CLUSTERING
CHALLENGES

- "

BIOLOGICAL
NETWORKS

Sergiy Butenko
W Art Chaovalitwongse

Panos M Pardalos
editors

CLUSTERING
CHALLENGES

i

BIOLOGICAL
NETWORKS

This page intentionally left blank

CLUSTERING
CHALLENGES

BIOLOGIC
NETEVOR

Editors

Sergiy Butenko

Texas A&M University, USA

W Art Chaovalitwongse

Rutgers University, USA

Panos M Pardalos

University of Florida, USA

\\:e World Scientific

NEW JERSEY - LONDON - SINGAPORE - BEIJING « SHANGHAI « HONG KONG « TAIPEI - CHENNAI

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

CLUSTERING CHALLENGES IN BIOLOGICAL NETWORKS
Copyright © 2009 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-277-165-0
ISBN-10 981-277-165-4

Printed in Singapore.

“The whole is more than the sum of its parts”

Aristotle (Greek philosopher, 384 BC - 322 BC)

This page intentionally |eft blank

Preface

Clustering can be defined as the partitioning of a data set into subsets (called
clusters), so that each subset consists of elements that are similar with respect to
some similarity criterion. The measure of similarity can be the distance between
the data points (used in distance-based clustering) or some descriptive concept (as
in conceptual clustering), and can be chosen differently depending on the type of
the data set of interest and the purpose of clustering. The typical objectives include
the data classification and reduction, detection of natural modules based on their
properties, and the determination of outliers. Clustering algorithms have been
successfully used to analyze the data sets arising in many important applications
of diverse origin, including biology. In fact, applications of clustering in biology
can be traced back to Aristotle’s History of Animals, in which he classified plants
and animals according to complexity of their structure and function.

Many biological systems can be conveniently modeled using graphs or net-
works, with vertices representing the data points and edges connecting pairs of
vertices corresponding to data points that are related in a certain way. Network
clustering and cluster detection algorithms represent an important tool in structural
analysis of such networks. For example, in gene networks, the vertices correspond
to genes and the edges represent functional relations between these genes that are
identified using the comparative genomics methods. Solving clustering problems
in gene networks allows to identify groups of genes with similar expression pat-
terns. This information is crucial for understanding the nature of genetic diseases.
Other examples of biological networks include the protein interaction networks,
metabolic networks, and signaling networks.

Network clustering problems present a number of formidable research chal-
lenges, many of which are still to be addressed. On the one hand, developing a
proper mathematical model describing the clusters that are interesting from bi-
ological perspective may be very tricky. On the other hand, most known opti-
mization problems on graphs used as the basis for network clustering appear to
be NP-hard, making it extremely difficult to solve large-scale instances of such
problems to optimality. Based on the objective that clustering aims to achieve for

vii

viii Preface

a particular application, one has to choose an appropriate graph-theoretic defini-
tion of a cluster, formulate the corresponding optimization problem, and develop
a network clustering algorithm for the developed model. From the practical per-
spective, the effectiveness of any clustering algorithm has to be confirmed through
empirical evidence, and this process is complicated by possible errors in the data
used to construct the network.

This volume presents a collection of papers, several of which have been pre-
sented at DIMACS Workshop on Clustering Problems in Biological Networks
that took place at Rutgers University on May 9 - 11, 2006. It consists of two parts,
with the first part containing surveys of selected topics and the second part pre-
senting original research contributions. While clustering in biological networks
represents the central theme of this volume, some of the chapters deal with other
related problems in computational biology that may not necessarily fall within the
vaguely defined network clustering domain.

This book will be a valuable source of material to faculty, students, and re-
searchers in mathematical programming, data analysis and data mining, as well
as people working in computer science, engineering and applied mathematics. In
addition, the book can be used as a supplement to any course in data mining or
computational/systems biology.

We would like to thank the authors of the chapters, the anonymous referees and
the staff of World Scientific for their cooperation, without which the publication
of this volume would not have been possible. We also acknowledge the support of
the National Science Foundation in organizing the DIMACS Workshop mentioned
above.

Sergiy Butenko, W. Art Chaovalitwongse, and Panos M. Pardalos
September 2008

Contents

Preface

Part 1 Surveys of Selected Topics

1.

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering
F. Hiiffner, R. Niedermeier and S. Wernicke

1.1, Introduction
1.2. Fixed-Parameter Tractability Basics and Techniques
1.3. Case Studies from Graph-Modeled Data Clustering
1.4, Conclusion
References e

Probabilistic Distance Clustering: Algorithm and Applications

C. Iyigun and A. Ben-Israel

2.1. Introduction
2.2. Probabilistic {d,q}—Clustering
23. ThePDQAlgorithm
2.4. Estimation of Parameters of Normal Distribution
2.5. Numerical Experiments L o
2.6. Multi-Facility Location Problems
2.7. Determining the “Right” Number of Clusters
References e

Analysis of Regulatory and Interaction Networks from Clusters of
Co-expressed Genes

E. Yang, A. Misra, T. J. Maguire and I. P. Androulakis

3.1. Identification of Intervention Targets: Regulatory and Interaction Networks
3.2. Analysis of Regulatory Networks,
3.3. Analysis of Interaction Networks L
34. Intervention Strate@ies e
References

vii

12
22
24

29

29
31
38
40
42
46
50
51

53

X Contents

4. Graph-based Approaches for Motif Discovery
E. Zaslavsky

4.1. Introduction
4.2. Graph-Theoretic Formulation
4.3. Linear Programming-based Algorithms
4.4. Maximum Density Subgraph-based Algorithm

4.5. Subtle Motif Algorithms

5. Statistical Clustering Analysis: An Introduction

H. Zhang

5.1. Imntroduction
5.2. Similarity (Dissimilarity) Measures
5.3. Clustering Algorithm
5.4. Determining the Number of Clusters
References

Part2 New Methods and Applications

6. Diversity Graphs
P. Blain, C. Davis, A. Holder, J. Silva and C. Vinzant

6.1. Introduction
6.2. Notation, Definitions and Preliminary Results
6.3. Graphs That Support Diversity

6.4. Algorithms and Solutions for the Pure Parsimony Problem

6.5. Directions for Future Research
References

7. Identifying Critical Nodes in Protein-Protein Interaction Networks

V. Boginski and C. W. Commander

7.1. Introduction
7.2. Protein-Protein Interaction Networks
7.3. Optimization Approaches for Critical Node Detection . . .
7.4. Heuristic Approaches for Critical Node Detection
7.5. Computational Experiments
7.6. Conclusions
References

8. Faster Algorithms for Constructing a Concept (Galois) Lattice
V. Choi

8.1. Imtroduction
8.2. Background and Terminology on FCA
8.3. BasicProperties
8.4. Algorithm: Constructing a Concept/Galois Lattice
8.5. Variants of the Algorithm
8.6. Discussion L.

4.6. DisCuSSION e e e e e e
References e

83

83
86
88
92
93
95
96

101

101
103
109
119
125

127

129

130
130
135
140
149
150

153

153
154
155
158
160
165
165

169

10.

11.

12.

Contents

References e
AppendiX

A Projected Clustering Algorithm and Its Biomedical Application
P. Deng, Q. Ma and W. Wu

9.1. Introduction
9.2, Related Works e
9.3. The IPROCLUS Algorithm
94. Empirical Results L
9.5. Conclusion
References e

Graph Algorithms for Integrated Biological Analysis, with Applications to
Type 1 Diabetes Data

J. D. Eblen, I. C. Gerling, A. M. Saxton, J. Wu, J. R. Snoddy and M. A. Langston

10.1. OVerview o oo e e e
10.2. Descriptionof Data
10.3. Correlation Computations oLt
10.4. Clique and Its Variants
10.5. Statistical Evaluation and Biological Relevance
10.6. Proteomic Data Integration
10.7. Remarks L
References L e e

A Novel Similarity-based Modularity Function for Graph Partitioning
Z. Feng, X. Xu, N. Yuruk and T. Schweiger

11.1. Introduction L
11.2. Related Work e
11.3. A Novel Similarity-based Modularity
11.4. A Genetic Graph Partitioning Algorithm
11.5. A Fast Agglomerative Algorithm
11.6. Evaluation Results
11.7. Conclusion e
References

Mechanism-based Clustering of Genome-wide RNA Levels: Roles of
Transcription and Transcript-Degradation Rates

S. Ji, W. A. Chaovalitwongse, N. Fefferman, W. Yoo and J. E. Perez-Ortin

12.1. Introduction L e e e e
12.2. Materials and Data Acquisition Lo
12.3. Statistical Analysis
12.4. Experimental Results
12.5. Conclusion and Discussion
References e

xi

182
185

187

188
190
192
199
204
205

207

208
209
210
210
213
215
219
220

223

223
225
227
229
230
231
235
235

237

xii

Contents

13. The Complexity of Feature Selection for Consistent Biclustering

O. E. Kundakcioglu and P. M. Pardalos

13.1. Introduction e
13.2. Consistent Biclustering
13.3. Complexity Results
134. ClosingRemarks L
References

14. Clustering Electroencephalogram Recordings to Study Mesial Temporal Lobe Epilepsy

C.-C. Liu, W. Suharitdamrong, W. A. Chaovalitwongse, G. A. Ghacibeh and

P. M. Pardalos

14.1. Introduction 0 i e e e e
14.2. Epilepsy as a Dynamical Brain Disorder
14.3. DataInformation
14.4. Graph-Theoretic Modeling for Brain Connectivity
14.5. Results e e e e
14.6. Conclusion and Discussion o
References L e e e

15. Relating Subjective and Objective Pharmacovigilance Association Measures

R. K. Pearson

15.1. Imtroduction
15.2. Aggregate AssOCiations
15.3. Subjective Associations
15.4. Case-Specific Associationso
15.5. Relations between Measureso
15.6. Clustering Drugs e
15.7. Interpreting the Clusters it

15.8. Summary

References

16. A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning
M. P. Tan and C. A. Floudas

16.1. Introduction e e
16.2. Methods L
16.3. Results and Discussion
16.4. Conclusion e
16.5. Computational Resources o
References e

Index

257

257
259
263
265
265

267

268
269
270
270
276
278
278

281

281
282
286
287
288
290
298
302
305

307

308
310
320
327
327
328

333

PART 1
Surveys of Selected Topics

This page intentionally |eft blank

Chapter 1

Fixed-Parameter Algorithms for
Graph-Modeled Data Clustering

Falk Hiiffner*

Institut fiir Informatik, Friedrich-Schiller-Universitdt Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany
hueffner @minet.uni-jena.de

Rolf Niedermeier

Institut fiir Informatik, Friedrich-Schiller-Universitdt Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany
niedermr@minet.uni-jena.de
Web: http://theinfl.informatik.uni-jena.de/

Sebastian Wernicke?

Institut fiir Informatik, Friedrich-Schiller-Universitdt Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany
wernicke @minet.uni-jena.de

Fixed-parameter algorithms can efficiently find optimal solutions to some NP-
hard problems, including several problems that arise in graph-modeled data clus-
tering. This survey provides a primer about practical techniques to develop such
algorithms; in particular, we discuss the design of kernelizations (data reductions
with provable performance guarantees) and depth-bounded search trees. Our in-
vestigations are circumstantiated by three concrete problems from the realm of
graph-modeled data clustering for which fixed-parameter algorithms have been
implemented and experimentally evaluated, namely CLIQUE, CLUSTER EDIT-
ING, and CLIQUE COVER.

*Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group PIAF (fixed-
parameter algorithms), NI 369/4.
TSupported by the Deutsche Telekom Stiftung.

4 Hiiffner, Niedermeier & Wernicke
1.1. Introduction

The central idea behind graph-modeled data clustering is to depict the similarity
between a set of entities as a graph: Each vertex represents an entity—such as a
gene or protein—and two vertices are connected by an edge if the entities that they
represent have some (context-specific) similarity; for instance, two genes have a
similar expression profile or two proteins have a high sequence similarity. Groups
of highly connected vertices in the resulting graph represent clusters of mutually
similar entities. Hence, detecting these dense groups can identify clusters in the
graph-encoded data.

Graph-modeled data clustering has been shown to have useful applications in
many areas of bioinformatics, including the analysis of gene expression [8, 16,
65, 66], proteins [45, 46], gene networks [68], allergic reactions [9], and marine
ecosystems [54]. There is a catch, however: Most problems that are concerned
with the detection of cluster structures in a graph are known to be NP-hard, that
is, there is probably no algorithm that can solve all instances efficiently [32]. Thus,
whenever such a problem is encountered and large instances need to be solved, it is
common to employ heuristic algorithms [58], approximation algorithms [5, 67], or
similar techniques. These usually come with some disadvantages: The solutions
are not guaranteed to be optimal or there are no useful guarantees concerning the
running time of the algorithm. Further, approximation algorithms and—to some
extent—heuristic algorithms are not suited to cope with enumerative tasks. There
are many scenarios where these disadvantages seem too severe, that is, where
we need to solve a combinatorially hard problem both optimally and yet at the
same time somewhat efficiently. For some combinatorial problems, this can be
achieved by means of fixed-parameter algorithms [25, 30, 60]. These are based
on the observation that not all instances of an NP-hard problem are equally hard to
solve; rather, this hardness depends on the particular structure of a given instance.
Opposed to “classical” computational complexity theory—which sees problem in-
stances only in terms of their size—fixed-parameter algorithms and the underlying
theory of fixed-parameter tractability (FPT) reflect such differences in structural
hardness by expressing them through a so-called parameter, which is usually a
nonnegative integer variable denoted k.

Whenever the parameter k turns out to be small, fixed-parameter algorithms
may solve an NP-hard problem quite fast (sometimes even in linear time)—with
provable bounds on the running time and guaranteeing the optimality of the so-
lution that is obtained. More precisely, a size-n instance of a fixed-parameter
tractable problem can be solved in f(k) - p(n) time, where f is a function solely
depending on k, and p(n) is a polynomial in 7.

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 5

The purpose of this survey is twofold: First, we provide a primer about some
important and practically relevant techniques for the design of fixed-parameter
algorithms in the realm of graph-modeled data clustering (Sec. 1.2); in particu-
lar, Sec. 1.2.1 exhibits kernelizations (data reductions with provable performance
guarantees) and Sec. 1.2.2 discusses depth-bounded search trees. Second, we
present three concrete case studies from the realm of graph-modeled data clus-
tering where fixed-parameter algorithms have been devised, implemented, and
successfully tested:

e CLIQUE (Sec. 1.3.1). Using techniques that were originally developed
for the fixed-parameter tractable VERTEX COVER problem, it is possi-
ble to detect a size-(n — k) clique in an n-vertex and m-edge graph in
0(1.3’“ + kn + m) time [12, 15]. So-called k-isolated cliques, that is,
i-vertex cliques that have less than k-7 edges to vertices that lie outside of
them, can be exhaustively enumerated in 0(4’C - k?m) time [44, 49, 50].

o CLUSTER EDITING (Sec. 1.3.2). In this problem, the assumption is that
the input graph has an underlying cluster structure that is a disjoint union
of cliques, which has been distorted by adding and removing at most &
edges. For an n-vertex input graph, this underlying cluster structure can
be found in O(1.92% + n + m) time [33, 34, 63].

e CLIQUE COVER (Sec. 1.3.3). The assumed underlying cluster structure
in this problem is an overlapping union of cliques, that is, the task is to
cover the edges of a given graph with a minimum number of cliques.
Fixed-parameter algorithms allow for optimal problem solutions within
a running time that is competitive with common heuristics [35, 36].

Practical experiments that we discuss in the case studies suggest that the pre-
sented fixed-parameter algorithms are capable of solving many real-world in-
stances in reasonable time. In particular, they perform much better on real-world
data than the provable worst-case bounds suggest. Thus, for some NP-hard clus-
tering problems, fixed-parameter tractability theory offers algorithms which are
both efficient and capable of delivering optimal solutions. It should hence be part
of the algorithmic toolkit for coping with graph-based clustering problems.

We conclude our survey with advice on employing fixed-parameter algorithms
in practice (Sec. 1.4.1) and with a list of specific challenges for future research
(Sec. 1.4.2).

6 Hiiffner, Niedermeier & Wernicke

Fig. 1.1. A graph with a size-8 vertex cover (cover vertices are marked black, the solution size is
optimal).

1.2. Fixed-Parameter Tractability Basics and Techniques

In this section, we introduce the basics of fixed-parameter tractability, in particular
exhibiting two techniques that are of major practical importance® and have by now
facilitated many success stories in bioinformatics, namely

e kernelizations, that is, data reductions with provable performance guar-
antees (Sec. 1.2.1) and
o depth-bounded search trees (Sec. 1.2.2).

Both techniques are introduced by means of a single natural and easy to grasp
problem, namely the NP-hard VERTEX COVER problem.

VERTEX COVER

INPUT: An undirected graph G = (V, E) and a nonnegative
integer k.

TASK: Find a subset of vertices C C V with k or fewer vertices
such that each edge in E has at least one of its endpoints in C'.

This problem is illustrated in Fig. 1.1 and is—among many other applications—of
central importance to practically solving the CLIQUE problem that we discuss in
Sec. 1.3.1.°

Throughout this work, we assume basic knowledge from algorithmics [19, 48]
and graph theory [24, 71]. For a given undirected graph G = (V, E'), we always
use n to denote the number of its vertices and m to denote the number of its edges.
For v € V, we use Ng(v) to denote the neighbor set {v € V | {u,v} € E}
and Ng[v] to denote the closed neighborhood N¢ (v) U {v}, omitting the indices
whenever they are clear from the context.

The core approach of fixed-parameter tractability [25, 30, 60] is to consider
parameterized problems—that is, problems that consist of the instance I and a pa-

2A broader view on fixed-parameter algorithm design techniques can be found in Ref. 60.
YVERTEX COVER is the Drosophila of fixed-parameter research in that many initial discoveries that
influenced the whole field originated from studies of this single problem (e.g., see Guo et al. [40]).

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 7

rameter k—and ask whether there is an algorithm that confines the combinatorial
explosion that is involved in solving the problem to the parameter.

Definition 1.1. An instance of a parameterized problem consists of a problem in-
stance [and a parameter k. A parameterized problem is fixed-parameter tractable
if it can be solved in f(k) - |[I|°(") time, where f is a computable function solely
depending on the parameter k, and not on the input size |I|.

For NP-hard problems, f (k) will of course not be polynomial, since otherwise
we would have an overall polynomial-time algorithm.

As parameterized complexity theory points out, there are problems that are
likely not to be fixed-parameter tractable [25, 30, 60]. It is important to note in
this respect that a problem can have various parameterizations such as the size
of the solution that is sought after or some structural parameter that characterizes
the input. A problem that is not fixed-parameter tractable with respect to some
parameter may still be so with respect to others. Also, the choice of the parameter
can greatly affect the efficiency of the algorithm that is obtained.

Besides the classic reference [25], two new monographs are available on pa-
rameterized complexity, one focusing on theoretical foundations [30] and one fo-
cusing on techniques and algorithms [60].

1.2.1. Kernelizations

Before firing up a computationally expensive algorithm to solve a combinatorially
hard problem, one should always try to perform a reduction on the input data, the
idea being to quickly presolve those parts of the input data that are relatively easy
to cope with and thus to shrink the input to those parts that form the “really hard”
core of the problem. Costly algorithms need then only be applied to the reduced
instance. In some practical scenarios, data reduction may even reduce a seemingly
hard problem to triviality [35, 56, 70].

Clearly, practitioners are likely to already be aware of data reduction rules.
The reason why they should also consider fixed-parameter tractability in this con-
text is that fixed-parameter theory provides a way to use data reduction rules not
only in a heuristic way, but to prove their power by so-called kernelizations. These
run in polynomial time and give an upper bound on the size of a reduced instance
that solely depends on the parameter value, that is, they come with a performance
guarantee both concerning their running time as well as their effectiveness. Hav-
ing a quantitative measure for the performance of a data reduction can moreover
help to guide the search for further improved data reductions in a constructive
way [39].

8 Hiiffner, Niedermeier & Wernicke

1.2.1.1. An Introductory Example

Consider our running example VERTEX COVER. To reduce the input size for a
given instance of this problem, it is clearly permissible to remove isolated vertices,
that is, vertices with no adjacent edges. This leads to a first simple data reduction
rule.

REDUCTION RULE VCI1. Remove all isolated vertices.

In order to cover an edge in the graph, one of its two endpoints must be in
the vertex cover. If one of these is a degree-1 vertex, then the other endpoint has
the potential to cover more edges than the degree-1 vertex, leading to a second
reduction rule.

REDUCTION RULE VC2. For degree-1 vertices, put their
neighboring vertex into the cover.¢

Note that this reduction rule assumes that we are only looking for one optimal
solution to the VERTEX COVER instance we are trying to solve; there may exist
other minimum vertex covers that do include the reduced degree-1 vertex.

After having applied the easy rules VCI and VC2, we can further do the fol-
lowing in the fixed-parameter setting where we ask for a vertex cover of size at
most k.

REDUCTION RULE VC3. If there is a vertex v of degree at
least k& 4 1, put v into the cover.

The reason this rule is correct is that if we did not take v into the cover, then
we would have to take every single one of its k + 1 neighbors into the cover in
order to cover all edges adjacent to v. This is not possible because the maximum
allowed size of the cover is k.

After exhaustively performing the rules VC1-VC3, no vertex in the remaining
graph has a degree higher than &, meaning that choosing a vertex into the cover
can cause at most k edges to become covered. Since the solution set may be no
larger than k, the remaining graph can have at most k2 edges if it is to have a
solution. By rules VC1 and VC2, every vertex has degree at least two, which
implies that the remaining graph can contain at most k2 vertices.

¢“Put into the cover” means adding the vertex to the solution set and removing it and its incident edges
from the instance.

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 9

1.2.1.2. The Kernelization Concept

Abstractly speaking, what have we done in the previous section? After applying a
number of rules in polynomial time to an instance of VERTEX COVER, we arrived
at a reduced instance whose size can solely be expressed in terms of the parame-
ter k. Since this can be easily done in O(n) time, we have found a data reduction
for VERTEX COVER with guarantees concerning its running time as well as its
effectiveness. These properties are formalized in the concepts of a problem kernel
and the corresponding kernelization [25].

Definition 1.2. Let £ be a parameterized problem, that is, £ consists of input
pairs (I, k), where [is the problem instance and k is the parameter. A reduction
to a problem kernel (or kernelization) means to replace an instance (I, k) by a
reduced instance (I', k") called problem kernel in polynomial time such that

() K <k,
(2) I’ is smaller than g(k) for some function g only depending on k, and
(3) (I, k) has a solution if and only if (I’, k) has one.

While this definition does not formally require that it is possible to reconstruct
a solution for the original instance from a solution for the problem kernel, all
kernelizations we are aware of easily allow for this.

The methodological approach of kernelization, including various techniques
of data reduction, is best learned by the concrete examples that we discuss in
Sec. 1.3; there, we will also discuss kernelizations for VERTEX COVER that even
yield a kernel with a linear number of vertices in k.

To conclude this section, we state some useful general observations and re-
marks concerning Definition 1.2 and its connections to fixed-parameter tractabil-
ity. Most notably, there is a close connection between fixed-parameter tractable
problems and those problems that have a problem kernel—they are exactly the
same.

Theorem 1.1 (Cai et al. [11]). Every fixed-parameter tractable problem is ker-
nelizable and vice-versa.

Unfortunately, the practical use of this theorem is limited: the running times of
a fixed-parameter algorithm directly obtained from a kernelization is usually not
practical; and, in the other direction, the theorem does not constructively provide
us with a data reduction scheme for a fixed-parameter tractable problem. Hence,
the main use of Theorem 1.1 is to establish the fixed-parameter tractability or
amenability to kernelization of a problem—or show that we need not search any

10 Hiiffner, Niedermeier & Wernicke

further (e.g., if a problem is known to be fixed-parameter intractable, we do not
need to look for a kernelization).

Rule VC3 explicitly needed the value of the parameter k. We call this a
parameter-dependent rule as opposed to the parameter-independent rules VCl1
and VC2, which are oblivious to k. Of course, one typically does not know the
actual value of k in advance and then has to get around this by iteratively trying
different values of k.9 While, in practice, one would naturally prefer to avoid this
extra outer loop, assuming explicit knowledge of the parameter clearly adds some
leverage to finding data reduction rules and is hence frequently encountered in
kernelizations.

1.2.2. Depth-Bounded Search Trees

After preprocessing the given input data of a problem by a kernelization and cut-
ting away its “easy parts,” we are left with the “really hard” problem kernel to
be solved. A standard way to explore the huge search space of a computationally
hard problem is to perform a systematic exhaustive search. This can be organized
in a tree-like fashion, which is the main subject of this section.

Certainly, search trees are no new idea and have been extensively used in the
design of exact algorithms (e.g., see Ref. 22, 26, 31, 57, 72). The main contri-
bution of fixed-parameter theory to search tree approaches is the consideration of
search trees whose depth is bounded by the parameter, usually leading to search
trees that are much smaller than those of naive brute-force searches. Additionally,
the speed of search tree exploration can (provably) be improved by exploiting
kernelizations [59].

An extremely simple search tree approach for solving VERTEX COVER is to
just take one vertex and branch into two cases: either this vertex is in the vertex
cover or not. This leads to a search tree of size O(2™). As we outline in this
section, we can do much better than that and obtain a search tree whose depth is
upper-bounded by k, giving a size bound of O(2*). Since usually k < n, this can
draw the problem into the zone of feasibility even for large graphs (as long as k is
small).

The basic idea is to find a small subset of the input instance in polynomial time
such that at least one element of this subset must be part of an optimal solution
to the problem. In the case of VERTEX COVER, the most simple such subset is
any two vertices that are connected by an edge. By definition of the problem,

dIn general, the constraint k < m is easily established. As Dehne et al. [23] point out in their studies
of CLUSTER EDITING, it depends on the concrete problem which search strategy for the “optimum”
value of k is most efficient to employ in practice.

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 11

k-1 /@\ k-1

k—2 k—2 k
&(~ k-2)ﬁ ~ ™~)ﬁ
/N /N /N /N

Fig. 1.2. Simple search tree for finding a vertex cover of size at most k in a given graph. The size of
the tree is upper-bounded by O(2%).

one of these two vertices must be part of a solution. Thus, a simple search-tree
algorithm to solve VERTEX COVER on a graph G proceeds by picking an arbitrary
edge e = {v, w} and recursively searching for a vertex cover of size k — 1 both
in G — v and G — w.® That is, the algorithm branches into two subcases knowing
one of them must lead to a solution of size at most k—if one such solution exists.

As shown in Fig. 1.2, these recursive calls of the simple VERTEX COVER
algorithm can be visualized as a tree structure. Because the depth of the recursion
is upper-bounded by the parameter value and we always branch into two subcases,
the size of this tree is upper-bounded by O(2*). This means that the size of the
tree is independent of the size of the initial input instance and only depends on the
value of the parameter k.

The main idea behind fixed-parameter algorithmics is to get the combinatorial
explosion as small as possible. For our VERTEX COVER example, one can easily
achieve a size-o(2¥) search tree by distinguishing more detailed branching cases
rather than just picking single endpoints of edges to be in the cover.! An exam-
ple for such an “improved” search-tree is given in our case study of CLUSTER
EDITING in Sec. 1.3.2. The currently “best” search trees for VERTEX COVER
are of size O(1.28%) [15] and mainly achieved by extensive case distinguishing.
However, it should be noted for practical applications that it is always concrete im-
plementation and testing that has to decide whether the administrative overhead

®For a vertex v € V/, we define G — v to be the graph G with v and the edges incident to v removed.
fNote that analogously to the case of data reduction, most of these branchings assume that only one
minimum solution is sought after. Since some graphs can have 2¥ minimum vertex covers, a size-
0(2") search tree for enumerating al/l minimum vertex covers requires the use of compact solution
representations as outlined by Damaschke [21] and is beyond the scope of this work.

12 Hiiffner, Niedermeier & Wernicke

caused by distinguishing more and more cases pays off. A simpler algorithm with
slightly worse bounds on the search tree size often turns out to be preferable in
practice. Here, recent progress with the analysis of search tree algorithms using
multivariate recurrences [27] might help: with this method, it was shown that
some simple algorithms perform in fact much better than previously proved [31].
Also, new algorithms were developed guided by the new analysis methods [31];
however, there is no practical experience yet with these approaches.

In combination with data reduction (see Sec. 1.3.1), the use of depth-bounded
search trees has proven itself quite useful in practice, allowing to find vertex covers
of more than ten thousand vertices in some dense graphs of biological origin [3].
Search trees also trivially allow for a parallel implementation: when branching
into subcases, each processor in a parallel setting can further explore one of these
branches with no additional communication required. Cheetham et al. [14] expose
this in their parallel VERTEX COVER solver to achieve a near-optimum (i.e., lin-
ear with the number of processors employed) speedup on multiprocessor systems.
Finally, it is generally beneficial to augment search tree algorithms with admis-
sible heuristic evaluation functions in order to further increase their performance
and memory efficiency by cutting away search tree parts that cannot lead to good
solutions [29, 51].

1.3. Case Studies from Graph-Modeled Data Clustering

This section surveys fixed-parameter algorithms and experimental results for three
important NP-complete problems from the realm of graph-modeled data cluster-
ing, namely CLIQUE, CLUSTER EDITING, and CLIQUE COVER. The purpose of
these case studies is twofold: First, they serve to teach in more detail the method-
ological approaches of designing kernelizations and depth-bounded search trees.
Second, the encouraging experimental results that are known for these problems
underpin the general usefulness of fixed-parameter algorithms for optimally solv-
ing NP-hard problems in graph-modeled data clustering.

1.3.1. Clique

A “classical” combinatorial problem that is closely connected to graph-modeled
data clustering is to find a clique in a graph, that is, a subset of vertices that are
fully connected.

CLIQUE
INPUT: An undirected graph G = (V, E) and a nonnegative

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 13

Fig. 1.3. A graph G with acrown JU H. The thick edges constitute a maximum matching of size | H |
in the bipartite graph that is induced by the edges between I and H.

integer k.
TASK: Find a k-vertex clique in G.

It is also a common task to enumerate maximal cliques in a graph, that is, all
cliques that are not a proper subset of any other clique.

CLIQUE is NP-hard [32] and hard to approximate in polynomial time [42]. In
a similar sense as it is generally assumed that P £ NP, it is strongly believed that
CLIQUE is not fixed-parameter tractable when parameterized by the size of the
cliques that are sought after [25]. Nevertheless, CLIQUE has a close connection
to the fixed-parameter tractable VERTEX COVER problem that we used as our
running example to introduce fixed-parameter techniques: If an n-vertex graph
contains a size-k clique, then its complement graph® contains a size-(n — k) vertex
cover and vice versa. This can be made use of when seeking after or enumerating
cliques.

1.3.1.1. Finding Maximum Cardinality Cliques

The catch when solving CLIQUE for a graph G by means of finding a minimum-
cardinality vertex cover for the complement graph G is that if the maximum size k
of a clique in G is rather small compared to its total number of vertices n, then G’
will have a rather large minimum-size vertex cover. Therefore, one has to rely
on effective data reduction rules that preprocess the complement graph G’ so that
depth-bounded search tree algorithms become practically applicable for the re-
duced graph that remains. One kernelization for VERTEX COVER that has proven
itself to be of particular practical importance in this respect is the so-called crown
reduction [1], which generalizes the VERTEX COVER data reduction rule VC2
(the elimination of degree-1 vertices by taking their neighbors into the cover) and
thus leads to a data reduction that requires no explicit knowledge of the parame-
ter k and yields a kernel with a number of vertices linear in k.

&That is, the graph that contains exactly those edges that are not contained in the original graph.

14 Hiiffner, Niedermeier & Wernicke

A crown in a graph consists of an independent set I (that is, no two vertices
in I are connected by an edge) and a set H containing all vertices adjacent to I. In
order for I U H to be a crown, there has to be a size-| H | matching in the bipartite
graph induced by the edges between I and H (i.e., one in which every vertex of H
is matched). An example for a crown structure is given in Fig. 1.3. If there is a
crown I U H in the input graph G, then we need at least | H| vertices to cover all
edges in the crown. But since all edges in the crown can be covered by taking at
most |H| vertices into the cover (as I is an independent set), there is a minimum-
size vertex cover for GG that contains all the vertices in H and none of the vertices
in I. We may thus delete any given crown I U H from G, reducing k by |H|.

It turns out that finding crowns can be achieved in polynomial time by com-
puting maximum matchings [18]. The size of the thus reduced instance is upper-
bounded via the following theorem.

Theorem 1.2 (Abu-Khzam et al. [1]). A graph that is crown-free and has a ver-
tex cover of size at most k can contain at most 3k vertices.

There are several kernelizations for VERTEX COVER that achieve a kernel of
O(k) vertices; some of these even yield an at-most-2k-vertex kernel, e.g., see
Ref. 1, 60. However, it has been found that crown reductions often offer a good
balance between the polynomial time that is required to compute the kernel and
the size that the reduced graphs usually turn out to have in practice [1-3].

Some quite successful implementations for solving CLIQUE rely on kerneliza-
tion techniques (especially crown reductions) for VERTEX COVER that are com-
bined with depth-bounded search trees [1, 2, 74]. The exploration of the search
trees is usually highly optimized, for instance, by using efficient data structures
and ensuring proper load balancing in parallel scenarios; details of these tech-
niques are described, e.g., by Abu-Khzam et al. [1] and Zhang et al. [74] Even
attempts to implement parts of the algorithms in hardware have been reported [3].

With the combination of kernelizations and depth-bounded search trees, it is
currently possible to find cliques that consist of over 400 vertices in some dense
graphs of biological origin within hours [3].

1.3.1.2. Enumerating Maximal Cliques

Instead of finding a single maximum-size clique in a graph, one would often like
to enumerate all cliques of maximal size. In graph-modeled data clustering, this
can have mainly two reasons: First, an enumeration obviously identifies all clus-
ters that are present in the data. Second, with an enumerative solution one can

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 15

include expert knowledge as to what cliques that are present in the input graph are
(biologically) “meaningful.”

Analogously to the task of finding a maximum-size clique, the task of enu-
merating maximal cliques in a graph is equivalent to enumerating minimal vertex
covers for its complement graph. To enumerate all maximal cliques in a graph, one
can therefore rely on kernelizations for VERTEX COVER that are suited for find-
ing all vertex covers up to a certain size [17] and on enumerative depth-bounded
search trees such as discussed by Damaschke [21]. However, so far there is no
empirical evidence of the practical viability of this approach.

An interesting result concerning the enumeration of maximal cliques that
makes a more “indirect” use of VERTEX COVER was recently shown by Ito et
al. [44]. It is based on an alternative parameterization other than the clique size.
This parameterization is based on the observation that the hardness of finding a
large clique in a graph is determined by the isolation of that clique, meaning that
if we restrict ourselves to finding cliques that have only a few edges to “external”
vertices outside of the clique, then this is a much easier task compared to finding
cliques that have many edges to external vertices. The intuitive reason for this
is that isolated cliques are better distinguishable from the remaining graph. To
quantify the isolation of a clique, Ito et al. [44] introduced the notion of an iso-
lation factor k. An i-vertex clique is said to be k-isolated if it has less than & - ¢
edges to external vertices. It turns out that enumerating all k-isolated cliques is
fixed-parameter tractable with respect to k. Komusiewicz et al. [49, 50] pointed
out an error in the algorithm and provided a corrected version.

Theorem 1.3. (Ito et al. [44], Komusiewicz et al. [49, 50]). All k-isolated cliques
in an m-edge graph can be enumerated in O(4" - k*>m) time.

The underlying algorithm of this result is based on a search tree for VER-
TEX COVER; the main achievement lies in showing that the isolation factor k£ can
also serve as a bound for the depth of this search tree, which is achieved by a
parameter-dependent data reduction. This nicely demonstrate the benefit of al-
ternative parameterizations for a problem. Ito et al. [44] mentioned that some
preliminary experiments suggest that the detection of isolated cliques is quite ef-
ficient in practice.

1.3.2. Cluster Editing

The CLUSTER EDITING problem is based on the assumption that the input graph
is a disjoint union of cliques—a so-called cluster graph—that has been perturbed

16 Hiiffner, Niedermeier & Wernicke
Fig. 1.4. Tllustration for the CLUSTER EDITING problem: By removing two edges from and adding

one edge to the graph on the left (that is, & = 3), we can obtain a graph that consists of two disjoint
cliques.

by adding or removing edges. CLUSTER EDITING appears as an important prob-
lem in the analysis of data from synthetic genetic arrays [8, 23].

CLUSTER EDITING

Input: An undirected graph G = (V, E') and a nonnegative in-
teger k.

Task: Modify G to consist of disjoint cliques by adding or
deleting at most k edges.

Figure 1.4 illustrates this problem. CLUSTER EDITING is NP-hard [53, 66],
and its minimization version can be approximated in polynomial time within a
factor of 4 [13]. A randomized expected factor-3 approximation algorithm was
given by Ailon et al. [4]. CLUSTER EDITING is also a special case of the COR-
RELATION CLUSTERING problem occurring in machine learning [6].

In what follows, we concentrate on a search tree-based fixed-parameter ap-
proach towards exactly solving CLUSTER EDITING. Here, the overall strategy is
based on an easy-to-see observation, namely that a cluster graph has a very special
structure: If two vertices are connected by an edge, then their neighborhoods must
be the same. Hence, whenever we encounter two connected vertices v and v in the
input graph G that are connected by an edge and where one vertex, say u, has a
neighbor w that is not connected to v, we call {u, v, w} a conflict triple of vertices
because it compels us to do one of three things: Either remove the edge {u, v},
or connect v with w, or remove the edge {u,w}. Each of these three modifica-
tions counts with respect to the parameter k and, therefore, exhaustively branching
into these cases for at most k forbidden substructures, we obtain a search tree of
size O(3%) to solve CLUSTER EDITING.

The search tree size can be significantly reduced. More specifically, a more so-
phisticated branching strategy gives a search tree size of O(2.27%) [34], which—
using computer-generated branching rules—has been further improved to a size
of 0(1.92%) [33]. The computer-generated result, however, is based on a quite
complicated branching with lots of case distinctions that might not be of practical
value. In the following, we describe the key observations and fundamental ideas
behind the improved search trees for CLUSTER EDITING. As a remark, there also

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 17

exist size-0(3%) search trees for enumerating all solutions to a given instance of
CLUSTER EDITING [20].

The basic approach to obtain the improved search trees for CLUSTER EDIT-
ING is to do a case distinction, where we provide for every possible situation ad-
ditional branching steps. The analysis of successive branching steps, then, yields
a better worst-case bound on the search tree size. To this end, we make use of two
annotations for unordered vertex pairs:

“permanent”: In this case, {u,v} € F and it is not allowed to delete {u, v};
“forbidden”: In this case, {u, v} ¢ F and it is not allowed to add {u, v}.

Clearly, if an edge {u, v} is deleted, then the vertex pair is made forbidden. If an
edge {u, v} is added, then the vertex pair is made permanent.

We distinguish three main situations that may apply when considering the
conflict triple {u, v, w}:

(C1) Vertices v and w do not share a common neighbor, that is, Vo € V,z # u :
{v,2} ¢ Eor{w,z} ¢ E.

(C2) Vertices v and w have a common neighbor = # v and {u, z} € E.

(C3) Vertices v and w have a common neighbor = # v and {u, z} ¢ E.

Regarding case (C1), the following lemma shows that a branching into two sub-
cases suffices.

Lemma 1.1. Given a graph G = (V, E), a nonnegative integer k, and a con-
flict triple u,v,w € V of vertices that satisfy case (C1) from above, adding the
edge {v,w} cannot yield a better solution than deleting one of the edges {u, v}
or {u,w}.

Proof. Consider a clustering solution G’ for G where we did add {v,w} (see
Fig. 1.5 for an example). We use Ngng'(v) to denote the set of vertices that
are neighbors of v in G and in G’. Without loss of generality, assume that
INang'(w)] < |Nengr(v)]. We then construct a new graph G” from G’ by
deleting all edges adjacent to w. It is clear that G” is also a clustering solution
for G. We compare the cost of the transformation G — G’ to that of the transfor-
mation G — G':

—1 for not adding {v, w},

+1 for deleting {u, w},

—|Ngngr (v)] for not adding all edges {w, z}, © € Ngng (v),
+|Nene (w)| for deleting all edges {w, z}, © € Ngngr (w).

18 Hiiffner, Niedermeier & Wernicke

—
Nena'(v) Nane (w)

Fig. 1.5. In case (Cl), adding the edge {v, w} does not need to be considered. Here, G is the given
graph and G’ is a clustering solution of G that adds the edge {v, w}. The dashed lines denote edges
being deleted to transform G into G’, and the bold lines denote edges being added. Observe that the
drawing only shows that parts of the graphs (in particular, edges) which are relevant for our argument.

Here, we omitted possible vertices which are neighbors of w in G’ but not in G:
they would only increase the cost of transformation G — G'.

In summary, the cost of G — G” is not higher than the cost of G — G’, that
is, we do not need more edge additions and deletions to obtain G’ from G than to
obtain G’ from G. O

As a consequence of Lemma 1.1, the search tree only has to branch into two
instead of three subcases in case (C1). Making use of the markers “permanent”
and “forbidden,” the standard branching into three subcases can also be avoided
in cases (C2) and (C3). Each of these cases, however, requires specific considera-
tions [34] which have to be omitted here.

Besides a search tree strategy for CLUSTER EDITING, also data reductions
yielding problem kernels are known for this problem. The first result was a prob-
lem kernel with O(k?) vertices [34] and this has recently been improved to a prob-
lem kernel with only O(k) vertices [28, 38]. For a practical solving algorithm, the
search tree has to be combined with the kernelization [23, 34, 59]. By splitting up
cases (C2) and (C3) further using a computer, we arrive at the following theorem.

Theorem 1.4 (Gramm et al. [33], Protti et al. [63]). CLUSTER EDITING can
be solved in O(1.92F + n + m) time.

For a recent implementation of the above strategy, experiments indicated that
the fixed-parameter approach outperforms a solution based on linear programming
and appears to be of practical use [23]. The implementation can solve certain
synthetic instances with n = 100 and 40 edit operations within an hour.

There are several problems closely related to CLUSTER EDITING that deserve
similar studies. Among these are the more general CORRELATION CLUSTERING

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 19

problem [6, 13] and the BICLUSTER EDITING problem [63, 69], the latter also
known to be fixed-parameter tractable [63].

1.3.3. Clique Cover

The model assumption for CLIQUE COVER is that the data forms overlapping
cliques, as opposed to the disjoint cliques that were the underlying model for
CLUSTER EDITING. In general, this clustering model is applicable whenever
various items carry an unknown subset of features, and two items will be measured
as similar whenever they have at least one feature in common. Then, the set of
items that carry one particular feature forms a clique. Therefore, finding a set
of cliques that covers all edges gives the most parsimonious explanation of the
data under this model: each clique corresponds to one feature. Guillaume and
Latapy [37] argue that this model is very widely applicable to discover underlying
structure in complex real-world networks.
Formally, the CLIQUE COVER problem is defined as follows:

CLIQUE COVER

Input: An undirected graph G = (V, E) and a nonnegative
integer k.

Task: Find a set of at most k cliques in G such that each edge
in F has both its endpoints in at least one of the selected cliques.

CLIQUE COVER is NP-hard [61], and there is strong evidence that it cannot
be approximated to a constant factor [55]. Therefore, the standard approach to
solving CLIQUE COVER in practice so far is to employ heuristics [47, 52, 62, 64].
Behrisch and Taraz [7] give simple greedy algorithms for CLIQUE COVER that
provide asymptotically optimal solutions for certain random intersection graphs.
However, because of the fundamental inapproximability of the problem, the re-
sults of these algorithms can become nearly arbitrarily bad for particular inputs.
This makes fixed-parameter algorithms, which provide optimal solutions, attrac-
tive. A natural parameter is the size of the feature set k, since it seems reasonable
to assume that there are much fewer features than items.

Gramm et al. [35] presented a parameterized approach to CLIQUE COVER,
which is based on data reduction. In fact, the fixed-parameter tractability of
CLIQUE COVER with respect to k is based on a problem kernel. The first two
rules that lead to this kernel are easy to see:

REDUCTION RULE CC1. Remove isolated vertices and ver-
tices that are only adjacent to covered edges.

20 Hiiffner, Niedermeier & Wernicke

REDUCTION RULE CC2. If there is an edge {u,v} whose
endpoints have exactly the same closed neighborhood, that is,
N[u] = NJv], then delete u. To reconstruct a solution for the
unreduced instance, add u to every clique containing v.

Rules CC1 and CC2 together suffice to show the problem kernel (the basic
underlying observation was already made by Gyarfas [41]).

Theorem 1.5 (Gyarfas [41] and Gramm et al. [35]). A CLIQUE COVER in-
stance reduced with respect to Rules CCI and CC2 contains at most 2F vertices
or, otherwise, has no solution.

Proof. Consider a graph G = (V, E) that is reduced with respect to Rules CC1
and CC2 and has a clique cover C'y, . . ., C, of size k. We assign to each vertex v €
V' a binary vector b, of length k where bit 7, 1 < ¢ < k, is set iff v is contained
in clique C;. If we assume that G has more than 2k vertices, then there must
be u # v € V with b, = b,. Since Rule CC1 does not apply, every vertex is
contained in at least one clique, and since b,, = b,, u and v are contained in the
same cliques. Therefore, u and v are connected. As they also share the same
neighborhood, Rule CC2 applies, in contradiction to our assumption that G is
reduced with respect to Rule CC2. Consequently, G cannot have more than 2*
vertices. O

By Theorem 1.1, this implies that CLIQUE COVER is fixed-parameter tractable
with respect to parameter k. Unfortunately, the worst-case size of a reduced in-
stance is still exponential, as opposed to the polynomially-sized kernels that are
known for VERTEX COVER and CLUSTER EDITING.

As an example of an advanced data reduction rule, we now formulate a gen-
eralization of Rule CC2. While one can show that this rule finds a strict superset
of the reduction opportunities of Rule CC2, it does not seem possible to use it to
improve the worst-case problem kernel size bound in Theorem 1.5. Nevertheless,
Rule CC2 improves the running time of solving CLIQUE COVER in practice, as
described below.

To discuss the advanced data reduction rule, we need some additional termi-
nology: For a vertex v, we partition the set of vertices that are connected by an
edge to v into prisoners p with N(p) C N (v) and exits z with N (z) \ N(v) # 0.
We say that the prisoners dominate the exits if every exit « has an adjacent pris-
oner. An illustration of the concept of prisoners and exits is given in Fig. 1.6.

REDUCTION RULE CC3. Consider a vertex v that has at least

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 21

Fig. 1.6. An illustration of the partition of the neighborhood of a vertex v. The two vertices with
rectangles are exits, the other white ones are prisoners.

one prisoner. If each prisoner is connected to at least one vertex
other than v via an edge, and the prisoners dominate the ex-
its, then delete v. To reconstruct a solution for the unreduced
instance, add v to every clique containing a prisoner of v.

Lemma 1.2. Reduction Rule CC3 is correct.

Proof. By definition, every neighbor of v’s prisoners is also a neighbor of v
itself. If a prisoner of v participates in a clique C, then C' U {v} is also a clique
in the graph. Therefore, it is correct to add v to every clique containing a prisoner
in the reduced graph. Next, we show that all edges adjacent to v are covered
by the cliques resulting by adding v to the cliques containing v’s prisoners. We
consider separately the edges connecting v to prisoners and edges connecting v
to exits. Regarding an edge {v, w} to a prisoner w, vertex w has to be part of a
clique C of the solution for the instance after application of the rule. Therefore,
the edge {v, w} is covered by C'U {v} in the solution for the unreduced instance.
Regarding an edge {v, 2} to an exit z, the exit x is dominated by a prisoner w and
therefore z has to be part of a clique C' with w. Hence, the edge {v, z} is covered
by C'U {v} in the solution for the unreduced instance. O

Concerning experimental results, Gramm et al. [35] implemented an algo-
rithm to optimally solve CLIQUE COVER that is based on four data reduction
rules (CC1-CC3 and one additional rule) and a simple branching strategy. The
implementation was able to solve within a few seconds 14 real-world instances
from an application in graphical statistics, with up to 124 vertices and more than
2700 edges [36]. Further experiments on random graphs showed that in particu-
lar sparse instances could be solved quickly. The algorithm relied mainly on the
data reduction rules: many instances were reduced to an empty instance before the
branching even began. By way of contrast, when the data reduction was not suc-

22 Hiiffner, Niedermeier & Wernicke

cessful, running times increased sharply. Additional experiments for the feature
model mentioned at the beginning of this section showed that random instances
with 100 items and up to 30 features could be solved within a few minutes.

Two reduction rules of Gramm et al. (Rule CC3 and another rule that we do
not discuss here) have so far not been proved to improve the size of the problem
kernel and are also quite slow to compute. For some instances, however, both rules
were beneficial, meaning that the obtained speedups for them instances were much
larger than observed slowdowns for other instances. This suggests the general
application of these rules, possibly with an additional heuristic to disable them
based on instance properties.

As a final note, unlike the CLUSTER EDITING model, CLIQUE COVER does
not take perturbed data into account. In practice, probably edges within feature
clusters are missing, and spurious edges exist. However, this can be handled with
a post-processing: as long as there are not too many errors, spurious edges will
be covered by size-2 cliques, which can be easily filtered; and a clique missing
an edge will be optimally covered by two cliques, and so in a post-processing one
can check for all pairs of cliques whether they could be merged by adding a small
number of edges.

1.4. Conclusion

We conclude our survey with a list of guidelines for the practical design of fixed-
parameter algorithms and some open challenges in the field.

1.4.1. Practical Guidelines

The following list sums up the experiences of our and other research groups who
have implemented fixed-parameter algorithms:

Fixed-Parameter Tractability in General

(1) Do not despair of bad upper bounds for fixed-parameter algorithms that
are given in theoretically oriented papers—the analysis is worst-case and
often much too pessimistic.

(2) Fixed-parameter algorithms are the better the smaller the parameter value
is. Hence, parameterizations with small parameter values should be
sought after.

(3) Most existing fixed-parameter algorithms in the literature are concerned
with optimization problems on unweighted graphs. Solving enumerative

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 23

problems and problems on weighted graphs therefore usually requires
some additional work to be done.

(4) Exponential memory consumption usually turns out to be more harmful
in practice than exponential time, especially in enumerative tasks. Using
memory-saving techniques generally pays off, even if this means some
decrease in time efficiency.

Data Reductions and Kernelizations

(1) One should always start by designing data reduction rules because these
are helpful in combination with basically any algorithmic technique that
is subsequently applied.

(2) The order of applying data reduction rules can significantly influence
the practical effectiveness and efficiency of the overall data reduction.
Experimental work is important to find good orderings.

(3) Even if a data reduction has no provable performance guarantee, it can
still turn out to be very effective in practice.

Depth-Bounded Search Trees

(1) The branching in a search tree can produce new opportunities for data
reduction. Therefore, data reductions should be applied repeatedly dur-
ing the course of the whole algorithm and not only as a preprocessing
step [59]. To achieve maximum efficiency, the exact frequency of apply-
ing data reductions may require some tuning.

(2) Search tree algorithms can be parallelized rather easily.

(3) Complicated case distinctions for the branching should be avoided when
a simpler search strategy is available that yields almost the same worst-
case running time bounds. The simpler strategy usually turns out to be
faster.

1.4.2. Challenges

While there has been substantial work on fixed-parameter algorithms for cluster-
ing problems and several examples show the potential of this approach, the field
is still quite young, and there remain a couple of challenges for future research:

e The CLIQUE model is often too restricted in applications; one would
rather prefer a notion of “dense subgraph” (e. g., Ref. 10, 43, 73). Except

24

Hiiffner, Niedermeier & Wernicke

for Ref. 44, 49, 50, we are not aware of fixed-parameter approaches for
such scenarios.

e For simplicity, many fixed-parameter approaches drop the requirement
to be able to handle weighted problems or to handle enumeration. Ex-
tensions of known results in this direction are desirable.

e Of our three case studies, CLIQUE COVER seems to be the least explored
problem. While kernels with a linear number of vertices are known for
VERTEX COVER and CLUSTER EDITING, the only known kernel for
CLIQUE COVER is of exponential size. Also, no search tree with a fixed-
parameter bound on its size is known for CLIQUE COVER except for a
trivial brute-force exploration of the problem kernel.

e Some works consider the variant of CLUSTER EDITING where there are
don’t care-edges that have zero editing cost [6]. It is not yet known
whether a fixed-parameter algorithm exists for this problem.

A particularly important challenge for future work is to bring progress from

fixed-parameter algorithmics to a broader audience by providing easily accessible
software tools that are finely tuned by algorithm engineering and additional tools
such as heuristics and parallelization.

References

(1]

(2]

(3]
(4]
(5]

(6]
(7]
(8]
(9]

F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters, and
C. T. Symons. Kernelization algorithms for the Vertex Cover problem: theory and
experiments. In Proc. 6th ALENEX, pages 62—-69. SIAM, 2004.

F. N. Abu-Khzam, M. A. Langston, and W. H. Suters. Fast, effective vertex cover
kernelization: A tale of two algorithms. In Proc. 3rd AICCSA. ACS/IEEE, 2005. 16
pages.

F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons. Scalable parallel
algorithms for FPT problems. Algorithmica, 45(3):269-284, 2006.

N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: rank-
ing and clustering. In Proc. 37th STOC, pages 684—693. ACM, 2005.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M.
Protasi. Complexity and Approximation: Combinatorial Optimization Problems and
Their Approximability Properties. Springer, 1999.

N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning,
56(1):89-113, 2004.

M. Behrisch and A. Taraz. Efficiently covering complex networks with cliques of
similar vertices. Theoretical Computer Science, 355(1):37-47, 2006.

A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6(3—4):281-297, 1999.

M. Benson, M. A. Langston, M. Adner, B. Andersson, A. Torinsson Naluai, and L. O.

(10]
(11]
[12]
[13]

(14]

(15]

[16]

(17]

(18]

(19]
[20]
(21]
(22]
(23]
[24]
[25]
[26]
(27]
(28]

[29]

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 25

Cardell. A network-based analysis of the late-phase reaction of the skin. The Journal
of Allergy and Clinical Immunology, 118(1):220-225, 2006.

S. Butenko and W. E. Wilhelm. Clique-detection models in computational biochem-
istry and genomics. European Journal of Operational Research, 173(1):1-17, 2006.
L. Cai, J. Chen, R. Downey, and M. R. Fellows. Advice classes of parameterized
tractability. Annals of Pure and Applied Logic, 84:119-138, 1997.

L. Sunil Chandran and Fabrizio Grandoni. Refined memorisation for Vertex Cover.
Information Processing Letters, 93(3):125-131, 2005.

M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information.
Journal of Computer and System Sciences, 71(3):360-383, 2005.

J. Cheetham, F. K. H. A. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon. Solving
large FPT problems on coarse-grained parallel machines. Journal of Computer and
System Sciences, 67(4):691-706, 2003.

J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for Vertex
Cover. In Proc. 31st MFCS, volume 4162 of LNCS, pages 238-249. Springer, 2006.
E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C. Hsu, J. D. Mountz, N. E.
Baldwin, M. A. Langston, D. W. Threadgill, K. F. Manly, and R. W. Williams. Com-
plex trait analysis of gene expression uncovers polygenic and pleiotropic networks
that modulate nervous system function. Nature Genetics, 37:233-242, 2005.

M. Chlebik and J. Chlebikova. Improvement of Nemhauser—Trotter theorem and its
applications in parameterized complexity. In Proc. 9th SWAT, volume 3111 of LNCS,
pages 174—186. Springer, 2004.

B. Chor, M. R. Fellows, and D. W. Juedes. Linear kernels in linear time, or how
to save k colors in O(n?) steps. In Proc. 30th WG, volume 3353 of LNCS, pages
257-269. Springer, 2004.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

P. Damaschke. On the fixed-parameter enumerability of Cluster Editing. In Proc. 31st
WG, volume 3787 of LNCS, pages 283-294. Springer, 2005.

P. Damaschke. Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction. Theoretical Computer Science, 351(3):337-350, 2006.

M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394-397, 1962.

F. K. H. A. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and Y. Zhang. The
Cluster Editing problem: Implementations and experiments. In Proc. 2nd IWPEC,
volume 4169 of LNCS, pages 13-24. Springer, 2006.

R. Diestel. Graph Theory. Springer, 3rd edition, 2005.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

L. Drori and D. Peleg. Faster exact solutions for some NP-hard problems. Theoretical
Computer Science, 287(2):473-499, 2002.

D. Eppstein. Quasiconvex analysis of backtracking algorithms. In Proc. 15th SODA,
pages 788-797. ACM/SIAM, 2004.

M. R. Fellows, M. A. Langston, F. Rosamond, and P. Shaw. Polynomial-time linear
kernelization for Cluster Editing. Manuscript, 2006.

A. Felner, R. E. Korf, and S. Hanan. Additive pattern database heuristics. Journal of
Artificial Intelligence Research, 21:1-39, 2004.

26

(30]
(31]

(32]

(33]

(34]

(35]

(36]

(37]
(38]
(39]

[40]

(41]
[42]
[43]
[44]

[45]

[46]

[47]

(48]
(49]

Hiiffner, Niedermeier & Wernicke

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

F. V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and anal-
ysis of exact (exponential) algorithms. Bulletin of the EATCS, 87:47-77, 2005.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

J. Gramm, J. Guo, F. Hiiffner, and R. Niedermeier. Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica, 39(4):321-347,
2004.

J. Gramm, J. Guo, F. Hiiffner, and R. Niedermeier. Graph-modeled data clustering:
Exact algorithms for clique generation. Theory of Computing Systems, 38(4):373—
392, 2005.

J. Gramm, J. Guo, F. Hiiffner, and R. Niedermeier. Data reduction, exact, and heuris-
tic algorithms for clique cover. In Proc. 8th ALENEX, pages 86-94. SIAM, 2006.
Long version to appear under the title “Data reduction and exact algorithms for clique
cover” in ACM Journal of Experimental Algorithmics.

J. Gramm, J. Guo, F. Hiiffner, R. Niedermeier, H.-P. Piepho, and R. Schmid. Al-
gorithms for compact letter displays: Comparison and evaluation. Computational
Statistics & Data Analysis, 2006. To appear.

J.-L. Guillaume and M. Latapy. Bipartite structure of all complex networks. Informa-
tion Processing Letters, 90(5):215-221, 2004.

J. Guo. A more effective linear kernelization for cluster editing. In Proc. ESCAPE,
LNCS. Springer, 2007. To appear.

J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.
ACM SIGACT News, 38(1):31-45, 2007.

J. Guo, R. Niedermeier, and S. Wernicke. Parameterized complexity of generalized
Vertex Cover problems. In Proc. 9th WADS, volume 3608 of LNCS, pages 36—48.
Springer, 2005. Long version to appear under the title “Parameterized complexity of
Vertex Cover variants” in Theory of Computing Systems.

A. Gyirfas. A simple lower bound on edge coverings by cliques. Discrete Mathemat-
ics, 85(1):103-104, 1990.

J. Hastad. Clique is hard to approximate within n
182(1):105-142, 1999.

K. Holzapfel, S. Kosub, M. G. MaaB}, and H. T4dubig. The complexity of detecting
fixed-density clusters. Discrete Applied Mathematics, 154(11):1547-1562, 2006.

H. Ito, K. Iwama, and T. Osumi. Linear-time enumeration of isolated cliques. In Proc.
13th ESA, volume 3669 of LNCS, pages 119-130. Springer, 2005.

H. Kawaji, Y. Takenaka, and H. Matsuda. Graph-based clustering for finding dis-
tant relationships in a large set of protein sequences. Bioinformatics, 20(2):243-252,
2004.

H. Kawaji, Y. Yamaguchi, H. Matsuda, and A. Hashimoto. A graph-based clustering
method for a large set of sequences using a graph partitioning algorithm. Genome
Informatics, 12:93-102, 2001.

E. Kellerman. Determination of keyword conflict. IBM Technical Disclosure Bulletin,
16(2):544-546, 1973.

J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2005.

C. Komusiewicz. Various isolation concepts for the enumeration of dense subgraphs.

=€ Acta Mathematica,

(501

(51]

[52]

(53]

[54]

[55]
[56]

[57]

(58]
(591
[60]
[61]
[62]

[63]

[64]

[65]
[66]

[67]
[68]

Fixed-Parameter Algorithms for Graph-Modeled Data Clustering 27

Diplomarbeit, Institut fiir Informatik, Friedrich-Schiller-Universitit Jena, 2007.

C. Komusiewicz, F. Hiiffner, H. Moser, and R. Niedermeier. Isolation concepts for
enumerating dense subgraphs. In Proc. 13th COCOON, volume 4598 of LNCS, pages
140-150. Springer, 2007.

R. E. Korf, M. Reid, and S. Edelkamp. Time complexity of iterative-deepening-A*.
Artificial Intelligence, 129:199-218, 2001.

L. T. Kou, L. J. Stockmeyer, and C.-K. Wong. Covering edges by cliques with re-
gard to keyword conflicts and intersection graphs. Communications of the ACM,
21(2):135-139, 1978.

M. Kfivanek and J. Mordvek. NP-hard problems in hierarchical-tree clustering. Acta
Informatica, 23(3):311-323, 1986.

M. A. Langston, A. D. Perkins, D. J. Beare, R. W. Gauldie, P. J. Kershaw, J. B.
Reid, K. Winpenny, and A. J. Kenny. Combinatorial algorithms and high performance
implementations for elucidating complex ecosystem relationships from North Sea
historical data. In Proc. International Council for the Exploration of the Sea Annual
Science Conference, 2006.

C. Lund and M. Yannakakis. On the hardness of approximating minimization prob-
lems. Journal of the ACM, 41:960-981, 1994.

S. Mecke and D. Wagner. Solving geometric covering problems by data reduction. In
Proc. 12th ESA, volume 3221 of LNCS, pages 760-771. Springer, 2004.

K. Mehlhorn. Data Structures and Algorithms, Volume 2: NP-Completeness and
Graph Algorithms. EATCS Monographs on Theoretical Computer Science. Springer,
1984.

Z. Michalewicz and B. F. Fogel. How to Solve it: Modern Heuristics. Springer, 2nd
edition, 2004.

R. Niedermeier and P. Rossmanith. A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters, 73:125-129, 2000.

R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006.

J. B. Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes
Mathematicae (Proceedings), 80(5):406—424, 1977.

H.-P. Piepho. An algorithm for a letter-based representation of all-pairwise compar-
isons. Journal of Computational and Graphical Statistics, 13(2):456-466, 2004.

F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applying modular decomposition to
parameterized Bicluster Editing. In Proc. 2nd IWPEC, volume 4169 of LNCS, pages
1-12. Springer, 2006.

S. Rajagopalan, M. Vachharajani, and S. Malik. Handling irregular ILP within con-
ventional VLIW schedulers using artificial resource constraints. In Proc. CASES,
pages 157-164. ACM, 2000.

S. Seno, R. Teramoto, Y. Takenaka, and H. Matsuda. A method for clustering expres-
sion data based on graph structure. Genome Informatics, 15(2):151-160, 2004.

R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173-182, 2004.

V. V. Vazirani. Approximation Algorithms. Springer, 2001.

B. H. Voy, J. A. Scharff, A. D. Perkins, A. M. Saxton, B. Borate, E. J. Chesler, L. K.
Branstetter, and M. A. Langston. Extracting gene networks for low-dose radiation

28

[69]
[70]

[71]
[72]

(73]

[74]

Hiiffner, Niedermeier & Wernicke

using graph theoretical algorithms. PLoS Computational Biology, 2(7):e89, 2006.

L. Wang, Y. Lin, and X. Liu. Approximation algorithms for bi-clustering problems.
In Proc. 6th WABI, volume 4175 of LNBI, pages 310-320. Springer, 2006.

K. Weihe. Covering trains by stations or the power of data reduction. In Proc. Ist
ALEX, pages 1-8, 1998.

D. B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.

G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Proc. 5th
IWCO, volume 2570 of LNCS, pages 185-208. Springer, 2003.

H. Yu, A. Paccanaro, V. Trifonov, and M. Gerstein. Predicting interactions in protein
networks by completing defective cliques. Bioinformatics, 22(7):823-829, 2006.

Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, Michael A. Langston, and
Nagiza F. Samatova. Genome-scale computational approaches to memory-intensive
applications in systems biology. In Proc. 18th SC, page e12. IEEE Computer Society,
2005.

Chapter 2

Probabilistic Distance Clustering: Algorithm and Applications

C. Iyigun
RUTCOR—Rutgers Center for Operations Research, Rutgers University
640 Bartholomew Rd., Piscataway, NJ 08854-8003, USA
Email: iyigun@rutcor.rutgers.edu

A. Ben-Israel

RUTCOR—Rutgers Center for Operations Research, Rutgers University
640 Bartholomew Rd., Piscataway, NJ 08854-8003, USA
Email: adi.benisrael @ gmail.com

The probabilistic distance clustering method of the authors [2, 8], assumes the
cluster membership probabilities given in terms of the distances of the data points
from the cluster centers, and the cluster sizes. A resulting extremal principle
is then used to update the cluster centers (as convex combinations of the data
points), and the cluster sizes (if not given.) Progress is monitored by the joint
distance function (JDF), a weighted harmonic mean of the above distances, that
approximates the data by capturing the data points in its lowest contours. The
method is described, and applied to clustering, location problems, and mixtures
of distributions, where it is a viable alternative to the Expectation-Maximization
(EM) method. The JDF also helps to determine the “right” number of clusters
for a given data set.

2.1. Introduction

We take data points to be vectors x = (x1,...,%,) € R"™, and a dataset D
consisting of N data points {x1, X2, ... xn}. A cluster is a set of data points
that are similar, in some sense, and clustering is a process of partitioning a data
set into disjoint clusters.

In distance clustering (or d—clustering), “similarity” is interpreted in terms
of a distance function d(x,y) in R, such as

d(XaY) = HX_Y||7 VX,yeRn, (21)

29

30 lyigun & Ben-Israel

where || - || is a norm. In particular, the Mahalanobis distance with the norm,
[uf| = (u, 5" u)'/?, 2.2)
where X is the covariance matrix of the data involved.

Example 2.1. A data set in R? with N = 1100 data points is shown in Fig. 2.1.
The data on the left was simulated from a normal distribution N (u,), with:

0.0005 0O .
py = (2,0), ¥1 = (0 0'05) , (100 points) ,

and the data on the right consist of 1000 points, simulated in a circle of diameter
1 centered at p, = (3,0) according to a radially symmetric distribution with
Prob{||x — p,|| <7} =2r,0<r < 5.

This data will serve as illustration in Examples 2.2-2.3 below.

0.8

0.6

04F

0.2r

~02F

04t

-06r

Fig. 2.1. A data set in R?

In d—clustering each point is typically assigned to the cluster with the near-
est center. After each assignment, the cluster centers may change, requiring a
re—classification of the data points. A d—clustering algorithm will therefore it-
erate between centers and re—assignments. The best known such method is the
k-means clustering algorithm, see Hartigan [5].

Probabilistic Distance Clustering: Algorithm and Applications 31

In probabilistic clustering the cluster membership is expressed by probabil-
ities pr(x) = Prob {x € Cj}, that a data point x belongs to the cluster C. In
probabilistic d—clustering these probabilities depend on the relevant distances.

Probabilistic d—clustering adjusted for the cluster size g, is called probabilistic
{d,q}—clustering.

An algorithm for probabilistic {d,q}—clustering, called the PDQ Algorithm,
is presented in Sec. 2.2. It updates the cluster centers, and the cluster sizes (if not
given) using the extremal principle of Sec. 2.2.3.

A byproduct of this approach is the joint distance function, see Sec. 2.2.2,
a function that captures the data in its low level sets, and provides a continuous
approximation of a discrete data set, using few parameters.

In Sec. 2.4 we apply the PDQ algorithm to estimation of the parameters of
Gaussian mixtures, and report the results in Sec. 2.5.

The PDQ algorithm is also effective for solving capacitated multi—facility lo-
cation problems, see Sec. 2.6.

Another application of the PDQ algorithm is for determining the “right” num-
ber of clusters, see Sec. 2.7.

For other approaches to probabilistic clustering see the surveys in Hoppner et
al. [7], Tan et al. [14]. A unified optimization framework for clustering was given
by Teboulle [15].

2.2. Probabilistic {d,q}-Clustering

Let a data set D C R™ be partitioned into K clusters {Cy, : k=1,--- , K},
K
D= U Ck (2.3)
k=1

let ¢y, be the center (in some sense) of the cluster Cy, and let g;, be the cluster size,
which is known in some applications, and an unknown to be estimated in others.
In what follows the cluster sizes, or their estimates, are assumed given wherever
appearing in the right hand side of a formula.

With each data point x € D, and a cluster Cj, with center ¢y, we associate:

e a distance dj (x, ci), also denoted di(x), or just dy, if x is understood,
e a probability of membership in Cy, denoted py(x), or just py.

In general, the distance functions di(-) are different for different clusters. In
particular, different Mahalanobis distances

dp(x) = (x — e, 2 H(x — ep)) 2, (2.4)

32 Iyigun & Ben-Israel

using estimates {cg, 3 } for the cluster in question.

There are several ways to model the relationship between distances and prob-
abilities [2, 8]. The following assumption is our basic principle.
Principle. For each x € D and cluster Cy, the probability py(x) satisfies

Pr(x) di (x)

= constant, say D(x), depending on x . (2.5)
dk

Cluster membership is thus more probable the closer the data point is to the cluster
center and the bigger the cluster.

2.2.1. Probabilities

From the above principle, and the fact that probabilities add to 1 we get

Theorem 2.1. Let the cluster centers {c1, Ca, ..., Cx } be given, let x be a data
point, and let {d(x) : k = 1,..., K} be its distances from the given centers.
Then the membership probabilities of x are
d;(x)
pe(x)= 2 k=1, K. (2.6)
d; (%)
> I =
i=1 j#i 4

Proof. Using (2.5) we write for i, k
pi(x) = (pk(x)dk(X)) / (di(x)) |

qk qi

Since Sp(0 =1 03" (el

‘ i1 di(x)/q;
1 1 4,09/
pr(x) = K /dy = KJ O
(x)/ax (%
1;1 < d’L(X)/Ql) 1;1 jl;_é[i dJ()/qJ
In particular, for K=2,
da2(x)/q2 di(x)/q

pi(x) = pa(x) = 2.7

di(x)/q1 + d2(x)/q2 di(x)/q1 + d2(x)/q2

Probabilistic Distance Clustering: Algorithm and Applications 33

and for K = 3,

p (X) _ do (X)dB (X)/(I2CI3
' d1(x)d2(x)/q1q2 + d1(x)d3(x)/q1q3 + da2(x)d3(x)/q2q3

etc.

;o (2.8

2.2.2. The Joint Distance Function

We denote the constant in (2.5) by D(x), a function of x. Since the probabilities

pr(x) = D(x)/ (qu(:)> L k=1,... K,
K dj X
add to 1 we get, 1:[1 q(.)
D(x) = % . (2.9)
1=
i=1 j#1¢ a;

D(x) is called the joint distance function (abbreviated JDF) of x, and is,
up to a constant, the harmonic mean of the K weighted distances {dj(x)/qx},
see [1].

In particular, for K = 2,

_ di(x)da(x)/q1ge
D) = di(x)/q1 + da(x)/q2 10
and K = 3,
D(x) = d1(x) da2(x) d3(x)/ 019243 @.11)

di(x) d2(x)/q1g2 + d1(x) d3(x)/q193 + d2(x) d3(x)/q2g3

Example 2.2. Figure 2.2(a) shows level sets of the JDF (2.10) for the data of
Example 2.1.

2.2.3. An Extremal Principle

The principle (2.5) may be derived from an extremal principle. For notational
simplicity we consider here the case of 2 clusters, the results in the general case
are analogous.

34 lyigun & Ben-Israel

(a) Level sets of the JDF (b) Level sets of cluster probabilities

Fig. 2.2. Results returned by the PDQ algorithm (Algorithm 1 below) for the data of Example 2.1

Let x be a given data point with distances d; (x), d2(x) to the cluster centers,
and assume the cluster sizes ¢;, g2 known. Then the probabilities in (2.7) are the
optimal solutions of the extremal problem

di(x)p? da(x)p3

min + 2.12)
q1 q2
st. pr+p2=1
p1, p2 >0
Indeed, the Lagrangian of this problem is
di(x)p? da(x)p?
L(p1,p2, A) = 1) Py + 2(x) Py + A1 —p1 +p2) (2.13)

q1 q2

and zeroing the partials 0L /Jp; gives the principle (2.5).
Substituting the probabilities (2.7) in (2.13) we get the optimal value of (2.12),

L (). pa(0) = o e 0.1

which is again the JDF (2.10).
The corresponding extremal problem for the data set D = {x1, X2, ..., XN}

Probabilistic Distance Clustering: Algorithm and Applications 35

is

N . o . o
min Z <d1(z)p1(z) n da(i) p2(i)) (2.15)

where p1(7), p2(7) are the cluster probabilities at x; and d; (i), d2(7) are the cor-
responding distances. The problem separates into N problems like (2.12), and its
optimal value is

al /(J1(I2
Z /ql S AT (2.16)

the sum of the joint distance functions of all points.

2.2.4. An Extremal Principle for the Cluster Sizes

Taking the cluster sizes as variables in the extremal principle (2.15),

min Z (dl(l) p1(7) + da (1) p2 (i)) (2.17)
—1 a1 42
st. ¢1+¢@=N
q1,q2 >0

with p1(2), p2(7) assumed known, we have the Lagrangian

N NI N
L2) =Y (dl(l)qlil(l) 1000) S @+ a2~ N) (2.18)

i=1 42

Zeroing the partials 9L /dq;, gives,

(=,
G=5 <Z dk(z)pk(z)2> L k=1,2, (2.19)

and since ¢; + ¢2 = N,

E=1,2. (2.20)

36 Iyigun & Ben-Israel

2.2.5. Centers

Dealing first with the case of 2 clusters, we rewrite (2.15) as a function of the
cluster centers,

N , 2 , N2
f(ei,cz) = Z (dl(ch;ipl(xl) + dQ(X“czZPQ(Xl)) (2.21)
=1

and look for centers c;, co minimizing f.

Theorem 2.2. Let the distance functions d1, ds in (2.21) be elliptic,

d(x, cr) = ((x — i), Qrx —cp))/*, E=1,2, (2.22)
where (Q1, Q2 are positive definite, so that
N 32
fler,e2) = Z <\/<(; —c1),Q1(xi —¢1)) pl(q)?)
32
+ \/ i — o), (xi—c2)>m%)) . (223)

and let the probabilities py,(x;) and cluster sizes qy, be given. If the minimizers
c1,C2 0f (2.23) do not coincide with any of the data points x;, they are given by

a up(x;) a uQx

e B o] L PCe:
=l Zl 1 (%) =l Z uz(x¢)

t=

t=1

(dQ(Xi,CQ))Q 1
q2 di(x;,c1)

where

uy(x;) = ;
(dl(Xi,Cﬂ n d2(Xi702))2
q1 q2
(2.25)
(dl(xi,c1)>2 1
ds(x;,C
UQ(Xl) _ q1 2(2) s
(dl(Xi,Cﬂ n d2(Xi702))
q1 q2
or equivalently, in terms of the probabilities (2.7),
pl(xi)Q pz(Xi)Q
;) = A)= —— 2.26
w(xi) di(xi,c1) ua(xi) dz(xi,c2) (2.26)

Probabilistic Distance Clustering: Algorithm and Applications 37

Proof. The gradient of d(x,¢) = ((x — ¢), Q(x — c)>1/2 with respect to ¢ is

1/2 _ Q(x—c)
Ve —c), —c =—-—= - -
<(X) Q(X)> <(xfc),Q(x7c)>1/2 2.27)
_Qx—¢)
d(x,c)

assuming x # c. Therefore if c1, co do not coincide with any of the data points
X;, we have

- (Xl)Q
Ve, f(c1,c2) = ka dk Tt (2.28)

Setting the gradient equal to zero, “cancelling” the matrix) and the common
factor qj, and summing like terms, we get

N
pk(xl pk Xl
; (dk(Xz,Ck) <l§: di(xi, ck)) k>

proving (2.24) and (2.26). Substituting (2.7) in (2.26) then gives (2.25).]

Note: The theorem holds also if a center coincides with a data point, if we interpret
oo/oo as 1 in (2.24).
Theorem 2.2 applies, in particular, to the Mahalanobis distance (2.4)
d(x,ci) = \/(x —)8 H(x —cr)

where Y, is the (given or computed) covariance matrix of the cluster Cy.

For the general case of K clusters it is convenient to use the probabilistic form
(2.26).

Corollary 2.1. Consider a function of K centers

fler,ea,... ek Z Z (d’“ i G p’“(xl)) (2.29)

k=1 i=1

an analog of (2.21). Then, under the hypotheses of Theorem 2.2, the minimizers

of f are
al (ur(X;)) . _ pk(Xi)Q
E x;, withug(x;) = ————, (2.30)

up(x0) d (x4, ck)

Mz

t=1

fork=1,... K.

Proof. Same as the proof of Theorem 2.2. U

38 Iyigun & Ben-Israel

Note: Formula (2.30) is an optimality condition for the centers cj, expressing
them as convex combinations of the data points x;, with weights wuy(x;) depend-
ing on the centers cy. Itis used iteratively in Step 3 of Algorithm 1 below to update
the centers, and is an extension to several facilities of the well-known Weiszfeld
iteration for facility location, see [13, 17]. This formula, and the corresponding
formulas (2.20) for the cluster sizes, are applied in [9] for solving multi—facility
location problems, subject to capacity constraints.

2.2.6. The Centers and the Joint Distance Function

The centers obtained in Theorem 2.2 are stationary points for the joint distance
function (2.16), written as a function of the cluster centers c1, cs,

di(x;,¢1) d2(x4, c2)

Q1QQ
. 2.31
Xucl + dz(Xi,Cz) 2.31)

q1 g2

Cl)CQ

HMz

Theorem 2.3. Let the distances dy.(x;, ck) in (2.31) be elliptic. Then the station-
ary points of the function F' are c1, co given by (2.24)—(2.26).

Proof. Using (2.27), and simplifying, we derive

(o)

- (dm m)

q2

Vcl Cl) C2 (2.32)

-

Setting V¢, F'(cq,c2) equal zero, and summing like terms, we obtain the center
c; as in (2.24)—(2.26). The statements about c, are proved similarly. O

2.3. The PDQ Algorithm

The above ideas are implemented in an algorithm for the unsupervised clustering
of data. We call it the PDQ Algorithm (P for probability, D for distance and Q
for the cluster sizes.)

For simplicity, we describe the algorithm for the case of 2 clusters.

Probabilistic Distance Clustering: Algorithm and Applications 39

Algorithm 1. The PDQ Algorithm.

Initialization: given data set D with N points,
any two centers ¢, Ca,
any two cluster sizes q1,q2, g1 + g2 = N,

e>0
Iteration:
Step 1 compute distances from cq, co for all x € D
Step 2 update the cluster sizes q;, q5 (using (2.20))
Step 3 update the centers c;, c5 (using (2.24)—(2.25))
Step 4 if ¢ —c1]| + |lcj —c2f <€ stop

return to step 1

The algorithm iterates between the cluster size estimates (2.20), the cluster
centers, (2.24), expressed as stationary points for the JDF (2.21), and the dis-
tances of the data points to these centers. The cluster probabilities, (2.7), are not
used explicitly.

Remarks

(a) The distances used in Step 1 can be Euclidean or elliptic (the formulas
(2.24)—(2.25) are valid in both cases.)
(b) In particular, if the Mahalanobis distance (2.2)

d(xex) =/ (x —)75 (x -)

is used, the covariance matrix >, of the kth—cluster, can be estimated at
each iteration by

N
> un(xi)(xi — ex) (x; — ex)
v, = =L (2.33)

with uy(x;) given by (2.25).

(c) If the cluster sizes g1, g2 are known, they are used as the initial estimates
and are not updated thereafter, in other words, Step 2 is absent.

40 Iyigun & Ben-Israel

(d) The computations stop (in Step 4) when the centers stop moving, at
which point the cluster membership probabilities may be computed by
(2.7). These probabilities are not used in the algorithm, but can be used
later to determine “rigid” clusters, say by assigning each data point to the
cluster with the highest probability. In our experience, these final clusters
give better estimates of centers and covariance matrices.

Example 2.3. Figure 2.2(b) shows probability level sets for the data of Exam-
ple 2.1, as determined by the principle (2.5) using the centers and covariances
computed by Algorithm 1.

2.4. Estimation of Parameters of Normal Distribution

The PDQ Algorithm of Sec. 2.3 is an alternative to the well known Expectation—
Maximization (EM) method for de-mixing distributions [10]. Given observations
from a density ¢(x), that is itself a mixture of two densities,

$(x) =mh1(x) + (1 —) P2(x) (2.34)

it is required to estimate the weight 7, and the relevant parameters of the distribu-
tions ¢1 and ¢».
A common situation is when the distribution ¢ is a mixture of normal distri-
butions ¢y, each with its mean c; and covariance YJ;, that need to be estimated.
For the purpose of comparison with Algorithm 1, we present here the EM
Method for a Gaussian mixture (2.34) of two distributions,

or(x) = m exp{—2(x—ci)" S (x—ci)} . (2.35)

For further detail see, e.g., Hastie et al. [6].

Probabilistic Distance Clustering: Algorithm and Applications 41
Algorithm 2. The EM Method.
Initialization: given data set D with IV points,
initial guesses for the parameters ¢, €2, f)l, f)g,fr
Iteration:
Step 1: For all x; € D compute the “responsibilities” :
TP1(X;
p1(X1) = — (bl(Z)A ,
Th1(x:) + (1 — &) (xs)
p2(xi) =1 —pi(x;) -
Step 2 update the centers and covariances:
N
N k(X
Cp — Z <]\Z])(71)> X,
=1 Zj:l pr(x;)
N
o % (% . .
Y= 715 (xi) (xi —er)(xi —ep) k=1,2
i=1 \ 2 PR(%;)
Step 3 update the mixing probabilities (weights):
N
P Z¢:1 pi(xi)
N
Step 4 stop or return to step 1
Remarks

(a) The “responsibilities” in Step 1 correspond to the cluster membership

probabilities in Algorithm 1.

(b) Step 1 requires, for each data point, both the Mahalanobis distance (2.2),

and the evaluation of the density (2.35).
(c) Step 2 is computationally similar to Step 3 of Algorithm 1.

(d) The stopping rule (Step 4) is again the convergence of centers as in Al-

gorithm 1.

Method (Algorithm 2)

2.4.1. A Comparison of the PDQ Algorithm (Algorithm 1) and the EM

(a) The EM Algorithm is based on maximum likelihood, and therefore de-
pends on the density functions in the mix, requiring different compu-
tations for different densities. The PDQ Algorithm is parameter free,

42

(b)

©)

(d)

(e)

Iyigun & Ben-Israel

making no assumptions about the densities, and using the same formulas
in all cases.

In each EM iteration the density functions must be evaluated, requiring
K N function evaluations (in Step 1) where K is the number of densities
in the mixture. In comparison, the PDQ iterations are cheaper, requiring
no function evaluations.

Because the EM iterations are costly, it is common to use another
method, e.g., the K—means method, as a pre—processor, to get closer
to the centers before starting EM. The PDQ Algorithm needs no such
switch, and works well from a cold start.

If correct assumptions are made regarding the mixing distributions, then
the EM method has an advantage over the PDQ method, as illustrated in
Example 2.6 below.

While the numerical comparison between the two algorithms should best
be left to others, our preliminary tests show the two algorithms to be
roughly equivalent in terms of the returned results, with the PDQ Algo-
rithm somewhat faster.

2.5. Numerical Experiments

In Examples 2.4-2.6 below the PDQ and EM Algorithms were applied to the
same data, in order to compare their performance. The results are reported in
Tables 2.1-2.4. These examples are typical representatives of many numerical
tests we did.

Both programs used here were written in MATLAB, the EM code by Tsui [16],

and the PDQ code by the first author.

()

(b)

(©

The comparison is subject to the following limitations:

The EM program code uses the K—means method (Hartigan [5]) as a
preprocessor to get a good start. The number of iterations and running
time reported for this program in Table 2.4 is just for the EM part, not
including the time for the /K{—means part.

Our PDQ code is the first un—optimized, un—finessed version, a verbatim
implementation of Algorithm 1.

The number of iterations depends on the stopping rule. In the PDQ Al-
gorithm, the stopping rule is Step 4 of Algorithm 1, and the number of
iterations will increase the smaller is €. In the EM Algorithm the stop-
ping rule does involve also the convergence of the likelihood function,
and the effect of the tolerance ¢ is less pronounced.

Probabilistic Distance Clustering: Algorithm and Applications

43

Table 2.1. A comparison of methods for the data of Example 2.1
True Parameters The PDQ Algorithm The EM Method
(Algorithm 1) (Algorithm 2)
Centers c1=(2,0) €¢1=(2.0036 , -0.0542) ¢1=(2.0011 , -0.0284)
c2=(3,0) €9=(2.9993 , -0.0010) €2=(3.0033, -0.0018)
Covariance | S= 0.0005 0 5= 0.0004 —0.0001 = 0.0004 —0.0001
0 05 —0.0001 0.0446 —0.0001 0.0442
Matrices
Sy 0.0402 0.0014 $ym 0.0399 —0.0020 Sy 0.0398 —0.0020
0.0014 0.0430 —0.0020 0.0432 —0.0020 0.0431
Weights (0.0909, 0.9090) (0.0932, 0.9068) (0.0909, 0.9091)
Table 2.2. A comparison of methods for the data of Example 2.5
True Parameters The PDQ Algorithm The EM Method
(Algorithm 1) (Algorithm 2)
Centers | ¢1=(0,0) ¢1=(0.0023 ,-0.0022) | ¢1=(0.5429 ,-0.0714)
c2=(1,0) €2=(1.0080 , 0.0063) | ¢2=(1.0603,0.02451)
Weights | (0.0476,0.9524) | (0.0534, 0.9466) (0.1851,0.8149)

(d) The number of iterations depends also on the initial estimates, the better
the estimates, the fewer iterations will be required. In our PDQ code
the initial solutions can be specified, or are randomly chosen. The EM
program gets its initial solution from its K'—means preprocessor.

Example 2.4. Algorithms 1 and 2 were applied to the data of Example 2.1. Both
algorithms give good estimates of the true parameters, see Table 2.1. The com-
parison of running time and iterations is inconclusive, see Table 2.4.

Example 2.5. Consider the data set shown in Fig. 2.3. The points of the right
cluster were generated using a radially symmetric distribution function Prob{||x—
ol < r} = (4/3)r in a circle of diameter 1.5 centered at p, = (1,0), and
the smaller cluster on the left was similarly generated in a circle of diameter 0.1
centered at (0, 0). The ratio of sizes is 1:20.

As shown in Table 2.2 and Fig. 2.4(b), the EM Method gives bad estimates of
the left center, and of the weights. The estimates provided by the PDQ Algorithm
are better, see Fig. 2.4(a).

The EM Method also took long time, see Table 2.4. In repeated trials, it did
not work for e = 0.1, and sometimes for ¢ = 0.01.

Example 2.6. Consider the data set shown in Fig. 2.5. It consists of three clusters
of equal size, 200 points each, generated from Normal distributions N (g, ;),

44 lyigun & Ben-Israel

(a) The PDQ algorithm (b) The EM method

Fig. 2.4. A comparison of methods for the data of Example 2.5. The EM method returns bad esti-
mates for the left center, and for the weights.

with parameters p,, 2; given in the left column of Table 2.3. A similar example
appears as Fig. 9.6, p. 593, in Tan et al. [14].

As noted in Sec. 2.4.1(d), if the assumptions on the mixing distributions
are justified, the EM Method gives good estimates of the relevant parameters.

Probabilistic Distance Clustering: Algorithm and Applications

45

(a) A data set with three clusters

L
05 1 15

2

1 15 2

(b) The level sets of the JDF

Fig. 2.5. The results of PDQ Algorithm for Example 2.6

The PDQ Algorithm, does not require or depend on such assumptions, and still

gives decent estimates. This is illustrated in Table 2.3.

Table 2.3.

A comparison of methods for the data of Example 2.6

True Parameters

The PDQ Algorithm
(Algorithm 1)

The EM Method
(Algorithm 2)

Centers c1=(0,1) €¢1=(0.0053 , 1.0239) ¢1=(0.0049 , 0.9916)
co=(1,0.7) €2=(0.9604 , 0.7146) €2=(0.9855 , 0.6939)
c3=(1,13) ¢3=(1.0735, 1.2748) ¢3=(1.0376, 1.3083)
Covariance | $— 0.01 0 $- 0.0134 —0.0006 $,- 0.0091 —0.0018
0 0.1 —0.0006 0.1074 —0.0018 0.1059
Matrices
Som 0.1 0 $ym 0.0828 0.0023 $ym 0.1012 0.0053
0 0.01 0.0023 0.0117 0.0053 0.0122
- 0.1 0 S 0.0907 —0.0040 S 0.0981 —0.0005
0 0.01 7 —0.0040 0.0123 7 —0.0005 0.0090

Weights

(0.333,0.333,0.333)

(0.3297,0.3345 , 0.3358)

(0.3318,0.3351, 0.3331)

46 Iyigun & Ben-Israel

Table 2.4. Summary of computation results for 3 examples. See Sec. 2.5(a) for
explanation of the EM running time and iterations count.

PDQ Algorithm EM Algorithm
Example € Tterations | Time (sec.) Tterations | Time (sec.)
Example 2.4 | 0.01 5 3.32 1 1.783
0.1 2 1.42 1 1.682
Example 2.5 | 0.01 8 3.89 55 37.73
0.1 2 1.02 9 7.28
Example 2.6 | 0.01 11 2.29 7 3.28

2.6. Multi-Facility Location Problems

The location problem is to locate a facility, or facilities, to serve optimally a given
set of customers. The customers are given by their coordinates and demands.

Assuming N customers, the data of the problem is a set of points A =
{xX1,Xa,...,xx} in R™ and a corresponding set of positive weights (demands)
{U}l, wa, ... 7U}N}.

2.6.1. Fermat—Weber Location Problem

The Fermat—Weber location problem is to find a point ¢ in R™ that minimizes

N

fle)=> " wille—xi (2.36)

i=1
the sum of the weighted Euclidean distances between the customers x; and the
facility c. The gradient of f

N
C —X;
V flc) = w; —————— 2.37)
2 U e
exists for all ¢ ¢ A. A point c* is optimal iff 0 € 9f(c*), which reduces to
Vf(c*) = 0if f is differentiable at c*. It follows from (2.37) that c* is a convex
combination of the points of A,

ct = Z i(e®) %, (2.38)

i=1
with weights

. _ .1
Ai(c) = Nwl le — xill . (2.39)

> wjlle—x;~t
j=1

Probabilistic Distance Clustering: Algorithm and Applications 47

The Weiszfeld Method [17] for solving this problem is an iterative method with
updates
N
cp = Z Ai(e)x; , (2.40)
i=1
giving the next iterate ¢y as a convex combination, with weights \;(c) computed
by (2.39) for the current iterate c. Note that \;(c) is undefined if ¢ = x;. If the
Weiszfeld iterates converge to a point c*, then c* is optimal by (2.38).
The Weiszfeld method is the best-known method for solving the Fermat—
Weber location problem, see the history in [13, Sec. 1.3].

2.6.2. Multiple Facility Location Problem

The multiple facility location problem (abbreviated MFLP) is to locate several
facilities so as to serve optimally the given customers. We assume no interactions
between facilities. If the number of facilities K is given, the problem is to:

(a) determine the locations cy, of the facilities (location decision), and
(b) assign customers to facilities (allocation or assignment),

so as to minimize the sum of weighted distances from facilities to assigned points.

K
min Y > w; [|x; — ok (2.41)

k=1 ieCy

where C, is the index set of the customers assigned to the k™ facility. If the
number of facilities is not given in advance, and must be determined, the problem
is written as,

K
i i [|Xi — Ck 2.42
i D wi i — el (242)

T k=1 ieCy

When K = 1, the Weiszfeld method, (2.40), expresses the facility location as
a convex combination of the customers’ coordinates.

For K > 1 the PDQ center formulas (2.30) represent each facility as a convex
combination of the customers’ coordinates, and these reduce to Weiszfeld’s for-
mula if K = 1, in which case all the probabilities in (2.30) equal 1. When applied
to MFLP, the PDQ Algorithm is thus an extension of Weiszfeld’s Method [9].

Examples 2.7 and 2.8 illustrate the PDQ Algorithm for solving MFLP’s.

Example 2.7. (Cooper [3, p. 47]) It is required to locate 3 facilities to serve the
15 customers described in Table 2.5.

48

Iyigun & Ben-Israel

Table 2.5. Data for Example 2.7
Customer 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
z—coordinate 5 5 13 112 |13 | 28 | 21 | 25 | 31 | 39 | 39 | 45 | 41 | 49
y—coordinate 25 | 48 4 19 | 39 | 37 | 45 | 50 9 2 16 | 22 | 30 | 31

These data points are shown in Fig. 2.6(a). The PDQ algorithm, with ¢ = 0.001
(in Step 4), required 14 iterations to determine the three clusters, with approximate
centers. The final centers, computed after the clusters were determined, are shown
in Fig. 2.6(b). In the top left cluster, the facility practically coincides with one of
the customers.

50 . 50 +
. +
. X
40 K 40 4
. +
.
30 . 30 * *
. o]
. *
2 . 2 o
. « X
10 . . 10 o *
. o]
. *
. . . , , .

(a) The 15 customers (b) The final facilities and clusters

Fig. 2.6. Illustration of Example 2.7

Example 2.8. Figure 2.7 shows a data set with N = 1000 random points in
[—10, 10]?, representing the customers. It is required to locate K = 4 facili-
ties to serve the customers. The algorithm starts with 4 random initial locations
(centers.) Using different symbols: o, x, +, * for 4 clusters, Fig. 2.7(a) illustrates
the convergence from arbitrary initial points. The final clusters, obtained by trun-
cating the cluster probabilities, allow better estimates of the facilities locations
(centers), see Sec. 2.3, Remark (d). Figure 2.7(b) shows the final clusters and
facilities.

The PDQ Algorithm also solves Capacitated MFLP’s, where the cluster sizes
qr in (2.30) play the role of the facility capacities. When these are given, we
have a capacitated MFLP, and the PDQ Algorithm simplifies further, see Sec. 2.3,
Remark (c). This is illustrated in Example 2.9 and Fig. 2.8 below.

Probabilistic Distance Clustering: Algorithm and Applications

49

10 - 1
X Goox o B E ke KK F B *
xx X RE X %xx&xwfi LA | *f;g
X ng P K *

o+
ot F T
qu ++£i§;

go

e
o
o
EoN

=+
e+
+ g

(a) Convergence to centers

Fig. 2.7.

Example 2.9. Consider the same 1000 random data points of Example 2.8, and 4
facilities with capacities given in percentages as 35%, 25%, 15%, and 25% of the
total demand. The PDQ Algorithm starts with 4 random initial facilities (centers).
Figure 2.8(a) shows the level sets of the JDF computed by the PDQ algorithm,

(b) The final centers

Results for Example 2.8

and Fig. 2.8(b) shows the final facilities and their clusters.

o

% o o

X
xx 2% #
QxS & N §>§X§X*¥* ‘e j’i}i
e R X§< x ¥t ++#++’ftr j;}j;r +
X Kook T HE ++++ el
F B
G wbra L Tt
oL 58 Bot 1 wff, he P Y
00 T e T
@ 0 B i i
B St e £ G
G e L L d
) SR A e #+§¢++
0

o3 g i+t 2
o EH AT A
o m%gg }w‘ﬂ FY *ﬂt fﬂf

(a) Level sets of the JDF

Fig. 2.8.

0 5 10

(b) Final clusters and centers

Results for Example 2.9

50 Iyigun & Ben-Israel

2.7. Determining the “Right” Number of Clusters

An important issue in clustering is to determine the “right” number K of clusters
that fits a data set with N points. In dichotomous situations the unambiguous
answer is K = 2, but in general, the answer lies between the two extremes of
K =1 (one cluster fits all), and K = N (each point is a cluster.)

The joint distance function (given in (2.31) for K = 2, and analogously for
general K) helps resolve this issue. Indeed, the value of the JDF decreases mono-
tonically with K, the number of clusters, and the decrease is precipitous until the
“right” number is reached, and after that the rate of decrease is small. This is
illustrated in Example 2.10 and Figures 2.9-2.11 below.

This approach is practical because the PDQ algorithm is fast, and it generates
the criterion needed (the value of the JDF), unlike other approaches that require
external criteria [11]. See also the survey in [4].

Example 2.10. Figure 2.9(a) shows a data set with 2 clusters. The PDQ algorithm
was applied to this data set, and the values of the JDF are computed for values of
K from 1 to 10, the results are plotted in Fig. 2.9(b). Note the change of slope of
the JDF at K = 2, the correct number of clusters.

Figures 2.10(a) and 2.11(a) similarly show data sets with K = 3 and K =
4 clusters, respectively. The JDF, computed by the PDQ algorithm, shown in
Figs. 2.10(b) and 2.11(b), reveal the correct number of clusters.

08 4 jdivalue

300

250

2001

1501

—s

L L L L L L L L
1 2 3 4 5 6 7 8 9 10

L L L L L
-05 0 05 1 15 number of clusters

(a) A data set with K = 2 clusters (b) The JDF as a function of K

Fig. 2.9. Results for Example 2.10

Probabilistic Distance Clustering: Algorithm and Applications 51

(a) A data set with K = 3 clusters

. value

3401

320)

300

280

260

2401

2201

2001

1801

160

number of clusters

(b) The JDF as a function of K

Fig. 2.10. Note the change of slope of the JDF at K = 3

T T T T T T T
Jf]
%
1.5] S el t
s
P
1 ‘
.
051
.
“e04, ., .
[. o
o "M;} L
.
v
osh
.
05 0 05 1 15 2 25

(a) A data set with K = 4 clusters

Fig. 2.11.

References

jdi. value

number of clusters

(b) The JDF as a function of K

Note the change of slope of the JDF at K = 4

[1] M. Arav. Contour approximation of data and the harmonic mean. Mathematical In-
equalities & Applications, to appear.

(2]
tion, to appear.
(3]
53, 1964.

A. Ben-Israel, and C. Iyigun. Probabilistic distance clustering, Journal of Classifica-

L. Cooper. Heuristic methods for location—allocation problems. SIAM Review, 6, 37-

[4] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, Cluster validity methods, ACM SIG-

52 Iyigun & Ben-Israel

MOD Record, 31(2): 40-45, 2002.

[5] J. Hartigan, Clustering Algorithms. John Wiley, 1975.

[6] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning.
Springer, 2003.

[7] F. Hoppner, F. Klawonn, F. Kruse and T. Runkler, Fuzzy Cluster Analysis. John Wiley,
1999.

[8] C.lyigun and A. Ben-Israel. Probabilistic distance clustering adjusted for cluster size.
Probability in the Engineering and Informational Sciences, to appear.

[9] C. lyigun and A. Ben-Israel. A Probabilistic distance clustering method for multi—
facility location problems, in preparation.

[10] C.Iyigun and A. Ben—Israel. A probabilistic distance clustering for mixtures of dis-
tributions, in preparation.

[11] C. Lyigun and A. Ben-Israel. A New clustering validity criterion based on contour
approximation of data, in preparation.

[12] A. K. Jain, and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

[13] R. Love, J. Morris and G. Wesolowsky. Facilities Location: Models and Methods.
North-Holland, 1988.

[14] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison Wesley,
2006.

[15] M. Teboulle. A unified continuous optimization framework to center-based clustering
methods. Journal of Machine Learning, 8: 65-102, 2007.

[16] P. Tsui. EM—GM Algorithm MATLAB Code. PAMI Research Group, University of
Waterloo, 2006.

[17] E. Weiszfeld, Sur le point par lequel la somme des distances de n points donnes est
minimum. Tohoku Math. J., 43: 355-386, 1937.

Chapter 3

Analysis of Regulatory and Interaction Networks from Clusters of
Co-expressed Genes

E. Yang

Biomedical Engineering Department
Rutgers University, Piscataway, NJ 08854, USA

A. Misra

Department of Environmental and Occupational Medicine
Rutgers University, Piscataway, NJ 08854, USA

T. J. Maguire

Biomedical Engineering Department
Rutgers University, Piscataway, NJ 08854, USA

I. P. Androulakis*

Biomedical Engineering Department
Rutgers University, Piscataway, NJ 08854, USA

Extracting biological insight from high-throughput genomic studies of human
diseases remains a major challenge, primarily due to our inability to recog-
nize, evaluate and rationalize the relevant biological processes recorded from
vast amounts of data.

We will discuss an integrated framework combining fine-grained clustering
of temporal gene expression data, selection of maximally informative clusters,
based of their ability to capture the underlying dynamic transcriptional response,
and the subsequent analysis of the resulting network of interactions among genes
in individual clusters. The latter are developed based on the identification of
common regulators among the genes in each cluster through mining literature
data. We characterize the structure of the networks in terms of fundamental graph
properties, and explore biologically the implications of the scale-free character
of the resulting graphs. We demonstrate the biological importance of the highly
connected hubs of the networks and show how these can be further exploited
as targets for potential therapies during the early onset of inflammation and for

*Corresponding Author

53

54 Yang et al.

characterizing the mechanism of action of anti-inflammatory drugs. We conclude
by identifying two possible challenges in network biology, namely, the nature of
the interactions and the potentially limited information content of the temporal
gene expression experiments, and discuss expected implications.

3.1. Identification of Intervention Targets: Regulatory and Interaction
Networks

At any given time, a cell will only express a small fraction of the thousands of
genes in the organism’s genome. Expressed genes reflect the structure and func-
tional capacities of the cell as well as the ability of the cell to respond to external
stimuli. In a complex organism, external stimuli to a great extent take the form of
chemical messages whose purpose is to coordinate the function of the complex so-
ciety of cells [1]. The transcription of genes is tightly regulated by DNA-binding
proteins (transcription factors, TF) that attach to the promoter region and regu-
late the expression of the corresponding genes. If the state of the cell is defined
by the genes that are expressed within it, and if the expression is the result of
the coordinated action of a group of transcription factors, then losing even a sin-
gle transcription factor can, and will have, a profound effect on the state of the
cell [2]. Targeting expression by controlling the regulatory process through the
corresponding transcription factors is emerging as a viable alternative for the iden-
tification of drug targets [3, 4] and the control of disease conditions [5]. Although
it is realized that gene expression is regulated at multiple levels (transcription-
ally, translationally and post-translationally) an effective and common means of
regulating it occurs at the transcription level [2].

In recent years, significant efforts have been made experimentally and com-
putationally to identify transcription factors, their target genes and the interac-
tion mechanisms that regulate gene expression [6, 7]. An important technique for
elucidating binding interactions is chromatin immunoprecipitation (ChiP) exper-
iments [8]. Computational methods are currently emerging to provide TF pre-
dictions where experimental data is not available [9]. However, physical bind-
ing of a TF is a necessary but not sufficient condition for transcription initiation
or regulation. Due to various complex post-translational modifications as well
as interactions among multiple TFs, the measured expression level of regulatory
genes does not reflect the actual activity of the TFs themselves. Therefore, reg-
ulator transcription levels are generally not appropriate measures of transcription
factor activity (TFA). Recently, methods combining TF-gene connectivity data
and gene expression measurements have emerged as a method to quantify these
regulatory interactions. Prominent examples are the decomposition-based meth-

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 55

ods which combine ChiP and microarray data through the inversion of regression
techniques to estimate TFAs [10-12, 14]. Statistical, regression and decompo-
sition techniques have been proposed and successfully applied to reverse engi-
neer regulatory networks [15-22]. The main goal of reverse engineering is to
identify the activation program of transcription modules under particular condi-
tions [23] so as to hypothesize how activation/deactivation of expression can be
induced/suppressed [24]. Aside from the development of descriptive models that
correlate TFA and expression of target genes, a critical question becomes how to
identify those TFs that significantly contribute to regulation and should be mod-
ulated. Along these lines Gao et al. [12] speculated that the mRNA profile of the
target gene should be similar to the reconstructed TFA for the regulating proteins,
whereas Sun et al. [22] claimed that accurate binding information should lead to
robust TFA reconstructions.

In addition to regulatory networks, it is becoming increasingly clear that in-
teraction networks (pathway and signaling) need to be combined with gene ex-
pression data in order to establish an integrated, systems-wide, view of biological
processes and response [25-32]. Furthermore, it is becoming increasingly clear
that the structure of the interactions emanating from recorded responses captures
critical properties indicative of the state of the cellular system [33, 33—42]. The
computational analysis of regulatory, signaling and interaction pathways promises
the identification of critical targets (aka “hubs”) with the ability to maximally im-
pact the cellular response [35]. Therefore, the systematic reconstruction of the
different types of networks (regulatory, signaling, interaction) is a critical prereq-
uisite for the deciphering the mechanisms that drive cells to carry out appropriate
functions. The existence of "hubs”, that is the existence of a small sub-set of
highly interconnected nodes, promises profound implications due to the specu-
lated nature of these nodes. The implications of the existence of such nodes has
been speculated primarily in terms of their essential function [37—43]. It is of par-
ticular interest to analyze the robustness characteristics of this type of scale-free
network structures in terms of their robustness [44].

The purpose of this paper is to present a concurrent analysis of gene expression
data in an attempt to construct interaction networks that could be used as the
template for identifying putative points of intervention, Fig. 3.1. In order to do so,
we need to understand and characterize the structure these networks and identify
the potential implications of partial, or complete, inhibition of specific nodes in
the network.

56 Yang et al.

L Microarray Gene]

Expression Data

Model-driven
Network Construction

Data-driven
Network Construction

Binding Interference

-
P

-[Signaling Interference

‘ Target Identification }

Fig. 3.1. Functional and regulatory networks.

3.1.1. Identification of Informative Temporal Expression Patterns

In order to develop context-specific networks, that is networks characteristic of
cellular responses to specific external stimuli, we need to first identify a sub-
set of relevant co-expressed genes whose transcription profiles are maximally af-
fected by the specific experiment performed. We recently proposed an integrated
methodology is composed of a number of steps outlined in Fig. 3.2, [45] for the
analysis of temporal gene expression measurements. Specifically, our analysis
consists of the following steps:

(a) Fine-grained clustering. Each gene’s expression is characterized as a wave-
form over time and a characteristic attribute is defined for each time course. This
identifier is then used to compare waveforms to each other and group similar
waveforms, based on the similarity of the identifiers, to characteristic expression
motifs. We have adopted the basic formalism of Symbolic Aggregate approX-
imation of the time series discussed in [46]. SAX is based on the premise of
transforming a time series into a corresponding sequence of symbols. Each series
is first normalized via the z-score givenas Y; ; = % with j=genes, t=time. An

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 57

= X T K T T =0 hr t=1hr
&0 1 = i d

| olodd it 1]
1//

I e (R
0 50 100 150 200 250 300 0 50 109/ 150 200 250 300
gene count jene count

t=4hr t=8hr

Population por Motif

5 2
2 £/ U
2 % Y 7 /
e 1} (641 e
a o 4
100 200 300 400 500 600 700 800 900 1000 1100 3 :) 6 ’.,"
KS Shaisti vs, e 5 o} o 0/ T T -
g P Y LT
03| Informative Subset S 1 (& P 0 T - R -
v Dana g ()Q'Q A
— == Parvdosly Selcted Moits S 2 :
O30 | . ooy Seketed Genes 0 50 100 150/200 Rew 300 0 50 100 150 200 250 300
gene gffunt gene count
025 t=gfhr -

max deviation

loss of
information

N

KS objective

“0 50 100 150 200 250 300 3
() B 0 e ey 15 20 Bl gene count Number of motifs

Fig. 3.2. Basic elements of the process for selecting informative expression profiles.

equiprobable discretization is applied where the breakpoints are defined such that
the area defined by the boundaries of the breakpoint are equal. This method of
discretization was selected because empirical evidence suggests that the z-score
normalized sub-patterns should have a highly Gaussian distribution [46], thereby
equally distributing a set of randomly generated signals throughout the hash space.
Coefficients below the smallest breakpoint are “mapped” to the first symbol of a
chosen alphabet. Other points are “mapped” accordingly within their respective
intervals. A more extensive discussion and visualization of this process and can
be found in [46].

(b) Identification of informative expression motifs. This novel symbolic rep-
resentation makes it possible to further simplify the time series in order to
uniquely characterize the overall dynamic response of each transcriptional pro-
file with a single identifier [47]. After the alphabet has been generated, it is con-
densed into a single value using the function proposed by [48]: hash(c,w,a) =
1+ 3% [ord(cj) — 1] a7, where a is the size of the alphabet, w is length of
the word, and c is the “letter” sequence to which the expression profile is assigned.
The parameter a is selected such that the population distribution of the motifs ex-
hibits significant non-exponential distribution signaling the presence of significant
differences in the population of expression profiles. Genes with similar normal-
ized expression profiles “hash” to similar motif values to generate a distribution

58 Yang et al.

of motif values. This allows for the identification of (i) overpopulated motifs, and
(ii) genes sharing similar motif values. Hence we have achieved a fine-grained
“clustering” of the data where the number of potential clusters is dependent upon
the definition of the hashing function.

(c) Quantification of transcription state. We define the transcription state of
the system as the CDF of expression values of a select subset of motifs (based on
the corresponding genes) and we will track this quantity as it evolves over time
relative to the control state (distribution at t=0hr). We characterize each motif for
its ability to represent the overall transcription dynamics of the system. In order
to do so we define a new term, transcriptional state that quantifies the deviation of
the aggregate distribution of expression values from a control state. An optimiza-
tion framework is defined which characterizes expression motifs for their strength
in replicating the entire system. Thus, we are able to rank the expression motif for
their contribution to the overall state change of the system. The minimum number
of expression motifs required to accurately represent the dynamic response of the
system defines the set of informative genes, i.e., genes maximally affected by the
specific experimental perturbation. To quantify the hypothesis that informative
subsets of genes should give rise to a distribution of expression values maximally
affected by the experiment, the Kolmogorov-Smirnov (KS) [49] test for evaluating
whether or not two arbitrary distributions are different, is employed. Informative
subsets are the ones with the ability to capture significant deviations from the base
distribution. The KS statistic is defined as: D = max |F(Yy:) — F(Yg:(0))],

where F'(Yy;(0)) is the cumulative distribution of the expression values at time t=0
This statistic allows a metric that defines the magnitude of the difference between
two distributions to be computed. Since the data is presented as a time series,
at each time point a value for the KS statistic is obtained. Therefore, the overall
metric becomes .With the definition of the transcriptional state and the ability to
quantify the deviations from the control (sham) state we are now in the position
to define a rigorous methodology for selecting maximally informative expression
motifs. The application of the KS test over time allows us to quantify just how
much the CDF of a particular sub-set of genes deviates from the corresponding
CDF at time t=0 (control/sham). We currently implement a greedy algorithm that
adds peaks in the order of their population and select the subset with the greatest
deviation. The greedy heuristic was selected to minimize the combinatorial com-
plexity of the problem, and we feel that is an adequate approximation due to fact
that the greater over-representation of a motif, the more important this motif is.
A detailed discussion of the methodology is presented in [50]. In order to fully
explore the methods we focus on two distinct experimental protocols to assess the

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 59

potential for identifying experiment-specific properties of the resulting regulatory
and functional networks.

3.2. Analysis of Regulatory Networks

3.2.1. Expression Data

The microarray data was obtained from an experiment that was conducted to ex-
amine the behavior of a bolus injection of corticosteroids upon temporal gene
expression profile of liver in vivo. This dataset was specifically chosen due to the
a priori knowledge that corticosteroids have powerful transcriptionally mediated
effects upon the rat experimental model. The data collection and preliminary anal-
ysis were previously presented in [51]. Male adrenalectomized (ADX) Wistar rats
(Rattus rattus) weighing 225-250 g were obtained from Harlan Sprague-Dawley.
Rats (3) were sacrificed by exsanguination under anesthesia at 0.25, 0.5, 0.75, 1,
2,4,5,5.5,6,7,8,12, 18,30, 48, and 72 hr after dosing. The sampling time points
were selected based on previous studies describing Glucocorticoid Receptor (GR)
dynamics and enzyme induction in liver and skeletal muscle. Four cannulated ve-
hicle treated rats were sacrificed as controls (data represented as time zero). Total
RNA was isolated from liver tissue and hybridized to a U34A GeneChip array.

3.2.2. Regulatory Network Construction and Analysis

As a result of the gene selection step on the aforementioned data set describing
the administration of corticosteroid 529 probes were isolated in 12 clusters. These
529 probes corresponded to 454 individual genes of which 339 genes had reliable
sequence information about the promoter region so that transcription factor pre-
diction could be performed.

Transcriptional networks are comprised of the links between pairs of genes:
those which code for transcription factors and the genes that they regulate. These
links are abstractions of the regulatory activity of transcription factors binding on
a given promoter region and either up or down regulate the levels of gene expres-
sion. The construction of this network can be used in a variety of ways such as the
quantification of the aggregate behavior of the system after the perturbation of a
single node, or the identification of possible key intervention points with which to
mediate the response of an organism to an experimental perturbation. Transcrip-
tional networks can be represented by bi-partite networks in which sets of tran-
scription factors are shown to directly regulate a set of genes Fig. 3.3. While tran-
scriptional networks have elements such as feed forward loops, feedback loops,
and input cascades which are not explicitly visible in a bi-partite representation,

60 Yang et al.

it can be shown that this representation can be converted into an equivalent DAG
(Directed Acyclic Graph) with no loss in generality. In our current case, we have
treated the transcription factors as separate from the set of genes, and have con-
ducted the graph analyses based on the outgoing connectivity of the transcription
factors and the incoming connectivity of the selected genes. The attraction with
representing transcriptional networks as a bi-partite networks is the existence of
numerous algorithms such as NCA and PLS [14, 17], that allow for the efficient
quantification of the links between the factors and the genes they regulate. Anal-
ysis of the network properties of bi-partite networks is also simplified due to the
separation of nodes with outgoing connections and nodes with incoming connec-
tion.

Bi-Partite Network DAG

Transcriptional Regulators Gene Targets

=5 -

Fig. 3.3. A bi-partite representation of a transcriptional network and its associated DAG. There is no
loss in generality in terms of the possible networks that can be represented. The representation as a bi-
partite network however allows for efficient quantification of the network through various algorithms
such as nca and pls.

The construction of transcriptional network falls under two primary
paradigms, the first of which is to use the results of multiple experiments to con-
struct Boolean or Bayesian networks [52-54] which infer the regulation of genes
based on their related expression levels by making connections between genes
that show either correlated or anti-correlated expression profiles. The second cat-
egory of methods is the use of regulatory interactions inferred from other data
such as transcriptional binding interactions inferred via Chip-Chip experiments or
transcription factor predictions [8]. Both methods have been successfully imple-
mented in the study of yeast. Constructing the gene regulatory networks in mam-
malian systems is a far more difficult process than in yeast. This is due to the fact
that most of the regulatory interactions have not been previously mapped out, the

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 61

relative cost of running live animal experiments. Therefore, an insufficient number
of perturbed states have been obtained for one to infer comprehensive binary or
Boolean networks from the available data. Due to the fact that the construction of
mammalian transcriptional networks is data-constrained as opposed to studies in
yeast, most of the interactions must comprise of predicted links obtained through
various transcription factor binding site prediction algorithms such as CONSITE,
FOOTER, AlignACE, and CORG [55-58]. The problem with utilizing these algo-
rithms for the prediction of transcription factor binding sites lies primarily in the
large number of false positives and false negatives. Work has been previously done
on ways to improve the prediction based on the concept of phylogenetic footprint-
ing in which false positives are eliminated by looking at evolutionarily conserved
segments in the promoter region. However, despite these attempts, the algorithms
are still relatively inaccurate [59]. Due to the relative inaccuracies of the transcrip-
tion factor prediction methods, gene expression data and clustering were used to
identify the subnet that was active under the experimental conditions and to per-
form gross organization of genes into clusters before network construction. What
one hopes to obtain from the construction of the network is the identification of
possible biological systems affected via corticosteroid administration as well as
the identification of possible points of intervention which allow for the control of
specific biological processes independently. Therefore, one may be able to ascer-
tain whether or not it is possible to affect the inflammatory response of the liver
without triggering currently concurrent responses in metabolism or the immune
response.

The transcriptional network was constructed using transcription factor binding
site prediction via CORG. CORG was selected over other tools such as CONSITE
because of a built in facility for extracting promoter regions of a specific gene as
well as automatic phylogenetic footprinting which allows for the analysis of the
network characteristics as the false positive links are pruned. The network gener-
ated via CORG is a standard bi-partite network because it finds the feed-forward
interactions of transcription factors and their respective genes. However, as men-
tioned before, it can be transformed into a standard DAG if the output genes can
be associated with a transcription factor. Given the large number of uncertainties
in the network construction step due to the use of transcription factor prediction,
the analysis will focus upon the global properties of the links rather than the bi-
ological significance of each link. The network is given in Fig. 3.4, and is a
representation of a bi-partite network where the nodes in blue are the associated
transcription factors and the nodes in green represent the final genes. We have
treated the transcription factors as separate from the set of genes, and have con-
ducted the graph analyses based on the outgoing connectivity of the transcription

62 Yang et al.

factors and the incoming connectivity of the selected genes. we have focused pri-
marily upon the outgoing connectivity of the transcription factors because these
represent the underlying transcriptional network.

%

A

%
W
“A:\\“i

Fig. 3.4. Computationally constructed regulatory network (genes in green, transcription factors in
blue).

The predicted transcription factor binding sites are essentially the links within
our bi-partite network. The aggregate properties of the linkages are given in
Fig. 3.5 and Fig. 3.6. The differences between the results obtained as depicted
in Fig. 3.5 and Fig. 3.6 is the extent in which phylogenetic footprinting was used.
In Fig. 3.5, phylogenetic footprinting was done on rat and mouse, two species
which are evolutionarily very similar, while in Fig. 3.6, the phylogenetic foot-
printing was done on species which were much further evolutionarily specifically
between rat and human. This analysis was done on each individual cluster sepa-
rately to determine whether or not the process of clustering had an effect upon the
generated network.

The aggregate connectivity of the input nodes i.e. the transcription factors
shows a strong exponential decay characteristic. This is in agreement with previ-
ous evaluations upon network topology which have suggested that most biolog-
ical networks are indeed scale free. What is more surprising is that even with
the removal of a large number of connections via phylogenetic footprinting, the

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 63

Cluster 1 Cluster 2 Cluster 3

&0 60
a0 40
0 L0 20
* P
- - > - k)ﬂ XX - X >
o o P
0 5 0 15 0 25 0 10 20 0 40 0 5 10 15 20 28
Cluster 4 Cluster 5 Cluster 6
401 40
20
x .

20 30 40 0 5 10 15 20 o 10 20 30 40 50

Cluster 7 Cluster §
& 400

40

Murnber of Transcripion Factors

20

20

T .
0 0
i 5 10 15 20 o 5 1 15 20 25 25
Cluster 10 Cluster 11 Cluster 12
& 60 &
a0p af
2of L
e
x‘xxxf\l:{?: - X X . 2
0 v
0 5 1 15 20 25 0 10 20 30 40

Numnber of Occurrences

Fig. 3.5. The distribution of transcription factor connectivity from mouse vs. rat. What is evident is
the exponential distribution of transcription factor connectivity. This strongly suggests that the power
law distribution is driven by the distribution of highly selective vs. highly promiscuous transcription
factors.

overall network character does not change. Looking at the remaining connections
between the human and rat case it is apparent that even though many fewer tran-
scription factor binding sites are found at much lower frequencies, it still exhibits
a gross exponential curve.

What this suggests is that the scale free nature of transcriptional networks is
not driven primarily by the sequence of the promoter region, but rather by some
overall quality of the transcription factors. This is verified in Fig. 3.7, where a
set of randomly selected genes was subjected to the same analysis. The strong
exponential character that is present despite an essentially random sampling of
promoter regions. What is found is that many of the transcription factors are
highly promiscuous such as STATS and STAT6, having a consensus sequence
which is 8 bases long but only specifically recognizes 4 to 5 base pairs in the
binding sequence, which would correlate to a hit every 256 to 512 bases evaluated
respectively. Given that the promoter regions being analyzed are generally several
thousand bases, a predicted link between a gene and transcription factors such as

64 Yang et al.

Cluster 1 Cluster2 Cluster3

60

40

20

10

Cluster 4

a 10 20 30 40 0

Cluster 7
40 80

Murnber of Trenscription Factors

20

0 5 10 15 20 0

Cluster 10

100

20 0 5 10 15 20 25
Number of Occurrences

30 40

Fig. 3.6. The distribution of transcription factor connectivity from human vs. rat. The overall power
law distribution remains suggesting that while phylogenetic footprinting has eliminated a number of
false positives, the conserved promoter region does not differ in character to the overall promoter
region.

STATS and STATG is generally not surprising. What is questionable is whether
or not the aggregate properties of a predicted link provides an estimate for the
prevalence of a transcription factor. In the case for STATS, it has been shown
experimentally that STATS indeed binds widely to genomic sequences in ChIP
(Chromatic Immuno-Precipitation) experiments [60].

In their experiment, Nelson et al. had observed that around 17% of the STATS
transcription factors lies within 1k of the TSS (Transcription Start Site) [60]. Nel-
son et al., took around 7k of bases for analysis with 1k upstream for the promoter
region and 6k of exonic/intronic sequences. With this in mind the result is not sur-
prising. Since 1k upstream of the start site represents 1/6th of the exonic/intronic
sequence, its appearance 17% of the time is not surprising. This result suggests
that each transcription factor has an overall binding selectivity with an expected
appearance every n-bases. Therefore, if the position weight matrices are accurate
in terms of their relative promiscuity, we believe that the aggregate behavior of
the predicted transcription factor binding is a good substitute for empirical exper-

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 65

Distribution of Transcription Factors Among Randomly Selected
Genes

PR + Transcription Factor
Distribution
Exponential Fit

Number of Transcription Factors
n
5}

Transcription Factor Occurrence Rate

Fig. 3.7. A power law distribution of transcription factors amongst a randomly selected group of
genes.

imental data. However, the question of which of these binding sites are active
under a given experimental procedure in complex mammalian systems has not
been adequately answered by either computational or experimental means.

From the analysis, our contention is that the primary biological aspect that
drives transcriptional networks to be scale free is the distribution of transcription
factors by their promiscuity rather than their respective promoter regions. If it was
driven by properties of their respective promoter regions, we would expect a dif-
ferent character in the overall all connectivity property when comparing random
genes, and two different iterations of phylogenetic footprinting. We believe this
to be a significant outcome because it suggests that the creation and evolutionary
conservation of transcriptional links is not driven by mutations in the promoter
region, but rather by mutations in the coding regions of the transcription factors
themselves. While this does not preclude mutations in the promoter region playing
a significant role in genetic diseases or differences in phenotype within a species
by changing the binding affinities of transcription factors, we feel that the evidence
points to the hypothesis that the specificity of a transcription factor mediated by
its amino acid sequence is the primary determinant of the transcriptional network
structure.

It has been shown that the distribution of promiscuous to selective transcrip-
tion factors follows an exponential distribution thereby allowing one to account
for the scale free nature of biological networks. However, there are slight discrep-
ancies in the sub-networks as evidenced by the presence of transcription factors
that are highly conserved amongst the genes within a cluster despite their selec-
tive binding sites. Other transcription factor binding matrices such as PAX4 and
USF1, are much more selective in their binding with 8-10 exact matches in their
recognition sequence but appear as often as the more promiscuous transcription

66 Yang et al.

Table 3.1. Transcription factors conserved more than 95% of the time between mouse and rat. In
contrast to the human/rat case, all of the clusters show transcription factors conserved more than 95%
of the time as well transcription factors which are highly conserved and not found in a random sampling
of genes.

Cluster Transcription Factars
15TAT & STATB TEF-1
2ETAT S STATB TEF-1 CDX
JSTATH TEF-1 AP2Z ALPHA
45TAT S
SETAT S STATB
BSTAT & STATB TEF-1
TSTAT S STATB USF1
BSTAT & STATB TEF-1 GEIl CDX GATAS
GETAT S STATB TEF-1 GEIl CDXA APZ ALPHA PAX4
GATAG ciz SRY USF1
10STAT & STATB GATA6
115TAT & TEF-1 STATB CDX AP2 ALPHA
125TAT S STATH TEF-1

factor like STATS or STAT6. There is the question of whether the deviations
from the power-law distribution due to these transcription factors is a significant
characteristic of transcriptional network, or whether these deviations are within
acceptable deviations from the parameterized exponential curve. However, given
that these links are not present during a random sampling of promoter regions,
we believe that these links represent additional information provided by the gene
selection and classification step. Given that even after clustering, the transcription
factors in Table 3.1 are still relatively few, they could have been missed in a global
assessment of network properties, but still may have an important effect upon the
robustness of the network. These highly connected nodes which show up only in a
set of highly correlated genes may serve to function as a means for preserving the
connectivity structure of a network given the removal of a highly connected hub.
Recent experimental evidence [61] has suggested that in fact the removal of highly
connected hubs is not as lethal in biological organisms as it is to purely scale free
networks such as the Internet. Our computational assessment seems to agree with
this assessment, and it suggests that the process of clustering has allowed for the
possible identification of more hubs than would be suggested under a purely scale
free topography.

Another interesting observation is that while the whole transcriptional network
appears to be scale-free in nature, each of the small co-expressed subsets also ap-
pears to be part of individual scale-free sub-networks. It has been shown that if
in network construction, newer pathways had starting points in pre-existing path-
ways much like the way new hyperlinks on the Internet tend to link to older more

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 67

popular pages, then the overall structure of the network is scale free [62, 63]. The
presence of scale-free subnets suggests that the creation of individual pathways
is therefore an iterative process by which pre-existing pathways are augmented
and modified to provide an evolutionarily beneficial response. It would suggest
that biological mechanisms are not “irreducibly” complex and that the network
structure is consistent with an iterative evolutionary process.

We hypothesize that transcription factor binding sites which represent points
of intervention have the following qualities:

(1) They are localized to a high degree to a specific cluster or process
(2) They are prevalent to a high degree in spite of their selectivity

In Fig. 3.8, we show the relative localizations of the biological process ontolo-
gies into each individual clusters. What is evident is that given our clustering and
selection, we have isolated a set of genes which show a co-functional relationship
along with their co-expression. What this signifies is that each set of co-expressed
genes has a consistent scale-free network, and each of these scale free networks
appear to be regulating a specific but loosely independent set of biological pro-
cesses. The term loosely independent set is used to denote the fact that while
not all biological processes are localized to only one cluster, there is a predilec-
tion of ontologies to be located in a single cluster as evidenced by the diagonally
dominant plot shown in Fig. 3.8.

Gene Ontology Enrichment

Proveas

2 4 B g 10 12
Clusters

Fig. 3.8. Biological process enrichment of the extracted genes. The processes have been thresholded
(p < .05).

68 Yang et al.

After establishing the fact that each individual cluster appears to have a set
of co-functional genes, the transcription factors that could possibly co-regulate
these genes can be identified. These transcription factors therefore may provide
points of possible transcriptional intervention to alter significant biological pro-
cesses. Therefore it may be possible to alter the inflammatory response without
changing the immune response, or the metabolic responses. It is our hypothesis
that if a transcription factor can be associated with a primary ontology and if these
transcription factors are associated with a large majority of genes in the given clus-
ters, then it could provide a possible point of intervention. A list of these possible
transcription factors are given in Table 1.

The transcription factors that comprised the highly connected nodes, i.e., their
around found to be regulating all the clusters, can be broken down into two sets,
the set of transcription factors that are highly connected throughout the genome
and the set of transcription factors that are highly connected only to the genes
that were selected as relevant. For instance, transcription factors such as STAT
5 and STAT 6 were selected as highly connected. However, these transcription
factors are also highly represented in a set of randomly selected genes belying
their important biological role, and while these transcription factors undoubtedly
play a role in the corticosteroid response, they do not represent valid points at
which the corticosteroid response can be mediated due to their widespread ef-
fects on many other systems, as evidenced by their presence in every functional
and co-expressed cluster. The other transcription factors such as CDX (Caudal-
type homeodomain protein), AP2-Alpha (activating enhancer binding protein 2),
USF(Upstream Stimulating Factor), and PAX4(Paired Box Gene 4) represent hubs
that are highly connected to the selected genes and may present themselves as
possible targets to mediate the response. Coupling the biological information ob-
tained via iHOP [64], it becomes possible to ascertain the role that each hub may
play. These four transcription factors were specifically chosen for further analysis
from the set of hub genes because additional information as to the up or down-
regulation of the proteins that code for these transcription factors is available in
the form of mRNA expression data. Therefore, it becomes possible to rationalize
their biological activity with their observed activity and the consequence upon cor-
ticosteroid response. For instance, the down-regulation of USF may point to the
decrease in lipid and glucose metabolism by the liver [65], leading to the observed
increase in level of circulating free fatty acid and glucose in the bloodstream after
an infusion of corticosteroid in a rat. The up-regulation of AP2-Alpha hints at a
possible mechanism by which corticosteroids may suppress cellular proliferation
given its role in suppressing the growth of malignant tumors [66].

Two of the transcription factors that are highly connected in the network pose

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 69

an interesting question. CDX and PAX-4 are not known to be expressed in the
liver, a fact which is supported by the expression levels found in our microar-
ray. However, biological processes associated with these two transcription factors
seem to correlate well with the clinical observations of corticosteroid administra-
tion. PAX-4 is normally associated with the differentiation of beta islet cells in
the pancreas [67] and consequently whose expression levels in the pancreas ought
to change in response to possible steroid induced diabetes due to the lowered sen-
sitivity of the overall organism to insulin. CDX on the other hand has also been
characterized as a regulator of cancer cell proliferation and is often up-regulated
in rapidly proliferating cells [68]. Given the presence of these transcription factors
the question arises as to whether a consistent set of genes is relevant over multiple
tissues and that the different expression profiles of these relevant genes are con-
trolled via the presence or absence of different transcription factors, or that these
transcription factor binding sites represent the presence of a currently unknown
transcription factor that binds to a very similar recognition sequence as CDX and
PAX-4.

3.3. Analysis of Interaction Networks

3.3.1. Expression Data

Male Sprague-Dawley rats were subjected to a cutaneous 3rd degree burn injury
consisting of a full skin thickness scald burn of the dorsum, calculated to be 20%
of the rat’s total body surface area [69]. Liver samples were obtained at 5 time
points (0, 1, 4, 8, and 24h post burn). RNA extracted from the extracted livers was
isolated and subsequently hybridized to a U34A GeneChip that had 8,799 probes
represented on each chip. The control for this experiment was obtained at time
0, which was prior to the injury. It has been previously shown that time had no
significant effect upon the response of rats to the sham treatment [70].

3.3.2. Interaction Network Construction and Analysis

In vivo estimation of protein interactions is undoubtedly the best way of de-
termining biological interactions within the cell [71]. However, such an ap-
proach is rather impractical in exploratory analyses. Therefore, in silico meth-
ods have been proposed that, effectively, mine the available literature for estab-
lished relationships between proteins exemplified by software tools such as In-
genuity Pathways Analysis (http://www.ingenuity.com/) , GeneGo Systems Re-
construction (http://www.genego.com/) and Ariadne Genomics PathwayAssist
(http://www.ariadnegenomics.com/) are already available and able to construct

70 Yang et al.

such maps based on information extracted from the scientific literature and/or
experimental data [72]. In this work, we adopted the framework implemented
by PathwayAssist [73, 75] for the construction of protein interaction maps. Path-
wayAssist effectively mines over 100,000 events of regulation, interaction and
modification between protein, cell processes and small molecules, thus allowing
the construction of complex interaction networks. It must be emphasized that al-
though the results might be sensitive to the specific software used, the essence of
the network properties is not. In order to computationally construct the interac-
tion network, the genes comprising the 9 most populated motifs (per the selection
procedure earlier outlined) when analyzed using Ariadne Genomics PathwayAs-
sist. The nodes that were selected were such that only direct connections between
them could be drawn, therefore establishing either direct links between nodes, or
indirect links using only nodes from the original set of informative genes.

Despite the apparent complexity of the resulting network, Fig. 3.9, it is in-
teresting to realize the validation of the emergence of non-random connections as
previously speculated for protein interaction networks. The scale-free nature of
the resulting protein interaction network emanating from the analysis of informa-
tive genes identified by SLINGSHOTS a gene selection algorithm developed by
our group is further established by observing the distribution of arcs per node of
the network depicted in Fig. 3.10. Clearly, only a small fraction of nodes has a
characteristically large number of direct neighbors, which is an indication of the
emergence of a small number of highly connected nodes.

Fig. 3.9. Alternative representations of the general network topology of the protein interaction net-
work indicating the existence of highly connected hubs.

The scale-free character of the protein interaction networks is precisely what

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 71

is known to give metabolic networks their tremendous versatility and robustness
in the presence of exogenous disturbances [62]. The issue of robustness on scale-
free network in random attacks has received significant attention [74] given its
implications for various real-life networks that possess that property. A measure
for deciding the stability of the network in the presence of random attacks, that is
failures of nodes at random, is quantified by estimating the average diameter of
the network is often defined as the mean shortest path of the network once nodes
are eliminated.

040

]
|
035 | g
030 A
|
|

025 1

F(l)

020

|

a5 |

0.0 | \
L S

005 .

L

. T [» |

T T T

0na
0 5 10 15 il 25 30 35

Fig. 3.10. Power-law distribution of network connectivity for experiment-specific gene interaction
network based on the burn-induced inflammation data.

In order to assess the intrinsic characteristic of the protein interaction networks
(Fig. 3.9) determined based on the informative genes that were identified as most
responsive to the inflammatory response, we performed simulations to assess the
stability of the network during failures (elimination of random nodes) and targeted
attacked (elimination of nodes based on their connectivity). It has already been
demonstrated with large networks exhibiting both scale-free and random (expo-
nential) [44] the fundamental differences of the networks. Specifically, random
networks have similar responses, in term of changes in network diameter, in both
random failures and attacks due to the fact that no nodes exhibit higher connec-
tivity and therefore the contributions of all nodes are equivalent. We use network
diameter as a surrogate of a metric for quantifying effects on network structure.
More appropriate metrics could have been adopted as well [76]. Random net-
works (exponential) are expected to show a similar increase in network diameter
under, both, failure and attacks. However, scale-free networks are far more robust
to random failures because the network can always reroute the flow of information

72 Yang et al.

and stabilize the change in diameter in the presence of random failures. As a result
the network exhibits strong tolerance. However, targeted attacks have detrimental
effects on the network. Therefore, the presence of hubs (highly connected nodes)
is both an advantage, leading to robust networks, as well prone to complete failure
should a critical hub be affected.

We simulated random failures and attacks by analyzing the protein interaction
networks constructed based on the burn induced inflammatory response, as well as
an equivalent Erdos-Renyi [13] random network with the same number of nodes,
number of total links and average number of links per node. Specifically, the
gene interaction network: 146 nodes, 268 connections, and the average number
of connections per node was 3.67, whereas the Erdés-Renyi network: 146 nodes,
273 connections, and the average number of connections per node was 3.74. The
results are depicted on Fig. 3.11. It must be realized that although many other
studies analyze arbitrary networks with thousands of proteins, we concentrate on
a much smaller and sensitive network which is composed of proteins very rele-
vant to the inflammatory response resulting from severe burn injuries. However,
all the important characteristics of the expected responses were recovered, which
adds significant insight to the nature and structure of the generated framework. In
terms of our analysis we define failure as the random elimination of a node for
the network, whereas attack refers to a target removal of a specific (set) of nodes.
Therefore, failures are being presented as the average of numerous (500) simula-
tions of random eliminations of combinations of nodes from the networks. The
failure results indicate the average of multiple runs. In attack, we target nodes
based on their degree of connectivity, starting from the most highly connected
nodes. The inherent computational property of the network that we evaluate is the
average diameter of the network, which is quantified by evaluating the average
shortest path length in the network. This metric assess the change in the effective-
ness in communicating disturbances across the network. We therefore evaluate
the structural properties of the network in propagating disturbances and the impli-
cations of such disturbances in the effective properties of the network. Our goal is
to assess the fundamental differences between the two types of network, namely,
scale free and random.

Based on our simulation results we observed that random (ER) networks do
demonstrate very interesting characteristics. Because the distribution of connec-
tions is random, the response to random failures as well as attacks results in sim-
ilar changes on the average shortest path. This is a critical property that has been
previously well studied and established in ER-type of networks [44]. The devia-
tions from the theoretical curves are mostly due to the fact that unlike simulated
networks with thousands of nodes and connections, our ER network emulates the

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 73

; : : cod

650 ... O SF Network - Attack B e S)
B ER Network - Attack
: : : 0
%/ SF Metwork - Failure : : : :

B ¥ ERMetwork- Faiure | o cr e |
5 : r r 5 i i o
. z O : ;

S 550 e e RS ienFUON S A O .
© : S : :
£ o : : :
8 g ? ? :
O : : : ;

5t i 4

* g m "

o B :. N
= : : of g m"" ;

< IR SRS = S N T e S S Lo _
z Ao Do B
, . . ; ; ; ;

I]]]
0 001 002 003 004 005 006 007 008 003 01
Fraction of Nodes Removed

Fig. 3.11. Changes in network diameter (mean shortest path) for a scale free (sf) network based on
the burn-induced inflammation data and an equivalent random (Erdds-Renyi, ER) network as a result
of network attack and failure.

characteristics (size and connectivity) of the gene interaction networks emanating
from the informative genes of the experiment-specific burn-induced inflammation
study. Nevertheless, both random failures and targeted attacks have similar impli-
cation in the ability of the network to propagate external disturbances, and hence
information, as a result of structural perturbations, such as knock-outs.

However, our computationally constructed experiment-specific scale free pro-
tein interaction network exhibits a dramatically different response. Random fail-
ures have a less pronounced effect on network diameter. The presence of the
hubs guarantees and maintains the effective, average, characteristic of the net-
work. Therefore, the mean shortest path, averaged over numerous failure simula-
tions, does not exhibit any markedly significant changes. This property has been

74 Yang et al.

speculatively associated with the observed robustness of biological systems, in the
sense that the central hubs provide pathways for connecting various components
of the network with similar effectiveness when nodes in the network have been
randomly eliminated or disabled [77]. However, elimination of the major hubs,
through targeted attacks in the network, has a profound and detrimental effect on
the structure of the network, as can been seen by the rapid increase in network
diameter once key hubs have been removed from our network [43]. Systematic
analyses of combined targeted knock-outs holds significant promise in light of
the realization that controlled disturbances may have significant, albeit non detri-
mental effects on the networks. Thus, the effect of a major hub removal might
be replicated through the compounded effect of multiple node removals, of nodes
of lesser importance, without the complete network melt-down that results from
eliminating a central hub [61]. The latter has not only been explored as means of
analyzing networks but is also currently further analyzed as a potential method for
drug target identification [78].

The analysis identified three major hubs of activity, within our protein inter-
action network, namely interleukin-beta, prolactin (PRL), and mitogen activated
protein kinase 14 is. II-1B has been reported to be a dominant cytokine that acts
as a central regulator of the acute inflammatory response, basically through the
production of acute phase proteins [79]. This is evident in the large cascade of
genes influenced through the activities of I1-1B. In addition, one specific cascade
which is initiated through the activity of Il-1B, is that regulated by PRL, another
of the dominant nodes we identified [80]. While II-1B has the outcome of up-
regulating a variety of genes needed in mediating the acute phase response, PRL
has the inverse effect, in that it aides in the acute phase response by opposing
the immunosuppressive effects of glucocorticoids and other inflammatory medi-
ators to maintain steady-state homeostasis [81, 82]. The third hub we identified,
p38MAPK, has also been established as a prominent gene involved in the acute
phase response [83-86]. The p38 signaling cascade exhibits its effects following
thermal injury, generally through the up-regulation of proinflammatory cytokines,
such as the aforementioned I1-1B [87]. Thus, not only are these hubs capable of
regulating a variety of down-stream genes, they themselves exhibit a high-degree
of cross-talk, and regulate each other within the overall context of the protein in-
teraction network. In addition, identification of these hubs provides potential ther-
apeutic targets, to mitigate the inflammatory response observed following thermal
injury.

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 75

3.4. Intervention Strategies

The idea of inhibiting multiple targets by exploring the properties of networks of
interacting proteins is gaining an ever-increasing popularity [78]. Network toler-
ance in the presence of attacks, i.e., elimination of nodes, proves to be a promising
and constructive way of determining putative intervention targets. Of particular
importance is the realization that the same structural effects can be the result of
not only a single node (hub) elimination which can be detrimental, but also the
result of the simultaneous elimination of multiple interactions [61] with the de-
sired structural effects yet not the lethal consequences. In fact, this is the principle
behind the essential action of many multi-target drugs such as non-steroidal anti-
inflammatory drugs (NSAIDs). Selecting, therefore, tentative targets for interfer-
ence or elimination can be rationalized from the point of view of the resulting
network interactions. Even though the importance of major hubs has been es-
tablished in terms of the lethal consequences of eliminating such nodes [43] true
opportunities lie in the potential for the concurrent (partial) elimination of inter-
actions of multiple carefully selected targets.

The in silico approaches proposed in this paper, analyze interaction networks
by exploring the topology of the interactions of sub-sets of maximally informa-
tive genes. Multiple approaches have been proposed for interfering with gene
products in the context of altering cellular responses. Identifying a regulatory
layer and the core nodes of that layer provides a mechanism to elucidate inter-
vention points to attenuate the inflammatory process. Intervention utilizing these
TF proteins could theoretically take one of three forms: 1) inhibition of TF pro-
duction using knockout or silencing techniques; 2) blocking TF activity through
competitive inhibition; 3) blocking TF activity through suicide inhibition. Current
approaches for silencing focus on the use of siRNA techniques [88]. In this ap-
proach double-stranded RNA (dsRNA) is digested by the dsRNA-specific RNase
IIT enzyme dicer into small interfering RNAs (siRNAs). The siRNAs then assem-
ble with a multiprotein nuclease complex, RNA-induced silencing complex [89],
which unwinds the dsRNAs and degrades target mRNAs homologous to the sin-
gle stranded siRNA in a sequence-specific manner. The result of this process is
the degradation of mRNA needed as a template for protein production, thereby
inhibiting the production process, and depleting pools of proteins needed for spe-
cific enzymatic reactions. One specific example of siRNA utilized for intervention
in inflammatory response is the application of siRNA techniques to inhibition the
production of STAT-3 in order to elucidate key signaling molecules in the inflam-
matory response pathway [90]. A future application of this work would be to
utilize the ability to block STAT-3 production to actually modulate the inflamma-

76 Yang et al.

tory response. A second plausible method used to interfere with the inflammatory
response would be to intervene at the level of protein-mediated enzymatic ac-
tivity. To do this, the idea of competitive inhibition could be utilized, wherein
a secondary inhibitor protein would bind to the same active site as the normal
enzyme substrate, without undergoing a reaction. This would then decrease the
total concentration of active enzymatic protein, and decrease the overall pathway
which the reaction is involved in. One example of this approach is the use of
IkB Kinase beta inhibitor to block nuclear factor kappaB-mediated inflammatory
response processes [91]. A third possible means of inhibiting inflammatory re-
sponse at the protein level, would be to implement the idea of protein suicide
inhibition. In this approach, an enzyme binds a substrate analogue and forms a
complex with it during the “normal” catalysis reaction. The catalytic step will
generate one of three reactive groups on the substrate analogue that will allow for
the irreversible inhibition: an «- or 3-haloketone, a 3~ unsaturated carbon, or a
(7 acetylenic carbon. Thus, as opposed to merely blocking the active site in a
reversible manner like that in competitive inhibition, this process is irreversible,
and hence makes a protein completely inactive once bound to the substrate analog.
An example of this approach is the use of petrosaspongiolides which have been
shown to have an in vitro and in vivo potent anti-inflammatory activity, mediated
by specific inhibition of secretory phospholipase A(2) (sPLA(2) enzymes) [92].

Acknowledgements

The authors acknowledge support from the National Science Foundation under
the grant NSF-BES 0519563 and the Environmental Protection Agency under the
grant EPA-GAD R 832721-010. The authors would also like to acknowledge
the critical input of Prof. F. Berthiaume (Center for Engineering in Medicine,
Harvard Medical School) and Professors R.R. Almon, D. Dubois and W.J. Jusko
(Department of Biological Sciences, SUNY Buffalo)

References

[1] V. Agoston, P. Csermely, and S. Pongor. Multiple weak hits confuse complex sys-
tems: a transcriptional regulatory network as an example. Phys Rev E Stat Nonlin
Soft Matter Phys, 71(5 Pt 1):051909, 2005.

[2] S. T. Ahmed, A. Mayer, J. D. Ji, and L. B. Ivashkiv. Inhibition of il-6 signaling by
a p38-dependent pathway occurs in the absence of new protein synthesis. J Leukoc
Biol, 72(1):154-62, 2002.

[3] R. Albert, H. Jeong, and A. L. Barabasi. Error and attack tolerance of complex net-
works. Nature, 406(6794):378-82, 2000.

(4]
(5]

(6]

(7]

(8]

(9]
(10]
(1]

[12]

[13]
(14]

(15]
[16]

(17]

(18]

(19]

(20]

(21]

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 77

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. Garland Science, New York, 4 edition, 2002.

E. Almaas, B. Kovacs, T. Vicsek, Z. N. Oltvai, and A. L. Barabasi. Global organiza-
tion of metabolic fluxes in the bacterium escherichia coli. Nature, 427(6977):839-43,
2004.

R. R. Almon, D. C. DuBois, K. E. Pearson, D. A. Stephan, and W. J. Jusko. Gene
arrays and temporal patterns of drug response: corticosteroid effects on rat liver.
Funct Integr Genomics, 3(4):171-9, 2003.

O. Alter and G. H. Golub. Integrative analysis of genome-scale data by using pseu-
doinverse projection predicts novel correlation between dna replication and rna tran-
scription. Proc Natl Acad Sci U S A, 101(47):16577-82, 2004.

M. M. Babu, N. M. Luscombe, L. Aravind, M. Gerstein, and S. A. Teichmann.
Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol,
14(3):283-91, 2004.

G. D. Bader, M. P. Cary, and C. Sander. Pathguide: a pathway resource list. Nucleic
Acids Res, 34(Database issue):D504-6, 2006.

A. L. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics of random net-
works: the topology of the world-wide web. Physica A, 281(1-4):69-77, 2000.

A. L. Barabasi and Z. N. Oltvai. Network biology: understanding the cell’s functional
organization. Nat Rev Genet, 5(2):101-13, 2004.

P. Blyszczuk, J. Czyz, G. Kania, M. Wagner, U. Roll, L. St-Onge, and A. M.
Wobus. Expression of pax4 in embryonic stem cells promotes differentiation of
nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A,
100(3):998-1003, 2003.

B. Bollobas. Random Graphs. Cambridge University Press, 2001.

A. L. Boulesteix and K. Strimmer. Predicting transcription factor activities from com-
bined analysis of microarray and chip data: a partial least squares approach. Theor
Biol Med Model, 2:23, 2005.

H. J. Bussemaker, H. Li, and E. D. Siggia. Regulatory element detection using corre-
lation with expression. Nat Genet, 27(2):167-71, 2001.

M. P. Cary, G. D. Bader, and C. Sander. Pathway information for systems biology.
FEBS Lett, 579(8):1815-20, 2005.

X. L. Chen, Z. F. Xia, Y. X. Yu, D. Wei, C. R. Wang, and D. F. Ben. p38 mitogen-
activated protein kinase inhibition attenuates burn-induced liver injury in rats. Burns,
31(3):320-30, 2005.

A. M. Corbacho, G. Valacchi, L. Kubala, E. Olano-Martin, B. C. Schock, T. P. Kenny,
and C. E. Cross. Tissue-specific gene expression of prolactin receptor in the acute-
phase response induced by lipopolysaccharides. Am J Physiol Endocrinol Metab,
287(4):E750-7, 2004.

D. L. Corcoran, E. Feingold, and P. V. Benos. Footer: a web tool for finding mam-
malian dna regulatory regions using phylogenetic footprinting. Nucleic Acids Res,
33(Web Server issue): W442-6, 2005.

P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda. Error and attack tolerance
of complex networks. Physica a-Statistical Mechanics and Its Applications, 340(1-
3):388-394, 2004.

P. Csermely, V. Agoston, and S. Pongor. The efficiency of multi-target drugs: the net-

78

(22]
(23]
(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]
(371

(38]

Yang et al.

work approach might help drug design. Trends Pharmacol Sci, 26(4):178-82, 2005.

Jr. Darnell, J. E. Transcription factors as targets for cancer therapy. Nat Rev Cancer,
2(10):740-9, 2002.

P. D’Haeseleer, S. Liang, and R. Somogyi. Genetic network inference: from co-
expression clustering to reverse engineering. Bioinformatics, 16(8):707-26, 2000.

C. Dieterich, H. Wang, K. Rateitschak, H. Luz, and M. Vingron. Corg: a database for
comparative regulatory genomics. Nucleic Acids Res, 31(1):55-7, 2003.

N. Dojer, A. Gambin, A. Mizera, B. Wilczynski, and J. Tiuryn. Applying dynamic
bayesian networks to perturbed gene expression data. BMC Bioinformatics, 7:249,
2006.

K. Dorshkind and N. D. Horseman. The roles of prolactin, growth hormone, insulin-
like growth factor-i, and thyroid hormones in lymphocyte development and function:
insights from genetic models of hormone and hormone receptor deficiency. Endocr
Rev, 21(3):292-312, 2000.

K. Dorshkind and N. D. Horseman. Anterior pituitary hormones, stress, and immune
system homeostasis. Bioessays, 23(3):288-94, 2001.

J. Downer, J. R. Sevinsky, N. G. Ahn, K. A. Resing, and M. D. Betterton. Incorporat-
ing expression data in metabolic modeling: a case study of lactate dehydrogenase. J
Theor Biol, 240(3):464-74, 2006.

B. L. Drees, V. Thorsson, G. W. Carter, A. W. Rives, M. Z. Raymond, I. Avila-
Campillo, P. Shannon, and T. Galitski. Derivation of genetic interaction networks
from quantitative phenotype data. Genome Biol, 6(4):R38, 2005.

F. Gao, B. C. Foat, and H. J. Bussemaker. Defining transcriptional networks through
integrative modeling of mrna expression and transcription factor binding data. BMC
Bioinformatics, 5:31, 2004.

B. Haefner. Can theoretical analysis of cellular regulatory networks improve drug tar-
get identification and validation? BUSINESS BRIEFING: FUTURE Drug discovery,
pages 31-37, 2004.

T. Hinoi, P. C. Lucas, R. Kuick, S. Hanash, K. R. Cho, and E. R. Fearon. Cdx2 reg-
ulates liver intestine-cadherin expression in normal and malignant colon epithelium
and intestinal metaplasia. Gastroenterology, 123(5):1565-77, 2002.

R. Hoffmann and A. Valencia. Protein interaction: same network, different hubs.
Trends Genet, 19(12):681-3, 2003.

R. Hoffmann and A. Valencia. A gene network for navigating the literature. Nat
Genet, 36(7):664, 2004.

V. R. Iyer, C. E. Horak, C. S. Scafe, D. Botstein, M. Snyder, and P. O. Brown. Ge-
nomic binding sites of the yeast cell-cycle transcription factors sbf and mbf. Nature,
409(6819):533-8, 2001.

H. Jeong, S. P. Mason, A. L. Barabasi, and Z. N. Oltvai. Lethality and centrality in
protein networks. Nature, 411(6833):41-2, 2001.

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabasi. The large-scale
organization of metabolic networks. Nature, 407(6804):651-4, 2000.

G. Joshi-Tope, M. Gillespie, 1. Vastrik, P. D’Eustachio, E. Schmidt, B. de Bono,
B. Jassal, G. R. Gopinath, G. R. Wu, L. Matthews, S. Lewis, E. Birney, and L. Stein.
Reactome: a knowledgebase of biological pathways. Nucleic Acids Res, 33(Database
issue):D428-32, 2005.

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]
[47]

(48]
[49]
[50]

(51]

(52]

(53]

[54]

[55]

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 79

G. Joshi-Tope, 1. Vastrik, G. R. Gopinath, L. Matthews, E. Schmidt, M. Gillespie,
P. D’Eustachio, B. Jassal, S. Lewis, G. Wu, E. Birney, and L. Stein. The genome
knowledgebase: a resource for biologists and bioinformaticists. Cold Spring Harb
Symp Quant Biol, 68:237-43, 2003.

K. C. Kao, L. M. Tran, and J. C. Liao. A global regulatory role of gluconeogenic
genes in escherichia coli revealed by transcriptome network analysis. J Biol Chem,
280(43):36079-87, 2005.

K. C. Kao, Y. L. Yang, R. Boscolo, C. Sabatti, V. Roychowdhury, and J. C. Liao.
Transcriptome-based determination of multiple transcription regulator activities in
escherichia coli by using network component analysis. Proc Natl Acad Sci U S A,
101(2):641-6, 2004.

K. C. Kao, Y. L. Yang, J. C. Liao, R. Boscolo, C. Sabatti, and V. Roychowdhury.
Network component analysis of escherichia coli transcriptional regulation. Abstracts
of Papers of the American Chemical Society, 227:U216-U217, 2004.

M. Kato, N. Hata, N. Banerjee, B. Futcher, and M. Q. Zhang. Identifying combina-
torial regulation of transcription factors and binding motifs. Genome Biol, 5(8):R56,
2004.

S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Random boolean net-
work models and the yeast transcriptional network. Proc Natl Acad Sci U S A,
100(25):14796-9, 2003.

E. Keogh, J. Lin, and A Fu. Hot sax: Efficiently finding the most unusual time series
subsequences. 5th IEEE International Conference on Data Mining, 2005.

H. Kitano. Biological robustness. Nat Rev Genet, 5(11):826-37, 2004.

D. E. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, Mas-
sachusetts, 3 edition, 1997.

J. C.Lee, A.J. Lusis, and P. Pajukanta. Familial combined hyperlipidemia: upstream
transcription factor 1 and beyond. Curr Opin Lipidol, 17(2):101-9, 2006.

K. Lee, F. Berthiaume, G. N. Stephanopoulos, and M. L. Yarmush. Profiling of dy-
namic changes in hypermetabolic livers. Biotechnol Bioeng, 83(4):400-15, 2003.

L. K. Lee and C. M. Roth. Antisense technology in molecular and cellular bioengi-
neering. Curr Opin Biotechnol, 14(5):505-11, 2003.

T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M.
Hannett, C. T. Harbison, C. M. Thompson, 1. Simon, J. Zeitlinger, E. G. Jennings,
H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert,
E. Fraenkel, D. K. Gifford, and R. A. Young. Transcriptional regulatory networks
in saccharomyces cerevisiae. Science, 298(5594):799-804, 2002.

D. Lejeune, L. Dumoutier, S. Constantinescu, W. Kruijer, J. J. Schuringa, and J. C.
Renauld. Interleukin-22 (il-22) activates the jak/stat, erk, jnk, and p38 map kinase
pathways in a rat hepatoma cell line. pathways that are shared with and distinct from
il-10. J Biol Chem, 277(37):33676-82, 2002.

D. E. Levy and Jr. Darnell, J. E. Stats: transcriptional control and biological impact.
Nat Rev Mol Cell Biol, 3(9):651-62, 2002.

Lun Li, David Alderson, Reiko Tanaka, John C. Doyle, and Walter Willinger. To-
wards a theory of scale-free graphs: Definition, properties, and implications (ex-
tended version). http://arxiv.org/abs/cond-mat/0501169, 2005.

J. C. Liao, R. Boscolo, Y. L. Yang, L. M. Tran, C. Sabatti, and V. P. Roychowd-

80

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Yang et al.

hury. Network component analysis: reconstruction of regulatory signals in biological
systems. Proc Natl Acad Sci U S A, 100(26):15522-7, 2003.

J. Lim, T. Hao, C. Shaw, A. J. Patel, G. Szabo, J. F. Rual, C. J. Fisk, N. Li, A. Smolyar,
D. E. Hill, A. L. Barabasi, M. Vidal, and H. Y. Zoghbi. A protein-protein interaction
network for human inherited ataxias and disorders of purkinje cell degeneration. Cell,
125(4):801-14, 2006.

J. Locker, D. Ghosh, P. V. Luc, and J. Zheng. Definition and prediction of the full
range of transcription factor binding sites—the hepatocyte nuclear factor 1 dimeric
site. Nucleic Acids Res, 30(17):3809-17, 2002.

N. M. Luscombe, M. M. Babu, H. Yu, M. Snyder, S. A. Teichmann, and M. Gerstein.
Genomic analysis of regulatory network dynamics reveals large topological changes.
Nature, 431(7006):308-12, 2004.

A. M. McGuire and G. M. Church. Predicting regulons and their cis-regulatory motifs
by comparative genomics. Nucleic Acids Res, 28(22):4523-30, 2000.

M. C. Monti, A. Casapullo, R. Riccio, and L. Gomez-Paloma. Further insights on
the structural aspects of pla(2) inhibition by gamma-hydroxybutenolide-containing
natural products: a comparative study on petrosaspongiolides m-r. Bioorg Med Chem,
12(6):1467-74, 2004.

E. A. Nelson, S. R. Walker, J. V. Alvarez, and D. A. Frank. Isolation of unique stat5
targets by chromatin immunoprecipitation-based gene identification. J Biol Chem,
279(52):54724-30, 2004.

A. Ng, B. Bursteinas, Q. Gao, E. Mollison, and M. Zvelebil. pstiing: a ’systems’
approach towards integrating signalling pathways, interaction and transcriptional
regulatory networks in inflammation and cancer. Nucleic Acids Res, 34(Database
issue):D527-34, 2006.

A. Nikitin, S. Egorov, N. Daraselia, and I. Mazo. Pathway studio—the analysis and
navigation of molecular networks. Bioinformatics, 19(16):2155-7, 2003.

P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive time series
databases. ICDM 2002, pages 370-377, 2002.

J. Pradines, L. Rudolph-Owen, J. Hunter, P. Leroy, M. Cary, R. Coopersmith, V. Dan-
cik, Y. Eltsefon, V. Farutin, C. Leroy, J. Rees, D. Rose, S. Rowley, A. Ruttenberg,
P. Wieghardt, C. Sander, and C. Reich. Detection of activity centers in cellular path-
ways using transcript profiling. J Biopharm Stat, 14(3):701-21, 2004.

D. N. Rassokhin and D. K. Agrafiotis. Kolmogorov-smirnov statistic and its applica-
tion in library design. J Mol Graph Model, 18(4-5):368-82, 2000.

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabasi. Hierarchi-
cal organization of modularity in metabolic networks. Science, 297(5586):1551-5,
2002.

A. W. Rives and T. Galitski. Modular organization of cellular networks. Proc Natl
Acad Sci U S A, 100(3):1128-33, 2003.

P. Ruminy, C. Gangneux, S. Claeyssens, M. Scotte, M. Daveau, and J. P. Salier. Gene
transcription in hepatocytes during the acute phase of a systemic inflammation: from
transcription factors to target genes. Inflamm Res, 50(8):383-90, 2001.

A. Sandelin, W. W. Wasserman, and B. Lenhard. Consite: web-based prediction
of regulatory elements using cross-species comparison. Nucleic Acids Res, 32(Web
Server issue):W249-52, 2004.

(71]
[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

[81]

(82]

[83]

[84]

[85]

[86]

Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes 81

G. L. Semenza. Transcription factors and human disease. Oxford Monographs on
Medical Genetics, 37, 1999.

V. Spirin and L. A. Mirny. Protein complexes and functional modules in molecular
networks. Proc Natl Acad Sci U S A, 100(21):12123-8, 2003.

N. Sun, R. J. Carroll, and H. Zhao. Bayesian error analysis model for reconstructing
transcriptional regulatory networks. Proc Natl Acad Sci U S A, 103(21):7988-93,
2006.

T. Takai-Igarashi and R. Mizoguchi. Cell signaling networks ontology. In Silico Biol,
4(1):81-7, 2004.

T. Takai-Igarashi and R. Mizoguchi. Ontological integration of data models for cell
signaling pathways by defining a factor of causality called ’signal’. Genome Inform,
15(2):255-65, 2004.

C. Tellez and M. Bar-Eli. Role and regulation of the thrombin receptor (par-1) in
human melanoma. Oncogene, 22(20):3130-7, 2003.

L. M. Tran, M. P. Brynildsen, K. C. Kao, J. K. Suen, and J. C. Liao. gnca: A frame-
work for determining transcription factor activity based on transcriptome: identifia-
bility and numerical implementation. Metabolic Engineering, 7(2):128-141, 2005.
B. van Steensel, J. Delrow, and H. J. Bussemaker. Genomewide analysis of drosophila
gaga factor target genes reveals context-dependent dna binding. Proc Natl Acad Sci
U S A, 100(5):2580-5, 2003.

M. Vemula, F. Berthiaume, A. Jayaraman, and M. L. Yarmush. Expression profiling
analysis of the metabolic and inflammatory changes following burn injury in rats.
Physiol Genomics, 18(1):87-98, 2004.

M. V. Verga Falzacappa, M. Vujic Spasic, R. Kessler, J. Stolte, M. W. Hentze, and
M. U. Muckenthaler. Stat-3 mediates hepatic hepcidin expression and its inflamma-
tory stimulation. Blood, 2006.

W. Wang, J. M. Cherry, D. Botstein, and H. Li. A systematic approach to reconstruct-
ing transcription networks in saccharomycescerevisiae. Proc Natl Acad Sci U S A,
99(26):16893-8, 2002.

W. W. Wasserman and A. Sandelin. Applied bioinformatics for the identification of
regulatory elements. Nat Rev Genet, 5(4):276-87, 2004.

D. Wen, Y. Nong, J. G. Morgan, P. Gangurde, A. Bielecki, J. Dasilva, M. Keaveney,
H. Cheng, C. Fraser, L. Schopf, M. Hepperle, G. Harriman, B. D. Jaffee, T. D. Ocain,
and Y. Xu. A selective small molecule ikappab kinase beta inhibitor blocks nuclear
factor kappab-mediated inflammatory responses in human fibroblast-like synovio-
cytes, chondrocytes, and mast cells. J Pharmacol Exp Ther, 317(3):989-1001, 2006.
J. Westra, J. Bijzet, B. Doornbos-van der Meer, M. H. van Rijswijk, and P. C. Lim-
burg. Differential influence of p38 mitogen activated protein kinase (mapk) inhibi-
tion on acute phase protein synthesis in human hepatoma cell lines. Ann Rheum Dis,
65(7):929-35, 2006.

M. S. Wu, S. Kwon, J. F. Driscoll, and G. M. Faeth. Preferential diffusion effects on
the surface structure of turbulent premixed hydrogen/air flames. Combust. Sci. Tech.,
78:69-96, 1991.

E. Yang, T. Maguire, M L Yarmush, F Berthiaume, and I. P. Androulakis. Bioin-
formatics analysis of the early inflammatory response in a rat thermal injury model.
BMC Bioinformatics, accepted for publication, 2006.

82

(87]

(88]

[89]

[90]

[91]

[92]

Yang et al.

E. Yang, T. Maguire, M. L. Yarmush, F. Berthiaume, and 1. P. Androulakis. Bioin-
formatics analysis of the early inflammatory response in a rat thermal injury model.
BMC Bioinformatics, 8(1):10, 2007.

M. K. Yeung, J. Tegner, and J. J. Collins. Reverse engineering gene networks us-
ing singular value decomposition and robust regression. Proc Natl Acad Sci U S A,
99(9):6163-8, 2002.

S. H. Yook, Z. N. Oltvai, and A. L. Barabasi. Functional and topological characteri-
zation of protein interaction networks. Proteomics, 4(4):928-42, 2004.

A. Yuryev, Z. Mulyukov, E. Kotelnikova, S. Maslov, S. Egorov, A. Nikitin,
N. Daraselia, and I. Mazo. Automatic pathway building in biological association net-
works. BMC Bioinformatics, 7:171, 2006.

A. Zauberman, D. Zipori, M. Krupsky, and R. Ben-Levy. Stress activated protein
kinase p38 is involved in il-6 induced transcriptional activation of stat3. Oncogene,
18(26):3886-93, 1999.

T. L. Zimmerman, S. Thevananther, R. Ghose, A. R. Burns, and S. J. Karpen. Nu-
clear export of retinoid x receptor alpha in response to interleukin-1beta-mediated
cell signaling: roles for jnk and ser260. J Biol Chem, 281(22):15434-40, 2006.

Chapter 4

Graph-based Approaches for Motif Discovery

Elena Zaslavsky

Department of Computer Science
Princeton University, Princeton, NJ 08544, USA
elenaz@cs.princeton.edu

Sequence motif finding is a very important and long-studied problem in com-
putational molecular biology. While various motif representations and discov-
ery methods exist, a recent development of graph-based algorithms has allowed
practical concerns, such as positional correlations within motifs, to be taken into
account. This survey provides an overview of the multi-partite graph formulation
of motif finding, and focuses on algorithmic aspects of various motif discovery
methodologies.

Motif finding has been recast as a number of different graph substructure
identification problems. First we review a formulation as a maximum-weight
clique finding problem, and examine two different integer linear programs to
model it. The motif finding algorithms use graph pruning techniques and a cut-
ting planes approach in conjunction with linear programming relaxations. Sec-
ondly, we discuss a formulation of motif discovery as that of maximum density
subgraph finding, and review a maximum flow based algorithm in an appropri-
ately augmented flow network. Finally, we mention the ’subtle’ motifs formu-
lation, and define its corresponding graph problem of maximal clique identifi-
cation. We discuss two different approaches to tackle this problem, one based
on winnowing spurious edges and the other on divide-and-conquer sub-clique
finding.

4.1. Introduction

With the advent of the post-genomic era when scores of genomes have been se-
quenced and many protein structures solved, functionally important elements can
be mined from vast amounts of genomic data through identification of common
patterns or motifs. Existence of such shared sequence or structure elements allows
one to draw links between various genes or proteins in an organism, creating a net-
work of biological associations. The ability to analyze such networks has shown

83

84 Zaslavsky

great potential in uncovering new insight in a variety of biological systems.

A problem of great interest that explores non-coding regions of DNA for se-
quence motifs is one of transcription factor binding site identification. Transcrip-
tion factors are cellular proteins that take part in regulating gene expression, serv-
ing as activators or inhibitors of transcription. Uncovering their binding targets is
a crucial step towards understanding the mechanisms of transcriptional activity in
the cell. Biological approaches, which include both in-vivo [20] and in-vitro [31]
experimental designs, to identifying DNA binding sites are still time-consuming,
costly, sensitive to perturbation and often imprecise in pinpointing the exact loca-
tions of binding sites. It is clear that computational methods are needed to address
this very important problem.

Computational discovery of transcription factor binding sites is typically cast
as the problem of finding mutually similar substrings in unaligned sequence data.
We refer to this task as the motif finding or motif discovery problem. Motif finding
algorithms operate on sets of sequences that are presumed to possess a common
motif. Two orthogonal approaches exist: one attempts to identify binding sites
among a set of regulatory regions of orthologous genes across genomes of vary-
ing phylogenetic distance [3, 7, 16, 29, 30], referred to as phylogenetic footprint-
ing, and the other analyzes regulatory sequences for sets of genes from a single
genome assumed to be controlled by a common transcription factor. While in
the first case data are collected via gene orthology determination, in the second
case data are made available through DNA microarray studies [40, 43], chromatin
immunoprecipitation (ChIP-chip) experiments [20] and protein binding microar-
rays [31]. In DNA microarray studies normalized gene expression levels of many
genes are analyzed to reveal similar patterns in expression. Under the assumption
that co-expressed genes are likely co-regulated, the regulatory regions of such co-
expressed genes can be subjected to motif finding. In the latter approaches the
binding of a regulatory protein to DNA is recognized directly via molecular meth-
ods. The group of DNA sequences, to which the protein was bound, can be input
to a motif finding algorithm to identify the binding sites precisely.

There are two broad categories of motif finding algorithms, and they are fun-
damentally linked to the choice of the underlying motif representation [33, 41].
One class of algorithms is based on the consensus motif model, and the search
strategies focus on finding word-based patterns via various approaches including
enumerative [12, 15, 27, 34, 39, 44] and clustering [5, 35] methods. The proba-
bilistic algorithms, based on the position-specific scoring matrix model (PSSM),
use greedy strategies [11] or parameter estimation techniques, such as Expectation
Maximization or Gibbs Sampling [14, 18, 19, 24, 38] to maximize information
content of the sought motif.

Graph-based Approaches for Motif Discovery 85

A comprehensive comparison study by Tompa and coauthors [45] showed that
the performance of these two broad groups of methods seem to be complemen-
tary in many cases, with a slight performance advantage demonstrated by repre-
sentative methods of the combinatorial class (e.g., Weeder [34]). However, both
categories of motif finding algorithms have their limitations. Many combinatorial
methods enumerate every possible pattern, and are thus limited in the length of
the motifs they can search for. While this may be less of an issue in eukaryotic
genomes, where transcriptional regulation is mediated combinatorially by a large
number of transcription factors with relatively short binding sites, substantially
longer motifs are found when considering either DNA binding sites in prokaryotic
genomes (e.g., for helix-turn-helix binding domains of transcription factors [37])
or protein motifs [4]. Limitations exist in methods based on the PSSM model as
well. These methods typically employ heuristic search techniques that don’t guar-
antee convergence to the globally optimal motif (though some recent progress has
been made in this direction [21]). Additionally, a fundamental problem exists
with the PSSM representation. Position-specific scoring matrices assume inde-
pendence between motif positions, and though this assumption leads to satisfac-
tory results in many applications [2], recent work [6, 26] has shown evidence of
dependencies between positions in transcription factor binding sites.

While the positional independence assumption in PSSMs can be relaxed by
using richer models [1, 48], risk of overfitting exists. More importantly, other
analyses [32] find that the distribution of motif instances in many eukaryotic mo-
tifs exhibit complex dependencies that are not easily modeled probabilistically. It
has been shown [33] that modeling these dependencies using the sequence pattern-
based approaches leads to improved performance in representing and searching
for binding sites; a similar statistically significant improvement is not observed
with PSSMs. In fact, Naughton and colleagues [32] report that simulated motifs
generated by PSSM models display a distribution very different from instances
of real biological motifs. They show that biological motifs exhibit a significantly
higher degree of clustering as measured by sequence similarity. As such, it is bet-
ter to evaluate a candidate motif instance while considering a number of its nearest
neighbors, rather than a model of the entire motif.

These observations naturally lead to considering graph-based approaches to
motif finding, in which graph vertices correspond to substrings in the input, edges
denote the degree of similarity between their DNA sequences, and highly con-
nected graph sub-structures exhibit the clustering behavior necessary to identify
motifs. There exist graph-based formulations and algorithms that possess an ad-
vantage over enumerative methods in that they are not exponential in the problem
input size and thus are not limited by the length of the sought motif. Likewise,

86 Zaslavsky

exploiting the graph structure of the problem and looking for highly-weighted
clique-like substructures allows for implicit modeling of complex positional de-
pendencies within motifs, otherwise not possible with PSSMs.

We explore a number of formulations and accompanying algorithms in graph-
based motif discovery that have been proposed and applied to find biologically
interesting motifs. The ability of the graph-based approaches to formulate the
problem in such a way that optimal solutions are attainable while overcoming
many of the limitations of the standard approaches demonstrates the power of
these search procedures. Though we don’t focus on experimental results in this
article, it should be noted that the performance of these methods in uncovering
known motifs illustrates their utility for novel sequence motif discovery.

The rest of this review focuses on various methodologies in graph-based al-
gorithms, and does not encompass the broader motif finding problem. Recent
surveys [10, 22, 25] and comparative studies [13, 45] can serve as a good practical
guide when choosing a method to be applied in practice.

4.2. Graph-Theoretic Formulation

The motif finding problem, with the input consisting of a length parameter [of
the putative motif, and N sequences, each of a possibly different length, to be
searched for motif occurrences, can be formulated in graph-theoretic terms [46].
The problem is recast as a complete, weighted N-partite graph G = (V, E'), with
a graph part corresponding to each input sequence. Denoting the set of nodes in
the part corresponding to sequence 7 by V;, the full vertex setis V = V;U- - -UV.
In part V; there is a node for every substring of length [in sequence i. Thus, for a
sequence ¢ of length L there are L — [+ 1 nodes in V; (see Fig. 4.1).

Each pair of nodes u and v in different graph parts is joined by an edge
(u,v) € E. Letting seq(u) denote the input substring corresponding to node wu,
the weight w,,,, on edge (u, v) is a function of the similarity between seq(u) and
seq(v) as well as the background nucleotide distribution. Thus, the weight of an
edge connecting pairs of substrings that are unlikely to appear in the background,
is increased. A motif in this formulation is a selection of vertices, correspond-
ing to substrings collectively exhibiting a higher degree of similarity than would
be expected based on the background distribution. It is also possible to relax the
specification of allowing only one motif instance to occur in every sequence, thus
modeling a biologically more realistic version of the problem. The graph con-
struction is altered to permit edges between vertices in the same graph part.

A related formulation of motif finding that has been recast similarly in graph-
theoretic terms by many methods, is that of ’subtle’ motifs, introduced by Pevzner

Graph-based Approaches for Motif Discovery 87

ACGTTGAACTGCT
TGACGTTGAACTG

Fig. 4.1. Graph representation for the motif finding problem. A graph part V; corresponds to every
sequence, and a vertex corresponds to every possible motif position. If the motif length [is four, the
picture matches up the last few substrings to their graph vertices. Every pair of vertices w and v in
distinct parts are connected by an edge wyv.

and Sze [35]. In this formulation an unknown pattern of a given length is inserted
with modifications into each of the input sequences. The positions of insertion
are unknown, as are the modifications in the instances of the pattern. Pevzner
and Sze focus on what they call the (I, d)—signal version, in which the pattern is a
string of length [and each instance differs from the pattern in exactly d positions.
The mutations are allowed to occur anywhere in the pattern, and thus any two
instances of the pattern may differ from one another in as many as 2d positions.
On the other hand, if two substrings differ in more than 2d positions, they cannot
simultaneously be instances of the implanted pattern. The graph version of the
problem remains largely the same as above, except that it is no longer a complete
N—partite graph. By definition, vertices that correspond to substrings separated by
a Hamming distance that is greater than 2d, are not connected by an edge, as such
a vertex pair can not be an instantiation of a single pattern. The weights on the
edges are distance rather than similarity-based and are computed by considering
the number of matches and mismatches between the substrings.

We first address the algorithms designed for the standard motif finding prob-
lem, and then review some of the subtle motif methods.

88 Zaslavsky

4.3. Linear Programming-based Algorithms

Utilizing a linear programming (LP) framework for motif finding [17, 47] allows
for a very flexible formulation of the problem that is applicable to a number of
variants. This includes the standard motif finding formulation as well as the phy-
logenetic footprinting and subtle motifs problems. Underlying the approach, motif
discovery is cast as the problem of finding the best gapless local multiple sequence
alignment using the sum-of-pairs (SP) scoring scheme, which seeks a [-long sub-
string from every input sequence such that the sum of all their pair-wise simi-
larities is maximized. In the graph G = (V, E) the equivalent is a selection of
vertices, one from each graph part, such that the weight of the induced clique is
maximized. We refer to this problem as finding the highest weight N—clique.

4.3.1. Edge-Modeling Formulation

For a graph G = (V,E), where V = V; U...UVy and E = {(u,v) : u €
Vi,v € Vj,i # j}, Zaslavsky and Singh [47] introduce a formulation that explic-
itly models both vertices and edges in the graph. They define a binary decision
variable X, for every vertex u, and a binary decision variable Y,,,, for every edge
(u,v). Setting X, to 1 corresponds to selecting vertex u for the N—clique and
thus choosing the sequence position corresponding to u in the alignment. Setting
variable Y, to 1 corresponds to choosing the edge (u, v) for the N—clique.

The following integer linear program (ILP) models the motif finding problem
formulated above:

Maximize Z(u’v)e £ W * Yo

subject to
Zuevauzl for1<j<N
Zueijw:Xv for1<j< N,veV\V;
Xu,Y@ € {0,1} foru eV, (u,v) € E

The first set of constraints ensures that exactly one vertex is picked from every
graph part, corresponding to one position being chosen from every input sequence.
The second set of constraints relates vertex variables to edge variables, allowing
the objective function to be expressed in terms of finding a maximum edge-weight
clique. An edge is chosen only if it connects two chosen vertices.

ILP itself is NP-hard, but replacing the integrality constraints on the X and
Y variables with 0 < X,,,Y,, < 1 allows for a polynomial-time heuristic for
the problem. It is important to note that should a linear programming solution
happen to be integral, it is guaranteed to be optimal for the original ILP and motif

Graph-based Approaches for Motif Discovery 89

finding problem. Non-integral solutions, on the other hand, are not feasible for the
ILP and do not translate to a selection of positions for the motif finding problem.
Those instances need to be solved by other means, such as using an ILP solver.
Zaslavsky and Singh [47], who proposed this ILP formulation, couple the linear
programming heuristic with a suite of graph pruning techniques, which enable a
drastic reduction in graph sizes, and lead to effective and efficient application of
the LP/ILP solvers to much smaller graphs.

4.3.1.1. Graph Pruning

The authors [47] introduce number of successively more powerful optimality-
preserving dead-end elimination (DEE) techniques for pruning graphs corre-
sponding to motif finding problems. The basic idea is to discard vertices and/or
edges that cannot possibly be part of the optimal solution.

Here we mention the simplest of the techniques. Suppose there exists an N-
clique of weight C* in G. Then a vertex u, whose participation in any possible
N-clique in G reduces the weight of that clique below C*, is incompatible with
the optimal alignment and can be safely eliminated.

More formally, for vertex v € V; define star(u) to be a selection of vertices
from every graph part other than V. Let F, be the value induced by the edge
weights for the set of vertices in the star(u) that form best pairwise alignments
with u:

F, = Zmavxww 4.1
— vEV;
J#i

If u were to participate in any N-clique in G, F;, is the maximum it can contribute
to the weight of the clique. Similarly, let 7" be the value of the best possible
star(u) among all u € V;:
F¥ = max F, 4.2
i = max b, (4.2)
F* is an upper bound on what any vertex in V; can contribute to any alignment.
If F,, the most a vertex z € V}, can contribute to a clique, assuming the best
possible contributions from all other graph parts, is insufficient compared to the
value C* of an existing clique, i.e. if

F,<2xC*=> F, 4.3)
itk
z can be discarded. The clique value C* is used with a factor of 2 since two edges
are accounted for between every pair of graph parts in the above inequality.

90 Zaslavsky

In fact, the values of F;* are further constrained by requiring a connection
to z when z is under consideration. That is, when considering a node z € Vj
to eliminate, and calculating F;* according to Equation 4.2 among all possible
u € V;, the F, of Equation 4.1 is instead computed as:

Fu=wu+ Y max W, (4.4)
JALk

The value of C* can be computed from any “good” alignment, such as the weight
of the clique imposed by the best overall szar.

More complex graph-pruning techniques, based on three-way, as op-
posed to pairwise alignments, and divide-and-conquer graph decomposition ap-
proaches [47], are more effective in reducing graph size, but are also significantly
less efficient. The overall algorithm applies the various pruning techniques in or-
der of increasing complexity, and stops when the resulting graph has reached the
desired size, and can be modeled and successfully solved as a linear program.

Interestingly, the vast majority of motif finding instances are not only effec-
tively pruned by the optimality-preserving DEE methods, but also lead to linear
programs whose optimal solutions are integral, and do not require the invocation
of an ILP solver. These two conditions together guarantee optimality of the final
solution for the original SP-based motif finding problem, making the method a
polynomial-time algorithm for many practical instances of the problem.

4.3.2. Cost-Aggregating Formulation

In the context of a metric, such as the Hamming distance or 1/0 match/mismatch
similarity score, which, when imposed on pairs of substrings allows for only a
discrete set of possible values, Kingsford and coauthors [17] introduce an alterna-
tive integer linear program that better exploits the structure of the graph problem
by allowing aggregation of edges of the same weight. The previous ILP formula-
tion modeled edges in the graph G = (V, E), where V' = V; U. ..U Vy explicitly,
while they are only used to ensure that if two nodes v and v are chosen in the
optimal solution then the edge weight w,,, is added to the cost of the clique. In
this formulation no edge variables exist; instead, in addition to the node variables
X, there’s a variable Y, ;. for each node u, each graph part j such that u ¢V,
and each edge weight c. The intuition is that Y, is 1 if node u and some node
v € Vj are chosen such that the edge weight w,, = c. These Y variables model
groupings of the edges by weight into cost bins, as shown in Fig. 4.2, and selec-
tion of a cost bin requires the “payment” of the appropriate cost by the objective
function.

Graph-based Approaches for Motif Discovery 91

Fig. 4.2. Schematic of the cost-aggregating formulation. Adjacent to a node u € V; there are at most
|D| (where D be the set of possible edge weights), cost bins for each part j > i, each associated with
a variable Yy ;. For each cost c there are the nodes v € V; for which wy., = c (stars).

Formally, let D be the set of possible edge weights (costs) and let W =
{(u,j,¢) :c € Djue V,j €l,...N andu ¢ V;} be the set of triples over
which the Y,,;. variables are indexed, and let part(u) = ¢ if v € V;. Then
the following ILP models the motif-finding graph problem (note that in the pa-
per [17] a distance-based metric is used and the formulation follows a minimiza-
tion problem):

Maximize Z(u,j,c)EW:part(u)<j ¢ Y“jc

subject to
Y wey, Xu=1 fori=1,...,N 5)
> en Yuje = Xu forjel,...,Nandu e V\YV; ’

Zvevj:wm,:c Xy > Yuje for (u,j,¢c) e Wst.u € V;andi < j
Xu,Yuje € {0,1}

As above, the first set of constraints forces a single node to be chosen in each
graph part. The second set of constraints makes certain that if a node u is chosen,
then for every other part j, one of its “adjacent” cost bins must also be chosen
(Fig. 4.2). The third set of constraints ensures that Y,,;. can be selected only
if some node v € V;, such that w,, = c, is also selected. Figure 4.2 gives a
schematic drawing of these constraints.

As shown by Kingsford and coauthors [17], this ILP formulation correctly
models the SP motif finding problem. When considering a linear programming
relaxation of the cost-aggregating formulation in order to develop an polynomial-

92 Zaslavsky

time algorithm for the problem, the authors find that while it is weaker than the
alternative LP formulation for motif finding [47], an exponentially-sized class of
constraints can be added to make the two LP formulations equivalent. However,
they then show that it is not necessary to explicitly add all these constraints by
giving a separation algorithm, based on the Max-flow min-cut theorem. In the
presence of a separation algorithm the ellipsoid method [9] can be used to find a
solution to the tightened LP in time polynomial in the number of variables of the
mathematical programming problem. In practice, the authors use a polynomially-
sized subset of constraints in a cutting-planes approach to find solutions to the LP
problem. Finally, it is interesting to note that the LP relaxations often have integral
optimal solutions, making solving the LP sufficient in many cases for solving
the original ILP, similar to what was observed above with the edge-modeling LP
formulation.

4.4. Maximum Density Subgraph-based Algorithm

Looking for sequence motifs by identifying maximum density subgraphs (MDS)
was suggested by Matsuda [28], as applied to the problem of detection of con-
served domains in protein sequences. Fratkin and coauthors [8] employ maximum
density subgraphs at the core of their MotifCut algorithm when searching for DNA
motifs using motif finding graphs. Given the construction of such graphs in that
the edges with higher weights correspond to pairs of substrings that are more sim-
ilar and more likely to constitute motif instances, graph structures with greatest
edge-weight density are likely to represent motif occurrences. Note that the Mo-
tifCut algorithm operates on motif finding graphs such that all pairs of vertices are
connected by edges.

While the notion of subgraph density can be characterized in a number of
ways, the authors use the most common tractable definition, and define density for
agraph G = (V, E) as ||E||/||V]|], where || V]| is the number of vertices and || E||
is the total weight of all the edges. They also provide some empirical evidence that
their choice is a good one for biological data by evaluating which definitions lead
to densities of motifs being most different from densities of subgraphs in the back-
ground. Building on this definition, [8] formulate motif finding as the problem of
search for the maximum density subgraph G* = argmazc ca(||E'||/||V']])-

The solution to the maximum density subgraph problem is based on the Max-
flow min-cut theorem. The graph is augmented by a source and sink nodes to
become a flow network, with appropriate capacities connecting the source/sink to
the rest of the graph, and the maximum flow is computed while also finding the
minimum cut. If the maximum flow in the network satisfies certain conditions

Graph-based Approaches for Motif Discovery 93

relating average degree of vertices and current graph density, then one of the sub-
graphs induced by the minimum cut is guaranteed to have higher density than the
original graph. A new flow network is constructed from the subgraph with higher
density and the process is repeated, converging to the maximum density subgraph
after a polynomial number of iterations.

To achieve a speed-up over the push/relabel algorithm for the maximum flow
computations, Fratkin and colleagues [8] propose a heuristic that looks for the
maximum density subgraph in local, high average degree neighborhoods around
vertices. Finally, the authors use a refinement step to eliminate the high number of
false positives in the obtained set of candidate motif instances by greedily finding
a subset of minimum entropy. The overall approach is interesting and novel in that
it poses motif finding as an optimization problem that is solved by a polynomial-
time algorithm and seems to scale well with longer input sequences.

4.5. Subtle Motif Algorithms

The subtle motif finding formulation of Pevzner and Sze [35] has generated a host
of algorithms to address the (15, 4) challenge problem issued in the paper, which
was to find implanted motifs of length 15 with 4 random mutations, and many of
the subsequent algorithms solve this problem successfully (see [36] for compara-
tive analysis). Additionally, they also address more difficult variants, in which a
higher percentage of motif positions is corrupted and the motif is implanted into
longer background sequences. Here we discuss a few of these methods, which
focus on looking for structure in the subtle motif finding graphs G = (V, E).
Note that these differ from the standard motif finding graphs in that they aren’t
complete, as some pairs of substrings are not close enough in terms of their Ham-
ming distances and can’t simultaneously be instances of the same implanted motif.
Finding subtle motifs reduces to identifying cliques of size IV in these [V-partite
graphs.

First, we note that the linear programming formulations and graph pruning
approaches above are also applicable to the subtle motifs problem, and indeed
solve many variants successfully with excellent performance statistics in iden-
tifying motifs. The LP formulations remain largely unchanged except that the
variables corresponding to non-existent edges are removed, and summations in
the corresponding constraints are taken only over existing edges.

94 Zaslavsky

4.5.1. Winnowing Techniques

In their paper proposing the subtle motifs problem, Pevzner and Sze [35] make the
observation that the vast majority of edges in G appear due to spurious similari-
ties between pairs of substrings in the input that are not instances of the implanted
motif. They suggest a winnowing approach, which attempts to identify these spu-
rious edges and remove them from the graph, so that the remaining edges are
signal edges, connecting the instances of the motif.

The Winnower algorithm utilizes the notion of an extendable clique. This
notion captures the ability to grow a clique of size smaller than N, removing
spurious edges along the way. More formally, let vertex u be a neighbor of a
clique C = {v1,..., v} if {v1,...,vg, u} is also a clique in the graph. A clique
with vertices in graph parts Vi,..., Vi wlog is called extendable if it has at least
one neighbor vertex in every other part of the graph. Certainly, edges that are not
part of any extendable cliques can be removed, and these are the edges defined as
spurious. For k = 1, a vertex w is a neighbor of clique C' = {v} of size one, if u
and v are connected by an edge in the graph. The winnowing condition amounts
to removing vertices that do not have a connection to every graph part. For k = 2,
a vertex u is a neighbor of clique C' = {v, w} if {u,v,w} form a triangle in the
graph. The winnowing strategy for this case deletes edges that do not form three-
way connections to every other part of the graph. For £ > 3, the authors make a
stronger observation by noting that not only does an edge that is part of a maximal
N-clique have to belong to one extendable clique, but rather it has to belong to

at least (Z:;
edges that belong to fewer than N — 2 extendable cliques.

The general complexity of the winnowing approach for cliques of size k is
O(n*+1), where n is the total number of vertices in the motif finding graph. The
authors demonstrate in a probabilistic analysis, based on the probability of an edge
existing between two random vertices, that the expected runtime of the algorithm
is of lower complexity, making it practical for many instances of the problem.

In follow-up work, Liang and coauthors [23] improve sensitivity of the
method, enabling it to detect weaker motifs present in longer input sequences.

) extendable cliques of size k. For k = 3 this condition removed

4.5.2. Clique Finding with Consensus Constraint

Sze and colleagues [42] proposed to formulate motif finding as the problem of
looking for large cliques in motif finding graphs with the additional constraint
that there must exist a string s that is close to every motif instance. The existence
of such a string ensures that motif instances are derived from a single pattern. The

Graph-based Approaches for Motif Discovery 95

authors observe that the maximal clique in an N-partite graph is much smaller
than the size of the graph, and use a divide-and-conquer approach to solve the
problem. They apply a branch-and-bound algorithm to each subproblem, check-
ing along the way whether a string, close to the current set of possible motif in-
stances, exists.

The main idea in the clique-finding part of the algorithm is to subdivide the
problem into a number of independent Ny-partite subgraphs with Ny < IV, iden-
tifying all the cliques in each of the smaller subgraphs, and combine the results.
Cliques, found in the smaller subgraphs, form vertices in a new graph, with two
cliques from the same subproblem corresponding to vertices in the same part of
the new graph. Two vertices in different parts are connected by and edge if their
corresponding cliques combine to form a larger clique in the original graph. The
authors show how to choose an appropriate subdivision parameter N, so that the
number of cliques in each subproblem does not grow too high, and the second
graph problem based on sub-cliques is not more complex than the original one.

Deciding whether a string, close to a given set of strings of the same length,
exists is an NP-hard problem. Sze and coauthors [42] circumvent this difficulty
by noting that the close-string problem need not be solved every time a clique
of size j is expanded to size j + 1, but rather when a clique potentially larger
than before is found. Weaker necessary conditions are used instead during other
clique expansion steps to prune impossible branches. These conditions constrain
existence of a close string based on pair-wise distances between strings in the set.

The authors further generalize their approach for problems such that not every
input sequence contains a motif instance, and demonstrate an optimized branch-
and-bound algorithm for clique finding that is faster than the standard methods
and is applicable to relatively large graphs.

4.6. Discussion

We have presented an overview of graph-based methods for motif discovery. The
authors of the respective methods, the LP-based methods and MotifCut in particu-
lar, thoroughly test the performance of the algorithms and show improved results
in biological and/or simulated data over a number of standard and well-regarded
approaches. The methods are based on motif models substantially different from
the common PSSM model, and allow for the relaxation of the positional indepen-
dence assumption within motifs. This line of research provides a successful and
powerful alternative to traditional stochastic and enumerative techniques.

96

Zaslavsky

Acknowledgements

The author thanks Mona Singh and the anonymous referees for their helpful sug-
gestions on the manuscript. E.Z. is supported by the NSF IGERT award DGE-
9972930 and the NIH award HHSN266200500021C.

References

(1]

(2]
(3]
(4]

(5]
(6]

(7]

(8]

(9]
(10]
(1]
[12]
(13]

[14]

[15]

Y. Barash, G. Elidan, N. Friedman, and T. Kaplan. Modeling dependencies in protein-
dna binding sites. In Proceedings of the Seventh Annual International Conference on
Research in Computational Molecular Biology, pages 28-37. ACM Press, 2003.

P. V. Benos, M. L. Bulyk, and G. D. Stormo. Additivity in protein-dna interactions:
how good an approximation is it? Nucleic Acids Research, 30(20):4442-4451, 2002.
M. Blanchette and M. Tompa. Discovery of regulatory elements by a computational
method for phylogenetic footprinting. Genome Res., 12:739-748, 2002.

B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter, A. Estreicher, E. Gasteiger,
M.J. Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout, and M. Schneider. The
swiss-prot protein knowledgebase and its supplement trembl in 2003. Nucleic Acids
Res., 31:365-370, 2003.

J. Buhler and M. Tompa. Finding motifs using random projections. J. Comput. Biol.,
9(2):225-242, 2002.

M. L. Bulyk, P. L. Johnson, and G. M. Church. Nucleotides of transcription factor
binding sites exert interdependent effects on the binding affinities of transcription
factors. Nucleic Acids Research, 30(5):1255—1261, 2002.

P. Cliften, P. Sundarsanam, A. Desikan, L. Fulton, B. Fulton, J. Majors, R. Water-
ston, B.A. Cohen, and M. Johnston. Finding functional features in Saccharomyces
genomes by phylogenetic footprinting. Science, 301(5629):71-76, 2003.

E. Fratkin, B. T. Naughton, D. L. Brutlag, and S. Batzoglou. Motifcut: regulatory
motifs finding with maximum density subgraphs. Bioinformatics, 22(14):e150—157,
2006.

M. Grotschel, L. Lovdsz, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, Berlin, Germany, 2nd edition, 1993.

D. GuhaThakurta. Computational identification of transcriptional regulatory ele-
ments in dna sequence. Nucleic Acids Res., 34(12):3585-3598, 2006.

G. Hertz and G. Stormo. Identifying dna and protein patterns with statistically signif-
icant alignments of multiple sequences. Bioinformatics, 15:563-577, 1999.

L. S. Hon and A. N. Jain. A deterministic motif finding algorithm with application to
the human genome. Bioinformatics, 22(9):1047-1054, 2006.

J. Hu, B. Li, and D. Kihara. Limitations and potentials of current motif discovery
algorithms. Nucleic Acids Res., 33(15):4899-4913, 2005.

J. Hughes, P. Estep, S. Tavazoie, and G. Church. Computational identification of
cis-regulatory elements associated with groups of functionally related genes in S.
cerevisiae. J. Mol. Biol., 296:1205-1214, 2000.

U. Keich and P. Pevzner. Finding motifs in the twilight zone. Bioinformatics,
18:1374-1381, 2002.

[16]

(17]

(18]

(19]

(20]

(21]
(22]
(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

Graph-based Approaches for Motif Discovery 97

M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. Lander. Sequencing and com-
parison of yeast species to identify genes and regulatory elements. Nature, 423:241—
254, 2003.

C. Kingsford, E. Zaslavsky, and M. Singh. A compact mathematical programming
formulation for dna motif finding. In Proceedings of the Seventeenth Annual Sympo-
sium on Combinatorial Pattern Matching (CPM), Barcelona, Spain, pages 233-245.
Springer, 2006.

C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton. Detecting
subtle sequence signals: a gibbs sampling strategy for multiple alignment. Science,
262:208-214, 1993.

C. Lawrence and A. Reilly. An expectation maximization (em) algorithm for the iden-
tification and characterization of common sites in unaligned biopolymer sequences.
Proteins: Structure, Function, and Genetics, 7:41-51, 1990.

T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber, N.M. Han-
nett, C.T. Harbison, C.M. Thompson, 1. Simon, J. Zeitlinger, E.G. Jennings, H.L.
Murray, D.B. Gordon, B. Ren, J.J. Wyrick, J.B. Tagne, T.L. Volkert, E. Fraenkel,
D.K. Gifford, and R.A. Young. Transcriptional regulatory networks in saccharomyces
cerevisiae. Science, 298(5594):799-804, 2002.

H.C. Leung and F.Y. Chin. Finding exact optimal motifs in matrix representation by
partitioning. Bioinformatics, 21 (Suppl. 2):1i86-1192, 2005.

N. Li and M. Tompa. Analysis of computational approaches for motif discovery. Al-
gorithms for Molecular Biology, 1:8, 2006.

S. Liang, M.P. Samanta, and B.A. Biegel. Cwinnower algorithm for finding fuzzy
DNA motifs. J. Bioinform. Comput. Biol., 2(1):47—60, 2004.

X. Liu, D.L. Brutlag, and J.S. Liu. Bioprospector: discovering conserved dna motifs
in upstream regulatory regions of co-expressed genes. In Proceedings of the Sixth
Pacific Symposium on Biocomputing, pages 127-138. International Society for Com-
putational Biology, 2001.

K. Maclsaac and E. Fraenkel. Practical strategies for discovering regulatory dna se-
quence motifs. PLoS Computational Biology, 2(4):e36, 2006.

T. K. Man and G. D. Stormo. Non-independence of mnt repressor-operator interac-
tion determined by a new quantitative multiple fluorescence relative affinity (qumfra)
assay. Nucl. Acids Res., 29:2471-2478, 2001.

L. Marsan and M. F. Sagot. Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification. J.
Comput. Biol., 7:345-362, 2000.

H. Matsuda. Detection of conserved domains in protein sequences using a maximum-
density subgraph algorithm. /EICE Trans. Fund. Elec. Comm. Comp. Sci., E83-
A(4):713-721, 2000.

L. McCue, W. Thompson, C. Carmack, M. Ryan, J. Liu, V. Derbyshire, and
C. Lawrence. Phylogenetic footprinting of transcription factor binding sites in pro-
teobacterial genomes. Nucleic Acids Res., 29(3):774-782, 2001.

A. McGuire, J. Hughes, and G. Church. Conservation of dna regulatory motifs and
discovery of new motifs in microbial genomes. Genome Res., 10(6):744-757, 2000.
S. Mukherjee, M.F. Berger, G. Jona, X.S. Wang, D. Muzzey, M. Snyder, R.A. Young,
and M.L. Bulyk. Rapid analysis of the dna-binding specificities of transcription fac-

98

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

(41]
[42]

[43]

[44]

[45]

[46]

Zaslavsky

tors with dna microarrays. Nature Genetics, 36(12):1331-1339, 2004.

B. T. Naughton, E. Fratkin, S. Batzoglou, and D. L. Brutlag. A graph-based motif
detection algorithm models complex nucleotide dependencies in transcription factor
binding sites. Nucleic Acids Res., 34:5730-5739, 2006.

R. Osada, E. Zaslavsky, and M. Singh. Comparative analysis of methods for
representing and searching for transcription factor binding sites. Bioinformatics,
20(18):3516-3525, 2004.

G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole. Weeder web: discovery of tran-
scription factor binding sites in a set of sequences from co-regulated genes. Nucleic
Acids Res., 32:W199-W203, 2004.

P. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals in dna
sequences. In Proceedings of the Eighth International Conference on Intelligent Sys-
tems for Molecular Biology, pages 269-278. International Society for Computational
Biology, AAAI Press, 2000.

A. Price, S. Ramabhadran, and P. Pevzner. Finding subtle motifs by branching from
sample strings. Bioinformatics, 19 (Suppl 2):11149-ii155, 2003.

K. Robison, A. M. McGuire, and G. M. Church. A comprehensive library of dna-
binding site matrices for 55 proteins applied to the complete Escherichia coli k-12
genome. J. Mol. Biol., 284:241-254, 1998.

R. Siddharthan, E. D. Siggia, and E. van Nimwegen. Phylogibbs: a gibbs sampling
motif finder that incorporates phylogeny. PLoS Computational Biology, 1(7):e67,
2005.

S. Sinha and M. Tompa. A program for discovery of novel transcription factor binding
sites by statistical overrepresentation. Nucleic Acids Res., 31(13):3586-3588, 2003.
P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen,
P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-
regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.
Molecular Biology of the Cell, 9(12):3273-3297, 1998.

G. D. Stormo. Dna binding sites: representation and discovery. Bioinformatics,
16:16-23, 2000.

S. H. Sze, S. Lu, and J. Chen. Integrating sample-driven and pattern-driven ap-
proaches in motif finding. In WABI, pages 438-449, 2004.

S. Tavazoie, J. D Hughes, M. J. Campbell, R. J. Cho, and G.M. Church. System-
atic determination of genetic network architecture. Nature Genetics, 22(3):281-285,
1999.

M. Tompa. An exact method for finding short motifs in sequences, with application to
the ribosome binding site problem. In Proceedings of the Seventh International Con-
ference on Intelligent Systems for Molecular Biology, pages 262-271. International
Society for Computational Biology, AAAI Press, 1999.

M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E. Eskin, A. V. Favorov,
M. C. Frith, Y. Fu, W. J. Kent, V. J. Makeev, A. A. Mironov, W. S. Noble, G. Pavesi,
G. Pesole, M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbo-
gaert, Z. Weng, C. Workman, C. Ye, and Z. Zhu. Assessing computational tools for
the discovery of transcription factor binding sites. Nature Biotech., 23(1):137-144,
2005.

M. Vingron and P. Pevzner. Multiple sequence comparison and consistency on mul-

Graph-based Approaches for Motif Discovery 99

tipartite graphs. Advances in Applied Mathematics, 16:1-22, 1995.

[47] E.Zaslavsky and M. Singh. A combinatorial optimization approach for diverse motif
finding applications. Algorithms for Molecular Biology, 1:13, 2006.

[48] Q. Zhou and J. S. Liu. Modeling within-motif dependence for transcription factor
binding site predictions. Bioinformatics, 20:909—916, 2004.

This page intentionally |eft blank

Chapter 5

Statistical Clustering Analysis: An Introduction

Hang Zhang

Department of Industrial Engineering
Arizona State University
Tempe, Arizona 85287-5906, USA

hang.zhang @asu.edu

Clustering analysis is to segment objects in a dataset into meaningful subsets
such that objects with high similarity are segmented into the same subset, and
objects with low similarity are segmented into different subsets. This chapter
introduces three fundamental but core topics in clustering analysis: the definition
of similarity and dissimilarity measure, the clustering algorithm, and determining
the number of clusters. For each topic, we introduce the ones that are most
popularly used, and emphasize their statistical backgrounds.

5.1. Introduction

Clustering analysis is to group objects in a dataset into subsets such that objects
with high similarity are segmented into the same subset and objects with low
similarity are segmented into different subsets. The grouping results, subsets, are
called clusters.

A dataset to be clustered consists of a collection of objects. An object may be
characterized by a vector of feature values. For example, in a dataset of fish, an
object is just an observation of fish represented by a vector of features such as its
weight, length, color, etc. We name clustering these objects as observation cluster-
ing. An object may also be characterized by a sequence of observations, e.g., the
time series of a stock price in one year. If we want to find the segmentation such
that stocks having high dependency are grouped into the same cluster, and stocks
with low dependency into different clusters, we take each sequence as an object.
Specifically, we call clustering these objects (sequences) as variable clustering.

One question comes up with the definition of clustering analysis: what is a
cluster. The answer to this question varies in different applications of clustering

101

102 Zhang

analysis. For example, in image segmentation, clusters are regions in the image,
each of which is considered to ”be homogeneous with respect to some image
property of interests such as intensity, color or texture” [16]. In variable clustering,
usually a cluster is a group of sequences that are associated with each other. For
instance, clustering the spike train data, sequences of the spiking time stamps, of
multiple brain neurons identifies the associations among brain neurons. In some
other applications, a cluster may be considered as a sample from an underlying
probabilistic distribution. In the example of fish data, objects in a cluster can be
considered as a random sample from a multivariate distribution.

The goal of clustering analysis also varies with applications. In image pro-
cessing, the purposes of clustering analysis mostly include detecting edges of ob-
jects [28], and image segmentation. Image segmentation is a common problem
in image processing. It involves taking an image and identifying particular fea-
tures, such as the figure of human beings or a vehicle, for further purpose such
as movement tracking. If properly implemented, clustering analysis can automat-
ically divide an image into similar regions. In some other applications, clustering
analysis may be to refer the underlying distributions generating the clusters, such
as the number of underlying distributions and the parameters of each distribution.

The readers should be noted about the difference between clustering and clas-
sification. Classification is also called supervised learning. Given a collection of
labeled objects, we derive the discrimination model which is later used to label
a new object without a class label. Clustering, also called unsupervised learning,
is to group a collection of unlabeled objects into meaningful clusters. After clus-
tering, objects in the same cluster are given the same labels. Objects in different
clusters are labeled differently.

In this chapter, we introduce clustering analysis mostly from the perspective of
multivariate statistics. For the convenience of the readers, we also introduce some
heuristic methods in case the readers may need them in some applications where
it is not proper to assume the multivariate probability distribution. We focus on
two basic aspects of clustering analysis: clustering and determining the number
of clusters.

As in the definition of clustering analysis, measure of similarity (or dissimi-
larity) plays an important role. Before we go into those two topics, we describe
the measures of similarity (or dissimilarity) between two objects.

Before moving forward, we first give the notations which will be used in the
remainder of this chapter. We denote the dataset to be clustered as X', which
is an N x P matrix where P is the number of features (variables), and N is the
number of observations. Here, X’ stands for the transpose of X. In observation
clustering, observation i is characterized by the i*"* row of X’ , denoted as X/

Yl

Statistical Clustering Analysis: An Introduction 103

which is a / x P row vector. In variable clustering, each object is the sequence
of a variable. So, object j is represented as the jth column of matrix X’ , denoted
as X; .We also denote the similarity and dissimilarity between two objects x; and
X; as s(x;,X;) and d(x;,X;), respectively. The readers should be notified that in
observation clustering, x! is the it" row of X’ . However, in variable clustering, x;
is the j*" column of X'.

5.2. Similarity (Dissimilarity) Measures

In different applications of clustering analysis, we need to choose the proper simi-
larity (dissimilarity) measures. In observation clustering analysis, commonly used
measures include three dissimilarity measures (Euclidean distance, Minkowski
distance and Mahalanobis distance) and one similarity measure, the cosine. In
variable clustering analysis, the commonly used measures include Pearson’s cor-
relation coefficients, mutual information, and cross intensity for point processes.
We want the objects with high similarity (low dissimilarity) to be grouped into the
same cluster, and objects with low similarity (high dissimilarity) to be grouped
into different clusters.

5.2.1. Measures for Observation Clustering
5.2.1.1. Euclidean Distance and Minkowski Distance

Euclidean distance is the most popular measure of dissimilarity, denoted by
d2 (X,’, Xj)l

P
XlaX] lek_-xjk /2 :H Xi — Xj H2 (51)

k=1
where || - ||2 is called Norm 2. More generally, Minkowski distance is defined as:
(X1, X)) Z | xi — xj ™™ (5.2)

Clearly, Euclidean distance is just a special case of Minkowski distance when
m=2.

Taking Euclidean distance as the dissimilarity measure is intuitive. It works
well when each cluster is a hyper-sphere in space. From the perspective of statis-
tics, it means that each cluster is generated by a multivariate normal distribution
with mean y; and variance-covariance matrix ¥; = 0?l,i=1,2,...,K, where

104 Zhang

p; and yui; are significantly different when i # j, I is an identity matrix of dimen-
sion p, and K is the number of underlying probability distributions generating the
dataset.

When clusters are not hyper-spheres but hyper-ellipsoids, which means the
variance-covariance matrix can not be expressed by ¥; = oI, taking Euclidean
distance as the dissimilarity measure has poor performance. Figure 5.1 shows two
points clustered incorrectly because of using Euclidean distance as the dissimi-
larity measure. In Fig. 5.1, we cluster a point into a subset whose center has the
minimal Euclidean distance to the point (how to find the centers is described in
K-means clustering algorithm in Sec. 5.3). Obviously in Fig. 5.1, there are two
ellipsoid clusters. The centers of these two clusters are denoted as C; and Ca on
Fig. 5.1. Consider two points P; and P5. Obviously, if we take into account the
ellipsoid nature of clusters, P; should be clustered to subset centered at Cq, and
P, should be assigned to subset centered at Co,. However, since P; has smaller
distance to Co, if we take Euclidean distance as the dissimilarity measure, P is
clustered incorrectly into subset centered at Cy. Similarly, Ps is clustered incor-
rectly into subset centered at C;.

Twa ellpsoid clusters

Fig. 5.1. Poor performance of Euclidean distance when clusters are ellipsoids.

Statistical Clustering Analysis: An Introduction 105

5.2.1.2. Mahalanobis Distance

Mahalanobis distance takes the different variances in different features and the
possible correlation between any two features into consideration. The Maha-
lanobis distance between any two objects x; and X; is:

du(xi, %) = [(xi = %))'S 7" (x = x7)]/? (5.3)

where X is the sample variance-covariance matrix. For example, in Fig. 5.1,
dM(XP/) XC/) = [(XP/ - XC/)/EE,I (XP/ - XC/)]I/g’ dM(XP/) XCZ) = [(XP/ -
xc,)'S¢ (Xp, — Xc,)]'/2, Matrix S, is the sample variance-covariance matrix of
objects assigned to cluster centered at X, j=1 and 2. The distance dy/(xp,, Xc,) <
du(Xp,,Xc,) , o point Py is assigned to cluster centered at C; correctly. Similarly,
point Py is assigned to cluster centered at Cy correctly.

Mahalanobis distance is very analogous to Hotelling’s 72 statistic. Hotelling’s
T2 statistic is a very popularly used multivariate statistic to measure the weighted
distance between a high-dimension point to a population center [23]. We introduce
Hotelling’s 72 statistic here briefly to help understand the Mahalanobis distance.
Hotelling’s 72 statistic is calculated as:

7% = [(x —%)'S™! (% — X)] (5.4)

where X is the sample mean and S is the sample variance-covariance matrix. If
point x; has high 72 statistic, it means with low probability, X; is generated from an
underlying population whose probability density function (pdf) has sample mean
X and sample variance-covariance matrix S. The readers can find the analogy be-
tween Egs. 5.3 and 5.4. Assigning a point to a cluster whose center has the
minimum Mahalanobis distance to the point is just assigning a point to a popu-
lation where the point has the minimum Hotelling’s T? statistic, i.e., the highest
probability that the point is generated by that population.

Users can also find the similarity between Mahalanobis distance and the likeli-
hood value of the observation under the assumption that the observation is a sam-
ple from a multivariate normal distribution. For instance, in Fig. 5.1, the likelihood
value of an observation to a multivariate normal distribution, with sample mean xc;
and sample variance-covariance matrix X, is: L;(x) = Wexp(— 2(x—

xcj)’ngl (x —Xc;)), j=1, 2. Taking Eq. 5.3 into consideration, we get

1 1
Lj(x) = |1/2 exp(__dM(XaXCj))v (5.5)

@2 |3 2

Term | ¥¢, | in the right hand side of Eq. 5.5 is the determinant of matrix Y.
It is also called generalized variance [17]. From Eqgs. 5.3 and 5.5, we can see

106 Zhang

that assigning a point to a cluster according to the minimal Mahalanobis distance
with the cluster center is equivalent to assigning it to a cluster according to the
maximum likelihood value, as long as the distributions of clusters have similar
general variances.

5.2.1.3. Cosine

Cosine is widely used as a similarity measure in text clustering [27], which is:

X,"Xj

= (5.6)
i [|

sc(x;, X;)
where X; - X; = X/X;, the inner product of two vectors. In text clustering, usually
texts are coded according the presence (code 1) or absence (code 0) of the inter-
ested words or sentences. For instance, we are interested in five words (features)
A, B, C, D and E. Two texts are coded as x; = [1,0,0,0,0] and x5, = [0,0,0,0, 1],
which means in x;, only word A is present, and in X2, only word E is present. If
we use Euclidean distance to measure their dissimilarity, dz(x1,X2) = v/2. Now,
we consider another two texts x; = [1,1,1,1,0]" and X}, = [0,1,1,1, 1]. Their
Euclidean distance da(x3,%4) = V2. Clearly, texts x; and X2 have no word in
common, but x3 and x4 have 3 out of 5 words in common. Texts x3 and x4 should
have lower dissimilarity than x; and x5. However, Euclidean distance measures
their dissimilarities the same.

Cosine solves this problem. The cosine of texts x; and x5 is s¢(x1,%x3) = 0,
and that of texts x3 and x4 is s¢(xX3, X4) = 3/4. It means that texts x5 and x4 have
higher similarity than x; and x,.

5.2.2. Measures for Variable Clustering

Variable clustering is very important in identifying the dependency among vari-
ables, causal analysis, and selecting variables to reduce the dimension of data.
For instance, in stock market place, it is of significant importance to understand
which stocks are inter-dependent, the causal/result relationship among these inter-
dependent stocks, and which stocks are affecting the stocks of interest. In neuro-
science, in order to understand how neurons are cooperating with each other from
the neural activity data, one can cluster the neurons by calculating the similar-
ity (dissimilarity) measures among the spike train data (sequences) of neurons in
vivo.

In this subsection, we introduce two commonly association measures: Pear-
son’s correlation coefficient and mutual information.

Statistical Clustering Analysis: An Introduction 107

5.2.2.1. Pearson’s Correlation Coefficient
Pearson’s correlation coefficient of sequences x; and x; is calculated as:

S..

p‘,:—’f

where S; = 2= ST (% — %) (i — %), and % = & 37} x;. Usually we call
Pearson’s correlation coefficient correlation for simplification.

Readers should be noted that correlation is ranged from -1 to 1. When one
variable is just a linear function of the other one, Xo = aX; + b, p = 1, if
a>0,and p = —1if a < 0. So, if one is only concerned with the extent of the
correlation but not the direction, one can use the square or the absolute value of p
as the similarity measure.

Correlation captures the linear dependency between two sequences, as illus-
trated in Fig. 5.2(a) and (b). However, it does not capture the nonlinear depen-
dency, as shown in Fig. 5.2(c), where X5 = sin(X;) + ¢, and € is a normally
distributed noise term.

5.7

z 1012:1 15 p12:0'8 15 pu:O
- 1" E j
o E
s 3 :
8 g
12 s
ca® el Il i
" e o
- o
/ 3 a5
12
!” 2)
[A
(a) (b) ()
3 B 12 1 3 5 1 1 0 s G 15
x1 1 x1

Fig. 5.2. Correlation of two variables: (a) and (b) linear dependence; (c) nonlinear dependence.

5.2.2.2. Mutual Information

In addition to linear dependency as shown in Fig. 5.2(a) and (b), mutual infor-
mation is also capable of capturing nonlinear dependency such as the one shown
in Fig. 5.2(c). Mutual information comes from information theory and is based
on Shannon entropy. The mutual information between two sequences x; and x; is

108 Zhang

calculated as:

N

plj xkh-xkj])
X17X 58
) Z i) G8

where py;([xi, xij]) is the estimated likelihood of the sample [xy;, xy;] under the
joint distribution of sequences x; and x;, and D;(xx;) 1s the estimated likelihoods of
sample xy; under the marginal distribution of x;. The estimated likelihood value is
calculated as follows:

ij([xi; x]) = Nh' Zk— g(tlghunl) (5.9)
pi(x) = Nhr Zk 18(5%)

where g(+) is a kernel function. A frequent choice for the kernel function is the
standard normal density, i.e.,

g(x) = (2m) "/ 2earp(—%x’x) (5.10)

where r is the dimension of x. In the first equation in Eq. 5.8, r=2. Parameter % in
Eq. 5.9 is given by:

4

"= larron

]1/(r+4) (5.11)

The mutual information I(x;, X;) between sequences X; and X; is always non-
negative, and is zero if and only if these two sequences are stochastically indepen-
dent. Usually we use the normalized mutual information as the similarity measure
which is ranged from O to 1. The transformation of mutual information to the sim-
ilarity measure is as follows:

s(xi,5%) = /1 — eap(~20(x:,x,)) (5.12)

Kojadinovic [20] gives the details of mutual information and how to use mu-
tual information as the similarity measure to cluster variables. Mutual informa-
tion has also been used in neuroscience to identify the associations between neu-
rons [2]. Readers should be noted that the mutual information introduced here
is for continuous variables. For discrete variables, such as the sequence of spike
train data of neurons, the calculation may be different.

There are some other measures to capture the association between variables,
such as the cross-intensity and coherence for associations between point pro-
cesses [3]. These two measures are commonly used for sequences of spike train
data from neurons.

Statistical Clustering Analysis: An Introduction 109

5.3. Clustering Algorithm

A big variant of clustering algorithms has been devised to cover different appli-
cations. Currently there is no one clustering algorithm that performs well on all
dataset. Which clustering algorithm should be chosen depends on the definition
of clusters and the size of the dataset in a specific application. For instance, in
image segmentation, density-based methods are popularly used such as DBSCAN
and GDBSCAN algorithms [6] [7]. Some other clustering algorithms are devised
to cluster large datasets, such as CLARA and CLARANS. Wei et al. [31] gives
a good review of these large dataset clustering algorithms. For other clustering
algorithms, Han and Chamber [13] give good general references.

In this section, for the sake of space, we only introduce four basic but most
popularly used clustering algorithms: K-means, E-M algorithm, hierarchical clus-
tering algorithm and self-organization maps (SOM) algorithm. K-means algo-
rithm is one of the most popularly used clustering algorithms. E-M algorithm is
a method popularly used in multivariate statistics for missing value estimation. If
we take the label of each object as the missing value in clustering analysis, E-M
algorithm applies. We introduce E-M algorithm here because it is analogous to
K-means algorithm and it provides statistical background for K-means algorithm.
We introduce hierarchical clustering algorithm as one example of heuristic algo-
rithms. K-means, E-M, and hierarchical clustering algorithms, in most common
case, load all the data into the computer memory at the same time for clustering
analysis. Contrarily in SOM algorithm, the data enters the computer memory for
clustering one by one. It has advantage in handling large dataset or data streams,
where either the dataset is too large to be all loaded to the computer memory at
one time, or the data itself emerges sequentially.

5.3.1. K-Means Algorithm

The K-means algorithm assumes the number of clusters K is known. It works
iteratively as follows, where we use ¢ to denote the iteration number:
(1) Randomly select K objects as the initial centers of these K clusters, denoted
as X\, Xh,..., Xi; 1=0;
(2) For object i, calculate s, (x;, ij’) or d.(x;, ij’»),j=1, 2,..., K. Assign cluster label
to object i by
CL; = arg max;[s.(x;, X}),j = 1,2, ..., K]
or (5.13)
CL; = argmin;[d.(x;,X}),j = 1,2, ..., K],i = 1,2, .., N

where CL] stands for cluster label of object i at iteration 7

110 Zhang

(3) Update the centers of the K clusters by

1 N N

X = i S I(CL = j)xi,j = 1,2, ..., K,
where I(X) is an identity function such that I(X) = 1 if X is true, and I(X) = 0
otherwise. The denominator, N’Cj , is the number of objects assigned to cluster
j at the /" iteration; Let t=t+1;

(4) If the convergence criterion is satisfied, algorithm stops. Otherwise go to step

@.

K-means algorithm has several variants [1]. For instance, in step (1), the ini-
tial centers of these K clusters can be randomly generated points which are evenly
distributed in the area occupied by the objects in the dataset. Or we can just
randomly pick up K objects in the dataset as the initial centers. In different appli-
cations, the candidates for the similarity or dissimilarity measure in step (2) can
include d», d,,, dy and s¢. Or, if users are clustering variables, correlation and
mutual information can be the candidated similarity measures. If dy, is selected as
the dissimilarity measure, in step (1), K variance-covariance matrices Egj, Jj=1,2,
..., K, are needed to be initialized. Usually, we choose 22/, =1I,wherelisap xp
identity matrix. In step (3), the variance-covariance matrix of cluster j at iteration
t ¥, should also be updated by

e = wr N I(CL = (i = X)(xi = X))
i.e., the sample variance-covariance matrix of objects assigned to cluster j.

Because of the randomness of the initialization of K cluster centers in step
(1), K-means cluster algorithm may give different clustering results on the same
dataset in different runs. One can run the K-means clustering algorithm on the
dataset for D duplicates, D > 1. For duplicate k (k=1, 2, ..., D), we calculate
the sum of the intra-cluster dissimilarities (SICD) from each object to its cluster
center, denoted as STC DF:

K N
SICDN = > " da (%1, %4y)I(CLy; = j) (5.14)
j=1 i=1

where x;; is the center of the 7" cluster in the kth duplicate, CLy; is the cluster
label of object i in the kth duplicate. The clustering result with the smallest SICD*
is the final clustering result, i.e.,

K= argmkin(SICDk,k =1,2,..,D),CL = CLi;,i=1,2,...N (5.15)

Statistical Clustering Analysis: An Introduction 111

K-means algorithm is a hard clustering algorithm, i.e., each subject is clustered
into a single cluster with probability 1. Its counter part, soft clustering algorithm,
assigns a set of probabilities to a subject, each of which represents the probability
that the subject belongs to a cluster. The probabilities assigned to a single subject
are all non-negative and sum up to 1. The soft clustering counter part of K-means
is fuzzy K-means algorithm. Generally speaking, the differences between fuzzy
K-means and K-means are that in fuzzy K-means algorithm, each subject is as-
signed a set of probabilities, and in each iteration, the clusters centers are updated
by weighted average of all subjects in the dataset, where the weight of each sub-
ject is the probability that this subject belongs to the cluster [9]. Other examples
of soft clustering algorithms include fuzzy clustering by local approximation of
memberships (FLAME) [8] and neuro-fuzzy [25] algorithms.

5.3.2. E-M Algorithm

E-M algorithm stands for Expectation-Maximization algorithm. It has two steps:
Expectation step and Maximization step. By assuming that the dataset is generated
from a mixture of K multivariate normal distribution, the E-M algorithm works as
follows in clustering analysis.

Expectation step (E-step): Make expectations of the mean vector and variance-
covariance matrix of cluster j, denoted as fi; and ilj respectively, using objects
assigned to cluster j,j = 1,2, ..., K. If it is in the first iteration, randomly select K
different vectors fi;’s and K p x p positive-definitive and symmetric matrices flj’s
as the initial expectation of the mean vectors and variance-covariance matrices.

Maximization step (M-step): For object i, calculate the likelihood that it is
generated by the j* multivariate normal distribution with mean f; and variance-
covariance matrix fij. Assign cluster label CL; to object i according to the maxi-
mum likelihood, i.e.,

-1

1 I .
xp(—§(x,- —fy)'E; (% — fiy)) (5.16)

ij == <€
(2m)F/2 | 3 |1/

If some stopping criterion is satisfied, the algorithm stops; otherwise go back

to the E-step. The frequently used stopping criterion is that the update of /i;’s from
the previous iteration does not exceed a threshold value.

In the initial run of the E-step, flj’s are usually selected to be identity matrices.

One disadvantage of the E-M algorithm is that it is based on the assumption of

the mixture of some distributions with unknown parameters, and the assumption

is difficult to be justified. There is a dilemma here: to justify the assumption, we

have to know the clusters first and then run the test to see whether the distribution

of each cluster satisfied the distribution assumption. This means that we have to

112 Zhang

know the clustering result before running the clustering algorithm. Priebe and
Marchette [26] address this problem by using a nonparametric method. Interested
readers are referred to it for details.

The readers should be noted about the analogy between K-means and E-M
algorithms. Their analogy is maximized when d), is used as the dissimilarity
measure between two objects in K-means algorithm. So, in the following discus-
sions about the analogy between these two algorithms, we assume that dj; defined
in Eq. 5.3 is the dissimilarity measure for the K-means algorithm.

The initialization steps of these two algorithms are similar. In K-means al-
gorithm, randomly selecting K objects as the initial centers of the K clusters is
analogous to the E-step in the first iteration of the E-M algorithm. In the E-M
algorithm, K mean vectors j;’s are randomly selected, which is just the initializa-
tion of the K cluster centers in the K-means algorithm. We also randomly select K
variance-covariance matrices f]j ,j=1, 2,..., K in the E-M algorithm, which is the
initialization of the K variance-covariance matrices in the K-mean algorithm.

The analogy also exists in assigning each object to a cluster. In Eq. 5.13,
cluster label of object i at iteration ¢ is determined by the maximum similarity
or the minimum dissimilarity with the cluster center. In Eq. 5.16, it is deter-
mined by the maximum likelihood of the object to distribution with mean fi; and

variance-covariance matrix ;. To calculate the maximum likelihood, the term

(x; — ﬂj)’E;l (x; — f1;) in Eq. 5.16 is just the Mahalanobis distance, which is used
as the dissimilarity measure in the K-means algorithm.

Another analogy between these two algorithms is the update of the cluster
centers (mean vectors in E-M algorithms) and the variance-covariance matrices.
In both algorithms, the cluster centers and the variance-covariance matrices are
updated by the mean vectors and the variance-covariance matrices of the objects
assigned to the same cluster, respectively.

Because of the similarity between K-means and E-M algorithms, the conver-
gence of the K-means algorithm can be studied through the convergent property
of the E-M algorithm. Xu and Jordan give the details of the convergence of the
E-M algorithm [32].

5.3.3. Hierarchical Clustering

Hierarchical clustering has two directions: agglomerative and divisive hierarchi-
cal clustering. They work in two opposite directions as follows. Agglomerative
hierarchical clustering initially takes each object as a single cluster. At each step,
it combines two clusters with the maximum similarity or the minimum dissimi-
larity into one. The algorithm stops when all objects are assigned into the same

Statistical Clustering Analysis: An Introduction 113

cluster or some stopping criteria is satisfied. The divisive hierarchical clustering
algorithm proceeds in the opposite way. It initially takes the whole dataset as a
single cluster. At each step, one cluster is split into two until each cluster contains
only one object or some stopping criteria is satisfied. Since agglomerative hierar-
chical clustering algorithm is more popularly used than the divisive algorithm, in
this section, we only give the details of the agglomerative algorithm.

The agglomerative hierarchical clustering algorithm [22] is illustrated in
Fig. 5.3 by an example of a 2-D dataset with 8 objects, A, B, C, ..., H, which
constitute 3 clusters obviously. This algorithm yields a dendrogram which shows
the combination of two clusters at each step, as shown in Fig. 5.3(b).

= /':‘:.\
i rs N Y
rd 1, =~ % £y
/. J.f . oy T
/! L,
3 I '\U,../[ﬁ_\ by 4
/ [\L).[‘\ | \ o /8
/ i S ! E ;
I omes. | @ 1 B
I 7.\ \ " N @ 1 ‘E
T S | \ G H =
\ Y N e/ /S E
\ Oy N e g =
~ N s /
e i (2)
\\ //
(a) s SR - - (b) A B C D I G H

Fig. 5.3. Agglomerative hierarchical clustering algorithm: (a) 2-D example; (b) output dendrogram.

Figure 5.3(a) shows the 8 objects in the 2-D example dataset. Each slash
ellipse represents a combination of two clusters. The step number when the com-
bination happens is shown as the number in a pair of parentheses on that slash
ellipse. For instance, the slash ellipse numbered (4) represents the combination
of two clusters at step (4), one has objects A and B which are combined into one
cluster in step (3), and the other one has a single object C.

The dendrogram shown in Fig. 5.3(b) illustrates the combinations of clusters
in the procedure of the hierarchical clustering algorithm more clearly. The vertical
lines represent the remained clusters. A horizontal line represents the combination
of two clusters. Its two ends connect two vertical lines representing two existing
clusters when the combination happens. The vertical location of each horizontal
line represents the dissimilarity measure when two clusters are combined into
one. For instance, in Fig. 5.3(b), clusters D and E are combined into one cluster
at the first step since they have the minimum dissimilarity. So the horizontal line
representing this combination is located lowest in the dendrogram, and it connects
two vertical lines representing clusters D and E. Now, we have seven clusters,
which are (A), (B), (C), (D, E), (F), (G) and (H). Then, clusters G and H are

114 Zhang

combined since the dissimilarity of these two clusters are the minimum among all
mutual dissimilarities of remaining clusters. This procedure stops when there is
only one cluster left, i.e., all objects are clustered into one cluster.

There are several variants of the agglomerative hierarchical clustering algo-
rithm. The selection of dissimilarity measure between two clusters is one source
of the variants. Another source of the variants is the stopping criteria. Well-known
variants of hierarchical clustering methods include CURE [11], ROCK [12], and
CHEMELEON [18].

The dissimilarity measure of two clusters used in the agglomerative hierarchi-
cal clustering algorithm includes single-linkage dissimilarity, complete-linkage
dissimilarity, minimum-variance dissimilarity [30], and some others [15]. The
first two are most popularly used measures. Figure 5.4 illustrates these two mea-
sures with a 2-D example. Single-linkage dissimilarity of two clusters is the min-
imum of the distances between all pairs of objects, one from a cluster, and the
other one from another cluster. In Fig. 5.4, we use Dg;, to represent the dissimilar-
ity between clusters K and L, denoted as Cx and Cy, respectively. Single-linkage
dissimilarity is calculated as follows:

DKL = xieé?,igeCL dQ(Xi,Xj);Vl',j. (517)

Contrarily, complete-linkage dissimilarity between clusters Cx and C takes
the maximum one as the dissimilarity measure, i.e.,

DKL = max dQ(Xi,Xj);Vl.,j. (518)
X €Cx,X;€CL
~—== Cluster K ===~ Cluster K
J,r/ L] . \\\ ,/ L] \\\
18 o0 \ \
e e | .]
L. 1I s
'\.\ _’_‘.// _'J/
Pl D Tk
;**K“ bx
\ * \\ i *
e | e
Iy * s
NI ¢ i N ¢
(a) ClusterL ™~ _% * (by Cluster L ™~

Fig. 5.4. Dissimilarity measure of two clusters: (a)single-linkage; (b)complete linkage.

Now, we compare the performance of these two dissimilarity measures in hier-
archical clustering algorithms to help users to determine which measure to choose
when clustering different datasets. Jain and Goel [15] compare the performance
of these two dissimilarity measures and several other measures in agglomerative

Statistical Clustering Analysis: An Introduction 115

hierarchical clustering. They conclude that if random data is generated by uni-
form or normal distributions, complete-linkage dissimilarity measure performs
best. Single-linkage dissimilarity measure performs more poorly than complete-
linkage, but its performance tends to improve as the number of objects N in the
dataset increases.

However, the single-linkage dissimilarity measure has its advantage in being
more versatile in dealing with non-convex clusters. Figure 5.5 shows an example
with two concentric clusters. In this figure, black dots represent objects from class
1, and circles represent objects from class 2. Hierarchical clustering algorithm
using single-linkage dissimilarity measure can correctly cluster these objects, but
the algorithm using complete-linkage dissimilarity measure can not.

° ® (lass |
Q Class 2

Fig.5.5. Two concentric clusters.

The other source of variant hierarchical clustering algorithm is the stopping
criteria. Some hierarchical clustering algorithms assume that the number of clus-
ters K* is known in advance. An algorithm stops when the number of clusters
derived by the algorithm equals K*. So, only partial dendrogram can be generated
(from N clusters to K* clusters, instead of from N clusters to 1 cluster in a full
dendrogram). For instance, in Fig. 5.3, if we know that K* = 3, after the fifth
combination, we retrieve 3 clusters. The algorithm stops and concludes that the 3
clusters are (A, B, C), (D, E, F) and (G, H).

Some other hierarchical clustering algorithms determine K* dynamically. The
output clusters of the hierarchical clustering algorithm are just the clusters in the
full dendrogram when K* clusters are retrieved.

In the following section, we are going to introduce several methods of deter-
mining the number of clusters.

5.3.4. Self-Organizing Map

Self-organizing map (SOM) is a popularly used data visualization and clustering
algorithm. It maps high-dimension data into a low dimension (typically 2-D or
3-D) map space. An SOM consists of components called neurons or nodes. Each

116 Zhang

neuron has the same shape, typically rectangle and hexagonal shapes. Neurons
constitute the lattice of the map. In this lattice map, each neuron has its neighbor-
ing neurons, which are determined by the shape of the neuron and the structure
of the map. Figure 5.6 illustrates the structure of a 2-D SOM, and the definition
of neighboring neurons when the neuron has rectangle and hexagonal shapes. In
Fig. 5.6, the gray neurons are the nearest neighbors, and the neurons in slash lines
are the second nearest neighbors, of the neuron i shown in black, and so on. The
definition of the closeness of the neighborhood to a neuron is important in the
SOM algorithm, which will be shown soon.

DA

L L
= . N
NN W, NN
A\ L

LA

(a) (b)

Fig. 5.6. Structure of 2-D SOM with (a) rectangle (b) hexagonal neurons, the definition of neighbor-
ing neurons, and the closeness of neighborhood.

Each neuron in SOM is associated with a weight vector W with the same
dimension as each observation. As shown in Fig. 5.6, the weight vector of neuron
i is denoted as W;,.

After the structure of the SOM, such as whether we use 2-D or 3-D SOM,
the shape of the neuron, the number of neurons L, ect, are determined, the SOM
algorithm for clustering analysis works in the following procedure:

(1) Initialize the weights associate with neurons by random numbers, and let the
iteration step =0,

Wi(t) = [W,’] (t),WiQ(l), ...,Wip(t)], i=1,2,.. L.

(2) Draw a sample randomly from the dataset, denoted as x from the dataset X.
(3) Find the winner neuron i* with the associated weight vector W;+ according to
the maximum similarity (or minimal dissimilarity)
i* = argmax;(s.(x, W;))

or (5.19)
i* = argmin;(d.(x, W;)),i =1,2,..., L

Statistical Clustering Analysis: An Introduction 117

(4) Update the weight vectors of the winner and its neighboring neurons, with the
rate according to the closeness to the winner neuron, as follows:

Wit +1) = Wi(t) + a()AG i*)(x — Wi(1)),i=1,2,..L (5.20)

where «/(t) is the learning rate, which is a monotonically decreasing function
of the iteration step t so that in the beginning iterations, the SOM has a fast
learning rate, and slower rate later on. Function A(i,i*) is a neighborhood
function, which is also a monotonically decreasing function of the closeness
between neuron i and the winner neuron i*. A frequently used neighborhood
function is:

A, i) = exp(— || ri — 7= ||? /(20°(2)) (5.21)

|2 is the closeness of neuron i to the winner neuron i*. One
example of the closeness of the neighborhood is shown in Fig. 5.6, where we
can code the closeness of the neurons in black as 0, the closeness of neurons in
gray as 1, the closeness of neurons in slash lines as 2, and etc. Term o2 (t) is a
scale parameter, it is also a monotonically decreasing function of the iteration
number 7.

(5) Compute the amount of the weight vectors updates

Term || r; — 1

L
E = | Wi(t+1) = Wi(1) |2 (5.22)
i=1

If E, is not greater than a threshold ¢, stop; otherwise let t = ¢ + 1, go back
to (2).

The output of the SOM algorithm will be a set of neurons, where in some
regions of the map, the neighboring neurons will have weight vectors with high
similarity or small dissimilarity, and have weight vectors with small similarity or
high dissimilarity with neurons in other regions. Usually, we map the distance
between two neighboring neurons into a gray scale or a color map, and the output
can be visualized as in Fig. 5.7.

Figure 5.7 can be interpreted in the following way. In Fig. 5.7(a), it clear
that the whole map is divided by a bell of dark neurons into two parts. From the
vertical bar in Fig. 5.7(a), we can see that the darker gray means longer distance.
So, Fig. 5.7(a) shows that the whole dataset is divided into two dense areas by
a sparse area shown by the dark colored neurons. Similarly, Fig. 5.7(b) tells us
that the whole dataset has three clusters since the light grayed neurons divide the
whole map into three dark grayed regions.

118 Zhang

ey

1.35 3.65

0.744 1.99

(2) 0.135 (b) 0.335

Fig. 5.7. Output of SOM where distances between neurons are mapped to (a) gray scale; (b) color
map (Kohonen [19]).

For clustering analysis, what is left is to assign a cluster label to each obser-
vation in matrix X. After visualizing the output of SOM, on the map, one can
label the regions considered to be clusters with different numbers. For instance,
in Fig. 5.7(b), we can label the top region, the left-bottom region, and the right-
bottom region as 1, 2, and 3, respectively. Then for each observation, the neuron
on the map with the highest similarity (or lowest dissimilarity) with the observa-
tion is identified. The observation is assigned a cluster label according to the label
of the region where the identified neuron falls in. If the identified neuron falls
in the areas separating the regions of clusters, the observation is identified as an
outlier.

The advantages of SOM exist in the following folds. First, it does not require
the number of cluster as the input. It completes the clustering and identifying the
number of clusters at the same time. Second, the observations enter the algorithm
sequentially, which means we do not have to load the whole dataset into the mem-
ory for clustering analysis. It is very helpful when the dataset is too large for the
computer to load all into the memory at the same time. It is also very helpful in the
case that the whole dataset is not available but that the observations come sequen-
tially. Third, SOM is a distance preserving data visualization method. It maps the
high dimensional dataset into a 2-D map, where the distance between observations
is preserved in the distance between the weight vectors associated with neurons,
and the distance is visualized by gray scale or color maps, as in Fig. 5.7. Fourth,
statistically, SOM simulates the density distribution of the dataset. For example,
in Fig. 5.7(b), we can see that the whole dataset has three areas with high density,
and different dense regions have different density distributions.

The biggest problem of SOM is that it is subjective. Although SOM identifies
the number of clusters and cluster the objects at the same time, the number of
clusters is still based on subjective judgment of human beings. For instance, in

Statistical Clustering Analysis: An Introduction 119

Fig. 5.7(b), one can consider the two bottom dark regions as one single cluster
because they are connected by light grayed neurons. It totally depends on the
threshold of color or gray scale one chooses to separate regions. When there is
only one cluster in the dataset, the visualized output map usually misleads users
to identify clusters more than 1.

For detailed information of SOM, readers are referred to Kohonen [19].

5.4. Determining the Number of Clusters

Determining the number of clusters is a difficult and unresolved problem in clus-
tering analysis. The reason partially comes from the fact that the number of clus-
ters is closely subject to the definition of clusters. In image segmentation, if we
define clusters as regions in the image, each of which is considered to be homoge-
neous with respect to intensity, the dataset shown in Fig. 5.8 should be considered
consisting of only one cluster. Contrarily, if we define clusters as samples of mul-
tivariate normal probability distributions, two clusters should be determined in
Fig. 5.8: one for the open circles, and the other one for the solid circles.

Fig. 5.8. Two-dimensional dataset where the determination of the number of clusters varies in differ-
ent applications.

In this section, we introduce two categories of methods to determine the num-
ber of clusters in a dataset: model-based method and scale-based method. Readers
interested in the applications of image segmentation should refer to the density-
based method, such as the shared nearest neighbors (SNN) method [5].

120 Zhang

5.4.1. Model-based Method

Model-based method assumes that the dataset consists of samples from a mixture
of populations, and each population has a determined form of probability distri-
bution with unknown parameters. The pdf of the mixture model is:

K
fx) =) _fixlx € Gp(x € G) (5.23)
=1
where f(x|x € C;) is the pdf of vector x conditioning on vector x is generated by
class j, denoted by C; , p(x € Cj) is the probability that vector x is generated by
Cj, and K is the number of assumed mixed probability populations.
Model-based method to determine the number of clusters works as follows:

(1) Assume the form of pdf f(x|x € C;). Usually, we take the same form of
function for f(x|x € C;),j = 1,2, ..., K. We denote the model parameters of
fx|x € Cj) as 0. For f(x|x € C;) and fix|x € C;), if i #j, 0; # 0.

(2) Let K takes value from 1 to K, where K is a large integer. For each K, we
cluster the dataset into K clusters. For cluster j, j=1 to K, we calculate the
maximum likelihood estimates of 6, denoted as 6;. Probability p(x € C;) is
calculated by:

S I(xi € C))

pxe () = N (5.24)
It is just the percent of the observations assigned into cluster j.
(3) For each K, calculate the adjusted log-likelihood value by:
N K
I(K) =2 log(>_fxilxi € C;,0))p(x; € C;)) — g(K) (5.25)
i=1 j=1

where f(x;|x; € C;j, @-) is the pdf of x; with conditions that x; is generated by
class C; and model parameters are 9,-. Function g(K) is a penalty function. It
is a monotonously increasing function of K. Fraley and Raftery [10] suggest
g(K) = mglog(N) , where my is the number of independent parameters to be
estimated in the mixture model defined in Eq. 5.23.

(4) Choose the K corresponding to the largest /(K) as the number of clusters,
denoted as K* | i.e.,

K" = argm%x(l(K),K =1,2,..,K) (5.26)

Let us review Eq. 5.25 in step (3). We can find that Eq. 5.25 is very similar
to the Bayesian Information Criterion (BIC) when we determine the best model

Statistical Clustering Analysis: An Introduction 121

in multivariate regression analysis. To determine the best model, models are fitted
with all possible combinations of the explanatory variables. For each fitted model,
the BIC is calculated as:

RSS
—)

BIC = nin(- + kin(n) (5.27)

where RSS is the residual sum of squares of the fitted model, » is the number of
observations in the training dataset, and & is the number of explanatory variables
in the model. The model with the smallest BIC is selected as the best model.

The similarity between the model-based method to determine the number of
clusters and the BIC method to choose the best model exists in three sides. First,
Eq. 5.25 is very similar with Eq. 5.27; Second, the second component of the right
hand side of Eq. 5.25 is the penalty to prevent too many clusters. In Eq. 5.27,
kIn(n) is also a penalty to prevent too many explanatory variables, which leads to
overfitting the data. Third, in BIC, we choose the model with the smallest BIC
as the best model. Contrarily in model-based method to determine the number of
clusters, we choose the number of clusters as the one corresponding to the largest
adjusted loglikelihood value.

The disadvantage of the model-based method is that one has to assume the
form of the underlying probability density function before we apply this method
to determine the number of clusters. Usually, users assume multivariate normal
distributions. This implies that all clusters are convex. The convexity of clusters is
difficult to justify, especially when the dimension of the dataset is high. Figure 5.9
illustrates this disadvantage with a two-dimension dataset which obviously has
three clusters, one of which is non-convex. The model-based method with the
assumption of bi-variate normal distribution detects 6 clusters, instead of the true
value 3.

5.4.2. Scale-based Method

The determination of the number of clusters is not only subject to the definition of
clusters, as stated in the introduction of this section, but also subject to the resolu-
tion level we choose when we view the clusters. Figure 5.10 shows a case where
different resolution may give different determination of the number of clusters. In
Fig. 5.10, if we use a high resolution, we can conclude that there are 3 clusters,
as in Fig. 5.10(a). Contrarily, if we use a low resolution, we can conclude with 2
clusters; see Fig. 5.10(b).

The readers should be noted that different number of clusters caused by us-
ing different resolution is also subject to the definition of clusters. As shown in
Fig. 5.10(b), if we use a low resolution, we get two clusters. Points in cluster 1

122 Zhang

& 25

Fig. 5.9. Two-dimensional dataset with one non-convex cluster.

,."': # —'.\
{o:.\‘ Cluster 3’. .\‘
% o/ Cluster 1 o ®eo

le® o

/.—Q \ - /

'o“,ClusterQ s
(an_e

7N El
; s
e 3‘ Cluster 2!/ o. \

® L] \
'... ! L] » [] |
1‘ : Cluster 1 ‘\ e® o/
\0:01' Valb
e®
b e

Fig. 5.10. Different determinations of the number of clusters with different resolution levels: (a) 3
clusters with high resolution; (b) 2 clusters with low resolution.

constitute a single cluster only if this cluster satisfies our definition of cluster. Oth-
erwise, we should choose other resolution such that each cluster found satisfies the
definition, as in Fig. 5.10(a).

Scale-based method is a method which gives the numbers of clusters under
different resolution levels. The winning number of clusters is the number survives
in the largest range of resolution levels.

Scale-based method works as follows:

(0) Standardize the dataset such that each dimension has mean O and standard
deviation 1, denoted as X§,,. Let =0, scale parameter)\, starts from a small

ey

@)

3

“

Statistical Clustering Analysis: An Introduction 123

number such as 0.2, i.e., A, = 0.2. Let the step size of the scale parameter
to be a small number such as 0.1, i.e., AX = 0.1. Assume the number of
clusters K, to be larger than the reasonable maximum number of clusters in
the dataset. For instance, if we think that the number of clusters in the dataset
can not exceeds 8, we let K; = 9;

Cluster the dataset into K; clusters. Users can use any clustering algorithm
which utilizes the number of clusters as an input parameter, such as K-means
and hierarchical clustering algorithms. Calculate cluster centers;

If any two cluster centers are closer than the scale parameter \,, combine these
two clusters into one cluster.

Increase), by one step size, i.e., Arr1 = A, + AN Letr = ¢+ 1. Update K,
with the number of remaining clusters.

If K; = 1, stop; otherwise go to (1).

After we run the above algorithm, we can plot K, against ;. Figure 5.11 is an

example of this plot. We choose the K, (not including Kj) surviving in the longest
range of \; as the number of clusters K*. In Fig. 5.11, we choose K* = 3.

Mumber of Clusters

.
D 05 1 3 i 2 A
Scale Parameter

Fig. 5.11. K, vs. A plot of scale-based method.

One advantage of the scale-based method over the model-based method is that

it is capable of giving the correct number of clusters when non-convex clusters
exist. For example, the scale-based method can correctly identify 3 clusters in the
dataset shown in Fig. 5.9.

The disadvantage of the scale-based method is that the algorithm stops when

one cluster is reached, as shown in step (4). Thus, it always concludes on a number

124 Zhang

greater than 1, which means it can not give correct answer when there is only one
cluster in the dataset.

This problem is solved by adding a dummy dimension to the original stan-
dardized dataset and clone the original dataset in the space with the dummy di-
mension [33] such that the augmented dataset has at least two clusters. The aug-
mented dataset is denoted as X5, , which is:

X5 0
X2 = O) 5.28
Std (XSwh d ()

where 0 is an N x 1 zero column vector, and d is another N x 1 vector with all
elements d. They call this method as scale-based with dummy dimension (SBDD)
method.

We can apply the scale-based method on this augmented dataset X?rd. In this
way, the augmented dataset has at least two clusters. So, we can compare whether
the number of clusters 2 survives in the longest range of the scale parameter or
any other number does. The number of clusters in the original dataset X, is just
the number of clusters identified in X5, divided by 2.

Fig. 5.12. One cluster encircled by another one.

There is one user-specified parameter d in the SBDD method. The value of
d is suggested to start with a small value of, such as d=2. With each value of
d, the augmented dataset is constructed by Eq. 5.28. Scale-based method is ap-
plied on X§,,. If the scale-based method identifies clusters whose centers have the
following pattern:

(x},0), (%5,0), ..., (X, 0)
((X/lyd),(Xi,d),...,(x;(,d)> (5.29)

the SBDD algorithm stops. Otherwise, increase d by a step size such as Ad = 0.5.

Statistical Clustering Analysis: An Introduction 125

The readers should be notified that although scale-based methods (also the

SBDD method) can handle slightly or moderate non-convex clusters, they are not
capable of dealing with those extremely non-convex clusters such as one cluster
is encircled by another one, as shown in Fig. 5.12. For this type of extremely
non-convex clusters, SNN method may be a good choice.

Kothari and Pitts [21] and Zhang and Albin [33] give more details of the scale-

based method and the SBDD method, respectively. Readers are also referred to
some other variants of the scale-based method to determine the number of clusters,
such as the multi-scale clustering [24], influence zones [14], SOM [4] and kernel
density estimation [29].

References

(1]
(2]

(3]
(4]
(5]

(6]

(7]

(8]
(9]
(10]
(1]

[12]

[13]

(14]

M. Anderberg. Cluster analysis for applications. Academic Press, New York, 1973.
A. Borst and F. Theunissen. Information theory and neural coding. Nature Neuro-
science, 2: 947-957, 1999.

D. Brillinger. Nerve cell spike train data analysis: a progression of technique. Journal
of the American Statistical Association, 87: 260-271, 1992.

J. Costa and M. Netto. Estimating the number of clusters in multivariate data by self-
organizing maps. International Journal of Neural Systems, 9(3): 195-202, 1999.

M. Daszykowski, B. Walczak, and D. Massart. Looking for natural patterns in data
- Part 1. Density-based approach. Chemometrics and Intelligent Laboratory Systems,
56: 83-92, 2001.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In Proc. of the 2nd Int. Conf. on
Knowledge Discovery and Data Mining (KDD-96), pages 226231, 1996.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. Density-based clustering in spatial
databases: the algorithm GDBSCAN and its applications. Data Mining and Knowl-
edge Discovery, An International Journal, 2(2): 169-194, 1998.

L Fu and E. Medico. FLAME, a novel fuzzy clustering method for the analysis of
DNA microarray data. BMC Bioinformatics, 8: 3, 2007.

J. C. Bezdek. Pattern Recogniztion with Fuzzy Objective Function Algorithms.
Plenum press, New York, 1981.

C. Fraley and A. E. Raftery. How many clusters? Which clustering method? Answers
via model-based cluster analysis. Computer Journal, 41: 578-588, 1998.

S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algorithm for large
databases. Information Systems, 26: 35-58, 2001.

S. Guha, R. Rastogi, and K. Shim. ROCK: a robust clustering algorithm for categor-
ical attributes. In Proceedings of the 15th international conference on data engineer-
ing, page 512, 1999.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, 2005.

M. Herbin, N. Bonnet, and P. Vautrot. Estimation of the number of clusters and influ-

126

(15]
[16]
(17]
(18]

(19]
(20]

(21]
(22]
(23]
[24]
[25]
(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Zhang

ence zones. Pattern Recognition Letters, 22: 1557-1568, 2001.

N. C. Jain, A. Indrayan, and L. R. Goel. Monte Carlo comparison of six hierarchical
clustering on random data. Pattern Recognition, 19(1): 95-99, 1986.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing
Surveys, 31(3): 264-323, 1999.

R. Johnson and D. Wichern. Applied multivariate statistical analysis. Prentice Hall,
New Jersey, 1998.

G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: A hierarchical clustering al-
gorithm using dynamic modeling Computer, 32(8): 68-75, 1999.

T. Kohonen. Self-Organizing Maps. Springer, New York, 2001.

I. Kojadinovic. Agglomerative hierarchical clustering of continuous variables based
on mutual information. Comp. Stat. and Data Analysis, 46; 269-294, 2004.

R. Kothari and D. Pitts. On finding the number of clusters. Pattern Recognition Let-
ters, 20: 405-416, 1999.

A. Lukasova. Hierarchical agglomerative clustering procedure. Pattern Recognition,
11: 365-381, 1979.

D. Montgomery and G. Runger. Applied statistics and probability for engineers. John
Wiley and Sons, New Jersey, 2007.

E. Nakamura and N. Kehtarnavaz. Determining number of clusters and prototype lo-
cations via multi-scale clustering. Pattern Recognition Letters, 19: 1265-1283, 1998.
Y. Jin. Fuzzy modeling of high-dimensional systems: complexity reduction and inter-
pretability improvement. IEEE Transactions on Fuzzy Systems, 8(2): 212-221, 2000.
C. Priebe and D. Marchette. Adaptive mixture density estimation. Pattern Recogni-
tion, 26: 771-785, 1993.

A. Strehl, J. Ghosh, and R. Mooney Impact of similarity measures on web-page clus-
tering. In AAAI-2000: Workshop of Artificial Intelligence for Web Search, pages 58—
64, 2000.

H. Tao and T. Huang. Color image edge detection using cluster analysis. In Proceed-
ings of International Conference on Image Processing, 1, pages 834-836, 1997.
W.-J. Wang, Y.-X. Tan, J.-H. Jiang, J.-Z. Lu, G.-L. Shen, and R.-Q. Yu. Cluster-
ing based on kernel density estimation: nearest local maximum searching algorithm.
Chemometrics and Intelligent Laboratory Systems, 72: 1-8, 2004.

J. H. Ward, Jr. Hierarchical grouping to optimize an objective function. Journal of the
American Statistical Association, 58: 236-244, 1963.

C.-P. Wei, Y.-H. Lee, and C.-M. Hsu. Empirical comparison of fast clustering algo-
rithms for large data sets. In Proceedings of the 33rd Hawaii International Confer-
ence on System Sciences, 2000.

L. Xu and M. . Jordan. On convergence properties of the EM algorithm for Gaussian
mixtures. Neural Computation, 8(1): 129-151, 1996.

H. Zhang and S. Albin. Determining the number of operational modes in baseline
multivariate spc data. IIE Transactions, 39(12): 1103-1110, 2007.

PART 2
New Methods and Applications

This page intentionally |eft blank

Chapter 6

Diversity Graphs

P. Blain

Swarthmore College Mathematics, Swarthmore, PA, USA
pblainl @swarthmore.edu

C. Davis

University of Utah Mathematics, Salt Lake, UT, USA
davis@math.utah.edu

A. Holder

Rose-Hulman Institute of Technology, Mathematics, Terre Haute, IN, USA
aholder@rose-hulman.edu *

J. Silva

University of Colorado Applied Mathematics, Denver, CO, USA
Jsilva2105 @msn.com

C. Vinzant

Oberlin College Mathematics, Oberlin, OH, USA
cvinzant@oberlin.edu

Bipartite graphs have long been used to study and model matching problems,
and in this paper we introduce the bipartite graphs that explain a recent match-
ing problem in computational biology. The problem is to match haplotypes to
genotypes in a way that minimizes the number of haplotypes, a problem called
the Pure Parsimony problem. The goal of this work is not to address the com-
putational or biological issues but rather to explore the mathematical structure
through a study of the underlying graph theory.

*Research conducted at Trinity University, San Antonio, TX, with partial support of the National
Science Foundation, grant DMS-0353488.

129

130 Blain et al.

6.1. Introduction

The burgeoning field of computational biology is advancing the science of genet-
ics and transforming traditional ‘wet lab’ research into computational efforts. The
preponderance of the current research emphasizes computational aspects, which
have made significant strides in projects such as the human genome project. These
advances have the potential of redefining standard medical practice and have al-
ready proven to be a significant contribution to mankind.

One of the problems currently receiving attention is that of describing how
genetic diversity propagates from one generation to the next. Such problems
are called haplotyping problems, and a brief biological description is warranted.
Genes are sequences of DNA that code for specific traits, with the vast majority of
DNA being common among all individuals. The locations on the genome where
diversity occurs are called single nucleotide polymorphisms (SNPs). Diploid or-
ganisms like humans have two distinct copies of each gene, one from each parent,
which together describe a trait. A collection of SNPs in a single copy of a gene
is called a haplotype, and a pair of haplotypes forms a genotype. Each SNP of a
haplotype is in one of two states, denoted by —1 or 1, that corresponds to the two
distinct nucleotide base pairs of the DNA. Each SNP of a genotype is in one of
three states, —2, 0, or 2, where the SNP is —2 (resp, 2) if and only if each of the
haplotypes that form the genotype have a —1 (resp. 1) at that SNP, and the SNP is
0 if and only if one of the haplotypes has a —1 and the other a 1 at that SNP.

Biologists are capable of efficiently determining an individual’s genotype, but
it is difficult and costly to determine the haplotypes. However, haplotypes are
more valuable to biologists, and a haplotyping problem is to calculate the haplo-
types knowing only the genotypes. In particular, finding small collections of hap-
lotypes that explain the genotypes is biologically relevant. The problem of finding
a smallest collection of haplotypes is called the Pure Parsimony problem and em-
pirical evidence suggests that these minimum solutions naturally occur. The initial
investigations into haplotyping were undertaken by Clark in [5], and since then
there has been flourish of activity addressing computational issues [2—4, 6—19].
Theoretically we know that the parsimony problem is APX-hard and that prac-
tically it is difficult to solve on large data sets. Our goal is not directly compu-
tational, and instead we address the underlying structure of the problem through
graph theory. We do provide closed form solutions in a some instances.

6.2. Notation, Definitions and Preliminary Results

The results of this paper are graph theoretical, and a basic understanding of bipar-
tite graph theory is expected. We point readers to [1] for a thorough development.

Diversity Graphs 131

The degree and neighborhood of node v are denoted by deg(v) and N (v), respec-
tively. The vector of ones is denoted by e, where length is decided by the context
of its use. If z is a vector, then diag(x) is the symmetric matrix whose diagonal
elements correspond to « and whose off-diagonal elements are zero. So, diag(e)
is the identity matrix. For any real number C' we define C'y = max{C, 0}.

We assume that haplotypes are of length n and that SNPs are indexed by i =
1,2,...,n. The set of all possible haplotypes of length n is the collection of
sequences H = {—1,1}". Similarly, the collection of all genotypes of length n
is {—2,0,2}™. The arithmetic of mating haplotypes to form a genotype is simply
coordinate-wise addition. So, if the maternal haplotype is (—1,1,—1,1) and the
fraternal haplotype is (1,1, —1, —1), the genotype is

(-1,1,-1,1) 4+ (1,1,-1,-1) = (0,2, —2,0). 6.1)
We extend this coordinatewise addition so that we can generally add elements in
{-2,-1,0,1,2}™ Leta,b € {—2,—1,0, 1,2} and define @ so that
—2,a<0,b<0
a®b=<2, a>0,b>0
0, otherwise.

This binary operator is commutative, and to add elements of {—2, —1,0,1,2}"
we perform the operation componentwise. For example,

(_15 17 _17 1) 83 (17 Oa _25 1) S (17 _17 _17 1) = (Oa 07 _27 2)

Notice that @ reduces to the typical addition in (6.1) if the terms on the left are
in {—1,1}*. Unfortunately, & does not generally satisfy a cancellation rule since
a ® 0 = b & 0 does not mean that a = b. For much of the paper simple addition
as described in (6.1) is sufficient, and to distinguish @ from + we use + in all
instances where it appropriate.

SNP values of 0 are called ambiguous because the orientation of the 1 and —1
in the parental donations could be reversed. The question we address begins with
a collection of genotypes and asks us to construct a collection of haplotypes that
form the genotypes under this arithmetic. If there were no ambiguous SNPs, this
process would be trivial, and hence, we assume that each genotype has at least
one ambiguous SNP. The subset of {—2,0,2}™ with this property is denoted G.
For any G’ C G, we say H' C 'H is a solution to G’ if, for all g € G, there exist
h',h" € H such that g = h’+h". A solution H to G’ is minimal if H\{h} is not
a solution to G’, for all h € H. We say H is a minimum solution if there exists no
solution H' to G’ such that |[H'| < |H]|.

Our intent is to study the underlying graph theory of finding solutions, and
we introduce the concept of a Diversity Graph. Informally, a diversity graph is

132 Blain et al.

a labeled (or colored) bipartite graph with one set of nodes representing geno-
types, the other set representing haplotypes, and edges representing the possible
relationships between them.

Definition 6.1. For H' C H and G’ C G, a bipartite graph (V, W, £), and func-
tionsn:V — H andy: W — G’, we say (V, W, E,n,~) is a diversity graph on
n SNPs if

(1) n and ~ are one-to-one,

(2) foreach w € W, there exists some v € V such that (v, w) € &£, and

(3) & has the property that if (v, w) € &, there exists some v" € V\{v'}
such that (v",w) € £ and h' + h” = g, where h’ = n(v'), h” = n(v"),
and g = y(w).

The requirement that 77 and v be one-to-one ensures that each haplotype and geno-
type are represented by exactly one node. The rest of the definition guarantees that
H' is a solutionto G’. If n(v") +n(v") = v(w), we say that v’ and v" or (v’) and
n(v") are mates for w or v(w). Notice that a diversity graph is a labeled bipartite
graph, and we make the distinction between the structure represented by the graph
and the biology represented by the labeling. The elements of H and G are denoted
by h and g or by n(v) and v(w), where v and w are elements of V and W. Dif-
ferent elements of H and G are indicated with superscripts and SNP locations are
indicated with subscripts. We say that a bipartite graph supports diversity if there
are sets H' C H and G’ C G, and functions 1 and - that fulfill the definition.

An important observation is that the pure parsimony problem as stated as-
sumes that G’ is known, that n(V') = H and that £ is as large as possible. How-
ever, the parsimony problem makes sense on other graphs, and in general we
address the problem of starting with a diversity graph (V, W, £, 7,) and finding
a smallest subset of V, say 1, such that

e 1(V’) is a solution to y(W) = G’, and
e if v/ and v" are in VV’, then they are allowed to mate and form w if and
only if (v',w) and (v", w) are in £.

So, when we say that H is a minimal or minimum solution we mean that it is a
solution with respect to a diversity graph. If V and 7 are such that (V) = H and
€ is as large as possible, then we are considering the original parsimony problem.

Before continuing with an investigation into the bipartite graphs that support
diversity, we establish some general results about diversity graphs. The first of
these results shows how to order the elements of H so that we can conveniently
pair them to form the genotype (0,0,...,0). The imposed ordering is lexico-

Diversity Graphs 133

graphic, meaning that (hy,ho, ..., h,) < (hf,hi,... h) if the first compo-
nent with different values satisfies h; < hj. The proof of this lemma is simple
and omitted.

Lemma 6.1. If the elements of H are ordered lexicographically, then for unique
i and j between 1 and 2" we have that h* + h*+t! # hJ + WL and that b7 +
R =i+ = (0,0,...,0).

Since haplotypes mate in unique pairs to form a genotype, the degree of every
node in V is even. An immediate consequence of this observation is that not ev-
ery bipartite graph supports diversity. Moreover, even if every node of a bipartite
graph has even degree it does not mean the graph supports diversity. As an exam-
ple, the complete bipartite graph K9 o does not support diversity because any 7,
and -y that satisfies the third and fourth conditions of the definition violates the fact
that v is one-to-one. Theorem 6.1 does not characterize the graphs that support
diversity, but it does establish a necessary condition.

Theorem 6.1. Let (V, W, E,n,~) be a diversity graph. Let w' and w? be in W,
with w! #* w?. Then,

max{deg(w'), deg(w?)} > 2|N(w') N N(w?)|.
Proof. LetH' = {n(v):v € N(w!)N N(w?)} and assume to the contrary that
max{deg(w'), deg(w?)} < 2|H’|.

Since haplotypes mate in unique pairs, there must be fewer than |H’| pairs of
haplotypes mating to form each of y(w') = g! and (w?) = g?. It follows that
there exists h', h?, h? and h* in H’ such that h' + h? = g! and h® + h* = g2.
Suppose that g; = 2, which means h; = 1 for all h € H’. It follows that g7 = 2.
Similarly, if g; = —2, we have that g7 = —2. Suppose that g; = 0. Then g7 can
not be 2 or —2 because if so, the same argument would guarantee that g]l is 2 or
—2, respectively. We conclude that g]z = 0. Since 7 was arbitrary, we have the
contradiction that g = g2. O

We now turn our direction to a matrix equation that is satisfied by every di-
versity graph. Consider the diversity graph (V, W, £, n,~), where |V| = m and
[W| = k. List the elements of V as v',v2,...,v™ and W as w',w?, ..., wF,
and assume that 7(v*) = h® and v(w?) = g. Let H be the m x n matrix so that
H; jy = h’, and let G be the k x n matrix defined by G(; ;) = g}. Also let E be
the m x k biadjacency matrix —i.e. E; ;) = 1if (v',w’) € £and E(; ;) = 0
otherwise. Note that the column sums of £ must be even from the definition of a
diversity graph.

134 Blain et al.

The k£ x n matrix product E7 H aggregates the mating structure for each
genotype. Without loss of generality, let £, ;) = Fpgy = ... = Egqy) =1
and Ey145) = Egyes) = -+ = E@m, = 0. Then the ith row of ETH is
n(v!) + n(v?) + ... + n(v'). From the definition of a diversity graph we know
there are ¢/2 disjoint pairs, (v?,v?), with p and g no greater than ¢, such that
n(vP) + n(v?) = ~(w'). This means that the ith row of ET H is (t/2)y(w?). We
have just established the following result.

Theorem 6.2. If (V,W,E,n,7) is a diversity graph, then ETH =
diag (%ETe) G.

The matrix equation in Theorem 6.2 succinctly separates the structure of the
graph, explained by E, from the labeling of the graph, explained by H and G.
Unfortunately, satisfying the matrix equation does not guarantee the graph is a
diversity graph because the aggregated information ignores the need of a mating
structure. As an example

1 1-1-1
T -1 1 1-1
ETH=(Q111)("y [1 1

1-1 1 1

=(2)(0000)

= diag (%E%) G.
This labeling of K4 1 does not lead to a diversity graph since no pair of haplotypes
(no two rows of H) add to form the single genotype (the row of G).

We conclude this section with a discussion of a logical operator that helps
address the failure of Theorem 6.2 to characterize graphs with the stated matrix
equation. The logical join of a sequence of matrices is determined by the logical
operator “or” over each component of these matrices. The component-wise logical
join is defined so that 0V0 = 0,0V1 = 1,and 1V1 = 1. The set { A!, A% ..., A%}
is a logical decomposition of A if A is the logical join of the matrices in this set,
denoted:

\/ A'=A'VATV.. VA=A,
1<i<s
where we assume that all matrix elements are 0 or 1. For example, the matrices
on the left are a logical decomposition of the matrix on the right,

1100 1100 (1100
1010)V{o101)=\1111)"
Such decompositions are used in the next section to characterize the graphs that
support diversity.

Diversity Graphs 135

6.3. Graphs That Support Diversity

A natural goal is to characterize the bipartite graphs that support diversity, and the
first result of this section does this for complete bipartite graphs.

Theorem 6.3. The complete graph K, , supports diversity if and only if p is even
and q = 1.

Proof. Assume that (V, W, E,n,) is a complete diversity graph. Suppose that
|[W| > 1. Then, from Theorem 6.1 we have for any w! and w? in W that

max{deg(w'),deg(w?)} > 2|N(w') N N(w?)| = 2|V,

which is a contradiction. So, |[WW| = 1. The fact that genotypes need pairs of
haplotypes guarantees that |)/| is even.

Now assume that p is even and ¢ = 1. Select n so that |V| < 2" and let
be such that y(w) = (0,0,...,0). There are 2"~ ! disjoint pairs of haplotypes
that can mate to form v(w). Pick |V|/2 of these pairs and let H’ be the set of
haplotypes in these pairs. Allowing n : ¥V — H' to be a bijection, we see that
(W, W, E,n,~) is a diversity graph. O

From Theorem 6.3 we see that the probability of generating a complete bi-
partite graph of the form K, ; that supports diversity is one half (assuming that
even and odd values of p are equally likely). In some ways, the next result extends
this idea by showing that the probability of generating a random bipartite graph
that supports diversity is low. The result decomposes the biadjacency matrix into
matrices whose rows sums are all 2, which guarantees a mating structure.

Theorem 6.4. The bipartite graph (V, W, E) supports diversity if and only if the
biadjacency matrix E has a logical decomposition EY, E?, ..., E* so that

o eTEF = 2eTf0rall 1<k <s,

o there exists an H € {—1, I}MX” with distinct rows and the property
that (EYYTH = (E*)TH = ... = (E*)TH, and

o the rows of (E*)T H are distinct.

Proof. Assume that (V,W,&,n,v) is a diversity graph, and let s =
(1/2) max{deg(w) : w € W}. Order the elements of W so that deg(w’) >
deg(w?) > ... > deg(w™!). We construct the matrices E', E2,..., E® that
form a desired logical decomposition. The neighborhood of each w? can be writ-
ten as the disjoint union of (1/2) deg(w?) pairs,

N(w?) = U{v i ok, (6.2)

k

136 Blain et al.

where 1 < k < (1/2)deg(w?). Let every element of the first column of each
EF be a zero except for the k1. and ky positions, which are both set to 1. If the
deg(w') = deg(w?), form the second column of each E* similarly, replacing
1’ and 1” with 2" and 2”. Otherwise, deg(w!) > deg(w?) and this construction
terminates once k reaches (1/2) deg(w?). In this case, let the second column of
EF, for (1/2)deg(w?) + 1 < k < s, be the same as the second column of E'.
Continue in this fashion through the remaining nodes in WV, duplicating columns
from E' as needed. From (6.2) we have that E(; jy = 1if and only if Eéfm) =1
for at least one k, from which we conclude that E = E' VvV E2 Vv ...V E*.

Let H and G be the matrices in Theorem 6.2. Each column of E* corresponds
to an element of WV that in turn corresponds to a genotype under . Moreover,
each column of E* contains two 1s that identify a pair of haplotypes (via 7)) that
mate to form the genotype. So, each column sum of every E* sums to 2 and
(E¥)TH = @G, for every k. From the fact that 7 is one-to-one we have that the
rows of (E*)T H are distinct.

Now assume that E has a logical decomposition, say E', E2, ... E*, that sat-
isfies the three conditions. List the elements of V' from 1 to |V| and define 7(v*)
to be the i row of H. The fact that the rows of H are unique ensures that 7
is one-to-one. Similarly, list the nodes in W from 1 to |W| and let y(w?) be the
ith row of (Ek)TH , which is common for 1 < k& < s. The assumption that the
rows of (E*)T H are distinct guarantees that -y is one-to-one. From the condition
that each column sum of E¥ is 2, we have that each column of E has at least two
ones. This means that there are at least two elements of V' that are adjacent to
each element of W. The same condition together with the definition of 1 and
further guarantee that if (v/,w) € &, then there is a v” so that (v, w) € &£ and

n(v") +n(v") = y(w). =

The logical decomposition in Theorem 6.4 extends Theorem 6.2 to characterize
graphs that support diversity by adding the necessary condition that the edge struc-
ture must accommodate a mating structure. The fact that (EY)TH = (E?)TH =

= (E*)T H shows that every pairwise differences (£%)T — (E7)T must share
a non-trivial null space, which is restrictive and demonstrates that bipartite graphs
that support diversity are rare.

The last two results indicate that the structural requirements needed to support
diversity are important and that most bipartite graphs can not be labeled to rep-
resent a population. We point out that this is true even with the number of SNPs
being arbitrary, which is somewhat counter intuitive because the complexity of a
mating scheme can increase as the number of SNPs grows. We conclude this sec-
tion by showing that we can add nodes and edges to any bipartite graph so that it

Diversity Graphs 137

does support diversity. We only consider adding nodes to V since in real problems
the genotypic information corresponding to WV is defined by the biological data.
For w € W, define
T(w)= |J (Nw)nN@)).
w’! #w

So, T'(w) is the collection of nodes in the neighborhood of w that are also in
the neighborhood of another node in W. We extend the neighborhood of each
w so that the number of points in N (w)\T(w) plus the number of points in the
extension is at least the number of points in T'(w). Let V(w) be a collection
of nodes whose cardinality is either (2|T(w)| — |N(w)|)+ or 1 4+ (2|T(w)| —
|N (w)])4 to ensure that | N (w) U V(w)| is even or 0. Notice that if 2|7 (w)| <
| N (w)], then N(w) is not extended. The extended vertex and edge sets are

VzVU(U f)(w)) and €=€U<U {(v,w):vefﬂ(w)}).

weWw weW

Lemma 6.2. Any bipartite graph (V,W,E) with no isolated nodes can be
extended and labeled to become a diversity graph by adding no more than
Y wew |V(w)| nodes to V. In particular, (V,W, &) is an extension of (V, W, E)
that adds this number of nodes to V that supports diversity.

Proof. The proof follows by induction on [W|. Let (V, W, &) be a bipartite
graph with no isolated nodes such that W] = 1. Let W = {w} and notice that
T(w) = (. Hence, (2|T(w)| — |[N(w)|)+ = 0, and we add a single node to V if
and only if |V| is odd. The resulting V has an even number of nodes, and from
Theorem 6.3 we know that that this graph supports diversity.

Assume the result holds if |W| < k. Let (V, W, £) be a bipartite graph with
no isolated nodes such that [W| = k + 1. Select w* € W, and let (V', W', £’) be
the subgraph of (V, W, £) with the vertices in {w'} U N (w!)\T'(w') and edges
incident to w! removed. Extend the subgraph so that (V', W' &' 1/, ') is a di-
versity graph, where the image sets of o’ and 7' are in {—1, 1}", and {—2,0, 2}",,
respectively. The functional descriptions of 7 and ~ below depend on 7’ and +/,
and a slight abuse of notation is used to describe this dependence. As an example,
if ' (v) = (1,-1,1), we assume that (’'(v),1,1,1) = (1,—1,1,1,1, 1), which
allows us to embed 7’ into a larger collection of haplotypes.

The argument is established in 2 cases, each of which constructs 1 and v so
that (V, W, €, n,~) is a diversity graph. Notice that the number of nodes added to
V is additive over WV, and hence,

Yo D) =phi+ Y Pw).

wew wew’

138

Blain et al.

This fact guarantees that the constructions below add the maximum number of
vertices allowed by the result.

Case 1:

Case 2:

Suppose that T'(w') = 0. Then, (2|T(w')| — |N(w')|)+ = 0, and
|V(w")| is either 0 or 1 depending on whether | N (w')] is even or odd,
respectively. If | N (w!)| is even (odd), then no nodes are (a single node
is) added to (V',W,&’). Let |[N(w') U V(w')| = 2p for the natural
number p. Let k be a natural number so that 2% > 2p. List the elements
of {—1,1}* lexicographically as h' h?, ..., h2". Then, denoting the
elements of N'(w') U V(w') as v’ fori = 1,2, ...,2p, we define 1) and
7 by

(n(v),1,L,....1), wveV
(1,1,...,L,hi*Y), o=,

n:17—>{—1,1}”,+k:v»—> . i=l,‘2,...p
(1,1,...,1,h2 7””), v =1,
t=p+1,...2p
and

02,2,...,2), weW

2,0,0,...0), w = w!,

, /
YW {=2,0,21"HF s {8(;)

where v(w!) has k zeros. We mention that Lemma 6.1 is used to guar-
antee that the last k elements of n(v?), fori = 1,2, ..., 2p, can be paired
to satisfy the definition of a diversity graph.
Suppose T'(w') # (. The difficulty with this case lies in the fact that
n'(v) is defined for v € T'(w?). Notice that

(IN (") = 2/T(w")]) + Q2T (w")] = [N (w"))+
= (IN(wh)]| = 2/T(w")])+ > 0,

which guarantees that there are enough nodes in (N(w!) U
V(w"))\T(w") to be uniquely paired with the nodes in T'(w'). Let
{Z,ZC} be a two set partition of (N(w') U V(w!))\T(w!) so that
|Z| = |T(w")|. Notice that the definition of V(w') guarantees that both
|T(w') U Z| and |Z| are even.

List the elements of T'(w'), Z and Z€ so that

T(w') = {v*,v2,... vlT@H, (6.3)
7 = {U\T(“)l)l-*-l’ vlT(w1)|+2’ s 02|T(w1)|}’ and (6.4)

7¢ = {UQ|T(UJ1)\+17UQIT(wl)I-F?, o ,Ulff(wl)l}_ (6.5)

Diversity Graphs 139

Let | N (w")UV(w")| = 2p for the natural number p and let & be such that
2% > p. Label {—1,1}* lexicographically as h',h2, ... h?". Define
n:V—{-1, 1}”,““ so that

(m j(v) +1 1), vE V’\T(D)
G/ B, = 1< < T
(=1 (v i—|T (w')\),h2'7z+|T(w)I), v =1,
- T (wh)| +1 <i < 2/T(wh)
(7 (v1), hi—T(w)I), v =10,)
2T (w")| +1<i < [V(w')],
7 odd
(= (v'=1), R THRATEO -y — o !
2T(wh)| +1 < i < P(wh)],
1 even

and v : W — {—2,0,2}"*F 5o that

O

We conclude this section by showing that any bipartite graph, including those
with isolated nodes, can be extended and labeled to become a diversity graph. The
result is an extension of Lemma 6.2, but the edges added between isolated nodes
are handled outside the definition of £.

Theorem 6.5. Any bipartite graph (V, W, £) can be extended and labeled to be-
come a diversity graph by adding no more than

> V(w)] + (2Myy — My)4 + My(mod 2)

wew
nodes to V, where My, and M,y are the number of isolated nodes in V and W,
respectively.

Proof. Let V; and Wi be the isolated nodes in V and W and let (V', W', £’) be
the subgraph of (V, W, &) with these nodes removed. Extend (V', W', £’) as in
Lemma6.2 so that (V', W', &', n’,~') is a diversity graph. Since N (w) = T'(w) =
@ for all w € Wy, we have that
Y. V)= PV(w)
weEW weW

and we conclude that the extension of (V' W' &) to (V/,W',E') adds
> wew [V(w)] nodes to (V, W, E). Let n’ be such that the images of 7’ and ~'
are in {—1,1}" and {—2,0,2}"". Let k be a natural number so that 2* > [W|.

140 Blain et al.

Let V; be a set of nodes of size (2Myy — My); + My(mod 2), which guaran-
tees that [V; U f)[| is even and at least twice the size of Wy. List the elements
in Wy as w!, w?, ..., wMwW and the elements in V; U Vy as v', 02, ..., v?, where
q = My +(2Myy— My),+ My (mod 2). Fori = 1,2, ..., My, add (v¥~1, w?)

and (v* w?) to £. Notice that this may leave some isolated nodes in V;, which

is allowed by the definition. Let h',h?,... , h*" be a lexicographic ordering of
{—1,1}*. Define np: V' UV UV; — {—1,1}" "+ by
(77/(”),171,--;71), 'UET)/
v < (1,1,...,1,h"), v=0li=1,2,...,q/2

(1,1,...,1, W2 =@/ y=oi i =q/241,¢/2+2,....q
and v : W — {—2,0,2}" ¥ so that

o d(2,2,..,2), wew
(2,2,...,2, (0¥ 1) + n?), w=w'i=1,2,..., My € Wi,

where the uniqueness of 7(v%~1) + n(v?") follows from Lemma 6.1. a

6.4. Algorithms and Solutions for the Pure Parsimony Problem

Although the pure parsimony is generally difficult, there are cases where a closed
form solution exists. Throughout this section we assume that (V, W, &, n,~) is a
diversity graph with the property that v maps W onto G’. We also assume that
H* C n(V) is a minimal solution relative to (V, W, &, 1, 7).

We begin by establishing the intuitive result that a minimal solution has car-
dinality 2|G’| if and only if the neighborhoods of the elements in W are disjoint.
Although this fact is nearly obvious, we include a proof for completeness. The
following lemma supports the result.

Lemma 6.3. Suppose that T(w) # (0 for some w € W. Then, H* contains an
element of |,y n(T (w)).

Proof. Assume that T'(w) # () for some w € W and suppose that H* does not
contain an element of | J,, oy, 7(T(w)). Then for each w there is a v’ and v" in
N(w)\ Uy ew n(T(w)) so that n(v") +n(v") = ~(w). This implies that [H*| =
2|G’|. However, we know that T'(w) is nonempty for some w, which means there
exists w! and w? such that n(v!) + n(v?) = y(w!) and n(vt) + n(v?) = v(w?)
for some v', v2, and v in V. This means that

(H\{n(v) : n(v) € K" {(v,w'), (v,w?*)} N E # 0}) U {n(v"),n(v*),n(v*)}
is a solution to G’ whose cardinality is at most |H*| — 1, which is a contradiction.
0

Diversity Graphs 141

Theorem 6.6. We have that |[H*| = 2|G'| if and only if N(w') U N(w") = () for
all w' and w" in W.

Proof. The fact that [H*| = 2|G’| if N(w') U N(w") = § for all w’ and w”
in W is clear. Assume that |H*| = 2|G’|, and suppose for the sake of obtaining
a contradiction that T'(w) #) for some w € W. From Lemma 6.3 we have
that H* contains an element in (J,,cyy, 7(T(w)). Let w' and w? be such that
n(v!) +n(v?) = y(w') and n(v!) + n(v3) = v(w?), for some v, v, and v3. Let
W' = W\{w!, w?}, and let V' = U,yewr N (w). Furthermore, let (V')* be such
that n((V')*) is a minimum solution to y(W’) with respect to (V', W', E’), where
&' is € with the edges incident to w! and w? removed. Then, [n((V')*)| < 2|G'|.
We know that we can resolve G’ by including v!, v?, and v? in (H’)*. Since all
three haplotypes might not be required, we have that 2|G’| = |H*| < |(H')*| + 3.
So,

21G'| = |H*| < |(V)*|+3 < 2W|+3=2(W|-2)+3=2|¢'| — 1.

Since this is a contradiction, we have that T'(w) = () for all w, and consequently,
N)N N(w") =0, forall w' # w"”. O

We continue our investigation by exploring the effects of restricting the num-
ber of times a haplotype can be used to form a genotype. This makes sense realis-
tically since in many populations the mating structure is not random. For example,
many species have a unique mate for life, which means their haplotypes are only
used in conjunction with the haplotypes of another individual. To make this pre-
cise, we reduce the edge set of the initial graph. For any £’ C & we define the
degree of v with respect to £’ to be degg, (v) = |{(v,w) : (v,w) € £'}|. For the
diversity graph (V, W, E,n,~) we let V), C V be any solution to

min{|V'| : V' €V, n(V') solves (W),
max{dege (v) <m:v € V'} for some & C £} (6.6)

The value of this optimization problem is denoted ¢(m) = |V, |, and if the prob-
lem is infeasible, we let ¢(m) = oo. As an example, consider the graph in Fig. 6.1,
which is easily seen to support diversity. Since deg(w®) = 2 for all i except 3, the
only solution is n({v® : i = 1,2,...,9}). If m = 1, then each v can be adjacent
to at most one w with respect to £’. This means we must be able to associate a
unique pair in V with each element of VV. Biologically this means that each parent
can donate one of its two haplotypes to a unique child. Since this is impossible for
this graph, we have that ¢(1) = co. Notice that in general we have ¢(1) is either
2|W] or co depending on whether or not (6.6) is feasible. The situation is more

142 Blain et al.

complex if m > 1, and one of the main goals of this section is to show that ¢(2)
can be calculated by decomposing an acyclic diversity graph into longest paths.

—

v 1
V2 \vY
V3 W2
4
\% W3
V5
4
V6 w
v’ w
8
A% W6
V9

Fig. 6.1. A graph for which Vi = 0, ¢(1) = o0, Vi =V, ¢(2) = 9, and m* = 2.

At some threshold, increasing m does not change the cardinality of V. For
instance, if a haplotype is not compatible with more than m genotypes, then allow-
ing it to mate with m + 1 haplotypes provides no additional benefit. Hence, for
some m, ¢p(m) = ¢(m + k) for every natural number k. Moreover, increas-
ing the number of possible mates that any haplotype is allowed never causes
an increase in ¢(m), and hence, ¢ is non-increasing. The smallest m such that
p(m) = ¢(m + k), for all k € N, is denoted by m*. Clearly we have that

m* < max{deg(v) : v € V} < |W|.

An important observation is that ¢(m*) is the solution to the pure parsimony
problem. So, if we knew how ¢ grew as m increased and how to bound m*,
then we could estimate the size of a biologically relevant collection of haplotypes.
Unfortunately, we do not know the answer to either of these questions at this
point, but these and related questions have future research promise. We initiate
the investigation by studying ¢(2) and ¢(|W)|) if m* = |W|, the latter of which is
addressed below.

Theorem 6.7. If m* = |W

, then ¢(m*) = |W| + 1.

Proof. Let m* = |W)|. Then, there exists v’ € V), such that for each w* € W
there is a unique v* € V},\{v'} that satisfies n(v’) + n(v') = n(w?). This means

Diversity Graphs 143

that ¢(m*) > |W)|+1, and since n({v,v",v?,...,v"I}) solves G’, we conclude
that ¢(m*) = |W| + 1. O

Our next goal is to calculate ¢(2) for acyclic graphs. The key observation in
this case is that the most complicated subgraphs induced by a solution are paths.
To motivate this intuition, consider the diversity graph in Fig. 6.2. Notice that both
n({vt,v3}) and n({v?,v*}) are solutions to y({w'}) but that the path v*, w!, v3
has the advantage over v2, w', v* since the single node v® can be appended to
the path so that n({vt, v3,v°}) solves v({w!, w?}). If we had instead selected
v?, wl, v, then both v® and v® would have been needed so that n({v?, v3, v*, v5})
solved y({w,w?}). Itis clear in this example that ¢(2) = 3 and that m* = 2.
The intuition is that we want to decompose the graph into longest paths, a process
explained by Algorithm 6.1. The fact that this technique minimizes the number of
paths is established in Theorem 6.8. The proof is by induction on [W)| and relates

@(2) as defined on (V, W, £) to ¢(2) as defined on one of its subgraphs.

Algorithm 6.1. Theorem 6.8 shows that this algorithm calculates ¢(2). The re-
moval of the path in Step 4 means that all nodes and edges in P, are removed.

An Algorithm to Decompose the acyclic bipartite graph (V, W, £) into the Fewest Paths

Step 1: Set k = 0 and (Vi, Wk,) = (V, W, E).

Step 2: Find the longest path in (Vg, Wi, k), say Py. If no path exists, set Py, = 0.
Step 3: If P, = 0, stop.

Step 4: Set (Vi1, Wit1,Ek+1) = (Vs Wk, Ex)\ Po.

Step 5: Increase k by 1.

Step 6: Go to Step 2.

Theorem 6.8. Let (V, W, E,n,v) be an acyclic diversity graph. Then Algo-
rithm 6.1 calculates ¢(2), and in particular, if k is the number of paths found
by the algorithm, then $(2) = [W| + k.

Proof. If [W| = 1, Algorithm 6.1 clearly finds an optimal solution. Assume the
result is true as long as |[W| < ¢. Let (V, W, £, 7, ~) be an acyclic diversity graph
with [W| = ¢ + 1. Apply Algorithm 6.1 to (V, W, &) and let Py, P, ..., Py be
the paths in non-increasing length found by the algorithm. Denote the last path as
P = vl wt vt w? w0 Let W= W\{w"} and £ = E\{(w",v) :
ve N}

144 Blain et al.

Case 1: Suppose P, # v!',w!,v2. Then, the algorithm applied to (V, W', £’)
finds the paths Py, P, ..., P}, where P| = o', w!,v? w? ... w1 0"
—i.e. the last path is missing w” and v"*!. In this case, the algorithm
terminates with & paths for both (W, W, &) and (V,W',E’). From the
induction hypothesis we have that ¢(2) = [W'| + k for (V, W', £’). Let
Vi be a solution to (6.6) for the subgraph (V, W', £’). Then, Vi C V,
V3| = [W| + k, n(V3) solves v(W'), and [N (w) N V5| < 2. Since
(V, W,) is acyclic we know that (v, w") and (v",w") are not both
in £. Moreover, w” cannot be adjacent to any of the terminal nodes
Py, Ps, ..., P,_ since this would violate the fact that each of these is
a longest path. We conclude that adding w” back to W’ forces ¢(2) for
(V, W, E) to be at least one greater than ¢(2) for (V, W', E’). Notice
that (V3 U {v"t1}) is a solution to v(W) that is feasible to (6.6) for
(Y, W,). Since

Vi Ufo™ Y = W+ k+ 1= W]+ k,

we have that ¢(2) for (W, W, E) is [W| + k.

Case 2: Suppose P, = v',w!,v?2 —i.e. r = 1. Then the algorithm applied
to (W, W', &’) produces the paths Py, Ps, ..., Py_1, and we have that
$(2) = W'| + k — 1 for (V,W',E'). Let V3 be as in Case 1 with the
cardinality condition replaced by [V3| = |W'| + k — 1. Notice that w'
cannot be adjacent to any of the terminal nodes of Py, P, ..., Px_1, as
this would violate the fact that these are longest paths. So, adding w!
back to W’ forces ¢(2) for (V, W, E) to be at least 2 greater than ¢(2)
for (V,W',&"). Since n(Vi U {v',v?}) is a solution to v(W) that is
feasible to (6.6) for (V, W, &) that additionally satisfies

Vi U = WV [+ (k—1)+2 = W|+k,

U

we have that ¢(2) for (W, W, E) is [W| + k.
g

We mention that this proof does not readily extend to graphs with cycles. The
problem is that cycles can share nodes, and hence the removal of a longest cy-
cle can destroy other cycles. Although a proof currently alludes the authors, we
suspect the following is true.

Conjecture 6.1. Ler (V, W, E,n,~) be a diversity graph and (V', W', E') be the
subgraph with all cycles removed. Then, if k is the number of paths identified by
Algorithm 6.1, we have that $(2) = [W| + k.

Diversity Graphs 145

The insight from Theorem 6.8 is that the solutions of a restricted form of the
Pure Parsimony problem are representable as a collection of paths. However, this
technique has two shortcomings. First, the longest path problem is NP-Complete,
making each step of the algorithm difficult. So, the technique describes the nature
of a solution but does not provide an efficient solution procedure. The second
shortcoming is that the algorithm is not capable of finding every optimal solution.
To see this, consider the following collection of genotypes,

U= y(w!) = (2,0, -2, ,—2,—2)
g2 = y(w?) = (0,2,0,0,-2, ~2)
g3 = ’Y(wB) = (2) 07 2) 07 2 0) (6 7)
g! =v(w!) = (-2,0,0,2,0,-2) '
g5 = 7(w5) = (2) _25 -2 07 2) _2)
g6=’y(w6):(2,-2,0,—-2,-2,2).

Assume that [V| = 29, that n(V) = {—1,1}5, and that £ is the largest edge set
possible. Notice that a path may contain the sequence g’, h?, g"*! if and only if
there is no SNP where g’ has a value of 2 or —2 and g**! has the other value.
So, in the above example there is no h such that the path g', h, g* exists in the
diversity graph because the first SNP of g! is a 2 and the first SNP of g? is a
—2. However, there is an h so that the path g', h, g2, is in the diversity graph
because there is no SNP where g' and g? have different values of 2 and —2. If we
compare each pair of genotypes in a similar fashion, we find that the paths pass
through the genotypes as indicated in Fig. 6.3. From this figure we see that there
is not a path or cycle through every genotype, but that there are several two path
solutions. From Theorem 6.8 we know that ¢(2) = 6+2 = 8. Up to reversing the
order of the genotypes, there are four optimal progressions through the genotypes,
see Table 6.1. Our algorithm finds the first solution indicated in Table 6.1, as the
first path is as long as possible. None of the other paths have this property, and so
the algorithm is not capable of finding these solutions.

Table 6.1. Ways in which the genotypes for the example
in (6.7) can be listed in two distinct paths.

First Path’s Second Path’s
Genotype Progression Genotype Progression
(g',g%,¢% g%, g% (&)

(8!, g% g 8% (g%.87)

(gt g% g% g%) (g*,8%)

(g% g% g g°) (g',g?)

Our last discussion approaches the pure parsimony problem through lattice
theory and requires the more general @ as discussed in Section 6.2. Let < be a
binary relation such that 2 < 2,2 <0, -2 < =2, —2 < 0, and 0 < 0. Then

146 Blain et al.

Ly v /\&/\

(,-1,1)v>2 w! (0,02 gl 2 B A S o
(-1, -1, Hv3
L1, 1nv? w2 (0,-2,0) \/
(1,-1,-Hv?>

Fig. 6.3. The consecutive genotypes of a

Fig. 6.2. In this example n({v!, 3,05} = path in (H, G,) are indicated with an arc.

Vi and ¢(2) = 3. So, there is path that contains the sequence
g%, ', g* b g5, but there is no path that
contains g, h, g3.

{—2,0,2}"™ is a poset under componentwise comparisons of <. A subset of G’ for
which all elements are comparable forms a chain of genotypes. For example, the
following four genotypes form a chain,

(-2,2,0,2,-2) < (0,2,0,0,-2) = (0,2,0,0,0) < (0,0,0,0,0).

Chains have the property that as we look up the chain from smaller to greater
elements that once a 2 or —2 becomes a 0 it remains 0. The following lemma and
theorem solve the pure parsimony problem in the special case that G’ is a chain.

Lemma 6.4. For the diversity graph (V,W,E,n,~) assume that y(W) = G’
Sforms a chain under <. Let n(V') be a minimal solution and assume that g € G
has the property that yv(w) < g, for all w € W. Then there does not exist v' and
v in V' such that n(v') + n(v") = g.

Proof. If |G'| = 1, then V' = {v,v"} and the result follows because 1(v') +
n(w”) € G butg ¢ G'. So, assume that |G'| > 2. Suppose for the sake of
attaining a contradiction that there is a v" and v” in V’ such that n(v')+n(v"”) = g.
Because n(V’) is a minimal solution to G’, there are no isolated nodes in }’. Since
g ¢ G, this implies that there exists 9’ and 9" in V'’ such that n(v’) + n(?9’) and
n(v"”) 4+ n(¢") are distinct elements of G’. Without loss of generality, we assume
that n(v') +n(2') < n(v") +n(@").

Since n(v") +n(?"”) < gand g = n(v') + n(v"), we have from the definition
of & that

(") ®n") ®n(®") =n(') ®n").
Similarly, because n(v’) + n(¢") < n(v") 4+ n(%"”) and

n(") @) n”) ®n(0") =n") ®n(v"),

Diversity Graphs 147

we have that

n(") @ n") ©n@") = ") ®n(0").

It follows that

g =n") +n@") =n") +n(@"),

which is a contradiction. O

Theorem 6.9. Assume that (V, W, E,n,7) is a diversity graph with n(V) = H
and & as large as possible and that (W) = G’ is a chain under <. Then a
minimum solution has cardinality |G'| + 1.

Proof. List the elements of G’ as g*, g2, ...,g!9 and let w!, w?, ..., w9 be
such that y(w®) = g, fori = 1,2,...,|G’|. We first construct a solution to G’
with cardinality |G’| + 1. Choose v € V so that n(v) < y(w!) = g'. Then for
every g € G’ there is a unique v® € V such that n(v) + n(v?) = y(w?) = g'.
Then, n({v,v',v2,...,v!91}) solves G’ and has cardinality |G'| + 1.

We now show by induction on |G’| that there does not exists a solution with
cardinality less than |G’| + 1. This fact is clear if |G| = 1, and we assume the
claim is true when |G’| < k. Assume that G’ is a chain of length k& + 1, and let
n(V') be a minimum solution. Let G” = G'\{v(w**1)}, where we assume that
the elements of G’ are ordered so that

y(wh) < A/(wQ) <...=< ’y(wk) =< Ay(wk“).

Since (V') solves G and a minimum solution to G” has cardinality |G"| + 1 =
k+ 1, we have that |n(V’)| > k + 1. Suppose for sake of attaining a contradiction
that |n(V’)| = k + 1. From the induction hypothesis (}’) is a minimum solution
to G'. However, y(w') < y(w*+!) fori = 1,2, ..., k, and from Lemma 6.4, this
leads to the contradiction that there is no v’ and v” in V' such that n(v") +n(v") =
y(wk*th). Hence [V'| > k + 2 = |G'| + 1. Since we have already demonstrated
that a solution of size |G’| + 1 exists, the proof is complete. O

Corollary 6.1 follows immediately from Theorem 6.9 and provides a bound on the
pure parsimony problem.

Corollary 6.1. Let (V, W, E,n,) be a diversity graph such that n(V) = H and
& is as large as possible. Partition W into WY, W? ... W9, where each v(W?)
is a chain ordered by <. Then a minimum solution has cardinality no greater than
9] + 4.

148 Blain et al.

The best bound provided by Corollary 6.1 is the one that minimizes gq. An in-
teresting question for future research is whether or not calculating the minimum
value of g actually solves the pure parsimony problem in some cases.

Instead of addressing the smallest size of a solution to a chain, the next result
and its corollary considers how large a minimal solution can be.

Theorem 6.10. Let (V, W, E,n,~) be a diversity graph such that n(V) = H, £
is as large as possible, and v(W) = G’ is a chain with respect to <. Assume that
the elements of VV are ordered so that

y(wh) < y(w?) < ... <~y(w!9h.
Assuming that v(w?) has 3 or more zero SNPs, we have that there is a minimal
solution to G’ with cardinality 2|G'|.

Proof. The proof is by induction on |G’|. The result clearly holds if |G'| = 1,
and we assume the result is true for |G’| < k. Assume that |G'| = k + 1, and let
n(V"") be a minimal solution to G” = G'\{y(w**1)} whose cardinality is 2|G"|.
From Lemma 6.4, (V") does not solve G’ because there is no v’ and v in V"
such that n(v') + n(v") = ~y(w**!). We show that there is a minimal solution
n(V') such that V' C V' and |V"| +2 = |V'].

Because y(w**1) is the k+1 element in a chain, it has at least k+ 1 ambiguous
SNPs, and thus |N (wk*1)| > 2k+1 Since we assumed that y(w?) has at least 3
zero SNPs, | N (w*+1)| > 2F+1. For j > 1, we have 2j < 27, and thus 2k <
|N (w**1)|/2. Since |N(wk*1)|/2 is the number of adjacent pairs to w**! and
[V"| = 2k, there is a v" and v in N (w**1)\ N (V") such that n(v') + n(v"") =
y(w*+1). This means that ()" U {v,v"}) is a minimal solution to G’ whose
cardinality is 2|G’|. O

The condition of (w?) having at least 3 zero SNPs is not imposed because this
proof requires it, but rather, it is needed by any proof due to the following example.
Let ¢ = {(-2,0),(0,0)}. Then a four element solution would have the form
{(-1,1),(-1,-1),(x,1), (y,—1)}, where z is either 1 or —1 and y is the other.
In either case an element is duplicated, and hence there is no solution of size 4.

The following corollary establishes that under the conditions of Theorem 6.10,
there is a minimal solution of every cardinality between the minimum value of
|G’| + 1 and the maximum value of 2|G’|.

Corollary 6.2. Let (V,G',E,n,7) be a diversity graph satisfying the condition of
Theorem 6.10. Then, there is a minimal solution of cardinality j for |G'| + 1 <
J <2\’

Diversity Graphs 149

Proof. Forl <i < |G|, let

G = {y(wh),y(w?),...,y(w!9 =1}

and
Gy = {y(w!¥172) (@917, oy (w9}

be subchains of G’. By Theorem 6.9 there is a solution 7(V;) to G] of cardinality
|G’| — i + 2 and by Theorem 6.10 there is a solution n(V2) to G4 of cardinality
2i — 2. If ¢ = 1, notice that G; = G’ and that G5 = (. In this case Theorem 6.9
establishes that we can indeed find a solution of cardinality |G’| + 1. For other
values of ¢ we have that if V; and Vs are disjoint, then V; U Vs, is a minimal
solution whose cardinality is |G’| + i, for 1 < ¢ < |G’|. So, all that is left to show
is that V; and V2 may be selected so that they are disjoint. We accomplish this by
showing that as ¢ increases to 7 + 1 that there are always enough elements of) to
allow V; and Vs to be disjoint.

Fori =1,2,...,|G'| we have that |¢'| — i + 2 < 2/9'1=1+2_ Ag in the proof
of Theorem 6.10, we have that

219172 <IN (wl91772) /2,

which guarantees that there are v’ and v” in N(w!9'1=7+2)\n(V}) such that
n(') + n(v") = y(wl91=*2). So, as i increases from i to |G'|, we are guar-
anteed to be able to select disjoint V; and V. O

6.5. Directions for Future Research

The goal of this paper was to establish an initial investigation into the structure of
haplotyping problems by studying the underlying graph theory. We have shown
that the structural requirements of the problem are meaningful and that the ma-
jority of bipartite graphs are incapable of representing the underlying biology We
have further established a solution to the pure parsimony problem in a few cases,
and in particular we have shown that ordering the genotypes with < and decom-
posing G’ into chains bounds the problem. During the writing of this paper the
authors had other questions that were left unanswered, many of which promise to
be fruitful continued research:

e Although the matrix equation and the logical decomposition stated in
Theorem 6.4 characterize the graphs that support diversity, we would
have enjoyed a more graph theoretical characterization. A theorem like
(V, W, E) supports diversity if and only if it does not contain a certain
structure would have been particularly appealing.

150

Blain et al.

e We conjecture that m™* is 2 for acyclic diversity graphs, which means
that the pure parsimony problem is solve by Algorithm 6.1. This together
with a proof of Conjecture 6.1 may highlight the class of diversity graphs
for which m* = 2.

e Decomposing the genotypes into chains ordered by < bounds the opti-
mal value of the pure parsimony problem, but this bound can likely be
reduced by investigating how the solutions to the individual chains can
interact. Moreover, we do not yet know how to decompose the genotypes
into the fewest number of chains. This bound could be useful in the
integer programming formulation of the problem, and numerical work
should be explored.

o Investigating how ¢(m) decreases and estimating m* are exciting new
avenues. If we can accomplish both of these, then we will be able to
estimate the solution to the pure parsimony problem.

References

(1]

(2]

(3]

(4]
(]
(6]

(7]
(8]

(9]

(10]

A. S. Asratian, T. M. J. Denley, and R. Héaggkvist. Bipartite Graphs and Their Appli-
cations. Cambridge University, New York, NY, 1998.

V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phylogeny:
A direct approach. Technical Report CSE-2002-21, University of California, Davis,
Computer Science, 2002. Augmented version to appear in the Journal of Computa-
tional Biology.

R. H. Chung and D. Gusfield. Empirical exploration of perfect phylogeny haplotyping
and haplotypers. Technical report, University of California, Computer Science, 2003.
To appear in the Proceedings of the 2003 Cocoon Conference.

R. H. Chung and D. Gusfield. Perfect phylogeny haplotyper: Haplotype inferral using
a tree model. Bioinformatics, 19(6):780-781, 2003.

A. G. Clark. Inference of haplotypes from PCR-amplified samples of diploid popula-
tions. Molecular Biology and Evolution, 7(2):111-122, 1990.

D. Gusfield. A practical algorithm for optimal inference of haplotypes from diploid
populations. Proceedings of the Eight International Conference on Intelligent Sys-
tems for Molecular Biology, 2000.

D. Gusfield. Inference of haplotypes from samples of diploid populations: Complex-
ity and algorithms. Journal of Computational Biology, 8(3):305-324, 2001.

D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions. Proceedings of RECOMB 2002: The Sixth Annual International Confer-
ence on Computational Biology, pages 166-175, 2002.

D. Gusfield. Haplotyping by pure parsimony. Technical Report CSE-2003-2, Univer-
sity of California, Davis, 2003. To appear in the Proceedings of the 2003 Combina-
torial Pattern Matching Conference.

G. Lancia, V. Bafna, S. Istrail, R. Lippert, and R. Schwartz. SNPs problems, complex-

(1]

(12]

(13]
[14]

[15]

[16]

(17]

(18]

(19]

Diversity Graphs 151

ity and algorithms. In European Symposium on Algorithms, volume 2161 of Lecture
Notes in Computer Science, pages 182—193. Springer-Verlag, 2001.

G. Lancia and M. Perlin. Genotyping of pooled microsatellite markers by combinato-
rial optimization techniques. Discrete Applied Mathematics, 88(1-3):291-314, 1998.
G. Lancia, M. Pinotti, and R. Rizzi. Haplotyping populations by pure parsimony.
complexity, exact and approximation algorithms. INFORMS Journal on Computing,
16(4):348-359, 2004.

S. Lin, D. J. Cutler, M. E. Zwick, and A. Chakravarti. Haplotype inference in random
population samples. American Journal of Human Genetics, 71:1129-1137, 2002.

R. Lippert, R. Schwartz, G. Lancia, and S. Istrail. Algorithmic strategies for the SNPs
haplotype assemply problem. Briefings in Bioinformatics, 3(1):23-31, 2001.

T. Niu, Z. S. Quin, X. Xu, and J. S. Liu. Bayesian haplotype inference for multi-
ple linked single-nucleotide polymorphisms. American Journal of Human Genetics,
70:157-169, 2002.

D. Qian and L. Beckmann. Minimum-recombinant haplotyping in pedigrees. Ameri-
can Journal of Human Genetics, 70:1434-1445, 2002.

R. Rizzi, V. Bafna, S. Istrail, and G. Lancia. Practical algorithms and fixed-parameter
tractability for the single individual SNP haplotyping problem. In R. Guigo and
D. Gusfield, editors, Algorithms in Bioinformatics: Proceedings of the Second In-
ternational Workshop on Algorithms on Bioinformatics, WABI 2002, Rome, Italy,
September 17-21, 2002, volume 2452 of Lecture Notes in Computer Science, pages
29-43. Springer-Verlag Berlin Heidelberg, 2002.

M. Stephens, N. J. Smith, and P. Donnelly. A new statistical method for haplotype
reconstruction from population data. American Journal of Human Genetics, 68:978—
989, 2001.

C. F. Xu, K. Lewis, K. L. Cantone, P. Khan, C. Donnelly, N. White, N. Crocker,
P.R. Boyd, D. V. Zaykin, and I. J. Purvis. Effectiveness of computational methods in
haplotype prediction. Human Genetics, 110:148-156, 2002.

This page intentionally |eft blank

Chapter 7

Identifying Critical Nodes in Protein-Protein Interaction Networks

Vladimir Boginski

Research & Engineering Education Facility (REEF)
Department of Industrial & Systems Engineering
University of Florida
Shalimar, FL 32579, USA

Clayton W. Commander

Air Force Research Laboratory
Munitions Directorate

Eglin AFB, FL 32542, USA

In recent years, the study of biological networks has increased dramatically.
These problems have piqued the interest of researchers in many disciplines from
biology to mathematics. In particular, many problems of interest to biological
scientists can be modeled as combinatorial optimization problems and studied by
operations researchers. In this chapter, we consider the problem of identifying the
critical nodes of a network and its potential applications to protein-protein inter-
action networks. More specifically, we are interested in determining the smallest
set of nodes whose removal from the graph maximally disconnects the network.
Recent techniques for identifying critical nodes in telecommunication networks
are applied to the study of protein-protein interaction graphs and the results are
analyzed.

7.1. Introduction

Optimization problems abound in the study of biological networks. This is a
timely research topic and has been the focus of great attention in the recent litera-
ture [1, 4, 6, 19, 21-23, 27]. In this chapter, we investigate the detection of critical
nodes in protein-protein interaction networks. The CRITICAL NODE DETECTION
PROBLEM (CNDP) is a combinatorial optimization problem recently introduced
by Arulselvan et al. [2]. Given a graph G = (V, E) and an integer k € Z \ |V,
the objective is to determine a subset A C V, such that |A| = k, whose deletion

153

154 Boginski & Commander

from the graph results in a minimum cohesion and ensures a minimum differ-
ence in the sizes of the components. A related problem, the CARDINALITY CON-
STRAINED CNDP (CC-CNDP) seeks to determine a minimum cardinality subset of
nodes whose deletion ensures that the number of nodes reachable from any other
node in the network does not exceed some threshold value.

The CNDP has applications in many fields including social network analysis,
quality assurance and risk management in telecommunication networks, trans-
portation science, and control of social contagion [2, 3, 7]. Our proposition is
that identifying the critical nodes in protein-protein interaction networks can have
applications in computational biology, in particular in drug design. The interpre-
tation of the critical nodes in the context of protein-protein interaction networks
is that these nodes represent a minimum cardinality set of proteins whose removal
would destroy the primary interactions and thus help neutralize potentially harm-
ful organisms (e.g., bacteria or viruses).

The organization of this chapter is as follows. In the next section, protein-
protein interaction networks are discussed. In Section 7.3, we provide mathemat-
ical programming formulations for both variants of the CRITICAL NODE DETEC-
TION PROBLEM described above. In Section 7.4, we discuss the implementation
of several heuristics for both problems, and provide some preliminary computa-
tional results of critical node detection on real-world protein-protein interaction
networks in Section 7.5. Conclusions and future directions of research are identi-
fied in Section 7.6.

7.2. Protein-Protein Interaction Networks

In recent years, the biological research community’s interest in studying proteins
from different aspects has steadily increased. As a result, the field of proteomics,
which investigates proteins’ structures and functions, has been developed. In par-
ticular, protein-protein interactions have been extensively studied using various
advanced techniques. [5, 14, 15, 26, 28] Many biological functions involve inter-
actions between proteins at different levels, including signal transduction in cells
(i.e., conversion of one kind of a signal to another inside a cell, which may play an
important role in biological processes, including disease development), formation
of protein complexes (i.e., stable over time structures involving multiple proteins),
brief interactions between proteins involving the processes of modification of one
protein by another, etc.

Protein-protein interactions can be represented in terms of graph theory as a
set of vertices (proteins) and edges (certain types of interactions between pro-
teins). These structures are referred to as protein-protein interaction networks.

Identifying Critical Nodes in Protein-Protein Interaction Networks 155

These networks play an important role in computational biology. In many cases,
they can be easily visualized and are convenient for understanding the complex
nature of different types of interactions between proteins. As a result of extensive
research efforts in studying protein-protein interactions for different biological
organisms (e.g., certain types of bacteria), massive amounts of data have been
obtained. In particular, detailed and comprehensive data on protein-protein in-
teractions is available for the yeast Saccharomyces cerevisiae, which has been
considered in a number of works. [16, 17, 25]

Moreover, protein-protein interactions are studied from the perspective of
drug design applications. [11, 24] In particular, drugs that target specific types
of proteins can be developed. This research direction has significantly grown re-
cently in the context of identifying target proteins responsible for certain diseases
based on the available protein-protein interaction data. Nowadays, experimental
studies in this area are extensively conducted by scientists in the pharmaceutical
industry and research communities. [20]

On the other hand, protein-protein interaction networks can be investigated
from the network optimization perspective. In this chapter, we make the first at-
tempt to put the aforementioned problem of identifying target proteins in protein-
protein interaction networks in the framework of combinatorial optimization.
Specifically, we propose to apply the recently introduced CRITICAL NODE DE-
TECTION PROBLEM (CNDP) to analyze protein-protein interactions and detect the
nodes (proteins) that are the most important for the connectivity of these networks.
We believe that identifying these critical nodes can provide information that can
be used in drug design and other applications.

Next, we discuss mathematical programming formulations of the considered
problems and present computational results obtained for some available protein-
protein interaction datasets.

7.3. Optimization Approaches for Critical Node Detection

Denote a graph G = (V, E) as a pair consisting of a set of vertices V, and a set of
edges E. All graphs in this chapter are assumed to be undirected and unweighted.
For a subset W C V, let G(W) denote the subgraph induced by W on G. A
set of vertices I C V is called an independent or stable set if for every i,j €
I, (i,j) € E. Thatis, the graph G(I) induced by I is edgeless. An independent
set is maximal if it is not a subset of any larger independent set (i.e., it is maximal
by inclusion), and maximum if there are no larger independent sets in the graph.

156 Boginski & Commander

7.3.1. The Critical Node Detection Problem

Given a graph G = (V, E), letw : V x V — {0,1}, where u;; = 1 if nodes ¢
and j are in the same component of V. Then the objective of the CNDP is to find a
subset A C V of nodes such that | A| < k, whose deletion results in the minimum
value of) u;; in the edge induced subgraph G(V \ A). This objective function
results in a minimum cohesion in the network, while also ensuring a minimum
difference in the sizes of the components. An integer programming formulation
of the CNDP has been formulated by Arulselvan et al. [2]
Let u be defined as above and define v : V +— {0,1} as

- {1, if node i is deleted in the optimal solution, 7.1
0, otherwise.
Then the CRITICAL NODE DETECTION PROBLEM is given as
(CNDP) Minimize » uj; (7.2)
ijev
s.t.

i +vi+v; >1,V(4,j) € E, (7.3)
Ui + Ui — Uk < 1, V (4,5, k) €V, (7.4)
Ui — Uik + Uk < 1, V (4, 5,k) €V, (7.5)
—uij + uip +uk <1,V (i,4,k) €V, (7.6)
Z v; <k, 1.7)

eV
u;; € {0,1}, Vi, j eV, (7.8)
v; €{0,1}, VieV. (7.9)

Constraints (7.3) ensure that if (7, j) € F and nodes i and j are in separate compo-
nents, then one or both of them is deleted. The set of constraints (7.4-7.6) ensure
that if nodes ¢ and j are in the same component and nodes j and k are in the same
component, then necessarily ¢ and k belong to the same component. Finally, (7.7)
constrains the maximum number of nodes to be deleted. The CNDP was shown to
be A'P-hard [12] by a reduction of MAXIMUM INDEPENDENT SET to an instance
of the CNDP [3].

7.3.2. Cardinality Constrained Problem

Given a graph G = (V, E), the connectivity index of a node is defined as the num-
ber of nodes reachable from that vertex (see Fig. 7.1 for examples). To constrain

Identifying Critical Nodes in Protein-Protein Interaction Networks 157

A B E

[J=s

D c F G

Fig. 7.1. Connectivity Index of nodes A,B,C,D is 3. Connectivity Index of E,F,G is 2. Connectivity
Index of His 0.

the network connectivity in optimization models, we can impose constraints on
the connectivity indices of the nodes [8].

The CARDINALITY CONSTRAINED CNDP can be formulated in a similar man-
ner to the the CNDP above. Recall that in this problem, we are given an integer
L € Z, and we are interested in determining a minimum cardinality subset A C V'
such that the connectivity index of the remaining nodes in the vertex deleted sub-
graph G(V '\ A) does not exceed L.

Using the same definition of the variables as in the previous subsection, we can
formulate the CC-CNDP as the following integer linear programming problem.

(CC-CNDP) Minimize » _ v; (7.10)
eV
S.t.

wij+vi+v; >1,V(4,j) € E, (7.11)
Uij + ujp —up <1, V (i,5,k) €V, (7.12)
Ui — Uk + Uk < 1, V (3,5,k) €V, (7.13)
—Uij + Uik +ups <1,V (i,5,k) €V, (7.14)
> i <L, (7.15)
ijeV
uij € {0,1}, Vi,j €V, (7.16)
vi € {0,1}, VieV, (7.17)

where L is the maximum allowable connectivity index for any node in the vertex
deleted subgraph G(V \ A). Notice that the objective is to minimize the num-
ber of nodes deleted. Constraints (7.11) follow exactly as in the CNDP model.
Also, Constraints (7.12)—(7.14) are equivalent to the constraint wu;; + uj, +

158 Boginski & Commander

ugi # 2, V (i,5,k) € V, which ensures that if nodes ¢ and j are in the same
component and nodes j and k are in the same component, then necessarily ¢ and
k belong to the same component (as in the CNDP model). Constraints (7.15) en-
sure that the connectivity indices of all nodes does not exceed L. The CC-CNDP is
also A"P-hard as proved by Arulselvan et al [3]. For the application of interest in
this chapter, the CC-CNDP is the most applicable critical node optimization model.
Therefore as we consider solutions approaches and computational experiments in
the following sections, this is the problem on which we will focus.

7.4. Heuristic Approaches for Critical Node Detection

Due to the computational complexity of the mathematical programming formula-
tions presented above, the prior work in this area has concentrated on the devel-
opment of efficient heuristics for critical node detection problems [2, 3, 7].

7.4.1. Multi-Start Combinatorial Heuristic

Arulselvan et al. [3] have proposed an efficient combinatorial heuristic for the
CNDP. Pseudo-code for the proposed algorithm is provided in Fig. 7.2. The
heuristic starts off by identifying a maximal independent set (MIS). This array
holds the set of non-critical nodes. In the main loop from lines 4-16, the proce-
dure iterates through the vertices and determines which of them can be added back
to the graph while still maintaining feasibility. If vertex ¢ can be replaced, MIS is
augmented to include 7 in step 7, otherwise NoAdd is incremented. When NoAdd
is equal to |V| — |[MIS|, then no nodes can be returned to the graph and OPT is
set to TRUE. The loop is then exited and the algorithm returns the set of critical
nodes, i.e., V\MIS.

The solution found by this procedure is then further improved through a local
search step and incorporated within a multi-start mechanism (see Fig. 7.3). Com-
putational testing was carried out on a benchmark network of the social interac-
tions of the terrorists involved in the 9 \ 11 hijacking [18] and on some networks
generated by the authors. Their tests indicated that the heuristic is very effective
in producing optimal solutions in modest computing time as compared to solving
the mixed integer formulation of the problem using the branch-and-bound based
solver CPLEX [9].

Identifying Critical Nodes in Protein-Protein Interaction Networks 159

procedure CriticalNode(G, L)

1 MIS <« MaximalIndepSet(G)

2 OPT « FALSE

3 NoAdd 0

4 while (OPT .NOT.TRUE) do

5 for (i = 1to|V]) do

6 if (L= < LvsesCGMIS U{i}):ieV\MIS) then
7 MIS — MIS U {i}

8 else

9 NoAdd « NoAdd +1

10 end if

11 if (NoAdd = |V| — |MIS|) then

12 OPT <« TRUE

13 BREAK

14 end if

15 end for

16 end while

17 return V \ MIS /x set of nodes to delete */
end procedure CriticalNode

Fig. 7.2. Combinatorial heuristic for the CARDINALITY CONSTRAINED CRITICAL NODE PROBLEM.

7.4.2. Genetic Algorithms

Genetic algorithms (GAs) represent a broad class of heuristics for global opti-
mization problems. Intuitively, they are designed to mimic the biological process
of evolution, and follow Darwin’s Theory of Natural Selection [10]. GAs store
a set of solutions, or a population, and the population evolves by replacing these
solutions with better ones based on certain fitness criteria represented by the ob-
jective function value. In successive iterations, or generations, the population
evolves by reproduction, crossover, and mutation.

Reproduction is the probabilistic selection of the next generations elements
determined by their fitness level (i.e., objective function value). Crossover is the
combination of two current solutions, called parents, which produces one or more
other solutions, referred to as their offspring. Finally, mutation is the random per-
turbation of the offspring and is implemented as an escape mechanism to avoid
getting trapped at local optima. [13]. In successive generations, only those solu-
tions having the best fitness are carried to the next generation in a process which
mimics the fundamental principle of natural selection, survival of the fittest [10].

160 Boginski & Commander

procedure CriticalNodeLS(G, k)
1 X* 0

2 f(X") o0

3 for j =1toMaxIter do

4 X < CriticalNode(G, k)
5 X < LocalSearch(X)

6 if f(X) < f(X*) then

7 X* X

8 end if

g end

10 return (V \ X*) /x set of k nodes to delete */
end procedure CriticalNodeLS

Fig. 7.3. The multi-start framework for the critical node heuristic.

procedure GeneticAlgorithm

1 Generate population Py

2 Evaluate population P

3 while terminating condition not met do

4 Select individuals from Py and copy to Pyt
5 Crossover individuals from P}, and put in Py 1
6 Mutate individuals from P} and putin Py
7 Evaluate population Py 1

8 Py — Pia

9 Piyq1 0

10 end while

11 return best individual in Py,

end procedure GeneticAlgorithm

Fig. 7.4. Pseudo-code for a generic genetic algorithm.

Figure 7.4 provides pseudo-code for a standard genetic algorithm. Genetic algo-
rithms were introduced in 1977 by Holland, and were greatly invigorated by the
work of Goldberg. [13]

7.5. Computational Experiments

In this section, we present some preliminary computational results on real protein-
protein interaction networks obtained from the literature. In particular, three

Identifying Critical Nodes in Protein-Protein Interaction Networks 161

R
~ 7

(a) The original network.

I \ N \
(b) The optimal subgraph for L = 3. (c) The optimal subgraph for L = 4.

Fig. 7.5. The CARDINALITY CONSTRAINED CRITICAL NODE DETECTION PROBLEM is solved for
the 46 primary interactions of the S. cerevisiae cell cycle.

graphs are tested with various values of the connectivity index bound. Both of
the aforementioned heuristics were implemented in the C++ programming lan-
guage and complied using GNU g++ version 4.1.2, using optimization flag -04.
They were compiled on a Linux workstation equipped with a 3.0 GHz Intel®
Xeon® processor and 1.0 gigabytes of RAM. For more information on specific
tuning parameters of the heuristics, the reader is referred to the papers by Arul-
selvan et al. [2, 3]. The major focus of this chapter is to introduce the concept
and related techniques of finding critical nodes in a graph to the computational
biology research community.

We begin by examining the 46 primary interactions of the yeast S. cerevisiae
cell cycle [29]. The graph of the original network can be seen in Fig. 7.5(a).
The optimal solutions for the case where L = 3 and L = 4 are provided in

162 Boginski & Commander

Fig. 7.5(b) and 7.5(c) respectively. The corresponding numerical results are pro-
vided in Table 7.1. The table contains the objective function values and the corre-
sponding computation times required by the algorithms. We provide the optimal
solutions as computed by CPLEX and the solutions provided by the heuristics
mentioned above. For this small, and relatively unconnected example, we see that
all the methods were able to obtain optimal solutions in a negligible amount of
time.

Table 7.1. Results of the IP model and the genetic algorithm for the 46
interactions of S. cerevisiae.
Instance IP Model Genetic Alg Comb. Alg
Max Conn. | Obj Comp Obj Comp Obj Comp
Index (L) Val Time(s) | Val Time(s) | Val Time (s)
2 8 0.18 8 0.05 8 0.04
3 6 1.19 6 0.01 6 0.00
4 5 2.57 5 0.05 5 0.00
5 4 1.05 4 0.01 4 0.00
6 4 2.63 4 0.04 4 0.00

The next network considered is from the 78 protein-protein interactions from
the development of D. melanogaster [29]. The graph of the network can be seen in
Fig. 7.6(a). Similar to the previous example, we provide the graphs corresponding
to the optimal solution for the cases of L = 5 and L = 4. Table 7.2 reflects the
computational results for this instance. As above, we see that the heuristics were
able to provide the optimal solutions for each value of L tested. However, we
see that even for this relatively small instance, the required computation time to
compute the optimal solution has increased by two orders of magnitude from the
previous example.

As a final test case we examine the network comprising 186 yeast two-hybrid
system interactions of S. cerevisiae proteins [17]. The original network is shown
in Fig. 7.7. For this case, CPLEX was unable to compute optimal solutions for
any values of L. Therefore, we only provide solutions for the two heuristics in
Table 7.3. Notice that both heuristics computed the same objective function value
in each case. However, the combinatorial algorithm required over 30 seconds for
the case where L = 2.

Though promising, these preliminary results indicate the need for advanced
heuristics and exact solution methods for computing critical nodes in protein-
protein interaction networks. The primary challenge to computing optimal solu-
tions in real-world networks is that the sizes of the networks prohibit optimal solu-
tions from being calculated using standard branch-and-bound techniques. The test
cases presented represent relatively small instances of protein-protein interaction

Identifying Critical Nodes in Protein-Protein Interaction Networks 163

(a) The original network.

P L
/:/N ' RSO
RN —

(b) The optimal subgraph for L = 5. (c) The optimal subgraph for L = 4.

Fig. 7.6. The CARDINALITY CONSTRAINED CRITICAL NODE DETECTION PROBLEM is solved for
the 77 primary interactions during the development of D. melanogaster.

Table 7.2. Results of the IP model and the genetic algorithm for the 77
primary interactions of D. melanogaster development.

Instance IP Model Genetic Alg Comb. Alg

Max Conn. | Obj Comp Obj Comp Obj Comp
Index (L) Val Time(s) | Val Time(s) | Val Time (s)

2 17 0.87 17 0.17 17 0.04
3 14 36.5 14 0.27 17 0.03
4 12 276.29 12 0.19 17 0.01
5 10 382.88 10 0.28 17 0.02

164 Boginski & Commander

Fig. 7.7. The graph shows 186 yeast two-hybrid system interactions of S. cerevisiae proteins.

Table 7.3. Results of the genetic algorithm and the
combinatorial heuristic for the 186 yeast two-hybrid
system interactions of S. cerevisiae.

Instance Genetic Alg Comb. Alg

Max Conn. | Obj Comp Obj Comp
Index (L) Val Time(s) | Val Time (s)

2 31 7.64 31 23.63
3 20 2.88 20 0.08
4 7 1.92 7 0.03
5 6 3.35 6 0.03
6 3 3.49 3 0.01

networks found in the literature. It is not uncommon for these graphs to contain
tens of thousands of nodes and arcs [16]. Clearly, more sophisticated algorithms
are required for graphs of this size.

Identifying Critical Nodes in Protein-Protein Interaction Networks 165

7.6. Conclusions

In this chapter, we have identified an important practical application of the re-
cently introduced problem of detecting critical nodes to protein-protein interaction
networks. As indicated above, in many cases, potentially harmful biological or-
ganisms, such as bacteria and viruses that cause diseases, can be studied in terms
of their protein-protein interaction patterns. Therefore, finding the critical nodes
corresponding to the proteins that are the most important for the integrity of the
network would be very helpful in terms of identifying the proteins that need to
be targeted in the efficient process of destroying this network and neutralizing
the corresponding organisms. This approach can potentially be used in drug de-
sign applications, e.g., in developing drugs that target specific proteins that are
the most “important” in the considered networks. It would be interesting to con-
sider protein-protein interaction networks corresponding to different dangerous
viruses, such as HIV (although obtaining detailed information on these interac-
tions certainly represents another challenge) and identify key proteins that need to
be targeted to ensure that these networks are sufficiently disconnected.

In addition to their potential important practical applications, the considered
problems need to be studied from the computational perspective as well. As in-
dicated above, these problems are NP-hard, and the available exact and heuris-
tic methods do not always perform sufficiently well, especially on large problem
instances. Clearly, large-scale protein-protein interaction networks can provide
valuable information about the structure of complex molecules and organisms;
therefore, efficient techniques for solving the considered problems on massive
networks need to be developed.

Overall, we believe that the area of research proposed in this chapter is promis-
ing and challenging due to multiple reasons; therefore, this research clearly needs
to be conducted further, including both biological and mathematical aspects.

References

[1] C. Alves, P. M. Pardalos, and L. N. Vicente, editors. Optimization in Medicine.
Springer, 2008.

[2] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M. Pardalos. Detecting
critical nodes in sparse graphs. Computers and Operations Research, under revision,
2008.

[3] A. Arulselvan, C. W. Commander, P. M. Pardalos, and O. Shylo. Managing network
risk via critical node identification. In N. Gulpinar and B. Rustem, editors, Risk Man-
agement in Telecommunication Networks. Springer, 2008.

166

(4]
(5]
(6]
(7]
(8]
(9]
(10]
(11]
[12]
[13]
(14]

[15]

[16]

(17]

(18]
(19]

(20]
(21]

(22]
(23]
(24]

[25]

Boginski & Commander

B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for analyzing
biological networks. Journal of Combinatorial Optimization, 10:23-29, 2005.

A. M. Bonvin. Flexible protein-protein docking. Current Opinion in Structural Biol-
0gy, 16(2):194-200, April 2006.

S. Butenko and W. Wilhelm. Clique-detection models in computational biochemistry
and genomics. European Journal of Operational Research, to appear, 2008.

C. W. Commander. Optimization Problems in Telecommunications with Military Ap-
plications. PhD thesis, University of Florida, 2007.

C. W. Commander, P. M. Pardalos, V. Ryabchenko, S. Uryasev, and G. Zrazhevsky.
The wireless network jamming problem. Journal of Combinatorial Optimization,
14(4):481-498, 2007.

ILOG CPLEX. http://www.ilog.com/products/cplex, accessed March 2008.

C. Darwin. The Origin of Species. Murray, sixth edition, 1872.

J. Drews. Drug discovery: A historical perspective. Science, 287:1960-1964, March
2000.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

J. J. Gray. High-resolution protein-protein docking. Current Opinion in Structural
Biology, 16(2):183-93, April 2006.

C. Herzberg, L. A. Weidinger, B. Dorrbecker, S. Hubner, J. Stulke, and F. M. Com-
michau. Spine: A method for the rapid detection and analysis of protein-protein in-
teractions in vivo. Proteomics, 7(22):4032-5, November 2007.

T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehen-
sive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the
National Academy of Sciences, 98(8):4569-74, 2001.

T. Ito, K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto,
S. Kuhara, and Y. Sakaki. Toward a protein-protein interaction map of the budding
yeast: A comprehensive system to examine two-hybrid interactions in all possible
combinations between the yeast proteins. Proceedings of the National Academy of
Sciences, 97(3):1143-1147, 2000.

V. Krebs. Uncloaking terrorist networks. First Monday, 7, 2002.

R. P. Mondaini and P. M. Pardalos, editors. Mathematical Modeling of Biosystems.
Springer, 2008.

Conference on Drug Discovery Chemistry. La Jolla, CA, April 28-30 2008.

P. M. Pardalos, V. Boginski, and A. Vazacopoulos, editors. Data Mining in
Biomedicine. Springer, 2007.

P. M. Pardalos and J. Principe, editors. Biocomputing. Kluwer Academic Publishers,
2002.

P. M. Pardalos, J. C. Sackellares, P. Carney, and L. lasemidis, editors. Quantitative
Neuroscience. Kluwer Academic Publishers, 2004.

S. L. Schreiber. Target-oriented and diversity-oriented organic synthesis in drug dis-
covery. Science, 275(5460):1964-1969, 2000.

B. Schwikowski, P. Uetz, and S. Fields. A network of protein-protein interactions in
yeast. Nature Biotechnology, 18(12):1257-61, December 2000.

[26]

(27]

(28]

[29]

Identifying Critical Nodes in Protein-Protein Interaction Networks 167

M. Selbach and M. Mann. Protein interaction screening by quantitative immunopre-
cipitation combined with knockdown (quick). Nature Methods, 3(12):981-3, Decem-
ber 2006.

O. Seref, E. Kundakcioglu, and P. M. Pardalos, editors. Data Mining, Systems Anal-
ysis and Optimization in Biomedicine. Springer, 2008.

M. Suchanek, A. Radzikowska, and C. Thiele. Photo-leucine and photo-methionine
allow identification of protein-protein interactions in living cells. Nature Methods,
2(4):261-7, April 2005.

http:\\www.genome. jp, accessed March 2008.

This page intentionally |eft blank

Chapter 8

Faster Algorithms for Constructing a Concept (Galois) Lattice

Vicky Choi

Department of Computer Science, Virginia Tech, USA
vchoi@cs.vt.edu

In this paper, we present a fast algorithm for constructing a concept (Galois)
lattice of a binary relation, including computing all concepts and their lattice
order. We also present two efficient variants of the algorithm, one for computing
all concepts only, and one for constructing a frequent closed itemset lattice. The
running time of our algorithms depends on the lattice structure and is faster than
all other existing algorithms for these problems.

8.1. Introduction

Formal Concept Analysis (FCA) [13] has found many applications since its in-
troduction. As the size of datasets grows, such as data generated from high-
throughput technologies in bioinformatics, there is a need for efficient algorithms
for constructing concept lattices. The input of FCA consists of a triple (O, M, 7),
called context, where O is a set of objects, M is a set of attributes, and 7 is a bi-
nary relation between O and M. In FCA, the context is structured into a set of
concepts. The set of all concepts, when ordered by set-inclusion, satisfies the
properties of a complete lattice. The lattice of all concepts is called concept [33]
or Galois [4] lattice. When the binary relation is represented as a bipartite graph,
each concept corresponds to a maximal bipartite clique (or maximal biclique).
There is also a one-one correspondence of a closed itemset [37] studied in data
mining and a concept in FCA. The one-one correspondence of all these termi-
nologies — concepts in FCA, maximal bipartite cliques in theoretical computer
science (TCS), and closed itemsets in data mining (DM) — was known [6, 37].
There is extensive work of the related problems in these three communities, in
TCS [1, 6, 10, 14, 15, 20, 28] in FCA [3, 5, 11-13, 16-19, 21-23, 30, 31], and in
DM [2,7,9, 24-27, 32, 34-37]. In general, in TCS, the research focuses on effi-
ciently enumerating all maximal bipartite cliques (of a bipartite graph); in FCA,

169

170 Choi

one is interested in the lattice structure of all concepts; in DM, one is often inter-
ested in computing frequent closed itemsets only.

Time complexity. Given a bipartite graph, it is not difficult to see that there can
be exponentially many maximal bipartite cliques. For problems with potentially
exponential (in the size of the input) size output, in their seminal paper [14], John-
son et al introduced several notions of polynomial time for algorithms for these
problems: polynomial total time, incremental polynomial time, polynomial de-
lay time. An algorithm runs in polynomial total time if the time is bounded by
a polynomial in the size of the input and the size of the output. An algorithm
runs in incremental polynomial time if the time required to generate a succes-
sive output is bounded by the size of input and the size of output generated thus
far. An algorithm runs in polynomial delay time if the generation of each output
is only polynomial in the size of input. It is not difficult to see that polynomial
delay is stronger than incremental polynomial (namely an algorithm with polyno-
mial delay time is also running in incremental polynomial), which is stronger than
polynomial total time. polynomial delay algorithm, we can further distinguish if
the space used is polynomial or exponential in the input size.

Previous work. Observe that the maximal bipartite clique (MBC) problem is a
special case of the maximal clique problem in a general graph. Namely, given
a bipartite graph G = (V1, V4, E), a maximal bipartite clique corresponds to a
maximal clique in G = (V3 U Vo, E) where E = E U (Vi x Vi) U (Va x Va).
Consequently, any algorithm for enumerating all maximal cliques in a general
graph [14, 28], also solves the MBC problem. In fact, the best known algorithm
in enumerating all maximal bipartite cliques, which was proposed by Makino and
Uno [20] that takes O(A?) polynomial delay time where A is the maximum de-
gree of (G, was based on this approach. The fact that the set of maximal bipartite
cliques constitutes a lattice was not observed in the paper and thus the property
was not utilized for the enumeration algorithm.

In FCA, much of research has been devoted to study the properties of the lat-
tice structure. There are several algorithms [19, 22, 31], that construct the lattice,
i.e. computing all concepts together with its lattice order. There are also some
algorithms that compute only concepts [13, 21]. (We remark that the idea of using
a total lectical order on concepts Ganter’s algorithm [13] is also used for enumer-
ating maximal (bi)cliques.) [14, 20] See [18] for a comparison studies of these
algorithms. The best polynomial total time algorithm was by Nourine and Ray-
naud [22] with O(nm|B|) time and O(n|B|) space, where n = |O| and m = | M|

Faster Algorithms for Constructing a Concept (Galois) Lattice 171

and B denote the set of all concepts. This algorithm can be easily modified to run
in O(mn) incremental time [23]. Observe that the space of total size of all con-
cepts is needed if one is to keep the entire structure explicitly. There were several
other algorithms [13, 19], all run in O(n?m) polynomial delay. There is another
algorithm [31] that is based on divide-and-conquer approach, but the analytical
running time of the algorithm is unknown as it is difficult to analyze.

There are several algorithms in data mining for computing frequent closed
itemsets, such as CHARM(-L) [35, 36], CLOSET(+) [25, 32] and LCM [29].
Boros et al. [6] gave an algorithm with O(m?n) incremental polynomial running
time, where n = |O] and m = | M.

Our Results. In this paper, by making use of the lattice structure of concepts,
we present a simple and fast algorithm for computing all concepts together with
its lattice order. The main idea of the algorithm is that given a concept, when
all of its successors are considered together (i.e. in a batch manner), they can be
efficiently computed. We compute concepts in the Breadth First Search (BFS)
order — the ordering given by BFS traversal of the lattice. When computing the
concepts in this way, not only do we compute all concepts but also we identify
all successors of each concept. Another idea of the algorithm is that we make
use of the concepts generated to dynamically update the adjacency relations. The
running time of our algorithm is O(Za&xt(c) |enbr(a)|) polynomial delay for
each concept C' (see Section 8.2 for related background and terminology), where
cnbr(a) is the reduced adjacency list of a. Our algorithm is faster than the best
known algorithms for constructing a lattice because the algorithm is faster than a
basic algorithm that runs in O(}_ ,cex(c) Inbr(a)|), where [nbr(a)| is number of
attributes adjacent to the object a, and this basic algorithm is already as fast as the
current best algorithms for the problem.

We also present two variants of the algorithm: one is computing all concepts
only and another is constructing the frequent closed itemset lattice. Both algo-
rithms are faster than the current start-of-the-art program for these problems.

Outline. The paper is organized as follows. In Section 8.2, we review some
background and notation on FCA. In Section 8.3, we describe some basic proper-
ties of concepts that we use in our lattice-construction algorithm. In Section 8.4,
we first describe the high level idea of our algorithm. Then we describe how to ef-
ficiently implement the algorithm. In Section 8.5, we describe two variants of the
algorithm. One is for computing all concepts only and another is for constructing
a frequent closed itemset lattice. We conclude with discussion in Section 8.6.

172 Choi

8.2. Background and Terminology on FCA

In FCA, atriple (O, M, T) is called a context, where O = {g1, g2, ..., gn } isa set
of n elements, called objects; M = {1,2,...,m} is a set of m elements, called
attributes; and Z C O x M is a binary relation. The context is often represented
by a cross-table as shown in Fig. 8.1. A set X C O is called an object set, and a
set J C M is called an attribute set. Following the convention, we write an object
set {a, c, e} as ace, and an attribute set {1, 3,4} as 134.

For i € M, denote the adjacency list of ¢ by nbr(i) = {g € O : (¢,4) € Z}.
Similarly, for g € O, denote the adjacency list of g by nbr(g) = {2 eEM:(g,i) €
I}.

Definition 8.1. The function attr : 2° — 2 maps a set of objects to their com-
mon attributes: attr(X) = Ngexnbr(g), for X C O. The function obj : 2 —
29 maps a set of attributes to their common objects: obj(.J) = Njesnbr(j), for

J C M.

It is easy to check that for X C O, X C obj(attr(X)), and for J C M,
J C attr(obj(J)). Note obj(#)) = O and attr() = M.

Definition 8.2. An object set X C O is closed if X = obj(attr(X)). An attribute
set J C M is closed if J = attr(obj(J)).

The composition of obj and attr induces a Galois connection between 2© and
2M_ Readers are referred to [13] for properties of the Galois connection.

Definition 8.3. A pair C' = (A, B), with A C O and B C M, is called a concept
if A = obj(B) and B = attr(A).

For a concept C' = (A, B), by definition, both A and B are closed. The object
set A is called the extent of C, written as A = ext(C), and the attribute set B
is called the intent of C, and written as B = int(C). The set of all concepts of
the context (O, M,) is denoted by B(O, M, T) or simply B when the context is
understood.

Let (A1, B1) and (A2, B2) be two concepts in B. Observe that if A; C Ao,
then Bo C B;. We order the concepts in 53 by the following relation <:

(Al,Bl) =< (AQ,BQ) < A1 - AQ(BQ - Bl)

It is not difficult to see that the relation < is a partial order on B. In fact, £ =<
B, <> is a complete lattice and it is known as the concept or Galois lattice of
the context (O, M,T). For C,D € B with C < D, if for all E € B such that

Faster Algorithms for Constructing a Concept (Galois) Lattice 173

C < E < D implies that E = C' or E = D, then C is called the successor ®(or
lower neighbor) of D, and D is called the predecessor (or upper neighbor) of C .
The diagram representing an ordered set (where only successors/predecessors are
connected by edges) is called a Hasse diagram (or a line diagram). See Fig. 8.1
for an example of the line diagram of a Galois lattice.

For a concept C = (ext(C),int(C)), ext(C) = obj(int(C)) and int(C) =
attr(ext(C)). Thus, C is uniquely determined by either its extent, ext(C'), or by
its intent, int(C'). We denote the concepts restricted to the objects O by Bp =
{ext(C) : C € B}, and the attributes M by Byq = {int(C) : C € B}. For A €
Bo, the corresponding concept is (A, attr(A)). For J € By, the corresponding
concept is (obj(J),J). The order < is completely determined by the inclusion
order on 2% or equivalently by the reverse inclusion order on 2. That is, £ =<
B, <> and L ; =< Baq, 2> are order-isomorphic. We have the property that
(obj(Z), Z) is a successor of (obj(X), X) in L if and only if Z is a successor
of X in L. Since the set of all concepts is finite, the lattice order relation is
completely determined by the covering (successor/predecessor) relation. Thus,
to construct the lattice, it is sufficient to compute all concepts and identify all
successors of each concept.

8.3. Basic Properties

In this section, we describe some basic properties of the concepts on which our
lattice construction algorithms are based.

Proposition 8.1. Let C' be a concept in B(O, M,T). Fori € M\ int(C), if
E; = ext(C) N nbr(i) is not empty, E; is closed. Consequently, (E;, attr(E;)) is
a concept.

Proof. Fori € M\ int(C), suppose that E; = ext(C)Nnbr(4) is not empty. We
will show that obj(attr(E;)) = E;. Since E; C obj(attr(E;)), it remains to show
that obj(attr(£;)) C E;. By definition, obj(int(C') U {i}) = (Njgint(c)ynbr(j)) N
nbr(i) = ext(C)Nnbr(i) = FE;. Thus, (int(C)U{i}) C attr(obj(int(C)U{i})) =
attr(E;). Consequently, obj(attr(E;)) C obj(int(C) U {i}) = E;. O

Example. Consider the concept C = (abed, @) of context in Fig. 8.1, we have
E1 = CLbC7 EQ = bd, E3 = ac, E4 = bd.

4Some authors called this as immediate successor.

174 Choi

(abed, 9)
bed, bed,
(abel) (bd.24) (abed, o) (bed.)
(abc,1) (bd24) (ac3) @el) (bd24) (ae3)

[[1]2]3]4] (ac,13) (b,124)
A Tx N
b|| x| x X (v, 1234) (ac,13) (b,124)
Cl| X X
d % X
© ® ©

Fig. 8.1. (a) A context (O, M,T) with O = {a,b,c,d} and M = {1,2,3,4}. The cross X
indicates a pair in the relation Z. (b) The corresponding Galois/concept lattice. (c) Child(abed,) =
{(abc, 1), (bd, 24), (ac, 3)}; Child(abe, 1) = {(ac, 13), (b, 124)}.

8.3.1. Defining the Equivalence Classes

For a closed attribute set X C M, denote the set of remaining attributes {i €
M\ X : obj(X) Nnbr(i) # 0} by res(X). Consider the following equivalence
relation ~ on res(X): i ~ j <= obj(X) N nbr(i) = obj(X) N nbr(j), for
i #j € res(X).

Let Sy,...,S; be the equivalence classes induced by ~, i.e. res(X) = S U
... U S, and obj(X) Nnbr(i) = obj(X) Nnbr(j) foranyi # j € S, 1 < k <t.
We denote the set {51, ..., S;} by AttrChild(X'). We call S; the sibling of S; for
j # 4. For convenience, we will write X US; by X .S;. When there is no confusion,
we abuse the notation by writing X UAttrChild(X) = {X S : S € AttrChild(X)}.
Note that by definition, obj(XS;) = obj(X) N obj(Sk) = obj(X) N nbr(¢) for
some i € Si. We denote the pairs {(obj(X S1), X S1), ..., (obj(X S1), X S1)} by
Child(obj(X), X).

Recall that £ =< B, <> and L =< By, 2> are order-isomorphic. We
have the property that (obj(Y"),Y") is a successor of (obj(X'), X) in £ if and only
if Y is a successor of X in £4. For each S € AttrChild(X), we call X S a child
of X and X a parent of X S. By the definition of the equivalence class, for each
Z that is a successor of X, there exists a .S € AttrChild(X) such that Z = X S.
That is, if Z is a successor of X, Z is a child of X.

Let Succ(X) denote all the successors of X, then we have Succ(X) C
X U AttrChild(X). However, not every child of X is a successor of X. For the
example in Fig. 8.1, AttrChild(@) = {1, 24, 3}, where 1 and 24 are successors of
() but 3 is not. Succ(P) = {1,24} C AttrChild(0); while AttrChild(1) = {24, 3},
Succ(a) = {124,13} = 1 U AttrChild(1). Similarly, if P is a predecessor of X,

Faster Algorithms for Constructing a Concept (Galois) Lattice 175

then P is parent of X but it is not necessary that every parent of X is a predecessor
of X.

Note that for S € AttrChild(X), if XS € Succ(X), then by definition X S is
closed. It is easy to check that the converse is also true. Namely, if XS is closed,
then X .S € Succ(X). In other words, we have the following proposition.

Proposition 8.2. Succ(X) = {X S : XS is closed, S € AttrChild(X)}.

8.3.2. Characterizations of Closure

By definition, an attribute set X is closed if attr(obj(X)) = X. In the follow-
ing we give two characterizations for an attribute set being closed based on its
relationship with its siblings.

Proposition 8.3. For S € AttrChild(X), XS is not closed if and only if there
exists T € AttrChild(X), T # S, such that obj(XS) C obj(XT). Further-
more, for all T € AttrChild(X) with obj(XS) C obj(XT), there exists S’ €
AttrChild(XT) such that S C S’, obj(X S) = obj(XTS") and XS C XTS'.

Proof. If XS is not closed, by definition, there exists ¢ € res(X) \ S such that
i € attr(obj(XS)). As AttrChild(X) is a partition of res(X), there existsa T €
AttrChild(X) such that i € T, and thus obj(XT') = obj(X) Nnbr(i) O obj(X).

Conversely, suppose there exists 7' € AttrChild(X) such that obj(XS) C
obj(XT). Then attr(obj(XS)) 2 XTS. Thatis, XS C XTS C
attr(obj(XS)), which implies X S is not closed.

Suppose that obj(XS) C obj(XT) with T' € AttrChild(X). Fori € S,
obj(XT) N nbr(i) = obj(XT) N obj(X) N nbr(i) = obj(XT) N obj(XS) =
obj(X S). Thus, there exists S” € AttrChild(XT') such that S C S, obj(X S) =
obj(XTS"). Since X, S, T are disjoint, XS C XT'S C XTS'. O

Based on the first part of this proposition (first characterization), we can test
if XS is closed, for S € AttrChild(X), by using subset testing of its object set
against its siblings’ object set. Namely, X S is closed if and only obj(XS) is not
a proper subset of its siblings’ object set. In our running example in Fig. 8.1, 3 is
not closed because its object set obj(3) = ac is a proper subset of the object set of
its sibling, obj(1) = abc.

In general, subset testing operations are expensive. We, however, can make
use of the second part of the proposition (second characterization) for testing clo-
sure using set exact matching operations instead of subset testing operations. This
is because if we process the children in the decreasing order of their object-set
size, we can test the closure of X .S by comparing its size against the size of the

176 Choi

attribute set (if exists) of obj(X S). Namely, we first search if obj(XS) exists by
a set exact matching operation. If it does not, then X S is closed. Otherwise, if the
size of the existing attribute set of obj(X) is greater than | X S|, then XS is not
closed. In our running example, 3 is not closed because obj(3) = ac has a larger
attribute set 13.

8.4. Algorithm: Constructing a Concept/Galois Lattice

In this section, we first describe the algorithm in general terms, independent of
the implementation details. We then show how the algorithm can be implemented
efficiently.

8.4.1. High-Level Idea

Recall that constructing a concept lattice includes generating all concepts and
identifying each concept’s successors.

Our algorithm starts with the top concept (O, attr(Q)). We process the con-
cept by computing all its successors, and then recursively process each succes-
sor by either the Depth First Search (DFS) order — the ordering obtained by
DFS traversal of the lattice — or Breadth First Search (BFS) order. Accord-
ing to Proposition 8.2, successors of a concept can be computed from its chil-
dren. Let C = (obj(X),X) be a concept. First, we compute all the chil-
dren Child(C) = {(obj(XS5),XS) : S € AttrChild(X)}. Then for each
S € AttrChild(X), we check if XS is closed. If XS is closed, (obj(X 5), X5)
is a successor of C'. Since a concept can have several predecessors, it can be gen-
erated several times. We check its existence to make sure that each concept is
processed once and only once. The pseudo-code of the algorithm based on BFS
is shown in Algorithm 8.1.

Algorithm 8.1. Concept-Lattice Construction — BFS

Compute the top concept C' = (O, attr(O));
Initialize a queue @ = {C};
Compute Child(C);
while (@ is not empty do

C = dequeue(Q);

Let X = int(C) and suppose AttrChild(X) =< S1, 52, ..., Sk >;
fori=1tokdo
if X S; is closed then
Denote the concept (obj(X S;), X.S;) by K;

Faster Algorithms for Constructing a Concept (Galois) Lattice 177

if K does not exist then
Compute Child(K);
Enqueue K to Q;
end if
Identify K as a successor of C
end if
end for
end while

8.4.2. Implementation

The efficiency of the algorithm depends on the efficient implementation of pro-
cessing a concept that include three procedures: (1) computing Child(); (2)testing
if an attribute set is closed; (3) testing if a concept already exists.

First, we describe how to compute Child(obj(X), X) in O(3_,copj(x)Inbr(a)l)

time, using a procedure, called SPROUT, described in the following lemma.

Lemma 8.1. For (obj(X), X) € B, it takes O(}_ ,copjx) Inbr(a)|) to compute
Child(obj(X), X).

Proof. Let res(X) = U,eopj(x)nbr(a) \ X. For each i € res(X), we as-
sociate it with a set F; (which is initialized as an empty set). For each object
a € obj(X), we scan through each attribute ¢ in its neighbor list nbr(a), append
a to the set E;. This step takes O(3_ ,copj(x) [nbr(a)|). Next we collect all the
sets {E; : i € res(X)}. We use a trie to group the same object set: search E; in
the trie; if not found, insert E; into the trie with {i} as its attribute set, otherwise
we append i to E;’s existing attribute set. This step takes O(3 ;¢ e x) [Eil) =
O(X_ acobj(x) Inbr(a)]). Thus, this procedure, called SPROUT (obj(X), X), takes
O(2_ aeobj(x) Inbr(a)|) time to compute Child(obj(X), X). O

For S € AttrChild(X), we test if XS is closed based on the second charac-
terization in Proposition 8.3. For this method to work, it requires processing the
children Child(obj(X), X) in the decreasing order of their object-set size. Sup-
pose AttrChild(X) = {S1,...,Sk} where |obj(X S1)| > |obj(XS2)| > ... >
|obj(X Sk)|. We process S;_1 before S;. If X S;_1 is closed, we also compute its
children Child(obj(XS;—1), X S;—1). Now to test if X .S; is closed, we we com-
pare | X S;| against the size of the existing attribute set of obj(X S;). If | X .S;| is not
smaller, then X S; is closed otherwise it is not. To efficiently search obj(X S;), we
use a trie (with hashing over each node) to store the object sets of concepts gener-
ated so far and it takes linear time to search and insert (if not exists) an object set.

178 Choi

That is, it will take O(|obj(X S;)|) time to check if X S; is closed. The total time
it takes to check if all children are closed is O(Zf:1 |obj (X S;)|)-

Recall that a concept C' = (obj(X), X) is uniquely determined by its extent
obj(X) or its intent X. Therefore, we can store either the object sets or the at-
tribute sets generated so far in a trie, and then test the existence of C by testing the
existence of obj(X) or X. Since searching the object sets are needed in testing
the closure of an attribute set as described above, the cost of testing the existence
obj(X) comes for free.

Note that i) [nbr(a)[> Zle |obj(X S;)| - |Si|- Hence, the time
it takes to process a concept is dominated by the procedure SPROUT, in
O 4eobj(x) Inbr(a)]) time. If we can reduce the sizes of the adjacency lists
(Inbr()|), we can reduce the running time of the algorithm. Note that this basic
algorithm is already as fast as any existing algorithm for constructing a concept
lattice (or computing all concepts only that takes O(A2) time where A is the
maximum size of adjacency lists).

In the following we describe how to dynamically update the adjacency lists
that will reduce the sizes of adjacent lists, and thus improve the running time of
the algorithm.

8.4.2.1. Further Improvement: Dynamically Update Adjacency Lists

Consider a concept C' = (obj(X), X), the object sets of all descendants of C' are
all subsets of obj(X). To compute the descendants of C, it suffices to consider
the objects with restriction to obj(X). For S € AttrChild(X), by definition, all
attributes in S have the same adjacency lists when restricting to obj(X). That
is, for all ¢ # j € S, nbr(i) N obj(X) = nbr(j) N obj(X)(= obj(XS)). In
other words, for all @ € obj(X), ¢ € nbr(a) < j € nbr(a), forall 4,j € S,
i.e., the adjacent list of a either contains all elements in S or no element in S.
Therefore, we can reduce the sizes of adjacent lists of objects by representing
all attributes in S by a single element. For example in Fig. 8.2, we can use a
single element 16 to represent the two attributes 1 and 6, and 35 to represent 3
and 5. In doing so, we reduce the size of adjacency list of b from 5 elements
{1,3,4,5,6} to three elements {16,35,4}. We call the reduced adjacency lists
the condensed adjacency lists. Denoted the condensed adjacent list by cnbr().
The set of condensed adjacency lists corresponds to a reduced cross-table. For
example, the reduced cross table of Child(abcde, () of the above example is shown
in Fig. 8.2.

In order to use the condensed adjacency lists in procedure SPROUT, we need
to process our concepts in BES order and it requires one extra level, i.e. in a two-

Faster Algorithms for Constructing a Concept (Galois) Lattice 179

(abede, D)
(abe, 16) (bd, 35) (de,2)
(bc, 146)
(2B N
li i x| x ><>>i (2., 1234567) li i X | %
e T
(a) (b) (c)

Fig. 8.2. (a) A context. (b) The corresponding concept lattice. (c) Reduced cross-table of
Child(abcde, 0) of the context.

level manner. More specifically, for a concept C' = (obj(X), X), we first com-
pute all its children Child(C'). Then we dynamically update the adjacency lists by
representing the attributes in each child of C' with one single element. We then
use these condensed adjacency lists to process each child of C'. That is, instead
of using the global adjacency lists, when processing (obj(XS), X S), we use the
condensed adjacency lists of its parent. It takes O(3_ g arerchita(x) [0PI(XS)])
for C to generate its condensed adjacency lists cnbr() (see Algorithm 8.3 in
the Appendix for the pseudo-code). And the time for the procedure SPROUT
is O(3_ 4cobj(x) lcnbr(a)]) (see Algorithm 8.2 in the Appendix for the pseudo-
code). Notice that 3, px lenbr(a)| > 3= gcauchiia(x) [0PI(XS)], the time
for updating the adjacency lists is subsumed by the time required for procedure
SPROUT. Therefore, our new running time is O(3_,cop;(x) [cnbr(a)|) for each
concept (obj(X), X). See Algorithm 8.4 in the Appendix for the pseudo-code
and Fig. 8.3 for a step-by-step illustration of the algorithm.

8.5. Variants of the Algorithm

For some applications, one is not interested in the entire concept lattice. In the
following, we will describe how to modify our algorithm to solve two special
cases: enumerating all concepts only and constructing a frequent closed itemset
lattice.

180 Choi

(1)Sprout(abcde, 0) : (2)Sprout(abe, 16)
(abde,)
(abede,) (abc, 16) (bc, 4) (bd, 35) (de, 2)
(abc, 16) (bc, 4) (bd, 35) (de, 2) (bcm56)
(3)Eliminate (bc, 4) as it is not closed (4)Sprout(bd, 35)

hele) (abe;16) (bed) (bd.35) (de. 2)

(b, 146) (b, 1356)

)

/(abc,Q (bed) (bd,35) (de, 2)
(6 146) (b, 1356) (b, 13456) (d, 235)
(5)Sprout(de, 2) (6)Sprout(bc, 146)
(abgde. D) (abgde.2)
(abcm, 2 W 2
(bcﬁﬂy) (b, 146) (b, 1356)
(b, 13456) @235 2D \(13,13456) @235 @27
(7)Eliminate (b, 1356) as it is not closed (8)Sprout(b, 13456), (d, 235), (e, 27)
(abcde,)

%

(abc, 16) (be) (bd, 35) (de, 2)
(abede. 2) /><
(b, 146) (1356)
@bc16) KD (bd,35) (de,2) \
/>< (b,13456) @, 235) (,27)
(bcy% \ /

(b, 13456) (d,235) (e,27) (2, 1234567)

Fig. 8.3. Step by step illustration of the 2-level BFS lattice construction algorithm. The context and
the corresponding lattice are shown in Fig. 8.2.

8.5.1. Algorithm 2: Computing All Concepts or Maximal Bipartite
Cliques

If one is interested in computing all the concepts and not in their lattice order, as
in enumerating all maximal bicliques studied in [20]. We can easily modify our
algorithm to give an even faster algorithm for this purpose. This is because in our
algorithm, each concept is generated many times, more precisely, at least number
of its predecessors times. For example in Fig. 8.3, (d, 235) is generated twice, one
by each of its predecessor. However, when we need all concepts only, we do not

Faster Algorithms for Constructing a Concept (Galois) Lattice 181

need regenerate the concepts again and again. This can be easily accomplished
by considering the right siblings only in the procedure SPROUT, i.e. changing the
line 3 to for i € nbr(a) AND4 > s do, while the other parts of the algorithm
remain the same. Depending on the lattice structure, this can significantly speed
up the algorithm as the number of siblings is decreasing in a cascading fashion. A
more careful analysis is needed for the running time of this algorithm.

8.5.2. Algorithm 3: Constructing a Closed Itemset Lattice

In data mining, one is interested in large concepts, i.e. (obj(X), X) where
|obj(X)| is larger than a threshold. Although our algorithm can naturally be mod-
ified to construct such a closed itemset lattice: we stop processing a concept when
the size of its object set is less than the given threshold, where objects correspond
to transactions and attributes correspond to items. Theoretically, when the mem-
ory requirement is not a concern, our algorithm is faster than all other existing
algorithms (including the state-of-art program CHARM-L) for constructing such
a frequent closed itemset lattice. However, in practice, for large data sets (as those
studied in data mining), the data structure — a trie on objects (transactions) — re-
quires huge memory and this may threaten the algorithm’s practical efficiency.
However, it is not difficult to modify our algorithm so that a trie on attributes
(items) instead is used. Recall that a trie on objects are required in two steps of
our algorithm: testing the closure of an attribute set and testing the existence of
a concept. As noted above, the existence of a concept can also be tested on its
intent (i.e. attributes), thus we can use a trie on attributes for testing the exis-
tence of a concept. To avoid using a trie on objects for testing the closure of an
attribute set, we can use the first characterization in Proposition 8.3 instead, that
is, we test the closure of an attribute set by using subset testing of its object set
against its siblings’ object set, as described in Section 8.3. Further, we can employ
the practically efficient technique diffset as in CHARM(-L) for both our SPROUT
procedure and subset testing operations. We are testing the performance of the
diffset based implementation on the available benchmarks and the results will be
reported elsewhere.

8.6. Discussion

Our interest in FCA stems from our research in microarray data analysis [8]. We
have implemented an not yet optimized version of our algorithm (with less than
500 effective lines in C++). The program is very efficient for our applications, in
which our data consists of about 10000 objects and 29 attributes. It took less than 1

182 Choi

second for the program to produce the concept lattice (about 530 vertices/concepts
and 1500 edges) in a Pentium IV 3.0GHz computer with 2G memory running
under Fedora 2 linux OS.

As FCA finds more and more applications, especially in bioinformatics, ef-
ficient algorithms for constructing concept/Galois lattices are much needed. Our
algorithm is faster than the existing algorithms for this problem, nevertheless, it
seems to have much room to improve. Furthermore, our algorithm can be eas-
ily modified to compute the minimal generators for redescription mining [38] di-
rectly.

Acknowledgment

We would like to thank Reinhard Laubenbacher for introducing us FCA. We thank
Naren Ramakrishnan for the discussion about redescription mining.

References

[1] J. Abello, A. Pogel, L. Miller. Breadth first search graph partitions and concept lat-
tices. J. of Universal Computer Science, 10(8), p934-954, 2004.

[2] F. Afrati, A. Gionis, H. Mannila. Approximating a collection of frequent sets. Proc.
10th ACM SIGKDD International Conference on Knowledge Discovery and Data
mining, p12-19, 2004.

[3] F. Baklouti, R.E. Grarvy. A fast and general algorithm for Galois lattices building. J.
of Symbolic Data Analysis, 3(1), p19-31, 2005. www.icons.rodan.pl/publications/

[4] M. Barbut and B. Montjardet. Ordre et Classifications: Algebre et combinatoire. Ha-
chette, 1970.

[5] J. Besson, C. Robardet, J-F. Boulicaut. Constraint-based mining of formal concepts
in transactional data. Proceedings of the 8th Pacific-Asia Conference on Knowledge
Discovery and Data Mining PaKDDO04, 2004. Springer-Verlag LNCS 3056, pp. 615-
624.

[6] E. Boros, V. Gurvich, L. Khachiyan, K. Makino. On maximal frequent and minimal
infrequent sets in binary matrices. Annals of Mathematics and Artificial Intelligence,
39, p211-221, 2003. (STACS 2002)

[7] T. Calders, C. Rigotti, J.F. Boulicaut. A survey on condensed representations for
frequent sets. Constrained-based Mining, Springer, 3848, 2005.

[8] V. Choi, Y. Huang, V. Lam, D. Potter, R. Laubenbacher, K. Duca. Using Formal
Concept Analysis for Microarray Data Comparison. DIMACS Workshop on Clus-
tering Problems in Biological Networks. Piscataway, New Jersey, May 9-11, 2006.
Manuscript in preparation.

[9] G. Cong, K.L. Tan, A.K.H. Tung, F. Pan. Mining frequent closed patterns in mi-
croarray data. Proc. 4th IEEE International Conference on Data Mining, p363-366,
2004.

(10]

(1]
[12]

[13]
(14]

[15]

[16]
(17]

(18]

(19]

[20]

(21]
[22]
(23]
[24]

[25]

[26]

[27]

(28]

[29]

Faster Algorithms for Constructing a Concept (Galois) Lattice 183

D. Eppstein. Arboricity and bipartite subgraph listing algorithm. Information Pro-
cessing Letters, 51(4), p207-211, 1994.

Formal Concept Analysis Homepage. http://www.upriss.org.uk/fca/fca.html

B. Ganter, G. Stumme, R. Wille (eds.). Formal Concept Analysis: Foundations and
Applications. Lecture Notes in Computer Science, vol 3626, Springer, 2005.

B. Ganter, R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer
Verlag, 1996 (Germany version), 1999 (English version).

D.S. Johnson, M. Yannakakis, C.H. Papadimitriou. On generating all maximal inde-
pendent sets. Information Processing Letters, 27, p119-123, 1988.

T. Kashiwabara, S. Masuda, K. Nakajima, T. Fujisawa. Generation of maximal in-
dependent sets of a bipartite graph and maximum cliques of a circular-arc graph.
J. Algorithms, 13, p161-174, 1992.

S.0. Kuznetsov. Complexity of learning in context lattices from positive and negative
examples. Discrete Applied Mathematics, 142, p111-125, 2004.

S.0. Kuznetsov. On computing the size of a lattice and related decision problems.
Order, 18, p313-321, 2001.

S.0. Kuznetsov and S.A. Obedkov. Comparing performance of algorithms for gener-
ating concept lattices. Journal of Experimental and Theoretical Artificial Intelligence,
14(23), p189-216, 2002.

C. Lindig. Fast concept analysis. Gerhard Stumme ed. Working with Conceptual
Structures - Contributions to ICCS 2000, Shaker Verlag, Aachen, Germany, 2000.
K. Makino, T. Uno. New algorithms for eumerating all maximal cliques. Proc. 9th
Scand. Workshop on Algorithm Theory (SWAT 2004), p260-272. Springer Verlag,
Lecture Notes in Computer Science 3111, 2004.

E.M. Norris. An algorithm for computing the maximal rectangles in a binary relation.
Revue Roumaine de mathematiques Pures et Appliquees, 23(2), p243-250, 1978.

L. Nourine, O. Raynaud. A fast algorithm for building lattices. Information Process-
ing Letters, 71, p199-204, 1999.

L. Nourine, O. Raynaud. A fast incremental algorithm for building lattices. J. of Ex-
perimental and Theoretical Artificial Intelligence, 14, p217-227, 2002.

N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal. Efficient mining of association rules
using closed itemset lattices. Information Systems, 24(1), p25-46, 1999.

J. Pei, J. Han, R. Mao. CLOSET: An efficient algorithm for mining frequent closed
itemsets. Proc. ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, p21-30, 2000.

F. Rioult, J.F. Boulicaut, B. Cremilleux, J. Besson. Using transposition for pattern
discovery from microarray data. Proc. 8th ACM SIGMOD workshop on Research
issues in Data Mining and Knowledge Discovery, p73-79, 2003.

G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal. Fast Computation of Con-
cept Lattices using data mining techniques. Proc. 7th International Workshop on
Knowledge Representation meets Databases, p129-139, 2000.

S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating
all the maximal independent sets SIAM Journal on Computing, 6(3), pS05-517, 1977.
T. Uno and T. Asai, H. Arimura and Y. Uchida. LCM: An Efficient Algorithm for
Enumerating Frequent Closed Item Sets. IEEE ICDM 04 Workshop FIMI'03 (Inter-
national Conference on Data Mining, Frequent Itemset Mining Implementations).

184

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

Choi

P. Valtchev, R. Missaoui, R. Godin, M. Meridji. Generating frequent itemsets incre-
mentally: two novel approaches based on Galois lattice theory. Journal of Experi-
mental and Theoretical Artificial Intelligence, 14(2-3), p115-142, 2002.

P. Valtchev, R. Missaoui, P. Lebrun. A partition-based approach towards constructing
Galois (concept) lattices. Discrete Mathematics, 256(3), p801-829, 2002

J. Wang, J. Han, J. Pei. CLOSET+: Searching for the best straegies for mining fre-
quent closed itemsets. Proc. 9th ACM SIGKDD international conference on Knowl-
edge Discovery and Data mining, p236-245, 2003.

R. Wille. Restructuring the lattice theory: An approach based on hierarchies of con-
cepts. In L. Rival, editor, Ordered sets, pages 445-470, Dordrecht-Boston, 1982, Rei-
del.

G. Yang. The complexity of mining maximal frequent itemsets and maximal frequent
patterns. Proc. 10th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data mining, p344-353, 2004.

M.J. Zaki, C.-J. Hsiao. CHARM: An efficient algorithm for closed association rule
mining. Proc. 2nd SIAM International Conference on Data Mining, 2002.

M.J. Zaki, C.-J. Hsiao. Efficient Algorithms for mining closed itemsets and their
lattice structure. IEEE Trans. Knowledge and Data Engineering, 17(4), p462—478,
2005.

M.J. Zaki, M. Ogihara. Theoretical foundations of association rules. Proc. 3rd ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
pl-7, 1998.

M.J. Zaki, N. Ramakrishnan. Reasoning about setes using redescription mining. Proc.
11th ACM SIGKDD International Conference on Knowledge Discovery and Data
mining, 2005.

Faster Algorithms for Constructing a Concept (Galois) Lattice 185
Appendix

Algorithm 8.2. Sprout-Insert
Input: s, content and nbr
(obj(X), X) is the sth child of G. Let K = {1, ..., k} be all the children of G.
Output: Child(obj(X), X) = {(obj(X S;), XS;) : 1 < i < ¢t} and update the
global trie T": update the attribute set of obj(X S;) (insert if it does not exist)
Foreachi € K, set C; = ().
for a € obj(X) do
for i € nbr(a) \ {s} do
Append a to C;;
end for
end for
The following takes O (>, i |Ci|) = O3, Inbr(a)|) time.
Initialize a local trie T over objects;
fori € K do
if C; does not exist in T then
Insert C; into T¢;
S; = content(3);
else
Merge S; with content(4) ;
end if
end for
Let Child(obj(X), X) be all the pairs in T¢o: {(obj(XS;), X S;): 1 <j <t}
fori=1totdo
Search obj(X S;) in T
if obj(X S;) does not exist then
Insert obj(X S;) into T, and associate it with the attribute set X .S;;
else
if the size of attribute set associate with obj(XS;) is smaller than X S;
then
Associate X .S; with obj(X S;);
end if
end if
end for

186 Choi

Algorithm 8.3. CondenseAdjacentlists
Input: Child(obj(X), X) = {(obj(X S;), X S;) : 1 <i <t}
Output: content(s) fori = 1...t, and new adjacency lists, nbr(a), a € obj(X)
For each a € obj(X), nbr(a) = 0);
fori=1totdo
content(i) = S;;
for each a € obj(XS;), append i to nbr(a);
end for

Algorithm 8.4. Concept-Lattice Construction — 2-level BFS
Compute the top concept C' = (O, attr(0));
Initialize a queue @ = {C};
Initialize a trie T for the object set O;
content(i) = {i} fori € M;
Child(C) = SPROUT-INSERT(0, content, nbr);
while () is not empty do
C = dequeue(Q);
Sort the pairs in Child(C') according to its extent size in decreasing order:
(content, nbr) = CONDENSEADJACENTLISTS(Child(C));
fori=1tokdo
Search obj(X ;) in T
Denote (obj(XS;), X S;) by K; {} K is not necessary a concept.
if the size of attribute set associate with obj(XS;) is not greater than X S;
then
Identify K as the successor of C';
if K is not sprouted then
Child(K') = SPROUT-INSERT(%, content, nbr);
Enqueue K into Q);
end if
end if
end for
end while

Chapter 9

A Projected Clustering Algorithm and Its Biomedical Application

Ping Deng

Computer Science
University of Illinois at Springfield, USA
pdeng?2 @uis.edu

Qingkai Ma

Economic Crime and Justice Studies
Utica College, USA
gma@utica.edu

Weili Wu *
Computer Science

The University of Texas at Dallas, USA
weiliwu@utdallas.edu

Projected clustering is concerned with clustering data in high dimensional space
where data is more likely correlated in subspaces of full dimensions. Recently,
several projected clustering algorithms that focus on finding specific projection
for each cluster have been proposed. We find that, besides distance, the closeness
of points in different dimensions also depends on the distributions of data along
those dimensions. Based on this, we propose a projected clustering algorithm,
IPROCLUS (Improved PROCLUS), which is efficient and accurate in handling
data in high dimensional space. According to the experimental results on ran-
domly generated synthetic data, our algorithm shows much higher accuracy for
the scaled datasets and lower dependence on one of user inputs than PROCLUS.
We also apply IPROCLUS on real biomedical data and show that it can achieve
much better accuracy than PROCLUS.

*This work was partially supported by NSF grant # ACI-0305567. The content of this work does
not necessarily reflect the position or policy of the government and no official endorsement should be
inferred.

187

188 Deng, Ma & Wu

9.1. Introduction

Clustering is described as finding groups of data points so that the points in each
group are similar to each other according to their attributes (dimensions). Clus-
tering has been discussed thoroughly by both statistics and database communi-
ties due to its numerous applications in problems such as classification, machine
learning, data mining, indexing, trend analysis, customer segmentation, and pat-
tern recognition. Most known clustering algorithms proposed in the last few years,
such as CLARANS [12], DBSCAN [7], and CURE [9] cluster data points based
on the distance function that uses all dimensions of the data. They are proved
to work well when datasets are low dimensional. However, when dimensional
space grows higher, the above algorithms lose their efficiency and accuracy be-
cause of the inherent sparsity of data [3]. It is shown in [5] that the distance of
a point to the nearest neighbor approaches the distance to its farthest neighbor as
dimensionality increases, which means computing the distance based on full di-
mensions is not meaningful in high dimensional space. Actually, natural clusters
might exist in subspaces. In other words, data points may be close to each other
in a few dimensions, but not all dimensions. Furthermore, data points in different
clusters may be correlated with respect to different subsets of dimensions. Feature
selection [11] is one technique that has been proposed to deal with data in high
dimensions. It reduces the dimensionality of the space before clustering. On the
other hand, it may lead to a loss of information by choosing a subset of dimen-
sions ahead of time and it cannot select different subsets of dimensions for dif-
ferent clusters. Another solution is called dimension reduction. One widely used
approach is principal component analysis [6] which is concerned with projecting
all data points on the same subspace to minimize the loss of information. One
drawback is that the reduced new dimensions might be difficult to interpret, while
most applications require simple descriptions of clusters. Moreover, it doesn’t
handle well the case where clusters may exist in different subspaces of full di-
mensions. In Fig. 9.1, we illustrate two projections on different dimensions for a
set of points in 3-dimensional space. It is obvious that there is no cluster in Fig.
9.1(a). However, when the data points are projected in x — z plane, cluster P and
@ in Fig. 9.1(b) are discovered and cluster R and S in Fig. 9.1(c) are found when
they are projected in y — z plane.

Projected clustering has been proposed recently to effectively deal with high
dimensionalities. The projected clustering problem is known as finding clusters
and their relevant attributes from a dataset. Instead of projecting entire dataset
on the same subspace in dimension reduction techniques, projected clustering fo-
cuses on finding specific projection for each cluster such that the similarity is

A Projected Clustering Algorithm and Its Biomedical Application 189

Y Z
A A
X
X X% Q
Z X
x 2o
> X
,X >
(a) ()
Z

S
SOOK
<X

N
»

K =

Y
(©)

Fig. 9.1. Tllustrations of Different Clusters in Different Subspaces (a) Data in 3-Dimensional Space.
(b) Projection in X-Z Plane. (c) Projection in Y-Z Plane.

reserved as much as possible. Three criteria have been proposed to evaluate clus-
ters [14]. A good cluster should have as many points as possible. Its dimensional-
ities should be as large as possible and the distance between points in the cluster
should be as small as possible. Actually, there is a tradeoff among these criteria.
If one criterion is fixed, the other two criteria are at odds.

In this paper, we propose our algorithm, [IPROCLUS, which is based on PRO-
CLUS [1]. We find that the closeness of points in different dimensions not only de-
pends on the distance between them, but also relates to the distributions of points
along those dimensions. PROCLUS uses the Manhattan segmental distance which
loses its effectiveness when points in different dimensions have very different vari-
ance. We propose the modified Manhattan segmental distance which is more ac-
curate and meaningful in projected clustering. PROCLUS strongly depends on
two user inputs. In order to reduce the dependence on one of the user parameters,

190 Deng, Ma & Wu

we propose a dimension tuning process. Compared to PROCLUS, we propose a
simplified replacing logic as well. We compared the performance of PROCLUS
and IPROCLUS on randomly generated synthetic data and real biomedical data.

The rest of this chapter is organized as follows. Related works on projected
clustering are discussed in Section 9.2. We then present our algorithm, IPRO-
CLUS (Improved PROCLUS) in Section 9.3. The experimental evaluation of our
algorithm is given in Section 9.4. Section 9.5 concludes this chapter.

9.2. Related Works

We classify projected clustering algorithms into two categories. One is density-
based algorithms [3, 13]. The other is distance-based algorithms [1, 2]. In the
following sections, we introduce two typical algorithms for each category.

9.2.1. Density-based Algorithms

Density-based algorithms define a cluster as a region that has a higher density
of data points than its surrounding regions. From the point of view of projected
clustering, we want to find dense regions only in their corresponding subspaces.
Two algorithms are discussed in this category.

CLIQUE (CLustering In QUEst) [3] is based on the following property. Dense
regions in a particular subspace still create dense regions when they are projected
onto lower dimensional subspaces. It depends on two parameters, the partition
threshold ¢ and the density threshold 7. The algorithm consists of three steps:
identification of dense units, identification of clusters,and generation of minimal
descriptions. While this algorithm is insensitive to the order of records and scales
linearly with the size of inputs, like many density-based algorithms, it has expo-
nential dependence on the number of dimensions. Since there are large overlaps
among dense regions, it doesn’t return disjoint clusters that are required in many
applications. In the density-units prune procedure, some potential clusters are
likely to be lost. Furthermore, the user parameters, £ and 7, are hard to pre-select
and partitioning each dimension into £ intervals is not flexible.

DOC (Density-based Optimal projective Clustering) [13] gives a mathematical
definition for the concept of optimal projective cluster and uses a Monte Carlo
algorithm to search for a good approximation of the optimal projective cluster.
It has one user parameter, w, which is the width of the bounding hyper-cubes.
This algorithm doesn’t miss small clusters. However, it still suffers from a critical
user parameter that is the fixed global interval width w for each dimension and

A Projected Clustering Algorithm and Its Biomedical Application 191

the accuracy of the algorithm depends on whether the definition for the optimal
projective cluster is good.

9.2.2. Distance-based Algorithms

Distance-based algorithms define a cluster as a partition such that the distance
between objects within the same cluster is minimized and the distance between
objects from different clusters is maximized. Compared to density-based methods
in which each data point is assigned to all clusters with a different probability,
distance-based methods assign data to a cluster with probability O or 1. A distance
measure is defined between data points. The most commonly used measure is the
Euclidean distance that is not effective for projected clustering since data points
in two different clusters may have different number of dimensions. We can find
the solution in the following two distance-based algorithms.

PROCLUS (PROjected CLUStering) [1] allows the selection of different sub-
sets of dimensions for different clusters. It requires two user parameters: the num-
ber of clusters denoted by &k and the average cardinality of the subsets of full di-
mensions denoted by [. The Manhattan segmental distance is used in this method
instead of the Euclidean distance since the number of dimensions has been nor-
malized away in the Manhattan segmental distance when comparing data points
in two different clusters that have different number of dimensions. The Manhattan
segmental distance between p; and p, relative to dimension set D is defined as:
(O iep Ip1i —p2,i])/|D|. InFig. 9.2, we show the Manhattan segmental distance
by an example. The distance between x1 and x5 for dimension (z, y) is (a+b) /2.
PROCLUS is based on k-medoid techniques and has three phases: an initializa-
tion phase, an iterative phase, and a refinement phase. In the initialization phase,
a random sample of data points with size A X k is chosen and then a greedy algo-
rithm is applied to find a superset of medoids denoted by M with size B x k (A,
B are constants, and A > B). In the iterative phase, the best k£ medoids are found
from M by the following steps. It first randomly finds a set of k£ medoids from
M and then finds an appropriate set of dimensions for each medoid in the set. It
then forms a cluster corresponding to each medoid. Bad medoids are chosen by
the following two rules: the medoid of the cluster with the least number of points
is bad; the medoid of any cluster with less than (N/k) x minDeviation points
is bad, where minDeviation is a constant smaller than 1. The replacing logic is
that the current clustering is compared with the case that the bad medoids are re-
placed with random points in M. The result is replaced if the new clustering is
better. Otherwise, the bad medoids are replaced with other random points in M.
If the result doesn’t change after a certain number of attempts have been tried, the

192 Deng, Ma & Wu

iterative phase terminates and the best k¥ medoids are reported. In the refinement
phase, the process in the iterative phase is redone once by using the data points dis-
tributed by the result clusters. Once the new dimensions have been computed, the
points are reassigned to the medoids with respect to these new sets of dimensions.
Outliers are also handled in this phase. This algorithm returns a partition of data
points, together with sets of dimensions on which data points in each cluster are
correlated. Nevertheless, the problem of pre-selecting user parameters still hasn’t
been solved. It relies on random sampling in the initialization phase. Hence, small
clusters are likely to be missed.

X

Fig. 9.2. Manhattan Segmental Distance

ORCLUS (arbitrarily ORiented projected CLUSter generation) [2] uses arbi-
trarily projected subspaces for finding clusters due to the fact that real data often
contains inter-attribute correlations, which leads to projections that are not paral-
lel to the original axis system. It also asks for two user parameters, the number
of clusters k£ and the cardinality of the dimensions for each cluster . ORCLUS
modifies the PROCLUS algorithm by adding a merging process of clusters and
asks each cluster to select principal components instead of attributes. It improves
PROCLUS in that it can construct clusters in arbitrarily aligned subspaces of lower
dimensionality. However, ORCLUS requires all projected clusters to exist in the
same number of dimensions and it also relies on random sampling in the initial-
ization phase. Moreover, like CLIQUE and PROCLUS, it still needs some user
parameters though the guidance in finding a good value of [has been proposed in
this method.

9.3. The IPROCLUS Algorithm

Our algorithm, IPROCLUS, is based on PROCLUS. It takes the number of clusters
k and the average number of dimensions [in a cluster as inputs. It has three
phases: an initialization phase, an iterative phase, and a cluster refinement phase.
Compared to PROCLUS, we propose the modified Manhattan segmental distance
that is more accurate and meaningful in projected clustering. We add one more

A Projected Clustering Algorithm and Its Biomedical Application 193

step in the last phase to reduce the dependence on the user parameter [which is
the average number of dimensions in a cluster. We also propose a new logic of
replacing bad medoids in the iterative phase, which is more time efficient. The
overall pseudo code of our algorithm is given in Algorithm 9.1. The steps that
are new in IPROCLUS are underlined and will be discussed extensively in this
section. The detailed information about methods used in both PROCLUS and
IPROCLUS can be found in [1].

Algorithm 9.1. IPROCLUS(No. of Clusters: k, Avg. Dimensions: 1)
{C; is the ith cluster}
{D; is the set of dimensions associated with cluster C, }
{Mcyrrent is the set of medoids in current iteration }
{Mpes: is the best set of medoids found so far}
{N is the final set of medoids with associated dimensions}
{A;B are constant integers}

begin

{1. Initialization Phase }

S =random sample of size A x k

Calculate the normalization factors for each dimension
M = Greedy(S, B x k)

{First Iteration}
M cyrrent = Random set of medoids {mq, ma, ..., my} CM
{Approximate the optimal set of dimensions}
for each medoid m; in M y;rent do
Let §; be the modified Manhattan segmental distance to the
nearest medoid from m;
L; = Points in sphere centered at m; with radius J;
end for
L={Ly,..., Ly}
(D1, Da, ..., Di) = FindDimensions(k, I, L)
{Form the clusters}
(C1, ..., Ck) = AssignPoints(D1, Do, ..., D)
bestObjective = EvaluateClusters(C, ..., Ck, D1, Do, ..., Dy)
Mbest = Mcurrent
compute the bad medoids in Mp,s;

194 Deng, Ma & Wu

{2. Tterative Phase}
repeat
Compute M yrrent by replacing the bad medoids in Mpes; with random
points from M
{Approximate the optimal set of dimensions}
for each medoid m; in M .yrrent do
compute §;, which is the distance to nearest medoid from m;
compute B as the set of clusters whose §; or medoids changed
only compute L; = Points in sphere centered at m; with radius
0; for all the clusters in B
end for
L={L,..., L}
(D1, Do, ..., Dy) = FindDimensions(k, [, L)

{Form the clusters}
(C1, ..., Cy) = IterativeAssignPoints(Cy, ..., Cy, D1, D2,
....Dy.. B)
ObjectiveFunction = EvaluateClusters(C1, ..., Ck, D1, Do, ..., Dy)
if ObjectiveFunction < BestObjective then
BestObjective = ObjectiveFunction
Mbest = Mcurrent
Compute the bad medoids in My,
end if
until (termination criterion)

{3. Refinement Phase }

L={C,...,Ck}

(D1, Do, ..., Dy) = FindDimensions(k, [, L)

(Ch, ..., C) = AssignPoints(D1, Da,..., Dy)
DimensionTuning(Mpes¢, C1,. .., Ci, D1 Do ..., D)
N:(Mb68t9 019 e CkHDl’ DQ’ LR Dk)

return (V)

end

9.3.1. Modified Manhattan Segmental Distance

In our algorithm, we propose the modified Manhattan segmental distance as the
distance measure to improve accuracy. We find that the closeness of points in
different dimensions not only depends on the distance between them. When it

A Projected Clustering Algorithm and Its Biomedical Application 195

comes to clustering, the distributions of points along different dimensions also
matter. For example, the distance of points x; and x5 in dimension ¢ and j is 20
and 200 respectively, but that doesn’t necessarily mean that x; and x5 are closer
in dimension ¢ than they are in dimension j since data points in dimension ¢ and
7 may have different distributions. Therefore, there is a need to normalize the
distance along each dimension. We want to find a normalization factor n; for each
dimension, and the modified Manhattan segmental distance between x; and xo
relative to dimension set D can be defined as: (3, 5 [p1,i — p2,s|/n:)/|D]. In our
algorithm, we use the standard deviation of all points in a dataset along dimension
4 as the normalization factor n;.

9.3.2. Initialization Phase

In the initialization phase, all data points are first chosen by random to form a
random data sample set S with size A x k, where A is a constant. Then S is
chosen by a greedy algorithm to obtain an even smaller set of points M with size
B x k, where B is a small constant. The greedy algorithm is based on the concept
that we avoid choosing the medoids from the same cluster; therefore, we choose
the set of points which are most far apart. The greedy algorithm has been proposed
in [8] and is illustrated in Algorithm 9.2.

Algorithm 9.2. Greedy(Set of points: S, Number of medoids:
k)
{ d (.,.) is the distance function}

begin
M ={m1} { my is a random point of S}
{compute distance between each point and medoid m4 }
for each x € S\ M do
dist(xz) = d(z,m1)
end for
fori=2tok do
{choose medoid m; to be far from previous medoids}
let m; € S\M be s. t. dist(m;) = max{dist(x)|x € S\M}
M=MU {ml}
{compute distance of each point with closest medoid}
for each z € S\ M do
dist(z) = min{dist(z),d(z,m;)}
end for

196 Deng, Ma & Wu

end for
return M
end

9.3.3. Iterative Phase

We begin by choosing a random set of k points from M. Then we iteratively
replace the bad medoids in the current best medoids set with random points from
M until the current best medoids set does not change after a certain number of
replacements have been tried.

In each iteration, we first find dimensions for each medoid in the set, and form
the cluster corresponding to each medoid. Then we evaluate the clustering and
replace the bad medoids in the current best medoids set if the new clustering is
better.

In order to find dimensions, we first define several notations. For each medoid
m;, 0; is the minimum distance from any other medoids to m; based on full di-
mensions. We define the locality L; to be the set of points within the distance of
0; from m; and define X; ; to be the average distance to m; along dimension j.
We then calculate X; ; as follows. We divide the average distance from the points
in L; to m; along dimension j by the normalization factor n;. There are two con-
straints when associating dimensions to medoids. The total number of dimensions
associated to medoids must be equal to k x [since k is the number of clusters and
l is the average number of dimensions in a cluster. The number of dimensions
associated with each medoid must be at least 2, which makes each cluster mean-
ingful. For each medoid ¢, we compute the mean Y; = (2?21 Xi,j) / d, and

the standard deviation o; = \/Z; (Xi,; —Yi)?/(d—1) of the values X, ;. Y;
represents the average modified Manhattan segmental distance of the points in L;
relative to the entire space. Thus Z; ; = (X; ; — Y;)/o; indicates how the average
distance along dimension j associated with the medoid m; is related to the aver-
age modified Manhattan segmental distance associated with the same medoid. We
decide dimensions for all clusters by picking the smallest Z; ; values by a greedy
algorithm [10] used in PROCLUS such that a total of k& x [values are chosen and
at least 2 values are chosen for each medoid. More specifically, all the Z; ; values
are sorted in increasing order. We assign the two smallest for each ¢, which gives a
total of 2k values, and then greedily pick the remaining lowest k& x (I — 2) values.

We do a single pass over the database to assign the points to the medoids.
For each ¢, we compute the modified Manhattan segmental distance relative to D;
between a point and the medoid m;, and assign the point to the closest medoid.

A Projected Clustering Algorithm and Its Biomedical Application 197

Then the quality of a set of medoids is evaluated by the average modified Man-
hattan segmental distance from the points to the centroids of the clusters to which
they belong.

9.3.3.1. Simplified Replacing Logic

We propose a simplified replacing logic compared to PROCLUS to decide whether
it’s good to replace the bad medoids in the current best medoids set with new
medoids. When replacing the bad medoids, we first calculate §; for each medoid
m;. We only recalculate the X; ; values for those medoids whose d; values
changed (store the X; ; value for current best objective case so that for those
medoids whose d; values don’t change, their X; ; values can be recovered from
the stored values). Then we calculate Y;, o; and Z; ;. We decide dimensions for all
clusters by the Z; ; values. When we assign points to clusters, there are two cases.
For the points previously in the clusters whose § values don’t change, we only
compare their modified Manhattan segmental distance from the current medoids
with their modified Manhattan segmental distance from the medoids whose ¢ val-
ues changed. For the points previously in the clusters whose ¢ values changed or
in the bad medoid’s cluster, we compare its distance to all the current medoids to
decide which cluster it belongs to. Then the new clusters are evaluated to decide
whether the objective value is better. The simplified logic for assigning points in
the iterative phase is given in Algorithm 9.3.

Algorithm 9.3. IterativeAssignPoints(Cy, ..., Cy, D1, Do, ..., Dy,
B)
{B is the set of medoids whose d; values changed and newly added medoids}
begin
for all the points ¢ do
assume point i € Cj
if C; € B then
compare point ¢’s modified Manhattan segmental distance with all the
medoids to decide which cluster it belongs to
else
compare point ¢’s modified Manhattan segmental distance with all the
medoids ¢n B to decide which cluster it belongs to
end if
end for
end

198 Deng, Ma & Wu

9.3.4. Refinement Phase

In the refinement phase, we redo the process in the iterative phase once by using
the data points distributed by the result clusters at the end of the iterative phase,
as opposed to the localities of the medoids. Once the new dimensions have been
computed, we reassign the points to the medoids relative to these new sets of
dimensions.

9.3.4.1. Dimension Tuning Process

We notice that users need to specify the average number of dimensions denoted
as [in PROCLUS. Although it has achieved that different clusters have different
subsets of dimensions, the number of dimensions for each cluster is still under the
control of [, which is not flexible enough. According to criterion 2 discussed in
Section 1, we want the number of attributes in a cluster to be as large as possible.
Therefore, we propose one more step at the end of the refinement phase to reduce
the dependence on /. In this step, for each cluster ¢, we choose the dimension with
the smallest Z; ; value from the dimensions that are not chosen in previous steps
and add it to the dimensional space to see if the new cluster is better. If the new
cluster is better, we keep the newly added dimension and repeat this process to try
to add more dimensions; otherwise, it will be discarded and we stop trying for this
cluster. This process is achieved by the DimensionTuning algorithm for which the
pseudo-code is given in Algorithm 9.4. The quality of a cluster is evaluated by
the combination of criteria 1 and 3. A user-defined threshold is set for criterion 3.
Clusters that pass the threshold will be evaluated by criterion 1. By doing this, we
introduce criteria 2 and 3 into the algorithm, which gives a more balanced result.

Algorithm 9.4. DimensionTuning(Mpest, C1, ..., Ck, D1, Do,...,
Dy)
begin
for each cluster C; do
bestEvaluateValue= the average distance to centroid in C;
for each cluster C; do
isGood=false;

repeat
add the dimension j (j ¢ D;) with the smallest Z;, ;value to D;
reassign the points to clusters C, . . ., C}, according to the new D;

newEvaluateValue= the average distance to centroid in C
if newEvaluateValue<bestEvaluateValue and the number of points in
C! is more than a threshold value then

A Projected Clustering Algorithm and Its Biomedical Application 199

(Cr,....C)=(C1,....C)
isGood=true
for each cluster C; do
update bestEvaluateValue
end for
else
remove dimension j from D;
isGood=false
end if
until isGood=false
end for
end for
end

Outliers are also handled during the last pass over the data. For each medoid
m; with the dimensions D;, we find the smallest Manhattan segmental distance
A; to any of the other (k — 1) medoids with respect to the set of dimensions D;:

Ai = min dD,; (mi,mj)
J#i

A; is the sphere of influence of the medoid m;. A data point is an outlier if its
Manhattan segmental distance to each medoid m;, relative to the set of dimensions
D; exceeds A;.

9.4. Empirical Results

The experimental evaluation was performed on a Dell Dimension 4600 Intel Pen-
tium IV processor 2.4GHz with 1.00GB of memory, running Windows XP pro-
fessional with service pack 2. The data was stored on a 7200RPM, 8MB cache,
80G hard drive. The flow chart of the experimental evaluation for a dataset is
illustrated in Fig. 9.3.

We test the performance of IPROCLUS and PROCLUS for synthetic data and
real biomedical data. Unless otherwise specified, all the results are obtained by
running the algorithms on the datasets multiple times and taking the average. Each
time a random seed is chosen and the two algorithms are both fed with this seed for
the random generator to guarantee fair comparison. We discuss the generation of
the synthetic datasets in Subsection 9.4.1. Then we compare our empirical results
of running IPROCLUS and PROCLUS on synthetic datasets in Subsection 9.4.2.
The performance of IPROCLUS and PROCLUS on a real biomedical dataset, the
colon tumor dataset, is analyzed in Subsection 9.4.3.

200 Deng, Ma & Wu

Greec.ly Random Iterative Dimension
Sampling Selection Tuning
, Best medoids Clusters and
Possible Current .

. . set and outlier

data medoids medoids set .

. corresponding
points set . :
dimensions

Fig. 9.3. The Flow Chart of the Experiment

9.4.1. Synthetic Data Generation

We generate one random case and two extreme cases. In each case, we consider
two datasets: unscaled datasets and scaled datasets. The unscaled datasets are
generated in exactly the same way as described in [1]. In order to generate the
scaled datasets, we assign a dimensional scale factor s; to each dimension j. The
variance of the normal distribution on dimension j is s; times the variance used
in [1].

The only difference between the random datasets and the two extreme datasets
is the way of generating dimensions. In the extreme case 1, all the clusters have
exactly the same dimensions. In our experimental study, we choose to let all
clusters have 10 exactly the same dimensions that are randomly chosen from all
the dimensions. We also call it all-same-dimensions case. In the extreme case 2,
we consider clusters with no common dimensions. The dimensions are chosen
randomly and we just make sure that there are no shared dimensions between
clusters. We choose to let each cluster have 4 dimensions. We also call it no-
common-dimensions case.

9.4.2. Results on Synthetic Datasets

We compare the performance of IPROCLUS and PROCLUS on synthetic datasets
in three aspects: the accuracy, the dependence on [, and the running time.

We first discuss the accuracy performance. In PROCLUS paper, the scale fac-
tors in the generated synthetic data are random numbers in the range [1, 2] for all
dimensions. That’s not necessarily the case for real data. In order to simulate real
data, we use the dimensional scale factor introduced in the previous section. First,
we consider a scaled dataset for the random case. We conduct our experiment
when different dimensions have different dimensional scale factors. Table 9.1
shows the generated dimensions of the input clusters for the random case. Each
cluster has 7 dimensions which are generated randomly. The dimensional scale

A Projected Clustering Algorithm and Its Biomedical Application 201

factors for the 20 dimensions are random numbers uniformly distributed between
1 and 20.

Table 9.1. Dimensions of the Input Clusters

Input Dimensions Points
A 0,2,3,10, 16, 17, 18 16768
B 9,10, 12,16, 17,18, 19 [23859
C 1,3,9,12,13, 14,16 25678
D 1,5,9,10,12, 13,14 23093
E 3,6,9,10, 11, 12, 14 5602

Outlier 5000

Table 9.2 shows a typical result of the dimensions of the output clusters found
by PROCLUS and IPROCLUS. We can find a good correspondence between the
sets of dimensions of the output clusters found by IPROCLUS and their corre-
sponding input clusters.

Table 9.2. Dimensions of the Output Clusters for IPROCLUS and PROCLUS

TPROCLUS Dimensions Points
1 1,5,9,10, 12,13, 14 23304
2 0,2,3,10, 14,16, I8 2802

3 9,10, 12,16, 17, 18,19 25034
4 1,3,9,12, 13,14, 16 25982
5 0,2,3,10,16, 17, 18 15991
Outliers 6887

PROCLUS Dimensions Points
1 0,2,3,4,9,12,16,17, 18 17660
2 3,9,12,16, 17,18 24971
3 3,4,9,12,16, 189 11844
4 1,3,9,12, 13,14, 16 19130
5 0,3,4,8,9,12, 18 8236

Outliers 18159

Table 9.3 gives the confusion matrix for the output clusters in Table 9.2. Con-
fusion matrix is defined in the same way as in PROCLUS paper. Entry (i, j) is
equal to the number of data points assigned to output cluster 7, which were gener-
ated as part of input cluster j. [IPROCLUS discovers output clusters in which the
majority of points come from one input cluster. In other words, it recognizes the
natural clustering of the points. More specifically, we calculate the accuracy from
the confusion matrix. In order to define the accuracy, for each output cluster 7, we
identify the input cluster j with which it shares the largest number of points. We
say that output cluster 7 corresponds to input cluster j. All points in their common
intersection are clustered correctly. All the other points in output cluster ¢ are clus-

202 Deng, Ma & Wu

tered incorrectly. Therefore, we define the accuracy as the percentage of points
that are correctly clustered by the algorithm. For the typical result, the accuracy
of IPROCLUS is 91.45% and that of PROCLUS is 70.46%. Both algorithms are
tested multiple times. On average, IPROCLUS and PROCLUS can achieve the
accuracy of 91.90% and 70.18% respectively. In a word, IPROCLUS can achieve
much better accuracy than PROCLUS for the scaled dataset in the random case.

Table 9.3. Confusion Matrix for IPROCLUS and PROCLUS

IPROCLUS
Tnput
Outpit A B c D E Outliers
T 3 0 o7 27893 39 72
2 1575 T %0 120 78 663
3 0 23854 162 0 163 335
1 T 1 75031 15 73 583
5 T4800 0 31 & o) 303
Outliers 439 0 17 0 3902 2529
PROCLUS
O A B C D E Outliers
T 16626 0 7 206 366 760
2 2 22794 2 346 | 461 356
3 6 T 7565 6053 1221 1008
1 3 0 0116 0 0 I
5 T31 361 310 4303 1450 TI8T
Outliers 0 703 3673 9585 2104 | 2094

Then we consider the accuracy for the unscaled dataset in the random case.
The data used are generated in exactly the same way as in PROCLUS paper. The
two algorithms have compatible results. The average accuracy of IPROCLUS and
PROCLUS are 93.02% and 93.94% respectively.

Table 9.4 gives the average accuracy result for the two extreme cases. Similar
to the random case, IPROCLUS exhibits much better accuracy than PROCLUS
for the scaled datasets and compatible accuracy for the unscaled datasets.

Table 9.4. The Accuracy Result for the Two Extreme Cases

Data PROCLUS | TPROCLUS
All-same-dimensions_scaled 75.27% 96%
All-same-dimensions_unscaled 95.91% 94.57%
No-common-dimensions_scaled 51.08% 87.75%
No-common-dimensions_unscaled | 87.67% 86.87%

In summary, IPROCLUS can achieve much better accuracy than PROCLUS
for the scaled data in all the three cases. When the unscaled data is considered,

A Projected Clustering Algorithm and Its Biomedical Application 203

the two algorithms have compatible accuracy. This can be explained by the use
of modified Manhattan segmental distance in [PROCLUS. Modified Manhattan
segmental distance can effectively deal with scaled data while for unscaled data,
it is quite close to Manhattan segmental distance which is used in PROCLUS.
When comparing the three cases together, it can be seen that the no-common-
dimensions case has the lowest accuracy rate and the all-same-dimensions case
has the highest accuracy rate. It can be explained by the difference in the average
number of dimensions in a cluster. When the average number of dimensions is low
(in no-common-dimensions, [=4), there is a higher probability that data points are
assigned to the wrong cluster since points are just correlated on 4 dimensions.
However, in the all-same-dimensions case, where (=10, it is easier to correctly
cluster points since the correlation between data points is stronger.

Second, we present the result of testing the dependence on /. The dependence
is evaluated by the least square error of the number of dimensions. The same
datasets in the three cases as in the accuracy test are used.

Figure 9.4 shows the results we get for the unscaled dataset in the random case.
We get similar results for the extreme cases. We can see that IPROCLUS has less
dependence on [than PROCLUS in terms of the number of dimensions. For the
scaled data in the three cases, we have got similar trend and we don’t give the
figures here since PROCLUS has much higher error rate for the scaled datasets.

—— [PROCLU

\ PROCLUS

least square error of number of

Fig. 9.4. Dependence of the Number of Dimensions on [

In summary, IPROCLUS greatly reduces the dependence on parameter [, since
the dimension tuning process checks for additional dimensions for each cluster in
order to add any dimension that can enable better clustering, while PROCLUS
decide the average number of dimensions solely based on [.

For the running time test, we apply IPROCLUS and PROCLUS on different
number of points. The datasets are generated in the same way as the datasets
used in the previous two tests. The result we get is that the execution time of
these two algorithms is comparable for all the three different cases. Since the

204 Deng, Ma & Wu

simplified replacing logic offsets the running time increase from the additional
steps for the dimension tuning, IPROCLUS as a whole doesn’t cause any increase
in the execution time.

9.4.3. Results on the Colon Tumor Dataset

One challenge of gene expression data to clustering algorithms is the huge num-
ber of genes (dimensions) involved. Projected clustering algorithms are designed
to deal with high dimensionalities. We compared the performance of IPROCLUS
and PROCLUS on the colon tumor dataset [4]. This dataset consists of the ex-
pression values on 2000 genes of 40 tumor and 22 normal colon tissue samples.
Since each cell is either a tumor or a normal cell, we removed the outlier logic in
both PROCLUS and IPROCLUS algorithms.

Table 9.5 gives a typical result for the two algorithms. The result is obtained
when the k value is set to 2 since there are only two clusters and the [value is
set to 124 which is based on experimental analysis. For the colon tumor dataset,
IPROCLUS can correctly classify 52 out of the 62 tissues, achieving the accuracy
of 83.9%, while PROCLUS can only achieve the accuracy of 53.2% (33 correctly
classified). We can see that IPROCLUS can achieve much better accuracy on the
colon tumor set than PROCLUS.

Table 9.5. Confusion Matrix for [IPROCLUS and PROCLUS on the Colon Tumor Dataset

(a)IPROCLUS (b)PROCLUS
Input Input
Normal Tumor Normal Tumor
Output Output
1 18 6 1 5 17
2 4 34 2 12 28

9.5. Conclusion

Projected clustering in high dimensional space is an interesting research topic and
several algorithms have been proposed. We have introduced two existing methods
in this topic and mentioned their strengths and weaknesses. We have proposed
an effective and efficient algorithm, IPROCLUS, which is based on PROCLUS.
We have significantly improved the accuracy by proposing modified Manhattan
segmental distance. We have reduced the dependence on user input [by adding
the dimension tuning process at the end of the refinement phase and we have
proposed a simplified replacing logic in the iterative phase to offset the running
time increase caused by the dimension tuning process.

A Projected Clustering Algorithm and Its Biomedical Application 205

Empirical results have shown that IPROCLUS is able to accurately discover

clusters embedded in lower dimensional subspaces. For the synthetic datasets, it
can achieve much higher accuracy than PROCLUS for the scaled datasets while
keeping compatible performance with PROCLUS for the unscaled datasets in all
the three cases. Moreover, IPROCLUS has lower dependence on [than PRO-
CLUS. We also apply our algorithm on the colon tumor dataset, [PROCLUS still
achieves much higher accuracy than PROCLUS.

References

(1]

(2]

(3]

(4]

(5]
(6]
(7]

(8]

(9]

(10]

(1]

[12]

C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms for
projected clustering. In ACM SIGMOD International Conference on Management of
Data, 1999.

C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimen-
sional spaces. In ACM SIGMOD International Conference on Management of Data,
2000.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace cluster-
ing of high dimensional data for data mining applications. In ACM SIGMOD Inter-
national Conference on Management of Data, 1998.

U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack and A. J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and nor-
mal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. U.S.A.,
96, 6745-6750, 1999, http://microarray.princeton.edu/oncology/
affydata/index.html

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neighbor”
meaningful? ICDT Conference, 1999.

R. O. Duda and P.E. Hart. Pattern classification and scene analysis. John Wiley and
Sons, 1973.

M. Easter, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In Proceedings of the 2nd Inter-
national Conference on Knowledge Discovery and Data Mining, Portland, Oregon,
August 1996.

T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38: 293-306, 1985.

S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large
databases. In Proceedings of ACM SIGMOD International Conference Management
of Data, 1998.

T. Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic Approaches.
MIT Press, Cambridge, Massachusetts, 1988.

R. Kohavi and D. Sommerfield. Feature subset selection using the wrapper method:
Overfitting and dynamic search space topology. In Proceedings of the Ist Interna-
tional Conference on Knowledge Discovery and Data Mining, 1995.

R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining.
In Proceedings of the 20th International Conference Very Large Data Bases, 1994.

206 Deng, Ma & Wu

[13] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali. A Monte Carlo algo-
rithm for fast projective clustering. In ACM SIGMOD International Conference on
Management of Data, 2002.

[14] K. Y. Yip, D. W. Cheung, M. K. Ng. A highly-usable projected clustering algorithm
for gene expression profiles. BIOKDD, 2003.

Chapter 10

Graph Algorithms for Integrated Biological Analysis, with
Applications to Type 1 Diabetes Data

John D. Eblen

Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, TN 37996-3450, USA

Ivan C. Gerling

University of Tennessee Health Science Center,
Memphis, TN, 38163, USA

Arnold M. Saxton

Department of Animal Science,
University of Tennessee, Knoxville, TN 379964574, USA

Jian Wu

University of Tennessee Health Science Center,
Memphis, TN, 38163, USA

Jay R. Snoddy

Biomedical Informatics Department,
Vanderbilt University, Nashville, TN 37232, USA

Michael A. Langston®

Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, TN 37996-3450, USA

Graph algorithms can be effective tools for analyzing the immense data sets that
frequently arise from high-throughput biological experiments. A major compu-
tational goal is to identify dense subgraphs, from which one can often infer some
form of biological meaning. In this paper, new techniques are devised and ana-
lyzed in an effort to improve the quality and relevance of these subgraphs, and

*Corresponding author: langston@cs.utk.edu

207

208 Eblen et al.

to extend the utility of clique-centric methods that may produce them. Using
non-obese diabetic mice as a target organism, the paraclique algorithm is tested
on transcriptomic data under various parameters in order to determine how it can
best be tuned to applications. The use of proteomic anchors is also discussed
in an effort to help guide subgraph selection in the presence of inhomogeneous
data, which is an important but notoriously difficult problem in its own right.

10.1. Overview

Many inbred strains of Mus musculus, the common house mouse, are employed
in biomedical research. The non-obese diabetic (NOD) mouse is particularly use-
ful as a model of type 1 diabetes mellitus (also called juvenile onset, or insulin
dependent, diabetes). In both mice and humans, this disease is characterized by
persistent hyperglycemia (elevated blood sugar level) that is induced in geneti-
cally susceptible individuals and modified by a variety of environmental triggers
including food and infections. It is caused by an abnormal and self-destructive
immune response (autoimmunity), which allows mononuclear leukocytes to tar-
get the insulin producing beta cells in the pancreas [26, 27, 32]. Eventually this
process destroys so many of the beta cells that the body is unable to produce suf-
ficient insulin to retain normal blood glucose levels and diabetes is observed. Our
studies in the NOD mouse focus on the very early leukocyte abnormalities that
may be associated with initiation of the autoimmune process [14]. If we can gain
a better understanding of the initiation of autoimmunity, then we may be able
to develop rational intervention strategies that can stop the disease process in its
preclinical phase effectively and with minimal side effects.

The importance of melding experimental research with continuing advances in
computational analysis is well understood [17, 18, 21]. In the work reported here,
we begin with high-throughput NOD mouse data and apply novel clique-centric
methods to analyze it. Fixed parameter tractability [1, 8] and various realizations
of the paraclique algorithm [6] form the basis of techniques we use to extract
dense putative networks from the vast sea of correlations that arise in the anal-
ysis of comprehensive transcriptomic data [4, 19]. Proteomics data is added to
the mix, thereby introducing challenging new problems in inhomogeneous data
interpretation [16]. The results we obtain are evaluated in terms of both statistical
quality and biological relevance.

Graph Algorithms for Integrated Biological Analysis 209

10.2. Description of Data

To define abnormalities in the early phases of autoimmunity, we have conducted
comprehensive studies of gene expression in young NOD mice and mice from
control strains (NON and C57BL/6) that do not develop diabetes or autoimmunity
to beta cells [13, 14]. Genes encoded in DNA are transcribed into mRNA, which
is then translated into proteins that are the major determinants of a cell’s activa-
tion and function. To gain a comprehensive picture of how the genetic differences
between our strains can affect the development of autoimmunity, we evaluated
gene expression at the mRNA level using Affymetrix MOE430A/B arrays, and at
the protein level using 2D-gel electrophoresis. We collected mononuclear spleen
leukocytes from each of the three strains at both two and four weeks of age. This
is a critical window for our analysis, because it represents the prepathology stage
before leukocytes begin to infiltrate the islets of Langerhans, which typically oc-
curs in NOD pups when they are about five weeks old. See Fig. 10.1. From each
of the six strain/age groups, we collected five independent samples for a total of
30 samples in the complete dataset. Experimental details regarding the analysis
of mRNA and protein expression levels have been published previously [14].

Birth Leukocytes Invade Islets Clinical Diabetes
(week 0) (week 5) (week 12)
Prepathology Beta Cell Destruction Diabetes

week2 week4

Fig. 10.1. At birth, NOD mice have normal blood glucose levels, with no indication of destruction of
insulin-producing beta cells (located in the islets of Langerhans). At five weeks of age, the first signs
of pathology occur with leukocytes invading the space around the islets. This infiltration progresses
to involve additional leukocytes with more invasive and destructive character. By twelve weeks of age
or later, so many beta-cells have been destroyed that insulin production capacity has been severely
diminished. Because blood glucose can no longer be regulated normally, the mice become diabetic.
We sampled leukocytes in the early and late prepathology stage to evaluate defects at the molecular
level associated with initiation of the pathology.

Because the data is biological, it has a fairly high level of noise. At the time of
sample collection, individual mice may or may not have just eaten, been fighting,
been scared, been sleeping, etc. These biological parameters can be difficult to
control, and can have an influence on expression levels of some genes. In addition
to this biologically derived noise, there are also technical sources of noise to be
considered. The mRNA gene expression arrays have a very effective normaliza-
tion and scaling process and very good technical reproducibility on identical sam-

210 Eblen et al.

ples with percent coefficients of variance usually in the low single digits [24, 29].
In contrast, protein expression data involves technologies that are more compli-
cated and difficult to standardize. Technical reproducibility of protein expression
data collected from identical samples often has percent coefficients of variance in
the low double digit range [22, 31].

10.3. Correlation Computations

We employ the aforementioned 30 samples to compute a correlation matrix. The
matrix entry at location (i, j) denotes the correlation coefficient between the 7%
and ;' items (genes or proteins), normalized to the range [-1.0,1.0]. Because
mRNA arrays alone can measure over 45,000 different values, we may be faced
with making sense of over a trillion correlate pairs. Close examination of the data
reveals a paucity of outliers, so that we are able to use the well-known Pearson’s
method for the computation of correlation coefficients. Because we are searching
for putative pathways and networks, both positive and negative correlations are of
equal interest. We therefore take absolute correlation values. Recall that this is
biological and hence noisy data. Not every probe set is reliably measured in every
sample. Thus we move away from simple correlation and compute a p-value
for each pair of correlates, which is the probability that they have a correlation
different from zero [33]. See Fig. 10.2.

From this we can build a simple, unweighted graph as needed with the use of
a cut-off value (we favor the use of p=0.01) and a high-pass filter. An edge whose
weight is less then the cut-off is discarded. Other edges are retained, but their
weights are now ignored.

10.4. Clique and Its Variants

We assume the reader is familiar with standard concepts in graph and complexity
theory [25, 30]. We begin with the well-known clique problem. A clique is a
densest possible subgraph. Each pair of its vertices is connected by an edge. A
clique is maximum if it is a largest clique in a graph. A clique is maximal if it is
not contained wholly within a larger clique. A clique on five vertices is illustrated
in Fig. 10.3. Protein correlations are too weak to find relevant relationships at this
level, and so for them we turn to other methods as will be described in Section
10.6. The correlation matrix is transformed into a complete, weighted correla-
tion graph by using a vertex for each transcript and protein, and by weighting the
edge between each pair of items with the corresponding correlation matrix entry.
Clique is widely acknowledged for its many applications in computational molec-

Graph Algorithms for Integrated Biological Analysis 211

Transcript and Protein P-Value Distribution

2000000

1600000 4

1200000 -

Frequency

800000 4 p=0.01

o HHHHHH HHHHHHHHHH

P-Value x 1000

Fig. 10.2. The transcriptomic data used in this study provides a broad spectrum of p-values. A
threshold p-value of 0.01, for example, creates an unweighted graph with 22750 vertices and roughly
11 million edges.

ular biology [23]. In the present setting, its advantages include cluster purity (all
edges are present), cluster overlap (genes and gene products are pleiotropic), and
resistance to false positives (the bane of many clustering methods). Contrasts with
other techniques can be found in [28]. The classic decision version of clique is
NP-complete. Finding approximate solutions appears no easier, because ensur-
ing solutions within n¢ in polynomial time implies P = A/P for any € > 0 [9].

We are of course more interested in search and optimization. By transform-
ing clique to vertex cover, we can apply notions from fixed-parameter tractabil-
ity [1, 8] and many years of basic research [11, 12] to solve the maximum clique
problem effectively in practice. With novel implementations and high perfor-
mance platforms, we are currently able to find maximum cliques with hundreds
of vertices in graphs with tens of thousands of nodes. We must often also solve
the maximal clique problem [5]. Even when the maximum clique size is mod-
est, we frequently find that the number of maximal cliques is staggering. Thus it
is that space as well as time is a critical resource for solving maximal clique,
even when supercomputing technologies are used. Our work on this general
subject, as well as its application to transcriptomic data analysis, is chronicled
in[1,4,6,7,19, 20, 28, 34].

212 Eblen et al.

Fig. 10.3. A clique of size five.

The paraclique algorithm was recently introduced in [6], where it was shown
to have advantages in the amelioration of noise inherent in high throughput bio-
logical data. Clique by itself is highly resistant to false positives. Under certain
experimental conditions, however, it can be subject to false negatives. This is
because, if even a single edge is missing, the clique is lost. Moreover, we fre-
quently encounter enormous numbers of overlapping cliques [19]. To coalesce
these into fewer but larger clusters, and to reduce the significance of noise, par-
aclique solves something similar to the dense-k-subgraph problem [10], which is
N'P-complete even on graphs of maximum degree three. Roughly speaking, a
paraclique is a clique augmented with non-clique vertices in a highly controlled
manner. A user-defined glom factor, g, is provided to increase cluster size while
limiting the number of missing edges permitted. We glom onto a non-clique ver-
tex only if it is adjacent to at least g clique/paraclique members. This notion is
depicted in Fig. 10.4. Correlations between non-adjacent vertices may be taken
into consideration as well. We refer the reader to [6] for details. Thus, when the
application permits, we employ the paraclique algorithm and sacrifice overlap in
order to build robust clusters.

Paraclique is also useful from a computational standpoint because it can, de-
pending on the application, obviate the need for maximal clique enumeration. To
illustrate, the processing of an NOD file whose maximum clique size was only 20
produced a list containing over four million maximal cliques and requiring over
two gigabytes of memory before the enumeration was terminated by the operating
system. In contrast, only 25 paracliques were generated. We therefore identify a
maximum clique, use paraclique to decompose the graph, and then iterate the pro-
cess on the remaining subgraph. We halt the process when maximum clique size

Graph Algorithms for Integrated Biological Analysis 213

*.

Fig. 10.4. Paraclique augments a clique with non-clique vertices in a controlled manner to increase
size, decrease overlap and maintain density.

falls below some reasonable cutoff value (we set this value at 50). In this way,
paraclique eliminates the need to compute and store enormous lists of maximal
cliques.

10.5. Statistical Evaluation and Biological Relevance

Edge density is arguably the most telling statistical clustering metric. Clique, of
course, maximizes density at 100% by definition. With the paraclique algorithm,
density will tend to decrease as new nodes are glommed onto a starting clique.
How precipitously density falls depends heavily on g. Table 10.1 summarizes the
results for paraclique when it was run over the NOD data of this study. Clique size,
paraclique size, and edge density are averaged over the paracliques generated.
Note the manner in which paraclique increases cluster size with only a gradual
reduction in density. (In contrast, we find that enlarging cliques using simple 1-
and 2-neighborhoods quickly drops density into the single digits.) As a practical
matter, we must balance the desire to handle noise and expand paracliques with the
real need to maintain suitably high edge densities. As a rule of thumb, therefore,
we seek to maintain a minimum density of at least 90% and henceforth set g at
|C| — 5. We emphasize that this choice is highly data-dependent, and tunable to
each application by design.

Density alone, however, tells only part of the story. To test for biological rele-
vance, we used the Ingenuity Pathways Analysis (IPA) package from Ingenuity®
Systems, www . ingenuity . com. IPA allows subscribers to upload and test lists

214 Eblen et al.

Table 10.1. Paraclique Parameter Variation

Glom Number of | Clique | Paraclique Edge Lowest Edge
Factor Paracliques Size Size Density Density
|C| -1 32 99.4 104.8 99.8% 99.5%
|C|—2 30 99.9 118.8 99.0% 97.9%
IC|—3 28 101.6 137.4 97.8% 96.0%
|C|—4 27 101.4 151.4 96.4% 92.3%
|C| -5 24 106.1 173.8 94.9% 90.3%
|C|—6 24 104.7 186.8 92.9% 86.7%
|C|-T7 22 108.5 205.7 91.4% 83.1%
|C|—8 21 110.2 221.1 90.0% 80.0%
|C|—9 21 109.3 231.1 88.6% 77.9%
|C|—10 19 114.7 250.5 87.7% 76.6%

of genes (in our case Affymetrix probesets) against a manually curated biologi-
cal interaction database. Probe sets known by the database are mapped to genes,
which are then termed focus genes. Other probe sets are ignored. Focus genes are
analyzed to determine how they are connected to one another based on evidence
from the biomedical literature. Based on this analysis, one or more molecular net-
works are produced. Each typically consists of a mixture of focus genes, sprinkled
with additional database genes and gene products that are needed to connect the
focus genes and complete the network. We term a focus gene that is placed in such
a network a focus gene utilized. In general, one cannot expect that all focus genes
will become members of a network. The database may have very little information
about a focus gene’s connectivity. Alternately, a focus gene may be only distantly
related to other focus genes. Due to technical constraints, [PA imposes a limit on
network size, which is currently set to 35 nodes. As a result, lists with large num-
bers of focus genes often create multiple networks. Fortunately, these can often
be fused together into a single common network using commands that are avail-
able on the Ingenuity website and that are designed for this purpose. The more
closely connected a group of focus genes are biologically, the more likely it is that
the database can connect them all into a network. Thus, an important metric is
the percent focus genes utilized. This number alone can be misleading, however,
because we must bear in mind that IPA may spread the genes across more than
one network. A group of 40 focus genes, for example, would be considered more
closely related if they could be connected in two networks than if four networks
are needed to connect them all. We will therefore also calculate and examine focus
genes utilized per network, a metric that normalizes for this effect.

As a control, we also tested K -means clustering, a traditional and highly popu-
lar algorithm. We invoked it via the R programming language, with the “kmeans”
function from the “amap” package [15]. Input values were log transformed. Pear-

Graph Algorithms for Integrated Biological Analysis 215

son correlations were employed. We sought to generate 500 clusters, because that
should yield clusters of roughly the same size as those produced by the paraclique
algorithm. Iteration was performed until convergence. IPA requires that each net-
work be analyzed separately (no batch mode is available), a process that can be
quite time consuming. Thus, only a small number, say ten, of clusters could be se-
lected for further analysis. For paraclique, we simply selected the first ten outputs.
Deciding on a representative set of K-means outputs was not as straightforward.
We therefore chose to select K-means clusters under three different criteria. One
criterion was to choose the ten largest clusters. Another was to favor those ten
with the highest edge density in the p=0.01 graph. In case this produced unfairly
small genesets, we also required that for a cluster to be selected it had to have
size at least 50, the same lower bound we use for paraclique. The third criterion
was based on paraclique overlap. For this we chose the ten K-means clusters with
the highest percentage overlap with some paraclique, again insisting that a cluster
had to have at least 50 vertices. Overlap ranged from roughly 45% to 64%, with
an average of about 55%. Table 10.2 summarizes these results. All values are
averaged over the relevant ten clusters.

Table 10.2. Paraclique versus K-Means

Method Probe Edg@ Focus Ggles Pe}”gent Focus Genes

Sets Density | Genes | Utilized | Utilized | per Network
Paraclique 254.3 97.1% 146.9 140.7 95.5% 14.4
Large K-means 244.0 31.5% 143.1 133.5 93.0% 12.8
Dense K-means 80.9 84.6% 523 46.7 89.4% 12.8
Overlap K-means 89.0 79.6% 55.7 49.9 89.8% 12.3

By inspection, paraclique is superior to K-means clustering in terms of density.
The case for superior biological relevance is perhaps less obvious. We therefore
performed ANOVA tests for statistical significance. The number of focus genes
per network was higher (p< .001) for paraclique than for any of the K-means
methods. And while paraclique did not differ markedly from Large K-means in
terms of cluster size, it was more successful than other K-means methods in both
size and percent focus genes utilized (p< .05).

10.6. Proteomic Data Integration

We now consider the problem of combining quantitative transcript and protein
data for analysis. Only a few studies have been reported (see, for example, [2]).
The related problem of combining gene expression with measures of function
was recently considered in [3]. There gene ontology, phenotypes and protein-

216 Eblen et al.

protein interaction were used to devise distance measures and permutation tests
for strength of commonality in graphs from these different data sources. Although
no quantitative protein values were employed, data derived from Saccharomyces
cerevisiae, commonly known as baker’s or budding yeast, suggested that similar-
ity in expression is related to similarity in function.

Our main goal is to identify biological pathways, each of which is anchored
by a protein of interest. We are fortunate that both gene expression array data and
protein gel data were collected from the exact same samples. If it were not for the
expense involved, we would wonder why this is not done more often. Neverthe-
less, data integration remains a formidable task. The biggest difficulty we must
overcome is probably that transcriptomic and proteomic data are generated by
two completely different and unrelated processes. Thus we will not be able to use
parametric statistical procedures, including the highly favored Pearson’s correla-
tion technique. Another problem is that current technologies for protein sensing
are generally inferior to those for transcript detection. Modern expression array
platforms can often detect transcripts for more than 50% of the known genes in the
relevant organism, and generate highly reproducible quantitative measurements.
In contrast, protein identification platforms can seldom cover more than 10% of
an organism’s estimated number of proteins, and with only moderate quantization
and reproducibility. Of course function is a direct consequence of proteins, not
mRNA, and so the importance of protein expression cannot be underestimated.
Finally, it is well known that gene expression at the mRNA level will not always
correlate well with gene expression at the protein level. After all, gene products
are subject to post-transcriptional and post-translational modifications, degrada-
tion and other factors. Put together, these difficulties make any serious attempt
at transcript-protein co-expression analysis a huge challenge. In the sequel, we
shall address this challenge with non-parametric methods, graph algorithms and a
clique-centric combinatorial approach.

We begin with the establishment of two correlation structures. For transcript-
transcript relationships, we retain the Pearson’s coefficients already computed.
Transcript-protein relationships are typically much weaker and, for reasons al-
ready stated, require a non-parametric approach. For these we employ the rank
metric provided by Spearman’s correlation technique. This naturally leads to the
loss of some information; a simple ranked list “flattens” raw data values. Our aim
is now two-fold. We still wish to find dense, well-connected subgraphs. Yet these
subgraphs must also be anchored as much as possible about some given protein,
p, under scrutiny. Of course we could simply choose a putative pathway to be
p and those transcripts ranked most highly with it. As we shall show, however,
we can do better with the use of graph structure. To accomplish this, we take the

Graph Algorithms for Integrated Biological Analysis 217

transcript graph and add to it a new vertex for protein p. We then use the rank
order provided by the Spearman’s coefficient list to add edges connecting p with
transcript vertices. We add these edges until the subgraph induced by p and its
neighbors contains at least 100 maximal cliques each of size at least 40. We then
output p along with the 60 or fewer vertices that most highly populate the resul-
tant set of cliques. The values 40, 60 and 100 were chosen based on trial and error
combined with our previous experience working with the idiosyncrasies of IPA.
Other values may be superior in other applications.

To test this approach, we chose six proteins on which IPA contained informa-
tion, which were well-expressed in the experimental samples, and which appear to
be orthogonal to each other in terms of their biological function. Two of the six,
HNRPK and EIF4Al, are of special interest because they are generally known
to have increased expression in NOD mice relative to the NON and C57BL/6
strains [14]. The other four are ACTB, GDI2, GNB2L1 and ZBTB1. We also
chose three different transcript graphs constructed from respective Pearson corre-
lation thresholds 0.60, 0.70, and 0.80. For each of these 18 tests, maximal cliques
were highly overlapping, as expected. As a measure of a cluster’s biological rel-
evance, we examine a metric we call protein links. Protein links is a count of the
number of connections between an anchored protein and the network created by
IPA. For each protein, we chose the threshold setting that maximizes protein links,
with ties broken in favor of the higher threshold. The lowest threshold, 0.60, had
none of the best results. It is probably the case that, in a graph this dense, the
transcript-transcript relationships drown out protein-transcript correlations.

As a control, we compared the quality of the transcript sets we produced
against the 60 transcripts that simply correlate most highly with the protein. GDI2
and ZBTB1 had fewer than three protein links for all four results (the three thresh-
old values plus the straight correlation list), and so were dropped from further
analysis. Results for each of the four remaining proteins are shown in Table 10.3.

Table 10.3. Clique vs Correlates

Protein Algorithm Probe Sets | Focus Genes | Protein Links
ACTB | Contlaes List | 60 > 6
BIFAL | Corteues List | 60 al :
GNB2L | Gomeltes List | 60 3 :
HNRPK | Conteaies List | 60 i :

From this table, we see that our clique-centric approach builds subgraphs that
are no worse and in fact generally better than those simply defined by ranking

218 Eblen et al.

Merge N1-3-3611clg-80
RPSISA RPL23¢ RPS27 RPL30 RPL6 RPLP1 RPi3S P
2 R ML e ROLZL REDY7+

RPS10 (inclides EG:67097) / - 5"“ ‘ < \.A‘ P
a8 e N QAN

\
\ P
RPL23A (incltitles EG:6147)" i f;
/

)
é’

@2000-2006 Ingenukty Systems, Inc. All rights reserved.

Fig. 10.5. The IPA merged network for HNRPK using a clique-centric algorithm.

and selecting correlates. Although protein links are our primary focus, other met-
rics are equally revealing. In the case of ACTB, for example, we find that both
methods produce six protein links, but the algorithm based on clique is superior
in terms of percent focus genes utilized (100% versus 85.2%) and focus genes per

network (14 versus 11.5).

Merge N1-3-P3611-corr
i \ — -
4 Mi 77E2&->7F{1M]’4

Pd /’(
LNA (includés EG:2316)

X

ARNTL
A R HSPE7
SUMQE\ (in?ludes
TRl
AV S PCBPA
PRRFAB—< s 7 o
g

N i
S b - : A P > 74 X
, - i
WARAFrels > Tt | e
®FDN - "9‘“\‘;; —————— =R /T WI L ——— pggipsa
= r/ V/K DUSP12 ¥ Vo oo }Q“\
RCC1 (includes EG:u)Qz Y2 . ’@c AGLNZ [SRY

OL4A4 (includes EG:1286)
@2000-20086 Ingenuity Systems, Inc. All rights reserved.

Fig. 10.6. The IPA merged network for HNRPK using simple correlation.

Graph Algorithms for Integrated Biological Analysis 219

It may also be instructive to compare IPA’s outputs visually. Fig. 10.5 and 10.6
contain screenshots of merged network diagrams created by IPA for HNRPK.
Fig. 10.5 was generated from the list of transcripts produced by our clique-centric
method; Fig. 10.6 was generated from the list produced by mere correlate ranking.
Focus genes are depicted in grey. Connections to the anchor protein are rendered
in blue. Glyph shapes vary depending on IPA classifiers.

The IPA screenshots shown in Fig. 10.5 and 10.6 demonstrate how the two
methods we consider create quite different networks, and how the protein is con-
nected to more genes in the network created by the clique-centric algorithm.

10.7. Remarks

We have studied clique-centric algorithms in the context of effective biological
data clustering. Statistical quality based primarily on edge density and biologi-
cal significance based on curated pathway matching have demonstrated the utility
of paraclique and related methods. We have also considered the problem of inho-
mogeneous data integration. Transcriptomic data from gene expression arrays and
proteomics data from 2d gels have been reconciled to identify biological networks
for further scrutiny.

We emphasize that this work has been limited in scope to the analysis of in-
homogeneous data of relevance to type 1 diabetes. It is not meant to provide a
comprehensive guide to the literature. Nor is it intended to serve as an exhaustive
comparison of clustering methods. Such a task would be an enormous challenge,
requiring the implementation of a huge number of algorithms, and necessitating
tests across a great many diverse datasets.

There are a variety of ways to modify and enhance paraclique and the other
algorithms we describe. In [6], for example, an optional user-defined threshold
parameter is provided to help guide the search for edges affected by noise. For
simplicity, we have ignored this parameter here and considered only the effect
of the glom factor. Another enhancement is to glom vertices in stages, invoking
paraclique iteratively until a certain threshold is reached. Initial results suggest
that this procedure can further increase paraclique size while maintaining both
edge density and biological fitness as measured by IPA.

Finally, we observe that pleiotropism is common in gene and gene products. It
is thus a major reason for the popularity of soft clustering methods such as clique:
a vertex can lie in more than one clique, just as an oligonucleotide or a protein can
lie in more than one pathway. Noise and the need for simpler structures motivate
the paraclique algorithm. The clusters produced are robust with respect to a few
missing edges. Unfortunately, they no longer overlap with the basic paraclique

220 Eblen et al.

method. It is possible to modify the algorithm so that overlap is permitted. This
is a topic of current research within our group. Optimal ways to accomplish this,
however, probably depend on the application. The same may be said for the highly
challenging task of inhomogeneous data integration. We are currently working on
techniques to integrate multiple proteins in a single step, rather than handling them
one at a time. This is not as easy as it might sound, and may require the use of
three rather than just two forms of correlate pairs.

Acknowledgments

We wish to thank an anonymous referee, whose careful review of our original sub-
mission helped us to improve the final presentation. This research has been sup-
ported in part by the National Science Foundation under grant CCR-0311500, by
the National Institutes of Health under grants 1-P01-DA-015027-01, 5-U01-AA-
013512, 1-R01-DK-062103-01 and 1-R01-MH-074460-01, and by the UT-ORNL
Science Alliance. A preliminary version of a portion of this paper was presented
at the DIMACS Workshop on Clustering Problems in Biological Networks, held
at the DIMACS Center at Rutgers University in May, 2006.

References

[1] F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons. Scalable parallel
algorithms for FPT problems. Algorithmica, 45:269-284, 2006.

[2] J.S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Chant. Gaining confidence in high-
throughput protein interaction networks. Nature Biotechnology, 22:78-85, 2004.

[3] R. Balasubramanian, T. LaFramboise, D. Scholtens, and R. Gentleman. A graph-
theoretic approach to testing associations between disparate sources of functional
genomics data. Bioinformatics, 20(18):3353-3362, 2004.

[4] N.E.Baldwin, E.J. Chesler, S. Kirov, M. A. Langston, J. R. Snoddy, R. W. Williams,
and B. Zhang. Computational, integrative, and comparative methods for the elucida-
tion of genetic coexpression networks. J Biomed Biotechnol, 2(2):172-180, 2005.

[5] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
In Proceedings of the ACM, pages 575-577, 1973.

[6] E.J.Chesler and M. A. Langston. Combinatorial genetic regulatory network analysis
tools for high throughput transcriptomic data. In RECOMB Satellite Workshop on
Systems Biology and Regulatory Genomics, 2005.

[7]1 E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C. Hsu, J. D. Mountz,
N. E. Baldwin, M. A. Langston, J. B. Hogenesch, D. W. Threadgill, K. F. Manly,
and R. W. Williams. Complex trait analysis of gene expression uncovers polygenic
and pleiotropic networks that modulate nervous system function. Nature Genetics,
37:233-242, 2005.

[8] R.G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

(9]

(10]
(1]

(12]

(13]

(14]

(15]

[16]

(17]
(18]
[19]

[20]

[21]

(22]

(23]

[24]

Graph Algorithms for Integrated Biological Analysis 221

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating the
maximum clique is almost NP-complete. In IEEE Symposium on the Foundations
of Computer Science, pages 2—12, 1991.

U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica,
29:410-421, 2001.

M. R. Fellows and M. A. Langston. Nonconstructive tools for proving polynomial-
time decidability. Journal of the ACM, 35:727-739, 1988.

M. R. Fellows and M. A. Langston. On search, decision, and the efficiency of
polynomial-time algorithms. Journal of Computer and Systems Sciences, 49:769—
779, 1994.

I. C. Gerling, C. Ali, and N. Lenchik. Characterization of early developments in the
splenic leukocyte transcriptome of NOD mice. Ann N Y Acad Sci, 1005:157-160,
2003.

I. C. Gerling, S. Singh, N. I. Lenchik, D. R. Marshall, and J. Wu. New data analy-
sis and mining approaches identify unique proteome and transcriptome markers of
susceptibility to autoimmune diabetes. Mol Cell Proteomics, 5(2):293-305, 2006.

R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics, 5:299-314, 1996.

R. Kirova, M. A. Langston, X. Peng, A. D. Perkins, and E. J. Chesler. A systems
genetic analysis of chronic fatigue syndrome: combinatorial data integration from
snps to differential diagnosis of disease. In International Conference for the Critical
Assessment of Microarray Data Analysis (CAMDA), 2006.

H. Kitano. Computational systems biology. Nature, 420(6912):206-210, 2002.

H. Kitano. Systems biology: a brief overview. Science, 295(5560):1662-1664, 2002.
M. A. Langston, L. Lan, X. Peng, N. E. Baldwin, C. T. Symons, B. Zhang, and
J. R. Snoddy. A combinatorial approach to the analysis of differential gene expres-
sion data: the use of graph algorithms for disease prediction and screening. In K. F.
Johnson and S. M. Lin, editors, Methods of Microarray Data Analysis 1V, Papers from
CAMDA °03, pages 223-238. Kluwer Academic Publishers, 2005.

M. A. Langston, A. D. Perkins, A. M. Saxton, J. A. Scharff, and B. H. Voy. Innova-
tive computational methods for transcriptomic data analysis. In ACM Symposium on
Applied Computing, 2006.

E. Pennisi. Systems biology. tracing life’s circuitry. Science, 302(5651):1646—-1649,
2003.

I. Seefeldt, G. Nebrich, I. Rémer, L. Mao, and J. Klose. Evaluation of 2-de protein
patterns from pre- and postnatal stages of the mouse brain. Proteomics, 6(18):4932—
4939, 2006.

J. C. Setubal and J. Meidanis. Introduction to Computational Molecular Blology.
PWS Publishing Company, 1997.

L. Shi, L. H. Reid, W. D. Jones, R. Shippy, J. A. Warrington, S. C. Baker, P. J.
Collins, F. de Longueville, E. S. Kawasaki, K. Y. Lee, Y. Luo, Y. A. Sun, J. M.
Willey, R. A. Setterquist, G. M. Fischer, W. Tong, Y. P. Dragan, D. J. Dix, F. W.
Frueh, F. M Goodsaid, D. Herman, R. V. Jensen, C. D. Johnson, E. K. Lobenhofer,
R. K. Puri, U. Schrf, J. Thierry-Mieg, C. Wang, M. Wilson, P. K. Wolber, L. Zhang,
W. Slikker, L. Shi, L. H. Reid, and M. A. Q. C. Consortium. The microarray quality
control (maqc) project shows inter- and intraplatform reproducibility of gene expres-

222

[25]
[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]
(34]

Eblen et al.

sion measurements. Nat Biotechnol, 24(9):1151-1161, 2006.

M. Sipser. Introduction to the Theory of Computation. Course Technology, 1996.

H. E. Thomas and T. W. Kay. Beta cell destruction in the development of autoim-
mune diabetes in the non-obese diabetic (NOD) mouse. Diabetes Metab Res Rev,
16(4):251-261, 2000.

J. Tian, A. P. Olcott, L. R. Hanssen, D. Zekzer, B. Middleton, and D. L. Kaufman.
Infectious th1 and th2 autoimmunity in diabetes-prone mice. Immunol Rev, 164:119—
127, 1998.

B. H. Voy, J. A. Scharff, A. D. Perkins, A. M. Saxton, B. Borate, E. J. Chesler, L. K.
Branstetter, and M. A. Langston. Extracting gene networks for low-dose radiation
using graph theoretical algorithms. PLoS Comput Biol, 2(7):e89, 2006.

M. T. Wayland and S. Bahn. Chapter 5, Reproducibility of microarray studies: con-
cordance of current analysis methods., volume 158, pages 109—125. ScienceDirect,
2006.

D. B. West. Introduction to Graph Theory. Prentice Hall, 1996.

A. M. Wheelock and A. R. Buckpitt. Software-induced variance in two-dimensional
gel electrophoresis image analysis. Electrophoresis, 26(23):4508-4520, 2005.

J. W. Yoon, H. S. Jun, and P. Santamaria. Cellular and molecular mechanisms for
the initiation and progression of beta cell destruction resulting from the collaboration
between macrophages and t cells. Autoimmunity, 27(2):109-122, 1998.

J.H. Zar. Biostatistical Analysis. Prentice Hall, 4th edition, 1998.

Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, M. A. Langston, and
N. F. Samatova. Genome-scale computational approaches to memory-intensive ap-
plications in systems biology. In Supercomputing, 2005.

Chapter 11

A Novel Similarity-based Modularity Function for Graph
Partitioning

Zhidan Feng

Acxiom Corporation, USA, dafeng @acxiom.com

Xiaowei Xu

Department of Information Science, UALR, USA, xwxu@ualr.edu

Nurcan Yuruk

Department of Information Science, UALR, USA, nxyuruk@ualr.edu

Thomas Schweiger

Acxiom Corporation, USA, Tom.Schweiger@acxiom.com

Graph partitioning, or network clustering, is an essential research problem in
many areas. Current approaches, however, have difficulty splitting two clusters
that are densely connected by one or more “hub” vertices. Further, traditional
methods are less able to deal with very confused structures. In this paper we
propose a novel similarity-based definition of the quality of a partitioning of a
graph. Through theoretical analysis and experimental results we demonstrate
that the proposed definition largely overcomes the “hub” problem and outper-
forms existing approaches on complicated graphs. In addition, we show that this
definition can be used with fast agglomerative algorithms to find communities in
very large networks.

11.1. Introduction

Many problems can be modeled as networks or graphs, and identifying cluster in
the network or partitioning the graph is a fundamental problem for computer net-
works analysis, VLSI design, biological network analysis, social networks analy-
sis [18], business networks analysis, and community detection [6]. In the litera-
ture, graph partitioning has many names, and is sometimes called network anal-
ysis, network clustering, detecting communities in networks, etc. This area of

223

224 Feng et al.

research has seen a lot of efforts in this problem over decades, and many algo-
rithms have been proposed, studied, and used.

The problem is defined as: Given a graph G = {V, E'}, where V is a set of
vertices and F is a set of weighted edges between vertices, optimally divide G
into k disjoint sub-graphs G; = {V;, E; }, in which V; N V; = @ for any i # j and
V= Zk: V;. The number of sub-graphs, k, may or may not be prior known.

Inl tﬁis paper, we focus on partitioning problem of un-weighted graphs, that is,
graphs for which the weight of all edges is 1.

Two question need to be answered, one that is mathematical and one that is
algorithmic. First, what is the definition of optimal when partitioning a graph,
and second, how does one find the optimal partition efficiently.

Regarding the first question, there is no consensus in the literature. Different
approaches use different criteria for different applications. Examples are the min-
max cut [3, 8, 16], modularity [1, 13, 14] and betweenness [6, 12]. To the second
question, since finding the optimal partition in a graph is normally a NP-complete
problem, most current approaches use heuristics to reduce the running time and
find only near-optimal partitions.

(a). Typel (b). Type I

Fig. 11.1. Two types of graphs

These approaches, though work well for some applications, their performance
deteriorates as graphs become more confused. Graphs may present three kinds
of complications. Figure 11.1 illustrates two types of un-weighted graphs. The
first and main source of confusion is “random” interconnections between clusters,
illustrated by the Type I graph. These have dense clusters that are sparsely inter-
connected. As the number of interconnections increase, discerning the underlying
structure becomes more challenging. Such structures have been the focus of past
study.

The second and third source of confusion is what we call hubs and outliers,
and these have been little discussed in the literature. The Type II graph in Fig.
11.1 has clusters that are connected by “hub” vertex ‘a’ that is difficult to place
in one cluster or another. It also has an outlier vertex ‘h’ that may be best placed

A Novel Similarity-based Modularity Function for Graph Partitioning 225

in a cluster to itself. Past approached do not deal with the “hub” and “outlier”
problems very well. That is, they cannot split two clusters very well that are
densely connected by one or more “hub” vertices, and they often fail to detect and
isolate outliers.

In this paper, we propose a similarity-based graph partitioning definition that
globally measures whether one partitioning is better than another. Through the-
oretical analysis and experimental results, we demonstrate that the proposed def-
inition outperforms existing approaches on complicated graphs and handles with
agility hubs and outliers. Further, we show that this novel definition can be used
with the fast agglomerative algorithm [1, 13] to find communities in very large
networks.

The rest of this paper is organized as follows: in section 2 we briefly review
related works; in section 3 we propose our novel similarity-based modularity mea-
surement; in section 4 and 5 we discuss two techniques for finding optimal graph
partitions by maximizing the modularity; in section 6 we apply them to network
with known structures and present experimental results; and finally in section 7
we summarize our conclusions.

11.2. Related Work

The most traditional definition of graph partitioning is probably the min-max
cut [3, 8, 16], which seeks to partition a graph G = {V, E'} into two sub graphs
A and B. The principle of min-max clustering is minimizing the number of edges
between clusters A and B and maximizing the number of edges within each. In-
stead of number of edges, sum of weights is used for a weighted graph. Thus the
connection between A and B the cut:

cut(A,B)=W(A,B)= Y w(uv). (11.1)
uceA,veB
It is obvious that W (A) = W(A, A).
A bi-partition of the graph is defined as minimizing the following objective
function:
cut(A,B) cut(A,B)
W) WB)
The above function is called the min-max cut function. It minimizes the cut
between two clusters while maximizing the connections within a cluster. How-
ever, a pitfall of this definition is that if we only cut out one node from a graph,
M, will probably get the minimum value. So, in practice, M,; must be accom-
panied with some constraints, such as A and B should of equal or similar size, or

Mcut =

(11.2)

226 Feng et al.

|A| = |B|. These constraints are not always applicable for all applications, e.g.,
in clustering problems where some communities are much larger than the others.
To amend the above issue, a normalized cut (N,.) was proposed [16]:

cut(A, B) n cut(A, B)
assoc(A,V) = assoc(B,V)’
where assoc(4,V) = > w(u,v) is the total connection from vertices in A

u€EA eV
to all vertices in the graph. Using the N, cutting out one vertex or some small

part of the graph will no longer always yield a small N, value.

Using the M, or N, one can partition a graph into two sub-graphs. As the
natural consequence, to divide a graph into k& sub-graphs, one has to adopt a top-
down approach, i.e., splitting the graph into two sub-graphs, then further splitting
these sub-graphs into next level sub-graphs; repeat this process until k£ sub-graphs
have been detected. The disadvantage [5] of this method is that, like all other
bisection algorithms, it only partitions a graph into two sub-graphs. Though one
can repeat this procedure on the sub-graphs, there is no guarantee of the optimality
of partitioning, and one has no clue on when to stop the repeated the bisection
procedure or how many sub-graphs should be produced in a graph.

To answer the question “what is the best graph partition”, other researchers
proposed global measurements, such as M. J. Newman’s modularity [1, 7, 13]:

Lo (d)
L L

where NC'is the number of clusters, L is the number of edges in the network,
is the number of edges between vertices within cluster s, and d; is the sum of the
degrees of vertices in cluster s. The optimal clustering is achieved by maximizing
the modularity () ;. Modularity is defined such that)y is O at the extremes of all
vertices are clustered into a single cluster or of vertices are randomly clustered. As
this modularity definition requires no constraints, it is better than the min-max cut
definition. Modularity is a quality measure of graph partitioning, while normal-
ized cut is not. Note that with this definition both top-down (divide and conquer)
and bottom-up (agglomerative) algorithms can be used for graph partitioning.
Finding the best @)y is NP-complete. Instead of performing an exhaustive
search, Newman used a bottom-up approach [1, 13] which begins by merging two
vertices into clusters that increase (), then likewise merging pairs of clusters,
until all have merged to form a single cluster. At each stage the value of Qy is
recorded. The partition with the highest)y is the solution of this algorithm. This
is a typical hill-climbing greedy search algorithm, which generally has high speed
but easily falls into a local optimum. Guimera and Amaral [7] use a simulated

Newt = (11.3)

NC

ov=3"

i=1

, (11.4)

A Novel Similarity-based Modularity Function for Graph Partitioning 227

annealing algorithm to find the optimal partition with the highest Q) . This is a
random search based algorithm, which usually can achieve higher quality than the
greedy search (like Guimera and Amaral claimed [7]) but has much lower speed.

According to our study [4], while Newman’s modularity works well for type
I graphs (Fig. 11.1 (a)); it fails to deal well with type II graphs due to the “hub”
and “outliner” vertices. To reiterate, a “hub” vertex is a vertex that densely con-
nects two or more groups in a graph. For example, in Fig. 11.1 (b), the central
vertex ‘a’ connects two sub-groups. Note also that this same vertex has the largest
degree. Using Newman’s modularity definition, this graph in Fig. 11.1 (b) will be
clustered into two groups, {a, b, ¢, d} and {e, f, g, h}. However, the more reason-
able clustering schedule could be {b, ¢, d}, {a, e, f,g}, and {h}, where ‘h’ isin a
cluster by itself. Newman’s modularity definition will not identify outliers; rather
it will assign them membership to some larger cluster.

Generally, when there are clear sub-graph structures existed in a graph, i.e.,
the connections between sub-graphs are sparse while the connections within a
sub-graph are much dense, both min-max cut or its variations and Newman’s
modularity works very well. But when the sub-graph structure becomes more
confused, i.e., the between connections become denser, the performance of these
methods deteriorates rapidly.

11.3. A Novel Similarity-based Modularity

Based on our observation, it is not very accurate to use connections within clusters
and between clusters as the criteria of partitioning for all types of graphs, espe-
cially for graphs with complicated cluster structures. Instead, we propose a more
general concept, similarity, to measure the graph partitioning quality. A good par-
tition is one for which the similarity of vertices within a cluster is higher than the
similarity of vertices between clusters.

If two connected vertices also share a lot of neighbors, we say they are similar.
However, merely counting the number of shared neighbors doesn’t tell us what
proportion of the vertices’ neighbors is shared, and therefore is insufficient for
distinguishing a hub from a normal vertex. To handle this problem, we adopt the
normalized similarity [11]. Let I'; be the neighborhood of vertex 7 in a network,
the cosine normalization similarity is defined as:

T, NTy|
V |Fu| : |Fv|

Then we define the Similarity-based Modularity (Qs) function as the follow-
ing:

S(u,v) = (11.5)

228 Feng et al.

NC 2
LS; DS;
s = — — | == 11.
Q. ; =g (TS) (11.6)
with IS; = > S(u,v),DS; = >, Su,v)andTS = > S(u,v),

u,veV; ueV;,veV u,veV
where NC' is the number of clusters, 1.5; is the total similarity of vertices within

cluster 4; D.S; is the total similarity between vertices in cluster ¢ and any vertices
in the graph; 7'S is the total similarity between any two vertices in the graph;
S(u,v) is defined in (11.5); V' is the vertex set of the graph and V; is the vertex
set of cluster i.

If we define

o _ [0 ifu ¢ clusteri,
6(u,i) = {1 if u € cluster i,

then (11.6) is written as

NC ‘ ‘ N
= Dou 2w S, 0)8(u, i) (v,d) (30, >0, S(u,v)d(u, i)
v XX, Sw0) (>, S(u,0))] . oar

In other words, Qs is a measure of the similarity of a partition of the network
versus the similarity of the same partition if the network’s vertices were randomly
connected. As with Newman’s modularity, if we put all vertices either into one
cluster or place them in clusters randomly, @) s will be 0.

Referring again to the type II graph in Fig. 11.1 (b), the similarity between
the “hub” vertex ‘a’ and its neighbors is quite low, despite the hub’s high degree.
Likewise, the similarity between the “outlier” vertex ‘h’ and its lone neighbor is
low. Table 11.1 summarizes @ and Qg respectively for several possible parti-
tioning of the network in Fig. 11.2 (b).

Table 11.1. @ and Qg for different clustering structures

Clustering Schedule QN Qs

All vertices in one cluster 0.0 0.0

{a},{b,c,d},{e, f, g}, {h} 0.119835 0.343714
{a,b,c,d}, {e, f,g},{h} 0.177686 0.312469
{a,b,c,d}, {e, f,g,h} 0.227273 0.289307
{b,c,d},{a,e, f,g},{h} 0.185950 0.368656
{b,c,d}, {a,e, f,g,h} 0.214876 0.321978

We acknowledge that preferring one graph partitioning over another may be
subjective; however, we think the original modularity definition classifies the
hub node ‘a’ into the wrong cluster {a,b,c,d} and fails to segregate the out-
liner node ‘A’. The proposed Similarity-based Modularity successfully detects the

A Novel Similarity-based Modularity Function for Graph Partitioning 229

outlier node ‘A’ and classifies the hub node ‘a’ into the more reasonable cluster
{a,e, f, g}, which was our aim.

11.4. A Genetic Graph Partitioning Algorithm

Recall that finding the optimum similarity-based modularity in a graph is NP-
hard, and greedy-search based approaches all suffer from the local optimum draw-
back [2, 9, 15, 17, 19]. To evaluate the capability of the proposed modularity
function, we would like to use a global-search based approach to avoid the local
optimum trap, namely a Genetic Algorithm (GA):

Encoding - For a graph with n vertices, a partition can be represented as an
array of integers, for which each index corresponds to a vertex and the value to its
cluster ID of this vertex. For example, the string “23 23 5 15 4 5” indicates that
there are 5 clusters in the graph, the 15? and the 37 vertices belong to cluster 2, the
274 and the 4" vertices belong to cluster 3, and so on. Since each array element
can have a value from 1 to n, the total search space is n™, which is potentially
very large.

Initial Population - the initial population can be generated randomly or using
some task related strategies. Here we use a random initialization.

Fitness Measure - the function to be optimized. For the graph partitioning prob-
lem we use formulae (11.5) and (11.6).

Selection - some individuals are selected according to their fitness or ranks and
they mate to produce offspring. We use a probabilistic selection

Py(hi) = sztness(hi) ’ (11.8)

Fitness(h;j)

j=1

where k is the number of clusters.

Crossover - this operator determines how to produce offspring from parents.
Either single point or multiple point crossovers can be used. An important param-
eter is the cross rate, which determines how many genetic elements are exchanged.
We use single point crossover. The exchanged point is chosen at random and the
length of the array block that is exchanged is set by the Crossover Rate parameter.
There are two cases in single point crossover: with or without roll back.

230 Feng et al.

a) Single point crossover (Crossover Rate = 50%, no roll back):

Parents Children
11132344 = 11134433
22314433 22312344

N -/
Crossover point

b) Single point crossover (Crossover Rate = 50%, with roll back):

Parents Children
11132344 = 11134433
22314433 22312344

AN T /!

Roll back Crossover point

Mutation - mutation adds random variation and diversity to the population.
Usually the mutation rate should be kept very small.

22312344 = 22112344

Replacement - new offspring are inserted into the original population, replac-
ing individuals with lower fitness. Usually, the replacement population size is
constant.

The above procedure is repeated until a predefined number of generations have
elapsed or the fitness of the population stops increasing. The string with highest
fitness is the solution.

11.5. A Fast Agglomerative Algorithm

Although GA has the potential to jump out of local optimums, it has the drawback
of being slow and thus may be unsuitable for large graphs. Here we extend New-
man’s fast hierarchical agglomerative clustering (FHAC) algorithm [1, 13] to the
similarity-based modularity.

Formula (11.6) can be re-written as:

k 2
Z . 1S; DS;

The algorithm is as follows:

1. Initialize by placing every vertex v; into its own cluster ¢;, and calculates Q g,
for each cluster.

A Novel Similarity-based Modularity Function for Graph Partitioning 231

2. Considering merging every possible pair of cluster ¢, and cy,, (¢ # h) and note
the change to (), which is given by:

AQS9+h = ng+h - QSg - QS;,, (11.10)

3. Choose the merge producing the largest AQs, _, , then update and record Qs.

4. Update all affected values of AQs,,, and AQs,,;, (i # g;j # h) using
formula (11.10).

5. Repeat step 3 and 4 until all vertices are grouped into one cluster.

6. Retrieve the partitioning with the highest () s value as the best result.

In step 4, only clusters with edges connecting them to the merged pair need to
be updated. The number of clusters to be updated that are connected to cluster g is
|i] and the number connected to cluster h is |j|. There are at most || +|j| updates,
each update taking O(log k) < O(log n) time to access the data structure, where
n is the number of vertices in the Graph. Thus each iteration takes O((|i|+|j|)log
n) time [1].

The overall running time is the sum of all joining steps, which, as Newman
indicated is at most O(md log n) [13], where m is number of edges and d is the
depth of the dendrogram. More details of this algorithm may be found in Newman
etal. [1, 13].

11.6. Evaluation Results

In this section, we present experimental result from analyzing synthetic graphs,
detecting community structure in social networks, and clustering entities from a
customer database. The size of the graphs varies from tiny to very large. Each
example has a known structure that we are seeking to reproduce. We introduce a
measure of “error” to gauge the performance of different clustering algorithms: if
a node is classified into a cluster other than the pre-defined cluster, we count it as
an error.

11.6.1. Tests on Synthetic Graphs

Synthetic graphs are generated based on predefined cluster structure and proper-
ties, so as to facilitate systematic study of the performance of our similarity-based
modularity definition and graph partitioning algorithms. Here we use the same
construction as used in several papers [6, 7, 13]. The synthetic graph consists of
128 vertices that are divided into 4 equal-size clusters. Each vertex connects to
vertices within its cluster with a probability F;, and connects to vertices outside
its cluster with a probability P, < P;. On average, each vertex is connected to

232 Feng et al.

Koyt = 96 P, outside vertices and to K;,, = 31P; inside vertices. We generate
several random graphs using different K,,; and K;,, and then test the perfor-
mance of our two algorithms. Figure 11.2 illustrates examples of these synthetic
random graphs with different levels of interconnectivity [7]. Notice that these
graphs belong to type I defined in Fig. 11.1.

(a). Kin : Koyt = 15:1 (b). Kin : Kout = 10:6 (c). Kin : Kout = 8:8

Fig. 11.2. Graphs with different K, : Koyt ratio

Table 11.2. GA performances

Kin : Kout Best Qn | Errors Best Qg Errors
12:4 0.499807 0 0.659431 0
11:5 0.437481 1 0.614884 0
10:6 0.376271 2 0.564478 1
9:7 0.318518 4 0.484211 6
8:8 0.261690 15 0.448903 20

Table 11.2 summarizes the results of the Genetic algorithm using Newman’s
modularity (Q) and the similarity-based modularity (Qs). Since the Genetic
algorithm falls into local minimums, we run the algorithm several times for each
parameter setting and report the best result. At K, : K,,p > 11:5, the structures
are very clear, both modularity definitions perfectly identify the structure. At
Kipn @ Koyt = 10:6, Q has 2 errors, but Qg yields only one error. Since then,
along with the confusion increases, () s begins slightly lagging from @ . This is
due to the synthetic graphs are generated based on the ratio of K, : Ky , which
exactly matches with the definition of) y. The accuracy comparison is plotted in
Fig. 11.3. We can conclude that the two modularity measures yield a comparable
accuracy for the synthetic graphs.

Likewise, we tested the fast hierarchical agglomerative clustering algorithm
(FHAC) to detect structure in the synthetic graphs. The results are summarized in
Table 11.3, and we plot accuracy curves in Fig. 11.4.

Comparing Fig. 11.3 and 11.4, one can see that the FHAC keeps accuracy
with GA when K,,; < 6 (K;, = 16 — K,,;), then accuracy drops significantly

A Novel Similarity-based Modularity Function for Graph Partitioning 233
100 T " " " —7~=:-~T
90 ; -
80 - —*— GA+Newman's]
§70 1 Modularity
860 GA+Similarity-
<50 1 based Modularity
40 4
30 : i i i i i i
2 3 4 5 6 7 8
Kout

Fig. 11.3. Accuracy curves of GA using Qn and Qs

Table 11.3. Results of FHAC optimizing Qs
Kin : Kout Best Qg # of clusters | Errors
11:5 0.614885 4 0
10:6 0.565117 4 4
9:7 0.481685 5 18
8:8 0.458222 8 44
100 T— & —%—%—F
90 B =
2 80 \
® 70 +— —e— FHAC+Newman's F
360 +— Modularity A
< 59 -+ = FHAC+Similarity-
40 +— based Modularity y
30 —t—tt—t——
0 1 2 3 4 5 6 7 8
Kout

Fig. 11.4. Accuracy curves of FHAC using Qn and Qs

when K,,; > 6, when the cluster structure becomes confused. However, one
may notice that the FHAC algorithm works much better when combining with the
proposed Similarity- based Modularity. It demonstrates that the proposed mea-
surement cooperates with the greedy search algorithm FHAC much better even
when the pre-defined cluster structure is not in favor of it.

While the synthetic network is a Type I network that does suffers from no hubs
or outliers, it is a significant problem to study to demonstrate the stability that
similarity adds. In that regard, hubs and outliers are elements that add confusion.

11.6.2. Real Applications

The first real application we report in our experiment is a social network - de-
tecting communities (or conferences) of American college football teams [6, 7,
12, 13]. The NCAA divides 115 college football teams into 13 conferences. The

234 Feng et al.

question is how to find out the conferences from a network that represents the
schedule of games played by all teams. We presume that because teams in the
same conference are more likely to play each, that the conference system can
be mapped as a structure despite the significant amount of inter-conference play.
We analyze the graph by using both GA and FHAC. The results are reported in
Table 11.4. From which, FHAC with Q) partitions the graph into 6 conferences
with 45 misclassifications [13], while FHAC with @) g partitions to 12 conferences

with only 14 errors. Again, Qg significantly outperforms () y when combining
with FHAC.

Table 11.4. Detecting conferences in college football teams by using @y and Qg

Alg. Best Qn | #of clusters | Errors Best Qg | #of clusters | Errors
GA 0.601009 12 14 0.820668 12 14
FHAC || 0.577284 6 45 0.820668 12 14

The second application is detecting the individuals from customer records
coming from Acxiom Corporation, where data errors blur the boundaries between
individuals with similar information (see Fig. 11.5). This example represents a
Type II graph, with hubs and outliers. In this dataset, there are 3 groups of cus-
tomers, a number of hubs (vertices 7, 10, 11, and 19) and a single outlier (vertex
21).

We test both GA and FHAC by using @ ; and Q) s respectively. The results are
summarized in Table 11.5. Both algorithms make 3 errors by using () , they mis-
classify hub node vertex 7 and vertex 10 into wrong cluster and fail in detecting the
outlier (vertex 21). However, by using the proposed s, both algorithms perfectly

classify this graph, which means the Qg has better ability to deal with hub and
outlier vertices.

e —————
~

' v; ‘7‘
i }' A
A éé"“"lh

5
,;5

b
v
L]

\

V(
%
[
SN

S/
175

\g%
NE

-~
e

Fig. 11.5. Customer record networks

A Novel Similarity-based Modularity Function for Graph Partitioning 235

Table 11.5. Performance comparison on Acxiom dataset using) ; and @) s respectively

Alg. Expected clusters Expected Qn | Best Qn | clusters | errors
GA+Q N 4 0.378893 0.399623 3 3
FHAC+Q N 4 0.378893 0.37669 3 3

Alg. Expected clusters Expected Qg Best Qg clusters | errors
GA+Qs 4 0.474738 0.474738 4 0
FHAC+Q s 4 0.474738 0.474738 4 0

Table 11.6. FHAC running time for very large network

Vertices Edges FHAC+Q N FHAC+Q g
52909 245300 591 Sec. 658 Sec.

The final experiment was on a very large dataset - the DBLP authors’ col-
laboration networks of 2005 [10], which consist of 52,909 vertices (authors) and
245,300 edges (co-author relationship). The purpose of this experiment is testing
the speed of FHAC on a very large network. The running time on an Intel PC
with P3.2G CPU and 2GB memory are reported in Table 11.6. One can see that
optimizing () it runs marginally slower than optimizing @) 5, which means Qg
cooperates with the FHAC algorithm very well.

11.7. Conclusion

In this paper, we propose a novel similarity-based modularity (@) s) to measure the
quality of a graph partitioning. Through theoretical analysis and extensive exper-
iments, we can conclude that the propose measure is significantly more accurate
and robust than Newman’s connection-based modularity with respect to the result
of clustering. Furthermore, it has a better ability to deal with hubs and outlin-
ers. The proposed similarity-based modularity in combination with the Genetic
clustering algorithm (GA) and the greedy search algorithm FHAC yields an im-
proved accuracy for even dense, confused graphs. The FHAC often converges
to the global optimal for real applications using the proposed modularity. How-
ever, in some very tough cases, such as in very confused synthetic graphs, FHAC
significantly lags the global optimal obtained by GA. This suggests us to further
study more powerful fast clustering algorithm in the future to exert the potential
of the proposed modularity definition.

References

[1] A. Clauset, M. Newman, and C. Moore. Finding community structure in very large
networks, Physical Review E, 70:066111, 2004.

[2] C.R. Dias and L. S. Ochi. Efficient evolutionary algorithms for the clustering prob-
lem in directed graphs. The Congress on Evolutionary Computation, CEC *03, 2003.

236

(3]
(4]

(5]
(6]
(7]
(8]
(9]

(10]
(1]

(12]
[13]
[14]

(15]

(16]

(17]

(18]

[19]

Feng et al.

C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. Simon. A min-max cut algorithm for
graph partitioning and data clustering. Proc. of ICDM 2001, pages 107-114, 2001.
Z. Feng, X. Xu, N. Yuruk, and T. Schweiger. A novel similarity-based modularity
function for graph partitioning. In 9th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 2007), pages 385-396, Regensburg, Germany, 3-
7 September 2007.

L. Freeman. A set of measures of centrality based upon betweeness. Sociometry, 40:
35-41, 1977.

M. Girvan and M. Newman. Community structure in social and biological networks.
Proc. Natl. Acad. Sci. USA, 99: 7821-7826, 2002.

R. Guimera and L. A. N. Amaral. Functional cartography of complex metabolic net-
works. Nature, 433: 895-900, 2005.

L. Hegan and A. B. Kahng. New spectral methods for ratio cut partitioning and clus-
tering. IEEE Trans. On Computed Aided Design, 11: 1074-1085, 1992.

G. Hernadez, L. Bobadilla and Q. Sanchez. A genetic word clustering algorithm. The
Congress on Evolutionary Computation, 2005.

http://www.informatik.uni-trier.de/ ley/db/.

E. A. Leicht, P. Holme, and M. E. J. Newman. Vertex similarity in networks. Phys.
Rev. E, 73: 026120, 2006.

M. Newman. Detecting community structure in networks. Eur. Phys. J. B, 38: 321-
330, 2004.

M. Newman. Fast algorithm for detecting community structure in networks. Phys.
Rev. E, 69: 066133, 2004.

M Newman. Scientific collaboration networks: II. Shortest paths, weighted networks,
and centrality. Phys. Rev. E, 64: 015132, 2001.

W. Sheng, S. Swift, L. Zhang, and X. Liu. A weighted sum validity function for
clustering with a hybrid niching genetic algorithm. /IEEE Trans. On Sys., Man and
Cybernetics, part B: Cybernetics, 35(6): 1156-1167, 2005.

J. Shi and J. Malik. Normalized cuts and image segmentation. [EEE Trans. On Pattern
Analysis and Machine Intelligence, 22(8): 888-905, 2000.

J. Wang, L. Xu and B. Zhang. A genetic annealing hybrid algorithm based clustering
strategy in mobile ad hoc network. Proc. on Communications, Circuits and Systems,
2005.

S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press,
Cambridge, 1994.

J. Zhang, H. Chung and B. Hu. Adaptive probabilities of crossover and mutation
in genetic algorithms based on clustering technique. The Congress on Evolutionary
Computation, 2004.

Chapter 12

Mechanism-based Clustering of Genome-wide RNA Levels: Roles of
Transcription and Transcript-Degradation Rates

Sungchul Ji

Department of Pharmacology and Toxicology, Rutgers University
170 Frelinghuysen Rd., Piscataway, NJ 08855, USA
E-mail: sji@rci.rutgers.edu

W. Art Chaovalitwongse*

Department of Industrial and Systems Engineering, Rutgers University
96 Frelinghuysen Rd., Piscataway, NJ 08854, USA
Email: wchaoval @rci.rutgers.edu

Nina Fefferman

DIMACS, Rutgers University
96 Frelinghuysen Rd., Piscataway, NJ 08854, USA
Department of Public Health and Family Medicine, Tufts School of Medicine
Boston, MA, 02111, USA
Email: nina.fefferman @tufts.edu

Wonsuk Yoo

Department of Internal Medicine, Wayne State School of Medicine
4201 St. Antoine St., UHC 4H-30, Detroit, M1 48201, USA
Email: wyoo @med.wayne.edu

Jose E. Perez-Ortin

Department of Biochemistry and Molecular Biology, University of Valencia
Dr. Moliner 50, 46100 Burjassot, Spain

Email: jose.e.perez@uv.es

DNA array techniques invented over a decade ago enable biologists to measure
tens of thousands of mRNA levels in cells simultaneously as functions of envi-

*Corresponding Author.

237

238 Jietal.

ronmental perturbations. In a few cases the same technique has been employed
to measure not only genome-wide transcript levels (7L) but also the associated
transcription rates (7R) simultaneously. Since 7L is determined by the balance
between two opposing processes, i.e., transcription and transcript degradation,
simple theoretical considerations indicate that it would be impossible to deter-
mine 7R based on TL data alone. This conclusion is supported by the finding that
TL and TR do not always vary in parallel. In fact, the genome-wide measure-
ments of 7L and TR in budding yeast undergoing glucose-galactose shift indicate
that 7L can decrease even though 7R increases and 7L can increase despite the
fact that 7R decreases. These counter-intuitive findings cannot be accounted for
unless transcript-degradation rates (7D) are also taken into account. One of the
main objectives of this contribution is to derive a mathematical equation relating
TL to TR and TD. Based on this equation, it was predicted that there would be 9
different mechanisms by which 7L can be altered in cells. The 7L and TR data
measured in budding yeast demonstrate that all of the 9 predicted mechanisms
are found to be activated in budding yeast during glucose-galactose shift, except
Mechanisms 5 (i.e., decreasing TL with no change in 7R) and 9 (i.e., no change
in 7L nor in TR). It was also shown that the opposite changes in the mRNA levels
of glycolytic and respiratory genes observed between 5 and 360 minutes follow-
ing the glucose-galactose shift could be quantitatively accounted for in terms of
what is referred to as the transcript-degradation/transcription (D/T) ratios calcu-
lated here for the first time. Our results suggest that the predicted 9 mechanisms
of controlling 7L may be employed to cluster the genome-wide measurements of
mRNA levels as a means to characterize the functional states of both normal and
diseased cells.

12.1. Introduction

The DNA array technique allows cell biologists to measure the intracellular levels
of tens of thousands of different kinds of mRNA molecules in living cells simul-
taneously [1, 4, 22, 28, 30, 33] When mRNA levels are measured from a cell
preparation as a function of time after some perturbation and the resulting data are
subjected to a cluster analysis, it is frequently found that the mRNA levels can be
grouped into a set of distinct clusters, each cluster exhibiting a common kinetics
or a temporal pattern of the changes in mRNA levels.

It has been an almost universal practice in the field of microarray technol-
ogy since its inception to interpret mRNA level changes in terms of transcription
(i.e., the synthesis of mRNA using DNA as template) rates only, without taking
into consideration the transcript-degradation step [23]. It is well known that this
transcript-degradation process can occur with rates comparable to those of tran-
scription itself [1, 28, 29]. Ignoring the role of the transcript degradation step is
tantamount to equating transcript levels with transcription rates and this has led

Mechanism-based Clustering of Genome-wide RNA Levels 239

to the following erroneous interpretations of DNA microarray data:

(i) When mRNA levels increase, it is interpreted as an indication of in-
creased rates of transcription of the corresponding genes;
(i) When mRNA levels undergo no change, it is taken as the evidence for
unchanged transcription rates; and
(iii) When mRNA levels decrease, it is interpreted as an indication for de-
creased transcription rates.

For convenience, we will refer to this way of interpreting mRNA levels as the /-fo-
1 interpretation. Based on this approach, it has been widely assumed that, when
a mRNA cluster was found by various clustering techniques, this fact can be used
to infer that the underlying genes are transcribed with similar rates and hence that
there exists a corresponding gene cluster. It is one of the main objectives of this
chapter to demonstrate that this way of interpreting mRNA clusters is theoretically
invalid and factually unsupported, leading to Type I and Type II errors. A Type I
error (or a false positive) can arise, for example, when an increase in mRNA level
is interpreted as indicating an increase in the associated transcription rate (which
can be true sometimes but not always), since the level of a mRNA molecule can
increase even if the associated transcription rate does not change as long as the
number of mRNA molecules synthesized during the time period of observation
is greater than the number of mRNA molecules degraded during the same time
period. Similarly, a Type II error (or a false negative) can arise if a gene is inferred
to undergo no change in its transcription rate based on the fact that its mRNA
level did not change. This is because, even if a mRNA level did not change, the
transcription rate could have increased (or decreased) if the changes in the rate of
mRNA degradation happened to exactly counterbalance the effect of an increased
transcription rate.

Direct experimental evidence for the concept that mRNA levels, also known as
transcript levels (TL), is determined by a dynamic balance between transcription
and transcript degradation have been obtained only recently when 7L and tran-
scription rates (TR) were measured simultaneously from human lung carcinoma
cells [8], tobacco plant cells [19] and the budding yeast Sacharomyces cerevisiae
(S. cerevisiae) subjected to glucose-galactose shift [10]. Here we present the re-
sults of a genome-wide analysis of the yeast TL and TR data reported in Garcia-
Martinez et al. [10] based on a kinetic equation relating 7L to TR and transcription
degradation rates (7D), demonstrating the following points:

e TL and TR increase together (see Mechanism 2 in Table 12.1 and
Fig. 12.3) in 51% of the time and decrease together (see Mechanism 6)
40% of the time.

240 Jietal

e The opposite changes in glycolytic and respiratory 7L (See Fig. 12.4)
induced by glucose-derepression are due to opposite changes in 7D, thus
establishing an instance of degradational control in contrast to the well-
known transcriptional control.

e There are 9 mechanisms underlying underlying the changes in 7L (See
Fig. 12.3).

12.2. Materials and Data Acquisition

12.2.1. Glucose-Galactose Shift Experiments

The S. cerevisiae yeast strain BQS252 was grown overnight at 28 degrees Cel-
sius in YPD medium (2% glucose, 2% peptone, 1% yeast extract) to exponential
growth phase (ODggp = 0.5) [10]. Cells were recovered by centrifugation, re-
suspended in YPGal medium (2% galactose, 2% peptone, 1% yeast extract), and
allowed to grow in YPGal medium for 14-15 hours after the glucose-galactose
shift. Cell samples were taken at O (denoted as tp), 5 (t1), 120 (¢2), 360 (¢3), 450
(t4) and 850 (t5) minutes after the glucose-galactose shift. The ¢5 sampling time
corresponds to the exponential growth phase in YPGal medium. Two different
aliquots were taken from the cell culture at each sampling time. One aliquot was
processed to measure TR according to the genomic run-on protocol (see the next
section), and the other was processed to measure 7L using the same DNA arrays
recovered after TR measurements.

12.2.2. Measuring Transcription Rates (TR) Using the Genomic Run-on
(GRO) Method

The experimental details of the genomic run-on procedures are given in Garcia-
Martinez et al. [10]. This technique is a scaled-up version of the usual nuclear
run-on method [13]. Lysed cells contain transcription complexes stalled on the
DNA template due to lack of ribonucleotides. Transcription is re-initiated in vitro
by adding new nucleotides, one of which is radiolabled (e.g., [a—33P]UTP). After
allowing transcription to finish, one can determine via autoradiography the den-
sity of RNA polymerases for each gene. Assuming a constant speed for RNA
polymerase II molecules this density allows us to estimate the transcription rates
in the cells of interest. By comparing the amount of gene-specific radiolabeled
RNA synthesized in one nuclei preparation with another, it is possible to estimate
the extent of the RNA polymerase densities and, therefore, transcription rates in
the cells of interest. The TR data utilized in the TL-TR plots shown in Fig. 12.1
are available at hetp.//scsie.uv.es/chipsdna/chipsdna-e.htmlfdatos.

Mechanism-based Clustering of Genome-wide RNA Levels 241

a) YBLO091C-A b) YNL162W
160 40 /‘1
140 1 = 35
120 30
T
100 25
E o / ad . @ 20 B+ 4
= 60 Fis
40 ‘/// 10 3
23 N ‘ N r=ac—.
0 5 10 15 20 0 50 100 150 200 250
TL TL
c) YHR029C d) YLR084C
24 1.6
21 A 14 6o 1
18 // 1.2
. // 1 AV
12 1 Tos
F o9 1 0.6
6 //6 0.4 /v J
8 .« 4 —— 02 "4
0 ‘ , ‘ | 0 ; . ‘
0 10 %(IJ_ 30 40 0 20 40 60 80
TL

Fig. 12.1. Plots of the fold changes in transcription rates (7R) against those of transcript levels (7L)
measured in budding yeast at 6 time points (1 = 0 min, 2 = 5 min, 3 = 120 min, 4 = 360 min, 5 = 450
min, and 6 = 850 min) after the glucose-galactose shift.

12.2.3. Measuring mRNA or Transcript Levels (TL)

The total RNA isolated from the same cell culture used in the previous section was
reverse-transcribed into cDNA in the presence of [a—33P]dCTP [10]. The labeled
cDNAs were purified and hybridized under the same conditions as described for
GRO in order to minimize the variability due to artifacts of DNA membrane ar-
rays. Again, the raw TL data in arbitrary units measured in triplicates at 6 time
points are available at http://evalga.uv.es/scsie-docs/chipsdna/chipsdna-e.html.

12.2.4. The TL-TR Plots

The TL and TR data measured as described in the previous sections can be visu-
alized in a 2-dimensional plane as shown in Fig. 12.1. The genes depicted in this
figure were randomly chosen out of the 5,725 genes showing no missing values in
their triplicate measurements of 7L and TR. The notation given on the top of each
figure is the name of the open reading frame (ORF) whose 7L and TR values were
measured. The trajectory of each plot can be divided into 5 segments or vectors
bounded by two time points (e.g., vector 1-2 between 0 to 5 min after the glucose-

242 Jietal

galactose shift and vector 2-3 between 5 to 120 min, etc.). Each vector can be
characterized in terms of the angle measured counterclockwise starting from the
positive z-axis (see Fig. 12.2). For example, vector 5-6 in Fig. 12.1a is approxi-
mately 45° and vector 1-2 in Fig. 12.1b is approximately 225°. Thus, the angle o
determining the direction of the vector from the i*”* point to the (i + 1)** point in
a TL versus TR plot with coordinates (z;,y;) and (z;+1, yi+1), respectively, can
be calculated from the relation o = tan—! [%] + ©, where © = 0° if both
the numerator and the denominator are positive, © = 180° if either the numerator
is positive and the denominator is negative or both the numerator and the denom-
inator are negative, © = 360° if the numerator is negative but the denominator is
positive.

ATR

Fig. 12.2. The “unit” circle whose z-axis indicates the changes in 7L and y-axis those in 7R values
of a trajectory in the TL-TR plot. The direction of the radius of the circle coincides with the direction
of the component vector of a TL-TR trajectory. For convenience, each direction is defined by the
following values of angle a: a1 =357 — 3; a2 =3 — 87; a3 =87 — 93; wa =93 — 177; a5 =
177 — 183; ag = 183 — 267; av7 = 267 — 273; g = 273 — 357. The center of the circle denoted as
9 indicates that there is no change in 7R nor in 7L between two time points.

12.3. Statistical Analysis

The total number of genes whose 7L and TR values were measured was 5,913, of
which 5,725 genes were successfully measured in triplicates without any missing
values. The rest of the genes were measured in less than triplicates. A statistical
analysis for the comparison between the “expected” and the “observed” distribu-

Mechanism-based Clustering of Genome-wide RNA Levels 243

tions of genes over 8 possible mechanisms (excluding Mechanism 9) of control-
ling mRNA level in cells(defined in the previous section) was performed using the
binomial test to make inferences about a proportion for response rate based on a
series of independent observations. A hypothesis test was performed to compare
the average trajectories (also called sequences, time series, or profiles) of two
groups of genes coding for glycolytic and respiratory mRNA molecules. Each
group generates two average profiles, labeled 7L and TR (See Fig. 12.3a). Thus,
the null hypothesis states that “there is no difference between the two profiles as-
sociated with glycolysis and respiration”, and the alternative hypothesis states that
“There exists a significant difference between the two profiles”. In order to test
these hypotheses, a multivariate approach for repeated measures analysis was used
to calculate p-values. The p-value for the two trajectories shown in Fig. 12.3a is
less than 0.0001, indicating that there are significant differences between the av-
erage glycolytic and respiratory mRNA level trajectories. The p-value for the two
curves shown in Fig. 12.3b is 0.2292, indicating that there is no significant dif-
ference between the average trajectories of the glycolytic and respiratory mRNA
synthesis rates.

12.3.1. Calibration of TL Data

To convert the 7L data expressed in arbitrary unit to the corresponding values
in absolute unit (mRNA molecules per cell), we utilized the reference mRNA
abundance data complied by Beyer et al. [5] based on 36 datasets reported in the
literature. Out of about 5,700 mRNA abundance data that these authors collected,
we selected a total of 59 glycolytic and respiratory mRNA abundance values and
plotted them against the corresponding 7L data, leading to a linear regression line
satisfying the relation, n = 0.11147 Ly — 7.220, where n is the number of mRNA
molecules per cell, and T'Ly is the mRNA level measured in arbitrary unit at
t = 0. The correlation coefficient of the straight line was 0.94245. This equation
was used to convert all the 7L data (measured at five different time stamps) in
arbitrary unit into the corresponding values in absolute unit.

Examples of the time courses of the average changes in TL, TR, and the
transcript-degradation/transcription (D/T) ratios of glycolytic and respiratory
genes are shown in Fig. 12.3 and 12.4. The glycolytic genes considered here
include PDC2, PFKI, PFK2, ADHS, PDC6, LATI, PDAI, ADH2, GLKI1, PGM1,
ADH3, TPII, GCRI, and PDBI and the respiratory genes include QCR6, COX13,
COX9, NDII, CYTI1, COXS8, COX12, SDH4, COX5A, COX4, CYCI, QCR2, QCRS,
and CORI.

244 Jietal

a) Average mRNA Levels b) V_Svs time Plots
@ =Glycolysis; B = Oxphos @ =Glycolysis; = Oxphos
50 1
45 A é 0.9
3 40 o = 08 ¢
35] 3 0.7
o 30 @ 0.6 I
3 25] 205 1
2 e 208 I
E ?O 204 1
5 9o 0.
<10% e — E gg \ ——
) -
E S § o \vo/'
£ 0 T T T T 0 T T T T
€
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (minute) Time (minute)

Fig. 12.3. The time courses of the average changes in the transcript level (7L) and transcription rate
(TR) of 12-15 glycolytic (¢) and 14 respiratory genes (H).

12.3.2. Calibration of TR Data

Transcription rates of yeast genes at ¢, were estimated by utilizing the genome-
wide mRNA decay half-lives reported by Wang et al. [32] The half-life data were
down-loaded from their web site (http://www-genome.stanford.edu/turnover).
The mathematical relation between transcription rate, dn ; /dt, where N ; 18 the
number of the i*» mRNA molecules synthesized per cell during the time interval
dt, and the m RN A; decay half-life, denoted by t% can be derived based on the
following assumptions.

71/,

(i) Atto, budding yeast cells are at a steady state with respect to transcription
and transcript degradation. In other words, at to, dng ;/dt = dnp;/dt,
where np ; is the number of the i mRNA molecules per cell degraded
during the time interval dt.

(i) The decay of the i*» mRNA molecules obeys a first-order rate law given
by

—dni/dt = dTLDJ‘/dt = kDJ'[mRNAi], (121)

where kp ; is the first-order degradation rate constant and [mRN A;] is
the concentration of the i*» mRNA in the cell. Integrating Eq. (12.1) with
respect to time leads to

[MRN A;] = [nRN Aj]pe Pt (12.2)

where [mRN A;]o is the mRN A; abundance at t,. Substituting the val-
ues, [mRNA;] = [mRNA;]o/2 att = t1 ;, and solving the resulting

5,0
equation for kp ; yields

In2 _ 0.693
ti. ti.

27 27

kpi= (12.3)

Mechanism-based Clustering of Genome-wide RNA Levels 245

Using this relation, it is possible to convert mRNA decay half-lives mea-
sured by Wang et al. [32] into the corresponding transcript decay rate
constants.

(iii) Since budding yeast cells are assumed to be at steady states at ¢y with
respect to transcription and transcript decay (previously mentioned in
the first assumption), it would follow that

0.693[mRN Ao
te

20

dns’i/dt = dTLDJ‘/dt = kD’i[mRNAi]O = . (124)

Thus Eq. (12.4) allows us to estimate the transcription rate, dng ;/dt, at
to from the [mRN A;]o and ¢1 ; values.

(iv) The conversion factor, defined as a; = (dng;/dt)/T R; calculated at ¢
is assumed to apply to all the other T'R; values measured at t1, to, t3, 4,
and t5, where T'R; denoting the TR values associated with the i gene.

(v) Since the mRN A; decay measurements were made at 37° Celsius (C)
[32], whereas the T'R; measurements were carried out at 28° C [10], the
absolute rate values for dng ;/dt calculated in (iii) were corrected for the
temperature difference by dividing dns ;/dt by the factor 2 x (9/10) =
1.9, which results from the assumption that the Q10 value (i.e., the fac-
tor by which the rate increases due to a 10° C increase in temperature)
was 2.

12.3.3. Kinetic Analysis of the Changes in mRNA Levels

In the absence of any exchange of mRNA molecules between budding yeast cells
and their environment, it is possible to equate the rate of change of the i** mRNA
molecules per cell, dn; /dt, with the balance between the rate of mRN A; synthe-
sis, dng ;/dt, and the rate of its degradation, dnp ;/dt given by

dm/dt = dn57i/dt — d’/lD7i/dt (125)

In general, the rate of synthesis of the it" mRNA, dns,; /dt, would be a function
of many variables including the levels (or concentrations) of RNA polymerase II,
various transcription factors (encoded by the j gene, where j # i, except when
the j" gene happens to code for a transcription factor that acts on the j** gene
itself), and small molecules such as AT P, ADP, AMP,Mg*t+,H™, etc. The
same would hold true for the rate of the degradation of the i*"* mRNA, dnp ;/dt.
A system of ordinary differential equations describing the dynamics of mRNA
levels in a cell taking into account all the variables mentioned above has been

246 Jietal

derived in several previous studies [6, 26, 27]. Our model in Eq. (12.5) is similar
to (but not identical with) Eq. (1) in the studies by Savageau [26, 27].

The change in the number of mRN A; molecules per cell, An;, during the
time interval, At, between two time points, ¢; and ¢ 1, can be expressed as

Ani = /dTM = /dn&i — /anﬂ' = An57i — ATLD’l', (12.6)

where the integration is from ¢; to txy1. The resulting equation, An; =
Ang,; — Anp;, simply states that the change in the number of the ‘" mRNA
molecules in a cell during the time interval, At = t; 1 — tg, is determined by the
balance between the number of m RN A; molecules synthesized and the number
of mRN A; molecules degraded during that time interval. It should be noted here
that the variables in Eq. (12.6) are in absolute units. We can estimate the variables
in Eq. (12.6) as follows:

Ani =MN; —N;—1 (127)
ATLSJ' = AUCS (12.8)
ATLD’Z‘ = AUCS - (ni - ni,l), (129)

where the subscript ¢ refers to the i*" mRNA molecule, and AUCY is the area
under the curve of the TR-time plots.

12.3.4. Transcript-Degradation to Transcription (D/T) Ratios

The transcript-degradation/transcription (D/T) ratio for the i mRNA molecule
can be defined by

ATLD’Z‘

D/T = (12.10)

An57i '

Note that the subscript ¢ is omitted from the term, D/T, for simplicity. Combining
Egs. (12.6) and (12.10) results in

An; = Ang (1 — D/T). (12.11)

We observe that the sign of An; is determined solely by the magnitude of the D/T
ratio relative to 1. The relationship can be described by

An; > 0if D/T < 1 (12.12)
An; =0if D/T =1 (12.13)

An; < 0if D/T > 1. (12.14)

Mechanism-based Clustering of Genome-wide RNA Levels 247

The time-dependent variations of the D/T ratios of the glycolytic and respiratory
genes were calculated as explained in the previous section. Fig. 12.4 illustrates
the temporal evolution of D/T ratios of the glycolytic and respiratory genes given
in Fig. 12.3. It should be pointed out that there are 2 less respiratory genes than
the one given in Fig. 12.3b due to missing values in the degradation rates. The
D/T ratio for the i mRNA molecule (DT'R;) is defined as i’;’: - where n; is the

number of the i*» mRNA molecules synthesized (.5) or degraded (D) per cell over
a given time period (see the previous section for more details). The calculation
of Ang; requires integrating the T'R; versus time curves between two sampling
time points, say #; and . This is why there are only 5 DT R’s, each of which
was plotted at the mid-point of the two time points involved.

Degradation/Transacription (D/T) Ratios vs Time
@ =Glycolysis; [l = Oxphos

3.5
3.0
25 \

atios
n
o
=i

\
-l
E 12 \\0\/"\ g |
0.5 \.\ /

0.0 T T T T

0 200 400 600 800 1000
Time (minute)

D.

Fig. 12.4. The temporal variations of the transcript-degradation/transcription (D/T) ratios of the 15
glycolytic (#) and 12 respiratory genes (Hl) given in Fig. 12.3.

12.4. Experimental Results

In our previous publication [10], we reported that, when yeast cells were grown
in a glucose-containing medium to exponential growth phase, harvested by cen-
trifugation, and resuspended in a galactose-containing medium replacing glucose,
extensive metabolic changes were found to occur as reflected in 7L and TR values
for almost all of the 6,400 genes in the yeast genome. The 7L trace averaged over
5,753-5,829 genes decreased by about 65% during the first 5 minutes following
the glucose-galactose shift and continued to decline until 360 minutes by further
20%. There was a slight increase (17%) in TL between 360 and 450 minutes,

248 Jietal

which was followed by a smaller decrease (12%) between 450 and 850 minutes.
In contrast, the 7R values averaged over 5,753-5,829 genes exhibited very differ-
ent kinetic behaviors: A rapid increase by about 60% during the first 5 minutes
followed by a 150% decrease to the 10% level of the control by 120 minutes.
This low level of TR was maintained until 360 minutes when it started to increase
linearly up to the 45% level of the control by 850 minutes. The 7L and 7R val-
ues were normalized with respect to their values at t = 0, and corrected for the
increasing number of cells during the observational period.

These observations clearly indicate that the average 7L and 7R values do not
change in parallel (as would have been expected if 7L reflected the rates of gene
expression, namely 7R) but exhibit seemingly independent kinetic behaviors, es-
pecially during the first (0-5 minutes) and the last (450 - 850 minutes) periods of
observation. The relation between TL and TR can be visualized by plotting 7L
against 7R on a 2-dimensional plane as shown in Fig. 12.1a through 12.1d. A
trajectory in the TR versus TL plane consists of a set of 5 vectors, each represent-
ing the change in 7L and 7R over a time interval which varies from 5 minutes to
400 minutes. The trajectory associated with the gene YBL0O91C-A consists of a
series of five connected vectors starting from time point 1 (0 minute) and ending
at time point 6 (850 minutes) having approximate angles of 315°,270°, 135°,45°,
and 45°. A given vector is associated with a mechanism of RNA metabolism ex-
pressed in terms of 7L and TR. Specifically, when o = 315°, it indicates that,
during the first time interval (i.e., from 0 to 5 minutes), the transcript level 7L
of gene TBLO91C-A is increased but its transcription rate 7R is decreased; when
o = 270°, it indicates that the same gene experienced no change in 7L but a de-
crease in TR, etc. It is important to note that this gene experienced an increase in
both 7L and TR only during the last two time intervals, since their associated «
values are approximately 45°. The 9 mechanisms of RNA metabolism depicted
in Fig. 12.2 are defined as follows:

(1) Mechanism 1 is defined by the « values ranging from 357° (or —3°) to
3° and indicates that 7L increases without any change in TR;

(2) Mechanism 2 is defined by the « values ranging from 3° to 87° and
indicates that both 7L and TR increase;

(3) Mechanism 3 is defined by the « values ranging from 87° to 93° and
indicates that TL does not change although 7R increases;

(4) Mechanism 4 is defined by the « values ranging from 93° to 177° and
indicates that TL decreases even though TR increases;

(5) Mechanism 5 is defined by the « values ranging from 177° to 183° and
indicates that TL decreases without any change in TR;

Mechanism-based Clustering of Genome-wide RNA Levels 249

(6) Mechanism 6 is defined by the « values ranging from 183° to 267° and
indicates that both 7L and TR decreases;

(7) Mechanism 7 is defined by the « values ranging from 267° to 273° and
indicates that 7L does not change although 7R decreases; and

(8) Mechanism 8 is defined by the « values ranging from 273° to 357° and
indicates that TL increases even though 7R decreases.

Note that Mechanisms 9 is not shown above because it is defined not by « but by
the values of AT'L and AT R both being zero.

Since there are 5 vectors per TL-TR trajectory, there are a total of 5 x 5, 725 =
28, 625 values of « to be calculated. These values are calculated using the formula
given in the previous section and displayed in Table 12.1. The rows numbered 1
through 5 refer to the 5 time intervals and the columns numbered 1 through 8 refer
to the mechanisms of controlling mRNA levels. Due to a large number of genes
involved, we used the normal approximation approach, leading to the results that
the observed proportions for Mechanisms 1, 2, 3, 4, 6, 7, and 8 are significantly
different from the expected except for Mechanism 5. In other words, all of the 8
mechanisms are observed to occur in budding yeast cells under the experimental
conditions employed, except Mechanisms 5 and 9.

Table 12.1. The frequency distributions of the 8 modules of RNA metabolism (defined in the leg-
end to Fig. 12.2) as the functions of the 5 time periods following the glucose-galactose shift.If the
angles are randomly distributed over 360°, the expected distributions can be calculated as shown
in the 8" row. The p-values for the difference between the observed and the expected distri-
butions are given in the last row. The differences are all significant, except for Mechanism 5.

Mechanism
Vector 1 2 3 4 5 6 7 8 Total
1 0 142 234 3470 96 1732 12 39 5725
2 14 18 3 37 5 3729 617 1302 5725
3 340 1914 52 638 314 1471 28 968 5725
4 477 4237 21 151 61 143 19 616 5725
5 12 1151 238 4213 38 56 4 13 5725
Total Observed 843 7462 548 8509 514 7131 680 2938 28625
Total Expected 477 6678 477 6678 477 6678 477 6678 28625
p-value < 0.0001 | < 0.0001 | 0.001 | <0.0001 | 0.092 | < 0.0001 | < 0.0001 | < 0.0001

The numbers in Table 12.1 represent the frequencies of the different mech-
anisms that occur in budding yeast during one of the five time intervals. Thus,
during the first time interval (i.e., from O to 5 minutes), no gene experienced (or ex-
hibited) Mechanism 1; 142 genes experienced Mechanism 2; 234 genes exhibited
Mechanism 3; 3,470 genes experienced Mechanism 4; 96 experienced Mecha-
nism 5; 1,732 genes experienced Mechanism 6; 12 genes experienced Mechanism
7; and 39 experienced Mechanism 8. If the various mechanisms occur randomly

250 Jietal.

during this time interval, their frequency of distribution would be expected to be
proportional to the magnitude of the angle « associated with the vector spanning
the time intervals involved, i.e., 6° for Mechanisms 1, 3, 5, and 7, and 84° for
Mechanisms 2, 4, 6 and 8. The theoretically predicted distributions of the mecha-
nisms based on the angular sizes are given in the 9** row in Table 12.1. Compar-
ing Rows 8 and 9, it is clear that all of the 8 mechanisms occur with frequencies
different from those expected on the basis of random distributions, except Mecha-
nism 5, as evidenced by the fact that the associated p-values are all less than 0.001
except that associated with Mechanism 5.

In 2002, Gorospe and her group measured for the first time the 7L and TR
data for about 2,000 genes from non-small cell human lung carcinoma H1299 [8]
and found that 7L could increase or decrease without any changes in TR (see
Groups IV and V in Table 1 of [8]), from which they concluded that transcript
degradation played a critical role in determining mRNA levels. The first genome-
wide measurements of 7L and 7R in budding yeast S. cerevisiae were reported by
Garcia-Martinez et al. [10], whose results also indicated that there were no /-fo-1
correlation between TL and TR. However, neither of these publications included
any mathematical equation relating 7L, TR, and 7D. One of the main objectives
of this paper is to fill this gap in our knowledge and use the derived equation
to analyze the TL and TR data of functionally well-defined groups of mRNAs in
order to investigate the possible functional roles of mRNA levels in cell biology.
For this purpose, we chose the glycolytic and respiratory mRNA molecules for a
detailed analysis because the biochemistry of glycolysis and respiration (leading
to oxidative phosphorylation) and their antagonistic interactions are well known
in S. cerevisiae during glucose-galsctose shift [2, 7, 15, 16, 18].

The unicellular organism S. cerevisiae (also known as budding yeast, baker’s
yeast, or wine yeast) has the capacity to metabolize glucose and galactose but
prefers the former as the carbon and energy sources when both nutrients are
present in its environment. In the presence of glucose, the organism turns on
those genes coding for the enzymes needed to convert glucose to ethanol (which
phenomenon is known as glucose induction) and turns off those genes needed for
galactose metabolism (which phenomenon is known as glucose repression) [2,
7, 15, 16, 18]. The detailed molecular mechanisms underlying these phenomena
(called diauxic shift) are incompletely understood at present and are under inten-
sive studies [11, 25, 31]. When glucose is depleted, S. cerevisiae increases its rate
of metabolism of ethanol to produce ATP via the Krebs cycle and mitochondrial
respiration [11, 25]. This metabolic control is exerted by reversing the glucose re-
pression of the genes encoding the enzymes required for respiration (i.e., oxidative
phosphorylation) — the process referred to as glucose de-repression [11].

Mechanism-based Clustering of Genome-wide RNA Levels 251

12.5. Conclusion and Discussion

Fig. 12.3a shows the time courses of the average levels of 14 each of the glycolytic
and respiratory mRNA molecules during the 850 minutes of observation after
shifting glucose to galactose. The time course of the average transcription rates of
the same sets of glycolytic and respiratory genes are displayed in Fig. 12.3b. The
most striking feature of these figures is that, despite the similarity between the
time courses of the transcription rates (7R) of glycolytic and respiratory genes,
those of the corresponding transcript levels (7TL) are quite different. In fact, the TL
trajectories of glycolytic and respiratory genes change in opposite directions dur-
ing the period between 5 and 360 minutes after glucose-galactose shift, whereas
the corresponding TR trajectories almost coincide. As shown in Fig. 12.4, these
opposite changes in TL appear to be the consequences of the opposite changes in
the degradation rates of glycolytic and respiratory mRNA molecules.

The qualitative features of the temporal behaviors of TL and TR changes dis-
played in Fig. 12.3a and 12.3b are summarized in Table 12.2. As indicated in the
first two rows, the total observational period of 850 minutes are broken down to
5 phases, labeled 7 through V. During Phase I, the transcript levels of both gly-
colytic and respiratory genes decrease precipitously although the corresponding
transcription rates increase, most likely because the stress induced by glucose-
galactose shift increase transcript degradation rates more than can be compensated
for by increased transcription. This interpretation is supported by the transcrip-
tion/degradation ratio of 0.5 calculated for Phase I (see Fig. 12.4). During Phases
IT and III, the glycolytic transcript levels decrease by 2 fold, whereas the respi-
ratory transcript levels increase by 4 fold. Since the corresponding transcription
rates of both the glycolytic and respiratory genes decline rapidly followed by a
plateau, the increased respiratory mRNA levels cannot be accounted for in terms
of transcriptional control but must implicate degradational control. That is, just
as the removal of glucose “de-induces” glycolytic mRNA molecules (leading to
the declining 7L and 7R trajectories for glycolysis in Fig. 12.3a and 12.3b), so it
might repress the degradation of respiratory mRNA molecules, leading to a rise in
respiratory mRNA levels as seen in Fig. 12.3a between the second and fourth time
points. This phenomenon may be referred to as “glucose de-induction” in analogy
to glucose induction [7, 18, 20]. If this interpretation is correct, one intriguing hy-
pothesis suggests itself that glucose normally keeps the respiratory mRNA levels
low by both enhancing the degradation and repressing the synthesis of respiratory
mRNA molecules. During Phase IV, both TL and TR for glycolytic and respira-
tory genes increase, and this may be attributed to galactose induction [11, 18, 34].
In support of this interpretation, it was found that glucose-galactose shift induced

252 Jietal

an increase in both 7L and TR of the Leloir genes (GAL 1, 2, 3, 7 and 10) be-
tween 120 and 450 minutes by more than 10 folds (data not shown). The Leloir
genes code for the enzymes and transport proteins that are involved in convert-
ing extracellular galactose to intracellular glucose-1-phosphate [9], which is then
metabolized via the glycolytic and respiratory pathways. Finally, during Phase
V, the glycolytic mRNA levels remain constant while the respiratory mRNA lev-
els decline slightly, the latter probably due to galactose repression (in analogy
to the well-known glucose repression [18]) of respiration following the forma-
tion of glucose-1-phosphate via the Leloir pathway [9]. The transcription rate of
glycolytic genes continue to increase during Phase V probably due to galactose in-
duction [21, 25], although the corresponding transcript levels remain unchanged,
which may also indicate the degradational control of glycolytic mRNA molecules
during this time period. That is, budding yeast seems able to keep glycolytic 7L
constant in the face of increasing TR, by increasing TD - the transcript degradation
rate. The TR trajectory of respiratory genes also continue to increase during Phase
V despite the fact that their TL trajectory decline, which can be best explained
in terms of the hypothesis that that respiratory mRNA levels are controlled by
transcript degradation. It is quite evident that the 7L and 7R data presented in
Fig. 12.3a and 12.3b cannot be accounted for in terms of 7R alone but requires
taking into account both 7R and TD on an equal footing for their logically consis-
tent explications, which is tantamount to the conclusion that 7L is determined by
the D/T ratio (see Fig. 12.3a and 12.4).

Table 12.2. A summary of the kinetics of the 7L and TR changes depicted in Fig. 12.3a
and 12.3b. The upward and downward arrows indicate an increase and decrease, respectively.

Time (min) 0-5 | 5-120 | 120-360 | 360-450 450-850
Phase (or Time Period) 1 11 111 v \Y
Transcript Glycolysis | | | T No Change

Level (TL) Oxidative ! T T T !
Phosphorylation

Transcription Glycolysis T ! ! T T

Rate (TR) Oxidative T 1 ! T T
Phosphorylation

In conclusion, the genome-wide 7L and TR data of S. cerevisiae measured by
Garcia-Martinez et al. [10] have provided us with a concrete experimental basis
to establish the concept that mRNA levels measured with cDNA arrays cannot be
interpreted in terms other than what is here called the transcription/degradation
(D/T) ratios. These ratios have been found useful in characterizing the temporal
evolution of the molecular mechanisms underlying mRNA level changes induced

Mechanism-based Clustering of Genome-wide RNA Levels 253

by glucose-galactose shift in this microorganism, which may be extended to other
cellular systems for similar determinations. Since these mRNA level changes re-
flect the dynamic metabolic states of cells (i.e., cell states) supported by dissipa-
tion of free energy, they qualify as examples of what was referred to as intracel-
lular dissipative structures (IDSs), an example of the application of Prigogine’s
dissipative structure concept to molecular cell biology [3, 14, 17]. It was postu-
lated that IDSs serve as the immediate driving forces for all cell functions and
reflect the functional states of the cell. If this interpretation turns out to be correct
upon further investigations, the DNA array technique, due to its ability to measure
D/T ratios as demonstrated here, may prove to be an invaluable experimental
tool to characterize and investigate /DSs and their biological functions, leading to
numerous applications in basic cell biology, biotechnology, and medicine, includ-
ing developments of diagnostic procedures to recognize cancer cells in their early
developmental stages and testing drug candidates for their ability to reverse such
pathological cell states.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grant No. 0546574. The first author thanks R. Miura and S. Dhar of NJIT
for their valuable contributions in the early phase of the research program de-
scribed here.

References

[1] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and nor-
mal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. USA, 96:
6745-6750, 1999.

[2] M.P. Ashe, S.K. De Long, and A.B. Sachs. Glucose depletion rapidly inhibits trans-
lation initiation in yeast. Mol. Biol. Cell, 11: 833-848, 2000.

[3] A. Babloyantz. Molecules, Dynamics and Life: An Introduction to Self-Organization
of Matter. Wiley-Interscience, New York, 1986.

[4] J.M. Berg, J.L. Tymoczko, and L. Stryer. Biochemistry, Fifth Edition. W. H. Freeman
and Company, New York, 2002.

[5] A. Beyer, J. Hollunder, H.-P. Nasheuer, and T. Wilhelm. Post-transcriptional expres-
sion regulation in the yeast saccharomyces cerevisiae on a genomic scale. Mol. Cell.
Proteomics, 3: 1083-1092, 2004.

[6] T. Chen, H. L. He, and G. M. Church. Modeling gene expression with differential
equations. In R.B. Altman, A K. Dunker, L. Hunter, T.E. Klein, and K. Lauderdale

254

(7]
(8]

(9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]
(17]

(18]

(19]

[20]

(21]

(22]

Jietal.

(editors), Pacific Symposium on Biocomputing, World Scientific, Singapore, pages
29-40, 1999.

J.L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring the metabolic and genetic control
of gene expression on a genomic scale. Science, 278: 680-686, 1997.

J. Fan, X. Yang, W. Wang, W. H. Wood, K. G. Becker, and M. Gorospe. Global
analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc. Nat. Acad.
Sci., 99(16): 10611-10616, 2002.

L. Fu, P. Bounelis, N. Dey, B. L. Browne, R. B. Marchase, and D. M. Bedwell.
The posttranslational modification of phosphoglucomutase is regulated by galactose
induction and glucose repression in Saccharomyces cerevisiae. J. Bacteriol., 7(11):
3087-3094, 1995.

J. Garcia-Martinez, A. Aranda, and J. E. Perez-Ortin. Genomic run-on evaluates tran-
scription rates for all yeast genes and identifies gene regulatory mechanisms. Mol.
Cell, 15: 303-313, 2004.

A. P. Gasch. The environmental stress response: a common yeast response to di-
verse environmental stresses. In S. Hohmann and W.H. Mager (editors), Yeast Stress
Responses, Springer, Berlin, pages 11-70, 2003.

J. L. Hargrove and F. H. Schmidt. The role of mRNA and protein stability in gene
expression. FASEB J., 3: 2360-2370, 1989.

K. Hirayoshi and J. T. Lis. Nuclear run-on assays: assessing transcription by measur-
ing density of engaged RNA polymerases. Methods in Enzymology, 304: 351-362,
1999.

S. Ji. The Bhopalator: a molecular model of the living cell based on the concepts of
conformons and dissipative structures. J. theoret. Biol., 116: 399-426, 1985.

G. Jona, M. Choder, and O. Gileadi. Glucose starvation induces a drastic reduction in
the rates of both transcription and degradation of mRNA in yeast. Biochim. Biophys.
Acta, 1491: 37-48, 2000.

M. Johnnston. Feasting, fasting and fermenting: glucose sensing in yeast and other
cells. Trends Genetics, 15(1): 29-33, 1999.

D. Kondepudi and I. Prigogine. Modern Thermodynamics: From Heat Engine to
Dissipative Structures. John Wiley and Sons, Inc., Chichester, 1998.

K. M. Kuhn, J. L. DeRisi, P. O. Brown, and P. Sarnow. Global and specific transla-
tional regulation in the genomic response of saccharomyces cerevisiae to nonfermen-
tal carnbon source. Mol. Cell. Biol., 21(3): 916-927, 2001.

J. Legen, S. Kemp, K. Krause, B. Profanter, R. G. Hermann, and R. M. Maier. Com-
parative analysis of plastid transcription profiles of entire plastid chromosomes from
tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J.,
31: 171-188, 2002.

K. K. Leuther and S. A. Johnston. Nondissociation of GAL4 and GALSO0 in vivo after
galactose induction. Science, 256(5061): 33-1335, 1992.

A. L. Mosley, J. Lakshmann, B. K. Aryal, and S. Ozcan. Glucose-mediated phospho-
rylation converts the transcription factor Rgtl from a repressor to an activator. J. Biol.
Chem., 278 (12): 10322-10327, 2003.

A. C. Pease, D. Solas, E. J. Sullivan, M. T. Cronin, C. P. Holmes, and P. A. Fodor.
Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Nat.
Acad. Sci. USA, 91: 5022-5026, 1994.

(23]
[24]

[25]
[26]

(27]

(28]

(29]

(30]

(31]

(32]
(33]

(34]

(35]

Mechanism-based Clustering of Genome-wide RNA Levels 255

L. Prigogine. Time, structure, and fluctuations. Science, 201: 777-785, 1978.

D. R. Rhodes and A. M. Chinnaiyan. Bioinformatics strategies for translatingh
genome-wide expression analyses into clinically useful cancer markers. Ann. N.Y.
Acad. Sci., 1020: 32-40, 2004.

H. Ronne. Glucose repression in fungi. Trends Genetics, 11(1): 12-17, 1995.

M. A. Savageau. Biochemcial Systems Analysis I: Some mathematical properties of
the rate law for the component enzymatic reactions. J. theoret. Biol., 25: 365-369,
1969.

M. A. Savageau. Biochemcial Systems Analysis II: The steady-state solutions for an
n-pool system using a power-law approximation. J. theoret. Biol., 25: 370-379, 1969.
S. M. Schena, D. Shalon, D. R. Davis, and P. O. Brown. Quantitative monitoring of
gene expression patterns with a complementary DNA microarray. Science, 91: 467-
470, 1995.

D. J. Shapiro, J. E. Blume, and D. A. Nielsen. Regulation of messenger RNA stability
in eukaryotic cells. BioEssays, 6(5): 221-226, 1986.

M. A. Troester, K. A. Hoadley, T. Sorlie, B.-S. Herbert, A.-L. Borresen-Dale, P. E.
Lonning, J. W. Shay, W. K. Kaufmann, and C. M. Perou. Cell-type-specific responses
to chemotherapeutics in breast cancer. Cancer Research, 64: 4218-4226, 2004.

B. P. Tu, A. Kudlicki, M. Towicka, and S. L. McKnight. Logic of the yeast metabolic
cycle: temporal compartmentalization of cellular processes. Science, 310: 1151-
1158, 2005.

Y. Wang, C. L. Liu, J. D. Storey, R. J. Tibshirani, D. Herschlag, and P. O. Brown.
Precision and functional specificity in mRNA cay. PNAS, 99(9): 5860-5865, 2002.
S. J. Watson and U. Akil. Gene chips and arrays revealed: A primer on their power
and their uses. Biol. Psychiatry, 45: 533-543, 1999.

J. Winderickx, 1. Holsbeeks, O. Lagatie, F. Giots, J. Thevelein, and H. de Winde.
From feast to famine; adaptation to nutrient availability in yeast. In S. Hohmann and
W.H. Mager (editors). Yeast Stress Responses, Springer, Berlin, pages 305-386, 2003.
E. Yang, E. van Nimwegen, M. Zavolan, N. Rajewsky, M. Schoeder, M. Magnasco,
and J. E. Darnell, Jr. Decay rates of human mRNAs: Correlation with functional
characteristics and sequence attributes. Genome Research, 13: 1863-1872, 2003.

This page intentionally |eft blank

Chapter 13

The Complexity of Feature Selection for Consistent Biclustering

O. Erhun Kundakcioglu and Panos M. Pardalos

Department of Industrial and Systems Engineering
University of Florida
303 Weil Hall
Gainesville, FL, 32611, USA
{erhun, pardalos} @ufl.edu

Biclustering is simultaneous classification of the samples and features in a way
that samples from the same class have similar values for that class’ characteristic
features. A biclustering is consistent if in each sample (feature) from any set, the
average expression of features (samples) that belong to the same class is greater
than the average expression of features (samples) from other classes. Supervised
biclustering uses a training set to classify features whose consistency is achieved
by feature selection. The worst case complexity of this feature selection process
is studied.

13.1. Introduction

Biclustering is a methodology allowing simultaneous partitioning of a set of sam-
ples and their features into classes. Samples and features classified together are
supposed to have a high relevance with each other which can be observed by
intensity of their expressions. The notion of consistency for biclustering is de-
fined using interrelation between centroids of sample and feature classes. Pre-
vious works on biclustering concentrated on unsupervised learning and did not
consider employing a training set, whose classification is given. However, with
the introduction of consistent biclustering, significant progress has been made in
supervised learning as well.

A data set (e.g., from microarray experiments) is normally given as a rectan-
gular m x n matrix A, where each column represents a data sample (e.g., patient)
and each row represents a feature (e.g., gene)

A= (aij)mxn

257

258 Kundakcioglu & Pardalos

where a;; is the expression of " feature in " sample.

Biclustering is applied by simultaneous classification of the samples
and features (i.e., columns and rows of matrix A, respectively) into k
classes. Let S1,Ss,...,5S denote the classes of the samples (columns) and
Fy, Fy, ... F) denote the classes of features (rows). Formally biclustering
can be defined as a collection of pairs of sample and feature subsets B =
{(51, Fl), (Sg, Fg), RN (Sk, Fk)} such that

Sla 527 SRR Sk c {afj}j:L...,na
k
U Sr = {a]}jzl,m,nv
r=1

Sc()Se =06 (#¢,

Fi,Fo, ..., Fy C{aiti=1,..m,
k
U F. ={ai}iz=1,... m,
r=1

F[\Fe=0&C#¢,

where {a’};—1, , and {a;}i=1,.. , denote the set of columns and rows of the
matrix A, respectively.

The ultimate goal in a biclustering problem is to find a classification for which
samples from the same class have similar values for that class’ characteristic
features. The visualization of a reasonable classification should reveal a block-
diagonal or “checkerboard” pattern. A detailed survey on biclustering techniques
can be found in [5] and [8].

The concept of consistent biclustering is introducted in [3]. Formally, a bi-
clustering B is consistent if in each sample (feature) from any set S, (set F;.),
the average expression of features (samples) that belong to the same class 7 is
greater than the average expression of features (samples) from other classes. The
model for supervised biclustering involves solution of a special case of fractional
0-1 programming problem whose consistency is achieved by feature selection.
Computational results on microarray data mining problems are obtained by refor-
mulating the problem as a linear mixed 0-1 programming problem.

An improved heuristic procedure is proposed in [9], where a linear program-
ming problem with continuous variables is solved at each iteration. Numerical

The Complexity of Feature Selection for Consistent Biclustering 259

experiments on the data, which consists of samples from patients diagnosed with
acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) diseases
(see [1, 2,7, 12, 13]), confirm that the algorithm outperforms the previous results
in the quality of solution as well as computation time. Consistent biclustering is
also used to analyze scalp EEG data obtained from epileptic patients undergoing
treatment with a vagus nerve stimulator (VNS) (see [4]).

The rest of the chapter is organized as follows: We first introduce mathemat-
ical formulations for consistent biclustering and introduce the application of fea-
ture selection for consistent biclustering. Next, the complexity results are shown
and the chapter is concluded with closing remarks.

13.2. Consistent Biclustering

Given a classification of the samples, S;, let S = (s,)nx% denote a 0-1 matrix
where s;,. = 1 if sample j is classified as a member of the class r (i.e., a’ € 85,),
and s;. = 0 otherwise. Similarly, given a classification of the features, I, let
F = (fir)mxk denote a 0-1 matrix where f;, = 1 if feature ¢ belongs to class r
(i.e., a; € F,), and f;, = 0 otherwise. Construct corresponding centroids for the
samples and features using these matrices as follows

Cs = AS(STS) ™" = (cie)mxr (13.1)

Cr=A"F(FTF)™" = (ci)nxr (13.2)
The elements of the matrices, cfE and cfﬁ, represent the average expression of the
corresponding sample and feature in class &, respectively. In particular,
Die1 @igSje | Djlaies, i
D1 Sie 1Sel

S
le

and

Cle = Li1 Gisfic _ Lilaicre Y.
> i1 Jie | Fel
Using the elements of matrix Cs, one can assign a feature to a class where it
is over-expressed. Therefore feature 7 is assigned to class 7 if ¢f, = maxg{c};},
ie.,

a; € Fy = ¢, > cif, VE, € # 7. (13.3)

Note that the constructed classification of the features, FT, is not necessarily
the same as classification F).. Similarly, one can use the elements of matrix C'r to

260 Kundakcioglu & Pardalos

classify the samples. Sample j is assigned to class 7 if ¢/, = max¢{cl}, i.e.,
al € Sp =l > ok, VE, €+ T (13.4)

As before, the obtained classification S'T does not necessarily coincide with clas-
sification S,..

Biclustering B is referred to as a consistent biclustering if relations (13.3) and
(13.4) hold for all elements of the corresponding classes, where matrices Cs and
CF are defined according to (13.1) and (13.2), respectively.

A data set is biclustering-admitting if some consistent biclustering for it ex-
ists. Furthermore, the data set is called conditionally biclustering-admitting with
respect to a given (partial) classification of some samples and/or features if there
exists a consistent biclustering preserving the given (partial) classification.

Theorem 13.1. Let B be a consistent biclustering. Then there exist convex cones
Py, Py, ..., P, CR™ suchthat only samples from S, belong to the corresponding
cone P,, v =1,... k. Similarly, there exist convex cones Q1,Q2,...,Qr CR"
such that only features from class F, belong to the corresponding cone Q,, r =
...,k

See [3] for the proof of Theorem 13.1. It also follows from the proven conic
separability that convex hulls of classes do not intersect.

By definition, a biclustering is consistent if F, = Fr and S, = S’T. However,
a given data set might not have these properties. The features and/or samples in
the data set might not clearly belong to any of the classes and hence a consistent
biclustering might not be constructed. In such cases, one can remove a set of
features and/or samples from the data set so that there is a consistent biclustering
for the truncated data. Selection of a representative set of features that satisfies
certain properties is a widely used technique in data mining applications. This
feature selection process may incorporate various objective functions depending
on the desirable properties of the selected features, but one general choice is to
select the maximal possible number of features in order to lose minimal amount
of information provided by the training set.

A problem with selecting the most representative features is the following.
Assume that there is a consistent biclustering for a given data set, and there is a
feature, i, such that the difference between the two largest values of c;. is negligi-
ble, i.e.,

min{ef — e} < a,

where « is a small positive number. Although this particular feature is classified
as a member of class 7 (i.e., a; € F}), the corresponding relation (13.3) can be

The Complexity of Feature Selection for Consistent Biclustering 261

violated by adding a slightly different sample to the data set. In other words, if «
is a relatively small number, then it is not statistically evident that a; € F}, and
feature ¢ cannot be used to classify the samples. The significance in choosing the
most representative features and samples comes with the difficulty of problems
that require feature tests and large amounts of samples that are expensive and time
consuming. Some stronger additive and multiplicative consistent biclusterings
can replace the weaker consistent biclustering. Additive consistent biclustering is
introduced in [9] by relaxing (13.3) and (13.4) as

a; € Fr = cji > of + ¢, VE € £ 7 (13.5)
and
al € Sy = ¢y > af +cl, VE € £ T (13.6)

respectively, where o’ > 0 and o > 0.
Another relaxation in [9] is multiplicative consistent biclustering where (13.3)
and (13.4) are replaced with

a; € Fr = ci, > B cly, VE € # 7 (13.7)
and
al € Sy = ¢y > B cl, VE € £ 7 (13.8)

respectively, where 31" > 1 and 7 > 1.

Supervised biclustering uses accurate data sets that are called the training set
to classify features to formulate consistent, a-consistent and 3-consistent biclus-
tering problems. Then, the information obtained from these solutions can be used
to classify additional samples that are known as the fest set. This information is
also useful for adjusting the values of vectors « and (3 to produce more character-
istic features and decrease the number of misclassifications.

Given a set of training data, construct matrix S and compute the values of
cfg using (13.1). Classify the features according to the following rule: feature ¢
belongs to class 7 (i.e., a; € Fy), if c5: > cisg, V¢ # 7. Finally, construct matrix
F" using the obtained classification. Let x; denote a binary variable, which is
one if feature ¢ is included in the computations and zero otherwise. Consistent,
a-consistent and G-consistent biclustering problems are formulated as follows.

262

CB:

max
x

subject to

a-CB:

max
T

subject to

(-CB:

max
T

subject to

Kundakcioglu & Pardalos

Z T (13.9a)

Yo ai firxs ey @i fiemi

Doiny firms Doiny figwi

z; €{0,1}, Vie{l,...,m} (13.9¢)
m
> (13.10a)
i=1
S ais fir Yo aijfiexi R R)
—_—n ey Yt = Vr’£€{17"'7k}7r7£§’.]€5h
oy firxs ’ o fiew "
(13.10b)
z; € {0,1}, Vie {1,...,m} (13.10c)
m
> (13.11a)
i=1

SR aig fira divy dijfigmi - ;
— >/6 = 3 VT‘,éE{l’,,,’k’}’T‘#f,jeS‘
> firmi YR, fiewi i

(13.11b)
z; € {0,1}, Vie{l,...,m} (13.11c)

The goal in the CB problem is to find the largest set of features that can be
used to construct a consistent biclustering®. The a-CB and §-CB problems are
similar to the original CB problem but the aim is to select features that can be
used to construct a-consistent and [-consistent biclusterings, respectively.

In (13.9), z;, ¢ = 1,...m are the decision variables. x; = 1 if ¢-th feature
is selected, and x; = 0 otherwise. f;; = 1 if feature ¢ belongs to class k, and
fir. = 0 otherwise. The objective is to maximize the number of features selected
and (13.9b) ensures that the biclustering is consistent with respect to the selected

features.

*Note that the number of selected features is the most commonly used objective function. Other
objectives such as maximizing the weighted sum of selected features can also be considered.

The Complexity of Feature Selection for Consistent Biclustering 263

13.3. Complexity Results

The optimization problem (13.9) is a specific type of fractional 0-1 programming
problem which is defined as

max Y wx (13.12a)
=1

Ns s m S .
Qo+ D ey 05T

subject to s 2 Ps; s=1,...,8 (13.12b)
; B0 + 2iz1 B

This problem is A/P-hard since linear 0-1 programming is a special class of
Problem (13.12) when 5, = O and 3j, = 1forj = 1,....n5, ¢ =1,...m
and s = 1...,S. A typical way to solve a fractional 0-1 programming problem
is to reformulate it as a linear mixed 0-1 programming problem, and solve new
problem using standard linear programming solvers (see [10, 11]).

In [3], a linearization technique for a generalized NP-hard formulation
(13.12) is applied to solve (13.9). In [9] heuristics are proposed for (13.9) and
generalizations. These attempts are appropriate if the problem is A/P-hard. How-
ever, whether (13.9) itself is AP-hard or not was an open question. This chapter
intents to fill this gap by proving the A/P-hardness of (13.9).

Theorem 13.2. Feature selection for consistent biclustering (i.e. (13.9)) is N'P-
hard.

Proof. To prove that the problem is NP-hard, a special case of the problem
is proven to be AN"P-hard. In the case considered, there are 2 samples and m
features. Suppose that there are two classes and all but one of the features belong
to the same class. Without loss of generality, assume that m-th feature belongs to
one class alone and hence it is selected in the optimal solution unless the problem
is infeasible (i.e., x,,, = 1). Then (13.9b) becomes

m—1
Liz i (13.13)
m—1
Die1 Ti
m—1
M < Ao (13.14)

It has to be proven that the decision problem is N'P-complete in order to prove
that the corresponding optimization problem is A/P-hard (see [6]). The decision
version of feature selection for consistent biclustering problem is

264 Kundakcioglu & Pardalos

D-CB: Is there a set of features that ensures biclustering is consistent, i.e., satisfies
(13.13)-(13.14)?

Clearly, D-CB is in NP since the answer can be checked in O(m) time for a
given set of features.

Next, the KNAPSACK problem will be reduced to D-CB in polynomial time
to complete the proof.

In a knapsack instance, a finite set U7, a size s(u) € ZT and a value v(u) €
Z+ for each u € Uy, a size constraint B € Z7T, and a value goal K € ZT are
given. The question is

KNAPSACK: Is there a subset U’ C Uj such that » . s(u) < B
and) o v(u) > K?

We can modify the knapsack problem as

II: Is there a subset U’ C U such that

Z s(u) <0 (13.15)
uelU’
> w(u) =07 (13.16)
ueU’

Obviously, IT remains NP-complete, since KNAPSACK can be reduced to its
modified variant if we define U = Uy Ut, s(t) = —B, and v(t) = — K.

Defining s'(u) = s(u) + o, v'(u) = v(u)+ (for each u € U and it can easily
be seen that

3 s(u) <0 Tt < (13.17)
uelU’
3 o(u) > 00 Zuep @ > (13.18)
uelU’

In microarray data sets, negative a;; values usually correspond to “bad” data
points. Note that, by selecting sufficiently large « and 3 values (i.e., « > B and
B > K), the reduction is valid for the case where a;; are nonnegative.

The inequality signs in (13.17)-(13.18) can be changed to strong inequality as
follows

,SI u ;8" (u
%<a©2uﬁ+~<a+q (13.19)
) v (u v (u
Luew V() >3 72“6‘[{},‘ W g (13.20)

v’

The Complexity of Feature Selection for Consistent Biclustering 265

where 0 < €1 < ming yeu,s (s (w) i (W) — ' (w)|}/|U] and 0 < ez <
miny, wev,v (u)£v (w) 1]V (w) — v'(w)|}/|U]. Note that, another upper bound on
€9 is (3 to ensure that the resulting problem has nonnegative a;; values.

As a result, the problem is reduced to selecting a subset U’ C U such that

!
% <a+e (13.21)
;v (u
% >08—e (13.22)

which is in the form of (13.13)-(13.14). The reduction is polynomial and (13.21-
13.22) holds true if and only if (13.15-13.16) holds true. Thus D-CB is N'P-
complete and the proof is complete. 0

Corollary 13.1. Problems (13.10) and (13.11) are N'P-hard.

Proof. Problem (13.9) is a special class of Problem (13.10) when o; = 0 for
j € Sp. Similarly Problem (13.9) is a special class of Problem (13.11) when
B; = 1forall j € S;. Hence both (13.10) and (13.11) are A"P-hard. O

13.4. Closing Remarks

The concept of feature selection for consistent biclustering is discussed. The aim
in this setting is to select a subset of features in the original data set such that the
obtained subset of data becomes conditionally biclustering-admitting with respect
to the given classification of training samples. The additive and multiplicative
variations of the problem are considered to extend the possibilities of choosing
the most representative set of features. It is shown that the feature selection for
consistent biclustering is A/P-hard.

References

[1] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini.
Tissue classification with gene expression profiles. In RECOMB ’00: Proceedings
of the fourth annual international conference on Computational molecular biology,
pages 54-64, New York, NY, USA, 2000. ACM Press.

[2] A. Ben-Dor, N. Friedman, and Z. Yakhini. Class discovery in gene expression data.
In RECOMB ’01: Proceedings of the fifth annual international conference on Com-
putational biology, pages 31-38, New York, NY, USA, 2001. ACM Press.

[3] S. Busygin, O. A. Prokopyev, and P. M. Pardalos. Feature selection for consistent
biclustering. Journal of Combinatorial Optimization, 10:7-21, 2005.

266

(4]

(]
(6]
(7]

(8]

(9]

(10]
(1]
[12]

(13]

Kundakcioglu & Pardalos

S. Busygin, N. Boyko, P.M. Pardalos, M. Bewernitz, and G. Ghacibeh. Biclustering
EEG data from epileptic patients treated with vagus nerve stimulation. In Onur Seref,
O. Erhun Kundakcioglu, and Panos M. Pardalos, editors, Data mining, systems analy-
sis and optimization in biomedicine, volume 953, pages 220-231. American Institute
of Physics, 2007.

S. Busygin, O. Prokopyeyv, and P. M. Pardalos. Biclustering in data mining. Comput-
ers & Operations Research, 35(9): 2964-2987, 2008.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander. Molecular classification of cancer: Class discovery and class prodiction by
gene expression monitoring. Science, 286(5439):531-537, 1999.

S. Madeira and A. Oliveira. Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
1(1):24-45, 2004.

A. Nahapetyan, S. Busygin, and P. M. Pardalos. Mathematical Modelling of Biosys-
tems, chapter An improved heuristic for consistent biclustering problems, pages 185—
198. Applied Optimization. Springer, 2008.

T.-H.Wu. A note on a global approach for general 0-1 fractional programming. Euro-
pean Journal Of Operational Research, 16:220-223, 1997.

M. Tawarmalani, S. Ahmed, and N. V. Sahinidis. Global optimization of 0-1 hyper-
bolic programs. J. of Global Optimization, 24(4):385-416, 2002.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature
selection for svms. In NIPS, pages 668—674, 2000.

E. P. Xing and R. M. Karp. Cliff: Clustering of high-dimensional microarray data
via iterative feature filtering using normilized cuts. Bioinformatics Discovery Note,
17:306-315, 2001.

Chapter 14

Clustering Electroencephalogram Recordings to Study Mesial
Temporal Lobe Epilepsy

Chang-Chia Liu
Department of Industrial and Systems Engineering

Department of Biomedical Engineering, University of Florida, USA
iamjeff@ufl.edu

Wichai Suharitdamrong

Department of Industrial and Systems Engineering, University of Florida, USA
wichais@ufl.edu

W. Art Chaovalitwongse

Department of Industrial and Systems Engineering, Rutgers University, USA
wchaoval @rci.rutgers.edu

Georges A. Ghacibeh

Northeast Regional Epilepsy Group, 20 Prospect Ave, Suite 800, Hackensack
NJ, 07601, USA
gghacibeh @ gmail.com

Panos M. Pardalos

Department of Industrial and Systems Engineering
Department of Biomedical Engineering, University of Florida, USA
pardalos@ufl.edu

The brain connectivity is known to have substantial influences over the brain
function and its underlying information processes. In this chapter, a novel graph-
theoretic approach is introduced to investigate the connectivity among brain re-
gions through electroencephalogram (EEG) recordings acquired from a patient
with mesial temporal lobe epilepsy (MTLE). The first step of the proposed ap-
proach is to transform the brain connectivity behavior into a complete graph. The
connectivity for each pair of the brain regions is first quantified by the cross mu-
tual information (CMI) measure, and then the maximum clique algorithm is sub-

267

268 Liu et al.

sequently applied to find the clique that contained a group of highly connected
brain regions that is represented by a clique with maximum size. The CMI is
known to have the ability to capture the connectivity between EEG signals. The
adopted maximum clique algorithm can reduce the complexity of the cluster-
ing procedure for finding the maximum connected brain regions. The proposed
graph-theoretic approach offers better assessments to visualize the structure of
the brain connectivity over time. The results indicate that the maximum con-
nected brain regions prior to seizure onsets were where the impending seizure
was initiated. Furthermore, the proposed approach may be used to improve the
outcome of the epilepsy surgery by identifying the seizure onset region(s) cor-
rectly.

14.1. Introduction

Neural activity is manifested by electrical signals known as graded and action po-
tentials. Berger’s [3] demonstration in 1929 has shown that it is possible to record
the electrical activity from the human brain, particularly the neurons located near
the surface of the brain. While we often think of electrical activity in neurons in
terms of action potentials, the action potentials do not usually contribute directly
to the electroencephalogram (EEG) recordings. In fact, for scalp EEG recordings,
the EEG patterns are mainly the graded potentials accumulated from hundreds of
thousands of neurons. The EEG patterns vary greatly in both amplitude and fre-
quency. The amplitude of the EEG reflects the degree of synchronous firing of the
neurons located around the recording electrodes. In general, the high EEG am-
plitude indicates that neurons are activated simultaneously. Low EEG frequency
indicates less responses of the brain, such as sleep, whereas higher EEG frequency
implies the increased alertness. Given the above descriptions, an acquired EEG
time series can be defined as a record of the fluctuating brain activity measured
at different times and spaces. The high degree of synchronicity for two different
brain regions implies strong connectivity among them and vice versa. We will in-
terchangeably use the terms synchronicity and connectivity for rest of the chapter.

Epileptic seizures involve the synchronization of large populations of neu-
rons [13]. Measuring the connectivity and synchronicity among different brain
regions through EEG recordings has been well documented [21, 22, 26]. The
structures and the behaviors of the brain connectivity have been shown to contain
rich information related to the functionality of the brain [4, 16, 30]. More recently,
the mathematical principles derived from information theory and nonlinear dy-
namical systems have allowed us to investigate the synchronization phenomena
in highly non-stationary EEG recordings. For example, a number of synchroniza-
tion measures were used for analyzing the epileptic EEG recordings to reach the

Clustering Electroencephalogram Recordings to Study Mesial Temporal Lobe Epilepsy 269

goals of localizing the epileptogenic zones and predicting the impending epileptic
seizures [1, 14, 20, 26, 29]. These studies also suggest that epilepsy is a dynamical
brain disorder in which the interactions among neuron or groups of neurons in the
brain alter abruptly. Moreover, the characteristic changes in the EEG recordings
have been shown to have clear associations with the synchronization phenomena
among epileptogenic and other brain regions. When the conductivities between
two or among multiple brain regions are simultaneously considered, the univariate
analysis alone will not be able to carry out such a task. Therefore it is appropriate
to utilize multivariate analysis. Multivariate analysis has been widely used in the
field of neuroscience to study the relationships among sources obtained simulta-
neously. In this study, the cross mutual information (CMI) approach is applied to
measure the connectivity among brain regions [9]. The CMI approach is a bivari-
ate measure and has been shown to have ability for quantifying the connectivity of
the EEG signals [8, 21, 24, 25]. The brain connectivity graph is then constructed
where vertices in the graph represent the EEG electrodes.

Every distinct pair of vertices is connected by an arc with the length equal to
the connectivity quantified by CMI. After constructing a brain connectivity graph,
which is a complete graph, we then remove arcs of connectivity below a speci-
fied threshold value to preserve only strong couplings of electrode pairs. Finally,
we employ a maximum clique algorithm to find a maximum clique in which the
brain regions are strongly connected (See Section 14.4.2). The maximum clique
size can be, in turn, used to represent the amount of largest connected regions
in the brain. The maximum clique algorithm reduces the computational effort
for searching in the constructed brain connectivity graph. The proposed graph-
theoretic approach offers an easy protocol for inspecting the structures of the brain
connectivity over time and possibly identifying the brain regions where seizures
are initiated.

14.2. Epilepsy as a Dynamical Brain Disorder

Epilepsy can be caused by multiple factors. Some people may even begin having
seizures from their childhood. Epilepsy in children can result from almost every-
thing related to the brain development or function. Lack of oxygen supply can
cause cerebral palsy and seizure for example new born infants that suffer a lack
of oxygen supply to the brain before or during birth have higher risks for devel-
oping epilepsy in their lives [31]. Epilepsy can also occur in adult subjects that
have bleeding in the brain as a result of prematurity or defective blood vessels
in the brain. Some studies have also reported epilepsy can be induced by genetic
changes. Some patients are born with genes related to epilepsy that can cause them

270 Liu et al.

to develop epilepsy for example the Unverricht-Lundborg disease. The majority
of patients who have seizures are first treated with anti-epileptic drugs (AEDs).
About 70% to 80% of these patients will become seizure free after the AED treat-
ment. The choice of the AEDs depends on several factors, including the type of
seizures, the age of the subject, and the potential side effects of the medicine.
Some patients, however, do not respond to the usual pharmacological treatments
and will then consider undergoing the epilepsy surgery.

14.3. Data Information

In the study, the EEG recordings (Table 14.1) were obtained using bilaterally,
surgically implanted electrodes in the hippocampus, temporal and frontal lobe
cortexes of the brain. The subject in this study was determined to have both left
and right hippocampal regions (bi-lateral) as epileptic seizure onset zones by neu-
rologists. The EEG recordings were meant for pre-surgical clinical evaluation
for possible surgical treatment of intractable temporal lobe epilepsy (TLE). The
recordings were obtained using the Nicolet BMSI 4000 with amplifiers of an input
range of 0.6 mV, sampling rate of 200 Hz and filters with a frequency range of a
0.5-70 Hz. The recording included a total number of 30 intracranial electrodes (8
subdural and 6 hippocampal depth electrodes for each cerebral hemisphere, and
a strip of 2 additional electrodes, see Fig. 14.1). The recorded EEG signals were
digitized and stored on magnetic media for subsequent off-line analysis.

Table 14.1. EEG Data information

Patient No. Gender Age Number of Seizure Duration of EEG
Electrodes Onset Zone Recordings (hours)
1 Male 37 30 L./R. Hippocampus 22

14.4. Graph-Theoretic Modeling for Brain Connectivity

Although the underlying mechanism of the transition from normal to seizure onset
for human brains is still largely unknown, the studies have reported that certain
type of temporal lobe seizures (TLE) is initiated by specific brain connectivity
patterns [25, 27]. The brain connectivity can be studied using a broad range of
network approaches. Several studies have attempted to use graph-theoretic meth-
ods to model the brain connectivity [2, 15, 18], especially the theory of directed
graphs is of special interest as it applies to structural and functional brain con-
nectivity at all levels. Applying the graph-theoretic models for the EEG signals,
the brain connectivity is presented using a complete graph G(V, E), where V is

Clustering Electroencephalogram Recordings to Study Mesial Temporal Lobe Epilepsy 271

Fig. 14.1. Electrode placement (30 electrodes)

the set of vertices and E is the set of arcs. The vertex set represents EEG record-
ing electrodes, an arc in the graph represents the synchronicity and connectivity
between pair of EEG recording electrodes. Here we focus on the structure of the
connectivity behavior in the construct graph which may relate to epileptic seizures.

14.4.1. Cross—Mutual Information (CMI)

The concept of CMI dates back to the work of Shannon in 1948 [28]. Generally,
CMI measures the information obtained from observations of one random event
for the other. It is known that CMI has the capability to capture both linear and
nonlinear relationships between two random variables since both linear and non-
linear relationships can be described through probabilistic theories. Here in our
model, the CMI measures how much information of EEG time series acquired
from electrode z is presented by electrode y and vice versa. Let X be the set of
data points where its possible realizations are x1, x3, T3, ..., ,, With probabilities
P(z1), P(x2), P(x3), The Shannon entropy H (X) of X is defined as

H(X)=-> pilnp;. (14.1)
i=1

Shannon entropy measures the uncertainty content of X. It is always positive and
measured in bits, if the logarithm is taken with base 2. Now let us consider an-
other set of data points Y, where all possible realizations of Y are y1, y2, ¥3,... Yn
with probabilities P(y1), P(y2), P(y3),... .. The degree of synchronicity and con-
nectivity between X and Y can be measured by the joint entropy of X and Y,

272 Liu et al.

defined as
HX,Y)==> px Inp}Y. (14.2)
‘7.]‘

where p;;*" which is the joint probability of X = X; and Y = Yj. The cross
information between X and Y, CMI(X,Y), is then given by

CMI(X,Y)=H(Y)—-H(X|Y)=H(X)— H(Y|X) (14.3)

—H(X)+H(Y) - H(X,Y) (14.4)
_ v o, XY @Y)
= //fxy(,y) log, 7fx(x)fy(y)d dy. (14.5)

The cross mutual information is nonnegative. If these two random variables
X,Y are independent, fxy (z,y) = fx(x)fy(y), then CMI(X,Y) = 0, which
implies that there is no relationship or correlation between X and Y. The proba-
bilities are estimated using the histogram based box counting method. The random
variables representing the observed number of pairs of point measurements in his-
togram cell (¢, 7), row ¢ and column j,are respectively k;;, k;. and k ;. Here, we
assume the probability of a pair of point measurements outside the area covered
by histogram is negligible, therefore }, . P;; = 1[9, 10, 19].

RD2 «~:\,\ JV'“J\{\“H'V\/"V‘}WM "‘U‘HMMM\WK\JJ\(\leww\\j

Y WY T S Vs W;U’\W

RD6 MWWWNWWV\MMMWMM

Fig. 14.2. A 10 sec. EEG epoch for RT'D2, RT D4 and RT D6

Figure 14.2 illustrates an example of 10-second epochs recorded from the right
mesial temporal depth (R(T)D) region. Figure 14.3 displays the scatter plots for
pair-wise EEG signals shown in Fig. 14.2. Figure 14.4 shows the CMI values mea-
sured from EEG electrode pairs from Fig. 14.2. From the scatter plot, it is clear
that EEG recordings between R(T)D2 and R(T)D4 have weak linear correla-
tion which have also yielded lower CMI values in Fig. 14.4. The stronger linear
relationship is discovered between R(T") D4 and R(7T)D6 and this linear correla-
tion pattern has resulted in higher CMI values in Fig. 14.4. Before measuring the

Clustering Electroencephalogram Recordings to Study Mesial Temporal Lobe Epilepsy 273

Fig. 14.3. Scatter plot for EEG epoch (10 seconds) of RT'D2 vs. RT'D4 and RT' D4 vs. RT D6

--=- RTD2 & RTD4
—— RTD4 & RTD6

o
«©
T

o
[e¢]
T

o
~l
T

o
()]
T

i 2
04 ; "i .u!l Y
| _&f"”“aﬂ.‘a‘\r 'WW‘J,'J'W"‘"\: ‘ﬂ‘f !“"1\)5#\ ﬂ

03

Mutual information
[an]
N

02}

0.1

0 1 1 1 1 1 1 1 J
2-hour inter ictal period

Fig. 14.4. Cross-mutual information for RT'D4 vs. RT' D6 and RT' D2 vs. RT' D4

CMLI, we first divided EEG recordings into smaller non-overlapping EEG epochs.
The segmentation procedure is widely utilized to subdue the non-stationary nature
of the EEG recordings. The changes of EEG pattern tend to appear very briefly,
examples include sharp wave transients, spikes, spike-wave complexes, and spin-

274 Liu et al.

dles. Working on shorter EEG epochs will insure the stationarity for the underly-
ing processes and thus any change in the connectivity can be detected. Therefore,
a proper length of EEG epochs has to be determined for measuring the connec-
tivity among EEG recordings. We chose the length of the EEG epochs equal to
10.24 seconds (2048 points), which has also been utilized in many pervious EEG
research studies [11, 12]. The brain connectivity measured using CMI form the
complete graph, in which each node has an arc to every other adjacent vertex. In
the procedure for removing the insignificant arcs (weak connection between brain
regions), we first estimated an appropriate threshold value by utilizing the statisti-
cal tests. We determined this threshold by observing the statical significance over
the complete connectivity graph, this threshold value was set to be a value where
the small noise is eliminated, but yet the real signal is not deleted [5]. Figure 14.5
shows an example of a complete graph and a correspondent graph after edges with
weak connectivity were removed.

,..-g‘.“\;:;é‘i AN
AR R
S AR
KL

\],,'

Sl | SN | L
~ rai',f“:‘\! 177

(a) {b)

Fig. 14.5. (a) A complete connectivity graph (b) After applying the threshold and removing the arcs
with insignificant connectivity

14.4.2. Maximum Clique Algorithm

We adopted the algorithm to find a maximum clique in the brain connectivity
graph after deleting the insignificant arcs in the original complete graph as fol-
lows: Let G = G(V, E) be a simple, undirected graph where V' = {1,...,n}
is the set of vertices (nodes), and £ denotes the set of arcs. Assume that there
is no parallel arcs (and no self-loops joining the same vertex) in G. Denote an
arc joining vertex ¢ and j by (i,7). We define a clique of G as a subset C' of
vertices with the property that every pair of vertices in C' is connected by an arc;
that is, C'is a clique if the subgraph G(C') induced by C' is complete. Then, the

Clustering Electroencephalogram Recordings to Study Mesial Temporal Lobe Epilepsy 275

maximum clique problem is to find a clique C' with maximum cardinality (size)
|C|. The maximum clique problem can be represented in many equivalent formu-
lations (e.g., an integer programming problem, a continuous global optimization
problem, and an indefinite quadratic programming). In this paper, we represent it
in a simple integer programming form given by

max x; (14.6)
st. x; +x; <1, where (i,j) ¢ E (14.7)
v € (0,1}, (14.8)

where x; is binary variable indicating if electrode ¢ is a member of the maxi-
mum clique. In finding the maximum clique in the brain networks, we applied
the Carraghan-Pardalos maximum clique algorithm [6]. A pseudocode for this
algorithm is provided in Fig. 14.6.

algorithm: maximum clique

begin
sort all nodes based on vertex ordering
LIST = ordered nodes
cbc = 0 current best clique size
depth = 0 current depth level
enter-next-depth(LIST,depth)

end

procedure: enter-next-depth(LIST,depth)

begin

1 m = the number of nodes in the LIST

2 depth=depth+1

3 for a node in position i in the LIST

4 if depth+(m-i)< cbc then

5 return prune the search

6 else

7 mark node i

8 if no adjacent node then

9 cbe=depth (maximum clique found)

10 else

11 enter to next depth (adjacent node of i, depth)

12 end

13 end

14 unmark node i

15 if depth=1

16 delete node i from LIST

17 end

18 end

end

Fig. 14.6. The maximum clique algorithm

276 Liu et al.

14.5. Results

In this section, we present the computational results from a patient with epilepsy.
Figures 14.7, 14.8 and 14.9 show the connectivity among brain regions clustered
by the proposed graph-theoretic approach. Figures 14.7 and 14.8 manifest the
same pattern that the L(T") D regions consistently exhibit high connectivity prior
to the seizure onset over a 2-hour time horizon. With a proper threshold for con-
structing the connectivity graph, the uniqueness maximum clique is generated dur-
ing interictal state of the subject. Moreover, the maximum clique size increased
and covered almost all the brain regions during the epileptic seizure. It is known
during the epileptic seizure, the abnormal discharge from epileptic brain regions
may spread to the other brain regions and thus results the increase of the brain
connectivity. Thus the maximum clique size reaching the maximum possible size
(i.e., equal to the network size) was observed during an epileptic seizure. Through
visual inspection on raw EEG recordings, the L(T)D region is the area where
the seizure was initiated. The EEG recordings were reviewed by two separated
board certificated physicians to identify the location. In Fig. 14.9, the brain re-
gions clustered by our approach were both from left and right orbitofrontal (i.e.,
R(O)F and L(O)F) regions whereas the right hippocampus appeared to have

RL4 - I I l -
RL3 - | mm -
RL2 |

RL1 B
RF3 l \
RF2 |- h | I i
RF1 |

=

5

o
T

Seizure Onset—> :J’u

- A
|

LD11
LD9
LD7
LD5
I I I
0 20

|
40 60 80 100
Minutes

| =t ||

5
N
T

'_

—

w
T

TT T T T 71T

|
120 140 160 180

Fig. 14.7. A plot shows the brain regions clustered by graph-theoretic approach in the constructed
brain connectivity graph. The highlighted areas represent the selected brain regions in the maximum
clique. The L(T") D areas tend to have strong connectivity prior to the actual seizure onset.

Clustering Electroencephalogram Recordings to Study Mesial Temporal Lobe Epilepsy 277

RF4 -
RF3 -
RF2 -

RT4 Seizure Onset—>
RT2 - 1 B
LT4 11

RD12
RD10 —
RD6

RD4
RD2

LD11
LD9
LD7
LD5S

I !

LD3
LD1

!
0 20 40 60 80 100 120 140 160 180

Minutes

Fig. 14.8. A plot shows the brain regions clustered by graph-theoretic approach in the constructed
brain connectivity graph. The highlighted areas represent the selected brain regions in the maximum
clique. This figure has very similar connectivity structure as Figure 14.7 also manifests strong connec-
tivity in the L(T") D regions prior to the actual seizure onset.

| Seizure Onset >‘

A - 1 e
THRAT | S | -

e Lo

in i
.'} L "I ‘

LD9 l .

1y

LD5 | 1

LD3

LD1 | | | | 1
0 60 80 100 120 140 160 180

Minutes

Fig. 14.9. A plot shows the brain regions clustered by graph-theoretic approach in the constructed
brain connectivity graph. The highlighted areas represent the selected brain regions in the maximum
clique. This plot illustrates the strong connectivity in the orbitofrontal regions (both left and right)
prior to the actual seizure onset.

278 Liu et al.

stronger connectivity than left hippocampus. The raw EEG recordings revealed
that the epileptic seizure originated from R(O)F' regions. The above results sug-
gest that the brain regions selected in a maximum clique prior to seizure onset, are
indeed the regions where the seizure is initiated.

14.6. Conclusion and Discussion

In conclusion, we have presented a new approach for modeling and analyzing the
brain connectivity. This approach successfully localized the epileptic focus (foci),
the strongest connectivity were found in the regions where epileptic seizures are
initiated. Previous studies also reported that the EEG recording acquired from
epileptic regions contained higher nonlinear information than other brain regions
[17]. The clustering result can be very useful for the current clinical environment,
since about 20% of epilepsy patients will undergo the epilepsy surgery seeking
better seizure control or the possibility of becoming seizure free. The outcome
of the epileptic surgery depends largely on the accuracy of the focus localization.
From the results, the proposed approach can serve as a tool for focus localization
in pre-surgical evaluation stage. To further confirm our findings, a larger number
of patients with different type of epileptic seizures is required. Moreover, our
result also agrees with the fact that the connectivity pattern plays an important
role for the brain function. Although these observations could lead us toward the
understanding of the information process in temporal lobe epilepsy, however, the
questions such as how the alteration of connectivity occurs and how it develops
prior to a seizure still remain open. The understanding of the mechanisms of
seizure development is the key to develop a reliable epilepsy seizure detector and
to control or prevent an impending seizure well before its actual onset.

Acknowledgment

This material is based upon work supported by the National Science Foundation
under Grant No. 0546574. The authors thank Dr. Chris Sackellares and Dr. Deng-
Shan Shiau for their fruitful knowledge about epilepsy.

References

[1] J. Arnhold, P. Grassberger, K. Lehnertz, and C. E. Elger. A robust method for de-
tecting interdependences: Application to intracranially recorded EEG. Physica D,
134(4):419-430, 1999.

(2]

(3]
(4]

(]

(6]

(7]

(8]

(9]
(10]

(1]

[12]

(13]

(14]

(15]

(16]

(7]

(18]

Clustering Electroencephalogram Recordings to Study Mesial Temporal Lobe Epilepsy 279

L. A. Baccala, M. Y. Alvarenga, K. Sameshima, C. L. Jorge, and L. H. Castro. Graph
theoretical characterization and tracking of the effective neural connectivity during
episodes of mesial temporal epileptic seizure. J. Integr. Neurosci., 3(4):379-95, 2004.
H. Berger. Ueber das elektrenkephalogramm des menschen. Arch. Psychiatr. Ner-
venkr, 87:527-570, 1929.

A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L. Bressler. Beta
oscillations in a large-scale sensorimotor cortical network: Directional influences
revealed by granger causality. Hum Brain Mapping, 101:9849-9854, 2004.

A. J. Butte and I. S. Kohane. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput.,
pages 418-29, 2000.

R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum clique prob-
lem. Operations Research Letters, 9:375-382, 1990.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.

R. B. Duckrow and A. M. Albano. Comment on performance of different synchro-
nization measures in real data: A case study on electroencephalographic signals.
Phys. Rev. E, 67(6):063901, Jun 2003.

A. M. Fraser and H. L. Swinney. Independent coordinates for strange attractors from
mutual information. Phys Rev A, 33:1134-1140, 1986.

P. Grassberger. Generalized dimensions of strange attractors. Phys. Lett, 9TA:227—
230, 1983.

L. D. Iasemidis, J. C. Principe, and J. C. Sackellares. Measurement and quantification
of spatiotemporal dynamics of human epileptic seizures. In M. Akay, editor, Nonlin-
ear biomedical signal processing, pages 294-318. Wiley—IEEE Press, vol. II, 2000.
L. D. lasemidis, D.-S. Shiau, W. A. Chaovalitwongse, J. C. Sackellares, P. M. Parda-
los, P. R. Carney, J. C. Principe, A. Prasad, B. Veeramani, and K. Tsakalis. Adaptive
epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering,
5(5):616-627, 2003.

H. H. Jasper. Mechanisms of propagation: Extracellular studies. In H.H. Jasper, A. A.
Ward, and A. Pope, editors, Basic mechanisms of the epilepsies, pages 421-440,
Boston, 1969. Little Brown.

S. Ken, G. Di Gennaro, G. Giulietti, F. Sebastiano, D. De Carli, G. Garreffa,
C. Colonnese, R. Passariello, J. Lotterie, and B. Maraviglia. Quantitative evalua-
tion for brain ct/mri coregistration based on maximization of mutual information in
patients with focal epilepsy investigated with subdural electrodes. Magn Reson Imag-
ing, 25(6): 883-8, 2007.

A. Klatchko, G. Raviv, W. R. Webber, and R. P. Lesser. Enhancing the detection of
seizures with a clustering algorithm. Electroencephalogr Clin Neurophysiol, 106(1):
52-63, 1998.

Y.-C. Lai, M. G. Frei, I. Osorio, and L. Huang. Characterization of synchrony with
applications to epileptic brain signals. Phys Rev Lett, 98(10): 108102, 2007.

C.-C. Liu, P. M. Pardalos, W. A. Chaovalitwongse, D. S. Shiau, G. Ghacibeh V.
A. Yatsenko, and J. C. Sackellares. Quantitative complexity analysis in multi-channel
intracranial EEG recordings from epilepsy brains. Journal of Combinatorial Opti-
mization, 15(3): 276-286, 2008.

A. R Mclntosh and F. Gonzalez-Lima. Structural equation modeling and its applica-

280

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

Liu et al.

tion to network analysis in functional brain imaging. Hum Brain Mapping, 2:2-22,
1994.

R. Moddemeijer. On estimation of entropy and mutual information of continuous
distributions, signal processing. Phys Rev Lett, 16(3):223-248, 1989.

F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. El-
ger, and K. Lehnertz. On the predictability of epileptic seizures. Journal of Clinical
Neurophysiology, 116(3):569-587, 2005.

T. I. Netoff and S. J. Schiff. Decreased neuronal synchronization during experimental
seizures. Journal of Neuroscience, 22(16):7297-307, 2002.

G. J. Ortega, L. Menendez de la Prida, R. G. Sola, and J. Pastor. Synchronization
clusters of interictal activity in the lateral temporal cortex of epileptic patients: Intra-
operative electrocorticographic analysis. Epilepsia, 49(2): 269-280, 2008.

P. M. Pardalos and J. Xue. The maximum clique problem. Journal of Global Opti-
mization, 4:301-328, 1992.

M. Le Van Quyen, J. Foucher, J. P. Lachaux, E. Rodriguez, A. Lutz, J. Martinerie, and
F. J. Varela. Comparison of hilbert transform and wavelet methods for the analysis of
neuronal synchrony. Joutnal of Neuroscience Methods, 111(2):83-98, 2001.

M. Le Van Quyen, J. Martinerie, M. Baulac, and F. Varela. Anticipating epileptic
seizures in real time by non-linear analysis of similarity between eeg recordings.
NeuroReport, 10:2149-2155, 1999.

R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger. Performance of differ-
ent synchronization measures in real data: a case study on electroencephalographic
signals. Phys Rev E Stat Nonlin Soft Matter Phys., 65 (4):041903, 2002.

J. C. Sackellares, D.-S. Shiau, J. C. Principe, M. C. K. Yang, L. K. Dance, W. Suharit-
damrong, W. A. Chaovalitwongse, P. M. Pardalos, and L. D. Iasemidis. Predictibility
analysis for an automated seizure prediction algorithm. Journal of Clinical Neuro-
physiology, 23(6):509-520, 2006.

C.E. Shannon. A mathematical theory of communication,. University of Illionis Press,
1963.

N. K. Varma, R Kushwaha, A. Beydoun, W.J. Williams, and I. Drury. Mutual in-
formation analysis and detection of interictal morphological differences in interictal
epileptiform discharges of patients with partial epilepsies. Electroencephalogr Clin
Neurophysiol, 103(4):426-33, 1997.

P. Velazquez, J. L. Dominguez, and R. L Wennberg. Complex phase synchronization
in epileptic seizures: evidence for a devil’s staircase. Phys Rev E Stat Nonlin Soft
Matter Phys, 75(1):011922, 2007.

C. G. Wasterlain. Neonatal seizures and brain growth. Neuropaediatrie, 9:213-228,
1978.

Chapter 15

Relating Subjective and Objective Pharmacovigilance Association
Measures

Ronald K. Pearson

ProSanos Corporation
225 Market St., Suite 502, Harrisburg, PA, USA, 17101
ronald.pearson @prosanos.com

The field of pharmacovigilance is concerned with the detection and interpretation
of associations between drugs and adverse medical events that may be related to
the use of those drugs. These assocations can be measured in various ways, and
this paper considers five: two are aggregate statistical measures derived from an
entire adverse event database, two are case-specific objective measures, and one
is a subjective measure related to the way adverse events are reported. Exami-
nation of the available data suggests that these measures are all interrelated, but
in a complicated manner. This finding motivates the use of cluster analysis to
explore these relationships, with the ultimate objective of constructing an index
of blame that quantifies the tendency for some drugs to be subjectively blamed
for adverse events even in the absence of objective evidence for an association
with those events.

15.1. Introduction

Pharmacovigilance analysis attempts to understand and quantify the relationship
between drugs and adverse events that they may have caused or exacerbated. In
the U.S., the primary data source for pharmacovigilance analysis is the FDA’s
Adverse Event Reporting System (AERS) database [19], which is organized by
Individual Safety Reports (ISR’s). Each ISR describes a suspected adverse drug
reaction experienced by a single patient, lising the drugs that patient was taking,
the adverse reactions they reported, and a limited amount of additional data (e.g.,
patient age, gender, reporting source information, etc.). Each ISR typically lists
several drugs and several adverse events, a fact that plays an important role in the
results presented here.

Since the AERS database is built from spontaneous reports, there is an element
of subjectivity inherent in the decision that a particular combination of drugs and

281

282 Pearson

medical conditions is (or is not) suspicious enough to report. Nevertheless, ob-
jective assessments of association are possible by comparing the relative frequen-
cies with which different drug/adverse event combinations occur in the database.
These aggregate assessments are based on the statistical measures discussed in
Sec. 15.2. In addition, the AERS database also provides subjective association
data, described in Sec. 15.3, and the numbers of drugs listed in each ISR provide
the basis for defining two case-specific objective association measures, discussed
in Sec. 15.4. It is demonstrated with two simple examples in Sec. 15.5 that the
relationships between these five association measures is strongly drug-dependent.

The question of ultimate interest is how to define an index of blame that de-
scribes the tendency for a drug to be blamed for adverse reactions to a significantly
greater or lesser extent than is warranted on the basis of the objective association
measures. As a first step toward this goal, this paper presents the results of a clus-
ter analysis of drugs, using correlations between different association measures
over a fixed set of adverse events as their primary attributes. Detailed descriptions
of the clustering method used, the drugs and adverse events considered, and the
results obtained are presented in Sec. 15.6, and an interpretation of these results
is given in Sec. 15.7. It is seen that the drugs considered here cluster naturally
into three groups: a “high-blame” group, where subjective association measures
between the drug and most adverse events are high, largely independent of the
objective evidence for this association; a “low-blame” group, where subjective as-
sociation measures are low, again largely independent of objective evidence; and
an “appropriate blame” group, where subjective and objective association mea-
sures are in reasonable agreement. This result is discussed further in the summary,
given in Sec. 15.8.

15.2. Aggregate Associations

Many different algorithms have been proposed for pharmacovigilance analysis.
One of the earliest was the use of the Proportional Reporting Ratio (defined in
Eq. (15.3) below) to detect unusually strong drug/adverse event associations ad-
vocated by Finney in 1974 [5]. Refinements of this approach were proposed
by Evans et al. [4] to address some of the limitations described below, recog-
nition of which also led to the development of Bayesian alternatives like the
Gamma Poisson Shrinker (GPS) algorithm and its extensions by DuMouchel and
co-workers [2, 3, 6] and the Bayesian Confidence Propagation Neural Network
(BCPNN) method described by van Puijenbroek et al. [17]. In addition, non-
statistical alternatives have been developed, like the optimization-based method
that Mammadov and co-workers have applied to the Australian Adverse Drug

Relating Subjective and Objective Pharmacovigilance Association Measures 283

Reaction Advisory Committee (ADRAC) database [13—15]. The basis for the re-
sults presented in this paper is another statistical approach based on an urn model
of the adverse event database that is non-iterative like the PRR method and is
therefore computationally simpler than the Bayesian and optimization-based ap-
proaches just described; further, this method has been found to be effective in
predicting subsequent regulatory actions on the basis of the AERS database [10].
Given a specified drug (Drug A) and adverse event (Adverse Event B) listed
in a spontaneous reporting database (e.g., the FDA’s AERS database considered
here), all of the statistically-based methods listed above are closely related to the
two-way contingency table defined by the following four numbers of records:

1. N, = the number listing Drug A,

2. N = the number listing Adverse Event B,

3. Ngp = the number listing both Drug A and Adverse Event B, and
4. N = the total number of records in the database.

These numbers yield the following simple estimates of the probabilities p, of
observing Drug A in a randomly selected record, p;, of observing Adverse Event
B, and p,;, of observing both together:

ﬁa:Na/Na ﬁb:Nb/Na and ﬁab:Nab/N~ (151)

In the absence of any association between drugs and adverse events, we expect
the independence condition p,p, = pepp to hold. This observation motivates the
reporting ratio:

Pav NNap

Pabs NaNp’
which has the value 1 if the empirical probability estimates defined in Eq. (15.1)
satisfy this independence condition. Unfortunately, terminology is not standard
in the pharmacovigilance literature, so the quantity R, defined in Eq. (15.2) is
called the proportional reporting ratio by Gould [8] and the nonstratified rela-
tive report rate by DuMouchel [2]. Confusing the situation further, most authors
define the proportional reporting ratio as [4, 9]:

Nup(N — N,)
Na(Nb - Nab) .

The reporting ratio R, defined in Eq. (15.2) is considered here because it remains
finite even in the limiting case where N,, = N3, in contrast to P, which is not
well-defined for this case.

Nevertheless, it is well-known that even R, behaves badly in these limiting
situations, motivating alternatives like DuMouchel’s Bayesian shrinkage estimator

Rab =

(15.2)

Py = (15.3)

284 Pearson

[2]. In particular, since N, < min{N,, Ny}, it follows that R, is bounded above
by:
N - min{N,, Ny} N

ab = = : 15.4
Rap < min{N,, Ny} - max{N,, Ny} max{N,, Ny} (15.4)

Further, note that this upper bound is achieved whenever N is equal to its max-
imum possible value, min{N,, Np}. Thus, in cases where both N, and N,, are
small, R,; can become quite large. This situation commonly arises in practice
when an unusual drug name (e.g., a misspelling) occurs only once in the database
(implying No» = N, = 1), in a record that also lists an unusual outcome (im-
plying N, << N). As a specific example, one “drug” listed in the portion of the
AERS database considered here is “unspecified weed killer,” which appears only
once, in a record that lists the rare adverse event “murder.” Since this adverse
event appears only N, = 147 times in N = 462, 936 records, this combination
has the huge reporting ratio value R,, = N/Np ~ 3149.

Several approaches have been proposed to overcome this difficulty. One is
the Bayesian shrinkage estimator of DuMouchel mentioned earlier [2]. Another
is the use of the proportional reporting ratio P,;, with an associated x? signifi-
cance measure and minimum N, limits to down-weight small samples [4, 9]. A
different approach is taken here [10], based on the reporting ratio R, and the sta-
tistical unexpectedness Uy, defined as follows. Model the adverse event dataset
as an urn of IV balls, with the N, balls corresponding to records that list Drug
A colored black and the others colored white. In the absence of any association
between Drug A and Adverse Event B, the records listing Adverse Event B may
be viewed as a random sample of N balls drawn from the urn, of which N,
are black. It is a standard result that this number should follow the hypergeomet-
ric probability distribution [11, Ch. 6]. If R, > 1, then N is larger than the
value expected under this independence assumption, and the significance of this
difference can be assessed by computing the probability of observing a value as
large as or larger than N, from the hypergeometric distribution defined by N,
N, and N;. Conversely, if Ry, < 1, then Ny, is smaller than expected and the
significance of this difference can be assessed by computing the probability of
observing a value as small as or smaller than V,;. The corresponding probability
pab 1s easily computed via standard routines for the cumulative hypergeometric
distribution, and the statistical unexpectedness is defined as the reciprocal of this
probability, uqp, = 1/pap.

The reason for using wu,p instead of p,p is that large wu,p values merit our
attention, which is advantageous in the graphical display used here. Also, since
the w4y values span a wide numerical range, it is convenient to work instead with

Relating Subjective and Objective Pharmacovigilance Association Measures 285

s tuberculosis nos @
(5]
3 4
?
[0]
c
el .
e o lupus-like syndrome @
3 oS-
o o
x
[0]
c
=)
= 34 systemic lupus erythematosus
o ~—
S °
[%]
= disseminated tuberculosis o
g | pulmonary tuberculosis ®
o 2 -
=S medication error ° b
S) ° [
— °
° ° ° °® o
7] ° . .o ° o .OJ.) .
P ° °.° °. 8o [.’ ° | § [~ «®
________ L] —
o -
T T 1 T
0.01 0.10 1.00 10.00

Reporting Ratio

Fig. 15.1. Pharmacovigilance map for the drug infliximab, obtained by plotting U,y vs. Rgp for
each adverse event appearing in one or more records that list infliximab. The vertical line corresponds
to R, = 1 and separates those adverse events showing a positive association with infliximab (points
to the right of the line) from those showing a negative association (points to the left of the line). The
dashed horizontal line corresponds to the Bonferroni significance limit discussed in the text.

the logarithm:
Uap = log;g uap = —10g1g pab- (15.5)

Fig. 15.1 shows a plot of U,y vs. Ry for the drug infliximab and all adverse
events that appear in AERS records listing this drug, plotted with a logarithmic
scale on the horizontal axis. Each point represents a specific adverse event, and
those lying in the upper right portion of the plot (large values of both Uy and Rp)
exhibit a strong positive association with the drug (i.e., these adverse events appear
significantly more often than expected by random chance alone). Conversely,
points with R,, < 1 correspond to adverse events that appear less often than
expected by random chance alone, so points lying in the upper left portion of the
plot exhibit strong negative associations with the drug infliximab.

Heeley et al. [9] display their results somewhat similarly, as a plot of the 2
statistic for each drug/adverse event combination against its associated P, value.
An important extension included here is a simple correction for multiple com-
parison, based on the Bonferroni approximation [21]. That is, the uncorrected

286 Pearson

threshold for a single adverse event to be significant at the level « is pqp, < a,
corresponding to U,y > —log;, . In plots like Fig. 15.1, however, the question
posed is which of M adverse events is significant, where M is typically much
larger than 1 (in Fig. 15.1, M = 3702). The Bonferroni correction replaces o
with /M, increasing the significance threshold to Uy, > logio(M/«). While
it is known that the Bonferroni correction is conservative [21], experience has
shown it to be extremely useful in focusing our attention on drug/adverse event
combinations of practical importance [10].

15.3. Subjective Associations

The statistical association measures R, and U, are objective measures, based
on the ensemble of drug/adverse event records available in spontaneous report-
ing repositories like the FDA’s AERS database considered here. This particular
database also includes subjective data on the association between each drug listed
in an ISR and the adverse events listed with it. That is, every drug entry is clas-
sified into one of four categories: primary suspect (PS), secondary suspect (SS),
interacting (1), or concomitant (C). Less than 0.1% of the drug records considered
here are classified as interacting, with approximately 27% classified as primary
suspect, approximately 14% as secondary suspect, and the remainder (58.3%)
classified as concomitant. This classification is extremely inhomogoenous across
the different drugs, however, suggesting the following numerical measure of sub-
jective association between Drug A and Adverse Event B. For each ISR listing
the drug and the adverse event, assign a suspect classification of 1 if the drug is
classified as PS, SS, or I, and 0 if it is classified as C. The suspect fraction Sy is
then defined as the fraction of ISR’s listing both Drug A and Adverse Event B that
have suspect classifications of 1.

Fig. 15.2 presents a modified version of the pharmacovigilance map for the
drug infliximab shown in Fig. 15.1, where the sizes of the points have been made
proportional to S,p. For comparison, the corresponding plot for the drug fluoxe-
tine is shown in Fig. 15.3, where the point sizes are again proportional to S,;. In
both cases, points falling below the Bonferroni-corrected 5% significance thresh-
old have been omitted to make the plots easier to interpret. Comparing these two
plots, it is clear that S,; is large for almost all adverse events associated with
infliximab, even those adverse events exhibiting a negative objective association
with the drug (i.e., adverse events with R,, < 1). In contrast, the S,; values
for the drug fluoxetine exhibit a much wider range of variation across the adverse
events than those for infliximab do. Also, note that the S,; values for adverse
events with R,, < 1 are generally smaller than those for R,;, > 1. Both of these

Relating Subjective and Objective Pharmacovigilance Association Measures 287

|
S | I tuberculosis nos .
(5]
|
|
2 |
2 & i
[0]
< |
° .
L o | lupus-like syndrome
8 o |
a o |
x
. |
2 5 I systemic lupus erythematosus
T - |
o - | ’
[%} . . .
= I disseminated tuberculosis
h o o pulmonary tuberculosis
o 27 medication error I
e
2 | L
- |
Q- |
[4 |
[] J |
. |
o |
|
1

0.01 0.10 1.00 10.00

Reporting Ratio

Fig. 15.2. Adverse event plot for the drug infliximab with the point sizes proportional to the suspect
fraction Sp.

observations suggest a greater agreement between the objective and subjective
measures of association for fluoxetine than for infliximab.

15.4. Case-Specific Associations

The objective association measures R, and U, defined and discussed in Sec.
15.2 are aggregate measures, based on the entire dataset. In addition, it is possi-
ble to define two other case-specific association measures that are also objective
measures of the relationship between Drug A and Adverse Event B, but which are
based only on records lising the drug and the adverse event together. As noted in
Sec. 15.1, a typical ISR lists several drugs and several adverse events, and in these
ISR’s, one drug is always specified as primary suspect. In ISR’s that list only a sin-
gle drug, a situation called a pure play in the pharmacovigilance community, that
drug is necessarily the primary suspect. This observation motivates the following
definition: the pure play fraction 1, is the fraction of ISR’s listing both Drug
A and Adverse Event B that are pure plays (i.e., that list Drug A alone). It fol-
lows from this definition that 1., < Sy, establishing a relationship between this
objective association measure and the subjective association measure discussed

288 Pearson

=] I
=7 |
. I .
pharmaceutical prodyct complaint .
|
o | |
@ © : depression aggravated .
g |
el
L |
g o [
2 .
3 © com})letedsuicide ..
5 I suicidal ideation
g :depression °
-(% SE I @ suicide attempt
° | [g—
=1 : ‘. serotonin syndrome
3 o I o
|
[1) | o
) °. ©0 II
. |
o
T T T I T T T
0.05 0.10 0.50 1.00 5.00 10.00 50.00

Reporting Ratio

Fig. 15.3. Adverse event plot for the drug fluoxetine with the point sizes proportional to the suspect
fraction Sp.

in Sec. 15.3. The other case-specific association measure considered here is the
mean number of concomitant medications, |1, defined as the average number of
other drugs appearing along with Drug A in all ISR’s listing both Drug A and Ad-
verse Event B. Note that if all of these ISR’s are pure plays, it follows that p145 = 0
and that 1., = S = 1; in fact, it is not difficult to show that 11, = 0 if and only
if o = Sap = 1.

15.5. Relations between Measures

The results just presented lead us to expect, for fixed Drug A, a positive correlation
between S, and 1, and negative correlations between pi,p and both Sy, and
1qp as the Adverse Events B vary. Conversely, the pronounced differences in
appearance between Figs. 15.2 and 15.3 suggest the possibility of poor agreement
between the subjective association measure S,; and the aggregate measures R
and Uy, at least for some drugs (e.g., infliximab). Support for these suggestions
is given in Figs. 15.4 and 15.5, which illustrate the relationships seen between
two of these pairs of association measures for two different drugs.

Relating Subjective and Objective Pharmacovigilance Association Measures 289

o
| BT e T
v v v
A% v v v A A
|
@ _] I A
<] a : N
a |
a | a v
B o | -
. ©] | A,
S 2| . A a
T Z{AAA AA Key:
© A A
2 34 Ahil~ Y Infliximab
% SAP‘ A Correlation: -0.126
ha
~ 4 4 Fluoxetine
o] Correlation: 0.623
)
4
|
o | |
e]
T T T T T T
0 20 40 60 80 100

Log10 Statistical Unexpectedness, Uab

Fig. 15.4. Scatterplot of Sy, vs. Uy values for two drugs: infliximab (open triangles) and fluoxetine
(solid triangles).

Specifically, Fig. 15.4 shows the suspect fraction S, plotted against the sta-
tistical unexpectedness Uy, for two drugs and the 100 adverse events described
in Sec. 15.6.1. The points represented as open triangles were obtained for the
drug infliximab, while the points represented as solid triangles were obtained for
the drug fluoxetine. The correlations between these two variables are listed in
the lower right of this figure for each drug, and their difference is pronounced:
the correlation for infliximab is —0.126, while that for fluoxetine is +0.623. The
vertical dashed line at the left end of the plot represents the Bonferroni-corrected
5% significance limit, so only those points to the right of this line are deemed
significant. If we compute the correlations solely from these significant adverse
events, they become —0.107 for infliximab and 40.690 for fluoxetine. While
these results differ slightly in detail, the are qualitatively the same: the degree
of agreement between the subjective association measure S,;, and the objective
association measure U, is much better for fluoxetine than it is for infliximab.

The results shown in Fig. 15.5 demonstrate that this conclusion also holds for
the degree of agreement between the subjective association measure S,;, and the
case-specific objective measure ji,5. As noted at the beginning of this section, we
expect a negative correlation between these variables, and this is observed for the

290 Pearson

o
= Vv Key:
v'v
vV Infliximab
Correlation: -0.026
o | A
o A a
4 Fluoxetine
A i .
a N Correlation: -0.735
[v a
@ ©
= s 1 A
§ 4 a A 4
e aat o N a
© A A 2
o T A F SN
g o A ‘Ang . a
('/:J A t A
A A AAa AAfA A ‘A A R
A A
o~ A L, A: ;‘Af AL 4
© < A
A A
<]
o
T T T T
0 5 10 15

Mean Number of Concomitant Medications, Muab

Fig. 15.5. Scatterplot of S Vs. pqp values for two drugs: infliximab (open triangles) and fluoxetine
(solid triangles).

drug fluoxetine, where the scatter plot between S, and 14 is represented by solid
triangles. The appearance of this scatter plot is consistent with the large negative
correlation of —0.735 computed for this drug. The corresponding scatter plot for
the drug infliximab is represented as open triangles and the apparent lack of de-
pendence of S,;, on u4p seen in this plot is consistent with the very small negative
correlation of —0.026 computed for this drug. These results suggest that, like the
relationship between the subjective measure S,; and the aggregate measures Uy
and R, the relationship between S,;, and the case-specific objective measures
Yqap and pgp are also strongly drug-dependent.

15.6. Clustering Drugs

The observations just presented motivate the following clustering case study. The
goal is to cluster drugs on the basis of the relationships between the subjective and
objective association measures defined and discussed in the preceeding sections of
this paper. Sec. 15.6.1 describes how the drugs and adverse events were selected
for this study, and Sec. 15.6.2 describes the clustering method and validation
approach used to obtain clusters, assess their reasonableness, and determine the

Relating Subjective and Objective Pharmacovigilance Association Measures 291

number of clusters present in the data. A brief summary of the results is given in
Sec. 15.6.3, and an interpretation is presented in Sec. 15.7.

15.6.1. The Case Study

The AERS database is a large repository, updated quarterly, and the portion con-
sidered here corresponds to the 12 releases for the four quarters of the years 2001,
2002, and 2003, summarizing 462,936 adverse event reports. Altogether, these re-
ports list 12,015 unique adverse reactions and 117,287 unique drug name entries,
so it was not feasible to analyze the entire database. To obtain a representative
subset, the following strategy was adopted. First, the adverse events were ranked
in descending order of reporting frequency and the 100 most frequently reported
adverse events were used as the basis for all of the drug/adverse event associations
considered here. The top 25 of these adverse events are listed in Table 15.1, along
with their frequencies (the term “nos” appearing in this table is an abbreviation for
“not otherwise specified”). Altogether, these 100 terms account for 36.3% of the
total reported adverse events in this portion of the AERS database, despite the fact
that they constitute less than 1% of the distinct adverse events reported. In fact,
the distribution of these events is extremely heavy-tailed, with over half (56.0%)

Table 15.1. The top 25 suspected adverse
drug reactions and their frequencies of ocur-
rance in the AERS database.

No. Adverse Reaction Frequency
1 nausea 19428
2 drug ineffective 15817
3 pyrexia 14387
4 vomiting nos 12096
5 fatigue 10677
6 medication error 9970
7 condition aggravated 9941
8 diarrhoea nos 9385
9 dyspnoea nos 9313

10 pain nos 8757
11 asthenia 8368
12 abdominal pain nos 8332
13 chest pain 8323
14 rhabdomyolysis 7783
15 myalgia 7728
16 headache nos 7463
17 malaise 6907
18 myocardial infarction 6853
19 convulsions nos 6623
20 dizziness 6547
21 dyspnoea 6522
22 headache 6398
23 arthralgia 6358
24 constipation 6143

25 thrombocytopenia 6099

292 Pearson

of the distinct terms appearing 10 times or less in the database, and almost three
fourths (72.3%) appearing 30 times or less. These observations motivate the use
of the top 100 adverse events in the case study presented here, all of which appear
more than 3,000 times in the AERS database.

To obtain a collection of drugs that was representative of those appearing in the
AERS database, a random sample of 50 text strings was drawn from the DRUG-
NAME field of the AERS drug data files. Of these, 2 were exact duplicates of
other drug names in the sample, and 12 others were omitted because they were
either different names for the same drug (e.g., “quinapril” and “accupril”), dietary
supplements (e.g., “multi-vitamins”), or otherwise un-interesting (e.g., “Eckerds
brand lice shampoos”). The remaining 36 drugs were:

accupril, aldioxa, aminocaproic acid, aspirin, atenolol, azasetron,
bactrim, candesartan, carbamazepine, cisplatin, clonidine, clopidro-
gel, clozapine, coumadin, depamide, dipiperon, etanercept, fluoxe-
tine, hydrochlorothiazide, ibuprofen, insulin, levodopa, lorazepam,
luprolide, metoprolol, mianserin, morphine, mycophenolate, omepra-
zole, oxaprozin, oxycodone, paracetamol, pravastatin, prednisone, ro-
fecoxib, and tamsulosin.

In addition to these 36 drugs, the following 15 were included because they were
of independent interest:

atorvastatin, bosentan, ciprofloxacin, cocaine, dutasteride, galan-
tamine, gatifloxacin, infliximab, levofloxacin, lovastatin, moxifloxacin,
simvastatin, tenofovir, valdecoxib, and zolpidem.

The association measures Rgp, Uqp, Sap, Yap and prq, were computed for each of
these 51 drugs with each of the 100 most frequently ocurring adverse reactions in
the AERS database.

Evaluating the five association measures considered here for each adverse
event yields 500 numbers for each drug. Since the main question of interest is how
these different association measures are related, the primary clustering variables
used are the 10 correlations between each distinct pair of association measures as
they vary over the 100 adverse events. In addition, since the subjective measure
Sap 18 of particular interest, the mean S,;, value over the adverse events is also
included in the clustering variable set. The complete list of the eleven attribute
variables used for clustering drugs is given in Table 15.2.

15.6.2. The Clustering Approach

The 51 drugs considered here were clustered using the eleven variables listed
in Table 15.2 and the Partitioning Around Medoids (PAM) method described

Relating Subjective and Objective Pharmacovigilance Association Measures 293

Table 15.2. The eleven attribute variables used to
cluster the 51 drugs considered in this study.

Variable Definition

i Mean S, value

Vo Correlation between S,p and R,
V3 Correlation between S, and U,y
Va Correlation between S, and ¥,
Vs Correlation between S,p and fi4p
Ve Correlation between R, and U,y
V7 Correlation between R, and 43,
Vs Correlation between R, and fiqp
Vo Correlation between U, and ¥4,
Vio Correlation between U,y and fiqp
Vi1 Correlation between 1,3 and f4qp

by Kaufman and Rousseeuw [12], as implemented in the S-plus software pack-
age [18]. Given a matrix of M attribute values for each of N objects, this pro-
cedure partitions the objects into k& clusters, where the number £ is specified by
the user. This procedure was chosen in large part because the results do not de-
pend on the ordering of the data objects, in contrast to the more popular k-means
procedure [12, p. 114]. The results presented here are based on the Manhat-
tan dissimilarity measure; although a thorough comparison was not undertaken,
comparable results were obtained with the more popular Euclidean dissimilarity
measure for selected cases.

The number of clusters & present in the data was determined using the method
described by Pearson et al. [16], based on two fundamental notions. The first is a
measure of cluster quality that can be computed from any given data partitioning;
many such measures have been described [1], but one that has been found to
be particularly useful in this application [16] is the silhouette coefficient [12].
The second fundamental notion is the use of random permutations to destroy any
structure that may be present in the data. This provides the basis for assessing
the significance of a putative clustering: if the cluster structure is real, it should
be largely destroyed by the random permutations, reducing the cluster quality
substantially.

Combining these ideas leads to the following cluster validation procedure.
First, the k-partition clusterings are obtained from the original dataset, for a range
of k values. Next, independent random permutations are applied to each column of
the attribute matrix and the same clustering procedure is applied to this modified
dataset, to obtain k-partition clusterings over the same range of k values. This
permutation procedure is repeated m times (in the results presented here, m =
100) to obtain clusterings for m indpendently randomized datasets, for each value
of k considered. Quantitative cluster quality measures are then computed for each

294 Pearson

clustering and the results obtained for the original dataset are compared, for each
value of k, with the quality measures computed from the m randomizations. A
good clustering is one whose quality measure lies significantly above the range of
the quality measures computed from the randomized results, for the same value
of k.

The silhouette coefficient used here as a measure of cluster quality is based on
the idea that a good clustering should consist of cohesive, well-separated clusters.
Given a partitioning PP of N objects into k clusters, consider any fixed object ¢
and let C; denote the set of indices for all objects clustered together with object .
A useful measure of cohesion for this cluster is:

1
a(t) = — dij, (15.6)
0= 3

where n; is the number of objects in cluster C; and d;; is the dissimilarity between
objects 7 and j. Note that for a good clustering, a(¢) should be small for all i. To
characterize the separation between clusters, let K, denote the ¢*" neighboring
cluster, distinct from C;, for £ = 1,2,... k — 1. Define b(7) as the average dis-
similarity between object ¢ in cluster C; and the objects in the closest neighboring
cluster, given by:

1
b(i) = mi — T .
(7) min o Z dij (15.7)
JEK,
Here, for a good clustering, b(4) should be large for all 4. The silhouette coefficient
s(4) for object 4 is then defined as the following normalized difference between
these two quantities:
b(i) — ali
(i) — b —al)
max{a(i),b()}
For s(7) to be well-defined, the partitioning P must contain at least two clusters,
and every cluster must contain at least two objects. Under these conditions, it is
easily shown that —1 < s(i) < 1 for all ¢. From the previous observations, a
good clustering should have a(i) << b(7) for all ¢, implying s(7) ~ 1 for all 7. A
useful measure of the overall quality of the partitioning P is therefore the average
silhouette coefficient over all objects:

(15.8)

1 N
S=+ ; s(i). (15.9)

Given this cluster quality measure, let Dy denote the original dataset and let Sy (k)
denote the value of S computed for the k-cluster partitioning of Dy obtained by a

Relating Subjective and Objective Pharmacovigilance Association Measures 295

fixed clustering method M. Let D; denote the i*" random permutation of Dy, ob-
tained as described above, and let S;(k) denote the value of S computed for the k-
cluster partitioning of D;, obtained by the same clustering method M. The work-
ing hypothesis here is that, if Dy exhibits k well-defined clusters, Sy (k) should
be significantly larger than S;(k) for all random permutations. One measure of
significance is the (one-sided) empirical probability: if Sy(k) is larger than all but
g — 1 of the m permutation values S;(k), the empirical probability of observing
So(k) by random chance is less than ¢/m. The other measure of significance used
here is the z-score, computed from the mean Sy and standard deviation og (k) of
the random permutation values {.S; }:

_ Sulk)= S
os(k)

Experience with simulation datasets having known cluster structures has
shown that correct clusterings generally lead to significant results with respect to
the empirical probability estimates (e.g., So (k) exceeds all of the randomized val-
ues S;(k)) and maximal or near maximal with respect to both zj and Sy (k) over
the range of k& considered [16]. Experience has also shown that in cases where
no cluster structure exists (e.g., simulation datasets constructed from statistically
independent random data vectors), none of the Sy(k) values typically meet these
significance criteria.

i (15.10)

15.6.3. Summary of the Results

The clustering procedure described in Sec. 15.6.2 could be applied directly to
the attribute matrix defined by the 11 variables listed in Table 15.2, but it has
been shown using simulated datasets that the inclusion of extraneous variables
can degrade clustering results badly [7, 16]. Thus, the approach taken here starts
with the smallest interesting subset of these variables and proceeds in a manner
analogous to stepwise regression, including each variable only if it improves the
clustering. Since the original question motivating this work was the nature of
the relationship between the subjective association measure S, and the objective
measure Uy, the smallest subset considered here includes variables V7 (the mean
Sqp value over the 100 adverse events considered) and V3 (the correlation between
Sab and Uab)-

Fig. 15.6 shows the k-cluster partition results for k& from 2 through 10, com-
puted from this minimal variable set. The solid circles correspond to Sp(k) and
the boxplots describe the range of m = 100 random permutation results {S;(k)}.
Since none of these Sy(k) values fall outside the ranges of the random permuta-

296 Pearson

o
- Z-scores:
1.98 1.66 1.43 2.61 2.26 1.91 1.26 0.09 0.1

@ _|
1) o
1
2
©
T o]
o
3 o
Q2
T) -
3 - — o o iy — i
= 34 = = ® : ° :
(9]
A . B B2 832 8 B 83
T
<

8

o

=

2 3 4 5 6 7 8 9 10

Number of Clusters, k

Fig. 15.6. Average silhouette coefficients vs. cluster size k computed from variables V7 and V3
(solid circles), together with boxplots of the ranges of average silhouette coefficients obtained for 100
independent random permutations of V3.

tion values, it does not appear that the variables V; and V3 alone provide the basis
for a useful clustering of the data.

Including each of the nine remaining variables one by one, the best results
are obtained when V5 is added to the variable set. These results are shown in
Fig. 15.7, which shows that both Sy (3) and Sp(4) exceed all of their associated
random permutation values. Of these two results, the three-cluster partitioning
exhibits both the larger silhouette coefficient and the larger z-score, so it is taken
here as the basic clustering, which will serve as a reference case for all other
clusterings of this dataset.

The results obtained by adding one variable at a time are summarized in Ta-
ble 15.3, including the cases illustrated in Figs. 15.6 and 15.7. The optimum
number of clusters is £* = 3 in all cases, with the possible exception of the five-
variable clustering on V7, Vo, Vi, V7, and Vy, where k* = 4 achieves a slightly
larger silhouette coefficient but a slightly smaller z-score. Detailed descriptions
of these clusterings and their differences are given in Sec. 15.7, but two points
are worth noting. First, the silhouette coefficient values S* for k = 3 decrease
monotonically as additional variables are included, while the associated z-scores

Relating Subjective and Objective Pharmacovigilance Association Measures 297

o
- Z-scores:
14 5.85 3.82 1.79 2.02 2.34 1.55 1.19 -0.57
@ _|
w ©
£
0
Qo
T o
Q
8§ °
Q2
g
3 °
= <] o
@ o
IS
5 HE 28 8 g aa & =
o
=
2 3 4 5 6 7 8 9 10

Number of Clusters, k

Fig. 15.7. Average silhouette coefficients vs. cluster size k& computed from variables V7, Vo and V3
(solid circles), together with boxplots of the ranges of average silhouette coefficients obtained for 100
independent random permutations of V2 and V3.

Table 15.3. Summary of the stepwise clustering re-
sults from Sec. 15.6.1, giving the variables included,
the number of clusters k*, the average silhouette co-
efficients S*, and the z-scores, z*.

Variables k* S* z*
Vi, Vs — _ _
Vi, V2, V3 3 0.461 5.85
Vi, Vo, V3, Vy 3 0.438 7.69
Vi, Vo, V3, Vi, Vg 3 0389 881

4 0.399 8.65
Vi, Vo, V3, V7, Vo, Vg 3 0.365 9.54

increase monotonically. In the example illustrating the influence of extraneous
variables discussed by Pearson et al. [16], the silhouette coefficient values also
decreased as additional — there extraneous — variables were added, but there the
corresponding z-scores decreased there rather than increased, as here. The sec-
ond point to note is the consistent optimality or near-optimality of k* = 3 over
all of the different variable subsets considered, suggesting stability but raising the
question of how the actual clusterings compare, the point considered next.

298 Pearson

15.7. Interpreting the Clusters

Examination of the drug classifications in the clustering results described in Sec.
15.6.3 shows that the partitions are all quite similar. Consequently, the following
discussion first presents a detailed description of the basic clustering obtained for
k* = 3 from the three variables V;, V5, and V3, and then briefly discusses how
the results obtained from the other variable subsets differ from this reference case.
The first cluster in the basic clustering contains the following 21 drugs:

accupril, aminocaproic acid, aspirin, atenolol, azesetron, bactrim,
candesartan, ciprofloxacin, clonadine, clopidrogel, dipiperon, hy-
drochlorothiazide, insulin, levodopa, lorazepam, metroprolol, mi-
anserin, omeprazole, oxaprozin, prednisone, and zolpidem.

The general characteristics of this cluster are a low mean S,; value (the me-
dian V; value is 0.161), and low correlations between S, and both R, (me-
dian correlation 0.048) and U,; (median correlation 0.131). Informally, this clus-
ter represents a collection of drugs that tend to have “low subjective suspicion,”
largely independent of objective evidence. The second partition in the basic clus-
tering contains the following 13 drugs:

aldioxa, atorvastatin, coumadin, depamide, fluoxetine, ibuprofen, lo-
vastatin, morphine, oxycodone, paracetamol, pravastatin, simvastatin,
and tamsulosin.

The defining characteristics of this cluster are moderate mean S, values (the
median V; value is 0.301) and substantial correlations between S,; and both R,
(median correlation 0.426) and U,; (median correlation 0.525). Informally, this
cluster represents a collection of drugs whose subjective suspicion level seems to
correlate reasonably well with objective evidence. Finally, the third partition in
the basic clustering contains the 17 drugs:

bosentan, carbamazepine, cisplatin, clozapine, cocaine, dutasteride,
etanercept, galantamine, gatifloxacin, infliximab, levofloxacin, lupro-
lide, moxifloxacin, mycophenolate, rofecoxib, tenofovir, and valde-
coxib.

This cluster is characterized by a large mean S,;, value (the median V; value is
0.678), a moderate correlation between S, and R, (median correlation 0.353),
and a low correlation between S, and U,, (median correlation 0.079). Infor-
mally, the drugs in this cluster exhibit high subjective suspicion, largely indepen-
dent of objective evidence.

Relating Subjective and Objective Pharmacovigilance Association Measures 299

|
| gastrointestinal haemorrhage nos
I []
o |
O |
- |
[
3 |
S |
:g’_, | myocardial infarction
3] | °
[
o3 |
g 3 |
e
= | .
5 | haemoglobin decreased
ks} |
_:«é ® death | chest pain ®
8 ® maternal drugs affecting foetus |
(%]
= @ death nos I
= 24
2 . d L |
- . |
|
* |
é |
. |
O

Reporting Ratio

Fig. 15.8. Adverse event plot for the drug aspirin, based on the 100 most frequently occurring ad-
verse events, with the point sizes proportional to the suspect fraction Sp.

It is instructive to compare the appearance of the adverse event plots obtained
for drugs from each of these groups with point sizes proportional to the subjective
association measure S,p. Fig. 15.8 presents this result for the drug aspirin from
cluster no. 1 (the “low-blame group”). This plot should be compared with Figs.
15.2 and 15.3 discussed earlier, for the drugs infliximab (from cluster no. 3, the
“high-blame group”) and fluoxetine (from cluster no. 2, the “appropriate blame
group”), respectively. It is clear from these plots that the points are uniformly
large for infliximab, indicating a large S, value, mostly independent of U, and
Rap, and generally small for aspirin, indicating a small S,; value, again mostly
independent of U, and R,,. In contrast, the point sizes vary significantly for
fluoxetine, indicating that .S, varies significantly with U, and R, for this drug.

The informal verbal descriptions given above for each of the three partitions
in the basic clustering are represented graphically in Fig. 15.9, which gives side-
by-side boxplot summaries by cluster for each of three variables on which this
clustering is based. The left-most three boxplots show how the mean S,; value
varies for each cluster, demonstrating that this value is consistently larger for clus-
ter 3 than for either of the other two clusters. Also, while the total range of Sy
values is essentially identical for clusters 1 and 2, the middle 50% of these values

300 Pearson

1.0

Range of Indicated Variable
0.0
]
[-{H
|
[
=
|
|
|

0
=,
Mean Sab : Cor(Sab,Rab) : Cor(Sab,Uab)
e |
c1 c2 c3 c1 c2 c3 c1 c2 c3
Cluster

Fig. 15.9. Boxplot summaries of the variables V1, V2, and V3 by cluster for partitioning with k = 3
obtained from these three variables.

is uniformly larger for cluster 2 than for cluster 1. Probably the main distingiuish-
ing feature of cluster 2 is the range of its correlation values between Sy, and Uy,
which is consistently larger for cluster 2 than for either of the other clusters.

Table 15.4 summarizes the differences between the basic clustering just de-
scribed and the other three-element partitions obtained using additional variables.
It is clear that these differences are fairly minor, involving between three and five
drugs. In all cases, the drugs aldioxa, mycophenolate, and zolpidem are placed in
different clusters, which may be viewed as a persistent consequence of including
variable Vy (the correlation between U, and v4p). In contrast, the changes in
cluster assignment for dutasteride and tamsulosin caused by adding the variable
V7 (the correlation between R, and 1,;) may be regarded as transient, as they
do not persist on the subsequent addition of variable Vg (the correlation between
Uab and pigp).

As noted in Sec. 15.6.3, in the results based on variables V7, V5, V3, V7, and
Vg, the clustering for &k = 4 exhibits a slightly larger mean silhouette coefficient
than that for £ = 3 (S} = 0.399 vs. S5 = 0.389) and a slightly smaller z-score
(23 = 8.65 vs. z3 = 8.81). Thus, it is interesting to examine the differences
between these two clustering assignments, which are summarized in Table 15.5,

Relating Subjective and Objective Pharmacovigilance Association Measures 301

Table 15.4. Changes in cluster assignment caused by the in-
clusion of additional variables, relative to the basic clustering
that uses variables V7, Vo, and V3.

Variables Drug Basic New
Added Cluster Cluster
Vo aldioxa 2 1
mycophenolate 3 1
zolpidem 1 2
Vz, Vo aldioxa 2 1
dutasteride 3 2
mycophenolate 3 1
tamsulosin 2 1
zolpidem 1 2
V7, Vo, Vio aldioxa 2 1
insulin 1 2
mycophenolate 3 1
zolpidem 1 2

Table 15.5. Cluster assignments for seven drugs in the
basic clustering (the clustering for & = 3 based on vari-
ables V1, Va2, and V3), along with those for £ = 3 and
k = 4 based on variables V7, V5, V3, V7 and Vy.

Drug Basic k=3 k=4
aldioxa 2 1 2
dutasteride 3 2 3
fluoxetine 2 2 4
mycophenolate 3 1 1
oxycodone 2 2 4
tamsulosin 2 1 2
zolpidem 1 2 2

along with the corresponding assignments in the basic clustering. Five drugs ex-
hibit different assignments between the five-variable clusterings with £ = 3 and
k = 4: aldioxa, dutasteride, and tamsulosin move back into their assigned parti-
tions in the basic clustering, while fluoxetine and oxycodone form the new cluster
for k = 4.

Fig. 15.10 gives a boxplot summary of the results for the five variable cluster-
ing with k& = 4, in the same format as Fig. 15.9. It is clear from this plot that the
key characteristic of the fourth partition in this clustering is the high correlation
between the two aggregate measures R, and Uy, and both the subjective measure
Sap and the case-specific measure 1,;. In particular, the correlation between 1,
and the two aggregate measures is markedly greater than that seen for any of the
other drugs in the case study, while the correlation between S,; and these aggre-
gate measures is among the highest seen for any of these drugs. Also, note that

302 Pearson

1.0
al

0.5
1
1l
]
C
03
[2 |
¢-E3m-]
]
]

Range of Indicated Variable
0.0
]
|
|
Fomm
[o |
i s |
|
C
|]
il
| =
|
|
FI] I
[
il

-0.5

Mean Sab Cor(Sab,Uab) éCor(Uab,Psiab)

Cor(Sab,Rab) Cor(Rab,Psiab)

-1.0

C1 C2C3C4C1 C2C3C4C1C2C3C4C1C2C3¢C4C1C2C3C4
Cluster

Fig. 15.10. Boxplot summaries of the variables V7, Va, V3, V7 and Vg by cluster for the partitioning
with k£ = 4 obtained from these five variables.

the two drugs forming this cluster are two of the three drugs with highest mean
Sap values from the second partition of the basic clustering. Thus, while the level
of subjective blame associated with these two drugs is high, it is well supported
by the objective evidence.

15.8. Summary

The fundamental problem of pharmacovigilance is to accurately assess the rela-
tionship between drugs and adverse medical reactions that may or may not be
related to these drugs. This paper has presented a clustering study, aimed at
elucidating the relationships among different objective and subjective association
measures between drugs and adverse events in the FDA’s Adverse Event Report-
ing System (AERS) database. As noted previously, the ultimate objective of this
work is to define a quantitative index of blame that characterizes the tendency
for drugs to be subjectively associated with adverse events to a greater or lesser
extent than is warranted by the objective evidence. The results presented here
consider a subjective association measure based on the classification of drugs as
“suspect” or “concomitant” in the AERS Individual Safety Reports, along with

Relating Subjective and Objective Pharmacovigilance Association Measures 303

four objective measures: two aggregate measures related to a simple urn model
of the AERS database, and two case-specific measures based on the numbers of
concomitant drugs listed in the database. These five association measures are de-
scribed in Secs. 15.2 through 15.4, and their drug-dependent interrelationships
are discussed briefly in Sec. 15.5.

The strength of this drug dependence motivated the clustering case study pre-
sented in Secs. 15.6 and 15.7, based on 36 drugs randomly selected from the
AERS database and 15 others of independent interest. The five association mea-
sures noted in the previous paragraph were then computed for each drug and the
100 most frequently occurring adverse events in the AERS database. The at-
tributes used for clustering were the correlations between the different association
measures, along with the mean value of the subjective association measure. Us-
ing a permutation-based approach to determine the number of clusters [16] and
a stepwise variable selection procedure, three clusters were identified: a “high-
blame” cluster, characterized by a large average subjective association value but
low correlations between this association measure and both of the objective ag-
gregate association measures; a “low-blame” cluster, characterized by a small av-
erage subjective association value, again with low correlations between subjective
and aggregate association measures; and an “appropriate blame” cluster, charac-
terized by a moderate average subjective association measure but relatively high
correlations between the subjective and aggregate measures.

The results presented here do not fully define the index of blame that motivated
the work, but they do suggest that the approach described here goes in the right
direction. For example, one reason for including the illegal drug cocaine in the
study was the expectation that it would generally have a high subjective blame,
representing a “positive control” for the classification; indeed, cocaine appears
consistently in the high-blame group in all of the clusterings described here. Also,
it is encouraging to note that all four of the statins considered (atorvastatin, lovas-
tatin, pravastatin, and simvastatin) consistently appear together in the appropriate
blame cluster. Similarly, it is not surprising that aspirin — a nonprescription drug
in wide use for a very long time — belongs to the low-blame group in all cluster-
ings. Indeed, it has recently been argued that, due to its long history of use, the
adverse event profile for aspirin has often been overlooked by medical praction-
ers, even though it is quite complicated and deserves careful clinical review [20].
More generally, it appears that the drugs in the low blame group identified here
are mostly drugs like aspirin that have been widely used for a variety of conditions
and have a long history of use.

At least four extensions of the results presented here suggest themselves. The
first would be to expand the case study to additional association measures. In

304 Pearson

particular, one of the features of the AERS database that is not addressed in the
present study is the fact that while each drug listed for an ISR has a unique sub-
jective classification as Primary Suspect, Secondary Suspect, Interacting, or Con-
comitant, this designation does not indicate whether the classification refers to all
of the adverse events listed for that ISR, or only a subset of these adverse events
(and, if so, which subset). This point is important since, as noted, a typical ISR
lists multiple drugs and multiple adverse events. Thus, one area to explore is
the possibility of defining additional association measures based in part on the
number of adverse events listed for an ISR, analogous to the mean number of
concomitant medications i, or the pure play fraction 4, defined in Sec. 15.4
for drugs. The objective would be to explore the influence of the number of ad-
verse events listed for an ISR on clustering results like those presented here. The
second useful extension of the results presented in this paper would be to expand
the case study to more drugs and possibly more adverse events. This expansion
would begin to address the question of whether the clustering of drugs into “low
blame,” “appropriate blame,” and “high blame” classes is adequate, or whether
additional classifications become necessary as more drugs are added, possibly in-
volving more variables. In particular, it would be interesting to see whether the
four cluster solution discussed in Sec. 15.7 based on five variables increases in
statistical significance on the addition of more drugs. A third possible exten-
sion would be to consider the drugs assigned to each of the three groups in the
basic clustering developed here, comparing them on the basis of other possible
explanatory variables like their frequency of occurrence in the AERS database,
or the time since their introduction into the marketplace. The objective of this
extension would be to determine whether it is possible to reliably assign drugs to
different “blame clusters” on the basis of these other variables without perform-
ing the cluster analysis presented here. In particular, if it were possible to classify
drugs a priori into these groups, this classification could be used as a basis for
requiring additional evidence in classifying a “high blame drug” as suspect, or
classifying a “low blame drug” as concomitant. Finally, a fourth extension of
the work presented here would be to carefully examine anomalous cases like the
drug ciprofloxacin: the three other drugs from the same class considered in this
case study (gatifloxacin, levofloxacin, and moxifloxacin) are all assigned to the
high-blame cluster, while ciprofloxacin is assigned to the low-blame cluster. One
possible explanation for this difference is that ciprofloxacin is a much older drug
than these other three, but this case needs to be examined further before any defini-
tive conclusions can be drawn. Ultimately, it is hoped the work presented here and
extensions like those just described will lead to an evidence-based approach to as-

Relating Subjective and Objective Pharmacovigilance Association Measures 305

signing drugs as suspect or concomitant, one that will yield assignments in better
general agreement with objective association measures like those considered here.

References

(1]
(2]
(3]

(4]

(5]
(6]
(7]
(8]
(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

N. Bolshakova and F. Azuaje. Cluster validation techniques for genome expression
data. Signal Processing, 83: 825-833, 2003.

W. DuMouchel. Bayesian data mining in large frequency tables, with an application
to the FDA spontaneous reporting system. American Statistician, 53: 177-190, 1999.
W. DuMouchel and D. Pregibon. Empirical Bayes screening for multi item asso-
ciations. Proc. 7th ACM SIGKDD International Conf. Knowledge Discovery Data
Mining, pages 177-190, 2001.

S.J. W.Evans, P. C. Waller, and S. Davis. Use of proportional reporting ratios (PRRs)
for signal generation from spontaneous adverse drug reaction reports. Pharmacoepi-
demiology Drug Safety, 10: 483-486, 2001.

D. J. Finney. Systemic signalling of adverse reactions to drugs. Methods Inf. Med.,
13: 1-10, 1974.

D. M. Fram, J. S. Almenoff, and W. DuMouchel. Empirical Bayesian Data Mining
for Discovering Patterns in Post-Marketing Safety Data. Proc. SIGKDD’03, pages
359-368, 2003.

A. D. Gordon. Classification, 2nd ed.. Chapman and Hall, 1999.

A. L. Gould. Practical pharmacovigilance analysis strategies. Pharmacoepidemiology
Drug Safety, 12: 559-574, 2003.

E. Heeley, L. V. Wilton, and S. A. W. Shakir. Automated Signal Generation in
Prescription-Event Monitoring. Drug Safety, 25: 423-432, 2002.

A. M. Hochberg, S. J. Reisinger, R. K. Pearson, D. J. O’Hara, and K. Hall. Using
data mining to predict safety actions from FDA adverse event reporting system data.
Drug Information Journal, 41: 633-643, 2007.

N. L. Johnson, S. Kotz, and A. W. Kemp. Univariate Discrete Distributions, 2nd ed.,
Wiley, 1993.

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data. Wiley, 1990.

M. Mammadov and A. Banerjee. An optimization approach to identifying drugs re-
sponsible for adverse drug reactions. Proc. 16th Australasian Workshop Combinato-
rial Algorithms, pages 185-200, 2005.

M. Mammadov and A. Banerjee. An optimization approach to the study of drug-drug
interactions. Proc. 16th Australasian Workshop Combinatorial Algorithms, pages
201-216, 2005.

M. Mammadov, A. Rubinov, and J. Yearwood. The study of drug-reaction relation-
ships using global optimization techniques. Optimization Methods and Software, 22:
99-126, 2007.

R. K. Pearson, T. Zylkin, J. S. Schwaber, and G. E. Gonye. Quantitative evaluation
of clustering results using computational negative controls. Proc. 4th SIAM Interna-
tional Conf. Data Mining, Lake Buena Vista, FL, pages 188-199, April, 2004.

E. P. van Puijenbroek, A. Bate, H. G. M. Leufkens, M. Lindquist, R. Orre, and A.
C. G. Egberts. A comparison of measures of disproportionality for signal detection

306 Pearson

in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiology
Drug Safety, 11: 3—10, 2002.

[18] S-Plus 6: Guide to Statistics, vol. 2. Insighttul Corp., Seattle, WA, 2001.

[19] A. Trontell. How the US Food and Drug Administration defines and detects adverse
drug events. Current Therapeutic Research, 62: 641-649, 2001.

[20] E. Van De Graaff and S. R. Steinhubl. Complications of oral antiplatelet medications.
Current Cardiol. Rep., 3: 371-379, 2001.

[21] P. Westfall and S. Young. Resampling-Based Multiple Testing. Wiley, 1993.

Chapter 16

A Novel Clustering Approach: Global Optimum Search with
Enhanced Positioning

Meng Piao Tan

Department of Chemical Engineering
Princeton University
Princeton, NJ 08544-5263, USA

E-mail address: mtan@princeton.edu

Christodoulos A. Floudas*

Department of Chemical Engineering
Princeton University
Princeton, NJ 08544-5263, USA
Tel: (609) 258-4595

E-mail address: floudas@titan.princeton.edu

Cluster analysis of genome-wide expression data from DNA microarray hy-
bridization studies is a useful tool for identifying biologically relevant gene
groupings. It is hence important to apply a rigorous yet intuitive clustering algo-
rithm to uncover these genomic relationships. In this study, we describe a novel
clustering algorithm framework based on a variant of the Generalized Benders
Decomposition, denoted as the Global Optimum Search [2, 19, 21, 23, 51] which
includes a procedure to determine the optimal number of clusters to be used. The
approach involves a pre-clustering of data points to define an initial number of
clusters and the iterative solution of a Linear Programming problem (the primal
problem) and a Mixed-Integer Linear Programming problem (the master prob-
lem), that are derived from a Mixed Integer Nonlinear Programming problem
formulation. Badly-placed data points are removed to form new clusters, thus
ensuring tight groupings amongst the data points and incrementing the number of
clusters until the optimum number is reached. We apply the proposed clustering
algorithm to experimental DNA microarray data centered on the Ras signaling
pathway in the yeast Saccharomyces Cerevisiae and compare the results to that
obtained with some commonly-used clustering algorithms. Our algorithm comes
up favorably against these algorithms in the aspects of intra-cluster similarity and

* Author to whom all correspondence should be addressed

307

308 Tan & Floudas

inter-cluster dissimilarity, often considered two key tenets of clustering. Further-
more, our algorithm can predict the optimal number of clusters, and the biological
coherence of the predicted clusters is analyzed through gene ontology.

16.1. Introduction

The aim of cluster analysis is to establish a set of clusters such that the data points
in a cluster are more similar to one another than they are to those in other clusters.
The clustering problem is old, can be traced back to Aristotle, and has already
been studied quite extensively by 18th century naturalists such as Buffon, Cuvier,
and Linne [28]. Since then, clustering has been used in many disciplines, such as
market research, social network analysis, and geology, thus reflecting its broad ap-
peal and utility as a key step in exploratory data analysis [37]. In market research
for instance, cluster analysis is widely used when working with multivariate data
from surveys and test panels. Market researchers use cluster analysis methods to
segment and determine target markets, and position new products. Cluster analy-
sis is also used in the service of market approaches to the establishment of business
enterprise value. [38] addresses the potential role and utility of cluster analysis in
transfer pricing practices. Given the importance of clustering, a substantial num-
ber of books, such as [17, 29, 36], as well as review papers, such as [71] have been
published on this subject.

In biology, clustering provides insights into transcriptional networks, physio-
logical responses, gene identification, genome organization, and protein structure.
Genome-wide measurements of mRNA expression levels have provided an effi-
cient and comprehensive means of gathering information on genetic functions and
transcriptional networks. However, extracting useful information from the result-
ing large data sets first involves organizing genes by their pattern and/or intensity
of expression in order to define those genes that are co-regulated. Such infor-
mation provides a basis for extracting regulatory motifs for transcription factors
driving the diverse expression patterns, allowing assembly of predictive transcrip-
tional networks [3]. This information also provides insights into the functions
of unknown genes, since functionally related genes are often co-regulated [68].
Furthermore, clustered array data provides identification of distinct categories of
otherwise indistinguishable cell types, which can have profound implications in
processes such as disease progression [63]. In sequence analysis, clustering is
used to group homologous sequences into gene families. Examining characteristic
DNA fragments helps in the identification of gene structures and reading frames.
In protein structure prediction, clustering the ensemble of low energy conformers
is used to identify the best possible protein structures.

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 309

Two popular similarity metrics are correlation and Euclidean distance. The
latter is often popular, since it is intuitive, can be described by a familiar distance
function, and satisfies the triangular inequality. Clustering methods that employ
asymmetric distance measures [45, 53] are probably more difficult to intuitively
comprehend even though they may be highly suited to their intended applications.
The earliest work on clustering emphasized visual interpretations for the ease of
study, resulting in methods that utilize dendograms and color maps [11]. Other ex-
amples of clustering algorithms include: (a) Single-Link and Complete-Link Hi-
erarchical Clustering [36, 62], (b) K-Means Algorithm and its family of variants,
such as the K-Medians [30, 46, 49, 73, 74], (c) Reformulation Linearization-based
Clustering [1, 60], (d) Fuzzy Clustering [6, 15, 55, 59], (e) Quality Cluster Algo-
rithm (QTClust) [32] , (f) Graph-Theoretic Clustering [26, 70, 72], (g) Mixture-
Resolving Clustering Method [13, 37], (h) Mode Seeking Algorithms [37], (i)
Artificial Neural Networks for Clustering [9, 42] such as the Self-Organizing Map
(SOM) [43] and a variant that combines the SOM with hierarchical clustering,
the Self-Organizing Tree Algorithm (SOTA) [31], (j) Information-Based Cluster-
ing [56, 61, 67] , (k) Stochastic Approaches [40, 48, 50].

In some instances such as gene expression data, clustering results could be
affected when there exists a number of experimental conditions in which gene
activity, even amongst those known to be closely associated, are uncorrelated.
For this reason, there has also been a number of biclustering algorithms that al-
lows for simultaneous clustering of the rows and columns of a matrix. Though
first described in [10, 29] were the first to apply it to gene expression data by
defining a score for each candidate bicluster and developing heuristics to solve
the resultant constrained optimization problem. Since then, much of the research
on biclustering has been directed towards biological applications. Additional ex-
amples of biclustering algorithms include: (a) Coupled two-way clustering [24],
(b) Iterative Signature Algorithm [5, 34], (c) Statistical-Algorithmic Method for
Bicluster Analysis (SAMBA) [66], (d) Plaid Model [44], (e) Spectral bicluster-
ing approaches such as the study assuming a hidden checkerboard-like structure
within the expression matrix reported in [41], (f) Probabilistic models such as that
reported in [58], (g) the method of [4] in defining a bicluster as an order preserving
submatrix. More recently, [8] present a fractional 0-1 programming approach to
identify selected features for consistent biclustering, and [14] develop a rigorous
biclustering approach OREO, which is based on the optimal reordering of rows
and columns in a data matrix using a network flow model.

In this paper, we present a novel Mixed-Integer Nonlinear Programming
(MINLP)-based clustering algorithm, the Global Optimal Search with Enhanced
Positioning (EP_GOS_Clust), which is robust yet intuitive [64, 65]. This algo-

310 Tan & Floudas

rithm is significant in that it is able to progressively identify and weed out outlier
data points. Also, our algorithm contains a convenient method to predict the op-
timal number of clusters. We compare our algorithm with several approaches
commonly used in clustering biological microarray data, namely K-methods, QT-
Clust., SOM, and SOTA. We use two assessment criteria to assess the results: the
intra-cluster and inter-cluster error sums. We also examine the difference between
the two error sums. In an optimal cluster configuration, the intra-cluster error sum
is to be minimized and the inter-cluster error sum to be maximized. In this respect,
we show that our proposed algorithm compares favorably. We also incorporate a
methodology to predict the optimal number of clusters. In addition, in view of the
context of the particular test dataset used, we compare the strength of biological
coherence uncovered by the various approaches using Gene Ontology resources,
and also the level of correlation between data points with the same cluster. We
base our comparative study on actual DNA microarray data, though our algorithm
can be readily utilized for data from other applications.

16.2. Methods

16.2.1. Experimental Data

For the clustering studies described in this report, we used experimental microar-
ray data derived from a study in the role of the Ras/protein kinase A pathway
(PKA) on glucose signaling in yeast [69]. These experiments analyzed mRNA
levels in samples extracted from cells at various times following stimulation by
glucose or following activation of either Ras2 or Gpa2, which are small GT-
Pases involved in the metabolic and transcriptional response of yeast cells to glu-
cose [57]. These experiments were performed in wild type cells and cells defective
in PKA activity. Clustering these microarray data has proven to be a critical step in
using the data to develop a predictive model of a topological map of the signaling
network surrounding the Ras/PKA pathway [47].

Levels of RNA for each of the 6237 yeast genes in each of the RNA samples
from the above experiments were measured using Affymetrix microarray chips
and analyzed by the Affymetrix software. Each of the eight test and control ex-
periments consisted of four time points over a hour period, yielding 32 data points
for each of the 6237 genes. We used the Affymetrix MicroArray Suite 5.0, which
analyzes the consensus of intensities of hybridization of an RNA to the collection
of perfect match probes for a gene on the array, relative to the intensities of hy-
bridization to single mismatch probes, to further determine whether a signal for a
specific RNA in a sample was reliable (P or present), unreliably low (A or absent),

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 311

or ambiguous (M). Before clustering the array data, we filtered the data to remove
unreliable data. In particular, we retained all genes for which all the time points
were present (4105 genes), all the genes for which greater than 50% of the time
points were present, and all the genes for which the present/absent calls exhibited
a biologically relevant pattern (e.g. PAAA for the four time points in the experi-
ment, suggested repression of gene expression over the course of the experiment).
In all, we retained 5652 genes. The expression patterns for these genes are then
z-normalized over each gene.

16.2.2. Theoretical and Computational Framework
16.2.2.1. Notation

We denote the measure of distance for a gene i, for i = 1,.,n having k features (or
dimensions), for k = 1,.., s as a;;. Each gene 32-time point expression pattern is
transformed into a 24-dimensional vector, for which each vector element indicates
the change in normalized expression level between time points for each gene, a;.
Each gene is to be assigned to only one (hard clustering) of ¢ possible clusters,
each with center z;j, for j = 1,.,c. The binary variables w;; indicates whether
gene i falls within cluster j (w;; = 1, if yes; w;; = 0, if no). We then pre-cluster the
data to expedite the computational resources required to solve the hard clustering
problem by (i) identifying genes with similar experimental responses, and (ii) re-
moving outliers deemed not to be significant to the clustering process. To provide
just adequate discriminatory characteristics so that the genes can be pre-clustered
properly, we reduce the expression vectors into a set of representative variables
[+, 0, -]. The (+) variable represents an increase in expression level compared to
the previous time point, the (-) variable represents a decrease in expression level
from the previous time point, and the (o) variable represents an expression level
that does not vary significantly (&= 10% of change across the time points). We
could have used other comparative metrics such as distance or correlation to pre-
cluster the genes, though at this first pass stage, using the representative variables
[+, 0, -] lends more ease and produces pre-clusters of similar quality. Obviously
the pre-clustering process of choice can differ across datasets to be clustered, and
we choose the approach most expeditious to our data of interest.

16.2.2.2. Hard Clustering by Global Optimization

The global optimization approach seeks to minimize the Euclidean distances be-
tween the data points and the centers of their assigned clusters as:

312 Tan & Floudas

min Y, 25:1 S wij(aik — zjk)? (Problem 1)

s.t. 2;:1 wi; =1,Vi=1,...,n

w;; are binary variables, z;;, are continuous variables

There are two sets of variables in the problem, w;; and z;;,. While the bounds
of w;; are clearly O and 1, that of z;; is obtained by observing the range of a;
values.

Zng = minfa;],Vk=1,......s
ZgUlc = mazxfaix), Yk =1,.....;s

The pre-clustering work suggests that some of the genes need only be re-
stricted to some number of known clusters, since it can be determined (for instance
by distance and correlation metrics) that certain genes are exceedingly dissimilar
from some of the pre-clusters and thus have virtually zero probability of being
clustered there. This restriction can be described by introducing an additional bi-
nary parameter suit;;. A data point deemed to belong uniquely to just one cluster
will only have suit;; = 1 for only one value of j and zero for the others, whereas a
data point restricted to a few clusters will have suit;; = 1 for only those clusters.
This reduces the computational demands of the problem. The introduction of the
suit;; parameters also obviates the need for constraints that prevent the redundant
re-indexing of clusters.

Together with the first-order optimality condition (FOC) (i.e. the vector dis-
tance sum of all genes within a cluster to the cluster center should be intuitively
zero), the formulation becomes:

min 3T 3Ty ad, — D0y D05 Dopen (Suitij(@ikwijzik) (Problem 2)

s.t. (Suitij)(ij- E?:l Wij — E?:l aikwij) = O, Vij‘
Z;zl(suitij)wij = 1,VZ'

1< Z?:l(suitij)wij <n—-c+1
Wi; = 0— l,Vi,Vj
zfi, < zjp < 25,9, Vk
The first set of constraints are the FOC, the second demand that each gene can

belong to only one cluster, and the third state that there is at least one and no more
than (n-c+1) data points in a cluster. Note also that the Y ;" | > 7_, a?, term in

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 313

the objective function of Problem 2 is a constant and can be dropped, though for
the sake of completeness we will retain the term throughout the subsequent formu-
lations in the paper. Problems 1 and 2 are Mixed Integer Nonlinear Programming
(MINLP) problems with bilinear terms in the objective function and the first set
of constraints. To handle the nonlinearities formed by the product of variables w;;
and z;, new variables y;;;, along with additional constraints [19] are defined as
follows:

Yijk = WijZjk (16.1)
Zjk — ZjUk(l — wij) S Yijk S Zjk — Zij(l — wij) (162)
Zijwu < Yijk < Z%wij;Viana vk (16.3)

The introduction of y;;;, and the additional constraints reduces the formula-
tion to an equivalent Mixed-Integer Linear Programming (MILP) problem, but
results in an inordinately large number of variables. Thus, there is a need for new
approaches to address large datasets.

16.2.2.3. The GOS Algorithm for Clustering

The introduction of the bilinear variable y;;;, results in a large number of vari-
ables to be considered. In a problem with over 2000 data points, each having 24
features, to be placed into over 380 clusters, the number of variables to be consid-
ered numbers over 18 million. Without introducing the y;; variables will leave
the problem in a nonlinear form. Mixed-integer nonlinear programming (MINLP)
problems are considered extremely difficult. Theoretical advances and prominent
algorithms for solving MINLP problems are addressed in [19, 20, 22].
The general form of a MINLP problem is:

min C(z,y) (Problem 3)
s.t. h(z,

Here, x represents the continuous variables in real space and y, the integer
variables. For simplicity here, y is assumed to be binary. In addition, C(x,y) is
the objective function, h(x,y) represents the set of equality constraints, and g(x,y)
is the set of inequality constraints. We propose here a variant of the Generalized

314 Tan & Floudas

Benders Decomposition (GBD) algorithm [21], denoted as the Global Optimum
Search (GOS). For brevity, only a outline of the GOS algorithm is presented here,
while a more detailed description can be found in [2, 19, 21, 23, 51].

In brief, the GBD method decomposes the problem into a primal problem and
the master problem. The former optimizes the continuous variables while fixing
the integer variables and provides an upper bound solution, while the latter op-
timizes the integer variables while fixing the continuous variables and provides
a lower bound solution. The two sequences of upper and lower bounds are iter-
atively updated until they converge in a finite number of iterations. In addition,
the GOS algorithm assumes that (i) the optimal solution of the primal problem to-
gether with the relevant Lagrange multipliers can be used to determine the support
functions, (ii) f(x,y) and g(x,y) are convex functions in y for every fixed x, and (iii)
h(x,y) are linear functions in y for every x. An outline of the GOS algorithm is as
follows:

Step 1 - Solving the primal problem

The primal problem results from fixing the binary variables to a particular 0-1
combination. Here, w;; is fixed and z;;, is solved from the resultant linear pro-
gramming (LP) problem. In addition, the solution also includes the relevant La-
grange multipliers. The objective function obtained is the upper bound solution.
The general form of the feasible problem:
min, C(z,y*) (Problem 4)
s.t. h(z,y*) =0
gla,y*) <0
xeR”

If the primal problem is found to be infeasible, the inactive (i.e., inequality)
constraints are relaxed by introducing slack variables « and then solving for a,
as well as z;, and the Lagrange multipliers. In this event, no new upper bound
solution is found. The infeasible problem to be solved has the form:

min S a (Problem 5)
s.t. h(z,y*) =0
g(z,9*) < a, one « value for each inactive constraint

a>0

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 315

Step 2 - Solving the relaxed master problem

The master problem is essentially the problem projected onto the y-space (i.e.,
that of the binary variables). To expedite the solution of this projection, the dual
representation of the master is used. This dual representation is in terms of the
supporting Lagrange functions of the projected problem. It is assumed that the
optimal solution of the primal problem as well as its Lagrange multipliers can be
used for the determination of the support function. Also, the support functions are
gradually built up over each successive iteration. The relaxed master problem to
be solved is hence:

miny uB (Problem 6)
s.t. pup > L(x®, gy, \F pk), k=1, K
0> f(xl,y,xl,ﬁl),l =1,L
L,y \¥, u%) = (2%, y) + Neh(ab, y) + phg(ab, y)

— - _ —I _
L(zl,y, X, ") = X h(a',y) + g(a!,y)

In accordance to the general format of the problem, f(x, y) is the objective
function, h(x, y) are the active constraints, and g(x, y) are the inactive constraints.
’x’ represents the solutions of the continuous variables (i.e., z;;) from the primal
problem and 'y’ represents the binary variables (i.e., w;;) to be determined in the
relaxed master. A\’ represents the Lagrange multipliers for the active constraints
and ’u’ represents the Lagrange multipliers for the inactive constraints. The super-
script 'k’ represents values from the feasible primal problems and the superscript
’I’ (and the over-bar) represents values from the infeasible primal problems. The
master problem is to be solved as a MIP (mixed integer programming) problem.

The solution loop then returns to step 1 and the process is repeated. For each
excursion into step 1, the primal could be either feasible or infeasible. With each
successive iteration, a new support function is added to the list of constraints for
the master problem. Thus in a sense, the support functions for the master problem
build up with each iteration, forming a progressively tighter envelope and gradu-
ally pushing up the lower bound solution until it converges with the upper bound
solution.

Since fixing X to the solution of the corresponding primal problem may not
necessarily produce valid support functions, the master solution obtained at each
iteration is checked against the current lower bound solution so that the latter is
updated only if the master solution is higher than the current lower bound solution.

316 Tan & Floudas

For our clustering problem, with fixed starting values for w;;, the primal prob-
lem becomes:

: n S 2 n c s
MinG;, iy D pey Qi — Djmg D D1 GikW;;2jk (Problem 7.1)
s.t. Zjk Yorq Wi — Yoy agw); = 0,VjVk

L .
2fi, < zjp < 25,4, Vk

The primal problem is a Linear Programming (LP) problem. All the other
constraints drop out since they do not involve z;, which are the variables to be
solved in the primal problem. Besides z;y,, the Lagrange multipliers A7} for each
of the constraints above is obtained. The objective function is the upper bound
solution. These are substituted into the master problem, which becomes:

miny , , 4B (Problem 7.2)
s.t. HE = D00 Dy Gl — 2y 25:1 D het AikWij 25 + -
25:1 Dot)‘;'TIL: (275 2oit Wij — 2oimq Ginwig),m =1, M
ijl Wi; =].,Vi
1 S Z?:lwij S TL—C+1,V].
Wij = 0— 1,Vi,Vj

The master problem solves for w;; and ;1 5, and results in a lower bound solu-
tion (i.e., the objective function). The master problem is a Mixed Integer Linear
Programming (MILP) problem. The w;; solutions are cycled back into the primal
problem and the process is repeated until the solution converges. Thus, there is
no longer a need for the variables y; 1, which substantially reduces the number of
variables to be solved. Also, after every solution of the master problem, where a
solution set for w;; is generated, an integer cut is added for subsequent iterations
to prevent redundantly considering that particular solution set again. The cut is
expressed as:

>oow— Y w<n-1 (16.4)
i€[n|w;;=1] i€[n|w;;=0]

Note that the initial condition w;; for the primal problem can be generated
either by solving the above problem as a relaxed MINLP problem or by randomly
generating starting w;; values. For the former, the w;; solution is then rounded up
and used as the initial condition for the GOS algorithm. It is found that well over
95% of the w;; solution from the MINLP problem adopt [0,1] solutions anyway.

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 317

In addition, if it is not certain that the initial w;; values form an optimal solu-
tion, such as the case of randomly generated w;; values, it is then not included
in subsequent integer cuts. It is important to note that while the GOS algorithm
tends to give good optimal solutions, it does not have a theoretical guarantee of
returning a globally optimum solution. Hence the issue of providing the algo-
rithm with a quality initialization point is important and will be addressed later in
the paper. Note also that in a typical GBD algorithm, there may be an infeasible
primal problem, for which the problem statement would have to be reformulated
accordingly. In this case, since there is only one set of continuous variable (i.e.,
%)) to be solved in the primal problem, and there is always a feasible assignment
of points to clusters, leading to the calculation of the cluster centers, all primal
problems are feasible.

16.2.2.4. Determining the Optimal Number of Clusters

Most clustering algorithms do not contain screening functions to determine the
optimal number of clusters. Yet this is important to evaluate the results of clus-
ter analysis in a quantitative and objective fashion. On the other hand, while it
is relatively easy to propose indices of cluster validity, it is difficult to incorpo-
rate these measures into clustering algorithms and appoint thresholds on which
to define key decision values [27, 36]. Some of the indices used to compute
cluster validity include the Dunn’s validity index [16], the Davis-Bouldin validity
index [12], the Silhouette validation technique, the C index [33], the Goodman-
Kruskal index [25], the Isolation index [52], the Jaccard index [35], and the Rand
index [54]. We note that the optimal number of clusters occurs when the inter-
cluster distance is maximized and the intra-cluster distance is minimized. We
adapt the concept of a clustering balance [39], where it has been shown to have a
minimum value when intra-cluster similarity is maximized and inter-cluster simi-
larity is minimized. This provides a measure of how optimal is a certain number
of clusters used for a particular clustering algorithm. We introduce the following:

Global Center, zp = L 3" | a;;,,Vk (16.5)
Intra-Cluster Error Sum, A = 377" | 327 377 wijllai, — 2[5 (16.6)
Inter-Cluster Error Sum, T' = 377, 370 [z — 2% (13 (16.7)

From here, [39] proposed a clustering balance parameter, which is the a-
weighted sum of the two error sums.

Clustering Balance, ¢ = oA + (1 —)T (16.8)

318 Tan & Floudas

We note here that the rightful a-ratio is 0.5. We note that the factor « should
balance the contributive weights of the two error sums to the clustering balance.
At extreme cluster numbers, that is, the largest and smallest number possible, the
sum of the intra-cluster and inter-cluster error sums at both cluster numbers should
be balanced. In the minimal case, all the data points can be placed into a single
cluster, in the case of which the inter-cluster error sum is zero and the intra-cluster
error sum can be calculated with ease. In the maximal case, each data point forms
its own cluster, in the case of which the intra-cluster error sum is zero and the
inter-cluster error sum can be easily found. Obviously the intra-cluster error sum
in the minimal case and inter-cluster error sum in the maximal case are equal,
suggesting that the most appropriate weighting factor to use is in fact 0.5.

This suggest that for any clustering algorithm including that using the GOS
algorithm, one can deduce the optimal number of clusters by performing multiple
repetitions of the clustering process over a suitably large range of cluster numbers
and watching for the clustering gain or clustering balance turning points.

16.2.3. Proposed Algorithm

The discussion thus far points to the GOS formulation as a suitable clustering
algorithm. But for it to be effective, the formulation must be provided with a
good initialization point. Also, we want to expeditiously incorporate the approach
to predict the optimal number of clusters into a clustering algorithm. With these
considerations in mind, we propose the following GOS clustering algorithm with
enhanced data point positioning (EP_GOS_Clust).

Gene Pre-Clustering:We choose to pre-cluster genes based on the feature
pattern representation of their expression vectors. This conforms well to the in-
tuitive notion that two co-expressed genes similarly-shaped expression patterns,
rather than comparing the magnitudes of the two series of measurements [18]. In
our 24-dimensional expression vectors, only genes with two or less different ex-
pression vector points from one another are pre-clustered together. Many of these
genes end up belonging to more than one pre-cluster. Since their specific member-
ship is in question, we take the clusters formed only by uniquely-clustered genes.
As a result, we find 388 genes uniquely placed into 157 clusters.

We note here in particular when pre-clustering by finding complete cliques,
which means that the pre-clustered genes that belong uniquely to only one cluster,
or in other words, there is a link between every gene within the same cluster,
we could have iterated the process using various levels of pre-clustering criteria.
When the criterion is overly lenient, a large number of pre-clusters are formed,

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 319

but most of the genes will belong to multiple pre-clusters, and the number of
maximal cliques formed is small. On the other hand, an unnecessarily strict cut-
off results in a small number of pre-clusters, thus not accurately reflecting the
extent of relatedness between the data. In pre-clustering over a range of cut-off
values, we would then be able to select the optimum criterion as the point where
the maximum number of complete cliques is formed [64].

Iterative Clustering:We let the initial cluster set be defined by the unique
genes pre-clustered in the previous step and compute the cluster centers. We next
compute the distance between each of the remaining genes and these initial cen-
ters and as a good initialization point placed these genes into the nearest cluster
based on:

S
min[Z(aik - Z;Zi““l)Q, Vjl, Vi & unique
k=1

We then create a rank-order list for each of the remaining genes for its dis-
tance to each of the initial clusters, and for each gene allow its suitability in 4
nearest clusters via its suit;; parameters. For this particular dataset, a separate
study (results not shown here) has indicated that the clustering results cease to
change significantly once the number of suit;; values for each gene exceed 4.
The initialization point and the suit;; parameter assignments are then utilized in
the primal problem of the GOS algorithm as described in Problem 7.1 to solve for
zjk. These, together with the Lagrange multipliers, are inputted into the master
problem (Problem 7.2) to solve for w;;. The primal problem gives an upper bound
solution and the master problem provides a lower bound. The optimal solution is
obtained when the lower and upper bounds converge. Then, the worst placed gene
based on:

(& S
max[z Z(aik — z;,fd“ted)z, Vi € unique]
j=1k=1

is removed and used as a seed for a new cluster with center z"“". This gene has
already been subjected to the initial search for membership so there is no reason
for it to belong to any one of the older clusters. Based on z"¢% and zvpdated
(updated without the worst-placed gene), the iterative steps are repeated, by se-
lecting a new initialization point, assignment suit;; parameters, and running the
GOS algorithm again. With these iterations, the number of clusters builds up from
the initial number defined by the pre-clustering work, until the optimal number of
clusters is attained. Our proposed clustering methodology can be summarized by
the schematic in Fig. 16.1.

320 Tan & Floudas

Pre-clustering

!

Pre-clusters formed by
selected set of proximity
data

Remaining data

Assign proximity suit
values; placement into
nearest pre-cluster as
initialization

GOS Formulatic
Primal problem; fix
wij, solves zji; upper
bound solution

Master problem; fix
Wik, solves wjj; lower No comvergence
bound solution

Convergence

‘ Calculate clustering balance Remove worst-
placed data; seed

No turning
point new cluster; reassign
suit values &

initializati
End of Clustering mitigization

Fig. 16.1. Schematic flowchart of the EP_GOS_Clust algorithm. Although the formulation in the
paper has been given for DNA microarray data, the algorithm framework can be adapted for clustering
any numeric data.

Turning point

16.3. Results and Discussion

16.3.1. Description of Comparative Study

We will work with the 5652 genes obtained previously. The clustering algorithms
to be compared are (a) K-Means, (b) K-Medians, (c) K-Corr, where the Pearson
correlation coefficient is the distance metric, (d) K-CityBlock, where the distance
metric is the city block distance, or the "Manhattan’ metric, which is akin to the
north-south or east-west walking distance in a place like New York’s Manhattan
district, (e) K-AvePair, where the cluster metric is the average pair-wise distance
between members in each cluster, (f) QTClustering, (g) SOM, (h) SOTA, (i) GOS
I, where genes with up to 7 different feature points are pre-clustered, initial clus-
ters are defined by uniquely-placed genes, and each gene is placed into its nearest
cluster as the initialization point, and (j) EP_GOS_Clust, for which genes are pre-
clustered if they have 2 or less different feature points and can be uniquely clus-

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 321

65000

60000 .
* *EP_GOS_Clust
£ s ** ¥ KMedians
5000 *
F s : KCityBlk
s - X xKCorr
u P ' s © KMeans
5 . =
- 45000 * T - $ 5 -eos!
] . i & - +QTClust
* -

=] + - "
£ ue + _ KAvePair
£ 40000 LT -t .

Sog ® = . ¥ +SOTA

123 YO . - . s
35000 Nouggugw —SoM
*
$ouss ool 5
30000

150 200 250 300 350 400 450 500 550 600
Number of Clusters

Fig. 16.2. Comparison of intra-cluster error sum from the clustering of 5652 yeast genes based on
DNA expression levels in glucose pathway experiments, using different clustering algorithms. Each
gene contains 36 time points, or a 24-dimensional feature vector. The intra-cluster error sum measures
the extent of dissimilarity between objects within the same cluster, and should be minimized.

tered. For convenience, the comparison involving SOM and SOTA will only be
carried out at the optimal cluster number predicted for the EP_GOS_Clust. Since
the K-family of clustering approaches are sensitive to the initialization point, we
run each 25 times and use only the best result.

16.3.2. Intra-cluster Error Sum

Data points in the same cluster should be as similar as possible; hence the intra-
cluster error sum should be minimized. From Fig. 16.2, it can be seen that the
best performing clustering algorithms are the K-Medians and the EP_GOS_Clust.
In fact, other than within regions of low cluster number, the EP_GOS_Clust out-
performs all the other algorithms. One reason for the efficacy of the K-Medians at
low cluster numbers is due to it using the data median to compute cluster centers.
This circumvents the distorting effects of outlier data points, which particularly
affects algorithms that use random initialization points, such as K-Means. It is
also notable that the GOS I performs admirably even though the pre-clustering
allows genes with up to 30% difference in feature points to be grouped together.
This reflects the rigor of the subsequent steps in assigning suit;; parameters, the
GOS clustering, and the process of incrementing the cluster number. The clus-
tering results also show up the inadequacy of QTClust. It groups genes together
till the cluster reaches a pre-determined tolerance. The algorithm then determines
the number of clusters to use. A different tolerance criterion needs to be speci-
fied in order to obtain a different cluster number. This implies that the process

322 Tan & Floudas

*
‘0
14000 K
*
.0
12000 +* +EP_GOS_Clust
X -
E o KMedians
- | |
“,‘6 10000 .0’ & KAvePair
+
5 o* - . - | XKCityBlk
® - = #
s A = na"* u *KCorr
G 8000 o . +
s * a” ® KMeans
o _u + X2
5 SO b S Gos|
5 .
£ 6000 o - .0 ® %
- . - ¥ & +QTClust
. _] _txe
.‘ + o +SOTA
4000 LA S -SOM
[Pl
L et
2000

150 200 250 300 350 400 450 500 550 600
Number of Clusters

Fig. 16.3. Comparison of inter-cluster error sum from the clustering of 5652 yeast genes based on
DNA expression levels in glucose pathway experiments, using different clustering algorithms. Each
gene contains 36 time points, or a 24-dimensional feature vector. The inter-cluster error sum measures
the extent of dissimilarity between clusters, and should be maximized.

of probing for the optimal number of clusters using QTClust uses clusters of in-
consistent qualities. We further look in detail at the clustering results obtained
by QTClust and note that genes with up to 14 different feature points (60% of all
feature points) are in fact clustered together.

16.3.3. Inter-cluster Error Sum

This error sum indicates how different clusters are from one another and is given
by:

c S
Z Z(ij - Z;k)g
j=1k=1
This is another measure of cluster quality, and it is desirable for the error
sum to be maximized. The inter-cluster error sum for the clustering of 5652
genes is shown in Fig. 16.3. Here, the EP_GOS_Clust outperforms all the other
cluster algorithms. In using the intra-cluster error sum as the objective function
and demanding that the worst-fitting gene be extracted to seed new clusters, the
EP_GOS_Clust explicitly seeks a minimal intra-cluster error sum and implicitly
searches for a configuration that maximizes the inter-cluster error sum. Note that
while K-Medians does well in obtaining a minimal intra-cluster error sum, it per-
forms averagely in discerning dissimilar clusters. This is due to the ’localized’
nature of the K-family of clustering methods, where there is a tendency to become
’stuck’ within a limited vicinity of the initialization point for most data structures.

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 323

3 3
T 55000 * %
=
Q &
g %00 . #EP_GOS_Clust
£ - .
% 45000 * % # KMedians
5 o« % . KAvePair
$ --7 . x
§ E 4000048 ut . u * <& x KCityBlk
24 I JE -0 . s xKCorr
£ 35000 o & ; . i
= %t e 1 . . -, . © KMeans
£ 1 30000 *oe,. " s + MINLP
@ “ng
g ey, TR L= -Gos |1
3 *, g g
3 mw hSN " " #QTClust
@ N =]
£ 20000 ’n,.. " | -soma
5 ® = SOM
£ 15000
a

10000

150 250 350 450 550 650

Number of Clusters

Fig. 16.4. Comparison of the difference between error sums from the clustering of 5652 yeast genes
based on DNA expression levels in glucose pathway experiments, using different clustering algorithms.
Each gene contains 36 time points, or a 24-dimensional feature vector. This comparison allows an
overview of the extent of overall ‘error-ness’ for the clusters formed and should be minimized.

16.3.4. Difference between Intra-cluster and Inter-cluster Error Sums

We look also at an overall measure of clustering quality the difference between
the intra-cluster and inter-cluster error sums. Since it is desirable for the former to
be minimized and the latter maximized, an effective and rigorous clustering algo-
rithm will have a low value for this difference. The results are shown in Fig. 16.4.
Again, the EP_GOS _Clust is the best performer except for certain regions of low
cluster number, where the K-Medians dominate with its capability to handle out-
lier data points. At higher cluster numbers however, the EP_GOS_Clust identifies
and isolates these outlier data points into new clusters and subsequently its clus-
tering performance overtakes that of the K-Medians.

16.3.5. Optimal Number of Clusters

We compute the optimal number of clusters by applying a suitable weight-
ing factor to the two error sums and then finding the clustering balance. The
EP_GOS_Clust predicts the lowest number of optimal clusters. From Fig. 16.5, it
can be seen that EP_GOS_Clust predicts 237 clusters. On the other hand, K-Means
and KCorr, for instance, predict the optimal number of clusters to be around 700,
while K-Medians puts the number at around 450. Together with the quality of the
EP_GOS_Clust from the previous comparisons, we infer the superior ’economy’
of the EP_.GOS_Clust in producing tighter data groupings by utilizing a lower
number of clusters, as it is actually possible to achieve tight groupings by using a
large number of clusters, even with an inferior clustering algorithm.

324

Fig. 16.5.

Clustering Balance

Tan & Floudas

32000
.
x
30000 ‘e
s
. ® 1 4 EP_GOS_Clust
X
28000 . /; R ¥ KMedians
el KAvePair
8 il Y 0o
= . « KCityBlk
26000 xKCorr
+ -
e = ® KMeans
24000 5 =GOSl
++ ¢ QTClust
= +SOTA
22000
l|..lﬂ. - “som
" onByynnge ve 158
20000
100 200 300 400 500 600 700 800 900 1000

Number of Clusters

Prediction of the optimal number of clusters, as shown by the turning point in the cluster

balance, by different clustering algorithms from the clustering of 5652 yeast genes based on DNA
expression levels in glucose pathway experiments.
dimensional feature vector.

Each gene contains 36 time points, or a 24-

16.3.6. Coherence and Biological Relevance

Often the most intuitive and convenient manner of evaluating the robustness of
a clustering approach is to visually inspect the cluster tightness. For brevity,
Fig. 16.6 depicts the expression time course for 4 sample clusters. We use the

Expression Level (Time Course)

Expression Level (Time Course)

“

Fig. 16.6.
algorithm.

Cluster 27: 59 Genes

Average Correlation = 0.903
Function: Ribosome Biogenesis
H0g10(P) = 11.15

Feature Point

Cluster 87: 73 Genes.
Average Correlation = 0.911
Function: Protein Biosynthesis

Feature Point

Expression Level (Time Course)

Expression Level (Time Course)

Cluster 167: 77 Genes

Average Correlation = 0.927
Function: Ribosome Biogenesis and Assembly,
Hog10(P) = 34.23)

Feature Point

Average Correlation = 0.884
Function: Cytoplasm Organization and Biogenesis
Hog10(P) = 25.97

Gene expression time course plots for 4 sample clusters, found using the EP_GOS_Clust

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 325

Table 16.1. Comparison of cluster correlation from the clustering of 5652 genes based on DNA ex-
pression levels in glucose pathway experiments. The comparison shows tha average correlation coeffi-
cients across all clusters for each clustering algorithm, the maximum and minimum coefficient, as well
as the standard deviation of the coefficients to give a sense of the spread of correlation displayed by the
clusters. The table also shows the optimal number of clusters predicted by each clustering approach.
The shaded row contains the results for EP_GOS_Clust and the top three performers for each correlation
performance indicator is marked with an asterisk.

Correlation Coefficient
Optimal | Average Maximum Minimum Standard
Cluster Deviation
Number
EP_GOS_Clust | 237 0.617* 0.938* 0.264* 0.128*
KMedians 445 0.615 0.937 0.197 0.134
'g KCityBlk 665 0.398 0.760 -0.159 0.149
g KCorr 665 0.630* 0.931 0.239% 0.119*
e KMeans 775 0.614 0.959* 0.072 0.131
£ GOsI 295 0.590 0.933 0.202 0.148
é KAvePair 452 0.567 0.909 0.156 0.141
SOTA 540 0.604 0.925 0.378% 0.122*
SOM 485 0.623* 0.968* 0.202 0.156

largest clusters formed, as well as clusters formed in the later stages of the pro-
cedure and smaller-sized clusters to show good consistency and lack of size-
bias. The plots clearly show the tightness of the clustering throughout. To more
conveniently demonstrate the overall tightness of the clusters uncovered by the
EP_GOS_Clust as compared to other methods, we also find the Pearson correla-
tion coefficients of all the clusters uncovered.

Table 16.1 provides a summary of the cluster correlations, where in partic-
ularly the average correlation coefficient and the standard coefficient reflect the
overall tightness for all clusters. It can be seen that the EP_GOS_Clust compares
very well with other clustering methods in producing highly correlated clusters,
even against methods such as K-Corr that already explicitly uses correlation as
a metric for clustering and the correlation hunting SOM (see Table 16.1). The
data in the table for each clustering algorithm is obtained at the respective optimal
number of clusters predicted by the clustering balance.

We also evaluate our clusters by performing a functional search using the Gene
Ontology (GO) term finder on the SGD website (http://www.yeastgenome.org).
The biological coherence of each cluster is scored according to the percentage of
its genes covered by annotations significantly enriched in the cluster. From our

326 Tan & Floudas

Table 16.2. Gene Ontology comparison between clusters found by different clustering approaches.
The table compares the — log o (P) values of the clusters, which reflect the level of annotative richness,
as well as the proportion of yeast genes that fall into biologically significant clusters. The latter is
important in ‘presenting’ the maximal amount of relevant genetic information for follow-up work in
areas such as motif recognition and regulatory network inference. The shaded row contains the results
for EP_.GOS_Clust and the top three performers for each performance indicator is marked with an
asterisk.

-log;o(P) Comparison % Genes (Total 5652)
Average Standard In Clusters with In Clusters with
Deviation —logo(P) values —log;o(P) values
>=4 >=3
EP_GOS_Clust | 4.40* 0.37 32.82* 64.92%
KMedians 4.27* 0.34* 30.83* 62.23*
? KCityBlk 3.69 0.49 27.53 56.68
g KCorr 4.15* 0.39 32.59* 60.08*
Eﬂ KMeans 3.45 0.41 25.11 55.20
E GOS 1 3.84 0.42 28.19 57.75
é’ KAvePair 3.77 0.48 25.18 54.43
SOTA 3.67 0.31* 30.20 58.86
SOM 3.94 0.35* 30.47 59.24

results, 91% of the genes group into clusters with p-values under 0.01 and 87% of
the genes fall into clusters with p-values under 0.005, which is a significant indica-
tion of clustering quality. Table 16.2 shows that the EP_GOS_Clust performs well
against other clustering algorithm in obtaining clusters with good overall p-values
(expressed as —log1o(p) values in this table) and the proportion of genes that are
placed into significantly coherent clusters, which we consider to be two broad
tenets in assessing the strength of biological coherence. We would like to point
out that the EP_GOS _Clust procedure isolates errant data points as the clustering
progresses. Thus, in further analysis of the clusters we have good justification to
consider these data points as being irrelevant.

16.3.7. Additional Constraints for Large Datasets

It is interesting to note that a close examination of the clustering results within
each GOS iteration reveals that the cluster size distribution does not change sig-
nificantly over successive iterations This suggests that we can analyze the inter-
mediate results from a particular run and introduce additional constraints on the
number of clusters allowable in each size class without significantly compromis-
ing on the optimality of the final solution. Using 1 < Z?Zl wi; < n—c+1asthe

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 327

constraint for cluster size can unnecessarily increase the problem size. Hence, we
can further tighten the constraint for cluster size as a plausible strategy for further
expediting the clustering of even larger data sets.

Indexing the new cluster size ranges by 1, for 1 = 1,.,d, we introduce a new
binary variable w; ;» which equals one if cluster j belongs to size class I, and zero
if otherwise. The additional constraints are then formulated as follows:

S wy =1, (16.9)
ne—e <Y wy < net eV (16.10)
S dimin < S0 wig < S dpman, Vi (16.11)

The first set of constraints allows each cluster into only one size class. The
second constraint restricts the number of clusters allowable in each class. The
parameter ¢ is judiciously picked to allow a reasonable range over the number of
clusters in each class, for instance 10%. Finally, the third constraint bounds the
size of the clusters allowed in each class. These additional constraints also involve
the variable w;; but not z;; hence they are all included into the master problem.

16.4. Conclusion

In our study, we propose a novel clustering algorithm (EP_GOS_Clust) based on
a Mixed-Integer Nonlinear Programming (MINLP) formulation. We test our pro-
posed algorithm on a substantially large dataset of gene expression patterns from
the yeast Saccharomyces Cerevisiae, and show that our method compares favor-
ably (if not outperforms) with other clustering methods in identifying data points
that are the most similar to one another as well as identifying clusters that are the
most dissimilar to one another. We also show that the EP_GOS_Clust is capable
of uncovering tightly-correlated clusters. Given the nature of the test datasets, we
too show that the EP_GOS_Clust does well in uncovering clusters with good bi-
ological coherence. In addition, we demonstrate the utility of the pre-clustering
procedure and a methodology that works in concert with the algorithm itself to
predict the optimal number of clusters. For consistency, we repeated our study
on other DNA microarray datasets based on the various glucose signaling path-
ways in the yeast Saccharomyces Cerevisiae (other results not reported here) and
obtained similar result trends.

16.5. Computational Resources

All optimization formulations are written in GAMS (General Algebraic Modeling
System) [7] and solved using the commercial solver CPLEX 8.0. GAMS is a

328

Tan & Floudas

high level modeling system specifically designed for mathematical optimization.
It consists of a language compiler and an integrated high performance solver such
as CPLEX, DICOPT, or XPRESS.

Acknowledgements

The authors gratefully acknowledge support from the National Science Founda-
tion and the National Institutes of Health.

References

(1]
(2]
(3]
(4]
(5]

(6]
(7]
(8]

(9]

(10]
(1]
(12]
[13]

[14]

W. P. Adams and H.D. Sherali. Linearization strategies for a class of zero-one mixed
integer programming problems. Operations Research, 38:217-226, 1990.

A. Aggarwal and C. A. Floudas. Synthesis of general distillation sequences - non-
share separations. Computers & Chemical Engineering, 14(6):631-653, 1990.

M. Beer and S. Tavazoie. Predicting gene expression from sequence. Cell, 117:185—
198, 2004.

A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene
expression data. In Proc. RECOMB’02, pages 49-57. ACM Press, 2002.

S. Bergmann, J. Ihmels, and N. Barkai. Iterative signature algorithm for the analysis
of large-scale gene expression data. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.,
67:03190201-03190218, 2003.

J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York, 1981.

A. Brooke, D. Kendrick, and A Meeraus. GAMS: A User’s Guide. The Scientific
Press, San Francisco, CA, 1988.

S. Busygin, O. A. Prokopyev, and P. M. Pardalos. Feature selection for consistent
biclustering via fractional 0-1 programming. Journal of Combinatoial Optimization,
10:7-21, 2005.

G. Carpenter and S. Grossberg. Art3: Hierarchical search using chemical transmitters
in self-organizing patterns recognition architectures. Neural Networks, 3:129-152,
1990.

Y. Cheng and G. Church. Biclustering of expression data. In Proc. ISMB’00, pages
93-103. AAAI Press, 2000.

J. Claverie. Computational methods for the identification of differential and coordi-
nated gene expression. Human Molecular Genetics, 8:1821-1832, 1999.

D. L. Davis and D. W. Bouldin. A cluster separation measure. [EEE Trans. Pattern
Anal. Machine Intell., 1(4):224-227, 1979.

A. P. Dempster, N. M. Laird, and D. B. Rudin. Maximum likelihood from incomplete
data via the em algorithm. J. Royal Stat. Soc. B, 39(1):1-38, 1977.

P. A. DiMaggio, S. R. McAllister, C. A. Floudas, X. J. Feng, J. D. Rabinowitz, and
H. A. Rabitz. A network flow model for biclustering via optimal reordering of data
matrics. Journal of Global Optimization, In Press.

[15]
[16]
(17]
(18]
[19]
(20]
[21]

(22]

(23]

[24]
[25]
[26]
[27]
(28]

[29]
(30]

(31]

(32]
(33]

(34]

(35]

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 329

J. C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. Journal of Cybernetics, 3:32-57, 1973.

J. C. Dunn. Well separated clusters and optimal fuzzy partitions. Journal of Cyber-
netics, 4:95-104, 1974.

M. A. Duran and P. L. Odell. Cluster Analysis: A Survey. Springer Verlag, 1974.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis
and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. U.S.A.,
95(25):14863-14868, 1998.

C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and Ap-
plications. Oxford University Press, 1995.

C. A. Floudas. Deterministic Global Optimization: Theory, Algorithms, and Appli-
cations. Kluwer Academic Publishers, 2000.

C. A. Floudas, A. Aggarwal, and A. R. Ciric. Global optimum search for non convex
nlp and minlp problems. Comp. & Chem. Eng., 13(10):1117-1132, 1989.

C. A. Floudas, I. G. Akrotirianakis, S. Caratzoulas, C. A. Meyer, and J. Kallrath.
Global optimization in the 21st century: Advances and challenges. Computers and
Chemical Engineering, 29:1185-2002, 2005.

C. A. Floudas and A. R. Ciric. Strategies for overcoming uncertainty in heat ex-
changer network synthesis. Computers & Chemical Engineering, 13(10):1133-1152,
1989.

G. Getz, E. Levine, and E. Domany. Coupled two-way clustering analysis of gene
microarray data. Proc. Nat. Acad. Sci. U.S.A., 97:12079-12084, 2000.

L. Goodman and W. Kruskal. Measures of associations for cross-validations. J. Am.
Stat. Assoc., 49:732-764, 1954.

J. C. Gower and G. J. S. Ross. Minimum spanning trees and single-linkage cluster
analysis. Appl. Stat., 18:54-64, 1969.

M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster validity methods: Part 1.
SIGMOD Record, 31(2):40-45, 2002.

P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. Mathe-
matical Programming, 79:191-215, 1997.

J. A. Hartigan. Clustering Algorithms. John Wiley & Sons, 1975.

J. A. Hartigan and M. A. Wong. Algorithm AS 136: A k-means clustering algorithm.
Appl. Stat.-J. Roy. St. C., 28:100-108, 1979.

J. Herrero, A. Valencia, and J. Dopazo. A hierarchical unsupervised growing neu-
ral network for clustering gene expression patterns. Bioinformatics, 17(2):126-136,
2001.

L. J. Heyer, S. Kruglyak, and S. Yooseph. Exploring expression data: Identification
and analysis of co-expressed genes. Genome Res., 9:1106-1115, 1999.

L. Huber and J. Schultz. Quadratic assignment as a general data-analysis strategy.
British Journal of Mathematical and Statistical Psychologie, 29:190-241, 1976.

J. IThmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai. Reveal-
ing modular organization in the yeast transcriptional network. Nature Genetics,
31(4):370-377, 2002.

P. Jaccard. The distribution of flora in the alpine zone. New Phytologist, 11:37-50,
1912.

330

(36]
(37]
(38]

(39]

[40]
[41]
(42]

(43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]

(52]

(53]

[54]

Tan & Floudas

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall Advanced
Reference Series. Prentice-Hall, Inc., 1988.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing
Surveys, 31(3):264-323, 1999.

R. E. Johnson. The role of cluster analysis in assessing comparability under the us
transfer pricing regulations. Business Economics, April 2001.

Y. Jung, H. Park, D. Du, and B. L. Drake. A decision criterion for the optimal number
of clusters in hierarchical clustering. Journal of Global Optimization, 25:91-111,
2003.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671-680, 1983.

Y. Kluger, R. Barsi, J. T. Cheng, and M. Gerstein. Spectral biclustering of microarray
data: Coclustering genes and conditions. Genome Res., 13(4):703-716, 2003.

T. Kohonen. Self Organization and Associative Memory. Springer Information Sci-
ence Series. Springer Verlag, 1989.

T. Kohonen. Self-Organizing Maps. Springer Verlag, Berlin, 1997.

L. Lazzeroni and A. Owen. Plaid models for gene expression data. Technical report,
Stanford University, 2000.

F. Leisch, A. Weingessel, and E. Dimitriadou. Competitive learning for binary valued
data. In L. Niklasson, M. Bod’en, and T. Ziemke, editors, Proceedings of the 8th
International Conference on Artificial Neural Networks (ICANN 98), volume 2, pages
779-784, Skovde, Sweden, 1998. Springer.

A. Likas, N. Vlassis, and J. L. Vebeek. The global k-means clustering algorithm.
Pattern Recognition, 36:451-461, 2003.

X. Lin, C. Floudas, Y. Wang, and J. R. Broach. Theoretical and computational stud-
ies of the glucose signaling pathways in yeast using global gene expression data.
Biotechnology and Bioengineering, 84(7):864-886, 2003.

A. V. Lukashin and R. Fuchs. Analysis of temporal gene expression profiles: Clus-
tering by simulated annealing and determining the optimal number of clusters. Bioin-
formatics, 17(5):405-414, 2001.

J. McQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, pages 281-297, 1967.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. J. Teller. Equation of
state calculations by fast computing machines. J. Chem. Phys., 21:1087-1092, 1953.
G. E. Paules and C. A. Floudas. Apros-algorithmic developmeng for discrete-
continuous optimization problems. Operations Research, 37(6):902-915, 1989.

E. J. Pauwels and G. Fregerix. Finding salient regions in images: Non-parametric
clustering for image segmentation and grouping. Computer Vision and Image Under-
standing, 75:73-85, 1999.

P. Pipenbacher, A. Schliep, S. Schneckener, A. Schonhuth, D. Schomburg, and
R. Schrader. Proclust: Improved clustering of protein sequences with an extended
graph-based approach. Bioinformatics, 18(Supplement 2):S182-191, 2002.

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of
American Statistical Association, pages 846-850, 1971.

[55]
[56]

(571

(58]
[59]
[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning 331

E. H. Ruspini. A new approach to clustering. Inf. Control, 15:22-32, 1969.

Dhillon L. S. and Y. Guan. Information theoretic clustering of sparse co-occurrence
data. In Proceedings of the Third IEEE International Conference on Data Mining
(ICDM), 2003.

L. Schneper, K. Dvel, and J. R. Broach. Sense and sensibility: Nutritional response
and signal integration in yeast. Current Opinion in Microbiology, 7(6):624—630,
2004.

E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich probabilistic models
for gene expression. Bioinformatics, 17:S243-S252, 2001.

H. D. Sherali and J. Desai. A global optimization rlt-based approach for solving the
fuzzy clustering approach. Journal of Global Optimization, 33(4):597-615, 2005.
H. D. Sherali and J. Desai. A global optimization rlt-based approach for solving the
hard clustering problem. Journal of Global Optimization, 32(2):281-306, 2005.

N. Slonim, G. S. Atwal, G. Tkacik, and W. Bialek. Information based clustering.
Proc. Nat. Acad. Sci. U.S.A., 102(51):18297-18302, 2005.

R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic rela-
tionships. Univ. Kans. Sci. Bull., 38:1409-1438, 1958.

T. Sorlie, R. Tibshirani, J. Parker, T. Hastie, J. S. Marron, A. Nobel, S. Deng,
H. Johnsen, R. Pesich, S. Geisler, J. Demeter, C. M. Perou, P. E. Lonning, P. O.
Brown, A. L. Borresen-Dala, and D. Botstein. Repeated observations of breast tu-
mor subtypes in independent gene expression data sets. Proc. Nat. Acad. Sci. U.S.A.,
100:8418-8423, 2003.

M.P. Tan, J. R. Broach, and C. A. Floudas. Evaluation of normalization and pre-
clustering issues in a novel clustering approach: Global optimum search with en-
hanced positioning. J. Bioinform. Comput. Biol., 5:895-913, 2007.

M.P. Tan, J. R. Broach, and C. A. Floudas. A novel clustering approach and prediction
of optimal number of clusters: Global optimum search with enhanced positioning.
Journal of Global Optimization, 39:323-346, 2007.

A. Tanay, R. Sharan, M. Kupeic, and R. Shamir. Revealing modularity and organiz-
tion in the yeast molecular network by integrated analysis of highly heterogeneous
genomewide data. Proc. Nat. Acad. Sci. U.S.A., 101(9):2981-2986, 2004.

N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Pro-
ceedings of the 37th Annual Allerton Conference on Communication. Control, and
Computing, pages 368-377, 1999.

O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, and D. Botstein. A
bayesian framework for combining heterogeneous data sources for gene function pre-
diction (in saccharomyces cerevisiae). Proc. Nat. Acad. Sci. U.S.A., 100:8348-8353,
2003.

Y. Wang, M. Pierce, L. Schneper, C. G. Guldal, X. Zhang, S. Tavazoie, and J. R.
Broach. Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway
in yeast. Plos Biology, 2(5):610-622, 2004.

Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory
and its application to image segmentation. /EEE Transactions on Pattern Recognition
and Machine Intelligence, 15(11):1101-1113, 1993.

R. Xu and D. Wunsch II. Survey of clustering algorithms. IEEE Transactions on
Neural Networks, 16(3):645-678, 2005.

332 Tan & Floudas

[72] C. T. Zahn. Graph theoretical methods for detecting and describing gestalt systems.
IEEE Trans. Comput., C-20:68-86, April 1971.

[73] B. Zhang. Generalized k-harmonic means: Boosting in unsupervised learning. Tech-
nical report, Hewlett-Packard Research Laboratory, October 2000.

[74] B. Zhang, M. Hsu, and U. Dayal. K-harmonic means - a data clustering algorithm.
Technical report, Hewlett-Packard Research Laboratory, June 1999.

k-means clustering, 30, 104, 214,
309
p-value, 210, 326

Bayesian network, 60
bicluster editing, 19
biclustering, 257, 309

classification, 30, 66, 102, 188, 257,
286

clique, 5, 19, 83, 169, 208, 267, 318

clique cover, 19

cluster analysis, 238, 282, 307

cluster editing, 16, 18, 19

convergence, 41, 85, 110, 215

convex, 29, 260, 314

correlation, 16, 83, 103, 192, 210,
272,282,309

correlation clustering, 16, 18

cross intensity, 103

data mining, 169, 258
density, 40, 83, 190, 213, 240
dissimilarity measure, 103, 293

entropy, 93, 107, 271
Euclidean distance, 39, 103, 191,
293,309, 311

Index

333

feature, 19

feature selection, 188, 257
fine-grained clustering, 56
fuzzy, 111, 309

gene expression, 53, 84, 204, 209,
248, 309

global optimization, 311

graph, 3, 53, 83, 129, 153, 169, 207,
223,267,309

hierarchical clustering, 109, 230,
309

information theory, 107, 268

information-based clustering, 309

integer programming, 150, 156, 157,
275

interaction, 47, 53, 153, 214, 250,
269

joint probability, 272

kernel, 108

kernelization, 3

likelihood, 41, 105
linear programming, 18, 83, 307

334

Mahalanobis distance, 30, 103

microarray, 55, 84, 181, 238, 257,
307

Minkowski distance, 103

mixed integer programming, 315

Monte Carlo, 190

motif, 56, 57, 83, 308, 326

mutual information, 103, 267

network, 19, 53, 83, 153, 208, 223,
270, 308

neural network, 282, 309

non-convex, 115

normal distribution, 30, 103, 200

normalization, 193, 209, 227

optimization, 22, 31, 58, 93, 141,

153,211, 263, 275, 282, 309
outlier, 118, 192, 210, 224, 310
overfitting, 85, 121

partitioning, 29, 190, 223, 257, 292

Index

principal component analysis, 188
projection, 187, 315
protein interaction, 69, 153, 216

regression, 55, 121, 243, 295
regulatory network, 59, 326

sampling, 59, 84, 192, 240, 270
scaling, 209

self-organization, 109
separation, 60, 92, 294
stochastic, 95, 309
stochastically independent, 108
supervised learning, 102, 257

time series, 56, 101, 243, 268
transcriptional network, 308

unsupervised learning, 257

visualization, 57, 115, 258

	Contents
	Preface
	Part 1 Surveys of Selected Topics
	1. Fixed-Parameter Algorithms for Graph-Modeled Data Clustering F. H¨uffner, R. Niedermeier and S. Wernicke
	1.1. Introduction
	1.2. Fixed-Parameter Tractability Basics and Techniques
	1.2.1. Kernelizations
	1.2.1.1. An Introductory Example
	1.2.1.2. The Kernelization Concept

	1.2.2. Depth-Bounded Search Trees

	1.3. CaseStudies fromGraph-ModeledDataClustering
	1.3.1. Clique
	1.3.1.1. Finding Maximum Cardinality Cliques
	1.3.1.2. Enumerating Maximal Cliques

	1.3.2. Cluster Editing
	1.3.3. Clique Cover

	1.4. Conclusion
	1.4.1. Practical Guidelines
	1.4.2. Challenges

	References

	2. Probabilistic Distance Clustering: Algorithm and Applications C. Iyigun and A. Ben-Israel
	2.1. Introduction
	2.2. Probabilistic {d,q}–Clustering
	2.2.1. Probabilities
	2.2.2. The Joint Distance Function
	2.2.3. An Extremal Principle
	2.2.4. An Extremal Principle for the Cluster Sizes
	2.2.5. Centers
	2.2.6. The Centers and the Joint Distance Function

	2.3. ThePDQAlgorithm
	2.4. Estimation of Parameters of Normal Distribution
	2.4.1. A Comparison of the PDQ Algorithm (Algorithm 1) and the EM Method (Algorithm 2)

	2.5. Numerical Experiments
	2.6. Multi-Facility Location Problems
	2.6.1. Fermat–Weber Location Problem
	2.6.2. Multiple Facility Location Problem

	2.7. Determining the “Right”Number of Clusters
	References

	3. Analysis of Regulatory and Interaction Networks from Clusters of Co-expressed Genes E. Yang, A. Misra, T. J. Maguire and I. P. Androulakis
	3.1. Identification of Intervention Targets: Regulatory and Interaction Networks
	3.1.1. Identification of Informative Temporal Expression Patterns

	3.2. Analysis of Regulatory Networks
	3.2.1. Expression Data
	3.2.2. Regulatory Network Construction and Analysis

	3.3. Analysis of InteractionNetworks
	3.3.1. Expression Data
	3.3.2. Interaction Network Construction and Analysis

	3.4. Intervention Strategies
	Acknowledgements
	References

	4. Graph-based Approaches for Motif Discovery E. Zaslavsky
	4.1. Introduction
	4.2. Graph-Theoretic Formulation
	4.3. Linear Programming-based Algorithms
	4.3.1. Edge-Modeling Formulation
	4.3.1.1. Graph Pruning

	4.3.2. Cost-Aggregating Formulation

	4.4. Maximum Density Subgraph-based Algorithm
	4.5. Subtle Motif Algorithms
	4.5.1. Winnowing Techniques
	4.5.2. Clique Finding with Consensus Constraint

	4.6. Discussion
	Acknowledgements
	References

	5. Statistical Clustering Analysis: An Introduction H. Zhang
	5.1. Introduction
	5.2. Similarity (Dissimilarity) Measures
	5.2.1. Measures for Observation Clustering
	5.2.1.1. Euclidean Distance and Minkowski Distance
	5.2.1.2. Mahalanobis Distance
	5.2.1.3. Cosine

	5.2.2. Measures for Variable Clustering
	5.2.2.1. Pearson’s Correlation Coefficient
	5.2.2.2. Mutual Information

	5.3. Clustering Algorithm
	5.3.1. K-Means Algorithm
	5.3.2. E-M Algorithm
	5.3.3. Hierarchical Clustering
	5.3.4. Self-Organizing Map

	5.4. Determining the Number of Clusters
	5.4.1. Model-based Method
	5.4.2. Scale-based Method

	References

	Part 2 New Methods and Applications
	6. Diversity Graphs P. Blain, C. Davis, A. Holder, J. Silva and C. Vinzant
	6.1. Introduction
	6.2. Notation, Definitions and Preliminary Results
	6.3. Graphs That Support Diversity
	6.4. Algorithms and Solutions for the Pure Parsimony Problem
	6.5. Directions for Future Research
	References

	7. Identifying Critical Nodes in Protein-Protein Interaction Networks V. Boginski and C. W. Commander
	7.1. Introduction
	7.2. Protein-Protein Interaction Networks
	7.3. Optimization Approaches for Critical Node Detection
	7.3.1. The Critical Node Detection Problem
	7.3.2. Cardinality Constrained Problem

	7.4. Heuristic Approaches for Critical Node Detection
	7.4.1. Multi-Start Combinatorial Heuristic
	7.4.2. Genetic Algorithms

	7.5. Computational Experiments
	7.6. Conclusions
	References

	8. Faster Algorithms for Constructing a Concept (Galois) Lattice V. Choi
	8.1. Introduction
	8.2. Background and Terminology on FCA
	8.3. BasicProperties
	8.3.1. Defining the Equivalence Classes
	8.3.2. Characterizations of Closure

	8.4. Algorithm: Constructing a Concept/Galois Lattice
	8.4.1. High-Level Idea
	8.4.2. Implementation
	8.4.2.1. Further Improvement: Dynamically Update Adjacency Lists

	8.5. Variants of theAlgorithm
	8.5.1. Algorithm 2: Computing All Concepts or Maximal Bipartite Cliques
	8.5.2. Algorithm 3: Constructing a Closed Itemset Lattice

	8.6. Discussion
	Acknowledgment
	References
	Appendix

	9. A Projected Clustering Algorithm and Its Biomedical Application P. Deng, Q. Ma and W. Wu
	9.1. Introduction
	9.2. RelatedWorks
	9.2.1. Density-based Algorithms
	9.2.2. Distance-based Algorithms

	9.3. The IPROCLUSAlgorithm
	9.3.1. Modified Manhattan Segmental Distance
	9.3.2. Initialization Phase
	9.3.3. Iterative Phase
	9.3.3.1. Simplified Replacing Logic

	9.3.4. Refinement Phase
	9.3.4.1. Dimension Tuning Process

	9.4. EmpiricalResults
	9.4.1. Synthetic Data Generation
	9.4.2. Results on Synthetic Datasets
	9.4.3. Results on the Colon Tumor Dataset

	9.5. Conclusion
	References

	10. Graph Algorithms for Integrated Biological Analysis, with Applications to Type 1 Diabetes Data J. D. Eblen, I. C. Gerling, A. M. Saxton, J. Wu, J. R. Snoddy and M. A. Langston
	10.1. Overview
	10.2. Description ofData
	10.3. Correlation Computations
	10.4. Clique and Its Variants
	10.5. Statistical Evaluation and Biological Relevance
	10.6. ProteomicData Integration
	10.7. Remarks
	Acknowledgments
	References

	11. A Novel Similarity-based Modularity Function for Graph Partitioning Z. Feng, X. Xu, N. Yuruk and T. Schweiger
	11.1. Introduction
	11.2. RelatedWork
	11.3. A Novel Similarity-based Modularity
	11.4. A Genetic Graph Partitioning Algorithm
	11.5. AFastAgglomerativeAlgorithm
	11.6. EvaluationResults
	11.6.1. Tests on Synthetic Graphs
	11.6.2. Real Applications

	11.7. Conclusion
	References

	12. Mechanism-based Clustering of Genome-wide RNA Levels: Roles of Transcription and Transcript-Degradation Rates S. Ji, W. A. Chaovalitwongse, N. Fefferman, W. Yoo and J. E. Perez-Ortin
	12.1. Introduction
	12.2. Materials and Data Acquisition
	12.2.1. Glucose-Galactose Shift Experiments
	12.2.2. Measuring Transcription Rates (TR) Using the Genomic Run-on (GRO) Method
	12.2.3. Measuring mRNA or Transcript Levels (TL)
	12.2.4. The TL-TR Plots

	12.3. StatisticalAnalysis
	12.3.1. Calibration of TL Data
	12.3.2. Calibration of TR Data
	12.3.3. Kinetic Analysis of the Changes in mRNA Levels
	12.3.4. Transcript-Degradation to Transcription (D/T) Ratios

	12.4. Experimental Results
	12.5. Conclusion and Discussion
	Acknowledgments
	References

	13. The Complexity of Feature Selection for Consistent Biclustering O. E. Kundakcioglu and P. M. Pardalos
	13.1. Introduction
	13.2. Consistent Biclustering
	13.3. Complexity Results
	13.4. Closing Remarks
	References

	14. Clustering Electroencephalogram Recordings to Study Mesial Temporal Lobe Epilepsy C.-C. Liu, W. Suharitdamrong, W. A. Chaovalitwongse, G. A. Ghacibeh and P. M. Pardalos
	14.1. Introduction
	14.2. Epilepsy as aDynamicalBrainDisorder
	14.3. Data Information
	14.4. Graph-TheoreticModeling forBrainConnectivity
	14.4.1. Cross–Mutual Information (CMI)
	14.4.2. Maximum Clique Algorithm

	14.5. Results
	14.6. Conclusion and Discussion
	Acknowledgment
	References

	15. Relating Subjective and Objective Pharmacovigilance Association Measures R. K. Pearson
	15.1. Introduction
	15.2. Aggregate Associations
	15.3. Subjective Associations
	15.4. Case-Specific Associations
	15.5. Relations between Measures
	15.6. Clustering Drugs
	15.6.1. The Case Study
	15.6.2. The Clustering Approach
	15.6.3. Summary of the Results

	15.7. Interpreting the Clusters
	15.8. Summary
	References

	16. A Novel Clustering Approach: Global Optimum Search with Enhanced Positioning M. P. Tan and C. A. Floudas
	16.1. Introduction
	16.2. Methods
	16.2.1. Experimental Data
	16.2.2. Theoretical and Computational Framework
	16.2.2.1. Notation
	16.2.2.2. Hard Clustering by Global Optimization
	16.2.2.3. The GOS Algorithm for Clustering
	16.2.2.4. Determining the Optimal Number of Clusters

	16.2.3. Proposed Algorithm

	16.3. Results and Discussion
	16.3.1. Description of Comparative Study
	16.3.2. Intra-cluster Error Sum
	16.3.3. Inter-cluster Error Sum
	16.3.4. Difference between Intra-cluster and Inter-cluster Error Sums
	16.3.5. Optimal Number of Clusters
	16.3.6. Coherence and Biological Relevance
	16.3.7. Additional Constraints for Large Datasets

	16.4. Conclusion
	16.5. Computational Resources
	Acknowledgements
	References

	Index

