
Protein 
Structure 
Prediction

Daisuke Kihara Editor

Methods in 
Molecular Biology   1137

Third Edition



       M E T H O D S  I N  M O L E C U L A R  B I O L O G Y

Series Editor
John M. Walker

School of Life Sciences
University of Hertfordshire

Hat fi eld, Hertfordshire, AL10 9AB, UK         

 For further volumes:
  http://www.springer.com/series/7651     

http://www.springer.com/series/7651


     



 Protein Structure Prediction

Third Edition 

 Edited by 

    Daisuke   Kihara

Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; 
Department of Computer Science, Purdue University, West Lafayette, IN, USA                             



 ISSN 1064-3745 ISSN 1940-6029 (electronic)
ISBN 978-1-4939-0365-8      ISBN 978-1-4939-0366-5 (eBook) 
 DOI 10.1007/978-1-4939-0366-5 
 Springer New York Heidelberg Dordrecht London 

 Library of Congress Control Number: 2014931090 

© Springer Science+Business Media New York 2007, 2008, 2014
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is 
concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction 
on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, 
computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this 
legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for 
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. 
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the 
Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions 
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution 
under the respective Copyright Law. 
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not 
imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and 
regulations and therefore free for general use. 
 While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be 
made. The publisher makes no warranty, express or implied, with respect to the material contained herein. 

 Printed on acid-free paper 

 Humana Press is a brand of Springer
Springer is part of Springer Science+Business Media (www.springer.com)  

 Editor 
   Daisuke   Kihara   
  Department of Biological Sciences
Purdue University
West Lafayette, IN, USA

   Department of Computer Science
Purdue University
West Lafayette, IN, USA   

www.springer.com


v

 Computational protein tertiary structure prediction has been extensively studied over the 
last two decades. Many approaches have been proposed, tested, and compared by research-
ers of various backgrounds who are attracted by this simple but fascinating protein struc-
ture prediction problem. We now see the fi eld maturing, resulting in prediction methods 
able to produce suffi ciently accurate structure models for many cases, although it is still far 
from the complete solution of the problem. As prediction methods become more practi-
cally useful, it becomes important to disseminate developed software to the research com-
munity so that researchers who are not necessarily familiar with computational tools can 
easily access and use them in their daily research activities. This software dissemination is 
also very benefi cial for researchers who develop prediction methods because they can easily 
compare their methods with existing ones or integrate them as part of a pipeline of a predic-
tion procedure. With this philosophy in mind, in the third edition of this book we focus on 
introducing software or Web servers which are available for researchers. This is a major dif-
ference from the second edition, which emphasized descriptive explanation of methods. 
Each chapter of the third edition provides practical step-by-step instructions of how to use 
a computational method with actual examples of prediction by the method. The chapters 
describe well-established methods developed by well-known researchers in this fi eld. 

 The book starts by introducing three protein structure prediction/modeling methods. 
These methods take a single protein sequence as input and predict the tertiary structure of 
the input protein. The fi rst chapter was written by Benjamin Webb and Andrej Sali on their 
extremely popular structure modeling tool, MODELLER. In the second chapter, Jinbo Xu 
and his colleagues present RaptorX, a template-based protein structure prediction server. In 
the third chapter, Jianlin Cheng and his colleagues provide a tutorial for their server, 
MULTICOM. 

 The next four chapters provide tools that are useful for subsequent steps of main-chain 
conformation prediction, which can be done by the methods introduced in Chapters   1    –  3    . 
Chapter   4     deals with prediction of side-chain conformation of a protein structure model. 
Jiang Taijiao and his group members describe their method, RASP. The method takes the 
main-chain atom positions as input and builds side-chains of the protein. Chapter   5     details 
the use of Direct Coupling Analysis, a residue–residue contact prediction method written 
by Faruck Morcos, Terence Hwa, José N. Onuchic, and Martin Weigt. The method pre-
dicts physically contacting amino acid residues in the protein tertiary structure from a mul-
tiple sequence alignment. Contact prediction is useful for guiding protein structure 
modeling and also for selecting the most probable models from a pool of different structure 
models. ITScorePro, introduced in Chapter   6    , is a scoring program for ranking different 
structure models of a target protein developed by Xiaoqin Zou's group. It is typical that a 
structure prediction method produces a large number of structure models, and thus iden-
tifying the most plausible model is a practically very important task in prediction. In Chapter 
  7    , Liam James McGuffi n and his colleagues describe how to use their model quality assess-
ment server, ModFOLD. The server provides the estimated accuracy of a structure model, 
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i.e., overall accuracy and per-residue accuracy of a model. Estimated accuracy is helpful for 
practical use of a model as well as for choosing the most plausible models from a pool of 
different models. 

 When the structure of a protein is modeled, it is often of interest to fi nd similar existing 
structures in a database, since structure similarity often provides insight into the function 
and evolution of the protein. Chapter   8     introduces 3D-SURFER, a server for real-time 
structure database search, which was developed by Daisuke Kihara and his group members. 
Yaoqi Zhou and his colleagues have extended their protein structure prediction methods 
for predicting protein–RNA complex structures in SPOT-Seq-RNA Their method, 
described in Chapter   9    , takes a protein sequence as input and predicts RNA sequences that 
would interact with the protein and the tertiary structure of the protein–RNA complex. 

 The subsequent two chapters are for prediction methods of intrinsic disordered regions. 
It has been found that many proteins have regions that are designed not to form a fi xed 
structure and are thus called intrinsic disordered regions. These regions often have impor-
tant functions such as serving as interaction sites to other proteins. In Chapter   10    , Kana 
Shimizu describes how to use POODLE, while readers are introduced to MFDp2 by 
Marcin J. Mizianty, Vladimir Uversky, and Lukasz Kurgan in Chapter   11    . 

 What follows is four chapters for protein–protein docking prediction. A protein–pro-
tein docking method predicts the complex structure of two (or more) protein structures. 
Chapter   12     was written by Gydo C. P. van Zudert and Alexandre M. J. J. Bonvin on their 
docking method, HADDOCK. In Chapter   13    , the SwarmDock Web server developed by 
the Paul A. Bates group is introduced. The following chapter is about the DOCK/PIERR 
server by Ron Elber and his team. In Chapter   15    , the LZerD docking program, which can 
perform pairwise as well as multiple protein docking, is reported by Daisuke Kihara and his 
lab members. 

 Finally, in Chapter   16    , protocols for protein dynamics simulations with the CABS 
protein model are provided by Michal Jamroz, Andrzej Kolinski, and Sebastian Kmiecik. 
As you see now, this book covers a series of methods for protein structure prediction and 
related tools, model quality assessment, disordered region prediction, protein–protein 
docking, and protein dynamics. The diversity of the introduced methods shows the 
expansion of the computational protein structure prediction fi eld. It will be my great 
pleasure if this book helps biology researchers with the use of computational methods for 
protein structure prediction and also serves as a bridge between computational and 
experimental biologists. 

 In closing, I would like to thank all of the authors of chapters in this book. This edition 
is very fortunate to have the leading experts of the fi eld as the authors. I am also thankful 
to the series editor, Dr. John M. Walker for his patience and guidance and Ms. Kristen 
Johnson in my research group for her tremendous help in editing this book.  

    West Lafayette ,  IN, USA         Daisuke     Kihara      
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    Chapter 1   

 Protein Structure Modeling with  MODELLER  

           Benjamin     Webb     and     Andrej     Sali    

    Abstract 

   Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. 
In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution 
using experimental structure determination methods. Computational protein structure modeling 
techniques have the potential to bridge this sequence–structure gap. In this chapter, we present an 
example that illustrates the use of MODELLER to construct a comparative model for a protein with 
unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains 
in more than half of all known protein sequences.  

  Key words     Comparative modeling  ,   Fold assignment  ,   Sequence–structure alignment  ,   Model assessment  , 
  Multiple templates  

1      Introduction 

 The function of a protein is determined by its sequence and its 
three-dimensional (3D) structure. Large-scale genome sequencing 
projects are providing researchers with millions of protein 
sequences, from various organisms, at an unprecedented pace. 
However, the rate of experimental structural characterization of 
these sequences is limited by the cost, time, and experimental chal-
lenges inherent in the structural determination by X-ray crystal-
lography and nuclear magnetic resonance (NMR) spectroscopy. 

 In the absence of experimentally determined structures, com-
putationally derived protein structure models are often valuable for 
generating testable hypotheses [ 1 ,  2 ]. Such models are generally 
produced using either comparative modeling methods or free 
modeling techniques (also referred to as ab initio or de novo mod-
eling) [ 3 ]. Comparative modeling relies on structural information 
from related proteins to guide the modeling procedure [ 4 – 6 ]. 
Free modeling does not require a related protein but instead uses 
a variety of methods to combine physics with the known behaviors 
of protein structures (for example by combining multiple short 



2

structural fragments extracted from known proteins) [ 7 – 9 ]; it is, 
however, extremely computationally expensive [ 3 ]. Comparative 
protein structure modeling, which this text focuses on, has been 
used to produce reliable structure models for at least one domain 
in more than half of all known sequences [ 10 ]. Hence, computa-
tional approaches can provide structural information for two orders 
of magnitude more sequences than experimental methods and are 
expected to be increasingly relied upon as the gap between the 
number of known sequences and the number of experimentally 
determined structures continues to widen. 

 Comparative modeling consists of four main steps [ 4 ] (Fig.  1 ): 
(1) fold assignment that identifi es overall similarity between the 
target sequence and at least one known structure (template); (2) 
alignment of the target sequence and the template(s); (3) building 
a model based on the alignment with the chosen template(s); and 
(4) predicting the accuracy of the model.
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  Fig. 1    Comparative protein structure modeling. ( a ) A fl ow chart illustrating the steps in the construction of a 
comparative model [ 4 ]. ( b ) Description of comparative modeling by extraction of spatial restraints as imple-
mented in MODELLER [ 12 ]. By default, spatial restraints in MODELLER involve (1) homology-derived restraints 
from the aligned template structures, (2) statistical restraints derived from all known protein structures, and 
(3) stereochemical restraints from the CHARMM-22 molecular mechanics force fi eld. These restraints are 
combined into an objective function that is then optimized to calculate the fi nal 3D model of the target sequence       
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   MODELLER is a computer program for comparative protein 
structure modeling [ 11 ,  12 ]. In the simplest case, the input is an 
alignment of a sequence to be modeled with the template 
structure(s), the atomic coordinates of the template(s), and a 
simple script fi le. MODELLER then automatically calculates a 
model containing all non-hydrogen atoms, without any user inter-
vention and within minutes on a desktop computer. Apart from 
model building, MODELLER can perform auxiliary tasks such as 
fold assignment, alignment of two protein sequences or their 
profi les [ 13 ], multiple alignment of protein sequences and/or 
structures [ 14 ,  15 ], clustering of sequences and/or structures, and 
ab initio modeling of loops in protein structures [ 11 ]. 

 MODELLER implements comparative protein structure 
modeling by satisfaction of spatial restraints that include (1) 
homology- derived restraints on the distances and dihedral angles 
in the target sequence, extracted from its alignment with the tem-
plate structures [ 12 ]; (2) stereochemical restraints such as bond 
length and bond angle preferences, obtained from the 
CHARMM-22 molecular mechanics force fi eld [ 16 ]; (3) statistical 
preferences for dihedral angles and non-bonded interatomic 
distances, obtained from a representative set of known protein 
structures [ 17 ,  18 ]; and (4) optional manually curated restraints, 
such as those from NMR spectroscopy, rules of secondary struc-
ture packing, cross-linking experiments, fl uorescence spectroscopy, 
image reconstruction from electron microscopy, site-directed 
mutagenesis, and intuition (Fig.  1 ). The spatial restraints, expressed 
as probability density functions, are combined into an objective 
function that is optimized by a combination of conjugate gradients 
and molecular dynamics with simulated annealing. This model 
building procedure is similar to structure determination by NMR 
spectroscopy. 

 In this chapter, we use a sequence with unknown structure to 
illustrate the use of various modules in MODELLER to perform 
the four steps of comparative modeling.  

2    Materials 

 To follow the examples in this discussion, both the MODELLER 
software and a set of suitable input fi les are needed. The 
MODELLER software is free for academic use; it can be down-
loaded from   http://salilab.org/modeller/     and is available in binary 
form for most common machine types and operating systems ( see  
 Note 1 ). This text uses MODELLER 9.11, the most recent ver-
sion at the time of writing, but the examples should also work with 
any newer version. The example input fi les can be downloaded 
from   http://salilab.org/modeller/tutorial/MMB13.zip    . 
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 All MODELLER scripts are Python scripts. Python is pre- installed 
on most Linux and Mac machines; Windows users can obtain it 
from   http://www.python.org/    . It is not necessary to install 
Python, or to have a detailed knowledge of its use, to use 
MODELLER, but it is helpful for creating and understanding the 
more advanced MODELLER scripts.  

3    Methods 

 The procedure for calculating a 3D model for a sequence with 
unknown structure will be illustrated using the following example: 
a novel gene for lactate dehydrogenase (LDH) was identifi ed from 
the genomic sequence of  Trichomonas vaginalis  (TvLDH). The 
corresponding protein had higher sequence similarity to the malate 
dehydrogenase of the same species (TvMDH) than to any other 
LDH [ 19 ]. Comparative models were constructed for TvLDH 
and TvMDH to study the sequences in a structural context and to 
suggest site-directed mutagenesis experiments to elucidate changes 
in enzymatic specifi city in this apparent case of convergent evolu-
tion. The native and mutated enzymes were subsequently expressed 
and their activities compared [ 19 ]. 

  Monospaced text  is used below for computer fi le and folder/
directory names, command lines, fi le contents, and variable and 
class names. 

  The fi rst step in comparative modeling is to identify one or more 
templates (sequences with known 3D structure) for the modeling 
procedure. One way to do this is to search a database of experi-
mentally determined structures extracted from the Protein Data 
Bank (PDB) [ 20 ] to fi nd sequences that have detectable similarity 
to the target ( see   Note 2 ). To prepare this database ( see   Note 3 ), 
run the following command from the command line ( see   Note 4 ): 

  python make_pdb_95.py  >  make_pdb_95.log  

 This generates a fi le called  pdb_95.bin , which is a binary repre-
sentation of the search database ( see   Note 5 ), and a log fi le,  make_
pdb_95.log . Next, MODELLER’s  profi le.build()  command is 
used; this uses the local dynamic programming algorithm to identify 
sequences related to TvLDH [ 21 ]. In the simplest case,  profi le.
build()  takes as input the target sequence, in fi le  TvLDH.ali  ( see  
 Note 6 ), and the binary database and returns a set of statistically sig-
nifi cant alignments (fi le  build_profi le.prf ) and a MODELLER 
log fi le ( build_profi le.log ). Run this step by typing 

  python build_profi le.py  >  build_profi le.log  

 The fi rst few lines of the resulting  build_profi le.prf  will look 
similar to ( see   Note 7 ) the following (note that the rightmost column, 
containing the primary sequence, has been omitted here for clarity): 

3.1  Fold Assignment
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 The fi rst six lines of this fi le contain the input parameters used 
to create the alignments. Subsequent lines contain several columns 
of data; for the purposes of this example, the most important col-
umns are (1) the second column, containing the PDB code of the 
related template sequences; (2) the eleventh column, containing 
the percentage sequence identity between the TvLDH and tem-
plate sequences; and (3) the twelfth column, containing the 
 E -values for the statistical signifi cance of the alignments. These col-
umns are shown in bold above. 

 The extent of similarity between the target–template pairs is 
usually quantifi ed using sequence identity or a statistical measure 
such as  E -value ( see   Note 8 ). Inspection of column 11 shows that 
the template with the highest sequence identity with the target is 
the 1y7tA structure (45 % sequence identity). Further inspection 
of column 12 shows that there are nine PDB sequences, all corre-
sponding to malate dehydrogenases (1b8pA, 1civA, 3d5tA, 4h7pA, 
4h7pB, 5mdhA, 7mdhA, 1smkA, 1y7tA) that show signifi cant 
similarities to TvLDH with  E -values of zero.  

  The next step is to align the target TvLDH sequence with the cho-
sen template ( see   Note 9 ). Here, the 1y7tA template is used. This 
alignment is created using MODELLER’s  align2d()  function 
( see   Note 10 ). Although  align2d()  is based on a global dynamic 
programming algorithm [ 22 ], it is different from standard sequence–
sequence alignment methods because it takes into account structural 
information from the template when constructing an alignment. 
This task is achieved through a variable gap penalty function that 
tends to place gaps in solvent-exposed and curved regions, outside 
secondary structure segments, and not between two positions that 
are close in space [ 14 ]. In the current example, the target–template 
similarity is so high that almost any method with reasonable param-
eters will result in the correct alignment ( see   Note 11 ). 

3.2  Sequence–
Structure Alignment
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 This step is carried out by running 

  python align2d.py  >  align2d.log  

 This script reads in the PDB structure of the template and the 
sequence of the target (TvLDH) and calls the  align2d()  func-
tion to perform the alignment. The resulting alignment is written 
out in two formats.  TvLDH-1y7tA.ali  in the PIR format is sub-
sequently used by MODELLER for modeling;  TvLDH-1y7tA.
pap  in the PAP format is easier to read, for example to see which 
residues are aligned with each other.  

  Models of TvLDH can now be built by running 

  python model.py  >  model.log  

 The script uses MODELLER’s  automodel  class, specifying 
the name of the alignment fi le to use and the identifi ers of the tar-
get (TvLDH) and template (1y7tA) sequences. It then asks  auto-
model  to generate fi ve models ( see   Note 12 ). Each is assessed with 
the normalized Discrete Optimized Protein Energy (DOPE) 
assessment method [ 18 ]. The fi ve models are written out as PDB 
fi les with names  TvLDH.B9999[0001–0005].pdb .  

  The log fi le produced by the model building procedure ( model.
log ) contains a summary of each calculation at the bottom of the 
fi le. This summary includes, for each of the fi ve models, the 
MODELLER objective function ( see   Note 13 ) [ 12 ] and the nor-
malized DOPE score ( see   Note 14 ). These scores can be used to 
identify which of the fi ve models produced is likely to be the most 
accurate model ( see   Note 15 ). 

 Since the DOPE potential is simply a sum of interactions 
between pairs of atoms, it can be decomposed into a score per resi-
due, which is termed in MODELLER an “energy profi le.” This 
energy profi le can be generated for the model with the best DOPE 
score by running the  make_energy_profi le.py  script. The 
script outputs the profi le,  TvLDH.profi le , in a simple format that 
is easily displayed in any graphing package. Such a profi le is useful 
to detect local regions of high pseudo-energy that usually corre-
spond to errors in the model ( see   Notes 16  and  17 ).  

  One way to potentially improve the accuracy of generated models is 
to use multiple-template structures. When there are multiple tem-
plates, different template structures may be of higher local sequence 
identity to the target (or higher quality) than others in different 
regions, allowing MODELLER to build a model based on the most 
useful structural information for each region in the protein. The 
procedure is demonstrated here using the fi ve templates that have 
the highest sequence identity to the target (1b8pA, 4h7pA, 4h7pB, 
5mdhA, 1y7tA). Input fi les can be found in the “ multiple ” sub-
directory of the zipfi le. The fi rst step is to align all of the templates 
with each other, which can be done by running 

3.3  Model Building

3.4  Model Evaluation

3.5  Use of Multiple 
Templates
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  python salign.py  >  salign.log  

 This script uses MODELLER’s  salign()  function [ 15 ] to 
read in all of the template structures and then generate their best 
structural alignment ( see   Note 18 ), written out as  templates.
ali . 

 Next, just as for single-template modeling, the target is aligned 
with the templates using the  align2d()  function. The function’s 
 align_block  parameter is set to 5 to align the target sequence 
with the pre-aligned block of templates, and not to change the 
existing alignment between individual templates: 

  python align2d.py  >  align2d.log  

 Finally, model generation proceeds just as for the single- 
template case (the only difference is that  automodel  is now given 
a list of all fi ve templates): 

  python model.py  >  model.log  

 Comparison of the normalized DOPE scores from the end of 
this logfi le with those from the single-template case shows an 
improvement in the DOPE score of the best model from −0.92 to 
−1.19. Figure  2  shows the energy profi les of the best scoring mod-
els from each procedure (generated using the  plot_profi les.
py  script). It can be seen that some of the predicted errors in the 
single- template model (peaks in the graph) have been resolved in 
the model calculated using multiple templates.

  Fig. 2    The DOPE [ 18 ] energy profi les for the best-assessed model generated by modeling with a single template 
( solid line ) and multiple templates ( dotted line ). Peaks (local regions of high, unfavorable score) tend to 
correspond to errors in the models       
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     Models generated by MODELLER are stored in PDB fi les and so can 
be evaluated for accuracy with other methods if desired. One such 
method is the ModEval web server at   http://salilab.org/evaluation/    . 
This server takes as input the PDB fi le and the MODELLER PIR 
alignment used to generate it. It returns not only the normalized 
DOPE score and the energy profi le but also the GA341 assessment 
score [ 23 ,  24 ] and an estimate of the Cα RMSD and native overlap 
between the model and its hypothetical native structure, using the 
TSVMod method [ 25 ]; native overlap is defi ned as the fraction of Cα 
atoms in the model that are within 3.5 Å of the same Cα atom in the 
native structure after least squares superposition.  

  The example shown here generates a model of a single protein. 
However, MODELLER can also generate models of complexes of 
multiple proteins if templates for the entire complex are available; 
examples can be found in the MODELLER manual. In the case 
where only templates for the individual subunits in the complex are 
available, comparative models can be docked in a pairwise fashion 
by molecular docking [ 26 ,  27 ] or assembled based on various 
experimental data to generate approximate models of the complex 
using a wide variety of integrative modeling methods [ 28 – 31 ]. For 
example, if a cryo-electron microscopy density map of the complex 
is available, a model of the whole complex can be constructed by 
simultaneously fi tting comparative models of the subunits into the 
density map using the MultiFit method [ 32 ] or its associated web 
server at   http://salilab.org/multifi t/     [ 33 ]. Alternatively, if a 
small- angle X-ray (SAXS) profi le of a dimer is available, models of 
the dimer can be generated by docking the two subunits, con-
strained by the SAXS data, using the FoXSDock web server at 
  http://salilab.org/foxsdock/     [ 34 ]. Both of these methods are 
part of the open-source  Integrative Modeling Platform  (IMP) 
package [ 29 ].   

4    Notes 

     1.    The MODELLER website also contains a full manual, a mailing 
list, and more example MODELLER scripts. A license key is 
required to use MODELLER, but this can also be obtained 
from the website.   

   2.    The sequence identity is a useful predictor of the accuracy of 
the fi nal model when its value is >30 %. It has been shown that 
models based on such alignments usually have, on average, 
more than ~60 % of the backbone atoms correctly modeled 
with a root-mean-squared deviation (RMSD) for Cα atoms of 
less than 3.5 Å (Fig.  3 ). Sequence–structure relationships in 
the “twilight zone” [ 35 ] (corresponding to relationships 
with statistically signifi cant sequence similarity with identities 

3.6  External 
Assessment

3.7  Structures 
of Complexes
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generally in the 10–30 % range), or the “midnight zone” [ 35 ] 
(corresponding to statistically insignifi cant sequence similar-
ity), typically result in less accurate models.

       3.    The database contains sequences of the structures from PDB. 
To increase the search speed, redundancy is removed from the 
database; the PDB sequences are clustered with other sequences 
that are at least 95 % identical, and only the representative of 
each cluster is stored in the database. This database is termed 
“pdb_95.” A copy of this database is included in the down-
loaded zipfi le as  pdb_95.pir . Newer versions of this data-
base, updated as new structures are deposited in PDB, can be 
downloaded from the MODELLER website at   http://salilab.
org/modeller/supplemental.html    .   

   4.    MODELLER is a command line tool, and so all commands 
must be run by typing at the command line. All of the necessary 

  Fig. 3    Average model accuracy as a function of sequence identity [ 54 ]. As the sequence identity between the 
target sequence and the template structure decreases, the average structural similarity between the template 
and the target also decreases ( dark grey area ,  squares ) [ 55 ]. Structural overlap is defi ned as the fraction of 
equivalent Cα atoms. For the comparison of the model with the actual structure ( circles ), two Cα atoms were 
considered equivalent if they belonged to the same residue and were within 3.5 Å of each other after least 
squares superposition. For comparisons between the template structure and the actual target structure 
( squares ), two Cα atoms were considered equivalent if they were within 3.5 Å of each other after alignment 
and rigid-body superposition. The difference between the model and the actual target structure is a combina-
tion of the target–template differences ( dark grey area ) and the alignment errors ( light grey area ). The fi gure 
was constructed by calculating ~1 million comparative models based on single template of varying similarity 
to the targets. All targets had known (experimentally determined) structures       
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input fi les for this demonstration are in the downloaded zipfi le; 
simply download and extract the zipfi le and change into the 
newly created directory (using the “ cd ” command at the com-
mand line). After this, MODELLER scripts can be run as 
shown in the text. All MODELLER scripts are Python scripts 
and so should be run with the “ python ” command. (On 
some systems the full path to the Python interpreter is neces-
sary, such as /usr/bin/python  on a Linux or a Mac machine 
or  C:\python26\python.exe  on a Windows system.) 
MODELLER scripts can also be run from other Python 
 frontends, such as IDLE, if desired. On a Windows system, it 
is generally  not  a good idea to simply “double click” on a 
MODELLER Python script, since any output from the script 
will disappear as soon as it fi nishes. Finally, if Python is not 
installed, MODELLER includes a basic Python 2.3 interpreter 
as “ mod < version> .” For example, to run this fi rst script 
using MODELLER version 9.11’s own interpreter, run 
“ mod9.11 make_pdb_95.py .” Note that  mod9.11  auto-
matically creates a “ make_pdb_95.log ” logfi le.   

   5.    The binary database is much faster to use than the original text 
format database,  pdb_95.pir . Note, however, that it is not 
necessarily smaller. This script does not need to be run again 
unless  pdb_95.pir  is updated.   

   6.     TvLDH.ali  simply contains the primary sequence of the tar-
get, in MODELLER’s variant of the PIR format (which is 
documented in more detail in the MODELLER manual). This 
fi le is included in the zipfi le.   

   7.    Although MODELLER’s algorithms are deterministic, exactly 
the same job run on different machines (e.g., a Linux box ver-
sus a Windows or a Mac machine) may give different results. 
This difference may arise because different machines handle 
rounding of fl oating point numbers and ordering of fl oating 
point operations differently, and the minor differences intro-
duced can be compounded and end up giving very different 
outputs. This variation is normal and to be expected, and so 
the results shown in this text may differ from those obtained by 
running MODELLER elsewhere.   

   8.    The sequence identity is not a statistically reliable measure of 
alignment signifi cance and corresponding model accuracy for 
values lower than 30 % [ 35 ,  36 ]. During a scan of a large data-
base, for instance, it is possible that low values occur purely by 
chance. In such cases, it is useful to quantify the sequence–
structure relationship using more robust measures of statistical 
signifi cance, such as  E -values [ 37 ], that compare the score 
obtained for an alignment with an established background dis-
tribution of such scores. One other problem of using sequence 
identity as a measure to select templates is that, in practice, 
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there is no single generally used way to normalize it [ 36 ]. For 
instance, local alignment methods usually normalize the num-
ber of identically aligned residues by the length of the align-
ment, while global alignment methods normalize it by either 
the length of the target sequence or the length of the shorter 
of the two sequences. Therefore, it is possible that alignments 
of short fragments produce a high sequence identity but do 
not result in an accurate model. Measures of statistical signifi -
cance do not suffer from this normalization problem because 
the alignment scores are corrected for the length of the aligned 
segment before the signifi cance is computed [ 37 ,  38 ].   

   9.    After a list of all related protein structures and their alignments 
with the target sequence has been obtained, template struc-
tures are usually prioritized depending on the purpose of the 
comparative model. Template structures may be chosen based 
purely on the target–template sequence identity or a combina-
tion of several other criteria, such as the experimental accuracy 
of the structures (resolution of X-ray structures, number of 
restraints per residue for NMR structures), conservation of 
active-site residues, holo-structures that have bound ligands of 
interest, and prior biological information that pertains to the 
solvent, pH, and quaternary contacts.   

   10.    Although fold assignment and sequence–structure alignment 
are logically two distinct steps in the process of comparative 
modeling, in practice almost all fold assignment methods also 
provide sequence–structure alignments. In the past, fold 
assignment methods were optimized for better sensitivity in 
detecting remotely related homologs, often at the cost of 
alignment accuracy. However, recent methods simultaneously 
optimize both the sensitivity and alignment accuracy. For the 
sake of clarity, however, they are still considered as separate 
steps in the current chapter.   

   11.    Most alignment methods use either the local or the global 
dynamic programming algorithms to derive the optimal align-
ment between two or more sequences and/or structures. The 
methods, however, vary in terms of the scoring function that is 
being optimized. The differences are usually in the form of the 
gap penalty function (linear, affi ne, or variable) [ 14 ], the sub-
stitution matrix used to score the aligned residues (20 × 20 
matrices derived from alignments with a given sequence iden-
tity, those derived from structural alignments, and those incor-
porating the structural environment of the residues) [ 39 ], or 
combinations of both [ 40 – 43 ]. There does not yet exist a sin-
gle universal scoring function that guarantees the most accu-
rate alignment for all situations. Above 30–40 % sequence 
identity, alignments produced by almost all methods are similar. 
However, in the twilight and midnight zones of sequence 

Protein Structure Modeling



12

identity, models based on the alignments of different methods 
tend to have signifi cant variations in accuracy. Improving the 
performance and accuracy of methods in this regime remains 
one of the main tasks of comparative modeling [ 44 ,  45 ].   

   12.    To generate each model, MODELLER takes a starting struc-
ture, which is simply the target sequence threaded onto the 
template backbone, adds some randomization to the coordi-
nates, and then optimizes it by searching for the minimum of 
its scoring function. Since fi nding the global minimum of the 
scoring function is not guaranteed, it is usually recommended 
to repeat the procedure multiple times to generate an ensem-
ble of models; the randomization is necessary otherwise, the 
same model would be generated each time. Computing mul-
tiple models is particularly important when the sequence–
structure alignment contains different templates with many 
insertions and/or deletions. Calculating multiple models 
allows for better sampling of the different template segments 
and the conformations of the unaligned regions. The best 
scoring model among these multiple models is generally more 
accurate than the fi rst model produced.   

   13.    The MODELLER objective function is a measure of how well 
the model satisfi es the input spatial restraints. Lower values of 
the objective function indicate a better fi t with the input data 
and, thus, models that are likely to be more accurate [ 12 ].   

   14.    The DOPE score [ 18 ] is an atomic distance-dependent statis-
tical potential based on a physical reference state that 
accounts for the fi nite size and spherical shape of proteins. 
The reference state assumes that a protein chain consists of 
non-interacting atoms in a homogeneous sphere of equiva-
lent radius to that of the corresponding protein. The DOPE 
potential was derived by comparing the distance statistics 
from a non-redundant PDB subset of 1,472 high-resolution 
protein structures with the distance distribution function of 
the reference state. By default, the DOPE score is not 
included in the model building routine and thus can be used 
as an independent assessment of the accuracy of the output 
models. The DOPE score assigns a score for a model by con-
sidering the positions of all non- hydrogen atoms, with lower 
scores predicting more accurate models. Since DOPE is a 
pseudo-energy dependent on the composition and size of 
the system, DOPE scores are only directly comparable for 
models with the same set of atoms (so can, for example, be 
used to rank multiple models of the same protein, but can-
not be used without additional approximations to compare 
models of a protein and its mutant). The normalized DOPE 
(or z-DOPE) score, however, is a  z  score that relates the 
DOPE score of the model to the average observed DOPE 
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score for “reference” protein structures of similar size [ 25 ]. 
Negative normalized DOPE scores of −1 or below are likely 
to correspond to models with the correct fold.   

   15.    Different measures to predict errors in a protein structure per-
form best at different levels of resolution. For instance, physics- 
based force fi elds may be helpful at identifying the best model 
when all models are very close to the native state (<1.5 Å 
RMSD, corresponding to ~85 % target–template sequence 
identity). In contrast, coarse-grained scores such as atomic 
 distance statistical potentials have been shown to have the 
greatest ability to differentiate models in the ~3 Å Cα RMSD 
range. Tests show that such scores are often able to identify a 
model within 0.5 Å Cα RMSD of the most accurate model 
produced [ 46 ]. When multiple models are built, the DOPE 
score generally selects a more accurate model than the 
MODELLER objective function.   

   16.    Segments of the target sequence that have no equivalent region 
in the template structure (i.e., insertions or loops) are among 
the most diffi cult regions to model [ 11 ,  47 – 49 ]. This diffi culty 
is compounded when the target and template are distantly 
related, with errors in the alignment leading to incorrect posi-
tions of the insertions and distortions in the loop environment. 
Using alignment methods that incorporate structural informa-
tion can often correct such errors [ 14 ]. Once a reliable align-
ment is obtained, various modeling protocols can predict the 
loop conformation, for insertions of less than approximately 
ten residues long [ 11 ,  47 ,  50 ,  51 ].   

   17.    As a consequence of sequence divergence, the main-chain con-
formation of a protein can change, even if the overall fold 
remains the same. Therefore, it is possible that in some cor-
rectly aligned segments of a model, the template is locally dif-
ferent (<3 Å) from the target, resulting in errors in that region. 
The structural differences are sometimes not due to differences 
in sequence but are a consequence of artifacts in structure 
determination or structure determination in different environ-
ments (e.g., packing of subunits in a crystal and ligands). The 
simultaneous use of several templates can minimize this kind of 
error [ 52 ,  53 ].   

   18.    It is particularly important to generate the best alignment of 
the structures to minimize confl icting information (e.g., one 
template suggesting that two Cα atoms in the target are close 
and another suggesting they are widely separated). SALIGN 
[ 15 ] uses both sequence- and structure-dependent features to 
align multiple structures. It employs an iterative procedure to 
determine the input parameters that maximize the structural 
overlap of the generated alignment.         
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    Chapter 2   

 RaptorX server: A Resource for Template-Based 
Protein Structure Modeling 

           Morten     Källberg    ,     Gohar     Margaryan    ,     Sheng     Wang    , 
    Jianzhu     Ma    , and     Jinbo     Xu    

    Abstract 

   Assigning functional properties to a newly discovered protein is a key challenge in modern biology. To this 
end, computational modeling of the three-dimensional atomic arrangement of the amino acid chain is 
often crucial in determining the role of the protein in biological processes. We present a community-wide 
web-based protocol, RaptorX server (  http://raptorx.uchicago.edu    ), for automated protein secondary 
structure prediction, template-based tertiary structure modeling, and probabilistic alignment sampling. 

 Given a target sequence, RaptorX server is able to detect even remotely related template sequences by 
means of a novel nonlinear context-specifi c alignment potential and probabilistic consistency algorithm. 
Using the protocol presented here it is thus possible to obtain high-quality structural models for many 
target protein sequences when only distantly related protein domains have experimentally solved struc-
tures. At present, RaptorX server can perform secondary and tertiary structure prediction of a 200 amino 
acid target sequence in approximately 30 min.  

  Key words     Protein structure prediction  ,   Homology modeling  ,   Protein threading  ,   Secondary structure 
prediction  ,   Model quality assessment  

1      Introduction 

 The advent of high-throughput procedures capable of identifying 
the entities making up cellular proteomes [ 1 ,  2 ] is one of the mile-
stone accomplishments of recent decades. The availability of these 
high-dimensional datasets does, however, present us with the chal-
lenge of effi ciently determining the functional role of the expressed 
protein entities. The biological activity of a protein domain, such 
as enzymatic catalysis [ 3 ] or signaling transduction [ 4 ], is often 
highly related to the three-dimensional arrangement of its amino 
acid chain. Structural models of newly discovered proteins are thus 
valuable in uncovering their biological function and can serve as an 
important stepping stone in generating hypotheses or suggesting 
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experiments to further explore their nature. While the Protein 
Data Bank (PDB) [ 5 ] provides experimentally determined struc-
tural data for a number of protein domains, the vast majority of 
protein sequences available in public databases currently do not 
have solved structures. 

 To this end template-based modeling methods can generate 
approximate models for a large number of sequences with relative 
ease if a closely related template domain sequence with solved 
structure is available. Current methods do, however, become unreli-
able when there are no homologs with solved structures in the PDB 
or when templates under consideration are distant homologs [ 6 ]. 
Template-based modeling is critically dependent on the quality of 
the target–template alignment. To better address cases where no 
close template exists, we studied and implemented a number of 
novel modeling strategies in our new software RaptorX server 
[ 7 ,  8 ]. RaptorX server takes into consideration the number of non- 
redundant homologs available for the target sequence and a tem-
plate structure to assess the quality of information content in 
sequence profi les [ 9 ]. This allows us to optimize the modeling 
strategy specifi cally to the target. Second, RaptorX server uses con-
ditional neural fi elds (CNF), a variant of conditional random fi elds 
(CRF), to integrate a variety of context-specifi c biological signals 
in a nonlinear probabilistic scoring function [ 10 ]. Finally, RaptorX 
server has also implemented a multiple-template threading (MTT) 
procedure [ 11 ], enabling the use of multiple templates to model a 
single-target sequence. Results from CASP9 and the recently con-
cluded CASP10 competitions clearly demonstrate the value of the 
abovementioned innovations. RaptorX server ranked second being 
only outperformed by a server employing consensus analysis of 
results from multiple single methods and extensive post-threading 
refi nement [ 12 ]. 

 Aside from structure modeling, RaptorX server provides 
options for custom pairwise target–template alignments and single- 
target multiple-template alignments. Furthermore, RaptorX server 
utilizes a CNF [ 13 ]-based prediction protocol for determining the 
three-state secondary structure, eight-state secondary structure, 
and solvent accessibility distributions for each residue in the target 
sequence. RaptorX server also provides disorder prediction of an 
input protein sequence. 

 The secondary and tertiary structure models generated by 
RaptorX server can serve as starting points for further analysis in 
a number of diverse application areas. For example, the predicted 
3D models can be used for binding site epitope prediction as well 
as in protein docking and protein–protein interaction studies 
[ 14 ,  15 ].  
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2    Materials 

 The following are necessary for the use of RaptorX server.

    1.    A personal computer connected to the Internet and a web 
browser with Java Script enabled: RaptorX server is compatible 
with three popular web browsers: Google Chrome, Firefox, 
and Internet Explorer. Nevertheless, the former two browsers 
may be slightly better than the third one in visualizing the pre-
diction results.   

   2.    The amino acid sequence(s) of the protein(s) of interest in 
FASTA format: The allowed characters in the sequence are the 
one-letter codes for the 20 standard amino acids. Spaces and 
line breaks in the sequence string are ignored and do not affect 
the prediction. To prevent a single sequence from occupying 
the server for a very long time, we currently limit the length of 
user-submitted sequences to 2,000 amino acids.      

3    Methods 

 In this section we present two separate use cases of the RaptorX 
server. First, we cover the main use case of obtaining the secondary 
and tertiary structures of a target sequence. Second, we demon-
strate the use of RaptorX server to generate alignments between 
the target sequence and user-specifi ed template structures. 

       1.    In the web browser navigate to   http://raptorx.uchicago.edu    .   
   2.    From the menu at the top of the page select “New job.”   
   3.    Use the tab menu to choose between “Alignment Job” and 

“Structure Prediction Job.”   
   4.    In the “Job Identifi cation” section of the form provide a job 

name (defaults to “my job”) and an e-mail address that will be 
used for notifi cation upon job completion. The e-mail given 
also serves as the username for accessing results at a later date. 
Since RaptorX server does not require any user registration, it 
is important that a correct e-mail address is provided.   

   5.    In the “Sequences” box, provide one or more FASTA- 
formatted sequences. These can be supplied by copy and past-
ing into the text box or by uploading a fl at-text fi le with the 
data. The FASTA identifi er is used to identify the individual 
sequence(s) when browsing prediction results; therefore, we 
recommend using descriptive sequence names. In the “Job 
Settings” section, choose if multiple-template modeling is to 
be used (recommended) and if you wish to do secondary, ter-
tiary, or both secondary and tertiary structure modeling.   

3.1  Modeling the 
Secondary and 
Tertiary Structures 
of a Target Sequence

RaptorX server: A Resource for Template-Based Protein Structure Modeling
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   6.    Press the submit button to queue the prediction job. The data 
entered in the form will be validated, and the user will be noti-
fi ed of any errors that need correction in a box appearing at the 
top of the page. If the submission is successful the user will be 
redirected to an overview page displaying pending and com-
pleted prediction jobs. It should be noted that the number of 
pending jobs allowed for one user is limited to 20.   

   7.    In order to track pending and completed prediction jobs the 
user needs to be logged in to the server. If the login from a pre-
vious session has expired or the account needs to be accessed 
from a different machine than the one used for the initial sub-
mission, the user can supply the account e-mail in the login fi eld 
on the RaptorX server front page. An e-mail message will be sent 
to the address containing a hyperlink to the overview page.   

   8.    Select “My jobs” in the menu at the top of the page to display 
the job overview for the account. Here, the status of each pre-
diction in the job is given along with overall information on 
the predictions being done for each submitted sequence. To 
track the job status in real time simply refresh the page, and the 
completion status of the prediction for each submitted 
sequence in a job will be updated ( see   Note 1 ).   

   9.    Click on the structure labeling link in the job overview page to 
bring up a summary page similar to the one depicted in Fig.  1 .

       10.    Structure labeling prediction is provided in four modes. The 
available results include three-class and eight-class secondary 
structures, disorder prediction, as well as three-state solvent 
accessibility. You can switch between the modes using the blue 
tab menu ( see Label 1  in Fig.  1 ). The three-class secondary 
structure prediction gives the distribution between the classes 
alpha-helix, extended strand in beta ladder, and loop/irregu-
lar. In addition to these, the eight-class prediction classes 
include residue in isolated beta-bridge, 3-helix (3/10 helix), 
5-helix (π-helix), hydrogen-bonded turn (3, 4, or 5 turn), and 
Bend ( see   Note 2 ). Disorder prediction classifi es residues as 
disorder or non-disorder, while solvent accessibility classes are 
buried, medium, and exposed.   

   11.    For each residue a fi gure depicting the distribution of structure 
labeling classes is given, indicating the relative likelihood of a 
given residue belonging to each of these classes. The legend 
for the color coding of the states can be found in the column 
on the right-hand side of the page ( see Label 5  in Fig.  1 ). Hover 
over a residue to display the exact probability distribution of 
secondary structure classes in a pop-up box next to the residue 
( see Label 2  in Fig.  1 ).   

   12.    The right-hand column provides information on the status of 
the prediction job ( see Label 3  in Fig.  1 ); to download the 
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prediction results for the sequence, including the full class 
distributions of the four secondary structure predictions, click 
the link labeled “Download” ( see Label 4  in Fig.  1 ).   

   13.    Click on a 3D structure link in the job overview page to 
obtain a job summary similar to the one depicted in Fig.  2a, b  
( see   Note 3 ).

       14.    In a structure prediction job, a protein structure is built for each 
of the (≤10) top-ranked alignments between the target and 
sequences from the template library. The rank of the candidate 
model is provided in the results overview ( see Label 1  in Fig.  2a ), 
with the highest ranked model being selected as the default. 
Clicking the “View alternative models” button will bring up a 
menu from which the user can switch between models ( see Label 
5  in Fig.  2a ). For each model, the PDB code of the template 
along with the  p -value and uGDT score of the alignment is 
given. If MTT is used, a model based on several templates will 
be available as well ( see Label 4  in Fig.  2a ) ( see   Note 4 ).   

   15.    The quality of the model is given by  p -value, uGDT, and 
global distance test (GDT) ( see Labels 2 and 3  in Fig.  2a ) of its 

  Fig. 1    Example of a secondary structure prediction result       
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  Fig. 2    ( a ) Example of a tertiary structure prediction result with multiple templates. ( b ) Example of a tertiary 
structure prediction result with a single template and local quality score         
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alignment with the selected template. The uGDT is the 
unnormalized GDT score which is defi ned as 1 ×  N (1) + 0.75 
×  N (2) + 0.5 ×  N (4) + 0.25 ×  N (8), where  N ( x ) is the number 
of residues with the local RMSD smaller than  x  Å. GDT is 
uGDT normalized by a protein domain length. GDT mea-
sures the quality of a model by comparing it with the native 
structure and has a value ranging from 0 to 100, indicating 
the worst and the best quality, respectively. As shown in 
Fig.  3 , the  p -value is a reliable indicator of model quality. 
When the  p -value is small (i.e., <10 −5 ), the models have a 
uGDT or a GDT greater than or equal to 50. Even in the case 
of a  p -value smaller than 10 −4 , only three models have both 
uGDT and GDT less than 50. That is, the prediction from 
our threading method is reliable when the  p -value is less than 
10 −4 . For each model, the PDB identifi er for the template 
structure and the specifi c polypeptide chain from the PDB fi le 
used to build the currently selected model are displayed. Click 
the link to go to the structure record in the PDB (  http://
www.pdb.org    ) ( see Label 4  in Fig.  2a ).

       16.    A graphic representation of the currently selected model is 
provided in the Jmol viewer. Use the mouse to rotate and 
zoom the structure. Right-clicking on the model will bring up 
a menu of further options for changing the visualization set-
tings ( see Label 6  in Fig.  2a ). To the right of the structure 
viewer a menu for controlling the representation of the cur-
rently selected model is available ( see Label 7  in Fig.  2a ).   

   17.    The alignment of the target and template sequences used for 
constructing the current model is displayed below the Jmol 
viewer. Each position in the alignment is color coded according 

  Fig. 3    The relationship between  p -value and the model quality on the 123 CASP10 targets       
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to the chemical nature of the residue. The color scheme used is the 
following: Red = Hydrophobic, Blue = Acidic, Magenta = Basic, 
and Green = Hydroxyl + Amine. RaptorX server also provides 
the predicted RMSD at each aligned position rounded to the 
nearest integer as indicators of reliability in the last row ( see 
Label 1  in Fig.  2b ). Hover over the aligned residues to highlight 
the corresponding target residues in the Jmol viewer ( see Label 8  
in Fig.  2a ).   

   18.    The column to the right provides an overview of the prediction 
job status ( see Label 9  in Fig.  2a ). Click on the appropriate links 
to download the prediction results. Multiple download options 
are available: PDB fi les for the top-ranked models, the corre-
sponding alignments with their local reliability scores, and the 
confi dence scores such as the  p -value, uGDT, and GDT men-
tioned above ( see Label 10  in Fig.  2a ). Underneath the down-
load links a third box with a brief user’s guide for the Jmol 
viewer is given ( see Label 11  in Fig.  2a ) followed by a guide on 
the sequence box.      

      19.    Repeat  steps 1 – 5  from Subheading  3.1  above.   
   20.    Indicate the structure(s) you wish the supplied sequence(s) 

from  step 5  to be aligned to. Enter the PDB ID in the text 
box, and select the desired structure from the drop-down 
menu that appears. Repeat to add additional structures to the 
list ( see   Note 5 ).   

   21.    Under “Alignment options,” check the types of alignments 
you wish to generate. The options available are “Optimal pair-
wise alignment” which returns the best possible pairwise align-
ment between the target sequence and the selected templates; 
“Probabilistic sampling” which returns a user-specifi ed num-
ber of alternative alignments sampled according to the align-
ment probability distribution generated by the CNF model; or 
“Multiple template alignment” which returns a multiple- 
protein alignment between the selected templates and the 
input target sequence.   

   22.    Click on an alignment job in the job overview to obtain a sum-
mary similar to the one depicted in Fig.  4 .

       23.    In an alignment job, in addition to the optimal alignments 
between the target sequence and the provided template struc-
tures, a set of sampled alternative alignments may also be gen-
erated. To generate a sample alignment, check the “Probabilistic 
sample” box and indicate the number of samples desired.   

   24.    Click on the alignment drop-down selection box to bring up 
a selection menu from which it is possible to switch between 
alternative alignments ( see Label 1  in Fig.  4 ). The alignment 
of the target and template sequences will be displayed after 
a selection is made, and the “Display” button is pressed. 

3.2  Custom Template 
Alignment
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Each position in the alignment is color coded according to 
the chemical nature of the residue as described in  step 17  
( see Labels 2 and 5  in Fig.  4 ).   

   25.    The right-hand column provides information on the status of 
the job ( see Label 3  in Fig.  4 ). Click on the links to download 
the alignment results, including the set of alignments between 
the target sequence and all structures in the template library 
used ( see Label 4  in Fig.  4 ).       

4    Notes 

     1.    From time to time the user may not receive a response from the 
server after submitting several sequences to RaptorX server for 1 
or 2 days. RaptorX server can usually process at least one of the 
submitted sequences within 24 h even when operating at a high 
load; however, exceptionally heavy loads may delay the response. 
Other possible reasons for delay include server maintenance or 
an incorrect e-mail address provided by the user. Click on the 
“contact” menu at the bottom of the RaptorX server web page, 
and send a message to the system administrator.   

   2.    Sometimes the user may observe different probabilities for the 
same secondary structure class for a given residue in the 
three- and eight-state models. As an example, residue 13 is in 

  Fig. 4    Example of a custom alignment result       
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an alpha- helix with probability 17 % in the three-state model 
and 14 % in the eight-state model. As the two models give the 
distribution of secondary structure groups from two different 
class sets, the differences in the alpha-helix propensity 
between the two models could be due to other types of heli-
ces being possible in the eight-state model.   

   3.    It should be noted that the prediction results are not expanded 
automatically when a results page is loaded. This is done to 
provide a better overview for the submitted sequence consist-
ing of many domains. For any one submission there will be at 
least four entries in the result page including secondary and 
tertiary structure prediction, domain parsing, and disorder pre-
diction. Clicking on any of them will display the relevant result.   

   4.    Even if MTT is selected you may not see any MTT results in the 
drop-down menu. MTT is only deployed if our method pre-
dicts that a model based on several template structures is more 
accurate than the top-ranked single-template model. Should 
you still want to construct a multiple-template alignment, this 
can be accomplished through the custom alignment interface.   

   5.    When looking up a template structure in the drop-down menu 
you may not always be able to fi nd the desired PDB identifi er. 
This is due to the template library used on the server being 
“non-redundant”; thus, several highly similar structures in the 
PDB are omitted, and only one representative structure is kept 
in the library. To resolve this problem, we supply a list of 
equivalent structures to identify the structure in the library 
equivalent to your desired template.         
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    Chapter 3   

 The MULTICOM Protein Tertiary Structure 
Prediction System 

           Jilong     Li    ,     Debswapna     Bhattacharya    ,     Renzhi     Cao    ,     Badri     Adhikari    , 
    Xin     Deng    ,     Jesse     Eickholt    , and     Jianlin     Cheng    

    Abstract 

   With the expansion of genomics and proteomics data aided by the rapid progress of next-generation 
sequencing technologies, computational prediction of protein three-dimensional structure is an essential 
part of modern structural genomics initiatives. Prediction of protein structure through understanding of 
the theories behind protein sequence–structure relationship, however, remains one of the most challeng-
ing problems in contemporary life sciences. Here, we describe MULTICOM, a multi-level combination 
technique, intended to predict moderate- to high-resolution structure of a protein through a novel 
approach of combining multiple sources of complementary information derived from the experimentally 
solved protein structures in the Protein Data Bank. The MULTICOM web server is freely available at 
  http://sysbio.rnet.missouri.edu/multicom_toolbox/    .  

  Key words     Protein tertiary structure  ,   Template recognition  ,   Multiple template combination  ,   Protein 
structure prediction  ,   Structure quality evaluation  ,   Structure quality enhancement  

1      Introduction 

 The past few decades have witnessed an explosive growth in 
genomics and proteomics data. With the advancement of high- 
throughput genome sequencing technologies, the total number of 
gene and protein sequences is increasing exponentially. Therefore, 
in this genomic era, one vital goal for life scientists is to acquire 
knowledge from this vast repository of resources for better drug 
design and disease prevention strategies. Proteins fold into a three- 
dimensional structure, called tertiary structure, in order to carry 
out necessary biological functions, and therefore a high-resolution 
tertiary structure of a protein is the key to understanding and 
manipulating its biochemical and cellular functions. However, the 
rate of protein structure determination by experimental techniques 
(e.g., X-ray crystallography or NMR spectroscopy) lags far behind 
the rate of acquisition of new protein sequences primarily due to 
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the time-consuming and expensive nature of the experimental 
methods. Therefore, the gap between known protein sequences 
and structure will continue to widen in the future making it impos-
sible to experimentally solve the structures for all proteins. 
Consequently, less expensive and time-effi cient computer-assisted 
prediction of protein tertiary structures is becoming increasingly 
popular. 

 Around 50 years ago, Anfi nsen discovered the fact that all of 
the information necessary for RNase A to fold into its native struc-
ture is contained in its amino acid sequence, suggesting that the 
structure of a protein could be derived uniquely from its sequence 
alone [ 1 ]. Subsequently, interpretation of the sequence–structure 
relationships in proteins has become an active area of research in 
the fi eld of biological sciences. As soon as the experimental struc-
tures of the fi rst few proteins were made available, it became clear 
that evolutionarily related (homologous) proteins tend to retain 
the same overall three-dimensional fold (i.e., the arrangement and 
association of structural fragments) while accumulating some 
divergent mutations [ 2 ]. Moreover, despite being strongly corre-
lated, structural divergence is much slower than sequence diver-
gence [ 3 ]. These two important fi ndings gave birth to one doctrine 
in protein structure prediction (also known as protein modeling) 
called homology modeling or comparative modeling (CM) [ 4 ]. 
Traditionally, this technique attempts to map the sequence of one 
protein (a target) to the sequence of another protein with a known 
structure (a template) to deduce the overall fold of the target and 
subsequently alter the target structure according to its sequence 
divergence with respect to the template. This approach is also com-
monly known as template-based modeling (TBM) and is one of 
the most widely used techniques in computational protein struc-
ture prediction. Intuitively, the success of TBM depends largely on 
the availability and ability to identify suitable templates for the tar-
get as well as the sequence similarity between the target and tem-
plate. The accuracy is usually low when only a relatively distant 
homologous template is available for the target. Promisingly, con-
stant efforts have been made by the community in the last decade, 
resulting in continual improvement of the accuracy of computa-
tionally based structure prediction. 

 With the aim of an objective assessment of the improvement in 
state-of-the-art methods for protein structure prediction, Moult 
and co-workers organized the biennial community-wide experi-
ment called critical assessment of techniques for protein structure 
prediction (CASP) [ 5 ]. It was clear from the assessment of the 
CASP blind experiment that the accuracy of computational protein 
structure can be improved by combining information from multiple 
templates instead of relying on a single template [ 6 – 8 ]. This con-
cept is at the heart of the MULTICOM protein structure  prediction 
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system [ 9 ]. MULTICOM essentially is a robust framework which 
aligns the target protein with multiple complementary templates 
and attempts to enhance the accuracy of structure prediction using 
a novel model combination approach followed by quality assess-
ment techniques [ 10 ,  11 ] to refi ne the alternative models with the 
goal of selecting the best structure. MULTICOM offi cially made its 
debut in CASP8 [ 12 ], and the assessment of the results demon-
strates the effectiveness of the method across diverse target diffi cul-
ties (i.e., for easy cases where a suitable template can be identifi ed to 
hard cases where only distantly homologous templates are avail-
able). With its consistent success during the CASP9 experiment, 
MULTICOM has been acknowledged by the community as one of 
the “best public CASP-certifi ed protein structure prediction serv-
ers” (  http://predictioncenter.org/index.cgi?page=links    ). 

 In the subsequent sections, we attempt to provide a thorough 
and comprehensive overview of the MULTICOM protein struc-
ture prediction suite. Subheading  2  (Materials) describes the input 
data, step-by-step instructions on how to use the MULTICOM 
web interface in order to generate the tertiary structure of a pro-
tein, and how to interpret the results. In Subheading  3  (Methods), 
we provide methodologies used to develop the multi-level combi-
nation pipeline used in MULTICOM. Two representative exam-
ples have been furnished in Subheading  4  (Case Studies) for users 
which describe the typical use of the system and the way to analyze 
the output. Subheading  6  (Notes) covers some benefi cial tips to 
aid the users of MULTICOM on how to use the system seamlessly 
and resolve any potential issues during the execution of the pipe-
line or analysis of the results.  

2     Materials 

  The input for the MULTICOM web server is the single-lettered 
amino acid sequence of the protein whose tertiary structure is to 
be predicted. The web server also needs a target name and e-mail 
address along with the amino acid sequence. The target name 
uniquely identifi es the job, which is helpful when there is more 
than one job being submitted. The e-mail address is where the 
server sends the predicted model once the prediction is complete.  

  Predicting a protein’s structure using MULTICOM is a two-step 
process. The fi rst step is to submit the amino acid sequence to the 
server and then wait for the results. The second step begins after 
the MULTICOM web server sends an e-mail with the predicted 
structure as an attachment. The attached structure fi le is a standard 
protein data bank (pdb) fi le and can be visualized, analyzed, or 
evaluated using any available tools. 

2.1  Input

2.2  Usage

The MULTICOM Protein Tertiary Structure Prediction System
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  The input sequence of amino acids should not contain any letters 
or characters other than the 20 standard amino acid symbols. Any 
special characters such as *, $, and & should be removed from the 
sequence. White space characters including space, newline, tab, 
and carriage return should also be removed from the sequence. 
Once the e-mail address, target name, and sequence fi elds are 
fi lled, clicking on the predict button displays a status page. Figure  1  
shows an example input for chain A of the protein with PDB ID 
3MR7. All data in the input fi elds, including the e-mail address, 
needs to be verifi ed before clicking on the predict button.

     Once the server completes the prediction, the results are sent to 
the corresponding e-mail address. The e-mail sent by the 
MULTICOM web server contains two attachments: model.pdb 
and align.pir. The PDB codes of the template sequences along with 
their alignment score are also included in the e-mail body as a list.   

  The pdb fi le attached is the standard pdb fi le that has the  x ,  y , and  z  
coordinates of each atom in the protein and is in standard CASP 
format (  http://predictioncenter.org/casp8/index.cgi?page=format    ). 
The pir fi le attached is a multiple sequence alignment fi le that shows 
sequence alignment of the input sequence with the templates found 
during the prediction process and is used to generate the predicted 
structure. The pdb fi le can be visualized using any viewer tools 
such as Chimera [ 13 ], PyMOL [ 14 ], Rasmol [ 15 ], and Jmol [ 16 ]. 

2.2.1  Step 1: Submit 
the Sequence

2.2.2  Step 2: Download 
the Prediction

2.3  Output

  Fig. 1    The MULTICOM web server input page being fi lled with the sequence of chain A of a protein with PDB ID 
3MR7. The input sequence is text wrapped in the text area and does not contain any white space characters       
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Figure  2  shows an example of visualizing the model.pdb fi le predicted 
for chain A of a protein with PDB ID 3MR7. In case the native struc-
ture is also available, tools like TM-score [ 17 ] may be used to evalu-
ate the prediction. Additionally, the alignment fi le may be analyzed 
for alignment information in order to understand the contribution of 
each template to the predicted model.

     The MULTICOM web server is freely accessible at   http://casp.
rnet.missouri.edu/multicom_3d.html     which is in the MULTICOM 
toolbox (  http://sysbio.rnet.missouri.edu/multicom_toolbox/    ). 
Prediction time depends on factors including server load, length of 
the input sequence, and diffi culty of the query (i.e., whether or not 
good templates can be found).   

3     Methods 

 As shown in Fig.  3 , there are fi ve steps in the MULTICOM protein 
structure prediction system [ 9 ,  18 ]. The fi rst step generates a num-
ber of templates and their sequence alignments for an input query 
sequence. The second step generates a number of query- template 
alignments. The third step creates several structures (also called 
protein models) for the query. The fourth step evaluates the qual-
ity of the generated models. The last step improves the quality of 
the generated models. Finally, the system outputs the predicted 
model with the best quality.

2.4  Availability

  Fig. 2    The MULTICOM web server’s prediction for chain A of a protein with PDB 
ID 3MR7 visualized using PyMOL       
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    Template recognition needs a template library in order to identify 
the templates for the query sequence. In this system, the template 
library has been constructed based on the PDB [ 19 ]. The tem-
plate library includes information such as template sequence, 
template structure, secondary structure, solvent accessibility, 
and template sequence profi les. 

 In this step, sequences homologous to the query are fi rst found 
by searching the query sequence against the non-redundant pro-
tein sequence database via PSI-BLAST [ 20 ]. The query and its 
homologous sequences are then searched against the template 
library by different search tools [ 20 – 27 ] in order to fi nd a number 
of templates with information about the structure of the query. 
A number of templates with low  e -values are generated after these 
searches, along with local alignments between the query and its 
templates ( see   Note 1 ). The top-ranked templates and their query- 
template alignments for each tool are saved separately. A consensus 
list of the top-ranked templates is also generated according to the 
number of times it is identifi ed by each search tool.  

  This step integrates multiple template structures coming from the 
previous step and generates a number of combined query-template 
alignments. This is done because multiple structurally similar tem-
plates may provide more accurate structural information for the 
query than a single template [ 6 ]. Three multiple template combi-
nation methods are used in this step. 

 The fi rst method creates a combined query-template alignment 
based on the query-template alignments generated by each search 
tool. The combined query-template alignment contains the best 
query-template alignment and some other query-template align-
ments that have similar  e -values with the best alignment. The aligned 
regions of all alignments have consistent structures ( see   Note 2 ). 

3.1  Template 
Recognition

3.2  Multiple 
Template Combination

  Fig. 3    The MULTICOM protein tertiary structure prediction system       
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 The second method creates a combined query-template 
alignment based on the consensus list of templates. For each 
template, TM-Align [ 28 ] is used to align it with all other templates 
and the aligned regions are used to generate the multiple sequence 
alignment of this template. Then the multiple sequence alignment 
tool is used to align the multiple sequence alignments of all tem-
plates and that of the query to get the combined query-template 
alignment. 

 The third method uses three kinds of query-template align-
ments generated by PSI-BLAST [ 20 ], HHSearch [ 25 ], and SPEM 
[ 29 ] separately. This method combines these alignments for one 
query in this order: the PSI-BLAST local alignment, HHSearch 
alignment, and SPEM global alignment.  

  This step fi rst checks the templates identifi ed by the previous steps. 
If there are one or more templates which can cover the whole 
query or most of the query with very short unaligned regions 
( see   Notes 2  and  3 ), the TBM tool Modeller [ 30 ] is used to gener-
ate a number of models. If there are no homologous templates or 
only one template covering a part of the query, a recursive protein 
modeling method [ 31 ] is used to generate the models. This 
method fi rst uses the TBM tool Modeller [ 30 ] to model the 
regions which are aligned and covered very well by templates. We 
call these regions certain regions, while the unaligned regions are 
termed uncertain regions. A variant of Rosetta [ 31 ,  32 ] is used to 
construct other uncertain regions. Depending on the amount of 
template information available, the method may use only the TBM 
method or template-free modeling method or combine TBM 
method and template-free modeling method to generate a struc-
ture for the query. The fi nal product of this step is a model pool for 
the query.  

  This step evaluates the quality of each model without knowing the 
native structure. In order to evaluate the quality of each model and 
identify the more accurate models, three structure quality evalua-
tion methods are used. The fi rst method (ModelEvaluator [ 33 ]) 
provides each model with an absolute quality score based on the 
features of that model ( see   Note 4 ). The secondary structure, sol-
vent accessibility, contact map, and beta-sheet topology of the 
model can be parsed from the model directly, and they also can be 
predicted from the target sequence [ 34 – 36 ]. For each of them, we 
use the difference between that parsed from the model and that 
predicted from the target sequence as a feature. The second 
approach uses the structure alignment tool TM-score [ 17 ] to cal-
culate the similarity score between the model and all other models 
in the model pool and then uses the average similarity score as the 
quality score of this model ( see   Note 5 ). The third method tries to 
combine the fi rst two approaches. It selects the top models based 

3.3  Protein Structure 
Generation

3.4  Structure Quality 
Evaluation
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on the quality score using the fi rst method as the reference model set. 
Each model is compared with all models in the reference model 
set, and the average similarity score is used as the quality score. 
The local quality score of each residue is also calculated in this step. 
This is accomplished by aligning a model with each model in the 
reference model set. The distance between each residue in this 
model and its counterpart in a reference model in the reference set 
is calculated separately as a local quality score. Finally, the local 
quality score of each residue is the average distance of this residue 
and all of its counterparts.  

  In this step, the top-ranked models based on the structure quality 
evaluation are searched against the model pool to check if there 
exist other similar models ( see   Note 6 ). If there are some similar 
models, this step combines the top-ranked models with the similar 
models. Otherwise, very similar local regions of other models are 
combined with the top-ranked models. This model combination 
can usually get better models than the original top-ranked models. 
Moreover, the local quality score is also used for the structure qual-
ity enhancement. The regions with very poor local quality scores 
are resampled by a variant of Rosetta [ 31 ,  32 ] which constrains the 
local region modeling without changing other regions. The fi nal 
prediction of this system is the best refi ned model.   

4     Case Studies 

 As case studies, the MULTICOM web server was used to predict 
tertiary structure of the fi rst chains (chain A) of two proteins: 
adenylate/guanylate cyclase/hydrolase from  Silicibacter pome-
royi  and diguanylate cyclase from  Pelobacter carbinolicus . These 
proteins were also listed as prediction targets in CASP9 with 
target id as T0520 (  http://predictioncenter.org/casp9/target.
cgi?id=21&view=all    ) and T0634 (  http://predictioncenter.org/
casp9/target.cgi?id=178&view=all    ), respectively. These two 
protein sequences were supplied to the MULTICOM web 
server. The predictions were visualized using PyMOL and eval-
uated using TM-score and RMSD (average root mean square 
distance between the corresponding atoms) ( see   Note 7 ). The 
case studies show that the predicted structures are highly accu-
rate with TM-score value of 0.9454 for target T0520 and 
0.8547 for target T0634 and an RMSD value of 0.581 for 
T0520 and 1.257 for T0634. MULTICOM was ranked among 
the top ten predictors for both of these targets. 

  To predict the tertiary structure of adenylate/guanylate cyclase/
hydrolase (from  Silicibacter pomeroyi ), its corresponding fasta 
sequence fi le was downloaded from PDB [ 19 ]. The PDB ID for 

3.5  Structure Quality 
Enhancement

4.1  Case Study I
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this protein is 3MR7, and the fasta sequence fi le is available at 
  http://www.rcsb.org/pdb/fi les/fasta.txt?structureIdList=3MR7    . 
The sequence for chain A was copied to a separate text fi le to 
remove newline characters. After removing newline characters, the 
whole sequence, 189 characters long, was now in a single line that 
begins with the residues SNAE and ends with residues HVQH. 
The sequence was then copied and supplied as input to the 
MULTICOM web server as shown in Fig.  1 . The server took 
17 min to complete the task. The predicted structure (model.pdb) 
was then visualized with PyMOL. To visually compare the pre-
dicted structure with the native structure, the native structure was 
downloaded from   http://www.rcsb.org/pdb/fi les/3MR7.pdb    . 
Before performing the comparison, the native structure and pre-
dicted structure both need to be fi ltered for two reasons: the native 
structure has three chains, and the predicted structure has only 
one; thus, there may be disordered regions in predicted or native 
structures. Finally, the fi ltered predicted structure and fi ltered 
native structure were both superimposed and visualized in PyMOL 
as shown in Fig.  4 . Additionally, the predicted structures were eval-
uated using TM-score and RMSD ( see   Note 7 ). The TM-score 
value of 0.9454 and RMSD value of 0.581 show that the predic-
tion is very accurate.

     To predict the structure of diguanylate cyclase (from  Pelobacter 
carbinolicus ), steps similar to Case Study I were executed. The PDB 
ID for this protein is 3N53, and the fasta fi le was downloaded from 

4.2  Case Study II

  Fig. 4    Filtered native structure (shown in  green  color) and MULTICOM-predicted 
fi ltered structure (shown in  blue  color) superimposed using PyMOL for protein 
adenylate/guanylate cyclase/hydrolase       
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  http://www.rcsb.org/pdb/fi les/fasta.txt?structureIdList=3N53    . 
The 140-residue-long sequence starting with MSLK and ending 
with HHHH was supplied to the web server, and it took around 
half an hour for the prediction to complete. Similar to Case Study 
I, the fi ltered predicted structure and fi ltered native structure were 
obtained, superimposed, and visualized in PyMOL as shown in 
Fig.  5 . For this target as well, a high TM-score value of 0.8547 and 
RMSD value of 1.257 imply an accurate prediction.

5        Conclusion 

 Given the implications of protein structure in protein functional 
analysis and rational drug design as well as the limitations of existing 
experimental techniques to determine protein structure, computa-
tional approaches to predict protein structure will continue to be a 
necessity. The MULTICOM protein structure prediction pipeline 
stands ready to meet the needs of the research community and is 
accessible via a web service. The method uses a multi-level combi-
nation technique to combine multiple protein structure templates 
and sources of structural information to generate models and then 
employs a number of model refi nement and selection tools to 
return the best possible predicted structure. The MULTICOM 
system is capable of using both template-based and template-free 
modeling to handle the full spectrum of protein modeling and 
generate predictions for all protein structure prediction tasks from 
the relatively easy to diffi cult. The system has been thoroughly and 

  Fig. 5    Filtered native structure (shown in  pink  color) and MULTICOM-predicted 
fi ltered structure (shown in  yellow  color) superimposed using PyMOL for protein 
diguanylate cyclase       
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successfully tested in CASP8 and CASP9 and assessed as one of the 
best public, CASP-certifi ed protein structure prediction servers.  

6     Notes 

     1.    An  e -value is generated when using a search tool like BLAST 
[ 20 ,  21 ] to search the query against the template library. 
Usually, a low  e -value means that the template has high similar-
ity to the query.   

   2.    Regions of a protein model usually refer to continuous seg-
ments of amino acids. Two regions have consistent structures 
if the similarity score between them is higher than a set thresh-
old. The similarity score is calculated using the GDT-TS score 
generated from TM-score [ 17 ] when comparing them. In the 
MULTICOM system, we set the threshold to 0.75 for com-
parison of two regions.   

   3.    Very short unaligned regions mean that there are less than ten 
residues unaligned in the template.   

   4.    The absolute quality score of the model is the GDT-TS score 
between this model and its native structure. The GDT-TS 
score describes the expected similarity between the model and 
the native structure.   

   5.    This approach is very sensitive about the input model pool. 
When the input model pool is small or contains many poor 
models, this approach does not work very well.   

   6.    Two models are similar if the pairwise GDT-TS score is higher 
than a threshold. MULTICOM uses a threshold of 0.7 for 
comparison of two models.   

   7.    TM-score [ 17 ], RMSD (average root mean square distance 
between the corresponding atoms), and GDT-TS score are 
commonly used tools to compare and evaluate protein struc-
ture predictions. The online version of the TM-score tool is 
available at   http://zhanglab.ccmb.med.umich.edu/TM-score/    . 
To compare the native structure (e.g., native.pdb) with a pre-
dicted structure (e.g., predicted.pdb), the predicted.pdb fi le is 
uploaded as Structure 1 and native.pdb is uploaded as Structure 
2, leaving the e-mail address fi eld blank. After  running the com-
parison, the assessment results page shows the TM-score value.         
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    Chapter 4   

 Modeling of Protein Side-Chain Conformations with RASP 

           Zhichao     Miao    ,     Yang     Cao    , and     Taijiao     Jiang    

    Abstract 

   Modeling of side-chain conformations on a fi xed protein backbone, also called side-chain packing, plays an 
important role in protein structure prediction, protein design, molecular docking, and functional analysis. 
RASP, or RApid Side-chain Predictor, is a recently developed program that can model protein side-chain 
conformations with both high accuracy and high speed. Moreover, it can generate structures with few 
atomic clashes. This chapter fi rst provides a brief introduction to the principle and performances of the 
RASP package. Then details on how to use RASP programs to predict protein side-chain conformations 
are elaborated. Finally, it describes case studies for structure refi nement in homology modeling and residue 
substitution.  

  Key words     Protein structure prediction  ,   Side-chain packing  ,   Rotamer library  ,   Energy function  , 
  Combinatorial search  ,   RASP  ,   CIS-RR  

1      Introduction 

 A protein adopts specifi c side-chain conformations while folding 
into a particular structure and carrying out its function. Thus, 
accurate and rapid modeling of protein side-chain conformations is 
a crucial step in protein design [ 1 ] and protein structure modeling 
as well as protein function and interaction analysis. During the last 
two decades, many efforts have been dedicated to the prediction of 
protein side-chain conformations [ 2 – 17 ]. 

 Protein side-chain conformations that are mainly determined 
by dihedral torsion angles are called rotational isomers or rotamers 
[ 18 ,  19 ]. As certain rotamer dihedral angles are statistically more 
favorable, they can be clustered into discrete conformations (e.g., 
t, g+, or g− conformations). Therefore, in order to signifi cantly 
reduce computational expense, side-chain conformation predic-
tion problems can generally be reduced to a combinatorial search 
problem based on discrete rotamers. To carry out an effi cient 
search through the enormous number of rotamer combinations, 
enormous search algorithms guided by energy/scoring functions 
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have been published including (1) dead-end elimination [ 20 ], 
(2) simulated annealing [ 21 ], (3) Monte Carlo [ 11 ], (4) A* [ 22 ], 
(5) integer programming [ 23 ], (6) self-consistent mean fi eld [ 24 ], 
and (7) graph theory-based approaches [ 2 ,  25 ]. Combination of 
these search algorithms is critical in side-chain prediction. For 
example, to achieve high-speed SCWRL4 [ 9 ] and SCATD [ 17 ] 
combine DEE, branch-and-bound, and tree decomposition 
searches. The recently developed energy scoring functions range 
from simple van der Waals potentials [ 4 ,  26 ] to more complicated 
ones incorporating hydrogen bonding [ 9 ], solvation [ 27 ], and sta-
tistical orientation terms [ 12 ]. 

 As a result of previous efforts, the prediction of side-chain con-
formations has become more and more accurate. A further 
improvement of accuracy stems also from increased computational 
effi ciency. For example, although the recently developed side-chain 
packing program SCRWL4 (Dunbrack’s lab) and the program 
CIS-RR (short for clash-detection guided iterative search with 
rotamer relaxation, in our lab) display accuracy improvements of 
~3 % in side-chain  χ  dihedral accuracy over SCRWL3, they are six 
times slower than the former SCRWL3 version, indicating the 
challenge in achieving both high accuracy and high speed in the 
prediction of protein side-chain conformations. Recently, we 
developed a RApid Side-chain Predictor, called RASP [ 28 ]. RASP 
combines two steps in modeling of protein side-chain conforma-
tions: (1) rapid generation of high-quality initial structures and (2) 
rapid elimination of atomic clashes. 

 RASP has been compared with some well-established pro-
grams, including SCWRL4 [ 9 ], OPUS-Rota [ 29 ], and IRECS [ 6 ], 
by using the SCWRL4 test set. As shown in Table  1 , for prediction 

   Table 1 
  Comparison of RASP and CIS-RR with some recently developed side-chain 
prediction programs by using the SCWRL4 test set   

 Program  Time (min)  Clashes   χ  1  (%)   χ  1+2  (%)  RMSD (Å) 

 RASP  1.8  47  85.1  74.7  1.5 

 CIS-RR  73  59  84.9  74.9  1.5 

 SCWRL4  33  411  85.0  75.4  1.5 

 SCWRL3  5  1,107  82.2  71.3  1.6 

 OPUS-Rota  26  623  85.0  75.0  1.4 

 IRECS  38  1,201  83.6  71.8  1.7 

  Correctness percentage of  χ  1  is defi ned as the percentage of residues whose predicted  χ  1  
dihedral is within 40° of the  χ  1  dihedral of native side chains, while correctness percent-
age of  χ  1+2  is defi ned as the percentage of residues for which both  χ  1  and  χ  2  are within 
40° of those of native side chains  

Zhichao Miao et al.
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accuracy in terms of correctness percentages for  χ  1  and  χ  1+2  dihedrals 
and side-chain root mean square deviation (RMSD), RASP and 
CIS-RR are comparable to these side-chain prediction programs. 
For speed, RASP is 14 times faster than OPUS-Rota and 18 times 
faster than SCWRL4. Moreover, it generates fewer clashes than 
SCWRL4 and OPUS-Rota.

2       Materials 

  The Brookhaven PDB [ 30 ] format is used for input protein fi les. 
Main-chain structure data should be included in the input fi le, 
especially for the three main-chain atoms (N, CA, and C). But if 
the main-chain oxygen (O) atom is missing, RASP will generate its 
coordinates according to the peptide plane using default parame-
ters. Some uncommon residue types are assimilated to the standard 
amino acid type that is most similar to it. For example, the residue 
type MSE (selenomethionine) is deemed as methionine in the pre-
diction, while SMC (S-methylcysteine) is assimilated to cystine.  

  The RASP package includes RASP, CIS-RR, and RASP tools. 
 RASP is a super fast and highly accurate side-chain packing 

program that is suitable for high-throughput structure modeling 
and optimization. 

 CIS-RR is a user-friendly program for accurate side-chain pre-
diction that is suitable for protein residue substitution modeling. 

 RASP tools are used for measuring side-chain structural infor-
mation and include three tools:

 ●    RASPsym fl ips symmetric residues in the PDB to the same 
side. For instance, the OD1 and OD2 atoms in aspartic acid 
are symmetric (Fig.  1 ):

   If the names of the two atoms are exchanged, the side-
chain conformation does not change. However, since only one 
atom (OD1) determines its dihedral angle, the structure needs 
to be fl ipped before measuring the dihedral angle. Otherwise, 
the measured angle would be 180° away.  

2.1  Input Data

2.2  Programs 
in the RASP Package

  Fig. 1    Symmetric side chain       
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 ●   RASPchi measures the dihedral angles of all the residues in a 
PDB structure.  

 ●   RASPrms calculates the RMSD between two PDB structures.     

  The RASP package (including the examples) is available at   http://
jianglab.ibp.ac.cn/lims/rasp/rasp    .   

3    Methods 

 Please note that programs in the RASP package run on Linux 
 systems with the gcc library. 

   Several Linux platforms have been tested, including

 –    gcc version 4.4.5 20100728 (prerelease) (Debian 4.4.4-8).  
 –   gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5).  
 –   gcc version 4.3.2 (Debian 4.3.2-1.1).  
 –   gcc version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21).  
 –   gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5).  
 –   gcc on Linux Mint 64.     

  Uncompress the package to the directory where you want to install 
the program, and then double click on the “setup” fi le. If the setup 
does not run, make sure that it can be executed by using the 
command “chmod + x setup_rasp.” After installation, four fi les 
appear in the directory:

    1.    bbdep11.bin: the side-chain rotamer library fi le.   
   2.    RASP.ini: the parameter confi guration fi le that includes useful 

parameters.   
   3.    README: a brief introduction to RASP.   
   4.    RASP: the executive binary fi le for side-chain structure 

prediction.     

 After installation, “bbdep11.bin” and “RASP.ini” should 
remain in the directory, while the executive fi le RASP can be cop-
ied to any directory.  

      1.    For side-chain modeling based on main-chain structure and 
sequence: 

 ./RASP -i [input_pdb] -o [output_pdb] 

 The “input_pdb” is the input main-chain structure fi le, 
based on which RASP performs the prediction. “output_pdb” 

2.3  Website

3.1  RASP Programs

3.1.1  Platform

3.1.2  Installation

3.1.3  Usage

Zhichao Miao et al.
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is any name assigned for the output fi le ( see   Notes 1  and  2 ). 
As an example, “-o abcd.pdb” generates a PDB fi le named 
“abcd.pdb” as a result.   

   2.    Modeling side-chain conformations for mutated residues: This 
function was designed for the modeling of mutated sequences. 
A sequence fi le is provided with the “-s” option to specify 
mutated and fi xed residues. Once a sequence is given, RASP 
predicts side- chain conformations according to the given 
sequence other than the sequence contained in the input main-
chain PDB fi le ( see   Notes 3  and  4 ). In the sequence, lower case 
letters indicate residues to be fi xed with their original confor-
mations, while upper case letters need to be predicted. 

 ./RASP -i 1A8Q.pdb -o result.ent -s substitution.fasta 
 An example of substitution.fasta: 
 >1A8Q:A|PDBID|CHAIN|SEQUENCE 

 PICTTRDGVEIFYKDWGQGRPVVFIHGWPLNG dawqd QLKAVVDAGYRGIAHDRRGHGHSTP
VWDGYDFDTFADDLNDLLTDLDLRDVTLVAHSMGGGELARYVGRHGTGRLRSAVLLSAIPPV
MIKSDKNPDGVPDEVFDALKNGVLTERSQFWKDTAEGFFSANRPGNKVTQGNKDAFWYMAM
AQTIEGGVRCVDAFGYTDFTEDLKKFDIPTLVVHGDDDQVVPIDATGRKSAQIIPNAELKVYEGS
SHGIAMVPGDKEKFNRDLLEFLNK 

 In this case, the “ dawqd ” region will take their side-chain 
conformations as in the input fi le.   

   3.    Using ligand coordinates for spatial constraints: If the coordi-
nates of the protein’s ligands or water molecules around the 
protein are provided as spatial constraints, use “-f” for the 
ligand coordinates fi le ( see   Note 5 ). As the ligands can be any 
kind of molecules, they are read in atom by atom. The ligand 
coordinates fi le should be in PDB format headed by “ATOM” 
or “HETATM” in each line. For instance: 

 ./RASP -i abcd.pdb -o efgh.pdb -f ijkl.pdb 
 RASP will predict side-chain structures on the abcd.pdb 

main-chain structure using ijkl.pdb as spatial constraints and 
preserve the result structure in efgh.pdb.   

   4.    Recording predicted side-chain conformations: RASP also has 
a “-d” option to record all the dihedral angles in a “.dihed” fi le 
with the following format (Fig.  2 ):  

 As a case: 

 ./RASP -i abcd.pdb -o efgh.pdb -d 

 The predicted side-chain dihedral angles will be stored in 
“efgh.pdb.dihed.”       

Modeling of Protein Side-Chain Conformations with RASP
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   The CISRR package is available at   http://jianglab.ibp.ac.cn/
lims/cisrr/cisrr.html    .  

  Extract the CISRR.tar.gz, and place the CISRR folder anywhere 
without modifying the newly built subdirectories and fi les. To use 
the software in a different directory, specify the program path in 
the command: <program path>/bin/CISRR. CIS-RR is mainly 
used for residue substitution analysis.  

   ./CISRR -i [input_pdb] -o [output_pdb] -m 
[mutation information]. 

 The “-m” indicates an amino acid substitution, formatted as 
[chain id] [sequence number] [original residue name (one letter)] 
[new residue name (one letter)]. If more than two mutations are 
needed, use more of the “-m” options one by one. 

 For example, “CISRR -i 1AGI.pdb -o 1AGI_sp.pdb -m A 5 Y 
W” is used to make a substitution from TYR to TRP at site 5 of 
chain A.   

      1.    ./RASPsym [input_pdb] [output_pdb] 

 Example: ./RASPsym abcd.pdb efgh.pdb 

 Asp, Glu, Phe, Tyr, and Arg will be fl ipped to the same side 
(in efgh.pdb).   

   2.    ./RASPchi [input_pdb] 

 Example: ./RASPchi 1T0K.pdb 

3.2  CIS-RR Program

3.2.1  Website

3.2.2  Installation

3.2.3  Usage

3.3  RASP Tools

  Fig. 2    Dihedral angle fi le format       
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 The side-chain dihedrals will be measured and stored in 1T0K.
pdb.dihed. 
 To use RASPchi, just put the PDB fi le name after RASPchi in 
the command line. A fi le with suffi x “.dihed” will be generated. 
This fi le adopts the same format as the “.dihed” fi le generated 
by the RASP “-d” option (format shown in Fig.  1 ). Data in this 
fi le can be used to compare side-chain conformations.   

   3.    ./RASPrms [PDB1] [PDB2] (options) 
 To compare the RMSD of side-chain coordinates, RASPrms 
can be used. The options in RASPrms could be “-ca,” “-mc,” 
“-ss,” “-sf,” and “-tot.” The “-ca” option calculates only the 
RMSD for CA atoms; “-mc” measures the RMSD of the four 
main-chain atoms (N, CA, C, and O); “-ss” measures the side-
chain RMSD excluding the main-chain atoms (main chain are 
deemed as the same); “-sf” option calculates RMSD for the 
whole structure without superimposition; “-tot” superimposes 
all of the coordinates and calculates the total RMSD. 

 As a case: 

 ./RASPrms 1E7K.pdb 1T0K.pdb -ca -ss -tot 

 RMSD for CA atoms, for side-chain atoms, and for the whole 
structure are measured. The results will be printed on the screen. 
RASPrms has only simple functionalities. For more complex ones, 
please refer to Profi t (  http://www.bioinf.org.uk/profi t/    ).      

   To use the modeled structure for in-depth protein function analysis 
such as binding to ligands or other proteins, a high-quality 
prediction of side-chain conformations is required. However, for 
highest speed, homology modeling programs usually use very 
simple rotamer models and scoring functions that might generate 
excessive atomic clashes through unfavorable side-chain 
conformations. RASP offers very convenient and useful tools to 
optimize modeled structures. 

 Here, we provide a real case for protein structure modeling to 
illustrate the application of RASP. L30e in Eukaryotes (1T0K) 
[ 31 ] and 15.5 kDa (1E7K) [ 32 ] in humans are homologous RNA-
binding proteins. Sequence identity between the two proteins is 
16.7 %, and the RMSD for Cα atoms is 1.76. Therefore, 15.5 kDa 
protein could be used as a homologous template for modeling the 
L30e protein (Fig.  3 ).  

 First, sequences of the two proteins need to be aligned. If no 
insertions or deletions (gaps) are in the alignment, we can directly 
use RASP to model the structure. As in this case, Modeller [ 33 ] 
can be employed to generate a structural model (name it model_1) 
with insertions and deletions. L30e protein binds to ribosomal 

3.4  Case Studies

3.4.1  Structure 
Refi nement in Homology 
Modeling

Modeling of Protein Side-Chain Conformations with RASP
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RNA, and 15.5 kDa protein binds to U4 kink-turn; both of the 
protein-binding regions adopt kink-turn structural module. Thus, 
the known RNA coordinates could be used as spatial constraints to 
optimize the side-chain conformations. We superimpose model_1 
to the template 15.5 kDa protein (saved as model_2) and preserve 
the U4 snoRNA coordinates (saved as RNA.pdb). Finally, we use 
RASP to rebuild side-chain conformations on model_1: 

 ./RASP -i model_2 -o L30e.model.pdb -s L30e.seq -f RNA.pdb. 

 Then, the side-chain conformations can be assessed using 
RASPsym and RASPchi. Compared with the native structure 
(1T0K), the side-chain conformation modeled by Modeller is 
28.4 % for  χ  1  dihedral and 53.1 % for  χ  2 . After optimization by 
RASP the accuracy improves to 35.8 and 58.0 %, respectively. 
Besides, this improvement only takes ~0.2 s. Therefore, we con-
clude that RASP can greatly improve the accuracy of protein 
homology structures.  

  Protein residue substitution has little impact on the main-chain 
conformation in most cases [ 34 ]. It indicates that protein residue 
substitutions can be modeled by side-chain packing. CIS-RR is an 
accurate and user-friendly program for residue substitution 
modeling. In an unpublished study of discovering drug resistance 
mutations of infl uenza neuraminidase (NA), we employed CIS-RR 

3.4.2  Residue 
Substitution Analysis

  Fig. 3    Steps in structure modeling. ( a ) Superimposition between L30e and 15.5 kDa protein. ( b ) Sequence 
alignment used for homology modeling. ( c ) Superimpose the structure generated by Modeller to the RNA–pro-
tein complex, and save the RNA coordinates as spatial constraints       
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to run a high-throughput modeling of 19 types of residue 
substitution at the sites of drug (oseltamivir)-binding regions: 

 For residue R at site i of chain A 
 For each amino acid type N 
 ./CISRR –i 3CL2.pdb –o 3CL2_RiN.pdb –m A i R N 
 End-for N 
 End-for i 

 Then we calculated the binding free energy changes. Drug 
resistance mutations are regarded to be those whose energies 
decrease in binding with oseltamivir and increase or stabilize in 
binding with substrate. The prediction covers many of the reported 
drug resistance mutations, such as H274Y/F [ 35 ,  36 ], E119A/
G/V [ 37 – 40 ], I222V/M/K/R [ 39 – 43 ], and D151N/G [ 44 ]. 
More importantly, we discovered some novel drug resistance muta-
tions that were validated by experiments. This case suggests that 
CIS-RR is a useful program for high-throughput residue substitu-
tion modeling.    

4    Notes 

     1.    Can the input PDB fi le and the output PDB fi le be of the same 
name? 

 If they use the same name, the input fi le will be overwrit-
ten by the output fi le. Caution: If you do not want to eliminate 
the input PDB fi le, do not use the input PDB fi le name for the 
output PDB fi le.   

   2.    How about the atom order in a residue of the output of RASP? 
 The output order of the atoms in a residue follows the 

standard PDB format (  http://www.rcsb.org/pdb/fi le_for-
mats/pdb/pdbguide2.2/PDB_format_1992.pdf    ).   

   3.    When a letter in the given sequence fi le (−s) is in lower case but 
the residue type does not match the residue type in the input 
PDB, what will RASP do? 

 This residue is regarded as a mutation, which will also be 
predicted according to the residue type given in the sequence fi le.   

   4.    When a letter in the given sequence fi le (−s) is in lower case but 
the residue in the PDB fi le is incomplete (some atoms are miss-
ing), what will RASP do? 

 RASP detects such missing atoms and predicts this residue 
with a new conformation.   

   5.    Can “-s,” “-f,” and “-d” be used together? 
 Yes, they can be used in any combination.         

Modeling of Protein Side-Chain Conformations with RASP
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    Chapter 5   

 Direct Coupling Analysis for Protein Contact Prediction 

           Faruck     Morcos     ,     Terence     Hwa    ,     José     N.     Onuchic    , and     Martin     Weigt    

    Abstract 

   During evolution, structure, and function of proteins are remarkably conserved, whereas amino-acid 
sequences vary strongly between homologous proteins. Structural conservation constrains sequence vari-
ability and forces different residues to coevolve, i.e., to show correlated patterns of amino-acid occur-
rences. However, residue correlation may result from direct coupling, e.g., by a contact in the folded 
protein, or be induced indirectly via intermediate residues. To use empirically observed correlations for 
predicting residue–residue contacts, direct and indirect effects have to be disentangled. Here we present 
mechanistic details on how to achieve this using a methodology called  Direct Coupling Analysis  (DCA). 
DCA has been shown to produce highly accurate estimates of amino-acid pairs that have direct reciprocal 
constraints in evolution. Specifi cally, we provide instructions and protocols on how to use the algorithmic 
implementations of DCA starting from data extraction to predicted-contact visualization in contact maps 
or representative protein structures.  

  Key words     Direct coupling analysis  ,   Maximum entropy  ,   Contact prediction  ,   Residue–residue interactions  , 
  Coevolution  ,   Direct correlations  ,   Statistical inference  

1      Introduction 

 In the course of evolution, structure, and function of proteins are 
remarkably conserved, whereas amino-acid sequences vary strongly 
between homologous, i.e., evolutionary-related proteins. However, 
structural conservation constrains this sequence variability and 
forces different residues to  coevolve : Acceptable amino-acid substi-
tutions in one site depend on the amino-acid composition of other 
sites that are spatially close in the three-dimensional protein struc-
ture (even if possibly distant along the sequence). Neighboring 
residues tend to vary in a correlated way. 

 Recent advances in genomic sequencing have provided enough 
data to perform evolutionary analyses at the level of residue covaria-
tion in single protein families. It is therefore an important challenge 
in computational biology to exploit computationally detected 
covariation for structural prediction of proteins. However, the task is 
nontrivial: One of the major obstacles in understanding residue 
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covariation is to separate the amalgam of signals that results from 
different types of correlations. This is further complicated by the 
quality of the data, which can be incomplete (small number of 
sequences) and unbalanced (e.g., high redundancy), and by the 
effects of phylogeny. Several research efforts dealt with residue cor-
relations with mixed success [ 1 – 6 ]. However, recent methodologies 
mainly based on global statistical models aim to disentangle different 
sources of correlations in order to obtain what is called  direct statisti-
cal couplings between residue positions , which turn out to be much 
more accurate predictors of residue physical contacts [ 7 – 13 ] than 
sheer correlation measures. The basic idea is very intuitive: Empirical 
correlations between positions in a protein family, more precisely in 
a multiple-sequence alignment (MSA) describing this family, may 
well be induced by a direct coupling, but they may also result from 
indirect couplings via one or more intermediate residues. 

 Here we present the mechanistic details on how to infer direct 
residue-pair couplings using a methodology called  Direct Coupling 
Analysis  (DCA). DCA has been shown to produce highly accurate 
estimates of amino-acid pairs that are directly coupled through 
reciprocal constraints in evolution [ 7 ,  9 ]. Specifi cally, we provide 
instructions and protocols on how to use the algorithmic imple-
mentations of DCA starting from data extraction to contact visual-
ization. Such software implementations have been made available 
to the public and the main purpose of this chapter is to provide 
guidance and facilitate its use to the scientifi c community. For a 
mathematical derivation of the  mean-fi eld  formulation of DCA, 
utilized here, please refer to [ 7 ]. 

 DCA is a powerful statistical tool that has been useful to study 
structural features of single domain proteins, the organization of 
oligomers, conformational variance of proteins, detailed features of 
protein–protein interactions [ 7 ,  14 – 16 ], as well as de novo protein 
structure prediction [ 17 – 20 ]. Its full potential can only be exploited 
if this tool is available and easy to use for a larger number of 
scientists.  

2    Materials 

 In this section, we describe the minimum and optional input data 
sets as well as the software tools required for protein contact pre-
diction using mean-fi eld DCA. 

   The most important input data set is an MSA of proteins belonging 
to a given family. Here we focus on alignments collected using 
Profi le Hidden Markov Models (HMM) in the Pfam domain 
 database [ 21 ]. Such alignments are being updated continuously 
and are freely and easily accessible to the scientifi c community via 
  http://pfam.sanger.ac.uk/     or any of the other Pfam mirrors. 
The software tools presented here use fasta format for the MSA.  

2.1  Input Data

2.1.1  Multiple-Sequence 
Alignments (MSA)
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  This is an optional data set used to validate contact predictions. If 
a given protein with 3D coordinates in the Protein Data Bank 
(PDB) [ 22 ] can be mapped to one or more of the Pfam domains, 
then we can verify or analyze the predicted residue–residue pairs 
directly in the 3D model of the protein. Protein coordinates can be 
accessed and downloaded using their corresponding PDB IDs at 
  http://www.pdb.org    .   

  The core of our residue contact estimation methodology is the 
algorithmic implementation of mean-fi eld DCA [ 7 ]. This imple-
mentation allows us to process more families with longer amino- 
acid chains and a larger number of sequences than the message 
passing formulation previously given in ref. [ 9 ].  See  Subheading  4  
for details on the requirements on input MSA. The mathematical 
derivation and a large-scale study showing its capabilities can be 
found in ref. [ 7 ]. The algorithm implementation is written in 
Matlab scripting language. The main reasons for choosing a script-
ing language like Matlab are its simplicity, the number of available 
bioinformatics tools, and its optimization for linear algebra com-
putations. Faster implementations are possible using other non- 
scripting languages like C++; however, our current Matlab 
implementation is easier to read and its speed is acceptable for the 
vast majority of domain families. 

     Mean-fi eld DCA is implemented in a Matlab script called  dca.m  
which has two input parameters: (1) the name of the MSA input 
fi le (which has to be provided in fasta format) and (2) the name of 
the output fi le; internally there are two more parameters that could 
be modifi ed: (1) the parameter theta which is a threshold on the 
value of sequence identity we use to defi ne if sequences are consid-
ered independent or not and (2) the pseudo-count weight, which 
is a regularization term to prevent singularities due to insuffi cient 
sampling of rare amino-acid combinations.  

  The output of Algorithm 1 will provide a list of residue–residue 
pairs that we can sort using its associated Direct Information (DI) 
metric. High values of DI tend to be representative of strong direct 
coupling and serve as predictors for residue–residue contacts. 
However, these pairs represent residues in the domain family asso-
ciated with a given HMM and not connected to a specifi c protein 
of interest. More specifi cally, HMM matches usually do not start in 
the fi rst amino acid of a protein and insert gaps where needed, so 
residue numbering in the alignment and in each protein is not the 
same. In order to predict specifi c contacts in a given protein, we 
need to map the HMM residues to a particular amino-acid 
sequence. If there is an experimental structure stored in the PDB, 
then usually a mapping has been made between an HMM and the 
protein. This mapping is depicted in the PDB site. After searching 

2.1.2  Protein Structure 
3D Coordinates

2.2  Software Tools 
and Algorithmic 
Implementations

2.2.1  Algorithm 
1: mfDCA

2.2.2  Mapping HMM 
to Proteins
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for an individual PDB ID, just go to  sequence tab  →  Annotations  →  Add 
annotation  →  Pfam . It is also possible to do this mapping only with 
sequence information. To do this, we can turn to the HMMER 
software tools [ 23 ] for which we can use the tool  hmmscan  along 
with the protein sequence in fasta format and a local copy of the 
Pfam database or the HMM of a specifi c family. We will provide an 
example in Subheading  3 .  

  Once we have a mapping between the DI ranked domain contacts 
predicted using mfDCA and a particular protein, we can visualize 
DCA contact maps using the script  plotDCAmap.m . It has fi ve 
input parameters: (1) a two column matrix with a given number of 
ranked DCA pairs, (2) an optional two column matrix with native 
protein contacts for comparison (shown in the upper triangular 
part of the map), (3) a vector with the protein residue range, (4) a 
fl ag to color the map by DCA ranking, and (5) a fl ag to plot a mir-
ror image of the DCA map on the upper triangular map. The out-
put is a Matlab fi gure showing the contact map in a grid according 
to the residue number and, if selected, contacts are colored based 
on a DCA ranking colormap. The fi gure can be exported to all 
Matlab supported image fi les. A sparse matrix with the non-zero 
contact values is the output from this script.  

  We have also developed an optional simple script to visualize the 
predicted contacts directly on a 3D model of a protein. This 
requires the molecular modeling and visualization software 
Chimera [ 24 ] which is freely accessible for noncommercial pur-
poses.  GeneratePseudobonds.bash  is a bash Unix shell script 
that uses a dependency written in AWK to produce fi les to be read 
by Chimera. The input of  GeneratePseudobonds.bash  is a 
fi le containing the protein residue pairs, the chain ID where we 
want to display contacts, and optionally an offset when using 
C-alpha models that have a different residue indexing. The output 
are two fi les: (1) a text fi le with the pseudo-bonds to be read in the 
pseudobond reader panel in Chimera and (2) a simple Chimera 
script to display such bonds.   

  There are three Web sites that contain information concerning 
DCA contact prediction:

    1.      http://dca.ucsd.edu     and its mirror sites   http://dca.rice.edu     
and   http://dca.upmc.fr    . These Web sites contain general 
information about DCA for contact prediction as well as for 
protein structure prediction, including reference to research 
articles involving DCA and access to some of the scripts 
described in this chapter. These sites also display news and 
updates about tools relevant to DCA.      

2.2.3  Tool 1: Contact 
Map Visualization

2.2.4  Tool 2: Contact 
Visualization in 3D 
Structure

2.3  Web Sites
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  Several of the tools and algorithms described earlier require specifi c 
software packages in order to be run properly. Here we list such 
packages that are a prerequisite of our methodology:

    1.    Matlab—an interactive environment for technical computing. 
It is required by the implementation of mfDCA ( dca.m ). The 
bioinformatics toolbox is also a requirement for this 
implementation.   

   2.    HMMER—biosequence analysis using profi le HMM. This is 
required to map HMM to protein sequences with or without 
an experimental structure from the PDB.   

   3.    Bash/AWK—a standard Unix shell and an interpreted lan-
guage required for simple scripting and data formatting. Other 
similar shell environments or languages could easily replace 
the needs for Bash in our methodology.   

   4.    Chimera—a molecular graphics program for protein visualiza-
tion developed by UCSF. It is needed for the visualization of 
contacts as links overlaid in the 3D representation of a particular 
protein structure.       

3      Methods 

 The process of residue contact inference in domain families using 
DCA is summarized in Fig.  1 . The process is organized into three 
stages: (1) inference, (2) validation, and (3) visualization. This sec-
tion describes in detail each of these stages as well as the software 
tools required to perform the contact prediction task.

      The fi rst step in the inference task consists of obtaining the input 
data required for the alignment. As described in Subheading  3 , the 
input data consists of an MSA of a given domain family. This will 
be the sole input dataset required by our software implementation 
of mean-fi eld DCA. An MSA for specifi c protein families classifi ed 
by Pfam can be downloaded directly from their site (  http://pfam.
sanger.ac.uk/    ) or via ftp. In this site we can search for a family by 
writing the accession or ID on the “JUMP TO” search box. Once 
we are in the family summary page, we retrieve this by selecting 
“alignments” and downloading the fi les under “Formatting 
options.” There, select the format as “Fasta”, sequence as “Inserts 
lower case,” and “Gaps” as a mixture of “.” and “-” characters. 
Once the MSA has been retrieved, it can be directly analyzed by 
 dca.m . It is also possible to perform some preprocessing of the 
input data. For example, we may want to eliminate sequences with 
many continuous gaps “-” or starting or trailing gaps or to elimi-
nate exact repeat sequences. We might also keep only sequences for 

2.4  Software 
Dependencies

3.1  Inference

3.1.1  Data Retrieval
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a given organism or to understand the infl uence of the number of 
sequences in the inference task. It is important to note that the 
alignments retrieved from Pfam are processed within our imple-
mentation  dca.m  to remove inserts (lower case letters) and the 
symbol “.” that represents the spacing created by the inserts, since 
these inserts are not aligned by the profi le HMM. Note also that 
the before mentioned reweighting takes care of almost repeated 
sequences, which carry little independent information.  See   Note 1  
in Subheading  4  for performance and input data requirements. 

 In addition to Fasta alignments from Pfam, the users can ana-
lyze their own datasets that might not be part of an HMM profi le. 
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  Fig. 1    The process of contact prediction is divided into three stages: (1) inference, where the MSA is processed 
by mfDCA in order to produce directly correlated pairs, (2) validation, which requires a mapping from DCA pairs 
to a particular protein and the verifi cation or analysis of the predicted contacts if a PDB structure is available, 
and (3) visualization of the DCA pairs as contact maps and the possibility to compare them against native 
contacts, as well as the depiction of predicted pairs with links in a 3D model       
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The only condition for applying  dca.m  is that data are aligned and 
provided in standard fasta format, with alignment gaps denoted by 
“-”. In this chapter, we focus only on processing alignments from 
Pfam HMM.  

  Once the data is saved in a fasta-formatted fi le using a Pfam acces-
sion number or ID of interest, we will perform mean-fi eld DCA on 
the data through the following steps:

    1.    Open Matlab and add the folder where the script  dca.m  is 
saved to the Matlab path. This can be done using the com-
mand  addpath(‘<folder path>’)  or via the main 
Matlab window  File  →  Set Path … →  Add folder    

   2.    The script    has a main function called:

     

    The input parameters are as follows:

 ●     inputfi le —is a string listing the name of the fi le containing 
the MSA in fasta format (cf. below for the syntax).  

 ●    Outputfi le —is a string listing the name of the output fi le. 
The output fi le is a text fi le with four columns and  L ( L  − 1)/2 
rows, where  L  is the length of the Pfam domain (i.e., the num-
ber of MSA columns). Each row represents a residue pair and 
positions are listed in columns one and two; column four is the 
value of Direct Information, which is the main output of our 
mfDCA. Column three contains the value of Mutual 
Information, which is relevant for comparison only.    
 Internal parameters:

 ●     theta —is a parameter used to compute and assign a weight 
for sequences with certain degree of sequence identity. 
Sequences with an identity of (1 −  theta ) will be counted as 
redundant and have a smaller weight in the calculation. A 
default value of 0.2 was found to empirically provide good 
performance.  

 ●    pseudocount_weight —is a parameter optimized for a sta-
tistical correction done using pseudocounts. We have shown in 
ref. [ 7 ] that a default value around 0.5 is optimal for contact 
prediction.    

 A sample run of  dca.m  for the family of Uroporphyrinogen-
III synthase HemD with Pfam Accession/ID: PF02602/HEM4, 
with  L  = 231 and 3,110 sequences available, is shown below:

     

3.1.2  Mean-Field DCA

DCA for Contact Prediction
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    The input fi le  HEM4.fasta , obtained following the steps 
in the Data retrieval section, will produce the output fi le 
 HEM4.DI  that looks like this:

     

    Columns one and two show the residue pairs, and the last 
column shows the computed DI value.   

   3.    To obtain a list of domain pairs ranked by DI we just need to 
sort the output fi le (e.g.,  HEM4.DI ) relative to the last col-
umn. This can be done easily using Unix bash commands and 
AWK. The following command will perform this task and cre-
ate a new fi le with ranked domain contacts for residues with a 
sequence separation larger than four (less than four usually 
refl ects trivial backbone couplings).

     

    The top ranked pairs, with a residue separation of at least 
four amino acids, look like this:

     

    This shows that columns 7 and 12 are the highest directly 
coupled pair with a residue separation of at least four amino 
acids.       

  Once we have a list of ranked pairs of directly coupled HMM col-
umns we can use them for validation in a known protein crystal 
structure. This is done to verify that these are real contacts in a 
protein domain, or for analysis, to try to uncover biological roles 
or reasons of why these pairs are directly coupled. This section also 
describes how to predict specifi c protein contacts given a protein 

3.2  Validation 
and Analysis

Faruck Morcos et al.
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sequence that can be matched to the Pfam HMM of interest. To 
achieve this we perform the following protocol:

    1.    Download proteins of interest from the PDB. This can be 
done by visiting the following URL,   http://www.pdb.org/    , 
and by searching for the PDB ID of interest.   

   2.    Given the knowledge that a specifi c protein in the PDB 
belongs to a Pfam family, we can map its sequence to the Pfam 
columns in the HMM. This mapping will allow us to uncover 
potential contacts in a specifi c PDB aligned to a Pfam family. 
A graphical view of this mapping can usually be found in the 
PDB site under Sequence tab → Annotations → Pfam. Using 
our previous example of the HEM4 family, we can obtain a 
map between the protein Uroporphyrinogen-III synthase 
(PDB ID: 1JR2) and the Pfam HMM profi le of HEM4. To do 
this, we must have the protein sequence in fasta format and a 
copy of the sequence analysis tools developed by HMMER 
[ 23 ]. These tools can be downloaded at   http://hmmer.jane-
lia.org/software    . For the case of HEM4, the following com-
mand using the  hmmscan  tool can be used:

     

     HEM4.hmm  is the HMM fi le that can be obtained from the 
Pfam Web site under “Curation & model”,  1JR2.faa  is the 
protein sequence in fasta format and 1jr2_scan is the output 
fi le showing the alignment. To run  hmmscan  there is an inter-
mediate step needed to compress and index the HMM model 
into a binary form to be read by  hmmscan . This is done using 
this command:

     

    This will generate fi les of the type  HEM4.hmm.h3*  which 
are accessed by  hmmscan  to perform the search. The fi le 1jr2_
scan contains an alignment between the Pfam domain and the 
sequence in 1JR2.faa. For this particular example, we need to 
remove from 1JR2.faa, a leading sequence of amino acids 
 (‘MGHHHHHHHHHHSSGHIEGRH’ ) that is not numbered in 
the crystal structure. From this output we can extract an align-
ment similar to this:

DCA for Contact Prediction
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    This is telling us that residue 3 of the HMM is mapped to 
residue 19 on the protein sequence fi le. Gaps (-) are just sec-
tions of the HMM that have no corresponding mapping to the 
protein and the inserts are residues in the protein without a 
mapping to the HMM. 

 The information found in this alignment can be easily 
combined with the ranked domain residue pairs obtained 
before (e.g.,  HEM4_ranked.DI ) to produce a list of the top 
N DI ranked protein residue pairs for a given protein. Such N 
pairs are the residue–residue couplets with the highest proba-
bility to be physical contacts in the protein. For more details 
about  hmmscan  or the use of hmm fi les please refer to the 
documentation in   http://hmmer.janelia.org/software    .   

   3.    Once the list of DCA pairs has been produced for a given pro-
tein, it is possible to compute residue–residue distances to 
verify if such predicted pairs are physically close in the experi-
mental structure. We can use these distances to calculate True 
Positive (TP) rates for the top N pairs to evaluate the quality 
of the predictions.      

  We have developed tools to visualize the contacts predicted by 
DCA. One tool uses the list of amino acid pairs to create a two- 
dimensional contact map. These pairs come from the inference 
output of DCA (as shown at the end of the inference 
Subheading  3.1 ). The second tool creates a list of fi les and com-
mands to be used by the Chimera molecular visualization system. 
These commands will render the contact predictions as links in a 
3D representation of a protein when available. The following pro-
tocol describes the use of these two tools.

    1.    Use the Matlab script  plotDCAmap.m  to plot a predicted 
contact map. Refer to  Note 3  in Subheading  4  for details on 
the dependencies needed to run this script properly. The main 
function of this script is:

     

    The input parameters are as follows: 

3.3  Visualization
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 ●    dca_pairs —a two columns vector of top DCA pairs. For 
comparison with a crystal structure the family residue pairs 
should be re-indexed to be consistent with the Pfam domain 
mapping in the PDB protein ( see   Note 2 ).  

 ●    native_pairs —an optional parameter for comparison with 
the native contact map. The format is a two columns vector 
with residue pairs of the “native” experimental structure. If 
there is no native information available then the input is just a 
pair of empty brackets “[]”.  

 ●    pRange —the range of the protein in the format [initial_resID 
fi nal_resID]. This is needed when the Pfam domain does not 
cover the complete protein.  

 ●    ranking —a 0/1 fl ag that instructs the function to color the 
residue pairs according to the DI rank. A color bar will appear 
to refl ect the rank color mapping.  

 ●    mirror —a 0/1 fl ag to decide if we want to display the con-
tact map also in the upper triangular part of the map.    

 One sample run for the protein BPTI would look like this:

     

    The fi rst parameter is a Matlab variable (80 × 2 vector) cre-
ated by importing a fi le containing the top 80 DCA pairs (one 
row per pair, one residue number per column) of the Kunitz_
BPTI (Pfam: PF00014) family mapped to the bovine pancre-
atic trypsin inhibitor (58 amino acids, PDB ID: 5PTI). The 
second parameter has the C-alpha contact map of protein 
PDB: 5PTI. The third parameter is describing the protein 
range from residue 1–58, the next parameter is a fl ag telling 
the script to color the pairs based on their DI rank and the last 
parameter is not relevant for this example because we are com-
paring two maps, therefore we cannot generate a mirror image 
of the DCA map. The results are shown in Fig.  2 . The native 
pairs are plotted in the upper triangular part of the map and 
the DI pairs in the lower triangular part. The color scheme is 
dependent on the ranking (this is optional) and the native 
contacts are always colored blue. The coloring options can be 
modifi ed in the code to fi t particular needs. A sample fi le with 
the Matlab variables can be downloaded from the DCA Web 
site along with the scripts described in this section.

       2.    To show predicted contacts on a 3D molecular model, we 
wrote a script that generates Chimera input fi les based on a list 
of residue pairs. The script is very simple and just reformats the 
input pairs to be read in Chimera. The bash script 
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  GeneratePseudobonds.bash   has four input parameters: 
(1) An offset for the residue indexing in case the residue 
numbering does not coincide with the one in the 3D model, 
(2) the name of the text fi le with the contacts we want to display 
(two column format); in this fi le each pair uses one row and 
each residue number is separated by a space, (3) the fi lename 
prefi x which is a user identifi er for the output fi le, and (4) the 
chain ID to be used to display the bonds. This is especially 
important when we have models with more than one chain.

     

        The output of the script  GeneratePseudobonds.bash  is 
two fi les:

    1.     pseudobond_<prefix>_dist<chain>_pairs.dat  
which contains the residue pairs in a format that the pseudo-
bond reader of Chimera will understand.   

  Fig. 2    An example of a contact map for the bovine pancreatic trypsin inhibitor (PDB ID: 
5PTI) created with the top 80 DCA coupled pairs ( lower triangular region ) compared 
to the native C-alpha contacts ( upper triangular region ). The colorbar gradient corre-
sponds to the DI rank with the extremes being the background ( white ) and the native 
contacts ( blue ). This fi gure was created with the Matlab script  plotDCAmap.m        
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   2.     pseudobond_<prefix>_dist<chain>_pairs.cmd  
which instructs chimera to draw the pairs as links in a 3D 
model.    

  Continuing the example for the trypsin inhibitor, we run 
the script:

     

    In this example, there is no need for an offset hence the fi rst 
parameter is 0. The second parameter is the fi le  5pti_dcaTop30.
map  which has the top 30 DI ranked pairs for PDB 5PTI, the third 
parameter is just a prefi x to be used to call the output fi les and the last 
parameter just refers to chain A of PDB 5PTI. Once the script has 
been run, there are two output fi les:  pseudobond_5pti_distA_
pairs.dat  and  pseudobond_5pti_distA_pairs.cmd . 

 Once the output fi les have been generated, we can open 
Chimera and load a 3D model, for example PDB ID: 5PTI. Then 
we can load the pseudobonds. To do that, we go to 
 Tools  →  Depiction  →  Pseudobond reader  → select fi le  pseudobond_
5pti_distA_pairs.dat . The fi nal step is to run the command 
to show the contacts,  File  →  Open  → select fi le  pseudobond_5pti_
distA_pairs.cmd . This will show the contacts as green links or 
bars in the 3D model. We can modify properties of the links, e.g., 
color or thickness of the link in  Tools  →  General Control  →  Pseudobond 
panel  →  Attributes . 

 Figure  3  shows the top 30 DCA contacts drawn as links in the 
3D model of trypsin inhibitor (PDB ID: 5PTI). The inferred 
pairs are shown in green as links represented with sticks. These 
sample fi les can be downloaded with the scripts package in the 
DCA Web site.

     Residue contacts estimated with DCA have been used in several 
studies to identify biologically relevant features of protein struc-
ture. In addition to making accurate predictions for intra-domain 
contacts, Morcos et al. showed that many of the directly coupled 
pairs that presented long intra-protein residue–residue distances 
were in fact oligomerization contacts [ 7 ]. Hence, long intra- 
domain distances became close contacts in homo-oligomeric sys-
tems as in the case of protein NtrC1 (PDB ID: 1NY6) of  Aquifex 
aeolicus , which forms a ring like structure. Some of the highly cor-
related pairs were contacts that coevolved to keep the ring struc-
ture together. 

 Also in ref. [ 7 ], it is shown that some of the highly coupled 
pairs are a feature of distinct conformations of proteins, like in the 
case of the DNA binding domain of NarL (PDB ID 1JE8), which 
has active and inactive forms. This provides evidence that DCA 
uncovers structural features that are related to dynamic properties 

3.4  Case Studies
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of proteins. A similar example is also mentioned in ref. [ 19 ] for the 
case of the GlpT protein in  E. coli . 

 Contact estimates based on DCA and DI ranking also provide 
the core for recent developments in protein structure prediction. 
The methodology called DCAfold [ 17 ] uses DCA contacts as 
parameters in a structure-based model (SBM) [ 25 ] in combination 
with accurate estimates of local information of a given protein. 
DCAfold generates structure predictions with average RMSD of 
3.1 Å for proteins between 50 and 180 amino acids. The relevance 
of structure prediction using DCA contacts is also supported by 
more studies on structure prediction by Marks et al. [ 18 ] and a 
study on membrane protein structure prediction by Hopf et al. 
[ 19 ]. The use of methods to identify coevolving residues to attack 
the problem of protein structure estimation, including DCA, has 
been reviewed in ref. [ 26 ] and its importance for protein folding 
highlighted in ref. [ 27 ]. Finally, contact estimation with DCA has 
also been used in the study of protein interactions, for which 
coevolving residues provide a hint on binding interactions. One 
example of this is the case of the phospho-transfer systems observed 
in two component systems [ 14 – 16 ]. Coevolution of histidine 
kinases and response regulators left a signature that DCA was able 
to uncover.   

  Fig. 3    The top 30 DCA contacts depicted as green sticks in the trypsin inhibitor 
(PDB ID: 5PTI). This fi gure was generated using Chimera with input fi les gener-
ated by the bash script  GeneratePseudobonds.bash        
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4       Notes 

     1.     Inference . The mfDCA script  dca.m  has an acceptable perfor-
mance for families with up to 20,000 sequences. Processing 
larger families could affect performance. The script  dca.m  is 
also limited by the computing resources available. For an MSA 
with more than 20,000 sequences, the user could truncate the 
MSA to 20,000 or set a negative value in the internal parameter 
 theta . This will turn off the reweighting procedure and 
reduce complexity at the expense of some predictive perfor-
mance introduced by sequence bias. The protein length ( L ) is 
also constrained to a maximum range of 500–1,000 depending 
on the computer’s memory. Longer proteins require the elimi-
nation of family columns to reduce computational complexity.   

   2.     Validation . A correct mapping between the HMM to a protein 
of interest is required for proper contact estimation. Indexing 
mistakes or shifts could signifi cantly affect performance.   

   3.     Visualization . The Matlab script for contact visualization has a 
dependency when the contacts are colored by rank. It uses a 
modifi cation of the HeatMap function to create customizable 
heatmaps. This version of the  heatmap  function can be found 
at :   http://www.mathworks.com/matlabcentral/fi leexchange/
24253-customizable-heat-maps             
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    Chapter 6   

 ITScorePro: An Effi cient Scoring Program for Evaluating 
the Energy Scores of Protein Structures 
for Structure Prediction 

           Sheng-You     Huang     and     Xiaoqin     Zou    

    Abstract 

   One important component in protein structure prediction is to evaluate the free energy of a given 
 conformation. Given the enormous number of possible conformations for a sequence, it is extremely 
 challenging to quickly and accurately score the energies of these conformations and predict a reasonable 
structure within a practical computational time. Here, we describe an effi cient program for energy evalua-
tion, referred to as ITScorePro (Copyright © 2012). The energy scoring function in the ITScorePro 
program is based on the distance-dependent, pairwise atomic potentials for protein structure prediction 
that we recently derived by using statistical mechanics principles (Huang and Zou, Proteins 79:2648–
2661, 2011). ITScorePro is a stand-alone program and can also be easily implemented in other software 
suites for protein structure prediction.  

  Key words     Protein structure prediction  ,   Scoring function  ,   Free energy  ,   Statistical potentials  , 
  Knowledge-based  

1      Introduction 

 One challenge in protein structure prediction is how to quickly 
and accurately assess the protein conformations generated by sam-
pling algorithms [ 1 – 4 ]. No matter whether the modeling is 
template- based or ab initio, one common procedure is to sample a 
huge number of possible protein conformations based on a given 
sequence, followed by energy evaluation of each conformation [ 4 ]. 
Therefore, the availability of an effi cient and reliable scoring func-
tion to evaluate the energies of an ensemble of structures and to 
rank the structures accordingly is valuable for improving the accu-
racy of a structure prediction program. Despite the achievements 
in the past three decades, scoring functions remain one of the bot-
tlenecks in the protein structure prediction community [ 3 ,  4 ]. 
Approaches to scoring function development can be classifi ed 
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into two broad categories: physics-based and knowledge-based. 
 Physics- based approaches decompose the free energy into  individual 
interaction energy components such as van der Waals interactions, 
electrostatic interactions, bond stretching, angle bending, and 
 torsional forces, whose force fi eld parameters are derived from 
quantum mechanics calculations [ 5 – 9 ]. Despite the clarity in the 
underlying physics and the success achieved, physics-based scoring 
functions are restricted by high computational cost when applied 
to the practice of protein structure prediction, particularly when 
many conformations are sampled. On the other hand, in knowledge- 
based approaches, empirical interaction potentials are extracted 
from the interatomic information embedded in known protein 
structures [ 10 – 12 ]. Despite the simple energy terms, knowledge- 
based scoring functions have captured some key features of the 
molecular interactions in each protein, and have been widely used 
for protein structure prediction [ 3 ]. 

 Normally, there are two ways to derive the interaction  potential 
parameters from known protein structures using knowledge- based 
methods. The fi rst method uses advanced numerical optimization 
techniques, in which the potential parameters are optimized such 
that the native or near-native structures have lower energies than 
the decoys [ 13 – 21 ]. Because of the computational diffi culty of 
high-dimensional optimization, the potentials are reduced to 
coarse-grained format, either contact-based or using a reduced 
protein representation. The second method for the extraction of 
pairwise potentials from native structures uses an inverse Boltzmann 
relation [ 22 – 25 ]. This approach is referred to as the Potential of 
Mean Force (PMF) approach. Since the pioneering work by Tanaka 
and Scheraga [ 10 ], the PMF approach has been widely used to 
develop distance-dependent or contact-based potentials at atomic 
or residue level for protein structure prediction. 

 A long-standing bottleneck in the PMF approach is the deter-
mination of the “reference state” in which there is no interaction 
between any two atoms/residues [ 22 ,  23 ,  26 ]. As described by 
Thomas and Dill, the ideal reference state is inaccessible because of 
atom connectivity, excluded volume, and other effects in proteins 
[ 22 ]. An inaccurate reference state would result in uncertainties of 
the derived potentials. Currently, most PMF scoring functions are 
based on a crude approximation of the reference state by randomly 
mixing all of the atoms in the training set of protein structures. 
Methods have been developed to improve the approximation of 
the reference state [ 27 ,  28 ]. 

 To circumvent the challenging reference state problem, we 
have developed a statistical mechanics-based iterative method to 
extract distance-dependent, all-atom potentials for protein struc-
ture ranking and selection [ 29 ]. Instead of using the inverse 
Boltzmann relation from which the reference state problem arises, 
we derived the pair potentials iteratively by comparing the  predicted 
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pair distribution functions with the native global, physical pair 
 distribution functions. The resulting scoring function is provided 
by the program—ITScorePro (Copyright © 2012). ITScorePro is 
a stand-alone program for fast evaluation of the energies of given 
multiple protein conformations. The program can be easily ported 
to other protein structure prediction packages as a reliable rank-
ing/fi ltering scoring function or as one of the consensus scoring 
functions. The source codes and binary fi les of ITScorePro are 
freely available to academic users. To obtain an academic user 
license, please visit our website at   http://zoulab.dalton.missouri.
edu/software.htm    . The details of how to use ITScorePro are 
described below.  

2    Materials 

  The only required input for ITScorePro is the three-dimensional 
protein structures in Protein Data Bank (PDB) [ 30 ] fi le format. 
The structures can be either determined by experimental methods 
or constructed by computational sampling algorithms. The pro-
gram may take either one or multiple pdb fi les at a time. Each PDB 
fi le may contain one structure such    as: 

 …… 
 ATOM      1  N   PRO A   1      28.395  39.460   5.572  1.00 28.59           N 
 ATOM      2  CA  PRO A   1      29.435  38.616   4.975  1.00 29.18           C 
 ATOM      3  C   PRO A   1      28.923  37.839   3.767  1.00 28.03           C 
 ATOM      4  O   PRO A   1      27.748  37.920   3.416  1.00 27.72           O 
 ATOM      5  CB  PRO A   1      29.885  37.635   6.079  1.00 28.54           C 
 ATOM      6  CG  PRO A   1      28.634  37.557   6.962  1.00 29.49           C 
 ATOM      7  CD  PRO A   1      28.123  39.025   6.955  1.00 30.11           C 
 …… 
 END 

 or multiple models in the PDB format of NMR structures such as: 
 …… 
 MODEL        1 
 ATOM      1  N   PRO A   1      -7.620  14.411   3.801  1.00  0.00           N 
 ATOM      2  CA  PRO A   1      -6.833  14.660   5.048  1.00  0.00           C 
 ATOM      3  C   PRO A   1      -5.336  14.614   4.764  1.00  0.00           C 
 ATOM      4  O   PRO A   1      -4.870  13.841   3.949  1.00  0.00           O 
 ATOM      5  CB  PRO A   1      -7.172  13.559   6.053  1.00  0.00           C 
 ATOM      6  CG  PRO A   1      -8.192  12.644   5.391  1.00  0.00           C 
 ATOM      7  CD  PRO A   1      -8.572  13.286   4.060  1.00  0.00           C 
 …… 
 ENDMDL 
 MODEL        2 
 ATOM      1  N   PRO A   1      -8.023  14.967   4.022  1.00  0.00           N 
 ATOM      2  CA  PRO A   1      -7.478  14.360   5.276  1.00  0.00           C 
 ATOM      3  C   PRO A   1      -5.981  14.088   5.127  1.00  0.00           C 
 ATOM      4  O   PRO A   1      -5.558  13.344   4.264  1.00  0.00           O 
 ATOM      5  CB  PRO A   1      -8.208  13.042   5.529  1.00  0.00           C 
 ATOM      6  CG  PRO A   1      -9.218  12.863   4.404  1.00  0.00           C 
 ATOM      7  CD  PRO A   1      -9.147  14.113   3.528  1.00  0.00           C 
 …… 
 ENDMDL 

2.1  Input Data
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 MODEL        3 
 ATOM      1  N   PRO A   1      -7.359  14.357   4.045  1.00  0.00           N 
 ATOM      2  CA  PRO A   1      -6.434  14.207   5.209  1.00  0.00           C 
 ATOM      3  C   PRO A   1      -4.979  14.274   4.753  1.00  0.00           C 
 ATOM      4  O   PRO A   1      -4.580  13.615   3.812  1.00  0.00           O 
 ATOM      5  CB  PRO A   1      -6.680  12.841   5.847  1.00  0.00           C 
 ATOM      6  CG  PRO A   1      -7.792  12.164   5.057  1.00  0.00           C 
 ATOM      7  CD  PRO A   1      -8.238  13.149   3.973  1.00  0.00           C 
  …… 
 ENDMDL 
  …… 

 Two example pdb fi les are provided in the package for demos: 
1AJV.pdb contains a crystal structure and 1BVE.pdb contains a set 
of NMR conformations.  

  The ITScorePro    package includes three main fi les:  ITScorePro.
for ,  potentials.dat , and  README . 

  The fi le “ITScorePro.for” is the main program written in Fortran 
90. It is a stand-alone program and does not depend on any other 
library. The source code can be compiled by using any Fortran 90 
or newer compiler versions on any platform. The program can be 
easily implemented in other protein structure prediction software 
as an integrated part.  

  The fi le “potentials.dat” provides the atomic pairwise interaction 
potentials of our knowledge-based scoring function, which were 
derived from the statistical mechanics-based iterative method. The 
potentials are based on 20 atom types grouped from the 167 heavy 
atoms of the 20 standard amino acids. Hydrogen-involved interac-
tions are implicitly considered in our scoring function (see Note 1). 
The defi nitions of the 20 atom types are described in our published 
research article [ 29 ]. Unlike the van der Waals interaction energy 
which approaches positive infi nity as the separation distance 
decreases to zero, the interaction potentials of ITScorePro are 
given a maximum penalty of +10 for the interatomic pairs within a 
cutoff distance. The fi nite penalty allows for limited atomic clashes 
in the protein structures so as to keep the structures that contain a 
few local distortions but are still physically reasonable. Such error 
tolerance is useful for fast sampling algorithms for protein struc-
ture prediction. Two examples of the pair potentials in “potentials.
dat” are shown as follows: 
  ……  
      vvr( 5, 6,1:) = (/  
  * 10.0000, 10.0000, 10.0000, 10.0000,
* 10.0000,  5.2117,  4.1384,  3.6789,  
  *    3.4222,  3.1903,  2.8300,  2.1713,
*    1.4022,  0.6702,  0.1340, -0.2002,  
  * -0.4121, -0.5724, -0.6725, -0.7079, 
* -0.6960, -0.6497, -0.5831, -0.5239,  

2.2  Programs 
Included in the 
Software Package

2.2.1  ITScorePro.for

2.2.2  potentials.dat
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  * -0.4449,-0.3615,-0.2884,-0.2208,
* -0.1554,-0.1078,-0.0652,-0.0322,  
  * -0.0079, 0.0197, 0.0205, 0.0331, 
*    0.0248, 0.0247, 0.0135,-0.0078,  
  * -0.0335,-0.0606,-0.0758,-0.0864,
* -0.0863,-0.0979,-0.1018,-0.1054,    
  * -0.1049,-0.0958,-0.0873,-0.0772, 
* -0.0690,-0.0665,-0.0639,-0.0617,  
   * -0.0589,-0.0527,-0.0480,-0.0392, 
*    0.0000, 0.0000 /)  
  ……  

  vvr(10,20,1:) = (/  
  * 10.0000,10.0000,10.0000,10.0000,
* 10.0000, 4.9225, 2.9445, 1.4825,  
  *    0.6436,-0.3471,-1.3166,-2.2078, 
* -2.8422,-3.0079,-2.7832,-2.2979,  
  * -2.0627,-1.7968,-1.5246,-1.1893, 
* -0.9314,-0.8987,-1.0084,-1.0837,  
  * -1.0704,-0.8744,-0.7414,-0.5940, 
* -0.4828,-0.3277,-0.2989,-0.1499,  
  * -0.2185,-0.1834,-0.2329,-0.2024, 
* -0.1602,-0.1406,-0.0852,-0.0536,  
  * -0.0324, 0.0067,-0.0109,-0.0269,
* -0.0683,-0.0077, 0.0511, 0.0993,  
  *    0.0885, 0.0403, 0.0863, 0.1059, 
*    0.1128, 0.0698, 0.0204, 0.0090,  
  *    0.0423, 0.0522, 0.0607, 0.0337,
*    0.0000, 0.0000 /)  
  ……  

 Here, the array “vvr” is the name of the pair potentials. 
The fi rst index  i  and second index  j  in “vvr ( i ,  j ,  k )” stand for the 
atom types. Each atom type is assigned a number. The complete 
mapping between the atom names and atom type numbers are pro-
vided in the main program “ITScorePro.for.” For example, atom 
type number 5 stands for the “aromatic carbons” and 6 for the 
“aliphatic carbons bonded to carbons or hydrogens only”; 
“vvr(5,6,1:)” are the interaction potentials between these two 
atom types at different separation distances. The third index  k  
refers to the distance in terms of bins, with a bin size of 0.2 Å. For 
example, vvr(10,20, k ), which is the  k th value on the right-hand 
side of the equation in the second example, stands for the interac-
tion potential between atom types 10 and 20 at distances 
from ( k  − 1/2) × 0.2 Å to ( k  + 1/2) × 0.2 Å. Specifi cally, 
vvr(10,20,1) = 10.000 for    any interatomic distance ranging from 
0.1 Å to 0.3 Å, vvr(10,20,14) = −3.0079 for any distance ranging 
from 2.7 Å to 2.9 Å, and so on.  

ITScorePro: An Effi cient Scoring Program for Evaluating the Energy Scores of Protein…
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  The fi le “README” contains instructions on how to compile the 
program from the source code, how to use the program to calcu-
late the energy scores of protein structures/conformations, and 
how to run the demos. A ready-to-run executable that was com-
piled on a Linux platform is also included in the release.   

  The academic license of the ITScorePro program can be downloaded 
from our website at   http://zoulab.dalton.missouri.edu/software.
htm    . The program can be obtained via ftp.   

3    Methods 

  ITScorePro is a stand-alone program and can be installed on any 
 platform. A Linux-based executable is included in the package so 
that Linux users can carry out energy calculations by running the 
executable directly. However, if one prefers to build his own execut-
able or if a user works on a platform other than Linux, he may run 
the following compiling command by using a Fortran 90 compatible 
compiler: 

  f90 ITScorePro.for -o ITScorePro  

 Here, “f90” is the compiler command and can be replaced by 
the user’s own Fortran compiler. “ITScorePro.for” is the only 
source code for building the program and the executable will be 
named as ITScorePro with the above command.  

  ITScorePro is a user-friendly program. To learn about its usage, 
simply type the program name at the command prompt: 

  ./ITScorePro  

 The following usage information about the program will pop 
up on the computer screen: 

  This program calculates the ITScorePro scores 
of protein structures.  

  Reference: Huang, S.-Y., Zou, X. Proteins 79: 
2648–2661, 2011.  

  USAGE  : ITScorePro prot1.pdb [prot2.pdb [prot3.
pdb […]]]  

  The input pdb fi le(s) can include a single struc-
ture or multiple structures in NMR-style.  

  Examples:  
   ITScorePro 1BVE.pdb > scores.dat  
   ITScorePro 1AJV.pdb 1BVE.pdb > scores.dat  

2.2.3  README

2.3  Website

3.1  How to Build 
the Program (Optional)

3.2  How to Run 
the Program

Sheng-You Huang and Xiaoqin Zou

http://zoulab.dalton.missouri.edu/software.htm
http://zoulab.dalton.missouri.edu/software.htm
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 The program may take multiple pdb fi les that are separated by 
space(s) as the input. Each pdb fi le may contain one model or mul-
tiple models in the PDB format of NMR structures. In the NMR 
style, each structural model is recognized by the key words 
“MODEL” and “ENDMDL.” An example to calculate the energy 
scores using ITScorePro is as follows:

    ITScorePro 1AJV.pdb 1BVE.pdb     

 The two input pdb fi les (1AJV.pdb and 1BVE.pdb) from the 
Protein Data Bank [ 30 ] are provided in the program package. 
Users may use their own pdb fi le(s) as input fi les. The above 
 command will calculate the energy scores of all the models in the 
two pdb fi les and will display the results on the computer screen as 
follows (see Note 2): 

  1AJV.pdb    MODEL        1    -8583.79  
  1BVE.pdb    MODEL        1    -7973.89  
  1BVE.pdb    MODEL        2    -7982.91  
  1BVE.pdb    MODEL        3    -8053.50  
  1BVE.pdb    MODEL        4    -8008.58  
  1BVE.pdb    MODEL        5    -8052.87  
  1BVE.pdb    MODEL        6    -8161.93  
  1BVE.pdb    MODEL        7    -7959.12  
  1BVE.pdb    MODEL        8    -8126.66  
  1BVE.pdb    MODEL        9    -8059.79  
  1BVE.pdb    MODEL       10    -8076.85  
  1BVE.pdb    MODEL       11    -7989.70  
  1BVE.pdb    MODEL       12    -7998.96  
  1BVE.pdb    MODEL       13    -8038.61  
  1BVE.pdb    MODEL       14    -8114.22  
  1BVE.pdb    MODEL       15    -8077.05  
  1BVE.pdb    MODEL       16    -7969.94  
  1BVE.pdb    MODEL       17    -7914.71  
  1BVE.pdb    MODEL       18    -8077.49  
  1BVE.pdb    MODEL       19    -8002.83  
  1BVE.pdb    MODEL       20    -8043.58  
  1BVE.pdb    MODEL       21    -8101.42  
  1BVE.pdb    MODEL       22    -8035.06  
  1BVE.pdb    MODEL       23    -7946.87  
  1BVE.pdb    MODEL       24    -7971.15  
  1BVE.pdb    MODEL       25    -8122.80  
  1BVE.pdb    MODEL       26    -7878.77  
  1BVE.pdb    MODEL       27    -8128.11  
  1BVE.pdb    MODEL       28    -8081.25  

 Here, the fi rst column shows the name of the pdb fi le that 
contains the protein structure(s) to be evaluated. The second and 
third columns list the model number in the pdb fi le shown in the 
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fi rst column. The corresponding calculated energy score is given in 
the last column. In this example, 1AJV is a crystal structure which 
contains only one model, and 1BVE contains NMR structures of 
28 models. Users may save the output in a fi le for further analysis 
by using the following command: 

  ITScorePro 1AJV.pdb 1BVE.pdb  >  scores.dat    

4    Case Studies 

  This test set is the high resolution (HR) decoy datasets prepared by 
Floudas and colleagues [ 16 ], which contains 148 non-homologous 
proteins with 500–1,600 high resolution (HR) decoys for each 
protein. The root-mean-square deviations (RMSDs) of most of the 
decoys are less than 6–7 Å. This set tests whether ITScorePro can 
distinguish between native/near-native structures and other con-
formations with low RMSDs, which is important for structural 
refi nement. Figure  1  shows the success rate of ITScorePro on 
ranking the native structures as fi rst among the decoys. The fi gure 
also shows the average Pearson correlation coeffi cients (CC) 
between the energy scores and the RMSDs of the decoys. Achieving 
high CC is desirable for a scoring function. For reference purposes, 
Figure  1  also shows the results of several other scoring functions 
that have been published, including ITScorePP [ 31 ], DFIRE [ 32 ], 
dDFIRE [ 33 ], DOPE [ 28 ], HRSC [ 16 ], PMF [ 29 ], HR [ 34 ], 
TE13 [ 14 ], HL [ 35 ], and LKF [ 36 ].

     This test set consists of the CASP8 server decoys that contain 123 
proteins. The decoys were generated by the CASP8 servers and are 
available from the offi cial site of CASP8 (  http://predictioncenter.
org/    ). Only the decoys with full-length prediction were consid-
ered. The residues that are found in the decoys but are absent in 
the native structures were deleted for comparability. Considering 
the fact that the experimental structures are not known during 
CASP competitions, the native structures were excluded in the test 
set. The set contains a total of 25,003 decoys, with an average of 
203 decoys per protein. One performance metric for scoring 
 functions is the score-RMSD correlation; the higher the correla-
tion, the better the performance. Figure  2  shows the average score- 
RMSD correlation of the decoys for all the proteins [ 29 ]. The fi gure 
also shows the percentage of the cases with signifi cant correlation 
(i.e., CC > 0.8). For reference purposes, Fig.  2  also shows the 
results from several other scoring functions including PMF [ 29 ], 
MODELLER/DOPE [ 28 ], DFIRE 2.0 [ 32 ], dDFIRE [ 33 ], and 
ITScorePP [ 31 ].

4.1  Test Case 1

4.2  Test Case 2

Sheng-You Huang and Xiaoqin Zou

http://predictioncenter.org/
http://predictioncenter.org/
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  Fig. 1    ( a ) The success rate on recognizing the native structures and ( b ) average score-RMSD correlation 
 coeffi cients for the high resolution (HR) decoy datasets of 148 proteins achieved by ITScorePro and 11 other 
scoring functions. PMF is a knowledge-based scoring function that we derived with an atom-randomized 
reference state for test purposes [ 29 ]       

5        Notes 

        1.    The scoring function of ITScorePro implicitly accounts for the 
effects of hydrogen atoms and ignores the hydrogen atoms 
during calculations. Therefore, it is unnecessary to add hydro-
gens before running ITScorePro and the presence of hydrogen 
atoms will not change the calculated energy score(s).   

   2.    Because ITScorePro is based on the 20 standard amino acids, 
the scoring function does not recognize atom types from non-
standard amino acids and will ignore those heteroatomic 
records labeled by “HETATM …” in the pdb fi le. This issue 
should be kept in mind when ITScorePro is used to calculate 
the energy scores of protein structures/conformations.         
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  Fig. 2    ( a ) The average score-RMSD correlation and ( b ) the percentage of the 
cases with signifi cant correlation (i.e., CC > 0.8) for the CASP8 decoy datasets of 
123 proteins achieved by ITScorePro and several other scoring functions       
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    Chapter 7   

 Assessing the Quality of Modelled 3D Protein 
Structures Using the ModFOLD Server 

           Daniel     Barry     Roche    ,     Maria     Teresa     Buenavista,     
and     Liam     James     McGuffi n    

    Abstract 

   Model quality assessment programs (MQAPs) aim to assess the quality of modelled 3D protein structures. 
The provision of quality scores, describing both global and local (per-residue) accuracy are extremely 
important, as without quality scores we are unable to determine the usefulness of a 3D model for further 
computational and experimental wet lab studies. 

 Here, we briefl y discuss protein tertiary structure prediction, along with the biennial Critical 
Assessment of Techniques for Protein Structure Prediction (CASP) competition and their key role in driv-
ing the fi eld of protein model quality assessment methods (MQAPs). We also briefl y discuss the top 
MQAPs from the previous CASP competitions. Additionally, we describe our downloadable and webserver- 
based model quality assessment methods: ModFOLD3, ModFOLDclust, ModFOLDclustQ, 
ModFOLDclust2, and IntFOLD-QA. We provide a practical step-by-step guide on using our download-
able and webserver-based tools and include examples of their application for improving tertiary structure 
prediction, ligand binding site residue prediction, and oligomer predictions.  

  Key words     Model quality assessment  ,   Protein tertiary structure prediction  ,   Critical Assessment of 
Techniques for Protein Structure Prediction (CASP)  ,   Web servers  ,   Single-model quality assessment 
methods  ,   Consensus-based (clustering) model quality assessment methods  ,   Per-residue error  ,   Fold 
recognition  ,   Ligand binding site residue prediction  ,   Oligomer prediction  

1      Introduction 

 Proteins are essential molecules in all living cells with numerous 
key functional and structural roles, both within and between cells 
[ 1 ,  2 ]. Since the advent of the CASP competition, a large number 
of template-based and template-free tertiary structure prediction 
methods have been developed, with the aim of producing 3D 
models of proteins from sequence. Routinely, these methods gen-
erate numerous 3D models with alternative conformations, but 
determining the most accurate conformation is challenging. Model 
quality assessment programs (MQAPs) are utilized for protein 3D 
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model quality prediction to help determine the most accurate 3D 
structural conformation. Hence, MQAPs have become a critical 
component in many of the leading protein tertiary structure pre-
diction pipelines. Firstly, both the global and per-residue scores 
help in the estimation of how close a model might be to the native 
structure. Secondly, these scores provide details in regards to the 
potential errors within the model. Thirdly, the model quality scores 
give us a guide as to how useful the models will be in further com-
putational and wet lab studies, such as improving tertiary structure 
prediction, ligand binding site residue prediction, oligomer predic-
tions, molecular replacement, and mutagenesis studies [ 1 – 4 ]. 

 In order to fully understand the necessity for and application of 
MQAPs, protein tertiary structure prediction methods are briefl y 
discussed along with the CASP competition that has driven method 
development in this area. This is followed by a brief history of 
MQAPs, the various categories of methods including single-model 
and consensus-based, and a brief introduction to the practical use 
of our ModFOLD servers [ 5 – 7 ]. 

  Protein tertiary structure prediction methods can be divided into 
two major subcategories, the purely template-based modelling 
(TBM) methods and those that are able to carry out template-free 
modelling (FM). Basically, if a structural template can be located in 
the PDB [ 8 ], then TBM methods such as homology modelling 
and fold recognition are utilized. However, if a structural template 
is unavailable then template-free modelling algorithms, which 
include physics-based methods and knowledge-based methods 
need to be utilized [ 2 ]. 

 TBM is based on three key concepts: (1) Similar sequences 
fold into similar structures; (2) many unrelated sequences also fold 
into similar structures; and (3) there are only a relatively small 
number of unique folds when compared with the number of pro-
teins found in nature; most of the fold space has been structurally 
annotated and few new folds are being solved [ 2 ,  9 ] (additionally 
 see   Notes 1 – 4 ). 

 Template-free modelling is also known as ab initio modelling, 
modelling from fi rst principles, or de novo modelling. Template- 
free modelling is the prediction of protein tertiary structure from 
sequence, without utilizing a template protein structure. Template- 
free modelling involves the undertaking of conformational searches 
with the use of a designed energy function and results in the con-
struction of several structural decoys based on potential conforma-
tions that will be utilized to select the fi nal model. Template-free 
modelling energy functions are usually subcategorized into physics- 
based energy functions and knowledge-based energy functions, 
which are dependent on the utilization of statistics from experi-
mentally solved protein structures [ 2 ,  10 ].  

1.1  A Brief 
Introduction to 
Tertiary Structure 
Prediction

Daniel Barry Roche et al.
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  Since structural biologists fi rst built theoretical protein models, 
algorithms have been developed to assess their quality. Early model 
quality methods were based on two broad concepts: assessing 
stereochemistry and predicting the free-energy of the model. 
Popular stereochemistry methods include PROCHECK [ 11 ], 
WHAT- CHECK [ 12 ], and a more recent method MolProbity [ 13 ]. 
These methods are mainly utilized to give a basic reality check of the 
constructed protein model. Nevertheless for multiple models 
determined as stereochemically correct, these methods are unable 
to judge among them. Additionally, stereochemical methods 
discard models with accurate backbone topology, which have 
stereochemically incorrect placement of side chains. Furthermore, 
stereochemical methods produce various alternative scores which 
cannot easily be summed up to produce a single score relating to 
overall model quality. Thus, these methods cannot truly be 
considered as MQAP methods in themselves; however some of the 
single- model MQAPs do contain several of these basic checks [ 3 ]. 

 In addition, several physics-based methods have been devel-
oped for model quality assessment, which provide statistically deter-
mined energy functions, including ANOELA [ 14 ,  15 ] and DFIRE 
[ 16 ]. Alternatively, CHARMM [ 17 ] and AMBER [ 18 ] utilize 
numerous physics-based energy functions dependent on molecular 
force fi elds. Despite numerous attempts, the construction of a real-
istic energy function has remained a major challenge [ 2 ,  3 ].  

  The continuous development of more advanced protein structure 
prediction and model quality assessment tools is driven by the 
Critical Assessment of Techniques for Protein Structure Prediction 
(CASP) competition. CASP is a biennial competition whose main 
goal is the advancement of methods for the prediction of protein 
3D structures from sequence. This is accomplished by providing 
objective testing of the methods via blind prediction. CASP is 
currently divided into numerous prediction categories, including: 
tertiary structure prediction—template-based and template-free 
modelling, disorder prediction, contact prediction, quality 
assessment, binding site prediction, and homo-oligomer prediction 
[ 2 ,  4 ,  19 ]. 

 The quality assessment category (QA) was offi cially introduced 
in CASP7 (2006) with 28 methods participating [ 20 ]. The num-
ber of methods that competed in CASP9 (2010) had risen to 46 
[ 21 ] and 37 server methods took part in the most recent CASP10 
(2012) competition. The increasing number of independent qual-
ity assessment groups competing in CASP shows heightened inter-
est for MQAP methods, which boosts competition and innovation 
in the fi eld. Additionally, this demonstrates the critical role MQAPs 
now play in 3D modelling of proteins. 

 The CASP competition initially introduced two QA categories 
in CASP7, QMODE1 for global model quality prediction and 

1.2  A Brief History 
of Model Quality 
Assessment

1.3  Critical 
Assessment of 
Techniques for Protein 
Structure Prediction in 
Relation to Model 
Quality

Model Quality Assessment using ModFOLD



86

QMODE2 for per-residue quality prediction [ 20 ]. In CASP8 and 
CASP9 another assessment category emerged—QMODE3—
where the per-residue errors from QMODE2 predictions are inte-
grated into the B-factor column of the 3D models [ 4 ,  21 ]. One of 
the top QMODE3 prediction methods from the CASP9 competi-
tion was IntFOLD-QA/IntFOLD-TS [ 4 ,  22 ] ( see   Note 3 ).  

  MQAPs are historically divided into two main categories: single-
model- based methods that consider each model in isolation and 
clustering (or consensus)-based methods which compare multiple 
models for the same target. Single-model-based methods are 
comparable with consensus-based methods when a relatively small 
number of models are available. However, single-model methods 
currently lack accuracy when a wide range of models are available 
[ 5 ,  7 ], thus several groups have focused on their improvement [ 4 , 
 23 ,  24 ]. In addition, there are methods and servers that blur the 
line between single-model methods and clustering approaches, 
which have recently been defi ned as the quasi-single-model 
methods [ 21 ]. Such quasi-single model approaches are able to 
provide accurate assessments of model quality given only a single 
model. They work by generating a number of alternative possible 
model conformations based on the target sequence, which are then 
compared with the target model using a clustering-based approach. 

 In contrast to single-model-based methods, consensus-based 
methods are often CPU intensive [ 7 ]. However, according to the 
previous two CASP experiments [ 21 ,  25 ], it has been found that 
clustering of numerous server models belonging to the same target 
results in the most accurate model quality predictions, both glob-
ally and on a per-residue basis [ 21 ,  25 ]. A list of the top MQAPs 
from CASP9 (2010) which have publicly available methods can be 
found in Table  1 .

      The ModFOLD 3.0 server is a quasi-single-model-based server 
that implements IntFOLD-TS and ModFOLDclust2, therefore 
undertaking both single- and consensus-based model quality 
assessment. Our ModFOLDclust2 [ 7 ] (IntFOLD-QA [ 22 ]) 
consensus method (along with its predecessor ModFOLDclust) 
was amongst the top MQAPs that participated in the previous two 
CASP experiments (CASP8 and CASP9). The ModFOLDclust2 
global quality score is composed of a simple linear combination of 
output scores from two methods, ModFOLDclust and 
ModFOLDclustQ. ModFOLDclust utilizes the TM-score 
structural- alignment scoring method [ 26 ] to compare a given 
model against several alternative models that have been constructed 
for a given protein target [ 7 ]. Whereas the ModFOLDclustQ 
method is a rapid, structural-alignment-free algorithm that utilizes 
an implementation of the Q-score [ 27 ] for multiple model 
 comparison, rather than the time-consuming structural-alignment 

1.4  Cutting-Edge 
Model Quality 
Assessment Methods

1.4.1  The ModFOLD 3.0 
Server

Daniel Barry Roche et al.
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   Table 1  
  Publicly available model quality assessment methods that participated in CASP9   

 Method 
 Single/
consensus 

 Global/local 
scores  References  Web link 

 IntFOLD-QA  Single and 
consensus 

 Global and 
local scores 

 Roche 
et al. [ 22 ] 

   http://www.reading.ac.uk/
bioinf/IntFOLD/     

 MetaMQAP  Single  Global and 
local scores 

 Pawloski 
et al. [ 48 ] 

   http://genesilico.pl/
toolkit/mqap     

 ModFOLDclust2  Consensus  Global and 
local scores 

 McGuffi n and 
Roche [ 7 ] 

   http://www.reading.ac.uk/
bioinf/ModFOLD/     

 ModFOLDclustQ  Consensus  Global and 
local scores 

 McGuffi n and 
Roche [ 7 ] 

   http://www.reading.ac.uk/
bioinf/ModFOLD/     

 MUFOLD_WQA  Consensus  Global  Wang 
et al. [ 49 ] 

 – 

 MULTICOM  Consensus  Global and 
local scores 

 Cheng 
et al. [ 50 ] 

   http://sysbio.rnet.missouri.
edu/multicom_toolbox/     

 ProQ  Single  Global and 
local scores 

 Larsson 
et al. [ 51 ] 

   http://www.sbc.su.se/~bjornw/
ProQ/ProQ.cgi     

 QMEAN  Single  Global and 
local scores 

 Benkert et al. 
[ 52 – 54 ] 

   http://swissmodel.expasy.org/
qmean/cgi/index.cgi     

 QMEANclust  Consensus  Global and 
local scores 

 Benkert et al. 
[ 52 – 54 ] 

   http://swissmodel.expasy.org/
qmean/cgi/index.cgi     

scores    [ 7 ] ( see  Subheading 3). Furthermore, ModFOLDclust2, 
ModFOLDclust, and ModFOLDclustQ produce both global 
(QMODE1) and local/per-residue (QMODE2) quality scores. 
The per-residue errors produced by ModFOLDclust2 are amongst 
the most accurate and have subsequently been included in the 
B-factor column (QMODE3) of IntFOLD-TS 3D models [ 4 ] as 
part of the IntFOLD prediction pipeline [ 22 ]. ( See  Table  2  for a 
comparison of the methods and  Notes 1 – 6 ).

   The ModFOLD 3.0 server takes as input: an amino acid 
sequence, a set of 3D models (or a single model) for a given pro-
tein, a short name for the query sequence, and optionally an email 
address for the return of results. Figure  1  shows a screen capture of 
the ModFOLD 3.0 submission form. In Fig.  2  are the results of the 
ModFOLD 3.0 server using consensus mode (ModFOLDclust2) 
for an example CASP9 target (T0515). The machine-readable 
results can also be downloaded from the download link at the top 
of the main results page (Fig.  2 ). Additionally, the ModFOLD 3.0 
server produces a model quality score (between 0 and 1—bad to 
good) and a  p -value in relation to the confi dence of the prediction, 
as can be seen in Fig.  2 . The  p -value confi dence scores range from 
 P  < 0.001 (“certain,” colored blue) to  P  < 0.01 (“high,” colored 
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green) to  P  > 0.1 (“poor” confi dence, colored red) ( see  Fig.  2 ). The 
models are also colored by per- residue error using the same color 
scheme from blue to red (good to bad (Fig.  2 )). Furthermore, the 
per-residue error plot (Fig.  3 ), highlights the residues of the pre-
dicted model with low confi dence. This plot can additionally be 
downloaded as a PostScript fi le. Finally, clicking on the model in 
the main results page (Fig.  2 ) brings the user to a results page simi-
lar to Fig.  4  for the CASP9 target T0515. From the model results 
page (Fig.  4 ) the user can download the PDB fi le of the model 
with the per-residue errors in the B-factor column. Optionally, the 
Jmol Java applet may be deployed to display the model in 3D 
space. Version 4.0 of the ModFOLD server is also currently avail-
able for open beta testing.

      If a user does not possess a set of models for analysis, then 
the IntFOLD server can be utilized ( see   Notes 2 – 4 ) which also 
integrates the ModFOLDclust2 method into a structure and 
 function prediction pipeline [ 22 ]. The ModFOLD standalone 
software is available as downloadable Java executables ( see  
Subheadings  2  and  3 ).    

     Table 2    Comparison of all of the ModFOLD server versions in terms of relative speed, upload options, 
output format, and method types   

 Method 
 Relative 
speed  Upload options  Output modes  Method type 

 ModFOLD v 1.1  Fast  Single/multiple 
models 

 QMODE1  Pure 
single-
model 

 ModFOLD v 2.0  Slow  Single/multiple 
models 

 QMODE1, 
QMODE2, 
QMODE3 

 Quasi-single 
model 

 ModFOLD v 3.0 
(Default mode) 

 Slow  Single/multiple 
models 

 QMODE1, 
QMODE2, 
QMODE3 

 Quasi-single 
model 

 ModFOLD v 3.0 
(ModFOLDclustQ) 

 Fast  Multiple 
models only 

 QMODE1, 
QMODE2, 
QMODE3 

 Pure clustering 

 ModFOLD v 3.0 
(ModFOLDclust2) 

 Slow  Multiple 
models only 

 QMODE1, 
QMODE2, 
QMODE3 

 Pure clustering 

 ModFOLD v 4.0 beta  Slow  Single/multiple 
models 

 QMODE1, 
QMODE2, 
QMODE3 

 Quasi-single 
model 
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2     Materials and Systems Requirements 

  For the model quality servers, such as ModFOLD 3.0, internet 
access, a web browser, a protein model (or a set of models), and 
the protein sequence are required. The servers are freely accessible 
at:   http://www.reading.ac.uk/bioinf/ModFOLD/    . Version 3.0 
of the server additionally has the options of exclusively running 

2.1  Web Server 
Requirements

  Fig. 1    Screenshot showing the ModFOLD 3.0 submission form. The web interface gives the user the opportu-
nity to upload either single or multiple models for quality assessment       
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either ModFOLDclustQ or ModFOLDclust2.  See  Table  2  for a list 
of available program versions and options and  Note 7  for common 
problems encountered.  

  Downloadable executable versions of the ModFOLD component 
methods are available as executable JAR fi les which can be run 
locally. These executables have several dependencies and system 
requirements which are briefl y described below for: ModFOLDclust, 

2.2  Requirements 
for the Downloadable 
Executables

  Fig. 2    Screenshot highlighting the ModFOLD 3.0 results page (in consensus mode—ModFOLDclust2) for the 
CASP9 target T0515. Machine-readable results can be downloaded from a link at the top of the page. 
Confi dence  p -values, model quality scores, and per-residue errors are provided for each model       
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ModFOLDclustQ, and ModFOLDclust2. The executables along 
with extensive README fi les and example input and output data 
can be downloaded from the following location:    http://www.
reading.ac.uk/bioinf/downloads/          

  The system requirements are as follows:

    1.    A recent version of Java (java.com/getjava/).   
   2.    Please ensure your system environment is set to English, as 

using other languages may cause problems with the ModFOLD
clust calculations: export LC_ALL = en_US.utf-8.      

  As ModFOLDclustQ is an alignment free score, the only system 
requirement is a recent version of Java (java.com/getjava/).  

   The system requirements are as follows:

    1.    A recent version of Java (java.com/getjava/).   
   2.    Please ensure your system is running in English as using other 

languages may cause problems with the ModFOLDclust calcu-
lations: export LC_ALL = en_US.utf-8.        

2.2.1  ModFOLDclust

2.2.2  ModFOLDclustQ

2.2.3  ModFOLDclust2
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  Fig. 3    Screenshot of the per-residue error plot results page for the top model 
from Fig.  2  (MULTICOM-REFINE) for the CASP9 target T0515. Additionally, the plot 
can be downloaded in PostScript format by clicking on the link at the bottom of 
the results page. This results page is accessed by clicking on the per-residue 
error plots in the main results page (Fig.  2 )       
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3      Methods 

 The following is a step-by-step guide to generate model quality 
predictions using the latest web server implementations of 
ModFOLD. 

   Paste the full single-letter format amino acid sequence of the target 
protein into the appropriate text box ( see  Fig.  1 ). (Note, the 
sequence needs to be in FASTA format for use with the 
ModFOLDclust2 downloadable executables). 

3.1  Requisite Data 
for Servers

3.1.1  Sequence Data

  Fig. 4    Screenshot showing the results page for the top model from Fig.  2  (MULTICOM-REFINE) for the CASP9 
target T0515. This page shows a large graphical representation of the model. A Jmol application allows users 
to examine the model in 3D space. Users can optionally download the PDB fi le of the model with the predicted 
per-residue errors in the B-factor column. Clicking on the models in the main results page (Fig.  2 ) brings users 
to this results page       
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 Sample sequence of CASP9 target T0515 (input in single- 
letter code): 

 MIETPYYLIDKAKLTRNMERIAHVREKSGAKALLALKC
FATWSVFDLMRDYMDGTTSSSLFEVRLGRERFGKETH
A Y S V A Y G D N E I D E V V S H A D K I I F N S I S Q L E R F A D K A
AGIARGLRLNPQVSSSSFDLADPARPFSRLGEWDVPKVER
VMDRINGFMIHNNCENKDFGLFDRMLGEIEERFGALIARV
DWVSLGGGIHFTGDDYPVDAFSARLRAFSDRYGVQIYLE
PGEASITKSTTLEVTVLDTLYNGKNLAIVDSSIEAHMLD
LLIYRETAKVLPNEGSHSYMICGKSCLAGDVFGEFRFA
EELKVGDRISFQDAAGYTMVKKNWFNGVKMPAIAIRE
LD G S V R T V R E F T Y A D Y E Q S L S 

 Ensure that the order of the residues in the query sequence 
corresponds to the sequence of residue coordinates in the model 
fi le. The server automatically renumbers the ATOM records in 
each model to match the residue position in the sequence. In cases 
where residues in the model fi le are not contained in the provided 
sequence, the quality prediction for the model will not be 
completed.  

  Use the fi le selector to upload a PDB fi le of a model or multiple 
PDB fi les of models. Ensure that coordinates for each alternative 
model are contained within separate PDB fi les; single PDB fi les 
containing multiple alternative models will not be accepted. 
Multiple PDB fi les should be uploaded as a tarred and gzipped 
formatted archive fi le. 

 Steps to produce a tarball fi le for your own 3D models: 

  Linux/MacOS/Irix/Solaris/other Unix users 

    1.    Tar up the directory containing your PDB fi les, e.g., type the 
following at the command line: tar cvf my_models.tar 
my_models/   

   2.    Gzip the tar fi le, e.g., gzip my_models.tar   
   3.    Upload the gzipped tar fi le (e.g., my_models.tar.gz) to the 

ModFOLD server.    

   Windows users  
 Use a free application such as 7-zip to tar and gzip the models.

    1.    Download, install, and run 7-zip.   
   2.    Select the directory (folder) of model fi les to add to the .tar fi le 

and click "Add". Select the "tar" option as the "Archive format:" 
and save the fi le as something memorable, e.g., my_models.tar   

   3.    Select the tar fi le and click "Add". Then select the "GZip" 
option as the "Archive format:"—the fi le should then be saved 
as my_models.tar.gz   

   4.    Upload the gzipped tar fi le (e.g., my_models.tar.gz) to the 
ModFOLD server.       

3.1.2  Model Data
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  Three program selectors are provided in ModFOLD version 3.0. 
In the ModFOLD 4.0 beta version only one default program 
option is currently provided ( see   Note 8  on how to choose the best 
program for your requirements). 

  ModFOLD3 is the default method used for either single or 
multiple models. The method compares uploaded 3D models with 
those obtained from the IntFOLD-TS fold recognition method 
using the ModFOLDclust2 model quality assessment method ( see  
Subheading  1.4.1 ).  

  ModFOLDclust2 is specifi c for multiple models. The slow but 
accurate clustering-based algorithm allows comparison of multiple 
models using structural alignments enabling the improved selection 
of target-template alignments. This method has been successfully 
used in multiple-template modelling as currently integrated into 
the IntFOLD2 server. This program option is best if there are 
multiple models for the target sequence, especially if the multiple 
models are built from alternative target-template alignments using 
several different methods. 

 The ModFOLDclust2 method can also work outside the web 
environment. It is provided in the form of an executable jar fi le 
(ModFOLDclust2.jar) and has been developed to run on Linux-
based operating systems. This version of the program has been 
tested on recent versions of Ubuntu and CentOS, but it should 
work on most versions of Linux that have bash installed as long as 
the system requirements are met ( see  Subheading  2.2.3 ). 

 To run the program, edit the paths in the shell script 
(ModFOLDclust2.sh) and run. For example:  ./ModFOLDclust2.
sh T0515/home/liam/T0515.fasta /home/liam/T0515_
example_models/  

 Or follow the steps below.

    1.    Optionally, set the environment variable for Java, if Java has 
not been installed system-wide, e.g. 
  export JAVA_HOME=/home/liam/jdk1.6.0/    

   2.    Run ModFOLDclust2 with the target name, the sequence fi le 
(note that the sequence fi le should be in FASTA format, i.e., 
the header line should start with the > symbol with the single-
letter amino acid sequence on the subsequent line(s)), and the 
models directory (note that multiple models of the target 
under analysis are required to produce model quality scores) 
included in the command. For example, if the target is 
"T0515", the sequence fi le is "/home/liam/T0515.fasta", 
and the models directory is "/home/liam/T0515_example_
models/", then enter the following: 

3.2  Choosing the 
Quality Assessment 
Program

3.2.1  ModFOLD3

3.2.2  ModFOLDclust2
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  $JAVA_HOME/bin/java -jar ModFOLDclust2.jar 
T0515/home/liam/T0515.fasta/home/liam/
T0515_example_models/  

 Otherwise, if you have java installed system-wide, enter:
   java -jar ModFOLDclust2.jar T0515/home/liam/

T0515.fasta/home/liam/T0515_example_models/  
 Ensure that the models are provided as separate fi les in PDB format 

and the sequence fi le in FASTA format. Note that FULL 
PATHS for your input fi le and models directory are required 
and that the models directory ends with a "/" ( see   Note 7 ).     

 A number of output fi les are produced in the models directory 
(e.g., "/home/liam/T0515_example_models/") and a log of the 
progress is printed to the screen as standard output. A description 
of the output fi les are as follows:

    1.    The QMODE2 output fi le—this fi le will consist of the target 
name plus "_ModFOLDclust2.out", e.g., "T0515_
ModFOLDclust2.out". This fi le conforms to the CASP QA 
QMODE2 data format (  http://predictioncenter.org/casp10/
index.cgi?page=format#QA    ).   

   2.    The sorted data fi le—this fi le will consist of the target name 
plus "_ModFOLDclust2.sort", e.g., "T0515_
ModFOLDclust2.sort". This fi le contains the same data as the 
QMODE2 fi le but without the headers and in a more conve-
nient machine-readable format.   

   3.    B-factor fi les—these have the extension "*.bfact", e.g., 
"nFOLD3_TS1.bfact". These fi les contain your original model 
with the predicted per-residue error entered into the B-factor 
column. If you open these fi les using Pymol or Rasmol you can 
color your models according to the predicted errors with the 
b-factor/temperature coloring options.   

   4.    Gnuplot fi les—these have the extension "*.gnuplot", e.g., 
"nFOLD3_TS1.gnuplot". These fi les contain per-residue 
error data for each model which can be plotted using gnuplot. 
The following is an example script: 

 set terminal postscript color 
 set output "nFOLD3_TS1.ps" 
 set boxwidth 1 
 set style fi ll solid 0.25 border 
 set ylabel "Predicted residue error (Angstroms)" 
 set xlabel "Residue number" 
 set yrange [0:15] 
 set yzeroaxis 
 unset key 
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 set datafi le missing "NaN" 
 plot "nFOLD3_TS1.gnuplot" using 1:2 with boxes,\ 
 "nFOLD3_TS1.gnuplot" using 1:3 with points 
 quit      

  ModFOLDclustQ is the quickest server option if there are several 
hundred models to compare. It uses a rapid clustering-based 
algorithm which does not require CPU intensive structural 
alignments. The program is also provided as an executable jar fi le 
and can be run in a similar way to the ModFOLDclust2 method 
described above.   

  Two optional text boxes can be fi lled in. One is for an email address 
to send links to the graphical or machine-readable results once the 
server has fi nished processing the data. The other is for assigning a 
preferred (memorable) short name for the prediction job that will 
enable the user to differentiate results returned by the server. 

 Acceptable job codes or names are restricted to the following 
set of characters: letters A-Z (either case), the numbers 0–9, and 
the following other characters: ., ~, _, - (excluding the commas). 
The job code or name specifi ed is included in the subject line of the 
emailed link to results.  

  Standard web users are able to submit one job at any one time for 
each IP address. Once the fi rst submitted job request is completed, 
notifi cation of results is made via email, if email is provided. 
Alternatively, one can bookmark the job page where results can be 
found upon job completion. Once the job is completed, the IP 
address will be unlocked and the server is again ready for a new job 
request. The results of a completed job are retained on the server 
for 1 month.  

  The ModFOLD 3 server and the ModFOLDclust2 method have 
been used in several studies which have led to interesting biological 
fi ndings. These studies are numerous with several examples center-
ing on EFEO-cuperdoxins [ 42 ],  Schizosaccharomyces pombe  pro-
tein Translin [ 43 ], and Toll-like receptors [ 44 ,  45 ]. In addition, 
two recent studies have been undertaken in direct collaboration 
with the McGuffi n group on areas of increased global research 
activity, namely cardiovascular disease [ 46 ] and food security [ 47 ]. 

 The fi rst case study focuses on food security in relation to 
 Blumeria graminis , a plant pathogenetic fungi. This study com-
bined proteogenomic and in silico structural and functional anno-
tation to investigate the proteome of the pathogen [ 47 ]. Genome 
wide fold recognition was carried out using the IntFOLD server 
[ 22 ]. The quality of the models produced was then assessed using 
ModFOLD 3 [ 7 ], which resulted in several interesting conclusions 

3.2.3  ModFOLDclustQ

3.3  Optional 
ModFOLD Server 
Inputs

3.4  Server Fair 
Usage Policy

3.5  Case Studies
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in relation to the structural diversity of the genome. Firstly, the 
model quality assessment analysis showed that a large number of 
the models had low model quality, thus were probably novel folds 
or very distantly related to known structures. Secondly, six of the 
protein models had reasonably good model quality scores (greater 
than 0.4) and could be confi dently assigned putative functions—
glycosyl hydrolase activity—which has also been experimentally 
observed in previous wet lab studies. In conclusion, the model 
quality assessment helped to determine which protein models 
could confi dently be assigned functions in this study and further 
highlighted the diversity of folds encoded by the  Blumeria grami-
nis  genome [ 47 ]. 

 The second case study is a more focused study on a specifi c 
protein kinase enzyme MST3, which has a putative role in cardio-
vascular development [ 46 ]. This study is experimentally based but 
used structure prediction (IntFOLD [ 22 ]) and model quality 
assessment (ModFOLDclust2 [ 7 ]) to help interpret the laboratory 
results. Basically, the laboratory results determined that the protein 
could not be entirely globular, but experimental results were 
unable to determine why. Modelling of the protein, followed by 
quality assessment and disordered prediction predicted that the 
enzyme has a large disordered domain, which was thought to be 
crucial to its function. The inclusion of the modelling and quality 
assessment in this study helped to explain the laboratory results 
and was crucial in proposing a new hypothesis of how this kinase-
based pathway functions [ 46 ].   

4    Notes 

     1.    Model quality assessment methods such as ModFOLDclust2 
[ 7 ] play an integral role in tertiary structure prediction and 
thus have been integrated into several prediction pipelines, 
including the IntFOLD server [ 22 ] for the prediction of pro-
tein structure, disorder, domain boundaries, and function form 
sequence. Furthermore, the integration of per-residue errors 
from ModFOLDclust2 [ 7 ] into the B-factor column of 
IntFOLD-TS [ 4 ] models presents the user with a guide to 
which parts of the model they can trust and which parts they 
cannot. Without such quality estimations it is diffi cult for a user 
to determine the usefulness of a generated 3D model [ 1 ,  4 ]. 

 Several of our recent tools for the prediction of structure 
and function from sequence have made extensive use of model 
quality prediction scores. Recently, the per-residue errors pro-
duced by ModFOLDclust2 [ 7 ] have been successfully utilized 
to guide multiple-template selection for improvement of our 
IntFOLD server models [ 34 ]. Furthermore, we recently devel-
oped FunFOLDQA [ 1 ], a novel quality assessment tool for 
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protein–ligand binding site residue predictions. Finally, we are 
also testing a homo-multimeric (oligomer) prediction method, 
which makes use of ModFOLDclust2 scores in its prediction 
protocol. The above examples are not exhaustive, but high-
light the integral and ubiquitous role model quality can play in 
structural bioinformatics. These example methods are briefl y 
described below, followed by a discussion on common prob-
lems encountered in using MQAPs and reasons for choosing 
to use the web servers or the downloadable executables.   

   2.    The IntFOLD server integrates numerous cutting-edge algo-
rithms to predict protein structure and function from sequence. 
The IntFOLD server fi rstly utilizes numerous profi le–profi le 
alignment tools to produce 3D models for a target sequence. 
The ModFOLDclust2 quality assessment method is then used 
to rank the 3D models, producing both global and per-residue 
quality scores. The top fi ve models in accordance with the 
global model quality scores become the output of IntFOLD-TS 
[ 4 ,  34 ]—the tertiary structure prediction component of the 
pipeline. Additionally, the per-residue errors from 
ModFOLDclust2 are added to the B-factor column of each 
model ( see   Note 1  for details of the IntFOLD2-TS algorithm). 
The ModFOLDclust2 per-residue errors are also utilized by 
DISOclust 2.0 [ 35 ] to predict regions of disorder/high vari-
ability occurring in the protein. DISOclust 2.0 was one of the 
top disorder prediction methods in the CASP9 experiment 
[ 36 ]. In addition, the domain boundary prediction compo-
nent of the IntFOLD pipeline, DomFOLD [ 22 ], utilizes the 
PDP method [ 37 ] to identify domain boundaries for the top 
IntFOLD-TS model ranked using ModFOLDclust2. Finally, 
FunFOLD [ 38 ], the ligand binding site residue prediction 
method, performs model-to-template superpositions of the 
top ranked 3D models (according to ModFOLDclust2) and 
related templates containing bound biologically relevant 
ligands, to identify potential binding site residues [ 38 ]. The 
FunFOLD method was one of the top 10 methods in the 
CASP9 FN prediction category [ 39 ].   

   3.    The per-residue errors from ModFOLDclust2 [ 7 ] are included 
in the B-factor column of the IntFOLD-TS [ 4 ] 3D model fi les. 
The per-residue predictions are very useful for users to know 
which areas of the model they can trust and which areas of the 
model are less accurate. An absence of per-residue errors in 
generated models arguably makes them less useful for further 
study. The per-residue errors provided by ModFOLDclust2 
and integrated into the IntFOLD-TS models were found to be 
amongst the most accurate by the CASP9 assessors of the QA 
(QMODE3) category [ 21 ].   

   4.    Following on from our performance in the CASP9 QA per-
residue error category [ 21 ] ( see   Note 2 ), our new TBM 
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method utilized the ModFOLDclust2 [ 7 ] per-residue errors 
predicted in single template models to construct improved 
models from multiple templates [ 34 ]. This method has been 
subsequently integrated into the IntFOLD annotation pipe-
line, now IntFOLD2, which is in its open beta testing phase. 
Additionally, the method was blind tested in the recent 
CASP10 prediction experiment.   

   5.    The FunFOLDQA method [ 1 ] is a quality assessment tool for 
protein–ligand binding site residue prediction, which borrows 
many ideas from 3D model quality assessment methods. 
Currently, there is a lack of methods for assessing the quality of 
ligand binding site residue predictions prior to the availability 
of experimental data. Once experimental data is available, the 
predictions are usually assessed using both the MCC [ 40 ] and 
the BDT [ 41 ] scores as in the CASP9 offi cial assessment [ 39 ]; 
however this requires experimentally solved 3D structures with 
bound ligands. Thus, FunFOLDQA was developed to assess 
ligand binding site quality, prior to the availability of experi-
mental data. FunFOLDQA utilizes protein feature analysis in 
its assessment of quality, which includes structure-based fea-
ture scores and ligand-based feature scores. The FunFOLDQA 
algorithm was utilized to re-rank the FunFOLD predictions, 
which resulted in a statistically signifi cant improvement [ 1 ].   

   6.    A homo-multimeric manual prediction protocol was also tested 
in the recent CASP10. The multimeric prediction protocol 
made use of the ModFOLDclust2 [ 7 ] selected 3D server mod-
els, per-residue errors, and the lists of templates generated by 
our IntFOLD2 server [ 22 ,  34 ], with its multi-template [ 34 ] 
modelling protocol ( see   Note 3 ). The semiautomated protocol 
utilized in the CASP10 experiment will be subsequently auto-
mated and integrated into future versions of the IntFOLD 
server. 

 Numerous examples of the roles that model quality predic-
tion can play are outlined in  Notes 1 – 6 . Not only in 3D struc-
ture prediction per se but also in oligomer prediction, ligand 
binding site prediction, domain prediction, and disorder pre-
diction. Model quality assessment now plays a large and critical 
role in the fi eld of structural bioinformatics and thus needs to 
be considered an essential component of any 3D structure pre-
diction algorithm and pipeline.   

   7.    When using model quality assessment servers, several problems 
may be encountered. These mainly include, but are not limited 
to, the use of incorrect fi les. Each PDB fi le should include the 
coordinates for only one model; not a single PDB fi le contain-
ing the coordinates for multiple alternative models. For mul-
tiple models the coordinates should be uploaded as a tarred 
and gzipped directory of separate fi les. 
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 The fi le format must be correct. All fi les should be uploaded 
as PDB fi les containing correctly formatted ATOM records. In 
addition, all PDB structures in a single submission should have 
been built for the same target, using the same target amino 
acid sequence. 

 For models uploaded to the ModFOLD 3 server in par-
ticular, the amino acid sequence submitted should correspond 
exactly to the amino acid sequence used to build the model(s)—
not doing so is a common error.  See  Subheading  3  for more 
details on how to correctly use the servers and downloadable 
Java executables.   

   8.    Table  2  (Subheading  1.4.1 ) shows that the ModFOLD server 
versions vary in relation to speed, input and output options, 
and sensitivity. As a general rule for quasi-single model and 
clustering methods, the more models (from alternative tem-
plates/alignments) you submit then the better the prediction 
results. A recommendation of 40 or more alternative models 
should achieve good cluster analysis. Alternatively, a sequence 
can be submitted to the IntFOLD2 server ( see   Note 1 ), which 
will build up to 90 alternative models, along with automati-
cally predicting their global and per-residue model quality. 

 When using the ModFOLD 3 server, the quality of the 
results you would like to obtain, the speed by which they are 
obtained, the output format of the results, and the required 
input need to be considered. For example, if you use the 
ModFOLDclustQ option, your results will be returned to you 
quickly (up to 150 times faster), but if you use the 
ModFOLDclust2 option, the response time is much slower 
but the results will be more sensitive [ 7 ]. Thus, the user needs 
to leverage response time for results with the quality of results 
obtained, when choosing which algorithm to utilize. 

 Another consideration is the use of the web servers versus 
the downloadable Java applications. The ModFOLD web serv-
ers permit users to submit only one job at a time due to the 
server load balancing. If users would like to use the MQAPs 
frequently or for multiple models, for example analyzing many 
thousands of models, then we would recommend that users 
download and install the MQAPs for local execution. This 
gives the user freedom in the number of models which can be 
analyzed, provided they have adequate CPU capacity. 

 For light (several predictions per week, less than or equal 
to 300 models per target) users of MQAPs, server submission 
is adequate; whereas for heavy users (20 or more predictions 
per week, greater than 300 models per target) the download-
able applications would be most useful. Extensive help pages 
are available for the ModFOLD 3 web server, and README 
fi les are available to help install and run the downloadable java 
applications.         
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Chapter 8

3D-SURFER 2.0: Web Platform for Real-Time Search 
and Characterization of Protein Surfaces

Yi Xiong, Juan Esquivel-Rodriguez, Lee Sael, and Daisuke Kihara

Abstract

The increasing number of uncharacterized protein structures necessitates the development of computa-
tional approaches for function annotation using the protein tertiary structures. Protein structure database 
search is the basis of any structure-based functional elucidation of proteins. 3D-SURFER is a web platform 
for real-time protein surface comparison of a given protein structure against the entire PDB using 3D 
Zernike descriptors. It can smoothly navigate the protein structure space in real-time from one query 
structure to another. A major new feature of Release 2.0 is the ability to compare the protein surface of a 
single chain, a single domain, or a single complex against databases of protein chains, domains, complexes, 
or a combination of all three in the latest PDB. Additionally, two types of protein structures can now be 
compared: all-atom-surface and backbone-atom-surface. The server can also accept a batch job for a large 
number of database searches. Pockets in protein surfaces can be identified by VisGrid and LIGSITEcsc. 
The server is available at http://kiharalab.org/3d-surfer/.

Key words Structure-based function prediction, Protein surface, Surface shape comparison, Structure 
similarity, 3D Zernike descriptor, database search

1 Introduction

With the progress of structural genomics initiatives, an increasing 
proportion of solved protein structures are not functionally anno-
tated. It remains a challenging task to understand the relationship 
between protein structure and function and to extrapolate a work-
ing mechanism of cellular machinery. To this end, a large number 
of computational approaches have been developed for function 
annotation based on protein sequences and their tertiary structures 
[1, 2]. Structure-based approaches are advantageous over 
sequence-based methods in the sense that distant relationships of 
proteins can be better identified by structure comparison, which 
can also often identify functional residues that are not localized in 
their amino acid sequences. Analogous to the important role of 

http://kiharalab.org/3d-surfer/


106

BLAST [3] in sequence-based function annotation methods, 
 protein global structure searches against the Protein Data Bank 
(PDB) [4] are the basis of any structure-based functional  
elucidation of proteins.

An intuitive approach for comparing two protein structures is 
to align the atoms or residues of the proteins. However, the struc-
tural alignment procedures are time consuming, making it unfea-
sible for searching against the entire protein structure database in 
real-time. To speed up the database search, numerous alignment- 
free methods have been developed. For example, 3D-BLAST 
encodes the structure as a 1D sequence of alphabets [5]. The 
LightField Descriptor is constructed by 2D projections (a combi-
nation of 2D Zernike descriptors and Fourier coefficients) ren-
dered from uniformly distributed points around a sphere that 
surrounds the protein surface [6]. Unlike the methods that are 
based on 1D or 2D representations, 3D moment-based shape rep-
resentations truly capture the 3D geometrical shape of proteins. 
Among them, the 3D Zernike descriptor (3DZD) has been shown 
to be suitable for the efficient comparison of protein surfaces [7]. 
3DZD is a series expansion of a 3D mathematical function and 
thus can represent a 3D object compactly as a vector of coefficients 
of the series function. Moreover, 3DZD is rotation invariant, 
which means that structure alignment is not needed prior to com-
parison. These two characteristics allow for fast, real-time searches 
of structure databases. 3DZD has been successfully applied for fast 
comparisons of various biological structure data [8] including 
ligand binding pockets [9, 10], low-resolution electron micros-
copy data [11], ligand molecules [12], and protein–protein dock-
ing [13, 14].

Here, we present 3D-SURFER 2.0, an upgraded web-based 
platform for high-throughput protein surface comparison, analy-
sis, and visualization [15]. The server compares the protein surface 
of a single chain, a single domain, or a single complex against data-
bases of protein chains, domains, complexes, or a combination of 
all three in the latest PDB. By using the 3DZD representation of 
the structures, the search process will be completed in a couple of 
seconds. A query structure can be selected by its PDB code or 
uploaded from a local computer of a user. In addition, local geo-
metrical characteristics of a query protein such as pocket regions 
can be identified by VisGrid [16] or LIGSITEcsc [17]. Retrieved 
structures for a query are visualized with animations of rotating 
proteins. Clicking a protein icon in a search result will invoke 
another search from the clicked structure to surf into the protein 
structure space. Structures are associated with CATH codes [18] 
and conventional root mean square deviation (RMSD); main-chain 
structure alignment can be computed with the combinatorial 
extension (CE) algorithm [19].

Yi Xiong et al.
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2 Materials

The input data of 3D-SURFER is a protein structure, which will 
be compared against a user-specified dataset of the entire PDB 
database. The input structure is provided by entering its identifica-
tion (ID) code in the search window or by uploading a PDB for-
mat file to the server. The ID code of an input protein structure is 
named based on the PDB ID of the protein. If an entire structure 
(e.g., a protein complex) in a PDB file is chosen for input, the ID 
is the same as the PDB code (e.g., 7tim). A chain in a PDB file can 
be specified by adding a hyphen and the chain ID following the 
PDB code (e.g., 7tim-A). A domain of a chain can be specified by 
further adding a domain ID that is defined by CATH (e.g., 7tim-
A- 01). In each case, a search against the entire structure database 
is executed on-the-fly.

Two options are provided for protein surface representation: 
the surface is generated from all surface atoms or is constructed 
using only backbone atoms. This is because our previous work 
[11] showed that depending on the query structure, one of the 
surface representations will agree better in structure retrieval to the 
conventional fold classification (CE [19] and SCOP [20]). For a 
target database to be searched against, four types of datasets are 
prepared: protein single chains, domains, complexes, or a combi-
nation of the three. Additionally, the user can specify two types of 
filters: a CATH filter that avoids displaying multiple structures 
with the same CATH level and a length filter which retrieves only 
proteins whose lengths are similar to the query structure.

Individual programs of the server are seamlessly integrated behind 
the scenes and thus will not be visible to users of 3D-SURFER. 
Here, we briefly describe the programs and computational steps 
implemented within the server. The steps to calculate 3DZD are 
summarized as follows. First, the protein molecular surface is trian-
gulated by MSROLL [21] (see Note 1). The extracted mesh is then 
discretized to generate a cubic grid (a binary voxelization, see Note 2). 
Finally, the 3DZD is computed [22] by taking the cubic grid as 
input (a vector of 121 invariants). An input protein structure repre-
sented as a vector can be compared with other structures by com-
puting the Euclidean distance of the vectors (see Note 3). Moreover, 
the VisGrid and LIGSITEcsc programs are integrated for character-
izing the geometry of local surface regions in a query structure. In 
addition, the conventional RMSD of Cα atoms can be computed 
between a query structure and retrieved structures specified by 
clicking the “RMSD” button. The CE program is invoked for the 
RMSD computation (see Note 4). The query structure is visualized 
with the Jmol applet (http://www.jmol.org/) (see Note 5).

2.1 Input Data

2.2 Programs Used 
in the Server

3D-SURFER 2.0: Web Platform for Real-Time Search…
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3D-SURFER version 2.0 is available at http://kiharalab.org/3d- 
surfer/. The previous version is still accessible at http://kiharalab.
org/3d-surfer/v1.0 or from a tab in the menu bar. The Web site 
has a navigation menu bar that includes tabs for a regular job sub-
mission, batch job submission, tutorial, reference, contact infor-
mation, and 3D-SURFER version 1.0.

3 Methods

Submitting a query entry on the 3D-SURFER Web site consists of 
four steps. The details are explained below (Fig. 1).

2.3 Web Sites

3.1 Submit a Query 
Entry

Fig. 1 The steps to submit a structure in 3D-SURFER

Yi Xiong et al.
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 1. Input a structure ID or upload a structure file: In this step, 
users can either type a structure ID or upload a structure file. 
As shown in the example, the IDs should consist of four, six, 
or nine characters. When users type the first character, the text 
field will pop up a dropdown menu showing a list of IDs that 
start with the specified character. When the file upload option 
is used, the input should be consistent with the PDB format. 
At a minimum, the file should contain ATOM lines that con-
tain atomic coordinates of proteins.

 2. Select a surface atom representation: Two different surface rep-
resentation options are provided: the all-atom-surface repre-
sentation and the backbone-atom-surface representation, 
which includes Cα, C, and N atoms in the main chain. The 
choice should be made according to the purpose of the struc-
ture database search. If proteins with similar main-chain orien-
tations are sought, the backbone-atom-surface representation 
works best in many cases (except for proteins with floppy tails 
and unpacked structures, see our previous work [11]).

 3. Choose a database to be searched: Users can compare the surface 
of a single protein chain to a dataset of single chains, domains, 
complexes, or a combination of the three in the latest PDB.

 4. Specify CATH and length filters: It is common that retrieved 
results contain many homologous proteins or essentially the 
same proteins in different conditions. Users can filter out such 
similar structures using the CATH filter. If users specify CATH 
filters ("CATH", "CAT", "CA", "C", or no filter) in the 
dropdown menu, the returned search results will contain only 
one structure from the same CATH classification of the speci-
fied level. For example, if the CATH filter level “CAT” is spec-
ified, no proteins in the retrieved list share the first three digits. 
When the length filter is turned on, the search result will only 
contain proteins with similar length to the query, i.e., those 
which have a length ratio between 0.57 and 1.75 to the query 
protein. Note that the size information of proteins is lost in 
3DZD. However, our work [7] shows that it is uncommon for 
proteins with very different sizes to have the same surface 
shape and thus turning on the length filter may not drastically 
change the search results.

In this section, we will show how the surface comparison results 
are presented. The similarity of two proteins are quantified by the 
Euclidean distance (the square root of the sum of the squares of 
the differences between corresponding values) between the 3DZD 
vectors (121 scalar values) of the proteins that represent protein 
surface shape. In the 3D-SURFER results panel, the Euclidean dis-
tance is shown at the label "EucD:". If two structures have an 
Euclidean distance less than a threshold of 10, they can be consid-
ered significantly similar.

3.2 Result Page
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 1. Viewing the query protein and its geometric features: The query 
structure is visualized by the Jmol applet at the left side of the 
panel (Fig. 2d). By clicking the right button of the mouse, the 
representation of the protein can be changed using the func-
tionality of Jmol. Geometrical features of the query structures, 
namely cavity, protrusion, and flat regions can be identified 
using VisGrid by clicking buttons located on the upper-left 
position of the panel (Fig. 2a). The “pocket” button in the 
third row invokes LIGSITEcsc to identify pockets on the pro-
tein surface. Identified pockets, protrusions, and flat regions 
are indicated with colors on the protein surface, where the 
rank is based on the size (see Note 6) (Fig. 2a, d, f ). Users can 

Fig. 2 The search result page of 3D-SURFER
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also look at the volumes and surface areas (see Note 7) of the 
convex hull (see Note 8) formed from the atom coordinates of 
the residues identified by VisGrid or LIGSITEcsc.

 2. Protein structure retrieval results and further navigation of the 
protein surface universe: Retrieved structures from the data-
base are shown on the right side of the panel. They are ranked 
by the Euclidean distance of the 3DZD. By default, the top 25 
structures are displayed but the number of structures to show 
can be changed to the top 50, 100, 250, 500, or 1,000 
(Fig. 2b). Protein surfaces can be rotated by moving the 
mouse over animation images of proteins. The images will 
spin 360° along both the X and Y axes to present a complete 
view of the protein surface (Fig. 2e). Each retrieved structure 
is associated with the PDB ID and the CATH code, if assigned 
(some PDB entries are not indexed in the CATH database). 
The PDB ID is linked to the entry in the PDB Web site.

Clicking the image of a retrieved structure will invoke a new 
search from that structure against the database specified for 
the initial search. Welcome to the protein surface universe—
users can enjoy surfing in the ocean of protein surfaces by tak-
ing advantage of real-time searches!

 3. Structure alignment calculations and visualization: 
Conventional main-chain-based structure alignments can be 
performed using the CE program (see Note 9) to obtain 
RMSD values. When checking the "Rmsd:" box (Fig. 2c) of 
any retrieved similar protein, the CE program is invoked. 
Then the RMSD value is displayed and a new button will 
appear. By clicking this button, the structural alignment with 
the query structure is visualized using the Jmol applet on the 
left panel.

 4. 3DZD invariants: The 121 3DZD invariants of the query are 
shown in graphical form and in text (Fig. 2g).

When users want to benchmark 3D-SURFER by submitting many 
queries, they can use the batch mode page. When submitting a 
batch of query structures to 3D-SURFER, users can either type a 
custom list of structure IDs or upload a separate file with those 
IDs. Then, using the same steps for the submission of a single 
entry, users can go through the page to select a surface atom rep-
resentation, a database to compare to, and specify the CATH and 
the Length filters. The extra step in this section is to select the 
number of entries to retrieve for each query. Taking 7tim-A as an 
example, Fig. 3 shows its retrieved results of the top 25 most simi-
lar structures.

3.3 Submit a Batch 
of Entries
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4 Notes

 1. Surface generation: The protein surface is constructed using 
the MSROLL program in Molecular Surface Package [23]. 
The surface consists of all the points of the van der Waals sur-
face at which a spherical probe (i.e., the solvent radius of 
1.4 Å) can touch it. The output of the program is in the form 
of a polyhedral surface triangulation. Surface computation 
with MSROLL is failed occasionally. In those cases, the MSMS 
program (http://mgltools.scripps.edu/) is invoked.

 2. Voxelization: The constructed surface of a protein is mapped 
on a 3D grid, where voxels (cubic cells) that overlap with the 

Fig. 3 Retrieved 25 most similar structures for query 7tim-A. EUC_DIST is the Euclidean distance between the 
query 7tim-A and each retrieved structure. Length shows the number of amino acids residues in the proteins

Yi Xiong et al.
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 surface are marked with 1 and 0 otherwise (inside and outside 
of the protein). This discrete representation of the protein sur-
face is used as an input for computing 3DZD.

 3. Euclidean distance: The Euclidean distance dE of two vectors 
X and Y is defined as:

 
d X YE

i

n

i i= -( )
=
å

1

2

 
(1)

where n is the number of elements in the vectors. n is set to 
121 in 3D-SURFER.

 4. Alignment by the CE program: The CE program is used to 
align and compute the RMSD of two protein structures. The 
algorithm first identifies a set of structurally similar main-chain 
fragment pairs from the two protein structures and then 
assembles the fragment pairs to form a larger region of similar 
conformations. Thus, CE compares the main-chain conforma-
tions of two protein structures.

 5. Jmol applet: Jmol is an open-source Java viewer for protein 
structures in 3D. Jmol can be integrated into web pages to 
display molecules in various representations. For example, 
molecules can be displayed as “ball and stick” models, “space 
filling” models, “ribbon” models, etc. To change the repre-
sentation of a protein structure, right-click on the Jmol applet 
area, select the Surface menu, and then the sub-menu 
Molecular Surface option.

 6. Color of local regions identified by VisGrid or LIGSITEcsc: The 
size of identified pockets and protrusions is ranked by colors. 
Red indicates the largest cavity/protrusion/pocket, green 
indicates the second largest, and blue indicates the third larg-
est cavity/protrusion/pocket. Yellow indicates identified flat 
regions by VisGrid. The residues in the colored regions are 
provided in a window (Fig. 2f) on the results page.

 7. Volumes and surface area of a geometric region: The Qhull pro-
gram [24] is employed to calculate volumes and the surface 
area of the geometric regions identified. Qhull calculates vol-
umes and surface areas by computing a convex hull of a speci-
fied local surface region (e.g., pocket).

 8. Convex hull: The convex hull of a set Q of points is the smallest 
convex polygon P, for which each point in set Q is either on 
the boundary of P or in its interior. For example, the convex 
hull of 13 points, p0 to p12, in a two-dimensional space is given 
by CH(Q) = {p0, p1, p3, p10, p12} in Fig. 4.

 9. The CE alignment file corresponding to a RMSD calculation: 
The RMSD between a retrieved structure and a query struc-
ture can be computed by checking the RMSD checkbox. 
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Then, a new button and the RMSD value will be shown. 
Clicking the RMSD button will invoke Jmol to visualize the 
structure superimposition between the retrieved structure and 
the query. The numerical value is a link to a text file that con-
tains the CE alignment result file.

5 Case Studies

We show two examples of 3D-SURFER results. The first example 
demonstrates that 3DZD detects similar global surface shapes of 
proteins with a different overall fold and fold class (completely dif-
ferent secondary structure elements) (Fig. 5). In Fig. 5, the pro-
tein on the left is a β class protein (PDB code: 1 bar-A; fibroblast 
growth factor), while the one on the right is an α class chain (PDB 
code: 1rro-A; oncomodulin). The corresponding CATH IDs of 
the two chains are obviously different, 2.80.10.50 and 1.10.238.10, 
respectively. Despite the complete difference of the main-chain 
conformation of the proteins, their surface shapes exhibit surpris-
ing similarity with a 3DZD Euclidian distance of 12.66.

The new version of 3D-SURFER extended the coverage of 
structure databases to include protein domains and complexes, in 
addition to single chains. A search can be performed between dif-
ferent types of structure data, for example, a single protein chain 
can be compared against the shape of multi-chain protein com-
plexes. Figure 6 shows a query single chain (PDB code: 2WHH- A) 
and a complex structure retrieved by a search, which is a homodi-
meric protein complex (PDB code: 2FDE). A close  examination of 

Fig. 4 An example of a convex hull for points in the 2D space

Yi Xiong et al.



115

Fig. 5 An example of similar surface shapes of two proteins in different fold class. (a) 1 bar-A, a β-class protein; 
(b) 1rro-A, an α-class protein. (The figure is modified from Fig. 5 of ref. [7])

Fig. 6 An example of similar surface shapes of a single protein chain and a two-chain complex. (a) The protein 
chain 2WHH-A and its largest pocket (in red color) identified by LIGSITEcsc; (b) The complex 2FDE, comparable 
to 2WHH-A both in global shape and in pocket regions; (c) The 3DZD values of 2WHH-A and 2FDE
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and sequence-based function prediction for 
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gous proteins by surface patch comparison. 
Proteins 80(4):1177–1195

 10. Chikhi R, Sael L, Kihara D (2011) Protein 
binding ligand prediction using moments- 
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Fig. 6c shows that these two structures have nearly identical vec-
tors of 3DZD invariants with a Euclidean  distance of 0.982. Both 
of these are HIV-1 proteases [25, 26] with similar enzymatic prop-
erties, which are vital targets for the design of antiviral compounds 
in the treatment of AIDS. 2FDE is a native HIV-1 protease and a 
homodimeric enzyme in which the active site is located at the sub-
unit interface. 2WHH-A is a mutant HIV-1 protease and a homol-
ogous single-chain tethered dimer, which contains a five residue 
linker, Gly-Gly-Ser-Ser-Gly, that links the N-terminus of the sec-
ond monomer to the C-terminus of the first monomer. Our results 
also suggest that the two structures have similar pocket regions 
identified by LIGSITEcsc (shown in Fig. 6a, b). The red regions are 
pocket sites binding to inhibitors.
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Chapter 9

SPOT-Seq-RNA: Predicting Protein–RNA Complex Structure 
and RNA-Binding Function by Fold Recognition 
and Binding Affinity Prediction

Yuedong Yang, Huiying Zhao, Jihua Wang, and Yaoqi Zhou

Abstract

RNA-binding proteins (RBPs) play key roles in RNA metabolism and post-transcriptional regulation. 
Computational methods have been developed separately for prediction of RBPs and RNA-binding residues 
by machine-learning techniques and prediction of protein–RNA complex structures by rigid or semiflexible 
structure-to-structure docking. Here, we describe a template-based technique called SPOT-Seq-RNA that 
integrates prediction of RBPs, RNA-binding residues, and protein–RNA complex structures into a single 
package. This integration is achieved by combining template-based structure- prediction software, SPARKS 
X, with binding affinity prediction software, DRNA. This tool yields reasonable sensitivity (46 %) and high 
precision (84 %) for an independent test set of 215 RBPs and 5,766 non-RBPs. SPOT-Seq-RNA is compu-
tationally efficient for genome-scale prediction of RBPs and protein–RNA complex structures. Its applica-
tion to human genome study has revealed a similar sensitivity and ability to uncover hundreds of novel RBPs 
beyond simple homology. The online server and downloadable version of SPOT-Seq-RNA are available at 
http://sparks-lab.org/server/SPOT-Seq-RNA/.

Key words Fold recognition, Binding affinity, Protein–RNA complex structure, Template-based 
structure prediction, Knowledge-based energy function, Protein–RNA interactions, RNA-binding 
proteins, Torsion-angle prediction, Solvent accessible surface area, Prediction, SPOT-Seq-RNA

1 Introduction

The majority of the human genome is coded for RNA transcripts. 
Only tiny fractions of these RNA transcripts are messenger RNAs 
that code for proteins. All RNA transcripts, most with unknown 
functions, are regulated by RNA-binding proteins (RBPs) from 
birth (transcription) to death (degradation). Thus, locating all 
RBPs in a genome and determining protein–RNA complex 
 structures are key steps for understanding the mechanism  
of  post- transcriptional regulation and mapping the network of 
 protein–RNA interactions.

http://sparks-lab.org/server/SPOT-Seq-RNA/
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It is difficult to locate RBPs and determine their protein–RNA 
complex structures experimentally due to high flexibility of RNA 
structures and the difficulty associated with crystallization of com-
plex structures. Despite this difficulty, there is a steady increase in 
the number of protein–RNA complex structures deposited in the 
protein data bank from 45 in 2001 to 180 in 2011 (nonredundant 
at 90 % sequence identity or less) [1]. Moreover, hundreds of 
novel, unconventional, or moonlighting RBPs have been discov-
ered [2–4]. Experimental discovery of new RBPs and determina-
tion of protein–RNA complex structures, however, is costly and 
inefficient. There is a need for the development of highly accurate 
bioinformatics tools for predicting RNA-binding function and 
protein–RNA complex structures.

Most methods developed for predicting RBPs are based on 
machine-learning methods that employ information of protein 
sequences and/or known protein structures [5, 6]. Meanwhile, 
docking techniques for protein–RNA interactions have been devel-
oped by using a scoring/energy function for protein–RNA interac-
tion [7–10]. Here, we describe SPOT-Seq-RNA, a template-based 
technique that combines predictions of protein–RNA complex 
structure and binding affinity [11]. More specifically, SPOT-Seq- 
RNA employs a template library of nonredundant protein–RNA 
complex structures and attempts to match the query sequence to the 
protein structures in protein–RNA complexes by the fold recogni-
tion technique SPARKS X [12]. Significant matches will be employed 
to predict the complex structures between a target sequence and 
template RNA as well as the binding affinity of the complex.

In SPOT-Seq-RNA, structure prediction is performed by the 
latest version of our fold recognition technique SPARKS X [12], 
which was among the best performing single automatic servers in 
several critical assessment of structure prediction (CASP) meetings 
(CASP 6 [13], CASP 7 [14], and CASP 9 [12]). SPARKS X is a 
multi-dimensional probabilistic matching between sequence pro-
files generated from PSI-BLAST [15] for query and template 
sequences and between structural features of a template and those 
predicted by SPINE X [16–18] for a query sequence. Predicted 
structural features include secondary structure [17], backbone tor-
sion angles [16], and residue solvent accessibility [18]. For binding 
affinity prediction, we extracted a knowledge-based energy func-
tion, DRNA, from protein–RNA complex structures [19] based 
on a distance-scaled finite ideal-gas reference (DFIRE) state [20]. 
The DFIRE reference state was found to be one of the best refer-
ence states for deriving knowledge-based energy functions for 
folding and binding studies [21, 22]. While many template-based 
structure-prediction methods and knowledge-based energy func-
tions for protein–RNA interactions exist, the coupling between 
fold recognition by SPARKS X and binding affinity prediction  
by DRNA in SPOT-Seq-RNA provides the first dedicated high- 
resolution function prediction for RBPs.

Yuedong Yang et al.
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SPOT-Seq-RNA was cross-validated by leave-homology-out 
and independently tested by several datasets [11]. It was found  
to significantly improve over a sequence-to-profile search technique, 
PSI-BLAST [15], and a profile-to-profile search technique, 
HHPRED [23], in discriminating RBPs from non-RBPs. It was also 
shown to be far more sensitive and accurate in detecting RBPs than 
machine-learning-based techniques, while having similar accuracy to 
the best machine-learning techniques for RNA-binding site predic-
tion [24]. More importantly, SPOT-Seq-RNA can provide a reason-
ably accurate prediction of protein–RNA complex structure (77 % 
predicted structures having root-mean-squared distance of 4 Å or 
less) [11]. More recently, SPOT-Seq-RNA was applied to the human 
genome and independently tested by mRNA- binding proteins from 
a proteomic experiment [25]. Discovery of more than 2,000 novel 
RBPs in the human genome and validation of the results in messen-
ger-RBPs by the proteomic experiment [4] confirm the usefulness 
of SPOT-Seq-RNA in predicting novel RBPs beyond simple 
sequence homology and modeling of their complex structures.

2 Materials

A software package is downloadable from our homepage with a 
shortcut link: http://sparks-lab.org/yueyang/download/index.
php?Download=SPOT-Seq-RNA.tbz. This package as shown in 
Fig. 1 integrates one external program PSI- BLAST [15] (see Note 1) 

2.1 Software

Protein sequence (pro.seq)

PSIBLAST
SPINE-X Predicted structural

features (pro.phipsi)

Complex
Template

library

PSSM(pro.pssm)

Merge
Merge
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>Threshold

Non-RBP

SPARKS-X input (pro.inp)

SPARKS-X

Z-Scores for top templates

Complex Models

DRNA

Binding Free energy

RNA-Binding
Proteins

Fig. 1 The flow chart of SPOT-Seq-RNA
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and three in-house-built programs: SPINE X (structural  property 
prediction) [16, 17], SPARKS X (template- based structure predic-
tion) [12], and DRNA (binding affinity prediction) [19].

 1. An external program, PSI-BLAST, and protein NR database 
[15] are employed to generate a position-specific scoring 
matrix (PSSM) or sequence profile that is a required input for 
programs SPINE X and SPARKS X (see Note 2 to skip this 
step if a PSSM file is pre-calculated for the query sequence).

 2. An in-house-made program, SPINE X [16–18], is applied to 
predict the secondary structure, torsional angles (φ and ψ), 
and the solvent accessible surface area (ASA). SPINE X is a 
neural- network predictor that couples secondary structure 
prediction with predictions of solvent accessibility and back-
bone torsion angles in an iterative manner. SPINE X was 
tested with a dataset of 2,640 proteins and achieved an 82.0 % 
accuracy in secondary structure prediction based on tenfold 
cross validation. SPINE X can also be downloaded separately 
from our homepage.

 3. SPARKS X is a template-based structure-prediction program. 
The program is employed to search for the best match between 
a query sequence and a template structure in the template 
database of protein–RNA complex structures. The statistically 
significant alignments from the best match (or matches) are 
utilized to construct complex structure models between the 
query and RNA of the template.

 4. DRNA scoring function is used to calculate binding affinity. 
DRNA is a statistical energy function extracted from 174 
 protein–RNA complex structures with a DFIRE state [19].  
It predicts the binding affinity based on the complex structure 
model between the query and template RNA.

 1. A prebuilt list of 1,052 RNA-binding domains and chains and 
5,766 non-RNA-binding chains were prepared. The files for 
template structural profiles for both RBPs and non-RBPs are 
located in the directory “TPL_input.” Here the database of 
RBPs contains template proteins in complex with their bind-
ing RNAs, while all non-RBPs serve as background statistics 
to calculate Z-scores to measure the significance of the match-
ing template.

 2. For RBPs the structural coordinates in PDB format were 
 provided for model building. The coordinate files contain 
1,052 protein chains/domains as well as 632 RNAs from 
respective protein–RNA complexes, stored in directories 
“domains” and “RNA0,” respectively. Each protein file con-
tains one chain or domain, while RNA coordinate files con-
tain all RNA chains in the protein complex. These protein 

2.2 Databases for 
RNA-Binding Proteins 
and Non-RNA- Binding 
Proteins

Yuedong Yang et al.



123

coordinate files are employed as the templates to build the 
structure model of the query protein, while the RNA coordi-
nates will be directly copied (with the same orientation as in 
the template complex structure) as the RNA conformation in 
the complex structure model for the query protein.

3 Methods

To describe the automated prediction pipeline as shown in Fig. 1, 
we used a protein, Bacillus halodurans RNase H catalytic domain 
mutant D132N (PDB id: chain B of 1zbi) as an example. This 
protein is RNase H and belongs to a nucleotidyl transferase super-
family, which includes transposase, retroviral integrase, Holliday 
junction resolvase, and RISC nuclease Argonaute [26].

The only input required for SPOT-Seq-RNA is the query protein 
sequence in FASTA format (see Note 3). Figure 2a displays the 
input window for the web-based server that allows the cut-and-
paste of the protein sequence RNase H. File upload is also allowed. 
Only one sequence per run is allowed for input. This sequence is 
subsequently passed to PSI-BLAST [15] to search for homologous 
sequences of the query sequence and to generate the position- 
specific substitution matrix (PSSM), which is constructed by three 
iterations of searching (E value less than 0.001) against the nonre-
dundant (NR) sequence database.

3.1 Input and PSSM 
Generation

Fig. 2 The input and result windows of the SPOT-Seq-RNA server for the query protein Bacillus halodurans 
RNase H (PDBID: 1zbiB)

SPOT-Seq-RNA: Predicting Protein–RNA Complex Structure…
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The PSSM file (either given or generated from PSI-BLAST) above 
is first employed by SPINE X to predict protein structural proper-
ties, including secondary structure (in three states), torsional angles 
(φ and ψ), and the ASA, along with their respective confidence 
scores. SPINE X is a neural-network predictor that utilizes a Perl 
script file to automatically call five separate predictors that were 
compiled by the Intel Fortran compiler. Structural properties pre-
dicted by SPINE X together with PSSM are stored in a profile file 
(pro.inp) as input for SPARKS X. In this profile file, the first line 
indicates the residue number (NRES) of the query protein. The 
second line contains the sequence in one-letter code. The next 20 
lines are the inverse value of PSSM for 20 amino-acid residue types 
at all sequence positions (20 times NRES). These 20 lines are 
arranged alphabetically based on residue names (ACDE…Y). Here, 
the inverse value of PSSM is used to reduce the number of characters 
in the file as we noticed that most values in the PSSM are negative. 
After that, another 20 lines are the probability of 20 amino acids at 
each sequence position. Then, the next four lines are predicted 
probabilities of secondary structures (three states of coil, helix, and 
sheet, CHE), φ, ψ, and relative ASA. These structural properties are 
followed by predicted confidence scores for secondary structure, φ 
and ψ, respectively. In the current version, the confidence score for 
ASA is pre-calculated based on amino-acid residue types.

The above sequence and structural profiles for the query sequence 
are employed by SPARKS X to compare with corresponding pro-
files of all template structures in the template library (see Subheading 
2.2). The raw profile–profile alignment score in SPARKS X is 
 calculated as follows:
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where wk are weight parameters and Sshift is a constant. The first 
term in Eq. 1 is the profile–profile comparison between the 
sequence profile from the query sequence and that from the tem-
plate sequence, where F and M are sequence-derived frequency 
profile and log odd profile, respectively. The second term is the 
energy term based on probabilistic matching between predicted 
secondary structures of the query and actual secondary structures 
of the template:
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SPARKS X
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where P(SSt|SSq, Css,q) is the probability of the predicted secondary 
structure SSq by SPINE X with confidence score CSS,q for a native 
secondary structure SSt. Similarly, the next three terms are the 
energy terms based on probabilistic matching between other struc-
tural properties:
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where P(∆k|Ck,q) is the probability of the difference ∆k between 
the predicted properties and corresponding native values with a 
confidence score of Ck,q. The reference probability P0(∆k|Ck,q) is 
obtained by comparing the predicted values to all native values in 
a dataset as described below. There are a total of three terms with 
k = 2 for real-value φ value, k = 3 for real-value ψ value, and k = 4 for 
real-value solvent accessibility. All energy terms were obtained 
from a nonredundant data set of 2,479 proteins with length less 
than 500 amino acids from the original SPINE database [25 % 
sequence identity cutoff, X-ray resolution of 3 Å or higher, and no 
unknown structural regions] [27].

The raw alignment scores optimized by dynamic programming 
techniques for all templates are saved in the file called “pro.out,” in 
which each line contains the template name, the raw alignment 
score, the total alignment length including gaps, the number of 
gaps in two termini, the start and end positions of the query chain 
segment with effective alignment, and the number of exactly 
matched residue types in the alignment. The number of gaps can 
be positive (gaps in the query protein) or negative (gaps in the 
template protein). The sequence position begins counting from 
zero.

From the alignment raw score, the Z-score was calculated based on 
a normalized score Snorm = Sraw/Lα using the standard definition: 
Z-score = (Snorm − Save)/ΔS, where Sraw and L are the raw alignment 
score and alignment length (i.e., the second and third column in 
the pro.out file); α is 0.75; and Save and ΔS are the average value and 
standard error of the normalized score on all templates. A higher 
Z-score indicates a highly significant matching template from the 
average templates. Based on our previous statistics, templates with 
Z-scores of six or higher have 90 % probability of having the same 
structural fold as the query protein.

By default, the program will record five or more templates with 
the highest Z-score or Z-scores greater than eight in file “pro.zs1.” 
In the file, the first column is the calculated Z-score followed by 
the query protein name and raw alignment scores that are output 
by SPARKS X for each template. These templates will be subjected 
to model building and binding affinity evaluation.

3.4 Selecting 
Statistically 
Significant Matching 
Templates
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All top matching templates in the file “pro.zs1” are used to  
build complex models. The model structures are built based on the 
alignment between the query and template sequences (see Note 4). 
The coordinates of the main-chain and Cβ atoms (if present) of 
residues in the template will be copied to the corresponding aligned 
residues in the query protein. If the Cβ of a residue except GLY is 
missing in the template, the Cβ atom will be built based on the 
coordinates of the three main-chain heavy atoms (N, Cα, C). For 
those query residues not aligned to template residues, they will be 
ignored. The final protein model copies the RNA structure from 
the template to produce the complex structure model. All complex 
structure models are saved in separate files in PDB format (e.g., a 
complex built using template “2qk9A” will be saved in file 
“pro_2qk9A.pdb”).

From these complex structure models, the binding free energy 
will be evaluated by using the program DRNA. The pairwise 
distance- dependent energy between an atom of an amino acid 
 residue and an atom in an RNA base is
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where α = 1.61, β = 0.5, rcut is the interaction cutoff  
distance (15  Å), and the volume-fraction factor 
f r N i j r N i j ri
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number of observed pairs of atoms i and j at a given distance r 
from a database of protein–RNA complex structures. We employed 
residue/base-specific atom types with a total of 253 atom types 
(167 for protein and 86 for RNA). We also set the factor η  
arbitrarily to 0.01 to control the magnitude of the energy score. 
The statistics of Nobs(i,j,r) is saved in the file “dfire_RNA.” The 
binding free energy of a complex structure model is obtained by 
summing the interactions between any RNA atoms and protein 
atoms of main-chain atoms and Cβ only with a distance less than 
6.0 Å (Note 5). The calculated binding free energy together with 
the Z-score for all complexes is recorded in the file “pro.zs_en.”

The query protein is an RBP when both Z-score and energy 
 thresholds are satisfied for at least one complex structure model. 
The final output file, “pro.result,” contains the template name, 
Z-score and the estimated binding free energy of the protein–RNA 
complex structure. The complex structure is then employed to 
predict residues that interact with RNA (binding residue predic-
tion). The binding residues are defined if any atom of the residue 

3.5 Building and 
Evaluating Protein–
RNA Complex Models

3.6 Detecting 
RNA-Binding Proteins

Yuedong Yang et al.
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is less than 4.5 Å to any RNA atoms. For a balance of coverage and 
accuracy of the prediction, we have set a threshold of 8.04 and 
−0.565 for Z-score and binding free energy, respectively. These 
thresholds were obtained in our benchmark studies by maximizing 
the Matthews correlation coefficient (MCC) for two-state predic-
tion of RBPs [11].

If not a single template is found to satisfy both thresholds, the 
query protein will be considered as a non-RBP. However, we con-
tinue to present the top five matched templates and predicted 
complex structure models because low sensitivity (about 46 %) 
may incorrectly predict some RBPs as non-RBPs despite correct 
prediction of complex structures. Users may have additional bio-
logical information to judge correctness of the complex structure 
model and function prediction (see Note 6).

Figure 2 shows the input and output windows of the SPOT-  
Seq- RNA server at http://sparks-lab.org/server/SPOT-Seq- 
RNA/. This output is based on the query protein Bacillus halo-
durans RNase H (For running time, see Note 7). There are four 
matching templates within both Z-score and binding thresholds. 
Thus, this protein is predicted as an RBP. Predicted complex struc-
tural models are listed according to respective templates. After fil-
tering homologous templates, 2qk9A (17.6 % sequence identity to 
the query sequence) was selected to demonstrate the overall accu-
racy of  prediction. Figure 3 displays the structurally aligned 

3.7 SPOT-Seq-RNA 
Input/Output

Fig. 3 The predicted model based on template 2qk9A for protein Bacillus 
 halodurans RNase H (colored in green) is structurally aligned by SPalign to the 
native structure (colored in yellow). One complementary DNA chain has been 
removed

SPOT-Seq-RNA: Predicting Protein–RNA Complex Structure…
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predicted and native complex structures by SPalign [28]. One 
hundred and seven residues out of 136 residues (79 %) in the query 
protein are aligned with its actual native structure with RMSD 
2.8 Å. In addition to the four templates within the thresholds, 
there is a template “1hysA0” that satisfied the Z-score but not the 
binding threshold. This illustrates the possibility of false negatives 
despite accurate structure prediction (see Note 6). Results from 
the online server can be delivered to an email address (Note 8).

4 Notes

 1. The recent blast package can be downloaded from: ftp://ftp.
ncbi.nlm.nih.gov/blast/executables/release/LATEST/ 

Select the appropriate executable version for your system  
(e.g., blast-2.2.26-x64-linux.tar.gz for 64 bit Linux). The NR 
database can be downloaded from ftp://ftp.ncbi.nih.gov/
blast/db/nr.XX.tar.gz. As of Feb 23, 2013, XX includes ten 
numbers from 00 to 09, and each file is about 700 megabytes.

 2. The package requires PSSM from PSI-BLAST. If a pre- 
calculated PSSM was prepared, PSI-BLAST can be skipped to 
save time. The user can choose to input a pre-calculated PSSM 
with option “-pssm” for the locally installed version.

 3. The query sequence must be a protein sequence in FASTA 
format. The gene in the DNA/RNA sequence has to be con-
verted to amino acids sequence first. Unknown amino acids 
(e.g., X) must be removed.

 4. SPARKS X has the option “-print level” to control different 
levels of outputs. The default level (0) only outputs the align-
ment score and length information. This will reduce the size 
of the output file in the template scanning step. A level equal 
to or greater than two will also print out the alignment between 
query and templates.

 5. Here unaligned residues and the side-chain atoms except Cβ 
atoms are excluded for interaction calculations so that we can 
prevent large fluctuation in predicted binding affinities due to 
possible atomic clashes between RNA and modeled side-
chains or modeled missing residues. A new version is in prog-
ress to relax modeled side-chain and missing residues so that 
we can estimate the protein–RNA-binding affinity based on all 
interactions between protein and RNA molecules.

 6. Some predicted non-RBPs within the boundary of thresholds 
may be false negatives and have correctly predicted binding 
models. The strict cutoffs in Z-score and binding affinity were 
determined to maximize the MCC in our benchmark (low 
sensitivity around 46 % but high precision at 84 %) [11]. For 
those templates with a Z-score greater than six but less than 
eight, the model protein structure is likely correct.

Yuedong Yang et al.

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/LATEST/
ftp://ftp.ncbi.nih.gov/blast/db/nr.XX.tar.gz
ftp://ftp.ncbi.nih.gov/blast/db/nr.XX.tar.gz


129

 7. The running time depends on the size of the query protein. 
For the example given here (1zbiB, 136 residues), it takes 
22 min on an Intel Pentium 4 3.4GHz, in which 14 min are 
due to PSI-BLAST.

 8. For online service, the results can be obtained from the 
 webpage directly or from email if an email address is given.  
To save computing resources, please do not submit query 
sequences more than once. The status of your job can be 
found by clicking the link “Check the current Queue to pre-
vent DUPLICATE submits” on the main webpage. The result 
of your job will only be kept for 1 month after completion.
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    Chapter 10   

 POODLE: Tools Predicting Intrinsically Disordered Regions 
of Amino Acid Sequence 

           Kana     Shimizu    

    Abstract 

    Protein intrinsic disorder , a widespread phenomenon characterized by a lack of stable three-dimensional 
structure, is thought to play an important role in protein function. In the last decade, dozens of computa-
tional methods for predicting intrinsic disorder from amino acid sequences have been developed. They are 
widely used by structural biologists not only for analyzing the biological function of intrinsic disorder but 
also for fi nding fl exible regions that possibly hinder successful crystallization of the full-length protein. In 
this chapter, I introduce  Prediction Of Order and Disorder by machine LEarning  (POODLE), which is a 
series of programs accurately predicting intrinsic disorder. After giving the theoretical background for pre-
dicting intrinsic disorder, I give a detailed guide to using POODLE. I then also briefl y introduce a case 
study where using POODLE for functional analyses of protein disorder led to a novel biological fi ndings.  

  Key words     Intrinsically disordered protein  ,   Prediction  ,   Amino acid sequence  ,   Machine learning  , 
  Position-specifi c scoring matrix  ,   Amino acid composition  

1        Introduction 

  It has been widely accepted that the function of a protein is deter-
mined by its three-dimensional (3D) structure, but this classical 
structure–function paradigm has been challenged by recent studies 
fi nding that many regions of proteins lack stable 3D structures 
under physiological conditions and that unfolded regions play 
important roles in various essential biological functions, such as 
cell signaling and transcription and translation [ 1 – 3 ]. These pro-
tein regions are called intrinsically disordered regions (IDRs), and 
proteins with the IDRs are thought to exert their function by using 
conformational fl exibility [ 4 ,  5 ]. Since the binding mechanism of 
proteins with IDRs is very different from that of rigid proteins, 
IDRs are one of the most spotlighted topics in structural biology, 
and dozens of computational methods for predicting them from 
amino acid sequences have been developed [ 6 ,  7 ]. 

1.1  Predicting 
Protein Intrinsic 
Disorder: Background 
and Purposes
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 One purpose for predicting IDRs is to assist experiments, and 
IDR prediction has been used to guide many experiments reveal-
ing the functions of newly identifi ed IDRs [ 8 – 13 ]. Prediction of 
IDRs also helps X-ray structure determination. IDRs often hinder 
successful crystallization of a full-length protein, which leads to 
failure in determining its structure. Crystallization of a protein 
with IDRs often becomes successful by predicting IDRs and elimi-
nating them. Since IDRs often appear in domain linkers of protein 
domains [ 1 ,  14 ], IDR prediction helps to fi nd domain boundaries 
of multi-domain proteins [ 15 ,  16 ]. The identifi cation of the 
domain boundaries is an important fi rst step for both experimental 
studies and protein 3D structure predictions especially for eukary-
otic proteins, most of which contain multiple domains. 

 Predicting IDRs in large-scale database analyses is especially 
useful because the number of IDRs found experimentally is not 
large enough to refl ect the genome-wide predisposition of IDRs. 
Several genome-wide analyses by IDR prediction have revealed 
that the frequency of proteins that include long IDRs is signifi -
cantly greater in eukaryotic proteomes than it is in prokaryotic 
proteomes [ 14 ,  17 – 19 ]. These analyses also have suggested that 
IDRs are more prevalent in higher organisms that require more 
complex signaling and regulatory events. Another genome-wide 
study found that human transcription factors contain a high frac-
tion of IDRs [ 20 ]. Since IDRs are thought to mediate protein–
protein interactions (PPIs), analyzing the results of IDR prediction 
in combination with PPI network yielded many interesting bio-
logical insights. For example, previous studies have found that hub 
proteins are likely to contain IDRs and that the resultant confor-
mational fl exibility is the basis of their interaction with different 
partners according to the environmental conditions [ 21 – 24 ].  

  The fi rst computational analysis of IDRs was done by Dunker and 
Uversky and their coworkers, who reported that the ratios of 
hydrophilic residues and charged residues in unstructured proteins 
are signifi cantly higher than those in structured proteins [ 25 ]. 
Similar analyses by several other groups also found that the amino 
acid sequences of IDRs have features different from those of the 
amino acid sequences of structured protein. Most IDR prediction 
tools have been based on this theoretical background [ 18 ,  26 – 32 ]. 
The input to an IDR prediction tool is an amino acid sequence and 
the output is a sequence of binary labels, each showing whether or 
not the corresponding amino acid is predicted to be included in an 
IDR. Most tools also assign a probability or score that indicates the 
confi dence level for each prediction. 

 The main approach to predicting IDRs is an ab initio approach 
predicting the likelihood of intrinsic disorder from only the input 
amino acid sequence. The basic strategy of this approach is to iden-
tify features frequently appearing in the amino acid sequences of 

1.2  Computational 
IDR Prediction
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known IDRs and to predict that a region is intrinsically disordered if 
the input sequence for that region has those features. For example, 
amino acid compositions of IDRs are largely different from those of 
structured regions. If the amino acid composition of a protein 
sequence is more similar to that of IDRs than to that of structured 
regions, the sequence is considered to be disordered. Most of the 
existing programs implement this strategy by using machine learn-
ing techniques, such as support vector machines and neural net-
works, that effi ciently combine multiple features to make accurate 
predictions. A typical IDR prediction method based on a machine 
learning technique consists of training and prediction stages. 

  In this stage a classifi er that classifi es a subsequence of an input 
sequence into an IDR or a structured region is constructed. Amino 
acid sequences whose IDRs and structured regions have been con-
fi rmed experimentally are collected. For each, a sliding-window 
moves from the C-terminus of the sequence toward the N-terminus 
until the window reaches the N-terminus of the sequence. At each 
position of the sliding-window, the subsequence within the win-
dow is extracted and assigned a label showing if it was extracted 
from an IDR or a structured region. The set of these labeled sub-
sequences is called the training dataset. Each labeled subsequence 
is represented as a vector of predetermined features such as amino 
acid compositions, and the similarity of two subsequences is calcu-
lated by measuring the similarity of the corresponding vectors. The 
machine learning algorithm generates an optimal classifi er by try-
ing to reduce miss-classifi cation in the given training dataset.  

  In this stage each residue of an input sequence is predicted to be 
included in an IDR or not. Subsequences of a given protein 
sequence are extracted by using sliding-window and each subse-
quence is represented as a feature vector in the same manner as in 
the training stage. Each subsequence is classifi ed into an IDR or a 
structured region by using the classifi er generated in the training 
stage. Per-residue predictions are based on the results of the clas-
sifi cations of the subsequences. For example, each residue is pre-
dicted to be included in an IDR if the number of disordered 
subsequences covering the residue is larger than that of structured 
subsequences covering the residue. An overview of the method is 
shown in Fig.  1 .

   Some of the IDR prediction tools based on the ab initio 
approach are POODLE-S [ 30 ,  32 ], POODLE-L [ 31 ], 
POODLE-W [ 18 ], PONDR VSL2 [ 33 ], DISOPRED [ 34 ], 
IUPred [ 35 ], RONN [ 36 ], and PrDOS [ 37 ]. 

 Another popular approach to predicting IDRs is called the 
meta-approach. In this approach a prediction tool does not directly 
predict IDRs from the input sequence but instead runs several IDR 
prediction programs on the input sequence and makes a fi nal 

1.2.1  Training Stage

1.2.2  Prediction Stage

POODLE
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prediction by taking into account all of the results reported by those 
programs. Although a theoretical advantage for the meta-approach 
has not been shown, prediction tools based on it frequently give 
better results than ab initio prediction tools. Some of the IDR pre-
diction tools based on the meta-approach are POODLE-I [ 38 ], 
PONDR-FIT [ 39 ], metaPrDOS [ 40 ], and metaDisorder [ 41 ].   

…
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  Fig. 1    Overview of a typical ab initio predictor based on machine learning       
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  The ability of IDR prediction tools to make correct predictions is 
frequently evaluated by using the following measures:

  
Sensitivity

TP
TP FN

,=
+    

  
Specificity

TN
TN FP

,=
+    

  

MCC
TP TN FP FN

TP FP TP FN TN FP TN FN
,=

´ ´

+( ) +( ) +( ) +( )
-

   
where TP (true positives) is the number of disordered residues that 
are predicted to be disordered, TN (true negatives) is the number 
of structured residues that are predicted to be structured, FP (false 
positives) is the number of structured residues that are predicted to 
be disordered, and FN (false negatives) the number of disordered 
residues that are predicted to be structured. Tools with higher sen-
sitivity are better able to detect disordered residues, and tools with 
higher specifi city produce fewer false positives. There is a trade-off 
between sensitivity and specifi city, and the MCC balances these 
two measures. The trade-off between sensitivity and specifi city is 
represented by an ROC curve, which is a graph plotting sensitivity 
versus (1 − specifi city). Area under an ROC curve (AUC) is one of 
the most effective measures. The most reliable evaluation of IDR 
prediction tools is the biennial experiment called Critical Assessment 
of Structure Prediction (CASP), which is a well-known blind test 
for protein structure prediction. In past CASPs, many IDR predic-
tion methods were evaluated with several measures, including sen-
sitivity, specifi city, MCC, and AUC. Details of the evaluations are 
reported in journal papers [ 42 – 44 ].  

  POODLE is a series of IDR prediction programs. As with other 
IDR prediction tools, the input is an amino acid sequence and the 
output is a sequence of binary labels and confi dence scores. Each 
label shows whether or not the corresponding amino acid is pre-
dicted to be in an IDR, and each confi dence score is the confi dence 
level for that prediction. 

 Three of the four programs in the POODLE series—
POODLE-S [ 30 ,  32 ], POODLE-L [ 31 ], and POODLE-W 
[ 18 ]—are based on the ab initio approach. As mentioned in the 
previous subsection, those programs use machine learning tech-
niques. Two factors greatly affect the prediction accuracy when 
machine learning techniques are used. The fi rst is the selection of 
the features that become the basis for discrimination. The second 
is the preparation of the training dataset. Since IDRs play various 
functional roles, the patterns appearing in amino acid sequences 
are also thought to vary depending on the functions. Therefore, 
the ideal ab initio predictor would identify the common features 
from separate datasets each of which share the same protein func-
tion and would be trained on those datasets. 

1.3  Evaluation of IDR 
Prediction Tools

1.4  POODLE

POODLE
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 In making the POODLE series, we separated training datasets 
into three types according to the length of the IDR, which is 
thought to be related to the function of the IDR. We also separately 
selected features in order to make each program fi t to each type of 
training dataset. For example, POODLE-S uses scores derived from 
a position-specifi c scoring matrix (PSSM) in order to fi nd short 
IDRs, while POODLE-L and POODLE-W use amino acid compo-
sitions for fi nding long IDRs and mostly disordered proteins. Both 
POODLE-S and POODLE-L use support vector machines, which 
are effi cient supervised learning methods. For POODLE-W, a semi-
supervised learning method that utilizes unlabeled training data to 
increase prediction accuracy is used because the amount of labeled 
training data (i.e., the number of proteins confi rmed experimentally 
to be mostly disordered) is small. The programs in the POODLE 
series were carefully designed to cover all types of IDRs ranging 
from a single missing residue to a fully disordered protein. Details 
about each program are given in Subheading  4 . 

 POODLE-I [ 38 ] is based on the meta-approach. It is a work-
fl ow system to predict IDRs from the results of other POODLE 
programs. One of the advantages of POODLE-I over other tools 
using the meta-approach is that all the programs that are used as 
sub-modules in POODLE-I are in the same server and the method 
POODLE-I uses was designed taking into account the detailed 
algorithm of each sub-module program. Many of other tools, in 
contrast, use prediction servers designed and maintained by differ-
ent research groups. Prediction tools using the meta-approach 
potentially increase accuracy by taking into account the results of 
several types of ab initio methods, but their accuracy can decrease 
if any of the sub-modules cannot be used. POODLE-I is therefore 
much more stable than those other tools. 

 The POODLE series was evaluated in past CASPs, has been 
ranked as one of the top predictors [ 42 – 44 ]. 

 The POODLE series has been used for analyzing many bio-
logical functions. For example, it was used to help design an exper-
iment that found the proline-rich (PR) domain of Gab1 to be 
intrinsically disordered [ 12 ]. POODLE was also used for structural 
analysis of several proteins, including human papillomavirus pro-
teins [ 45 ], ALK1 [ 46 ], BRMS1 [ 9 ], and human b-Gal [ 47 ]. Two 
prediction servers based on the meta-approach [ 40 ,  41 ] use 
POODLE-S as a sub-module. POODLE-S is used for predicting 
domain boundaries in a protein-structure-prediction-pipeline [ 15 ].   

2    Materials 

 POODLE programs are provided by a web server accessible at 
  http://mbs.cbrc.jp/poodle/poodle.html    . The input to the server 
is an amino acid sequence written in standard single-letter code. 
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The server accepts both plain text and FASTA format. Predictions 
by POODLE-S, POODLE-W, or POODLE-I require the submis-
sion of an e-mail address to which the result is sent.  

3     Methods 

  Figure  2  shows a screen shot of the web page you see when you use 
a web browser to access the POODLE server (  http://mbs.cbrc.
jp/poodle/poodle.html    ). Only three steps are required for run-
ning POODLE.

    Step 1: Selecting a program —As described in Subheading  1 , 
POODLE provides several programs according to the purpose 
of the prediction. Select the one that fi ts your purpose. The 
features of each program are summarized in Subheading  4 . 

  Step 2: Inputting an amino acid sequence —Prepare an amino acid 
sequence in plain text or in FASTA format, and input the 
sequence in the top form of the web page. If you have chosen 
POODLE-W in the fi rst step, up to 50 sequences can be sub-
mitted as a single query by using the multiple FASTA format. 

  Step 3: Sending a query —Except when POODLE-L is chosen in 
 step 1 , prediction results are sent by e-mail. So for the other 
POODLE tools you must input, in the bottom form, the 
e-mail address to which you want your result sent. After input-
ting all the required information, click the “submit” button to 
send your query.  

  The result formats differ slightly for the different POODLE 
programs. 

     The results are sent by e-mail. The e-mail includes the URL of the 
graphical result, which is stored in the server and kept for 2 weeks. 
The  X -axis in the result graph shows the position of the amino 
acids in the input sequence: the left-most position is the N-terminus 
of the sequence and the right-most position is the C-terminus of 
the sequence. The  Y -axis shows, for each amino acid, the  probability 
of being in a disordered region. The graph is interactive and it 
shows the probability and amino acid (in single-letter code) when 
the mouse pointer is overlapped on the graph line. An example 
result graph is shown in Fig.  3 .

   The e-mail also includes the result in text form. The lines 
between “METHOD ------ ” and “END” show prediction results. 
The number of lines is equal to the length of the query amino acid 
sequence. The uppermost result line shows the result for the fi rst 
amino acid in the submitted sequence, and the following lines con-
secutively show the results for the following amino acids in that 
sequence. In each line the fi rst letter is the one-letter code for the 

3.1  Running POODLE

3.2  Presentation 
of Results

3.2.1  POODLE-S 
and POODLE-I

POODLE
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amino acid, the second letter shows whether the amino acid is in an 
ordered region or disordered region, and the number is the prob-
ability of its being in a disordered region. If this probability is more 
than 0.5, the second letter is “D”; otherwise it is “O.” An example 
result is shown in Fig.  4 .

  Fig. 2    Screen shot of input form       
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  Fig. 3    Screen shot of graphical output       

  Fig. 4    Output of POODLE-S and POODLE-I       
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     The result itself is shown on the web page. The top fi gure is the 
interactive graph and the table in the middle of the page shows the 
detailed results. 

 The fi rst column shows the position of the amino acid from the 
N-terminus, the second column shows the one-letter code for the 
amino acid, the third column shows whether the amino acid is in 
an ordered region or disordered region, and the fourth column 
shows the probability of its being in a disordered region.  

  The results are sent by e-mail. The value at the top is the probabil-
ity of the protein being mostly disordered.    

4      Notes 

 As described in Subheading  3 , the choice of program is important. 
The following program descriptions are summarized in Table  1 .

     POODLE-S : The main focus of POODLE-S is to predict the nar-
row trend of intrinsic disorder. It is designed to fi nd IDRs more 
than a few amino acids long. It makes a multiple-sequence align-
ment with known proteins and a PSSM made from the alignments 
is used for prediction. It extracts related scores from the PSSM by 
using a sliding-window and uses those scores to determine whether 
or not the middle amino acid in each window is predicted to be in 
a disordered region. POODLE-S thus uses information derived 
from amino acid sequences similar to the input sequence. Since 
terminus regions of an amino acid sequence tend to be fl exible, 
and these regions often include short-disordered regions, the slid-
ing-window of fi ve amino acids long is used for the terminus 
regions, and that of 15 amino acids long is used for the other inter-
nal region. 

3.2.2  POODLE-L

3.2.3  POODLE-W

   Table 1  
  Summary of POODLE series   

 Main focus  Options 

 POODLE-S  Short trend of IDR  1.  Find missing residues 
 2.  Find residues whose B-factor is high 

 POODLE-L  Long trend of IDR 

 POODLE-W  Protein-wide trend 
of IDR 

 POODLE-I  General purpose 
(meta-approach) 

 1.  Combine POODLE-S, -L, and -W 
 2.   Combine POODLE-S, -L, -W, secondary structure prediction, 

solvent accessibility prediction, and coiled coil prediction 
 3.   Combine POODLE-S, -L, -W, secondary structure prediction, 

solvent accessibility prediction, coiled coil prediction, and 
tertiary structure prediction 
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 POODLE-S has two options. The fi rst option offers to 
fi nd “missing residues.” For this option, POODLE-S is trained 
on the dataset where the missing residues of known protein 
structures are labeled as disordered and the other residues are 
labeled as structured. The second option offers to fi nd residues 
whose B-factors are high compared with those of the other 
residues in the same sequence. For this option, POODLE-S is 
trained on a dataset where residues whose B-factors are high 
are labeled as disordered and the others are labeled as struc-
tured. Although these two options give similar results, the sec-
ond (high-B- factor predictor) is expected to be more sensitive 
to amino acids with fl exible conformations.  

   POODLE-L : The main focus of POODLE-L is to predict a broad 
trend of intrinsic disorder. It is designed to fi nd IDRs whose length 
is more than 30 amino acids. It uses only amino acid-composition- 
related features obtained from an input sequence and does not rely 
on multiple-sequence-alignment information. POODLE-L also 
uses a sliding-window when it extracts features and makes a predic-
tion. The size of the sliding- window is 40 amino acids.  

   POODLE-W : POODLE-W is used to fi nd a protein-wide trend 
of intrinsic disorder. It determines whether or not the input 
sequence is mostly unstructured. It therefore gives only one score 
for each prediction. As mentioned in Subheading  1 , it takes into 
account of unlabeled training data when it makes a prediction. 
Amino acid sequences included in Swiss-Prot are used as unla-
beled training data.  

   POODLE-I : POODLE-I is a general-purpose IDR predictor com-
bining several programs. It has three options. The fi rst combines 
only the POODLE series programs. The second option combines 
those programs; the secondary structure prediction tools PSIPRED 
[ 48 ], JNET [ 49 ], and SABLE [ 50 ]; the solvent accessibility pre-
diction tools JNET and SABLE; and the coiled coil prediction tool 
COILS [ 51 ]. The third option combines the POODLE series pro-
grams, secondary structure prediction tools, solvent accessibility 
prediction tools, a coiled coil prediction tool, and the tertiary 
structure prediction tool HHpred [ 52 ].     

5    A Case Study 

 As noted in the Abstract, computational methods for predicting 
intrinsic disorder from amino acid sequences have been used in 
many analyses leading to new biological insights. Here I briefl y 
introduce our recent study which found that interaction between 
mostly disordered proteins occurs frequently in a human PPI 
 network [ 53 ]. 
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 The motivation behind this study was to investigate relation 
between the function of a PPI and the fl exibility of the two inter-
acting proteins. The classical model of PPI is the key-and-keyhole 
model, in which a folded protein is complementarily bound to a 
folded partner. Several groups have recently suggested other mod-
els, in which IDRs are folded when they are bound to their targets. 
To analyze PPIs from the viewpoint of the fl exibility of the two 
interacting proteins, we simply categorized PPIs into three types—
those between disordered regions (DR-DRs), structured regions 
(STR-STRs), and disordered and structured regions (DR-STRs)—
and addressed the question “which of the three interaction types is 
the one most prevalent in existing PPI networks?” 

 Predictions for all proteins in a human PPI network were car-
ried out using POODLE, and statistical testing was used to deter-
mine whether or not the numbers of DR-DRs, STR-STRs, and 
DR-STRs in the PPI network were signifi cantly different from 
those in random networks. More precisely, we fi rst extracted from 
the original PPI network a subnetwork comprising all proteins pre-
dicted to be either mostly disordered or mostly structured and 
counted in that subnetwork the interactions between (a) mostly 
disordered proteins, (b) mostly structured proteins, and (c) a 
mostly disordered protein and a mostly structured protein. We 
simply regarded as (a) DR-DRs, (b) STR-STRs, and (c) DR-STRs. 
Then we generated 1,000 random networks each of which had the 
same number of mostly disordered proteins, mostly structured 
proteins, and PPIs as the subnetwork but in which the interactions 
between two proteins were randomly given. DR-DRs, STR-STRs, 
and DR-STRs in each random network were counted in the same 
manner. We compared the numbers of DR-DRs, STR-STRs, and 
DR-STRs in the subnetwork against those in the 1,000 random 
networks and estimated  p -values by using a two-tailed test of 
 z -score. An overview of the method is shown in Fig.  5 .

   This analysis revealed that the occurrence of DR-DRs was sig-
nifi cantly frequent and the occurrence of DR-STRs was signifi -
cantly infrequent. We also found that this propensity was much 
stronger in interactions between non-hub proteins. Similar analy-
ses were performed to determine whether or not a part of the 
human PPI network that is involved in a specifi c GO term is 
enriched in DR-DRs. This analysis yielded results demonstrating 
that DR-DRs frequently occur in cellular processes, regulation, 
and especially in metabolic processes. 

 The biological insight derived in the above analysis has been 
cited in a wide range of studies, including those related to diseases 
[ 54 ,  55 ], and drug discovery [ 56 – 58 ], as well as genome-wide 
functional analyses using IDRs predictions [ 59 – 61 ].     
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    Chapter 11   

 Prediction of Intrinsic Disorder in Proteins Using MFDp2 

           Marcin     J.     Mizianty    ,     Vladimir     Uversky    , and     Lukasz     Kurgan    

    Abstract 

   Intrinsically disordered proteins (IDPs) are either entirely disordered or contain disordered regions in their 
native state. IDPs were found to be abundant across all kingdoms of life, particularly in eukaryotes, and are 
implicated in numerous cellular processes. Experimental annotation of disorder lags behind the rapidly 
growing sizes of the protein databases and thus computational methods are used to close this gap and to 
investigate the disorder. MFDp2 is a novel webserver for accurate sequence-based prediction of protein 
disorder which also outputs well-described sequence-derived information that allows profi ling the pre-
dicted disorder. We conveniently visualize sequence conservation, predicted secondary structure, relative 
solvent accessibility, and alignments to chains with annotated disorder. The webserver allows predictions 
for multiple proteins at the same time, includes help pages and tutorial, and the results can be downloaded 
as text-based (parsable) fi le. MFDp2 is freely available at   http://biomine.ece.ualberta.ca/MFDp2/    .  

  Key words     Intrinsic disorder  ,   Intrinsically disordered protein  ,   Intrinsically disordered region  , 
  Prediction  

1      Introduction 

 The intrinsically disordered proteins (IDPs), also called intrinsi-
cally unstructured or natively unfolded, are either entirely disor-
dered or contain disordered regions in their native state. These 
highly fl exible polypeptide chains form an ensemble of conforma-
tional states in vivo with no stable tertiary structure [ 1 ]. Regions of 
IDP can exist as unfolded chains or molten globules with well- 
developed secondary structure and they often function through 
transition between differently folded states [ 2 ]. 

 Interest in IDPs continues to grow as these proteins were 
found to be implicated in numerous cellular processes including 
signal transduction, transcriptional regulation, and translation 
[ 3 ], cell death regulation [ 4 ], protein–DNA [ 5 ] and protein–
protein [ 6 ] interactions. The disorder was demonstrated to play 
a role in several human diseases [ 7 ,  8 ], including AIDS [ 9 ], 
cancer [ 10 ], cardiovascular disease [ 11 ], neurodegenerative 
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 diseases [ 12 ,  13 ], genetic diseases [ 14 ], and amyloidosis [ 15 ]. 
Moreover, IDPs have been shown to be abundant in across vari-
ous organisms [ 16 – 20 ]. 

 Prediction of disorder from protein sequences provides means 
to annotate and functionally characterize disorder for the ever 
growing number of protein chains. The MFDp2 [ 21 ] webserver 
can be used to predict and analyze per-residue intrinsic disorder 
probability given a protein sequence. Although many alternative 
disorder predictors are available [ 22 – 24 ], recent evaluation shows 
that MFDp2 is among the most accurate predictors [ 21 ]. Moreover, 
the MFDp2 webserver outputs a well-described profi le that visual-
izes certain relevant structural and functional aspects of the pre-
dicted disorder. Our method utilizes per-residue predictions 
generated by MFDp [ 25 ], which are corrected to match disorder 
content predicted by DisCon [ 26 ]. Predictions are also fi ltered 
using post-processing fi lters and are enriched with alignment to 
known disorder regions available in PDB [ 27 ] and a curated repos-
itory of IDPs, Disprot [ 28 ], which improves predictions quality. 
MFDp2 is available as an easy to use webserver that not only pre-
dicts the disorder, but it also provides and conveniently visualizes 
per-residue conservation, list of aligned disordered regions from 
our template database, and several predicted structural characteris-
tics of the input protein, such as secondary structure (predicted by 
PSIPRED [ 29 ]) and relative solvent accessibility (predicted by 
Real-SPINE3 [ 30 ]). This additional information is useful to profi le 
the predicted disorder, e.g., to gain insights into how the disorder 
was predicted (from alignment, from MFDp, etc.) and to charac-
terize the underlying structural properties (conservation, solvent 
accessibility, etc.). The webserver allows predictions to be down-
loaded as parsable text fi les, which facilitates downstream analysis. 
For convenience, these text fi les can be downloaded in two for-
mats: as comma-separable CSV and/or FASTA. The webserver 
allows for analysis of sets of up to 100 proteins.  

2    Materials 

 The webserver is designed to be simple to use. The submission 
page includes a text fi eld where up to 100 protein sequences in 
FASTA format can be pasted and another text fi eld for a user 
e-mail. Server also provides an option to submit proteins in FASTA- 
formatted fi le. The e-mail is optional and is used to send notifi ca-
tion once the predictions are completed. The results are also shown 
and linked directly in a browser window after the prediction pro-
cess starts. The help and tutorial page can be accessed at the top of 
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the main webserver page. It explains how to use the webserver and 
provides detailed explanations on how to read the results. Individual 
subsections of the help and tutorial page are hyperlinked within 
this page and from the pages that the user encounters when 
 interacting with the server to ease fi nding of this information. 
The explanations are supplemented with annotated screenshots. 
The “?” buttons are placed thorough all webserver pages next to 
the sections which may require explanation. These buttons imple-
ment direct hyperlinks to the help and hints related to the corre-
sponding section/task. 

 The MFDp2 uses other programs to perform and to visualize 
predictions. Our method predicts the disorder utilizing predictions 
generated by MFDp and DisCon, as well as alignment using PSI- 
BLAST [ 31 ]. The profi le that accompanies the prediction includes 
information about residues conservation, protein secondary struc-
ture predicted by PSIPRED, and solvent accessibility predicted by 
Real-SPINE3. 

 The webserver, which includes help pages and tutorial, is freely 
available at   http://biomine.ece.ualberta.ca/MFDp2/    .  

3    Methods 

  Three easy steps should be followed to use the MFDp2 webserver 
(step numbers are given in Fig.  1 ):

     1.    Copy and paste protein sequences list in the FASTA format 
into text fi eld or upload FASTA-formatted fi le (an “Example” 
button may be used to see an example input of the FASTA 
format) ( see   Notes 1  and  2 ).   

   2.    Provide e-mail address (optional). If e-mail is provided, a noti-
fi cation e-mail will be sent once the results are ready. The noti-
fi cation will include a web address where the results are stored 
( see   Note 3 ).   

   3.    Click “Run MFDp2” button to start the predictions ( see   Note 4 ).    

  Once the prediction is fi nished, the user is directed to the 
results that are available through two web pages: “results summary 
page” and “detailed results page”.  

   This page provides overview of predictions made by MFDp2 
webserver for all submitted proteins and contains links to more 
detailed per-protein    pages ( see  Subheading  3.3 ). Following 
options and information are available (numbered options are 
shown in Fig.  2 ):

3.1  Running MFDp2

3.2  Results 
Summary Page
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     1.    Predictions may be downloaded as .csv or .fasta fi le 
( see  Subheading  3.4 ).   

   2.    Summary of results shows brief statistics of the predicted disor-
der followed by per-residue binary disorder prediction for each 
submitted protein ( see   Note 5 ).   

   3.    More detailed predictions for a given protein can be accessed 
by clicking on the protein name or sequence.    

    This page provides more detailed information about the predicted 
disorder for a given protein. The following options and information 
are available (numbered options are annotated in Fig.  3 ):

     1.    The menu on the top of the page contains links that the user 
may utilize to navigate this page.   

   2.    Overview includes brief statistics concerning the predicted disor-
der, such as disorder content, number of disordered regions, and 
number of templates with aligned disorder regions, followed by 
the per-residue binary disorder prediction ( see   Note 5 ).   

   3.    Per-residue disorder profi les. The profi le includes conveniently 
visualized information concerning per-residue conservation 
(denoted “R.Ent”), predicted secondary structure (denoted 

3.3  Detailed 
Results Page

  Fig. 1    Screenshot of MFDp2 input form on the main webserver page. The  large red numbers  annotate major 
elements on this page       
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“SS”), disorder profi les predicted with MFDp (denoted “MFDp”), 
predicted relative solvent accessibility (denoted “RSA”), and 
aligned disorder segments (denoted “BLAST”) ( see   Notes 6  
and  7 ). The profi le is color coded to ease the  interpretation, 
where a spectrum of colors between red and green (except for 
the conservation) corresponds to the bias towards disordered 
and ordered conformations, respectively. Conservation informa-
tion is color coded from white, corresponding to the least con-
served residues, to black for the most conserved amino acids.   

   4.    Segments section shows a set of basic statistics including length 
and position of the disordered segment in the sequence.   

   5.    Alignments section lists all template proteins which were used 
to generate prediction ( see   Note 8 ). Beside the basic alignment 
statistics, the alignment itself is presented together with the 
annotated predicted disorder and actual disorder label for the 
query and subject proteins, respectively.    

  Fig. 2    Screenshot of MFDp2 results summary page. The  large red numbers  annotate major elements on this 
page       
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  Fig. 3    Screenshot of MFDp2 detailed results page. The  large red numbers  annotate major elements on this 
page       
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     This form, available on the results summary page, allows a user to 
download the predictions. The resulting fi le always contains the 
protein sequence and the MFDp2 predictions, including both per- 
residue probabilities and binary predictions. Following options, 
which are numbered in Fig.  4 , are available:

     1.    This box should be selected to include information about the 
per-residue conservation expressed by relative entropy [ 32 ]. 
The entropy values are calculated using weighted observed 
percentages (WOP) matrix generated by PSI-BLAST.   

   2.    These boxes should be selected to include Secondary Structure 
(SS) predicted by PSIPRED (both per-residue probabilities 
and three state predictions are available).   

   3.    These boxes should be selected to include RSA predicted by 
Real-SPINE3 (both per-residue probabilities and binary pre-
dictions are available).   

   4.    This box should be selected to include disorder predicted by 
MFDp (predecessor of MFDp2) (both per-residue probabili-
ties and binary predictions will be added).   

   5.    This box should be selected to include disorder content pre-
dicted by DisCon.   

   6.    The selected set of predictions can be downloaded in either 
.csv ( see   Note 9 ) or .fasta ( see   Note 10 ) format.    

4       Case Studies 

 MFDp, which is MFDp2’s predecessor, has been used in a number 
of studies that characterize abundance and functional roles of 
intrinsic disorder in HIV-1 proteome [ 9 ], histone proteins [ 5 ], 
and proteins involved in the programmed cell death [ 4 ]. MFDp2 
was not yet utilized in a similar fashion since it was published only 
recently. To this end, we present results of two case studies that 

3.4  Downloading 
the Predictions

  Fig. 4    Screenshot of the form that offers options concerning downloading of the predictions       

 

Prediction of Intrinsic Disorder in Proteins Using MFDp2



154

apply MFDp2 to analyze intrinsic disorder in the E6 protein from 
the human papillomavirus and in the phosphatase and tensin 
homolog (PTEN) protein. 

  There are more than 100 different types of human papillomaviruses 
(HPVs), which are the causative agents of benign papillomas/
warts and are risk factors for the development of carcinomas of the 
genital tract, head and neck, and epidermis. HPVs infect mucosal 
and cutaneous stratifi ed squamous epithelia and are divided into 
high-risk and low-risk viruses based on their pathogenicity [ 33 ]. 
For example, HPV-6 and HPV-11 DNAs are the predominant 
types found in genital warts (condyloma accuminata), whereas 
HPV-16 and HPV-18 DNAs are the predominantly associated 
with cervical carcinoma. Thus, HPV-6 and HPV-11 are referred to 
as low-risk (with respect to the cervical cancer) and HPV-16 and 
HPV-18 are referred to as the high-risk types. 

 E6 is one of the two oncoproteins of HPV that are responsible 
for HPV-mediated malignant cell progression, leading ultimately 
to an invasive carcinoma. Protein E6 acts as an oncoprotein in the 
high-risk HPVs and promotes tumorigenesis by stimulating cellu-
lar degradation of the tumor suppressor p53 via formation of a 
trimeric complex comprising E6, p53, and the cellular ubiquitina-
tion enzyme E6AP [ 34 ,  35 ]. In addition, E6 displays numerous 
activities unrelated to p53. These include but are not limited to the 
recognition of a variety of other cellular proteins, such as transcrip-
tion coactivators p300/CBP [ 36 ,  37 ] and ADA3 [ 38 ]; transcrip-
tion factors c-Myc [ 39 ] and IRF3 [ 40 ]; replication protein hMCM7 
[ 41 ]; DNA repair proteins MGMT [ 42 ]; protein kinases PKN [ 43 ] 
and Tyk2 [ 44 ]; Rap-GTPase activating protein E6TP1 [ 45 ]; tumor 
necrosis factor receptor TNF-R1 [ 46 ]; apoptotic protein Bak [ 47 ]; 
clathrin-adaptor complex AP-1 [ 48 ]; focal adhesion component 
paxillin [ 48 ] calcium-binding proteins E6BP [ 49 ], and fi bulin-1 
[ 50 ]; and several members of the PDZ protein family including 
hDLG [ 51 ], hScrib [ 52 ], MAGI-1 [ 53 ], and MUPP1 [ 54 ]. 
Furthermore, E6 activates or represses several cellular or viral tran-
scription promoters [ 40 ,  55 – 57 ], e.g., it induces transcriptional 
activation of the gene encoding the retrotranscriptase of human 
telomerase [ 58 ,  59 ]. In addition, E6 recognizes four-way DNA 
junctions [ 60 ,  61 ]. The function of the low-risk HPV E6 is less 
well studied. However, the low-risk E6 lacks a number of activities 
which correlate with the oncogenic activity of the high-risk HPV 
E6. For example, the low-risk E6 does not bind PDZ proteins [ 51 ] 
or E6TP1 [ 45 ] and does not target p53 for degradation [ 34 ,  62 ]. 
Like the high-risk E6, the low-risk E6 binds MCM7 [ 41 ] and Bak 
[ 47 ] and inhibits p300 acetylation of p53 [ 63 ]. 

 Sequence alignments of E6 proteins from numerous HPV sub-
types suggested the presence of two zinc-binding motifs, which are 
37 residues long regions that contain four cysteines distributed in 

4.1  E6 Protein
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a CxxC-(29x)-CxxC motif [ 64 ]. The sequence of E6 protein can 
be divided into fi ve regions [ 65 – 68 ]: the N-terminal tail (residues 
1–36), the N-terminal zinc-binding motif (residues 37–73), the 
linker region (residues 74–110), the C-terminal zinc-binding motif 
(residues 110–146), and the C-terminal tail (residues 147–158) 
(using the 158-residue numbering of HPV-16 protein E6). Based 
on the now available structural data on the N- and C-terminal 
domains of E6 is has been concluded that this protein contains two 
well-structured regions that correspond to functional domains 
(residues 12–71 and 80–143) and three unstructured fragments, 
N-tail (residues 1–11), C-tail (residues 144–153), and the interdo-
main linker (residues 72–80) [ 69 ]. 

 Earlier, based on the bioinformatics analysis of proteins from 
the low- and high-risk HPVs it has been concluded that high-risk 
HPVs are characterized by the increased amount of intrinsic disor-
der in transforming proteins E6 and E7 [ 70 ,  71 ]. In agreement 
with these earlier studies, our analysis using MFDp2 revealed the 
noticeable difference in the disorder levels of E6 proteins from 
HPV-6 (3.3 %) and HPV-16 (14.6 %). The most disordered parts 
of the E6 from HPV-16 are its N- and C-terminal tails ( see  Fig.  5 ). 
Since the major structural difference between the E6 proteins from 
the low- and high-risk HPVs is the presence of disordered tails in 
the high-risk HPV proteins, and since the high-risk E6 proteins are 
characterized by a broader functional spectrum, it is tempting to 
hypothesize that the higher binding promiscuity of the E6 proteins 
from high-risk HPVS is due to the intrinsically disordered nature 
of their N- and C-terminal regions.

  Fig. 5    MFDp2 predictions for the HPV-6 (UniProt ID: P06462) and HPV-16 (UniProt ID: P03126) proteins. 
Ordered and disordered residues are shown on  green  and  red  background, respectively. The graphical repre-
sentation of predicted disorder along the HPV-16 protein sequence is shown below ( see   Note 10 )       
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     PTEN, a 403 amino acid protein/lipid phosphatase, is the second 
most frequently mutated tumor suppressor after p53 [ 72 ]. PTEN 
acts as a dual-specifi city protein phosphatase, dephosphorylating 
tyrosine-, serine-, and threonine-phosphorylated proteins and also 
functions as a lipid phosphatase that converts phosphatidylinositol 
(3–5)-triphosphate (PtdIns(3–5)P3 or PIP3) to phosphatidylinositol 
4,5-bisphosphate (PtdIns(4,5)P2 or PIP2). PTEN regulates the 
Phosphoinositide 3-Kinase/Akt/mammalian Target Of Rapamycin 
(PI3K/Akt/mTOR) pathway involved in oncogenic signaling, 
cell proliferation, survival and apoptosis, which are under the 
control of several growth factors [ 73 ]. Its protein phosphatse 
activity is under investigation and it was recently shown that PTEN 
autodephosphorylates itself utilizing its protein phosphatase 
activity [ 74 ]. Within the nucleus, PTEN maintains chromosomal 
stability during cell division [ 75 ]. PTEN loss causes uncontrolled 
cell proliferation and accumulation of mutations in cells, causing 
cancer. Indeed, defi ciency and dysregulation of PTEN drives 
endometrial, prostate and brain cancers, and causes neurological 
defects [ 76 – 79 ]. 

 The lipid phosphatase activity of PTEN is modulated via mem-
brane association [ 80 ]. The active form of PTEN anchors to the 
plasma membrane via its PIP2 binding module (PBM) and C2 
domain, providing conformational accessibility to the catalytic 
phosphatase domain that converts PIP3 to PIP2 [ 80 ]. Cancer 
causing mutations in PTEN may occur within or outside of the 
catalytic domain; mutations of the latter type inhibit PTEN func-
tion by preventing its membrane association [ 81 ]. 

 Crystal structure of the central fragment of PTEN (amino acid 
position 7–353) was determined [ 82 ]. In spite of many attempts, the 
structure of three regions, i.e., the N-terminus (residues 1–13), the 
CBR3 loop (residues 280–314), and the C-terminal tail (residues 
354–403), remains undetermined due to their highly dynamic nature 
[ 82 ]. Of particular interest is the C-tail which has been recently 
found to regulate PTEN intra-molecular interactions that dictate its 
membrane association, function, and stability through multiple 
phosphorylation events mediated by several kinases [ 83 – 85 ]. In 
agreement with this structural data, computational analysis with 
MFDp2 revealed that this protein possesses 36 % disordered resi-
dues,  see  Fig.  6 . In fact, PTEN is a hybrid protein that by prediction 
contains seven short (<30 residues) disordered segments and one 
long (>60 residues) C-terminally located disordered region. 
Importantly, most of the predicted disordered regions of PTEN 
(residues 1–17, 38–49, 73–78, 89–99, 112–118, 158–163, 167–
192, and 341–403) correspond either to the terminal segments 
(residues 1–17 and 351–403) that were experimentally shown to 
be disordered or to the fl exible loops (residues 40–48, 72–84, 
91–98, and 160–169). As far as the CBR3 loop (residues 280–
314) is concerned, this segment is predicted to have increased fl ex-
ibility, since its disorder score is close to the 0.5 threshold.

4.2  PTEN Protein
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5        Notes 

     1.    Server accepts up to 100 protein sequences.   
   2.    Due to a limitation of one of the methods that is used to gen-

erate MFDp predictions (HHSearch), the sever sometimes 
cannot process neither extremely short (<15 residues) nor very 
long (>1,000 residues) protein chains. In the rare event when 
the server is unable to generate predictions, the results for pro-
teins for which predictions are ready will be displayed, and pro-
teins which were not predicted will have appropriate annotation 
informing about the unavailability of the results.   

   3.    Direct hyperlink to the results is provided once the “Run 
MFDp2!” button is pressed. User should store this link for 
future reference. The same link is sent via e-mail, if the e-mail 
address was provided.   

   4.    The MFDp2’s execution time is approximately 5–15 min for 
an average size protein chain. The time is mostly determined 
by the runtime to run PSI-BLAST.   

   5.    Green letters represent residues predicted as ordered and red 
letters correspond to the predicted disordered residues. The 
border around a given protein is also color coded based on its 
disorder content, green border indicates proteins with low dis-
order content, whereas red border indicates protein with high 
disorder content.   

   6.    The predicted per-residue intrinsic disorder probabilities are 
also available in the raw form in the fi les that can be down-
loaded from the “Results summary” page.   

   7.    The profi le is color coded to ease the interpretation. Values of 
the abovementioned characteristics (conservation, secondary 

  Fig. 6    MFDp2 predictions for the PTEN protein (UniProt ID: P60484). Ordered and disordered residues are 
shown on  green  and  red background , respectively. The graphical representation of predicted disorder along 
the PTEN protein sequence is shown below ( see   Note 10 )       
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structure, etc.) which are associated with disordered residues 
are shown in red, while values associated with order are shown 
in green. The profi le includes the following information:
   (a)    SEQ—AA sequence, GREEN letters represent residues 

predicted as ordered, and RED letters correspond to the 
predicted disordered residues.   

  (b)    Pos—enumerates residues positions in the sequence. 
Number is displayed every ten residues, the last digit of the 
number overlaps with the enumerated residue.   

  (c)    R. Ent—per-residue conservation score expressed as rela-
tive entropy which is calculated using WOP matrix gener-
ated by PSI-BLAST   

  (d)    SS—three state Secondary Structure (SS) predicted by 
PSIpred (colors correspond to: blue—coil, red—alpha 
helix, yellow—beta sheet).   

  (e)    MFDp—disorder probability predicted by MFDp.   
  (f)    RSA—values of the relative solvent accessibility predicted 

by Real-SPINE3.   
  (g)    BLAST—probability of disorder assessed by PSI-BLAST 

alignment to the database with proteins with annotated 
disorder segments.       

   8.    Aligned template’s protein name is a clickable link that points 
to the PDB or DisProt entry for this protein.   

   9.    In the .csv fi le each line starts with a user-given protein name, 
the type of information that the line provides and the corre-
sponding information. These three fi elds are comma separated. 
Example .csv fi le follows: 

 DP00582,AA Sequence,Q,D,K,C,K,K,V,Y,E,… 
 DP00582,MFDp2 probabiliies,0.499,0.499,0.466,0.435,0.408,

0.386,0.366,0.348,0.33 1,… 
 DP00582,MFDp2 binary,0,0,0,0,0,0,0,0,0,…   

   10.    Each .fasta fi le starts with a header that identifi es format of the 
subsequent data, and then the data is outputted for each pro-
tein. Example .fasta fi le follows: 

 #File format: 
 # >Protein name 
 #AA Sequence 
 #MFDp2 probabilities—separated by comma 
 #MFDp2 binary 
 >DP00582 
 QDKCKKVYE… 
  0.499,0.499,0.466,0.435,0.408,0.386,0.366,0.348,0.331,…  
 000000000…         
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    Chapter 12   

 Modeling Protein–Protein Complexes Using the HADDOCK 
Webserver “Modeling Protein Complexes with HADDOCK” 

           Gydo     C.    P.     van     Zundert     and     Alexandre     M.    J.    J.     Bonvin    

    Abstract 

   Protein–protein interactions lie at the heart of most cellular processes. Determining their high-resolution 
structures by experimental methods is a nontrivial task, which is why complementary computational 
approaches have been developed over the years. To gain structural and dynamical insight on an atomic 
scale in these interactions, computational modeling must often be complemented by low-resolution exper-
imental information. For this purpose, we developed the user-friendly HADDOCK webserver, the inter-
face to our biomolecular docking program, which can make use of a variety of low-resolution data to drive 
the docking process. In this chapter, we explain the use of the HADDOCK webserver based on the real- 
life Lys48-linked di-ubiquitin case, which led to the 2BGF PDB model. We demonstrate the use of chemi-
cal shift perturbation data in combination with residual dipolar couplings and further highlight a few other 
cases where our software was successfully used. The HADDOCK webserver is available to the science 
community for free at haddock.science.uu.nl/services/HADDOCK.  

  Key words     Docking  ,   Protein–protein interactions  ,   Biomolecular complexes  ,   NMR  ,   Ubiquitinitation  

1      Introduction 

 Protein–protein interactions are at the basis of cellular function. In 
order to understand and manipulate the cell and its processes, 
insight into biomolecular interactions at an atomic scale is required. 
Major genomic and proteomic initiatives are working toward this 
goal. However, while the size of the human proteome is predicted 
to be in the order of 20,000, the interactome, the network of all 
interacting proteins, is estimated to be more around 650,000 [ 1 ], 
with additional levels of complexity linked to the dynamics of the 
assemblies and the localization and time of expression of their com-
ponents in the cell. To make things worse, crystallizing protein 
complexes has proven to be substantially more diffi cult than single 
chains; studying them by NMR is a nontrivial undertaking. To close 
the gap between the number of interactions and structural knowl-
edge about them, computational approaches complementary to 



164

experimental methods have been devised. One of these is protein–
protein docking which aims to predict the structure of a complex 
starting from atomic models of the unbound subunits. 

 Within the plethora of docking software available, one can dis-
tinguish between several classes. Most docking programs try to 
sample thoroughly the interaction space by generating conforma-
tions using computational methods such as correlation techniques 
(often FFT-based) or geometrical hashing, to name only a few. 
Their scoring functions are primarily based on shape and electro-
static complementarity [ 2 ]. Our docking software HADDOCK 
( H igh  A mbiguity- D riven  DOCK ing) [ 3 ,  4 ] takes a somewhat 
unique approach by being mainly data-driven, limiting the sam-
pling to the regions of the interaction space defi ned by the data. 

 HADDOCK is capable of using ambiguous experimental data 
to drive the docking process, such as, NMR chemical shift pertur-
bation (CSP) and mutagenesis data. It does this by transforming 
the data into ambiguous interaction restraints (AIRs) that defi ne a 
large network of ambiguous distances between residues expected 
to be involved in the binding mode without imposing any specifi c 
orientation on the components. Since the original publication [ 3 ] 
HADDOCK has been extended to handle other NMR sources of 
information such as residual dipolar couplings (RDCs) [ 5 ] diffu-
sion relaxation [ 6 ], and pseudo-contact shifts [ 7 ]. Other low- 
resolution data such as small angle X-ray scattering (SAXS) [ 8 ] and 
cross-link data from mass-spectrometry can also be used for scor-
ing and/or generating models. 

 In addition to using ambiguous and low-resolution informa-
tion, HADDOCK is also well known for its way of handling fl exi-
bility of the subunits and its fi nal refi nement in explicit solvent, 
which can either be water or, to represent a hydrophobic environ-
ment, DMSO [ 9 ]. Currently HADDOCK is the most cited 
 software in its category [ 2 ] and more importantly, one of the best 
performing docking software based on the CAPRI (Critical 
Assessment of PRediction of Interactions) competition, a 
community- wide experiment that allows comparison of the success 
of docking software by doing blind tests [ 10 ,  11 ]. 

 HADDOCK has been used to generate quite a number of 
models deposited in the PDB (~100 to date). One of those struc-
tures is the Lys48-linked di-ubiquitin (Ub2) complex (PDB: 2BGF 
[ 5 ]). As is well known, ubiquitin plays a major role in the ubiquitin 
proteasomal pathway, which is the main mechanism of protein 
degradation in eukaryotic cells. It is also involved in many regula-
tory pathways. The minimal required signal for fl agging proteins 
to be degraded by the proteasome is Lys48-linked tetra-ubiquitin. 
To gain insight into the conformation of poly-ubiquitin in solu-
tion, Lys48-linked Ub2 has been investigated by NMR, which 
resulted in CSP, RDC, and  15 N-relaxation data [ 12 ]. 
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 In this chapter, we describe the steps to perform the docking of 
Lys48-linked Ub2 using HADDOCK, based on CSP and RDC 
data, mimicking the docking process that led to the 2BGF model. 
In the Materials section, we provide information about the 
HADDOCK web server and also describe the data fi les needed to 
run this protocol. In the Methods section, we fi rst shortly describe 
the HADDOCK docking protocol, followed by a step-by-step 
tutorial describing how we tackled the Lys48-linked Ub2 case using 
the HADDOCK web server. In the Notes section, we provide more 
in-depth information about specifi c aspects of the docking process. 
We end this chapter with a Case Studies section illustrating some 
biologically relevant cases where HADDOCK was successfully used.  

2    Materials 

  The fi rst requirement to run this protocol is of course access to the 
HADDOCK software. This can be either through a local copy run-
ning on a desktop computer or cluster or more conveniently using 
the HADDOCK web server, which will be used in this protocol. 
The HADDOCK software consists of a collection of Python and 
CNS (Crytallography and NMR System) [ 13 ,  14 ] scripts with 
additional tools written in various languages. CNS is used as the 
computational engine that performs the computationally intensive 
part such as the energy calculations, minimizations and molecular 
dynamics refi nement stages, while the Python routines are used for 
controlling the data fl ow, scoring and performing various pre- and 
post-processing tasks. 

 To facilitate the use of the software, we have developed the 
user-friendly HADDOCK web server [ 15 ] accessible at   haddock.
science.uu.nl/services/HADDOCK    . Besides eliminating possible 
dependencies, it also comes with additional error checking and 
other automatic procedures, which makes it more robust. A special 
version of the web server making use of European Grid Initiative 
(EGI,   www.egi.eu    ) resources is also available via the WeNMR web 
site (  www.wenmr.eu    ) [ 16 ]. To use our web server one fi rst needs 
to register for a user-account. The user-accounts come in various 
fl avors, each giving a different amount of control over the docking 
and its associated parameters:

 ●    The    Easy interface      ,  which is usually suffi cient and the most 
straightforward to use, allows the user to upload PDB struc-
tures and specify the active and passive residues that defi ne the 
interface of each molecule.  

 ●   The    Expert interface      gives some more control over the docking. 
In addition to the features available to the Easy interface, it 
allows the user to manually defi ne the histidine protonation 
states and to specify which residues should be treated as semi- or fully 
fl exible (both steps are performed automatically at the Easy level). 

2.1  Software 
Requirements

Modeling Protein–Protein Complexes Using the HADDOCK Webserver…

http://haddock.science.uu.nl/services/HADDOCK
http://haddock.science.uu.nl/services/HADDOCK
http://www.egi.eu/
http://www.wenmr.eu/
http://haddock.science.uu.nl/services/HADDOCK/haddockserver-easy.html
http://haddock.science.uu.nl/services/HADDOCK/haddockserver-expert.html
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Furthermore, it permits the upload of user-defi ned  distance, 
dihedral and hydrogen-bond restraints fi les and fi ne- tuning of 
various restraining and sampling parameters, e.g., the number 
of structures generated at the various stages.  

 ●   Finally, the    Guru interface      allows the user to tweak every 
parameter as if one was running a local version of HADDOCK. 
This is also the interface that gives access to additional restraints 
such as RDCs and relaxation anisotropy data. Symmetry can 
also be imposed at this level. In addition, it gives full control 
over almost all parameters including the various force con-
stants and scoring weights for the docking.    

 Next to these three main interfaces, the server provides four 
additional interfaces:

 ●    A    Prediction interface     , similar in its input requirements to the 
Easy interface, but with settings tuned for the use of bioinfor-
matics predictions for docking [ 17 ].  

 ●   A    Refi nement interface      ,  which only performs the fi nal refi ne-
ment in explicit solvent for a binary complex (the provided 
structures should thus already be in proper orientation).  

 ●   A    Multibody interface      ,  which allows the simultaneous docking 
of up to six different molecules.  

 ●   A    File upload interface     , which allows a one click upload of a 
parameter fi le previously saved from the web server (useful to 
repeat a docking with slight changes in parameter settings for 
example), and a tool to generate ambiguous distance restraints, 
especially useful for multicomponent (>2) systems.    

 For this tutorial the user should have registered for access to 
the HADDOCK web server and requested guru access in order to 
be able to use the Guru interface.  

  The main data requirements to perform a docking run are atomic 
structures of each of the subunits of the complex in PDB format. 
These should preferably be structures determined by X-ray crystal-
lography or NMR spectroscopy, but homology models may also be 
used [ 18 ]. For this particular protocol, we use as starting struc-
tures the NMR-determined ubiquitin structure 1D3Z, which cor-
responds to an ensemble of 10 solution structures, and 1AAR, 
which is a crystal structure with two ubiquitin chains (thus in total 
an ensemble of 12 structures). The experimental data to drive the 
docking consist of distance restraints derived from NMR CSP data 
and orientational restraints derived from RDC data [ 12 ]. All nec-
essary fi les can be found in the corresponding Extra Material at 
  extras.springer.com     from where you can download an archive con-
taining the mentioned PDB fi les, already prepared for docking, the 
CSP and RDC data fi les and the HADDOCK/CNS restraint fi les 
derived from these data fi les.   

2.2  Data 
Requirements
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3    Methods 

 In this section, we fi rst shortly describe the docking protocol that 
HADDOCK uses so that the user gets a better insight into what 
happens during the docking process. This helps in understanding 
the parameters. In the second part, we discuss how to perform the 
Ub2 docking using CSP and RDC data using the web server. It is 
assumed that the user has downloaded the tutorial folder from the 
Extra Materials at   extras.springer.com     

  Docking in HADDOCK is performed in three consecutive stages:

    1.     Rigid body docking  (it0): the subunits are placed randomly in 
space with an approximate spacing of 25Å between them and 
subjected to a rigid body energy minimization to form the 
complex.   

   2.     Semifl exible refi nement  (it1): the top scoring models (default 
200 out of 1,000) in the it0-stage are refi ned using a simu-
lated annealing in torsion-angle space procedure during which 
the interface is treated as fl exible (fi rst side chains only, then 
both side-chains and backbone).   

   3.     Flexible refi nement in explicit solvent  (itw): in this fi nal stage, 
the models from it1 are subjected to a gentle restrained 
molecular dynamics simulation in an explicit solvent shell 
(either water or DMSO as membrane mimic).     

 For further details refer to refs. [ 3 ,  4 ].  

  In this section, we describe the process of setting up a docking run 
using the   Guru interface     (  http://haddock.science.uu.nl/services/
HADDOCK/haddockserver-guru.html    ) of the web server. In 
order to make sense of the docking parameters, some knowledge 
about the Lys48-linked Ub2 complex is useful. It consists of two 
ubiquitin subunits that are linked together by a Gly76-Lys48 iso-
peptide bond. The subunit with the linked Gly76 is called the 
Distal Domain (ubiD) and the subunit with the linked Lys48 the 
Proximal Domain (ubiP).

    1.    Open an Internet browser and go to   haddock.science.uu.nl      /
services/HADDOCK    . Choose the Guru interface. This opens 
up the docking input screen as displayed in Fig.  1 . Sections 
can be expanded or folded by clicking with the 
 left-mouse- button on the double arrows on the right of each 
section name.

       2.    First give a name to your docking run. No spaces or special 
characters other than “-” or “_” are allowed! We named the 
run di-ubiquitin_CSP_RDC.   

3.1  The HADDOCK 
Docking Protocol

3.2  Docking Lys48- 
Linked Ub2 Using the 
HADDOCK Web Server
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  Fig. 1    Overview of the HADDOCK webserver Guru interface (accessible from   http://haddock.science.uu.nl/
services/HADDOCK    ). Each section can be expanded by clicking on the  double arrows  on the  right  of the various 
sections in  red . In the current view, the distance restraints section is expanded, revealing the forms used to 
upload the user-defi ned distance restraints fi le and various control parameters related to this class of restraints 
(color fi gure online)       
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   3.    Secondly we have to defi ne the PDB fi le of the fi rst molecule, 
ubiD, to be docked. Expand the section  First molecule.  At the 
entry  Where is the structure provided?  click on the dropdown 
menu next to it and select  I am submitting it . Set  Which chain 
of the structure must be used?  to  A  ( see   Note 1 ). Next to  PDB 
structure to submit  press the  Browse…  button and move to the 
location where the tutorial data were unpacked. Go to 
the  pdbs/ directory and select the  1AAR_1D3Z_ensemble.pdb  
fi le ( see   Note 2 ).   

   4.    Specify the interface by defi ning active and passive residues ( see  
 Note 3 ). The residues that are considered active from the CSP 
data are listed in Table  1 . Fill in the numbers of the active resi-
dues in the textbox next to  Active residues . Since CSP data 
typically does not show all residues participating in the bind-
ing we also want to defi ne passive residues. Fill in the residue 
numbers in the textbox next to  Defi ne passive residues  as given 
in Table  1  ( see   Note 4 ).

       5.    Specify the  Segment ID to use during the docking  for the fi rst 
molecule as A ( see   Note 5 ).   

   6.    HADDOCK distinguishes between semi- and fully fl exible 
segments ( see   Note 6 ). The semifl exible segments will be 
determined automatically during this docking run, but the 
fully fl exible segments need to be defi ned manually. In this 
particular case, we want to give more freedom to residues 
involved in the isopeptide bond and also to the unstructured 

       Table 1  
  Data used during the docking   

 Distal domain (ubiD) 
 Active residues  8, 9, 46, 47, 48, 49, 51, 68, 72, 73 
 Passive residues  6, 10, 11, 12, 39, 52, 53, 54, 71, 74, 75, 76 
 RDCs  46 NH RDCs 
 Fully fl exible segments  72–76 

 Proximal domain (ubiP) 
 Active residues  8, 9, 47, 48, 51, 68, 70, 72, 73, 74, 76 
 Passive residues  6, 10, 11, 12, 39, 46, 49, 52, 53, 54, 71, 75 
 RDCs  46 NH RDCs 
 Fully fl exible segments  48; 72–76 

 Intervector projection angle restraints (VEAN)  Number of restraints 
 Intermolecular  981 
 Intramolecular  972 

 Isopeptide bond (Gly76–Lys48)  Unambiguous restraint distance (Å) 
 O–NZ  2.25 ± 0.05 
 C–NZ  1.35 ± 0.05 
 C–CE  2.45 ± 0.05 
 CA–NZ  2.45 ± 0.05 
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C-terminus. Expand the  Fully fl exible segments  subsection. 
Below  Segment 1  set  First number  to  72  and  Last number  to 
76. This will make residues 72–76, to which the second ubiq-
uitin is attached, fully fl exible.   

   7.    The C-terminus of ubiD should be uncharged, since Gly76 is 
covalently bound to ubiP. So uncheck  The C-terminus of your 
protein is negatively charged  box.   

   8.    Expand the  Second molecule  section. Since we are dealing with 
a peptide-linked homodimer, the  Structure defi nition  of the 
second molecule, ubiP, will be the same as ubiD. Set these 
parameters identical to the values as in the  First molecule  sec-
tion. However, another set of active and passive residues were 
derived for this chain, as displayed in Table  1 . Again, fi ll in the 
active and passive residue numbers in their respective boxes. 
Set  Segment ID to use during the docking  to  B.  For this chain 
we defi ne two segments to be fully fl exible, namely residue 48, 
the lysine, and the unstructured C-terminal tail. Set  First num-
ber  and  Last number  for  Segment 1 –48 and for  Segment 2 –72 
and 76, respectively.   

   9.    In addition to the AIRs that HADDOCK generates using the 
active and passive residues, additional distance restraint fi les 
can be uploaded. In this particular case, we want to include 
the Gly76-Lys48 isopeptide bond as an unambiguous restraint. 
These restraints are predefi ned in the fi le  restraints/ubiD- 
ubiP_pepbond.tbl  and shown in Table  1  ( see   Note 7 ). To 
upload this fi le, unfold the  Distance restraints  section and click 
on the  Browse…  button next to  You can supply a HADDOCK 
restraints… ( unambiguous restraints) . Point to the fi le located 
on disk. Uncheck the  Randomly exclude a fraction of the 
ambiguous restraints (AIRs)  box ( see   Note 8 ).   

   10.    Expand the section  Sampling parameters.  Increase the  Number 
of structures for rigid body docking  to 1,440 (we have 12 starting 
models for each ubiquitin, giving 144 combinations, each sam-
pled ten times, which amounts to 1,440 models) ( see   Note 9 ). 
The other default sampling parameters do not need to be 
changed. So after the rigid body docking stage the top 200 
scoring structures will be refi ned.   

   11.    Go to the  Restraints energy constants  section and in the  Energy 
constants for unambiguous restraints  subsection change the 
entries  hot, cool1, cool2 , and  cool3  to 0.1, 1, 5, and 5, 
respectively.   

   12.    Unfold the  Residual dipolar couplings  section. There are three 
RDC restraint fi les in the  restraints/ directory: two with 
Intervector Projection Angle (VEAN) restraints and the other 
with direct SANI restraints ( see   Note 10 ). Expand the  Residual 
dipolar couplings 1  subsection. Set  RDC type  to VEAN. 
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Expand the  SANI energy constants  subsection and set  First 
iteration  to 0 and  Last iteration  to 1. The fi le containing the 
intermolecular VEAN restraints is named  ubiDP_vean_inter.
tbl  (see Note 11). Upload the fi le by clicking on the  Browse…  
button and selecting it.   

   13.    Expand the  Residual dipolar coupling 2  subsection to upload 
the second set of RDC restraints, which are intramolecular 
VEAN restraints. Set  RDC type  to  VEAN  again. In the  SANI 
energy constants  subsection change  First iteration  and  Last 
iteration  both to 1. Again, upload the restraints by clicking on 
 Browse…  and select the r estraints/ubiDP_vean_intra.tbl  fi le.   

   14.    The third set of RDC restraints contains the previous two com-
bined but as a SANI restraint. For this, set the  RDC type  to 
SANI and the  R  and  D  value to 0.057 and −11.49, respectively. 
The SANI restraints will only be used in the fi nal refi nement in 
explicit solvent (itw). Change the  First iteration  entry to 2 in 
the  SANI energy constants  subsection. The SANI restraint fi le is 
named  ubiDP_sani.tbl , so defi ne the  RDC fi le  accordingly.   

   15.    We are now ready to send the docking run to the HADDOCK 
server. Fill in your Username and Password at the bottom of 
the screen and press the  Submit Query  button. This sends the 
information to the server and adds the docking run to the 
queue once properly validated. You should be redirected to a 
new page that allows you to download a HADDOCK param-
eter fi le containing all parameters and data for your docking 
run (it is recommended to save it—this fi le can be uploaded 
again to the File upload interface). The extra material contains 
an example of such a fi le. The page also gives a link to the page 
that shows the current status of the docking run and where 
the fi nal results will appear. A confi rmation message will be 
sent to the email address provided at registration.   

   16.    After the docking run has completed, typically after a few 
hours depending on the server load, an email is sent informing 
you where to fi nd the results (this is the same link as provided 
by the server page upon successful submission). By following 
the link in the email you will be redirected to the HADDOCK 
web server results page, as shown in Fig.  2 .

       17.    The result page fi rst displays the name of your docking run 
and its status. It provides you a link where you can download 
the complete docking run as a gzipped tar fi le for further man-
ual analysis. Also the docking parameter fi le containing all of 
your input data and parameter settings can be downloaded.   

   18.    After that a summary is given of the docking run, giving infor-
mation about the number of clusters created and how many 
water-refi ned models do cluster in these. In this case you 
should see four clusters containing almost all water-refi ned 
models ( see   Note 12 ).   
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  Fig. 2    Example view of a result page of the HADDOCK webserver. This view of the  top  part of the window shows 
the name of the docking run, its status, and gives information about the number of clusters found. Moreover, 
it provides detailed information on a per-cluster basis, with the values of the HADDOCK score and its various 
components indicated. In this view only the top scoring cluster is displayed       
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   19.    This is followed by a more rigorous analysis of each cluster. 
Only the ten best scoring clusters are shown maximally, so in 
this docking run all clusters are reported. The clusters are 
named sequentially based on their size, i.e., the largest cluster 
is named  Cluster 1 . However, the server returns the clusters in 
the order of their ranking based on the average HADDOCK 
score of the top four members of each cluster. The best scoring 
cluster, i.e., the cluster with the smallest HADDOCK score, is 
the fi rst in the list. For this run  Cluster 2  appears at the top.   

   20.    Each cluster section reports the various average scores with 
standard deviations based on the top four scoring structures of 
each cluster, as shown in Fig.  2 . First the HADDOCK score 
( see   Note 13 ) and the cluster size are given, then the RMSD 
value of the top four members of the cluster with respect to 
the overall lowest-energy structure. This is followed by the 
values of the individual energy terms used in the HADDOCK 
score, such as the van der Waals, electrostatic, desolvation and 
restraints violation energies, and ends with the buried surface 
area (BSA) in ångstrom ( see   Note 14 ) and the cluster  Z -score 
( see   Note 15 ). In addition, links are provided to the PDB fi les 
of the four best scoring structures in the cluster, which can be 
viewed online with Jmol or downloaded for further analysis.   

   21.    After the individual cluster analysis, the results are displayed 
graphically in the  Results analysis  section, as displayed in Fig.  3 . 
When you click on a plot a larger version appears in the browser. 
In each plot a dot represents a model and the color of the dot 
indicates the cluster to which it belongs. The cluster averages 
with standard deviations are displayed as colored triangles with 
associated error bars, based again on the top four scoring struc-
tures in the cluster. The fi rst three plots show the HADDOCK 
score versus the interface-ligand- RMSD (i-l-RMSD), the 
i-RMSD, and the l-RMSD, respectively ( see   Note 16 ). 
The next plot displays the HADDOCK score versus the frac-
tion of common contacts (FCC) ( see   Note 17 ). The last three 
plots show the van der Waals, electrostatics, and AIRs energy 
versus i-RMSD.

       22.    The web page ends with some supplementary information, 
which explains the abbreviations used and notifi es you that the 
HADDOCK results will be deleted after a week. So make sure 
to download the docking run.   

   23.    Congratulations, you performed and analyzed your fi rst dock-
ing run using CSP and RDC data! To see whether everything 
worked out nicely you can compare the resulting structures to 
the published 2BGF PDB fi le, which can be downloaded from 
the PDB website (  http://www.pdbe.org    ).    
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  Fig. 3    Example view of a result page of the HADDOCK webserver. This view is of the  bottom  part of the window, 
which shows a graphical analysis of the results, displaying various scores and energy terms as well as cluster 
averages versus various RMSD values calculated with respect to the best scoring solution. The various clusters 
are color-coded. By clicking on a specifi c plot, an enlarged version is displayed for better viewing       
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4       Case Studies 

 The HADDOCK software has been used to solve quite a number 
of biologically relevant questions as illustrated by the high number 
of citations and the resulting models deposited in the PDB. One of 
these cases involved plectasin, a fungal defensin, and the bacterial 
cell-wall precursor Lipid II [ 22 ]. Defensins are host defense pep-
tides that are part of the innate immune system and have antibiotic 
activity. Usually their activity is explained by their amphipathic 
structure, which binds and subsequently disrupts the microbial 
cytoplasmic membranes. Surprisingly, it was discovered that plecta-
sin targets the bacterial cell-wall precursor Lipid II. HADDOCK 
was used, including CSP data, to unravel the primary binding mode 
of plectasin to Lipid II. The resulting model revealed that the inter-
action involved, via hydrogen bonding, the pyrophosphate moiety 
of Lipid II and several amide protons of plectasin. The resulting 
docking model, in combination with other experimental data, 
strongly supports a model in which plectasin gains affi nity and spec-
ifi city by binding to the solvent-exposed part of Lipid II, while its 
hydrophobic part interacts with the membrane (which was also 
revealed by NMR CSP data). Such studies can provide important 
insights for the development of new classes of antibiotics that are 
highly required considering the increase of resistant bacterial strains. 

 Other application examples of HADDOCK can be found in the 
latest CAPRI rounds [ 18 ,  23 ], where models of interactions have 
to be predicted in a blind manner. These are then compared to the 
actual crystal structure of the complex based on well-defi ned crite-
ria. These criteria are i-RMSD, l-RMSD (as explained in  Note 16 ), 
and the fraction of native contacts, which is the  percentage of com-
mon residue contacts found in the binding mode of the predicted 
model with the crystal structure [ 11 ]. The models are ranked as 
either incorrect, acceptable, medium, or high quality. In the most 
recent CAPRI evaluation [ 23 ,  24 ], out of ten complexes that the 
HADDOCK group predicted, nine were of at least acceptable qual-
ity. This is a remarkable performance especially considering that 
several of the targets required fi rst prediction of the structure of one 
of the components [ 18 ]. The modeling challenges were diverse and 
consisted of protein–protein complexes, dimers as well as multim-
ers, a protein–polysaccharide complex, the prediction of the hydra-
tion structure at a protein–protein interface and even involved 
engineered interactions in designed complexes. 

 In conclusion, HADDOCK has gained a unique place among 
both the docking and experimental communities by being data- 
driven and having the abilities to handle fl exibility and incorporate 
explicit water during the modeling process. Its user-friendly 
web interface makes it easily accessible to the science community. 
This is refl ected by its large user group and the diverse scientifi c 
endeavors where it has been used to answer and provide insight 
into biology questions.  
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5    Notes 

     1.    It is important to check the chainID values in the PDB fi le 
that you are uploading. If the chainID column is empty, sim-
ply set  Which chain of the structure must be used?  to  Any.  In this 
case, the ubiquitin models consist of only one chain denoted A.   

   2.    The HADDOCK web server can deal with ensembles in PDB 
fi les as long as each model has the same number of residues 
and atoms. The PDB fi le  1AAR_1D3Z_ensemble.pdb  contains 
the 10 original NMR models from the 1D3Z entry and 2 
from the 1AAR entry, making a total of 12 models. The mod-
els in the PDB fi le are separated by  MODEL / ENDMDL  state-
ments. The two 1AAR chains were renumbered and processed 
to match the number of atoms and residues with 1D3Z and to 
make it compliant with the web server.   

   3.    Active and passive residues are handled differently within the 
HADDOCK protocol as follows. HADDOCK generates dis-
tance restraints between the active residues of the fi rst molecule 
and active and passive residues of the second molecule and vice 
versa. This means that, for each chain, active residues “feel” all 
active and passive residues of all other chains (unless specifi c 
chain selections are made using the  generate AIR  web server tool 
(  http://haddock.science.uu.nl/services/GenTBL    )   ). Contrarily, 
passive residues only “feel” active  residues of other chains.   

   4.    The active and passive residues were determined using 1H and 
15N CSP data as follows. An active residue has a combined 
1H and 15N CSP above average (0.033 ppm) and its back-
bone or side chain a relative solvent-accessible surface area of 
higher than 50 %. The solvent-accessible neighboring residues 
were defi ned as passive. Instead of manually selecting active 
residues, these can be automatically defi ned using the 
  SAMPLEX     software, which we developed ( see  ref.  19 ).   

   5.    Make sure that the  Segment ID to use during the docking  is the 
same as was used during the creation of the restraint fi les. We 
gave ubiD the segment ID  A  and ubiP the segment ID  B  
when creating the restraints.   

   6.    The HADDOCK software distinguishes between semi- and 
fully fl exible residues. Semifl exible residues become fl exible 
during the last two stages of it1: First only their side-chain 
dihedral angles are allowed to vary, and then in the fi nal simu-
lated annealing stage both side chain and backbone are treated 
as fl exible. Fully fl exible residues are treated as fl exible 
(both backbone and side-chain dihedral angles) from the start 
of the fl exible refi nement stage (it1), i.e., also during the high 
temperature searches.   
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   7.    The Gly76-Lys48 isopeptide bond is incorporated in this 
docking run as unambiguous distance restraints instead of 
treating it as a covalent bond ( see  Table  1 ). This allows the 
separation of the two ubiquitin chains at the beginning of the 
docking for a better sampling of conformations.   

   8.    When  Randomly exclude a fraction of the ambiguous restraints 
(AIRs)  is checked (which is the case by default), a given per-
centage of restraints (default 50 %) is randomly discarded for 
each docking trial. In this way, “bad” data will be removed 
from time to time, ideally leading to better solutions. Thus, it 
provides a way to deal with false-positive predictions. When 
using bioinformatics predictions, this percentage can be as large 
as 87.5 % (default value on the   Prediction interface     server).   

   9.    The entry  Number of structures for rigid body docking  defi nes 
the number of structures that are written to disk after the rigid 
body energy minimization. However, the parameter  Number 
of trials for rigid body energy minimization  gives the number of 
internal trials for the rigid body docking procedure. In addi-
tion, if the  Sample 180° rotated solutions during rigid body EM  
box is checked then 180° rotated solutions with respect to the 
normal to the interface are automatically sampled. So, effec-
tively, each model written to disk is the result of 10 docking 
trials (5 trials × 2 rotated solutions). For the di-ubiquitin case, 
the total number of models that are sampled amounts to 
1,440 × 5 × 2 for a total of 14,400, or 100 docking poses per 
combination of starting structures (12 × 12).   

   10.    The RDC restraints are incorporated into HADDOCK in two 
different ways. The fi rst option is as direct SANI restraints 
where the two molecules are orientationally restrained with 
respect to an externally defi ned tensor. However, the RDCs 
can also be interpreted as Intervector Projection Angle 
Restraints [ 20 ] or VEAN restraints in CNS. This defi nes ori-
entational restraints directly between two residues, eliminating 
the need of the cumbersome external tensor formalism, which 
has also been shown to facilitate the sampling in the initial 
structure calculation stages [ 20 ]. The use of VEAN restraints 
during the rigid body and fi rst refi nement stage and SANI 
restraints in the last refi nement stage in water has been shown 
to be slightly superior in comparison to using only SANI or 
VEAN restraints [ 5 ].   

   11.    Since the VEAN restraints represent intervector projection 
angles between two residues, the restraints can be divided into 
intermolecular and intramolecular restraints. During the rigid 
body energy minimization stage the intramolecular restraints 
serve no purpose since each molecule is kept rigid and so cannot 
change its conformation. Because of this, the intermolecular 
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restraints are used during the rigid body and fi rst refi nement 
stage, while the intramolecular restraints are only used in the 
fi rst refi nement stage.   

   12.    Usually not all generated models do cluster, since a cluster 
should consist of minimally four structures maximally sepa-
rated by an interface-ligand-RMSD ( see   Note 16 ) cut-off dis-
tance of 7.5 Å (by default). The minimal cluster size or cut-off 
value can be changed in the  Parameters for clustering  section 
at the Guru interface.   

   13.    The HADDOCK score is a heuristic empirical function, which 
is a linear combination of several physical and empirical energy 
terms and a BSA term in the fi rst stages. The HADDOCK 
score puts different weights on its components during each 
docking stage.   

   14.    The BSA is calculated as follows. First the solvent-accessible 
surface area is calculated of each of the separated subunits and 
the modeled complex. The resulting BSA is the difference 
between the sum of the individual surface areas and the mod-
eled complex.   

   15.    The  Z -score indicates how many standard deviations from the 
average a cluster is located in terms of its HADDOCK score. 
So the more negative the better.   

   16.    All reported RMSDs are calculated with respect to the lowest 
scoring model (the best model according to the HADDOCK 
score). The i-l-RMSD, which is used for clustering if RMSD 
clustering is defi ned, is calculated on the interface backbone 
atoms of all chains except the fi rst one after fi tting on the back-
bone atom of the interface of the fi rst molecule. The i-RMSD 
is calculated by fi tting on the backbone atoms of all the resi-
dues involved in intermolecular contacts within a cutoff of 
10 Å. The l-RMSD is obtained by fi rst fi tting on the backbone 
atoms of the fi rst molecule and then calculating the RMSD on 
the backbone atoms of the remaining chains.   

   17.    The FCC is the fraction of residue–residue contacts that two 
structures have in common. It can be used to cluster struc-
tures, and is faster, biologically more relevant, and has advan-
tages in the case of symmetrical multimers in comparison to 
RMSD clustering [ 21 ]   .         
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    Chapter 13   

 Predicting the Structure of Protein–Protein Complexes 
Using the SwarmDock Web Server 

           Mieczyslaw     Torchala     and     Paul     A.     Bates    

    Abstract 

   Protein–protein interactions drive many of the biological functions of the cell. Any two proteins have the 
potential to interact; however, whether the interactions are of biological signifi cance is dependent on a 
number of complicated factors. Thus, modelling the three-dimensional structure of protein–protein com-
plexes is still considered to be a complex endeavor. Nevertheless, many experimentalists now wish to boost 
their knowledge of protein–protein interactions, well beyond complexes resolved experimentally, and for 
them to be able to do so it is important they are able to effectively and confi dently predict protein–protein 
interactions. The main aim of this chapter is to acquaint the reader, particularly one from a non- 
computational background, how to use a state-of-the-art protein docking tool. In particular, we describe 
here the SwarmDock Server (SDS), a web service for the fl exible modelling of protein–protein complexes; 
this server is freely available at:   http://bmm.cancerresearchuk.org/~SwarmDock/    . Supplementary fi les 
for Case Studies are provided with the chapter and available at extras.springer.com.  

  Key words     SwarmDock  ,   Protein–protein complexes  ,   Protein–protein interactions  ,   Protein docking  , 
  Protein structure prediction  

1      Introduction 

 Protein–protein interactions are essential for the correct function-
ing of many biological processes, such as enzymatic catalysis and 
the immunological responsiveness of a cell to pathogens. However, 
for the protein interactome of essentially every species, including 
the human, experimental structures exist for only a small fraction 
of the possible functional complexes that are likely to form. 
Therefore, to boost studies on particular biological problems, 
effective use of theoretical tools for predicting the structure of 
 protein–protein complexes is of considerable importance. 

 In general, modelling protein–protein interactions remains a 
complex problem, demanding careful design of powerful compu-
tational methods, from binding site prediction to generating and 
ranking (scoring) docked poses. Scoring docked poses, or potential 
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solutions, is particularly important since a handful of correct 
 solutions in a stack of a few thousand incorrect solutions may sim-
ply be missed, i.e., even if the particular docking algorithm is able 
to fi nd correct solutions, the subsequent scoring scheme may not 
be able to place the correct solutions in a ranked list of top ten best 
solutions. A notable complicating factor for robust ranking of 
docked model poses is the number of conformational states that 
need to be searched, involving all coordinates for every atom form-
ing the system. An experimental structure, as deposited in the 
Protein Data Bank (PDB;   http://www.rcsb.org    ), is typically a 
single snapshot (X-ray structure) or a small ensemble of conforma-
tions (NMR structure) representing the system’s full dynamic 
capacity. During the docking process, protein components making 
up a complex may change their conformational state only slightly, 
usually with movements restricted primarily to the protein side 
chains, and we term such cases to be examples of “rigid-body 
docking.” On the other hand, more signifi cant conformational 
changes could naturally occur or be induced for one or more of the 
docking partners, involving a range of both side chain and protein 
backbone movements, which we term “medium” or “diffi cult” 
docking cases depending on the predicted degree of conforma-
tional changes required for stable complex formation. 

 There are a number of different docking tools available, in the 
form of stand-alone programs or web services. Some of them are 
regularly tested in the blind trial for protein–protein docking, Critical 
Assessment of PRediction of Interactions (CAPRI [ 1 ];   http://www.
ebi.ac.uk/msd-srv/capri/    ), where participants are typically given 
structures of receptor/ligand unbound molecules and asked to sub-
mit the best ten models for a complex that has been experimentally 
determined but for which the predictors have no knowledge. 
Predictors are expected to develop their own algorithms, which have 
usually been benchmarked against available experimental data, to 
test in these blind trials. An important database in this respect is 
provided by the Benchmark 4.0 dataset of protein–protein com-
plexes where 176 structures of protein receptor/ligand pairs, in 
their unbound and bound forms are made available [ 2 ]. 

 The quality of a docking tool is typically tested by docking 
unbound constituents and comparing each docked pose with the 
bound structure. Metrics used for such comparisons include calcu-
lating interface RMSD, ligand RMSD, and the fraction of native and 
nonnative contacts; this set of metrics enables classifi cation of each 
solution to be in accordance with the CAPRI criteria, assigning the 
solution to be incorrect, acceptable, medium or of high quality [ 1 ]. 

 In the last round of CAPRI (target T59, April/May 2013) the 
following publically available servers were registered for prediction:

    1.    pyDOCKWEB (  http://life.bsc.es/servlet/pydock/home/    ),   
   2.    GRAMM-X (  http://vakser.bioinformatics.ku.edu/resources/

gramm/grammx/    ),   
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   3.    DOCK/PIE (  http://clsb.ices.utexas.edu/web/dock.html    ),   
   4.    SwarmDock (  http://bmm.cancerresearchuk.org/~Swarm

Dock/    ),   
   5.    LZerD (  http://kiharalab.org/proteindocking/lzerd.php    ),   
   6.    SurFit (  http://sysimm.ifrec.osaka-u.ac.jp/surFit/    ),   
   7.    HADDOCK (  http://haddock.chem.uu.nl    ),   
   8.    ClusPro (  http://cluspro.bu.edu    ).     

 The newly released SwarmDock Server (SDS) [ 3 ] participated 
in automatic prediction for the last four targets of the recently 
completed CAPRI 5th Assessment (2010–2013) and was the only 
server, indeed participant, that produced at least an acceptable pre-
diction for each of the four targets (T53, T54, T57, T58). The 
core part of the server, the SwarmDock fl exible protein–protein 
docking algorithm [ 4 ], was used in manual prediction mode for a 
number of other rounds, providing some highly competitive solu-
tions. In addition, SDS has been carefully benchmarked on the 
complete Benchmark 4.0 test set and was able to fi nd at least one 
correct solution for 122 complexes out of 176, with a correct solu-
tion in the best 10 ( see  Subheading  2 ) for 60 complexes out of 
176 (CAPRI classifi cation in ascending order of accuracy) [ 3 ]. The 
last value was recently signifi cantly improved by using time- 
homogeneous fi nite state Markov chain models and by fi ltering out 
non-funnel-like structures [ 5 ]; an improvement which is currently 
being implemented into the online SDS. 

 In brief, SDS, is a docking tool which requires only a PDB 
formatted fi le for the unbound receptor and another for the 
unbound ligand as input, returning a ranked list of docked com-
plex poses. The server has a variety of applications aimed at gener-
ally understanding, and even for the design of, protein–protein 
interactions. It may be used to: fi nd the structure of an unknown 
protein–protein complex and in fact predict the unknown binding 
site (for blind docking benchmark see the Supplementary 
Information in ref. [ 3 ]); on a more theoretical note, structures 
generated may be used to sample the conformational states space 
and perform some analysis in terms of the theory of stochastic pro-
cesses [ 5 ]; these structures, in comparison with the known com-
plex, may be used to test potentials used for scoring [ 6 ]; fi nally it 
may be used to guide drug design studies to assess the binding of 
potential protein-based antagonists to a protein receptor of phar-
maceutical importance.  

2       Materials 

 The SDS may be accessed at:   http://bmm.cancerresearchuk.
org/~SwarmDock/    . 
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 The server’s core is coded in C++, which is regularly  maintained 
and updated. In order to create and maintain an interface between 
the user and our computational cluster, the web service is written 
in the modular language Python and uses the Common Gateway 
Interface. 

 The SwarmDock algorithm is based upon the principles of par-
ticle swarm optimization (PSO) [ 7 ] and has been described in 
detail elsewhere [ 3 ,  4 ,  8 ]. In brief, the binding energy between a 
receptor/ligand protein pair, as determined using the DComplex 
potential [ 9 ], is optimized using our own version of the PSO algo-
rithm. To model the conformation of the receptor and the ligand, 
the position and orientation of the ligand, as well as normal mode 
coeffi cients, corresponding to the fi ve lowest frequency nontrivial 
modes, make up the components of each particle search vector. 
After each PSO iteration, the lowest energy member undergoes a 
local optimization [ 10 ]. To ensure suffi cient sampling of confor-
mational space, the algorithm is run four times from each of 
approximately 120 starting positions, which are evenly spaced 
around the receptor. 

 To run a docking job PDB formatted fi les for both the desig-
nated receptor and ligand are required. There is no restriction on 
the number of chains for either receptor or ligand. Due to com-
puter power limitations, the current number of atoms is restricted 
to 10,000 for both the receptor and ligand input fi les. However, if 
required, and upon request to the authors, users may be granted a 
higher limit. Docking may be performed in two modes: blind 
docking and restrained docking. The latter offers the opportunity 
to choose a list of the receptor’s residues that are known (or are 
suspected) to form the interface of a specifi c protein–protein inter-
action and consequently restrict the search space. 

 Uploaded structures of the ligand and receptor must obey just 
three simple rules: fi les must have a TER record after each chain 
(also after the last one); only standard residues are allowed; there 
should be no missing residues or atoms (other than H). If there are 
any problems with the last two rules, the SDS attempts to fi x them 
( see  Subheading  3 ). 

 The PDB format is quite strict (  http://www.wwpdb.org/
docs.html    ); it restricts certain data types to specifi c columns. 
However, structures very often do not match it. The most promi-
nent example is that atom types are in the wrong columns of the 
fi le ( see  Subheading  5  for details). During and after the submission 
process, the fi les are examined in several ways ( see  Subheading  3  for 
details). However, no one piece of software is currently able to 
predict all possible inconsistencies within a PDB submission fi le 
format. If the server returns an error, the users should feel free to 
contact the developer and ask for help if they are unsure as to the 
reason; any remaining, probably occurring with low frequency, 
formatting inconsistencies reported by users will be rectifi ed at the 
computer code level. 
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 As described here, SDS, in addition to its main docking 
 function, can also act as a protein repairment service; uploaded 
structures of receptor and ligand molecules (each with one or sev-
eral chains) in PDB format may be automatically repaired in several 
ways ( see  Subheading  3 ), which represents a unique feature in com-
parison to many other servers. We would like to point out that 
PDB fi les repaired by SwarmDock may be downloaded and used 
with other docking servers. In order to repair the fi les, the user 
needs to choose the restrained docking mode but does not need to 
resubmit the job for docking after repairment ( see  Subheading  3 ). 

 Computations may take up to a few days. Execution time 
depends not only on the size of the structure but also on the com-
putational resources available at the time of submission. We may 
check the status of a job if requested by a user. There is currently 
no automatic time indicator on the Web site but this is in prepara-
tion. All docking results are deleted from the server 1 week after 
the user is emailed a message indicating job completion.  

3          Methods 

 The main submission page for the SDS is depicted in Fig.  1  (upper 
part). The fi rst step in using the server is to have two PDB format-
ted fi les stored somewhere on the user’s computer, one for the 
designated ligand and one for the designated receptor. It is com-
putationally more effi cient (the server return time is shorter) for 
the user to select the larger protein as the receptor; however, either 
protein may be designated to be the receptor or ligand. Next the 
user is required to provide an email address and job name. Then by 
clicking the “Browse” buttons of the fi le-select fi elds, the PDB 
formatted fi les can be uploaded; the chosen fi le names will appear 
in the fi le upload box. The number of normal modes, for both the 
designated receptor and ligand, may be left as the default value. At 
this point certain checks are made by the server; see Subheading  5  
for the details. The fi nal step is to choose between the “Full blind” 
or “I want to choose interface residues” docking modes. If choos-
ing the fi rst mode (default), it is enough to click the “Submit new 
job” button and wait for an email with the link to the results page. 
After choosing the second mode, the button caption will change to 
“Choose residues.” After clicking this, the job will be submitted 
only for preprocessing. Then the user will receive an email with the 
link to preprocessed receptor/ligand fi les ( see  further in this sec-
tion) and a link to resubmit the job for docking. The resubmission 
form is depicted in Fig.  1  (lower part). There are two select boxes 
for the receptor and two for the ligand to choose a range of inter-
face residues (Residue Type, Chain ID, and Residue Number). 
Please note that after preprocessing (in any mode) residues are 
numbered from 1, and chains are named from A to Z. The user can 
add any number of residues by iteratively choosing a residue range 
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and clicking the “Add” button. In the case of a mistake the user 
may click the “Clear All” button. As depicted, single residues as 
well as ranges may be chosen, additionally they may be chosen in 
any order. Residues chosen by the user will be copied to an output 
fi le called job.txt. The last step is to click the “Submit new job” 
button. After this, similar to the blind docking mode, the user 
needs to wait for an email informing them of job completion.

   The server workfl ow consists of the following steps: prepro-
cessing, docking, and postprocessing. The preprocessing stage 
includes checking for structural correctness, checking for iCodes, 
alternative atom locations, and modelling missing and nonstan-
dard residues. Details of currently supported nonstandard residues 

  Fig. 1    The main ( upper panel  ) part of the SDS submission page with the following elements: text fi elds for 
email address and job name, fi le-select fi elds for receptor and ligand PDB fi les, select boxes to choose number 
of normal modes for receptor and ligand (default value set to fi ve), and radio buttons to choose the type of 
docking to be performed (blind or restrained, the former is the default option). After choosing the fi les, the 
chosen fi le name appears under the fi le-select fi elds. Restrained docking submission page ( lower panel  ) with 
the following elements: two select boxes for a receptor and two for a ligand to choose a range of interface resi-
dues. A few restraints have already been chosen. The user can add as many residues as required by choosing 
residue ranges and clicking the “Add” button       
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may be found on the SDS webpage. Currently, other nonstandard 
residues or heteroatoms are ignored. However, if this leads to 
missing residues, gaps are modelled as a set of alanine residues. 
Submitting fi les with missing residues or missing atoms other than 
H is not encouraged. However, the server tries to repair fi les with 
missing residues by modelling loops with alanine with the aid of 
the program Loopy [ 11 ] and fi les with missing atoms by model-
ling missing side chains with the aid of the side chain replacement 
program SCWRL [ 12 ]. Missing backbone atoms cause the removal 
of a residue, which is remodelled as an alanine. After all repairs, 
input structures are minimized (50 steps of steepest descent, 100 
steps of conjugate gradient, and 200 steps of adopted basis 
Newton–Raphson) using the CHARMM molecular mechanics 
package [ 13 ] .  

 The fi rst part of the docking stage employs approximately 120 
starting positions, generated uniformly around the receptor, from 
which swarms of ligand conformations are subsequently docked. 
In the restrained docking mode, the user may choose the residues 
belonging to the binding site and consequently the server only 
accepts the starting positions which “see” (RayTracing) at least 
one of the chosen receptor’s residues. Consequently, in the 
restrained mode the SDS is forced to provide docked poses on the 
receptor’s surface on or near the region selected by the user. If 
ligand restraints have also been entered these will be combined 
with the receptor restraints to calculate the number of constrained 
contacts across each docked pose interface. This information may 
be used when analyzing clusters of docked solutions. 

 In the next phase normal modes for the receptor and ligand 
molecules are calculated using ElNemo [ 14 ]. As described in 
Subheading  2 , the main part of the docking run consists of a hybrid 
PSO/local search. The complete docking process is repeated four 
times at each of approximately 120 starting positions. The search 
vector consists of the position and orientation of the ligand, as well 
as normal mode coeffi cients to model the conformation of both 
the receptor and ligand. Extensive benchmarking indicates that for 
most docking purposes the default setting of using fi ve normal 
modes, for both the receptor and ligand, provides the better 
results; modes are ordered according to frequency, with the lower 
frequency modes selected fi rst. However, varying the number of 
modes, up to the maximum value of 25, can provide even better 
results for certain targets. At present, we cannot offer defi nitive 
advice on the optimum number of modes to use for a particular 
target; however, if particularly large conformational changes are 
expected it is advisable to use a relatively low number of modes 
since only low frequency modes will be used in the algorithm, 
thereby absorbing the higher degree of conformational change. 
Conversely, if the protein is expected to exhibit only small confor-
mational changes upon complex formation, essentially motion 
higher in frequency, a larger number of modes should be selected. 
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 In the postprocessing stage, all structures are fi rst minimized 
using the program CHARMM in a similar manner described above 
for the minimization of input structures. Hydrogen atoms are used 
during minimization but removed from the fi nal structures. 
Subsequently and prior to clustering, solutions are scored using 
CP_TSC, a side chain centroid potential described by Tobi [ 15 ]. 
The clustering scheme fi rst involves sorting the solutions in increas-
ing value of CP_TSC. Then the lowest energy structure is selected 
as the fi rst member of a new cluster. The RMSD between this 
structure and all other not yet clustered solutions is calculated, and 
solutions, if within a 3 Å threshold, are appended to the growing 
cluster. Subsequently the next lowest energy structure which had 
not yet been clustered is taken, and the cluster-growing scheme as 
described above repeated. This procedure of cluster seeding and 
growth is repeated until all solutions become members of a cluster. 
We observed that when a cluster contains a correct solution, that it 
is most often the lowest energy member of that cluster. 

 Upon completion of the computations, the user receives an 
email with the link to the results webpage. For successful termina-
tion, the webpage provides access to the docked complexes in the 
form of a compressed fi le containing a series of PDB formatted fi les. 
In addition all solutions and solutions forming the top ten- ranked 
clusters may be visualized using Jmol (Jmol plugin;   http://jmol.
sourceforge.net/    ). Here the geometrical center for each docked 
ligand is shown as a sphere, colored from blue to red in ascending 
order of interaction energy. In the case of restrained docking, the 
receptor’s residues chosen by the user are shown in red. 

 In the compressed fi le, along with the PDB formatted struc-
tures for members of each cluster, a number of additional fi les are 
provided: clusters.txt (list of complexes within each ranked cluster); 
contacts.txt (list of contacts for the lowest energy member of each 
cluster); energies.txt (list of solutions with corresponding energies); 
best10.pdb (best 10 solutions in PDB format: the lowest energy 
structure from each of the fi rst ten-ranked clusters); ligand.pdb and 
receptor.pdb (fi les used as input, may be different from those 
uploaded by the user due to repairs); uploaded_ligand.pdb and 
uploaded_receptor.pdb (fi les uploaded by the user), job.txt (details 
about the submitted job and list of restraints if applicable). Each 
output PDB fi le’s name includes a number and a letter (a–d). The 
number refers to the starting position and the letter to the separate 
docking algorithm run from that particular starting position. These 
numbers can be thought of as a unique “label” for each solution. 

 After visual inspection, further analysis may be undertaken by 
interpreting the additional output fi les, where clusters.txt is the 
most important. Depicted in the upper part of Fig.  2  are the fi rst 
ten lines from the cluster.txt fi le. Each line denotes a separate clus-
ter and is constructed as follows: the lowest energy member of the 
cluster, its energy (energies for all structures may be found in the 
energies.txt fi le), number of members in the cluster, list of 
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members, total number of contacts (distance cutoff defi ned as the 
sum of van der Waals radii + 20 %) between receptor and ligand 
(excluding hydrogen atoms which are not present in the output 
structures), number of contacts from the receptor’s residue list 
submitted by the user, number of contacts from the ligand’s  residue 
list submitted by the user; in the case of blind docking the last two 
numbers are set to 0. The lowest energy model complexes, in PDB 
format, from each of the top ten-ranked clusters are copied to 
best10.pdb. As a general rule, the user should take note not just of 
the lowest energy solutions but also of the size of each ranked clus-
ter. If the fi rst ranked cluster is of a relatively large size this is a good 
indication that it does contain a correct solution. However, for dif-
fi cult docking cases, a cluster containing a single or a handful of 
solutions, further down the ranked list of clusters could also repre-
sent correct solutions. In the case of restrained docking, it is clearly 
of importance to take note of the number of contacts made between 
the chosen residues. Contacts information for the lowest energy 
solutions of each cluster is given in detail in the contacts.txt fi le. 
The fi rst few lines from such a fi le are depicted in the lower part of 

  Fig. 2    Results from docking: ( upper panel  ) fi rst ten lines from the cluster.txt fi le (list of clusters); ( lower panel  ) a 
few lines from the contacts.txt fi le (list of contacts). Visualization of the cluster.txt fi le is embedded into the results 
webpage. Energies for all structures may be found in the energies.txt fi le.  See  Subheading  3  for more details       
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Fig.  2 , where R denotes a receptor residue, L a ligand residue, UR 
a receptor residue chosen by the user, and UL a ligand residue. 
After residue type, chain ID, and residue number, the number of 
contacts is given. In the example presented in Fig.  2 , in fact it is a 
complex with PDB code 2VDB described in more detail in 
Subheading  4  below, the lowest energy members have the follow-
ing quality: the 33b.pdb is a high quality solution, 38d.pdb and 
40a.pdb are medium quality, and 26a.pdb is of acceptable quality.

4        Case Studies 

 We describe here three docking targets that recently formed part of 
our benchmark set for the SDS server. They represent complexes 
that vary in their degree of diffi culty to dock ( see  ref.  2 ) and consist 
of a different number of chains for either the designated receptor 
or ligand. All unbound structure input fi les were taken from the 
Benchmark 4.0 database [ 2 ] and checked for the presence of a 
TER record after each chain. In all examples we used the default 
setting of fi ve normal modes for the receptor and fi ve for the ligand. 
Files were submitted via the Web site as explained in Subheadings  2  
and  3 , in two modes, blind and restrained. Under restrained mode, 
interface residues IDs were taken from bound structures from the 
Benchmark 4.0 database. Solutions were evaluated by calculating 
interface RMSD, ligand RMSD, and the fraction of native and 
nonnative contacts that leads to the classifi cation in accordance 
with the CAPRI criteria as incorrect, acceptable, medium or high 
quality, in ascending order of accuracy. 

 Supplementary Material to this chapter, available at extras.
springer.com, contains the following directories for all complexes 
studied here:  BoundStructures  (split into receptor and ligand), 
 QualityOfSolutions  (in accordance to CAPRI rules),  Solutions  (SDS 
output fi les),  Visualization  (e.g., in order to obtain the  visualization 
as in Fig.  3 , use VMD, choose Orthographic display and BWR 
color scale, load the receptor fi le and depict as Purple/New 
Cartoon, load the ligands fi le and depict as Beta/VDW).

    2VDB  [ 19 ]:  protein–protein complex of serum albumin (3CX9) 
with peptostreptococcal albumin-binding protein GA module (2J5Y) . 

  Biological importance : bacterial surface protein domain binding to 
host serum protein. 

  Diffi culty of docking : rigid-body. 

  Input fi les : one-chain receptor (3CX9, see uploaded_receptor.pdb, 
chain labelled A) and one-chain ligand (2J5Y, see uploaded_ligand.
pdb, chain labelled A). 

  SDS repairs : removed fi rst HIS residue from receptor input fi le due 
to missing N backbone atom, modelled 40 residues of the receptor 
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with missing side chain atoms; renumbered residues in each chain 
starting from 1, receptor chain labelled as A, ligand chain as B; 
minimization; see receptor.pdb and ligand.pdb. 

  Residues chosen for restrained docking mode : chain A (205, 209, 
224–227, 229–230, 233, 260, 264, 267, 305–306, 314–323, 326), 

  Fig. 3    The SDS solution space for 2VDB [ 19 ], the complex of serum albumin with 
peptostreptococcal albumin-binding protein GA module, from a blind ( upper fi g-
ure ) and a restrained ( lower fi gure ) docking run. The geometrical center for each 
docked ligand pose is shown as a sphere, colored from  blue  to  red  in ascending 
order of interaction energy. Serum albumin is colored  purple . The crystal confor-
mation of the bound albumin-binding protein GA module is shown in  green . 
Figures created using VMD [ 18 ]       
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chain B (25–28, 30–31, 34, 37–40, 42–43, 46–47, 50–51, 53–55); 
 see  receptor.pdb and ligand.pdb or job.txt fi le for details concerning 
residue type. 

  Number of output structures : 536 in blind docking, 400 in restrained 
docking. 

  Total number of correct solutions :

 ●    Blind docking: 11 high quality, 15 medium quality, and 1 
acceptable.  

 ●   Restrained docking: 1 high quality, 134 medium quality, and 
10 acceptable.    

  Best10 results :
 ●    Blind docking: high quality structure ranked as number 1 

(21b.pdb)  
 ●   Restrained docking: high quality structure ranked as 2 (33b.

pdb), medium quality structures ranked as 4 (38d.pdb) and 7 
(40a.pdb), and acceptable structure ranked as 9 (26a.pdb).    

 In Fig.  3 , we depicted the 2VDB solution space in blind (upper 
fi gure) and restrained (lower fi gure) mode. It can be seen that for 
restrained docking all solutions are close to the binding site. 
Figure  4  depicts correct solutions in the top10 obtained for 
restrained docking. Restrained docking helps to provide more cor-
rect structures in the best10. In addition, the ratio between num-
ber of correct structures and total number of output structures is 
higher for restrained docking. As mentioned previously, Fig.  2  
depicts the fi rst few lines of the restrained docking clusters.txt and 
contacts.txt fi les for 2VDB.

    1E6J  [ 20 ]:  protein–protein complex of Fab 13B5 (1E6O) with HIV-1 
capsid protein p24 (1A43)  

  Biological importance : antibody–antigen binding. 

  Diffi culty of docking : rigid-body. 

  Input fi les : two-chains receptor (1E6O, see uploaded_receptor.
pdb, chains labelled as L (light) and H (heavy) from antibody FAB 
fragment) and one ligand chain (1A43, see uploaded_ligand.pdb, 
chain unnamed). 

  SDS repairs : no repairs needed; renumbered residues of each chain 
starting from 1, receptor chains labelled as A and B, ligand chain as 
C; minimization; see receptor.pdb and ligand.pdb. 

  Residues chosen for restrained docking mode : chain A (90–92, 94), 
chain B (30–33, 50, 52–55, 57, 59, 99, 101–105), chain C (40, 
54, 56–60, 62–63, 65–66, 69–70); see receptor.pdb and ligand.
pdb or job.txt fi le for details concerning residue type. 

  Number of output structures : 422 in blind docking, 447 in restrained 
docking. 
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  Total number of correct solutions :

 ●    Blind docking: 0 high quality, 0 medium quality, and 1 
acceptable.  

 ●   Restrained docking: 7 high quality, 1 medium quality, and 2 
acceptable.    

  Best10 results :

 ●    Blind docking: no correct structures in best10 (1a.pdb ranked 
as 35)  

 ●   Restrained docking: high quality structure ranked as 7 (19b.pdb).    

 Restrained docking helped to obtain a correct solution in the 
best10. In addition, with a comparable number of output struc-
tures, restrained docking provides more correct structures. 

  Fig. 4    Correct SDS solutions in the top10 for 2VDB [ 19 ] obtained by restrained mode docking and superim-
posed with Mustang [ 22 ] onto the bound complex. The bound receptor conformation of serum albumin is 
colored purple and the bound ligand conformation of albumin-binding protein GA module is shown in  green ; 
only the docked ligand conformations from the SDS solutions are shown, colored as follows: high quality in  red  
( a —33b.pdb), medium quality in  yellow  ( b —38d.pdb;  c —40a.pdb), and acceptable in  gray  ( d —26a.pdb). 
Figures created using VMD [ 18 ]       
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  2HMI  [ 21 ]:  protein–protein complex of HIV1 reverse transcriptase 
(1S6P) with bound Fab 28 (2HMI)  

  Biological importance : antibody–antigen binding. 

  Diffi culty of docking : diffi cult. 

  Input fi les : two-chains receptor (1S6P, see uploaded_receptor.pdb, 
chains labelled as A and B) and two-chains ligand (2HMI, see 
uploaded_ligand.pdb, chains labelled as C (light chain) and D (heavy 
chain) of FAB fragment). Antibody is treated here as the ligand. 

  SDS repairs : no repairs needed; residues in each chain renumbered 
starting from 1, receptor chains labelled as A and B, ligand chains 
as C and D; minimization; see receptor.pdb and ligand.pdb. 

  Residues chosen for restrained docking mode : chain B (196, 199–
200, 222–231, 358), chain C (32, 50, 91–92, 94, 96), chain D 
(30–33, 54–56, 60, 102–108); see receptor.pdb and ligand.pdb or 
job.txt fi le for details concerning residue type. 

  Number of output structures : 471 in blind docking, 284 in restrained 
docking. 

  Total number of correct solutions :

 ●    Blind docking: 0 high quality, 0 medium quality, and 7 
acceptable.  

 ●   Restrained docking: 0 high quality, 0 medium quality, and 10 
acceptable.    

  Best10 results :
 ●    Blind docking: no correct structures in the best10 (33c.pdb 

ranked as 16).  
 ●   Restrained docking: acceptable structure ranked as 10 (9c.pdb).    

 Restrained docking helped to achieve a correct solution in the 
best10. Figure  5  depicts correct solutions obtained for 1E6J in blind 
(1a.pdb) and restrained docking runs (19b.pdb), and those obtained 
for 2HMI in blind (33c.pdb) and restrained (9c.pdb) docking runs.

5         Notes 

     1.    If there is no available structure for either the receptor or 
ligand, but the protein sequence is known and indicates a rea-
sonable level of homology to an experimentally determined 
structure, the user may fi rst build the structure(s) using a 
homology modelling server. A number of which are freely 
available (  http://en.wikipedia.org/wiki/Homology_modeling    ), 
including several written and maintained in our own labora-
tory, 3D-JIGSAW [ 16 ] and POPULUS [ 17 ] (  http://bmm.
cancerresearchuk.org/services.html    ).   
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   2.    The SDS algorithm is stochastic. This means that from identical 
submissions the user will obtain slightly different results. 
Consequently, the user may obtain a slightly better result from 
another submission. Moreover, results can be different accord-
ing to which protein was designated the receptor and which 
the ligand. It is computationally more effi cient for the larger 
protein to be designated the receptor. However, due to asym-
metries in the starting density of points from which each 
swarm of ligands is set, experience has shown that on occasion 
a better set of docking solutions can be obtained by reversing 
the  designation of the receptor/ligand pair.   

   3.    Before submission the user should check that each chain is 
terminated with a TER record. Checks should also be made to 
see if all parts of each PDB fi le are in the correct columns. In 
case of any diffi culties PDB fi les may be visualized, e.g., in 
VMD [ 18 ] and converted within the program into the correct 
PDB format that can be subsequently saved. Checks should 
also be made to ensure the PDB fi les have no formatting tags 
added by the text editor used or other strange characters.   

   4.    SDS uses only the fi rst 54 columns of the PDB fi le (up to the 
z coordinate).   

   5.    The default number of normal modes equals fi ve. Users can 
select up to 25. If there is no reason for using more normal 
modes, the default value should work fi ne.   

  Fig. 5    Correct solutions obtained for 1E6J [ 20 ], complex of Fab 13B5 with HIV-1 capsid protein p24 in: ( a ) blind 
mode (1a.pdb), ( b ) restrained mode (19b.pdb). Correct solutions obtained for 2HMI [ 21 ], complex of HIV1 
reverse transcriptase with bound Fab 28, in ( c ) blind mode (33c.pdb), ( d ) restrained mode (9c.pdb). The crystal 
conformation of each designated receptor (bound) is colored  purple  and designated ligand (bound)  green ; SDS 
solutions were superimposed with Mustang [ 22 ] onto the bound complex. High quality solutions are colored in 
 red  and acceptable in  gray . Figure created using VMD [ 18 ]       
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   6.    The default number of stochastic swarm docking runs from 
each starting point equals four and, as benchmarked in the 
SDS application note [ 3 ], this leads to the best results. More 
runs may produce a higher number of correct solutions, but at 
the expense of generating more incorrect solutions. Options to 
use a higher density of starting positions, as well as more dock-
ing runs from each starting position, are available on request.   

   7.    The submission is checked at the level of the web browser, as 
well as within the body of the SDS algorithm. Checks for 
which error messages are shown immediately are as follows: 
check to confi rm if the email address is at least seven characters 
long and characters suit a regular expressions list; if the job 
name is at least three characters long and characters suit a reg-
ular expressions list; if the number of normal modes is in the 
range 1–25; if the receptor and ligand fi le were chosen and are 
not empty, if each ATOM or HETATM line is at least 54 char-
acters long; if at least one TER record is present; if there is 
only one MODEL in the PDB fi le; if there is an ATOM record; 
if the PDB fi les were uploaded successfully to the server. 
Checks after the initial submission level that lead to special 
modes of action are as follows: if there are missing residues or 
side chain atoms, if unsupported nonstandard residues are 
used. After repairs (if needed), the structure is minimized. If 
the structure cannot be repaired or CHARMM is unable to 
minimize the structure, the user will receive an email with a 
link to an error webpage.   

   8.    It is not always the case that a correct solution will be within 
the best ten, and not always will a correct solution be of high 
quality. Fully defi nitive protein–protein docking remains an 
unsolved problem. Therefore, usage of other protein docking 
servers is advisable; confi dence will be boosted if a number of 
servers, which use different algorithms, return similar results. 
Structures may be fi rstly repaired with SDS and then used with 
alternative servers, a number of which are now freely available 
(  http://en.wikipedia.org/wiki/Macromolecular_docking    ).   

   9.    Finally, if the user experiences problems, they may write to us 
at: SwarmDock@cancer.org.uk; especially if an email has not 
been received within 1 week after job submission.         
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    Chapter 14   

 DOCK/PIERR: Web Server for Structure Prediction 
of Protein–Protein Complexes 

           Shruthi     Viswanath    ,     D.    V.    S.     Ravikant    , and     Ron     Elber    

    Abstract 

   In protein docking we aim to fi nd the structure of the complex formed when two proteins interact. Protein–
protein interactions are crucial for cell function. Here we discuss the usage of DOCK/PIERR. In DOCK/
PIERR, a uniformly discrete sampling of orientations of one protein with respect to the other, are scored, 
followed by clustering, refi nement, and reranking of structures. The novelty of this method lies in the scoring 
functions used. These are obtained by examining hundreds of millions of correctly and incorrectly docked 
structures, using an algorithm based on mathematical programming, with provable convergence properties.  

  Key words     Protein–protein docking  ,   FFT-based docking  ,   Knowledge-based potential  ,   Atomic potential  , 
  Residue potential  ,   Scoring function  ,   Mathematical programming  ,   Refi nement and reranking  

1      Introduction 

 The DOCK/PIERR protein docking server predicts the quater-
nary structure of the complex formed by two proteins, given their 
individual tertiary (3D) structures. The structures of the com-
plexes can be useful in obtaining molecular details of protein func-
tion and biochemical pathways. Examples are interactions between 
an enzyme and its inhibitor or between an antibody and antigen. 
Further, given structural details of the interface between proteins, 
experiments can be designed to alter the strength and specifi city of 
binding by introducing mutations at the interface. Finally, com-
plexes can also aid in structure-based drug design, where designed 
small molecules can inhibit the interaction between two proteins 
by preferentially binding to one partner and thus affecting the 
pathways involving them [ 1 ,  2 ]. 

 Protein–protein docking algorithms in general work in two 
stages. In the fi rst stage, various possible conformations of the 
complex are examined and scored, treating the proteins as rigid 
bodies. The most frequently used methods for the search stage are 
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Fast Fourier Transforms [ 3 – 5 ], which enables fast exhaustive 
 sampling of the search space, Monte-Carlo [ 6 ,  7 ] and Geometric 
Hashing [ 8 ]. In the second stage of refi nement and reranking, 
some limited fl exibility in the models is introduced through tech-
niques like energy minimization [ 5 ,  9 ] and Monte-Carlo [ 7 ,  10 ], 
and structures are reranked with fi ne-grained scoring functions. 

 In DOCK/PIERR, the conformational space of complexes is 
sampled exhaustively using Fast Fourier Transforms, and the 
encountered structures are scored using a residue scoring function. 
This is followed by side-chain rearrangement of the proteins at the 
docking site and a short energy minimization. The structures are 
then rescored using a combination of residue and atomic scores. 
The novelty of this algorithm and its accuracy lies in the scoring 
functions used. These scoring functions are parameterized using 
mathematical programming [ 11 ] and provably optimal structural 
SVM algorithms [ 12 ]. Hundreds of millions of models encountered 
from docking hundreds of complexes are used in the learning, and 
the models include both correctly and incorrectly docked structures. 
Constraints that stipulate that the energy of a misdocked structure 
should be higher than the energy of a correctly docked structure are 
derived from these models. The set of constraints derived from all 
the models in the learning set is solved through methods like linear 
programming or structural SVMs, to produce the parameters of the 
scoring function. The docking algorithm has been tested on dock-
ing benchmark datasets and is found to perform comparable to the 
state-of-art docking algorithms [ 13 ], ranking fourth in the server 
category in the CAPRI assessment of 2013 [ 14 ].  

2    Materials 

  The server takes as input the PDB structures of the two proteins to 
predict the structure of the complex.  See   Note 1  on details of how 
to prepare the PDB structures.  

  One of the proteins (called receptor) is kept fi xed. All possible rigid 
rotations and translations of the second protein (called ligand) 
with respect to the receptor are explored using Fast Fourier 
Transforms. Each conformation is scored using a linear combina-
tion of an interface residue-contact based scoring function, PIE, 
and a van der Waals-like term for shape complementarity. The top 
scoring models are then clustered and fi ltered for interface clashes. 
The top 1,000 models are then refi ned. The refi nement involves 
side-chain remodeling of the interface residues using rotamers 
(SCWRL4 [ 15 ]) and a short rigid energy minimization in vacuum 
with the OPLS force fi eld using the molecular dynamics package 
MOIL [ 16 ]. The last procedure removes bad contacts and makes 
the structures more chemically reasonable. The refi ned structures 

2.1  Input

2.2  Program 
Description
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are then reranked using a combination of the residue potential, 
PIE, and an atomic potential, PISA, that was trained on refi ned 
models. It is to be noted that the adjustments during refi nement 
are very small and typically of the order of ~0.1 A. Nevertheless 
they remove bad contacts and hence signifi cantly improve the 
rescoring. The ten best ranked models of the complex are then 
made available as server output to the user. On tests on standard 
benchmarks and independent test sets, the algorithm as described 
above, obtains a near-native structure in the top ten models about 
40–60 % of the time, and is comparable in accuracy to other lead-
ing docking algorithms. Figure  1  explains in detail the steps taken 
by the server to dock two proteins. For further details regarding 
the algorithm the reader is referred to [ 12 ,  13 ,  17 ].

     The server is available at   http://clsb.ices.utexas.edu/web/dock.
html    . It is implemented using HTML frontend and a PHP back-
end. The PHP script sends a mail to the server, which launches the 

2.3  Server 
Availability

  Fig. 1    Flowchart representing steps taken for docking two proteins using DOCK/
PIERR       
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docking jobs on 16 cores (Intel Xeon X5460, 3.16 GHz) of a 
Linux cluster at the University of Texas at Austin. While the entire 
docking package is in C++, the server also uses external programs 
such as SCWRL4 and MOIL.  

  A user, who wishes to rank a set of structures obtained from a sin-
gle server run or multiple-related runs, can also download and use 
our scoring functions, PIE (residue-based) and PISA (atomic). 
The source code and Linux executables for these are provided at 
  http://clsb.ices.utexas.edu/web/dock_details.html    . Scoring a 
model of a complex simply requires the structure of the complex in 
PDB format and the receptor and ligand chain names.   

3    Methods 

     1.    The server requires as input the structures of the two proteins 
in PDB format. The PDB fi les can be simply uploaded and 
submitted.  See   Note 1  for potential sources of error in the 
input. Also  see   Note 2  for cases where the user has only the 
sequence and not structure for an input protein.   

   2.    For computational effi ciency, the larger of the two proteins 
should be uploaded in the receptor fi eld and the smaller one in 
the ligand fi eld.   

   3.    After submitting, the user gets a confi rmation email with the 
job number. This job number denotes the submission ID and 
is referenced in the output email.   

   4.    Jobs generally take about 4–5 h to complete. They may take 
more time if the proteins are large, i.e., longer than 400 resi-
dues, or if the server is experiencing high traffi c.   

   5.    Once the job is completed, a zipped fi le containing the ten 
best scoring docked conformations in PDB format is emailed 
to the user. The name of the zipped fi le corresponds to the 
submission ID or job number that the user was provided with, 
during submission. The chain names in the output PDB are 
alphabetically ordered, starting from the receptor chains.   

   6.    Visualization of the models of the complexes can be performed 
with any structure visualization software like PyMol [ 18 ].   

   7.    The accuracy of the docking method is between 40 % and 
60 % currently, i.e., a near-native structure, a structure within    
4 Å interface RMSD to the native, is in the top 10 docked 
structures about 40–60 % of the time. Cases where this dock-
ing method can be inaccurate are when the actual complex has 
a small number of contacts. Since (on the average) more con-
tacts mean lower energy in our model, complexes with a small 
number of contacts are missed.      

2.4  Scoring Function 
Downloads
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4    Case Studies 

 An early version of the docking software has been used previously 
in a biological study to suggest oligomeric conformations of a 
four-domain orange-fl uorescent protein (Ember) [ 19 ]. Below we 
describe a case study of docking using DOCK/PIERR. 

  Unbound docking of Textilinin - 1 ,  a serine protease inhibitor 
with bovine trypsin . [ PDB 3D65 ] 

 Here we dock bovine trypsin with the serine protease inhibi-
tor, Textilinin-1, derived from the Australian Common Brown 
snake. This complex has been experimentally determined (PDB 
3D65) [ 20 ]. Trypsin is an enzyme found in the pancreas and 
involved in proteolysis and digestion, while the protease inhibitor 
binds to trypsin to down-regulate its enzymatic activity. 

 To dock trypsin with its inhibitor, we perform unbound dock-
ing. That is, we model the tertiary structure of one or both of the 
constituent proteins using their homolog structures as templates. 
We then perform docking on the homology-modeled proteins. 
The trypsin molecule is chain E of the complex 3D65 and 223 resi-
dues long. The inhibitor molecule is chain I of 3D65 and 57 resi-
dues long. We use the structure of trypsin as in the bound form for 
docking, i.e., chain E of 3D65. To model the inhibitor, we per-
form a search for homologs using PSI-BLAST [ 21 ], searching the 
PDB database for structures homologous to chain I of PDB 3D65. 
We fi nd that the chain I of PDB entry 3BTM is a good match, with 
 E -value of 9 × 10 −13  and sequence identity of 44.8 %. We next 
obtain pairwise alignments between the sequences of 3D65, chain 
I and 3BTM, chain I. A pairwise alignment can be obtained using 
dynamic programming, and is implemented in alignment servers 
such as the EMBOSS server (  http://www.ebi.ac.uk/Tools/psa/    ). 
We then use the program Modeller [ 22 ,  23 ] to produce the struc-
ture of the inhibitor from the template structure of 3BTM, and the 
pairwise sequence alignment between 3BTM chain I and 3D65 
chain I. We use the new PDB fi le obtained from Modeller for 
docking. Note that Modeller produces PDB fi les with no chain 
names by default, and hence it is recommended to add chain names 
to the PDB fi les before submitting fi les to the docking server. 

 We then submit the PDB fi les for the trypsin in the receptor 
fi eld and the newly obtained inhibitor structure in the ligand fi eld 
of the DOCK/PIERR server submission form. Upon completing 
the docking, we obtain the top ten models of the complex. Figure  2  
shows the input proteins we docked, and Fig.  3  is a superposition 
of one of the top ten models obtained from the DOCK/PIERR 
server with the actual complex, 3D65. The model has an interface 
RMSD of 3.63 Å to 3D65.

Protein-Protein Docking Server 
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  Fig. 2    (a) Chain E (bovine trypsin) and (b) Chain I (Textilinin-1, serine protease inhibitor) of complex 3D65 to be 
docked. These structures are inputs to the DOCK/PIERR server       

  Fig. 3    One of the top ten models produced by DOCK/PIERR server ( cyan ) superposed with the native structure 
of the 3D65 trypsin–inhibitor complex ( blue ). The model has an interface RMSD of 3.63 Å to 3D65. The differ-
ence in tertiary structures between the native PDB and the model for the inhibitor is due to unbound docking 
(Color fi gure online)       
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5        Notes 

     1.    The most common problems with the input PDB fi les that 
cause server failures are as follows:
    (a)    Missing atoms in the PDB fi les. The missing atoms may be 

side-chain atoms or main chain atoms. For missing side-
chain atoms, it is recommended to use the program 
SCWRL [ 15 ] or a similar program for side-chain place-
ment. For missing main chain atoms, DOCK/PIERR is 
able to dock the proteins but the structures may not be 
refi ned, since the molecular dynamics program used in the 
refi nement stage needs the coordinates of all the atoms. 
Failure to refi ne the models might result in less than opti-
mal docking results.   

   (b)    Nonstandard atom names. These might be ignored in the 
initial docking stage and the structures may not be refi ned, 
as our molecular dynamics program is not capable of deal-
ing with nonstandard atoms. These too might lead to sub-
optimal docking results if left unchanged.   

   (c)    Nonstandard residue names. Sometimes, some residues 
have nonstandard amino acid names. In many of these 
cases, the residue is chemically modifi ed and the name is 
adjusted. For example the residue HIS is named differ-
ently as HSD, HSE, HSP depending on the protonation 
state. In such a case, the user is advised to rename such 
residues to their standard label.   

   (d)    Negative residue numbering. Some structures use nega-
tive residue numbers, for example when a tail is added to 
the native N-terminal. This causes problems during the 
refi nement stage and the user is advised to index all resi-
dues with positive numbers.   

   (e)    Missing chain names for either protein, or identical chain 
names for both proteins. These can cause problems in the 
initial stages of docking. Also if the receptor and/or ligand 
have multiple chains, care must be taken to make all chain 
names between the receptor and ligand nonidentical. For 
example, if the receptor has chains A, B and the ligand has 
chain A, it is recommended to rename the ligand chain to C.   

   (f)    If a PDB fi le containing multiple NMR models is submit-
ted, only the fi rst model is considered for docking.   

   (g)    Some atoms in the PDB have multiple locations specifi ed, 
using the alternate location fi eld in the PDB. The docking 
program ignores the alternate locations. It also ignores 
HETATM records.   
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docking. Curr Opin Struct Biol 16(2):183–193. 
doi:  10.1016/J.Sbi.2006.03.003      

    2.    Janin J, Bahadur RP, Chakrabarti P (2008) 
Protein-protein interaction and quaternary 
structure. Q Rev Biophys 41(2):133–180. 
doi:  10.1017/S0033583508004708      
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   (h)    Both the receptor and ligand molecules need to be 
 proteins. Other molecules like DNA/RNA, or small mol-
ecule compounds are not supported as our scoring func-
tions are tailored for protein interactions.   

   (i)    If the user deals with very fl exible peptides, it is recom-
mended to dock one fl exible conformation of the peptide 
at a time. This is because our algorithm performs rigid 
docking. At present it does not combine docking and 
internal motions.       

   2.    It is most straightforward if one has the PDB structures of the 
two proteins to be docked. But if one just has the sequence for 
one (or both) input proteins, then structural model(s) need to 
be built from sequence. Examples of servers that produce mod-
els from the sequence include LOOPP [ 24 ,  25 ] (  http://clsb.
ices.utexas.edu/loopp/web/    ) and i-TASSER [ 26 ] (  http://
zhanglab.ccmb.med.umich.edu/I-TASSER/    ). If one has 
already a template structure on which to model the sequence, 
homology modeling packages such as Modeller [ 22 ,  23 ] 
(  http://salilab.org/modeller    ) can be used to predict the struc-
ture. Note that using different templates or different modeling 
methods for structure prediction can affect docking results.         
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    Chapter 15   

 Pairwise and Multimeric Protein–Protein Docking 
Using the LZerD Program Suite 

           Juan     Esquivel-Rodriguez    ,     Vianney     Filos-Gonzalez    , 
    Bin     Li    , and     Daisuke     Kihara    

    Abstract 

   Physical interactions between proteins are involved in many important cell functions and are key for under-
standing the mechanisms of biological processes. Protein–protein docking programs provide a means to 
computationally construct three-dimensional (3D) models of a protein complex structure from its compo-
nent protein units. A protein docking program takes two or more individual 3D protein structures, which 
are either experimentally solved or computationally modeled, and outputs a series of probable complex 
structures. 

 In this chapter we present the LZerD protein docking suite, which includes programs for pairwise 
docking, LZerD and PI-LZerD, and multiple protein docking, Multi-LZerD, developed by our group. 
PI-LZerD takes protein docking interface residues as additional input information. The methods use a 
combination of shape-based protein surface features as well as physics-based scoring terms to generate 
protein complex models. The programs are provided as stand-alone programs and can be downloaded 
from   http://kiharalab.org/proteindocking    .  

  Key words     Protein–protein docking  ,   Multiple-protein docking  ,   Multimeric protein docking  , 
  Macromolecular docking  ,   Protein–protein interactions  ,   Protein–protein interface prediction  

1      Introduction 

 Protein complexes are involved in many important processes in a 
living cell. In order to understand the mechanisms of these pro-
cesses, it is necessary to solve the 3D structure of the protein com-
plexes. Experimental techniques such as X-ray crystallography and 
nuclear magnetic resonance (NMR) have been used to solve the 
3D structure of protein complexes, as shown in the large number 
of entries of complex structures in the Protein Data Bank (PDB) 
[ 1 ]. When protein complex structures have not been solved by 
experiments, it is possible to use computational tools to construct 
models of these complexes. A protein docking program takes two 
or more component protein structures as input and assembles 
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them into 3D structure models of a protein complex. Input proteins 
can be either experimentally solved or computationally modeled 
structures using protein structure prediction programs such as the 
ones described in earlier chapters in this book. 

 Existing docking methods generate from a few hundred to 
thousands of candidate complexes, which are ranked by a score 
that indicates which models are more probable. Most of the exist-
ing docking methods deal with pairwise docking, where only two 
proteins are assembled [ 2 – 11 ]. A smaller number of methods per-
form docking of multiple protein structures, called multimeric or 
multiple-protein docking [ 12 – 17 ]. 

 In this chapter we introduce three protein docking programs 
developed in our group. First, we show how to use LZerD (Local 
3D Zernike Descriptor-based protein docking program) [ 11 ], our 
pairwise protein–protein docking program, to create protein com-
plex structures from two individual proteins. It uses geometric 
hashing [ 18 ] for docking conformation search and a rotation 
invariant mathematical surface shape representation, the 3D 
Zernike Descriptors (3DZD) [ 19 – 22 ], as the main scoring term 
for evaluating docking poses. Next, we discuss PI-LZerD (Predicted 
Interface-guided LZerD) [ 23 ], which uses additional predicted 
protein interface information to guide conformation searches of 
pairwise protein–protein docking. PI-LZerD runs LZerD around 
the neighborhood of the provided predicted interface residues and 
further refi nes docking poses by running LZerD a second time. 
Finally, we present our multiple-protein docking program, Multi- 
LZerD [ 17 ,  24 – 26 ], which can assemble more than two proteins. 
In the fi rst phase, pairwise docking predictions are generated for 
every possible pair of component proteins using LZerD. Then, 
multiple-protein complex structures will be generated by combin-
ing the pairwise docking predictions generated in the fi rst phase. 
A genetic algorithm (GA) is used to explore the combinatorial 
space. After a confi gurable number of iterations, a fi nal refi nement 
step is applied to the structures. 

 The following sections provide instructions on how to use the 
LZerD protein–protein docking software. The readers are encour-
aged to refer to the original publications for more detailed descrip-
tions of the algorithms and benchmark results of the programs.  

2    Materials 

 The programs in the LZerD docking suite are available on the 
Kihara Lab website,   http://www.kiharalab.org/proteindocking    . 
The LZerD pairwise docking program is available as a compressed 
fi le ( lzerddistribution.tar.gz ) from the LZerD section of the web-
page. Similarly, there is a section for PI-LZerD that has a link to 

Juan Esquivel-Rodriguez et al.

http://www.kiharalab.org/proteindocking


211

the necessary fi les for PI-LZerD named  PI-LZerD.tar.gz . Multi- 
LZerD is available as  multilzerddistribution.tar.gz  from the  Multi- 
LZerD   section. All packages are intended to run on Linux machines. 

 Once the fi les are downloaded to your computer, they need to 
be decompressed. If a graphical fi le explorer is used, right clicking 
on the fi le and choosing a decompression option should usually 
extract them. If you are using a command line terminal, you can 
decompress each fi le by running  tar –zxf lzerddistribution.tar.gz  
(for the LZerD package, or specify the corresponding fi le name for 
PI-LZerD and Multi-LZerD). Once fi les are decompressed, a new 
folder will be created with several programs in it. The details of 
each package’s contents, their roles in the procedure, and input 
data are described next. 

  LZerD needs two fi les containing protein structures as inputs. The 
two input fi les should follow the PDB format (the format is 
described at   http://www.wwpdb.org/docs.html    ). LZerD only 
requires the ATOM fi elds in the fi le. Below, whichever protein is 
provided fi rst will be called  receptor , while the second one is called 
 ligand . 

 The fi nal output consists of many PDB fi les that represent dif-
ferent poses of the ligand only, since LZerD scans for poses of the 
ligand around the receptor placed at the original position. This 
means that the best docking pose needs to be generated by com-
bining the receptor PDB fi le and ligand1.pdb, the fi le that contains 
the best ranking pose. In the same way, the second best prediction 
can be generated with the receptor fi le and ligand2.pdb, and so on. 
Optionally, the user can re-rank a subset of the docking poses using 
a physics-based scoring function, described later in the chapter. 

 A prediction can be executed with a series of programs written 
in C/C++ and a Linux Shell script that triggers the main process:

 ●    runlzerd.sh: The main script that receives two input PDB fi les 
and carries out the complete process by invoking a series of 
programs.  

 ●   mark_sur: An auxiliary program that marks residues on the 
protein surface. It uses the uniCHARMM fi le that is also 
included in the package.  

 ●   GETPOINTS and LZD32: These two programs create surface 
information used by LZerD to compare protein surface shapes.  

 ●   LZerD1.0: The main program that performs the pairwise 
docking.  

 ●   PDBGEN: A post-processing program for generating the best 
ligand poses obtained by LZerD1.0.  

 ●   lzerd_rerank.sh: Script used to re-rank the docking poses using 
a physics-based scoring function.     

2.1  Pairwise Docking 
Package, LZerD
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  To run PI-LZerD, the user needs the atomic structures of a 
receptor and a ligand in the PDB format as well as the list of 
predicted protein interface residues. Protein interface residues can 
be predicted using a protein interface prediction method, such as 
BindML [ 27 ] or meta_PPISP server [ 28 ], or they can be provided 
based on biological knowledge of the proteins. The output fi les 
represent predicted complex conformations in the PDB format. 
The fi les will be found in the PI_LZerD/10.Result directory.  

  Similar to the previous program, Multi-LZerD receives protein 
structure fi les that follow the PDB format. Since Multi-LZerD is 
for multiple-protein docking, the number of fi les will be three or 
more, not just two. The input protein structure fi les should have a 
common fi le name and a suffi x, “.pdb”. Also, a prefi x should be 
associated with the fi les to indicate the chain ID of the units. For 
example, three input fi les for a trimeric protein complex can be 
named as follows: A-mytrimer.pdb, B-mytrimer.pdb, and 
C-mytrimer.pdb. In this case the common fi le name is  mytrimer  
and the prefi xes are A, B, and C. In addition, it is required that the 
chain ID is provided in each ATOM fi eld. We suggest that the 
same chain ID be used as the prefi x. 

 The program outputs a series of PDB fi les. refi ned-00001.pdb 
is the best scoring model, refi ned-0002.pdb the second best, and 
so on. A set of decoy-<number>.pdb fi les are also created that rep-
resent the predicted structures before the refi nement step (details 
described later). Multi-LZerD output fi les are complete models; 
i.e., each fi le contains all protein units in their predicted poses. This 
differs from LZerD where only the  ligand  part of the prediction is 
generated as output. 

 Since Multi-LZerD is a superset of LZerD, the programs men-
tioned in the previous LZerD section are also used here. The fol-
lowing list describes the additional scripts and programs that are 
incorporated for multiple docking:

 ●    run.sh: The main script that executes the complete protocol. It 
is necessary to use proper suffi x and prefi xes for input fi le 
names before executing it.  

 ●   addhydrogens.pl: Given that we do not assume that the PDB 
fi les contain hydrogen atoms, this script will computationally 
add their atomic coordinates. This is required because of the 
scoring function used in Multi-LZerD.  

 ●   create_lzerd_decoys.pl and multilzerd_sort_decoys.pl: These 
two scripts trigger the pairwise docking performed by LZerD.  

 ●   multilzerd_pairwise_cluster.pl: The program performs cluster-
ing of pairwise docking predictions from LZerD to eliminate 
poses that are too similar.  

 ●   multilzerd: The main multiple protein docking program.  

2.2  Predicted 
Interface-Guided 
Protein Docking 
Package, PI-LZerD

2.3  Multiple Docking 
Package, Multi-LZerD
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 ●   multilzerd_create_pdb: Creates the decoy-<number>.pdb fi les 
that represent the fi nal multiple docking poses.  

 ●   multilzerd_refi ne: An additional post-processing step that tries 
to improve the fi nal multiple-protein docking poses.      

3    Methods 

 This section describes steps to run the three docking programs: 
LZerD, PI-LZerD, and Multi-LZerD. 

  The LZerD protocol fl ow chart is shown in Fig.  1 . LZerD takes 
two PDB fi les, which will be docked with each other, as input. 

3.1   LZerD

  Fig. 1    LZerD fl ow diagram. Two input PDB fi les are fi rst pre-processed using 
mark_sur, GETPOINTS and LZD32. Then, the intermediate fi les are fed into LZerD 
to create the pairwise docking predictions       
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They are called the receptor and ligand protein. The package 
contains a folder called  example , which contains a sample receptor 
protein (1PPE_r_b.pdb) and a sample ligand (1PPE_l_b.pdb) 
protein fi le as well as all output fi les. We will use these two fi les to 
illustrate the procedure to perform protein docking with LZerD. 
We fi rst show how to run the main script from a command line 
using default program settings. In the following sections, we 
explain each step in the process, intermediate fi les output by the 
programs, and possible parameter modifi cations users can control.

    In order to execute LZerD, users fi rst need to locate the folder 
where the fi les were downloaded. For example, if the package was 
saved to a “Downloads” folder in the user’s home directory, open 
a command terminal window and input the command 

  cd Downloads/lzerddistribution  

 Start the process by running the main script,  runlzerd.sh , with 
two input PDB fi les as follows: 

  ./runlzerd.sh example/1PPE_r_b.pdb example/1PPE_l_b.pdb  

 Here the sample receptor and ligand fi les provided in the 
example folder are used, but they can be any two PDB fi les. The 
process can run for several hours before reaching completion 
depending mainly on the size of the proteins. Some of the param-
eters used internally in the script will also infl uence how much 
computation time is required. 

 While the reader can change parameters in LZerD, simply run-
ning the shell script as shown above will complete the computation 
and produce candidate docking models. In the case of the exam-
ple, the best model generated by LZerD will be composed of 
 1PPE_r_b.pdb  and  ligand1.pdb . If the user requires a single PDB 
fi le, the two fi les can be concatenated by the  cat  command: 
  cat example/1PPE_r_b.pdb ligand1.pdb  >  model1. pdb  

 The new fi le  model1.pdb  can be visualized with a standard pro-
tein structure viewer such as PyMol or RasMol.  

  In the following sections, we provide more detailed information 
about each step in  runlzerd.sh  including parameters users can 
change. 

  Surface calculation . LZerD constructs the surface for two input pro-
tein structures in order to identify surface shape complementarity at 
the interface regions. This is the main term in the docking scoring 
function. First, it uses  mark_sur  to identify amino acid residues on 
the protein surface and adds annotations to the protein atoms in the 
ATOM fi elds of the PDB fi le. This will generate  .pdb.ms  fi les from 
the input  .pdb  fi les. In our example,  1PPE_r_b.pdb.ms  and  1PPE_l_b.
pdb.ms  are the intermediate fi les created by this step: 

3.1.1  Main LZerD 
Process

3.1.2  Detailed Steps
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  ./mark_sur 1PPE_r_b.pdb 1PPE_r_b.pdb.ms  
  ./mark_sur 1PPE_l_b.pdb 1PPE_l_b.pdb.ms  

 Using marked surface residues, GETPOINTS creates two 
intermediate surface representations: an isosurface stored in  .gts  
fi les and a point representation stored in  _cp.txt  fi les. The “-cut” 
parameter given to GETPOINTS is the key to control the execu-
tion time of the pairwise docking program as shown here: 

  ./GETPOINTS -pdb 1PPE_r_b.pdb.ms -smooth 0.35 -cut 1e-04  
  ./GETPOINTS -pdb 1PPE_l_b.pdb.ms -smooth 0.35 -cut 1e-04  

 This value is related to the precision of the surface representa-
tion used: lower values represent more fi ne-grained details and pre-
cision. The package downloaded contains a value of 1e-04, which 
we recommend for higher quality results with a long computation 
time. In contrast, using 1e-02 would yield a coarse-grained confor-
mation sampling, which may be useful for obtaining preliminary 
results faster. A compromise between the time and the accuracy 
would be obtained by using a value of 1e-03. 

 Next, LZerD creates fi ngerprint representations of the shape 
around the surface points determined by  GETPOINTS . These are 
stored in fi les with the  .inv  suffi x. A fi ngerprint of a surface point is 
a vector of 36 numbers by default, which are coeffi cient values of a 
rotation invariant descriptor called the 3D Zernike descriptor [ 11 , 
 22 ]. The  LZD32  program computes the fi ngerprints: 

  ./LZD32 -g 1PPE_r_b.gts -c 1PPE_r_b_cp.txt -o 1PPE_r_b -dim 161 -rad 6.0 -ord 10  
  ./LZD32 -g 1PPE_l_b.gts -c 1PPE_l_b_cp.txt -o 1PPE_l_b -dim 161 -rad 6.0 -ord 10  

 Please refer to our previous publications [ 21 ,  22 ] for more 
details about the 3D Zernike descriptors. The “-ord” parameter 
specifi es the order of the 3D Zernike descriptors, which determines 
the number of elements in the vector. We found in our work [ 11 ] 
that 10 is an appropriate value, but the user could modify the 
order. For example, changing the order from 10 to 20 will increase 
the vector sizes from 36 to 121, which makes the fi ngerprint rep-
resent more details of the surface shape. 

  Pairwise docking . Using the fi les prepared in the previous step, 
LZerD1.0 will create protein–protein docking predictions: 

  ./LZerD1.0 -rec 1PPE_r_b_cp.txt -lig 1PPE_l_b_cp.txt -prec 
1PPE_r_b.pdb.ms -plig 1PPE_l_b.pdb.ms -zrec 1PPE_r_b_01.inv -zlig 
1PPE_l_b_01.inv -rfmin 4.0 -rfmax 9.0 -rfpmax 15.0 -nvotes 8 -cor 0.7 

-dist 2.0 -nrad 2.5  >  1PPE_r_b_1PPE_l_b. out  

 The output will be added to the fi le  1PPE_r_b_1PPE_l_b.out  
progressively as the protein docking program analyzes different 
combinations of matching regions. The number of models gener-
ated can be obtained by counting the lines in the fi le, by running 
 wc  (word count): 

Pairwise and Multimeric Protein–Protein Docking Using the LZerD Program Suite
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  wc 1PPE_r_b_1PPE_l_b.out  

 In a LZerD output fi le, each prediction is represented as a 
rotation and translation of the ligand protein from its original posi-
tion. One line in the fi le is composed of 12 numbers, representing 
a transformation    matrix, and an additional value that holds the 
score, for instance: 

  0.174 -0.868 0.465 -0.948 0.275 0.160 -0.267 0.413 
-0.871 37.305 5.810 -2.871 397.116  

 In this example, the score is 397.116. The higher the score, 
the better the shape complementarity at the docking interface is, 
which indicates a better model. 

 In addition to this type of row it is possible that the fi le has a 
single header row like the following: 

  LIG: 0.926583 0.541623 2.32135 -1.96904 -8.93765 -2.37821  

 This is an optional random transformation that is applied to 
the ligand before beginning the docking process. This can be trig-
gered by providing the –randomize fl ag when executing LZerD. 

  Generation of poses in PDB format . The number of models to out-
put is one of the key parameters users can modify in  runlzerd.sh . A 
program called PDBGEN is in charge of creating the different 
ligand docking poses in PDB format by receiving the receptor 
PDB, the ligand PDB, the output fi le, and the number of models 
to be created. 

 In the example case, PDBGEN is run as follows: 

  ./PDBGEN 1PPE_r_b.pdb 1PPE_l_b.pdb 1PPE_r_b_1PPE_l_b.out 3  

 This generates three ligand fi les (ligand1.pdb, ligand2.pdb, and 
ligand3.pdb). The last number, 3, is the number of ligand models 
to generate, which can be increased to provide more models. 
PDBGEN can generate any number of models from one up to the 
number of lines in the “.out” fi le. As a reminder, only the ligand 
part of the complex is output in this step. To have a single PDB fi le 
with both receptor and ligand it is necessary to join both fi les. 

  Re-ranking LZerD predictions . The order in which rows appear in 
the . out  fi le is based on the shape agreement between different 
docking poses. Optionally, users can re-rank the predictions based 
on a different type of score, a physics-based scoring function, 
described in one of our previous publications [ 17 ]. It considers van 
der Waals and electrostatic potentials, hydrogen and disulfi de 
bonding, solvation, and additional knowledge-based contact 
terms. This is a more computationally intensive scoring method 
compared to the shape-based function used by LZerD. Thus, we 
recommend that this only be applied to a subset of the predictions 
in the  .out  fi le. To do so, the user needs to run the following script: 

  ./lzerd_rerank.sh 1PPE_r_b.pdb 1PPE_l_b.pdb 1PPE_r_b_1PPE_l_b.out 100  
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 This will generate a comma-separated fi le, called 
1PPE_r_b_1PPE_l_b.out.reranked, with 100 text lines each repre-
senting a new score assigned to each of the fi rst 100 predictions 
contained in the original  .out  fi le. This is a sample result that con-
tains the fi rst three lines of a re-ranked fi le: 

  m o d e l 1 . p d b , - 9 8 2 5 . 9 2 , 5 2 , - 6 9 . 0 9 7 8 , 2 1 1 2 . 1 ,
-19.1428,-1041.4,-207.964,1030.63,748.893,
-5.22232,-1403.18,-123.551,-14.0836  
  model21.pdb,-8636.75,41,-55.1373,1215.62,
-11.8204,-819.328,-189.976,805.575,665.787,
-2.24271,-1322.89,-123.589,-9.36367  
  m o d e l 7 . p d b , - 6 8 8 0 . 7 7 , 3 5 , - 4 3 . 6 7 5 4 , 2 5 7 9 . 8 8 ,
1.1024,-577.526,-111.942,554.141,252.346,
-4.48198,-1070.18,-123.285,-1.538  

 For example, the fi rst line indicates that model1 (column 1) 
from the original  .out  fi le also has the best score using the physics- 
based function (column 2). However, we can see that the second 
best model, according to this new scoring function, comes from line 
21 (model21) in the original  .out  fi le. The rest of the columns in the 
fi le represent the individual terms in the scoring function. Among 
them only the second column is used for re-ranking purposes. In 
this scoring function, a lower value represents a better score.   

  The execution of PI-LZerD takes a considerably longer time to 
fi nish compared to LZerD, because it runs pairwise docking 
multiple times. The PI-LZerD package consists of several programs, 
which are all combined in a shell script. First we present the shell 
script along with a reference to example fi les available online. Then, 
we discuss each step in the process and the estimated computational 
time required for the steps. 

  A single script,  PI_LZerD.sh , runs the entire procedure from the 
beginning to the end.  PI_LZerD.sh  sets global variables based on 
user input and goes into each subdirectory to run individual 
programs sequentially. Each individual job receives parameters 
through global variables. For each job,  PI_LZerD.sh  checks the 
results and reports errors when necessary. 

 A detailed example is provided on the website using the pro-
tein complex (PDB ID: 1A2K) as an example (  http://www. 
kiharalab.org/proteindocking/PI-LZerD/example    ). In this 
example, the input fi les are named 1A2K_R.pdb and 1A2K_L.pdb 
after their chain IDs, R and L, which are denoted in the PDB fi le. 
In addition, (predicted) docking interface residues should be pro-
vided. The fi les that contain the interface predictions in the exam-
ple are called 1A2K_R.meta and 1A2K_L.meta. The user only 
needs to execute the following command in a terminal to run the 
complete PI-LZerD protocol: 

  ./PI_LZerD.sh 1A2K R L   

3.2  PI-LZerD

3.2.1  Main PI-LZerD 
Process

Pairwise and Multimeric Protein–Protein Docking Using the LZerD Program Suite
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  The fl ow chart of the PI-LZerD algorithm (Fig.  2 ) is provided in 
the original PI-LZerD paper [ 23 ]. PI-LZerD is computationally 
expensive, because it runs LZerD pairwise docking 61 times in an 
iterative fashion. Thus, the total running time can be over a week, 
if executed sequentially. The 60 independent runs of LZerD in the 
second iteration can be distributed across multiple CPUs in a single 
machine or in a computing cluster and run in parallel.

   The PI-LZerD package is organized in a folder structure that 
refl ects computational steps (Fig.  3 ). There are 16 major steps in 
total as shown in Fig.  4 , which include 23 sub-steps listed in 
Table  1 . For each folder, a script named  job.sh  is used to run the 
corresponding programs. The  job.sh  scripts communicate with the 
main script,  PI_LZerD.sh , using the global environment with the 
main script running the scripts in each directory following the 
numeric order. It also checks the return values from each script and 
detects if any errors occurred. As shown in Fig.  4 , the whole pro-
cedure can be divided into fi ve stages.

      Stage 1. LZerD run, without interface residue information : LZerD 
is run without using protein interface information. This stage 
 corresponds to the leftmost branch in Fig.  2 . The LZerD program 
used in PI-LZerD has been modifi ed from the original LZerD 

3.2.2  Detailed Steps

  Fig. 2    Overview of the PI-LZerD algorithm. On the left branch the original LZerD program is run. LZerD (p) uses 
the permissive search space, and LZerD (r) uses restrictive search space employed in the geometric hashing 
stage. Refer also to the original PI-LZerD paper [ 23 ]       
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  Fig. 3    PI-LZerD directory structure. There are two directories in PI-LZerD: LZerD and PI_LZerD. Under each 
directory, there is a script named job.sh, which is sequentially called by the main script PI_LZerD.sh       

  Fig. 4    Computing steps in PI-LZerD. Five steps of PI-LZerD and programs included in the steps       

 program. The modifi ed LZerD outputs matched critical points from 
two proteins in each predicted conformation. Files are compressed 
and saved to a fi le called <PDB_ID> .out.gz. This  information is 
later used for both the permissive LZerD and restrictive LZerD 
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process (the right branch in Fig.  2 ). A score is computed each 
 predicted conformation with a physics-based scoring function, the 
same function used in the LZerD pairwise docking. Folders for 
Step 1 and their roles are as follows: 

  Related folders : 

  LZerD/01.BASE Add hydrogen atoms,   compute 
critical points and 3DZD for input PDB fi les  

  LZerD/02.MPI   Initial run of LZerD  
  LZerD/03.Votes Compute matching   critical 

points for each prediction  
  LZerD/04.ORD_SRB Computing physics-based score  

  Stage 2. Clustering docking models : The top 1,000 scoring docking 
models computed in Stage 1 are clustered. The similarity of dock-
ing models is measured with the Common Interface RMSD (CI_
RMSD), which is the RMSD computed only for residues that are 
common in the models to be compared. Then, the representatives 
of the clusters are sorted by considering the agreement of the 
docking interface residues to the provided predicted protein inter-
face information (naïve-fi ltering method). This corresponds to the 
clustering of the leftmost branch in Fig.  2 . 

  Related folders : 

  LZerD/05.CI_RMSD       Compute CI_RMSD  
  LZerD/06.LZerD_CIRMSD Clustering by CI_

RMSD  
  PI_LZerD/06.SRF Naïve-fi ltering method  

  Stage 3. LZerD run with provided docking interface residue infor-
mation (permissive search) . Next, the process moves to the right 
branch in Fig.  2 . LZerD is run to explore docking conformations 
in the vicinity of the provided docking interface residue informa-
tion. More concretely, the interaction interface of docking poses 
needs to have some overlap with the provided interface residues. 
The permissive search means that the conformation search space is 
set to be larger compared to the next iteration of LZerD runs 
(Stage 4). 50,000 docking models are generated and clustered in 
terms of CI_RMSD. 

  Related folders : 
  PI_LZerD/01.Pred_PPI    Predicted protein 

interface information  
  PI_LZerD/02.Sim_LZerD Running Permissive 

LZerD  
  PI_LZerD/03.LZerD_CIRMSD CI_RMSD of permis-

sive LZerD results  
  PI_LZerD/04.CIRMSD_CLUST Clustering of per-

missive LZerD results  
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  PI_LZerD/05.CLUST_T60 Selecting Top 60 
cluster selection  

  Stage 4. Second LZerD run with interface residue information 
(restrictive search) : Among the clustering results of the previous 
LZerD (Stage 3), the 30 largest clusters are selected and the 
 docking model that is closest to the cluster centroid in each cluster 
is kept. In addition, the 30 lowest energy docking models are also 
selected (the energy values of all docking models have already been 
computed and stored in Stage 1). Thus, a total of 60 docking 
models are kept from Stage 3. For each of the 60 docking models, 
docking interface residues are extracted and considered as updated 
predictions of interface residues. Then, LZerD is run using the 
updated interface residue information similar to Stage 3, but this 
time the conformational search is restricted to a smaller area close 
to the provided interface residues. Docking models are clustered 
based on CI_RMSD, and the one model that is closest to the clus-
ter centroid is kept. 

  Related folders : 

  PI_LZerD/07.T60_Iter  Restrictive LZerD  
  PI_LZerD/08.K60_CIRMSD Clustering with 

CI_RMSD for restrictive LZerD results  

  Stage 5. Generating PI-LZerD prediction : At this stage there are 61 
ranked lists of docking models, each from an independent LZerD 
run. The last step of PI-LZerD is to compute the fi nal ranked list 
of predictions out of the 61 lists. From each of the 61 lists, the top-
ranked predictions are fi rst ranked among themselves by their 
scores. Then, the second-ranked predictions from each fi le are 
ranked in the same way. This is repeated for predictions at the same 
subsequent ranks in the fi les. Thus, the fi nal output is a list of pre-
dictions in the 61 lists, which are fi rst sorted by their ranks and 
then sorted by the scores. Finally, the conformations of the top 
predictions are then generated. 

  Related folders : 

  PI_LZerD/09.T61 61 prediction lists  
  PI_LZerD/10.Result Merged 61 prediction 

lists  
 Table  2  lists the expected running time for each step. Generally 

a “fast” process can be fi nished in minutes, a “medium” process 
should be fi nished in hours, and a “slow” process can take days to 
fi nish.

      The Multi-LZerD package contains a script,  run.sh , that runs the 
complete process of multiple-protein docking. The overall steps 
are illustrated in Fig.  5 . To execute  run.sh , the names of the input 
fi les need to be specifi ed as explained in the next section. The later 
sections will go into more details about the intermediate steps 
performed by  run.sh .

3.3  Multi-LZerD
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   Table 2  
  Running time for steps in PI-LZerD. Fast indicates minutes, medium indicates hours, and slow 
processes can take days to fi nish   

 Stage  Folder  Time  References 

  1    LZerD/01.BASE   Medium  Add hydrogen atoms, create critical 
points, compute Zernike 
descriptors 

  1    LZerD/02.
MPI/01.LZerD_MPI  

 Slow  Original LZerD program with 
modifi ed output 

  1    LZerD/02.
MPI/02.LZerD_MAT  

 Medium  Extract prediction matrix 

  1    LZerD/02.MPI/03.SRB_MPI   Slow  Compute the physics-based scores 

  1    LZerD/02.
MPI/04.IRMSD_MPI  

 Slow  Compute the interface RMSD 

  1    LZerD/03.Votes   Medium  Extract the critical point dependence 
information 

  2    LZerD/04.ORD_SRB   Medium  Sort predictions in physics-based 
scores 

  2    LZerD/05.CI_RMSD   Medium  Compute common interface RMSDs 
(CI-RMSD) 

  2    LZerD/06.LZerD_CIRMSD   Medium  Generate list of clustered original 
LZerD predictions 

  2    PI_LZerD/06.SRF   Medium  Apply simple residue fi ltering method 

  3    PI_LZerD/01.Pred_PPI/   Fast  Extract protein interface information 

  3    PI_LZerD/02.Sim_LZerD   Slow  LZerD(p) 

  3    PI_LZerD/03.LZerD_CIRMSD   Medium  Compute CI-RMSDs for LZerD(p) 

  3    PI_LZerD/04.CIRMSD_CLUST   Medium  Cluster based on CI-RMSD 

  3    PI_LZerD/05.CLUST_T60   Medium  Generate top 30 + 30 predictions 

  4    PI_LZerD/07.T60_Iter   Slow  Run LZerD(r) for 60 predictions 

  4    PI_LZerD/08.K60_CIRMSD   Medium  Compute CI-RMSD for 60 
predictions 

  5    PI_LZerD/09.T61   Fast  Generate list from 60 + 1 lists of 
predictions 

  5    PI_LZerD/10.Result   Fast  Generate complex conformations 

    Multi-LZerD requires that input fi le names follow a specifi c naming 
convention. As an example, we provide three protein fi les in the 
package: A-sample.pdb, B-sample.pdb, and C-sample.pdb. Every 
fi le name must start with a prefi x which indicates the chain ID of 
the protein. We recommend using the same prefi x as the chain 

3.3.1  Main Shell Script 
for Multi-LZerD

Pairwise and Multimeric Protein–Protein Docking Using the LZerD Program Suite



226

  Fig. 5    Multi-LZerD fl ow diagram. Several PDB fi les, each representing a protein 
unit, are pre-processed to add hydrogen information and to generate pairwise 
docking predictions using LZerD. Multi-LZerD then combines the pairwise pre-
dictions and generates PDB fi les that contain the multimeric protein models       

identifi er in the PDB fi le of the protein. The prefi x should be 
followed by a “-” and a base name (e.g., PDB fi le name, e.g., 1abc 
or  sample  in the case of the sample fi les) and a suffi x,  .pdb . 

 Once the input PDB fi le names are modifi ed following the rule 
above, the fi le names should be specifi ed in  run.sh  as follows: 

  basename = 'sample'  
  units = 'A,B,C'  

 Notice that the “-” and the suffi x  .pdb  are not included in 
either the unit prefi xes or as base name. Also, the unit prefi xes must 
be comma separated. If the names of the fi les were  D-complex.pdb , 
 E-complex.pdb , and  F-complex.pdb , they would be specifi ed as 
follows: 
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  basename = 'complex'  
  units = 'D,E,F'  

 Once the input fi les are specifi ed in  run.sh , users can run it by 
opening a terminal window and navigating to the folder where 
 run.sh  is located by using the  cd  command, and then, simply run it 
by typing: 

  ./run.sh  

 When the computation is fi nished, a series of fi les with names 
starting with “refi ned” are created, which contain predicted pro-
tein complex models. The associated number indicates the rank of 
the models, with lower numbers representing better predictions.  

  Here we explain the steps in  run.sh . Parameters in some steps can 
be modifi ed.

    1.     Addition of hydrogen atoms . The scoring function used in 
Multi-LZerD requires the presence of hydrogen atoms in pro-
tein structures. A script named  addhydrogen.pl  takes PDB fi les 
and generates a new set of fi les with a “.pdb.h” suffi x: 

  ./addhydrogens.pl sample A,B,C  

 The newly created fi les contain all the original atoms and, 
additionally, hydrogen atom locations calculated using the 
HBPLUS program [ 29 ]. If users prefer to add hydrogen 
atoms in an alternative way, this step should be removed from 
 run.sh . Please note that the fi les with hydrogen atoms should 
have a fi le name with . pdb.h  at the end.   

   2.     Pairwise docking predictions . Multi-LZerD uses LZerD to cre-
ate pairwise poses between all possible combinations of pairs of 
component proteins. This means that LZerD will be executed 
several times. The following section in  run.sh  manages the nec-
essary calls to LZerD to create pairwise docking predictions: 

  ./create_lzerd_decoys.pl sample A,B,C 
execute  

  create_lzerd_decoys.pl  will terminate once all pairwise 
 predictions are fi nished. Then, the top predictions for each 
case are kept using the following auxiliary script: 

  ./multilzerd_sort_decoys.pl ./A,B,C 54000  

 The number of pairwise poses kept in this example is 
54,000, although users can change this value. A lower number 
will reduce the search space of complex structures and the 
execution time but may eliminate correct predictions. A higher 
number will increase the chance of fi nding correct and near- 
correct poses but at the price of increasing the execution time. 
These steps will produce result fi les that contain pairwise 
docking predictions for each pair. The fi le names will be, for 

3.3.2  Detailed Steps 
in Multi-LZerD
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the example case,  A-B.out ,  A-C.out , and  B-C.out . In general, 
there will be a “. out ” fi le for every pair of proteins identifi ed by 
their prefi xes.   

   3.     Removal of similar pairwise predictions . By default, the protocol 
generates 54,000 pairwise poses per protein pair, but a number 
of them may be similar to each other. To minimize redundancy 
we apply a clustering program to group similar poses and keep 
one representative pose from every group. Predictions are 
grouped together if their root mean square deviation (RMSD) 
between C-α atoms is less than 10 Å, in the default case. 
Changing the following line in  run.sh  modifi es this threshold: 

  cluster_threshold = 10  

 More pairwise poses will be kept with a smaller value. 
Conversely, a higher value will reduce pairwise docking con-
formations and the execution time more aggressively but with 
a risk of pruning out correct or near-correct models.   

   4.     Multiple-protein docking . The main multiple-protein docking 
is performed by the following line in  run.sh : 

  ./multilzerd --pdbid sample --chains A,B,C 
-o sample --generations 200  

  --population 200 --clashes 300 --cluster 10 
--weights all  

 Users may want to change four parameters provided to the 
program, depending on the protein complexes they want to 
assemble.   

   5.     Number of generations . The generation parameter, which is set 
to  --generations 200  as default, represents the number of 
iterations used to explore different pairwise prediction combi-
nations during the GA performed by Multi-LZerD. More con-
formations will be explored with a higher number of  iterations. 
The amount of iterations required varies for different cases. In 
our papers, we have explored the effect that the number of gen-
erations has in the fi nal prediction accuracy [ 17 ,  24 ]. For cases 
up to six chains we observed that high-quality models were 
obtained within 2,000–3,000 iterations. Notice that the script 
sets the number of iterations to 200. We recommend this num-
ber to be increased if users can bear a longer computation time.   

   6.     Population size . The population size, set as  --population 
200 , is the number of conformations generated and compared 
in each generation of GA. A larger population size can explore 
more conformations. Obviously, the execution time will 
increase as the population increases. We have analyzed how 
much the population size impacts the quality of the models in 
our previous publication [ 24 ]. For most cases we recommend 
a population size between 200 and 400.   
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   7.     Number of atom clashes allowed . The atom clash parameter 
(--clashes), which is set to 300 as default, determines the num-
ber of atoms that we allow to be closer than 3 Å to another 
atom in a protein complex model. In the default setting, if 300 
or more atoms in a model have clashes, the model is removed. 
When a target protein complex has a larger number of sub-
units, more clashes may be tolerated. The default setting of 
300 clashes is appropriate for a smaller number of chains (e.g., 
3 or 4). We have found that it needs to be increased to around 
800–1,000 for a six-chain complex.   

   8.     Multiple-docking clustering threshold . We previously mentioned 
a clustering threshold for pairwise docking. Clustering is also 
performed against a population of protein complexes at the 
end of every GA generation to remove redundant models. The 
RMSD between C-α atoms of models is also used in this case, 
and it is set by the --cluster fl ag. The default value is set to 
10 Å. By default, the cutoffs of both pairwise and multiple 
docking are set to 10 Å. We would recommend users to keep 
it at 10 Å, but they do not need to be the same value.   

   9.     Generation of poses in the PDB format . After Multi-LZerD fi n-
ishes, a fi le with a  .ga.out  suffi x will be generated. It will con-
tain the same number of models as the number provided for 
the --population parameter. To generate PDB fi les from the 
output fi le,  run.sh  executes the following command: 

  ./multilzerd_create_pdb sample.ga.out ./ 1 200 decoy  

 This will create 200 PDB fi les that start with the “decoy-” 
prefi x, followed by a number that shows the model rank. This 
program receives as input fi ve parameters:

 ●    A . ga.out  output fi le.  
 ●   The directory where the pairwise output fi les and the origi-

nal PDB fi les are located. In the example provided, this 
means that  A-sample.pdb ,  B-sample.pdb ,  C-sample.pdb ,  A-B.
out ,  A-C.out , and  B-C.out  are in the current directory “./”.  

 ●   Two index numbers between 1 and the population size used 
that determine the rank of the PDB models to output. In the 
example, since the population size used was 200, 1 and 200 
imply that all the models will be generated. An alternative 
range such as 25 to 50 means that the fi rst 24 models will not 
be generated and models between 25 and 50 (inclusive) will.  

 ●   A prefi x that will be used in all of the output fi le names 
( decoy  in the example).      

   10.     Refi nement . It is possible to apply a refi nement program in the 
package to the generated models. The refi nement program will 
perform small translations and rotations between subunits in a 
complex model to fi nd a complex structure of lower energy. 
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Resulting models are not expected to deviate signifi cantly from 
the starting conformation; rather, the program is designed for 
minor adjustments. This is achieved by the last command in 
 run.sh : 

  ./multilzerd_refi ne --input sample.ga.out 
--trials 200 --prefi x refi ned     

  The refi nement tries a confi gurable number of randomized 
modifi cations, specifi ed by the  --trials  fl ag. While we provide 200 
as a default value, we have used 2,000 in some of our previous 
works. One refi ned model will be created for each model in the  .ga.
out  fi le. Refi ned PDB fi les have the following naming convention: 
refi ned- < ##### > .pdb (with a fi ve-digit number that corresponds 
to the prediction number in the  .ga.out  fi le).    

4    Case Studies 

 Here we show examples of predicted protein complexes by LZerD, 
PI-LZerD, and Multi-LZerD. Figure  6a  is a pairwise docking pre-
diction by LZerD for a protein complex of a bovine beta- trypsin 
and an inhibitor CMTI-I (PDB ID: 1PPE). This is one of the 
entries in a protein–protein docking benchmark set [ 30 ]. The 
results for a sample LZerD [ 11 ] run are visualized with PyMOL 
[ 31 ] in part A of this fi gure. Two predicted positions for the ligand, 
CMTI-I, are shown. The structure in blue corresponds to  ligand1.
pdb  (iRMSD 14.3 Å), while the best prediction, ranked 505 in this 
sample run, is shown in orange (iRMSD 1.12 Å).

   The second example (Fig.  6b ) is a prediction by PI-LZerD for 
a complex of human CDK2 kinase with cell cycle regulatory pro-
tein CksHs1. The correct docking pose is shown in blue, and the 
prediction by PI-LZerD is shown in green (iRMSD: 1.03 Å). The 
interface residue prediction used has a sensitivity (fraction of cor-
rectly predicted interface residues) of 0.33 for the receptor and 
0.44 for the ligand. Interface residue information can also be used 
as post-screening for docking models, where models that have the 
same set of interface residues as the provided interface residues are 
selected among all of the produced docking models. The post- 
screening (called naïve-fi ltering method) did not work well for this 
case because the interface residue information is not very accurate 
(predicted pose shown in red). 

 Finally, we show a prediction example of Multi-LZerD 
(Fig.  6c ). We have used a trimeric complex of two transcription 
factors and a retinoblastoma-associated protein (PDB ID: 2AZE). 
This trimer has a triangular topology, which means that all three 
units interact with the other two. A near-native prediction (a global 
C-α RMSD of 0.99 Å) was found as the lowest energy model as 
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  Fig. 6    Visualization of LZerD case studies. ( a ) Snapshot of visualization of predicted docking models for a 
protein complex (PDB ID: 1PPE) using PyMOL. Prediction 1 ( blue  ) and 99 ( orange  ) are visualized, while the 
other models are in the environment but not shown. ( b ) Predictions generated by PI-LZerD for 1BUH. The native 
structure is shown in  blue , PI-LZerD’s prediction in  green , the standard LZerD in  yellow , and the  red one  shows 
a prediction using the naïve-fi ltering method, which simply selects models by examining the consistency of 
interface residues in models with predicted interface residues. This fi gure is modifi ed from a fi gure originally 
published in the PI-LZerD paper [ 23 ]. ( c ) A Multi-LZerD prediction for 1A0R.  Blue ,  red , and  yellow  show the 
native conformation, while  light blue ,  salmon , and  orange  show the predicted unit poses       

shown in the original Multi-LZerD publication [ 17 ]. The native 
units are shown in blue, red, and yellow colors, while the predicted 
units are colored using light blue, salmon, and orange.  
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5    Notes 

    In this section we provide a few hints that we have found useful 
when executing our docking protocols.

    1.     Running LZerD and Multi-LZerD with nohup : We encourage 
users to execute either LZerD or Multi-LZerD using nohup, a 
Linux command that allows processes to keep running even if 
users log out from a computer. This is useful especially when 
users remotely log into a computer because it allows users to 
start a docking process and log out once the command is issued 
without having to wait for the whole process to fi nish. 

 In addition, we suggest that the terminal output be redi-
rected to a fi le, which can serve as a log of the execution. For 
example, to run LZerD, the user can execute this command: 

  nohup ./runlzerd.sh example/1PPE_r_b.pdb 
example/1PPE_l_b.pdb >& log.txt &  

 The “>&” tells the command shell to redirect all output, 
which are normally shown on the terminal screen to  log.txt . 
Notice that not all command shells use the same nomenclature 
to redirect the output. The fi nal ampersand symbol tells the 
terminal to let the program run in the background.    

   2.     Optimizing GETPOINTS cutoff : While discussing LZerD we 
mentioned that the  -cut  parameter given to GETPOINTS 
could vary the runtime signifi cantly. We suggest that users, 
when testing a new protein complex, fi rst set this parameter 
to 1e-02 and observe how much time it takes to run the pro-
tocol. Then run the program again with 1e-03 and fi nally 
with 1e-04. The fi rst setting is expected to have a runtime 
between minutes to around one to two hours. The latter two 
settings take more time. If the available time allows it, users 
can run the procedure again with the second or the third set-
ting. If the new setting is taking longer than users can afford, 
the new run can be aborted, and the results from the previous 
run can be used.         
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Chapter 16

Protocols for Efficient Simulations of Long-Time Protein 
Dynamics Using Coarse-Grained CABS Model

Michal Jamroz, Andrzej Kolinski, and Sebastian Kmiecik

Abstract

Coarse-grained (CG) modeling is a well-acknowledged simulation approach for getting insight into long- 
time scale protein folding events at reasonable computational cost. Depending on the design of a CG 
model, the simulation protocols vary from highly case-specific—requiring user-defined assumptions about 
the folding scenario—to more sophisticated blind prediction methods for which only a protein sequence is 
required. Here we describe the framework protocol for the simulations of long-term dynamics of globular 
proteins, with the use of the CABS CG protein model and sequence data. The simulations can start from 
a random or a selected (e.g., native) structure. The described protocol has been validated using experimen-
tal data for protein folding model systems—the prediction results agreed well with the experimental results.

Key words Folding pathway, Folding mechanism, Protein dynamics, Protein folding, Coarse-grained 
modeling

1 Introduction

Protein folding events occur over a wide range of time scales: from 
picosecond (small fluctuations) to millisecond or longer (signifi-
cant regrouping of thousands of atoms). No single experimental 
technique has yet presented a complete insight into the folding 
process due to the limitations in accessible time and resolution 
scales [1]. For small proteins, the 1 ms time scale has recently 
become accessible to atomic level molecular dynamics (MD) simu-
lations run on special-purpose supercomputers [2]. Given the 
ambiguity of the experimental data, the major role of simulation 
techniques is to provide detailed structural models suitable for the 
experiment interpretation [3, 4].

The purpose of the described CABS software package is to 
perform long-time simulations of protein molecules including de 
novo folding from a random structure, near-native dynamics, 
unfolding processes, and long-time dynamics of unfolded 
structures.
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The package simulation engine is the CABS protein model—a 
coarse-grained (CG) modeling tool—enabling an effective simula-
tion of protein dynamics (at a much reduced computational cost 
compared to the most established simulation approach: an all-atom 
MD) and de novo prediction of protein structures. In the CASP 
experiments, the CABS-based prediction approach allowed for 
realistic de novo predictions of new folds for small proteins and an 
accurate modeling of large structures using various partial restraints 
derived from detected homologies with known structures (the 
approach was ranked first or second depending on the scoring sys-
tem [5, 6]). The application of the CABS model to simulations of 
protein dynamics has been validated on experimental long-time 
scale (super-millisecond) data for protein folding model systems 
(perhaps the most extensively studied by experiment and theory): 
barnase [7], chymotrypsin inhibitor 2 [7], B1 domain of protein G 
[8], B domain of protein A [9, 10], and others [11]. The obtained 
simulation results concerning the folding mechanism or the dena-
tured state properties agreed well with experimental data and other 
simulation findings (the review and comparison of the experimen-
tal, the CABS-predicted, and other simulation data for three pro-
tein folding model systems are presented in ref. 1). Another 
validation study included the comparison of the CABS dynamics 
with the results of MD simulations [12]. The test demonstrated 
that the consensus view of protein dynamics from short (10 ns)-
time scale MD simulations (for different protein metafolds, using 
all-atom MD, explicit water, and four most popular force fields) is 
fairly consistent with the CABS dynamics. The CABS modeling 
approach has also been used in simulation studies of a chaperonin 
effect on folding mechanism (a simple chaperonin-like protocol 
was implemented within the CABS algorithm) [10].

Generally, in comparison with other simulation tools, the 
advantageous features of CABS include suitability for de novo pre-
diction of small proteins, low computational cost of simulating sig-
nificant conformational changes, and, in respect to other CG 
models, high resolution of coarse graining (physically realistic 
models can be obtained [9, 13]). The potential applications of the 
CABS model comprise structural characterizations of protein con-
formations along the folding pathway (denatured state ensembles, 
intermediates, and near-native ensembles) and thus the interpreta-
tion of the existing sparse experimental data. In all these prediction 
tasks, weak and/or fragmentary distance restraints (derived from 
sparse experimental data or from theoretical predictions of plausi-
ble structural biases) can be applied. Finally, the CABS-derived 
structures and trajectories can be used in multiscale modeling pro-
cedures, merging CG modeling with atomic level simulations (see 
the pipeline in Fig. 1).

Michal Jamroz et al.



237

2 Materials

The required input data are protein sequence and assigned (or pre-
dicted) secondary structure. The optional input is starting struc-
ture data (in PDB format; required for unfolding studies or 
RMSD-to-native analysis).

For barnase, the example protein studied in the Methods sec-
tion, the following data have been used: sequence, structure 
(PDBID: 1BNR), and secondary structure assignment (by the 
DSSP method) [14]. For known protein structures, both PDB and 
DSSP files can be accessed from the PDB database (http://www.
rcsb.org/), e.g., the files for 1BNR can be obtained using the fol-
lowing links:

http://www.rcsb.org/pdb/files/1bnr.pdb.
http://www.rcsb.org/pdb/files/1bnr.dssp.

2.1 Input Data

Fig. 1 Multiscale characterization of protein dynamics pipeline with the use of 
the CABS model. The framework protocol for simulation and analysis described 
in this manuscript is marked with a dashed line

Protocols for Efficient Simulations of Long-Time Protein Dynamics…
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The required software modules are the CABS modeling package 
and the CABS Python wrapper (pyCABS) both available for down-
load from http://biocomp.chem.uw.edu.pl/pycabs. For running 
the pyCABS, Python interface and necessary Python modules 
(listed in Subheading 3) are needed. For additional download and 
setup details see Note 1.

The user should have basic skills in Python language scripting as 
well as a basic knowledge of structural bioinformatics (particularly 
in the foundations of protein folding problems and the use of pro-
tein structural data).

A computer running Linux/Unix with at least 3 GB of free hard- 
disk space for the output data. Since some of the protocols described 
here involve running multiple (up to one hundred) simulation 
runs, we recommend the usage of a multi-CPU workstation.

3 Methods

The details of the CABS protein model are described in ref. [15]. 
Below, step-by-step instructions are presented together with 
python script fragments (given in Courier New font style). The 
complete scripts are available from http://biocomp.chem.uw.edu.
pl/pycabs.

Download the required software (for download instructions  
see Note 1). Next, the necessary Python modules need to be 
imported. Create a file with the *.py extension (e.g., folding_
pathway.py) and type inside

#!/usr/bin/env python
import matplotlib as mmp
mmp.use('Agg')
import os, random, pylab, glob, pycabs, numpy as np, 
multiprocessing as mp

The first line is the information for the system which inter-
preter should be used for running the script. The next two lines 
define the environment for creation of contact maps and standard 
deviation plots. The last line invokes imports of the multiprocess-
ing module (for parallel execution of CABS software), pylab (for 
plotting the data), and pyCABS (for running CABS and processing 
CABS format files).

The following example describes how to run multiple simulations 
of protein folding dynamics, for the example protein barnase. The 
described simulation approach was used in the characterization of 
the barnase folding pathway in the work of Kmiecik and Kolinski [7]. 

2.2 Software

2.3 Skills

2.4 Hardware

3.1 Environment 
Preparation

3.2 Running 
Isothermal 
Simulations

Michal Jamroz et al.
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Note that the results may vary in quantitative details due to possi-
bly different simulation settings and/or later modifications of the 
CABS model.

It is recommended, but not required, to provide sequence 
and secondary structure information using the DSSP file format 
(for additional hints see Note 2):

sequence,secstr = pycabs.parseDSSPOutput("1bnr.dssp")

Alternatively, one can simply define it in sequence (protein 
sequence) and secstr (protein secondary structure) variables. 
The secondary structure should be defined for each amino acid in 
the three-letter code: H, a helix; E, an extended state; and C, a coil 
(less regular structures). In the case of secondary structure predic-
tions, overpredictions of the regular secondary structure (H or E) 
are more dangerous for the quality of the results than 
underpredictions.

In previous works, as the first step in the characterization of 
long-term dynamics we found it convenient to execute multiple 
isothermal simulation runs in different temperatures. In the CABS 
algorithm, the temperature is the parameter controlling the accep-
tance ratio for new conformations (through an asymmetric Monte 
Carlo scheme).

To run simulations in a parallel fashion (one simulation on one 
thread), create a function definition (runCABS) for the multipro-
cessing threadpool:

name = "barnase"
template = ["/where/is/my/barnase/1bnr.pdb"]
independent_runs = 5
temp_from = 1.5
temp_to = 3.8
temp_interval = 0.05
temperatures = np.arange(temp_from,temp_to,temp_interval)

def runCABS(temperature):
 global name, sequence,secstr,template,independent_runs
 here = os.getcwd()
 for i in range(independent_runs):
 temp = "%06.3f" %(temperature)
 dir_name= name+"_"+str(i)+"_T"+temp
 a = pycabs.CABS(sequence,secstr,template,dir_name)
 a.rng_seed = random.randint(1,10000)
 a.createLatticeReplicas(replicas=1)

 a.modeling(Ltemp=temperature,Htemp=temperature, 
phot=300,cycles=100,dynamics=True)

 os.chdir(here)

pool = mp.Pool()
pool.map(runCABS,temperatures)

Protocols for Efficient Simulations of Long-Time Protein Dynamics…
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The above code fragment contains a declaration of the 
 independent_runs variable, which tells the script to start five 
independent (with a different pseudo-random number generator 
seed) simulations for each temperature, starting from 1bnr.pdb 
(the native structure). It also contains the temperatures variable, 
which is a list of temperatures in the range of 1.5–3.8 and interval 
0.05. This gives a total number of (3.8–1.5)/0.05 × 5 = 230 inde-
pendent simulations (for additional details see Note 3). In order to 
start the simulations from extended random coil structures leave 
the template variable empty, i.e., template=[]. Doing so ensures 
that the simulation results are not biased from the starting struc-
ture. At elevated temperatures, due to the fast relaxation of the 
polypeptide chain, the simulation trajectory relatively quickly 
becomes independent from the starting structure.

The following parameters define the simulation length:

cycles—defines the number of CABS MC macrocycles [15] and 
determines the trajectory length (a number of trajectory snap-
shots is equal to cycles multiplied by 20, e.g., for cycles = 100 
the resulting trajectory will have 2,000 snapshots).

phot—determines simulation length between the recorded 
snapshots.

The CABS-generated trajectories are produced in different 
output formats and representations: TRAF file (contains trajectory 
models in an alpha-carbon representation) and TRASG (contains 
trajectory models in a center-of-side-chain-mass representation). 
Both files are reformatted to a more popular PDB format. 
Additionally, each working directory contains an ENERGY file 
with CABS energy values for each model in a trajectory.

The CABS model (and the pyCABS module), developed pri-
marily for protein structure prediction, enables application of dis-
tance restraints (derived from sparse experimental data or from 
theoretical predictions of plausible structural biases). For example 
instructions on running comparative modeling (with the use of 
structural template(s)), de novo modeling (template free), and 
modeling with the use of external distance constraints, see Note 4.

Below are the instructions for the calculation of average CABS energy 
and standard deviation of energy values for the obtained trajectories. 
Both measures plotted in the function of temperature give an insight 
into the overall characteristics of the CABS energy landscape.

The standard deviation of energy (E) in function of temperature 
(T) is defined as
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where N is the number of observables, and ET  is the mean in the 
given T.

3.3 Calculating 
Simulation Statistics

Michal Jamroz et al.
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To compute average energy and its standard deviation for each 
simulation, run the following code (e_path must be constructed 
identically to the dir_name variable in the runCABS procedure):

stdd = np.empty([independent_runs,len(temperatures)])
avgene = np.empty([independent_runs,len(temperatures)])
for j in range(independent_runs):

 for i in range(len(temperatures)):
 temp = "%06.3f" %(temperatures[i])
 e_path = os.path.join(name+'_'+str(j)+'_T'+temp,'ENERGY')
	 energy	=	np.fromfile(e_path,sep='\n')[1000:]
 stdd[j][i] = np.std(energy)
 avgene[j][i] = np.mean(energy)

Adding the following commands

mean_sigma = np.mean(stdd,axis = 0)
stddev_sigma = np.std(stdd,axis = 0)
mean_ene = np.mean(avgene,axis = 0)
stddev_ene = np.std(avgene,axis = 0)

invokes computation of the average values from five independent 
simulations for each T value (see Fig. 2).

To plot average CABS energy and standard deviation of energy 
values for the obtained trajectories (a single point denotes a single 
trajectory), users can apply the pylab module as in the code below

pylab.ylabel(r'Standard deviation of energy')
pylab.xlabel(r'Temperature, $T$')
pylab.xlim(temp_from,temp_to)
for i in range(independent_runs):
    pylab.plot(temperatures, stdd[i], '.')
pylab.errorbar(temperatures,mean_sigma,yerr=stddev_sigma,fmt='o-')
pylab.savefig("stdE_barnase.png",dpi=600)
pylab.close()

and analogously for the average energy plot (by changing mean_
sigma to mean_ene, stddev_sigma to stddev_ene and 
stdd to avgene). The standard deviation of energy is written to 
stdE_barnase.png (upper panel in Fig. 2). The average energy 
plot is shown at the bottom of Fig. 2 (additional plotting options 
are given in Note 5).

Average contact maps (average for the entire isothermal trajectory 
or trajectory fragment of interest) provide a very informative 
insight into complex intramolecular interactions of highly diverse 
protein ensembles.

3.4 Plotting 
Simulation Statistics

3.5 Generating 
Contact Maps

Protocols for Efficient Simulations of Long-Time Protein Dynamics…
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Fig. 2 CABS energy standard deviation (above) and CABS energy (below) as a func-
tion of temperature (T) for barnase (similar results were presented in ref. [7]). 
Variously colored small points represent individual isothermal simulations, while 
larger yellow points represent average value from five independent simulations in 
the given T value. The transition temperature (Tt) is identified by a steep drop of the 
energy and the peak of the energy standard deviation (heat capacity), here when 
T = 2.9. Tt cannot be strictly identified with the transition state of protein folding. 
Sometimes, as for chymotrypsin inhibitor (see ref. [7]), conformations observed at 
Tt may be relatively unstructured, with some features of a molten globule state. For 
a more exact estimation of the Tt value one can repeat the computations in a 
smaller range of temperatures, with a smaller temp_interval value
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#!/usr/bin/env python
import matplotlib as mmp
mmp.use('Agg')
import pycabs,os,numpy as np
name = "barnase"
max_sd_temperature=2.9
independent_runs=5
trajectory = []
for j in range(independent_runs):

 temp = "%06.3f" %(max_sd_temperature)
 e_path = os.path.join(name+'_'+str(j)+'_T'+temp,'TRASG')
 trajectory += pycabs.loadSGCoordinates(e_path)[1000:]

The above code fragment loads the second half of trajectories 
in the center-of-side-chain-mass trace format from five indepen-
dent simulations in the temperature 2.9. To calculate an average 
contact map (the contact map definition is given in Note 6) with 
the cutoff of 7.0 Å use

contact = pycabs.contact_map(trajectory,7.0)

and to write it to a file, use the pylab module (for the map coloring 
hint see Note 7):

from	pylab	import	xlabel,ylabel,pcolor,colorbar,savefig,
xlim,ylim,cm
xlabel("Residue index")
ylabel("Residue index")
xlim(0,len(contact))
ylim(0,len(contact))
for k in range(len(contact)-3):

for l in range(3):
contact[k+l][k+l] = contact[k+l][k] = contact[k]
[k+l] = contact[k][k]=0

pcolor(contact, cmap=cm.gnuplot2_r,vmax=0.6)
cb = colorbar()
cb.set_label("Fraction of contacts")
savefig("average_heatmap"+str(max_sd_temperature)+".png")

The example contact map, created as described above, is pre-
sented in Fig. 3.

Note that for generating contact map figures, instead of using 
the pylab module, one can use any specialized software for this 
purpose, e.g., Gnuplot program (for plotting instructions in 
Gnuplot see Note 8).

The resulted trajectories can be filtered and structurally analyzed 
using simple filters (for example CABS energy and RMSD-to- 
native cutoffs). More sophisticated structural analysis is perhaps 
most commonly performed with the use of clustering analysis [16] 
(like in the characterization of near-native ensemble in ref. [8] or 
transition state ensemble in ref. [9]) or principal component 
 analysis [17].

3.6 Selection  
of Models of Interest 
Using RMSD-to-Native 
and CABS Energy 
Measures
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The simple filtering options are accessible from the provided 
modules. To filter out models dissimilar by RMSD to the native 
structure, one can use

#!/usr/bin/env python
import pycabs,os,numpy as np

name = "barnase"
rmsd_cutoff = 7.5
max_sd_temperature=2.9
independent_runs=5

native	=	pycabs.parsePDBfile("/path/to/barnase/1bnr.pdb")
trajectory = []
for j in range(independent_runs):
 temp = "%06.3f" %(max_sd_temperature)
 e_path = os.path.join(name+'_'+str(j)+'_T'+temp,'TRAF')
 for model in pycabs.loadTRAFCoordinates(e_path):
 if pycabs.rmsd(native,model) < rmsd_cutoff:
 trajectory += model

Note that each simulation directory contains an ENERGY file 
with the energy of each trajectory model. By reading it to memory 
(numpy.fromfile("path/ENERGY",sep	 =	 "\n")) the user can 
filter out models with a particular energy cutoff.

Fig. 3 Contact map for the intermediate (between fully denatured and near- 
native) state of barnase (similar results were presented in ref. [7]). The colors 
indicate the frequency of contacts. Short-range contacts are omitted for clarity
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Selected individual models or consecutive trajectory fragments can 
be rebuilt to an all-atom representation. The task of reconstruction 
from alpha carbon trace is typically solved by a two-step procedure 
[9, 18]: backbone reconstruction from alpha carbon trace [19] fol-
lowed by side-chain reconstruction [20] based on the position of 
backbone atoms. Note that models from the CABS method (in alpha 
carbon trace representation), as well as from the other CG modeling 
tools, are not free from unphysical local distortions. Therefore, 
building physically sound models from reduced models usually 
requires specialized reconstruction and refinement procedures [18].

4 Notes

 1. All necessary applications can be downloaded from the follow-
ing sources: Python (http://www.python.org), Pylab (http://
www.scipy.org/PyLab), CABS/pycabs (http://biocomp.
chem.uw.edu.pl), and GNUplot (http://www.gnuplot.info). 
All programs (except pyCABS and CABS) are available in most 
of the Linux distribution repositories.

If one wants to compile the CABS software, use g77 –O2 
–static	 –ffloat-store	 –o	 cabs_dynamics	 CABS_
dynamics.f and move the "cabs_dynamics" file to the FF 
directory of pyCABS module.

After downloading the pyCABS package, uncompress it into 
the working directory and modify the pycabs.py file by set-
ting path to the FF directory. This can be done by changing the 
self.FF variable in the __init__method of the CABS class.

 2. One can utilize secondary structure prediction software and 
write a predicted secondary structure (each residue in one-
letter code: H—helix, E—extended, C—coil) in the secstr 
variable. Note that the Protein Data Bank does not contain 
DSSP files for all deposited proteins.

 3. This task has taken about 28 h on 24 Intel® E5649 threads. 
That range of temperatures is typical for barnase; for other 
proteins it could be different. In order to roughly estimate the 
appropriate range, an initial simulation run can be performed 
with less computationally expensive operands: temp_ 
interval=1 and independent_runs=1. Note that pool = 
mp.Pool() uses all available CPUs by default, but the user can 
limit it, e.g., pool = mp.Pool(4), to utilize only four CPUs.

 4. Example instructions for running: comparative modeling 
(with the use of structural template(s)), de novo modeling 
(template free), and modeling with the use of external distance 
constraints.

3.7 Reconstruction 
to All-Atom 
Representation
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The following is an example script for protein structure 
 prediction by comparative modeling (with the use of second-
ary structure prediction (in the Porter method [21] format 
file) and three templates (e.g., from Pcons Structure Prediction 
Meta Server: pcons.net): t1.pdb, t2.pdb, t3.pdb). Residues in 
the template structure files have to be numbered according to 
the target sequence alignment:

#!/usr/bin/env python
import pycabs

sequence,sec_str = pycabs.parsePorterOutput("/absolute/
path/to/porter.ss")
working_dir = "prediction" # name of project
templates = ["/abs/path/to/t1.pdb","/abs/path/to/
t2.pdb","/abs/path/to/t3.pdb"]
a = pycabs.CABS(sequence,sec_str,templates,working_dir)
a.generateConstraints()
a.createLatticeReplicas(replicas = 10) # create start 
models from templates
a.modeling(Htemp = 2.0,Ltemp = 1.0,cycles = 20,phot = 100)

The script presented above: (1) parses the secondary struc-
ture prediction file (one can directly define sequence and 
 secondary structure in sequence and sec_str variables, 
respectively); (2) creates distance constraints from templates; 
(3) creates 10 starting structures projected on the CABS lat-
tice (iteratively from each template), which can be viewed in 
PDB file format in the "prediction" directory; and (4) runs 
CABS simulation with REMC and simulated annealing in the 
temperature range from 2.0 to 1.0 (typical values for compara-
tive modeling).

In order to run de novo modeling (without the use of 
 templates/constraints) one needs to (1) specify the sequence 
and sec_str variables, (2) leave the templates empty (i.e., 
templates = []) and comment out the a.generate- 
Constraints() line, and (3) run CABS simulation with 
REMC and simulated annealing in the temperature range 
from 3.5 to 1.0, cycles = 100, phot = 100, and repli-
cas = 30, which are typical settings for de novo modeling. 
Note that de novo modeling is an extremely difficult modeling 
task and the difficulty increases with the protein length. Thus, 
the procedure may be suitable for small proteins preferably not 
longer than 120 residues.

In order to introduce some external distance constraints 
(derived from sparse experimental data or from theoretical pre-
dictions of plausible structural biases), one can manually add 
the distances data before running the modeling procedure:

misc = []
misc.append((1, 40, 15.4, 16.6, 0.5))
a.generateConstraints(exclude_residues = range(1,1000), 
other_constraints = misc)
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The code fragment presented above (1) excludes all auto-
matically generated constraints (exclude_residues for resi-
dues 1–999) and (2) adds user-provided constraint between 
the alpha carbon atoms of the residues No. 1 and No. 40 with 
the constraint range between 15.4 and 16.6 Å (the constraint 
range is a preferred distance between the selected alpha car-
bons) and the constraint force equal to 0.5. The variable misc 
is in the format of a list of tuples (residue_i_index, 
residue_j_index, lower_distance, upper_distance, 
force). If one needs to change the global force constraint, it 
is possible to do so by providing a new value for constraints_
force (default 1.0) in the modeling method, i.e.,

a.modeling(Htemp = 2.0,Ltemp = 1.0,cycles = 20,phot = 100, 
constraints_force = 2.0)

If the script is successfully terminated, the prediction results 
can be found in the “prediction” directory (TRAF.pdb file).

 5. At the script level, one can define output plot parameters, e.g., 
label sizes, colors, and resolution (more visualization examples 
can be found at http://matplotlib.org).

 6. Contact map C is a N × N matrix defined as

 
C i j C j i

if d x x cutoff

otherwise
i j, ,
,

( ) = ( ) = ( ) <ì
í
ï

îï

1

0  

where xi is the position of the x-th atom (here the center of a 
mass of a side group of an i-th residue).

 7. The Pcolor function of the pylab module has a vmax param-
eter which defines the maximum value of the colorbar scale. 
Manipulating the vmax value may be helpful for a proper visu-
alization of contacts of interest.

 8. Instead of using the pylab module, one can write text data to 
the output file. To write the contact array into a file formatted 
for GNUplot, write a file with three columns (i-th residue, j-th 
residue, contact fraction value) and leave a blank row each 
time before the i-th column changes its value:

fw = open("contact_map.dat","w")
for i in range(len(contact)):
    for j in range(len(contact)):
						fw.write("%5d	%5d	%7.5f\n"	%(i+1,j+1,contact[i]
[j]))
				fw.write("\n")
fw.close()

Note that in the example above, the script writes residue  
indexes starting from 1 (in pylab fragment it creates plots starting 
from 0).
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Finally, plot contact_map.dat in GNUplot (and write to 
the postscript file with a font size suitable for presentation):

set terminal unknown
plot 'contact_map.dat' using 1:2:3
set xrange[GPVAL_DATA_X_MIN:GPVAL_DATA_X_MAX]
set yrange[GPVAL_DATA_Y_MIN:GPVAL_DATA_Y_MAX]

set terminal postscript eps enhanced color "Helvetica" 14
set output 'contact_map.eps'
set size ratio 1
unset key
set xlabel 'Residue index'
set ylabel 'Residue index'
set cbrange[:0.8]
set palette negative

plot 'contact_map.dat' with image

The first four lines of these GNUplot commands are respon-
sible for the calculation of max/min values of axis data (1 to 
chain length); set cbrange[:0.8] sets the colorbar scale in 
the range of 0.0–0.8.

5 Case Studies

Below are brief descriptions of several applications of the CABS 
model, together with the post-processing analysis applied to the 
characterization of protein folding.

A staggering number of different protein conformations sam-
pled during de novo simulations require post-processing strategies 
that reduce the vast conformational complexity into easy to under-
stand and interpret data. The complex nature of intramolecular 
interactions of highly diverse ensembles can be relatively simply 
described by average contact maps (average for the entire isother-
mal trajectory or trajectory fragment of interest). As shown in the 
folding mechanism studies, the characterization of the appropriate 
protein ensembles in the form of the averaged residue contact 
maps (derived from the trajectories in CG representation), matched 
very well with the experimental data from protein engineering (phi 
value analysis) [7–10]. The relative contact frequencies from the 
CABS simulations were also shown to be in semiquantitative agree-
ment with experimental data (phi value analysis, hydrogen- 
exchange protection factors) [8, 10, 11] and other theoretical 
predictions [8, 12]. In the case of the B1 domain of protein G 
folding studies [8], quantitative analysis of the clusters of the most 
persistent native long-range side-chain contacts and their evolve-
ment from highly denaturing to native conditions allowed for a 
detailed (residue–residue contact level) description of the folding 
events. Apart from the contact-level description of the highly 
diverse ensembles, some persistent conformers appearing along the 
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folding route can be structurally characterized through clustering 
analysis (as shown for the ensembles of the transition state of the B 
domain of protein A [9], and the native-like globule of the B1 
domain of protein G [8]).
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