cause variation is present, the process is “out of control.”

A control chart is created by plotting the data points on a graph and marking the
mean as well as an Upper Control Limit (UCL) and Lower Control Limit (LCL). The
UCL is determined by calculating three standard deviations above the mean. The
LCL is determined by calculating three standard deviations below the mean. There
are many different tests that can be performed to look for special cause variation.
The most basic is looking for any point that is above the UCL or below the LCL,
meaning that it is more or less than three standard deviations from the mean. In Fig-
ure C.1, the version 3.1 upload response time is plotted in a control chart. As you can
see, no point is more than three standard deviations away. AllScale could continue on
with many other tests to determine how the new version of code should perform
compared to the old version, but at this point, it decides to continue to the next step
by getting the engineers involved.

Step six is to report to the engineers the results of the tests and analysis.
AllScale.com gathers the engineers responsible for the various parts of the code that
make up the upload and report services and present their analysis. The engineers

Figure C.1 Upload Response Time Control Chart

0

4

8

12

16

1 91

UCL = 14.98

X = 6.42

LCL = 2.14

8171615141312111

ptg5994185

LOAD AND PERFORMANCE CALCULATIONS 533

decide that the increased variation is not concerning but the increase in the number of
database queries might be an issue, so they decide to file a bug and investigate.

Step seven is to repeat the tests and analysis as necessary. The AllScale quality
assurance and engineering teams continue over the next few weeks to investigate and
test the new code repeatedly. They end up running another set of performance tests
on version 3.1 of the code before releasing the code to production. Because of their
diligence, they feel confident that this version of the code will perform in a manner
that is acceptable.

This example has covered the steps of performance testing. We have shown how
you might decide which tests to perform, how to gather the data, and how to per-
form some basic analysis on it. There is a wide spectrum of sophistication that can be
demonstrated with performance testing. Much of that depends on the resources both
in terms of people and time that your organization can commit to this step in the
software development life cycle.

ptg5994185

This page intentionally left blank

ptg5994185

535535

Index

13th Amendment, U.S. Constitution, 80
360-degree reviews of leaders, 69

A
Abbott, Marty, 505–506
Abolition of slavery, goal example, 80
“Above the Clouds: A Berkeley View . . .”, 447
Accountable persons, RASCI, 38
Achievable architectural principles, 198
ACID (Atomicity, Consistency, Isolation,

Durability) database properties, 383
Action Phase, postmortem review, 145
Action plans, creating, 504
Acute risk, 252–253
Adding

data to caches, 382
people to an organization. See Staffing.

Adopting scalability, check lists and
guidelines, 501–504

After action review meeting. See Postmortem.
Agile development, effects of barrier

conditions, 275–277
Agile Manifesto, effects of barrier

conditions, 275–277
Air traffic control, change case study, 170
Aircraft incidents, causes of, 1
AKF Scale Cube

axes, point of intersection, 327
cloning services and data, no bias,

328–330. See also X-axis.
concepts vs. rules, 325–326
initial point, 327
interpreting, 329
introduction, 326–327
scaling with increased data, 330
state within applications, 335
summary of, 334–336
uses for, 336–337
x-axis, 328–330, 334–335
y-axis, 331–332, 335
z-axis, 333–334, 335

AKF Scale Cube, splitting work
responsibility by

action. See Y-axis.
data. See Y-axis.
requestor or customer, 333–334. See also

Z-axis.
resources, 331–332. See also Y-axis.
responsibility. See Y-axis.
services, 331–332. See also Y-axis.

AKF Scale Cube for applications
application state, 341
cloning services, no bias, 341–342
code complexity, 346
configuration management, 342
handling codebase or database increases,

343–344
handling increased data, 342
introduction, 339–340
persistency, 341
scaling for transactions, 341–342
separating work responsibility, 343–344
splitting by customer or requestor,

344–347
time to market, 346

AKF Scale Cube for applications, cost
maximum cost effectiveness, 349
x-axis splits, 341–342
y-axis splits, 344
z-axis splits, 345–347, 347–348

AKF Scale Cube for applications, uses for
application complexity. See Y-axis splits.
back office IT systems, 352–353
customer base, growth. See Z-axis splits.
ecommerce, 350–351
ERP (enterprise resource planning),

351–352
human resources ERP systems, 351–352
observations, 353–354
transaction growth. See X-axis splits;

Y-axis splits.
work growth, by system or platform. See

X-axis splits; Y-axis splits.

ptg5994185

536 INDEX

AKF Scale Cube for applications, x-axis splits
cost, 341–342
description, 341–342
fault isolation, 343
observing results, 353
uses for, 354

AKF Scale Cube for applications, y-axis splits
cost, 344
description, 343–344
fault isolation, 345
observing results, 353
uses for, 354

AKF Scale Cube for applications, z-axis splits
cost, 345–347
description, 344–347
fault isolation, 346
observing results, 353
uses for, 354

AKF Scale Cube for databases
cloning data, no bias, 358–362. See also

AKF Scale Cube for databases, x-axis
splits.

distributed object caches, 360
introduction, 357–358
replication delays, 359–360
separating data into schemas, 362–365.

See also Y-axis splits, databases.
splitting by customer geography,

365–367. See also Z-axis splits,
databases.

splitting by requestor or customer,
365–367. See also Z-axis splits,
databases.

summary of, 367–370
AKF Scale Cube for databases, uses for

back office IT systems, 372–373
ecommerce, 370–372
ERP (enterprise resource planning), 372
human resources ERP, 372
observations, 373
timeline considerations, 373–374

AKF Scale Cube for databases, x-axis splits
capacity planning, 361
configuration management, 361
cost, 360, 361–362
data consistency, 360–362
data currency, 362
description, 358–359

increasing data size or amount, 361
pros and cons, 360–362
reliance on third parties, 360–362
replication delays, 359–360, 361
summary of, 367–370
time to market, 360–361
vs. y-axis splits, 363

AKF Scale Cube for databases, y-axis splits
cost, 363, 364
description, 362–365
handling size and complexity, 364
noun perspective, 363
pros and cons, 363–364
purpose of, 362–363
summary of, 367–370
transaction processing time, 364
vs. x-axis splits, 363

AKF Scale Cube for databases, z-axis splits
cost, 366, 367
description, 365–367
pros and cons, 366
summary of, 367–370

Allchin, Jim, 45
Amazon outage example, 116
Amazon.com Inc., cloud computing, 430
Ambiguity, roles and responsibilities, 22–23
Amdahl, Gene, 429
Amdahl’s Law, 429
AMI (asynchronous method invocation),

395–396
Analyzing data

performance testing, 261–262
stress testing, 268

Annual budget, determining headroom, 184
Apologizing to customers, 162–163
Applications

caches. See Caches, application.
complexity, scaling for. See Y-axis splits.
monitoring, 477–478
splitting for scale. See AKF Scale Cube for

applications.
state, AKF Scale Cube for applications,

341
Approval

by ARB, 226, 229. See also ARB
(Architecture Review Board); JAD
(Joint Architecture Design).

change management, 174

ptg5994185

INDEX 537

ARB (Architecture Review Board). See also
JAD (Joint Architecture Design).

approval, 226, 229
approving JAD proposals, 219
architectural principles, 222
as barrier conditions, 274
board constituency, 223–225
candidates for the board, 224
checklist for success, 229–230
conditional approval, 226, 229
conducting meetings, 225–227
entry criteria, 228–229
exit criteria, 228–229
feature selection, 228
image storage feature, example, 227–228
meeting structure, 225–227
pool of board candidates, 224–225
possible outcomes, 226, 229
purpose of, 222–223
rejection, 226, 229
rejection of components, 226, 229
rotating board positions, 225
tradeoffs, documenting, 228

Architects, roles and responsibilities, 33
Architectural principles

achievable, 198
ARB (Architecture Review Board), 222
designing for any technology. See TAD

(technology agnostic design).
desirable characteristics, 198
development process, 199–200
fault isolation. See Fault isolation, design

principles.
following SMART guidelines, 198
goal tree, example, 196
goals of, 196–198
identifying and ranking, 199
JAD (Joint Architecture Design), 218
measurable, 198
ownership, 199–200
realistic, 198
specific, 198
testable, 198
Venn diagram of, 196

Architectural principles, AKF recommendations
asynchronous design, 202, 205–206
backward compatibility, 201
build vs. buy, 203

buy when non core, 203
checklist of, 208
designing to be disabled, 201
at least two axes of scale, 203, 207–208
monitoring, 202, 204
multiple live sites, 202, 205
N+1 design, 200–201
rollback, 201
rule of three, 200–201
scale out not up, 203, 207
stateless systems, 202, 206–207
use commodity hardware, 203
using mature technologies, 202

Architecture
vs. implementation, 300
roles and responsibilities, 29–30

Architecture Review Board (ARB). See ARB
(Architecture Review Board).

Art of scalability, 2–3
Artificial Intelligence, 427–428
Assessing your situation, 502
Asynchronous chat room communication,

crisis management, 157–158
Asynchronous coordination, 397–398
Asynchronous design

AMI (asynchronous method invocation),
395–396

architectural principles, 202, 205–206
asynchronous coordination, 397–398
asynchronous scaling, vs. synchronous,

396–398
asynchronous systems, example, 398–401
avoiding session storage, 403–404, 405
centralizing session storage, 404, 405
Christmas tree lights analogy, 400–401
cyclomatic complexity, 400
decentralizing session storage, 404, 405
declarative programming, 402
defining state, 401
dining philosophers problem, 394
functional programming, 402
imperative programming, 402
logical programming, 402
Mealy machines, 401–402
Moore machines, 401–402
multiplicative effect of failures, 400–401
mutex synchronization, 394
mutual exclusion synchronization, 394

ptg5994185

538 INDEX

Asynchronous design (continued)
object-oriented programming, 402
procedural programming, 402
session environments, saving, 403–404
state, saving, 403–404
structured programming, 402
synchronization process, description,

393–394
synchronous calls, example, 395
synchronous calls vs. asynchronous,

395–401
synchronous systems, scaling issues,

398–401
Asynchronous method invocation (AMI),

395–396
Asynchronous scaling, vs. synchronous,

396–398
Asynchronous systems, example, 398–401
Atomicity, Consistency, Isolation, Durability

(ACID) database properties, 383
Autonomic Computing Manifesto (IBM),

427–428
Availability

fault isolation, 312–315
TAA effects, 306
TAD effects, 306

Availability, calculating
customer complaints, 515–516
hardware uptime, 514–515
overview, 513–514
portion of site down, 516–517
third-party monitoring, 517–518
traffic graphs, 518–519

Axes, AKF Scale Cube. See also X-axis;
Y-axis; Z-axis.

initial point, 327
point of intersection, 327

Axes of scale, architectural principles, 203,
207–208

B
Back office grids, 464
Back office IT systems

AKF Scale Cube for applications,
352–353

AKF Scale Cube for databases, 372–373

Backbones, clouds, 435–436
Backup storage, cost of, 413
Backward compatibility, architectural

principles, 201
Barrier conditions

agile development, 275–277
Agile Manifesto, 275–277
ARBs, 274
code reviews, 274
cowboy coding, 277
definition, 274
examples, 274–275
hybrid development models, 278
performance testing, 275
production monitoring and measurement,

275
to rollback, 281
waterfall development, 277–278

Baseline, establishing for stress testing, 265
Batch cache refresh, 379–381
Behavior (team), evaluating, 97
Benchmarks, performance testing, 258–259
Berkeley, use of cloud computing, 447
Board constituency, ARB, 223–225
Books and publications

“Above the Clouds: A Berkeley View . . .”,
447

Autonomic Computing Manifesto (IBM),
427–428

Good to Great, 71
The Grid: Blueprint for a New

Computing Infrastructure, 428
The Mythical Man Month, 429
Mythical Man Month . . ., 49
Resonant Leadership, 68

Bottlenecks, identifying for stress testing, 266
Boundary conflicts, 15
Boyatzis, Richard, 68
Brooks, Frederick P., 49, 429
Brooks’ Law, 429
Buffers, vs. caches, 378
Build grids, 462–463
Build steps, check list, 463
Building components vs. buying

architectural principles, 203
being the best, 236
case study, 240–242

ptg5994185

INDEX 539

competitive components, identifying, 239
cost effectiveness, 239–240
cost-focused approach, 234–235, 237–240
creating strategic competitive

differentiation, 238
decision checklist, 238–240
effects on scalability, 233–234
“not built here” phenomenon, 236–237
ownership, pros and cons, 238–239
strategy-focused approach, 235–236,

237–240
TAA conflicts, 305
TAD, checklist, 304
TAD conflicts, 305

Bureaucracy, effect on business processes, 130
Business acumen, balancing with technical,

28–29
Business case for scale. See also Corporate

mindset, changing.
Amazon outage example, 116
customer acquisition costs, 116
downtime costs, 114–117
intraorganizational costs, 116–117
lost customers, 116

Business change calendar, 175
Business growth rate, determining

headroom, 186–187
Business metrics, monitoring, 476–477
Business processes. See also Standards;

specific processes.
bureaucracy, 130
capability levels, 125, 126–128
CMM (Capability Maturity Model),

124–125
CMMI (Capability Maturity Model

Integrated), 124–125
complexity, managing, 128–130
continuous process improvement, 178–179
culture clash, 130
definition, 122
effects on creativity, 123–124
excessive mundane work, 127
feedback from teams, 131
maturity levels, 125, 126–127
need for improvement, warning signs, 127
periodic maintenance, 131
problem causes, 130

problems, avoiding, 131
purpose of, 122–124
repeatability, 126–128
repetitive management, same task, 127
resolving procedural uncertainty, 123
rigor, 126–128
same task, multiple procedures, 127
standardization, 123

Business unit owners, roles and
responsibilities, 27

Buy when non core, architectural principles,
203

C
Cache ratio, 379
Cache-hits, 379
Cache-miss, refreshing caches, 379–381
Cache-misses, 379
Caches

adding data, 382
batch cache refresh, 379–381
vs. buffers, 378
cache ratio, 379
cache-hits, 379
cache-misses, 379
CDNs (content delivery networks),

389–390
datum, 378
definition, 378
get method, 382
hit ratio, 379
marshalling, 381
memcached, 382
object, 381–384
reading from, 379
retrieving data, 382
structure of, 378
tags, 378
unmarshalling, 381
updating. See Caches, refreshing.

Caches, application
controlling with HTML meta tags, 386–387
overview, 384
proxy caches, 384–385
reverse proxy caches, 386–387
software for, 388–389

ptg5994185

540 INDEX

Caches, refreshing
LRU (least recently used) algorithm,

379–381
MRU (most recently used) algorithm,

379–381
overview, 379–381
replace method, 382
upon cache-miss, 379–381

Caches, writing to
dirty data, 381
set method, 382
write-back method, 381
write-through policy, 381

Caching algorithms, 379–380
Calculation formula, determining headroom,

188–189
Capability levels, business processes, 125,

126–128
Capability Maturity Model (CMM), 124–125
Capability Maturity Model Integrated

(CMMI), 124–125
Capacity, system. See Headroom.
Capacity planners, roles and responsibilities,

35
Capacity planning

calculations, 521–526
grids, utilization of unused capacity, 457
roles and responsibilities, 32
x-axis splits, databases, 361

Case studies
building components vs. buying, 240–242
change, air traffic control, 170
crisis management, 152, 505–506
eBay, 152, 505–506
Quigo, 506–507
ShareThis, 507–508

Causal roadmap to success, 84–86
CDNs (content delivery networks), 389–390
CEO (Chief Executive Officer)

executive interrogations, 25
outside help, 26
roles and responsibilities, 25–26
scalability proficiency, 26
scalability roles and responsibilities, 25–26
seeking consistent explanations, 25–26

CFO (Chief Financial Officer), roles and
responsibilities, 26–27

Change
definition, 166–167
identifying, 168–170
in individuals, effecting through

leadership, 68
logging, 168–170
in small companies, 167–168

Change Approval Board, 178
Change Control Meeting, 178
Change management. See also ARB

(Architecture Review Board); JAD
(Joint Architecture Design).

air traffic control case study, 170
approval, 174
benefits of proposed change, 175–176
business change calendar, 175
Change Approval Board, 178
Change Control Meeting, 178
change proposal, 172–174
checklist, 179
continuous process improvement, 178–179
cumulative changes and risk

management, 253–254
effectiveness review, 177–178
expected results, 173
goal of, 171
implementation, 176
ITIL (Information Technology

Infrastructure Library), 171
key metrics, 177–178
logging, 176
overview, 170–171
relationship to other systems, 173–174
request for change, 172
required information, 172–174
risk assessment, 173, 175, 253–254
scheduling, 174–176
target system, identifying, 172–173
undoing changes. See Rollback.
validation, 176–177

Change proposal, 172–174
Chat room communication, crisis

management, 157–158
Check lists and guidelines

adopting scalability, 501–504
ARB (Architecture Review Board),

229–230

ptg5994185

INDEX 541

benefits of cloud computing, 442
build steps, 463
building components vs. buying, 238–240
change management, 179
cloud characteristics, 433
cloud computing, cons, 446–447
communications improvement, 107–108
costs of data, 414
deciding to use cloud computing, 452
defeating the corporate mindset, 110. See

also specific guidelines.
developing architectural principles,

199–200
failure to catch problems, 470–471
fault isolation, 321
headroom, determining, 192
improving communications, 107–108
incident management, 134
JAD sessions, 216–217
making tradeoff decisions, 294
measuring risk, 252
monitoring issues, 478
multiple live data center considerations,

497
organizational design, 12
performance testing, steps in, 263. See

also specific steps.
recommended architectural principles, 208
rollback requirements, 280
stress testing, 268–269
team size, optimizing, 54

Check lists and guidelines, grid computing
cons, 460
deciding to use grid computing, 467
pros, 458

Chief Executive Officer (CEO). See CEO
(Chief Executive Officer).

Chief Financial Officer (CFO), roles and
responsibilities, 26–27

Chief scalability officer. See CEO (Chief
Executive Officer).

Chief Technology Officer (CTO), roles and
responsibilities, 27–29

Christmas tree lights analogy, 400–401
CIO (Chief Information Officer), roles and

responsibilities, 27–29
Clarity, roles and responsibilities, 22–23

Classification, incident management, 138
Cloning

data, no bias, 358–362
services, no bias, 341–342
services and data, no bias, 328–330

Closed incidents, 141
Closed problems, 141
Closure, incidents, 138
Cloud computing. See also Grid computing.

deciding to use, 450–453
environmental requirements, 448–449
implementation requirements, 448–450
skill sets required, 449–450

Cloud computing, cons
“Above the Clouds: A Berkeley View . . .”,

447
control, 444
IP address limitations, 444–445
limitations, 444–445
load balancing, 444–445
performance, 445–446
portability, 443
security, 443
summary of, 446–447
third-party software certification,

444–445
top ten obstacles, 447

Cloud computing, history of
Artificial Intelligence, 427–428
dot com bubble, 427
IaaS (Infrastructure as a Service),

427–428
IBM, Autonomic Computing Manifesto,

427–428
PaaS (Platform-as-a-Service), 427–428
SaaS (Software as a Service), 427–428
XaaS (Everything as a Service), 427–428

Cloud computing, pros
cost, 440–441
flexibility, 442
speed, 441–442
summary of, 442

Clouds
backbones, 435–436
definition, 426
vs. grids, 434–436
hypervisors, 433

ptg5994185

542 INDEX

Clouds (continued)
public vs. private, 426
service providers, 435–436
types of, 435–436
virtualization software, 435–436

Clouds, characteristics of
multiple tenants, 432–433, 434
pay by usage, 431, 434
in private clouds, 434
scale on demand, 431–432, 434
summary of, 433
virtualization, 433, 434

CMM (Capability Maturity Model), 124–125
CMMI (Capability Maturity Model

Integrated), 124–125
COBIT (Control Objectives and related

Technology), 133–134
Code complexity, AKF Scale Cube for

applications, 346
Code reviews, as barrier conditions, 274
Codebase increases, scaling for, 343–344
Collins, Jim, 71
Commoditization over time, 301–302
Commodity hardware, architectural

principles, 203
Communication breakdown

from the business end, 106–107
destructive interference, 105–106, 212
educational mismatch, 106
the experiential chasm, 105–108
between management and technical

teams, 105–108
matrix organization teams, 59
team size, warning sign, 50–51
from the technical end, 107–108

Communications
improvement check lists and guidelines,

107–108
organizational design, influences on, 44
team size, 48

Communications and control, crisis
management, 157–158

Comparing
pros and cons, making tradeoff decisions,

291–292
real vs. ideal situations, 504

Compassion, leadership, 68

Competitive components, identifying, 239
Complexity

business processes, managing, 128–130
grid drawback, 459–460

Concepts vs. rules, AKF Scale Cube,
325–326

Conditional approval by the ARB, 226, 229
Configuration management

AKF Scale Cube for applications, 342
x-axis splits, databases, 361

Conflicts, organizational design, 17
Consensus, JAD (Joint Architecture Design),

218
Consulted persons, RASCI, 38
Content delivery networks (CDNs), 389–390
Control, cloud computing drawback, 444
Control Objectives and related Technology

(COBIT), 133–134
Corporate mindset. See also Roles and

responsibilities, executives.
by business type, 109–110

Corporate mindset, changing. See also
Business case for scale.

check list and guidelines, 110–114
educating executives, 111–112
forming relationships, 111
involving executives, 113
“scared straight” method, 113–114
setting an example, 111
speaking in business terms, 112–113
technology ride-alongs, 112
using the RASCI model, 112

Cost
cloud computing benefit, 440–441
of data. See Data, cost of.
fault isolation, 316–317
grid benefit, 457–458
rollback, 281–282
of scale, goals, 99
TAD (technology agnostic design),

301–302
tradeoffs in business, 286

Cost, data centers
HVAC power, 491
operations, 491
planning for, 483–485
servers, 491

ptg5994185

INDEX 543

Cost, of scalability failure
customer acquisition costs, 116
downtime costs, 114–117
intraorganizational costs, 116–117
lost customers, 116

Cost, scaling applications. See also AKF
Scale Cube for applications, cost.

x-axis splits, 341–342
y-axis splits, 344
z-axis splits, 345–347

Cost, splitting databases
x-axis splits, 360, 361–362
y-axis splits, 363, 364
z-axis splits, 366, 367

Cost centers, 109
Cost effectiveness, building components vs.

buying, 239–240
Cost-focused approach, building compo-

nents vs. buying, 234–235, 237–240
Cost/speed/quality/scope triangle, 285–288
Cost-Value Data Dilemma, 414–415
Cowboy coding, 277
Creativity, effects of business processes,

123–124
Credibility, leadership, 70, 73
Crises. See also Incidents; Issues; Problems.

vs. common incidents, 150–151
crisis threshold, 150
definition, 149–150
eBay case study, 152
effects on a company, 151
failure to correct, consequences of, 151
potential benefits, 151
prioritizing, 150

Crises, management. See also Incident
management; Postmortem review;
Problem management.

asynchronous chat room communication,
157–158

case studies, 505–506
communications and control, 157–158
customer apologies, 162–163
documenting activities, 154
engineering leads, role of, 156
escalations, 160
follow up communication, 162
individual contributors, role of, 157

master postmortem, 162
need for coordination, 153
overview, 152–153
postmortems, 161–162
problem manager, role of, 153–155
RASCI framework, 160
status communications, 160–161
synchronous voice communications,

157–158
team managers, role of, 155–156
war room, 158–159

Crisis threshold, 150
Criteria, performance testing, 258–259
Criticality of services, ranking for stress

testing, 265
CTO (Chief Technology Officer), roles and

responsibilities, 27–29
Cultural aspects, TAD (technology agnostic

design), 307–308
Cultural interviews, managing teams, 94–98
Culture clash, effect on business processes, 130
Customers

acquisition, costs of scalability failure, 116
apologies, 162–163
base growth, scaling for. See Z-axis splits.
complaints, calculating availability,

515–516
experience monitoring, 476
splitting work responsibility by, 333–334

Cyclomatic complexity, 400

D
Daily Incident Meeting, 141–142
Daily incident review, 141–143
Data

collection, for stress testing, 267
consistency, database x-axis splits, 360–362
currency, database x-axis splits, 362
handling large amounts of. See Caching.
increases, scaling for, 342
separating into schemas, 362–365
size vs. problem specificity, 475

Data, cost of
backup storage, 413
cost justifying storage, 417–419
Cost-Value Data Dilemma, 414–415

ptg5994185

544 INDEX

Data, cost of (continued)
ETL (Extract, Transform, and Load), 420
handling large amounts of, 420–423
initial cost of storage, 412–413
MAID (Massive Array of Idle Disks), 412
mapping data, 420–423
MapReduce program, 420–423
option value of data, 414–415, 416
peak utilization time, 413
reducing data, 420–423
shareholder value, diluting, 415
strategic advantage value of data, 415,

416–417
summary of, 414
tiered storage solutions, 417–419
transforming for storage, 419–420
unprofitable data, eliminating, 415

Data center planning
choosing a location, 485–488
constraints, 483–485
costs, 483–485
disaster recovery, 496–497
elevation, importance of, 486
humidity factor, 486
HVAC considerations, 486
incremental growth, 488–490
multiple active centers, 496–497
power requirements, 484–485
quality of service, 486–487
rack units, 484
risk profile, 486–487

Data center planning, Three Magic Rules of
Threes

HVAC power costs, 491
number of data centers, 492–495
number of servers, 491–492
operational costs, 491
overview, 490
server power costs, 491
servers, 491

Data warehouse grids, 463–464
Database administrators, roles and

responsibilities, 34–35
Database increases, scaling for, 343–344
Databases

ACID (Atomicity, Consistency, Isolation,
Durability) database properties, 383

scaling. See AKF Scale Cube for databases.

Datum, caches, 378
Decision making, leadership, 73
Decision matrix method, making tradeoff

decisions, 292–295
Declaration of Independence, 76–77
Declarative programming, 402
Delegation, importance of, 24
Designing scalable systems. See Architectural

principles; TAD (technology agnostic
design).

Designing to be disabled
architectural principles, 201
markdown functionality, 282–283

Designing to be monitored, 470–471
Destructive interference

communication breakdown, 105–106
in dysfunctional organizations, 212

Detection, incident management, 136–138
Diagnosis, incident management, 138
Dining philosophers problem, 394
Dirty cache data, 381
Disaster recovery, data center planning,

496–497
Distributed object caches, AKF Scale Cube

for databases, 360
Documentation, crisis management

activities, 154
Dot com bubble, 427
Downtime costs, of scalability failure,

114–117
DRIER (Detect, Report, Investigate,

Escalate, Resolve) process, incident
management, 138–139, 146–147

Dunning, David, 67
Dunning-Kruger effect, 67–68
Dysfunctional organizations, 211–213

E
EBay, crisis management case studies, 152,

505–506
Ecommerce

AKF Scale Cube for applications,
350–351

AKF Scale Cube for databases, 370–372
Educating executives, 111–112
Educational mismatch, communication

breakdown, 106

ptg5994185

INDEX 545

Efficiency, influences of organizational
design, 44

Ego, role in leadership, 71
Elevation, data centers, 486
Employee reviews, leadership, 69
Employees. See Roles and responsibilities;

Staffing; specific roles.
Empowerment, JAD (Joint Architecture

Design), 218
Engineering, roles and responsibilities, 30
Engineering leads, role in crisis management,

156
Engineering teams

causal roadmap to success, 85
productivity and efficiency, 100

Entry criteria
ARB (Architecture Review Board),

228–229
JAD (Joint Architecture Design), 217–218

Environment, creating for
performance testing, 259
stress testing, 266

ERP (enterprise resource planning)
AKF Scale Cube for applications,

351–352
AKF Scale Cube for databases, 372

Error chains, 1
Escalations, crisis management, 160
Ethical behavior

leadership, 70, 73
management, 90

ETL (Extract, Transform, and Load), 420
Everything as a Service (XaaS), 427–428
Examples. See Case studies.
Executives

making the business case for scale. See
Business case for scale; Corporate
mindset, changing.

roles and responsibilities. See Roles and
responsibilities, executives.

Exit criteria
ARB (Architecture Review Board),

228–229
JAD (Joint Architecture Design), 218–219

Experiential chasm, communication
breakdown, 105–108

F
Failure

to catch problems, 470–471
costs of. See Cost, of scalability failure.
detection, 249
likelihood, 249
multiplicative effect of, 400–401
risk management, 249
severity, 249
stress testing, 265

Failure Mode and Effects Analysis (FMEA),
249–251

Fault isolation
design checklist, 321
markdown functionality, 313–314
poddings, definition, 310
pods, definition, 310, 311
pools, definition, 311
sharding, definition, 311
shards, definition, 311
slivers, definition, 311
terminology, 310–311
testing, 321–322
x-axis splits, 343
y-axis splits, 345
z-axis splits, 346

Fault isolation, approaches to
along natural barriers, 320–321
by the biggest sources of incidents, 320
design checklist, 321
isolating the money-maker, 320

Fault isolation, benefits of
availability, 312–315
cost, 316–317
effects on revenue, 317
incident detection, 315
incident resolution, 315
scalability, 315
time to market, 315–316

Fault isolation, design principles
design checklist, 321
nothing crosses a swim lane boundary, 319
nothing is shared, 318
transactions occur along swim lanes, 319

Fault isolation, swim lanes
along natural barriers, 320–321

ptg5994185

546 INDEX

Fault isolation, swim lanes (continued)
by the biggest sources of incidents, 320
by customer boundaries, 312–313
definition, 310, 311
isolating the money-maker, 320
by service boundaries, 313–314

Feature selection, ARB (Architecture Review
Board), 228

Feature significance, JAD (Joint Architecture
Design), 217

Feedback from teams, business processes, 131
Feeding teams, 98
Final design, documenting in JAD (Joint

Architecture Design), 218–219
Fisher, Mike, 506, 507–508
Flexibility, cloud computing benefit, 442
FMEA (Failure Mode and Effects Analysis),

249–251
Follow up communication, crisis

management, 162
Formal training, leadership, 68
Forward proxy caches. See Proxy caches.
Foster, Ian, 428
Functional organization. See Team structure,

functional organization.
Functional programming, 402

G
Gates, Bill, 45
General managers, roles and responsibilities,

27
Get method, 382
Globus Toolkit, 429
Goal trees, 101–102, 196
Goals for achieving scalability, 503–504. See

also Leadership, goals; Management,
goals.

Good to Great, 71
Google, MapReduce program, 420–423
Google Inc., cloud computing, 430
The Grid: Blueprint for a New Computing

Infrastructure, 428
Grid computing. See also Cloud computing.

deciding to use, 465–467
definition, 428
The Grid: Blueprint for a New

Computing Infrastructure, 428

middleware providers, 429
public vs. private networks, 429

Grid computing, uses for
back office grid, 464
build grid, 462–463
data warehouse grid, 463–464
MapReduce, 464
production grid, 461–462
SETI@home project, 429

Grids, cons
complexity, 459–460
monolithic applications, 459
not shared simultaneously, 459
summary of, 460

Grids, pros
cost, 457–458
high computational rates, 456–457
shared infrastructure, 457
summary of, 458
utilization of unused capacity, 457

Grids, vs. clouds, 434–436
Guidelines. See Check lists and guidelines.
Gut feel method

making tradeoff decisions, 291
risk management, 245–246

H
Hardware. See also specific hardware.

architectural principles, 203
headroom, determining, 185
uptime, calculating availability, 514–515

Headroom, definition, 183
Headroom, determining

actual usage, determining, 186
for annual budget, 184
business growth rate, determining,

186–187
calculation checklist, 192
calculation formula, 188–189
excessive swapping, 190
hardware implications, 185
for hiring plans, 184
Ideal Usage Percentage, 189–191
infrastructure features, 187–188
negative headroom, 188–189
positive headroom, 188–189
prioritizing projects, 185

ptg5994185

INDEX 547

process description, 185–189
purpose of, 184–185
scalability projects, 187–188
seasonality effect, 187
statistical load averages, 191
system components, identifying, 186
thrashing, 190

Hewlett-Packard Company, cloud
computing, 430

High computational rates, grid benefit,
456–457

Hiring decisions, managing teams, 95
Hiring plans, determining headroom, 184
Hit ratio, caches, 379
Hope, leadership, 68
HTML meta tags, controlling application

caches, 386–387
Human factor, in risk management, 254
Human resources ERP systems

AKF Scale Cube for applications,
351–352

AKF Scale Cube for databases, 372
Humidity, data centers, 486
HVAC, data center planning, 486, 491
Hybrid development models, barrier

conditions, 278
Hypervisors, clouds, 433

I
IaaS (Infrastructure as a Service), 427–428
IBM, Autonomic Computing Manifesto,

427–428
Ideal Usage Percentage, 189–191
Identified problems, 141
Identifying, architectural principles, 199
Image storage feature, ARB (Architecture

Review Board) example, 227–228
Image storage feature, JAD example,

215–216
Imperative programming, 402
Implementation vs. architecture, 300
Incident detection, fault isolation, 315
Incident management. See also Postmortem

review; Problem management.
check list, 134
classification and initial support, 138
components of, 136–139

conflicts with problem management, 140
Daily Incident Meeting, 141–142
detection and recording, 136–138
DRIER (Detect, Report, Investigate,

Escalate, Resolve) process, 138–139,
146–147

essential activities, 136–139
follow-up ownership, 138
incident closure, 138
investigation and diagnosis, 138
monitoring incidents, 137
resolution and recovery, 138

Incident management, incident review
after action review meeting. See

Postmortem review.
daily, 141–143
developing a timeline, 144
quarterly, 143, 146, 147

Incident managers, roles and responsibilities,
34

Incident resolution, fault isolation, 315
Incidents. See also Crises; Issues; Problems.

closed, definition, 141
closure, 138
vs. crises, 150–151
definition, 134–135
life cycle, 140–141, 146
monitoring, 137
open, definition, 141
relationship to problems, 139
resolved, definition, 141
reviewing. See Incident management,

incident review.
selecting for postmortem, 144

Individual contributors, roles and
responsibilities. See Roles and
responsibilities, individual
contributors.

Individual focus vs. team focus, leadership, 71
Information Technology Infrastructure

Library (ITIL), 133, 171
Informed persons, RASCI, 38
Infrastructure, roles and responsibilities, 31
Infrastructure as a Service (IaaS), 427–428
Infrastructure engineers, roles and

responsibilities, 34–35
Infrastructure features, determining

headroom, 187–188

ptg5994185

548 INDEX

Initial support, incident management, 138
Innovation, leadership, 66
Interactivity of system services, stress testing,

265
Interviewing candidates, managing teams, 95
Intraorganizational costs, of scalability

failure, 116–117
Investigation, incident management, 138
IP address limitations, cloud computing

drawback, 444–445
Issue Phase, postmortem review, 145
Issues. See also Crises; Incidents; Problems.

identification, 31, 145
management, roles and responsibilities, 31
in the postmortem review, 145
roles and responsibilities, 31

ITIL (Information Technology Infrastructure
Library), 133, 171

J
JAD (Joint Architecture Design). See also

ARB (Architecture Review Board).
applicable development methodologies,

214
ARB approval, 219
architectural principles, 218
consensus, 218
description, 214–215
in dysfunctional organizations, 211–213
empowerment, 218
entry criteria, 217–218
established teams, 218
exit criteria, 218–219
feature significance, 217
final design, documenting, 218–219
image storage feature, example, 215–216
product requirements, 218
scaling cross functionally, 214–215
session checklist, 216–217
structure of, 214–215
tradeoffs, documenting, 218

Justifying, data storage costs, 417–419

K
Keeven, Tom, 506
Kesselman, Carl, 428

Key services, identifying for stress testing, 265
Kishore, Nanda, 507–508
Klieber’s Law of metabolism, 260
Kruger, Justin, 67

L
Last-mile monitoring, 476
Leadership. See also Management;

Organizational design; Staffing for
scalability.

360-degree reviews, 69
abuse of, 70
alignment with shareholder values, 74–75
born vs. made, 65
causal roadmap to success, 84–86
characteristics of, 66–67
compassion, 68
credibility, 70, 73
decision making, 73
definition, 64
destructive behavior, 73
Dunning-Kruger effect, 67–68
effecting change in individuals, 68
ego, role of, 71
employee reviews, 69
ethical behavior, 70, 73
formal training, 68
Good to Great, 71
hope, 68
individual focus vs. team focus, 71
innovation, 66
leading from the front, 69–70
vs. management, 64–65
mindfulness, 68
perception by others, 66–67
perceptions of others, 73
perseverance, 66
pulling activities, 18, 64
Resonant Leadership, 68
role of, 19
self-assessment, 67–69
SWOT (strength, weaknesses,

opportunities, threats) analysis, 82
team empowerment, and scalability, 74

Leadership, goals. See also Causal roadmap
to success.

definition, 79

ptg5994185

INDEX 549

developing, example of, 81–84
SMART (Specific, Measurable, Attainable,

Realistic, Timely) goals, 80–81, 83
Leadership, mission. See also Causal

roadmap to success.
definition, 78
development, example of, 81–84
examples of, 78–79
Mission First, 72
Mission First, Me Always, 72
Mission First, People Always, 72
mission statements, 78–79, 82
People Always, 72
people vs. mission, 72

Leadership, vision. See also Causal roadmap
to success.

components of, 78
definition, 75
developing, example of, 81–84
examples of, 76–77
vision statements, 77–78

Leading from the front, 28, 69–70
Life cycle

incidents, 140–141, 146
problems, 140–141

Load
averages, statistical, 191
balancing, cloud computing drawback,

444–445
calculating, 527–533
simulating for stress testing, 267
testing, 258

Logging changes, 168–170, 176
Logical programming, 402
Longhorn. See Microsoft Vista.
Lost customers, of scalability failure, 116
LRU (least recently used) algorithm, 379–381

M
Madoff, Bernie, 73
MAID (Massive Array of Idle Disks), 412
Maintenance, business processes, 131
Management. See also Leadership;

Organizational design; Staffing for
scalability.

definition, 90

desirable characteristics, 90–91
ethical behavior, 90
good vs. great, 91
vs. leadership, 64–65
paving the path to success, 102–103
projects, 91–92
pushing activities, 18
role of, 18–19
tasks, 91–92

Management, goals
cost of scale, 99
deciding what to measure, 99
engineering productivity and efficiency, 100
goal trees, 101–102
mapping, 101–102
metrics for goal evaluation, 98–101
quality, 100–101
relative response time, 99
system response time, 99
user-perceived response time, 99

Management, metrics
cost of scale, 99
deciding what to measure, 99
engineering productivity and efficiency,

100
for goal evaluation, 98–101
quality, 100–101
relative response time, 99
system response time, 99
user-perceived response time, 99

Management, of teams
cultural interviews, 94–98
evaluating behavior and performance, 97
feeding, 98
hiring decisions, 95
interviewing candidates, 95
seeding, 98
team building, 93–94
team upgrading, 94–98
terminating members, 96
weeding, 98

Management style, 18
Mapping, goals, 101–102
Mapping data, 420–423
MapReduce program, 420–423, 464
Markdown functionality, 282–283, 313–314.

See also Designing to be disabled.

ptg5994185

550 INDEX

Marshalling caches, 381
Massive Array of Idle Disks (MAID), 412
Master postmortem, 162
Matrix organization. See Team structure,

matrix organization.
Mature technologies, architectural

principles, 202
Maturity levels, business processes, 125,

126–127
McCarthy, John, 427
McKee, Annie, 68
Mealy machines, 401–402
Measurable architectural principles, 198. See

also Metrics.
Meetings, of the ARB, 225–227
Memcached, 382
Metrics

change management, 177–178
cost of scale, 99
deciding what to measure, 99
engineering productivity and efficiency, 100
goal evaluation, 98–101
for goal evaluation, 98–101
organizational design for, 12–13
quality, 100–101
relative response time, 99
system response time, 99
user-perceived response time, 99

Micromanagement of teams, 51
Microsoft Corporation, cloud computing, 430
Microsoft Vista, standards failure, 45–46
Mindfulness, leadership, 68
Missing data, identifying in the postmortem

review, 145
Mission

leadership styles. See Leadership, mission.
vs. people, 72

Mission First, Me Always leadership style, 72
Mission First, People Always leadership

style, 72
Mission First leadership style, 72
Mission statements, 78–79, 82
Mistakes, identifying in the postmortem

review, 145
Monitoring

architectural principles, 202, 204
in business processes, 480–481

calculating availability, third-party
services, 517–518

designing to be monitored, 470–471
failure to catch problems, 470–471
incidents, 137
issues, 478
maturing, 137

Monitoring, framework for
application monitoring, 477–478
business metrics, 476–477
customer experience monitoring, 476
data size vs. problem specificity, 475
identifying a problem, 473
identifying problem cause, 474–476
isolating a problem, 473–474
last-mile monitoring, 476
overview, 472–473
systems monitoring, 477
user experience, 476–477

Monitoring, measuring
determining what to monitor, 478–480
identifying a problem, 479
identifying problem cause, 479
isolating a problem, 479–480

Monitors, identifying for stress testing, 267
Monolithic applications, grid drawback, 459
Moore machines, 401–402
Morale issues, team warning sign, 50–51
Most-used scenarios, performance testing, 261
Most-visible scenarios, performance testing,

261
MRU (most recently used) algorithm,

379–381
Multiple live sites, architectural principles,

202, 205
Multiple tenants, clouds, 432–433, 434
Multiplicative effect of failures, 400–401
Mutex synchronization, 394
Mutual exclusion synchronization, 394
The Mythical Man Month . . ., 49, 429

N
N+1 design, architectural principles, 200–201
Needs of the business, team size, 49
Negative headroom, 188–189
Negative testing, stress testing, 264–265, 265

ptg5994185

INDEX 551

Network engineers, roles and
responsibilities, 34–35

“Not built here” phenomenon, 236–237
Not shared simultaneously, grid drawback,

459
Noun perspective, y-axis database splits, 363

O
Object caches, 381–384
Object-oriented programming, 402
Open incidents, 141
Open problems, 141
Operations teams, causal roadmap to

success, 85–86
Operators, roles and responsibilities, 34
Optimal range, team size, 46–47
Option value of data, 414–415, 416
Organizational design. See also Leadership;

Management; Staffing for scalability;
Teams.

adding/removing people, 12, 13
aligning with stakeholder interests, 13
boundary conflicts, 15
cost centers, 109
drawbacks, 17
efficient work flow, 15–17
helpful questions, 12
metrics, 12–13
potential conflicts, 17
profit centers, 109
support services business, 109–110
team growth vs. individual productivity,

13–15
technology-as-product business, 109–110
understanding, from the outside, 13

Organizational design, influences on scalability
communications, 44
efficiency, 44
ownership, 46
quality, 45
standards, 44–45

Organizational roles and responsibilities. See
Roles and responsibilities, organizational.

Overall risk, 253–254
Overlapping roles and responsibilities, 40
Overwork, team warning sign, 52

Ownership
architectural principles, 199–200
assigning to postmortem tasks, 145
building components vs. buying, 238–239
incident follow-up activities, 138
organizational design, influences on, 46

P
PaaS (Platform as a Service), 427–428
Pareto, Vilfredo, 260
Pareto Distribution, performance testing, 260
Pay by usage, clouds, 431, 434
Peak utilization time, data cost, 413
People. See Roles and responsibilities;

Staffing; specific roles.
People Always leadership style, 72
People management. See Management, of

teams.
People vs. mission, 72
Perception by others, leadership, 66–67, 73
Performance (product)

calculating, 527–533
cloud computing drawback, 445–446

Performance (product), testing
analyzing data, 261–262
as barrier conditions, 275
benchmarks, 258–259
checklist of testing steps, 263. See also

specific steps.
criteria, 258–259
defining tests, 260–261
definition, 257–258
environment, creating, 259
executing tests, 261
individual components, 261
load testing, 258
most-used scenarios, 261
most-visible scenarios, 261
Pareto Distribution, 260
repeating tests and analysis, 262–263
reporting results to engineers, 262
requirements, 258–259
for scalability, 270–271
stress testing, 265

Performance (team), evaluating, 97
Perseverance, leadership, 66

ptg5994185

552 INDEX

Persistency, AKF Scale Cube for
applications, 341

P&L owners, roles and responsibilities, 27
Platform as a Service (PaaS), 427–428
Pledge of Allegiance, 76
Poddings, definition, 310
Pods, definition, 310, 311
Pools, definition, 311
Portability, cloud computing drawback, 443
Portion of site down, calculating availability,

516–517
Positive headroom, 188–189
Positive testing, stress testing, 264
Postmortem review. See also Incident

management, incident review.
Action Phase, 145
assigning owners to tasks, 145
attendees, 144
creating a task list, 145
crisis management, 161–162
example, 147
input to, 144
Issue Phase, 145
issues, identifying, 145
master postmortem, 162
missing data, identifying, 145
mistakes, identifying, 145
problems, identifying, 145
RASCI process, 145
reviewing the timeline, 145
selecting incidents for review, 144
SMART criteria, 145
Timeline Phase, 145

Power requirements, data centers, 484–485,
491

Preamble to the U.S. Constitution
mission statement example, 78–79
vision statement example, 77

Prioritizing
crises, 150
problems, 142
projects, determining headroom, 185

Private clouds, characteristics of, 434
Private vs. public

clouds, 426
grid networks, 429

Problem management. See also Incident
management; Issues, management;
Postmortem.

check list, 135
components of, 139–140
conflicts with incident management, 140
objective, 135

Problem manager, role in crisis management,
153–155

Problems. See also Crises; Incidents; Issues.
closed, definition, 141
definition, 134–135
detecting, 473, 479. See also Monitoring.
failure to detect, 470–471
finding the cause, 474–476, 479
identified, definition, 141
identifying in postmortem, 145
isolating, 473–474, 479–480
life cycle, 140–141
open, definition, 141
prioritizing, 142
relationship to incidents, 139
reviewing, 142
specificity, vs. data size, 475

Procedural programming, 402
Process. See Business processes.
Product requirements, JAD (Joint

Architecture Design), 218
Production grids, 461–462
Production monitoring and measurement, as

barrier conditions, 275
Production operations, roles and

responsibilities, 30–31
Productivity, effects of team size, 50–51
Profit centers, 109
Project management, 91–92
Project ownership, matrix organization, 59
Project triangle, tradeoffs in business,

285–288
Proxy caches, 384–385
Proxy servers. See Proxy caches.
Public vs. private

clouds, 426
grid networks, 429

Pulling activities, leadership, 64

Q
QA analysts, roles and responsibilities, 35
QA engineers, roles and responsibilities, 35
Quality

goals, 100–101

ptg5994185

INDEX 553

organizational design, influences on, 45
tradeoffs in business, 286–287

Quality assurance, roles and responsibilities,
31–32

Quality of service, data center planning,
486–487

Quarterly incident review, 143, 146, 147
Quigo, case studies, 506–507

R
Rack units, data center planning, 484
Ranking, architectural principles, 199
RASCI (Responsible, Approve, Support,

Consult, Inform)
accountable persons, 38
changing the corporate mindset, 112
consulted persons, 38
crisis management, 160
description, 38–41
informed persons, 38
postmortem review, 145
responsible persons, 38
sample matrix, 39
support persons, 38

Reading, from caches, 379
Realistic architectural principles, 198
Recording incidents, incident management,

136–138
Recoverability, stress testing, 265
Recovery from incidents, incident

management, 138
Reducing data, 420–423
Reedy, Lynn, 505–506
Rejection, by the ARB, 226, 229
Removing people, 12. See also Staffing.
Repeatability, business processes, 126–128
Repeating tests and analysis, performance

testing, 262–263
Replace method, 382
Replication delays

AKF Scale Cube for databases, 359–360
x-axis splits, databases, 359–360, 361

Reporting results to engineers, performance
testing, 262

Request for change, 172
Requestor, splitting work responsibility by,

333–334

Requirements, performance testing,
258–259

Resolution of incidents, incident
management, 138

Resolved incidents, 141
Resonant Leadership, 68
Resources, splitting work responsibility by,

331–332
Response time metrics

relative response time, 99
system response time, 99
user-perceived response time, 99

Responsibilities. See Roles and
responsibilities.

Responsible, Approve, Support, Consult,
Inform (RASCI). See RASCI
(Responsible, Approve, Support,
Consult, Inform).

Responsible persons, RASCI, 38
Retrieving data, from caches, 382
Revenue, effects of fault isolation, 317
Reverse proxy caches, 386–387
Reviewing

360-degree reviews of leaders, 69
change effectiveness review, 177–178
daily incident review, 141–143
employee reviews of leadership, 69
incidents. See Incident management,

incident review; Postmortem review.
problems, 142. See also Postmortem

review.
quarterly incident review, 143, 146, 147

Rigor, business processes, 126–128
Risk factors, TAD, 302–303
Risk management

acute risk, 252–253
in change management, 173, 175
cumulative amount of changes, 253–254
human factor, 254
importance to scalability, 244–245
overall risk, 253–254

Risk management, measuring risk
ability to detect failure, 249
checklist of steps, 252
FMEA (Failure Mode and Effects

Analysis), 249–251
gut feel method, 245–246
likelihood of failure, 249

ptg5994185

554 INDEX

Risk management, measuring risk (continued)
severity of failure, 249
Total Risk Score, 249
traffic light method, 246–248

Risk profile, data center planning, 486–487
Roles and responsibilities. See also specific

roles.
ambiguity, effects of, 22–23
assignment chart. See RASCI

(Responsible, Approve, Support,
Consult, Inform).

clarity, importance of, 22–23
defining, 23–24. See also RASCI

(Responsible, Approve, Support,
Consult, Inform).

delegation, 24
leadership, 19
management, 18–19
organizational example, 35–37
overlapping, 40
shareholder test, 24
voids, 41

Roles and responsibilities, executives. See
also Corporate mindset.

balancing business and technical acumen,
28–29

business unit owners, 27
CEO (Chief Executive Officer), 25–26
CFO (Chief Financial Officer), 26–27
chief scalability officer. See CEO (Chief

Executive Officer).
CIO (Chief Information Officer), 27–29
CTO (Chief Technology Officer), 27–29
general managers, 27
leading from the front, 28
P&L owners, 27

Roles and responsibilities, individual
contributors

architects, 33
capacity planners, 35
crisis management, 157
database administrators, 34–35
incident managers, 34
infrastructure engineers, 34–35
network engineers, 34–35
operators, 34
QA analysts, 35
QA engineers, 35

scalability architects, 33
software engineers, 33–34
systems administrators, 34–35

Roles and responsibilities, organizational
architecture, 29–30
capacity planning, 32
engineering, 30
infrastructure, 31
issue identification, 31
issue management, 31
production operations, 30–31
quality assurance, 31–32

Rollback
architectural principles, 201
barriers to, 281
cost considerations, 281–282
need for, 278–279
requirements checklist, 280
technology considerations, 281
version numbers, 281
window requirements, 279–280

Rule of three, architectural principles,
200–201

S
SaaS (Software as a Service), 427–428
Scalability

art vs. science, 2–3
need for, 3–4

Scalability architects, roles and
responsibilities, 33

Scalability projects, determining headroom,
187–188

Scale Cube. See AKF Scale Cube.
Scale on demand, clouds, 431–432, 434
Scale out not up, architectural principles,

203, 207
Scaling cross functionally, JAD (Joint

Architecture Design), 214–215
“Scared straight” method, 113–114
Scheduling, change management, 174–176
Schemas, separating data into, 362–365. See

also AKF Scale Cube for databases,
y-axis splits.

Schigel, Tim, 507–508
Science of scalability, 2–3
Scope, tradeoffs in business, 287

ptg5994185

INDEX 555

Seasonality effect, determining headroom, 187
Security, cloud computing drawback, 443
Seeding teams, 98
Seniority, as a factor in team membership,

47–48
Separating data into schemas, 362–365. See

also AKF Scale Cube for databases,
y-axis splits.

Servers, optimal number for data centers,
491–492

Service behavior during failure, stress
testing, 265

Service providers, clouds, 435–436
Services, splitting work responsibility by,

331–332
Services affecting performance, identifying

for stress testing, 265
Session environments, saving, 403–404
Session storage

avoiding, 403–404, 405
centralizing, 404, 405
decentralizing, 404, 405

Set method, 382
SETI (Search for Extraterrestrial

Intelligence), 429
SETI@home project, 429
Sharding, definition, 311
Shards, definition, 311
Shared infrastructure, grid benefit, 457
Shareholder test, 24
Shareholder value, dilution by data cost, 415
Shareholder values, leadership alignment

with, 74–75
ShareThis, case studies, 507–508
Slavery, abolition of, 80
Slivers, definition, 311
SMART (Specific, Measurable, Attainable,

Realistic, Timely)
criteria, postmortem review, 145
goals, 80–81, 83
guidelines, architectural principles, 198

Software as a Service (SaaS), 427–428
Software engineers, roles and

responsibilities, 33–34
Specific architectural principles, 198
Speed

cloud computing benefit, 441–442
tradeoffs in business, 287

Splitting databases by
customer, 365–367. See also Z-axis

splits, databases.
customer geography, 365–367. See also

Z-axis splits, databases.
requestor, 365–367. See also Z-axis

splits, databases.
Splitting teams. See Teams, splitting.
Splitting work responsibility by. See also

AKF Scale Cube.
application, 343–344. See also AKF Scale

Cube for applications.
requestor or customer, 333–334,

344–347
resources, 331–332
services, 331–332

Srivastava, Amitabh, 46
Stability, definition, 165
Staffing for scalability. See also Leadership;

Management; Organizational design;
Teams.

adding/removing people, 12, 13
importance of people, 10–11

Stakeholders, organizing to match their
interests, 13

Standardization, business processes, 123
Standards, organizational design influences

on, 44–45. See also Business processes.
State

within applications, AKF Scale Cube, 335
defining, 401
saving, 403–404

Stateless systems, architectural principles,
202, 206–207

Status communications, crisis management,
160–161

Storage costs of data
backup storage, 413
initial cost of storage, 412–413

Strategic advantage value of data, 415,
416–417

Strategic competitive differentiation,
building components vs. buying, 238

Strategy-focused approach, building
components vs. buying, 235–236,
237–240

Strength, weaknesses, opportunities, threats
(SWOT) analysis, 82

ptg5994185

556 INDEX

Stress testing
analyzing data, 268
bottlenecks, identifying, 266
checklist of steps, 268–269
criticality of services, ranking, 265
data collection, 267
definition, 264
drawbacks, 269
environment, creating, 266
establishing a baseline, 265
executing tests, 267
failure, testing, 265
goals of, 264–265
interactivity of system services, 265
key services, identifying, 265
monitors, identifying, 267
negative testing, 264, 265
objectives, identifying, 264–265
positive testing, 264
recoverability, testing, 265
for scalability, 270–271
service behavior during failure, 265
services affecting performance,

identifying, 265
simulating a load, 267
system interactions, negative, 265

Structured programming, 402
Sun Grid Engine, 429
Support persons, RASCI, 38
Support services business, 109–110
Swapping, excessive, 190
Swim lanes

along natural barriers, 320–321
by the biggest sources of incidents, 320
by customer boundaries, 312–313
definition, 310, 311
isolating the money-maker, 320
by service boundaries, 313–314
splitting. See AKF Scale Cube.

SWOT (strength, weaknesses, opportunities,
threats) analysis, 82

Synchronization process, description, 393–394
Synchronous calls. See also Asynchronous

design.
vs. asynchronous, 395–401
example, 395

Synchronous systems, scaling issues, 398–401

Synchronous voice communications, crisis
management, 157–158

Systems administrators, roles and
responsibilities, 34–35

Systems monitoring, 477

T
TAA (technology agnostic architecture). See

also Architectural principles; TAD
(technology agnostic design).

build vs. buy conflicts, 305
effects on availability, 306
implementing, rules for, 306–308
purpose of, 301

TAD (technology agnostic design). See also
Architectural principles; TAA
(technology agnostic architecture).

build vs. buy decision, checklist, 304
build vs. buy decision, conflicts, 305
commoditization over time, 301–302
cost factors, 301–302
cultural aspects, 307–308
effects on availability, 306
implementation vs. architecture, 300
implementing, rules for, 306–308
overview, 300–301
purpose of, 301
risk factors, 302–303
scalability support, 303–305

Tags, caches, 378
Task management, 91–92
Team focus vs. individual focus, leadership, 71
Team growth vs. individual productivity,

13–15
Team managers, role in crisis management,

155–156
Team size, optimizing

check list, 54
communication breakdown, 50–51
communications, 48
effects on productivity, 50–51
growing or splitting, 52–54
importance of, 46–47
low boundary, 47
managerial experience levels, 47
managerial responsibilities, base level, 48

ptg5994185

INDEX 557

micromanagement, 51
morale issues, 50–51
needs of the business, 49
optimal range, 46–47
overwork, 52
sample analysis, 49–50
seniority as a factor, 47–48
too big, 49, 50–51. See also Teams,

splitting.
too small, 49, 50–51. See also Teams,

growing.
upper boundary, 47
warning signs, 50–52

Team structure
by management structure. See Team

structure, functional organization;
Team structure, matrix organization.

by purpose or function. See Team
structure, functional organization.

silo approach. See Team structure,
functional organization.

Team structure, functional organization
benefits of, 56, 57
drawbacks, 56–57
organization chart, 55

Team structure, matrix organization
cross-team communication, 59
drawbacks, 59
improving on the functional organization,

59–60
organization chart, 58
project ownership, 59

Teams
adding/removing people, 12, 13
building, 93–94
causal roadmap to success, 84–86
empowerment, and scalability, 74
engineering, causal roadmap to success, 85
growing, 52–54
JAD (Joint Architecture Design), 218
managing. See Management, of teams.
operations, causal roadmap to success,

85–86
upgrading, 94–98

Teams, splitting
check list, 54
failure domains, 53

naming a new manager, 52–53
relationship with business partners, 53
splitting the code base, 52

Technology agnostic architecture (TAA). See
TAA (technology agnostic
architecture).

Technology agnostic design (TAD). See TAD
(technology agnostic design).

Technology cycles, vicious vs. virtuous, 3
Technology ride-alongs, 112
Technology-as-product business, 109–110
Telephone communications, crisis

management, 157–158
Terminating team members, 96
Testable architectural principles, 198
Testing, fault isolation, 321–322
Third-party services

monitoring, calculating availability,
517–518

relying on, 360–362
software certification, cloud computing,

444–445
13th Amendment, U.S. Constitution, 80
Thrashing, 190
Three Magic Rules of Threes. See Data center

planning, Three Magic Rules of Threes.
360-degree reviews of leaders, 69
Tiered data storage solutions, 417–419
Time to market

AKF Scale Cube for applications, 346
fault isolation, 315–316
x-axis splits, databases, 360–361

Timeline considerations, AKF Scale Cube for
databases, 373–374

Timeline Phase, postmortem review, 145
Timelines

incident review, 144
postmortem review, reviewing, 145

Total Risk Score, 249
Tradeoffs in business

cost, definition, 286
cost/speed/quality/scope triangle, 285–288
effects on scalability, 289–290
project triangle, 285–288
quality, definition, 286–287
scope, definition, 287
speed, definition, 287

ptg5994185

558 INDEX

Tradeoffs in business, documenting
ARB (Architecture Review Board), 228
JAD (Joint Architecture Design), 218

Tradeoffs in business, making decisions
checklist for, 294
comparing pros and cons, 291–292
decision matrix method, 292–295
gut feel method, 291

Traffic graphs, calculating availability,
518–519

Traffic-light risk management method,
246–248

Transaction growth. See X-axis splits; Y-axis
splits.

Transaction increases, scaling for, 341–342
Transaction processing time, database y-axis

splits, 364
Transforming data for storage, 419–420

U
Undoing changes. See Rollback.
UNICORE (UNiform Interface to

COmputing REsources), 429
Unmarshalling caches, 381
Unprofitable data, eliminating, 415
Updating caches. See Caches, refreshing.
U.S. Declaration of Independence, 76–77
U.S. Pledge of Allegiance, 76
User-experience monitoring, 476–477
Utilization of unused capacity, grid

benefit, 457

V
Validation, change management, 176–177
Venn diagram, architectural principles, 196
Version numbers, rollback, 281
Vicious technology cycles, 3, 503
Virtualization, clouds

private, 434
public, 433
software for, 435–436

Virtualization, VMM (virtual machine
monitor), 433

Virtuous technology cycles, 3, 503
Vision. See Leadership, vision.

Vista. See Microsoft Vista.
VMM (virtual machine monitor), 433
Voids in roles and responsibilities, 41

W
War room, crisis management, 158–159
Warning signs, sub-optimal team size, 50–52
Waterfall development, barrier conditions,

277–278
Webb, Maynard, 505–506
Weeding teams, 98
Whitman, Meg, 505–506
Window requirements, rollback, 279–280
Work flow, organizing for efficiency, 15–17
Work growth, by system or platform. See

X-axis splits; Y-axis splits.
Write-back method, 381
Write-through policy, 381
Writing to caches

dirty data, 381
set method, 382
write-back method, 381
write-through policy, 381

X
XaaS (Everything as a Service), 427–428
x-axis, AKF Scale Cube, 328–330, 334–335
x-axis splits, applications

cost, 341–342
description, 341–342
fault isolation, 343
observing results, 353
scaling applications, cost, 341–342
uses for, 354

x-axis splits, databases. See also AKF Scale
Cube for databases.

capacity planning, 361
configuration management, 361
cost, 360, 361–362
data consistency, 360–362
data currency, 362
description, 358–359
increasing data size or amount, 361
pros and cons, 360–362
reliance on third parties, 360–362

ptg5994185

INDEX 559

replication delays, 359–360, 361
summary of, 367–370
time to market, 360–361
vs. y-axis splits, 363

Y
y-axis, AKF Scale Cube, 331–332, 335
y-axis splits, applications. See also AKF Scale

Cube for applications.
cost, 344
description, 343–344
fault isolation, 345
observing results, 353
scaling applications, cost, 344
uses for, 354

y-axis splits, databases. See also AKF Scale
Cube for databases.

cost, 363, 364
description, 362–365
handling size and complexity, 364
noun perspective, 363
pros and cons, 363–364

purpose of, 362–363
summary of, 367–370
transaction processing time, 364
vs. x-axis splits, 363

Z
z-axis, AKF Scale Cube, 333–334, 335
z-axis splits, applications. See also AKF Scale

Cube for applications.
cost, 345–347
description, 344–347
fault isolation, 346
observing results, 353
scaling applications, cost, 345–347,

347–348
uses for, 354

z-axis splits, databases. See also AKF Scale
Cube for databases.

cost, 366, 367
description, 365–367
pros and cons, 366
summary of, 367–370

ptg5994185

This page intentionally left blank

ptg5994185

Mashups: Strategies for the Modern Enterprise
J. Jeffrey Hanson • ISBN-13: 978-0-321-59181-4

Design Patterns for Succeeding with Enterprise Mashups:
One of Today’s Fastest-Growing Areas of Software Development

Mashup Patterns: Designs and Examples for the
Modern Enterprise
Michael Ogrinz • ISBN-13: 978-0-321-57947-8

• Contains authoritative insights based on extensive real-world
experience, from one of the world’s leading innovators in
enterprise mashups and integration

• Covers every part of the mashup development lifecycle, from
planning core functionality through integration, testing, and
much more

• Includes multiple real-world case studies, dozens of patterns, and
a full chapter of must-avoid “anti-patterns”

In this book, leading enterprise mashup expert Michael Ogrinz
provides more than fifty new patterns that cover virtually every facet

of enterprise mashup development, from core functionality through integration,
and beyond. These patterns address crucial issues including data extraction and visualization,

reputation management, security, accessibility, usability, content migration, load and regression testing,
governance, and more. Each pattern is documented with a practical description, specific use cases, and

insights into mashup stability.

Learn more at informit.com/title/9780321579478.

The First How-To Guide for Developers who Want to Create
Enterprise-Quality Web 2.0 Mashups

• Walks enterprise developers step-by-step through designing,
coding, and debugging their first mashups

• Surveys all of today’s leading technologies and standards for
rapidly constructing high-quality mashups

• Includes a full chapter of case studies, as well as an insightful
preview of the future of enterprise mashups

• Provides extensive code examples throughout

In this book, J. Jeffrey Hanson guides readers through every step of
creating a working enterprise mashup, including design, implemen-

tation, and debugging. Each stage is illuminated with detailed sample
code. Along the way, Hanson surveys the broad spectrum of technologies and

standards that have recently become available to simplify mashup development, helping
enterprise developers choose the best options for their projects. Hanson covers topics such as comparing and

selecting the right mashup implementation styles; preparing to implement mashups; overcoming technical and
business concerns associated with mashups; applying today’s best mashup patterns; and much more.

Learn more at informit.com/title/9780321591814.

informit.com/aw

ptg5994185

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.25.indd 1 12/5/08 3:35:08 PM

ptg5994185

InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seeking
timely and relevant information and tutorials? Looking for expert opinions,
advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

ptg5994185

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

ptg5994185Your purchase of The Art of Scalability includes access to a free online edition for
45 days through the Safari Books Online subscription service. Nearly every Addison-
Wesley Professional book is available online through Safari Books Online, along with
more than 5,000 other technical books and videos from publishers such as Cisco Press,
Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: IBXXAZG.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

Abbott_SFOE_7x9.25.indd 1 11/2/09 1:32 PM

	Addison Wesley - The Art of Scalability (January 2010) (ATTiCA)
	Contents
	Foreword
	Acknowledgments
	About the Authors
	Introduction
	Part I: Staffing a Scalable Organization
	Chapter 1: The Impact of People and Leadership on Scalability
	Introducing AllScale
	Why People
	Why Organizations
	Why Management and Leadership
	Conclusion

	Chapter 2: Roles for the Scalable Technology Organization
	The Effects of Failure
	Defining Roles
	Executive Responsibilities
	Organizational Responsibilities
	Individual Contributor Responsibilities and Characteristics
	An Organizational Example
	A Tool for Defining Responsibilities
	Conclusion

	Chapter 3: Designing Organizations
	Organizational Influences That Affect Scalability
	Team Size
	Organizational Structure
	Conclusion

	Chapter 4: Leadership 101
	What Is Leadership?
	Leadership—A Conceptual Model
	Taking Stock of Who You Are
	Leading from the Front
	Checking Your Ego at the Door
	Mission First, People Always
	Making Timely, Sound, and Morally Correct Decisions
	Empowering Teams and Scalability
	Alignment with Shareholder Value
	Vision
	Mission
	Goals
	Putting Vision, Mission, and Goals Together
	The Causal Roadmap to Success
	Conclusion

	Chapter 5: Management 101
	What Is Management?
	Project and Task Management
	Building Teams—A Sports Analogy
	Upgrading Teams—A Garden Analogy
	Measurement, Metrics, and Goal Evaluation
	The Goal Tree
	Paving the Path for Success
	Conclusion

	Chapter 6: Making the Business Case
	Understanding the Experiential Chasm
	Defeating the Corporate Mindset
	The Business Case for Scale
	Conclusion

	Part II: Building Processes for Scale
	Chapter 7: Understanding Why Processes Are Critical to Scale
	The Purpose of Process
	Right Time, Right Process
	When Good Processes Go Bad
	Conclusion

	Chapter 8: Managing Incidents and Problems
	What Is an Incident?
	What Is a Problem?
	The Components of Incident Management
	The Components of Problem Management
	Resolving Conflicts Between Incident and Problem Management
	Incident and Problem Life Cycles
	Implementing the Daily Incident Meeting
	Implementing the Quarterly Incident Review
	The Postmortem Process
	Putting It All Together
	Conclusion

	Chapter 9: Managing Crisis and Escalations
	What Is a Crisis?
	Why Differentiate a Crisis from Any Other Incident?
	How Crises Can Change a Company
	Order Out of Chaos
	Communications and Control
	The War Room
	Escalations
	Status Communications
	Crises Postmortems
	Crises Follow-up and Communication
	Conclusion

	Chapter 10: Controlling Change in Production Environments
	What Is a Change?
	Change Identification
	Change Management
	The Change Control Meeting
	Continuous Process Improvement
	Conclusion

	Chapter 11: Determining Headroom for Applications
	Purpose of the Process
	Structure of the Process
	Ideal Usage Percentage
	Conclusion

	Chapter 12: Exploring Architectural Principles
	Principles and Goals
	Principle Selection
	AKF’s Twelve Architectural Principles
	Scalability Principles In Depth
	Conclusion

	Chapter 13: Joint Architecture Design
	Fixing Organizational Dysfunction
	Designing for Scale Cross Functionally
	Entry and Exit Criteria
	Conclusion

	Chapter 14: Architecture Review Board
	Ensuring Scale Through Review
	Board Constituency
	Conducting the Meeting
	Entry and Exit Criteria
	Conclusion

	Chapter 15: Focus on Core Competencies: Build Versus Buy
	Building Versus Buying, and Scalability
	Focusing on Cost
	Focusing on Strategy
	“Not Built Here” Phenomenon
	Merging Cost and Strategy
	AllScale’s Build or Buy Dilemma
	Conclusion

	Chapter 16: Determining Risk
	Importance of Risk Management to Scale
	Measuring Risk
	Managing Risk
	Conclusion

	Chapter 17: Performance and Stress Testing
	Performing Performance Testing
	Don’t Stress Over Stress Testing
	Performance and Stress Testing for Scalability
	Conclusion

	Chapter 18: Barrier Conditions and Rollback
	Barrier Conditions
	Rollback Capabilities
	Markdown Functionality—Design to Be Disabled
	Conclusion

	Chapter 19: Fast or Right?
	Tradeoffs in Business
	Relation to Scalability
	How to Think About the Decision
	Conclusion

	Part III: Architecting Scalable Solutions
	Chapter 20: Designing for Any Technology
	An Implementation Is Not an Architecture
	Technology Agnostic Design
	The TAD Approach
	Conclusion

	Chapter 21: Creating Fault Isolative Architectural Structures
	Fault Isolative Architecture Terms
	Benefits of Fault Isolation
	How to Approach Fault Isolation
	When to Implement Fault Isolation
	How to Test Fault Isolative Designs
	Conclusion

	Chapter 22: Introduction to the AKF Scale Cube
	Concepts Versus Rules and Tools
	Introducing the AKF Scale Cube
	Meaning of the Cube
	The X-Axis of the Cube
	The Y-Axis of the Cube
	The Z-Axis of the Cube
	Putting It All Together
	When and Where to Use the Cube
	Conclusion

	Chapter 23: Splitting Applications for Scale
	The AKF Scale Cube for Applications
	The X-Axis of the AKF Application Scale Cube
	The Y-Axis of the AKF Application Scale Cube
	The Z-Axis of the AKF Application Scale Cube
	Putting It All Together
	Practical Use of the Application Cube
	Conclusion

	Chapter 24: Splitting Databases for Scale
	The AKF Scale Cube for Databases
	The X-Axis of the AKF Database Scale Cube
	The Y-Axis of the AKF Database Scale Cube
	The Z-Axis of the AKF Database Scale Cube
	Putting It All Together
	Practical Use of the Database Cube
	Conclusion

	Chapter 25: Caching for Performance and Scale
	Caching Defined
	Object Caches
	Application Caches
	Content Delivery Networks
	Conclusion

	Chapter 26: Asynchronous Design for Scale
	Synching Up on Synchronization
	Synchronous Versus Asynchronous Calls
	Defining State
	Conclusion

	Part IV: Solving Other Issues and Challenges
	Chapter 27: Too Much Data
	The Cost of Data
	The Value of Data and the Cost-Value Dilemma
	Making Data Profitable
	Handling Large Amounts of Data
	Conclusion

	Chapter 28: Clouds and Grids
	History and Definitions
	Characteristics and Architecture of Clouds
	Differences Between Clouds and Grids
	Conclusion

	Chapter 29: Soaring in the Clouds
	Pros and Cons of Cloud Computing
	Where Clouds Fit in Different Companies
	Decision Process
	Conclusion

	Chapter 30: Plugging in the Grid
	Pros and Cons of Grids
	Different Uses for Grid Computing
	Decision Process
	Conclusion

	Chapter 31: Monitoring Applications
	“How Come We Didn’t Catch That Earlier?”
	A Framework for Monitoring
	Measuring Monitoring: What Is and Isn’t Valuable?
	Monitoring and Processes
	Conclusion

	Chapter 32: Planning Data Centers
	Data Center Costs and Constraints
	Location, Location, Location
	Data Centers and Incremental Growth
	Three Magic Rules of Three
	Multiple Active Data Center Considerations
	Conclusion

	Chapter 33: Putting It All Together
	What to Do Now?
	Case Studies
	References

	Appendices
	Appendix A: Calculating Availability
	Hardware Uptime
	Customer Complaints
	Portion of Site Down
	Third-Party Monitoring Service
	Traffic Graph

	Appendix B: Capacity Planning Calculations
	Appendix C: Load and Performance Calculations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

