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FOREWORD

Among the sciences that showed the most rapid growth rate during the second half
of the twentieth century, biochemistry occupies one of the foremost positions. Up to
this time, the isolation of enzymes and the investigation of their reactions were the
main focus of studies. But in 1953, the structure of DNA was published and a com-
plete new field of research was entered. The function of genetic information storage
and recovery could be elucidated. Consecutive studies in this direction dealt with
the regulation of protein synthesis, which determines the quantity of proteins pre-
sent and thus, in the case of enzymes, their activity. However, the turnover rate of
enzymatic reactions is also controlled by activators, inhibitors, conformation
changes, degradation or chemical modification of enzymes, and by other means.
A whole network of regulatory mechanisms could be elucidated, which became
an overlay over the network of enzymatic pathways.

All these activities resulted in a tremendous flood of data. Only the application
of computers and advancement in informatics permitted the completion of many
tasks in biochemistry, for example, the sequencing of the human genome with its
billions of base pairs. Data management is developing in two directions: on the one
hand to achieve the solution of detailed problems, and on the other hand to obtain a
general survey of metabolism and regulation in a larger unit, up to a complete living
being. The latter aspect includes the presentation of the network of metabolic path-
ways, the mechanisms of their regulation and the compounds involved in it, the
flow rates of metabolites under various external conditions, etc. Analogously to
the term ‘“genome’ known for a long time, their various components are named
“transcriptome,” ‘“‘proteome,” “‘regulome,” ‘“‘metabolome,” etc.

The presentation of these aspects has a qualitative and a quantitative side. The
latter, with the final target of modeling the complex interconnections within a whole
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xiv FOREWORD

organism, is a task reaching far into the future. It requires a wealth of measurements
under various conditions. However, much progress has been achieved already by
the simultaneous measurement of metabolite concentrations or of gene expression
using microarrays. Evaluation of these data and studying their interconnections by
network analysis is strictly a task of computer-supported bioinformatics. The meth-
ods and tools required for this research are presented in this book.

A slightly different picture exists for the qualitative aspect, especially if an initial
survey is intended. Here, didactic considerations also play a role. Although the facts
can be correctly presented by adequate computer programs, to some extent a man-
ual “curating” of the networks may be helpful to give a more clear impression,
especially when a large network with multiple interconnections is presented. This
may add a “human touch™ to bioinformatics. I followed this line when I wrote the
book ““Biochemical Pathways” and constructed the wallchart with the same title.

Dealing with the highly complex functions of living beings requires the coopera-
tion of many fields of science. Their contacts generate as offspring new sciences. As
biochemistry developed some time ago from activities in chemistry, biology, phy-
sics, medicine, and other areas, later bioinformatics combined biochemistry with
informatics and mathematics. Recently, there have been exiting developments in
the topological analysis of biological networks, a field that requires the interdisci-
plinary cooperation mentioned above. The present speed of development allows the
prediction of a large growth of this field in the future, and this book may help the
reader to obtain an overview of the topic.

GERHARD MICHAL

Tutzing, Germany



PREFACE

Network analysis is a research area that has been employed in specific fields such
as social sciences for a long time. However, only since the late 1990s, when several
papers on the fundamental design principles of various kinds of large-scale net-
works were published, has this research area gained wider publicity. It was then
found that different kinds of biological networks, and also the World Wide Web,
power grids, and other networks, share common properties. These studies led to a
tremendous expansion of the research field of network analysis, especially in biol-
ogy. Nearly one decade later, this field is still growing rapidly. Nonetheless, the
analysis of biological networks is still hampered by the interdisciplinary nature
of this special research area, which involves concepts and ideas from different
sciences such as biology, biochemistry, physics, mathematics, and computer
science.

AIMS OF THIS BOOK

This book intends to give a comprehensive overview of the structural analysis of
biological networks, located at the interface of biology and computer science. Bio-
logical networks represent processes in cells, organisms, or entire ecosystems.
Large amounts of data that represent (or are related to) biological networks have
been gathered in the past, not least with the help of the latest technological
advances. Thus, analysis of these networks is an important research topic in mod-
ern bioinformatics, and the analysis of biological networks is gaining more and
more attention in the life sciences and particular in the growing field of systems
biology.

XV
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This edited book is an introduction to the analysis of biological networks for
students and scientists from both computer science and biology. It is intended for
researchers who want an overview of the field, and who want information about the
possibilities (and limits) of network analysis in life sciences, and how it can be
applied to their data. It is also intended for graduate students who specialize in
the field of biological network analysis. The book presents an overview of biologi-
cal networks, methods for their analysis, and a summary of important insights
obtained through the analysis of biological networks. Each specific area of the field
is comprehensively presented and discussed by experts.

HOW TO READ THIS BOOK

In order to reach a broad spectrum of readers—biologists, biochemists, computer
scientists, bioinformaticians, and so on—the book does not require deeper knowl-
edge of computer science or biology. Instead, the reader will learn about fundamen-
tal techniques from computer science, in particular graph theory, graph algorithms,
and network analysis, as well as from biology, in particular biochemistry, molecular
biology, ecology, and evolution.

This book consist of three parts: (I) an introduction that gives a brief overview of
biological networks and graph theory/graph algorithms; (II) chapters discussing
network analysis methods; and (IIT) chapters dealing with biological networks,
the application of appropriate network analysis methods and initial insights gained
in this relatively new field of research.

Each chapter can be studied independently; however, we recommend following
the chapter structure. Both introductory chapters present some background from
biology and computer science, respectively. They are especially intended for read-
ers not familiar with these specific areas and present basic concepts from molecular
biology and biological networks in Chapter 1, as well as graph theory and algo-
rithms in Chapter 2. These chapters also introduce basic terminology and defini-
tions used in the other chapters of the book. Readers familiar with these topics
may skip these chapters.

In Part II, network analysis methods are presented and discussed. Chapter 3
gives an insight into global network properties and discusses network models.
In Chapter 4, different centrality concepts are described. Centrality analysis helps
in ranking network elements. Network motifs, small recurring patterns in net-
works, which can represent potentially important network parts are discussed
in Chapter 5. In Chapter 6, clustering methods are presented. Such methods
divide networks into parts or modules. Finally, Chapter 7 discusses Petri nets,
which are a special representation often used to model biological networks and
which offer specific analysis capabilities. Each chapter presents the specific topic
from a computer science point of view, introduces concepts and algorithms, and
discusses the application of the particular network analysis method to biological
networks.
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In Part III, networks that can be found in biology are presented. On the mole-
cular level, signal transduction and gene regulation networks are required to reg-
ulate various processes in a cell. These networks are presented in Chapter 8.
Chapter 9 deals with protein interaction networks, which have their seeds in
chemical interactions between proteins. In Chapter 10, the structure of metabo-
lism is described, which connects enzymes and metabolites to metabolic net-
works. Coming to a more macroscopic level of biological networks and also
to much larger timescales, Chapter 11 introduces phylogenetic networks, which
describe the evolutionary relationship among different biological species. In
Chapter 12, ecological networks are studied. These networks depict the interac-
tion between biological species on smaller timescales. Finally, Chapter 13 deals
with correlation networks, which are in the strict sense not intrinsically biologi-
cal networks, but help to discover causalities and regulatory events from large-
scale data.

In all parts, each chapter finishes with a summary concluding the main points of
the chapter and some exercises that may help the reader to test their understanding
of the information presented in the chapter.

ABOUT THE COVER

The image on the front cover shows the largest connected component of the pro-
tein interaction network of Arabidopsis thaliana. The objects (vertices) represent
proteins, and their connections (edges) show known interactions (usually binding)
between them. The vertices of the network are colored according to their degree
centrality. The degree of a vertex is the number of its neighbors, and the more
neighbors a vertex has, the more central it is. Degree and other centralities are
discussed in detail in Chapter 4, and details about protein interaction networks
and their analysis can be found in Chapter 9. The image has been produced
with the programs Vanted (http://vanted.ipk-gatersleben.de) and POV-Ray
(http://www. povray.org/).
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INTRODUCTION






NETWORKS IN BIOLOGY

BIJORN H. JUNKER

1.1 INTRODUCTION

Our environment is a combination of tightly interlinked complex systems at various
levels of magnitude. While the exact sciences of physics and chemistry describe our
environment from subatomic level up to the molecular level, biology is carrying the
burden to deal with an inexact and extremely complex universe that sometimes even
seems lawless. Yet biological systems follow “laws” that physicists would rather refer
to as “probabilities.” By these laws, it is possible to describe biology at different detail
levels with a certain precision.

The smallest biological detail level is the molecular level of DNA, RNA, pro-
teins, and metabolites. All these molecules are ingredients of a cell, which in turn
is a part of a tissue. Different tissues constitute the organs of an organism. Many
organisms together form the ecosystem. Additionally, over time these organisms are
subjected to evolution, which results in a certain phylogenetic relationship between
them. At all these levels of detail, the relationships between the elements are of great
interest. These relationships can be described as networks, in which the elements
are the vertices (nodes, points) and the relationships are the edges (arcs, lines; see
Chapter 2). Typical biological networks at the molecular level are gene regulation
networks, signal transduction networks, protein interaction networks, and metabolic
networks. An example of a biological network is given in Fig. 1.1. While parts
of all these networks have been modeled since a long time, recent technological

Analysis of Biological Networks, Edited by Bjorn H. Junker and Falk Schreiber
Copyright © 2008 John Wiley & Sons, Inc.



4 NETWORKS IN BIOLOGY
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FIGURE 1.1 Example of a biological network. The largest strongly connected component
(see Chapter 2) of the human protein interaction network is shown. The network is based
on the complete data set for interaction of human proteins downloaded from the Database of
Interacting Proteins (DIP, [35]) in January 2005.

advances have made it possible to elicit entire networks, or at least large proportions
of them.

The next section contains a concise overview of basic biology and is especially
aimed at readers who would like to refresh their knowledge of biology. Section 1.3
introduces the concept of systems biology. In Section 1.4, an overview is given about
what findings have been made about different biological networks with modern net-
work analysis methods.

1.2 BIOLOGY 101

1.2.1 Biochemistry and Molecular Biology

The information about the assembly of an organism is stored in the desoxyribonucleic
acid (DNA, see Fig. 1.2). DNA is a coiled ladder (helix) consisting of two sugar phos-
phate backbones enclosing pairs of the nucleotide bases adenine, cytosine, guanine,
and thymine (A,C,G,T). The nucleotide A pairs only with T, whereas C pairs only with
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FIGURE 1.2 Information flow from genes to metabolites in cells.

G. While DNA constitutes the passive part of the cell’s biochemistry, the active part
is contributed by the proteins, as they catalyze reactions and are responsible for many
other mechanisms in the cell. The process of information transmission from DNA to
proteins is called gene expression (Fig. 1.2). This process can be divided into two main
parts, transcription and translation. Transcription is a complicated, highly regulated
process, in which a protein complex containing the RNA polymerase opens the DNA
helix, reads one strand, and synthesizes a corresponding ribonucleic acid (RNA)
like a blueprint. Transcription is initiated and terminated at certain signal sequences,
which are called promoter and terminator, respectively. The corresponding RNA to a
certain gene is called transcript (Fig. 1.2). In eukaryotes (see next section), the RNA
then undergoes a process called splicing, in which the introns (noncoding regions) are
excised so that only the exons (coding regions) remain. During translation, amino acid
chains are synthesized from the (spliced) RNA by the ribosomes. The information
of the RNA is read in triplets (codons), for which there are 43 = 64 combinations.
These are used to code both for 20 amino acids (sometimes more than one codon
stands for one amino acid), as well as one start codon and three stop codons.

The structure of a protein is important for its functionality. The primary protein
structure is simply the amino acid sequence, where as the secondary structure consists
of regular three-dimensional patterns such as loops, helices, or sheets. Furthermore,
the tertiary structure describes how these patterns are arranged in space to form a
protein or a subunit thereof. Finally, the quaternary structure depicts how the different
amino acid chains of the subunits are arranged to form an active protein complex.
Proteins can play many different roles in the cell, for example, structural proteins
that stabilize the cell’s structure, transcription factors that regulate the process of
transcription, or enzymes enzyme that catalyze reaction in which one metabolite is
converted into another.

Metabolite is a term for all molecules of low molecular weight, such as sugars or
amino acids. All the processes mentioned above are subject to tight regulation, which
can take place at different levels. An environmental or internal signal (e.g., light,
hormone) can be at first multiplied and processed through signal transduction chains.
Then, a regulatory action can take place, for example, at the transcriptional level
through activation or repression of gene expression, or at the protein level through
posttranslational modification.
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1.2.2 Cell Biology

Depending on the domain of life, the cells of an organism are organized in different
ways. Prokaryotes such as bacteria are single cells that are not further subdivided.
Their genome, the totality of the genes, is organized in one single circular chromo-
some. In contrast, the cells of eukaryotes are structured much more complex (see
Fig. 1.3). Like prokaryotes, the cells are filled with the cyfoplasm, but contrary to
prokaryotes, additional organelles are separated from the cytoplasm through mem-
branes. Organelles are, for example, mitochondria that produce chemical energy,
the endoplasmatic reticulum that plays a role in protein synthesis, and the nucleus
(Fig. 1.3). Plant cells are equipped with additional organelles, the plastids, which is an
umbrella term for chloroplasts (responsible for photosynthesis), chromoplasts (pig-
ment synthesis and storage), amyloplasts (starch synthesis and storage), and vacuoles
that serve as storage organelle for metabolites.

Inside the nucleus, the genome is organized in several chromosomes, each of which
is consisting of two chromatides, parallel coils that are connected near the middle to
form an x-like structure. On the gene level, this means that a eukaryotic cell generally
has at least two copies of every gene. Further on, most cells in most organisms are
equipped with two sets of chromosomes, one from each parent.

In living organisms, there is a variety of different cell types responsible for vari-
ous functions. A number of cells that perform a similar function constitute a fissue,
examples for animal cells are epithelium and connective tissue, for plant cells epider-
mis or vascular tissue. A group of tissues that perform a specific function or a set of
functions form an organ. Typical organs in animals are brain, lung, and liver. Typical
organs in plants are leafs, stem, and seeds. All organs together constitute the entire
organism.

Endoplasmic DNA
reticulum

Nucleus

Lysosome

Mitochondrion

Plasma
membrane

Golgi complex

FIGURE 1.3 Schematic illustration of an animal cell with some organelles.
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1.2.3 Ecology and Evolution

In the previous two sections, an overview was given about the biochemical and cel-
lular composition of a single organism. In our environment, the organisms constantly
interact with each other and are integrated components of the ecosystem. The influ-
ence of one organism on another is called a biotic factor. This influence might be
the predator—prey relationship between two animals, or the relationship between a
plant and an insect pollinating this plant. Further on, organisms are influenced also
by abiotic factors such as climate and geology.

Organisms are subjected to evolution over large timescales. Evolution is the
process by which populations of organisms acquire and pass on novel traits from
generation to generation. The modern theory of evolution is based on the con-
cept of natural selection, as first outlined in Darwin’s 1859 book “The Origin
of Species” [9]. Individual organisms that possess advantageous traits will be
more likely to pass on their genes. In the 1930s, Darwin’s theory was com-
bined with Mendel’s heredity laws to create the modern synthesis, which explains
evolution as a change in frequency of alleles within a population between two
generations. In modern times, sequence information from certain genes is used
to derive evolutionary relationships between different organisms. From this data,
phylogenetic trees can be constructed at different detail levels of the taxonomy
(Fig. 1.4).

Bacteria Archaea Eucarya
Green
filamentous
; bacteria
Spirochetes Slime  Animals
Gram molds
) ositives i
Proteobacteria p Entamoebae Fungi

Methanobacterium Plants

Cyanobacteria Halophiles

Methanococcus .
Ciliates

Thermoproteus
Flagellates

Aquifex—__

FIGURE 1.4 A speculative phylogenetic tree showing the separation of the three domains
of life. Exemplary groups are shown, which represent different detail levels of the phylogeny.
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1.3 SYSTEMS BIOLOGY

Biology is currently in the starting phase of a shift that will ultimately transform it
into a precise science similar to physics and chemistry. The term “systems biology”
is drawing more and more attention. While the origin of systems biology dates back
to at least 1969 when Ludwig von Bertalanfty described his systems theory [37], it
faced an explosion of interest in the new millennium. Hiroaki Kitano defined systems
biology in his book “Foundations of System Biology” as “systems biology is a new
field in biology that aims at system-level understanding of biological systems” [21].
That means the ultimate goal of systems biology is to understand entire biological
systems by elucidating, modeling, and predicting the behavior of all components and
interactions.

The central step toward a systems-level understanding of biology was to move
away from reductionist to wholist approaches, sometimes also called bottom-up and
top-down approaches, respectively [20]. Traditionally, reductionists look at one el-
ement of the system to find out the connections to neighbors, roles in all processes
that the element is involved in, and mechanisms of action. In contrast, the wholist
approach is to first make a snapshot of all elements at a certain level (genes, tran-
scripts, proteins, and/or metabolites; see also Fig. 1.2). For this task, since the 1990s,
many massively parallel experimental techniques have been developed. The entire
set of components of one kind is described with terms ending -ome (genome, pro-
teome), whereas the techniques to identify this set ends with -omics (genomics,
proteomics). To date, more than hundred of these -omics technologies have been de-
fined [1]. While some of them are just new words for old things, some others open an
entirely new view on biological systems. The genomes of many organisms were se-
quenced, starting with Escherichia coli in 1997 [8], to reach 680 complete published
genomes in November 2007 [2]. Recent technological developments will likely re-
sult in an exponential increase of this number [26]. Snapshots of the transcriptome
(set of all RNA molecules of one biological sample, [10]) are routinely measured
in laboratories all over the world. By the help of experimental techniques such as
two-dimensional gels and mass spectrometry, the proteomes of several organisms
can be determined [31]. Another recent development is metabolomics, in which a
large number of metabolites are measured simultaneously in one sample [13]. With
other “-omics” technologies, other “-omes” have been measured, such as the fluxome
(the fluxes through metabolic pathways) or the interactome (the interactions between
proteins and small molecules). Having established these high-throughput experimen-
tal techniques, scientists were confronted with the problem of how to make sense out
of the wealth of generated data. One possible solution will be presented in the next
section.

1.4 PROPERTIES OF BIOLOGICAL NETWORKS

Just as it is impossible to assemble an airplane by using a list of all parts, it seems
impossible to gain any useful information out of the wealth of data generated with the
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-omics methods detailed above. One particularly promising approach for the gen-
eration of hypothesis out of this data is network analysis, such promising that this
entire book is dedicated to this area of research. While network analysis is not a
new research field, it is noticeable that some fundamental properties of networks
have been elucidated just at the change of the millennium. In 1998, Watts and Stro-
gatz published a paper in which they illustrate that the neural network of the worm
Caenorhabditis elegans, the power grid of the Western United States, and the col-
laboration graph of film actors have similar properties: they are highly clustered
(densely connected subgraphs, see Chapter 2), yet they have small characteristic path
lengths (see Chapter 2) [39]. The authors created the term small world networks for
this phenomenon, by analogy with the popular small-world phenomenon [27], which
states that any person on our planet links to any other person by a chain of on av-
erage six acquaintances. One year later, Barabdsi and Albert created a simple model
for these networks, which they found to follow a scale-free power-law distribution
and thus named them scale-free networks [5]. The consequence of this connectiv-
ity distribution is that many vertices have few links, while there are some that are
highly connected. As a result, scale-free networks are very robust against failure,
such as removal of arbitrary network elements [3]. To date it has been found that
power grids, the Internet (routers and cables), the World Wide Web (webpages and
links), protein interaction networks, metabolic networks, and many other networks
follow these general rules [4]. However, the first obstacle for the application of these
methods in biological research is the generation of networks out of the data sets de-
termined with the -omics technologies. Because it is not possible to directly infer
any networks from sequences, or from transcript, protein, or metabolite concentra-
tions, additional information is needed, such as information about interactions. In the
following sections, it will be briefly discussed which sources are available to derive
biological networks, and which novel findings have been made investigating these
networks.

1.4.1 Networks on a Microscopic Scale

Biochemical networks have been under investigation for many decades. However, the
efforts were until recently limited to the determination of the components of the net-
works, rather than addressing the design principles of its structure. The fundamental
finding about all kinds of networks (as mentioned above) have also been investigated
in biological networks, such as regulation networks, protein interaction networks, and
metabolic networks.

Transcriptional regulation networks (or gene regulation networks) are controlling
gene expression in cells. The expression of one gene can be controlled by the gene
product of another gene. Thus, a directed graph (see Chapter 2) in which the vertices
are genes and the directed edges represent control can be used to model these net-
works. Until recently, only fragments of these networks have been modeled, usually
quantitatively, by assigning rate laws to every step. For example, quantitative models
containing selected genes have greatly improved the understanding of morphogenesis
of early embryos of the fruit fly Drosophila melanogaster [16]. Recent advances in
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data collection and analysis made it possible to elucidate large-scale gene regulation
networks [23]. It has been found that in this network type, certain motifs (small recur-
ring patterns, see Chapter 5) such as feed-forward loops or single input modules are
overrepresented when compared with randomly generated networks [23,36]. Through
these investigations it was possible to define the “basic computational elements” of
biological networks.

Signal transduction networks can be understood as gene regulation networks ex-
tended by signaling chains that contain different kinds of vertices and edges such as
protein—protein interaction and phosphorylation. By quantitative modeling, emergent
properties have been found in these networks such as integration of signals across
multiple timescales, generation of distinct outputs depending on input strength and
duration, and self-sustaining feedback-loops [7]. A more detailed explanation of gene
regulation and signal transduction networks together with scientific results is given
in Chapter 8.

Protein interaction networks are generated out of different types of large-scale
experimental and computational approaches [38]. The different methods are resulting
in significantly different networks, so that we can speak only of a network for a certain
organism determined by using a certain method. The protein interaction network of
the baker’s yeast (Saccharomyces cerevisiae) as determined by systematic two-hybrid
analyses was found to follow the laws of scale-free networks [17]. Furthermore, it
has been shown that the most highly connected proteins in the cell are the most
important for its survival [17]. In the network, this corresponds to the vertices with
the highest number of connections (high degree centrality, see Chapter 4). In the same
network, ithas been shown that certain motifs are overrepresented [41] (see Chapter 5).
Through comparison with orthologous networks from other higher eukaryotes, the
authors found that these motifs are evolutionarily conserved. More details on protein
interaction networks are given in Chapter 9.

Metabolic networks consist of metabolites that are converted into each other by en-
zymes. These networks have been determined through biochemical experiments over
the last few decades, and they can be found in various kinds of biochemistry text-
books. A summary of biochemical pathways is given in the well-known Boehringer
map [12]. Since few years, metabolic pathways have also been predicted from the
genome of fully sequenced organisms. The KEGG database [19] is a public resource
for these predicted pathways. In an early study, it was found that the large-scale struc-
ture of the core metabolic network from 43 organisms is identical, being dominated by
the same highly connected substrates [18]. For the same set of metabolic networks,
it has been stated later that they are organized into many small, highly connected
topologic modules that combine in a hierarchical manner into larger, less cohesive
units [34]. Several other studies have compared the structure of the metabolic net-
works of several organisms in order to derive information about their phylogenetic
relationship [14,25,32]. While these first studies could not replicate the detail of phy-
logenetic studies based on sequence information, it was at least possible to deduce
from the network whether an organism belongs to the domains of Archaea, Bacteria,
or Eukaryotes (see also Fig. 1.4). A more detailed discussion of metabolic networks
can be found in Chapter 10.
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1.4.2 Networks on a Macroscopic Scale

As stated before, networks are also present in the areas of biology dealing with larger
space- or timescales. The interactions of different organisms can be depicted as ecolog-
ical networks. Food webs have been under investigation since a long time. Qualitative
food webs, which contain information only about predator—prey relationship, but no
quantities, can be modeled as directed graphs (see Chapter 2). In this context, qualita-
tive food webs are often called static models. However, they have not been the subject
of many studies [11]. This is probably due to the fact that the available food webs are
relatively small compared with biochemical networks, and thus not much new infor-
mation can be gained out of the structure alone. Nevertheless, through comparison of
50 food webs of lakes, it was found that a relation exists between the number of species
in a food web and the links per species [15]. Instead of investigating the structure of
food webs alone, they are often modeled quantitatively with rate laws for every step
(dynamic models [11]). Ecological networks other than food webs can be, for exam-
ple, plant—pollinator interaction networks, which were found to exhibit an increased
number of interactions per species upon increased diversity [28], analogous to the food
webs mentioned above. More details on ecological networks are given in Chapter 12.

Phylogenetic networks describe the evolutionary relationships between organisms.
Traditionally, they were presented as bifurcate or binary trees (see Chapter 2) [29]. The
branchpoints of the tree represent points of separation of two species during evolution.
However, recent studies suggest that population genealogies are often multifurcated
(trees, see Chapter 2), or even containing reticulate relationships due to recombination
events, which turns them into phylogenetic networks [33]. Recently, a network for the
phylogenetic relationships between all groups of prokaryotes has been presented and
termed the “ net of life” [22]. A more detailed discussion of phylogenetic trees and
networks can be found in Chapter 11. As mentioned in the previous section, this topic
is linked to several biochemical networks through many studies that have been made
to infer phylogeny especially from metabolic networks. Recently, it has been shown
that bacterial metabolic networks evolve adaptively by horizontal gene transfer [30].

1.4.3 Other Biological Networks

Correlation networks have only been investigated for a relatively short time, and
they represent an exception among biological networks. Their special feature is that
these networks are not a direct result of experimental data, but they are determined
by collecting large amounts of high-throughput data and calculating the correlations
between all elements. So far this has been done for transcripts and metabolites. Barkai
and coworkers compared large-scale gene expression data sets of six evolutionarily
distant organisms [6]. They found that for all organisms the connectivity of the corre-
lation network follows a power-law, highly connected genes tend to be essential and
conserved, and the expression program is highly modular. Furthermore, transcript
correlation networks have been used to identify hormone-related genes in plants [24].
Metabolite correlation networks have been constructed from pair-wise analysis of
linear correlations between metabolites from profiling data [40]. It was found that
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the connectivity distribution in these networks also follows the typical power-law for
scale-free networks. More examples of correlation networks and their analysis are
given in Chapter 13.

1.5 SUMMARY

Biology describes the processes of our environment from the molecular level to the
level of the ecosystem. At all levels of detail, many of the respective processes can be
modeled by networks. At the microscopic levels, these are gene regulation networks,
signal transduction networks, protein interaction networks, and metabolic networks.
At the macroscopic level, these are ecological and phylogenetic networks. All these
networks have some special characteristics and are quite distinct from each other, but
they also share common properties. Although the analysis of large-scale biological
networks with modern tools has made significant progress in the last decade, this
branch of science is still in its infancy.

1.6 EXERCISES

1. Describe the information flow within a cell, from DNA to metabolism. Name
the processes.

2. What are the four levels of protein structure?

3. Describe the organization of a cell.
4. In aregular cell of most organisms, how many copies of each gene are present?
Why?

5. Describe the term “systems biology” in your own words.

6. What are -omes and -omics?

7. Why is the measurement of a complete transcriptome not yielding a network?

8. Name at least four microscopic and two macroscopic networks in biology.

9. Why are correlation networks not intrinsic biological networks?
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GRAPH THEORY

FALK SCHREIBER

2.1 INTRODUCTION

The term network is an informal description for a set of elements with connections
or interactions between them. A typical example from biology is a protein inter-
action network. It consists of a set of proteins (elements) and a set of interactions
between them (connections). The previous chapter introduced many different bio-
logical networks. Given such networks, we could be interested in questions such as
Which protein has the highest number of interactions with other proteins in a pro-
tein interaction network? Are there clusters of proteins where every protein interacts
with every other? Or, in a metabolic network, we might like to study the shortest
path of reactions that transform one metabolite into another. Such questions can be
answered if we analyze the structure of the network, that is, the way the elements are
connected.

To deal with networks in a formal way they are modeled as graphs. A graph
is a mathematical object consisting of vertices and edges representing elements and
connections, respectively. This usage of the term “graph” should not be confused with
another meaning often used in biology: the graphical representation of a function in
the form of a curve or surface. The theory of graphs reaches back to Leonard Euler and
his “Konigsberg bridge problem” in 1736. The problem is as follows: In Konigsberg
(today Kaliningrad), the river Pregel runs through the town as shown in Fig. 2.1.
Seven bridges were built over the river. The question is whether it is possible to walk
around the town in a way that would involve crossing each bridge exactly once. By
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analyzing the structure of the graph representing the problem, as shown in Fig. 2.1,
Euler proved that this is not possible.

This chapter gives an introduction to most of the mathematical and computer
science terminologies used later in the book. It is aimed at readers not familiar
with these topics, and formal concepts are restricted to a minimum. Readers with
prior knowledge may wish to skip this chapter. More detailed presentations can be
found in many good textbooks about graph theory, network analysis, and algorithms,
for example [2-4,6]. Here, we discuss basis terminology and notation for graphs in
Section 2.2, special graphs used in modeling biological networks in Section 2.3,
typical representations of graphs in Section 2.4, and some fundamental algorithms
for the analysis of graphs in Section 2.5.

2.2 BASIC NOTATION

2.2.1 Sets

Aset A ={ay,ay, ..., a,}isacollection of distinct objectsay, as, . . ., a, considered
as a whole, and can be defined by listing its elements between braces. An example is
aset A = {6, 3,4, 2, 1} of numbers. The objects a; of a set A are called its members.
In case an object is a member of a set this is symbolized by €. For example, in the
set defined above 2 is a member of A, written 2 € A. Two sets A| and A, are said
to be equal (written A1 = Ajy) if every member of A; is a member of A;, and every
member of A, is a member of A;. If every member of set Aj is a member of set A;
(but not necessarily every member of A; is a member of A1) then the set A is a subset
of set A,, written A; C A,. Two sets A; and A can be combined into a new set. The
union of the sets A1 and A is the set of all objects that are members of either A or
Aj and is denoted by A U Aj. The intersection of the sets A1 and Aj is the set of all
objects that are members of both A and A, (denoted by A1 N Az). An empty set is
denoted by . Special sets used in this book are the set of natural numbers including
zero (Np), the set of integers (Z), and the set of real numbers (R).

2.2.2 Graphs

A graph G = (V, E) consists of a set of vertices (also called nodes or points) V and
a set of edges (arcs, links) E, where each edge is assigned to two (not necessarily
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FIGURE 2.2 Two graphical representations of the graph G = (V, E) with vertex set V =
{1,2,3,4,5,6,7}and edge set E = {{1, 2}, {2, 3}, {1, 3}, {3, 6}, {4, 5}, {5, 7}}.

disjunct) vertices. An edge e connecting the vertices u, v is denoted by {u, v}, we say
u and v are incident with e and adjacent (or neighbors) to each other. The vertices
incident to an edge are called its end-vertices. The degree of a vertex v is the number
of edges that have v as end-vertex. An edge where the two end-vertices are the same
vertex is called a loop. A loop-free graph does not contain loops.

This definition describes undirected graphs, that is, graphs where connections
between vertices are without a direction. Undirected graphs are used, for example,
to model protein interaction networks (see Chapter 9), phylogenetic networks (see
Chapter 11), and correlation networks (see Chapter 13). In the following, we describe
general graph concepts based on undirected graphs. Section 2.3 deals with other
types of graphs, especially directed graphs that are used, for example, to model gene
regulation networks (see Chapter 8) and ecological networks (see Chapter 12).

The usual way to visualize a graph is by drawing a point for each vertex and a line
for each edge that connects the corresponding points of its end-vertices, see Fig. 2.2.
It is not important how a graph is drawn, as long as it is clearly visible which pairs of
vertices are connected by edges and which not. The positions of the vertices and the
drawing of the lines are called the layout of the graph.

A subgraph G’ = (V', E’) of the graph G = (V, E) is a graph where V' is a subset
of V and E’ is a subset of E. This implies that E’ contains only edges with end-vertices
in V' If graph G’ is a subgraph of graph G and the edge set E’ contains all edges of
E that connect vertices of V', the subgraph is called an induced subgraph of G. See
Fig. 2.3 for subgraph and induced subgraph.

One graph can have many different graphical representations, see Fig. 2.2.
But two graphs can also be the same, see Fig. 2.4. Both graphs G| = (V1, E1)
and G, = (V», E») have different vertex and edge sets. Graph G consists of

1 4 4 4
FIGURE 2.3 A graph G, a subgraph of G, and an induced subgraph of G (from left to right).



18 GRAPH THEORY

1 4 d
FIGURE 2.4 Two isomorphic graphs.

Vi={1,2,3,4 and E;={{1,2},{2,3},{3,4},{2,4}}); graph G of
Vo ={a,b,c,d} and E,; = {{a, b}, {b, c}, {b, d}, {c, d}}. However, even though
both graphs appear to be different, they contain the same number of vertices
connected in the same way and are therefore considered as the same or isomorphic
graphs. Formally, two graphs G| and G, are isomorphic, if there exists a bijective
mapping between the vertices in V; and V, with the property that any two vertices
u, v € Vq are adjacent if and only if the two corresponding vertices in the other graph
are adjacent. Such a bijection is called an isomorphism.

A sequence (vo, e, V1, €2, V2, ..., Vk—1, €k, Ux) of vertices and edges such that
every edge e; has the end-vertices v;_; and v; is called a walk. Usually the vertices
are omitted and the walk is denoted by a sequence (eq, e, ..., er). We say that

the walk connects vy with vy and call vy and vy the start- and end-vertex of the
walk, respectively. If all edges of a walk are distinct the walk is called a path, and if
additionally all vertices are distinct the walk is called a simple path. The length of a
walk or path is given by its number of edges. A path with the same vertex as start- and
end-vertex is a cycle. A graph without cycles is called an acyclic graph. For example,
in the graph in Fig. 2.2, the sequence ({1, 2}, {2, 3}, {3, 6}, {6, 3}, {3, 1}) is a walk
and the sequence ({1, 2}, {2, 3}, {3, 1}) is a path which is furthermore a cycle.

Two vertices of a graph are called connected if there exists a walk between them.
If any pair of different vertices of the graph is connected, the graph is connected.
A connected component of a graph G is a maximal connected subgraph of G. For
example, the graph in Fig. 2.5 consists of four connected components.

A shortest path between two vertices is a path with minimal length. The distance
between two vertices is the length of a shortest path between them or co if no such
path exists. For example, in Fig. 2.2, the path ({1, 3}, {3, 6}) is a shortest path between
vertex 1 and vertex 6 and the distance between these two vertices is 2. Note that there
may be several different shortest paths between two vertices in a graph.

P

FIGURE 2.5 An unconnected graph consisting of four connected components.
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FIGURE 2.6 Some attributes connected to the vertices of a food web: textual vertex labels,
different geometrical objects (mammals: squares, others: dots), and coordinates for vertices
(the positions of the vertices) representing the layout of the graph.

2.2.3 Graph Attributes

Often attributes such as text, numerical values, types, colors, and coordinates are asso-
ciated with the vertices and edges of a graph. Typical examples are the stoichiometry
of reactions in metabolic networks represented as numerical values along the edges,
protein classes for proteins represented as vertex types or textual vertex labels in pro-
tein interaction networks, and the coordinates of the vertices represented as numerical
value pairs. Figure 2.6 shows a typical example.

Attributes can be represented as functions from the vertices or edges to the attribute
type. For example, the mentioned stoichiometry of metabolic reactions can be rep-
resented as edge weights, that is, numerical values connected to edges. The function
w : E — R assigns each edge e € E a weight w(e).

2.3 SPECIAL GRAPHS

There are many different biological networks with different properties. Often the
graph model has to be tailored to the specific network under consideration. Typical
graph models for the different networks are considered in the following section.

2.3.1 Undirected, Directed, Mixed, and Multigraphs
Graphs can be undirected, directed, or mixed, see Fig. 2.7. In an undirected graph, an

edge between the vertices u and v is represented by the unordered vertex pair {u, v}.
The graphs defined in the previous section are undirected. Typical examples from

o !

FIGURE 2.7 An undirected, a directed, and a mixed graph (from left to right).
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biology are protein interaction networks, phylogenetic networks, and correlation
networks.

In a directed graph, an edge between the vertices u and v is represented by the
ordered vertex pair (u, v). In visualizations of graphs, the direction of an edge is
usually represented by an arrowhead. The two edges (u, v) and (v, u) between the
vertices u, v can be represented either by two lines as shown in Fig. 2.7 or by one
line with arrowheads at both ends. Typical examples of biological networks mod-
eled by directed graphs are metabolic networks, gene regulation networks, and food
webs.

In a mixed graph undirected and directed edges occur. This type of graph is also
relevant in biology, an example is special protein interaction networks where some
interactions are undirected (e.g., obtained by two-hybrid experiments) and others
are directed representing activation, phosphorylation, and other directed interac-
tions.

An undirected edge has end-vertices, a directed edge (u, v) has a source vertex u
(also called origin or head) and a target vertex v (destination, tail). In a directed graph,
a vertex has an out-degree that is defined as the number of edges going out of it and an
in-degree defined as the number of edges coming into it. The degree of the vertex is the
sum of its in- and out-degrees. In directed graphs the definitions for walks, paths, and
cycles are similar to undirected graphs, but take the edge direction into account. For
example, a walk in a directed graph is a sequence (vo, €1, V1, €2, V2, - . ., Vk—1, €k, Vk)
of vertices and edges such that every edge e; has the source vertex v;_; and the target
vertex v;. We say that in a directed graph the walk strongly connects vy with vy if
the edge direction is taken into account, otherwise (i.e., if each edge is considered
undirected) the walk simply connects vy with vi. Two vertices of a graph are called
strongly connected if there exists such a walk between them. If any pair of different
vertices of the graph is strongly connected, the graph is strongly connected. A strongly
connected component of a graph G is a maximally strongly connected subgraph
of G.

Multigraphs are graphs containing multiple edges, that is, two or more edges that
are incident to the same two vertices and in case of directed graphs have the same
direction. Such edges are also called parallel edges or a multiedge, see Fig. 2.1 for
an example of a multigraph. Multiple edges are, for example, useful for the modeling
of metabolic pathways where the same substances can be transformed by differ-
ent reactions. Undirected, loop-free graphs without multiple edges are called simple
graphs.

2.3.2 Hypergraphs and Bipartite Graphs

There are biological networks where more than two elements are connected by an
interaction. An example are metabolic networks where often several substances react
with each other to build other substances, see Fig. 2.8. To model such networks,
hypergraphs are used. A hypergraph G = (V, E) consists of a set of vertices V and a
set of hyperedges E, each hyperedge is a nonempty subsets of V. Hypergraphs can
be directed or undirected.
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FIGURE 2.8 A metabolic network where an edge connects more than two elements. This
hyperedge is labeled with the name of the enzyme catalyzing the reaction.

Hypergraphs are not commonly used in graph theory, and many algorithms
developed for graphs cannot be directly applied to hypergraphs. Therefore,
such graphs are seldom used to model biological networks. Instead these net-
works are modeled by bipartite graphs, a structure generally used to represent
hypergraphs.

A graph G = (V, E) is called bipartite if there is a partition of its vertex set V =
S U T such that each edge in E has exactly one end-vertex in S and one end-vertex
in T (see Fig. 2.9).

To model a hypergraph G = (V, E) by a bipartite graph G’ = (V’, E’) with
V' = 8§ U T’, the bipartite graph is build in the following way. Each vertex v € V
is represented by a vertex in §” and each hyperedge e € E by a vertex in T’. For
each vertex v € V and each hyperedge e € E incident with v, an edge is inserted
into E’, which connects a vertex s € S’ representing the vertex v of the hypergraph
and a vertex t € T’ representing the hyperedge e. Figure 2.10 shows a hypergraph
and its representation as a bipartite graph, and Fig. 2.11 shows a typical modeling of
metabolic networks by bipartite graphs.

2.3.3 Trees

The last type of special graphs we will consider in this introduction are trees. Trees
play an important role in biology where they represent, for example, the evolutionary
relationships between species as a phylogenetic tree (see Chapter 11).

5 6 7

FIGURE 2.9 A bipartite graph G = (S U T, E) with vertex set S = {1, 2, 3, 4} and vertex
set T =1{5,6,7}.
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1 6

FIGURE2.10 Thehypergraph G = (V, E) withvertexset V = {1, 2, 3, 4, 5, 6, 7} and hyper-
edgeset £ = {{1, 2, 6}, {2, 3}, {3, 4, 5, 6}, {4, 5}, {5, 7}} and its corresponding bipartite graph.
The two vertex sets S and T are represented by dots and squares, respectively.

@ P-p-Glucose ® pB-p-Glucose
HJr H+
NADPH NADPH
Aldehyd- Aldehyd- Y
reductase \’. reductase
NADP” NADP*
\ . Y
@ D-Sorbitol @ D-Sorbitol

FIGURE 2.11 A metabolic network and its modeling as bipartite graph.

A tree is an undirected, connected, acyclic graph. The vertices of a tree with degree
1 are its leaves, all other vertices are inner vertices. A rooted tree consists of a tree
G = (V, E) and a distinguished vertex r € V called the root. The depth of a vertex
is the length of the path between the root and this vertex, the height of a tree is the
maximum depth of a vertex. A binary tree is a tree where each vertex has at most
degree 3. See Fig. 2.12 for a tree and a binary tree.

A rooted tree is often regarded as a directed graph such that all edges are directed
away from the root. For a directed tree G = (V, E) and an edge (u, v) € E, the vertex
u is the parent of v and v is the child of u.

For a connected, undirected graph G, a special tree can be computed, the spanning
tree T of G. The spanning tree T is composed of all the vertices of G and a minimal
set of edges (some or perhaps all of the edges of G) that connect all vertices. This

.—’1

FIGURE 2.12 A tree and a binary tree. Again, there are many different graphical represen-
tations of a tree.
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vertex 1 2 3 4 5 6 7
1 o 1 1 0 0 0 O
2 1 0 1. 0 O O O
3 1 1.0 0 0 1 O
4 0o 0 0 o 1 0 O
5 0O 0 0 1 0 0 1
6 O 0 1 0 0 0 O
7 0O 0 0 o0 1 0 O

FIGURE 2.13 An adjacency matrix representation for the graph shown in Fig. 2.2.

tree contains a subset of the edges of G that form a tree spanning every vertex of G,
hence the name spanning tree.

2.4 GRAPH REPRESENTATION

To use graphs in a computer program, we have to represent them in the computer.
There are two common representations: adjacency matrix and adjacency list. The
choice of one or the other depends on the operations needed to deal with the graph
and whether the graph is dense or sparse. We will discuss this aspect in Section 2.5.

2.4.1 Adjacency Matrix

A graph G with n vertices can be represented by a (n x n) adjacency matrix A, see
Fig. 2.13 for an example. The rows and columns correspond to the vertices and a
matrix-element A;; = 1 if and only if there is an edge between the vertices v; and v;
and A;; = 0 otherwise. The adjacency matrix of an undirected graph is symmetric,
that is, A[j = Aji.

The simplest way to implement an adjacency matrix is as an array [1...n, 1...n]
of numbers or boolean values. Adjacency matrices are often used to represent bio-
logical networks as their structure is very simple and matrix operations can be directly
applied. However, adjacency matrices need a lot of memory, n? places for a network
with n elements. Furthermore, several algorithms have a longer running time if they
are based on this network representation. In particular for graphs with a low number
of edges in relation to the number of vertices, another representation, the adjacency
list, is usually more efficient.

2.4.2 Adjacency List

A graph G with n vertices can be represented by n lists, see Fig. 2.14 for an example.
For each vertex v € V,alist L, contains all edges incident to this vertex (and therefore
all vertices adjacent to it).

A common way to implement an adjacency list is an array [1 .. .n] of lists.
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Ly:({1,2}, (1,3}

Ly: ({2, 1}, {2.3})

L3: ({3, 1}, {3.2}, {3, 6})
Ly ({4, 5D

Ls: (5.4}, {5.7)

Le: ({6,3})

L7:({7.5))

FIGURE 2.14 An adjacency list representation for the graph shown in Fig. 2.2.

2.5 GRAPH ALGORITHMS

Many problems concerning biological networks can be answered using standard graph
algorithms. Let us consider some of the questions raised in the introduction of this
chapter. The protein with the highest number of interactions can be found by visiting
all vertices of the graph and counting for each the number of its neighbors. And
the shortest path between two elements in a metabolic network can be computed
with the Dijkstra algorithm (e. g. see [6]). This section gives an introduction to graph
algorithms and discusses how to make a good choice between different algorithms
computing the same result.

2.5.1 Running Times of Algorithms

Running time and memory requirement are key properties of an algorithm. They are
usually specified in the O notation. This is a theoretical measure of the algorithm’s
running time or space needed for a given size n of input data. For networks this
problem size n is often the number of elements.

We will focus on the running time of algorithms. The O notation is used to compare
the running times of algorithms for a large enough problem size and to decide whether
an algorithm and a related data structure are adequate or will always be too slow for
a large problem size. Formally, for two functions f, g we say that f is in O(g) if there
are positive constants ng € Ng and ¢ € R such that f(n) < cg(n) for all n > ny.

Let us consider an example. We compare two typical sorting algorithms, Quick-
Sort and BubbleSort (e.g., see [7]). Both use different strategies to sort a set of
n unsorted items. We will not discuss these strategies; however, QuickSort’s run-
ning time is O(nlogn) on average, whereas BubbleSort needs O(n?). For small
sizes of input data, the running times of both algorithms do not differ much. But
if we want to sort one million elements, QuickSort may still give us the result in
reasonable time, whereas BubbleSort may take an excessively long time even on a
supercomputer.

We want to sort all vertices of a graph depending on the number of neighbors a
vertex has. Let n be the number of vertices and m be the number of edges of the
graph. The running times above are only the times for the sorting of a set of unsorted
elements. Now let us consider how the graph representation may influence the time
to sort all vertices depending on the number of neighbors a vertex has. For this the
number of neighbors of each vertex has to be computed first. The time needed for this
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counting depends on the chosen representation. First, let us consider the adjacency
matrix: For each vertex we have to test all elements of the row representing it and
add 1 to the number of neighbors if the matrix element is 1. To count the number of
neighbors for one vertex, we need O(n), and to compute the number of neighbors for
all vertices, we need O(n?). Now consider the adjacency list: Given a vertex we have
to test each element in the corresponding list and add 1 to the number of neighbors
for each. The length of the list may be different for each vertex; however, there are a
total of m edges and therefore a total of m list items. The running time to count the
numbers of neighbors for all vertices using the adjacency list is O(n + m).

The adjacency list representation is therefore much better for counting the neigh-
bors of vertices in graphs containing a low number of edges but high number of
vertices. Furthermore, combining a poorer graph representation for a specific prob-
lem such as the adjacency matrix representation for counting neighbors with the
QuickSort algorithm means that the overall running time is no longer in O(n log n)
but in O(n?).

2.5.2 Traversal

Graph traversal algorithms are used to visit all vertices and subsequently perform an
action with each vertex. The vertices may be visited in an arbitrary order, or a specific
order may be requested. For example, we could be interested in visiting genes in a
gene regulation network in an order that follows the regulatory steps. There are many
different possibilities to traverse the vertices of a graph, the most important ones are
depth first search (DFS) and breadth first search (BFS).

The DFS algorithm shown below works as follows. In the beginning all vertices
are marked as unvisited. The algorithm starts with a given vertex, visits this vertex,
and then recursively visits all neighbors of this vertex, see Fig. 2.15.

depth_first_search_component_algorithm (vertex v)
visit(v);
mark v as visited;
for each edge {v, w}
if (w is unvisited)
depth _first_search_component_algorithm(w)

This algorithm visits all vertices within one connected component. To visit all
components in a unconnected graph, an enclosing loop is needed:

depth _first_search_algorithm (vertex u)
for each vertex u
if (u is unvisited)
depth _first_search_component_algorithm(u)

If the graph is represented by an adjacency list the running time is O(n + m). For
a representation by an adjacency matrix the running time is O(n?). Modifications of
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3
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FIGURE 2.15 Depth first search of a graph. A vertex already visited is marked by its number
(in the order of the visits), the currently visited vertex is represented by a circle, and the currently
chosen edge to the next neighbor by a thick gray line.

the depth first search algorithm can be used to solve a number of problems such as Is
the network connected or are there separate parts? Or, is the network a tree or does it
contain cycles?

Another classic algorithm for the traversal of graphs is BFS. Whereas DFS follows
a path into the graph as long as possible, BFS visits all neighbors of a vertex before
it visits other vertices. The algorithm for BFS is as follows:

breadth_first_search_component_algorithm (vertex v)

visit(v);
mark v as visited;
queue Q = [v];

while Q is nonempty {
remove vertex w from the front of queue Q;
visit(w);
for each neighbor x of w
if (x is unvisited) {
mark x as visited;
add x to the end of queue Q
}
}

Again, this algorithm visits all vertices within one connected component. To visit
all components in a unconnected graph, an enclosing loop similar to DFS is needed.
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2.6 SUMMARY

Biological networks are commonly represented by graphs, and different graph models
are used for specific networks. This chapter gives a brief yet concise introduction to
most of the graph-related terminology used in the book and presents some simple
algorithms for graphs.

The first part of this book discusses graph-based analysis methods in more detail.
The focus is on the following topics.

Global network properties: The structure of biological networks is significantly
different from random networks, and new models have been introduced [1,10]. Chap-
ter 3 deals with the analysis of global network properties and relevant models for
biological networks.

Network centralities: In biological networks some vertices are often more impor-
tant or central than others. For example, highly connected vertices in protein interac-
tion networks can be functionally important and the removal of such vertices is related
to lethality [S]. Centrality indices are used to rank vertices, and Chapter 4 presents
some of the more important centrality indices and their application to biological
networks.

Network motifs: A way to understand complex biological networks is to break
them down into units of commonly used network architecture. Such patterns of local
interconnection are called network motifs [8]. They have been found in many different
networks, but are particularly important for the understanding of signal transduction
and gene regulation networks. Chapter 5 discusses network motif analysis and presents
insights gained with this method.

Network clustering: Biological networks are hierarchically structured from net-
work motifs and pathways at the lowest level, to functional modules, to the large-scale
organization of the networks [9]. Chapter 6 studies the clustering of network elements
into modules and their application to biological networks.

2.7 EXERCISES

1. Different biological networks are modeled by different graphs. Which types
of graphs are typically used to model the following networks: gene regulation
networks, protein interaction networks, metabolic networks?

2. Consider the undirected graph G = (V, E) shown in Fig. 2.2 (right). For each
vertex v € V do the following:

(a) Compute the degree of v.

(b) List all neighbors of v.

(c) Find paths to all other vertices that are in the same connected component
as the vertex v.

3. For the graph shown in Fig. 2.2 (right), find a different graphical representation
of this graph and show how the graph is represented using an adjacency matrix
and an adjacency list representation.
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4. Take a graph with nine vertices, four of them of degree 2 and four of degree 1.

Is this graph connected?

5. An undirected loop-free graph with n vertices has at most n(n — 1)/2 edges. Is

this statement correct? Can you prove it?

6. Draw an undirected, connected graph G with 10 vertices and 20 edges. Con-

struct two different spanning trees of G.

7. Metabolite networks can be constructed from metabolic networks modeled as

bipartite graphs by removing all vertices representing reactions and connecting
substrates (vertices with an outgoing edge to the reaction) with products (ver-
tices with an incoming edge from the reaction) directly. Construct a metabolite
network from the metabolic network given in Fig. 2.11 (right).

8. Apply the algorithms DFS and BFS to traverse the graph in Fig. 2.2 (right).

Start with vertex 1, then apply the algorithms again starting with vertex 5.

9. A Eulerian path is a path (vg, e1, vy, €2, v2, . .., Vk—1, €k, Vx) in an undirected

graph that contains each edge of the graph exactly once. Write an algorithm to
check whether an undirected graph G = (V, E) has an Eulerian path.
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GLOBAL NETWORK PROPERTIES

RALF STEUER AND GORKA ZAMORA LOPEZ

3.1 INTRODUCTION

Complex dynamical systems are often characterized by a large number of nonlinearly
interacting elements, giving rise to emergent properties that transcend the principle of
linear superposition. In particular, within the biological sciences, one of the primary
challenges is to investigate how the collective behavior of cells, tissues, or organisms
can be understood in terms of the properties of their molecular constituents.

To investigate this intricate connectivity of cellular systems, the analysis of com-
plex networks has become an important part of molecular biology. A large number of
biological phenomena and processes can be translated into the abstract concept of a
complex network, making biological problems mathematically tractable. Prominent
examples include the representation of transcriptional regulation as a network, where
vertices represent genes or proteins and edges represent regulatory interactions, as
well as cellular metabolism, where vertices represent metabolites and edges represent
biochemical interconversions. However, beyond these rather straightforward exam-
ples, also more abstract processes can sometimes be translated into the language of
complex networks. For example, different configurational states of a protein may be
represented as vertices, with edges indicating transitions between them.

Analysis of Biological Networks, Edited by Bjorn H. Junker and Falk Schreiber
Copyright © 2008 John Wiley & Sons, Inc.
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Once a biological process or phenomenon is represented by a network, the tools
of complex network theory allow for a systematic characterization of its structural
properties. The analysis of network topology then seeks to uncover the functional
organization, the underlying design principles, and unknown organizing principles of
cellular systems. Indeed, as realized rather recently, many empirically derived com-
plex networks, ranging from technological and sociological to biological examples,
share common topological features. The organizing principles of empirical networks
often reflect crucial system properties, such as robustness, redundancy, or other func-
tional interdependencies between network elements. A quantitative analysis of the
large-scale characteristics of complex networks thus contributes to a better under-
standing of the organization of cellular functions and has already made significant
impact on our current view of molecular biology.

While not aiming at a comprehensive review, this chapter seeks to summarize
and describe several basic measures and characteristics of network topology. The
chapter is organized as follows: The main emphasis is placed on an overview of
basic measures and indices that characterize the topology of networks, given within
Section 3.2. In Section 3.3, several basic prototype models of complex networks are
discussed. The subsequent Section 3.4 is devoted to a brief outline of global features of
complex networks, such as hierarchies, modularity, attack tolerance, and robustness.
Finally, Section 3.5 provides notes on the statistical testing of network properties
and describes several known pitfalls and possible misinterpretations in the statistical
analysis of network properties. The working example throughout this chapter is a
reconstructed version of the S. cerevisiae metabolic network [23], consisting of 810
metabolites and 843 reactions. The original bipartite graph was collapsed, such that
two metabolites are connected if they participate in a common reaction. A graphical
representation is shown in Fig. 3.1.

metabolite

0 200 400 600  80C
metabolite

FIGURE 3.1 The substrate graph Gs of the S. cerevisiae metabolic network [23], con-
sisting of Ny = 810 vertices (metabolites) and Ng = 3419 edges. Directional information
is omitted. Left: A visualization of the substrate graph using the freely available software
package Pajek [9]. Right: A visualization of the adjacency matrix, with vertices (metabo-
lites) ranked according to their degree. Each dot indicates whether the corresponding vertices
(metabolites) are connected by an edge. The figures are adapted from Ref. [61].
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3.2 GLOBAL PROPERTIES OF COMPLEX NETWORKS

Following the nomenclature of Chapter 2, a network is formally represented by a
graph G = (V, E), consisting of a set V of Ny vertices and a set E of Ng edges.
We distinguish between undirected graphs, whose vertices are connected by edges
without any directional information, and directed graphs (digraphs), whose edges
posses directional information. Additionally, in weighted graphs, each edge (directed
or undirected) is associated with a scalar value, quantifying a possible interaction
strength, a cost, or a flow on the respective edge.

In most cases, a network is represented by its adjacency matrix A, with entries
A;j = 1 indicating that there exists an edge between vertex n; and n, and A;; = 0
otherwise. For undirected networks, the adjacency matrix is symmetric A;; = A j;. For
weighted networks, the elements of the adjacency matrix are replaced by nonbinary
scalar values.

However, in particular for sparse networks, that is, networks where the number of
edges is much smaller than the number of possible edges Ng < N ‘2/ the adjacency
matrix becomes computationally inefficient in terms of memory allocation. Alter-
natively, the network can be specified by a set of adjacency lists, consisting of Ny
lists that enumerate to which other vertices each vertex connects, see also Chapter 2.
The adjacency matrix, as well as the adjacency lists, have their unique advantages
and disadvantages in terms of computational efficiency. A schematic example of both
representations is given in Fig. 3.2.

3.2.1 Distance, Average Path Length, and Diameter

In a network consisting of Ny vertices, the distance d;; between any two vertices
n; and n; is given by the length of the shortest path between the vertices, that is,
the minimal number of edges that need to be traversed to travel from vertex n; to
n ;. The shortest path between two vertices does not have to be unique, often there
exist several alternative paths with identical path length. For directed networks, the
distance between two vertices n; to n; is usually not symmetric d;; # d ;. Likewise,
for directed, as well as disconnected networks, that is, networks consisting of two or
more isolated components, there might not always be a path that connects vertex n;
to n;. In such a case, the distance between the respective vertices is infinite d;; = oo.
See Fig. 3.2 for examples.

The diameter dy, = max(d;;) of a network is defined as the maximal distance of
any pair of vertices. The average or characteristic path length d = (d;;) of a network
is defined as the average distance between all pairs of vertices. In the case of infinite
distances, the average inverse path length degr = (1/d;;), also referred to as efficiency,
can be used to specify the average path length within the network. In this case, a fully
connected network d;; = 1 Vi, j has an efficiency defr = 1, whereas large distances
and disconnected components (using the limit 1/d;; — 0 for d;; — 00) reduce the
efficiency of the network.

The situation is slightly less straightforward if weighted networks are considered.
Then, we are faced with the possibility to take additional information into account.
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FIGURE 3.2 Representations of complex networks. (a) A directed network, consisting of
Ny =7 vertices and Ng = 13 directed edges. (b) The adjacency matrix A of the network.
(c) The set of adjacency lists, specifying to which other vertices each vertex connects. (d) The
distance matrix D with elements d;;. Note that the distances are not symmetric and may be
infinite, indicating that not all vertices can be reached from all other vertices. (e) The input
degree k™ and output degree k™ of each vertex.

For example, within a network of train connections, the shortest path length (distance)
between two stations can be defined according to physical distances, or, taking travel
time into account, as the total time needed to travel from one station to another.
Furthermore, the fastest connection must not always be the cheapest; thus we might
wish to define the distance between two stations according to the amount of money
needed to travel from one station to another. In either case, the term distance between
vertices can be generalized to accommodate additional scalar information, given by
a weight factor that is associated with each edge.

Computationally, the estimation of the distance between two vertices is not triv-
ial. Within the extensive literature on the shortest paths problem, the most com-
mon choices are the Dijkstra and the Floyd—Warshall algorithm [6]. The Dijkstra
algorithm returns the lowest cost path between a source vertex n; and all other ver-
tices in the network in O(N ‘2,) time. For efficiency reasons, the algorithm return just
one shortest path; enumerating all shortest paths between two vertices is computa-
tionally more tricky and expensive. To calculate the all-to-all distances, the Floyd—
Warshall algorithm is the method of choice. The algorithm returns the distance matrix
in (’)(N%,). Both algorithms straightforwardly allow to incorporate weighted edges.
Negative weights may induce cycles that reduce the cost of a path each time the
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cycle is traversed. In this case, the definition of the “lowest cost” path has to be
modified.

Note that distances, path length and diameter also depend on network size and
density (number of vertices and links) and are therefore no genuine classifiers that
straightforwardly allow to compare different networks.

3.2.2 Six Degrees of Separation: Concepts of a Small World

One of the striking properties of almost all empirical networks is that, despite their
huge size of sometimes several millions of vertices, the average path length is usually
surprisingly small. For example, within cellular metabolism, represented by a net-
work of metabolites (vertices) linked by biochemical reactions (edges), the average
path length between two metabolites is approximately d ~ 3 only, independent of
the specific organism [22,33,71]. A recent study of the World Wide Web (www),
represented by a network of web documents (vertices) that are connected by directed
hyperlinks (URLSs), estimated that the average path length between any two vertices
is d ~ 16 only [1], extrapolated for a network of 200 million documents.

The term small world network itself originated in the social sciences, reflecting
the assertion that within networks of social acquaintances (or friendships) all people
(vertices) on the planet are separated from each other by just a small number of inter-
mediate friends or acquaintances (“six degrees of separation,” although the specific
value six must not be taken too literally).

However, strictly speaking, the term small world is not a genuine network property,
that is, there is no measure or statistical test that allows to check whether a given
specific empirical network belongs to the class of small world networks. As stated
above, the average distance between vertices also depends on the size of the network:
The more vertices a network has, the more distant the vertices tend to be. The small
world property is thus mainly understood to apply to network models whose average
path length d increases slower or equal than the logarithm of the network size d ~
log Ny for Ny — oo. A further distinction includes ultrasmall networks [13], whose
average path length scales as d ~ loglog Ny.

3.2.3 The Degree Distribution

One of the most basic properties of a vertex n; is its degree k;, defined as the number
of edges adjacent to the vertex. In a network without self-loops (edges that connect
a vertex to itself) and multiple links (two vertices are connected by more than one
edge), the degree equals the number of neighbors of the vertex. In the case of directed
networks, we distinguish between the input degree k}“ and the output degree k{™.
Taking all vertices of a network into account, we can ask for the probability p(k) that
the degree of a randomly chosen vertex equals k. The degree distribution p(k) has
become one of the most prominent characteristics of network topology.

One of the key discoveries that triggered the renewed interest in complex network
theory was that the distribution p(k) of many empirical networks approximately fol-
lows a power law p(k) ~ k~Y, where y denotes the degree exponent. In contrast to
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FIGURE 3.3 Degree distributions of complex networks. (a) A lattice-like network. Each
vertex has the same degree k (for periodic boundary conditions or large networks, such that
vertices at the border can be neglected). (b) An Erdos—Rényi random network. The degree
distribution is homogeneous, the degrees of the vertices are centered around the average value.
(c) A scale-free network. The degree distribution is highly inhomogeneous and follows a power
law of the form p(k) ~ k™, where y denotes the degree exponent. While most vertices have a
low number of connections only, a smaller number of vertices is highly connected.

the until then prevailing picture, where vertices are connected randomly and each
vertex has approximately the same number of links, many empirical networks are
strongly inhomogeneous: While the vast majority of vertices posses only a small
number of links, a small number of vertices (‘“hubs”) are highly connected. Examples
of prototypical degree distributions are depicted in Fig. 3.3.

Though being one of the most basics characteristics of network architecture, a
statistically stringent numerical estimation of the degree distribution is far from
trivial [25]. In the simplest case, p(k) can be straightforwardly estimated from
an (usually binned) histogram of degrees. However, for many real networks with
strongly inhomogeneous degree distributions, the simple histogram approach pro-
vides insufficient statistics at high degree vertices and is a notorious source of mis-
interpretations [25]. More reliable in terms of numerical estimation is the cumu-
lative degree distribution p.(k), defined as the probability that a randomly cho-
sen vertex has a degree larger than k. The cumulative degree distribution p.(k)
is a monotonously decreasing function of k and its estimation requires no bin-
ning. For a power-law distribution p(k) ~ k=7, the cumulative degree distribution
is of the form p(k) ~ k=~D. An exponential distribution p(k) ~ exp(—k) corre-
sponds to an invariant cumulative distribution p.(k) ~ exp(—k). Computationally
even more straightforward is to rank the vertices according to their degree and
plot the degree versus the rank of each vertex. Examples of different representa-
tions of the degree distribution are shown in Fig. 3.4. It should be noted that all
empirical networks necessarily show deviations from an strict mathematical degree
distribution.
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FIGURE 3.4 Different representations of the degree distribution of the metabolite substrate
network described in Fig 3.1. (a) A binned histogram. Shown is the number of vertices with a
degree k, using a logarithmic binning. (b) The cumulative degree distribution p.(k), that is, the
probability that a vertex has a degree larger or equal k. Note that the cumulative distribution
does not require binning but is obtained from the (normalized) number of vertices with degree
larger or equal k. (¢) The rank plot of metabolites, ranked according to their degree k. A power
law of the form p ~ k=" in the rank plot corresponds to a degree exponenty = 1+ 1/y, &~ 2.3
in the original degree distribution p(k) and y, ~ 1.3 in the cumulative distribution. The straight
lines are not fitted and serve as a guide to the eye only.

In particular for power law distributions, the size (number of vertices) of the net-
work puts constraints on the estimation of the degree exponent. Highly connected
vertices are rare, and their probability is thus difficult to estimate for small networks.
Likewise, the number of vertices with small degree is restricted by network size.
Consequently, the formula p ~ k~7 often applies only to an intermediate region of
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the empirical degree distribution and has to be adjusted with an exponential cutoff at
high degrees. More importantly, as shown in the recent literature, the reported degree
exponent of many empirical networks correlates with network size and thus might
not reflect the actual exponent of the underlying networks [17,18]. Furthermore, for
small degree exponents the variance of the degree distribution is infinite, thus any
empirical sample of vertex degree is no “typical” observation.

However, for many biological problems it is often more important to note that
the degree distribution is highly inhomogeneous and long-tailed, as opposed to the
question whether the degree distribution fits a power law in a strict statistical sense.
For weighted networks, the concept of degree can also be extended to account for the
weights of the edges by defining the strength of a vertex as the sum of the absolute
values of the weights.

3.2.4 Assortative Mixing and Degree Correlations

Despite its importance in the topological characterization of complex networks, the
degree distribution itself does provide only little information about the internal struc-
ture and organization of the network. More interesting is thus to look for correlations
between the degrees of adjacent vertices. A network is called disassortative if ver-
tices with high degree connect preferentially to vertices with low degree. Vice versa,
anetwork is called assortative if vertices with high degree preferentially also connect
to other vertices with high degree. As pointed out in the recent literature [49], social
networks tend to be assortative, that is, persons (vertices) with many friends (con-
nections) tend to be also connected to other persons with many friends, while most
technological and biological networks are disassortative.

Formally, the degree correlation can be obtained from the joint probability
distribution p(k;, k) that two connected vertices n; and n; have degrees k; and
k;j, respectively. For uncorrelated degrees, the joint probability is given by the
product of the marginal degree distributions p(k;, k;) = p(k;)p(k;). A measure
for the deviation from statistical independence is given by the mutual informa-
tion [64,66].

Unfortunately, a direct numerical estimation of p(k;, k;) is computationally de-
manding and often not feasible due to the limited size of the (empirical) network
(but see also Ref. [66] for the numerical estimation of probability distributions and a
discussion of finite size effects). More straightforward is thus to consider the Pearson
correlation coefficient between the degree of two adjacent vertices. The correlation
coefficient or assortativity coefficient r lies in the range —1 < r < 1, with r < 0 cor-
responding to a disassortative network and » > 0 to an assortative network. Note that
the assortativity coefficient , similar to the usual Pearson correlation, has its limits for
strongly inhomogeneous degree distributions and fails to correctly quantify nonlinear
degree correlations, for example, networks that are assortative for low degree vertices
and disassortative for high degree vertices.

Another popular, and closely related, measure to evaluate degree correlations
is the average neighbor degree [53]. For each vertex n;, the average degree
kinn = ki, 7=V1 Ajjk; of its neighbors is calculated. Subsequently, these values are
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FIGURE 3.5 Vertex degree correlation in the substrate graph. Left: The average neighbor
degree k; ,, of each vertex n;, plotted versus the degree k;. The solid line gives the (binned)
average over all vertices with the same degree k. For large degrees a weak negative correlation
is observed. Right: The clustering coefficient C; of each vertex versus the degree k;. Highly
connected vertices exhibit a low clustering coefficient, that is, highly connected vertices prefer-
entially connect to vertices that are not mutually connected, indicating a hierarchical structure.

averaged for all vertices having the same degree k, resulting in the average neighbor
degree kp, (k). See Fig. 3.5 for examples of vertex degree correlations.

To evaluate the degree correlations for weighted and directed networks requires
slight modifications in the respective definitions. In the case of directed networks,
two distinct correlation indices are most interesting: (i) Do the in-degrees k}“ of
vertices correlate with their neighbors out-degrees k™, and (ii) do the out-degrees
kU of vertices correlate with their neighbors in-degrees ;" ? In the case of weighted
networks, the degrees can again be replaced by their weighted counterparts.

3.2.5 The Clustering Coefficient

Another basic measure that accounts for the internal structure of a network is the
clustering coefficient C. The clustering coefficient relates to the local cohesiveness
of a network and measures the probability that two vertices with a common neighbor
are connected. In the case of undirected networks, given a vertex n; with k; neighbors,
there exist Emax = ki(k; — 1)/2 possible edges between the neighbors. The clustering
coefficient C; of the vertex n; is then given as the ratio of the actual number of edges
E; between the neighbors to the maximal number Ex,

2E;
Ci=——L (3.1)
ki(ki — 1)

See Fig. 3.6 for a schematic example. Note that, strictly speaking, the clustering
coefficient C; is not a property of the vertex n; itself, but rather a property of its
neighbors. The global or mean clustering coefficient C = (C;) of the network is the
average cluster coefficient of all vertices.

Many empirical networks exhibit a rather high clustering coefficient, indicating
a local cohesiveness and a tendency of vertices to form clusters or groups. Indeed,
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FIGURE 3.6 The clustering coefficient relates to the local cohesiveness of a network. (a) The
clustering coefficient is defined as the probability that two vertices with a common neighbor
are connected. (b) A highly connected vertex with a low clustering coefficient, indicating a (at
least locally) hierarchical structure. (c) A a vertex with high clustering coefficient Cyepex = 0.8.

for example, in social networks, it seems intuitive that two persons (vertices) who
have a common friend are much more likely to be also friends, as compared with
two randomly chosen persons. Interestingly, this also directly relates to the notion
of degree correlations and dynamics on networks. As persons that share a common
friend are likely to become acquainted themselves, they will acquire new friends over
time. In particular, a highly connected person will induce new connections among
his friends (neighboring vertices). In this sense, within social networks, a situation
with disassortative degree correlations and low clustering coefficients is dynamically
unstable and must be expected to evolve gradually toward more clustering and thus
assortative degree correlations.

However, despite its conceptual simplicity, the interpretation and statistical testing
of the clustering coefficient holds some pitfalls, which are discussed in more detail in
Section 3.5. Furthermore, the clustering coefficient depends on the number of edges
within the network.

To claim a nontrivial local clustering within the network, an estimated value of C
thus has to be compared with an appropriate null model to validate whether the value is
indeed statistically significant, that is, whether the respective network indeed exhibits
a higher degree of clustering than a corresponding random network. Difficulties also
arise for specific types of graphs, such as bipartite graphs, that exhibit a nontrivial
clustering coefficient inherent to the bipartite structure [1,52], see Section 3.5 for a
detailed discussion.

An alternative, but equivalent, definition of C can be given with respect to the
number of triads (triples of vertices where each vertex is connected to both others)
within a network. Note that the number of edges between the neighbors of a vertex is
equal to the number of triads that vertex is part of. The global clustering coefficient is
then defined as the proportion of triads in a network with respect to the total number
of connected triples (triples where at least one vertex is connected to both others).

3 x number of triads
C= - (3.2)
number of connected triples

The factor 3 accounts for the fact that each triad contributes to three connected
triples [1]. A characterization of the clustering coefficient with respect to the num-
ber of triads holds some advantages with respect to numerical estimation and can be
generalized to other structures, such as the number of squares [31].
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Of particular interest is also the correlation of the clustering coefficient C; with
other properties of a vertex n;. For example, as described by Newman [49], many
empirical networks exhibit a negative correlation between the degrees k; and the
clustering coefficients C;, indicating a modular structure of the network. See Fig. 3.5
for an example.

3.2.6 The Matching Index

Within many empirical networks, two vertices that are functionally similar do not
necessarily have to be connected. For example, within a network of protein interac-
tions, two proteins that are involved in the regulation of similar processes and should
be considered as closely related, must not necessarily bind to each other. Correspond-
ingly, the normalized matching index M;; quantifies the “similarity” between two
vertices based on the number of common neighbors shared by two vertices n; and 7.

Mo — common neighbors 11;]1 AikAji (3.3)
Y total number of neighbors — k; +k; — N, AxAj '

Note that for the measure to be properly normalized, the denominator counts only
the number of distinct neighbors, that is, neighbors that are shared by both vertices
are counted only once. One of the virtues of the matching index is that it can be
straightforwardly applied to networks consisting of different types of vertices, such
as bipartite graphs. For example, two transcription factors may regulate the expression
of similar genes, without necessarily regulating (or binding to) each other. A schematic
illustration of the matching index is given in Fig. 3.7.

The matching index can be generalized beyond the immediate neighbors of
a vertex or extended to multiple vertices [40]. Furthermore, at the most gen-
eral level, two vertices can be regarded (or defined) as “similar” if their dis-
tance to all other vertices within the network is approximately the same, irre-
spective of whether they are directly connected or not [75]. An advantage of
this definition lies in the fact that the actual pair-wise similarity of two ver-
tices must not be specified. The definition draws upon the notion only that two
entities (vertices) must be considered “similar” if they perceive the rest of the

3 4
5 1— 3,4,6,7,8
1 . 2—> 3,4,5,8
M,, = 3/6 = 1/2
6 7 8

FIGURE 3.7 Vertices that are functionally related do not necessarily have to be connected.
The matching index counts number of common neighbors shared by two vertices, normalized
by the total number of distinct neighbors. The right panel shows the adjacency list of the vertices
ny and n,, along with the corresponding matching index M,.
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world (here the distance to all other vertices within the network) in a similar
way.

3.2.7 Network Centralities

Closely related to distance measures, network centrality indices seek to characterize
each vertex or edge with respect to their position within the network. Centrality
measures will be discussed in more detail in Chapter 4, here we will briefly outline
some basic features.

Intuitively, a basic measure of the importance of a vertex n; is its degree k; (de-
gree centrality). And indeed, several studies on biological network report a significant
relationship between vertex degree and functional importance of vertices [2]. For ex-
ample, within protein interaction networks, the removal of highly connected proteins
is more likely to have lethal effects than removal of proteins with only a small number
of links [32]. However, the degree is clearly not the only determinant of the functional
importance of a vertex. Often more relevant, is the contextual location of the vertex
within the network. For example, we can ask from which vertex a signal should be
sent to reach all other vertices in minimal time. Or, vice versa, which vertices can be
reached fastest from any other vertex within the network? In this respect, the closeness
centrality specifies which vertices have the shortest paths to all others, measured, for
example, by the (inverse of the) average distance from a vertex to all other vertices.
For detailed definitions, see Chapter 4.

Probably the most well-known centrality measure is the betweenness centrality
(BC). The betweenness centrality can be defined with respect to vertices and edges,
and measures how often a vertex or edge is present in the set of all shortest paths.
As can be seen in Fig. 3.8, low degree vertices can be crucial to establish com-
munication or mass flow within a network. Thus, with respect to robustness prop-
erties of a network, a selective attack on vertices with high BC was often found
to be more relevant than a removal of vertices with high degree. Computationally,
the estimation of the betweenness centrality is rather demanding and described in
Chapter 4.

FIGURE 3.8 The degree of a vertex does not necessarily reflect importance with respect
to function of a network. While vertex n; has a high degree, its removal does not necessarily
affect communication within the network. However, removal of vertices with low degree may
have significant effects on communication or mass flow within the network, as seen for vertex
njp.
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3.2.8 Eigenvalues and Spectral Properties of Networks

An important property of network topology are the spectral properties of the adjacency
matrix A. Though as yet only hardly used in biological research, the spectra of random
graphs are among the oldest characteristics of network topology with a plethora of
applications in many branches of physics [1].

For an undirected graph, the symmetric adjacency matrix A has Ny real eigenval-
ues X;. The spectral density p(A),

Ny

1
p(h) = Ny ; SO — A, (3.4)

approaches a continuous function for increasing network size Ny — 00. An extensive
amount of work about the mathematical properties of the spectral density is available,
including the famous Wigner semicircle law [1,21].

Of more relevance to the biological sciences, the eigenvalues of network matrices
are becoming increasingly important with respect to two different fields of research:
First, in networks of coupled oscillators, that is, in networks where each vertex corre-
sponds to an oscillator coupled to other oscillators via an adjacency matrix, the global
dynamics of the system are determined by the structure of the adjacency matrix. In
particular, the stability of the synchronized state, that is, the state of the network
where almost all vertices oscillate synchronously, can be related to the eigenvalues of
the Laplacian matrix of the network [54], defined in close analogy to the adjacency
matrix. Recent studies also take into account the effect of weighted edges [74].

Second, along similar lines, the eigenvalues of network matrices determine the
stability and local dynamics of networks composed of interacting elements. For
example, the vertices of a metabolic network denote metabolites, whose concentra-
tions change according to the adjacent edges (metabolic reactions). Formally this
system is represented by a differential equation for all metabolite concentrations.
However, at least locally, this (usually unknown) system of differential equations can
be approximated by a weighted interaction matrix, denoted as the Jacobian J of the
system. The Jacobian matrix already governs essential aspects of the dynamics and
predicts specific dynamic behavior even if detailed knowledge about the underlying
reactions and interactions is not available [63,65,68].

3.3 MODELS OF COMPLEX NETWORKS

The various network indices discussed until now characterize and quantify the topo-
logical structure of a given network. However, to understand and elucidate whether an
estimated value indeed corresponds to nontrivial structure within the network requires
to consider basic prototype models of complex networks. We emphasize that none of
the models described below aims to mimic the detailed features of any real network.
Rather they represent minimal models, each invented to exhibit distinct generic fea-
tures of complex networks. The purpose of prototype models is twofold: First, they
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provide null models to understand whether an observed feature is a generic feature
of certain network classes or whether it deviates from what could be expected for a
simplistic model. Second, prototype models often provide insight on how certain fea-
tures of complex networks arise from the construction rules of the prototype models,
allowing to probe to what extent (for example evolutionary) mechanisms can account
for the observed features of empirical networks. Again, more detailed mathematical
treatises on random network models are given elsewhere [1,17,50], here we outline
the basic ideas only.

3.3.1 The Erdos-Rényi Model

Probably the most basic model of a random network is given by the Erdos—Rényi (ER)
network [20]. The ER network consists of Ny vertices, connected by Ng (undirected)
edges that are chosen randomly from the set of Ny(Ny — 1)/2 possible edges (ex-
cluding multiple connections and links from a vertex to itself). The probability p that
two randomly chosen vertices are connected is thus p = 2Ng/Ny(Ny — 1).

Alternatively, the ER model can be defined as a set of Ny vertices, with each pair
of vertices connected with an equal probability p < 1. The number of edges Ng is
then a random variable, with the expectation value (Ng) = pNy(Ny — 1)/2 [1].

The ER model has been the primary subject of random graph theory, resulting in
extensive knowledge about its mathematical properties and typical features. Here we
summarize some basic properties only.

The degree distribution of the ER model is given by a binomial distribution that
becomes approximately Poissonian in the limit of large networks (Ny — 00). The
probability of a vertex to have degree k is

iy B
pk) ~e T (3.5

with (k) = pNy denoting the average degree. A typical realization of the ER model is
rather homogeneous, most vertices have a similar degree, distributed approximately
symmetrically around the average degree (k), as shown in Fig. 3.3b. Most analytical
work on the ER model has concentrated on questions related to percolation theory, that
is, the connectedness of the network and the emergence of paths that enable a traversal
of the whole network. For small p the network is disconnected and consists of a large
number of isolated components [50]. At p ~ 1/Ny (thus for average degree (k) ~ 1)
a phase transition occurs, giving rise to a giant component that encompassed most
of the vertices of the network. For p > log(Ny)/Ny, all vertices are connected for
almost all realizations of the random network. The ER model exhibits the small-world
property. Above the percolation threshold, the average path length is very small and
scales as the logarithm of the number of vertices [ ~ log Ny (with (k) kept constant
for increasing number of vertices).

By construction, the clustering coefficient of the ER network C = p = (k) /Ny,
that is, the probability that two vertices with a common neighbor are connected equals
the probability that any pair of randomly chosen vertices are connected. The ER model
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does not show any local cohesiveness. Likewise, the degree of connected vertices is
uncorrelated, the ER model does not display degree correlations.

The Erdos—Rényi model remains one of the most important prototype models in
graph theory. However, the main limitations for a direct comparison of network prop-
erties with empirical networks are its homogeneous degree distribution, the absence
of local structure, and the lack of degree correlations. A close variant of the ER model,
the configuration model, will be discussed in Section 3.5.

3.3.2 The Watts—Strogatz Model

While the Erdos—Rényi model correctly reproduces the small world property, it fails
to account for the local clustering that characterizes many empirical networks. In
particular for social networks, that is, networks of mutual friendships or acquaintances,
most studies indicate a clustering coefficient that is orders of magnitude higher than
the value obtained for a corresponding ER network.

In one of the seminal papers of complex network theory, Watts and Strogatz pro-
posed a model for coexistence of local structure on the one hand, and a small av-
erage path length on the other hand [72]. The starting point of the model is the
limiting case of a regular lattice-like network: Each vertex (arranged on an one-
dimensional ring in the original model) is connected to its n/2 nearest neighbors. In
social terms, this would resemble a strictly local medieval-like world, where each per-
son knows people in his or her immediate vicinity only, such as neighbors and people
in nearby villages. Consequently, the model exhibits strong local cohesiveness (a high
clustering coefficient), but the spread of information is slow, that is, the average path
length scales linearly with system size.

Extending the regular lattice-like network, shortcuts between distant vertices are
introduced, that is, with a probability prew a link is rewired, such that one end is
detached from its original vertex and connected to a randomly chosen vertex. In
social terms, this would correspond to a merchant or traveler, who is also acquainted
to a small number of more distant people within the country. As the probability prew
increases and more links are rewired, the model approaches a random network of the
ER type. In the limit prw — 1 the ER model is recovered. The network thus again
exhibits no local structure (small clustering coefficient) and the average path length
scales as the logarithm of network size.

One of the intriguing result of the WS model is that already a very small number
of shortcuts (prew < 1) is sufficient to rapidly decrease the average path length [28].
However, for small pyy,, the local clustering remains almost unaffected and the clus-
tering coefficient decreased significantly only for prey — 1. Thus, for an intermediate
region of prey, the WS model exhibits a coexistence of high local clustering and short
average path length (small world property), as also observed in many empirical net-
works. A schematic representation of the WS model is given in Fig. 3.9.

The main significance of the WS model results from the fact that it emphasizes a
difference between local and global properties of networks. The clustering coefficient,
a local property, is determined by the immediate neighborhood of a vertex and is
almost unaffected by the introduction of additional “shortcuts” within the network.
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FIGURE 3.9 The Watts—Strogatz model: Starting point is a regular network, constructed such
that each vertex is connected to its two nearest neighbors, resulting in a maximal clustering
coefficient C = 1. With probability p;., links are randomly rewired. In the limit p., — 1, the
ER model is recovered.

On the contrary, the average path length, a global property, rapidly decreases upon the
introduction of just a few shortcuts. This has, for example, profound implications on
the spread of infectious diseases across continents. A change in average path length
to distant vertices is not detectable at the local level, that is, your social neighborhood
might remain almost unaltered, while the “distance” (in network terms) to infected
persons can rapidly decrease with only a small number of transcontinental travelers.

However, apart from the coexistence of high local clustering and short average path
length, the WS models captures almost no other feature found in empirical networks.
Its importance as a null model for biological networks thus remains limited.

3.3.3 The Barabasi—Albert Model

Among the most important limitations of the models discussed above is that neither
captures nor accounts for the inhomogeneous degree distribution found in many em-
pirical networks. To this end, Barabasi and Albert [7] proposed a simple network
model that gives rise to a scale-free degree distribution and still provides the concep-
tual basis for most current network models described in the literature.

Closely related to (and actually a simplification of) an earlier model by
Price [4,16,45,50], the BA model is based on two essential ingredients: (i) Growth:
In contrast to the models discussed above, the BA model does not assume that the
number of vertices within the network is fixed. Mimicking the dynamics of many
real networks, vertices are continuously added and the network grows as a function
of time. (ii) Preferential attachment: New edges are not introduced randomly, but the
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FIGURE 3.10 The Barabési—Albert model [7]: Starting with an initial small network, con-
sisting of Ny unconnected vertices, a new vertex is introduced at each time step and connected
with m < Ny edges (here shown with m = 2).

probability that a vertex receives a new edge depends on its present degree k;, again
reflecting dynamic properties of real networks.

The growth process is organized as follows: starting with an initial small network,
consisting of Ny unconnected vertices, a new vertex is introduced at each time step.
The new vertex is connected with m < Ny edges to the already present vertices. The
probability p(n;) that already present vertex n; receives a new edge is proportional to
its degree k;:

ki
plni) = —" . (3.6)
ik
After ¢ time steps, the network consists of Ny(#) = No + t vertices, connected by
NEg(t) = mt edges. Due to the preferential attachment mechanism, older vertices tend
to have accumulated more links and thus have an even higher probability to receive
yet more links (a “rich-get-richer” dynamics). Likewise, new vertices only have a
small number of links, and thus a low probability of receiving additional links. A
schematic illustration of the growth process is given in Fig. 3.10.

In the long time limit 7 >> 1, the BA model exhibits a scale-free degree distribution
p(k) ~ k~VBA with a degree exponent yga = 3 that is invariant with time. The degree
exponent is independent of the free parameters m and Ny. The BA model captures
the small world property; BA networks are found to have shorter average path length
than ER and WS models of the same size and density. The degrees are uncorrelated,
and analytical estimates of the clustering coefficient are available [36].

One of the merits of the BA model is that it provides a possible mechanism to
explain the observed scale-free distribution of many empirical networks. Indeed, the
time evolution of many empirical networks is governed by preferential attachment-
like processes. For example, within a social network, people (vertices) with already
many friends (edges) are more likely to acquire new friends, as compared to people
with few edges. Likewise, already famous actors will obtain more offers to act in a
new movie than young unknown actors. Scientific papers that are already frequently
cited are more likely to be read and cited again than less frequently cited papers.

Importantly, the preferential attachment rule also provides several testable pre-
dictions for complex networks. For example, if metabolic networks are reported as
scale-free, then, according to this growth rule, highly connected metabolites should
have an early evolutionary origin. Indeed, as emphasized by Wagner and Fell [71],
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many of the highly connected metabolites, mainly intermediates of the TCA cycle
and glycolysis, as well as some ubiquitous co-factors, are among the evolutionary
oldest.

However, explanations in terms of evolutionary mechanisms also hold some pitfalls
that are unfortunately rarely—if ever—discussed in the literature. Most importantly,
not only the formation of a network itself, but often also the acquisition of data about
the network is governed by similar mechanisms. For example, minor movies with
famous actors are more likely to be included in the respective databases than local
movies starring only unknown actors. Likewise, putative biochemical regulations or
reactions adjacent to the TCA cycle are more likely to be investigated, and thus
reported in publications, than putative regulations within the outskirts of metabolism.
In this sense, an observed feature of an empirical network might also always reflect
properties of the data acquisition process, rather than genuine properties of the network
itself.

3.3.4 Extensions of the BA Model

The BA model constitutes the conceptual basis for a large variety of extensions and
modifications and has triggered an exceptional amount of further work in the complex
network models. Most extensions can roughly be subdivided into two (though often
overlapping) categories: (i) Modifications that aim to generate networks with specific
tunable features, such as different degree exponents, tunable cluster coefficients, or
degree correlations. (ii) Modifications that aim to mimic the evolutionary growth
processes of specific networks in more detail, such as aging in social networks or
capacity restrictions in transportation networks.

For example, the exponential cutoff at high degrees observed in many real networks
can be accounted for by aging of vertices, that is, vertices that have been present for a
given time T stop acquiring new edges or are removed from the network [3]—as could
be expected in social networks. Similarly, an airport within a transportation network
will not acquire new connections beyond a certain capacity, again resulting in an
exponential cutoff at high degrees. Other processes to modify the properties of the
network include rewiring of edges according to defined rules. For example, within a
social network people that have a common friend are more likely to become acquainted
themselves, resulting in an increased local clustering of the network [15]. Further
extensions and modifications include memory effects and high clustering [36], degree
correlations [56,73], tunable degree exponents [38], information accessibility [48],
among many more. An overview of early modifications and extensions of the original
BA model can also be found in Table III of Ref. [1].

3.4 ADDITIONAL PROPERTIES OF COMPLEX NETWORKS

Within the first section, most emphasis was placed on quantitative measures that
describe the properties of individual vertices and edges. However, complex networks
are also characterized by emergent features that transcend the properties of individual
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vertices and relate to the organization of the network as a whole. In the following,
the basic emergent global properties of complex networks, such as robustness or
modularity, are outlined.

3.4.1 Structural Robustness and Attack Tolerance

Most biological systems share a common feature: robustness [8,35,60,69]. Constitut-
ing one of the fundamental organizing principles of biology, cellular networks must
be able to maintain their function in the face of constant perturbations and fluctuations
that affect the internal or external parameters of the system. In the context of complex
network analysis, robustness is mainly understood as the persistence of topological
network properties, such as average path length or connectedness, upon removal of
vertices or links [1,2,10,33].

Indeed, most empirical networks show a surprising tolerance against removal of
vertices. Focusing on topological aspects of robustness only, a number of studies
revealed significant differences between distinct network topologies upon removal
of vertices or edges [2,29]. In general, we have to distinguish between random and
intentional attacks on network topology. While for ER networks, due to the homo-
geneity of vertex properties, the response to random and intentional attacks is roughly
similar, the situation for scale-free networks is markedly different. Most properties of
scale-free networks were found to be exceptionally robust against random removal of
vertices. However, at the same time, scale-free networks are vulnerable with respect
to intentional attacks. This difference is due to the heterogeneous degree distribution.
Low degree vertices are far more frequent than high degree vertices, but play only a
minor role in overall network topology. While random attacks will most likely affect
low degree vertices, a selective attack on high degree vertices has far more dramatic
consequence on global network indices [1,2,29]. A schematic illustration is given in
Fig. 3.11.

In general, the difference between random and intentional attacks is at the core
of most current research on network robustness. The “robust, yet fragile” nature of
complex systems refers to the fact that many complex systems are robust against
random attacks, whereas they remain fragile against selective attacks. In particular,
highly optimized systems are extremely robust against anticipated attacks, whereas
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FIGURE3.11 The “robust, yet fragile” nature of scale-free networks. Properties of scale-free
networks are highly robust against random removal of vertices, but vulnerable against selective
intentional removal of vertices.
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optimization concomitantly leads to vulnerability against unanticipated perturbations,
related to the principle of “highly optimized tolerance” (HOT) [12].

It should be noted though that the restriction to topological aspects of robustness
allows only for a rather restricted view on network robustness. Dynamic aspects of
functional robustness thus receive increasing interest recently [35,47,60,63,65].

3.4.2 Modularity, Community Structures and Hierarchies

Related to the idea of functional robustness is the notion of modules and commu-
nity structures within complex networks. In general, it is assumed that many com-
plex networks are built up from (interacting and possibly overlapping) modules or
communities. The detection of such community structures has attracted substan-
tial interest recently and defines an important aspect of complex network analy-
sis [57,75,76].

Unfortunately, there is no generally accepted definition of what constitutes a
module or community structure within a complex network. As a working definition,
modules or communities are often understood as subsets of vertices that are densely
connected among each other, but are only sparsely connected to other vertices outside
the community. In this respect, probably the most influential definition of network
modularity comes from the work of Newman and Girvan, who define a score function
for network modularity based on this principle [24,51].

Computationally, the detection of community structures is closely related to the
clustering of elements, that is, the assignment of “entities” into distinct categories
based on a suitably defined notion of similarity. In the context of complex network
analysis, similarity of vertices can be defined in different manners, for example, with
respect to the shortest path between two vertices, the total number of paths between
vertices (weighted according to path length), among several other possibilities. Like-
wise, and again resembling the situation in clustering algorithms, modules can be
detected using agglomerative or divisive methods, that is, by grouping similar ver-
tices into larger units or by iteratively breaking down a complex network into smaller
and smaller subsets. Although there is a plethora of proposed novel algorithms specif-
ically designed to detect modules within complex networks, it should be noted that a
recent study [26,27] demonstrates that standard ways of clustering data, for example,
based on k-means or hierarchical clustering, often outperform newer methods.

The relevance of modularity in complex networks can be seen from two different
perspectives: First, modularity represents an inherent design principle of many com-
plex networks. Indeed, in particular for biological networks shaped by evolution, it
seems plausible that modular networks have advantages in terms of their ability to
adjust to new evolutionary constraints by incorporating new functionality within the
network [26,34]. Second, a decomposition into modules if often helpful to understand
the functional organization of complex networks. For example, many technological
networks, such as integrated electronic circuits, cannot be rationalized on the basis
of individual resistors or transistors. Only by the construction of functional modules,
such as shift registers, counters, gates, inverters, each consisting of many lower level
elements, an effective manipulation and design can be achieved.
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As already implicit in the example of an integrated electronic circuit, modules are
not restricted to one specific level of representation. Rather, modules may overlap and
consist of smaller modules, giving rise to a hierarchical organization of modularity
within complex networks [14,57,58,70]

3.4.3 Subgraphs and Motifs in Networks

Closely related to the detection of community structures or functional modules is the
notion of motifs as building blocks of complex networks [31,39,43,44,59]. Providing
a bridge between local vertex-related properties and global functional properties of
networks, the basic idea of network motifs is that large complex networks are es-
sentially composed of small interlinked subgraphs. Similar to the notion of sequence
motifs, we can thus look for reoccurring patterns within the network, that is, small
sets of vertices that exhibit an identical local topological structure. Indeed, as shown
in previous studies [44], the transcriptional interaction network of Escherichia coli
is essentially composed of repeated appearances of three highly overrepresented net-
work motifs. Furthermore, similar studies reveal that the distribution of motifs is
characteristic for certain classes of networks, that is, networks with similar overall
functionality (such as communication networks or food-webs) also exhibit a highly
similar motif distribution [43]. Figure 3.12 shows all possible directed subgraphs
composed of three vertices. Unfortunately, the systematic enumeration of network
motifs is computationally demanding.

In general, the concept of network motifs is not restricted to subgraphs with a fixed
number of vertices. Rather, it allows to look for any reoccurring patterns, including
more complicated topological structures, such as multi-input motifs, regulator chains,
or dense overlapping regulons (DORs) [39,59]. The most intriguing aspect of network
motifs, however, results from the asserted connection of local topological structure to
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FIGURE 3.12 All 13 possible three-vertex motifs, according to Refs. [44,59]. Inset: The
concept of motifs can be generalized to account for specific repeated subgraphs within a com-
plex network. Shown are possible motifs of the yeast transcription regulatory network, with
circles denoting regulators and rectangles denoting gene promoters, according to Ref. [39].
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dynamic function of a network motif. While such a correspondence between topol-
ogy and function, that is, each motif has also a specific “hard-wired” function, was
claimed in several early studies on network motifs [44,59], later results indicate that
this is not the case. Though there is increasing interest in the analysis of dynamic
aspects of complex networks, the precise relationship between structure and function
of complex networks is still largely unclear [30,37,55,63,68]. Additional aspects in
the interpretation of motif distributions, including possible pitfalls in their statistical
estimation, are discussed in the next section. More details on network motifs are given
in Chapter 5.

3.5 STATISTICAL TESTING OF NETWORK PROPERTIES

The most crucial and probably most widely underestimated aspect of complex network
analysis is the statistical testing of network properties. As yet, all network indices were
described as numerical quantities that can usually be straightforwardly estimated from
any given network topology. However, in most applications, network indices are also
associated with a biological meaning or interpretation—we seek to uncover those
features of the network that are characteristic of the underlying system. Thus, for
example, in the case of a metabolic network, the question is not whether the clustering
coefficient takes a specific numerical value, but rather whether this value distinguishes
the network from other networks of similar size, that is, whether the metabolic network
can be regarded as “highly clustered.” Only in the latter case, that is, if the clustering
coefficient indeed deviates from what could be expected for networks of similar size,
it represents a distinctive feature of the respective network. But then, how should such
a deviation be detected or quantified? What values of clustering coefficient should be
considered “usual” or “typical” for a network of given size?

One answer to these questions, in addition to the prototype models described in
the last section, lies in the formulation of appropriately randomized null models of
complex networks. We create an ensemble of surrogate networks, usually of identi-
cal size and density, and compare the values of network indices obtained from the
empirical network with those obtained from the ensemble of randomized surrogate
networks.

More general, statistical testing always means to set up a null hypothesis, that
is, a process or mechanism that is assumed to account for an observed feature, and
a subsequent test whether the observed feature is actually consistent with the null
hypothesis. In the context of complex network analysis, a possible null hypothesis is,
for example, that an observed clustering coefficient is consistent with values arising
from Erdos—Rényi networks of the similar size. Given a certain probability threshold,
the null hypothesis is rejected if the probability to actually find the observed clus-
tering coefficient for Erdos—Rényi networks is below the defined threshold. In this
case, the deviation of the clustering coefficient with respect to the null hypothesis
is significant.

However, apart from some straightforward cases, the statistical testing of network
properties holds several potential pitfalls and possible sources of misinterpretations.
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In the following, we briefly outline some of the most widely used null models for
complex network analysis and point out possible ambiguities in their interpretation.

3.5.1 Generating Networks and Null Models

The most basic null model is a network of identical size (number of vertices and edges)
but lacking any other internal structure. Conceptually equivalent to an Erdos—Rényi
network of the same size, such an ensemble can be constructed by randomly rewiring
links within the network—as already done in the construction of the Watts—Strogatz
model.

Usually more appropriate, however, is to preserve the degree distribution of the
empirical network. An ensemble of randomized surrogate networks with preserved
degree distribution is obtained by iteratively swapping randomly selected edges, as
schematically depicted in Fig. 3.13: For a directed network, at each iteration two edges
(a — b) and (¢ — d) are selected at random and rewired as (¢ — d) and (¢ — b),
provided that the respective edges do not already exist. Repeating this sufficient times,
that is, such that most edges have a statistical chance to be selected, the resulting
network has a preserved degree distribution, but lacks any other internal structure of
the initial empirical network. The approach can be generalized to account for other
features of complex networks. For example, the analysis of network motifs [44,59]
makes use of a similar approach to generate networks with a preserved three-vertex
motif distribution, swapping two edges if and only if the resulting motif distribution
is preserved. Closely related to network randomization is the configuration model
of complex networks: To construct a network with a specified degree distribution,
each vertex is assigned a number k; of adjacent edges, such that the total number of
assigned edges is even. Subsequently, pairs of the, as yet unconnected, “stubs” are
randomly chosen and connected [52,59].

In any case, a network index Q of interest is subsequently compared against the
values found for the ensemble of surrogate networks and can be evaluated according
to a significance score
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FIGURE 3.13 Generating random networks with preserved degree distribution: At each
iteration, two edges (a — b) and (¢ — d) are selected at random and rewired as (a — d)
and (¢ — b), provided that the respective edges do not already exist. Note that for undirected
networks, there are two possible ways to rewire the links.
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where Q%8¢ denotes the average found within the ensemble of surrogate net-
works and Ogurrogate the standard deviation. Unfortunately, the construction of ran-
domized networks that preserve features other than the degree or motif distribution
is far from straightforward.

3.5.2 The Conceptualization of Cellular Networks

The most difficult problem of complex network analysis is often the choice of an
appropriate null model or null hypothesis. By definition, all statistical tests rely on
the definition of a null model, and any notion of “significance” is defined with respect
to this null model only. Thus, if the null model is erroneous or trivial, so will be any
result obtained from an evaluation of the significance of network properties against this
null model. In particular, the choice of the null model is additionally complicated by
the fact that networks are usually abstract representations of more complex biological
processes. While this “reduction in complexity” is often necessary to make biological
questions mathematically tractable, it also holds the temptation to neglect properties
of the underlying system—resulting in an erroneous or misleading interpretation of
network properties.

An illustrative example of such a case was discussed in the context of a recent
study of motif distributions in complex networks [43]. Therein, the significance pro-
file of small subgraphs (motifs) within a neuronal network was evaluated and com-
pared with simple degree-preserving randomized networks (see also Chapter 5). The
study concluded that the neural information processing networks exhibits a highly
characteristic significance profile for its motif distribution, suggesting evolutionary
mechanisms that result in key circuit elements to perform specific tasks. However,
as pointed out later [5], a neural network, that is, a network of neurons connected by
synapses, is not just a network of vertices connected by edges. Rather, neurons have a
spatial position and a tendency to form local clusters, hence neighboring neurons have
greater chance of forming connections than distant neurons. As the spatial properties
are not reflected in the null hypothesis, the statistical test misclassifies a completely
random but spatially clustered network as one that is nonrandom and exhibits signifi-
cant network motifs. Indeed, a simple toy model that preserves the spatial position of
neurons and connects neurons preferentially to nearby neurons is able to reproduce
an almost identical significance profile for the motif distribution, without the need to
invoke any evolutionary mechanisms to select for specific functional tasks [5].

The example serves to illustrates two important aspects of statistical testing of
network properties: (i) The observed motif distribution within the neural informa-
tion processing network was indeed highly significant, as compared with degree-
preserving random networks of the same size—there was no computational error
involved. The significance profile of motifs is thus indeed a true characteristic of the
system. (ii)) However, the significance profile of motifs tests against a trivial null hy-
pothesis: the assumption of a completely random network. Strictly speaking, rejecting
this null hypothesis only trivially proves that neural networks are not random. How-
ever, only little can be learned about the possible biological function of network motifs
from the sole fact that their distribution is not random. As exemplified here for the
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neural network, the significant deviation from random networks is most likely a simple
and straightforward consequence of the (neglected) spatial structure of the system.

Thus, as a general rule, network properties that are found to be significant with re-
spect to simple randomized networks must not necessarily be important with respect
to function. Even though the statistical estimation of significance might be techni-
cally correct, significance here only implies deviations from randomness—which is
often a trivial consequence of the underlying process or system itself. Two important
classes of complex networks where the construction of the networks itself implies
deviations from randomness, and thus implies highly significant network properties,
are discussed below.

3.5.3 Bipartite Graphs

A large number of complex networks in biology and other fields are derived from
bipartite graphs. A prominent example is the metabolic network, consisting of two
distinct types of vertices: substrates and reactions. Likewise, one of the benchmark
examples of complex network analysis, the movie—actor network, originates from
a bipartite graph: Based on a public movie database (http://www.imdb.org),
two actors are connected by an edge if they have performed in a movie together. The
movie—actor network often serves as a prototypical (and computationally much better
accessible) example of a social acquaintance network. In particular, the coexistence
of high local clustering and small average path length, typical for social networks, has
been demonstrated using the movie—actor network as a paradigmatic example [72].
Comparing the observed clustering coefficient of the movie—actor network to Erdos—
Rényi networks of the same size, indeed reveals a highly significant clustering that is
orders of magnitudes higher than for corresponding random networks.

However, by construction, the movie—actor networks is composed of fully con-
nected subnetworks only: All actors performing in one movie are mutually connected
and form a fully connected subgraph. Since an actor participates in several movies,
the cliques for each movie are then joined together and organized into the final movie—
actor network. Thus, by construction, the underlying bipartite structure clearly dis-
tinguishes the network from actual social acquaintance networks and already implies
a “significant” local structure.

A similar reasoning holds for metabolic networks: Using the same scheme as
previous studies [71], the substrate graph of a metabolic network is constructed by
connecting two metabolites if they share a common reaction. The resulting network,
analyzed in a number of recent studies [22,33,41,71], shows a significantly higher
clustering coefficient than could be expected for random networks with preserved
degree distribution. Repeating the analysis for the S. cerevisiae substrate graph, al-
ready used in the previous sections and depicted in Fig. 3.1, confirms these results.
The observed clustering coefficient of the metabolic network significantly deviates
from the values obtained for the ensemble of random networks with preserved degree
distributions, as shown in Fig. 3.14 (left plot). However, does this result really imply a
significant clustering of the network beyond the fact that it was derived from a bipartite
graph? To test this assertion, a scheme that generates random instances of the original
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FIGURE 3.14 The clustering coefficient of the S. cerevisiae substrate graph, depicted
in Fig. 3.1. Left plot: The clustering coefficient is compared against randomized networks
with preserved degree distribution. The yeast substrate graph shows a highly significant clus-
tering, as compared with randomized networks generated according to the scheme shown
in Fig. 3.13. Left plot: The clustering coefficient is compared against randomized networks
that preserve the original bipartite structure. In this case, no significant deviation between the
clustering coefficient of the yeast substrate graph and its shuffled counterparts are detected.

network, but always retains the underlying bipartite structure, was proposed [61].
The randomization scheme is shown in Fig. 3.15. Note that the randomization of the
bipartite graph leads to nontrivial modifications when only the projection onto the
substrate graph is considered. Again comparing the resulting clustering coefficients
of the randomized networks to the clustering coefficient obtained from the yeast
metabolic network, reveals no significant deviation. Thus, we have to conclude that
the metabolic network of S. cerevisiae considered here shows no significant clustering
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FIGURE 3.15 To preserve the underlying bipartite structure of a network, a modified ran-
domization scheme is proposed. Using the original bipartite graph, two edges are randomly
selected and rewired. Note that this leads to nontrivial modifications of the substrate graph
projection.
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beyond the trivial clustering imposed by the construction rule of the network—namely
a projection that was constructed from a bipartite graph.

3.5.4 Correlation Networks

A similar reasoning also holds for correlation networks, representing an
increasingly popular way to investigate and visualize large-scale empirical
data [11,19,42,46,62,67]. A correlation network is constructed by connecting two
vertices, such as metabolites or proteins, if their respective concentration is corre-
lated over a suitable set of experiments. That is, the correlation matrix C is converted
into a binary (adjacency) matrix A, with elements A;; = 1 whenever the correlation
between two elements n; and n; exceeds a given threshold, usually defined with
respect to a given significance level.

However, networks that are constructed from correlation matrices posses, by con-
struction, a nontrivial structure and are highly clustered. In particular, correlations are
transitive, that is, if an entity A correlates with two entities B and C, then B and C are
also (likely to be) correlated themselves. Formally, this transitivity can be expressed
as an inequality that holds between any triplet of correlation coefficients [61]. To
test for the (nontrivial) structure of correlation networks thus implies to generate
networks that preserve all features inherent to correlation matrices, but are random
otherwise. Specifically, randomized networks with preserved degree distributions,
generated according the scheme shown in Fig. 3.13, violate the inherent structure of
correlation networks. If recent studies [19] thus report an “unsuspected assortative
feature” for biological correlation networks, this is most probably a result of an
inappropriate null hypothesis, rather than a distinctive feature of the process in
question. However, no satisfying solution to the problem of constructing appropriate
null models for correlation networks is known. The interpretation of correlation
networks is discussed in more detail in Ref. [62].

These examples serve to illustrate that a proper interpretation of network properties,
even when tested for significance against randomized networks, is sometimes far from
straightforward. Unfortunately, to what extend the underlying structure of the original
network trivially determines its topological features, is often not as obvious as in the
case of bipartite graphs or correlation networks.

3.6 SUMMARY

The analysis of complex networks will continue to play a major role in many scientific
disciplines. In particular the analysis of large systems, consisting of many interacting
elements, often necessitates an abstract representation of the system and its inter-
actions in terms of a complex network. In respect thereof, the theory of complex
networks, emanating from the mathematical field of graph theory, has attracted re-
newed interest over the last decade. While many concepts of complex network theory
have their roots in graph theory, novel problems have also triggered the develop-
ment of a variety of novel concepts, shedding light on the topological organization
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and design principles of complex networks. In this chapter, we have provided a brief
overview over some typical properties and concepts used in the analysis of large com-
plex networks. Though certainly no comprehensive review, we have focused mainly
on the best known indices to characterize the topological structure of complex net-
works, such as distance and average path length, the degree distribution, the clustering
coefficient, assortative mixing, and network centralities. Several of the indices and
concepts described in this chapter will play an important role in the remainder of this
book and are discussed in more detail in later chapters.

However, complex network analysis does not stop at the description and numeri-
cal estimation of individual indices characterizing the topological structure. An im-
portant aspect of complex network theory is also the development of paradigmatic
prototype models that elucidate and explain how topological features arise from the
construction rules and design principles of complex network. Of further interest are
also global features of networks that result from the local properties of vertices and
often relate to the function of a network as a whole. In this respect, we have briefly
discussed concepts of network functionality and organization, such as robustness,
attack tolerance, modularity, and hierarchies within complex networks. One of the
most important aspects of complex network analysis, however, is the statistical testing
of network properties. Any interpretation of the functional relevance of topological
structures is valid only as far as it has been properly tested and validated against
appropriate null models. Not always receiving the attention it deserves, a sound val-
idation of network properties is far from trivial. As demonstrated in this chapter, an
inappropriate choice of null models will lead to “significant” results, even when the
network property in question is actually a simple and straightforward consequence
of the way the network is constructed. In this sense, the great simplification achieved
by the representation of a complex system as a network, concomitantly gives rise to a
large number of potential pitfalls and misinterpretations in the analysis. One should
always keep in mind that complex biological processes, such as protein binding or
cellular metabolism, are not actually networks. Rather, they are physical or biological
systems that can be represented as complex networks—making biological problems
mathematically tractable, but only at the cost of also omitting some aspects of their
entireness.

3.7 EXERCISES

1. Name several typical characteristics of vertices and describe how they can be
estimated. In particular, give examples for vertex properties that can be esti-
mated using only information about the vertex and its neighbors and properties
that relate to the topology of the network as a whole.

2. Give examples of typical degree distributions. How is the degree exponent
defined and how can it be estimated from a given empirical network.

3. Why does a negative correlation between vertex degree and clustering coeffi-
cient indicate a hierarchical structure?
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4. Are functionally related vertices always connected? If not, what are alternative
approaches to define “relatedness” of vertices within a complex network?

5. What are “small-world” networks? Is the Erdos—Rényi model a “small-world”
network?

6. What is the average clustering coefficient of Erdos—Rényi random networks?

7. Outline how the Barabasi—Albert network model is constructed. What are the
main differences to Erdos—Rényi and Watts—Strogatz network models?

8. Outline how an ensemble of random networks can be constructed that pre-
serves the degree distribution of a given empirical network.

9. Outline a scheme to randomize a network, such that the three-vertex motif
distribution is preserved.

10. What does the term “significant” mean in the context of statistical validation

of network properties?
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NETWORK CENTRALITIES

Dirk KoSCHUTZKI

4.1 INTRODUCTION

In the social sciences it is a common task to determine which individuals of a group
of people are more influential than others. To perform such an analysis the commu-
nication between these people is modeled as a network consisting of vertices, one
for each person, and edges, modeling the communication between them. Based on
the structure of such a network, it is possible to compute which individuals are more
influential than others. This information is used, for example, for marketing purposes
or to find a potential bottleneck within the communication structure of a team working
together on a large project [42,46].

Similar methods can be applied to analyze biological networks. Take, for example,
a protein interaction network for an organism under analysis. The task given is to order
the proteins such that the most important proteins can be used first in an experiment.
For gene regulation networks, a similar question can be stated: which gene regulates
many other genes and can therefore be considered as the global regulator for the
organism under analysis? The creation of a list of persons that have to be vaccinated
first is also a good example of a combination of medicine and sociology where this
method, centrality analysis, is applied [11].

The general question of which network elements are the most important ones
cannot be answered unambiguously. Take, for example, the network in Fig. 4.1a. In
this network three groups of vertices exist: the vertex marked A, which connects
the two halves of the network, the two vertices marked B1 and B2, which have

Analysis of Biological Networks, Edited by Bjorn H. Junker and Falk Schreiber
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FIGURE 4.1 (a) A small network to explain the motivation for different centrality measures.
Which of the vertices is more important, the one in the middle marked A or the vertices
marked B1/B2 that connect many of the vertices marked C1-8? (b) The same network as above
with the vertex marked A and the corresponding edges hidden. Clearly, the network without A
is separated into two components. Is therefore A the most important vertex? (¢) The network
with the vertex marked B1 hidden. In this case the network breaks into several components. Is
one of the B vertices more important than the A vertex?

many connections to other vertices, and the vertices marked C1 to C8, which can
be considered as the border of the network. Depending on the context, one of the
vertices is more important than the others. If the vertex marked A is removed, then the
network is separated into two components, see Fig. 4.1b. On the contrary, if the vertex
marked B1 is removed, then the network is separated into many smaller components,
and communication between many of the remaining vertices is not possible, see
Fig. 4.1c. Therefore the importance of one vertex over others is dependant on the
specific question.

In this chapter different concepts and algorithms for the determination of the
importance of vertices are described. In total seven different methods for the
centrality analysis of a network are introduced. At first a definition for the general
concept of a centrality is given, then the trivial centrality degree and centralities



CENTRALITY DEFINITION AND FUNDAMENTAL PROPERTIES 67

based on shortest paths are explained, afterwards centralities based on the concept
of feedback are introduced and finally a short overview of available tools for the
centrality analysis of (biological) networks is provided.

4.2 CENTRALITY DEFINITION AND FUNDAMENTAL PROPERTIES

Ranking of objects is usually based on numerical values. Take, for example, the
result of the annual season of your favorite ball game, for example, water polo. By
the end of the season a table showing the points, awarded for winning a game, is
available. From these points a clear ranking, in the sense which team played best is
established.

The same concept can be applied to rank vertices of (biological) networks. A
numerical value assigned to every vertex allows their ranking. Table 4.1 shows some
values assigned to every vertex of the network in Fig. 4.1a. According to these values
the vertices are ranked in the order B1 and B2 on the first position, then A and finally
all vertices marked C1-8.

A function that assigns a numerical value to each vertex of a network is called a
centrality." There exist many different concepts for computing such a centrality [31]
and some of them will be introduced in this chapter. All centrality measures introduced
will fulfill the following definition:

Definition 4.1 (centrality) Let G = (V, E) be a directed or undirected graph. A
function C: V +— R is called a centrality.

Centralities assign every vertex areal number. They allow a pairwise comparison of
the vertices, and a vertex v is said to be more central or more important than a vertex
vy if C(v1) > C(v2). A more formalized definition for centrality exists (see Ref. [31])
but is not required for the understanding of the general concepts presented in this
chapter.

Two things must be considered during centrality analysis of a network: (a) cen-
trality values are comparable inside a specific network only and (b) some centrality
measures can be applied to networks that are connected only.

TABLE 4.1 The Degree Centrality
Values for the Vertices in Fig. 4.1a

Vertices Value
A 2
B1-2 5
C1-8 1

! Centrality, centrality measure, and centrality index are used synonymously in the following.
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A B

Cc D

FIGURE 4.2 A network to explain the comparison of centrality values.

4.2.1 Comparison of Centrality Values

For the same network, centrality values of two different centrality measures are incom-
parable. Take, for example, the network in Fig. 4.2 and the corresponding centrality
values for three different centralities in Table 4.2. The vertices A and B have a cen-
trality value of 1.5 for the centrality shortest path (SP) betweenness. According to
this value both vertices are ranked top under this centrality. In contrast, the vertices
C, D, and E all have a centrality value of 2 for the degree centrality. Even if this value
is higher than all values of the shortest path betweenness values, these vertices are
ranked into the second group by the degree centrality. Under the eccentricity cen-
trality the five vertices all receive the same centrality value of 0.5 and are therefore
indistinguishable. Therefore centrality values of different centralities are (in general)
not comparable even when applied to the same network.

In the same way centrality values for the same centrality measures are incomparable
between different networks. Take, for example, the network in Fig. 4.1a and the
corresponding values in Table 4.1, and the network in Fig. 4.2 and the values in the
degree column in Table 4.2. The vertices B1/B2 in the first figure have a (degree)
value of 5 and are the top ranked ones. In the second figure the top ranked vertices
have a degree value of 3. Therefore it is impossible to infer the rank of a vertex from
its centrality value alone.

Comparable values of centralities can be derived via normalization, which is not
covered in this chapter, but described in Ref. [32].

4.2.2 Disconnected Networks

Some of the centrality measures described in the following require that the network
to be analyzed is (strongly) connected (see Section 2.2). This applies, for example,
to the closeness centrality as the length of a shortest path between two vertices that

TABLE 4.2 Centrality Values for Three Different Centralities for the Network Shown
in Fig. 4.2

Vertex Degree Eccentricity SP betweenness
A 3 0.5 1.5
B 3 0.5 1.5
C 2 0.5 0.5
D 2 0.5 0.5
E 2 0.5 0.0
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are unconnected is defined as infinity. One method to overcome this restriction is the
reduction of the network to (strongly) connected components (see Section 2.2). Each
component is then analyzed as a separate network, and the resulting centrality values
for the vertices of the components must be interpreted in the context of the component
and not in the context of the whole network.

4.3 DEGREE AND SHORTEST PATH-BASED CENTRALITIES

In this section, four centralities that have already been applied to the analysis of
biological networks are described. The first centrality, degree, is almost trivial: It
counts the number of edges attached to a vertex. The other three centralities use
information about shortest paths between vertices of the network. All centralities
are defined for undirected and unweighted networks in this section. The necessary
extensions for directed and/or weighted networks are mentioned in the algorithm
section (Section 4.3.5) near the end of this section.

4.3.1 Degree Centrality

The result of an election can be modeled as a directed network: Every person partic-
ipating in the election is modeled as a vertex and votes are shown as arrows between
the voter and the elected person, pointing toward the elected person. Clearly the per-
son with the most votes wins the election and ranks that follow the top rank are
interpreted as substitutes. Figure 4.3 and Table 4.3 show the result of a hypothetical
election. Clearly Sepp wins the election and Jan and Klaus are two substitutes. The
vote is modeled as a directed network as, for example, the vote from Pit to Klaus is
not returned by Klaus.
Counting the number of edges connected to a vertex leads to the first centrality:

Definition 4.2 (degree centrality) Let G = (V, E) be an undirected graph. The
degree centrality is defined as:

Caeg(v) :=|{e|e€ EAv e e}

Sepp

Heinz
Pit
FIGURE 4.3 A network modeling an election.
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TABLE 4.3 Result of the Election in Fig. 4.3

Person Number of votes received
Sepp 4
Jan 2
Klaus 2
Max 1
Heinz 0
Pit 0

For directed networks, two degree centralities, the in-degree centrality and the
out-degree centrality, exist. Degree centrality is a local centrality measure: Only the
immediate neighborhood of the vertex of interest is considered. Degree can be com-
puted for all kinds of networks. The network to be analyzed does not have to fulfill
stricter requirements like connectedness.

For the analysis of biological networks degree centrality has been applied in nu-
merous situations.

The correspondence of a high centrality value for a protein in the protein interaction
network and the effect of the knockout of this protein for the organism have been
discussed several times. For Saccharomyces cerevisiae, it has been shown that proteins
with a high degree centrality value are more likely to be essential for the organism
than proteins with a lower degree value [23].

A larger study compared three centralities (degree, closeness, and betweenness)
for the identification of essential proteins in three different organisms: Saccha-
romyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster. In all
three networks and for all three centralities it was shown that the mean centrality
value for essential proteins is significantly higher than the centrality value of
nonessential proteins [20].

An even larger study was performed for the protein interaction network of S. cere-
visiae. In this study six centralities (degree, closeness, betweenness, eigenvector cen-
trality, information centrality, and subgraph centrality) were applied. Again all cen-
tralities performed better in the identification of essential proteins than a random
selection strategy [12].

Similar results were received for gene coexpression networks for S. cerevisiae,
E. coli, and C. elegans. Genes with a high degree in the coexpression network of
these organisms are more likely to be essential [3].

The ranking of the metabolites of the intermediate metabolism for energy genera-
tion and small building block synthesis of E. coli based on the degree and the closeness
centrality (called importance number in the publication) leads to comparable results.
For both centralities metabolites from the tricarboxylic acid cycle are highly overrep-
resented in the list of top ranked metabolites. NAD, ATP, and their derivatives were
removed from the ranking, otherwise these metabolites ranked the highest [45].

In a comparison with two types of networks, a random small-world network and
an Erdos—Rényi random network, centralities were benchmarked to identify high-risk
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individuals for an infection that is transferred by contact between individuals. The
hypothesis that a higher centrality value indicates a higher risk and an earlier time of
infection was confirmed. All compared centralities (degree, closeness, shortest path
betweenness, and random walk betweenness) correlated and degree performed as well
as the other centralities [11].

4.3.2 Eccentricity Centrality

The following three centralities use information about the length of the shortest paths
within a network. They assume that the network models communication between
objects, which are represented by vertices. It is hypothesized that only shortest paths
are used for the transmission of a message or that shortest paths communication is at
least a plausible model for communication in the network.

The first of the three centralities can be easily explained by an example. A map of
a city is given, roads are modeled as edges, and vertices represent potential places for
a hospital to be constructed within this city. The position for the hospital should be
chosen such that it is reachable from all other places with the least moves (measured
by the shortest path distance) possible. In Fig. 4.4, the vertex marked 4 is therefore
the best position for the hospital, as a maximum of three moves are necessary to reach
the hospital from any other place.

This idea defines a measure of centrality. For every vertex compute the maximum
distance, which is the length of the longest shortest path to all other vertices (see
Section 2.2). This gives a value for every vertex and the vertices that are reachable in
less moves receive a low value. As the Definition 1 requires a high centrality value for
central vertices, the reciprocal of the computed value is used as the centrality value.

Definition 4.3 (eccentricity centrality) Let G = (V, E) be an undirected and
connected graph. The eccentricity centrality [19] is defined as

Cecels) 1= max{dist(s, t):t € V}

where dist (s,f) denotes the distance between the vertices s and ¢, that is, the length
of a shortest path between s and ¢.

or
[ ]
[
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FIGURE 4.4 A network to explain the three shortest path-based centralities.
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TABLE 4.4 Centrality Values for the Three Shortest Path-Based Centralities for the
Network in Fig. 4.4

Vertex Cecc Celo Cspb
1 0.167 0.026 0
2 0.200 0.032 8
3 0.250 0.040 14
4 0.333 0.048 18
5 0.250 0.053 20
6 0.200 0.053 26
7 0.167 0.037 0
8 0.167 0.037 0
9 0.167 0.037 0
10 0.167 0.037 0

Eccentricity uses information about the length of shortest paths between any two
vertices of a network. In networks that are not connected, the distance dist between
vertices that are not connected is defined as infinity, see Section 2.2. In this case, the
value for the eccentricity centrality is the same for every vertex (Cecc(v) = 1/00 for
all v € V) as the maximum distance in an unconnected network is infinity for every
vertex. Therefore eccentricity centrality can be computed for connected networks
only. In the case of directed networks even strongly connected is required.

Table 4.4 shows the eccentricity centrality values for the network in Fig. 4.4. The
vertex named 4 is the most central one, all other vertices receive a lower centrality
value.

Eccentricity centrality together with the centralities closeness and centroid value
(not covered here) were used for the analysis of three networks of E. coli and S. cere-
visiae. For the metabolic network of E. coli, all three centralities produce a very
similar ranking for the top ranked metabolites and these rankings coincide well with
a ranking based on the degree centrality. In contrast to other studies, the eccentricity
centrality applied to the protein interaction network of S. cerevisiae was not able to
distinguish essential from nonessential proteins. For the network of cooccurring pro-
tein domains in S. cerevisiae, the centrality centroid value ranked protein domains
that take part in cell—cell contacts and signal transduction highest [47].

4.3.3 Closeness Centrality

The closeness centrality can be explained in the same context as the eccentricity
centrality. Instead of a hospital a shopping mall has to be placed onto the map. For a
shopping mall the constraint is that most customers can reach it comfortably. Therefore
it is placed at a point where the shortest path distances for all vertices to the position
of the mall is minimized. In Fig. 4.4, the vertices marked 5 and 6 are both the best
positions for the shopping mall as at both positions the sum of all distances for all
customers is minimized.
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Following the same argument as for the eccentricity centrality (Definition 4.3), the
closeness centrality is defined as the reciprocal of the sum of all pairwise distances
within the network.

Definition 4.4 (closeness centrality) Let G = (V, E) be an undirected and con-
nected network. The closeness centrality [41] is defined as

1
Coo(s) i = —m————
clo(s) oy dist(s, 1)
where dist(s, t) denotes the distance between the vertices s and ¢, that is, the length
of a shortest path between s and t.

The closeness centrality, as the eccentricity centrality, uses the length of the shortest
paths between all pairwise vertices. Therefore, closeness centrality has to follow the
same constraints as the eccentricity centrality: The network to be analyzed has to be
(strongly) connected.

Table 4.4 shows the closeness centrality values for the network in Fig. 4.4. Accord-
ing to this centrality, the two vertices 5 and 6 are equally important in this network.

According to a slight modification of the closeness centrality, the top 8 of the top
10 metabolites of the metabolic network of E. coli are part of the glycolysis and citrate
acid cycle pathways [35].

4.3.4 Shortest Path Betweenness Centrality

The previous two centralities measure how good a message originating from a single
vertex can reach other vertices via shortest paths. The first, eccentricity centrality,
focused on a single communication and the second, closeness centrality, considers
communication to all other vertices. In contrast to these the centrality now introduced
measures the ability of a vertex to monitor communication between other vertices.

Every vertex that is part of a shortest path between two other vertices can monitor
communication between them. Counting how many communications a vertex may
monitor leads to an intuitive definition of a centrality: A vertex is central if it can
monitor many communications between other vertices.

In the following, let o; denote the number of shortest paths” between two vertices
s and ¢ and let o:(v) denote the number of shortest paths between s and ¢ that use v as
an interior vertex.® The rate of communication between s and ¢ that can be monitored
by an interior vertex v is denoted by §(v) := 0(v)/os. If no shortest path between
s and ¢ exists (o = 0), then we set &5(v) := 0.

With these definitions the shortest path betweenness centrality* can be defined.

2Between two vertices more than one shortest path may exist.

3 A vertex that is not the start or the end vertex of the path.

“4Previously called betweenness centrality, without the prefix shortest path. This name is not precise enough
as other betweenness measures exist [7,16,37].
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Definition 4.5 (shortest path betweenness centrality) Let G = (V, E) be an
undirected network. The shortest path betweenness centrality [1,15] is defined as

Cop@) = > Y 8w

seVAs#v  teVAt#v

In contrast to the other two centralities that use information about shortest paths,
the shortest path betweenness centrality does not require the network to be connected.
If two vertices s and ¢ are not connected, then the corresponding value &5 (v) is O by
definition. Therefore unconnected pairs of vertices do not change the centrality values
of other vertices.

Table 4.4 shows the shortest path betweenness centrality values for the network in
Fig. 4.4. Vertex 6 is the most important vertex according to this centrality. Vertices at
the border of the network receive a centrality value of zero as they do not participate
as interior vertices in any shortest path communication between other vertices.

In the S. cerevisiae protein interaction network, it was reported that proteins with
a high betweenness centrality value cover a broad range of degree centrality values.
In particular, proteins with a high betweenness and low degree value (HBLC, high
betweenness low connectivity proteins) are prominent as they are supposed to support
modularization of the network [25].

Betweenness centrality was applied to mammalian transcriptional regulatory net-
works and it was noted that betweenness appears to be the most representative topo-
logical characteristic in regard to the biological significance of distinct elements [39].

4.3.5 Algorithms

The level of difficulty of the algorithms for computing the four presented centralities
ranges from nearly trivial, in the case of the degree centrality, to more advanced, in the
case of the shortest path betweenness. As for the definition of the centralities above,
algorithms for only undirected and unweighted networks are given in this section.
The extension toward weighted networks is either simple, for example, for the degree
centrality, or requires the use of the Dijkstra algorithm [27] instead of the breadth
first search algorithm (BFS, see Section 2.5) to compute the shortest paths between
two vertices. Directed networks require a modification of the algorithms such that the
direction of the edge is taken into account.

Degree centrality is computed for an arbitrary network with the following (trivial)
algorithm:

degree_centrality_algorithm (network G = (V, E))
for each vertex v € V
Cdeg(v) =0
for each edge {v, w} € E {
Cdeg(v) = Cdeg(v) +1;
Cdeg(w) = Cdeg(w) + 1
}

return (Ceg);
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This algorithm computes the degree centrality in time O (n + m) as we have to
initialize the resulting centrality vector to O for every vertex (O (n)) and then iterate
over all edges (O (m)) to increase the centrality value of each of the two connected
vertices of the edge.

Eccentricity and closeness centrality are defined very similarly. They differ only in
the operation performed with the pairwise distances of the vertices. Therefore in the
following the algorithm for only eccentricity centrality is discussed, the modifications
for closeness centrality have been left as an exercise.

Eccentricity centrality needs the pairwise distances between all vertices. They are
usually computed with the breadth first search (BFS) algorithm (see Section 2.5).
Using an existing implementation of this algorithm to compute the distance matrix,
a naive algorithm for the eccentricity centrality is

naive_eccentricity_centrality_algorithm (network G = (V, E))

for each vertex v € V

Cecc(v) :=0;
dist := compute_distance_matrix (G);
for each vertex s € V

for each vertex r € V

if Cece(s) < dist(s, t) then
Cecc(s) := dist(s, 1);

Cece(s) = m,

return (Cece);

This algorithm computes the eccentricity centrality in time O (n) for the initializa-
tion, O (nm) for the computation of the distance matrix via BFS in the unweighted
case, and O (n2 for the computation of the maximal and reciprocal value of each ver-
tex. This results in a time complexity of O (n2 for this naive eccentricity centrality
algorithm.

A different algorithm, based on a modification of the breadth first search algorithm,
has complexity O (n * (n + m)) for unweighted networks:

bfs_eccentricity_centrality_algorithm (network G = (V, E))
for each vertex s € V
Cecc(s) := single_vertex_bfs_eccentricity (s, G);

single_vertex_bfs_eccentricity_algorithm (vertex s, network G = (V, E))
result :=0;
for each vertex v € V
distance (v) :=-1;
distance (s) :=0;
list L = [s];
while L is nonempty {
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remove vertex w from the front of list L;
for each neighbor x of w {
if (distance (x) == -1) {
distance (x) := distance (w) + 1;
if (result < distance (x))
result := distance (x);
add x to the end of list L
}

}
}

return 1/result;

The complexity of this algorithmis O (n * (n + m)) as the algorithm for computing
a centrality value for a single vertex is called for each vertex (n times); the BFS has
complexity O (m) and the initialization of the distance vector needs time proportional
to O (n).

A naive algorithm for the shortest path betweenness centrality has complexity
@) (n3 as the summation over both s and # runs over the set of vertices twice and this
operation has to be performed for every vertex v. Therefore the complexity is O (n3
even without considering the complexity of computing oy and og(v).

A much more efficient algorithm than the naive one exists. The algorithm by
Ulrik Brandes [5] has a running time of O (nm) for unweighted networks and
@ (nm +n%logn for weighted networks. Several implementations in different pro-
gramming languages are available for this algorithm [26,44]. Additionally, this algo-
rithm can be augmented to compute eccentricity and closeness centrality in the same
run; therefore all three shortest path based centralities can be computed in a single
run of the extended algorithm. In this chapter, neither the naive nor the Brandes algo-
rithm are given as the first one is trivial and the second one is extensively discussed
in several places [5,22].

4.3.6 Example

Based on the distance matrix in Table 4.5, the shortest path based centralities for the
network in Fig. 4.4 can be computed.

The maximum distance from vertex 4 to all the other vertices is 3, therefore the
eccentricity centrality value of vertex 4 is 1/3. The closeness centrality value for
the same vertex is the reciprocal of 3+24+1+0+14+2+3+3+3+4+3 =21,
therefore 1/21 ~ 0.048.

Computing the shortest path betweenness requires the values of oy and oy (v) for
all s, t, v combination of vertices. In this example, the value of oy is 1 for every
combination of s and ¢ as there exists only one shortest path from one vertex to any
other vertex. The vertex 2 is an interior vertex for all shortest paths that start at vertex 1
and end at the vertices 3,4, 5, 6,7, 8,9, and 10. As there are eight different shortest
paths that use vertex 2 as the interior vertex, the shortest path betweenness value for
vertex 2 is 8/1.
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TABLE 4.5 Shortest Path Distances Between All Vertices for the Network Shown
in Fig. 4.4

1 2 3 4 5 6 7 8 9 10
1 0 1 2 3 4 5 6 6 6 6
2 1 0 1 2 3 4 5 5 5 5
3 2 1 0 1 2 3 4 4 4 4
4 3 2 1 0 1 2 3 3 3 3
5 4 3 2 1 0 1 2 2 2 2
6 5 4 3 2 1 0 1 1 1 1
7 6 5 4 3 2 1 0 2 2 2
8 6 5 4 3 2 1 2 0 2 2
9 6 5 4 3 2 1 2 2 0 2
10 6 5 4 3 2 1 2 2 2 0

44 FEEDBACK-BASED CENTRALITIES

The centralities described in the previous section were based on degree and shortest
path information. In this section, three centralities are described that use feedback
as the underlying concept. Two of them have already been applied to the analysis of
biological networks.

In the basic definition (Definition 4.1), a centrality is a function from the set of
vertices to the set of the reals. In this section, we will often give a centrality as a
vector. Therefore we have to enumerate the set of vertices accordingly.

4.4.1 Katz’s Status Index

The status index introduced by Leo Katz can be interpreted as a generalization of
the degree centrality (Definition 4.2): A vertex is of high importance if many other
vertices choose this vertex. For the status index, instead of only counting direct votes,
even indirect ones are considered. It is assumed that both direct and indirect votes
raise the importance of a vertex and that the effect of indirect votes decreases with
the length of the voting chain.

The status index is defined via a power series:

Definition 4.6 (Katz’s status index) Let G = (V, E) be a directed or undirected
and loop-free network and let A be the adjacency matrix (see Section 2.4) of G. The
Katz’s status index [29] is defined as

Craun(D) =Y DA

k=1 j=1

Here A¥ denotes the k-times multiplication of the adjacency matrix A of the net-
work G with itself (the kth power of A). « is a positive scaling factor that has to be
chosen such that « is smaller than the reciprocal of the absolute value of the largest
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TABLE 4.6 Katz Status Index for the Election
Network in Fig. 4.3 for Two Different Damping

Factors o

Person a=0.1 a=0.9
Sepp 0.457 47.937
Jan 0.266 46.563
Klaus 0.2 1.8
Max 0.1 0.9
Heinz 0.0 0.0
Pit 0.0 0.0

eigenvalue of the adjacency matrix A (0 < o < 1/|Amax|)- In this case the following
formula using matrix inversion can be used to compute the status index:

Ckae = (I —aA)™ =1 1

Here I is the matrix of size n x n consisting of ones on the diagonal and zeros
otherwise, 1is a vector of size n consisting of ones, A denotes the transposed matrix
of A and ~! denotes matrix inversion.

The damping factor « can be chosen in the range 0 to 1/|Amax|. A damping factor
near zero reduces the influence of longer chains of votes, therefore a damping factor
of zero results in a centrality that is equivalent to the degree centrality.

To apply the status index to the network modeling an election in Fig. 4.3 the
damping factor has to be chosen accordingly. The largest eigenvector in absolute
value of the adjacency matrix for this network is 1, therefore o might be selected in
the range [0, 1[. Table 4.6 shows the results for two different values of «: 0.1 and 0.9.
Compared with the degree-based ranking (see Table 4.3), the status index is able to
distinguish between Jan and Klaus: Both received two direct votes, but Jan receives
a vote from Sepp who received many direct and indirect votes himself.

Currently no application of the status index to the analysis of biological networks
is known.

4.4.2 Bonacich’s Eigenvector Centrality

Another idea for centrality was presented by Phillip Bonacich [4]. He proposed that
the centrality value of a vertex is directly dependent on the centrality values of its
connected neighbors: A high centrality value of the neighbors should result in a high
centrality for the vertex under consideration.

This idea can be formalized into a linear equation system:

C(v1) = anCy) + - - - + a1,C(vy)

C(vn) = an1C(v1) + - - + apnC(vy)
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Here the a;; denote the corresponding entry in the adjacency matrix A (see Sec-
tion 2.4) for the network under analysis. If no edge between the vertices i and j exists,
this entry is 0 and therefore the corresponding term is eliminated by the multiplication
with C(v). . .

In matrix notation this equation system is written as C = AC. For mathematical
reasons only a specific form of this equation system using eigenvectors and eigenval-
ues can be solved in general and for that the network even has to be connected [14,18].
As there exists n eigenvectors for a matrix A, we select the eigenvector corresponding
to the largest eigenvalue in absolute value.

Definition 4.7 (eigenvector centrality) Let G = (V, E) be a strongly connected
directed or a connected undirected network and A the adjacency matrix for G. The
eigenvector centrality [4] is the eigenvector Ceiv of the largest eigenvalue Apax in
absolute value of the following equation system:

kc;iv = AC;iv

Eigenvector centrality was evaluated as one of the six centralities in the comparison
of centralities for determining essential proteins in the protein interaction network of
S. cerevisiae [12]. Eigenvector centrality was slightly outperformed by the subgraph
centrality, a centrality that uses similar concepts from spectral graph theory. Subgraph
centrality [13] is not covered in this chapter.

4.4.3 PageRank

The third centrality explained in this section is related to ranking web pages. Web
pages can be interpreted as vertices of a network (sometimes called the web graph).
Links connecting these pages are (directed) edges within this network. Several al-
gorithms for the ranking of search results do exist and some of them are clearly
centralities [30,34,38]. In the following, we will describe the most popular represen-
tative of the centralities related to the web graph: PageRank, the centrality underlying
the Google search engine.

PageRank models the behavior of a visitor of web pages (surfer) and tries to
establish a ranking of the pages based on his behavior. As the true behavior of a surfer
is unknown, an idealized model of a random surfer is used. A random surfer starts
at a random page and switches from page to page via the outgoing links. At each
page he selects a link uniformly at random, jumps to the selected page, and starts
his selection again. Additionally, he might jump to any other page (by entering the
address of the web page). After many iterations a probability for hitting each page
is computed. The higher this probability is, the more often the random surfer visited
this page and the more interesting this page is.

The formal definition of the PageRank centrality is not presented here. Langville
and Meyer review PageRank and two other algorithms (HITS, SALSA) to rank web
pages in detail [33].
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A modification of the original PageRank algorithm, called GeneRank, was recently
described [36]. This modification integrates preexisting expression information about
genes into the ranking process.

4.5 TOOLS

For the analysis of biological networks many tools with different focuses are available.
Cytoscape [43], Osprey [9], and VisANT [21] are the three that are often cited.
Currently, none of these three support the centrality analysis of biological networks.
As all of them have an active development community and Cytoscape and VisANT
even provide a plug-in mechanism for the easy integration of extensions, this might
change in the future.

Besides specific tools for the analysis of biological networks, a large number of
tools for the analysis of networks exist. One of them, Pajek [2], is already heavily
used for the analysis and visualization of biological networks.

The libraries JUNG [26] and Boost Graph Library [44] provide implementations
of some algorithms for the computation of centralities in Java and C++, respec-
tively. Within the Bioconductor project [17], several packages implementing graphs
and graph based algorithms do exist. The package RBGL [10] integrates centrality
algorithms from the Boost Graph Library into the programming language R [40].

Two tools that allow the computation of a large number of different centralities
are Visone [8] and CentiBiN [28]. Visone is a system for the visual exploration
of social networks. Version 1.1 of Visone supports the computation of 10 different
centrality measures and allows the direct visualization of the network together with
the centrality values. CentiBiN is a tool focusing on the computation and exploration
of centralities in biological networks. It computes more than 15 different centrality
measures for directed and undirected networks. CentiBiN supports the visualization
of the centrality distributions for all computed centralities and the visualization of the
network with different layout methods.

4.6 SUMMARY

In this chapter, different concepts for the centrality analysis of networks have been
described. Besides the trivial degree centrality three shortest path based centralities
were introduced; some applications of these centralities for the analysis of biological
networks were summarized and the algorithmic foundations of these centralities were
presented. Three centralities based on the concept of feedback were briefly introduced.
Finally, a short overview of available tools for the computation of centralities for
biological and nonbiological networks has been given.

Besides the centrality measures discussed in this chapter numerous others do exist.
A more complete coverage of these including random walk-based centralities, cen-
tralities based on maximum flow, and several centralities used for the web graph are
summarized in a recent review [22,31].
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FIGURE 4.5 Four small networks for the exercises.

4.7 EXERCISES

1. Please name the centralities that can be computed for the four networks in
Fig. 4.5.

2. Please compute the possible centralities for the four networks in Fig. 4.5.
Choose sensible values for required parameters.

3. Explain why the centralities eccentricity and closeness cannot be computed
for some of the networks in Fig. 4.5. Is it possible to compute shortest path
betweenness for these networks?

4. Modify both algorithms for eccentricity such that closeness centrality is com-
puted.

5. Compute the centralities Katz status index, eigenvector centrality, and Page-
Rank with CentiBiN or Visone for the networks in Fig. 4.5.

6. Search the literature for at least three more definitions of centralities.

REFERENCES

1. J. M. Anthonisse. The rush in a directed graph. Technical Report BN 9/71, Stichting
Mathematisch Centrum, 1971.

2. V. Batagelj and A. Mrvar. Pajek - Analysis and visualization of large networks. In Jiinger
and Mutzel [24], pages 77-103.

3. S. Bergmann, J. Ihmels, and N. Barkai. Similarities and differences in genome-wide
expression data of six organisms. PLoS Biology, 2(1):85-93, 2004.

4. P.Bonacich. Factoring and weighting approaches to status scores and clique identification.
Journal of Mathematical Sociology, 2:113-120, 1972.



82

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

NETWORK CENTRALITIES

. U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical So-

ciology, 25(2):163-177, 2001.

. U. Brandes and T. Erlebach, editors. Network Analysis: Methodological Foundations,

volume 3418 of Lecture Notes in Computer Science (LNCS) Tutorial. Springer-Verlag,
2005.

. U. Brandes and D. Fleischer. Centrality measures based on current flow. In Proceedings

of the 22nd Symposium of Theoretical Aspects of Computer Science (STACS ’05), vol-
ume 3404 of Lecture Notes in Computer Science (LNCS), pp. 533-544. Springer-Verlag,
2005.

. U. Brandes and D. Wagner. Visone—analysis and visualization of social networks. In

Junger and Mutzel [24], pp. 321-340.

. B.J. Breitkreutz, C. Stark, and M. Tyers. Osprey: A network visualization system. Genome

Biology, 4(3), 2003.

V.J. Carey, J. Gentry, E. Whalen, and R. Gentleman. Network structures and algorithms
in bioconductor. Bioinformatics, 21(1):135-136, 2005.

R. M. Christley, G. L. Pinchbeck, R. G. Bowers, D. Clancy, N. P. French, R. Bennett,
and J. Turner. Infection in social networks: Using network analysis to identify high-risk
individuals. American Journal of Epidemiology, 162(10):1024-1031, 2005.

E. Estrada. Virtual identification of essential proteins within the protein interaction net-
work of yeast. Proteomics, 6(1):35-40, 2006.

E. Estrada and J. A. Rodriguez-Velazquez. Subgraph centrality in complex networks.
Physical Review E, 71(056103), 2005.

W. L. Ferrar. Finite Matrices. Clarendon Press, Oxford, 1951.

L. C. Freeman. A set of measures of centrality based upon betweenness. Sociometry,
40:35-41, 19717.

L. C. Freeman, S. P. Borgatti, and D. R. White. Centrality in valued graphs: A
measure of betweenness based on network flow. Social Networks, 13(2):141-154,
1991.

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis,
L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry,
F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney,
J. Y. H. Yang, and J. Zhang. Bioconductor: Open software development for computational
biology and bioinformatics. Genome Biology, 5:R80, 2004.

C. Godsil and G. Royle. Algebraic Graph Theory, volume 207 of Graduate Texts in
Mathematics. Springer, 2001.

P. Hage and F. Harary. Eccentricity and centrality in networks. Social Networks, 17:57-63,
1995.

M. W. Hahn and A. D. Kern. Comparative genomics of centrality and essentiality in three
eukaryotic protein-interaction networks. Molecular Biology and Evolution, 22(4):803—
806, 2005.

Z.Hu,J. Mellor, J. Wu, T. Yamada, D. Holloway, and C. DeLisi. VisSANT: data-integrating
visual framework for biological networks and modules. Nucleic Acids Research, 33(Web
Server issue):W352-W3577, 2005.

R. Jacob, D. Koschiitzki, K. A. Lehmann, L. Peeters, and D. Tenfelde-Podehl. Algorithms
for centrality indices. In Brandes and Erlebach [6], pp. 62-82.



23

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

REFERENCES 83

H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai. Lethality and centrality in protein
networks. Nature, 411:41-42, 2001.

M. Jiinger and P. Mutzel, editors. Graph Drawing Software. Mathematics and Visualiza-
tion. Springer-Verlag, New York, 2004.

M. P. Joy, A. Brock, D. E. Ingber, and S. Huang. High-betweenness proteins in the
yeast protein interaction network. Journal of Biomedicine and Biotechnology, 2:96—103,
2005.

JUNG - the java universal network/graph framework. http://jung.sourceforge.net/, Ac-
cessed 2006-11-14.

D. Jungnickel. Graphs, Networks and Algorithms, volume 5 of Algorithms and Compu-
tation in Mathematics. Springer, New York, 2002.

B. H. Junker, D. Koschiitzki, and F. Schreiber. Exploration of biological network central-
ities with CentiBiN. BMC Bioinformatics, 7(219), 2006.

L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39—
43, 1953.

J. M. Kleinberg. Autoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604-632, 1999.

D. Koschiitzki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlo-
towski. Centrality indices. In Brandes and Erlebach [6], pp. 16-61.

D. Koschiitzki, K. A. Lehmann, D. Tenfelde-Podehl, and O. Zlotowski. Advanced cen-
trality concepts. In Brandes and Erlebach [6], pp. 83-111.

A. N. Langville and C. D. Meyer. A survey of eigenvector methods for web information
retrieval. SIAM Review, 47(1):135-161, 2005.

R. Lempel and S. Moran. The stochastic approach for link-structure analysis (SALSA)
and the TKC effect. Computer Networks: The International Journal of Computer and
Telecommunications Networking, 33:387—401, 2000.

H.-W. Ma and A.-P. Zeng. The connectivity structure, giant strong component and cen-
trality of metabolic networks. Bioinformatics, 19(11):1423-1430, 2003.

J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert. GeneRank: Using search en-
gine technology for the analysis of microarray experiments. BMC Bioinformatics, 6:233,
2005.

M. E. J. Newman. A measure of betweenness centrality based on random walks. Social
Networks, 27:39-54, 2005.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing
order to the web. Technical report, Stanford Digital Library Technologies Project, 1998.
A. P. Potapov, N. Voss, N. Sasse, and E. Wingender. Topology of mammalian transcription
networks. Genome Informatics, 16(2):270-278, 2005.

R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, 2005.

G. Sabidussi. The centrality index of a graph. Psychometrika, 31:581-603, 1966.

J. Scott. Social Network Analysis: A Handbook. Sage Publications, Thousand Oaks, CA,
2000.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker. Cytoscape: A software environment for integrated models
of biomolecular interaction networks. Genome Research, 13(11):2498-2504, 2003.



84

44,

45.

46.

47.

NETWORK CENTRALITIES

J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide and
Reference Manual. Addison-Wesley, Reading, MA, 2002.

A. Wagner and D. A. Fell. The small world inside large metabolic networks. Proceedings
of the Royal Society London B, 268:1803-1810, 2001.

S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cam-
bridge University Press, Cambridge, UK, 1994.

S. Wuchty and P. F. Stadler. Centers of complex networks. Journal of Theoretical Biology,
223:45-53, 2003.



NETWORK MOTIFS

HENNING SCHWOBBERMEYER

5.1 INTRODUCTION

Recent progress in molecular biology and advances in experimental methodology,
particularly in genome sequencing and high-throughput technologies, have led to an
unprecedented growth in data. The availability of detailed molecular data allows the
reconstruction of the structure and dynamics of biological processes and systems. For
an understanding of the function and regulation of these complex biological systems,
a transition from the molecular level to the systems level is necessary [14,18]. In this
regard, the application of mathematical and computational techniques for the analysis
of biological data at the systems level is of great importance due to the complexity of
the systems and the wealth of data.

An area of mathematics that can be applied to modeling complex biological systems
is graph theory. The elements of a system are represented as vertices of a graph and
the interactions between them are represented as edges. Graph algorithms can then
be used to analyze, simulate, and visualize the system. Graphs have been used to
represent, for example, metabolic, protein interaction, and gene-regulatory networks.
In these networks entities such as metabolites, proteins, or genes are represented by
vertices and relationships between entities such as reactions, protein interactions, or
regulatory interactions are represented by edges.

Processes of life are highly regulated. A cell as the smallest entity of life has
the ability to respond to various signals and can adapt to changing conditions
of its environment while keeping its internal environment homoeostatic. Different

Analysis of Biological Networks, Edited by Bjorn H. Junker and Falk Schreiber
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FIGURE 5.1 Network motifs that have been shown to be functionally relevant in biological
networks: (a) feed-forward loop motif [6,7,20,34,45], (b) bifan motif [6,7,34], (¢) single-input
motif [20,45], and (d) multi-input motif [6,20].

mechanisms are recruited for regulation, either short term regulation by changing
the activity of enzymes or long term regulation by changing the expression level of
genes. A major goal of systems biology is in understanding the complex regulatory
mechanisms of biological systems in detail that constitute the function and behavior
of these systems. The analysis of regulatory circuits of biological networks can give
important insights for the understanding of biological systems.

The term network motif has been introduced for particular subgraphs representing
patterns of local interconnections between network elements. These motifs have been
described as basic building blocks and design patterns of complex networks [34], and
several motifs have been shown to be functionally relevant in biological networks.
Some of these motifs are illustrated in Fig. 5.1. For example, the feed-forward loop
motif was shown to have particular information filtering capabilities within the
process of gene regulation. In Fig. 5.2, some occurrences of a network motif within
a gene-regulatory network of yeast (Saccharomyces cerevisiae) are shown.

Network motifs have been originally introduced as statistically significant over-
represented patterns of local interconnections in complex networks. In the case of
biological networks, the structure has been shaped during evolution. The overabun-
dance of particular motifs in these networks has been supposed to be a consequence of
a positive selection for these interaction patterns due to their functional or structural
properties. Various aspects of network motifs have been analyzed so far and different
applications of motifs have been studied, for example, the comparison of networks
on the basis of their local structure represented by network motifs.

5.2 DEFINITIONS AND BASIC CONCEPTS

5.2.1 Definitions

A motif is a small connected graph G’. Usually, the size of a motif is given in the
number of vertices. A match of a motif within a target graph G is a graph G”, which
is isomorphic to the motif G’ and a subgraph of G, see Fig. 5.3 for an example. In
general, a match does not have to be an induced subgraph of G. The frequency of a
motif is the number of its matches in the target graph. Different frequency concepts
are discussed in Section 5.2.3.
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FIGURE 5.2 Some occurrences of the feed-forward loop motif (see Fig. 5.1a) within a part
of the gene-regulatory network of yeast (Saccharomyces cerevisiae, data taken from Ref. [47]).
This figure was created with MAVisto (Section 5.5.3) using a motif-preserving layout for the
highlighted motif matches (see Section 5.2.3).
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FIGURE 5.3 Illustration of (@) a target graph G, (b) a motif G’, and (c) a highlighted match
G" of the motif G’ in the target graph G.
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The networks typically considered in network motif analysis are directed or
undirected, connected, simple, and loop-free as defined in Chapter 2. In some cases
also mixed networks containing directed and undirected edges have been studied for
network motifs.

5.2.2 Modeling of Biological Networks

Biological data can often be represented as graphs or networks, as described in
Chapter 1. Interaction between proteins can be modeled as graphs with proteins
represented by vertices and interactions between proteins modeled as edges. Usu-
ally, only the presence or absence of an interaction between two proteins is de-
tected, without any direction. Therefore, the edges in protein interaction networks
are undirected.

In gene-regulatory networks genes correspond to vertices and interactions between
genes are represented by edges. These interactions model the regulatory control of
genes via their products on their target genes. As control is directed from a gene
toward the regulated gene, gene-regulatory networks are usually directed.

Network motif analysis is applied to both types of networks, directed and undi-
rected, and in addition also mixed networks containing directed and undirected edges
have been studied for motifs [52,53]. However, the emphasis in network motif analysis
lies on the study of directed networks.

5.2.3 Concepts of Motif Frequency

The frequency of a motif in a particular network is the number of different matches of
this motif. There are three reasonable concepts for the determination of the frequency
of a motif based on different restrictions on the sharing of network elements (vertices
or edges) for the matches [43]. These concepts have different properties and are
used to analyze different aspects of the motifs. Concept F; has no restrictions and
considers all matches, therefore showing the full potential of a particular motif even
if elements of the target graph have to be used several times. Usually, the frequency of
network motifs is given by concept F; if no further information is supplied. Concept
JF> allows the sharing of vertices but not of edges and therefore calculates the number
of instances of a motif that have disjoint edges. > shows, for example, in networks
where edges represent information flow how many motif instances can be “active” at
a time. For concept 3 matches have to be vertex and edge disjoint and can be seen as
nonoverlapping clusters. This clustering of the target graph allows specific analysis
and navigation methods such as motif-preserving layout of the network, where each
selected motif match is uniformly laid out within the network corresponding to a
given layout of the motif [19]. Figure 5.2 shows an application of the motif-preserving
layout. The frequency calculated by concept F3 is also known as the uniqueness value
of a motif [15]. The application of the three frequency concepts is illustrated by an
example shown in Fig. 5.4.

The restrictions on the reuse of graph elements for concepts F; and F3 have con-
sequences for the determination of motif frequency in case of overlapping matches, as



MOTIF STATISTICS AND MOTIF-BASED NETWORK DISTANCE 89

%%H

(b

(©) (d) (e)
FIGURE 5.4 Tllustration of the application of the different concepts of motif frequency on
the basis of (@) a target graph G, (b) a motif G’, and (c) - (f) all four matches G” of the motif
G’ in the target graph G. The application of frequency concept F; results in a frequency of
four by counting all different matches (c)—(f), for F, the frequency is two by counting the
matches at (c) and (f), and for concept F; the frequency is one as only one match out of the
four matches (c) — (f) can be selected.

not all matches can be counted for the frequency. To determine the maximum number
of different matches of a motif, the maximum set of nonoverlapping matches has to
be calculated. This is known as the maximum independent set problem. Since this
problem is A/P-complete [10], usually a heuristic is used to compute a lower bound
for the frequency. Note that there is not necessarily one unique set of nonoverlapping
matches with maximum size, but rather different sets with maximum size can exist
containing different collections of motif matches.

5.3 MOTIF STATISTICS AND MOTIF-BASED NETWORK DISTANCE

5.3.1 Determination of Statistical Significance of Network Motifs

Network motifs are originally defined as patterns of interconnections occurring
in networks at numbers that are significantly higher than those in randomized
networks [34]. Even though various different aspects of network motifs have been
considered [20,45,46,51], the statistical significance is still an important property.
Generally, in statistics a result is considered to be significant if the probability that
this result has occurred by chance is low. In order to test for statistical significance, a
null hypothesis is formulated based on the distribution of such results. A significance
level is defined as a probability threshold on that distribution to either accept or re-
ject the null hypothesis. If the probability of a result is below the defined probability
threshold, the null hypothesis is rejected and the result is considered as statistically
significant.

In network motif analysis, a commonly used null hypothesis is based on the fre-
quency distributions of motifs in a sufficiently large ensemble of random networks
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of appropriate structure (Section 5.3.2), which are used as null model networks. To
calculate the statistical significance of a motif of a network of interest, the frequency
of this motif in the considered network is tested against the frequency distribution of
this motif in the null model networks. Based on these frequency values, measures for
the statistical significance of the motif can be calculated, see Section 5.3.5.

Random networks are considered as null model networks because their structure is
generated by a process free of any type of selection acting on their motifs. Therefore,
a significant overrepresentation of a motif in a real-world network compared with
null model networks has been taken to represent evidence of functional constraints
and design principles that have shaped the network structure at the level of the motifs
through selection [1,34].

5.3.2 Randomization Algorithm for Generation of Null Model Networks

In network motif analysis, a commonly used algorithm for the generation of random-
ized versions of a given network arbitrarily rewires the connections of the network
locally [24,25,45]. The algorithm reconnects two edges (A,B) and (C,D) in such a
way that A becomes connected to D and C to B, provided that none of the newly
created edges already exist in the network, see Fig. 5.5. Additional restrictions can be
applied to preserve the number of bidirectional edges in the randomized network or to
preserve the number of motifs of size n — 1 when searching for motifs of size n. This
rewiring step is repeated a great number of times to generate a properly randomized
network. The essential feature of this algorithm is the conservation of the degree of
each vertex. The degree distribution of a network is a characteristic network property
and has been used to characterize the large-scale topological structure of biological
networks [3]. The applied randomization algorithm changes the network topology at
the local level and preserves the degree distribution at the global level. Therefore, it
is assumed that this algorithm provides an appropriate null model for the calculation
of statistical significance of network motifs [25].

——
Switch partners

FIGURE 5.5 Example of a rewiring step of the randomization algorithm. Two edges (A,B)
and (C,D) are reconnected in such a way that A becomes connected to D and C to B.
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5.3.3 Influence of the Null Model on Motif Significance

Different randomization methods for the generation of the null model networks have
been applied in a study on neuronal networks from macaque and cat [42], in which
significance profiles (see Section 5.3.5) of motifs of size three were investigated. The
three applied randomization methods for the generation of the null model networks
preserved (1) the number of vertices and edges of the real-world networks, (2) the
number of vertices and edges and the degrees of the vertices, and (3) the number
of vertices and edges, the degrees of the vertices and the number of motifs of size
two of the real-world networks. The statistical significance computed on the basis of
the different null models showed clear differences for some motifs. However, if the
same null model was applied for calculation of the significance profiles of the two
neuronal networks, these profiles were highly correlated. This correlation holds for
each of the three null models. These results indicate that the choice of the network
randomization method for the generation of the null model networks is very important
for the computation of motif significance and that only results obtained by application
of the same null model can be reasonably compared.

5.3.4 Limitations of the Null Model on Motif Detection

The appropriateness of the randomization algorithm to represent a random null model
has been questioned [1]. In this work the authors provide an example where the
same motifs have been found in a real network which has been created through
the process of evolution and in a network which has been constructed randomly
using a network generation model that produces a “similar” structure. The statistical
significance of a motif depends on the null model used for the test. It is argued
that a reformulation of the test for motif significance is demanded, which is able
to discriminate functional constraints and design principles from other origins that
are a consequence of the network’s construction mechanisms, for example, spatial
clustering [1]. In this context it was noted that the great majority of motif occurrences
overlap and are embedded in larger structures (see Section 5.6.3). This is not taken
into account by current null models but might be important for the calculation of
the statistical importance of network motifs [28]. Furthermore, it was mentioned
that biological networks represent a static view of all possible interactions and that
motifs that are not active in vivo could emerge as a consequence of the network
structure [1].

5.3.5 Measures of Motif Significance and for Network Comparison

Statistical significance of motifs for a particular network can be measured by
calculating the Z-score and P-value using frequency concept F. Significance profiles
on the basis of the Z-scores of particular motif sets can be used to compare different
networks. However, the results of the statistical analysis depend on the appropri-
ateness of the applied null model, as described in Section 5.3.2. Furthermore, the
frequency of motifs can directly be used for a comparison of networks, for example,



92 NETWORK MOTIFS

by application of the relative graphlet frequency distance or by methods described in
Section 5.6.4.

Z-Score The Z-score Z(m) is defined as the difference of the frequency Fi of a
motif m in the target network and its mean frequency F , in a sufficiently large
set of randomized networks, divided by the standard deviation o, of the frequency
values of the randomized networks [25,34], see Equation 5.1. Motifs are considered
as statistically overrepresented if they have a Z-score greater than 2.0 [15].

Fi(m) — Fy r(m)

Am) = =

5.1)

P-Value The P-value represents the probability P(m) of the appearance of a motif m
in a randomized network, an equal or greater number of times than in the target
network, see Equation 5.2. Fj is the frequency of a motif in the target network, Fi ,,
is the frequency of a motif in a randomized network and N denotes the number of
randomized networks. The Kronecker delta §.(,) is one if the condition c(n) holds,
otherwise it is zero. Motifs with a P-value less than 0.01 are regarded as statistically
significant. For a reasonable calculation of a P-value at least a thousand randomized
networks have to be considered [15]. If less randomized networks are considered only
the Z-score should be used.

1 N
P(m) = v Z Se(n) cn): Fip,(m) = Fi(m) (5.2)
n=1

Motif Significance Profile The motif significance profile SP is defined as a vec-
tor of Z-scores Z(m) of a particular set of motifs ({m1, ..., m,}), which is nor-
malized to a length of one [33], see Equation 5.3. Motif significance profiles al-
low for a comparison of networks of different size or origin on the basis of their
motifs.

Z(m;)

/i Zim)?

Typically, motif sets comprise all motifs of a particular size, for example, the 13
motifs of size three shown in Fig. 5.6 have been used for the classification of different
directed networks into distinct groups, see Section 5.6.4. For two gene-regulatory net-
works of S. cerevisiae and E. coli, the significance profiles of the motifs of size three
are depicted in Fig. 5.7. The profiles of these two networks show similar characteristics
as expected due to their related origin. The number of supported motifs in the S. cere-
visiae network is higher than in the E. coli network, which may be a consequence of

SP(m;) = (5.3)
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FIGURE 5.6 Structure of the 13 directed motifs with three vertices. Motif numbers are used
in accordance to Figure 5.7.

a higher complexity of eucaryotic gene-regulatory networks represented by S. cere-
visiae compared with procaryotic gene-regulatory networks represented by E. coli.

Relative Graphlet Frequency Distance The relative graphlet frequency distance
was introduced as a distance measure for undirected networks [38]. The authors

termed small connected induced subgraphs as graphlets to avoid a confusion of

Motif significance profile

0.4

0.0
x
b
/

\
x
x

Normalized Z-score
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FIGURE 5.7 Significance profiles of motifs of size three of two gene-regulatory networks.
The yeast (S. cerevisiae) network (4441 vertices, 12873 edges) was taken from Ref. [37] and
the E. coli network (1250 vertices, 2431 edges) was obtained from the RegulonDB (Version
5.0) [39]. The Z-scores were calculated using the MAVisto program (see Section 5.5.3). The
structure of the motifs is illustrated in Fig. 5.6. Note that motifs 1 and 2 have a Z-score of
0.0 since the applied randomization algorithm conserves the in- and out-degree of the vertices.
Therefore, the frequency of these two motifs does not change in the randomized networks,
which leads to a Z-score of 0.0. For the other motifs a Z-Score of 0.0 represents the absence of
a motif within a network (in particular these are in the yeast network motif 13 but not motif 8,
which has a value slightly less than 0.0 and in the E. coli network motifs 6, 8, 11, 12, and 13).
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terminology with network motifs. The network distance calculation is based on the
relative frequency F, of 29 undirected graphlets g of size three to five, where F(g;)
is the frequency of the graphlet of typei (i € {1, ..., 29}), see Equation 5.4. Of these
29 graphlets, there are two graphlets of size three, six graphlets of size four, and 21
graphlets of size five (see Table 5.1).

F(gi)

_— 5.4
:'221 F(gi)

Fr(gi) =

The relative graphlet frequency distance D of two networks G| and G is calculated
by summing up the differences of the logarithm of the relative graphlet frequencies,
see Equation 5.5. The logarithm is used in order to give equal weight to each rela-
tive graphlet frequency difference. This is done because the absolute frequencies of
different graphlets can vary by orders of magnitude and the graphlets with highest
frequency would have otherwise a dominating influence on the result.

29
D(G1, G2) =Y _ |10g(Fr6,(8) — 10g(F6,(80)| (5.5)

i=1

54 COMPLEXITY OF NETWORK MOTIF DETECTION

5.4.1 Aspects Affecting the Complexity of Network Motif Detection

Generally, for the detection of network motifs, the different motifs supported by the
analyzed network have to be determined, their matches within the network have to be
identified, and their statistical significance has to be calculated. The process of network

TABLE 5.1 Number of Nonisomorphic Connected Loop-Free Undirected and Directed
Simple Graphs with up to 10 Vertices [11]

Vertices Undirected Directed®

1 1 1
2 1 2
3 2 13
4 6 199
5 21 9364
6 112 1530843
7 853 880471142
8 11117 1792473955306
9 261080 13026161682466252
10 11716571 341247400399400765678

¢ Including mutual (bidirectional) edges.
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motif detection includes several aspects that affect the computational complexity of
this task:

1. Graph isomorphism testing: During the search, the discovered motifs have to
be compared concerning their structure in order to group isomorphic motifs together.
This is known as the graph isomorphism problem. The computational complexity of
this problem is not exactly classified [10], but is considered to be a hard problem with
a complexity that lies between P and NP. In practice, testing whether graphs are iso-
morphic can be done by computing a label for each graph based on the graph structure.
This label is unique for a particular graph structure and is called a canonical label.
Therefore, if two graphs have identical canonical labels, these graphs are isomorphic.
Canonical labels for graph isomorphism testing are used by the motif detection pro-
grams FANMOD (Section 5.5.4), which applies the nauty-algorithm [29] for this task
and MAVisto (Section 5.5.3) that identifies the detected motifs by canonical label.

2. Number of motifs: The number of nonisomorphic motifs grows exponentially
with the size of the motif (number of vertices) and rapidly reaches particularly for
directed motifs an enormous quantity, as shown in Table 5.1. The number of different
undirected motifs is far less than the number of directed motifs, but normally the
number of matches of undirected motifs is much higher than for directed motifs in
networks of comparable size. In practice, only a fraction of all possible motifs is
supported by typical real-world networks. To date well-known network motifs are
small and usually comprise three to five vertices. For these motif sizes the number of
nonisomorphic motifs is relatively small.

3. Number of motif matches: The maximum number of matches of a motif G, =
(Vin, Ep) in a target graph, G, = (V;, E,) is bounded by |E,|!Em!. | E,| is the number
of edges in the target graph, and |E,, | is the number of edges in the motif. In typical
real-world networks only some motifs have a high frequency and the majority are less
frequent.

4. Calculation of statistical significance: A commonly used method for calcula-
tion of statistical significance of network motifs compares the frequency in a target
network to the frequency in an ensemble of appropriately randomized networks, see
Section 5.3. For a reasonable calculation of motif statistics several hundreds or thou-
sand randomized networks have to be considered. The computational effort multiplies
with the number of randomized networks, as the motif distribution has to be detected
for each of these networks.

5. Size of analyzed networks: The size of the target network affects the three
previously described points 2—4. In general, the number of different motifs supported
by the target network as well as the number of motif matches increases with the
size of the target network. Typical biological networks comprise several hundreds or
thousands of vertices and are often sparse, that is, with a ratio of the number of edges
to the number of vertices between 1 and 3.

Despite the high complexity involved in the detection of network motifs, in practice
the search can be executed in reasonable time for typical real-world networks.
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Common algorithms and tools for the analysis of network motifs are described in
Section 5.5.

5.4.2 Frequency Estimation by Motif Sampling

Since the computational complexity of an exhaustive enumeration of all motifs in-
creases strongly with the network size, heuristics for the detection of network motifs
have been developed to accelerate the search in large networks. A heuristic random
sampling approach has been proposed for the calculation of network motif frequency
whose run time is asymptotically independent of the network size [16]. However, this
algorithm suffers from sampling bias and efficiently estimates motif frequencies only
in networks with hubs. Another sampling algorithm has been presented, which over-
comes these drawbacks and allows for an unbiased subgraph sampling [49]. Further-
more, the motif analysis tools Mf inder (Section 5.5.2) and FANMOD (Section 5.5.4)
both offer a sampling method for a fast approximation of the motif number.

5.5 METHODS AND TOOLS FOR NETWORK MOTIF ANALYSIS

Different methods and tools have been developed for the analysis of network motifs.
There are three focused tools that deal with the task of motif detection and analysis,
see Sections 5.5.2 — 5.5.4. Furthermore, various specialized methods have been devel-
oped and applied to investigate specific questions [7,28,35,40,51,53]. These methods
are usually not described in detail and the source code is not available. Publicly avail-
able are, for example, MATLAB scripts for motif detection [26,46]. An algorithm for
the alignment of motifs was developed to identify motifs derived from families of
mutually similar but not necessarily identical patterns [5].

55.1 Pajek

Pajekis a program for the analysis and visualization of large networks [4]. It offers
the possibility of calculating the frequencies of certain subgraphs like triads and
particular tetrads, which are subgraphs with three respectively four vertices. Triads can
be connected and unconnected and their study originates in social network analysis.
Pajek calculates the number of triads of a network and reports values for the expected
frequencies.

5.5.2 Mfinder

The Mfinder is a software tool for network motif detection in directed and undi-
rected networks [15,30]. It computes the number of occurrences of a motif of re-
stricted size in the target network (concept 1) and a uniqueness value, which is a
lower bound for the frequency of concept F3. A value for the frequency of concept
F> is not calculated. The statistical significance is determined on the basis of the
number of occurrences of the motif in randomized networks and is given by a P-value
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and Z-score. The applied randomization method preserves the degree of each vertex.
Furthermore, a sampling method is available for a fast approximation of the motif
number. The results are presented in a text file and the structure of discovered motifs
can be looked up in a motif dictionary.

5.5.3 MAVisto

MAVisto is a tool for the exploration of motifs in biological networks combining
a flexible motif search algorithm and different views for the analysis and visual-
ization of network motifs [27,44]. MAVisto supports the Pajek-.net- [4] and the
GML-format [12] and offers graph editor functionality for network creation and ma-
nipulation. Furthermore, an advanced force-directed layout algorithm [9] is included
to generate readable drawings of the network automatically while preserving the lay-
out of motifs where possible. MAVisto’s motif search algorithm discovers all motifs
of a particular size, which is given either by the number of vertices or by the num-
ber of edges. All motifs of this size are analyzed and the frequencies for the three
different frequency concepts are determined. Furthermore, P-values and Z-scores are
computed based on a randomization method that preserves the degrees of the vertices.
MAV1isto supports the analysis of vertex-labeled and / or edge-labeled networks. The
motif search algorithm of MAVisto is described in detail in Ref. [43].

5.54 FANMOD

FANMOD is a relatively recent tool for network motif detection in directed and undi-
rected networks [8,50] and is based on an improved algorithm that outperforms the
existing tools Mfinder and MAVisto in the task of network motif detection. In
contrast to Mfinder and MAVisto, the FANMOD tool detects only motifs that
are induced subgraphs whereas the other two discover all supported motifs. FAN-
MOD supports the analysis of vertex-labeled and/or edge-labeled networks. It of-
fers a graphical user interface and the results are presented as text- or HTML-files
similar to the Mf inder. The HTML-pages show additionally the structure of each
detected motif. FANMOD calculates besides the statistics of the motifs given by P-
values and Z-scores the relative frequency for concept Fi, based on all discov-
ered motifs of a particular size. Further values for motif frequency are not com-
puted. FANMOD also offers a sampling method for a fast approximation of the motif
number.

5.6 ANALYSES AND APPLICATIONS OF NETWORK MOTIFS

5.6.1 Network Motifs in Complex Networks

Network motifs have been studied initially in gene-regulatory networks of E. coli [45]
and S. cerevisiae [20] and were introduced by Alon and coworkers as a general
property of complex networks [34]. In the work of Alon and colleagues, biological
and technological networks from the fields of biochemistry, neurobiology, ecology,
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and engineering were analyzed. Motif detection resulted in each network in a small set
of statistically significant motifs and some of the motifs found are shared by different
networks, that are the feed-forward loop motif, the bifan motif and the biparallel
motif, see Table 5.2. The World Wide Web network is the only one that exhibits a
unique set of motifs, all other networks share at least one motif with another network
and only the food webs and the gene-regulatory networks do not share any motifs
with each other.

The gene-regulatory networks, the neuronal network, and the electronic circuits
of forward logic chips share two, respectively, three motifs. These networks all per-
form information processing, therefore Alon and coworkers hypothesized that these
motifs may have specific functions as elementary computational circuits within these
networks. Furthermore, based on the motifs found they assumed that the World Wide
Web network may reflect a design that tends to provide short paths between related
pages, and that food webs evolve to allow for an energy flow from the bottom to
the top of food chains. Moreover, the authors supposed that network motifs may be
structures that arise because of the special constraints under which a network has
evolved and that each class of network has specific types of elementary structures.
Based on these findings, Alon and coworkers proposed that motifs could be used for
the definition of classes of networks and network homologies [34].

5.6.2 Dynamic Properties of Network Motifs

Dynamic Properties of the Feed-Forward Loop Motif The feed-forward loop mo-
tif occurs in many biological and technological networks (see Table 5.2) and is the
best studied motif to date. The functional properties of the feed-forward loop mo-
tif have been analyzed in detail theoretically and experimentally in gene-regulatory
networks [21,23,45,48]. In these networks, a feed-forward loop motif is built by two
regulators, a general and a specific regulator, with the general regulator regulating
the specific one and both jointly regulating a target gene, see Fig. 5.8a. As in gene-
regulatory networks the interactions of regulators on genes can be activating (+) or
repressing (—), there are 2° (two interaction types for each of the three edges) pos-
sibilities for a feed-forward loop motif with a different combination of interactions.
A feed-forward loop motif is called coherent if the direct effect of the general regu-
lator on the regulated gene is the same (positive or negative) as its net indirect effect
through the specific regulator (e.g., if the general regulator positively regulates the
specific regulator and both positively regulate the regulated gene, see Fig. 5.8b). If the
net effects of the two regulators are different, the feed-forward loop motif is called
incoherent (Fig. 5.8c).

Mathematical modeling of the dynamics of the coherent feed-forward loop mo-
tif shown in Fig. 5.8b indicated that it responds only to persistent activations of the
general regulator but not to transient activations, therefore filtering out fluctuating
signals. The reason for this behavior is a delayed activation of the regulated gene
because at first the specific regulator has to be activated by the general regulator. If
the activation period of the general regulator is too short, the specific regulator does
not reach the level sufficient for activation of the regulated gene, which is done in
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TABLE 5.2 The Network Motifs Discovered in a Study on Biological and Technological
Networks [34]. The Analyzed Networks were Gene-Regulatory Networks (GRN) of E. coli
and S. cerevisiae, a Neuronal Network (NN) of Caenorhabditis Elegans, Seven Food Webs
(FW), Five Electronic Circuits of Forward Logic Chips (EC1), Three Electronic Circuits
of Digital Fractional Multipliers (EC2), and a Network of the World Wide Web (WWW)

Motif Network
Structure description GRN NN FW EClI EC2 WWW
o—»0 Feed-forward loop v v v
o—>0
Bifan v v v v
o—»0
Biparallel v v v
Q\
/ o Three chain v
.\
<+—0 Three-node feedback loop v
o—>»0
Four-node feedback loop v

Feedback with two mutual dyads” v
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TABLE 5.2 (Continued)

Motif Network
Structure description GRN NN FW ECI EC2 WwWWwW
‘é’. Uplinked mutual dyad” v
Fully connected triad® v

Note: All Motifs found in these networks are given by their structure and the originally used description.
A tick indicates a statistically significant overrepresentation of a Motif in a particular network.

¢ The three chain motif was statistically significant in five out of the seven food webs.

b dyad and triad are used in social science for interaction patterns of two respectively three individuals.

conjunction with the general regulator, and therefore this gene is not activated. Fur-
thermore, the feed-forward loop motif allows for a rapid shutdown once the activation
of the general regulator stops, since this regulator is directly required for the activa-
tion of the regulated gene. In summary, this coherent feed-forward loop motif acts as
an asymmetric delay circuit: It shows a delayed response on activation and a rapid
response in the opposite direction on deactivation [45]. Such a characteristic can be
advantageous for gene regulation in noisy environments with fluctuating signals. This

A A A

(a) (b) (©)

FIGURE 5.8 In gene-regulatory networks, a feed-forward loop motif as in (@) consists of two
regulators, a general regulator A and a specific regulator B, with A regulating B and both jointly
regulating a target gene C. In (b) an example of a coherent feed-forward loop motif is shown,
where the direct and net indirect effect of the general regulator A on the regulated gene C are
equal. The other three coherent feed-forward loop motifs have for the edges (A—C, A— B,
B—C), the edge types (—,—,+), (—,+,—), and (+,—,—). In (¢) an example of an incoherent
feed-forward loop motif is given as here the direct and the net indirect effect are different. The
other three incoherent feed-forward loop motifs have the edge types (—,—,—), (—,+,+), and
(+,—1).
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functional behavior of the coherent feed-forward loop motif shown in Fig. 5.8b on
gene regulation was experimentally confirmed in a study of the L-arabinose utilization
system of E. coli [23].

The kinetic behavior of all eight structural types of the feed-forward loop motif in
the process of gene regulation was analyzed theoretically by the use of mathematical
modeling [21]. In this study it was found that all types of feed-forward loop motifs
showed an asymmetric kinetic behavior for the two directions. These directions are the
transitions from the nonactivated to the activated state, respectively, from the activated
to the nonactivated state. The coherent configurations of the feed-forward loop motif
showed delayed responses in one direction and a direct response in the opposite
direction, whereas for the incoherent configurations accelerated responses in one
direction and direct responses in the opposite direction were found. This accelerated
response on turn-on of the incoherent feed-forward loop motif shown in Fig. 5.8c was
demonstrated experimentally for the galactose gene-regulatory system of E. coli [22].

A more detailed analysis of mathematical models of the kinetic behavior of the
feed-forward loop motif identified numerous different kinetic patterns that depend on
the parameters used for modeling the activity of the genes [48]. These results support
the perspective that for an understanding of gene-regulatory networks, the signal pro-
cessing properties of the underlying regulatory circuits have to be considered in detail.

Dynamic Properties of the Bifan Motif Although different aspects of the feed-
forward loop motif have been analyzed in a number of studies, as described in the
previous paragraph, other motifs have received much less attention. Recently, the
dynamic properties of the bifan motif have been examined in detail by mathematical
modeling based on differential equations [13]. A bifan motif is built by two regulators
and two regulated genes, with the two regulators jointly regulating each target gene,
see Fig. 5.1b. Five variants of the bifan motifs have been considered, which are likely
to be present in S. cerevisiae. These variants had different combinations of activating
and repressing interactions of the regulators on the target genes. The modeling showed
a broad range of dynamic behavior for the variants of the bifan motif, but no char-
acteristic response was observed. These results indicate that an understanding of the
function of gene-regulatory networks on the basis of network structure or structural
motifs is unlikely, and additional information on dynamic properties is necessary [13].

Dynamic Stability of Network Motifs Biological networks are usually static repre-
sentations of large-scale dynamic systems, with only a certain fraction of the elements
being active at a particular time. Whereas many structural properties of these networks
have been identified, dynamic features are far less studied. To analyze network mo-
tifs in the context of system dynamics, the dynamic properties of network motifs of
size three and four have been systematically determined and related to their distri-
bution in directed gene-regulatory, signal transduction, and neuronal networks [36].
The dynamic behavior was characterized by a structural stability that represents the
probability of a motif to return to a steady state after small-scale perturbation. Three
stability classes have been identified based on the capability of interactions between
the vertices of a motif. These classes are stable motifs without feedback interactions,
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moderately stable motifs with one feedback interaction between two vertices and un-
stable motifs with feedback interactions between three or more vertices. Examples of
motifs from the three classes of structural stability are the feed-forward loop motif
that represents a structurally stable motif due to the absence of feedback interaction
(Fig. 5.7g), a moderately stable motif that comprises one mutual edge (Fig. 5.7j) and
a feedback loop motif as an example for an unstable motif (Fig. 5.7h). To exclude
impacts of the edge number on motif frequency for this comparison, the motifs were
grouped into density classes with equal edge number. The comparison of the fre-
quency of motifs with three and four vertices to random networks of different null
models revealed a significant overrepresentation of motifs with higher structural sta-
bility. It was supposed that robust dynamical stability of network motifs contributes
to biological network organization and that there is a deep interplay between network
structure and system dynamics [36].

5.6.3 Higher Order Structures Formed by Network Motifs

Motif Cluster The distribution of motif matches of the feed-forward loop motif and
of the bifan motif has been studied in the gene-regulatory network of E. coli [7]. For
each motif the majority of matches overlap and aggregate into regions of intercon-
nected matches, which were termed homologous motif clusters by the authors. They
discovered that many of these motif clusters largely overlap with modules of known
biological functions within the gene-regulatory network. Furthermore, the combined
motif clusters of the feed-forward loop motif and of the bifan motif build a super-
structure that covers large parts of the network that is assumed to represent the core or
backbone of the network and to play a central role in defining the global topological
organization. This study shows that on the basis of motifs and motif clusters distinct
topological hierarchies within the E. coli gene-regulatory network are formed.

Motif Generalization The combination of network motifs into larger structures
was analyzed in a systematic approach that defined motif generalizations, families of
motifs of different size that share a common architectural theme [17]. Roles of motif
vertices based on structural equivalence were introduced for the definition of motif
generalizations. For example, the feed-forward loop motif has three roles: an input
vertex A, an internal vertex B, and an output vertex C, see Fig. 5.9a. These vertex
roles were termed general regulator, specific regulator, and target gene, respectively,
in gene-regulatory networks (Section 5.6.2). Motif generalizations are based on the
duplication (or multiplication) of one (or more) vertex role(s). Therefore, the feed-
forward loop can have three simple generalizations, based on duplicating each of the
three roles and their connections, which is illustrated in Fig. 5.9b—d. In this study
it was discovered that networks that share a common motif can have very different
generalizations of that motif. Furthermore, the genes of functionally corresponding
multioutput feed-forward-loop motifs (an example is given in Fig. 5.10) of E. coli and
S. cerevisiae gene-regulatory networks are not evolutionarily related, which suggests
convergent evolution to the same regulation pattern [17].
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(a) (b)

FIGURE 5.9 Illustration of the concept of motif generalizations. (a) The feed-forward loop
motif is shown with labels indicating the roles of the vertices: input role A, internal role B, and
output role C. Subsequently, the three simple generalizations of the feed-forward loop motif are
shown duplicating () the input vertex A, (c) the internal vertex B, and (d) the output vertex C.

Network Theme Higher order interconnection patterns that comprise multiple oc-
currences of network motifs have been introduced as network themes in a study of an
integrated network of S. cerevisiae containing five different types of interactions be-
tween genes and proteins [53]. One example is the feed-forward loop theme — a pair
of transcription factors, one regulating the other, and both regulating a common set of
target genes that are often involved in the same biological process, see Fig. 5.10. This
network theme is also a motif generalization of the feed-forward loop motif, which
multiplies the output vertex C as introduced in the previous paragraph (see Fig. 5.9d).

Mcm1 Swi4

Yhp1 Yor315w

Sim1 Rax2

Gind Cdc6

Clb2
FIGURES5.10 Example of afeed-forward loop network theme of the gene-regulatory network
of S. cerevisiae [53]. McmI regulates Swi4 and in conjunction they regulate a set of target genes.
This network theme also represents a motif generalization of the feed-forward loop motif that
multiplies the output vertex C (see Fig. 5.9d).
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The authors argued that network motifs have been defined with artificial restrictions
on the size and that motif occurrences often overlap within a network. Furthermore, it
has been shown that network themes can be tied to specific biological phenomena and
the authors suggest that network themes may represent more fundamental network
design principles [53].

5.6.4 Network Comparison Based on Network Motifs

Distance Measure for Networks Based on Motif Frequencies A distance mea-
sure for undirected networks has been introduced on the basis of the frequency of
undirected induced subgraphs of size three to five as the relative graphlet frequency
distance [38], see Section 5.3.5. This network distance measure has been applied to
compare protein interaction networks of yeast (S. cerevisiae) and fruit fly (Drosophila
melanogaster) to different artificial network generation models. The authors discov-
ered that these protein interaction networks were better modeled by geometric ran-
dom networks than by the commonly accepted scale-free random network model
with respect to the relative graphlet frequency distance. Geometric random networks
were constructed by randomly distributing the vertices in a two—, three—, or four—
dimensional space and connecting vertices if their distance is below a particular
threshold for the applied vertex distance measure. These results were confirmed by
other global network properties, network diameter (average shortest path length), and
clustering coefficients. Only the degree distribution of the protein interaction net-
works is closer to the distribution of the scale-free random network model than to
the distribution of the geometric random networks. The authors emphasized that the
selection of an appropriate model of protein interaction networks is important, for
example, to efficiently guide experiments on such networks [38].

Motif Frequencies as Classifiers for Network Model Selection Motif frequencies
have been used as classifiers for the selection of an artificial network generation
model that most suitably resembles the structure of the protein interaction network
of fruit fly (D. melanogaster) [31]. The model has been selected out of seven net-
work generation models that resemble different mechanisms of network evolution. For
this selection, discriminative classification techniques adapted from machine learning
were used. An alternating decision tree was constructed on the basis of the frequen-
cies of the motifs of a defined set for 1000 randomly constructed networks for each
model. One set contained all 148 motifs that could be constructed by walks of length
eight, the other set contained all 130 motifs with up to seven edges. Then the fre-
quencies of the motifs of the protein interaction network were used to traverse the
tree, and at each branch of the tree it is checked if the frequency of a particular
motif associated with this branch is above a certain threshold. Based on this deci-
sion, the path in the tree and the prediction scores for each model at this branch
are determined. The model with the maximum value for the sum of all obtained
prediction scores is selected as the most suitable model. Furthermore, the authors
showed that although the networks of the different generation models had simi-
lar global properties (e.g., degree distribution, clustering coefficients, and network
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diameter), they could be distinguished by the applied discriminative classification
techniques.

The presented method for identification of adequate network generation models
as well as the models that resemble different mechanisms of network evolution have
some limitations [41]. Real-world networks can face varying pressures within their
history, and the adaptation to these particular conditions causes different changes of
the structure, therefore a single network generation mechanism may not be sufficient
to resemble the structure of these networks. Furthermore, the applied discriminative
classification technique used an artificially selected set of motifs for which a search
is computationally tractable; however, other important motifs may be missed. By
considering only small-scale features represented by the distribution of a selected set
of motifs, some large-scale features are not recapitulated, for example, the size of the
giant component [41].

Network Superfamilies Identified by Motif Significance Profiles Networks of dif-
ferent biological and technological domains have been classified into different su-
perfamilies on the basis of motif significance profiles, respectively, motif frequency
profiles [33]. For the classification of directed networks, significance profiles (see
Section 5.3.5) of motifs of size three have been used. For undirected networks, the
statistical significance of motifs showed a dependence on network size. Therefore, for
these networks the frequency of motifs of size four relative to random networks was
used without considering the statistical significance to compute a motif frequency
profile. The correlation of significance profiles, respectively, frequency profiles was
used to cluster the networks into distinct superfamilies. Several of these superfam-
ilies contained networks of different domains of vastly different size, for example,
one family contained a network of signal-transduction interactions, a developmental
gene-regulatory network, and a neuronal network. Currently, it is not verified whether
similarity in the profiles is accidental or whether the networks have similar key circuit
elements because they evolved to perform similar tasks [33].

Limitations of Network Classification by Motif Significance Profiles The classifi-
cation of networks on the basis of motif significance profiles depends on the method
used to generate the null model networks for calculation of the statistical significance
of motifs (see Section 5.3.1). As depicted in Section 5.3.4, the same overrepresented
motifs were found in real networks and networks generated using a particular network
model. Therefore the appropriateness of a classification of networks into superfam-
ilies based on motif significance profiles as described in the previous paragraph has
been questioned [1]. However, by considering the full motif significance profile of
motifs of size three, there were some motifs that are equally over respectively under-
represented in both the real and the random networks, but some motifs showed clear
differences and allowed a distinction between artificial and real-world networks [32].
Furthermore, it was suggested that the resolution for a discrimination between net-
works by the use of motif significance profiles may be enhanced by the use of motifs
of increased size and by the use of refined null model networks for calculation of
statistical significance. An enhanced resolution of higher order motifs was confirmed
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by a comparison of significance profiles of motifs of size four [36]. This study puts
the assignment of networks of developmental gene-regulation, signal transduction,
and neuronal connections into one superfamily on the basis of three vertex motif
significance profiles as described in the previous paragraph into question.

5.6.5 Evolutionary Origin of Network Motifs

Convergent Evolution of Motifs in Gene-Regulatory Networks The evolutionary
origin of network motifs has been investigated in gene-regulatory networks of E. coli
and S. cerevisiae [6]. For the analyzed motifs (feed-forward loop motif, bifan motif,
and others), it was discovered that the genes of different motif occurrences are in most
instances not evolutionarily related. This indicates that the occurrences of these motifs
have not been created by duplication of ancestral circuits. These findings suggest a
convergent evolution of motif occurrences in these gene-regulatory networks as a
consequence of their optimal design. Convergent evolution was also discovered for
multioutput feed-forward-loop motifs [17] (Section 5.6.3).

The gene-regulatory networks of S. cerevisiae and four related species belonging
to the class of hemiascomycetes have been analyzed for the cooccurrence of evolu-
tionarily related genes in matches of different motifs. In this study it was shown that
occurrences of statistically significant overrepresented motifs are to the same degree
evolutionarily conserved as all other interaction patterns and that genes are not subject
to evolutionary pressure to preserve corresponding interaction patterns [28]. Similar
results were obtained in a study on the evolution of gene-regulatory networks, which
showed that regulatory interactions in motifs are lost and retained at the same rate as
the other interactions in the network [2].

Evolutionary Conservation of Motifs in a Protein Interaction Network The pro-
teins of the protein interaction network of S. cerevisiae were studied for a correlation
between their evolutionary conservation and the structure of the motifs to which they
belong [51]. A subset of evolutionarily conserved proteins was identified, which have
known orthologs in five higher eukaryotes. The fraction of motif occurrences of motifs
up to size five, which are fully assembled by proteins of the evolutionarily conserved
protein subset, was determined. This fraction was significantly higher than expected
atrandom, suggesting that motifs represent evolutionarily conserved topological units
in protein interaction networks.

5.7 SUMMARY

Network motifs have been introduced in recent years as small statistically significant
overrepresented patterns of local interconnections in biological and technological
networks. The structure of these complex networks differs strongly from random
graphs, and global structural properties such as degree distribution, network diam-
eter, and clustering coefficients have already been extensively studied in contrast to
local structural properties. In the case of biological networks, which are more and
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more available these days, their structure has been shaped during evolution. The
overabundance of particular motifs here has been supposed to be a consequence of
a positive selection for these interaction patterns due to their functional or structural
properties. A common hypothesis on network motifs considers them as basic building
blocks and as information processing units of complex networks.

The detection of network motifs is computationally challenging as it involves
different computational and combinatorial problems. Despite the high computational
complexity associated with the search for network motifs, the analysis of typical real-
world networks is feasible, and tools exist for this task. The calculation of statistical
significance of network motifs is usually based on a comparison of motif frequency in
the analyzed real-world network to the frequency distribution in properly randomized
networks. These randomized networks are considered as null model networks since
their structure is generated by a process free of any type of selection acting on motifs.
Generally, the detection of network motifs depends highly on the applied method for
the generation of the null model networks and, therefore, the choice of an appropriate
null model is very important. By this approach, network motifs are solely identified
on the basis of their statistical properties and further analyses are necessary to identify
motifs that represent functional properties and design principles.

Numerous studies have been carried out since their introduction addressing various
aspects of network motifs. Several motifs have been found in biological networks,
for example, the feed-forward loop motif and the bifan motif, for which the dynamic
properties have been studied in some detail. In the regard, it was shown that the feed-
forward loop motif can act as a persistence detector by filtering out noise within the
process of gene regulation. Dynamic properties of network motifs have also been
found and it has been shown that network motifs can act as information processing
units. It was indicated that biological networks usually represent a static view of all
possible interactions and that some motifs could emerge as a consequence of the net-
work structure, but are not active in vivo. For gene-regulatory networks, it was shown
that motif occurrences are not evolutionarily conserved nor emerge through duplica-
tion of ancestral circuits. In contrast, in protein interaction networks the tendency for
motif occurrences to be completely assembled by evolutionarily conserved proteins
exists.

The distribution of motifs characterizes the local structure of networks. Different
methods have been applied to compare networks on the basis of their local structure
using either the statistical significance or the frequency of motifs. The statistical sig-
nificance of motifs has been used for the calculation of significance profiles for differ-
ent networks. Networks with similar profiles have been classified into superfamilies.
This method grouped networks of unrelated fields together to the same superfamilies
on the basis of the statistical significance of motifs. For protein interaction networks,
methods based on the frequency of motifs allow the selection of suitable network gen-
eration models, which best reflect the structure of real-world networks. For this task
also a distance measure based on frequency differences of a particular set of motifs
has been introduced for undirected networks and has been applied to model selection.

The occurrences of motifs usually overlap and only a small fraction exists in
isolation. Different concepts have been introduced to characterize these higher
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order structures built by overlapping motif matches, such as motif generalizations
and network themes, and different levels of network organization are assumed.
Furthermore, different frequency concepts have been introduced that have particular
restrictions on counting overlapping matches and characterize different aspects of
network motifs. Currently, it is not clear whether an overlapping of motif occurrences
affects the findings obtained when motifs were considered in isolation.

5.8 EXERCISES

1. How were network motifs originally defined in the research literature. What
networks are used as null model networks for the detection of statistically
significant overrepresented motifs in a real-world network?

2. How do the existing concepts of motif frequency calculation address
overlapping matches? Which concept is usually used to specify the frequency
of a motif? What is the uniqueness value of a motif?

3. How does a commonly used randomization algorithm work for the generation
of the randomized versions of a target network? Which global network property
is preserved in these randomized networks?

4. What are the roles of the vertices of the feed-forward loop motif? How do the
three simple duplications of each vertex role look like?

5. Givenis the following directed network by a sequence of edges, where each edge
is represented by a pair of vertex ID’s (<ID_source>, <ID_target>): {(1,2),
(1,3),(2,3), (24), (2,7), (4.5), (4,6), (4,7), (6,5), (8,4), (8,5), (8,10), (9,1), (9,8),
(9,10), (10,2), (10,4), (10,1)}. Draw the network and identify all matches of the
feed-forward loop motif. Determine the frequency values for each of the three
different frequency concepts.
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NETWORK CLUSTERING

BALABHASKAR BALASUNDARAM AND SERGIY BUTENKO

6.1 INTRODUCTION

Clustering can be loosely defined as the process of grouping objects into sets called
clusters, so that each cluster consists of elements that are similar in some way. The
similarity criterion can be defined in several different ways, depending on applications
of interest and the objectives that the clustering aims to achieve. For example, in
distance-based clustering (see Fig. 6.1) two or more elements belong to the same
cluster if they are close with respect to a given distance metric. On the contrary,
in conceptual clustering, which can be traced back to Aristotle and his work on
classifying plants and animals, the similarity of elements is based on descriptive
concepts.

Clustering is used for multiple purposes, including finding “natural” clusters
(modules) and describing their properties, classifying the data, and detecting
unusual data objects (outliers). In addition, treating a cluster or one of its elements as
a single representative unit allows us to achieve data reduction.

Network clustering, which is the subject of this chapter, deals with clustering the
data represented as a network, or a graph. Indeed, many data types can be conveniently
modeled using graphs. This process is sometimes called link analysis. Data points are
represented by vertices, and an edge exists if two data points are similar or related
in a certain way. It is important to note that the similarity criterion used to construct
the network model of a data set is based on pairwise relations, while the similarity
criterion used to define a cluster refers to all elements in the cluster and needs to

Analysis of Biological Networks, Edited by Bjorn H. Junker and Falk Schreiber
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FIGURE 6.1 An illustration of distance-based clustering.

be satisfied by the cluster as a whole and not just pairs of its elements. In order to
avoid confusion, from now on we will use the term “cohesiveness” when referring
to the cluster similarity. Clearly, the definition of similarity (or dissimilarity) used
to construct the network is determined by the nature of the data and based on the
cohesiveness we expect in the resulting clusters.

In general, network clustering approaches can be used to perform both distance-
based and conceptual clustering. In the distance-based clustering, the vertices of the
graph correspond to the data points, and edges are added if the points are close enough
based on some cutoff value. Alternately, the distances could just be used to weight
the edges of a complete graph representing the data set. The following examples
illustrate the use of networks in conceptual clustering. Database networks are often
constructed by first designating a field as matching field, then vertices representing
records in the database are connected by an edge if the two matching fields are
“close.” In protein interaction networks, the proteins are represented by vertices, and
a pair is connected by an edge if they are known to interact. In gene coexpression
networks, genes are vertices, and an edge indicates that the pair of genes (end points)
are coexpressed over some cutoff value, based on microarray experiments.

It is not surprising that clustering concepts have been fundamental to data analysis,
data reduction, and classification. Efficient data organization and retrieval that results
from clustering has impacted every field of science and engineering that requires man-
agement of massive amounts of data. Cluster analysis techniques and algorithms in
the areas of statistics and information sciences are well documented in several excel-
lent textbooks [6,33,40,41,62]. Some recent surveys on cluster analysis for biological
data, primarily using statistical methods, can be found in Refs. [42,59]. However,
we are unaware of any text devoted to network clustering, which draws from several
rich and diverse fields of study such as graph theory, mathematical programming, and
theoretical computer science. The aim of this chapter is to provide an introduction to
various clustering models and algorithms for networks modeled as simple, undirected
graphs that exist in the literature. The basic concepts presented here are simple enough
to be understood without any special background. Simple algorithms are presented
whenever possible, and if more background is required apart from the basic graph
theoretic ideas, we refer to the original literature and survey the results. We hope
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this chapter serves as a starting point to the readers for exploring this interesting area
of research.

6.2 NOTATIONS AND DEFINITIONS

Chapter 2 provides an introduction to basic concepts in graph theory. In this section,
we give some definitions that will be needed subsequently as well as describe the
notations that we require. These definitions can be found in any introductory graph
theory textbook, and for further reading we recommend the texts by Diestel [20] or
West [66].

Let G = (V, E) be a simple, finite, undirected graph. We consider such graphs
only in this chapter, and we use n and m to denote the number of vertices and edges
in G. Denote G = (V, E) and G[S], the complement graph of G and the subgraph of
G induced by S C V, respectively (see Chapter 2 for definitions). We denote N(v),
the set of neighbors of a vertex v in G. Note that v ¢ N(v), and N[v] = N(v) U {v}
is called a closed neighborhood. The degree of a vertex v is deg(v) = |N(v)|, the
cardinality of its neighborhood. The shortest distance (in terms of number of edges)
between any two vertices u, v € V in G is denoted by d(u, v). Then, the diameter of
G is defined as diam(G) = max,, yev d(u, v). When G is not connected, d(u, v) is co
for u and v in different components and so is the diameter of G. The edge connectivity
«’'(G) of a graph is the minimum number of edges that must be removed to disconnect
the graph. Similarly, the vertex connectivity (or just connectivity) «(G) of a graph is
the minimum number of vertices whose removal results in a disconnected or trivial
graph. In the graph in Fig. 6.2, k(G) = 2 (e.g., removal of vertices 3 and 5 would
disconnect the graph) and «'(G) = 2 (e.g., removal of edges (9,11) and (10,12) would
disconnect the graph).

A clique C is a subset of vertices such that an edge exists between every pair of
vertices in C, that is, the induced subgraph G[C] is complete. A subset of vertices
I is called an independent set (also called a stable set) if for every pair of vertices

2 8 9

11

4 6
FIGURE 6.2 An example graph.
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in I, (i, j) is not an edge, that is, G[I] is edgeless. An independent set (or clique) is
maximal if it is not a subset of any larger independent set (clique), and maximum if
there are no larger independent sets (cliques) in the graph. For example, in Fig. 6.2,
I ={3,7, 11} is a maximal independent set as there is no larger independent set
containing it (we can verify this by adding each vertex outside / to / and it will no
longer be an independent set). The set {1, 4,5, 10, 11} is a maximum independent
set, one of the largest cardinality in the graph. Similarly {1, 2, 3} is a maximal clique
and {7, 8, 9, 10} is the maximum clique. Note that C is a clique in G if and only if C
is an independent set in the complement graph G. The clique number »(G) and the
independence number «(G) are the cardinalities of a maximum clique and independent
setin G, respectively. Maximal independent sets and cliques can be found easily using
simple algorithms commonly referred to as “greedy” algorithms. We explain such an
algorithm for finding a maximal independent set. Since we know that after adding
a vertex v to the set, we cannot add any of its neighbors, it is intuitive (or greedy!)
to add a vertex of minimum degree in the graph so that we remove fewer vertices
leaving a larger graph as we are generally interested in finding large independent sets
(or if possible a maximum independent set). The greedy maximal independent set
algorithm is presented in the following, and Fig. 6.3 illustrates the progress of this
algorithm.

greedy_maximal_independent_set_algorithm (graph G = (V, E))
initialize I := @;
while V # @ {
pick a vertex v of minimum degree in G[V] ;
I:=1U{};
V.=V \ N[v];
}

The greedy maximal clique algorithm works similarly, but with one difference.
Since after adding a vertex v, we can only consider neighbors of v to be included,
we pick v to be a vertex of maximum degree in the graph in an attempt to find
a large clique. This algorithm is part of a clustering approach discussed in detail
in Section 6.4. If suitable vertex weights exist, which are determined a priori
or dynamically during the course of an algorithm, the weights could be used
to guide the vertex selection instead of vertex degrees, but in a similar fashion
(See Exercise 1).

A dominating set D C V is a set of vertices such that every vertex in the graph is
either in this set or has a neighbor in this set. A dominating set is said to be minimal if it
contains no proper subset that is dominating and it is said to be a minimum dominating
setif itis of the smallest cardinality. Cardinality of a minimum dominating set is called
the domination number, y(G), of a graph. For example, D = {7, 11, 3} is a minimal
and minimum dominating set of the graph in Fig. 6.2. A connected dominating set
is one in which the subgraph induced by the dominating set is connected and an
independent dominating set is one in which the dominating set is also independent.
In Section 6.5, we describe clustering approaches based on these two models.
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FIGURE 6.3 Greedy maximal independent set algorithm progress. Black vertex is added to

I and gray vertices are the neighbors considered removed along with the black vertices. If a tie
exists between many vertices of minimum degree, we choose the one with the smallest index.

Algorithms and complexity: 1t is important to acknowledge the fact that many
models used for clustering networks are believed to be computationally “intractable,”
or “NP-hard.” Even after decades of research, no efficient algorithm is known for
a large class of such intractable problems. However, an efficient algorithm for any
such problem implies existence of an efficient algorithms for all such problems!
An efficient algorithm being one that runs in time (measured as the number of
fundamental operations done by the algorithm) that is a fixed polynomial function of
the input size. A problem is said be “tractable” if such a polynomial-time algorithm is
known. The known algorithms for intractable problems, on the contrary, take time that
is exponential in input size. Consequently these algorithms are extremely time con-
suming on large networks. The “theory of NP-completeness” is a rich field of study
in theoretical computer science that studies the tractability of problems and classifies
them broadly as “tractable” or “intractable.” While there are several clustering models
that are tractable, many interesting ones are not. The intractable problems are often
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approached using heuristic or approximate methods. The basic difference between
approximation algorithms and heuristics is the following. Approximation algorithms
provide performance guarantees on the quality of the solution returned by the algo-
rithm. An algorithm for a minimization problem with approximation ratio o (> 1)
returns a solution with an objective value that is no larger than o times the minimum
objective value. Heuristics, on the contrary, provide no such guarantee and are
usually evaluated empirically based on their performance on established benchmark
testing instances for the problem they are designed to solve. We will describe simple
greedy heuristics and approximation algorithms for hard clustering problems in this
chapter. An excellent introduction to complexity theory can be found in Refs. [27,50],
whereas the area of approximation algorithms is described well in Refs. [7,36,64]. For
the application of meta-heuristics in solving combinatorial optimization problems,
see Ref. [2].

6.3 NETWORK CLUSTERING PROBLEM

Given a graph GY = (VY EY), the clustering problem is to find subsets (not neces-
sarily disjoint) {VIO, el V,O} of V0 such that V° = le Vl-O, where each subset is a
cluster modeled by structures such as cliques or other distance and diameter-based
models. The model used as a cluster represents the cohesiveness required of the cluster.
The clustering models can be classified by the constraints on relations between
clusters (clusters may be disjoint or overlapping) and the objective function used to
achieve the goal of clustering (minimizing the number of clusters or maximizing the
cohesiveness). When the clusters are required to be disjoint, {V10 R V,0 }isa cluster-
partition and when they are allowed to overlap, it is a cluster-cover. The first approach
is called the exclusive clustering, whereas the second overlapping clustering.

For a given G°, assuming that there is a measure of cohesiveness of the cluster
that can be varied, we can define two types of optimization problems:

Type I: Minimize the number of clusters while ensuring that every cluster formed
has cohesiveness over a prescribed threshold;

Type II: Maximize the cohesiveness of each cluster formed, while ensuring that the
number of clusters that result is under a prescribed number K (the last requirement
may be relaxed by setting K = 00).

As an example of Type I clustering, consider the problem of clustering an incomplete
graph with cliques used as clusters and the objective of minimizing the number of
clusters. Alternately, assume that G° has non-negative edge weights w,, e € E°. For
a cluster Vio, let E? denote the edges in the subgraph induced by Vio. Treating w as a
dissimilarity measure (distance), w(ElQ) = ,cpb We OF Max, o w, are meaningful
measures of cohesiveness that can be used to formulate the corlresponding Type 11
clustering problems. Henceforth, we will refer to problems from the literature as
Type I and Type II based on their objective.
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Cs

FIGURE 6.4 Abstracted version of the example graph.

After performing clustering, we can abstract the graph G° to a graph G' =
(V1, E') as follows: there exists a vertex vi1 e V! for every subset (cluster) Vl-O and
there exists an edge between vl-], v}- if and only if there exist x° € Vl-O and y € V]Q

such that (xo, yo) € EO. In other words, if any two vertices from different clusters had
an edge between them in the original graph G, then the clusters containing them are
made adjacent in G'. We can recursively cluster the abstracted graph G! in a similar
fashion to obtain a multilevel hierarchy. This process is called the hierarchical clus-
tering. Consider the example graph in Fig. 6.2, the following subsets form clusters in
this graph: C1 = {7, 8,9, 10}, C2» = {1, 2, 3}, C3 = {4, 6}, C4 = {11, 12}, Cs = {5}.
In Section 6.4, we will describe how this clustering was accomplished. However, given
the clusters of the example graph in Fig. 6.2, call it G, we can construct an abstracted
graph G!asshownin Fig.6.4.In G!,Cyand C4are adjacentsince9 € Ciand 11 € Cy
are adjacent in G°. Other edges are also added in a similar fashion.

The remainder of this chapter is organized as follows. We describe two broad
approaches to clustering and discuss Type I and Type II models in each category. In
Section 6.4, we present a Type I and Type II model, each based on cliques that are
popular in clustering biological networks. In Section 6.5, we discuss center-based
models that are popular in clustering wireless networks, but have strong potential for
use in biological networks. For all the models discussed, simple greedy approaches
that are easy to understand are described. We then conclude by pointing to more
sophisticated models and solution approaches and some general issues that need to
be considered before using clustering techniques.

6.4 CLIQUE-BASED CLUSTERING

A clique is a natural choice for a highly cohesive cluster. Cliques have minimum
possible diameter, maximum connectivity, and maximum possible degree for each
vertex—respectively interpreted as reachability, robustness, and familiarity, the best
situation in terms of structural properties that have important physical meaning in a
cluster.

Given an arbitrary graph, a Type I approach tries to partition it into (or cover it
using) minimum number of cliques. Type Il approaches usually work with a weighted
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complete graph and hence every partition of the vertex set is a clique partition.
The objective here is to maximize cohesiveness (by minimizing maximum edge
dissimilarity) within the clusters.

6.4.1 Minimum Clique Partitioning

Type 1 clique partitioning and clique covering problems are both NP-hard [27].
Consequently, exact approaches to solve these problems that exist in the literature
are computationally ineffective for large graphs. Heuristic approaches are preferred
for large graphs for this reason.

Before proceeding further, we should note that clique-partitioning and clique-
covering problems are closely related. In fact, the minimum number of clusters
produced in clique covering and partitioning are the same. Denote covering opti-
mum by c¢ and partition optimum by p. Since every clique partition is also a cover,
p>cLet{V0 ..., VCO } be an optimal clique cover. Any vertex v present in multiple
clusters causing overlaps can be removed from all but one of the clusters to which it
belongs, leaving the resulting cover with the same number of clusters and one less
overlap. Repeating this as many times as necessary would result in a clique partition
with the same number of clusters ¢. Thus, we can conclude that p = c¢. We are now
ready to describe a simple heuristic for clique partitioning:

greedy_clique_partitioning_algorithm (graph G = (V, E))
initialize i := 0; Q := @;
while V\ QO # @ {

i=i+1;
Ci =0
Vii=V\Q;

while V' # @ {
pick a vertex v of maximum degree in G[V'] ;

Ci:=C;U{v};
V' :=V' NN@);
}
0:=0UC;

}

The greedy clique partitioning algorithm finds maximal cliques in a greedy fashion
starting from a vertex of maximum degree. Each maximal clique found is then fixed
as a cluster and removed from the graph. This is repeated to find the next cluster
until all vertices belong to some cluster. When the algorithm begins, as no clusters
are known, the set Q that collects the clusters found is initialized to an empty set.
The outer while-loop checks whether there are vertices remaining in the graph that
have not been assigned to any cluster, and proceeds if they exist. Wheni = 1, V' =V
(the original graph) and the first cluster C; is found by the inner while-loop. First a
maximum degree vertex, say v, is found and added to C;. Since C has to be a clique,
all the non-neighbors of v are removed when V' is reset to V/ N N(v), restricting us to
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look only at neighbors of v. If the resulting V’ is empty, then we stop the inner while-
loop, otherwise we repeat this process to find the next vertex of maximum degree in
the newly found “residual graph” G[V’] to be added to C;. During the progress of the
inner while-loop, all non-neighbors for each newly added vertex are removed from
V', thereby ensuring that when the inner while-loop terminates, C is a clique and it
is added to the collection of clusters Q. The algorithm is greedy in its approach as we
always give preference to a vertex of maximum degree in the residual graph G[V'] to
be included in a cluster (clique). Then we check if V' \ Q is not empty, meaning that
there are vertices still in the graph not assigned to any cluster. For the next iteration
i = 2, vertices in C are removed since V' := V \ Q. The algorithm then proceeds in
a similar fashion. The inner while-loop by itself is the greedy algorithm for finding
a maximal clique in G[V’]. Table 6.1 reports the progress of this algorithm on the
example graph shown in Fig. 6.2, and Fig. 6.5 illustrates the result of this algorithm.

Extensive work has been done in the recent past to understand the structure
and function of proteins based on protein—protein interaction maps of organisms.
Clustering protein interaction networks (PINs) using cliques has formed the basis
for several studies that attempt to decompose the PIN into functional modules and
protein complexes. Protein complexes are groups of proteins that interact with each
other at the same time and place, while functional modules are groups of proteins
that are known to have pairwise interactions by binding with each other to participate

TABLE 6.1 The Progress of Greedy Clique Partitioning Algorithm on the Example
Graph, Fig. 6.2.

iter. i (0] Ci Vv v
1 (0] (0] 14 7
{7} {5,6,8,9, 10} 8
{7, 8} {5,9, 10} 9¢
{7,8,9} {10} 10
C, =1{7,8,9, 10} 0]
2 C %] {1,2,3,4,5,6,11,12} 3
(3} {1,2,4,5} 2
(2,3} {1, 5} 1¢
C,={1,2,3} @
3 C,UG, 0] {4,5,6,11, 12} 4¢
{4} {6} 6
Cs = {4,6) @
4 C,UC,U Cs 0] {5,11, 12} 11¢
{11 {12} 12
Cy = {11, 12} @
5 CIlUC,UC3UCy 0] {5} 5
Cs = {5} 0]

43 is the vertex of maximum degree in G[V'].

by ={1,2,3,4,5,6,7,8,9, 10, 11, 12}.

“Means a tie was broken between many vertices having the maximum degree in G[V'] by choosing
the vertex with smallest index.
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FIGURE 6.5 Result of the greedy clique partitioning algorithm on the graph in Fig. 6.2.

in different cellular processes at different times [63]. Spirin and Mirny [63] use
cliques and other high density subgraphs to identify protein complexes (splicing
machinery, transcription factors, etc.) and functional modules (signalling cascades,
cell-cycle regulation, etc.) in Saccharomyces cerevisiae. Gagneur et al. [26] introduce
a notion of modular decomposition of PINs using cliques that not only identifies a
hierarchical relationship, but in addition introduces a labeling of modules (as “series,
parallel, and prime”) that results in logical rules to combine proteins into functional
complexes. Bader et al. [9] use logistic regression based methodology incorporating
screening statistics and network structure in gaining confidence from high-throughput
proteomic data containing significant background noise. They propose constructing
a high-confidence network of interactions by merging proteomics data with gene
expression data. They also observe that cliques in the high-confidence network
are consistent with those found in the original network, and the distance-related
properties of the original network are not altered in the high-confidence network.

6.4.2 Min-Max k-Clustering

The min—max k-clustering problem is a Type Il clique partitioning problem with min—
max objective. Consider a weighted complete graph G = (V, E) with weights w,, <
We, < -+ < W, , Where m = n(n — 1)/2. The problem is to partition the graph into
no more than & cliques such that the maximum weight of an edge between two vertices
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inside a clique is minimized. In other words, if Vi, ..., Vj is the clique partition, then
we wish to minimize max;—1.._x max, yev; Wyp. This problem is NP-hard and it is
NP-hard to approximate within a factor less than two, even if the edge weights obey
triangle inequality (i.e., for every distinct triple i, j, k € V, w;; + wjx > wik). The
best possible approximation algorithms (returning a solution that is no larger than
twice the minimum) for this problem with edge weights obeying triangle inequality
are available in Refs. [30,38].

The weight w;; between two vertices i and j can be thought of as a measure of
dissimilarity—larger w;; means more dissimilar i and j are. The problem then tries to
cluster the graph into at most k cliques such that the maximum dissimilarity between
any two vertices inside a clique is minimized. Given any graph G’ = (V', E'), the
required edge weighted complete graph G can be obtained in different ways using
meaningful measures of dissimilarity. The weight w;; could be d(i, j), the shortest
distance between i and j in G’. Other appropriate measures are «(i, j) and «'(i, j),
which denote, respectively, the minimum number of vertices and edges that need to
be removed from G’ to disconnect i and j [28]. Since these are measures of similarity
(since larger value for either indicates the two vertices are “strongly” connected to each
other), we could obtain the required weights as w;; = |[V'| — (i, j) or |E'| — k'(i, j).
These structural properties used for weighting can all be computed efficiently in
polynomial time [5] and are applicable to protein interaction networks. One could
also consider using statistical correlation between pairs of vertices in weighting the
edge between them. Since correlation is a similarity measure, we could use one
minus the correlation coefficient between pairs of vertices as a dissimilarity measure
to weight the edges. This is especially applicable in gene coexpression networks.

The bottleneck graph of a weighted graph G = (V, E) is defined for a given
number c as follows: G(c) = (V, E.) where E. = {e € E : w, < c}. The bottleneck
graph G(c) contains only those edges with weight at most c¢. Figure 6.6 illustrates
the concept of bottleneck graphs. This notion has been predominantly used as a

c o,
1
b
Bottleneck graph G(1) Bottleneck graph G(2)
Greedy MIS on G(I) : {a,b.e,f} Greedy MIS on G(2) : {a,e}

FIGURE 6.6 An example complete weighted graph G and its bottleneck graphs G(1) and
G (2) for weights 1 and 2, respectively. MIS found using the greedy algorithm with ties between
minimum degree vertices broken by choosing vertices in alphabetical order.
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procedure to reveal the hierarchy in G. For simplicity assume that the edges are
sorted and indexed so that we, < we, < -+ < w,,. Note that G(0) is an edgeless
graph and G(w,,, ) is the original graph G. As c varies in the range w,, to w,,,, we can
observe how the components appear and merge as ¢ increases, enabling us to develop
a dendrogram or a hierarchical tree structure. Similar approaches are discussed by
Girvan and Newman [28] to detect community structure in social and biological
networks.

Next we present a bottleneck heuristic for the min—max k-clustering problem
proposed in Ref. [38]:

bottleneck_min-max_k-clustering_algorithm (graph G = (V, E), sorted edges
Wey < Wey = -+° = we,,l)
initialize i := 0,stop := false;
while stop = false {
I:=i+1;
G := bottleneck(we;);
I := MIS(Gyp);
if 7] <k {
return /;
stop = true;
}
}

The procedure bottleneck(w,,) returns the bottleneck graph G(wy,;), and MI1S(Gy,)
is an arbitrary procedure for finding a maximal independent set (MIS) in G, as
illustrated in Fig. 6.6. One of the simplest procedures to finding a MIS in a graph G
is the greedy approach described in Section 6.2.

Consider the algorithm during some iteration i. If there exists a MIS in G(w,,;) of
size more than k, then we cannot partition G(wy;) into k cliques as the vertices in the
MIS must belong to different cliques. This also means there is no clique partition
with at most k cliques in G with maximum edge weight in all cliques under wy;.
Hence, we know that the optimum answer to our problem is at least we,, , (this
observation is critical to show that the solution returned is no larger than twice the
minimum possible when the edge weights satisfy the triangle inequality). Since
our objective is to not have more than k cliques, we proceed to the next iteration
and consider the next bottleneck graph G(we,,,). On the contrary, if in iteration
i the MIS we find in G(w,,;) is of size less than or equal to k, we terminate and
return the MIS found to create clusters. Note that although we found an MIS of
size at most k, it does not imply that there are no independent sets in G(w,;) of
size larger than k. This algorithm will actually be optimal if we manage to find a
maximum independent set (one of largest size) in every iteration. However, this
problem is NP-hard and we have to restrict ourselves to finding MIS using heuristic
approaches such as the greedy approach described earlier to have a polynomial time
algorithm.
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¢ b

FIGURE 6.7 The output of the bottleneck min—max two-clustering algorithm on the graph
shown in Fig. 6.6.

Without loss of generality, let I = {1, ..., p} be the output of the above algorithm
terminating in iteration i with the bottleneck graph G(w,;). We can form p clusters
V1, ..., Vp by taking each vertex in I and its neighbors in G(w,; ). Note that the result-
ing clusters could overlap. In order to obtain a partition, we can create these clusters
sequentially from 1 to p while ensuring that only neighbors that are not already in
any previously formed cluster are included for the cluster currently being formed. In
other words, the cluster cover Vi, ..., V, are the closed neighborhoods of 1, ..., p
in the last bottleneck graph G(w,;). To obtain a cluster partition, vertices included in
Vi,...,Vizjarenotincludedin V; forl = 2, ..., p. G[V1], ..., G[V,]is a partition
of G into p cliques and p < k. For any edge in any clique G[V}], it is either between /
and a neighbor of / in G(wy,) or it is between two neighbors of / in G(w,;). In the first
case, the edge weight is at most w,, and in the second case, the edge weight is at most
2wy, as the edge weights satisfy the triangle inequality. This is true for all clusters and
hence the maximum weight of any edge in the resulting clusters is at most 2w, . Since
we found an independent set of size more than & in iteration i — 1 (which is the reason
we proceeded to iteration i), as noted earlier the optimum answer w* > w,, and our
solution 2wy, is at most 2w*, that is, w* < 2w,, < 2w™*. Given the intractability of
obtaining better approximation, this is likely the best we can do in terms of a guaran-
teed quality solution. Figure 6.6 showing the bottleneck graphs also shows the MIS
found using a greedy algorithm with ties between minimum degree vertices broken
according to the alphabetical order of their labels. Figure 6.7 shows the clustering out-
put of the bottleneck min—max k-clustering algorithm with k = 2 on the graph shown
in Fig. 6.6.

6.5 CENTER-BASED CLUSTERING

In center-based clustering models, the elements of a cluster are determined based
on their similarity with the cluster’s center or cluster-head. The center-based
clustering algorithms usually consist of two steps. First, an optimization procedure
is used to determine the cluster-heads, which are then used to form clusters around
them. Popular approaches such as k-means clustering used in clustering biological
networks fall under this category. However, k-means and its variants are Type II
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approaches as k is fixed. We present here some Type I approaches as well as a Type 11
approach suitable for biological networks.

6.5.1 Clustering with Dominating Sets

Recall the definition of a dominating set from Section 6.2. Minimum dominating
set and related problems provide a modeling tool for center-based clustering of
Type L. The use of dominating sets in clustering has been quite popular especially
in telecommunications [10,18]. Clustering here is accomplished by finding a small
dominating set. Since the minimum dominating set problem is NP-hard [27],
heuristic approaches and approximation algorithms are used to find a small
dominating set.

If D denotes a dominating set, then for each v € D the closed neighborhood N[v]
forms a cluster. By the definition of domination, every vertex not in the dominating
set has a neighbor in it and hence is assigned to some cluster. Each v in D is
called a cluster-head and the number of clusters that result is exactly the size of
the dominating set. By minimizing the size of the dominating set, we minimize the
number of clusters produced resulting in a Type I clustering problem. This approach
results in a cluster cover since the resulting clusters need not be disjoint. Clearly,
each cluster has diameter at most two, as every vertex in the cluster is adjacent to its
cluster-head and the cluster-head is “similar” to all the other vertices in its cluster.
However, the neighbors of the cluster-head may be poorly connected among them-
selves. Furthermore, some postprocessing may be required as a cluster formed in this
fashion from an arbitrary dominating set could completely contain another cluster.

Clustering with dominating sets is especially suited for clustering protein
interaction networks to reveal groups of proteins that interact through a central
protein, which could be identified as a cluster-head in this method. We will now
point out some simple approaches to obtain different types of dominating sets.

Independent Dominating Sets Recall the definition of independent domination
from Section 6.2. Note that a maximal independent set [ is also a minimal domi-
nating set (e.g., {3, 7, 11} in Fig. 6.2 is a maximal independent set, which is also a
minimal dominating set). Indeed, every vertex outside / has a neighbor inside (other-
wise it can be added to this set contradicting its maximality) making it a dominating
set. Furthermore, if there exists I’ C I that is dominating, then there exists some ver-
tex v € I\ I’ that is adjacent to some vertex in I’. This contradiction to independence
of I indicates that / is a minimal dominating set.

Hence finding a maximal independent set results also in a minimal independent
dominating set that can be used in clustering the graph as described in the intro-
duction. Here, no cluster formed can contain another cluster completely, as the
cluster-heads are independent and different. However, for two cluster-heads vy, v,
N(v1) could be completely contained in N(v3). Neither minimality nor independence
are affected by this property. The resulting cluster cover can be easily converted
to a partition by observing that vertices common to multiple clusters are simply
neighbors of multiple cluster-heads and can be excluded from all clusters but one.
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The greedy algorithm for minimal independent dominating sets below proceeds
by adding a maximum degree vertex to the current independent set and then deleting
that vertex along with its neighbors. Note that this algorithm is greedy because it adds
a maximum degree vertex so that a larger number of vertices are removed in each
iteration, yielding a small independent dominating set. This is repeated until no more
vertices exist. The progress of this algorithm is detailed in Table 6.2. The result of
this algorithm on the graph in Fig. 6.2 is illustrated in Fig. 6.8.

greedy_minimal_independent_dominating_set_algorithm (graph G = (V, E))
initialize I :=@, V' :=V;
while V' £ @ {
pick a vertex v of maximum degree in G[V'] ;
I:=1U{v};
V' :=V’'\ N[v];
}

Connected Dominating Sets In some situations, it might be necessary to ensure
that the cluster-heads themselves are connected in addition to being dominating, and
not independent as in the previous model. A connected dominating set (CDS) is a
dominating set D such that G[D] is connected. Finding a minimum CDS is also
a NP-hard problem [27], but approximation algorithms for the problem exist [31].
Naturally, G is assumed to be connected for this problem.

The following algorithm is a greedy vertex elimination type heuristic for finding
CDS from Ref. [15]. In this heuristic, we pick a vertex of minimum degree u in the
graph and delete it, if deletion does not disconnect the graph. If it does, then the vertex
is fixed (added to set F’) to be in the CDS. Upon deletion, if # has no neighbor in the
fixed vertices, a vertex of maximum degree in G[D] that is also in the neighborhood
of u is fixed ensuring that u# is dominated. Thus, in every iteration D is connected
and is a dominating set in G. The algorithm terminates when all the vertices left in D
are fixed (D = F) and that is the output CDS of the algorithm. See Table 6.3 for the
progress of the algorithm on the example graph and the result is shown in Fig. 6.9.
The resulting clusters are all of diameter at most two, as vertices in each cluster are

TABLE 6.2 The Progress of Greedy Minimal Independent Dominating set Algorithm
on the Example Graph, Fig. 6.2.

iter. 1 \% v?
0 0] vb 7

1 {7 {1234,11,12}

2 {13} {11,12} 11¢
3 {7,3,11} (0]

43 is the vertex of maximum degree in G[V'].

by ={1,2,3,4,5,6,7,8,9, 10, 11, 12}.

“Means a tie was broken between many vertices having the maximum degree in G[V'] by choosing the
vertex with smallest index.
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FIGURE 6.8 Result of the greedy minimal independent dominating set algorithm on the
graph in Fig. 6.2. The minimal independent dominating set found is {7, 3, 11}. The figure also
shows the resulting cluster cover.

adjacent to their cluster-head and the cluster-heads form a CDS.

greedy_CDS _algorithm (connected graph G = (V, E))
initialize D := V; F := @;
while D\ F # @ {
pick u € D\ F with minimum degree in G[D];
if G[D \ {u}] is disconnected

F = FU{u};
else {
D:=D\ {u);

ifNuWNF=0{
pick w € N(u) N D with maximum degree in G[D];
F .= FU{w};
}
}
}

An alternate constructive approach to CDS uses spanning trees. A spanning tree in
G = (V, E) is a subgraph G’ = (V, E’) that contains all the vertices V and G’ is a
tree. See Chapter 2 for additional definitions. All the nonleaf (inner) vertices of a
spanning tree can be used as a CDS. Larger the number of leaves, smaller the CDS.
The problem is hence related to the problem of finding a spanning tree with maximum
number of leaves, which is also NP-hard [27]. However, approximation algorithms
with guaranteed performance ratios can be found in Refs. [47,48,61] for this problem.
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TABLE 6.3 The Progress of Greedy Connected Dominating Set Algorithm on the
Example Graph, Fig. 6.2.

D F u* NwNF Nw)ND w’
Ve 0] 14 = 2,3} 3
VA ({1} {3} 24 #0 - -
VA\{1,2} {3} 44 +0@ - -
VA {L,2,4} 3} 6 = {7} 7
V\({1,2,4,6) 3,7} 114 =0 {9, 12} 9
{3,5,7,8,9, 10, 12} {3,7,9} 12 = {10} 10
3,5,7,8,9, 10} {3,7,9, 10} 5¢ - - -
{3,5,7,8,9, 10} {3,7,9, 10, 5} 8 #0 - -
{3,5,7,9, 10} {3,7,9, 10, 5}

%y is the vertex of minimum degree in G[D] in D \ F.

b is the vertex of maximum degree in G[D] in N(u) N D.
‘V={1,2,3,4,5,6,7,8,9,10, 11, 12}.

4Means a tie was broken between many vertices by choosing the vertex with smallest index.
“Indicates that G[D \ {u}] is disconnected.

6.5.2 k-Center Clustering

k-Center clustering is a variant of the well-known k-means clustering approach.
Several variants of k-means clustering have been widely used in clustering data,
including biological data [12,16,21,25,32,46,54,56,67]. In these approaches, we seek

Q}M@KL

Cluster cover produced

FIGURE 6.9 Result of the greedy CDS algorithm on the graph in Fig. 6.2. The found CDS
{3,5,7,9, 10} is shown with the resulting cluster cover.



130 NETWORK CLUSTERING

to identify k-cluster-heads (k clusters) such that some objective that measures the
dissimilarity (distance) of the members of a cluster to the cluster-head is minimized.
The objective could be to minimize the maximum distance of any vertex to the
cluster-heads, or the total distance of all vertices to the cluster-heads. Other objectives
include minimizing mean and variance of intracluster distance to cluster-head over
all clusters. Different choice of dissimilarity measures and objectives yield different
clustering problems and often, different clustering solutions. The traditional k-means
clustering deals with clustering points in the n-dimensional Euclidean space where
the dissimilarity measure is the Euclidean distance and the objective is to minimize
the mean squared distance to cluster centroid (the geometric centroid of points in the
cluster).

The k-center problem is a Type-II center-based clustering model with a min—max
objective that is similar to the above approaches. Here the objective is to minimize the
maximum distance of any vertex to the cluster-heads, where the distance of a vertex
to the cluster-heads is the distance to the closest cluster-head. Formally, the problem
is defined on a complete edge weighted graph G = (V, E) with non-negative edge
weights w,, e € E. These weights can be assumed to be a distance or dissimilarity
measure. In Section 6.4.2, we have already discussed several ways to weight the
edges. The problem is to find a subset of at most k vertices S such that the cost of the
k-center given by w(S) = max;cy minjeg w;; is minimum. It can be interpreted as
follows: for each i € V, its distance to S is its distance to a closest vertex in S given
by min jes w;;. This distance to S is clearly zero for all vertices i € S. The measure
we wish to minimize is the distance of the farthest vertex in V \ S from S. Given a
k-center S, clusters can be formed as follows: Let Vi={ve V\S:w;, <
w(S)} U (i} fori € §, then Vi, ..., V|5 cover G. If we additionally require that the
distances obey the triangle inequality, then each G[V;] is a clique with the distance
between every pair of vertices being no more than 2w(S). This leads to a Type II
optimization problem where we are allowed to use up to k clusters and we wish to
minimize the dissimilarity in each cluster that is formed (by minimizing w(S)). This
problem is NP-hard and it is NP-hard to approximate within a factor less than 2, even
if the edge weights satisfy the triangle inequality. We present here an approximation
algorithm from Ref. [37] that provides a k-center S such that w(S*) < w(S) < 2w(S*),
where S* is an optimum k-center. As it was the case with the bottleneck algorithm
for the min—max k-clustering presented in Section 6.4.2, the approximation ratio
result is guaranteed only for the case when the triangle inequality holds.

bottleneck_k-center_algorithm (graph G = (V, E), sorted edges w,, < w,,
<= we,)

Initialize i := O,stop := false;

While stop = false {

i=i+1;

Gyp = bottleneck(w,);
1 := MIS(G3);

If |7 < k {

Return /;
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stop = true;
}
}

The kth power of a graph G =(V,E) is a graph G* = (v, E¥) where
EF = {G,j)):i,je V,i < jd(, j) <k}. In addition to edges in E, G* contains
edges between pairs of vertices that have a shortest path of length at most
k between them in G. The special case of square graphs is used in this algorithm.

As before, the procedure bottleneck(w,,) returns the bottleneck graph G(w,;), and
the procedure M1S (G%) returns any maximal independent set in the square graph of
Gp. The above algorithm uses the following observations. If there exists a k-center
S of cost w,, (since the cost is always a weight of some edge in G), then set S
actually forms a dominating set in the bottleneck graph G(w,;) and vice versa. On
the contrary, if we know that the minimum dominating set in G(w,;) has size k + 1
or more, then no k-center of cost at most w,,; exists, and hence the optimum cost we
seek is at least w,, . Since the minimum dominating set size is NP-hard to find, we
make use of the following facts. Consider some arbitrary graph G’ and let I be an
MIS in the square of G’. Then we know that, distance in G’ between every pair of
vertices in [ is at least three. In order to dominate a vertex v in I, we should add
either v or a neighbor u of v to any dominating set in G’. But u cannot dominate any
other vertex in [ as they are all at least distance three apart (if # dominates another
vertex v’ in I, then there is path via u of length two between v and v'). Hence any
minimum dominating set in G’ is at least as large as /. In our algorithm, if we find
an MIS in the square of the bottleneck graph G(wel.)2 of size at least k + 1, then
we know that no dominating set of size k exists in G(w,), and thus we know no
k-center of cost at most w,, exists in G. Thus, we proceed in the algorithm until we
find an MIS of size at most k and terminate. The approach is clearly a heuristic as
we described in the previous bottleneck algorithm. The approximation ratio follows
from the fact that if we terminate in iteration #, then the optimum is at least as large
as wg;, that is, w(S*) > wy,,. Since I is an MIS in the square of the bottleneck graph
G(wel.)z, every vertex outside / has some neighbor in G(we,.)2 inside /. Thus, we
know that every vertex v outside / is at most two steps away in G(w,,) from some
vertex u inside I, and the direct edge (u, v) would have weight at most 2w, by
triangle inequality. Hence, w(/) < 2w,, < 2w(S8*). This algorithm on the graph from
Fig. 6.6 terminates in one step when k = 3. To find I, we used the greedy maximal
independent set algorithm mentioned in Section 6.2. The results are illustrated in
Fig. 6.10.

6.6 CONCLUSION

As pointed out earlier, this chapter is meant to be a starting point for readers interested
in network clustering, emphasizing only on the basic ideas and simple algorithms
and models that require a limited background. Numerous other models exist for
clustering, such as several variants of clique-based clustering [19,44,51], graph
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FIGURE 6.10 The bottleneck G(1) of the graph from Fig. 6.6, and the square of G(1). The set
1 is the output of the bottleneck k-center algorithm with k = 3. The corresponding clustering
is {a}, {b, ¢}, {d, e, f}; the objective value is 1 (which happens to be optimal).

partitioning models [23,24,49], min-cut clustering [43], and connectivity-based
clustering [34,35,58,60] to name a few. In fact, some of these approaches have been
used effectively to cluster DNA microarray expression data [19,34,44]. However,
more sophisticated approaches that are used in solving such problems are involved
and require a rigorous background in optimization and algorithms. Exact approaches
for solving clustering problems of moderate sizes are very much possible given the
state of the art computational facilities and robust commercial software packages
that are available, especially for mathematical programming. For solving large-scale
instances, since most problems discussed here are computationally intractable,
meta-heuristic approaches such as simulated annealing [1], tabu search [29], or
GRASP [22,53] offer an attractive option .

It is also often observed that the models we have discussed in this chapter are too
restrictive for use on real-life data resulting in a large number of clusters. One can use
the notion of a distance-k neighborhood of a vertex v to remedy this situation. The
distance-k neighborhood of a vertex v is Ni(v) defined to be all vertices that are at
distance k or less from v excluding v, that is, Ny(v) ={u € V: 1 <d(v,u) < k}.
These neighborhoods can be found easily using breadth first search algorithm
introduced in Chapter 2. Some empirical properties of the distance-k neighborhood of
vertices in real-life networks including biological networks are studied in Ref. [39].
This notion itself has been used to identify molecular complexes by starting with
a seed vertex, and adding vertices in distant neighborhoods if the vertex weights
are over some threshold [8]. The vertex weights themselves are based on k-cores
(subgraphs of minimum degree at least k) in the neighborhood of a vertex. k-Cores
were introduced in social network analysis [57] to identify dense regions of the
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network, and “resemble” cliques if k is large enough in relation to the size of the
k-core found. Moreover, models that relax the notion of cliques [11,13,14] and dom-
inating sets [17,45,52] based on distance-k neighborhoods also exist (see Exercises 3
and 4). Alternately, an edge density based relaxation of cliques called quasi-cliques
have also been studied [3,4]. These relaxations of the basic models we have discussed
are more robust in clustering real-life data containing a significant percentage of
errors.

An important dilemma that practitioners are faced with while using clustering
techniques is the following. Very rarely does real-life data present a unique clustering
solution. Firstly because, deciding which model best represents clusters in the data
is difficult, and requires experimentation with different models. It is often better
to employ multiple models for clustering the same network as each could provide
different insights into the data. Secondly, even under a particular clustering model,
several alternative optimal solutions could exist for the clustering problem. These
are also of interest in most clustering applications. Therefore, care must be taken
in the selection of clustering models, as well as solution approaches, especially
given the computational intractability of most clustering problems. These issues are
clearly in addition to the general issues associated with the clustering problem such
as interpretation of clusters and what they represent.

Appreciation for the efficiency of clustering and categorizing dates back to
Aristotle and his work on classifying plants and animals. But it is wise to remember
that it was Aristotle who said “the whole is more than the sum of its parts.”

6.7 SUMMARY

This chapter discusses the clustering problem and the basic types of clustering
problems that can be formulated. Several popular network clustering models
are introduced and classified according to the two types. Simple algorithms
are presented and explained in detail for solving such problems. Many of the
studied models have been popular in clustering biological networks such as
protein interaction networks and gene coexpression networks. Models from other
fields of study that have relevant biological properties are also introduced. This
simple presentation should provide a good understanding of the basic concepts
and hopefully encourage the reader to consult other literature on clustering
techniques.

6.8 EXERCISES

1. Given a graph G = (V, E) with non-negative vertex weights w;,i € V, the
maximum weighted clique problem is to find a clique such that the sum of the
weights of vertices in the clique is maximized. Develop a “weight-greedy”
heuristic for the problem. What happens to your algorithm when all the weights
are unity?
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2. One way to weight the vertices of scale-free networks is to use the “cliquish-

ness” of the neighborhood of each vertex [65] (see Ref. [8] for an alternative
approach). For a vertex v, let m, denote the number of edges in G[N(v)],
the induced graph of the neighborhood. Then the weights are defined as,
wy = 2my/[deg(v)(deg(v) — 1)] when deg(v) > 2 and zero otherwise. Use
this approach to weight the vertices of the graph in Fig. 6.2 and apply the
algorithm you developed in Exercise 2.

3. Several clique relaxations have been studied in social network analysis as the

clique model is very restrictive in its definition [55]. One such relaxation is a
k-clique, which is a subset of vertices such that the shortest distance between
any two vertices in a k-clique is at most & in the graph G. Develop a heuristic
for finding a maximal k-clique given k and graph G. What happens to your
algorithm when k = 1?

(Hint: Recall the definitions of the distance-k neighborhood and power

graphs.)

4. In protein interaction networks, it is often meaningful to include proteins that

are at distance 2 or 3 from a central protein in a cluster. Consider the following
definition of a distance-k dominating set. A set D is said to be k-dominating
in the graph G, if every vertex u that is not in D has at least one vertex v in
D, which is at distance no more than k in G, that is, d(u, v) < k. Develop a
center-based clustering algorithm that uses k-dominating sets.

5. Consider the graph in Fig. 6.2. Construct a weighted complete graph on the

same vertex set with the shortest distance between pairs of vertices as edge
weights. Apply the heuristic presented in Section 6.4.2 to this graph and in-
terpret the resulting clusters.

6. Develop a heuristic for the following Type II clustering problem.

min—max k-clique clustering problem: Given a connected graph G = (V, E)
and a fixed p, partition V into subsets Vi, ..., V), such that V; is a k;-clique

(defined in Exercise 3) fori = 1,..., pand nllax k; is minimized.
i=1,..., p
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PETRI NETS
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7.1 INTRODUCTION

Over the last few years, the great effort in genomics as well as the progressive devel-
opment of high-throughput technologies resulted in a high amount of qualitative data,
outnumbering the amount of quantitative data. This lack of quantitative data makes
the application of quantitative methods for modeling and analysis of biochemical
networks difficult and in many cases even infeasible. Often the measurement of
quantitative data in vivo as well as in vitro is very complicated or not possible due to
experimental limits or ethical reasons. At the same time many qualitative data are not
considered in research. In order to get some information about the system behavior
using the huge amount of qualitative data, methods for their analysis have been
derived, which are mainly based on the incidence matrix (stoichiometric matrix) of
the underlying net graph, see Chapter 1.

Petri nets are special graphs, which have been developed to easily model and an-
alyze mathematically exactly systems with concurrent processes. The basic ideas of
qualitative Petri nets have been introduced in 1962 by Carl Adam Petri in his disserta-
tion [22] to describe and simulate networks of causally related, discrete actions. Since
that time, many theorems and algorithms have been developed and implemented to
analyze such systems [20,33]. Qualitative Petri nets have been extended by various

'Both authors equally contributed to this chapter. This chapter has been partly supported by the Federal
German Ministry of Education and Research (BMBF), BCB project 0312705D (Ina Koch).
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notions of time to describe quantitatively — among others — stochastic [2] and con-
tinuous system behavior [6]. Nowadays, applications of Petri net theory comprise the
analysis of technical systems, administrative systems, and others.

First applications of Petri nets to biochemical systems were published in
1993 [24] and 1994 [11,25]. Meanwhile, metabolic networks [12,17,21,37], sig-
nal transduction networks [8,17,26], gene regulatory networks [17,32,35], and
combinations of them [4,16,18,30] have been successfully modeled and ana-
lyzed using various classes of Petri nets, qualitative as well as quantitative
ones. Thus, in contrast to other qualitative methods, Petri nets provide a unique
mathematical description method for different abstraction levels. In addition,
Petri nets allow to combine all these different abstraction levels within one
model.

Petri nets have an executable graphical representation, supporting the intuitive
understanding of the system modeled and the communication between experimen-
tally and theoretically working scientists. There are movable objects, the animation
of which visualizes possible flows through the network. Model animation helps to
experience the network behavior and allows to test whether the model actually does
behave in the desired manner.

One of the great advantages of Petri net theory is that it comprises the definition of
structural and behavioral properties. For their determination, various mathematically
sound analysis techniques have been developed. Petri net theory allows to formulate
model validation criteria, which increase the confidence in the model. So the whole
modeling process is an iterative procedure of model design, model animation, and
model analysis.

Moreover, Petri nets support the integration of qualitative as well as quan-
titative methods by serving as a mathematically unifying description. Until
now, there are two communities, one developing and using qualitative meth-
ods, and the other using quantitative methods as ordinary differential equations
(ODEs) or stochastic approaches. The combination of the qualitative and quan-
titative world is a significant step toward integrated analysis of biochemical
systems.

Finally, there exist many reliable public-domain software tools as editors, anima-
tors, and analyzers, see Section 7.5.

In the following sections, we introduce Petri nets as the so-called place/transition
nets, which represent the basic Petri net class. Here, no time dependencies and there-
fore neither continuous nor stochastic behavior are considered. We explain how to
use Petri net theory for modeling of biochemical systems as an iterative process of
editing, animating, and analyzing the system. The most important analysis techniques
are defined and explained using one running example, the combined glycolysis and
pentose phosphate pathway in erythrocytes. We focus on the analysis of qualitative
properties of the total system behavior. Afterwards, we sketch the derivation and eval-
uation of a related quantitative model given as continuous Petri net. We additionally
summarize other published case studies. For the own examples, we provide the corre-
sponding Petri nets and analysis results in the supplementary material on the book’s
web page.
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7.2 QUALITATIVE MODELING

7.2.1 The Model

For graphical representation, biologists use hypergraphs, already introduced and dis-
cussed in Chapter 2. For illustration, see our running example in Fig. 7.5. Petri nets
refine this type of representation by replacing each hyperarc by a transition to describe
a biochemical reaction. Petri nets are directed, bipartite, attributed graphs. Bipartite
means that they consist of two types of nodes (vertices), which are called in our
context places P = {p1, ..., pm} and transitions T = {t1, ..., t,}, and directed arcs
(edges), which connect only nodes of different type. Arcs are weighted by natural
numbers, whereby the arc weight (attribute) may be read as the multiplicity of the
arc. Consequently, the arc weight of 0 stands for the absence of an arc. The arc weight
1 is the default value and is usually not drawn explicitly. Please note, instead of the
classical graph-theoretic terms vertex and edges we use here the terms nodes and arcs,
which are in the given context more popular.

Places typically model passive system elements such as conditions, states, or chem-
ical compounds. We distinguish between primary compounds as metabolites, proteins,
or protein complexes, and secondary (auxiliary) compounds as ADT, ATP, and so
on. Transitions generally stand for active system elements such as events or chemical
reactions (e.g., the enzyme-catalyzed conversion from one metabolite to another),
complex forming, or de-/phosphorylation. In graphical representations, places are
depicted as circles, transitions as rectangles, and arcs as arrows. The arcs in the Petri
net describe the causal relation between active and passive system elements. They
connect an event (a transition) with its preconditions (preplaces), which must be ful-
filled to trigger this event, and with its postconditions (postplaces), which will be
fulfilled when the event takes place.

The fulfillment of a condition is characterized by tokens, which are the dynamic
elements and represent movable objects residing in places. Principally, a place in a
discrete Petri net may carry any integer number of tokens, indicating different degrees
of fulfillment. Tokens correspond usually to molecules, moles, concentration levels, or
gene expression levels, depending on the chosen abstraction level. A given distribution
of tokens over all places describes a certain system state and is called a marking m of
the Petri net. Accordingly, the initial marking m( describes the system state before
any system behavior took place. The following definition summarizes this informal
introduction.

Definition 7.1 (Petri net) A Petri net is a quadruple N' = (P, T, f. mg), where

® P and T are finite, nonempty, and disjoint sets. P is the set of places. T is the
set of transitions.

® f:((PxT)U(T x P)) = Ny defines the set of directed arcs, weighted by
non-negative integers.

® mo : P — Ny gives the initial marking.
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FIGURE 7.1 Petri net model of a single chemical reaction (light-induced phosphorylation),
given by its stoichiometric equation 2NAD™ + 2H, O — 2NADH + 2H" + 0, and two of its
states, linked by a single firing of r;.

Each marking is defined by the given token situation in all places m € N(l)P‘,
whereby | P| denotes the number of places in the Petri net. m(p) yields the num-
ber of tokens on place p in the marking m. A place p with m(p) = 0 is called clean
(empty, unmarked) in m, otherwise it is called marked. A set of places is called clean,
if all its places are clean, otherwise marked.

Furthermore, we introduce the following notations. The preset (preplaces or pre-
transitions) of a node x € P U T is defined as % :={y € PUT|f (v, x) # 0}, and
its postset (postplaces or posttransitions) as x* := {y € PU T|f (x, y) # 0}. We ex-
tend both notions to set of nodes X € PU T and define the set of all prenodes
*X :={J ,cx %, and the set of all postnodes X* :={ J ..y x°. Fig. 7.8 provides exam-
ples for these notations. A node (place or transition) x € P U T is called a boundary
node, if *x = @ or x* = ). Transitions without preplaces (postplaces) are called input
(output) transitions and are drawn as flat rectangles. Input (output) transitions realize
the necessary compound supply (removal) into (out of) the system. Analogously, we
define input (output) places, representing the input (output) compounds of a biochem-
ical network. Thus, input and output nodes model the interface between the network
under consideration and its environment.

Having introduced the structure of a Petri net, let us now turn to its execution. To
bring a Petri net to life we need the firing rule, which defines the dynamic behavior of
a Petri net. The firing rule consists of two parts: the precondition and the actual firing
behavior. If all preplaces of a transition are sufficiently marked with tokens, that is, at
least with the number of the corresponding arc weights, this transition is enabled (has
concession) and may fire (occur). If a transition fires, tokens are removed from all
its preplaces and added to all its postplaces, each according to the corresponding arc
weights, compare Fig. 7.1. NAD™ and H, O are the preplaces of the transition 7, and
NADH,H™, and O, form the postplaces. Two moles of NAD™ and two moles of H, O
are necessary to produce two moles of NADH, two moles of H +, and one mole of O,.
Here, as generally in metabolic networks, the arc weights reflect the corresponding
stoichiometric factors.

Definition 7.2 (Firing rule) Let N = (P, T, f mg) be a Petri net.

® A transition ¢ is enabled in a marking m, written as m[z), if
Vpe®t: f(p, 1) <m(p).
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® A transition ¢, which is enabled in m, may fire. When ¢ in m fires, a new marking
m’ is reached, written as m[t)m’, with
Vp e P:m'(p)=m(p)— f(p,t) + f(t p).

® The firing itself is timeless and atomic.

Please note, we consider a time-free model. So the firing rule does not take time
into consideration, as for example, how often a transition fires or how long a transition
needs for firing. The term atomic means that the firing itself cannot be decomposed
into smaller parts at the chosen abstraction level. If a transition fires, the removal of
tokens from the preplaces and the production of tokens in the postplaces takes place
at once, not consuming time. Thus, there is no system state in between.

All markings (system states), which can be reached from a certain marking m by
any transition firing sequence of arbitrary length, form the set of reachable markings
[m). The set of markings [m), reachable from the initial marking, is also called the
state space of a given system.

The Petri net structure reflects the biochemical topology, whereas the Petri net
behavior, produced by the repeated firing of transitions, describes the set of all partial
order sequences of chemical reactions from the input to the output compounds of
a given network, respecting the given stoichiometric relations. Moreover, the same
modeling idea can be applied on a more abstract level, where stoichiometric details
are not known or do not matter, resulting into a partial order description of causal
relations of the basic (re)actions involved. Petri nets use a partial order description
to handle concurrent (independent) actions. Consider, for example, the small system
of three reactions in Fig. 7.2. It is not clear, which of the two transitions rp and r3
will fire first, that is, they are unordered with regard to their occurrence. Contrary, the
pairs (r1, r2) and (71, r3) are each ordered, that is, r| has to fire prior to r; and r3. After
the firing of ry, the two transitions r, and r3 can fire concurrently (independently).
Considering all transition pairs of of a given net, we have usually ordered as well as
unordered pairs. Thus, we get a partial order. Fig. 7.3 summarizes the basic branching
net structures, all biochemical systems are made of, in terms of the Petri net modeling
principle. Please note, the branching degree can be greater than two.

Petri nets have been applied to different types of biological networks —
metabolic networks, signal transduction networks, and gene regulatory networks,
see Sections 7.1 and 7.6. What is the difference between metabolic and signaling
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B2 D

cBoE

C K] E

FIGURE 7.2 The partial order description principle in a Petri net model. The transition r; has
to fire prior to r» and r3. Then, r, and r3 can fire concurrently (independently). The transition
pairs (ry, r2) and (ry, r3) are each ordered, the pair (r,, r3) is unordered.
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FIGURE 7.3 The basic branching structures, all biochemical systems are made of. Please
note, the branching degree can be greater than two. The first (second) column exemplifies
forward (backward) branching of nodes. Branching transitions relate to concurrent system be-
havior, and branching places to alternative system behavior. The essential difference between
(a) and (c), or (b) and (d), respectively, cannot be expressed unambiguously using monochro-
matic graphs, that is, graphs with one node type. For example, we get identical graph structures
for (a) and (c) by replacing the transitions ry, r3, and r4 by arcs connecting directly the transi-
tion’s preplace and postplace.

pathways from the point of view of modeling? The main difference is that metabolic
networks are related to substance flows (mass flows), which are determined by the sto-
ichiometry of the underlying chemical reaction equations. The arc weights correspond
to the stoichiometric factors. Thus, the network can be completely characterized by
the set of chemical stoichiometric reactions. In signaling networks, we have a flow of
information in the form of signals without stoichiometry. The signal flow is realized
by activation and deactivation of proteins or protein complexes building signal cas-
cades. Here, we usually use an arc weight of one. Accordingly, two basic structures
of metabolic and signal transduction networks can be found, compare Fig. 7.4.

In order to get readable Petri net representations, we take advantage of widely
used short-hand notations. Not influencing the underlying graph structure, their only
purpose is to support clearer and better understandable figures.

Read arcs (test arcs) are represented by bidirectional arcs or by arcs ending in
a black dot instead of an arrow, see Fig. 7.13. They shortly stand for two inverse,
unidirectional arcs. Usually, signal transduction does not involve the immediate re-
setting of the triggering signal(s). Therefore, such situations are modeled by read arcs.
Similarly, enzyme reactions are also modeled by read arcs, if any, because they are
catalytic reactions, that is, there is no consumption of the enzyme.

Logical nodes (fusion nodes) are colored in gray and serve as links connecting
distributed Petri net components. They are often used for secondary compounds,
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FIGURE 7.4 The essential structural difference between metabolic networks (left) and signal
transduction networks (right), expressed in terms of Petri nets. Metabolic networks are related
to substance flows (mass flows). In signal transduction networks we have a flow of information
by activation and deactivation of proteins or protein complexes, building signal cascades.

which are involved in many reactions such that their adjacent arcs would make the
model unreadable. Accordingly, these secondary compounds are also called ubiqui-
tous, because they are found everywhere in the cell.

Hierarchical nodes are used to exploit hierarchical structuring techniques. Tran-
sition-bordered subnets are abstracted by macro transitions represented by two cen-
trically nested squares. This notation is often applied to abstract both directions of
reversible reactions or to abstract linear reaction sequences.

We distinguish between the terms pathway and network in such a way that a
pathway represents a very special, often functionally related smaller part of a whole
network. Graph-theoretically, a pathway can be any subnetwork. It does not have to be
linear; it can have bifurcations. Generally, all forward/backward branching structures
as given in Fig. 7.3 are possible within a pathway. A network describes a special more
or less complicated cell behavior or even the whole model of a cell. It can consist of
several pathways as our running example, which involves the glycolysis and pentose
phosphate pathway.

Running example: For illustrating the introduced terms we use as running example
a simplified model of the combined glycolysis (G) and pentose phosphate pathway
(PPP), in the following written as G-PPP, in erythrocytes (red blood cells). This
pathway, see Fig. 7.5, is well understood and can be found in many articles and
textbooks such as Ref. [1]. Its Petri net version in Ref. [25] serves as basis of our
model, see Fig. 7.6. It is a simplified variation of the whole G-PPP, which nevertheless
preserves representative biological behavior. This helps us to focus on the Petri net
modeling and validation aspects.

Glycolysis is the main energy-conversion pathway in many organisms. Through
a sequence of reactions, glucose is metabolized to pyruvate with the concomi-
tant production of ATP. Pyruvate can be further anaerobically processed (i.e.,
without oxygen) to lactate. At the beginning, glucose is converted into glucose
6-phosphate, which can form fructose 6-phosphate following the glycolysis, or enter
the PP pathway by the production of ribulose 5-phosphate. In the glycolytic path-
way fructose 6-phosphate is converted into fructose 1,6-biphosphate producing then
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FIGURE 7.5 The hypergraph representation of the combined glycolysis and pentose phos-
phate pathway in erythrocytes, based on Ref. [25]. The horizontal line separates the glycol-
ysis from the PPP. The two dashed lines indicate the involvement of GAP and F6P in both
pathways.

dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, which can be inter-
converted rapidly and reversible. Glyceraldehyde 3-phosphate — also a product of
the PP pathway — is converted through the formation of 1,3 biphosphoglycerate,
3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate into pyruvate,
which gives lactate by lactic acid fermentation.

The PP pathway generates NADPH to provide the needed four electrons in the
reductive (i.e., gains electrons) biosynthesis (e.g., the synthesis of fatty acids), and
produces five-carbon sugars. It consists of two phases, the oxidative (loses electrons)
generation of NADPH and the nonoxidative interconversion of sugars. Glucose
6-phosphate is converted into ribulose 5-phosphate using necessarily NADP™, which
is generated from glutathione disulfide (the oxidized glutathione) and NADPH
by a characteristic reaction for erythrocytes. Ribulose 5-phosphate forms ribose
5-phosphate and xylulose 5-phosphate. In the nonoxidative stage (i.e., without gain-
ing or losing electrons), the pathway performs the interconversion into three-carbon
sugars (here glyceraldehyde 3-phosphate), seven-carbon sugars (here sedoheptulose
7-phosphate), six-carbon sugars (here fructose 6-phosphate), and four-carbon sugars
(here erythrose 4-phosphate).

The PP pathway and glycolysis are linked by the metabolites glyceraldehyde
3-phosphate and fructose 6-phosphate. All reactions are catalyzed by special
enzymes, which are not given in the hypergraph representation, but in the Petri net
model, compare Table 7.2.
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FIGURE 7.6 The hierarchical Petri net model of the G-PPP in erythrocytes, whereby
both hierarchy levels are drawn in one picture. The hierarchical node, indicated by a
macro transition and drawn as two centrically nested squares, stands for the connected
component, shown on the upper right side. Both hierarchy levels are connected by the dark
gray colored places. These places are special logical places, automatically generated and
colored by the hierarchy manager of the Petri net drawing tool. The light gray colored
nodes represent logical places, connecting distributed net parts. The places NADP' and
GSSG get an initial marking, which will be motivated in Section 7.3.2. The interface to
the environment is modeled by the input transition g_Gluc and the output transition r_Lac.
Additionally, all secondary compounds get input as well as output transitions, modeling
the assumption that they are available in sufficient amount. Thus an open system has been
modeled.
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The Petri net model of the G-PPP in Fig. 7.6 was developed straight-
forwardly by replacing the hyperarc representation in Fig. 7.5. Places
represent the primary and secondary compounds (see Table 7.1), and transitions stand
for the chemical reactions for interconversion of these compounds (see Table 7.2).
Transitions are named after the enzyme, catalyzing this reaction.

We rearrange the direction of the substance flow, compare the Petri net model
in Fig. 7.6 with the biological hypergraph representation in Fig. 7.5, such that the
main substance flow goes top down. We use logical places for seven compounds
(ADP, ATP, F6P, GAP, NAD", NADH, P;). There is only one reversible reaction,
modeled by two transitions, one for the forward (TIM _ forward) and the other for
the backward (TIM _backward) reaction. We apply one hierarchical transition to hide
five linear reactions of the glycolytic part on a lower net level, which are depicted on
the upper right side of Fig. 7.6.

Contrary to Fig. 7.5, we model explicitly the interface to the environment by the
input transition g_Gluc and the output transition r_Lac. Additionally, all secondary
compounds get input as well as output transitions, modeling the assumption that they
are available in sufficient amount. Input/output transitions are drawn as flat rectangles,
whereby g and r stand for generate and remove, respectively. Later we will replace
this style of open environment modeling by a closed style, see Section 7.3.2.

Now we are interested in examining the model in order to increase our confidence
in it. Therefore, we want to validate the model. Model validation aims at checking
the constructed model for consistency and correct reflection of the known behavior
of the modeled system in reality. One initial approach might be model animation,
that is, playing the token game, to observe some possible behavior. However, model
animation has the disadvantage of not allowing definite conclusions about any sys-
tem properties. Contrary, model analysis derives definitive statements on behavioral
system properties by considering all possible behavior. In the following, we intro-
duce those model properties in terms of Petri net terminology, which are expected
to be meaningful for biochemical network analysis, and apply them to our running
example. Please note, all following definitions in this chapter refer to a Petri net as
introduced in the definitions 7.1 and 7.2.

7.2.2 The Behavioral Properties

For a model-based analysis of the system behavior, the behavioral properties of in-
terest of the real system have to be mapped on properties of the model of the system.
To accomplish this task, we have to understand first the various notions of behav-
ioral properties provided by the applied modeling language. In Petri net theory, there
are three orthogonal (independent) behavioral properties, liveness, reversibility, and
boundedness; see Ref. [20] for eight tiny Petri nets to confirm the orthogonality of
these properties.

Liveness is an important expected property of a biochemical Petri net. It should
exhibit an infinite net behavior in the sense that no part of the network will ever stop
working, if a sufficient amount of input compounds enters the net. An unintended
interruption of the substance or signal flows is likely to indicate a modeling error. A
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TABLE 7.1 Compounds of the G-PPP and their abbreviations

Abbr. Compound name Abbr. Compound name

1,3-BPG 1,3-Biphosphoglycerate NAD'  Nicotinamide adenine dinucleotide
2PG 2-Phosphoglycerate (oxidized form)

3PG 3-Phosphoglycerate NADH Nicotinamide adenine dinucleotide
ADP Adenosine diphosphate (reduced form)

ATP Adenosine triphosphate NADP* Nicotinamide adenine dinucleotide
DHAP Dihydroxyacetone phosphate phosphate (oxidized form)

E4P Erythrose 4-phosphate NADPH Nicotinamide adenine dinucleotide
FopP Fructose 6-phosphate Phosphate (reduced form)

FBP Fructose 1,6-biphosphate PEP Phosphoenolpyruvate

G6P Glucose 6-phosphate P; Inorganic orthophosphate

GAP Glyeraldehyde 3-phosphate Pyr Pyruvate

Gluc Glucose R5P Ribose 5-phosphate

GSH Reduced glutathione Ru5P  Ribulose 5-phosphate

GSSG Oxidized glutathione S7P Sedoheptulose 7-phosphate

Lac Lactate Xu5P Xylulose 6-phosphate

TABLE 7.2 Transitions and the corresponding enzyme names

Transition name

Full enzyme name

Aldolase
Enolase

GO6P _dehydrogenase
GAP _dehydrogenase
Glutathione_peroxidase
Glutathione_reductase

Hexokinase

Lactate_dehydrogenase
Phosphofructokinase
Phosphoglucose_isomerase
Phosphoglycerate_kinase
Phosphoglycerate_mutase
PP_epimerase

PP _isomerase
Pyruvate_kinase

TIM _backward

TIM _forward

Transaldolase
Transketolasel
Transketolase?2

Aldolase

Enolase

Glucose 6-phosphate dehydrogenase
Glyeraldehyde 3-phosphate dehydrogenase
Glutathione peroxidase

Glutathione reductase

Hexokinase

Lactate dehydrogenase
Phosphofructokinase
Phosphoglucose isomerase
Phosphoglycerate kinase
Phosphoglycerate mutase
Phosphopentose epimerase
Phosphopentose isomerase

Pyruvate kinase

Triose phosphate isomerase

Triose phosphate isomerase
Transaldolase

Transketolase

Transketolase
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transition is called live, if forever it will eventually be enabled again, independently
of what happened in the past. A transition is called dead, if it will never be enabled
again, independently of what will happen in the future. Otherwise the transition is
called nonlive. With other words, a transition is live, if it is not dead in the whole state
space.

Definition 7.3 (Liveness of a transition)

® A transition 7 is dead in the marking m, if it is not enabled in any marking m’
reachable from m:
Am' € [m): m'[1).

® A transition ¢ is live, if it is not dead in any marking reachable from my.

Definition 7.4 (Liveness of a Petri net)

® A marking m is dead, if there is no transition, which is enabled in m.

® A Petri net is deadlock-free (weakly live), if there are no reachable dead mark-
ings.
® A Petri net is live (strongly live), if each transition is live.

Strong liveness includes weak liveness, but not vice versa. Consider Fig. 7.7 for an
example illustrating the various liveness notions. The transitions | and r, can never
fire; so they are dead at the initial marking. The transitions r3, r4, and 7 can only fire
finitely often; so they are nonlive. Also the transitions r5 and r¢ are nonlive; they can
fire arbitrarily often, but only as long as the place set { B, C, D} still carries a token.
All these transitions r3 — r7 become dead, as soon as the place set {B, C, D} got
clean by firing of r7. The remaining transitions rg and rg are live; during the repeated
firing of rs and r¢, there is always the chance that in the future a token will reach
the rightmost cycle, initiating the infinite firing of rg and r9. Consequently, there is
no state reachable, where no transition is enabled (dead marking); so the Petri net is
deadlock-free (weakly live).

FIGURE 7.7 A Petri net to illustrate the three orthogonal behavioral properties. The transi-
tions r; and r; in the leftmost cycle are dead at the initial marking. The transitions rg and ry in
the rightmost cycle are live. All other transitions are nonlive. So the Petri net is weakly live,
because not all transitions are live. The Petri net is not reversible, because the token decrease
by firing of r4 cannot be reverted. The place A is 0-bounded, place B is 1-bounded and all other
places are 2-bounded, so the Petri net is 2-bounded.
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Reversibility is a property, which relates to the possible paths between all reachable
system states. It gives us information, whether the system contains irreversible system
behavior. A reversible system is likely to be more robust against disturbances than a
system with irreversible system behavior, because it can reinitialize itself. Reversibil-
ity is important, if we want to ensure that each reachable marking can be reached
from each arbitrary other reachable marking.

Definition 7.5 (Reversibility) A Petri net is reversible, if the initial marking can
be reached again from each reachable marking: Vin € [mg) : mo € [m).

This excludes an irreversible system behavior like unexpected burning out or accu-
mulation of certain compounds. Reversibility ensures reproducibility of a reachable
marking, including the initial one. The Petri net in Fig. 7.7 is not reversible. There is
no transition, reverting the token decrease by the firing of r4, so the initial marking is
not reachable anymore as soon as r4 has fired.

Boundedness is a property, which indicates, whether there could be unlimited com-
pound accumulations, represented by an infinite token number in the corresponding
places. Boundedness is essential for any steady state network analysis. If the maximal
token number in all places is finite, that is, bounded by a positive integer number, the
Petri net is bounded. So the number of reachable states is finite. The practical analyz-
ability of bounded Petri nets is much larger than of unbounded ones, which exhibit
an infinite number of reachable states.

Definition 7.6 (Boundedness)

® A place p is k-bounded (bounded for short), if there exists a positive integer
number k, which represents an upper bound for the number of tokens on this
place in all reachable markings of the Petri net:

dk € Ng : Vm € [mg) : m(p) <k.

® A Petri net is k-bounded (bounded for short), if all its places are k-bounded.

@ If the Petri net is bounded in every initial marking, it is called to be structurally
bounded.

Whereas reversibility represents a property, which gives information on the net
behavior with respect to the repeated reachability of all states, boundedness makes a
statement on the finiteness or infinity of the number of reachable states in dependence
on the limited or unlimited token amount in the places.

In the Petri net in Fig. 7.7 the place A is 0-bounded, place B is 1-bounded,
and all other places are 2-bounded, so the Petri net as a whole is 2-bounded.
The Petri net of our running example, see Fig. 7.6, is unbounded. Many bi-
ological network models are unbounded due to the modeling style of input
and output transitions, performing the compound exchange with the surround-
ings. Input transitions do not have preplaces, that is, no preconditions. There-
fore, they are always enabled and impose an infinite number of tokens into
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the system, which leads to an infinite number of markings. We can model our
running example also as a bounded Petri net, which will be explained in Sec-
tion 7.3.2.

Another behavioral property of general interest relates to the situation, in which
two transitions are enabled, but the firing of one transition disables the other one.
Consider again Fig. 7.7: one token in place D will enable both its posttransitions rg
and r7. But only one of the enabled transitions is actually able to fire. Such a situation
is called a dynamic conflict. The occurrence of dynamic conflicts indicates alternative
(branching) system behavior, whereby the decision between these alternatives is taken
nondeterministically.

Besides these four general properties, it often has to be checked, whether a given
(sub)marking m’ of special interest is reachable from a marking m, thatis, if m" € [m).
For example, in Fig. 7.7, it might be of interest whether a marking is reachable, where
the places E and F are marked at the same time. We will see in Section 7.3.5 how to
express reachability properties using temporal logics.

Up to now, the conclusions on the behavioral properties have been derived by in-
formal reasoning. This may work for small Petri nets but not for our running example.
So let us turn to analysis techniques to decide behavioral properties in an algorithmic
(i.e., automatically computable) way.

7.3 QUALITATIVE ANALYSIS

Basically, two different ways of qualitative net analysis can be distinguished, first,
the static analysis, which considers the whole state space without constructing it, and
second, the dynamic analysis, which does construct the full or partial state space for
deciding the properties of interest.

Static analysis techniques are introduced in the following three subsections: Struc-
tural analysis, Invariant analysis, and MCT-sets. Most of the considered properties
depend on the graph structure only. Some properties also take into account the initial
marking.

Afterwards, two subsections discuss dynamic analysis techniques. It is common
sense to distinguish between general properties, which can be applied to any sys-
tem without considering its special functionality, and special properties, which do
reflect the intended functionality. We introduce here the basic ideas. There exist
several sophisticated improvements, which are, however, beyond the scope of this
introduction.

7.3.1 Structural Analysis

The following structural properties are elementary graph properties and reflect the
modeling approach. They can be read as preliminary consistency checks. Addition-
ally, certain combinations of structural properties allow conclusions on behavioral
properties, which is, however, not discussed in all details in this material.
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® A Petri net is ordinary, if all arc weights are equal to 1. This includes homo-
geneity (see next bullet). A nonordinary Petri net cannot be live and 1-bounded
at the same time.

® A Petri net is homogeneous, if all outgoing arcs of a given place have the same
multiplicity.

® A Petri net is pure, if there are no two nodes, connected in both directions. This
excludes read arcs.

® A Petri net is conservative, if all transitions fire token-preservingly, that is, all
transitions add exactly as many tokens to their postplaces as they subtract from
their preplaces. A conservative Petri net is structurally bounded.

@ A Petri net is connected, if it holds for all pairs of nodes a and b that there
is an undirected path from a to b. So the direction of arcs is ignored here.
Disconnected parts of a Petri net cannot influence each other, so they may be
treated separately. In the following, we consider only connected Petri nets.

® A Petrinetis strongly connected, if itholds for all pairs of nodes a and b that there
is a directed path from a to b. Strongly connectedness involves connectedness
and the absence of boundary nodes. It is a necessary condition for a Petri net
to be live and bounded at the same instant.

® A Petri net is free of boundary nodes, if there are no transitions without pre-
/postplaces and no places without pre-/posttransitions. Such a self-contained,
that is, closed system needs a nonclean initial marking to become live. A Petri
net with input transitions is unbounded.

A Petri net is free of static conflicts, if there are no two transitions sharing a
preplace. Transitions, sharing a preplace, might have to compete, if the tokens on
a shared preplace are limited. Therefore, they are said to be in a static conflict. For
example, place B in Fig. 7.8 is a shared place. Its posttransitions r; and r3 compete
for the tokens on B, therefore r and r3 are in a static conflict. It depends on the token
situation whether a dynamic conflict occurs or not. A static conflict is generally given,
if a compound is involved in several reactions, compare Fig. 7.3 case (c), which is the
case especially for multifunctional proteins and often for secondary compounds. Static
conflicts indicate situations, where dynamic conflicts, that is, nondeterministic choices
may occur in the system behavior. Such nondeterministic choices are impossible, if
there are no static conflicts in a Petri net.

All these structural properties above are not influenced by the initial marking. Most
of these properties can be decided locally in the graph structure. Only connectedness
and strongly connectedness have to consider the global graph structure, which is done
using standard graph algorithms. Furthermore, the following advanced structural Petri
net properties are of interest, which have to be decided by combinatorial algorithms.

A nonempty set of places D C P is called structural deadlock (co-trap), if every
transition, which fires tokens onto a place in this structural deadlock set, also has a
preplace in this set, that is, ®D C D* (the set of pretransitions is contained in the set of
posttransitions). Thus, pretransitions of a structural deadlock cannot fire, if the place
set is clean. Therefore, a structural deadlock cannot get tokens again, as soon as it is
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structural deadlock: * {A, B} c {A,B}’ trap: {C,D,E}" < * {C,D,E}
pretransitions: * {A,B} = {ri1,r2} posttransitions: {C, D,E} = {r4,rs}
posttransitions: {A,B}" = {r1,r2,r3} pretransitions: * {C, D, E} = {r1,r3,rs, r5}

FIGURE 7.8 The token on place A can rotate in the left cycle by repeated firing of r; and
r». Each round produces an additional token on place E, making this place unbounded. This
cycle can be terminated by firing of transition r3, which brings the circulating token from the
left to the right side of the Petri net. The place set {A, B} cannot get tokens again as soon as
it got clean. Thus, it is a (proper) structural deadlock. Contrary, the place set {C, D, E} cannot
become clean again as soon as it got a token. The repeated firing of r4 and rs reduces the total
token number, but cannot remove all of them. Thus, the place set {C, D, E} is a (proper) trap.

clean, and then all its posttransitions r € D*® are dead. A Petri net without structural
deadlocks is live, while a system in a dead state has a clean structural deadlock.
Generally, a clean structural deadlock is not desired in biological systems.

A nonempty set of places O C P is called trap, if every transition, which subtracts
tokens from a place of the trap set, also has a postplace in this set, thatis, Q* C °Q (the
set of posttransitions is contained in the set of pretransitions). Thus, posttransitions
of a trap always return tokens to the place set. Therefore, once a trap contains tokens,
it cannot become clean again. There can be a decrease of the total token amount
within a trap, but not down to zero. In biological systems, a trap indicates irreversible
compound deposition. It depends on the application, if this effect is desired or should
not occur.

An input place p establishes a structural deadlock D = {p} on its own, and an
output place g a trap Q = {g}. If D and D’ are structural deadlocks (traps), then
DU D' is also a structural deadlock (trap). If each transition has a preplace, then
P*®* =T, and if each transition has a postplace, then *P = T. Therefore, in a net
without boundary transitions, the whole set of places is a structural deadlock as
well as a trap. As we will see in Section 7.3.2, there are special token-preserving
place sets, characterized by the so-called p-invariants, which are deadlocks and traps
at the same time. For those deadlocks (traps), which do not correspond to p-invariants,
we introduce the notion proper deadlock (propertrap). See also Fig. 7.8 for an example
to illustrate these two notions.

Running example: Our open model (Fig. 7.6) is not ordinary, but homoge-
neous, and pure. It is not conservative, but connected, however, not strongly
connected. It has boundary transitions, especially input transitions, therefore it is
unbounded. There are three static conflicts concerning primary compounds and
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several static conflicts involving secondary compounds. For example, the transitions
Phosphoclucose_isomerase and G6P_dehydrogenase compete for the tokens on
G6P. Therefore, depending on the nondeterministic conflict decision, a token will
continue the glycolytic pathways or enter the PPP. There are neither proper structural
deadlocks nor proper traps.

7.3.2 Invariant Analysis

System invariants are well-established concepts in mathematical reasoning. In bio-
chemical network analysis, invariants can be biologically interpreted, and therefore
provide additional insights into the network behavior. Invariants give information
about structural composition principles, and the possible net behavior. Additionally,
system inconsistencies can be detected by invariant analysis. Therefore, model vali-
dation should include a check of all invariants for their biological plausibility.

Besides the Petri net invariants [15], various types of system invariants have been
defined independently. The Petri net place-invariants (p-invariants) correspond to the
known notion of moieties [19], which represent compound conservation relations.
The Petri net transition-invariants (t-invariants) correspond to the elementary modes
[28], which have been introduced to describe the steady state behavior of metabolic
networks. In Refs [8,9] it is shown that exactly the same analysis principles can
be applied to signal transduction networks. In order to reduce the generating system
of the solution space, further subsets of t-invariants as extreme pathways [29] and
generic pathways [14] have been proposed. However, all these related concepts will
not be explained here, because of space limitations.

To introduce invariants, we need the notion of the incidence matrix, which for
metabolic networks coincides with the stoichiometric matrix. Fig. 7.9 gives an
example for the incidence matrix. The reactions (transitions) index the columns, and
the compounds (places) index the rows of the matrix structure. A matrix element indi-
cates the token change of a compound (defined by the row) by the firing of a transition
(defined by the column). Thus, both the incidence as well as the stoichiometric
matrix define a bipartite graph. The net structure of a pure Petri net (which excludes
read arcs) is fully represented by the incidence matrix. Using the incidence matrix,
we define two homogeneous linear equation systems, the solution of which are the
p- and t-invariants. The following definition recalls the essential basic terms.

, [ ri r2 3
2C —> 4 +2B A+ -3 +3
. NPT B|+ -2 0
34 +2B 3 2D +2E c -2 0 43

s D| 0 + -3
D+3E > 34 +
3D H3E = 34 +3C E| 0 +2 -3

FIGURE 7.9 A stoichiometric equation system with the corresponding Petri net and its
incidence (stoichiometric) matrix. The given initial marking makes the system live.
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Definition 7.7 (p-invariants, t-invariants) Let A" = (P, T, f, m¢) be a Petri net.

® The incidence matrix of A/ is a matrix C : P x T — Z, indexed by P and T,
such that C(p, t) = f(t, p) — f(p,1).

® A place vector (transition vector) is a vector x : P — Z, indexed by P (y:
T — Z,indexed by T).

® A place vector (transition vector) is called a p-invariant (t-invariant), if it is a
non-trivial non-negative integer solution of the homogeneous linear equation
systemx - C=0(C-y=0).

® The set of nodes corresponding to an invariant’s non-zero entries are called the
support of this invariant x, written as supp (x).

® An invariant x is called minimal, if it does not contain any other invariant z,
that is, A invariant z : supp (z) C supp (x), and the greatest common divisor
of all entries of x is 1.

® A Petri net is covered by p-invariants — CPI, (covered by t-invariants — CTI),
if every place (transition) belongs to a p-invariant (t-invariant).

The set of minimal (p- or t-) invariants builds a unique generating system for all
invariants. All possible invariants x can be computed as non-negative linear com-
binations of x;, the minimal ones: n-x = (qa; - x;), with n, a; € Ny, that is, the
allowed operations are addition, multiplication by a natural number, and division by
a common divisor. A minimal t-invariant (p-invariant) defines a connected subnet,
consisting of its support, its pre- and postplaces (pre- and posttransitions), and all
arcs in between. The computation of invariants requires only structural reasoning;
the state space does not need to be generated. Therefore, the state space explosion
problem, see Section 7.3.4, does not apply here. However, the number of minimal
invariants can grow exponentially with the size of the Petri net.

Now, let us return to the example in Fig. 7.9. Two types of invariants can be
derived from the incidence matrix, see Definition 7.7, third bullet. The following
two homogeneous linear equation systems have to be solved to compute the p- and
t-invariants.

yi =3y +3y3 =0

2y1 2y =0
X1 +2xp —2x3 =0 N 2
=2y +3y3 =0
—3x1 —2x; +2x4 +2x5 =0
+2y2 —3y3 =0
3x1 +3x3 —3x4 —-3x5 =0

+2y2 —3y3 =0

There exist four solutions for the minimal p-invariants, and one solution for the
minimal t-invariant. The solutions are written as vectors with a length of the number
of places (that is, as place vectors), and as vectors with a length of the number
of transitions (that is, as transitions vectors), respectively. The solutions for the p-
invariants are (2,0, 1,0, 3), (0,1,1,0,1), (2,0,1, 3,0), and (0, 1, 1, 1, 0), and for
the t-invariants (3, 3, 2). The supports, defined by the nonzero entries of these vectors,
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are then for the p-invariants {A, C, E}, {B, C, E}, {A, C, D}, and {B, C, D}, and for
the t-invariants {rq, 2, r3}. So the Petri net is CPI and CTI.

A p-invariant x is technically a place vector, standing for a set of places, over
which the weighted sum of tokens is constant independently of any firing. The weight
for each place is given by the positive integer number in the solution vector. That
means, any two reachable markings m, mj hold x - m| = x - my. So p-invariants
represent token-preserving sets of places. Their supports are structural deadlocks and
traps at the same time. (But caution: not every place set, which is structural deadlock
and trap at the same time, is also a p-invariant.) Therefore, they need tokens in the
initial marking to allow liveness. A place belonging to a p-invariant is bounded, and
a Petri net, which is CP]I, is structurally bounded.

In the context of metabolic networks, p-invariants reflect compound conser-
vations, while in signal transduction networks p-invariants often correspond to
the different (inactive, active) states of a given compound (protein or protein
complex).

A t-invariant is technically a transition vector, defining a multiset of transitions. A
multiset is a set, which may contain an element in multiple copies, that is, a transition
can occur more than one times as specified by the integer number in the solution
vector. This multiset of transitions has altogether a zero effect on the marking, that
is, after all of them have fired, a given marking is reproduced. A t-invariant is called
realizable, if such behavior is actually possible due to the sufficient number of tokens
in a reachable marking.

Obvious t-invariants are called trivial t-invariants. They consist, for exam-
ple, of the two transitions representing the forward and backward directions of
reversible reactions, or of the generating and removing of a compound, often
used to model the system environment. A t-invariant has two biological inter-
pretations.

1. The entries of a t-invariant represent a multiset of transitions, which reproduce
a given marking by their partially ordered firing. That means that they occur
basically one after the other. The partial order sequence of the firing events of the
t-invariant’s transitions may contribute to a deeper understanding of the system
behavior.

2. The entries of a t-invariant may also be read as the relative firing rates of tran-
sitions, all of them occurring permanently and concurrently. This activity level
corresponds to the steady state behavior.

Independently of the interpretation, the net representations of minimal t-invariants
stand for minimal self-contained subnetworks with an enclosed biological mean-
ing. In metabolic networks, minimal t-invariants describe minimal sets of enzymes,
which are necessary for the network function at steady state. In signal trans-
duction networks, the signal response behavior may be reflected by nonminimal
t-invariants.

It is a crucial question, whether the Petri net is covered by t-invariants (CTI).
This property ensures that every transition participates in a t-invariant. That means
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that every chemical reaction in the system may occur as part of the basic behavior
of the Petri net. However, to ensure that every chemical reaction can actually con-
tribute to the system behavior, it is essential that the net is covered by realizable
t-invariants. The CTI property is a necessary condition for bounded Petri nets to be
live.

Running example: Minimal invariants are often sparse vectors, meaning that typi-
cally many entries are zero. To avoid annoying notations, we give the invariants in the
style of a multiset notation by enumerating only all nonzero entries of their vectors in
a suitable order. Each entry is specified by the corresponding node name, multiplied
by the entry value, if larger than 1, indicating the multiple presence of the given node
element in the multiset. There are two p-invariants:

x1 = (2-GSSG, GSH),
xo = (NADPT, NADPH).

Both represent obvious compound conservations. The weight 2 in x| counts a token
on GSSG twice. The weighted token sum in both p-invariants is 2, because

x1-mg =2 -mp(GSSG), and
X2 -mog = mo(NADP™).

There are eight minimal t-invariants, covering the Petri net. As expected, there are
six trivial t-invariants, one for the reversible reaction, and five for the input/output
transitions of the secondary compounds:

y1 = (TIM _backward, TIM _ forward),
yo = (g_ATP, r_ATP),

y3 =(g-ADP,r_ADP),

ya = (8-Pi, r_Py),

ys = (§_.NADV,r _NAD™),

v6 = (&-NADH,r _NADH).

There are two nontrivial minimal t-invariants, one describing the lactate formation by
the glycolysis only

v7 =(g-Gluc,2-g_ ADP,2-g_P;,
Hexokinase, Phosphoclucose_isomerase, Phosphofructokinase,
Aldolase, TIM _ forward,
2 - GAP_dehydrogenase, 2 - Phosphoglycerate_kinase,
2 - Phosphoglycerate_mutase, 2 - Enolase,
2 - Pyruvate_kinase, 2 - Lactate_dehydrogenase,
2-r_Lac,2-r_ATP),
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and the other, describing the lactate formation by including also the PPP

vg =(3-¢.Gluc,5-g_ADP,5-g_P;,
3. Hexokinase, 3 - G6P_dehydrogenase,
6 - Glutathione_reductase, 6 - Glutathione_peroxidase,
PP _isomerase, 2 - PP_epimerase,
Transketolasel, Transaldolase, Transketolase2,
2 - Phosphofructokinase, 2 - Aldolase, 2 - TIM _forward,
- GAP_dehydrogenase, 5 - Phosphoglycerate_kinase,

- Pyruvate kinase, 5 - Lactate_dehydrogenase,

5
5 - Phosphoglycerate_mutase, 5 - Enolase,
5
5-r_Lac,5-r_ATP).

The net representations of these two nontrivial t-invariants generate the essential
partial order behavior of the modeled system. Reading the entries of y; and yg
as multisets of transitions, we can check the nontrivial minimal t-invariants for
realizability in the given initial marking, which then involves the realizability of
the trivial t-invariants. To follow the flow of entering tokens, the transitions have to
fire basically in the order as given in the t-invariant descriptions above. Doing so,
we observe the intermediate need of secondary compounds, ATP and NAD™, which
are released afterwards. Moreover, the given initial marking limits the resources in
NADP" and GSSG, causing a sequential firing of the reactions G6P_dehydrogenase,
Glutathione_reductase, and Glutathione _peroxidase in the PPP.

The nontrivial t-invariant entries, read as relative firing rates, indicate the higher
activity level of the PPP-induced compound flow in the steady state. The transition
TIM _backward does not belong to a nontrivial t-invariant, therefore, it does not con-
tribute to the steady state behavior of the two subnetworks, defined by the non-trivial
t-invariants. The input and output transitions of a t-invariant, easily recognizable due
to the adopted naming convention, specify the total equation of the corresponding
subnetwork, which are for y7 and yg, respectively:

Gluc +2-ADP +2-P;, — 2-Lac + 2- ATP
3.Gluc+5-ADP+5-P;— 5-Lac+ 5-ATP.

Environment modeling: We employ the nontrivial minimal t-invariants to construct a
closed system, representing the steady- state behavior by a bounded model. Bound-
edness usually ensures a higher degree of practical analyzability, because all system
states (i.e., all token distributions) may principally be enumerated and evaluated, see
Section 7.3.4. To make a Petri net model bounded we have to ensure that the input
of tokens into the net as well as the output of tokens from the net are controlled such
that an infinite accumulation of tokens in places will be avoided. This requires two
adaptations: removing the boundary transitions and controlling the dynamic conflicts.
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G 6P _dehydrogenase Ru 5P
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TIM _backward . Transketolase 2

() aop
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FIGURE 7.10 The closed Petri net model of the G-PPP, using the second environment mod-
eling style. The artificial transitions generate and remove, and the artificial place start build the
environment net component, given on the lower right side. This net component cor-
responds to the inverse total equation of the open network. Furthermore, the artifi-
cial places aj,as, b1, by, c1,c2 have been added to control the three dynamic conflicts
according to the steady state ratio of the involved transitions. These control places
come in pairs, forming p-invariants. The number 7 in place c¢; specifies the amount
of tokens residing in this place in the initial marking. The computation of all sup-
plementary net components relies on the nontrivial minimal t-invariants. This self-
contained Petri net is structurally bounded, live and reversible. It represents a closed
system.



QUALITATIVE ANALYSIS 161

To replace the boundary transitions, we complement the network by a net compo-
nent, modeling that environment behavior necessary to keep the network in its steady
state, compare Fig. 7.10. This environment behavior is determined by the inverse total
equation of the whole network, which we get by summation of the total equations of
the two nontrivial minimal t-invariants, given above.

4.Gluc+7-ADP +7-P;, — 7-Lac +7-ATP.

Technically this is done by two artificial transitions remove and generate (separated
by an artificial place start), which generate the necessary tokens for the system to
bring it to live, and remove exceeding tokens from the system to avoid an infinite
token accumulation.

To control those dynamic conflicts, which result into different token ratios, we
introduce supplementary control places. The place pairs (a1, a), (b1, b2), and (c1, ¢2)
regulate the token flow in the dynamic conflicts between the transitions

® PP_isomerase and PP_epimerase (Ru5P),
® Phosphoglucose_isomerase and G6P_dehydrogenase (G6P), and
® Transaldolase and GAP _dehydrogenase (GAP), respectively.

Each pair of control places forms a p-invariant. The arc weights and the nec-
essary initial marking for each place pair are computed by help of the minimal
t-invariants. Let us consider the control places ¢ and c;, regulating the conflict,
induced by the shared place GAP. There are three posttransitions, competing for the
tokens on GAP. The transition TIM _backward has not to be considered, because the
cycle via the reversible reaction does not change the token amount. The transition
GAP _dehydrogenase participates in the t-invariant y; twice, and in the t-invariant
yg five times, making together 7. Contrary, the transition Transaldolase has to fire
only once, according to t-invariant yg. In summary, these two transitions have to fire
in a ratio 7:1, which is enforced by the arc weights, connecting c¢; and ¢, with the
transitions in conflict, and the initial marking for ¢ and c;.

This kind of environment behavior reflects explicit assumptions about the quantita-
tive ratio of input/output compounds, while in the open system model no assumptions
about the the quantitative ratio of input/output compounds are made.

There are no transitions without preplaces anymore. Therefore, we have a chance
to get a bounded model. Opposite to the open model, see Fig. 7.6, the closed model,
see Fig. 7.10, is strongly connected. Furthermore, it is CPI, therefore structurally
bounded. It still is CTI, which for bounded models is a necessary condition to be live.
The environment component removes seven tokens from ATP, so the closed model
is not homogeneous anymore. All other structural properties are the same as for the
open model.
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7.3.3 MCT-Sets

In order to support the examination of t-invariants for their biological meaning, tran-
sitions can be classified into maximal common transition sets (MCT-sets) according
to their common occurrence in the minimal t-invariants. This is especially helpful, if
the amount of t-invariants is too large to be explored manually.

MCT-sets are defined over the supports of the minimal t-invariants. Supports are
sets, which can technically be read as vectors over Booleans, which allows the access
to the ith entry by indexing.

Definition 7.8 (Maximal common transition sets (MCT-Sets)) Let X denote the
set of all (nontrivial) minimal t-invariants x of a given Petri net.

® Two transitions # and ¢; belong to the same MCT-set, if they participate
in exactly the same minimal t-invariants, that is, Vx € X, Vi, j € {1,...,n}:
supp(x)(i) = supp(x)(j).
Equally, we can define the following.

® A transition set A C T is called an MCT-set, if
VxeX: ACsupp(x) vV ANsupp(x)=10.

The support-oriented classification according to the first bullet in the definition above
establishes an equivalence relation in the transition set 7', leading to a partition of 7'.
The equivalence classes A are the MCT-sets, defining disjunctive subnets, which are
not necessarily connected. These subnets represent a possible structural decomposi-
tion of large biochemical networks into rather small subnets, the decomposition being
based on statically decidable properties only. MCT-sets can be read as the smallest
biologically meaningful functional units. They can serve as building blocks of the
whole network.

Running example: Considering the two nontrivial minimal t-invariants y;7 and yg of
the open model (see Fig. 7.6), we find four MCT-sets. The first set contains the com-
mon region (intersection) of both t-invariants, comprising almost the whole glycolytic
pathway

A = supp(y7) N supp(yg)
= { g-Gluc, g_ADP, g_P;, Hexokinase, Phosphofructokinase, Aldolase,
TIM _forward, G A P_dehydrogenase, Phosphoglycerate kinase,
Phosphoglycerate_mutase, Enolase, Pyruvate_kinase,

Lactate_dehydrogenase, r_Lac,r_ATP }.

The next two sets contain those transitions, which are specific to one of the two
t-invariants. The specific region of the t-invariant y; belongs to the glycolytic pathway

B = supp(y7) — supp(ys)
x = { Phosphoglucose_isomerase },
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FIGURE 7.11 The coarse net structure of the Petri net given in Fig. 7.6, according to the
structuring principle inherent in the minimal t-invariants. Each macro transition stands for a
connected subnet defined by a set of transitions, occurring together in all nontrivial minimal
t-invariants. Each elementary (loop-free) macro transition sequence in the coarse net structure
corresponds to a nontrivial minimal t-invariant of the whole network. There are two such
sequences ( Ay, B, Ay) and ( Ay, C, A,), sharing the beginning and the end. The places shown
in the coarse net structure are the boundary places of the subnets, building the interface between
the subnets. Only the primary compound flow is represented here.

and the specific region of the t-invariant yg includes the PPP

C = supp(ys) — supp(y7)
= { G6P_dehydrogenase,
Glutathione_reductase, Glutathione_peroxididase
PP_isomerase, PP _epimerase,

Transketolasel, Transaldolase, Transketolase?2 }.

All remaining transitions

D= — ¢5upp(yi)} — supp(y7) — supp(ys)
={ g,ATP,g,NAD"', g_NADH, TIM _backward, r _ADP, r_P; }

are only part of trivial t-invariants. This means that these transitions do not contribute
to the steady state behavior of the nontrivial t-invariants.

Thus, the main building blocks of the Petri net, and by this way of the underlying
biochemical network, are represented by the first three MCT-sets, each defining a
connected subnetwork. The two subnets, describing the two pathways, are defined by
the union of the first MCT-set with the second or third one, respectively. However, if
we neglect the arc connections established by secondary compounds, the MCT-set A
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breaks down into two subsets

A1 = {g_-Gluc, Hexokinase },
Ay =A— Ay,

which are each connected subsets according to the primary compound flow. We obtain
the coarse network structure as givenin Fig. 7.11, highlighting the structuring principle
inherent in the nontrivial minimal t-invariants. Each elementary (loop-free) macro
transition sequence in the coarse net structure corresponds to a nontrivial minimal
t-invariant of the whole network. There are two such sequences (A1, B, A2) and (A1,
C, A), sharing the beginning and the end.

In the closed model, we have only two t-invariants, a trivial one of the reversible
reaction, and the other covering all remaining transitions. A net decomposition into
building blocks in this case is not necessary, because the structure is obvious.

7.3.4 Dynamic Analysis of General Properties

Boundedness has already been decided statically. However, in order to decide liveness
and reversibility, we generally have to compute a data structure, describing the whole
system behavior. The easiest way to do this is constructing a dedicated graph, the
reachability graph. The nodes of a reachability graph represent all possible states
(markings) of the Petri net. The arcs in between are labeled by single transitions, the
firing of which causes the related state change.

Definition 7.9 (Reachability graph) Let A = (P, T, f mo) be a Petri net. The
reachability graph of N is the graph RG(N) = (Vs, Enr), where

® V) := [my) is the set of nodes,
® Eyn:={(m,t,m') | m,m €[mg),t €T :m[t)ym'} is the set of arcs.

The reachability graph is finite for bounded Petri nets only, for example, see
Fig. 7.12. In state s, the transitions r; and r» are enabled, but only one of them
can fire. They are in a dynamic conflict. The firing of one transition disables the other
one. Constructing the reachability graph, both alternatives are considered. Contrary,
in state 52, the transitions r3 and r4 are enabled concurrently. They can fire in any order.
The firing of one transition does not disable the other one. There are two interleaving
sequences of r3 and r4, leading from state s; to state ss. Thus, a branching node in the
reachability graph, that is, a node with several successors, means either alternative or
concurrent behavior. The difference is not locally decidable in the reachability graph
anymore. The transitions r4 and r;5 may be read as reversible reactions, producing
several two-states loops.

Altogether, the reachability graph gives a concise representation of all possible
single step firing sequences. Consequently, concurrent system behavior is described
by enumerating all permutations of concurrent transitions, shortly called interleaving
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FIGURE 7.12 A Petri net and its reachability graph. The six states, forming the nodes of the
reachability graph, are given in a multiset notation. The arcs are labeled by the transition, the
firing of which causes the related state change.

firing sequences. Therefore, the reachability graph represents the interleaving seman-
tics. The much more challenging partial order (true concurrency) semantics is beyond
the scope of the introduction presented here.

Reachability graphs tend to be huge, because they comprise all possible system
states (markings). The state space grows rapidly for two reasons: concurrency is
resolved by all interleaving sequences, and many tokens within a p-invariant can
distribute themselves rather arbitrarily. The state space explosion motivates the static
analyses, as presented in the three preceding subsections. If we succeed in constructing
the complete reachability graph, we are able to decide the behavioral Petri net prop-
erties, introduced in Section 7.2.2. Please note, then the following used notation “iff”’
stands shortly for “if and only if.”

1. A Petri net is k-bounded, iff there is no node in the reachability graph with a
token number larger than k in any place.

2. A Petri net is reversible, iff the reachability graph is strongly connected.

3. APetrinetis deadlock-free, iff the reachability graph does not contain terminal
nodes, that is, nodes without outgoing arcs.

4. In order to decide liveness, we partition the reachability graph into maximal
sets of strongly connected nodes, which we call strongly connected compo-
nents (SCC). An SCC is called terminal, if no other SCC is reachable in the
partitioned graph. A transition is live, iff it appears in all terminal SCCs of
the partitioned reachability graph. A Petri net is live, which includes deadlock
freedom, iff this holds for all transitions.

The occurrence of dynamic conflicts is checked at best during the construction of
the reachability graph, because branching nodes do not necessarily mean alternative
system behavior. The reachability of a given marking m’ is tested by constructing a



166 PETRI NETS

(shortest) path (i.e., a sequence of directly connected nodes), leading from mq to m’.
The construction of such a path does not succeed, if the node m’ does not exist.

Let us return to the example in Fig. 7.12. The reachability graph is finite, so the Petri
net is bounded. A closer look at all states reveals 2-boundedness. The reachability
graph is strongly connected, so the Petri net is reversible. All transitions appear in
this strongly connected reachability graph at least once, so the Petri net is live. There
are dynamic conflicts.

Running example: The reachability graph is finite for the closed system only,
whereby its size depends on the given initial marking. We observe a slight growth in
the state space by increasing the initial token numbers in ATP and NAD™, because this
allows a higher concurrency degree within the network. To get liveness and reversibil-
ity, the minimal token numbers in these places of the initial marking are (4 ATP, 2
NAD™)or (5ATP, NAD™), respectively. Additionally, we make the following observa-
tions. There are no dynamic conflicts concerning ATP, that is, no restriction of the con-
currency degree, if mo(ATP) > 5. There is no further increase of the size of the reach-
ability graph (42.576 states, 204.172 arcs), if mo(ATP) > 7 and/or mo(NADT) > 7.

While liveness and reversibility of an unbounded model are generally decid-
able, there are no efficient algorithms known, and thus no tools exist for this task.
There are several theorems of static analysis approaches (some of them are men-
tioned in Sections 7.3.1 and 7.3.2), which sometimes help, but not for our running
example.

7.3.5 Dynamic Analysis of Special Properties

To validate the model, itis often of interest to prove — besides the general properties —
additional special properties, which reflect the intended functionality of the network.
We have to formulate these special properties in a unambiguous language. Temporal
logics, a mathematical mechanism has been proven to be best suited for this purpose.
It provides a flexible formalism that considers the validity of logical statements in
temporal relations in the sense of before and after.

The analysis technique, deciding whether a temporal-logic property holds in a
model, is called model checking, and the tools implementing the algorithms are called
model checkers. Model checking generally requires boundedness. If the Petri net is 1-
bounded, there exists a particularly rich choice of model checkers, exploiting different
data structures and algorithms [27].

One of the widely used temporal logics is the computational tree logic (CTL).
It is called after the data structure used — the computational tree, which we get by
unwinding the reachability graph. Therefore, CTL represents a branching time logic
with interleaving semantics.

The application of this validation approach needs to understand temporal logics.
Here, we restrict ourselves to an informal introduction into CTL. CTL is, as any
temporal logic, an extension of a classical (propositional) logic. The atomic (i.e., basic,
not more dividable) propositions consist of statements on the current token situation
in a given place. To simplify the notation, places are interpreted as (non-negative)
integer variables, which allows statements as Lac = 7, and ATP > 7 (meaning that the
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place Lac carries seven tokens, and ATP at least eight tokens). Atomic propositions
can be combined to composed propositions using the standard logical operators:
— (negation), A (conjunction), Vv (disjunction), and — (implication), for example,
Lac = TN ATP > 1.

The truth value of such a composed proposition may change by the execution of
the Petri net. These temporal relations between propositions are expressed by the
additionally available temporal operators. In CTL there are basically four of them
(neXt, Finally, Globally, Until), which come in two versions (E for Existance, A for
All), making together eight operators.

Let ¢1,2] be arbitrary temporal-logic formulae. Then, the following formulae hold
in state m,

® EX ¢ : if there is a state reachable by one step, where ¢ holds.

® EF ¢ : if there is a path, where ¢ holds finally.

® EG ¢ : if there is a path, where ¢ holds globally, that is, forever.

® E (¢1 U ¢y) : if there is a path, where ¢ holds as long until ¢, holds finally.

The other four operators, which we get by replacing the Existence operator by the
All operator, are defined likewise by extending the requirement “there is a path” to
“for all paths holds”. For a more comprehensive introduction into temporal logics
see Ref. [5]. For typical patterns, how to specify biologically relevant properties of
biochemical networks using CTL, see Ref. [3].

Running example: We demonstrate this technique by the following samples of
meaningful statements, the truth of which can be determined for the closed version
by model checking.

® property 1: The initially provided ATP can be used up in between, that is, there
is a reachable state, where the place ATP is empty.

EF (ATP = 0)

® property 2: A cyclic behavior concerning the presence/absence of ATP is pos-
sible forever. Technically spoken, in all states, that is, forever, holds: if the place
ATP is nonempty, then there is a path, where it becomes empty finally, and vice
versa, if the place ATP is empty, then there is a path, where it becomes finally
nonempty.

AG [ ATP #0 — EF (ATP =0) ]A[ATP =0 — EF (ATP # 0) ]

® property 3: The total equation of the network holds forever. For the network
without the reversible reaction T/M _backward this translates into: in all states,
that is, forever holds: starting from a state with four tokens in Gluc, seven tokens
in ADP and seven tokens in P; (which is the state produced by the transition
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generate), all paths will finally reach a state with seven tokens in Lac and at
least seven tokens in ATP (which is the state enabling the transition remove).

AG [ (Gluc=4NADP=TAP;=T7) > AF(Lac =7 AN ATP > 7) ]

For the network with the reversible reaction TIM _backwards, we have to
weaken the statement, because the two transitions modeling the reversible reac-
tion build cycles. These cycles can — at least structurally — prevent the system
from reaching the state, which enables the transition remove.

AG [ (Gluc=4ANADP=TAP;=7)— EF(Lac =7 AN ATP > 7) ]

property 4: It is possible to produce lactate without phosphofructokinase
(which is producing FBP). In other words, it holds forever: if we start in a state,
where neither FBP nor Lac carry a token, then there is a path reaching a state,
where Lac gets a token, while FBP remains empty in all states along this path.

AG [(FBP =0 A Lac =0) — E (FBP =0U Lac > 0) ]

Obviously, it would be of great help to have a dedicated technical language for
expressing typical patterns of those kinds of special properties.

7.3.6 Model Validation Criteria

To summarize the preceding validation steps, the model in its two versions has passed
the following general-purpose validation criteria.

validation criterion 1
— All expected structural properties hold.
— All expected general behavioral properties hold.

validation criterion 2

— CPI (closed system).

— No minimal p-invariant without biological meaningful interpretation.

— No known compound conservation without corresponding minimal p-
invariant.

validation criterion 3

- CTL

— No minimal t-invariant without biological interpretation.

— No known biological behavior without corresponding minimal t-invariant.

validation criterion 4

— All expected special behavioral properties, expressed as temporal-logic for-
mulae, hold.
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It is worth noting that not all of the validation criteria outlined above are always
feasible. For example, it makes sense only to ask for CPI as well as CTI for closed
systems (i.e., self-contained systems without boundary nodes). The presented tech-
nique to construct a closed model out of an open model adds artificial places, which
may produce many artificial p-invariants. For a biological interpretation only those
p-invariants have to be considered, which do not include artificial places. In the case
of signal transduction networks it depends on the modeling style, whether the essen-
tial system behavior can be explained by the discussion of minimal t-invariants only.
Finally, the third validation criterion relies on temporal logics as a flexible query lan-
guage to describe special properties. Thus, it requires seasoned understanding of the
network under investigation, combined with the skill to correctly express the expected
behavior in temporal logics. In summary, the set of meaningful validation criteria has
to be adjusted to the case study on hand.

7.4 QUANTITATIVE MODELING AND ANALYSIS

Having validated the discrete model, the next step could consist of quantitative eval-
uations taking into account time-related information. Biochemical systems are inher-
ently governed by stochastic laws. However, due to computational limits, the stochas-
tic behavior is often approximated by a continuous one. In a continuous model of a
biochemical system, all chemical reactions take place continuously. Moreover, the
rates of all the chemical reactions typically depend on the time-dependent, continuous
concentrations of the involved compounds. Hence, systems of ordinary differential
equations (ODESs) appear to be a natural choice, as commonly used, for example, in
the classical metabolic control analysis [10].

However, instead of creating the ODEs from scratch, we derive the continuous
model from the discrete Petri net by assigning rate functions to all of the transitions
in the network. Doing so, we get a continuous Petri net, preserving the structure of
the discrete one. In biochemically interpreted continuous Petri nets, the rate functions
may apply certain kinetic equation patterns, for example, the mass action or the
Michaelis Menten equation pattern, and usually contain various kinetic parameters as
dissociation or equilibrium constants. In a continuous Petri net, the marking of a place
is no longer an integer, but a positive real number, called token value, which we are
going to interpret as the concentration of a given compound. The instantaneous firing
of a transition is carried out like a continuous flow, whereby the current firing rate
generally depends on the current marking of its preplaces. The following definition
summarizes this informal introduction.

Definition 7.10 (Continuous Petri net) A continuous Petri net is a quintuple
CON = (P, T, f v, myp), where

® P and T are finite, nonempty, and disjoint sets. P is the set of continuous places.
T is the set of continuous transitions.
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® f:(PxTHU(T x P)) —> Ra' defines the set of directed arcs, weighted by
non-negative real values.

® v: T — H assigns to each transition a firing rate function, whereby
H:=J o7 {lilh; : R — R} is the set of all firing rate functions, and
v(t) = h, for all transitions t € T.

® mo: P— Ra' gives the initial marking.

Each continuous marking is a place vectorm € (Rf{ IPI’ and m(p) yields again the
marking on place p, which is now a real number. A continuous transition ¢ is enabled
in m, if Vp € *t : m(p) > 0. Due to the influence of time, a continuous transition
is forced to fire as soon as possible. Corresponding to the concentration-dependent
chemical reaction rates, the firing rate of a continuous transition typically depends
on the token values of the transition’s preplaces. So, we get marking-dependent (i.e.,
variable) firing rates. Please note, a firing rate may also be negative, in which case

A

vi(m(4), m(B)) \.vz(m(A), m(C))

(o) C (O

B
Iy r3
va(m(C)) v3(m(D))

dm (B) _ —v1<m(A),m(B)) +v4<m((')>

dt
dm (C)
dt
dm (D)
dt

= +v1<m(A),m(B)) —vz<m(A),m((")) +v3(m(D)) —\q(m(("))

= + vy (m (4), m((")) - v;(m(])))
mo(A)=0.5mo(B)=0.9mo(C)=0.1,mo(D)=0

FIGURE 7.13 Example of an abstract continuous Petri net and the ODEs defined by it. To
distinguish the discrete and continuous case, continuous nodes are represented in bold face
type. Please note, replacing the read arcs by two inverse arcs each would result into a different
system of ODEs. The rate functions v;, assigned to each transition r;, generally depend on
the current marking of the transition’s preplaces. These rate functions, which contain various
kinetic parameters, may follow certain kinetic laws (e.g., the mass action, Michaelis Menten,
etc.), which can be interpreted as equation patterns. Each place, subject to changes, gets its own
differential equation, describing the continuous change of its token value by the continuous
flows of its adjacent transitions. Each differential equation basically corresponds to a line in
the incidence matrix, compare the table-like notation of the ODEs above. Please note that A
is a place name, while m(A) refers to the marking on place A. To simplify the notation in the
generated ODEs, places are usually interpreted as (non-negative) real variables, which allows
to write, e.g., vi(A, B) instead of v;(m(A), m(B)). The model is self-contained, so it needs a
nonclean initial marking.
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the chemical reaction takes place in the reverse direction. This feature is commonly
used to model reversible reactions by just one transition, where positive firing rates
correspond to the forward direction, and negative ones to the backward direction.

Altogether, the semantics of a continuous Petri net is defined by a system of ODEs,
whereby one equation describes the continuous change over time on the token value of
a given place by the continuous increase of its pretransitions’ flow and the continuous
decrease of its posttransitions’ flow:

d
"D S F -3 F 0.

a
te*p tep®

The token values (concentrations) of places that are tested by read arcs only (e.g., A
in Fig. 7.13) do not change over time. Therefore, no equations for them are required.
Each differential equation basically corresponds to a line in the incidence matrix,
whereby now the matrix elements consist of the rate functions multiplied by the arc
weight, compare the system of ODEs given in Fig. 7.13. Moreover, as soon as there
are transitions with more than one preplaces, we generally get a nonlinear system,
which calls for a numerical treatment of the system on hand.

Following this approach, the continuous Petri net becomes the structured descrip-
tion of the corresponding ODEs. Due to the explicit structure and the previous model
validation of the underlying discrete structure, we expect to get descriptions, which
are less error prone compared with other approaches. In order to simulate the con-
tinuous Petri net, exactly the same algorithms are employed as for ODEs in standard
notation, that is, numerical differential equation solvers. Thus, we get a powerful
combination of qualitative and quantitative models, complementing each other by the
appropriate methods.

7.5 TOOL SUPPORT

There is a rich choice of software tools to model and analyze Petri nets of various
types. The Petri net Web site [23] supplies all the entry points. In this chapter, the
following public domain software tools have been used.

® Snoopy [31] for modeling and animation/simulation of standard (discrete) as
well as continuous Petri nets. Snoopy’s export feature supports various analysis
tools, among them the following ones of this list. There is also an export to
SBML, allowing access to tools like Ref. [19] for more detailed evaluations
of continuous Petri nets in addition to the standard algorithms of ODE solvers
provided by Snoopy.

® Integrated net analyzer (INA) [34] for most of the qualitative analyses.

® The model checker idd-ctl [36] for deciding special properties expressed in
temporal logics. However, for 1-bounded models, we recommend to use the
model checking kit [27].
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7.6 CASE STUDIES

In the following, we sketch four published case studies, one metabolic network, and
three signal transduction networks, which might help to get a deeper understanding
of the material introduced in this chapter. The Petri nets and the related analysis data
are available on the book’s web page.

Sucrose-to-starch breakdown in Solanum tuberosum (potato) tubers [12]: This
Petri net model (17 places, 25 transitions) describes the main carbon metabolism in
potato tubers. It was developed in strong cooperation with experimentally working
scientists. The Petri net represents an open system. The invariant analysis gives three
minimal p-invariants and 19 minimal t-invariants, 7 of them are trivial ones, reflecting
the reversible reactions. The model is covered by the 12 nontrivial t-invariants. The
nontrivial invariants represent biologically meaningful subnetworks describing the
different possibilities of the sucrose breakdown through invertase or sucrose synthase
producing the hexoses, which further result in the starch production, the glycolysis,
the ATP consumption, and also the futile cycles. Decomposing the network according
to the known biological subnetworks, a systematic validation of the t-invariants was
made step by step manually.

This pathway is attractive, because it is not very large, but complicated enough
to see the state explosion while computing the reachability graph. Even in a derived
simplified model version (18 places, 14 transitions), which is a closed system and
117-bounded, the state space amounts to 3.3 - 1019, which takes about 1 min of com-
putation time, using the latest issue of our model checking software [36]. The state
explosion is caused by the stoichiometric factors up to 29 and the many reversible
reactions, occurring concurrently.

The detailed evaluation of the t-invariants discovered a transition, involved only in
a trivial t-invariant, which means that this transition has no effect in the steady-state.
This has been confirmed by the continuous model. Consequently, this transition could
be deleted without changing the steady state behavior.

Apoptosis in mammalian cells [8]: This case study demonstrates the application
of Petri net based model validation to a signal transduction pathway using the same
mathematical principles as for metabolic networks, but with another, more abstract
interpretation. The developed Petri net (37 places and 45 transitions) extends [17].
It represents an open system, modeling basic processes of apoptosis, taking into
consideration the pathways induced by the Fas receptor, the TNFR—1 (tumor necro-
sis factor receptor 1) as well as intrinsic apoptotic stimuli. There are 10 minimal
t-invariants, describing the system behavior: four for the Fas-induced pathway, five
for the TNFR—1-induced pathway, and one for the apoptotic stimuli induced pathway.

This case study confirms that Petri net based model validation with the
focus on t-invariant analysis can also be applied to a signal transduction
pathway.

Mating pheromone response pathway in Saccharomyces cerevisiae [26]: In this
case study, the well understood signal transduction pathway of pheromone response
is modeled and analyzed. The Petri net (42 places, 48 transitions) extends an ODE
model [13] and represents an open system.
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Here, special net structures are discussed, typically occurring in signal transduc-
tion networks. The notion of feasible t-invariants is introduced, which represent self-
contained subnets being active under a given input situation. Each of these subnets
stands for a signal flow in the network. There are seven feasible t-invariants, which
all include the receptor activation, resulting in different responses for the cell, as,
for example, changed gene transcriptions or feedback degradations. To support the
t-invariant evaluation, the concept of MCT-sets is introduced for the first time. Seven
disjunctive MCT-sets with more than one transition are found, each describing a con-
nected subnet. In this study also knockouts were performed confirming experiments
known from literature.

Raf-1/MEK/ERK pathway [7]: This case study discusses one of the standard ex-
amples used in the systems biology community — the core model of the influence
of the Raf-1 kinase inhibitor protein (RKIP) on the extracellular signal regulated Ki-
nase (ERK) signaling pathway. It is considered as a closed system. The qualitative
as well as the quantitative model (11 places, 11 transitions) are given and analyzed
thoroughly, whereby the qualitative analysis follows basically the outline of this chap-
ter. Moreover, the partial order interpretation of a t-invariant by its so-called infinite
partial order run is given.

It is shown that analyses based on the discrete Petri net model of the system
can be used to derive the sets of initial concentrations required by the correspond-
ing continuous ordinary differential equation model. All of them result into the
same steady-state, and no other initial concentrations produce meaningful steady
states.

Further case studies: The following papers also provide case studies with the
complete Petri nets being available. This list is meant to illustrate the diversity of the
application areas but is far away from being exhaustive. Qualitative (place/transition)
Petri nets are used in the first three papers, whereas the remaining four papers apply
quantitative (stochastic as well as continuous) Petri nets.

A metabolic network is discussed in Ref. [21], which provides a medium-sized
model of the citric acid cycle (Krebs cycle), the second stage in glucose oxida-
tion. The Krebs cycle, which takes the products of glycolysis, is a complex inter-
acting set of nine subreaction networks. An analysis technique is proposed, which
resembles the t-invariant analysis, to identify relevant biochemical signaling subcir-
cuits.

The gene regulatory network, underlying the carbon starvation stress response
in E. coli, is modeled and analyzed in Ref. [35]. The model construction starts at
a Boolean graph, where genes are treated as binary switches. Logic minimization
automates the construction of a compact qualitative Petri net model, which is by
construction 1-bounded. The model checking kit is used to check the model for its
ability to correctly switch between the exponential and stationary phases of growth
and for the mutually exclusive presence of entities.

The integration of regulatory and metabolic processes into a coherent qualitative
modeling framework is demonstrated in Ref [30]. The regulated metabolic network
of the biosynthesis of tryptophan in E. coli takes into account two types of regulatory
feedbacks (inhibitions). The model design exploits, similar to the previous approach, a
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systematic translation of Boolean graphs into standard Petri nets. The integrated model
is validated by dynamic analysis. Three representative initial markings (no/low/high
incoming flow of external tryptophan) are considered and the corresponding reacha-
bility graphs (which are quite small — 9/66/120 nodes) are evaluated.

A stochastic model to simulate the 32 stress circuit in E. coli is given in Ref. [32].
This model of a gene regulatory pathway is used to confirm various hypotheses and
to validate experimental results. Opposite to Ref. [30], [35], this model is constructed
from scratch, that is, it is not derived from a Boolean graph.

A regulatory network controlling the commitment and sporulation of Physarum
polycephalum is developed stepwise in Ref. [16]. The resulting stochastic Petri net
consistently describes the structure and simulates the dynamics of the molecular
network as analyzed by genetic, biochemical, and physiological experiments within
a single coherent model. The Petri net is used to simulate the stochastic behavior of
wild-type plasmodia as well as the so-called time-resolved somatic complementation
(TRSC) experiments.

Hybrid Petri nets allow the combination of discrete and continuous net elements.
Thus, discrete as well as continuous behavior can be described within one model.
This is used in Ref. [4] to perform a case study on the urea cycle disorder, a genetic
disease caused by a deficiency of one enzyme in the metabolic system. The metabolic
behavior is described continuously, while the control of gene expression is represented
by discrete net elements. The developed hybrid Petri net is used to estimate the
regulation both on genomic and metabolic levels.

A generalization of hybrid Petri nets, the hybrid function Petri nets (HFPN) are
used in Ref. [17]. Several typical examples are given: a metabolic pathway (the gly-
colysis), a signaling pathway (the Fas legand induced apoptosis), and three gene reg-
ulatory networks (switching mechanism of A phage, circadian rhythm of Drosophila
melanogaster, the lac operon regulation of E. coli). The combination of the lac operon
gene regulatory mechanism and the glycolytic pathway is elaborated in more detail in
Ref. [18]. Five mutants of the lac operon are simulated. These papers demonstrate that
different abstraction levels, that is, gene regulation, metabolic and signaling pathway,
and even combinations of them, can be modeled and analyzed quantitatively using
HFPN.

7.7 SUMMARY

In this chapter, we have described the application of Petri net theory to model and
analyze biochemical networks, first qualitatively before continuing with quantitative
analyses. After introducing the basic Petri net definitions, we demonstrated how to
systematically build such a discrete model, which provably reflects the qualitative
biological behavior without any knowledge of kinetic parameters. The Petri net ani-
mation supports the intuitive understanding, while the analysis techniques promote a
profound understanding and thorough validation of a given network.

The techniques have been discussed using a metabolic network as running example.
The mathematical concepts can be applied equally to signal transduction networks,
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gene regulatory networks, or even networks comprising different network types. Thus,
Petri nets may serve as common intermediate language providing a unifying frame-
work for different abstraction levels as well as for a pool of interpretation-independent
analysis techniques.

There are further promising Petri net concepts, which have been proven to be
useful to investigate biochemical networks, but which have not been discussed here
due to space limitations. Among them there are the partial order semantics and related
analysis techniques, colored Petri nets as short-hand notation for place/transitions
nets, and timed, but still discretely treatable Petri nets as interval time Petri nets and
stochastic Petri nets.

We strongly advice a two-step technology for the modeling and analysis of
biochemical networks in a systematic manner: (1) perform a qualitative (i.e., time-
free) modeling and analysis, especially for model validation, increasing the confi-
dence in the model, (2) perform a quantitative (i.e., timed) modeling and analysis,
for hopefully reliable predictions of the system behavior. For both steps, we favor the
deployment of discrete or continuous Petri nets, respectively, sharing the same net
structures for a given case. The quantitative models are derived from the qualitative
ones by the addition of quantitative (i.e., kinetic) parameters. Hence, all those models
are likely to share some behavioral properties.

7.8 EXERCISES

1. The following subtasks might help to increase the familiarity with the inci-
dence matrix and the related analysis techniques.

(a) Show that a Petri net with read arcs cannot be described uniquely by
the incidence matrix. Which other situations are not fully reflected by the
incidence matrix? Give examples.

(b) A well-defined matrix operation is the transposition, which exchanges rows
and columns. If we apply the matrix transposition to the incidence matrix
of a Petri net, what happens with the Petri net and its invariants?

(c) MCT-=sets can be computed including or excluding the trivial t-invariants.
Give the MCT-sets for the running example, taking into account also the
trivial t-invariants. Are there Petri nets, where we get the same results?

2. Consider the following toy example for a system of chemical equations.
2C+20, — 2CO

2C+ 0, —» COy

2C+ CO; S 2CO

Derive a corresponding Petri net model and apply all the qualitative analysis
techniques, presented in this chapter.

(a) Which structural properties hold?
(b) Determine and interpret the p-invariants, t-invariants, and MCT-sets.
(c) Construct a closed system.
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(d) Determine and interpret the p-invariants, t-invariants, and MCT-sets for
the closed system. Determine the boundedness degree.

(e) Try to construct the reachability graph for the open system. What is the
problem? Construct the reachability graph for the closed system. Decide
liveness, reversibility, and existence of dynamic conflicts. Are there con-
current reactions? Check the realizability of the minimal t-invariants.

(f) The infinitely repeated occurrence of the first chemical reaction equation
might be translated into
AG[(C=2A0,=2)— AF(CO =2)],0r
AG[(C=2A0,=2)—- EF(CO=2)].

What is the difference? Which ones holds?
You should be able to solve this task without tool support.

. Extend the running example of this chapter by the following reactions:

® 6P — G6P, which makes the reaction Phosphoglucose_isomerase a re-
versible one,
® 1,3-PBG DPGM 2,3-PGand 2,3-PG D PGase 3PG, opening a new branch
e —_—

within the macro transition between 1, 3-BPG and 3PG.

Adapt step-wise the given Petri net model and apply all the qualitative
analysis techniques presented in this chapter, following the outline (a) — (f)
as given in the preceding task. To solve this task you will need adequate tool
support.

. While CTL model checking fits particularly for the decision of special prop-

erties, it can also be used to decide the general properties introduced in Sec-
tion 7.2.2. Express for the closed model of the running example the following
properties in CTL and check them using an appropriate model checking tool.

(a) Check the liveness of the transitions Aldolase and Transaldolase. What
had to be done to decide the liveness of the Petri net?

(b) Check the reversibility of the Petri net.

(c) Determine the boundedness degree for Ru5P and GAP. Does the answer
depends on the chosen initial marking within the range discussed in Sec-
tion 7.3.4? What had to be done to determine the boundedness degree of
the Petri net?

(d) The control places a; and a; have been introduced to resolve the dynamic
conflict between the two posttransitions of Ru5P, which occurs in the open
system. How can we check that this dynamic conflict actually disappears
in the closed system?

(e) In Section 7.3.4, it is stated that dynamic conflicts concerning ATP disap-
pear, if mo(ATP) > 5. How can we verify this statement?

(f) Check the token preservation within the p-invariants (2 - GSSG, GSH),
(NADPY, NADPH), and (cy, c3).

. Visualize the inherent structure of the following differential equation sys-

tem by deriving the corresponding continuous Petri net. Is the solution unique?
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Which structural and behavioral properties hold for the underlying discrete
Petri net? You should be able to solve this task without tool support.
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SIGNAL TRANSDUCTION AND GENE
REGULATION NETWORKS

ANATOLII P. PoTAPOV

8.1 INTRODUCTION

Biological objects exhibit emergent properties that are not readily explainable by
the features of their constituent parts: A system is more than just a sum of different
elements. In the postgenomics era, there has been an increasingly strong emphasis
placed upon a systems biology approach [34]. This approach takes advantage of the
large amount of gene sequence information available and the fast progress of high-
throughput molecular technologies that open the possibility of large-scale analyses
of complex biological molecular systems. It focuses not so much on the individual
components themselves but rather on the nature of the links that connect them and the
functional states of the networks that result from the assembly of all such links [70].
Functional properties are not in molecules but appear as a result of their coordinated
actions.

The term “network” is the hallmark of this philosophy. A biological network is the
representation of multiple interactions within a cell; a global view intended to help
understand how relationships between molecules dictate cellular behavior. Graphs
are used to represent the topology of such a system (Chapter 2) and abstract the
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Analysis of Biological Networks, Edited by Bjorn H. Junker and Falk Schreiber
Copyright © 2008 John Wiley & Sons, Inc.

183



184 SIGNAL TRANSDUCTION AND GENE REGULATION NETWORKS

inherent connectivity of many objects within the system, while ignoring their detailed
form. Recent breakthroughs in graph theory have provided a new view of the
topological design of complex networks, many of which have been found to have
a scale-free topology [10,18,50] (Chapters 1-3). These networks exhibit small-world
properties [69]: they are compact and display increased clustering (Chapter 3). More-
over, they follow a power-law degree distribution: most components participate in
only one or two interactions, but a few participate in dozens and function as hubs. A
scale-free topology provides the networks with amazing robustness against random
failures [2,3]. The past 5 years have witnessed an unprecedented acceleration in the
study of different biological networks. It has been shown that protein interaction net-
works (Chapter 9) as well as metabolic networks (Chapter 10) from various organisms
exhibit a scale-free topology [21,26,44,54,67,68,71].

This chapter provides the reader with the recent progress in our understanding
how large cellular regulatory networks are organized and function. It aims at readers
not familiar with these subjects and present material without going in many details.
More detailed information can be found in recent reviews and books about systems
biology and biological networks, such as Refs. [1,5,9,10,18,59]. Here, we discuss
on the role of regulatory networks in the evolution and existence of different organ-
isms. Special emphasis is made on signal transduction and gene regulation networks,
their particular properties as compared with metabolic, and protein interaction net-
works and their topological features. The topology of regulatory networks is a kind
of skeleton providing a qualitative framework, on which quantitative data can further
be superimposed for reasons of quantitative modeling and simulation.

8.2 DECISIVE ROLE OF REGULATORY NETWORKS
IN THE EVOLUTION AND EXISTENCE OF ORGANISMS

The existence of living cells relies on numerous highly interconnected interactions
and chemical reactions between various types of molecules such as proteins, DNA,
RNA, and small metabolites. Actually, various activities of cells are controlled by
the action of molecules upon molecules. Among different molecule types, proteins
appear as central players. Being the products of gene expression, on the one hand, and
playing a key role in the regulation of gene expression, on the other hand, proteins
significantly contribute to linking genes to each other and forming multiple regulatory
circuits in a cell (Fig. 8.1).

With the realization that in higher organisms only a tiny fraction of DNA is trans-
lated into proteins, regulation appears to be a very reasonable functional role for
unexpressed DNA. The number of regulators in evolutionary different organisms in-
creases with the size of a genome. Moreover, the number of regulators Nieg grows
even faster than the number of genes, Ny, it regulates: The fraction of regulators
increases with the genome size as [59,63].

——= ~ N for prokaryotes



DECISIVE ROLE OF REGULATORY NETWORKS 185

> > Dibeveis
emfcp 1
Aic “:F\
Cells > p-Calenin p-Catonl m-\' S
18
- CACAZ > P1IK == Fag == —3 F.L
E‘:"“‘_...;“ b Cyel D-CDKA b— o =—=—===—= Smads
5. >Cas+Crk=y | 1 i
Lok Rb b= HPV ET v
F PLC 4] J_ PO e = =k o |
she Yy 1 /
n;l\l p:c Mos m;u—-.m;m—-\ /-c\.-cmm_nz‘ 4.:__:‘
t ’DNP. dama,
- scs"‘“‘” -» Raf -» MEK-> MAPK —% MAPK —»EIK-*Fos = | Changes ceu L _sensor_ .
ﬂw Max—— | in Gene Proliferation
—
; Vi L\ K. MEKK. . Myes é‘ 5 |[Expression {Call Cyclo) | 5y
Hormones CACA2 — Ric =+ RhO == = = :j g ‘L.—-/)'
{e.g. Bombesin) -+ —-—&G—Pl‘l—’-l! Cyel == PKA CREB _) : k\-w\nr—mnue
I ]
(o9, + | NHR (e.g. ER) : Bax
! 3
1 A = e
: i /A PKC NF-«B NF-«<B S35 - ‘/A“_
Survival Factors o ) CollDeath o o Bel 2
(e.g. 1GF1) -+ (BT —» P13K—> AKt-» Akka — IuB Caspase 8 FADD
Stal 3,5
7 PTEN Caspase 0 )
Cylochrome C
ﬁ%” _____ - mn-—-—————-—-—qf[—-——-er,_; (Decoy R)—i
T 1 Bad Bid Death
Jaks ~ Rbrormaii f Faclors
4 ﬁbnormallly Y= > Bim, st (0.g. FasL)
- ‘-, SENSOr_ ~
sanser
Cytokines __

{e.g. IL-36)

FIGURE 8.1 The integrated regulatory circuit of a mammalian cell. Point arrows are activat-
ing reactions; bar-ended arrows are inhibiting ones. Inhibiting arrows in some cases are shown
to act on molecules, in other cases they act on reactions. See text for more details. (Reproduced
from Ref.[23] with permission from Elsevier.)

—& ~ NO3 for eukaryotes

Here, the symbol “~” means “proportional.” That reflects the increasing evolutionary
importance of gene regulation and indicates that each added gene and its protein
product should be adopted and regulated with respect to all already existing genes. It
is the evolution of the gene regulatory networks and not the genes themselves that play
the critical role in making organisms different from one another. It is likely that new
phenotypes rarely appeared through the introduction of completely new proteins, and
innovations mainly occur through the establishment of novel connections between
existing or duplicated proteins to generate new regulatory circuits and thereby new
regulatory behaviors [14].

Figure 8.1 presents the generalized regulatory circuit of a mammalian cell [23].
Various extracellular ligands, such as hormones, cytokines, growth factors, and so
on, approach the cell from outside. The vast majority of them do not enter the cell.
Typically, such a ligand binds to the corresponding receptor embedded in the cell
membrane, which separates the cell from its external environment. Each such binding
triggers a cascade of downstream signal transduction reactions. One receptor activates
a limited number of signaling pathways. The targets of signal transduction pathways
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are metabolic enzymes and transcription factors. The last are proteins that regulate
the transcription of genes that are located in the nucleus (shown as the internal circle).
Transcription factors can be in two states and transit between active and inactive states.
After getting a proper signal and becoming active, transcription factors specifically
bind to the regulatory regions of genes and change the level of the expression of these
genes. Most signaling molecules themselves are the products of gene expression.
For reasons of simplicity, gene expression arrows are not shown in Fig. 8.1, but their
presence is supposed. Actually, there are multiple regulatory circuits and intensive
communication between the nucleus, where genes are transcribed and mRNAs
are synthesized, on the one hand, and the cytoplasm (space between the nucleus and
the cell membrane) where mRNAs are translated into proteins, on the other hand.
Due to the presence of many cycles, regulatory networks cannot be properly modeled
by means of directed acyclic graphs.

8.3 GENE REGULATORY NETWORK AS A SYSTEM
OF MANY SUBNETWORKS

A gene regulatory network is a complex set of highly interconnected processes that
govern the rate at which different genes in a cell are expressed in time, space, and am-
plitude. Such a network is commonly displayed by many pairs of proteins and genes,
in which the first protein/gene regulates the abundance and/or activity of the second
protein/gene. The primary role of proteins in the network is to control the synthesis,
activity, and degradation of other proteins, which altogether control the flow of
matter and energy through the cell. Networks can be considered as static or dynamic
ones [43]. The complexity and the content of a network might change in time and
space: it might have spatial and temporal dimensions [4,8,40,57].

Gene regulatory networks refer to a wide range of systems dealing with various
aspects of complex interrelationships between genes and their products in a cell. They
can be considered over protein interaction networks, signal transduction networks,
transcription networks, as well as gene expression, gene coexpression, and gene in-
teraction networks [11,57,62,64]. Each of them is identified in regard to specific
physical, chemical, and functional properties, as well as to the level of abstraction
used. Fig. 8.2 presents a simplified scheme of intracellular regulation circuits that
are displayed by means of a bipartite graph. There is significant overlapping of gene
expression and signal transduction parts. Proteins are products of gene expression and
at the same time they control the expression of genes. Proteins catalyze metabolic
reactions. Most regulatory events consume metabolites and critically depend on the
supply of metabolites.

Gene expression is a complex process of converting a particular DNA sequence
into the corresponding protein (Chapter 1). It includes transcription of a gene, that
is the synthesis of the corresponding RNA, as well as several posttranscriptional
events when the RNA is transformed into mRNA and is delivered to places where the
mRNA is translated into the corresponding protein chain. All these steps are subject
to regulation. Therefore, the list of regulatory networks can further be extended with
networks that control RNA splicing, regulate mRNA turnover, and translation. For
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FIGURE 8.2 A simplified scheme of intracellular regulation circuits with gene expres-
sion (box I), signal transduction (box II), and metabolic (box III) processes. It has been
viewed as a bipartite graph consisting of molecular entities (ellipses) and regulatory events
(rectangles). Molecular entities are genes, proteins, modified proteins, their complexes, pep-
tides, and metabolites. Regulatory events are gene expression (GE), protein modification and
complex formation (PM, CF), protein degradation (PD) into short peptides, and metabolic
reactions (MR). Mass flow is shown with fat arrows. Dashed arrows represent the catalytic
action of molecular entities on the corresponding regulatory event; catalysts are themselves not
consumed in the corresponding process.

instance, some small 20-25 nucleotide-long double-stranded RNAs are found to play
a significant role in posttranscriptional regulation, possibly influencing the stability,
compartmentalization, and translation of mRNAs of a diverse range of proteins [15].
Such regulation mediated through the control of mRNA turnover plays an important
role in such cellular activities as proliferation, morphogenesis, and apoptosis. In a real
cell, all these networks are closely interrelated and together with metabolic networks
are integrated within the whole network of the cell.

The group of large molecular networks with well characterized topology includes
metabolic networks [27,41,54] and protein interaction networks [44,71] in yeast and
some other organisms. In contrast, knowledge on the topological design of more
complex networks of regulatory processes is much less complete and mainly limited
to transcription networks in relatively simple unicellular organisms—FEscherichia
coli [7,42,61] and yeast [22,40]. Significant advances are made in understanding the
robustness in bacterial chemotaxis and in analyzing the developmental gene regulatory
networks of Drosophila and sea urchin, all reviewed in Ref. [5].

8.4 DATABASES ON GENE REGULATION AND SOFTWARE TOOLS
FOR NETWORK ANALYSIS

Recent advances in high-throughput experimental technologies have resulted in a
great body of information, which continue to grow exponentially. The collection of
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such information in a computer-readable form is a prerequisite for making use of these
data for analysis. A suitable database structure as well as the quality and consistence
of the stored data are of great importance. Presently, many databases on different as-
pects of gene regulation are available [29,32]. Updated information on them appears
every year in the Nucleic Acids Research database issue. Representative examples of
such databases and knowledge bases containing information about regulatory inter-
actions are aMAZE [38], EcoCyc [33], GeneNet [6], KEGG [31], RegulonDB [56],
Reactom [28], TRANSPATH [36,37], and TRANSFAC [46,47]. More such databases
can be found at http://www.hsls.pitt.edu/guides/genetics/obrc/enzymes_pathways/
signaling_pathways/.

The aMAZE database [38] focuses on information about genetic regulation, bio-
chemical pathways, signal transductions, and aims on modeling the systems of cat-
alyzed chemical reactions by means of simulation software packages such as GEPASI
(http://www.gepasi.org/). KEGG [30,31] and EcoCyc [33] provide rich information
on metabolism, metabolic pathways, as well on signal transduction, gene regula-
tion, and cellular processes. GeneNet database [6] provides information on structure
and functional organizations of gene networks and metabolic and signal transduction
pathways. Reactome [28] is a reach resource on pathway information and reactions in
human biology. TRANSPATH [16,36,37] provides encyclopedic information about
the intracellular signal transduction pathways and offers molecular details of the sig-
nal flow from the cell surface into the nucleus. TRANSPATH and accompanying tools
can be used for data visualization and modeling, as well as for the analysis of gene ex-
pression data. TRANSFAC [46,47] is the database on many aspects of transcription
regulation in eukaryotes. It presents the largest archive of eukaryotic transcription
factors, their genomic binding sites, and DNA-binding profiles. Among various tools
for analyzing networks, a particular place is taken by Pajek (http://vlado.fmf.uni-
1j.si/pub/networks/pajek/) that is a freely downloadable software package for the
analysis of really large networks including thousands of vertices and edges. Both
unipartite and bipartite networks (see Chapter 2) can be analyzed. A wide range of
algorithms for network analysis have been implemented in the package and most run
very rapidly. The networks can be displayed in a variety of layouts.

8.5 PECULIARITIES OF SIGNAL TRANSDUCTION NETWORKS

Signal transduction links intracellular processes to extracellular environment and
modulates cellular functions in response to various external stimuli. Signal
transduction pathways are initiated by the binding of extracellular ligands to receptors
and resulting in one or more specific cellular responses. Various extracellular ligands
(e.g., hormones, cytokines, growth factors) act on the cell from outside (Fig. 8.1). The
vast majority of them do not enter the cell. Typically, such a ligand binds to the cor-
responding receptor embedded in the cell membrane. This binding triggers a cascade
of downstream signal transduction reactions. The final targets of signal transduction
pathways are transcription factors and metabolic enzymes. Signal transduction pro-
cesses rely on a cascade of reversible chemical modification of proteins, as well
as on the formation of complexes. The most common type of modification is
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FIGURE 8.3 Generalized topology of a signal transduction path (I) and a metabolic path
(II). See text for details.

phosphorylation: the covalent attachment of a phosphate group to a specific amino
acid of a target protein. That is catalyzed by specific enzymes, protein kinases. The
attachment of negatively charged phosphate group induces spatial reorganization of
the target protein and affects its functional activity. The opposite reaction of removing
the phosphate group is catalyzed by other enzymes, protein phosphatases that restore
the initial functional status of target proteins. The generalized topology of a signal
transduction path is shown in Fig. 8.3. In contrast to metabolic paths, signal transduc-
tion paths consist of a rather limited mass flow and mainly provide an “information
transmission” along a sequence of reactions. That is, one enzyme modulates the ac-
tivity of another one, which in its turn modulates the activity of the third enzyme, each
being not consumed in the reaction it catalyzes. For example, protein Ej catalyzes
the transformation of Ej into E3 (Fig. 8.3). The functional activity of E} differs from
that of E3. This modification is reversible: another protein, E_», catalyzes the trans-
formation of EJ into the initial form Ej. It is the characteristic of signaling cascades
that each key component becomes activated by the previous step to activate the key
molecule of the subsequent reaction (Fig. 8.3).

In contrast to protein interaction networks (see also Chapter 9) that refer to the
association of protein molecules and are undirected, signal transduction networks
refer to reactions and are basically directed. Although signal transduction processes
are mediated by protein—protein interactions, these processes show important
peculiarities as compared with interactions. The number of different directed graphs
with V vertices, Ngir(V), is much larger than that of undirected graphs, Nyngir(V),
with the same number of vertices [58]:

Nair(V) _ 2(\/2,1)/2
Nungir(V)

Protein interaction networks are “isotropic” in the sense that they do not have a
well-defined input and output [12]. In contrast, regulatory and signal transduction
networks are “anisotropic” by their definition as the networks whose primary task
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is to transform a set of inputs into a second set of outputs. By far not all protein—
protein interactions are followed by chemical reactions. Therefore, many interactions
are not “mirrored” in signal transduction. On the contrary, many components of sig-
nal transduction—e.g., steroid hormones, second messengers such as cAMP, Ca2+,
diacylglycerol, 3-phosphorylated inositol lipids, stress, UV, irradiation, etc.—are not
proteins. Protein—-DNA interactions between transcription factors and the regulatory
regions of genes must be added to the list as well. All these reactions are not mir-
rored in the system of protein—protein interactions. Finally, gene regulatory and signal
transduction networks have much in common with protein interaction networks. At
the same time, they refer to different aspects of cellular activity and display several
important differences.

8.6 TOPOLOGY OF SIGNAL TRANSDUCTION NETWORKS

While the topological analysis of metabolic networks is a well-established field,
similar approaches have scarcely applied to large signal transduction networks.
Despite of a great body of information about many details of different signal trans-
duction pathways, there is modest progress in understanding how they are organized
an function as an integral system. That is particularly problematic in regard to signal
transduction processes in multicellular organisms of higher eukaryotes. Available
information about such signal transduction systems is fragmental and different frag-
ments often refer to different species and cell types. The human organism includes
more than 200 different cell types. Altogether, that makes the task of getting the large
scale and integral descriptions of various signaling pathways rather problematic.

To overcome these problems and get the first approximation of the properties of
signal transduction networks, a genome-wide analysis at the level above the level
of species may be useful. In this case, molecules are represented with their ortholog
abstractions. The last ignore the species-specific differences between the homologous
molecules from various species, and consider all members of a homologous group
as one molecular entity. Instead of rather complete mechanistic reactions, that depict
the underlying biochemical mechanisms in all their details, the corresponding simple
semantic representations are preferred. That excludes the necessity to operate on all
reaction details many of which are still unknown. This simplified representation style
is familiar to biologists as it is often used in pathway cartoons in review literature de-
scription: X — Y, where X and Y represent signal donors and acceptors, respectively.
The use of ortholog abstractions and semantic reactions helps to integrate many infor-
mation fragments and increase the size of regulatory networks available for analysis.
Just as maps of metabolic networks describe the potential pathways that may be used
by a cell to accomplish metabolic tasks, these regulatory networks describe potential
pathways that can be used in eukaryotic cells to regulate gene expression programs.
Of course, such regulatory networks are kind of abstraction and represent the genome-
wide properties of the corresponding regulatory systems from those species that were
taken into consideration.

Using this approach and information collected from TRANSPATH database on sig-
nal transduction [36,37], a signal transduction network consisting of several thousand
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vertices and edges might be extracted and analyzed. The network is clearly sparse,
that is, one molecule has in general only few incoming and outgoing links to other
molecules. According to our preliminary results, such a network displays scale-free
properties. Its topology follows a power-law degree distribution and shows small-
world properties in terms of a network diameter and clustering (Chapters 1, 3, and 6).

Despite the obvious importance of a degree distribution for characterizing the class
of a network, this feature does not tell us anything about how vertices are connected
to one other: a huge number of combinations can be possible within the same degree
statistics. The degree—degree correlation in networks can be evaluated in terms of the
assortative mixing that quantifies the extent to which vertices connect preferentially
to other vertices with similar characteristics. It can be made by means of the mixing
coefficient r, a Pearson correlation coefficient for the degrees of the two vertices on
each side of an edge [49,50], which can range within —1 < < 1. This correlation
function is zero for no assortative mixing and positive or negative for assortative or
disassortative mixing, respectively. First evaluations on regulatory networks indicate
that direct links between high-degree proteins are systematically suppressed, whereas
those between a high-degree and low-degree pairs of proteins are favored [45]. If so,
high-degree hubs in regulatory networks might be separated from one other by vertices
with lower degrees and such low-degree vertices may play rather an important role in
sustaining the integrity of the networks and providing communication between their
distant parts [19,20].

Complex organization of signaling pathways may significantly contribute to the
robustness of cellular functions. Robustness is the ability of a system to maintain its
functionalities against external and internal perturbations [35]. Robustness is consid-
ered as a ubiquitously observed property of biological systems, which may be a key to
understanding cellular complexity. The structure of a signaling network that involves
both positive and negative feedback loops may display an amazingly robust behavior.
The chemotaxis pathway of bacteria consists of about 12 proteins that receive signals
from extracellular environment and transmit the signals to the machinery that controls
the movement of the bacterial flagella. That enables bacterial cells to sense gradients
of attractants (e.g., food) or repellents (e.g., poison) and to move up or down the
gradients. The robustness of such bacterial adaptation relies on a special design of
the chemotaxis signaling pathways, that is on the network of positive and negative
feedbacks and not on fine-tuning of biochemical parameters [5].

Robustness of cellular functions and the complexity of cellular systems are con-
sidered to be intimately linked [35,60]. The primary functions of biological systems
are usually robust to wide range of perturbations. However, these systems can show
extreme fragility in regard to other apparently small perturbation. This coexistence of
extremes in robustness and fragility (“robust yet fragile”) is one of the most important
properties of highly evolved or designed complexity [13,19,20,60].

8.7 TOPOLOGY OF TRANSCRIPTION NETWORKS

Transcriptional regulation is one of the most fundamental biological control mecha-
nisms of gene expression. This is mediated by transcription factors that are proteins



192 SIGNAL TRANSDUCTION AND GENE REGULATION NETWORKS

@) Signaling Signaling Signaling
TF1 TF2 TF3
Gene 1 Gene 2 Gene 3
(b) (©) Gene 3
Gene 1

Gene expression

Gene 2

Trans-regulation

Gene 2

FIGURE 8.4 Interrelationships between genes that encode transcription factors (TFs). (a)
Each TF binds to specific DNA sequences in the regulatory regions of a gene and, thereby,
participates in formation of the transcription—preinitiation complexes near the start sites of
transcription. (b) The composition of an edge in the network of TF-genes. Each edge represents
gene expression and trans-regulation. (c) The network of TF-genes.

able to recognize and bind specific DNA sequence elements in the regulatory re-
gions of genes (Fig. 8.4). In general, one gene may be regulated by more than
one transcription factors, and some transcription factors may control more than
one genes. In higher eukaryotes, transcription factors often function in a coop-
erative manner: a particular set of different transcription factors is necessary to
initiate the transcription of a particular gene. The presence of all such factors
in a set is required. One gene can be switched on by means of several sets of
transcription factors, thereby enabling the transcription of the gene under differ-
ent circumstances. Each transcription factor can take part in regulation of several
genes. The genes encoding transcription factors (TF-genes) are themselves sub-
ject to control by other and the same transcription factors. From this, a transcrip-
tional network emerges, which is responsible for controlling essential biological pro-
cesses such as morphogenesis, cell proliferation, differentiation, homeostasis, and
metabolism. Transcriptional networks are often the main targets of signal transduc-
tion [46,55,56].

Bacterial transcription networks are extremely flexible in evolution. Transcription
factors evolve much faster than their target genes [7,39]. The transcription regulatory
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networks of unicellular organisms, such as E. coli and S. cerevisiae, display a scale-
free type of their topological organization [22,62a]. While most molecules are engaged
in only a few interactions, a few hubs are linked to a significantly higher number of
other molecules. In both these networks, the degree distribution follows a power law
P(k)~k™" with the degree exponent y ~ 2 [62a].

The composition of transcription networks in yeast may significantly change with
time or environmental conditions. In response to diverse stimuli, yeast transcription
factors alter their interactions, thereby rewiring the network [40]. A few transcription
factors are present in the network under various conditions and serve as permanent
hubs, but most act transiently and appear under certain conditions only. There are at
least two different types of regulatory subnetworks: endogenous and exogenous [40].
Endogenous subnetworks are made by constructions, which regulate processes that
are intrinsic to the cell (e.g., cell cycle and sporulation). These subnetworks display
a multistage architecture and high local interconnectivity. Transcription factor hubs
have arelatively small number of targets, many of which are other transcription factors.
The hubs are often distant from the “terminal effectors” of processes, being separated
by several interactions and reactions. Accordingly, such regulation is expected to
be complex and rather slow, that is it requires a relatively long time. In contrast,
exogenous subnetworks regulate events that respond to external stimuli (e.g., DNA
damage and stress response) and induce a rapid expression of genes. Exogenous
subnetworks include few transcription factors. However, these factors control a large
number of targets, many of which are the “terminal effectors” that coordinate the
response of a cell to stimuli. The ability to dynamically reorganize transcriptional
regulatory networks and operate on permanent and temporal transcription factor hubs
appears to be an important feature of yeast.

Yeast transcription factors can be further divided into several groups based on
their ability to recognize their targets [24]. There are condition-invariant factors that
bind essentially the same set of targets under any condition. There are condition-
enabled factors that bind targets under certain circumstances only. There are condition-
expanded factors that bind additional targets in specific circumstances. In addition
to that, there are condition-altered factors that bind different targets under distinct
situations. These diverse capacities of transcription factors provide regulatory net-
works with the necessary flexibility and enable their rewiring in a condition-dependent
manner.

A particular transcription network, which is made by those genes only that encode
transcription factors (TF-genes), is of special interest. Such a network of TF-genes
represents the central core, skeleton of a larger gene network that includes all other
target genes. Mammalian network of TF-genes can be represented as a directed graph
where vertices are TF-genes and edges are causal links between the genes, each edge
combining both gene expression and trans-regulation events (Fig. 8.4). Following
the very preliminary evaluations, 121 vertices and 212 edges can be identified and
positioned in this network [52]. The network provides a genome-wide view above the
level of three species: human, mouse, and rat. The architecture of the network is pre-
sented in Fig. 8.5. The network is sparse: that is, on average each TF-gene is connected
to few other TF-genes only. There is a hierarchy of degree distribution with many
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FIGURE 8.5 Mammalian network of transcription factor genes. The network is visualized
by means of software Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/).

low-degree vertices and a few high-degree vertices. Many vertices display the presence
of self-loops, thereby, indicating the capacity of the corresponding TF-genes for
autoregulation.

Within this “complete” network, a special subnetwork centered at p53 TF-gene
can be identified. The p53 TF-gene encode transcription factor p53 that is a very
important tumor suppressor and play a key role in regulating cell cycle, proliferation,
and apoptosis, a process leading cell death. The p53 subnetwork consists of all TF-
genes, which can communicate with p53 TF-gene, that is, send to and receive from
p53 gene regulatory messages. This subnetwork consists of 44 vertices and 80 edges
(Table 8.1).

The problem of extracting such a subnetwork from the whole network might be
of general interest for the reader, and p53 TF-gene subnetwork can be used for that
as an illustrative example. The problem can be solved as follows. The “complete”
mammalian network of TF-genes is considered as a graph G = (V, E). We are inter-
ested in finding its subgraph G’ = (V’, E’) that is centered at vertex v and includes
all vertices that communicate with this vertex v. Accordingly, V' and E’ are subsets
of V and E, respectively (Chapter 2). Let consider vertex p53 (p53 TF-gene) as a
central vertex v. Then, the subset V' consists of vertex p53, all those vertices from
which vertex p53 is reachable and all those vertices that are reachable from vertex
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TABLE 8.1 Topological Properties of the Mammalian Network of Transcription Fac-
tor Genes. V—Vertices; E—Edges; and » — Slopes of Straight Lines in Double Log-
arithmic Plots Calculated by Linear Regression (Figs. 8.7 and 8.8a, Respectively).

Parameter Complete network p53 subnetwork
Size

1% 121 44

E 212 80
Shortest path length

average 2.2 2.4

maximal 5.0 5.0
Degree distribution

Yin 1.34 £0.28 0.56 £0.26

Yout 1.78 £0.14 1.50 £ 0.16

Vinout 1.46 £0.21 0.97 £0.21
Average clustering coefficient

C 0.134 0.241

C/ Crandom 4.6 2.8
Clustering coefficient distribution

1) 0.66 +0.25 1.1 £0.24

Note: Crandom 1s the average clustering coefficient of a classical random graph with the same number of
vertices and edges. Standard deviation is indicated when necessary.
Source: Reproduced from Ref. [52] with permission from JSBi.

p53 (Fig. 8.6). The subset E’ is made by all edges the tail and the head of which are
both from the subset V’.

There are different ways by means of which the subgraph G’ = (V’, E’) can be
extracted from the graph G = (V, E). For instance, the subset V’ can be found by
using the depth first search (DFS) algorithm (Chapter 2). The complete algorithm for
finding the p53 gene subnetwork is

p53_centered_subnetwork DFS _algorithm (vertex v)

D U = all vertices upstream of p53 (by means of DFS);
2) D = all vertices downstream of p53 (by means of DFS);
3) V'’ = union of sets U and D and vertex p53;

4 Add all edges {v, w} € E to E" if v, w € U,

5 Add all edges {v, w} € Eto E' if v, w € D;

(6) Add all edges {v, w} € Eto E'ifve Dandw € U

The subsets of vertices found by means of the upstream search and the downstream
search might show some overlapping that is due to the presence of cycles in the
network G. Therefore, V' is actually the union of these “upstream” and “downstream”
subsets (line 3). To avoid bypaths around p53, not all edges {v, w} € E are taken into
account. An edge {v, w} € E is not part of E if v is in the “upstream” subset of p53
and w is in the “downstream” of p53 (lines 4-6). Allowing (excluding) v = w would
enable (exclude) the presence of self-loops in the p53 subnetwork.
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FIGURE 8.6 A subnetwork centered at a particular vertex v includes vertex v, all those
vertices from which vertex v can be reached and all those vertices that are reachable from vertex
v. Here, v is p53. The “p53” subnetwork is the subgraph G ,s; = (V)s53, Es53) with V)53 =
{p53,1,2,4,5,6,11,12,13, 14,15} and E,s; = {{1,p53},{6,p53}, {2, 1}, {5, 1}, {3, 1},
{4, 3}, {4, 5}, {p53, 11}, {p53, 12}, {p53, 13}, {13, 14}, {13, 15}}. The vertices {8, 9, 10} and
{16, 17, 18} are not part of the p53 subnetwork.

The “complete” TF-gene networks and its p53 subnetwork are rather compact
(Table 8.1). The average shortest path length, that represents the statistical diameter
of a network, is found to be 2. The maximal shortest path length, that represents
the actual diameter of a network, is 5 for both networks. That does not exclude
the presence of longer paths because the shortest ones were only considered. Such
small shortest paths signify the possibility of faster propagation of the regulatory
communication between TF-genes. The average clustering coefficient (Chapter 3) of
the networks clearly exceeds that of classical random networks with the same number
of vertices and edges (Table 8.1), thus indicating the small-world properties of the
both networks. The networks are inhomogeneous. Their degree distribution follows
a power law and is best described by the scale-free model. In the double-logarithmic
plots, the distribution is well approximated by a straight line (Fig. 8.7) that fits the
power law P(k)~k~7. The relatively small value of yj, (0.56 & 0.26) found for p53
subnetwork indicates a star-like organization of this subnetwork that fits to the way
of how this network was defined and extracted.
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FIGURE 8.7 The degree distribution P(k) in the mammalian network of genes coding for
transcription factors shows its scale-free topology. (a) incoming degrees, kj,; (b) outgoing
degrees, koy. In all these cases, the distribution is well approximated by a straight line in the
double-logarithmic plot, thereby fitting the power law. The straight lines are made by linear
regression. (Reproduced from Ref. [52] with permission from JSBi.)

Modular organization is the hallmark of biological systems [25]. Molecules and
genes within a module are thought to cooperate in order to provide a particular func-
tion. Such modules can be presented in a network as relatively independent parts
or they can be organized in a hierarchical fashion. The hierarchical modularity is
compatible with the scale-free topology but does not automatically arise from this
topology. It relates to many small, highly interconnected groups of vertices that form
larger but less cohesive topological modules [53]. This hierarchy can be characterized
in a quantitative manner by analyzing the scaling of the clustering coefficient C(k)
that is the average value of the clustering coefficients of all vertices with degree k
(Chapter 3). For random networks and for simple scale-free networks, C(k) is inde-
pendent of k. However, models that lead to a perfect hierarchical modularity predict
that C(k) depends on k and is proportional to a reverse k, C(k)~k~' [10,17,53]. The
dependence can be weaker if not all modules follow a hierarchical type of organi-
zation. This scaling law offers a straightforward method to identify the presence of
hierarchy in a network and to quantify this hierarchy.

The both mammalian transcription networks — “complete” network of TF-genes
and p53 subnetwork — show the dependence of the clustering coefficient on the degree
of a vertex (Fig. 8.8 a). The scaling of the clustering coefficient follows a power law
C(k)~k~“, as a straight line of the slope w on a log—log plot (Fig. 8.8 a). The scaling
exponent w (0.7 £ 0.2 and 1.1 & 0.2 for the reference and p53 transcription networks,
respectively) reasonably approaches the value 1, which is the signature of hierarchical
modularity. This means that the topology of both mammalian networks of TF-genes
tends to have a hierarchical modular architecture, which might help to more efficiently
reorganize the transcription networks according to the current needs of the cell. Such
a hierarchical modularity have been observed in the transcription networks of bacteria
and yeast as well [62a] and, thereby, appears to be a common property of transcription
systems in different organisms.
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FIGURE 8.8 Scaling of the clustering coefficient (@) and betweenness centrality (b) in the
mammalian network of transcription factor genes. (@) The mean clustering coefficient of all
vertices with k links, C(k), depends on k and this dependence can be well approximated
with a power law C(k)~k~“. (b) Positive correlation between the values of the betweenness
centrality and the degree of a vertex. High-degree TF-genes tend to display a larger value of
betweenness. The straight lines are computed by linear regression. (Reproduced from Ref. [52]
with permission from JSBi.)

The betweenness centrality, B, is a measure of the intermediary role of an individ-
ual element in the communication between all other elements (Chapter 4). It allows
quantify how influential and important a given TF-gene in a whole transcription net-
work is. There is a clear positive correlation between the B values and the degree
of vertices in mammalian networks of TF-genes (Fig. 8.8 b). That evidences the in-
terrelation between local (degree) and integral (B.) topologies of the transcription
networks and supports the view [10] that hubs, that is elements with highly enriched
local topology, represent the most influential elements of a network and tend to be
essential for sustaining the integrity of a network. Note that this correlation is not
absolute: There are several low-degree TF-genes with B, values that are comparable
with and even exceed that of several hubs (Fig. 8.8b).

To identify the mammalian transcription factor genes of high impact, different
topological features of individual genes can be taken into consideration. Table 8.2
represents the results of such an analysis applied to the TF-genes in the “complete”
network. The data in the table are arranged according to the corresponding B, values.
The top part of the list presented there is significantly enriched with TF-genes p53,
c-fos, c-jun, SRF, and c-myc, which are known to be involved in controlling the cell
cycle and display features of tumor-suppressors or proto-oncogenes [65,66]. Many
of top ranking TF-genes, but not all of them, are attributed with relatively high values
of degrees and as a rule with high clustering coefficient (Chapter 3). Among several
topological characteristics of the mammalian transcription networks, B, appears to be
the most representative in regard to the biological significance of individual elements.

8.8 INTERCELLULAR MOLECULAR REGULATORY NETWORKS

In contrast to relatively simple unicellular organisms, such as bacteria, yeast,
multicellular organisms are made by specialized cell types, tissues, and organs,
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TABLE 8.2 Topological Features of Some Individual TF-Genes in the Mammalian Net-
work of Transcription Factor Genes.

Name kin Kout k c B,

p53 8 10 18 0.142 0.0188
c-fos 24 3 27 0.032 0.0139
Egrl 3 6 9 0.333 0.0047
c-jun 8 5 13 0.197 0.0046
WT1 2 1 3 0 0.0029
SRF 4 8 12 0.333 0.0022
c-myc 13 3 16 0.143 0.0016
HNF4A 5 5 10 0.333 0.0014
HOXAI 4 1 5 0.5 0.0011
RAR-8 9 4 13 0.393 0.0009
ONECUTI 3 2 5 0 0.0007
HOXBI 4 2 6 0.5 0.0007
Egr2 5 1 6 0.1 0.0006
IRF-1 7 1 8 0 0.0005
TCFI 3 6 9 0.5 0.0004
ELKI 3 4 7 0.7 0.0004
CRE-BP1 3 5 8 0.333 0.0004
JUND 4 1 5 0.4 0.0003
STAT3 2 4 6 0.5 0.0003
RARA 1 6 7 0.5 0.0003
C/EBPa 4 2 6 0.4 0.0002
NFKBI 1 1 2 0 0.0001
Pax-6 1 2 3 0 0.0001

Note: The top part of the complete list is presented. k—degree, c—clustering coefficient, B,.—between-
ness centrality of a given TF-gene. The Table is arranged according to B, Values.
Source: Reproduced from [71] with Permission from JSBi.

various functions of which must be properly coordinated. In mammals, the endocrine
system strongly contributes to this coordination. Cells constantly sense their environ-
ment in an organism. On the basis the obtained information, they constantly correct
the internal processes and prepare themselves for the necessity to proliferate, move
or die. A human organism consists of about 10'* cells that comprised more than 200
different cell types. There is a great need for understanding how multiple intercellular
communications are organized and function within a whole integral system of an
organism.

Recently, a new database, EndoNet, on the endocrine cell—cell signaling in hu-
man has been developed [51], which enables the analysis of intercellular regula-
tory pathways. The data model includes two classes of components and can be
viewed as a bipartite directed graph. One class represents the signaling molecules
(hormones, cytokines, growth factors, or other messengers), which are secreted by
defined donor cells. The other class represents the acceptor or target cells expressing
the corresponding receptors. The identity and anatomical environment of cell types,
tissues, and organs are provided through references to the CYTOMER ontology [48].
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CYTOMER is a relational database on organs/tissues, cell types, physiological sys-
tems, and developmental stages in a human organism. In EndoNet, all entries for
signaling molecules and receptors are provided with links to external information
resources, that including TRANSPATH database on intracellular signal transduc-
tion [36,37]. That promises to greatly increase the scale of molecular regulatory
circuits available for analyses. That might help to bridge the gap between known
genotypes and their molecular and clinical phenotypes in the area of medical research
and its applications.

8.9 SUMMARY

Regulatory networks play a decisive role in the evolution and existence of organisms.
The number of regulators in evolutionary different organisms increases with the size
of a genome faster than the number of genes. It is the evolution of the gene regulatory
networks and not the genes themselves that play the critical role in making organisms
different from one another.

Signal transduction and gene regulation networks are central players of intra-
cellular regulation. Various extracellular ligands, such as hormones, growth factors,
cytokines, chemokines, and so on, approach the cell from outside. The vast majority
of them do not enter the cell. Typically, such a ligand binds to the corresponding
receptor embedded in the cell membrane. Each such binding triggers a cascade of
downstream signal transduction reactions. The targets of signal transduction path-
ways are metabolic enzymes and transcription factors.

Transcription factors can be in two states and transit between active and inac-
tive states. After getting a proper signal and becoming active, transcription factors
specifically bind to the regulatory regions of genes and change the level of the ex-
pression of these genes. In higher eukaryotes, transcription factors often function in
a cooperative manner: a particular set of different transcription factors is necessary
to initiate the transcription of a particular gene. The presence of all such factors in a
set is required. One gene can be switched on by means of several sets of transcription
factors, thereby enabling the transcription of the gene under different circumstances.
Each transcription factor can take part in regulation of several genes.

Most signaling molecules themselves are the products of gene expression and
therefore are part of multiple regulatory circuits. Gene regulatory networks refer to
a wide range of systems dealing with various aspects of complex interrelationships
between genes and their products in a cell. The topology of signal transduction and
gene regulation networks abstracts the inherent connectivity of many objects within
these systems, while ignoring their detailed form. It might be considered as a kind of
skeleton that provides a qualitative framework, on which quantitative data can further
be superimposed for reasons of quantitative modeling and simulation.

The generalized topology of a signal transduction path significantly differs from
that of a metabolic path. Signal transduction paths consist of a rather limited mass
flow and mainly provide an “information transmission” along a sequence of reactions.
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Regulatory networks appear to be highly inhomogeneous. Signal transduction and
transcription networks display small-world properties and scale-free topology. They
are sparse, compact, and demonstrate increased clustering. Most components partic-
ipate in a small number of interactions, but few participate in dozens and function
as hubs. At least some regulatory networks display the negative assortative mixing
by vertex degree: direct links between high-degree proteins are systematically sup-
pressed, whereas those between a high-degree and low-degree pairs of proteins are
favored. As it follows from the scaling of the clustering coefficient, networks of
transcription factor genes show the presence of hierarchical modularity. The compo-
sition of regulatory networks may significantly change with time or environmental
conditions, thereby rewiring the network. Thus, while responding to diverse stimuli,
few yeast transcription factors serve as permanent hubs, but most act transiently and
appear under certain conditions only.

Intercellular molecular regulatory networks can be in the focus of topological
analysis in the nearest future.

Scale-free and modular topology of regulatory networks is the result of biological
evolution. The network topology is optimized in regard to multiple cellular functions
and necessity to provide living cells and organisms with robustness, homeostasis,
flexibility, and capacity for development.

8.10 EXERCISES

1. Given a network of transcription factor genes. You know from the literature that
three genes A, B, and C in this network are connected by directed edges {A, B}
and {A, C}, which indicate that gene A stimulates the expression of gene B
and gene C. You are making an experiment and find that gene A is expressed:
that is, the product of this gene, transcription factor A is synthesized and the
corresponding protein is detected by a western blot. However, your experiment
shows that gene B and gene C are not expressed. Does it mean that the network
taken from the literature obviously contains mistakes in regard to the edges
{A, B} and {A, C}? If not, what might be the reason for their inactivity? Give
your explanation for this apparent contradiction.

2. Consider the same network as in Exercise 1. Your other experiment indicates
that after stimulation of gene A, gene C is expressed as well, but gene B is not
expressed. Therefore, the causal link A — B works, while the link A — B is
still inactive. Give your explanation for this particular case.

3. Given a gene network, consisting of vertices (i.e., genes) and directed edges
(causal links between genes). Let us consider vertex v and edges around this
vertex. What would provide a stronger impact on the network topology: (a)
deleting the vertex v or (b) deleting one of its incoming or outgoing edges?
Explain your conclusion.

4. When working on Exercises 2 and 3, you may refer to Fig. 8.4. Keep in mind
that each edge represents a multiple conditional event that includes more than
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one functional step. Therefore, an edge indicates the possibility of action, which
can be realized under a set of conditions. Note that a complete set of several
transcription factors, which cooperatively act on a given gene, is necessary.
Note that each of these transcription factors must be activated via its upstream
signaling.

5. Given a gene network G = (V, E) and given its subnetwork G’ = (V’', E')

centered at gene X. That is, G’ includes gene X, all those genes from which
gene X is reachable and all those genes that are reachable from gene X.

(a) What kind of changes in this subnetwork G’ might be expected if
all incoming edges of gene X would be deleted?

(b) Which changes in the subnetwork G’ might be expected if all outgoing
edges of gene X would be deleted?

(c) Which changes in the subnetwork G’ might be expected if all incoming
and all outgoing edges of gene X would be deleted? Would that be
comparable with the effect of deleting vertex X?
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PROTEIN INTERACTION NETWORKS

FREDERIK BORNKE

9.1 INTRODUCTION

Proteins control and mediate the vast majority of biological processes in a living cell.
They act as catalysts, transport or store other molecules, provide mechanical strength,
confer immunity, transmit signals, and control growth and development. Proteins are
polymers of amino acids, covalently linked through peptide bonds into a chain. The
function of a protein is determined by its three dimensional structure, which in turn is
defined by its amino acid sequence. Monitoring the alterations in expression of spe-
cific proteins in response to changing environments or across different developmental
stages of a given organism has provided substantial insight into the complex regulatory
networks controlling life. Proteins operate entirely on the basis of interactions with
other molecules such as low molecular weight compounds, lipids, nucleic acids, or
other proteins. The functionally active form of a protein is rarely its monomer, that is,
the single molecule. Rather close association with partner proteins, or assembly into
larger protein complexes is necessary for biological activity. Besides the obvious role
of protein—protein interactions in the assembly of the cell’s structural components,
such as the cytoskeleton, they are also crucial for processes ranging from transcription,
splicing, and translation to cell cycle control, secretion, and the assembly of enzy-
matic complexes. Prominent examples for the latter are the organization of enzymes
catalyzing sequential steps in a metabolic pathway, such as glycolysis or fatty acid
biosynthesis, into multienzyme complexes (for an overview see Ref. [61]). A major
advantage of such spatial organization is the transfer of biosynthetic intermediates
between catalytic sites without diffusion into the enzyme’s surrounding (Fig. 9.1a).
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This so-called metabolic channeling can be envisioned as a means of attaining high
local substrate concentration, regulate distribution of intermediates shared by compet-
ing pathways, and sequester reactive or toxic intermediates. Besides this rather static
protein—protein interactions, there are also a large number of transient interactions,
that is, interactions occurring for a limited time only. For example, all protein mod-
ifications necessarily involve such transient protein—protein interactions (Fig. 9.1b).
These include the interactions of all protein kinases, protein phosphatases, glycosyl
transferases, proteases, etc. with their target proteins. The transmission of regulatory
signals from the external environment to relevant locations in the cell depends heav-
ily on protein—protein interactions.This type of interaction is much more difficult to
study, because the physiological condition under which the binding occurs has to be
determined in advance. Forces that mediate protein—protein interactions include elec-
trostatic interactions, hydrogen bonds, the van der Waals attraction, and hydrophobic
effects. It has been proposed that hydrophobic forces drive protein—protein interac-
tions and hydrogen bonds and salt bridges confer specificity. On the protein level,
interactions can be mediated at one extreme by a small region of a protein fitting into

(b)

FIGURE 9.1 Examples for protein—protein interactions in various cellular processes. (a)
Multienzyme complex. Compound A is converted to compound E by four sequentially act-
ing enzymes (E1 — E4). Organization of the pathway into a multienzyme complex enables
direct transfer of metabolic intermediates between enzymes and thus enhances, for example,
catalytic efficiency. (b) Signal transduction chain. Transmission of the signal relies on the
transient interaction between the participating proteins. (c¢) Protein scaffolds. Signal trans-
duction pathways can be tethered to a particular cellular location by scaffolding proteins. (d)
Protein interactions form the basis for the function of larger protein complex, for example,
ribosomes.
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a cleft of a partner protein and at another extreme by two surfaces interacting over
a large area. From the above mentioned examples, it becomes obvious that protein—
protein interactions are much more widespread than once suspected and the degree
of regulation they confer is large. Thus, to gain a thorough understanding of biolog-
ical function, it is important to look at a protein in the context of other interacting
proteins. Moreover, disease is often related to alterations in certain protein—protein
interactions. Hence, the manipulation of protein—protein interactions that contribute
to certain diseases provides a potential therapeutic strategy. The complete sequence
of genomes of many bacteria, viruses, and small and large eukaryotes has provided
a vast new resource to define gene function at the morphological, biochemical, and
physiological level. Sequence information by itself, however, does not lead to a clear
insight into the underlying principles of cellular systems. This is mainly because
the biological function of the plethora of predicted genes remains experimentally
uncharacterized. Thus, an understanding of biological mechanisms and disease pro-
cesses demands a “systems” approach that goes beyond the one-at-a-time studies of
single components to more global analyses of the structure, function, and dynam-
ics of the networks in which proteins function. Recent technological advancements
using highly parallelized and automated approaches opened the possibility to assess
protein—protein interactions on a genome wide scale. This led to the establishment
of complete protein-linkage maps, called the interactome, which can be regarded
as “framework” information. Protein networks not only aid functional annotation of
unknown proteins by opening the possibility to group unknowns into a known bi-
ological context (“guilt by association” principle), moreover, increasingly detailed
and reliable biological models can be generated by integrating other functional ge-
nomic and proteomic data sets into interaction maps [23]. In this chapter, several
experimental approaches that are currently used to generate protein—protein inter-
action data are introduced. In Section 9.3.1, it is briefly reviewed how these data
are used to generate protein interaction networks. As all experimental techniques to
determine protein—protein interactions suffer from noise and systematic biases; in
Section 9.3.2, computational methods for improving confidence and quality of inter-
action data are introduced. In Section 9.4, approaches for characterizing the topology
of networks, such as finding hubs and analyzing subnetworks in terms of common mo-
tifs are discussed. Finally, evolution and conservation of protein networks are briefly
reviewed.

9.2 DETECTING PROTEIN INTERACTIONS

Classically, protein—protein interactions have been studied using so-called physical
methods such as affinity chromatography or coimmunoprecipitation (Fig. 9.2) [48,67].
Although these approaches have been proven to be extremely useful, they are not
without problems. The quantity and quality of the starting material are of major
importance for all of these approaches. Coimmunoprecipitation in principle can pro-
ceed from crude protein extracts as starting material; however, usually only minimal
amounts of interacting protein can be recovered limiting downstream analysis. On the
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FIGURE 9.2 Two fundamental principles to experimentally analyze protein—protein interac-
tions. (a) Protein affinity chromatography. Extract proteins are passed over a column containing
immobilized protein. Proteins that do not bind flow through the column, ligand proteins that
bind are retained. Subsequently, bound proteins can be eluted and further analyzed. (b) Coim-
munoprecipitation. An antibody directed against a protein of interest is coupled to a magnetic
particle. The antibody binds its target protein with all its associated proteins in a cell extract. A
magnet immobilizes the protein complex bound to the antibody and contaminating nonbinding
proteins can be washed away.

contrary, affinity chromatography requiring relatively large amounts of pure protein
to be coupled to the column matrix can yield sufficient amounts of interacting proteins
for subsequent biochemical analysis. Identification of the corresponding protein and
identification of the gene used to be a cumbersome process. Only the recent devel-
opment of powerful mass spectrometric methods for protein identification has led
to a renaissance of biochemical methods for protein complex identification because
of their superior sensitivity, speed, and versatility compared with traditional protein
sequencing methods (for details see Section 9.2.2). Currently, two experimental
strategies are used to generate proteome-wide interaction maps at high-throughput.
They are the yeast two-hybrid system and analysis of protein complexes by affinity
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purification coupled to mass spectrometry (AP-MS). The yeast two-hybrid system,
as a binary assay captures direct protein—protein interactions, whereas AP-MS
identifies components of stable complexes. Both assays individually can provide
useful information on protein function employing the “guilt by association” principle.
The basic principles of the two approaches are discussed below.

9.2.1 The Yeast Two-Hybrid System

Since its advent some 15 years ago [17], the yeast two-hybrid system has marked a
cornerstone in the identification and characterization of protein—protein interactions.
The system takes advantage of the modular domain structure of most eukaryotic
transcription factors. For instance, the yeast GAL4 protein, a global transcriptional
activator of the galactose metabolic pathway, consists of a DNA-binding domain (DB)
that binds to specific upstream sequences of GAL4 responsive genes and an activation
domain (AD), which subsequently binds the proteins necessary to activate transcrip-
tion. Both domains constitute only relatively small proportions of the entire GAL4
protein and they are functionally independent and structurally separable, respectively.
When both domains of the GAL4 protein are expressed as individual polypeptides
within the same cell, they fail to activate transcription of GAL4 responsive genes.
However, the observation that transcription factor activity could be restored if these
two proteins do physically interact provided the inspiration for the two-hybrid sys-
tem [17]. To achieve reconstitution of transcription factor activity a “bait” protein is
constructed by fusing a protein X to the DB and a “prey” is constructed by fusing a
protein Y to the AD of the GALA4 protein, respectively. The bait and prey fusions are
coexpressed in a yeast reporter strain, where interaction between X and Y brings the
DB and AD in close enough proximity to reconstitute an active transcription factor
(Fig. 9.3). Reconstitution of transcription factor activity is measured by assaying the
activity of reporter genes that are placed downstream of GAL4 responsive elements.
Commonly, activation of the reporter genes leads to growth on specific media and
results in a color reaction after application of a particular coloring reagent. The yeast
two-hybrid system not only enables to demonstrate the interaction between two known
proteins but also allows for the detection of novel interactions by screening a given
bait protein against a DNA library, representing the total of proteins an organism can

|—>Transcription
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GAL4-binding site Reporter gene

FIGURE 9.3 Principle of the yeast two-hybrid system. Two test proteins, X fused to the
DNA binding domain and Y fused to the activation domain, are coexpressed in a yeast reporter
strain. Upon interaction of X and Y, an active transcription factor is reconstituted and activates
specifically transcription of the reporter genes.
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express, fused to an AD. A typical two-hybrid screening experiment begins with a
strain that contains a set of reporter genes, and that expresses a bait protein fused to
the DB of GALA4. The strain that contains the bait is then transformed with a DNA
library that expresses proteins fused to the AD. Each yeast cell will ideally take up
a single protein out of the entire library and thus allows for the pair-wise analysis
of all proteins encoded by the library against the bait protein. The resulting yeast
cells are generally selected on specific medium where only yeast cells expressing
the respective reporter gene grow. These are then tested for activation of the sec-
ond reporter gene by placing them on plates containing the coloring reagent. From
colonies showing activity of both reporter genes, the library DNA is isolated and the
nucleotide sequence of the respective cDNA insert can subsequently be determined.
The power of the yeast two-hybrid system lies in its superior speed and robustness.
Since it is a genetic system, it can detect all types of protein—protein interactions over
a wide range of physiological conditions. Its great sensitivity enables to detect even
very weak or transient interactions. Moreover, detection of interaction between two
proteins is directly linked to the genetic information encoding them. Although the
yeast two-hybrid system offers a number of obvious advantages over other methods
to detect protein—protein interactions that render it currently the most versatile sys-
tem for large-scale interaction studies, it still has some associated problems. Since
read-out of the interaction relies on the reconstitution of an active transcription fac-
tor, it is necessary for the interaction to occur within the nucleus of the yeast cell.
Although the DNA constructs used to express the hybrid proteins usually are engi-
neered to direct the proteins into the nucleus of the yeast cell, problems may arise
with proteins having strong localization signals to other compartments of the cell, or
are, for example, due to their size, not imported into the nucleus. One class of proteins
that cannot be readily investigated in the yeast two-hybrid system are transcription
factors because they carry an AD themselves and thus, when fused to a DB, lead to
autoactivation of the reporter genes. Also proteins that have hydrophobic domains,
such as membrane proteins, are unlikely to be functional in a two-hybrid assay. A
major drawback of testing protein—protein interactions in a heterologous system, such
as the yeast cell, is that interactions may depend on certain posttranslational mod-
ifications of one or the other partner, for example, phosphorylation, acetylation, or
glycosylation. These modifications may not occur properly in the yeast system and
thus an interaction is not detected. Furthermore, although the two-hybrid assay se-
lects for binary interactions, it cannot be excluded that indirect interactions bridged
by endogenous yeast proteins occur. Finally, interactions of no biological relevance
can be detected if both partners naturally reside in different compartments of the cell
and are only brought together artificially in the yeast nucleus. Consequently, inter-
actions detected with the yeast two-hybrid system should be regarded as hypothesis
until they are validated by independent experimental procedures [37]. In order to cir-
cumvent some of the above-mentioned limitations of the classical GAL4-based yeast
two-hybrid system, alternative approaches have been developed recently. In general,
in these systems, interaction of two test proteins leads to the functional reconstitution
of a protein whose activity results in a particular phenotype allowing for the visual
identification of cells expressing interacting proteins. For an overview concerning
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some of these alternative systems, the reader is referred to recent reviews [9,12]. Be-
cause of the above-mentioned advantages, the yeast two-hybrid system offers over
other approaches and because of its amenability for automation using robotics, it
has become the method of choice to generate genome-wide protein interaction maps.
Typically, large-scale two-hybrid studies rely on interaction mating. In this method,
the bait-protein and the prey-protein are transferred to yeast reporter strains of op-
posite mating types (MATa and MAT«), and the strains are mated to determine if
the two proteins interact. Mating occurs when cells of opposite mating types come
into close contact, and results in the fusion of the two haploids to form a diploid
yeast strain in which the two interacting proteins are produced. Thus, an interaction
can be determined by measuring activation of the reporter genes in the diploid strain
(Fig. 9.4). The main advantage of this approach is that it considerably reduces the
number of transformations necessary to investigate a large number of interactions.
This is because each bait strain can be mated to an arbitrary number of prey proteins
using relatively simple mating steps. In cases where the same AD-tagged DNA library
needs to be screened with multiple baits, only a single large-scale transformation is
required. Two systematic approaches have been employed in large-scale yeast two-
hybrid screens—the matrix approach and the library approach. In the matrix approach
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FIGURE 9.4 Schematic of the interaction mating strategy. Bait and prey proteins are ex-
pressed in MATa and MAT« yeast reporter strains, respectively. After mating, both pro-
teins are expressed in the same yeast cell and, if X and Y interact, reporter gene activity is
detected.
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FIGURE 9.5 High-throughput yeast two-hybrid assays. (a), Matrix approach. An array
of prey clones is created in one multititre plate and, using robotics, transferred to a sec-
ond plate containing an array of BD-clones. Both clones are allowed to mate, and diploids
expressing interacting proteins are detected based on reporter gene expression. (b), Li-
brary screening approach. Yeast cells containing a particular BD-X fusion are mated to
with cells pretransformed with a library of random DNA fragments. Diploids are plated
onto selective medium, and interaction is scored by virtue of reporter gene expression.
In contrast to the matrix approach where the identity of each fusion protein is known,
diploids that passed the assay need to be picked and library DNA has to be isolated for
sequencing.

(Fig. 9.5a), a set of full-length open reading frames (ORFs; i.e., the portion of the gene
encoding the corresponding protein) is amplified using the polymerase chain reaction
and cloned into both BD- and AD-fusion DNA constructs. The resulting constructs
are separately transformed in MATa and MAT« reporter strains. Each specific pairing
of DB- and AD-fusions generated via mating is assayed for interaction. This ap-
proach was initially used to identify protein—protein interactions between drosophila
proteins involved in cell cycle regulation [50]. Later it was applied to analyze the spe-
cific pairs of protein—protein interactions among all of the 266 ORFs of the vaccinia
virus. Of the ca. 70,000 combinations assayed, 37 protein—protein interactions were
found, including 28 that were previously unknown [45]. The matrix approach has also
been used to tackle larger genomes. Recently, two groups reported on large-scale ap-
proaches to detect genome-wide protein—protein interactions in S. cerevisiae [34,66].
In the approach followed by Ito et al. [34], all of the approximately 6000 yeast ORFs
were cloned individually as BD fusion baits in one yeast strain and as AD fusion
preys in another strain of the opposite mating type. These collections of AD and BD
fusion clones were divided into 65 pools each containing 96 clones. Of the possible
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4225 (65 x 65) mating reactions, the authors performed 430 thus covering approx-
imately 10% of all possible combinations. As a result, 183 independent two-hybrid
interactions were detected, of which more than half were entirely novel [34]. This
systematic approach was later completed and eventually identified a total of 841 in-
teractions [33]. In a complementary study, Uetz et al. [66] cloned 192 yeast ORFs
as BD fusions and then with the 6000 yeast ORF AD fusions. This resulted in the
identification of 287 interactions. Surprisingly, when comparing the data sets of Ito
et al. [33,34] to the one from Uetz et al. [66], the overlap was only 20%; despite
the fact that both groups used the same 6000 ORFs [33]. The reason for this small
overlap is difficult to explain, but it is most likely that the differences are due to the
use of different experimental components. For instance, the different plasmids used
by the two groups may give rise to different expression levels or might affect folding
of particular proteins, or the use PCR to amplify the yeast ORFs may have intro-
duced mutations that abolish interactions. Thus, although the results demonstrate the
power of the matrix approach to conduct large-scale interaction studies, care should
be taken when judging the significance of newly identified interactions. As with all
two-hybrid experiments, the matrix approach is also prone to detect a high level of
false positive and negatives. Since biological validation of interaction data generated
in high-throughput experiments is not readily possible, the various interaction data
have be to tested for accuracy on confident sets of interactions using computational
methods ([68]; see also discussion below). Given the importance of protein—protein
interactions for the understanding of disease mechanisms and signaling cascades, a
comprehensive interaction map of human proteins is highly desirable. Toward this
end, Stelz et al. [62] used a yeast two-hybrid matrix approach to screen more than
5500 human proteins for potential interactions, building an interaction dataset that
connects 1705 human proteins via 3186 interactions. Matrix experiments provide the
advantage of knowing the identity of each DB and AD pair, thus circumventing the
need for sequencing. However, this strategy provides no information about the pro-
tein domain that confers a given interaction. Moreover, full-length proteins, as they
are used in matrix approaches, might contain domains hindering the interaction with
other proteins. Proteins that contain hydrophobic transmembrane domains or strong
targeting signals will be unable to reach the nucleus and thus can give rise to false-
negative results. The use of libraries consisting of random DNA fragments fused to
the AD to screen individual BD-fusions or pools of bait proteins partially circum-
vents this limitation (Fig. 9.5b). This type of library approach was first applied to
determine the protein interaction network of the Escherichia coli phage T7 proteome,
comprising 55 proteins, by screening libraries of random DNA fragments fused to
either the BD or the AD against each other. This yielded 22 interactions between
phage proteins, of which only four had been described previously [7]. Fromont-
Racine and coworkers [21] used 15 yeast ORFs involved in mRNA splicing to screen
a yeast AD-tagged library. They were able to identify 170 interactions, correspond-
ing to 145 different yeast ORFs [21]. Later, the first partial protein interaction map
for a multicellular organism, the nematode Cenorhabditis elegans, was created by
using 27 proteins known to be involved in vulval development to carry out exhaus-
tive library screens [70]. As a result, 148 interaction were identified, including 15
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known interactions and 109 interactions that had previously been predicted based
on the C. elegans genome sequence [70]. More recently, this study was extended
using 1873 ORFs related to multicellular function as baits to screen two different
AD-tagged cDNA libraries, and with the interactions previously described, the C. el-
egans protein interaction data set currently contains about 5500 interactions [41].
Up to now, the most comprehensive large-scale two-hybrid study on a multicellular
organism was performed on the proteome of the fly Drosophila melanogaster [24]. A
total of 10, 623 ORFs were cloned as DB-fusions and screened against DNA libraries
to produce a draft protein interaction map of 7058 proteins 20,405 interactions. In
summary, the large-scale screenings carried out so far clearly demonstrate the power
of the yeast two-hybrid system in the identification of protein—protein interactions
on a genome wide scale in various organisms. Although, without independent val-
idation data from these high-throughput approaches should be treated with caution
protein interaction maps from these data sets will definitely advance our understand-
ing how cellular processes are linked by the physical interactions of the proteins
involved.

9.2.2 Affinity Capture of Protein Complexes

Recently, mass spectrometry (MS) began to play an important role in the identifica-
tion of protein—protein interactions as it allows for the detection and identification
of peptides with unprecedented sensitivity. For the identification of protein—protein
interactions, MS based technologies are generally used in conjunction with protein-
complex affinity purification methods (affinity purification coupled to MS; AP-MS,
see Fig. 9.6). Traditional affinity methods use either antibodies or affinity ligands to pu-
rify protein complexes (see also Section 9.2 and Fig. 9.2); however, these approaches
heavily depend on the availability of specific antibodies or other capturing ligands. A
major step toward a generic approach for protein-complex purification was the use of
standard affinity tags attached to a protein of interest. A wide variety of affinity tags
is currently available that are either short peptides (e.g., the His6-tag consisting of six
consecutive histidine residues) or small proteins (e.g., protein A from Staphylococcus
aureus) [64]. A common feature of these tags is that they allow purification of fusion
proteins with relatively high purity and yield using generalized protocols. In a typical
AP-MS experiment, fusion of the target protein sequence and the affinity tag is done
using standard DNA cloning techniques. The recombinant gene thus created is then
introduced and expressed in the host cell for which a transformation procedure must
be available. The tagged protein, if biologically functional, is assembled into its na-
tive protein complex in vivo. Protein complexes are captured from the total proteins
extracted from the cell by affinity purification on the respective affinity matrix. The
purified material is then fractionated using gel electrophoresis that separates proteins
according to their mobility in an electric field, and copurified proteins are subsequently
excised from the gel and identified by MS (Fig. 9.4). Successful purification requires
amethod that is stringent enough to differentiate the complex of interest from all other
proteins present in the cell extract but in turn is gentle enough not to compromise the
integrity of the complex during the purification process. Major progress in protein
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FIGURE 9.6 Analyzing protein complexes by affinity purification coupled to mass spec-
trometry (AP-MS). (a) An affinity-tagged bait protein is expressed in a host cell. (») The bait
protein is affinity-purified along with associated proteins. (¢) Purified protein complexes are by
gelelectrophoresis, so that proteins become separated according to molecular mass. (d) Proteins
are excised from the gel and analyzed by mass spectrometry.

complex purification was made by the development of the tandem affinity purification
(TAP) method [49,51]. This method is based on two successive affinity chromatog-
raphy steps. The introduction of two consecutive affinity purification steps greatly
enhances the specificity of the purification procedure. Although originally designed
for protein complex purification from yeast, the TAP-tag and derivatives of the orig-
inal tag have successfully been used to isolate protein complexes from mammalian
cells, plants, and bacteria [10,11,52,53,55]. One of the major advantages of AP-MS
as compared with the yeast two-hybrid system is that it identifies interactions that oc-
cur in the native cellular environment, provided that temporal and spatial expression
of the target protein is normal, although purification of complexes can lead to both
loss of real interactions and gain of spurious ones. Moreover, if interactions depend
on posttranslational modifications of one or more components of the complex, they
can be identified by AP-MS but usually not in the yeast two-hybrid system. While
the yeast two-hybrid system detects binary interactions, AP-MS detects higher order
interactions, and data from these experiments generally do not provide information
about how components of the complex are connected to each other. Two pioneering
studies on the large-scale AP-MS analysis of purified protein complexes from S. cere-
visiae have been performed [22,30]. These two approaches varied significantly in their
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experimental design. Ho et al. [30] used transient overexpression of flag-tagged ORFs,
which were subjected to one-step affinity purification followed by gel electrophoresis
(SDS-PAGE). Complex constituents were identified by tandem MS. Gavin et al. [22]
integrated a TAP-tag cassette by homologous recombination at the 3’ of each ORF.
The advantages of this tagging strategy are that there is no competition in vivo for
the untagged endogenous protein and that expression tagged protein is under control
of its own promoter. After affinity purification and SDS-PAGE, matrix-assisted laser
desorption ionization (MALDI)-MS was used for protein identification [22]. From
the 1617 yeast strains generated by Gavin et al. [22], 589 protein complexes were
purified yielding 4111 interactions between 1440 individual proteins. Ho et al. [30]
used 725 protein baits and detected 3618 interactions that involved 1578 proteins.
Recently, an attempt was made to map more completely the yeast interactome us-
ing AP-MS. Toward this end, Krogan Ho et al. [39] generated S. cerevisiae strains
with in-frame insertions of TAP-tags at the 3’ end of every predicted yeast ORF. This
enabled the authors to purify 4562 different yeast proteins by tandem affinity pu-
rification. To increase coverage and accuracy of protein identification following the
affinity purification each preparation was analyzed by both MALDI-MS and liquid
chromatography tandem MS (LC-MS/MS). Machine learning was used to integrate
the MS scores and assign probabilities to the protein—protein interactions. Among the
4087 different proteins identified with high confidence by MS from 2357 successful
purifications, the core data set comprises 7123 protein—protein interactions involving
2708 proteins [39].

9.2.3 Computational Methods to Predict Protein Interactions

An alternative to experimental determination of protein interactions is prediction by
various computational genomics approaches. Generally, these approaches take into
account the genomic “context” of a given gene or protein to retrieve functional infor-
mation. Examples of genomic context include conservation of gene identity and posi-
tion in genomes of different species, genome-wide analysis of gene fusion, metabolic
reconstruction, gene coregulation, and expression (reviewed in Refs. [15,16]). The
phylogenetic profiling approach is based on the assumption that protein pairs are
likely to functionally or even physically interact when their corresponding genes are
located in close proximity to each other in the genome and when this arrangement
is conserved across multiple genomes [31]. Using a similar method, functional in-
teraction of proteins is predicted on the basis of patterns of domain fusions [42].
Sometimes two protein domains exist as separate proteins in one genome, but they
are fused together into a single bifunctional protein in another genome. In such a case,
the domains are likely to be functionally related. Two methods exploit the hypothe-
sis that interacting proteins tend to coevolve. In the first method, the coevolution of
interacting protein families is measured by the similarity of phylogenetic trees con-
structed from multiple sequence alignments of the two protein families [25]. When
applied on a genomic-scale, phylogenetic trees for all proteins can be constructed
and similarity between those trees indicates interaction (see also Chapter 11). In the
second method, the coevolutionary signal in multiple sequence alignments is further
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analyzed in terms correlated mutations, which means that a protein pair is likely to in-
teract if there is accumulation of correlated mutations between the two partners [46].
It is also possible to predict protein—protein interactions from sequence informa-
tion using machine-learning techniques. For example, using a database of known
interactions, a support vector machine learning system can be trained to predict inter-
actions based on sequence information and associated physicochemical properties,
like charge, hydrophobicity, and surface tensions [8]. A number of methods have
been developed to extract protein interactions from literature. These methods can
be grouped into two categories. Methods in the first category use machine learning
techniques to screen the literature for articles containing information about protein
interactions [43]; selected articles are then curated by hand. Methods in the second cat-
egory automatically extract protein interaction events from biomedical articles using
natural language processing technologies [20] or statistical analysis of cooccurrence
of names of biomolecules [32].

9.2.4 Other Ways to Identify Protein Interactions

Protein Microarrays The microarray concept, initially developed to monitor mRNA
expression in a multiparallel manner, has also been adapted for protein—protein in-
teraction analyses. In a typical protein microarray experiment for the detection of
protein—protein interactions, a set of recombinant proteins is immobilized onto a solid
surface and subsequently incubated with a labeled protein probe in the liquid phase.
Interaction of the labeled protein with a protein on the solid matrix generates a signal
on the array, which can subsequently be detected. The fabrication of protein microar-
rays requires the availability of expression clones, ideally for every protein encoded
by the respective genome, and the technology for protein expression and purification.
It was a major breakthrough in protein microarray technology when Snyders’ group
reported the yeast proteome array in 2001 [76], where 5800 yeast ORFs were ex-
pressed and presented on a single glass-slide. To test for protein—protein interactions,
the yeast proteome array was probed with biotinylated calmodulin in the presence
of calcium. Calmodulin is a protein of major importance in the regulation of cellular
processes dependent on calcium. It acts by binding to target proteins and thereby
altering their biological activity. In addition to known partners, the calmodulin probe
identified 33 novel potential calmodulin binding proteins on the protein array [76].
Since then, protein microarrays have been used to study many kinds of protein in-
teractions and biochemical activities on a global scale (for a recent overview see
Ref. [40]).

Synthetic Lethality In yeast, genetic interaction between two genes can be stud-
ied by the so-called synthetic lethality. That is when two nonessential genes cause
lethality when mutated at the same time in a cell. Such genes are often function-
ally associated and their encoded proteins may also interact physically. This type
of interaction is currently being studied in all-versus-all approach in yeast [65].
To this end, a query yeast strain carrying a mutation in a nonessential gene is
crossed to of 4700 deletion mutants in the so-called synthetic genetic array (SGA).
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Inviable double-mutant meiotic progeny identify functional relationships between
genes. SGA analysis of genes with roles in cytoskeletal organization, DNA syn-
thesis and repair, or uncharacterized functions so far generated a network of 291
interactions among 204 genes [65]. The advantage of this approach is that it
is an in vivo technique, although an indirect one; and it is amenable to unbi-
ased genome-wide screens. However, although synthetic lethality indicates a func-
tional association between two given genes it does not necessarily mean that the
corresponding proteins do physically interact and thus a network of genetic in-
teraction data has different information content than a protein interaction net-
work.

9.3 ESTABLISHING PROTEIN INTERACTION NETWORKS

9.3.1 Data Storage and Network Generation

To effectively exploit the large amounts of protein—protein interaction data gener-
ated by current experimental and computational methods for biological research, it is
necessary for these data to be stored in a consistent and reliable way. To this end, a
number of protein—protein interaction databases have been developed recently and are
now publicly available. These databases greatly differ by their coverage and contents
and only a selection of databases is described here (Table 9.1). For a more com-
prehensive description of protein interaction databases, including more specialized
ones, the reader is referred to some excellent recent reviews [18,54] and the listings
at http://www.pathguide.org. The databases listed in Table 9.1 combine protein inter-
action data from a number of sources such as from high- and low-throughput yeast
two-hybrid and AP-MS analyses, respectively, as well from data mining of the litera-
ture. Therefore, these databases can be considered metaservers of protein interaction
data. The Database of Interacting Proteins (DIP) was developed at the University of
California Los Angeles is a relational database that contains experimentally deter-
mined protein—protein, protein—nucleotide, and protein—ligand interactions [57,73].
Interactions in DIP are curated both manually (by expert curators) and automatically
(by text-mining approaches). This database is useful in identifying interacting part-
ners of a protein of interest and visualizing the interactions between proteins. The

TABLE 9.1 Comprehensive Interaction Databases

Name Abbr. Entries URL

Database of

interacting proteins DIP 55,732 http://dip.doe-
mbi.ucla.edu/

Biomolecular Interaction

Network Database BIND 201,732 http://binddb.org

Molecular Interactions

Database MINT 61,330 http://mint.bio.uniroma?2.it
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interaction diagrams also provide researchers with a confidence level of every inter-
action, as indicated by the width of edges connecting interacting proteins. Access
to DIP is free to members of the academic community upon registration. The top-
level search page of DIP allows different search strings to be applied on the data set.
Proteins can be found by protein name (vertex), sequence motif, BLAST search, or
article. Once a protein has been found, a new window can be opened showing the
interactions, and information concerning the interaction partners can be browsed and
displayed in several ways. The information in the DIP is available for download. The
Biomolecular Interaction Network Database (BIND) contains by far the most com-
prehensive interaction dataset and is designed to store full descriptions of interactions,
molecular complexes, and pathways [1,2]. All interactions contained in BIND have
been experimentally verified and published in at least one peer-reviewed publication
and are collected by literature mining or investigator submission, with review by cu-
rators before incorporation. Incorporated visualization tools help visualizing complex
multiprotein interactions. The basic search mode uses text entries to query BIND. The
results page from a search shows interaction between what was queried and what is
in the database in a binary set. Querying the database with a protein of interest, either
using the text search or the BLAST search option using sequence information, gener-
ates a results page with interaction listed in sets of two—the protein of interest with its
potential partners. The results page also lists comprehensive additional information
concerning the interaction partners such as a general description, molecular function,
cellular component, biological process, experiments, and links. The Molecular Inter-
action Database (MINT), developed at the University of Rome Tor Vergata, focuses
primarily on experimentally verified protein—protein interactions from mammalian
genomics [75]. The MINT data set was generated by mining scientific literature us-
ing a respective algorithm and then reviewed by expert curators. MINT combines
basic protein and gene information with data on binary interactions. The database can
be searched for individual proteins by name, keyword, structure, or accession number.
Such a search results in a list of entries matching the search criteria, and clicking on
an individual result leads to a page describing a particular entry, containing a variety
of annotation information, as well as a link to all binary interactions involving this
protein. Additionally, interactions from MINT can be viewed graphically as an inter-
action network using the interactive JAVA-based MINT viewer. Each protein in such
an interaction network is linked back to the corresponding information page, and in-
teracting proteins are linked to the corresponding binary interaction page. A long list
of interacting proteins or a table of protein pairs falls short of capturing what actually
happens in a cell, which is a dynamic process that occurs in at least four dimensions
(including time). Instead, the use of graphics suits the human preference of visual
perception over every other sensory system. Commonly, protein interaction networks
are build from experimental data sets using network visualization tools, which in the
simplest case represent protein interaction networks as a graph composed of vertices
(proteins) connected by edges (interactions) (see also Chapter 2). A number of purely
automatic and general algorithms have been developed for visualizing biological net-
works. These tools rely on a layout algorithm to organize a graph of vertices and edges
into an easily navigable layout that is usually featured by minimizing the number of
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edges that cross each other, and grouping groups of vertices that are highly connected
to each other. Two commonly used open source visualization tools for protein net-
works are BioLayout [14] and Cytoscape [58], which both are based on JAVA and
thus readily portable between a variety of computer environments. They also allow
the interactive editing of graphs, including movement of vertices, vertex labeling, and
changing graph appearance. BioLayout utilizes the weighted Fruchterman—Rheingold
algorithm and has a number of options for graph customization, data overlay, export,
and graph analysis. Cytoscape provides a number of different layout algorithms for
producing useful visualizations such as circular, hierarchical, organic, embedded, and
random layouts. Circular and hierarchical algorithms try to lay out networks as their
name suggests. Organic and embedded are two versions of a force-directed layout
algorithm.

9.3.2 Benchmarking High-Throughput Interaction Data

An essential problem inherent to large-scale protein interaction data sets is that only a
relative small fraction of interactions in networks are known with any certainty, which
leads to difficulties in estimating the rate of both false positive and false negative rates.
This has far reaching consequences on the extraction of biological meaningful infor-
mation from theses data sets. Therefore, several attempts have been made to minimize
the number of false positives in high-throughput studies. On the experimental level,
interactions can be scored based on their reproducibility [66] or their frequency of
occurrence [33]. Recently, statistics and bioinformatics approaches have been used to
benchmark the quality of high-throughput interaction data sets. In a pioneering study
von Mering et al. [68] compared yeast high-throughput interaction data sets from
several sources and used interactions found in more than one data set to estimate the
fraction of true positives. The overlap found was surprisingly small; however, the
authors concluded that this was due to the inherent biases in different experimental
methods. Database annotations have been used by Sprinzak et al. [60] in the form of
colocalization data of interacting proteins and their proposed cellular role as a mea-
sure to estimate the reliability of interaction data. However, this approach is limited
to model organisms with well-annotated genomes. In addition to these evaluations
of the overall quality of the interaction datasets, attempts have been made to identify
the most reliable subsets of high-throughput data. These attempts usually involve
combining multiple sources of experimental information. However, since there is
only marginal overlap between data sets [56,68], the number of interactions validated
this way is very small. This number can be increased if one also takes into account
known interactions between paralogs of the putative interacting pairs. This approach,
as demonstrated by Deane et al. [13], allows one to identify roughly half of the true
interactions within a typical high-throughput data set. Another method of quality
evaluation has been proposed by Bader and colleagues [4]. Basically, this method ex-
ploits the observation that interacting proteins tend to form highly connected clusters
within interaction networks; it is therefore possible to asses the quality of a prospec-
tive interaction by examining the length of the shortest path that connects the potential
interactors.
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9.4 ANALYZING PROTEIN INTERACTION NETWORKS

9.4.1 Network Topology and Functional Implications

The topological properties of protein interaction networks have been intensively stud-
ied since the first large-scale data sets were published. Interaction networks, as other
biological networks, have been shown to be the so-called “small-world” networks
meaning that any two vertices can be connected with a path of a few links only (see
Chapter 3) [6]. This short path length indicates that local perturbations (e.g., regu-
lation of the biological activity of a given protein) could reach the whole network
very quickly. Another topological term frequently attributed to interaction networks
is “scale-free” [5]. Scale-free networks are characterized by a few highly connected
vertices (hubs) and many less connected peripheral vertices. The distribution of the
vertex degree k follows a power law (P (k) ~ k7Y . The scale-free nature explains
several properties of protein interaction networks. For example, hubs have a high
probability of representing essential and evolutionarily conserved proteins playing a
central role in the dynamic organization of systems-level cellular properties. In turn,
the apparent scale-free topology is linked to the robustness of interaction networks,
being largely insensitive to random removal of single vertices but particularly sen-
sitive to targeted removal of hubs [27,35]. Indeed, Jeong and coworkers [35] could
show that random mutations in the yeast genome do not appear to affect the overall
topology of the network. By contrast, when the most connected proteins are compu-
tationally eliminated, the network diameter increases rapidly (i.e., the average path
length). Although proteins with five or fewer links constitute approximately 93% of
the total number of proteins in the data set of Jeong et al., they found that only approx-
imately 21% of them are essential. By contrast, only some 0.7% of the yeast proteins
with known phenotypic profiles have more than 15 links (i.e., they have a high degree
centrality; see also Chapter 4), but single deletion of 62% of these prove lethal. This
implies that highly connected proteins with a central role in the network’s architecture
are three times more likely to be essential than proteins with only a small number
of links to other proteins. This phenomenon has been observed in protein interaction
networks of yeast, C. elegans and D. melanogaster [26] and is commonly referred to
as the centrality—lethality rule. This rule is widely believed to reflect the significance
of network architecture in determining network function. However, this view has re-
cently been challenged by He and Zhang [29]. In this work, the authors proposed a
small fraction of randomly distributed essential protein interactions, each of which is
lethal to an organism when disrupted. Under this scenario, a hub is more likely to be
essential than a nonhub simply because the hub has more interactions and thus a higher
chance to engage in an essential interaction [29]. Hence, the centrality—lethality rule
would be explained without involvement of the network architecture.

9.4.2 Functional Modules in Protein Interaction Networks

As interaction networks become increasingly large and complex, there is a growing
need to break them down into more manageable subnetworks or “modules” [28].
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The module, which is loosely defined as a cohort of proteins that perform the same
cellular task, should be dedicated largely by the topology of the network itself and
thus spatially separable from the whole system. Functional modules are useful for
annotating uncharacterized proteins, for studying the evolution of interacting sys-
tems, and for getting a general overview of the immediate functional partners of a
protein. The existence of such modules has been proven experimentally, and several
modules like the ribosome, the replication complex, glycolysis, or the mitotic spin-
dle apparatus have been successfully reconstituted in vitro, while others have been
confirmed in vivo [28]. As many of these modules cannot be predicted merely on
their constituent protein’s annotation, several groups have developed algorithms to
identify functional clusters in protein interaction networks. For example, Spirin and
Mirny [59] developed an algorithm that was able to recover many previously known
protein complexes (e.g., the anaphase-promoting complex) and functional modules
(e.g., the yeast pheromone-response pathway). In addition, new complexes and new
members of known complexes were identified and thus these methods can provide
information about single proteins and their biological context. Another approach to
predict functional modules in complex interaction networks relies on mathematical
tools for network decomposition. For example, k-core decomposition, a method that
is based on the recursive removal of the least connected vertices from a given net-
work, was used to detect a novel nucleolar network in yeast [3]. In protein interaction
networks, fully connected subgraphs, that is, motifs (see also Chapter 5) with every
vertex linked to every other vertex, the so-called cligues, have been found to have
a high functional significance [59,74]. The simplest higher order structural element
in protein networks is the triangle-that is statistically overrepresented in interaction
networks and thus might represent higher order hubs [74]. Given the high biological
significance of triangular structures in protein interaction networks, an even stronger
functional link of the members of a completely connected clique can be assumed.
Indeed, most of the cliques found in the genome-wide yeast interaction network con-
stitute central subunits of known protein complexes. For example, proteins found in
fully connected pentagons, a motif highly overrepresented in the yeast protein in-
teraction network, contained components of the yeast proteasome complexes RPN,
PSA, PSB, and PRS [72]. However, in order not to remain merely hypothetical, it
is important to combine conclusions from graph-theoretical analyses of molecular
networks with experimental validation of the predictions by focused or systematic
perturbation analysis.

9.4.3 Evolution of Protein Interaction Networks

Gene duplication and subsequent functional divergence are the fundamental mecha-
nisms of the evolution of genomes and complexity in general. One copy of the gene
can maintain its essential function, while the other copy is free to mutate and evolve
(reviewed in Ref. [63]). It has been proposed that the evolution of complex molecular
networks is based on a similar mechanism [69]. A two-step model involving gene
duplication and rewiring of interactions has been proposed to explain the evolution of
protein interaction networks and their specific topology. Duplication and divergence
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shape the network architecture on two different levels, on the level of single vertices
and edges as well as on the higher order level of network motifs and modules [47].
On the contrary, it has been suggested that proteins involved in multiple interactions
are more conserved than proteins with a smaller number of interaction partners [19].
However, another study showed that only a small fraction of proteins with the largest
number of interactions, that is, hubs, tend to evolve slower than the bulk of the pro-
teins [36]. Thus, the correlation found by Fraser and coworkers maybe an artifact
caused by a small subset of proteins rather than a general phenomenon [19].

9.4.4 Comparative Interactomics

The accumulation of comprehensive high-throughput protein interaction data from
yeast, and now fly and worm, combined with the paucity of information from
other organisms, has led to the question of how protein interaction networks
compare between organisms and to what extent interactions and subnetworks in one
organism are conserved in another. In order to detect such homologous interactions
and pathways, Kelley and coworkers [38] developed the program PathBlast
(http://www.pathblast.org), which aligns two protein interaction networks combining
interaction topology and sequence similarity. Following this approach, it was possible
to show that the protein interaction networks of yeast and Helicobacter pylori harbor
a significant number of evolutionarily conserved pathways. One spectacular example
among the conserved subnetworks is a group of proteins involved in membrane
transport in bacteria and in nuclear-cytoplasmic shuttling in yeast [38]. This finding
indicates that nuclear-cytoplasmic transport in eukaryotes may have originated from
a homologous system in bacterial plasma membranes. Following a similar approach
Wojcik and colleagues predicted a protein interaction map for E. coli from H. pylori
interaction data [71]. Matthews and coworkers [44] performed systematic sequence
similarity searches for pairs of potential of known interacting proteins in yeast
to identify potentially conserved interactions, dubbed “interlogs,” in C. elegans.
Starting from a large number of published yeast two-hybrid interactions between
yeast proteins, searches for candidate interlogs identified networks of potential
physical interaction among C. elegans proteins. At least 16% of the predicted protein
interactions in these networks could be confirmed by yeast two-hybrid analysis,
suggesting that these interactions are indeed confirmed [44]. The significant conser-
vation of interactions confirms that a feasible strategy for network reconstruction is
to transfer interactions from organisms in which they have been measured.

9.5 SUMMARY

One of the major challenges in the postgenome era is to determine how the com-
plement of expressed cellular proteins—the proteome—is organized into functional,
higher order networks. Interaction proteomics, the systematic identification of pro-
tein interactions within an organism, promises to facilitate systems-level studies of
biological processes. Two powerful approaches have become popular in the study of
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protein—protein interactions. The first is the yeast two-hybrid system, a yeast-based
assay that detects binary protein—protein interactions on a genetic basis, and the
second is the purification of protein complexes coupled to mass spectrometry. The
latter approach allows investigating higher order protein complexes in their phys-
iological environment. Both methods have been used to generate comprehensive
high-throughput protein interaction data sets from a number of model organisms.
These large data sets harbor information that is not immediately obvious without in-
tegrative analysis. Although integration and analysis have traditionally been carried
out by humans, the sheer amount of data now calls for bioinformatics approaches.
Graph layout is now extensively used for protein interaction network visualization
and analysis. Bioinformatics analysis implicates that protein interaction networks
adopt a scale-free topology that explains their error tolerance or vulnerability, de-
pending on whether hubs of peripheral proteins are attacked. It is becoming in-
creasingly apparent that the intermediate and local levels of network organization—
the modules, motifs and cliques—play important roles as the operational units of
biological function. Networks also allow the prediction of protein function form
their interaction partners and therefore the formulation of analytical hypotheses. Fi-
nally, comparative network analysis predicts interactions for distantly related species
based on conserved interactions, even if their genome sequences are only weakly
conserved.

9.6 EXERCISES

1. Name three limitations of the yeast two-hybrid system that are circumvented by
using complementary approaches to identify protein—protein interactions such
as AP-MS.

2. In this exercise you will be comparing protein interaction data for a small
family of proteins called glutaredoxins.

(a) Go to the Saccharomyces Genome Database (SGD) at http://www.
yeastgenome.org and identify the five glutaredoxin genes found in this
organism. List the gene names, all aliases, the systematic names, and a
brief description for each gene.

(b) Identify the interactions for each glutaredoxin identified by Ito and
coworkers. Go to their Web site at http://itolab.cb.k.u-tokyo.ac.jp/Y2H/
and download the full data file. From this file, draw an interaction map that
illustrates all interactions identified for each glutaredoxin in this experi-
ment. Identify name or function of each gene product.

(c) Identify the interactions for each glutaredoxin identified by Uetz
and coworkers. Go to their Web site at http://portal.curagen.com/cgi-
bin/com.curagen.portal.servlet.Portal YeastList. Try to identify the interact-
ions and draw an interaction map for each glutaredoxin in this experiment.
Identify name or function for each gene product.
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(d) Compare the interactions that you identified from the original data
sets. Where are overlaps or differences? Discuss the reason for possible
discrepancies.

(e) For this exercise you will take preliminary look at the Cytoscape
network visualization tool. To download Cytoscape on your computer go to
http://www.cytoscape.org and follow the instructions for installation. To
download the Cytoscape-formatted interaction data for Grx2, go to SGD
and click the “Batch download” link on the left side of the page. Enter
Grx2 under “Option 1,” select “physical interactions,” and then submit.
Follow the instructions for downloading the file. Start Cytoscape, in the
“File-load-Network” menu, enter the file name of the interaction file that
you downloaded from SGD. Under the “Layout” Menu, select “Apply
Spring Embedded Layout-all nodes.” Find Grx2 in this network. To which
nodes is it connected? What is this protein and what is its function. Com-
pare what you see in the Cytoscape network to what you have identified
from the Ito and Uetz data, respectively. What is the most highly connected
node in the Cytoscape network? Using the functional description for the
protein from SGD, provide a biological explanation for this highly con-
nected node.
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METABOLIC NETWORKS

MARcIO RoOSA DA S1LvA, JIBIN SUN, HONGWU Ma,
FENG HE, AND AN-PING ZENG

10.1 INTRODUCTION

Metabolic network refers to the network composed of metabolites and their
interconversions (biochemical reactions) in an organism. Metabolites are usually
small molecules such as glucose and amino acids but can also be macromolecules
such as polysaccharides and glycan. The interconversion is usually catalyzed by
enzymes (proteins). Only a few reactions in the cell are spontaneous and thus
nonenzymatic. Metabolic pathway, an important concept in biochemistry, is a se-
ries of successive or tightly associated biochemical reactions for a specific metabolic
function, for instance, glycolysis, lysine degradation, and penicillin biosynthesis. A
metabolic pathway can be considered as a small local area of a metabolic network,
whereas a metabolic network gives a better and more complete view of the cellular
metabolism.

A complete metabolic network should show all the possible modes of material flows
in the cell, therefore indicating all the metabolic potential and capacity of the cell. In
other words, metabolic network is the material processing center for a functioning cell.
The cell relies on this network to uptake and digest substrates from the environment,
to generate energy (e.g., in form of ATP) and to synthesize components that are
necessary for its growth and survival.

It is of great interest to study metabolic network for its fundamental importance
in biology in general and in particular because many applications are directly built
on the use of cellular metabolism. Biotechnologists modify the cells and use them as

Analysis of Biological Networks, Edited by Bjorn H. Junker and Falk Schreiber
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cellular factories to produce bulky or fine chemicals, antibiotics, industrial enzymes,
antibodies, and so on. In biomedicine, people cure metabolic diseases of human
beings through better understanding the metabolic mechanism, and control infections
of pathogens by making use of the metabolic differences between human beings and
pathogens.

The sequencing of genome and Bioinformatics and functional genomic studies
of sequences make it now possible to reconstruct the metabolic network of a
specific organism at genome level and thus open up new horizons in many areas of
biotechnology and life science. In this chapter, we briefly illustrate some methods
and concepts used for the reconstruction, structural, and functional analysis of
genome-based metabolic network.

10.2 VISUALIZATION AND GRAPH REPRESENTATION

A metabolic network consists of metabolites that are converted into others through
biochemical reactions catalyzed by enzymes. Thus, in a general approach of
visualization and analysis, it can be represented as a graph with two different kinds of
vertices (metabolite and enzyme) in an alternating order, which is typical for bipartite
graphs (as explained in Chapter 2). For simplicity and for a more straightforward
analysis, metabolic networks can be represented as a simple direct graph with ver-
tices representing metabolites and edges corresponding to reactions converting one
metabolite into the other [18,24]. As a complement, a reaction graph can also be
used [25]. In the reaction graph, the vertices represent reactions and there will be
an edge between two vertices if the product of one reaction is the substrate of the
other.

This simplification is helpful for structural analysis as many graph algorithms
do not consider different types of vertices as in a bipartite graph. The drawback of
this representation is that if the currency metabolites [24] are not removed, biolog-
ically meaningless shortcuts may be introduced in the network as explained in the
following section. Figure 10.1 shows (using Cytoscape [43]) the metabolic network
of E. coli represented as a simple graph. In this network, vertices represent metabo-
lites and edges between two metabolites exist if one metabolite can be converted into
the other. For a more complete overview of graph representation of networks see
Chapter 2.

10.3 RECONSTRUCTION OF GENOME-SCALE METABOLIC
NETWORKS

Piece by piece, information on biochemical reactions and metabolic pathways were
accumulated during the long history of biochemistry study. The human knowledge
on metabolism was condensed on the famous Boehringer Mannheim wall chart
of metabolic pathways [3]. However, until the emergence of the first complete
bacterial genome in 1995, it is impossible to access the complete and species-specific
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FIGURE 10.1 Metabolic network from E. coli shown as a graph.

metabolic network. Since then, many genome were or are being sequenced in a
fascinating speed. According to NCBI (Status April, 2006), 348 genomes are com-
pleted, including human-being itself and many clinically or industrially important
organisms, while another 844 genome sequencing projects are ongoing. An era
to understand the organisms at a systems-level comes. Many of these networks
are available online: Kyoto Encyclopedia of Genes and Genomes [4], EcoCyc
and BioCyc [1]. EcoCyc is an extensively human-curated database specialized for
Escherichia coli K-12 whereas KEGG and BioCyc maintain databases for many
organisms but with little human curation effort.

In this section, a simple algorithm for metabolic network reconstruction will be
introduced. The reader are encouraged to read literature [11,24,46] to access more
detailed information.



236 METABOLIC NETWORKS

Genome annotation

l

Enzymes,
eg., EC: 2712
Enzyme name: glucokinase

1 Reaction database

Reactions
e.g. ATP + p-glucose = ADP + p-glucose 6-phosphate

1 Reversibility information

Connection matrix,
e.g., C00031-C00092

Remove connections
via currency metabolites

Metabolic network

FIGURE 10.2 Workflow for metabolic network reconstruction from the genome annotation.

Figure 10.2 shows the workflow to reconstruct the metabolic network from
genome annotation. For a given genome with annotations, the EC numbers (Enzyme
Commission numbers, a number in the form x.x.x.x representing the biochemical
reaction catalyzed by the corresponding enzyme) was extracted. If the EC numbers
were not assigned in the original annotation, the enzyme name can also be used for
the following workflow. The EC numbers or enzyme names were searched in the
reaction database such as KEGG LIGAND [20]. If only enzyme names instead EC
numbers are available, it is sometimes difficult to find the reactions catalyzed by the
enzyme unambiguous since one enzyme often has variant names. In this case, human
curation is necessary.

Once the reaction list is created, the reactions are further converted to connection
matrix: substrate—product pairs are recoded in a format that can be more easily handled
by the computer. For example, in Fig. 10.2, a connection C00031-C00092 was gen-
erated from the reaction: ATP + D-glucose = ADP + D-glucose 6-phosphate. Here
C00031 and C00092 represent D-glucose and D-glucose 6-phosphate, respectively.
The connection matrix file can be directly interpreted by many network visualization
tools such as Cytoscape [2] for visualization and analysis.

The reversibility information of the reactions should be considered when the con-
nection matrix was built. Unfortunately, the reversibility information is not included in
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the famous reaction databases like LIGAND. We made efforts to curate the LIGAND
database and achieved an improved reaction database in EXCEL format [5,24].

The connection matrix should be further treated by removing connections via
currency metabolites such as HyO, CO;, ATP, etc [24]. Currency metabolites are
the metabolites that are mainly used as carriers for transferring electrons and certain
functional groups (hydrogen, phosphate, amino group, one carbon unit, methyl group,
etc.). For example, in the reaction Glucose + ATP = G6P + ADP. ADP and ATP are
currency metabolites for transferring phosphate to glucose. The currency metabolites
are often not shown in the metabolic pathway maps in KEGG.

Currency metabolites are normally used as carriers for transferring electrons and
certain functional groups (phosphate group, amino group, one carbon unit, methyl
group, etc.). When considering the connections through currency metabolites,
structure analysis often produces biologically meaningless results. For example, in
the glycolysis pathway, the path length (number of reaction steps in the pathway)
from glucose to pyruvate should be nine in terms of biochemistry (see Fig. 10.3).
However, if ATP and ADP are considered as vertices in the network there would
be only two steps from glucose to pyruvate (the first reaction uses glucose and
produces ADP, while the last reaction consumes ADP and produces pyruvate). This
is obviously biologically not meaningful. Different approaches have been proposed
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to address this problem. A simple way is to exclude the top-ranked metabolites
based on their connection degree (number of edges connected with a metabolite).
The problem is that certain primary metabolites such as pyruvate may also have high
connection degrees. Moreover, currency metabolites cannot be defined per se by
compounds but should be defined according to the reaction. For example, glutamate
(GLU) and 2-oxoglutarate (AKG) are currency metabolites for transferring amino
groups in many reactions, but they are primary metabolites in the following reaction:

AKG + NH3; + NADPH = GLU + NADP* 4+ H,0

The connections through them should be considered. The same situations are for
NADH, NAD™, ATP, etc. Another problem is for the kind of reactions like

AcORN + GLU = ORN + AcGLU

The acetyl group (Ac) is transferred between GLU and ORN (ornithine) in this
reaction. Only the connections AcCORN-ORN, GLU-AcGLU should be included,
but AcCORN-AcGLU and GLU-ORN should be excluded. Otherwise the path length
from GLU to ORN will be 1, and this is not in accordance with the real biochemical
pathway. Therefore the reactions were manually checked to remove the biologically
meaningless connections [24]. As an example, Fig. 10.4 depicts the two graphs
(with and without connections through currency metabolites) for the reconstructed
metabolic network of Streptococcus pneumonia. It can be seen that the one without
currency metabolites is more realistic and more amendable for analysis. In contrast,
the true network structure in the graph with currency metabolites is masked by the
large number of edges through currency metabolites. Therefore, the removal of

FIGURE 10.4 Metabolite graph representation of metabolic network of Streptoccus pneumo-
niae. The left network includes the connections through currency metabolites and the right one
does not. Edges with arrow represent irreversible reactions and those without arrow represent
reversible reactions.
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connections through currency metabolites is an essential step to draw biologically
meaningful conclusions from graph analysis of metabolic networks.

104 CONNECTIVITY AND CENTRALITY IN METABOLIC NETWORKS

The study of genome-based metabolic networks has given remarkable new insights
into the fundamental aspects of cellular metabolism. One of the important findings
is that like many nonbiological complex systems, metabolic networks exhibit typical
characteristics of small-world network, namely a power law connection degree dis-
tribution [45], high cluster coefficients and a short network diameter [10,18,47]. This
small world structure is regarded as one of the design principles of many robust and
error-tolerant networks such as the computer network, neural network, and certain
social and economic networks [6,45].

Jeong et al. [18] showed that metabolic networks were scale free networks when
considering the connections through currency metabolites. Ma and Zeng [24] ver-
ified that the structure of metabolic networks still have the characteristics of a
scale-free network after deleting the connections through currency metabolites. One
important feature of scale-free network is the power law distribution of connec-
tion degree among the vertices [45]. In contrast to the scale-free network, a ran-
dom newtwork has a Poisson distribution of the connection degree. The connec-
tion degree is defined as the number of connections linked with each metabolite
(vertex). Considering the direction, the number of connections starting from the
metabolite is called output degree, and the number of connections ending at the
metabolite is called input degree. The output degree distributions of four typical
organisms (Homo sapiens (eucaryote), Escherichia coli (gram negative bacteria),
Bacillus subtilis (gram positive bacteria), and Aeropyrum pernix (archaea) for eu-
karyotes, proteobacteria, gram positive bacteria and archaea, respectively) are shown
in Fig. 10.5. In this figure, P(k) is the fraction of vertices that have a k-degree of
outputs. It was calculated by dividing the number of metabolites, which had k output
connections with the total number of metabolites in the organism. Except for the first
point with £ = 1, a clear power law distribution (linear relations in the logarithmic
scale coordinates) can be ascertained (Fig. 10.5):

P(k) = ak™Y (10.1)
or for the log—log plot:
log P(k) = loga — ylogk (10.2)

where —y is the slope of the linear approximation of the curve.

The input degree distributions for these organisms also have similar power law
relations (data not shown). The power law degree distribution exists in networks of
all the organisms studied in the work of Ma and Zeng [24]. This indicates that the
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FIGURE 10.5 Output degree distribution in four typical organisms. P(k) is the fraction of
vertices that have a k-degree of output connections. The original data have been logarithmi-
cally binned according to Huynen and Nimwegen [17]. hsa: Homo sapiens (eukaryote), eco:
Escherichia coli (gram negative bacteria), bsu: Bacillus subtilis (gram positive bacteria), ape:
Aeropyrum pernix (archaea).

metabolic network without connections through currency metabolites is still a scale-
free network.

Centrality measurements (see also Chapter 4) can help to identify important ver-
tices in the network. In social network analysis, network activity for a vertex is
measured using the concept of degree—the number of direct connections a vertex
has.

Degree centrality can show the vertices with highest number of connections in the
network. This helps to identify the “hubs” in the network. In a metabolic network,
this means the vertices that can be converted into more metabolites.

Betweenness centrality may help to find some important vertices in the network.
Vertices with the highest betweenness centrality are the ones with the highest number
of shortest pathways going through them. For a metabolic network, this may mean
vertices that participate in more metabolites conversions. This is not always true
because in many cases the shortest path is not the one used in the reality. One example
in Fig. 10.6 shows the biosynthesis of arginine from glutamate. The shortest path from
glutamate to arginine is the path B. But this pathway is not used to synthesize arginine.
The initial part of this path is actually used for the proline synthesis (path C). Path A
is longer than B, but it is the metabolic pathway actually used for the biosynthesis of
arginine.

With the parameter closeness centrality, one can identify vertices in the central part
of anetwork and vertices in the periphery part. Vertices in the central part have a shorter
distance to other vertices in the network (they are closer to other vertices, therefore
the name “closeness”). In a metabolic network, this means that these metabolites can
be converted to others in fewer steps.

Tables 10.1 to 10.3 show the top 10 vertices in terms of different definitions of
centrality for the metabolic network from Bacillus subtilis.
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FIGURE 10.6 Conversion from glutamate to arginine. Numbers in reactions are EC numbers.

TABLE 10.1 Ten Metabolites with Highest Betweenness Centrality for B. Subtilis
Network

Rank Betweenness KEGG* Name
centrality
1 0.432132 C00022 Pyruvate
2 0.310035 C00117 D-Ribose 5-phosphate
3 0.297295 C00119 5-Phospho-alpha-p-ribose
1-diphosphate
4 0.282609 C00118 D-Glyceraldehyde 3-phosphate
5 0.278441 C03090 5-Phosphoribosylamine
6 0.275247 C03838 5’-Phosphoribosylglycinamide
7 0.272031 C04376 5’-Phosphoribosyl-N-
formylglycinamide
8 0.268792 C04640 2-(Formamido)-N1-(5'-phosphoribosyl)
acetamidine
9 0.265530 C03373 Aminoimidazole ribotide
10 0.262246 C04751 1-(5-Phospho-D-ribosyl)-5-amino-

4-imidazolecarboxylate

¢ Compound index number from KEGG [19].
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TABLE 10.2 Ten Metabolites with Highest Closeness Centrality for B. Subtilis Network

Rank Closeness KEGG* Name
centrality

1 0.124260 C00022 Pyruvate

2 0.122129 C04442 2-Dehydro-3-deoxy-6-phospho-D-
gluconate

3 0.122058 C11437 1-Deoxy-D-xylulose 5-phosphate

4 0.122022 C00074 Phosphoenolpyruvate

5 0.121247 C00118 D-Glyceraldehyde 3-phosphate

6 0.120309 C04691 3-Deoxy-arabino-heptulonate
7-phosphate

7 0.119590 C00036 Oxaloacetate

8 0.118243 C00279 D-Erythrose 4-phosphate

9 0.115543 C00111 Dihydroxyacetone phosphate

10 0.115195 C00085 D-Fructose 6-phosphate

“ Compound index number from KEGG [19]

TABLE 10.3 Ten Metabolites with Highest Degree Centrality for B. Subtilis Network

Rank Degree KEGG* Name
centrality

1 0.038095 C00022 Pyruvate

2 0.026190 C00024 Acetyl-CoA

3 0.023810 C00025 Glutamate

4 0.021429 C00092 D-Glucose 6-phosphate

5 0.019048 C00085 D-Fructose 6-phosphate

5 0.019048 C00124 D-Galactose

5 0.019048 C00111 Dihydroxyacetone
phosphate

5 0.019048 C00118 D-Glyceraldehyde
3-phosphate

9 0.016667 C00031 D-Glucose

9 0.016667 C00248 Lipoamide

9 0.016667 C00049 Aspartate

¢ Compound index number from KEGG [19]

10.5 MODULARITY AND DECOMPOSITION OF METABOLIC
NETWORKS

In biochemistry, it is well established that modules consisting of several in-
teracting bioreactions or metabolic pathways build discrete functional units of
metabolism [14,26]. These modules are further nested to form a complex metabolic
network. However, the structural analysis of metabolic networks indicates a small-
world structure [18,24] where all the vertices in the whole network are linked
through a short path. The modular organization seems missing in this small-world
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structure. To resolve the apparent contradiction between the small-world structure
and modularity organization Ravasz et al. [35] proposed a hierarchical modularity
model for metabolic networks. According to this model, metabolic networks of or-
ganisms are organized as many small, but highly connected modules that combine in a
hierarchical manner to larger, less cohesive units. Several studies using concepts such
as the reaction betweenness centrality distribution and the dependency of metabo-
lites have further verified that metabolic networks are organized in a hierarchical
way [12,16]. These results indicate that hierarchical modularity is also an important
feature of metabolic networks. Modularity has been shown to be common in the or-
ganization of robust and sustainable complex systems [14]. Therefore, identifying
the modular organization of metabolic network by certain network decomposition
methods can help us in better understanding the organization principle of complex
systems.

A possible large-scale design principle is that one part (module) of the network
constitutes a densely connected core that is also central in terms of network distance,
and the rest of the network forms a periphery [15]. For example, in a network
of airline connections, one would most certainly pass such a core-airport on any
many-flight itinerary. In metabolic networks, the core part is the central metabolism
where many metabolites will be converted to supply the necessary metabolites to
other, less central, pathways (modules in the periphery part).

Methods for a rational decomposition of metabolic network into relatively in-
dependent functional subsets are essential to better understand the modularity and
organization principle of large-scale, genome-wide networks.

Several methods such as elementary flux mode analysis and extreme pathway
analysis [37,38,40,41] have been developed for analyzing the pathway structure of
metabolic networks (see Section 10.6). These methods have been shown to be useful
tools for investigating the metabolic capacity and pathway structure of the metabolic
networks [30,31,34,41,44]. These methods are, however, hampered by the combi-
natorial explosion problem when applied to large-scale networks such as those re-
constructed from genomic data. For large-scale networks reconstructed from genome
information, decomposition methods should be first used to divide the whole net-
work into small subsystems. The pathway structure of these subsystems may then be
properly analyzed by these methods [38,42].

There are many methods that can be used for the decomposition of metabolic
networks. The objective is to optimize modularity over all possible divisions to
find the best one. This may be infeasible for systems larger than 20 or 30 vertices
because the optimization of modularity is very costly [27]. Various approximate op-
timization methods are available: simulated annealing [21], genetic algorithms, and
so forth.

Other methods make use of a hierarchical clustering. These methods use differ-
ent criteria for the clustering such as distance [25], connection degree [12,42], and
modularity coefficient [27] (explained in Section 10.5.2).

For example, to decompose a network based on distance [25], the first step is to
give a proper distance definition to show the dissimilarity between the vertices. With
the distances calculated, one can then build a hierarchical tree for finding clusters of
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FIGURE 10.7 Tree showing the decomposition of E. coli metabolic network based on dis-
tance of vertices.

functionally closely related reactions. An example of such a tree is shown in Fig. 10.7
for the decomposition of E. coli network using distance as a measure.

Trees of the type of Fig.10.7 are sometimes called dendrograms. Cuts through this
dendrogram at different levels give divisions of the network into larger or smaller
numbers of modules (communities). To select the best number of modules the mod-
ularity coefficient can be used.

10.5.1 Modularity Coefficient

A good partition of a network into modules must comprise many within-module
edges and as few as possible between-module edges. However, if we just try to
minimize the number of between-module edges (or, equivalently, maximize the
number of within-module edges), the optimal partition consists of a single module
and no between-module edges. To avoid such a problem, one needs to find better
ways to measure the quality of the decomposition. Newman [28] proposed a measure
called modularity for this purpose. Modularity is defined as [13,28]

Nm 2
Is ds\
M=S 2_ (& 10.
; L (2L/ (103

where N); is the number of modules, L is the number of edges in the network, [ is
the number of edges between vertices in module s, and d; is the sum of the degrees
(number of edges) of the vertices in module s.

If the number of within-communities is no better then random, we will get M = 0.
Values approaching M = 1, which is the maximum, indicate a strong community
structure. Values for social networks studied by Newman fall in the range from about
0.3 to 0.7 if there is a community structure present [27]. For metabolic networks, this
value is around 0.8 (Table 10.4), which shows the strong community structure in this
kind of networks [8].
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TABLE 10.4 Modularity Coefficient for the Results of
Decomposition for 5 Organisms [8]

Organism No. modules Modularity

A. pernix 12 0.792013476
B. subtilis 17 0.846591184
E. coli 16 0.846683825
S. cerevisiae 15 0.838768307
H. sapiens 17 0.866001288

10.5.2 Modularity-Based Decomposition

The modularity coefficient can be used not only as a measure of the quality of network
decomposition, but also as a parameter for the clustering [27], therefore applied for
the modularity-based decomposition algorithm. In this algorithm, each vertex in the
network is first considered to be a module itself. So at the beginning, the number of
modules is the same as the number of vertices. Then, the modules are joined in pairs
to form new modules. The criterion to choose the modules to join is based on changes
in modularity. The change in the modularity caused by the union of modules i and j
is calculated [8] as

P o o 2
AM = i (dz,]\ (10.4)
2L )

where [; ; is the number of edges between the two modules, L is the total num-
ber of edges in the network, and d; ; is the total degree of the vertices in the two
modules.

New modules that results in the greatest increase (or smallest decrease) in
modularity will be created first. The progress of the algorithm can be repre-
sented as a dendrogram like in the distance-based method. The modularity co-
efficient is used to decide where to cut the dendrogram. The cut is done at
the point that will generate a module distribution with the highest value of
modularity.

Table 10.4 shows the modularity coefficient for the decomposition of the
metabolic networks of Aeropyrum pernix, Bacillus subtilis, Escherichia coli,
Saccharomyces cerevisiae, and Homo sapiens using this method. The networks
used are adapted from the work of Ma and Zeng [24]. Figure 10.8 shows the
modules generated for the decomposition of E. coli network using the mod-
ularity method illustrated above. In this figure, vertices represent the modules
while vertex size represents the number of metabolites included in the mod-
ule. Edge labels show the number of connections between modules. Table 10.5
shows the pathways present in each module after decomposition of the same net-
work.

From Table 10.5, we can see that the automatic decomposition algorithm using the
modularity method results in a reasonable separation of the metabolites. Functionally
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FIGURE 10.8 Module decomposition for E. coli based on modularity algorithm.

associated metabolites (traditionally recognized as a metabolic pathway) are now
successfully classified into the same modules in most cases. And tightly related path-
ways are also decomposed into the same modules, e.g., 1, 3, 4, 6, 7, 10, 12, 13, and
14. Some pathways are broken into different modules. The reason could be because
certain metabolite is involved in many pathways but presented as a single vertex in
the network. The algorithm will choose to put such a vertex in a module and other
vertices of the same pathways to another module(s) to generate the best community
structure. One way to minimize this problem is the use of reaction graph, where
vertices represent reactions instead of the normal representation with vertices repre-
senting metabolites [25].

10.6 ELEMENTARY FLUX MODES AND EXTREME PATHWAYS

Another important issue of metabolic network analysis is how to identify and analyze
metabolic pathways at a genome scale. To address this question, two related concepts,
elementary flux modes (EFMs) [32,40,41] and extreme pathways (EPs) [37,39], were
proposed by the groups of Schuster and Palsson. EFM is defined as a minimal set of
enzymes that can operate at a steady state with all irreversible reactions proceeding
in the appropriate direction. “Minimal” means that if only the enzymes belonging to
this set were operating, complete inhibition of one of these would lead to cessation
of any steady-state flux in the system. Before the calculation of EFMs, two types of
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TABLE 10.5 Pathways in the Modules Generated by Modularity-Based Method

Module ID Pathways

1 Glycerophospholipid metabolism
Glycerolipid metabolism

2 Phenylalanine, tyrosine, and tryptophan biosynthesis
Glycolysis/gluconeogenesis

3 Arginine and proline metabolism
Urea cycle and metabolism of amino groups

4 Folate biosynthesis

Riboflavin metabolism
Purine metabolism

5 Lysine biosynthesis
Peptidoglycan biosynthesis
6 Glycine, serine, and threonine metabolism
Methionine metabolism
7 Galactose metabolism
Nucleotide sugars metabolism
8 Pantothenate and CoA biosynthesis
9 Purine metabolism
10 Fructose and mannose metabolism
Pentose and glucuronate interconversions
11 Pyrimidine metabolism
12 Pentose and glucuronate interconversions

Purine metabolism
Pentose phosphate pathway

13 Benzoate degradation via CoA ligation
Butanoate metabolism
14 Citrate cycle (TCA cycle)
Reductive carboxylate cycle (CO, fixation)
15 Valine, leucine, and isoleucine degradation
16 Valine, leucine, and isoleucine biosynthesis

metabolites , external metabolites and internal metabolites, must be defined first. If the
formation of the metabolite can be balanced by its consumption (steady-state assump-
tion) in the studied system, this metabolite can be defined as an internal metabolite
(e.g., A, B, C, D, and E in Fig. 10.9). Otherwise, if the metabolites are the sources
or sinks (nutrients and waste products, stored or excreted products or precursors for
further transformations), for example, Aex, Cex, and Eex in Fig. 10.9, these metabo-
lites can be defined as external metabolites. The currency metabolites (e.g., ATP and
ADP in Fig. 10.9) can also be defined as external metabolites. Actually, the defini-
tion of external and internal metabolites is very complex, depending on biological
systems and also research aims. The concept of EPs is related to EFMs. However, for
EFMs reversible reactions are unnecessary to be split into two opposite irreversible
reactions. Their similarities and differences are discussed in details by Klamt and
Stelling [23].
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FIGURE 10.9 Illustration of an elementary flux mode.

Up to now a broad of significant applications are demonstrated based on the two
concepts. The following are just a few examples.

. The minimal medium requirement for Haemophilus influenzae and Helicobac-

ter pylori was analyzed with EPs [36,38]. The predicted minimal medium
composition is highly consistent with experimental results.

. Reactions, which are not connected to the metabolic network, are identified

by employing EFMs [9] and EPs [36,38]. These network dead ends or gaps
correspond to reactions with reactants or products that are not produced or
consumed by other parts of the metabolic network model, suggesting poorly
characterized sections of the studied network. Some of these gaps are currently
being reconciled with genome annotations.

. Enzyme subsets of genome-scale metabolic network were identified by us-

ing EFMs [32] and EPs [31]. Enzyme subsets are also called systemically-
correlated reactions of genome-scale metabolic network. These correlated sets
could have significant implications in understanding the regulatory structure
of metabolic network.

. Pathway redundancy was analyzed by utilizing EFMs [44] and EPs [33],

respectively. Pathway redundancy is a measure of how many systemically
independent pathways have equivalent input and output fluxes, a quantitative
description of network flexibility.

. Klamt and Gilles introduced a concept of minimal cut sets for metabolic net-

works in virtue of the concept of the EFMs [22]. A minimal cut set (MCS)
is a minimal (irreducible) set of reactions in the network whose inactiva-
tion will definitely lead to a failure in certain network functions. With the
method of MCSs, a number of potential applications can be achieved, includ-
ing network verification, phenotype prediction, assessing structural robust-
ness and fragility, metabolic flux analysis, and target identification in drug
discovery.

. Cellular functions including growth and regulation were also studied by

means of EFMs [44] and EPs [7]. Theoretical transcript ratios for growth
on two alternative substrates were calculated by using EFMs. The re-
sults are in agreement with experimental observation [29]. Covert and
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Palsson [29] examined the reduction of the solution space due to regula-
tory constraints by utilizing EPs. The imposition of environmental condi-
tions and regulatory mechanisms greatly reduces the number of active ex-
treme pathways. This approach was demonstrated for a skeleton system of
core metabolism, which has 80 extreme pathways. As regulatory constraints
were applied to the system, the number of feasible extreme pathways was
reduced to between 2 and 26 extreme pathways, a reduction of between
67.5% and 97.5%. This method provides a way to interpret how regulatory
mechanisms are used to constrain network functions and produce a small
range of physiologically meaningful behaviors from all allowable network
functions.

In short, some structural and functional characteristics are discovered by analysis
of EFMs and EPs. But more applications are expected based on these two concepts.
For example, one could apply MCS approach to find more robust drug targets.

10.7 SUMMARY

Metabolic network refers to the network composed of metabolites and their intercon-
versions (biochemical reactions) in an organism. The sequencing of genomes and de-
velopment of functional genomics make it now possible to reconstruct and understand
the structure and function of metabolic networks at large scale. New computational
tools and biological concepts are being developed to this end. This chapter briefly
describes several useful tools and concepts recently developed. The issues covered
range from reconstruction, visualization, and graph representation of genome-scale
metabolic networks for structural analysis (e.g., connectivity and centrality analy-
ses) over modularity and decomposition of the networks to rather fundamental and
detailed studies such as elementary flux modes and extreme pathways. It should be
emphasized that present methods and concepts primarily address static properties and
functions of metabolic networks. New tools and concepts are desperately needed to
understand the dynamic structure and function of metabolic networks.

10.8 EXERCISES

1. Download Pajek from: http://vlado.fmf.uni-1j.si/pub/networks/pajek/; Down-
load a list of reaction IDs in E. coli glycolysis pathway from ftp://ftp.genome.
jp/pub/kegg/pathway/organisms/eco/eco00010.rn and the reaction equations
from: ftp://ftp.genome.jp/pub/kegg/ligand/reaction/reaction.Ist,  ftp:/ftp.
genome.jp/pub/kegg/ligand/reaction/reaction_name.lIst. Based on these files,
please:

(a) Write a program to extract a list of reactions in E. coli glycolysis pathway
including reaction equations;
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FIGURE 10.10 Example networks for calculation of EFMs and EPs. The stoichiometric
coefficients are 1 or -1. The dash lines are the boundary of the systems. The metabolites inside
the systems are internal metabolites. Otherwise, they are external metabolites (Aext, Bext, and
Pext).

(b) Convert this list of reactions to a graph using metabolites as nodes and
visualize it in Pajek;

(c) Remove the currency metabolites such as ATP, H>O in the graph and see
how different the network looked like in Pajek;

(d) Calculate the path length from glucose (C00267) to pyruvate (C00022)
and the average path length in the two graphs;

(e) Calculate the degree distribution for the two graphs;

(f) Download other pathways and reconstruct the whole network for E. coli
and analyze the degree distribution and path length for the whole network;

(g) Try to use other functions in Pajek to analyze the centrality and connectivity
of the networks.

2. Using the networks created in the last exercise:

(a) Convert them to be visualized with cytoscape (http://cytoscape.org). To
convert these networks, pyNetConv can be used. pyNetConv can be
downloaded from http://pynetconv.sourceforge.net. After converting the
networks, try to use cytoscape analysis tools.

(b) Use the cluster tool from http://pynetconv.sourceforge.net/cluster to de-
compose the network into smaller modules.

3. Calculate the EFMs for the example network (a) (Fig. 10.10a) and the
EPs for the network (b) (Fig. 10.10b) given the system boundary shown
as dash lines. How many EFMs or EPs exist and what are they in terms
of reactions? Redo the calculation considering that the system boundary
is redefined and only Aext and Bext are considered as external metabo-
lites. Discuss the effect of selection of external metabolites on EFMs
and EPs.

The solution of this exercise can be found with the help of the review [23].
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11.1 INTRODUCTION

In the following sections, biologists will become acquainted with network
reconstruction methodologies and different variants of reticulate networks. Computer
scientists will be introduced to simple models of reticulate evolution. Phylogenetic
network detection and reconstruction methods are still at an early stage of develop-
ment. To date, no methods are available to differentiate between signals reflecting
sequence noise (e.g., due to technical limitations in the lab or signals independent of
evolutionary processes) and phylogenetic patterns reflecting true evolutionary retic-
ulation processes. This introduction to state-of-the-art approaches to tackle problem-
atic phylogenetic network reconstruction covers the most frequently used techniques
without claiming to be exhaustive.

The sections are divided into several subsections. After a prefatory section covering
the problematic of reconstructing evolutionary reticulation processes, a brief introduc-
tion into character selection, character coding, and matrix structures is presented in
Section 11.2. Then, common tree reconstruction methodologies are briefly introduced
as they serve as a basis for phylogenetic network algorithms; explanations, however,
are restricted to a minimum. For further reading, please refer to specialized textbooks
[36,40]. Readers with prior knowledge may skip this chapter. In Section 11.4, the
most commonly used algorithm descriptions to reconstruct phylogenetic networks
are presented and several software packages are described in each subsection; how-
ever, many more exist and others are under development. Further lists of phylogeny
programs with short descriptions, links to the programs and other phylogeny Internet

Analysis of Biological Networks, Edited by Bjorn H. Junker and Falk Schreiber
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platforms can be found at the following sites [1-4]. The final section summarizes net-
work reconstruction algorithms, methods and programs, and their application; some
exercises are also presented.

Over the last 30 years, phylogenetic reconstruction has developed into a major
research goal for biologists as an indispensable interpretive framework for the analy-
sis of evolutionary processes by representing the interrelationships among biological
entities [26,38,42,50]. Reconstructed phylogenies exhibit frameworks that allow the
organization and interpretation of the evolution of organismal characteristics—from
structure and physiology to genomics—provide patterns and hypotheses about lin-
eage divergence, and illustrate the dynamics of speciation processes. Phylogenies
can depict the order and timing of speciation events and, to some extent, extinction
when fossil data are available [17,29]. Thus, phylogenies play a vital role in studies
of adaptation to, for example, ecological requirements and evolutionary constraints
(mechanisms that limit the development of specific evolutionary patterns such as con-
strained body size) [26,49,51-54]. Furthermore, phylogenies can help to elucidate
functional relationships within living organisms [30,32,70], which is of high impor-
tance, for example, for pharmaceutical industries to make functional predictions for
product developments of vaccines, herbicides, and so on.

As phylogenies are important for biology, a wide variety of methods for phy-
logenetic reconstructions has been generated by different specialists: biologists,
mathematicians, statisticians, or computer scientists. However, most of them assume
that the underlying evolutionary history of a given data set can be represented in a
tree-like structure. The trees are usually interpreted as putative evolutionary-history
reconstructions representing ancestors and descendants along with their character-
state changes [10]. However, a tree-like interpretation of data does not always
reflect the true phylogeny, as reticulate evolution (union of different evolutionary
lineages triggered by hybridization) is a common mechanism in biology and noise in
sequence data (due to data errors, biased sampling methodologies, etc.) is frequent.
Ford Doolittle [24] famously wrote: “Molecular phylogeneticists will have failed
to find the ‘true tree,” not because their methods are inadequate or because they
have chosen the wrong genes, but because the history of life cannot properly be
represented as a tree.” Noise as well as reticulate evolution cannot be modeled by
bifurcating trees without loosing information but may arouse in parallel in different
organisms and then transform a tree into a network. If tree algorithms are applied,
reticulating taxa (featuring characters of different evolutionary lineages due to
preceding hybridization) are forced into a nonreticulating tree topology, in which
they might either occupy positions intermediate between two parental taxa or be
placed basal to the group that includes its most derived parent [21,22].

Recent advancements below the species level, for example, in population genetics
theory, and the availability of large data sets of comparative genetic information at
the population level gave rise to the development of powerful tools to investigate the
unique characteristics of intraspecific data. Intraspecific relationships are not hierar-
chical, as they are the result of sexual reproduction and recombination, and mutations
are less frequent—consequently the amount of informative phylogenetic characters
(diagnostic for groups of organisms) are fewer as well. Furthermore, on population
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level, ancestral characteristics are expected to persist and often still exist next to their
descendants—which cannot be depicted by bifurcating trees where tips represent re-
cent organisms and nodes reflect divergence in ancestral relationships. Related to the
persistence of ancestral characteristics is the fact that multiple descendants are often
present in populations leading to a multifurcation in a tree-like structure.

11.2 CHARACTER SELECTION, CHARACTER CODING,
AND MATRICES FOR PHYLOGENETIC RECONSTRUCTION

Phylogenetic reconstructions are based upon phylogenetic hypotheses that are cre-
ated by numerical analyses (phylogenetic analyses) of characters. Thereby, characters
can include virtually any organismal attribute that has a heritable basis and reflects
evolutionary pathways. Characters must comprise different character states to be of
phylogenetic importance and can include physical forms (morphology, anatomy, cy-
tology), biochemical characters, behavioral characters, biogeographical characters
and so on. Characters for which the genetic basis is not usually known are often re-
ferred to as “morphological,” whereas phylogenetic characters derived from DNA or
protein data are called “molecular” characters. Here, the genetic diversity and relation-
ship between or within different taxa (plural of taxon: group or category, at any level,
in a system for classifying organisms) is analyzed. This can be based on the determi-
nation and comparison of defined regions, called DNA sequences, the predominant
source of phylogenetic characters used for analyses above the species level. Below
species level, DNA-fingerprinting methods are more often applied to reconstruct phy-
logenies. Here, the presence or absence of mutations throughout complete genomes
without prior knowledge of genome structure and sequence data is screened and
compared. Different DNA-fingerprinting methods exist, RFLP (restriction fragment
length polymorphism), RAPD (random amplified polymorphic DNA), ISSR-PCR
(intersimple sequence repeat polymerase chain reaction), AFLP (amplified fragment
length polymorphism), and many others, the advantages or disadvantages of which
are revised elsewhere [68]. However, all DNA-fingerprinting methods result in the
scoring of presence or absence of mutations, whereas DNA sequence data provides
four character states (adenine (A)/guanine (G)/cytosine(C)/ thymine (T) or 20 charac-
ter states for proteins. Numerous molecular characters are available and their discrete
attributes allow explicit coding (A/G/C/T or present/absent (1/0)) compared to the of-
ten continuous morphological characters (e.g, leaf length 6-8 cm or 7-11 cm, flower
color yellow to orange or orange to red), and can either be binary (0/1) or multi-
state (adenine (A)/guanine (G)/cytosine (C)/thymine (T), small/medium/large, etc.).
Molecular characters are available in nearly all organisms allowing the comparison
of groups with no morphological similarities, for example, (1) elephants and green
plants both contain cytochrome genes, the proteins of which serve a vital function in
the transfer of energy within cells, or (2) juvenile and adult stages (e.g., tadpoles and
frogs), which cannot be compared reasonably on a morphological basis. Other ad-
vantages are heritability, abundance of characters, different mutation rates of certain
genomic regions, accepted models of sequence evolution, and independent organelle
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evolution (e.g., chloroplasts in plants are predominantly inherited maternally and,
unlike nuclear DNA, not liable to hybridization). Disadvantages include the limited
number of character states for nucleotides (only A/G/C/T), potential problems with
paralogous sequences (regions that have been duplicated in the genome during evo-
lution and might accumulate different mutations, possibly reflecting contradictory
signals), evolutionary constraints on certain regions within a genome (e.g., delete-
rious mutations in functionally important regions lead to extinctions) and the unre-
solved problems of aligning sequences in comparable relative positions for different
individuals [39,55]. Furthermore, gene evolution does not need to be identical to
organism evolution and rapid evolution restricts the use of sequence data to a few
million years. Moreover, molecular characters can seldom be obtained from fossils,
require expensive laboratory equipment, and expertise and cannot be used for field
identification.

Careful character selection is crucial for retrieving informative phylogenies.
Whether of molecular, morphological, or other origin, characters must be coded for
computational calculations. To this effect, a matrix (database) containing all taxa and
all characters with their respective character states must be established (Tables 11.1-
11.3) and, in turn, converted into a software compatible data format (for phylogenetic
analyses usually the NEXUS- or PHYLIP-format, Table 11.4). As phylogenies reflect

TABLE 11.1 Taxa Description

Taxon A Perennial creeping shrubs with linear hairy leaves,
yellow flowers, the black fruits are one-seeded berries,
chromosome numbers x=10, Egypt.

Taxon B Perennial creeping herbs with oblong hairy leaves,
flowers red, fruits are one-seeded reddish drupe,
chromosome number x=8, Tunisia.

Taxon C Perennial creeping herbs with oblong hairy leaves,
flowers yellow, fruits are one-seeded red drupes,
chromosome number x=8, Algeria.

Taxon D Perennial creeping shrub, leaves linear and hairy,
flowers yellow, fruits are one-seeded black berries,
chromosome numbers x=8, Algeria, Libya.

Taxon E Annual erect hairless herbs, leaves linear,
flowers yellow, fruits are many-seeded black berries,
chromosome numbers x=8, Tunisia, Libya.

Taxon F Annual erect hairless herb, leaves linear,
flowers yellow, fruits are one-seeded black berries,
chromosome numbers x=8, Germany, Poland.

Taxon G Annual erect herb, leaves hairy, linear,
flowers yellow, fruits are one-seeded black berries,
chromosome number x=38, Italy, France, Spain.

Taxon H Annual creeping hairy herb, leaves linear,
flowers yellow, fruits are one-seeded black berries,
chromosome numbers x==8, Italy, Austria, Germany.
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TABLE 11.2 Characters and Character States for the Taxa Descriptions in Table 11.1

Character 1 life form: perennial (0); annual (1)
Character 2 stem: creeping (0); erect (1)

Character 3 hairs: present (0); absent (1)

Character 4 leaf form: linear (0); oblong (1)

Character 5 flower color: yellow (0); red (1)

Character 6 fruit type: berry (0); drupe (1)

Character 7 fruit color: black (0); red (1)

Character 8 seeds: one (0); many (1)

Character 9 chromosome numbers: x=10 (0); x=8 (1)
Character 10 natural distribution: Africa (0); Eurasia (1)

hypotheses regarding character and taxa evolution, it is important to define the read-
ing order that determines the ancestral or derived character states: which state was
acquired by an ancestor deeper in the phylogeny or which is the most recent common
ancestors of the taxa under consideration. As it is assumed, that closely related taxa are
more similar to each other, accumulation of mutations is an indication of divergence
allowing for ancestral and derived character coding. If this information is lacking,
the characters of one or more outgroup taxa (which, according to the hypothesis,
are less closely related to each of the taxa under consideration than any are to each
other) can be used to help resolve the polarity of characters. Choosing independent
characters to reflect evolutionary relationships and scoring character states can be
tricky. Equivalent character states that evolved independently in two or more taxa
(convergent evolution) can be quite common and create complications since phyloge-
nies are hypotheses and might not reflect the true picture. As character selection is the
first crucial step in phylogenetic reconstructions, mistakes at this stage will further
affect the complete analyses. For further reading please refer to phylogenetic
textbooks, [62].

An example how data matrices are deduced from taxa descriptions is shown in the
Tables 11.1-11.3.

TABLE 11.3 Data Matrix Based on the Taxa Descriptions in Table 11.1 and on the
Characters and Character States of Table 11.2

1 2 3 4

S

Taxon A
Taxon B
Taxon C
Taxon D
Taxon E
Taxon F
Taxon G
Taxon H

—_—_—_—OococoOo
O == =0 o OCO0
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S OO O OO~ O | W
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TABLE 11.4 Example, How the Data Matrix from Table 11.3 is Transformed into the
Most Common Matrix Formats for Further Computational Processing: NEXUS- and
PHYLIP Format (for 8 Taxa and 10 Characters)

NEXUS-format: PHYLIP-format:
#NEXUS 810
BEGIN DATA; MATRIX
DIMENSIONS NTAX=8 NCHAR=10; Taxon A 0000000000
FORMAT Symbols="0 1"; Taxon B 0001111010
Taxon C 0001011010
MATRIX Taxon D 0000000010
Taxon_A 0000000000 Taxon E 1110001110
Taxon_B 0001111010 Taxon F 1110001011
Taxon_C 0001011010 Taxon G 1100001011
Taxon_D 0000000010 Taxon H 1000001011

Taxon_E 1110001110
Taxon_F 1110001011
Taxon_G 1100001011
Taxon_H 1000001011

b}

end;

11.3 TREE RECONSTRUCTION METHODOLOGIES

For tree construction there are three main categories of approaches to postulate evo-
lutionary scenarios: distance-, character-, and likelihood-based methodologies. The
first converts the character matrix (sequence data, morphological data, etc.) into a dis-
tance matrix of pairwise differences (distances) between the taxa and assumes that the
distances provide estimates for the evolutionary divergence among taxa (Table 11.5).
The most common class of distance methods that search for the best tree that takes the
observed distances into account are unweighted pair-group method with arithmetic
means (UPGMA) and neighbor joining (NJ). For sequence data, NJ has almost com-
pletely replaced UPGMA in the current literature as, for optimization, evolutionary
models have been implemented in the algorithm to reflect basic statistical quantities
of molecular evolution such as nucleotide frequencies (the likelihood for a nucleotide
to mutate is higher if the nucleotide is more frequent within a sequence), codon fre-
quencies (mutations of a protein codon in relation to the total amount of this protein
being present in the total sequence), and others [45]. For 0/1 matrices, however, UP-
GMA analysis is still the method of choice (Fig. 11.1). In both distance-based tree
reconstruction methods, UPGMA and NJ, the two taxa with the highest similarity
(closest distance) are grouped together, and then more distant taxa are added for tree
reconstruction.

The major objection against distance methods is the loss of information through
erecting a pairwise distance matrix for a dataset, which can never be retraced to
the original dataset. Furthermore, the option to interpret estimated branch lengths as
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TABLE 11.5 Distance Matrix: The Data Matrix from Table 11.3 Gets Transformed into
a Distance Matrix (e.g., Taxon A and Taxon B Differ in 5 out of 10 Characters (50 % )=0.5;
Taxon A Differs from Taxon C in 4 Characters out of 10 (40%) = 0.4; and so on

Taxon
A B C D E F G H
Taxon A - 0.5 0.4 0.1 0.6 0.6 0.5 0.4
Taxon B - 0.1 0.4 0.7 0.7 0.6 0.5
Taxon C - 0.3 0.6 0.6 0.5 0.4
Taxon D - 0.5 0.5 0.4 0.3
Taxon E - 0.2 0.3 0.4
Taxon F - 0.1 0.2
Taxon G - 0.1

Taxon H -

distances almost always underestimates the actual number of changes along lineages
(e.g., if Taxon A and B vary on character 5 by 10 mutations, and Taxon B and C vary
on character 4 by 10 mutations, A/B and B/C have the same evolutionary distance of
10%, independent of the site of character change). Distance methods are implemented
in PAUP [61], PHYLIP [27,28], and MEGA [47], the most commonly used phylogeny
reconstruction programs.

Taxon A

Taxon D

Taxon B

0.1
Taxon C

04-07 r— TaxonH

— Taxon G

Taxon E

0.1 UPGMA

0.2
= Taxon F

FIGURE 11.1 The tree is a UPGMA tree of the data/distance matrix in Tables 11.3 and 11.5
respectively. Horizontal branch lengths in the tree diagram reflect evolutionary distances;
vertical branch lengths give cluster information only. The barrow in the lower left-hand
corner depicts the length of 0.1 evolutionary distances. The shading within the distance
matrix (Table 11.5) refers to the colors in the tree—presenting some groupings. If computer
algorithms are used to calculate phylogenetic trees (e.g., distance trees or others), in general
Newick—Formats are used as output, depicting taxa groupings in brackets with the branch
lengths behind each taxon separated by colons. See Table 11.6 for the representation of the
UPGMA tree in the Newick—Format. Computer programs which transform Newick—Formats
into graphical outputs are, for example, TREE VIEW [5].
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TABLE 11.6 Newick-Format Representation of the UPGMA Tree Shown in
Fig. 11.1.

Newick-Format:

#NEXUS

Begin trees;

tree PAUP_1 = [&U]
(Taxon_A:1,((Taxon_B:1,Taxon_C:0):2,(((Taxon_E:2,Taxon_F:0):1,
Taxon_G:0):1,Taxon_H:0):2):1,Taxon_D:0);

End;

The second group of phylogenetic tree reconstruction methodologies in current
use are character-based tree searching methods. They are, in general, slower and
normally result in more than one equally good tree. They compare characters within
each column (each site) directly and are called Parsimony methods. Parsimony is
based on the assumption that the tree most likely to best reflect evolution is the one
that requires the fewest numbers of mutations.

The basic premise of parsimony is that taxa sharing a common characteristic do
so because they inherited that characteristic from a common ancestor. Exhaustive
searching—which means the search for every possible tree—and branch-and-bound
methods are used to optimize the search for the best tree, but due to computational
limitations heuristic methods are necessary if the sample group exceeds 20. Parsi-
mony methods are inconsistent if sequences evolve at different rates because they
group fast evolving sequences together, which is called “long branches attraction,”
and for large data sets calculation time is a major drawback. The most commonly used
parsimony programs are PAUP [61], PHYLIP [27,28], and MEGA [47]. To overcome
the problem of speed for parsimony programs, Parsimony Ratchet algorithms have
been invented by Nixon [68] and others. The ratchet programs are based on the as-
sumption that frequently the “correct” tree topology can be derived from 1/10th of
the characters of a normal input matrix and 9/10" of the data supports the topol-
ogy, but does not lead to new implications. Search time is reduced by selection of a
random set of characters from the actual data matrix with which tree topologies are
reconstructed—for the tree with the fewest evolutionary steps of the reduced matrix,
all characters are added and tree length is calculated. This may result in trees no
longer representing a local optimum; however, the heuristic search continues until a
new optimum is reached. The algorithm then reverts to the original weighting, and the
search continues. This procedure is repeated xtimes until confidence limits propose
the shortest tree discovered. Nixon [68] demonstrated the efficacy of the method on a
500-taxon data set, where the ratchet-based search found a tree two steps shorter than
standard heuristic searches in less time. PAUPRAT by Sikes and Lewis [60] and TNT
by Goloboff, Farris, and Nixon (together with NONA) [31] implement parsimony
ratchet methods.
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first step of Henning's tree building method: second step: third step:
Outgroup X Y z Qutgroup X Y Outgroup X Y V4

2| 3.5
1 4
1

first step of Wagner,s tree building method: second step:

out X Outgroup X Y

third step: Outgroup Z Y X Outgroup X Y Z Outgroup Y z X

FIGURE 11.2 Parsimony tree building methods according to Henning and Wagner applied
to the data of data matrix of Table 11.7. In Wagner’s method, all possibilities of connecting one
additional taxon to an existing tree are evaluated and the shortest tree is kept, as it might reflect
the shortest evolutionary pathway, which is per definition most likely to represent evolutionary
relationships. In this example (the tree in the middle of the bottom line) is the best and is also
in concordance to Henning’s best tree; the evolutionary relationships of the trees left and right
in the bottom line (length n=6) have to be rejected.

The third main group of tree reconstruction methodologies are likelihood based
and comprise maximum likelihood, and Bayesian tree reconstruction. Maximum
likelihood [25] also uses each position in an alignment, evaluates all possible
trees, and calculates the likelihood for each tree using an explicit model of

TABLE 11.7 Example of a Data Matrix

1 2 3 4 5
Outgroup 0 0 0 0 0
Taxon X 1 0 0 0 0
Taxon Y 1 1 0 1 0
Taxon Z 1 0 1 1 1




264 PHYLOGENETIC NETWORKS

evolution (while parsimony just looks for the fewest evolutionary changes). The
likelihoods for each aligned position are then multiplied to provide a likelihood
for the tree in total. The tree with the maximum likelihood is the most prob-
able tree. Similar to maximum parsimony, maximum likelihood reconstructs an-
cestors at all nodes of each considered tree, but it also assigns branch lengths
based on the probabilities of mutations. Likelihood functions for statistical infer-
ence are consistent and powerful. Various parameters of evolutionary processes,
like relative probabilities, evolution rates across sites, and all possible mutational
pathways that are compatible with the data are considered. However, the main
drawback of this method, especially for large data sets, is computational time
for tree reconstruction. Maximum likelihood is the slowest method of all, as the
algorithm to find the maximum likelihood score must search through a multidimen-
sional space of parameters. Maximum likelihood approaches have been incorpo-
rated in many different phylogenetic programs, like PAUP [61], PHYLIP [27,28],
NONA [31], and PHYML [33], the fastest method for maximum likelihood recon-
structions.

Bayesian analysis is closely related to maximum-likelihood tree reconstructions.
The goal is to obtain the optimal hypothesis, which is the one that maximizes the
posterior probability. To find this the so-called posterior probability distribution re-
quires combining the likelihood and the prior probability distribution. Likelihood
gives information about the data and the parameter within, while prior probability
distribution comprises expectations of the data. With constant prior probabilities, the
posterior distributions are simply proportional to the likelihood distributions, and
the parameter value with the maximum likelihood has also the maximum posterior
probability. The impact of the prior probabilities upon the posterior probabilities will
diminish with increasing amounts of data. The advantages of the Bayesian meth-
ods are high computational speed and the possibility to incorporate complex models
of sequence evolution. The most commonly used Bayesian phylogenetic software
program is MR BAYES [43], based upon Markov Chain Monte Carlo (MCMC) sim-
ulations to search the tree space and infer the posterior distribution of topologies.
Input data can be nucleic acid sequences protein sequences, or morphological char-
acters.

114 PHYLOGENETIC NETWORKS

In contrast to bifurcating trees, phylogenetic networks can have multifurcations and,
in principle, cycles (biologists might call them loops). The diversity of phylogenetic
network reconstruction methods can be structured in different ways. Some authors
use the classifications distance-based algorithms, maximum parsimony heuristics,
and maximum likelihood heuristic, while others divide the methods according to
data presentation techniques—either visualizing conflicts in data sets or representing
more complex models of evolution, for example, reticulation graphs, which reflect
hybridization graphs, or ancestor recombination graphs. However, most techniques
have advantages and disadvantages. Therefore, a vast variety of different approaches
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have been proposed of which only a small selection can be presented here. All are
still being improved and expanded, and several additional algorithms are still being
implemented in one or the other technique to better reflect evolutionary mechanisms
and strengthen their explanatory power.

Some network reconstruction methods are based on tree reconstruction and the
addition of nontree edges using predefined criteria for optimization (e.g., minimize
weighted sum of evolutionary events) until stopping rules terminate the network
reconstruction. Nontree edges are typically chosen on the basis of incongruence be-
tween segments of sequences. According to parsimony criteria, no extra edges are
added if the data can be represented by a tree. If the data implies a network, various
segments within the network will require tree-like structures that can be optimized
by tree-style criteria. The nodes in the network represent taxa, hypothetical ancestral
taxa, or intermediary nodes. Disadvantageous is the dependence of the final network
topology on the topology of the starting tree. The most widely used network methods
in this class are statistical parsimony, galled trees and median networks (which are
presented in further detail in Section 11.4.1-11.4.3), the variants of median networks,
and the netting method. These methods perform best on the analysis of intraspecific
data (e.g., for populations of one species). Problems may be encountered when the
level of diversity increases, for example, when the networks become too compli-
cated.

Another approach aims to find the best subtrees (e.g., in terms of parsimony
scores) for various segments of the data and uses “the best trees” for combina-
tion into a network, while other models are based on the computation of all pos-
sible minimum spanning trees for a given data set and combine them into a mini-
mum spanning network. The rationale underlying both hypotheses is based on the
fact that different segments of the sequences evolved down different trees, that
is, conflicts between the trees represent reticulation events. These approaches can
be calculated with trees resulting from distance, parsimony, or likelihood analy-
ses. The use of distance data alone implies that these phylogenetic network meth-
ods start with less information than those using the complete alignment. Neverthe-
less, there is evidence that much phylogenetic information is preserved in the dis-
tance matrix, even in the presence of reticulation [18,48,69]. Typical algorithms are
median—joining networks [14] (explained in further detail here in Section 11.4.4),
union of maximum parsimonious trees (UMP) [18], and molecular—variance par-
simony [56], implemented in software programs like NETWORK [57] and AR-
LEQUIN [59].

Last but not least, there is a group of “compute splits algorithms” for which
incompatibilities in the data set are analyzed first and then network edges are
introduced to account for them. The outputs are the so-called splits graphs,
which generalize the concept of a phylogenetic tree. Methods, which han-
dle compatible and incompatible systems of splits include the pyramidal clus-
tering model and slit decomposition (presented in Section 11.4.5 and 11.4.7),
Neighbor-Net, and Consensus Networks. Software programs with implemented
split decomposition algorithms are for example, SPLITS TREE [44] and PYRA-
MIDS [21].
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11.4.1 Galled Trees

Gusfield [34,35] developed the idea of galled trees, which represent a small deviation
from true trees based on the assumption that if a perfect phylogenetic tree cannot be
derived from a data set, it should be deviated from a tree by as little as necessary.
Rather than having a phylogenetic network with a complex interleaving of cycles
(loops), it is preferable (if possible) to have a tree with a few extra edges (nodes),
each creating a disjoint cycle—leading to a galled tree, which is two dimensional and
contains loops. A galled-tree problem is defined as two graphs representing “incom-
patibilities” and “conflicts” between sites. Hereby “incompatibilities” are defined as
four rows (taxa) in a data matrix where two columns (characters) contain all four
of the ordered pairs 1:0; 0:1, 1:1, 0:0, which, for example, is the case in Fig. 11.3
for character 3 and 5 being incompatible due to taxa A, B, C, D that feature all four
possible character combinations, which is called the “four-gametetest.” In contrast,
“conflicting” sequences are defined as those containing three of the above four char-
acter states (three-gamete-test) and also need networks for depiction. If conflicting or

A:01000

Incompatible characters:

%

12345 B:01001
(a) Incompatible characters (b) Addition of taxon A-B-C

A:01000  B:01001

A:01000  p.51001

01000

D:00101
—
D:00101 C:00100
00100
. 4
C:00100 00100 00110
! l E:00110
00101
l 10110~ F:10110
—
(c) Adding taxon D fails the four-gamete-test, as 310100
sites 3 and 5 conflict, a recombination cycle has =
to be added to represent the data set (d) Final galled tree of the data matrix

FIGURE 11.3 Example of a galled tree network reconstruction based on the data matrix of
Table 11.8.
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TABLE 11.8 Data Matrix

1 2 3 4 5
AS (ancestral state) 0 0 0 0 0
Taxon A 0 1 0 0 0
Taxon B 0 1 0 0 1
Taxon C 0 0 1 0 0
Taxon D 0 0 1 0 1
Taxon E 0 0 1 1 0
Taxon F 1 0 1 1 0
Taxon G 1 0 1 0 0

incompatible trees are represented together, they result in a recombination cycle of
a phylogenetic network (e.g., Fig. 11.3 from AS 00000 to Taxon D 10100). Galled
Tree [6] is the program that constructs phylogenetic networks based upon a set of bi-
nary characters. In the resulting phylogenetic network, the recombination cycles are
node disjoint (non-intersecting). The output is guaranteed to use the minimum number
of recombinations over all possible phylogenetic networks and indicates how many
matrices in the input file have a galled-tree, and how many have a perfect phylogeny
with some ancestral sequences. As only single-crossover recombinations are allowed,
galled-trees are restricted to input matrices with low or moderate recombination rates.

11.4.2 Statistical Parsimony

Statistical parsimony is a network approach especially created for the analyses of
molecular characters from organisms of one or more populations that take popula-
tion level phenomena into account. These analyses are called haplotype analyses,
whereby the word haplotype refers to specific combinations of sequence variations
within one organism that are likely to be inherited together. Individuals comprising
the same haplotype (the same genetic constitution at a comparable site) are grouped
together. Then, the relationships among different haplotypes are measured using ge-
netic distances, that is, how many different mutations separate two haplotypes, as in
minimum spanning trees. In contrast to bifurcating trees; haplotype, networks can
have multifurcations and, in principle, cycles.

The statistical parsimony algorithm is based on the principles of minimum span-
ning tree reconstructions; however, first estimates the maximum number of differences
among sequences caused by single substitutions and estimates a 95% statistical con-
fidence limit, which is called parsimony limit or parsimony connection limit. Single
substitutions that are below the 95% limit are ignored in favor of better network rep-
resentations. Multiple substitutions at a single site are neglected. The algorithm then
connects haplotypes that differ by one mutation. In the next step, haplotypes differ-
ing by two changes are surveyed, confidence limits are evaluated and taxa added to
the network, then those differing by three mutations are screened, and so forth until
all haplotypes have been added to the network or the parsimony connection limit is
reached.
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| D:00101 — C:00100 — G:00100 |
| I

| E:00110 — F:00100 |

(a) First step (b) Second step

(c) Third step

| B:01001 | | A:01000 |

| D:00101 —{ C:00100 |—{ G:00100 |

| E:00110 — F:00100 |

(d) Fourth step

FIGURE 11.4 Example of a minimum spanning network reconstruction based on the data
matrix of Table 11.8 (a 95% confidence limit is added for statistical parsimony, ignoring single
substitutions in favor of improved data visualization; however, for the example here the data
set than is too large for representation).

Larger data sets are needed to define 95% confidence limits of character states;
therefore, the example shown in Fig. 11.4 is just representing the development of a
minimum spanning tree—ignoring the enhancements of statistical parsimony.

Statistical parsimony is implemented in the TCS Java computer program [20],
which analyses haplotypes within a population and considers multifurcations as well
as reticulations (back crossings and hybridization events in evolution/retracing to one
ancestral parent). TCS software opens nexus and phylip formats and has a graphic
user interface to display the resulting networks. The program collapses sequences
into haplotypes and calculates the frequencies of the haplotypes in the sample. The
program outputs the sequences, the pair wise absolute distance matrix, probabilities
of parsimony for mutational steps just beyond the 95% cut-off level, a test listing the
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connections and defining missing intermediates, and a graph output file containing
the resulting network.

Templeton [63—67] used this statistical parsimony approach to formalize the corre-
lation between number of haplotypes in a sample and its relationships (connections)
to infer population histories, which resulted in the nested clade population analysis
[NCPA]. This approach is a widely used technique for population analyses. It first
consists of a network reconstruction procedure, based on the above-explained parsi-
mony limit criteria. In a second step, Templeton’s key, based on population genetic and
biogeographic assumptions [64], is applied to group haplotypes in a biogeographic
framework, based on population inheritance relationships (coalescence theory).

11.4.3 Median Network

In the median-network approach [13,15], constant sites are excluded from the data set
(see example in Fig. 11.5). Sequences are converted to binary data, whereby each split
isencoded as a binary character with states 0 and 1. Then, sites that support one type of
split are grouped as one character; however, the amount of sites grouped together will
influence the weighting of this split. Thus, this method represents haplotypes as binary
0-1 vectors. Median or consensus vectors are then calculated for each triplet of vectors
until the median network is complete. Predictions from coalescent theories optimize
and reduce the network, which otherwise results in high-dimensional hypercubes that
cannot be displayed if the amount of haplotypes exceeds 30.

Taxon B

Taxon A

Taxon G
Taxon E

Taxon F

FIGURE 11.5 Example of a median joining network reconstruction based on the data matrix
of Table 11.8 using NETWORK [15].
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Several programs are based upon the median-network theory. SPECTRONET [41]
is optimized for alignment in Nexus—Format and can handle large data sets up to
128 taxa and 50,000 nucleotides. The package works by computing a collection of
weighted splits or bipartitions of the taxa and then allowing the user to interactively
analyze the resulting collection. Other available programs are SPECTRUM [19] and
NETWORK [57].

11.4.4 Median-Joining Networks

The median-joining network method was developed by Bandelt et al. [14] to depict
reticulate evolution in phylogenies. The network reconstruction is first based upon
the construction of minimum spanning trees (MSTs) using Kruskal’s algorithm [46],
which is an algorithm in graph theory that finds a minimum spanning tree for a
connected weighted graph. It finds a subset of the edges that forms a tree that includes
every vertex, where the total weight of all the edges in the tree is minimized. If the
graph is not connected, then it finds a minimum spanning forest (a minimum spanning
tree for each connected component).
Kruskal’s algorithm [46] is an example of a greedy algorithm:

Kruskal’s_algorithm (graph G=(V, E))
create a forest F (a set of trees), where each vertex in the graph G
is a separate tree;
create a set S containing all the edges in the graph G;
while S # O
remove an edge e with minimum weight from S;
if e connects two different trees 77 and 7> {
F «— FUe;
combine 7} and 7> into a single tree;
} else
discard e

}

return F;

At the termination of the algorithm, the forest has only one component and forms a
minimum spanning tree of the graph.

Then, the trees are combined into a single network by sequential addition of new
vertices called “median vectors,” which are reconstructed under parsimony crite-
ria (Farris’ maximum parsimony algorithm). The median vectors represent missing
intermediates, either due to incomplete data sampling, extinction of organisms, or
reticulate evolution. Median-joining networks are established under the assumption
of absent recombination, which limits the applicability to population analyses.

The algorithm is implemented in the program NETWORK [15], which is suit-
able for DNA or amino acid sequences, short tandem repeats, RFLP, AFLP, or mi-
crosatellite data as well as for language or linguistic matrices. The program is fast;
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however, it does not resolve ties, and visualization of large datasets is problematic.
It is possible to calculate age estimations for ancestral nodes or branching points.
Two independent methods can be calculated: either reduced median networks [14],
only for binary input data, or median-joining networks [14] for all types of data.
The program is freely available [7] and based upon Windows and DOS executa-
bles.

11.4.5 Pyramids

The pyramidal clustering model was first introduced by Diday and Bertrand [23].
With this method, it is possible to detect groups of related elements within a data
set. The model is an extension of the hierarchical clustering method (e.g., UP-
GMA), as any element can belong simultaneously not only to one but also to two
classes or clusters in a given data set and a pyramidal classification results in a
set of compatible orders over the elements [11]. As input data, distance matrices
(here called dissimilarity matrix) with data points between 0 and 1 are required.
Several mathematical definitions constrain this clustering method, which can be re-
viewed in Aude [11]; here, however, a reconstruction example is presented in Sec-
tion 11.4.6.

The program computing pyramidal clustering models is called PYRAMIDS and
comprises several components to create and draw pyramidal representations of a
set of sequences based upon their relative distances, resulting in planar graphs. The
program includes a graphical interface to create figures in different formats, which can
be transferred to a wide variety of environments. The Software runs on Sun, Linux,
and Unix platforms; free online software is available [8].

11.4.6 Example of a Pyramidal Clustering Model

Taxon
A B C D E
Taxon A - 0.1 0.5 0.7 0.7
Taxon B - 0.1 0.7 0.7
Taxon C — 0.7 0.7

Taxon D - 0.35
Taxon E _

The distance matrix here is called dissimilarity matrix. A pair of taxa with the lowest
distance is chosen, for example, A/B= 0.1 and grouped together in Class 1, which is
added in an additional column to the dissimilarity matrix, using the mean aggregation
index, for example,
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Class 1

/N

A B
u(l, C) =0.5(u(A, C) + n(B, €))
which for the above sample means:
u(1,C)=0.50.5+0.1)=0.3
u(l, D)=0.5(0.7+0.7) = 0.7
u(l, E)y=0.5(0.7+0.7) = 0.7
Taxon Class
A B C D E 1
TaxonA - XX 05 0.7 0.7 0.1
Taxon B - 0.1 07 0.7 0.1
Taxon C - 07 0.7 0.3
Taxon D - 035 0.7
Taxon E — 0.7
Class 1 -

The samples that have been clustered together will be ignored in the course of further
calculations (X.X), in Class 1 they will be marked by italics, as they cannot serve as
lowest dissimilarity pair again.

Then, again the Taxa with the lowest distance are chosen, here B/C, grouped to-
gether in Class 2, an additional column is added and the mean aggregation index is

calculated:

Class 1 Class 2
A B o]
Taxon Class

B C D E 1 2
Taxon A X.X 05 07 07 0.1 0.3
Taxon B - XX 07 0.7 0.1 -
Taxon C - 07 0.7 0.3 0.1
Taxon D - 035 07 0.7
Taxon E - 07 0.7
Class 1 - 043

Class 2
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nw(2/A) =0.5(0.1 4+ 0.5) =0.3

u(2/B) = must be ignored, having been clustered together twice, which is the maxi-
mum

u(2/C)=0.1

w(2/D) =0.5(0.74+0.7) = 0.7

w(2/E) =0.5(0.74+0.7) = 0.7

n(2/1) =0.5(0.1 4 0.75) = 0.43

Class1 Class2 Class3

The taxa with the lowest distances are chosen, grouped together in Class 3, now
D/E=0.35.

Taxon Class

A C D E 1 2 3
TaxonA - 0.5 0.7 0.7 0.1 0.3 0.7
Taxon C - 07 0.7 0.3 0.1 0.7
Taxon D - XX 07 0.7 0.35
Taxon E - 07 0.7 0.35
Class 1 - 043 0.7
Class 2 — 0.7

Class 3 -

Now higher classifications are arranged by selecting the lowest dissimilarity, which
is not yet been covered by any Classes—Class1/Class2=0.43

Class4

Class1 Class2 Class3
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Taxon Class

A C D E 1 2 3 4
TaxonA - 0.5 0.7 0.7 0.1 0.3 0.7 0.2
Taxon C - 07 07 0.3 0.1 0.7 0.2
Taxon D - XX 07 0.7 0.35 0.7
Taxon E - 07 0.7 0.35 0.7
Class 1 - XX 0.7 043
Class 2 - 0.7 043
Class 3 - 0.7

Class 4 -

For the establishment of Class5, a random connection is selected as there is a common
dissimilarity between all classes.

Class5

Class4

Class1 Class2

Class3

11.4.7 Split Decomposition

Split decomposition was developed by Bandelt and Dress [12] to analyze data
or to produce instructive graphical outputs by transforming evolutionary dis-
tances into a sum of weakly compatible splits. The split decomposition method
analyzes given distance data and finds deviations from the tree-like structure,
namely splits, implied by homology, cases of convergence, or parallel evolutionary
events [16,17].

A “split” of a graph G=(V, E) is a grouping of taxa into two distinct sets (V1, V2)
such that each species occurs in exactly one of the sets (|Vi| > 2, |V;| > 2) with a
common neighbor being presented in both subgroups. Therefore: G=(V, E) is simple
decomposed by the split Vi, V> into G and G», where, for i € {1, 2}, G; is the
subgraph of G induced by V; with an additional vertex v, called marker, such that the
neighborhood of v in G; is the set of those vertices in V;, which are adjacent in G to
a vertex outside of V; (see Fig. 11.6).

Additionally, a related composition is defined: G1=(V1, E1) and G=(V;, E>)
such that V| N V2={v}. Then G| x G is the graph with vertex set (V; U V1) \ {v},
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FIGURE 11.6 A graph with a split V1|V2 (a) and the two graphs G1 and G2 (b) obtained
by simple split decomposition (modified after [16]).

and edges set {{x,y} € E;:x#vand y #v}U{{x,y} € Er : x#vand y # v} U
{{x, ¥} : x € NG1(v) and y € NG;(v)}. Obviously, if G is decomposable into G| and
Gj,then G=G| x ... x Gy instead of (G| x G3)...) x Gg.

The split decomposition of a graph is the recursive decomposition of the graph
using simple decomposition until none of the obtained graphs can be decomposed
further. The split decomposition tree of the graph G is the tree T in which each node i
corresponds to a prime graph denoted by G x h obtained by the split decomposition.
Furthermore, two nodes k& and 4’ of T are adjacent if the corresponding graphs G x h
and G x h' have a common marker, see Fig. 11.7.

SPLITS TREE [9,16,44] is the software to analyze phylogenetic networks using
split decomposition, and the most recent version can also perform additional network
reconstruction algorithms. Input data can be sequences, distances, quartets, trees, or
splits, and the program can also perform statistical analyses. The splits and their isola-
tion indices are part of the output. SPLITS TREE can be used to visualize complexity
in phylogenetic data; it can indicate underlying biological processes but cannot prove
existence of recombination and lateral gene transfer.

FIGURE 11.7 Example of a graph (a) and its split decomposition tree (b) with markers v,
W, X, ¥, and z (modified after [16]).
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11.5 SUMMARY

Although several methods for phylogenetic network reconstruction exist, models and
analyses to detect lateral gene transfer, allopolyploidy, hybridization, as well as mech-
anisms operating at a microevolutionary level are still at an early stage of development.
Difficulties for optimal network reconstructions are due to complex evolutionary pro-
cesses as well as the differentiation between evolutionary signals and population
genetic noise [51]. Even though these problems have not yet been solved, network
approaches are appropriate methods for within-species phylogeny reconstructions as
they incorporate population processes in the construction and refinement of haplotype
relationships. More refined methods are needed to better reflect evolutionary mech-
anisms, which need to be transformed into mathematical and statistical forms to be
incorporated in network reconstruction algorithms. However, to better detect popula-
tion genetic processes of meiotic and sexual recombination as well as lineage sorting,
not only the algorithms and software need to be refined, but biologists also need to
adapt new software developments. First attempts have been made to provide statis-
tical confidence assessments for different resolutions of data sets (e.g., parametric
and nonparametric bootstrap methods on network reconstruction in the Bootscanning
Package, [58]). Currently, there is no good general method for deriving networks,
in the sense of an all-purpose tool for generating diagrams with reticulations; how-
ever, there is increasing interest in the development as well as in the application of
intraspecific phylogenetics using network approaches to depict genealogical relation-
ships [56]. As there also has not been any detailed comparative study of the various
network methods, to compare and contrast their success rates in terms of false nega-
tives and false positives, there is still much that needs to be done.

11.6 EXERCISES

1. Consider the following data matrix:
Christopher Robin ACGGAAATCGAA

Winnie the Puh ACGGATCGTTAT
Tigger ACGGATATCGAC
Eeyore GTACCAATCGAA
Piglet GTACCACGTTAG

Apply the Galled Tree algorithm upon this data set using Christopher Robin
as outgroup

2. Convert the following data matrix into a distance matrix and calculate a UP-

GMA tree:
ACTTCTATCATTGA

ACTCCTATCATTGC
ACTCCTATCTCTGC
ACCCCTGTCACTAT
ACTTCGGTCACTAG
ACTTGTATGTATAG

o Ul WN



REFERENCES 277

N
Y
A
A
/ N\
/ N
/ »
/ N
/ N
\
TAXON3 \ \
\\ \ TAXONS #
\\\ \\
L TAXON1 » 7
\\ ,.f'lr ,r’:
/ /
V4
\ / /
. iff TAXONG ¢
N/ oNg
( .
\\\ ,_/"//
\_\ =t
TAXON2%

FIGURE 11.8 Example network.

(a) Which network reconstruction methods can be applied from the distance
matrix?
(b) Apply the appropriate algorithm upon this dataset

3. Which different types of tree reconstruction methods are available and what
are their disadvantages compared to network reconstruction methodologies?
4. Name four evolutionary processes leading to phylogenetic networks.

5. What type of network is displayed in Fig. 11.8 and what information does it
contain?
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ECOLOGICAL NETWORKS

URSULA GAEDKE

12.1 INTRODUCTION

Ecological networks typically represent food webs, which may be defined as net-
works of consumer-resource interactions between groups of organisms [40]. By these
means, they describe who is present and who affects whom directly or indirectly by
feeding interactions (for other interactions see below). Such information is essential
for the understanding and management of the dynamics of the individual groups of
organisms and of the entire ecosystem. In food webs, the vertices (nodes, points) are
represented by individual species, certain life stages of one species, or by a number
of species that were aggregated to form one group. A biological species is defined
as the group of organisms that can, at least potentially, breed together in nature to
produce fertile offspring [2]. When regarding the food web in a certain habitat, as it
is mostly done, it is more appropriate to talk about populations rather than species. A
population comprises all individuals of one species within a certain area (e.g., within
a lake or on a leaf). To standardize across species and studies, the density (abun-
dance) of a population is often provided, for example, as the number of individuals
per square meter or per liter of water volume. To establish food webs it may, however,
be more meaningful not to consider biological species that are units of reproduction
but units of organisms that share the same predators and prey, that is, play similar
trophic roles [7,50]. Hence, from the trophic point of view we may split or aggregate
biological species into trophic guilds. A trophic guild consists of those species that
share the same predators and prey [51]. By accounting simultaneously for the links to
prey and predators this definition goes beyond the classical concept of trophic levels

Analysis of Biological Networks, Edited by Bjorn H. Junker and Falk Schreiber
Copyright © 2008 John Wiley & Sons, Inc.
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that considers only the acquisition of resources and, thus, distinguishes, for exam-
ple, primary producers (e.g., plants), herbivores, and carnivores. In some instances, a
species may form a trophic guild. However, the diet of an individual predator species
and/or the susceptibility of a prey species may change strongly during the indivi-
dual ontogenetic growth from juveniles to adults. For example, a young fish larvae
feeds on tiny zooplankton, whereas the adults may predate on other fish including the
own offspring; and a newly hatched crocodile is at high risk of predation, whereas
an adult one is not. Such ontogenetic differences between individuals of one species
of different age in the feeding links may exceed the differences between biological
species. This holds true in particular for species with pronounced ontogenetic growth
(e.g., fish and other animals that produce a large number of small offspring that have
to grow ten thousand fold or more to reach adult size), and for those undergoing
metamorphosis, for example, dragon flies with predatory larvae living in lakes and
adults foraging in the terrestrial realm, and for species with a large variability in their
appearance (e.g., algal species occurring as single cells or large colonies). The concept
of trophic guilds is also appropriate for small species, which can hardly be routinely
distinguished at the biological species level. Its application also avoids that a vertex
feeds on itself, which facilitates subsequent computations and the interpretation of
the results (see below). Finally, using the concept of trophic guilds may reduce the
effort required to establish all feeding links and to avoid the impression of unjustified
accuracy.

However, the use of trophic guilds has also been criticized because their definition
is at least to some extent subjective and mutually dependent or circular [29,30],
rising similar problems as encountered in social science when trying to define
social relations. For example, distinguishing numerous trophic guilds at the level
of herbivores has consequences for the definition of the trophic guilds at the level
of the primary producers (e.g., plants), because a smaller number of autotrophic
species will belong to the same guild if feeding preferences of the herbivores are
considered in more detail. As a consequence, new research motivating to split one
trophic guild into two may have far reaching consequences for the definition of
many other guilds within the food web. This motivated the search for more ob-
jective criteria of aggregation. For pelagic food webs (i.e., those in the open water
body of lakes and oceans), body size is a useful criterion because many physiolog-
ical and ecological properties of a pelagic organism are related to body size [37].
Hence, we may aim to have a similar number of trophic guilds within each size
range (see Fig. 12.1). Furthermore, given a sufficient data basis, advanced statis-
tical approaches may provide a more objective procedure to allocate species into
trophic guilds [30] than the often used ad hoc methods. An additional point of con-
cern when using the concept of trophic guilds [4] is that organisms may play sim-
ilar roles in the food web to the extent that they have similar links to analogous
(but not identical!) species. In former concepts, two species became members of
the same trophic guild if and only if they had trophic links to (almost) the same
set of other trophic groups. Stimulated by work in social sciences, this limitation
was overcome by distinguishing between structural equivalence (same links) and
regular equivalence (analogous but not identical links), see [26,29] and literature
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FIGURE12.1 Example of a binary food web. The plankton food web consisting of more than
200 biological species in the open water body of large, deep Lake Constance was aggregated into
22 trophic guilds. The y-axis provides the body size of the (adult) organisms, which was used as
an objective criterion to achieve an approximately even aggregation throughout the food web.
This was not feasible for the smallest organisms (e.g., bacteria, #1, autotrophic picoplankton,
#2) because here species or trophic guilds cannot be distinguished morphologically. Basal
trophic guilds are represented by thick gray circles, intermediate ones by thin circles, and the
top predator by a black thick circle.

cited therein. Using the concept of regular equivalence species are allocated into
isotrophic classes, which have the same structural roles. They may or may not
consume the same prey and may or may not share the same predators [29]. For
example, small and larger herbivores preying upon different autotrophs and being
consumed by different predators may play a similar trophic role although they may
neither share any prey nor predator species. Hence, using the concept of structural
equivalence, they would be regarded as totally different trophic guilds. In contrast,
their coefficients of regular equivalence (REGE coefficients) may be high given
their analogous role. The concept of regular equivalence is applicable to binary
and quantitative food webs (for definition see below) [29]. To conclude, defining
the trophic role of an organism remains a challenge in food web ecology since
the first attempts by Elton [13]. This implies that the definition of the vertices in
a food web model has to fit with the purpose for which the model is designed.
Here, the expressions species, trophic guilds and compartments (typically used in the
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context of quantitative food webs) are used interchangeably for the vertices of the
web.

The connections or links (edges, arcs, lines) in food webs are represented by
trophic interactions, that is, the feeding of one species on other ones. When con-
structing a food web for a particular ecosystem, information on trophic interactions
may be obtained by various means, which then, in turn, determine the aggregation of
species into trophic guilds. In the natural environment, trophic interactions may be
inferred from direct observations, the analysis of the stomach content (identify prey
organisms visually or analyze genetic sequences), the analysis of the excrements,
and by immunological and isotopic techniques. This information is typically
supplemented by laboratory and field experiments (e.g., on the growth rate of a
predator on a certain prey, reduction of prey densities at different predator densities),
by studies on the morphology and the feeding behavior of a potential predator and
by investigations of potential predator avoidance mechanisms of the prey. Inference
on trophic interactions is sometimes also obtained from the analysis of time series on
the densities of the potential predator and prey species. This may be done by visual
inspection of the time series and by statistical approaches. Recently, preliminary
attempts have been made to construct correlation networks (see also Chapter 13) from
time series of population densities. In all cases, success has been limited to the best of
my knowledge, which may be attributed to the strong noise overlaying the time series,
time-lags in the response of predator abundance to prey availability, the complex diet
and opportunistic feeding behavior of most consumers, and various indirect effects
within the food web. Knowledge on feeding interactions may often by generalized
across ecosystems, that is, it may be inferred from previous studies conducted
elsewhere. However, many consumers are opportunistic in their feeding behavior
and alter their diet depending on the supply with various resources. This can lead to
a large spatio-temporal variability in the diet of one species. Hence, considerable
uncertainty may remain about the existence or absence and the quantitative importance
of a feeding link at a given time and location even for the best studied ecosystems.

Trophic interactions rule the flow of matter and energy in food webs and are impor-
tant for the transfer of information in most ecosystems. However, it is increasingly
understood that on top of trophic interactions other kinds of interactions between
groups of organisms may influence their growth and loss processes and, thus, indi-
rectly also the flow of matter and energy in the entire food web. Examples for such
interactions include pollination, seed dispersal by animals, and kairomones. The lat-
ter are substances that are released unintentionally in very low concentrations by a
predator and perceived by its prey that changes its behavior, morphology, and/or life
cycle to reduce the predation risk at high predator densities. For example, a water flea
can smell if fish are present and responds accordingly by changing its morphology
and life cycle and hiding in deep dark water layers during the day. Such observa-
tions contributed to the development of a new branch in ecology, called chemical
ecology.

Food webs and ecological networks, in general, are typically directed. In food
webs, plants, bacteria, fungi, and detrivores (i.e., animals that consume dead organic
matter and the attached microorganisms) represent the source vertices as they form
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the energetic basis of the entire community whereas top predators are the end ver-
tices. Circular relationships where, for example, A eats B, B eats C, and C eats A
do not exist among adults at least in pelagic food webs. However, pronounced on-
togenetic growth may provoke circular feeding relationships. This may be due to
cannibalism within one species where large individuals prey on small ones. Such
cannibalism dampens the fluctuations in the population dynamics of this species as
the mortality of the juveniles is high at high population densities. Circular feeding
relationships may also occur among different species, which both exhibit pronounced
ontogenetic growth (Fig. 12.2). For example, adult jelly fishes predate on copepods
(small crustaceans) and may strongly reduce their densities. However, adult cope-
pods, in turn, may predate on (or destroy) juvenile jelly fishes, that is, the offspring
of their predator. This results in a positive feed back mechanism that may have strik-
ing effects for the dynamics of both species. If, for example, copepods are first in
establishing high densities in spring, densities of jelly fishes will remain low due
to the high mortality of their juveniles. Otherwise, if the jelly fishes come first,
copepods will not achieve high densities (Fig. 12.2). Hence, seemingly minor dif-
ferences in the initial conditions (here densities) may have a major impact on the
subsequent development of the system (and the nutrition of fish feeding on copepods
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FIGURE 12.2 Example of circular feeding relationships between two biological species,
which both exhibit pronounced ontogenetic growth (i.e., eggs and hatchlings are much smaller
than the adults). Adult copepods (small crustaceans, right) prey upon juvenile jelly fish
(Ctenophora, left) whereas adult jelly fish prey upon the copepods, that is, the predators of
their juveniles.
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but not jelly fish), which is one characteristic of chaotic behavior. Overall, such cir-
cular feeding relationships represent a network motif (see also Chapter 5) but are
typically less numerous and quantitatively less important than unidirectional ones,
see Ref. [34] and literature cited therein. From a functional and dynamic perspec-
tive, circular feeding relationships have to be clearly distinguished from the recy-
cling of matter within the food web via dead organic matter and remineralization
of nutrients. For example, all consumers release (egest) some part of their food
because it is indigestible and they take up certain chemical compounds in excess
(e.g., nitrogen, phosphorus). These substances are mostly recycled within the ecosys-
tem, for example, bacteria decompose organic matter and plants take up nutrients
released by animals. Such processes are of outstanding importance for ecosystem
functioning but a differentiation between predation and egestion appears necessary
from most ecological points of view, that is, if others than a book-keeping of fluxes
is intended. Egestion, for example, exerts no dynamic feedback control on the re-
leasing compartment whereas predation normally does. In addition, the composition
of the egesta from a large range of different organisms may be similar. This en-
ables an almost unlimited omnivory of the bacteria/detrivores, which are in food
web models lumped together in one or a few compartments. This stands in con-
trast to predation, as individual predators are generally restricted to certain kinds of
organisms.

Natural food webs may comprise hundreds of species and tens of thousands of
feeding links even if they cover only one particular type of habitat. This complexity
forces us to abstract from the situation and to develop verbal, graphical, and
mathematical models, which portray different features of the same natural system.
As a consequence, constructing ecological networks has a long tradition starting
with Ref.[13] and different kinds of abstraction and of food web modeling have been
developed since. Here, we will distinguish between

1. Binary food webs (“Who eats whom?”’)

2. Quantitative trophic food webs (“Who eats whom (how much)?”, “Who recy-
cles (how much)?”)

3. Ecological information networks (“Who influences whom (how much)?”)

These approaches proceed in the given order along a gradient of increasing require-
ments for data and knowledge. They will be described and compared with respect to
their theoretical foundation, data requirements, operational problems, and the infor-
mation they provide on food web structure and function (for details see also Ref. [16],
for areview Ref. [18]). Binary food webs only consider which species are present and
who eats whom but not the density of the organisms and the quantity of flows between
the different species. They form the basis for the so-called food web theory that aims
to recognize generalities and scaling laws in the structure of natural food webs, which
are then compared to networks found in other disciplines [41]. Quantitative food webs
take into account the magnitude of flows among different species and often also be-
tween species and their abiotic environment, that is, they may account for recycling.
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They provide comprehensive descriptions of the fluxes and cycling of matter (e.g.,
energy, nutrients, etc.) and of the trophic structure when evaluated by network analy-
sis. The amount of matter and energy that is passed along an individual flux varies by
several orders of magnitude within a food web. Hence, the realism of a food web is
greatly improved by quantifying the fluxes. However, for the time being this compli-
cates the evaluation of the food web structure and the comparison with networks found
by other disciplines, which is a major goal of the present book. Hence, the following
chapter gives more emphasis to the binary than to the quantitative webs although this
does not reflect their relevance for answering most ecological questions. Binary and
quantitative food web models have two short-comings in common. They are both
static in the sense that they represent a snapshot or a spatio-temporal average of a
food web at a certain location and time, and they are restricted to trophic interactions.
These disadvantages may, in principal, be overcome by developing dynamic models
of quantitative food webs, which also include other kinds of information exchange
than trophic interactions. However, given the complexity of this task and the amount
of data and knowledge required to set up such ecological information models, they
are typically restricted to a subset of processes within a food web, which are regarded
as particularly important for overall system dynamics or the specific question under
consideration. The latter determines whether the model is developed and parameter-
ized for a particular ecosystem or to study the dynamics of certain processes such as
predator—prey cycles in principal without referring to particular species or habitats.

To set up an ecological network always requires the definition of system bound-
aries since establishing a detailed food web or information network of the entire
planet is out of scope. System boundaries are typically chosen such that interactions
within them are stronger than across them. Difficulties may arise for all systems and
approaches but they are usually most severe for binary webs because here all links
are equally weighted.

12.2 BINARY FOOD WEBS

12.2.1 Introduction and Definitions

Binary food webs (or topological or descriptive webs) only consider the existence
or absence of a feeding link between the component species but not its magnitude
or interaction strength, which gave rise to the name “binary.” This information is
typically provided in the so-called community matrix in which predators are usually
allocated to the rows and prey to the columns. The values of the matrix are either 1 or 0
representing the presence or absence of a feeding relationship between the respective
pair of predator and prey. This matrix corresponds to the adjacency matrix described
in Chapter 2. Binary webs provide a static description of “who eats whom.”

12.2.2 Descriptors of the Network

A large number of metrics have been developed to describe the structure of binary
food webs, which were often closely linked to graph theory (see Chapter 2) [50]. They
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include the number of species/trophic guilds, S, and the number of links, L, represent-
ing the vertices and edges of the web. The species are classified as either top predators
(T, having no predators but prey on other species), intermediate species (I, preying
on others and being themselves preyed upon), or basal species (B), which feed on no
other species but are fed upon by 7 and 7. Basal species comprise autotrophs deriving
their energy from photosynthesis, and often also bacteria and other osmotrophs that
derive their energy from dissolved organic substances, and detrivores that consume
dead organic matter. They form the basis of the food web as they are preyed upon by
other species and typically rely themselves on inorganic or organic carbon sources and
inorganic nutrients. The existence of true top predators may be questioned as they
are at least attacked by parasites and pathogens or may be subject to cannibalism,
which is often ignored in food web studies [22]. To quantify the trophic structure of
the binary web, the proportions of top, intermediate, and basal species, and the ratio
of the number of prey species to the number of predator species, (T + I)/(I + B), is
computed. The mean chain length represents the average number of links connecting
top to basal species. The maximum chain length is defined accordingly. The values of
the mean chain length obtained from binary webs are higher than those obtained from
quantitative webs because binary webs give equal weight to all links [47]. Quantitative
webs account for the fact that with each trophic transfer a large part (at least 66%, but
often 90% and more) of the energy is lost by egestion and respiration (see below for
details). As a consequence, energy fluxes at higher trophic levels and along long food
chains are much smaller than at the basis of the food web and along short food chains.
For example, bears or wild pigs gain most of their energy by eating plants rather than
by eating herbivores, which have eaten plants. This is not accounted for by binary
webs but see [47] to reduce the problem. The degree of connectedness within a binary
web is measured by the linkage density, D = L /S and the ratio of the number of ob-
served links to the number of all possible links (directed connectance C = L/S 2 or,
excluding cannibalism, C = L/(S x (S — 1)), or, excluding cannibalism and cyclic
feeding relationships, C = 2L /(S x (S — 1)). The connectance represents the frac-
tion of all possible links that are realized in the specific food web. D is a function of
C and S (e.g., [32]). More recently, stimulated by ongoing research in social science,
emphasis has also been given to a potential clustering or compartmentation within
the webs where neighbors of a vertex are more likely to be connected to each other
than in a random graph [28] (for details on network clustering see also Chapter 6). In
a compartmented web, relatively isolated sub webs exist that are relatively strongly
connected within themselves and less with the other sub webs. In an extreme case, a
food web may consist of several hardly interconnected linear food chains. In theory,
compartmentation increases the stability of networks. One formula used as an index
of compartmentation is

Cr=1/SS—)x iy S_ypj i#]

with p;; being the number of species interacting both with species i and j, divided
by the number of species interacting either with i or j (see [34] and literature cited
therein). Related information is provided by the link distribution frequency defined
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as the frequency of species Sy which have L links either to a predator or a prey [33].
According to expectations, a stronger tendency for compartmentation was found in
food webs that comprised species from different habitats (e.g., aquatic and terrestrial)
than in food webs originating from more homogenous habitats. However, as frequently
encountered in ecology, the situation is not as clear and trivial as that as, for example,
food webs in one (sub-)habitat may perceive a substantial subsidy of matter and
energy from others (e.g., leaves of trees falling into a creek) (see [2] and literature
cited therein).

12.2.3 Operational Problems

Binary webs have the seemingly advantage to provide comprehensive information
on the structure of food webs from many different habitats. However, a closer look
reveals that there are numerous operational problems associated with this approach,
which may greatly reduce its reliability and overall relevance [7,20,34,40]. Especially
during the first decades of research, the catalogues of established binary webs that
were used to search for generalizations, contained mostly webs that were established
for purposes other than those of food web theoreticians. Hence, they were often fo-
cused on some part of the entire food web (e.g., the endangered or commercially
interesting species or those which were easy to assess) and did not deliver an ade-
quate description of the entire web. Such an unequal precision in the representation
of a food web may strongly affect the above-mentioned metrics. For example, the
taxonomic resolution at the higher trophic levels was often larger than at the lower
ones. As a consequence, some studies were undertaken that specifically addressed this
problem and resulted in some more resolved food webs [6,31,39,48] (for recent com-
pilations of binary food webs see also http://www.foodwebs.org/index.html). Other
problems encountered when establishing binary food webs are the in- or exclusion
of less known or quantitative very minor feeding links [50] and of species that are
not regular present in the habitat (e.g., migratory birds, transient species). The lat-
ter strongly depends on the definition of the system boundaries. In binary webs, the
spatiotemporal variability in the food web structure may be inferred from changes in
the species list. However, many species occur year round or throughout the habitat
but in very different densities. If a species is not encountered in a certain sample,
we only know that its density was below the — often variable — detection limit,
which complicates spatiotemporal and cross-system comparisons [6,48]. For further
discussion and suggestions for improvements see also [7,20].

12.2.4 Aims and Results

The motivation to study food web structure is manifold. First, knowledge of the major
feeding links is essential for any kind of management, either of individual species
or the entire ecosystem. However, as the quantitative importance of the numerous
feeding links differs greatly, binary webs have little to offer for the solution of applied
ecological problems. Hence, they play at most a marginal role in applied ecology. Re-
garding basic science, a long lasting goal has been to identify potential regularities in
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the structure of natural food webs of different habitats. Binary webs are of focal inter-
est for those searching for phenomenological regularities in food web structures and
their dependence on the type of habitat, its characteristics (e.g., disturbance regime,
productivity), the size of the web and the history of assembly [8,20,22]. Based on a
large compilation of binary food webs from very different habitats several patterns
were suggested, such as a constant ratio of predator to prey species, constant propor-
tions of links between B, I, and T and constant linkage density, D, which implies a
hyperbolic decrease of C with S; and infrequent occurrence of three-species loops,
for example, [7]. Furthermore, food chains in two-dimensional habitats (e.g., grass-
lands) appeared to be shorter than those in three-dimensional habitats (e.g., open
water bodies, forests with well-established canopy) [32,34]. These patterns, some of
which have also been termed scaling laws [7,22], are not discussed here in detail, as
the underlying binary webs were often subject to the operational problems mentioned
above. That is, they may or may not be artifacts and some are supported by more
recent detailed food web studies whereas others are not [10,22,34]. The interest in
such regularities first arose in the context of the discussions on relationships between
food web stability and complexity, with complexity being often expressed by the size
and connectance of the web [38,49,50]. A key question was, and given the dramatic
loss of biodiversity to some extent still is, “Are species-rich food webs more or less
stable than species-poor webs?” In this context, the relationship between S and C was
analyzed by comparing numerous empirical binary webs. There is no final answer
yet as the empirical evidence is contradicting (C may increase, decrease, or remain
constant with increasing S [20], which is partly due to the operational problems
discussed above). These studies also revealed that concepts such as food web sta-
bility, complexity, size, and interaction are neither trivial to define nor to measure,
and that considering only the existence or absence of feeding links may fall short in
several respects (for some details see below, [2,15] and literature cited therein).
Interest in the structure of binary food webs was further promoted by studies
of networks of other systems including those in physics, life sciences, economy, and
social science, which is sometimes also termed complex system research [41]. They led
to an exchange of analysis techniques [29] and attempts to compare network properties
across disciplines. One way to search for patterns in the binary food web structure is
to compute the above-mentioned metrics for empirical webs and for artificial webs,
which were assembled at random following some rules to maintain a certain degree
of realism (e.g., having the same S and C as the empirical ones) [11]. Statistically
significant deviations between the patterns found in the empirical and the random
webs indicate that biological interactions or other mechanisms not considered when
creating the random webs influence the food web structure. This approach, sometimes
termed null model analysis [2], resembles the familiar testing of null hypotheses in
a statistical context and is more widely used in ecological research. The observed
patterns are compared with what may be expected purely by chance without the
consequences of any biological interactions. However, the latter is often subject to
debate [34]. It has been attempted to find some simple rules for constructing food
webs that reproduce major properties of real food webs. First, the cascade model was
suggested [8] where the species get numbers from 1 to S. They only prey on species
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with a lower number than themselves and do so with the probability d/S with d being
the density of links per species. d allows to fit the model to the data. With d = 4,
some structural properties of the earlier, more aggregated webs were reproduced
but deficiencies exist when using the recent, more resolved webs [10]. A similarly
constructed model, the niche model [46], also puts the species into a certain order
describing their niche, and the prey window of a consumers has a randomly chosen
center with a lower niche value than that of the consumer. Comparing the performance
of the cascade and the niche model in reproducing 12 food web properties revealed a
better fit of the niche model [46]. It has, however, to be kept in mind that such static
binary models cannot provide a mechanistic explanation for the potential existence
of general patterns in natural food webs [10,41]. Both models order species along an
abstract gradient and the niche model assigns a certain niche to each species. Such
an ordering may be based on body size for pelagic food webs from large open water
bodies, as predators are here typically larger than their prey. However, there is also
an upper boundary to the difference between predator and prey for energetic reasons
resulting in a certain prey size window relative to the size of the predator.

12.2.5 Conclusion

There were and still are substantial operational problems when establishing and com-
paring binary webs from different habitats and researchers, which implies that in
particular early results on generalities in food web structures may be out-dated by
analyses of more accurate food web studies. Nevertheless, they form the basis of
ongoing research aiming to identify generalizations in food web structure and to
compare them to other kinds of networks in biological, social, and other science.
The analysis of binary food webs has a great power to summarize binary structural
patterns of complex food webs at the expense of contributing little directly to the
understanding of ecosystem functioning. Reasons for this include that binary web
ignore the pronounced differences in the relative importance of the different feeding
links [35], hardly consider the often pronounced spatio-temporal variability, and do
not include other interactions than feeding links. This explains why important eco-
logical concepts may not be based on binary webs and why they have rarely been
used to solve applied problems.

12.3 QUANTITATIVE TROPHIC FOOD WEBS

12.3.1 Introduction, Definitions, and Database

Binary food webs may be converted into trophic food webs (also called flow or
bioenergetic webs) by quantifying the biomass of the trophic guilds (typically called
compartments in this context) and the individual links (typically called fluxes or flows
in this context), that is, the diet composition of each consumer compartment has to
be known quantitatively. In addition, the exchange with the nonliving environment
is often quantified as well (e.g., the uptake of carbon dioxide by plants, the release
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of carbon dioxide and dead organic carbon by the organisms, and the uptake of or-
ganic substances by bacteria, fungi, and detrivores). Most often, this quantification
is done in units of carbon as this represents the most suitable surrogate for energy
that is typically the most decisive resource for consumers (but see below). The quan-
tity of the individual living compartments (i.e., its biomass) is often determined by
counting the number of individuals of each species (or life stage of each species,
or higher taxonomic unit) per unit area (or volume of water), measuring the weight
of each individual and computing the product. The latter represents the biomass per
unit area (volume), expressed, for example, in mgCm 2. Depending on the group of
organisms more automated procedures for estimating biomass may exist (e.g., mea-
suring the chlorophyll concentration of phytoplankton). Measuring the fluxes among
the living compartments and their exchange with the nonliving environment is with
few exceptions more demanding than establishing the compartmental biomasses. For
each living compartment, quantitative information is required about the food uptake
(I, ingestion), release of organic matter (E, e.g., excretion of nondigestible parts of
the food), respiration (R), and production (P, comprising somatic growth and re-
production) per unit biomass and time. For each living compartment, the equation
of mass-balance has to be fulfilled: / = E 4+ R + P, that is, ingestion has to cover
the needs for respiration and production after accounting for the nonassimilated part
of the food. A typical unit for these fluxes is mgCm~2d~!. Flux measurements are
nowadays obtained by a large variety of technologies depending on the ecosystem,
organism, and flux under consideration. Photosynthesis providing the energetic basis
of plant growth and, thus, of most ecosystems, may be inferred, for example, from the
measured uptake of carbon dioxide or release of oxygen, the activity of the electron
transport system within the photosynthesis apparatus and the net growth of plants if
this is observable in the field. Bacterial production, representing often the second basal
energy input into most food webs, may be estimated from the uptake of radioactively
labeled substances. In addition to measurements conducted in the field, laboratory
experiments are routinely used to obtain flux estimates. They may comprise measure-
ments of the growth, respiration, and reproduction rates of the component species
as a function of food concentration and temperature, and the maximum food uptake
as a function of prey availability and quality. Very importantly, the efficiencies by
which ingested food is assimilated, (R + P)/I, and invested into the production of
new biomass, P/(R + P), should be quantified as far as possible. When setting up the
trophic food web model, they may not surpass certain threshold values as a part of the
food is always nondigestible (this fraction tends to be higher for plants than animals),
and the maintenance of the metabolism always demands energy (i. e., respiration that
is higher for vertebrates, and birds and mammals in particular, than for unicellulars
and noninvertebrates). Mass-balance conditions have to be fulfilled for all individ-
ual compartments as well as for the entire system. For example, in autochthonous
ecosystems that do not receive subsidies from other ecosystems, primary production
must be sufficient to allow for a potential increase in biomass and at the same time
compensate all losses from the ecosystem, for example, by respiration and sedimen-
tation. Furthermore, the release of organic material by the different compartments has
to cover the demands of bacteria and detrivores. This leads to a set of equations that
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is on the one hand highly overdetermined, that is, the number of equations is much
larger than the number of free parameters. On the other hand, all estimates of diet
compositions, biomasses, and the amount of fluxes are subject to often considerable
uncertainty and spatiotemporal variability. Several programs have been developed,
which try to cope with these facts. For example, the software developed by [21]
is based on an inverse approach [27,42] that keeps the balanced quantitative food
web models closest to their initial estimates (for alternatives see, e.g., [5,14,23] and
literature cited therein). If the data base is sufficiently comprehensive, the internal
consistency of the different sources of information used to quantify the network can
be controlled and some fluxes may be estimated, which are particularly inaccessible
to measurements.

12.3.2 Multiple Commodities

Most trophic models were quantified in units of carbon representing the best surrogate
for energy and energetic constraints are thought to drive most food web processes.
However, it is increasingly recognized that food quality may also play a decisive
role on top of quantity. For example, if plants grow under severely nutrient depleted
conditions, their internal ratio between nutrients and carbon declines strongly. Such
flexibility in the stoichiometric composition is only found in plants and bacteria but
not in animals, which, in addition, have higher nutrient/carbon ratios than plants. As
a consequence of these two facts, growth of herbivores may be limited by nutrients
rather than carbon/energy when they have to rely exclusively on strongly nutrient de-
pleted plants, for example, [17]. This is one example, how food quality may determine
growth of herbivores. Other examples include a lack of polyunsaturated fatty acids or
sterols, for example, [45]. These findings motivated the recent development of trophic
models in two commodities (e.g., carbon and the most limiting nutrient) [9,17,25,44]
and of programs that can mass-balance food webs in two commodities
simultaneously, for example, [21]. This increases the realism of the network
model and implies additional constraints on the mass-balance conditions if fluxes in
the second commodity and/or ratios between the two commodities in the compart-
mental biomasses have also been measured. As already pointed out in the context of
binary webs, it should be acknowledged that the large spatiotemporal variability and
adaptability inherent in almost all ecological processes and entities cannot be fully
reflected in any food web model. Hence, a considerable degree of uncertainty in all
flux estimates remains even for well-studied systems. One way to account for these
problems and to avoid the impression of unjustified accuracy is to stronger aggregate
the component organisms. That is, the number of compartments in a trophic food
web model is typically smaller than the number of trophic guilds in a binary web
(see Fig. 12.2 and 12.3, [30]).

12.3.3 Descriptors of the Network and Information to be Gained

Various measures have been developed within the framework of network analysis [14]
to describe and compare trophic food webs in time and space and among habitats.
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FIGURE 12.3 Example of a quantitative food web model and its seasonal vari-
ability (top: early spring, bottom: mid-summer, 1991) in the open water body of
large, deep Lake Constance. The network was simultaneously mass-balanced in units
of carbon (surrogate for energy) and of phosphorus, representing the most limiting nutrient.
The width of the arrows represents the magnitude of flows in units of carbon or
phosphorus on a logarithmic scale. L symbolizes respiration and ~ the release of
carbon or phosphorus by egestion, which enters the pool of dead organic matter (POC—
particulate organic carbon, DOC—dissolved organic carbon, POP—particulate organic
phosphorus, DOP—dissolved organic phosphorus). Respiration and egestion are not
drawn at scale. Flux diversity increases from spring to summer. The food web models are
similar in units of carbon and phosphorus during early spring when plenty of nutrients (here
phosphorus) are available and, thus, also phytoplankton has a relative high phosphorus content.
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FIGURE 12.3 (Continued) In contrast in mid summer, carbon and phosphorus webs differ
due to the nutrient depletion of phytoplankton. Then, the carbon (energy) and nutrient supply
of the consumers is less tightly coupled; they derive most of their energy from phytoplankton
but substantial amounts of phosphorus from the phosphorus-rich bacteria and other animals.
Note that bacteria and phytoplankton are competitors in terms of phosphorus but not in terms

of carbon, which leads to a major difference in food web structure and functioning in respect
to carbon and phosphorus (data from [17,24]).
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They are partly similar to those used for binary food web analysis but complemented
with others, sometimes derived from thermodynamic considerations. They quantify
the cycling and remineralization of nutrients, intercompartmental dependencies
(“who gets directly or indirectly how much energy or nutrients from whom?”), and
the trophic structure. The latter provides information for example, on “how much
biomass and energy is available at which trophic level?” “how efficient is energy
channeled from basal to top species?” “how important are which parts of the food web
for these processes?” “which organisms are at which trophic level/trophic position?”
A measure for the size (or productivity) of the food web is not the number of species
but the total system throughput, which is the sum of all fluxes within the network.
The average path length measures the mean number of trophic transfers that a unit of
biomass goes through from its entry into the food web (e.g., by primary or bacterial
production) until it leaves it (typically by respiration) and represents a weighted
average of the food “chain” length. As pointed out above, this average path length
obtained from quantitative food webs is generally smaller than the corresponding
value obtained from a binary web because it is weighted by the quantitative
importance of each flux. In addition, mass-balanced trophic food webs can be used to
follow the pathway of a unit of biomass through the food web as time progresses. The
computation of these compartmental and system resident times provides information
on the velocity at which the unit of biomass is channeled through and lost from the
system and on the potential accumulation in certain compartments. This may be
relevant to understand nutrient cycling and the behavior of toxic substances. The
computation of the various measures is facilitated by software packages such as
NETWRK [14,43] and ECOPATH [3,4] (and ECOSIM, http://www.ecopath.org, for
summary and activities); for a comparison of both packages see [5,23].

12.3.4 Conclusion

To conclude, quantitative food web models provide comprehensive descriptions of
fluxes and the cycling of carbon and nutrients in an ecosystem, especially when they
are mass-balanced and evaluated by network analysis. They answer questions such
as “who eats whom how much?” but also “who respires how much?” and “who ex-
cretes/remineralises how much?” By accounting for the large variability in the relative
importance of the different fluxes they provide a more realistic picture than binary
webs. This motivates ongoing attempts to include quantitative scales into theoretical
network analyses [35,41]. However, even quantitative food web models still have lim-
itation in explaining probable causalities in food web dynamics, as they are primarily
static and the interaction strength between two compartments does not only depend on
the quantity of the fluxes among them. Such tasks may be approached using dynamic
information networks.

124 ECOLOGICAL INFORMATION NETWORKS

The ecological networks presented so far were primarily static and restricted to trophic
interactions (including remineralization). As most ecological processes are highly
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variable in time and space, numerous other models have been developed, which are
dynamic and account for spatial structure. They may either be based on a set of cou-
pled differential equations that describe the interactions between the different species
and with abiotic forcing factors. This type of model is most appropriate if a large
number of individuals behaves in a similar way, for example, unicellular algae in
an open water body. If, in contrast, the individual life history and distinct neigh-
borhood relationships to other organisms largely determine species interactions and
other ecological processes, individual-based, spatially explicit modeling approaches
should be used [19]. They are often used in terrestrial plant vegetation ecology, for
example, to describe the growth of individual trees depending on the trees in the
neighborhood. Identifying the most relevant processes that have to be incorporated
into the model to answer a certain question, and finding sufficiently realistic mathe-
matical expressions and parameters for them is very challenging given the complexity
and adaptability of ecological processes and networks, especially when compared to
the usual amount of funding devoted to ecological research. The model design has
to be strictly focused on answering specific questions, and trade-offs are required
between generality, realism, our ability to track the model behavior, and the effort
required to set up and test the model. To date, most dynamic food web models re-
lated to particular ecosystems have either focused on parts of the entire food web
(e.g., plant — herbivore interactions) or strongly aggregated the component species
into a few categories. An exception is the European Regional Seas Ecosystem Model
(ERSEM) [1,12] but also this model cannot overcome the inherent problem that the
many-layered complexity of natural ecosystems can never be depicted in a single
mathematical model. In order to be useful, a model has to be an abstraction from
reality. It is beyond the scope of this section to present these various types of dynamic
models in detail. In the food web models considered so far, species interactions and
the flow of information were linked to trophic interactions, that is, the feeding of
one species on the other ones. Direct predation and competition for resources are
often very important factors for regulating population dynamics, especially in pelagic
food webs. However, they may be modulated by other interactions that are charac-
terized by a very small flow of energy as compared to their relevance for food web
dynamics. In the previous section, it has already been discussed that quantitative mi-
nor parts in the diet such as polyunsaturated fatty acids, vitamins, and sterols may
determine the growth rate of the consumer. Further examples where a marginal flow
of matter may strongly influence food web dynamics include pollination, dispersal
of seeds, kairomones, or pheromones. The latter promote communication within one
biological species, for example, males may release pheromones to attract females.
That is, the interaction strength that represents the pair wise per capita effect of
one species on another one, is neither constant for all links nor proportionally to the
quantity of flow along a certain link. In some networks based on such nontrophic
interactions, partly similar investigations have been performed as described above
for the binary food webs. For example, in mutualistic networks between terrestrial
plants and their pollinators relationships between species richness and the number
of interactions and the connectance as a function of the habitat type were estab-
lished [36].
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All ecological networks considered so far were static in respect to their species
inventory and the kinds of interactions. This may be adequate when regarding shorter
time intervals. However, local extinction and invasion of new species are common
to most food webs and, on a longer time scale, existing species may change their
properties, new species may evolve, and other may go extinct. These processes will
alter the network structure and, thus, demand consideration to understand its emer-
gence, for example, by using assembly and evolutionary models [10,41]. To conclude,
a comprehensive understanding and forecasting of the dynamics of ecological net-
works demands a dynamic representation accounting for the high spatiotemporal
variability of natural food webs and for other flows of information on top of trophic
interactions.

12.5 SUMMARY

Ecological networks typically represent food webs that may be defined as networks
of consumer—resource interactions between groups of organisms. By these means,
they describe who is present and who affects whom directly or indirectly by feeding
interactions. In food webs, the vertices (nodes, points) are represented by individual
species, certain life stages of one species, or by an aggregation of species (trophic
guild). The connections or links (edges, arcs, lines) are represented by trophic inter-
actions, that is, the feeding of one species on other ones. Depending on the question
under consideration and the availability of data, the highly complex natural food webs
are depicted by various types of network models such as binary food webs (“Who
eats whom?”), quantitative trophic food webs (“Who eats whom how much?” Who
recycles how much?), and ecological information networks (“Who influences whom
(how much)?”’). Comparing binary webs from different habitats and researchers is
still hampered by operational problems. Nevertheless, they are used to identify gen-
eralizations in food web structures that are then related to other kinds of networks in
biological, social, and other sciences. Binary food webs are well suited to summarize
qualitative structural patterns of complex food webs at the expense of contributing
little directly to the understanding of ecosystem functioning, mostly because they
ignore the pronounced differences in the relative importance of the different feeding
links. Quantitative food web models provide comprehensive descriptions of fluxes
and the cycling of carbon (energy) and nutrients in an ecosystem, especially when
they are mass-balanced and evaluated by network analysis. By accounting for the
large variability in the relative importance of the different fluxes, they provide a more
realistic picture than binary webs and have been preferred in some recent studies
although they are more data demanding. Nevertheless, quantitative food web models
still have limitation in explaining probable causalities in food web dynamics as they
are primarily static like binary webs, and the interaction strength between two com-
partments does not only depend on the quantity of the fluxes among them. Such tasks
may be approached using dynamic information networks, which facilitate a com-
prehensive understanding and forecasting of the dynamics of ecological networks.
However, their implementation again demands an even higher effort.
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TABLE 12.1 Adjacency Matrix for a Hypothetical Food
Web for Exercise 1

Species 1 2 3 4
1 0 0 1 0
2 0 0 1 1
3 0 0 0 1
4 0 0 0 1

12.6 EXERCISES

1. Construct a graphical representation of the binary food web defined by the com-
munity (adjacency) matrix (Table 12.1) and compute S, L, D, and C. Identify
basal species and top predators.

2. Sketch quantitative trophic food webs in units of carbon and phosphorus based
on the following information: The web consists of primary producers, herbi-
vores, and omnivores. The latter consume primary producers and the herbivores.
The herbivores consume 75% of the primary production in terms of C and the
omnivores the remaining 25%. Primary production amounts to 100 mgm~—2d ™.
Each consumer converts 33% of the food ingestion into new production, 33%
is egested, and 33% is respired. How much herbivorous production is available
for the omnivore to ingest in units of C? Construct a food web model in units of
P by first assuming that the ratio between carbon and phosphorus of 100:1 for
the primary producer and of 40:1 for the animals. How much phosphorus in-
gests the omnivore? How much phosphorus is released by the two consumers?
Assume now a ratio between carbon and phosphorus 200:1 for the primary
producer and of 40:1 for the animals (i.e., the plants are nutrient-depleted, see
Fig. 12.3 “summer situation”). Before you construct a model, evaluate whether
the herbivore is now limited by C or P? What is the maximum production in
units of C and P the herbivore can now achieve? What are the consequences for
the omnivore?

3. Describe the most important differences between binary food webs, quantitative
trophic food webs, and ecological information networks and provide their major
respective advantages and limitations.
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13.1 INTRODUCTION

Over the past few years biological science has experienced substantial technological
advances that have led to the rediscovery of systems biology [22-24,32]. These
advances were ignited with the technological ability to completely sequence the
genome from virtually any organism [30,39]. Although these initial sequencing
efforts focused mainly on gene discovery and genome structure analysis, they trig-
gered the development of various multiplex high-throughput assays, such as GC-MS
(gas chromatography coupled with mass spectrometry) based metabolomics [25],
microarray based transcriptomics [27], or MS and enzyme assay based pro-
teomics [48]. Today these analytical technologies permit a simultaneous monitoring
(profiling) of all of the components of the cellular inventory: genes, transcripts,
proteins, and metabolites. With genome information and profiling technologies
now readily accessible, the mining and exploitation of data derived from such
multiparallel “omics” technologies open up the possibility to gain comprehensive
insight into understanding biological systems and their complexity.

However, it is clear that knowledge of qualitative and quantitative data of the cellu-
lar inventory is necessary, but clearly not sufficient to address and understand system
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responses. Cellular processes are determined by a large number of functionally
diverse, differently active, and frequently multifunctional sets of the cellular
elements [43]. These elements interact selectively and in many cases nonlinearly to
execute specific cellular functions [22].

The understanding of biological complexity through the modeling of cellu-
lar systems permits one to shift from a component-centric focus to integrative
and system level investigations. Whereas systems biology is not consistently
defined, it represents an analytical approach to unravel interrelations among
and between the cellular elements in biological systems [17,52]. Such interrela-
tionships can then be approached experimentally and/or described by statistical
measures.

In this chapter, we describe and discuss the crucial steps of measuring and in-
terpreting statistical interrelations between cellular elements by correlations and
correlation networks, as well as describing and discussing correlations and corre-
lations networks in the context of interrelations between heterogeneous elements
of the cellular inventory. The potentials and constraints, challenges, as well as
pitfalls of these approaches will be discussed. We attempt to show the usefulness of
linking computational science and experimental biology through component-centric
driven and systems level investigations. While we mainly focus on transcriptional
correlations in this chapter, basically these guides are applicable for all cellular
elements.

13.2 GENERAL REMARKS

The following sections deal with correlation networks, their generation, and their
interpretation. First, correlation values can be looked upon from two perspec-
tives, namely from the probability point of view (based on strength) or from
the (real) strength point of view. In the former viewpoint, one is interested if
a correlation is seen by mere coincidence or if there really is a connection be-
tween the two variables, albeit being possibly weak. This is due to the fact that
the significance of a correlation coefficient is not only related to its strength
but also to the number of samples examined. Thus, through examining a large
number of samples, weak correlations can become significant. The second van-
tage point just considers everything from the strength of the interaction (see Sec-
tion 13.3.4).

Regardless of the point of view, usually these networks are transferred into dis-
cretized networks for standard network analyses. However, this crucial step might
introduce several mistakes, since the threshold used for discretization might not have
been optimally chosen, thus leading to distortions of the network and thus distortion
in the interpretation of the information. Moreover, correlation networks are a priori
undirected. Therefore it is difficult to attach flow directions to these networks. Fi-
nally, correlation is not synonymous to causality. Therefore one must be careful when
interpreting these networks!

With these caveats in mind, we can now proceed to the next sections.
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13.3 BASIC NOTATION

Here we discuss the analysis of correlations and correlation networks based on
various statistical as well as mathematical definitions, computational algorithms, and
finally biological interpretation of the results obtained. This section aims to address
some basic terminology, notations, and equations of correlations and correlation
networks used in this manuscript. Interested readers with a basic knowledge of
statistical analyses as well as profiling technologies and their use may skip parts
or even the entire section. We present a brief overview of the mathematical basis
underlying correlation networks and present only the necessary concepts. Interested
readers can get more detailed descriptions by referring the cited references and the
references therein as well as elsewhere in this book. Most of the terms described are
based on data and data structures normally generated and handled in biological labs.
Therefore, the notations described may be slightly different and may be wielded
differently than from other areas of natural science.

13.3.1 Data, Unit, Variable, and Observation

The essential fundamentals for correlations and the resulting correlation networks are
data. Data represent the substantial raw material for any method of statistical analyses.
In this chapter, we use the term data to describe values that are analyzed and/or even
modified by statistical analyses. An observation, a datum, is considered as a value for
some object on some variable. An assembly of data, that is, the collection of all data,
for a particular study is referred to as a data set. Such data sets are often visualized
as tables. An exemplary data set is given in Fig. 13.1.

In literature, various terms can be found to indicate objects of a data set. In this
chapter, we use the neutral term unit, which consists of some variables each with
observation(s). “Heat” represents a unit in Fig. 13.1. In contrast, a variable is a
characteristic or attribute or entity of interest about a unit that can take on different
values. In Fig. 13.1, “b0003” is a variable.

Unit

|
Gene\profile Control | Heat |~ Cold

b0001 0.8 -8.2 4.1
b0002 1.3
b0004 -2.4
b0005 -1.2
b0006 NA
Variable Observation

FIGURE 13.1 Simple illustration of an exemplary partial data set. Its notations have been
labeled. (Legend: NA = not available, NaN = not a number).
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Data sets generated in biological science are often represented as variable-unit-
tables. In such tables the units are represented by the column header and the variables
as Istcells of eachrow asillustrated in Fig. 13.1. Such representation can be transposed
by turning rows into columns and vice versa.

13.3.2 Sample, Profiles, and Replica Set

The basic sources for data in molecular and biological science are samples. In prin-
ciple, the sample describes the biological material used for analyses, for example, by
multiplex high-throughput methods. The sample represents a particular origin, such
as a part of an organism or its entirety, which can be specified by various attributes.
These sample attributes can be related by the treatment, the condition of growth, the
age, the time of sampling, and so forth, which are often standardized [4,7]. In most
of the cases samples are processed according to the designed method before they
are used for analyses. The processing and analysis methods are manifold and are
discussed elsewhere [1,27,41].

For construction of correlation networks a set of diverse variables (n > 8)
have to be measured. Multiplex high-throughput technologies enable scientists to
perform such simultaneous measurements of diverse variables. Basically, the profile
represents the output of such a technology for a sample. The general design of
profiles depends on the method and technology platform used. The primary profile,
which is generally unprocessed and reflects the raw measurements, is simply the
readout of the technology platform. Such primary profiles can be images (Fig. 13.2a),
for example, generated by expression profiling technologies for transcript abundance
measurements, or chromatograms derived from various protein and metabolite
profiling technologies etc. (Fig. 13.2b).

Primary profiles are normally converted to secondary profiles. In this chapter, we
consider the term profiles as secondary profiles that represent the text-based output
of a profiling technology platform and may be preprocessed by particular statistical
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FIGURE 13.2 Two examples illustrate types of primary profiles for an expression (a) image
and a metabolite (b) chromatogram profiling technology platform.
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Gene\attribute Signal Detection Description

b0001 6.7 Absent Isomerase

b0002 23.2 Marginal Metal transporter

b0003 0.8 Absent Cytochrome P450

b0004 53.7 Present Unknow protein

b0005 1285.1 Present Hypothetical protein

b0006 2 Absent Metallothionein-like protein

FIGURE 13.3 Simple illustration (based on Affymetrix microarray technology platform) of a
partial, normalized profile with variables (gene, e.g., b0003) and various attributes reflecting the
relative adjusted signals (“signal”), the reliability of detection (“detection”) and the description
of the respective variable.

algorithms. In general, such profiles consist of a number of diverse variables (up to
many thousands) each with their respective observations. These observations describe
semi-/quantitative or relative values of the abundance (amount) of the variables. Sec-
ondary profiles can contain further attributes, for example, values or scores, which
may be used by further algorithms for normalization.

Such normalized profiles are derived from secondary profiles by the application of
statistical algorithm and/or logical rules to adjust observations in terms of technical
and experimental, or even known artificial variations. Thus, normalized profiles
consist of adjusted or transformed observations for each variable and may contain
further attributes that reflect the quality and/or the reliability of the individual
observations (Fig. 13.3).

13.3.3 Measures of Association

For construction of correlation networks, associations between variables derived from
quantitative or qualitative data have to be measured. Such associations characterize
at least the strength of relation between two variables. They can be measured by
a multitude of different coefficient types, which can be basically classified into
similarity and dissimilarity measures.

Similarity measures monotonically reflect the extent of similarity between
variables s;;, 7 € I, j € J: the larger the similarity s;;, the more similar are i and j.
Similarities between variables can be obtained as primary data or secondary data
derived from variable-to-unit data sets. Matrices (see below) based on similarity
measures are called similarity matrices S = (s;;). Similarity data may be nonpositive
(sij < 0) and asymmetrical (s;; # ;).

In contrast, dissimilarity matrices D = (d;;) reflect dissimilarities d;; between
variables i, j € I: the larger the dissimilarity d;;, the less similar the variables i and j
are. Dissimilarities are supposed to be non-negative (d;; > 0). The resulting matrix
D is symmetrical (d;; = dj;) with diagonal dissimilarities of zero values (d;; = 0).
Dissimilarities can be observed empirically through conversion of similarities or
as secondary data derived from variable-to-unit data sets. The Euclidean distance,
the distance between two points or vectors, is probably one of the most widespread
dissimilarity measures used in the natural sciences [28].
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Interestingly, a direct relationship between similarities and dissimilarities may
occur, which cannot be assumed always to be relevant. Despite this, dissimilarities
can be obtained by transforming similarities by equations such as d;; = /(1 — s;),
dij = 1 — s;5, dijj = 1 — |s;j|, or d;j = exp(—s;;) [28]. Moreover, dissimilarities can
be scaled for example, by dividing all dissimilarity d;; by the maximum dissimilarity
max(d;;) of D.

13.3.4 Simple Correlation Measures

Correlation coefficients [10,38] belong to the group of similarity measures and
describe at least the magnitude of the relation between two variables (association). In
contrast, some coefficients can describe both magnitude and direction (relationship).
Correlation coefficients can take on values in range of —1 to +1.

The magnitude of a correlation estimates the strength of the relation: the strength
of the tendency of variables to move in the same (or opposite) direction or how strong
they covary across the set of underlying paired observations. The larger the absolute
correlation, the stronger the variables are associated.

The direction of the correlation describes how the variables are related. If the
correlation is positive, the two variables have a positive relationship (move in the same
direction) or the correlation can be negative (and move in the opposite direction). A
positive relationship means that as one variable increases so does another one. In
contrast, a negative relationship reflects that the other variable decreases.

The most prominent correlation measure is the Pearson product moment correla-
tion (p or r, Equation 13.1). The Pearson correlation describes the linear relationship
between two variables that are on an interval or ratio scale. Its values range from
—1 to +1. For some applications Pearson’s r requires bivariate (two-dimensional)
normal distributed observations. The Pearson correlation can be strongly affected by
bivariate outliers, which may increase or decrease the magnitude of relationship.

The following equation computes the Pearson product moment correlation r of
variable X and Y. X and Y are the mean of X and Y, respectively, and n the number
of paired observations.

i=1

r(X,Y)= (13.1)

A special case of the Pearson’s r is the nonparametric (i.e., distribution-free)
Spearman rank-order correlation (rg, Equation 13.2). It requires fewer assump-
tions compared to its relative. The Spearman correlation is estimated on ranked
observations of two variables and ranges from —1 to +1. It can describe linear as
well as nonlinear relationships, if the observations are continuously increasing or
decreasing. According to its nonparametric nature, Spearman correlation is more
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robust to bivariate outliers than its parametric counterpart and does not necessarily
required bivariate normal distributed observations.

The following equation computes the Spearman rank-order correlation rg of
variable X and Y. The number of paired observations is n. The Spearman correlation
can be computed by Equation 13.2 or by Equation 13.1 on ranked observations.

6 (rank (X) — rank (Y))?
i=1

re(X,Y)=1- (13.2)

n(n2—1

In contrast to the above-mentioned correlation coefficients, a variety of other
coefficients can be found in the literature, such as Kendall’s 7 [38], each with their own
“advantages” and “disadvantages.” Most are special cases or based on Pearson product
moment correlation, such as the James—Stein Shrinkage Pearson correlation [11].

13.3.5 Complex Correlation and Association Measures

With the ever increasing number of publicly available profiles derived from multiplex
high-throughput technologies and the increasing computational power, various
other, more complex, measures of dependencies have been applied. For instance,
the mutual information (I, MI), derived from information theory [37], provides
a general measure of dependencies. This measure allows for the deciphering of
association between variables on general criterion beyond linear or slightly nonlinear
dependencies. It quantifies the reduction in the uncertainty of one random variable
given knowledge about another random variable. The mutual information can be
computed in different ways [44]. Often it is based on the Shannon (cross-)entropy
(Equation 13.3). Improving computation, adjustment for finite sample effect, and
significance testing has been suggested [44].

The following equation computes the mutual information (/) based on Shannon
entropy for X and Y (H(X), H(Y)) and their jointentropy (H (X, Y)). M, My represent
the possible states of X and Y, respectively. P is the probability of a particular state M;.

I(X,Y)=HX)+HY)—H(X,Y) with (13.3)

M)r
H(X)=—= pGlogp(x) and

i=1

M, My

HX.Y)==>">"p(x.y; logp (xy

i=1 j=1

Fartial correlation coefficients [10,38] represent another way of describing
dependencies between variables. Such coefficients have been introduced to bypass
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Causality relationship Observed correlation network
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% Og.

(a) (b)

FIGURE 13.4 Illustration of causal relationships between variables (A, B) and (A, C)
(a) and the resulting network (b) derived by simple correlation analysis.

problems derived from simple correlation analysis. For instance, one drawback
of dependency analysis by simple correlations can be the observation of strong
relationships which might result from secondary effects or due to the action of
another variable. This can play an important role in networks derived from a
multiplex high-throughput assay with hundreds of variables. For a better illustration,
one can assume a simple model consisting of three variables A, B, and C. In this
model, variables A and B are highly correlated by a causal relationship. Furthermore,
variable A might also be causally correlated to the variable C. If the resulting
correlations of (A, B) and (A, C) are therefore strong, we will also observe a strong
correlation of (B, C). This might jeopardize downstream network analysis by putting
an edge (a connection, see below) between B and C because there will be more
weight placed to the nodes B and C than there actually is (Fig. 13.4).

A method to circumvent such a problem is the use of partial correlation coeffi-
cients. This would measure the correlation between any pair of variables if a third
(or more) specified variable(s) has been held constant. For instance, in the case
above it would measure the association rpc 4 between variables (B, C) if variable A
would be constant (controlled or removed from the model). This is also called partial
correlation of first order, since only one variable is controlled. In this simple case,
the partial correlation can be computed by the equation.

The following equation computes the partial correlation of first order based on
Pearson product moment correlation.

rBC — VBAT
rec.a = Be —BATcA (13.4)

\/(1_712% (1—réa

Higher order partial correlations of order n (n variables controlled) can be
obtained by a similar formula based on the partial correlations of order n — 1.
Obviously, these calculations get more complicated when dealing with higher order
partial correlation. Therefore, these are usually calculated using the inverse of the
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correlation matrix, which is related to the partial correlation. However, the inverse
can usually not be solved if there are more variables than units. To circumvent this
problem a pseudo-inverse for partial correlation estimation combined with graphical
Gaussian model has been introduced [36].

13.3.6 Probability, Confidence, and Power

Beyond measuring the relationship of variables the correlation obtained can be used
for further statistical testing or comparison. Often such further statistical analyses, for
example, confidence, power, or comparison of correlations, require transformation of
the correlations obtained.

The basic transformation and back-transformation of a correlation are computed
by using Fisher-z-transformation (Equation 13.5) or their improvements [18]. Such
transformations may be necessary for the comparison of obtained correlations,
especially if they are derived from not fully assigned data matrices [38].

11 14+r
=—In
LELMT I

or z = arctanh (r) (13.5)

Moreover, correlations can be examined as to whether there are differences from a
null hypothesis (Hp) or an alternative hypothesis (Hy4) by statistical testing. Because
of the extensive definitions required, and the specific test statistics (e.g., Equation 13.6
for Pearson product moment correlation) in relation to the coefficient in question, it
will not be discussed in detail here [5,10,38].

n—2

t, = r\/ - with n —2 degree of freedom (df) (13.6)

Basically, correlations can be converted into a test value by using the respective
test statistic, which can than be compared against a table of probabilities or the
respective probability distribution. The later would yield the probability of alpha.
Such probability estimates the chance to observe a correlation as a coincidence of
random sampling. It ranges from 0 to 1. Usually a value of <0.05 (95%), referred as
a significance level, will be accepted as significant. Rejecting a null hypothesis that
is true is referred to as type I error or false positive.

Although population correlations can be estimated by a point, that is, the sample
correlation, it can also be estimated by an interval between two points. The interval
between these two points specifies a defined level of confidence for the location of the
estimated true population correlation. Such interval is termed as confidence interval
or confidence level.

A further parameter in statistical testing is referred to as power or power of test.
The power is computed as 1 — 8 with § as the probability of not rejecting a false null
hypothesis (Type II error, false negative). The power explains the fact how likely one
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is to find significant correlations given that the alternative hypothesis is also true. Its
values ranges from 1 to 0, with values closer to 1 reflecting less chance to make a
type Il error.

13.3.7 Matrices

Generation and analyzing of correlation-based probability networks basically require
the use and conversion of different types of matrices (e.g., rectangular arrays of
numbers) by computer programs. The basic matrix type is referred to as data matrix
B, which is similar to variable-to-unit data sets (see above) of profiling data. Whereas
such data sets can contain additional attributes, the data matrix contains only the
observations used for computation of the relationships between variables. The
observations can mirror quantitative values, ranks or Boolean values, for example,
qualitative values. The data matrix may be preprocessed in different ways and/or by
different statistical algorithms, for example, variable or units can be normalized to
unit variance etc. Such matrices are usually asymmetric with » number of variables
and m number of units (n X m matrix).

Computation of all pairwise relationships between the variables will result in a
squared and symmetrical matrix with n variables (n x n matrix), termed a relationship
matrix R. Depending on the coefficient type used it can either be a similarity or a
dissimilarity matrix (see above). Usually, the upper or lower triangle may be computed
and represented based on the fact that relationship matrices are symmetrical (v;; = 7 ;).
Such matrices can be converted into a probability matrix P, a relationship matrix, by
using the appropriate test statistic for the coefficient in use (see above).

The application of graph analyzing methods may require the conversion of rela-
tionship matrices. For instance, for clustering analyses a similarity-based relationship
matrix will be usually converted into a distance range (see above). Beyond this, the
main conversion step for graph/network analyses are matrix discretization into an
(n x n) adjacency matrix A. Relationship matrices contain numerical values for each
pairwise comparison R;;,i € 1, j € J. Based on arbitrary or probability cutoffs, the
relationship matrix-element R;; will be usually converted into a binary adjacency
matrix-element A;;. For instance, one assumes a probability matrix containing signi-
ficant levels in range of O—1 and a cutoff 95% confidence (alpha of 0.05) to accept
only “significant” relations. Each variable-to-variable relationship (or more precisely,
probability) with values less than 0.05 are set as 1 (A;; = 1, i.e., we draw an edge
between them), all others are set to 0 (A;; = 0, we do not draw an edge). Adjacency
matrices derived from relationship matrices are usually undirected graphs G.

13.4 CONSTRUCTION AND ANALYSES OF CORRELATION
NETWORKS

The construction and analysis of correlation-based probability networks is comprised
of various steps through a series of data processing and conversion methods
(Fig. 13.5). In the following section, we will describe and discuss the crucial steps
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FIGURE 13.5 Flowchart of network data processing and conversion steps.

of this process as well as a few of the major pitfalls. Because of the myriad possible
modifications, this section is more intended to be a rough guideline instead of a
precise recipe.

13.4.1 Data and Profiles

The first step for correlation network analysis is the generation and/or collection of
profile data. This is usually derived from multiplex high-throughput technologies.
As mentioned above, profiles can be generated to address a particular biological
phenomenon. Both the biological phenomenon under examination and the precise
biological question will influence the experimental design as well as the selection
of the technology platform (the readout). Such biological questions are usually
related to the unraveling of significant changes of variables, such as gene expression
or metabolite pools, among different units, that is, treatments or conditions. The
generated profiles are often limited to a certain number (less than 10) because of the
costs of high-quality profiling studies.
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An alternative source for profiles is represented by the ever-growing number of
public repositories for profiling experiments, especially for storage and analysis of
gene expression or metabolite data [14,33]. These ever growing resources provide
access to thousands of profiles. Therefore they represent substantial data resources
to tackle different questions through correlation/correlation network analyses or
other cross-experimental investigations. One drawback of publicly available data
sets is the presence of insufficiently described experiments, even though the MIAME
(gene expression microarray) [7] or MIAMET (metabolites) [4] standards demand
at a minimal set of information that must be supplied. In cases where the minimal
information sets are not exhaustive enough, organism specific resources have begun
to be developed, for example, MIAME-Plant [55].

13.4.2 Data Set and Matrix

With a set of profiles in hand, one can select and assemble data sets and ultimately
convert them into data matrices. Basically, two main strategies can be utilized. Which
should be used is based on the question that needs to be answered.

Therefore, the first question that one needs to ask is if one is searching for
a generalized trend or if one is looking for a special (context-dependent) effect.
Generalized trends are best perceived in a complex matrix. Complex matrices
comprise profiles that differ with respect to genotypes, environmental conditions,
experimental treatments, and developmental stages, and great care must be taken not
to add bias toward one kind of experimental condition, for example, stress related
profiles. To aid in the selection, the experimental description may help, depending
on the details available in regard to the limitations mentioned above. However,
inadequately described profiles could lead to a bias due to consistent but nonanno-
tated experimental bias or additional biological effects. Thus, interpretation of the
generalized matrix should still be exercised with care. Alternatively, the profiles can
be preanalyzed by clustering to define groups of similar profiles. Out of each group,
one or more profiles could then be randomly selected. Nevertheless, an unknown
factor may still underlie the clustering and therefore would bias the profile selection.

Complex matrices can be easily established (e.g., using publicly available expres-
sion profiles), and due to the large number of available profiles it is unproblematic to
create several data matrices in parallel for testing the associations observed in a spe-
cific data matrix. A combination of numerous, different experiments in data matrices
allows for the selection for both the removal of outliers and also conditional changes
of transcript levels. Only constitutive associations will be identified, because the
combination of different profiles masks associations, which occur only under specific
conditions (i.e., in a subset of underlying profiles). Another quality of complex
matrices is that associations with an unknown common factor become unlikely.

In the other case, where one wants to study context dependent effects, one chooses
or assembles data sets that contain experiments of a given condition or from the ef-
fect under examination. These context-specific matrices are generated using profiles
that have something in common (e.g., stress condition, specific tissue, or develop-
mental stage). The limited variability of profiles underlying context-specific matrices



CONSTRUCTION AND ANALYSES OF CORRELATION NETWORKS 317

produces both advantages and problems. A main advantage is that numerous genes
may be expressed in a specific context only; therefore a complex matrix will not pro-
vide any associations (as discussed above). For example, a special type of stress such
as limited nutrient supply could be studied in greater detail, such as in the case where
the effect of sulfate limitation was investigated by using correlation networks based on
artificially introduced directionality [31]. Using this approach, one may gain deeper
insights into the regulation network underlying the special stress or condition applied.
However, again great care must be taken in the evaluation and interpretation of the
data in regard to the fact that effects that are not directly related to the specific context
are included in the matrix, but that are nevertheless influencing the correlations. Since
often in such conditional matrices the number of arrays becomes limiting, it might
be tempting to take many arrays from a time course or a concentration series. Even
though this is per se not a drawback, this can lead to severe interpretation problems.
For example, in a time course experiment, the variable time is usually not part of the
matrix, but both time and time-coupled variables such as day—night cycle, nutrient
supply, medium changes, growth effects, and so forth can play a significant role in
consorted gene expression and can therefore drive correlations between genes. How-
ever, the mutual correlation between these genes is only an effect of their correlation
to the driving variable (time) and in no way causal. Because these additional variables
are not part of the data matrix, they cannot be removed by sophisticated methods like
partial correlations, which might otherwise alleviate the driving effect of these vari-
ables. Thus, one might see a tight correlation network between several genes, and one
may attribute this network to the primary effect, for example, the stress applied, but in
effect one sees only the results of a secondary, unconsidered variable, such as growth.

Regardless of the data studied—global or conditional—it is of vital importance
to normalize the data consistently and remove variables, for example, genes and/or
units (such as experiments) from the data matrices that do not fulfill minimum
quality criteria. In terms of normalization, various methods have been developed to
consistently normalize, for instance, two and one color microarrays. However, not
all of these normalization strategies are equally well suited for correlation analyses
and have both their own merits as well as disadvantages. Probably the most common
normalization strategy for Affymetrix™> type microarrays today, the so-called
MASS5/GCOS1 method, might give a better indication of the actual expression
value as compared to quantitative real-time PCR [35] but reaches higher standard
deviations in replicates, whereas the RMA method [20] gives better reproducibility
but requires the normalization of all considered arrays in one batch, but which might
finalize the data matrix, because adding experiments would require recalculation of
all expression values. On the contrary, the MAS5 method flags some genes as not
expressed/not validly measured that might both be considered either an advantage
or disadvantage. This is a plus in terms of additional information, but, however, it
requires handling of such genes and eventually removal of genes to often flagged,
since one might otherwise be observing effects due to random noise. Here RMA
gives for all these values a small, but nonzero expression value. Thus, one is able to
utilize these data points, even though they most likely will not add too much effect
to the correlation matrix. To resolve these points, [16] used bacterial operons to
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validate the different normalization techniques for correlation analysis and came to
the conclusion that a combination of different methods works best. For metabolite
or protein quantification measurements, no normalization strategy with similar
power has been applied thus far to the authors’ knowledge. The maturity of the
normalization for transcripts may be attributed to the large number of transcripts that
can be measured at one time and the refinement this technique has already reached.
Nevertheless, regardless of study, power, or maturity of normalization, one should
not compare apples to oranges. All microarray normalization strategies essentially as-
sume that only a small, negligible fraction of transcripts change between experiments,
which is a prerequisite clearly violated if comparing different tissues or organs. This
can sometimes lead to effects that then could distort the correlation matrices derived
from such data matrices. If one is not sure about such experiments, it might be useful to
detect and subsequently delete outlying experiments using a technique such as delet-
ing residuals as shown in [34] before proceeding to the correlation matrix calculation.

13.4.3 Correlation Matrix

After having generated an appropriate data matrix, the next step is converting this
variable-by-unit matrix into a symmetrical variable-by-variable correlation matrix.
Often, the Pearson correlation coefficient is used due to the speed with which it can
be calculated and the familiarity that “wet bench” scientists have with it. However,
both of these reasons should generally not be a major consideration but rather the
generation of the correlation matrix should be determined, again, on the question that
needs to be answered.

Unfortunately, even though many tools exist, which aid in converting a data matrix
into a correlation matrix, most of these programs are not able to cope with large data
sets and often fail due to the size of the resulting correlation matrix in memory.
Recently, due to the advent of inexpensive 64 bit technology in the form of both
AMD and now Intel chips paired with a 64 Bit Linux system, it is now feasible to
simply increase the available RAM of a computer so that even huge matrices can be
calculated in memory. If such systems are not available, the user may still depend on
self-made tools or could download precomputed data sets that are publicly available,
such as through CSB.DB [42], Genevestigator [54], Expression Angler [47], and the
Arabidopsis Co-expression Tool [21].

13.4.4 Network Matrix

The next step to bring the correlation matrix into actual network form is discretization
of the correlation matrix, if an unweighted network is the target. Therefore a cut-off
parameter has to be set to judge if a correlation is to be considered or not. This can
be done by converting correlation coefficients into p-values and then using the usual
arbitrary p-values of 0.05 (95% confidence) or 0.01 (99% confidence) as a cutoff.
The conversion is done by standard statistical transformations (Equations 13.5
and 13.6, [42] and Web sites described therein for a longer discussion) or one
could use Fisher’s conversion to generate z values and ask if a true zero correlation
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would be included in the confidence interval. Because a larger number of units (i.e.,
experiments) greatly influence the results, processing a large enough number of
experiments (say 50) can give extremely low p-values even after conservative
correcting for multiple testing. Therefore a second filter, based on the strength of the
correlation, could be used. For example, if one shows that a correlation is significant
using the aforementioned formulas, one could then ask if the correlation coefficient is
greater than 0.7. This seemingly arbitrary cutoff is derived from regression. Here, if
one variable is declared independent and the other one declared a dependent variable
that could be linearly regressed against the former, assuming that one could explain
50% of the variance of the dependent variable by the independent, one would thus
achieve an R? of 0.50, whichis numerically very close toanr of 0.7 (0.7 % 0.7 = 0.49),
even though correlation does not distinguish between independent and dependent
variables. This cutoff of 0.7 might be useful if one is not only interested in strong ef-
fects between the two variables, but rather small and possibly spurious effects as well.

After having thus discretized the correlation matrix, one arrives at the adjacency
matrix A that is an immediate representation of the underlying network.

13.4.5 Correlation Network Analysis

For generalized as well as specific network analyses, the reader is best referred to
the other chapters of this book. Here only a basic outline will be given, taking into
special consideration the fragility and dependence of the correlation network on the
underlying correlation matrix. Because of this dependency, analysis of correlation
networks is just in its infancy.

Basically, there are two possible ways to analyze correlation-based networks. The
first option takes all the nodes of the network (i.e., the topology) into account. One
may analyze this structure or compare it between other networks (global approach).
The second option begins by selecting a particular “guide gene.” This guide gene may
represent a node or any component in the network. The guide gene is used to predict
biological function by looking at the network from its particular perspective. This is
achieved by identifying connected nearest nodes and, in addition, by identifying other
parts of the network, which show a similar behavior. A comprehensive analysis of
a biological network would utilize both approaches to extract and predict important
biological function.

One commonly applied analysis of correlation-based networks is related to the
networks connectivity. Usually, the numbers of nodes n with connectivity k are plot-
ted against their respective connectivity k. Such analyses revealed that connectivity
often follows a power-law distribution (where n(k) ~ k — y). This means that only
a few nodes are highly connected [2,51]. This observation seems to be a general and
global parameter of transcriptional correlation networks as revealed in six different
organisms as diverse as single prokaryotic cells to complex eukaryotic species
and humans [2]. Interestingly, even the exponent was observed to be on a similar
range for the selected species. However, such distributions can only be observed
after careful selection of the cutoff value (see above) chosen for the correlation
in order to construct the adjacency matrix. Random and biologically meaningless
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networks are usually produced if the cutoff value is inappropriately selected
to low.

Probably the most easily performed network analysis is to compare the connectiv-
ity of the correlation network with some “true” or “given” network properties before
delving into more involved network analysis methods. Indeed, this is a necessary
and important step since many more sophisticated analysis methods will most
likely fail if the underlying network contains too “fuzzy” information. But even this
nearly trivial analysis can reveal meaningful and interesting information, and it lays
the cornerstone for all subsequent analyses. Using this method it has been shown that
significantly correlated yeast genes encode for proteins that are several times more
likely to interact than randomly picked proteins [3,15]. Interestingly as well, it is
often observed that highly connected genes, more often than not, represent essential
genes for an organism [19]. Other analyses, using the specific genes underlying the
nodes, compared connectivity with the presence of an orthologus gene from among
other organisms. Again, a correlation between connectivity and conservation could
be observed [2,9]. One should keep in mind, though, that many well correlated genes
in the network do not encode for interacting proteins.

However, even with the inherent noise in the data, it is still possible to not only
perform these analyses on a global scale, but also within given subnetworks, which
can be delineated by biological function. This can then lead not only to identification
of global properties, but to actually pinpoint biological modules that might have more
important functions than others within the gene network. For example, one can plot
the number of nodes from within a module against the connectivity exclusively against
module members [9]. Another way to investigate this is to remove or randomize those
experiments that lead to the definition of these modules, and thus vary the networks.
This will reveal context dependent properties within the network. Nevertheless,
many network submodules are highly stable even when looking in such diverse data
sets such as cell cycle, DNA damage, and environmental perturbations [9].

Along the same lines, [40] showed that operon encoded bacterial genes, which
by the definition of an operon should be transcribed together, have significantly
higher correlations than nonoperon encoded genes. However, the best correlated
genes were not always encoded by the same operon, and correlation information
alone was not sufficient to detect operon encoded genes. Even though these studies
are encouraging, they also bring up the question for what “truth” the experimenter
is really looking. Here, the experimental design gets utmost importance again,
especially considering that usually static correlation networks only represent the
overlay of several “true” dynamic networks at best. Therefore it seems to be a
good strategy to take this fuzziness into account and to concentrate on more robust
network properties. This might be done by moving away from the general network
analysis toward a more local analysis that might be based on “guide genes.” In this
case, the focus is concentrated in the immediate proximity of the guide genes and the
genes that may affect this immediate area of the network (see Section 13.5.1). Often
this is combined with an overrepresentation analysis of functional classes. If one
finds such an overrepresentation and as well as some new genes of hitherto unknown
function, one might assume that they have a similar role. This approach seems to
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work very well for genes of the ribosome, or plant cell wall biosynthesis genes [49].
This kind of analysis is therefore very similar to other function prediction machine
learning techniques such as k-nearest neighbors or correlation based clustering
(e.g., [28]).

13.4.6 Interpretation and Validation

As stated in the preceding section, it is important for correlation networks (or for
any networks for that matter) to be able to validate the analysis results utilizing
independent data (sets) that were not included in the modeling of the network. In this
case, other already known networks can be used for validation (as exemplified above)
or for interpretation. Nevertheless an experimental validation based upon the results
of the analysis is surely the best and most straightforward corroboration. Moreover,
using this strategy one might iterate through the network analysis steps and thus
gradually improve the network and its analysis. An example is given by [26] who
identified potential target genes, based on a guide gene driven approach and then
validated these experimentally by an independent experiment (see Section 13.5.3).
Unfortunately, this way is often the most cumbersome, expensive, or simply not
practical. Therefore, oftentimes the data are grouped into biological classes using
either GO [12] or MapMan [50] terms. Using these biological classes, it becomes
possible to attribute some biological function to the variables that is both machine
readable and can be visualized or used for grouping, thus making it amendable for
interpretation by the researcher.

For further cases of interpretation, the reader can also follow the biological exam-
ples given below.

13.5 BIOLOGICAL USE OF CORRELATION NETWORKS

13.5.1 The Global Analysis Approach

The global analysis approach for the biological interpretation of correlation networks
serves to give a broad overview of the state of an organism, be it on the metabolic
level, the proteomic level, the transcript level, or a combination of these. As discussed
previously, based on the experiments chosen for the underlying matrix, the output
network can be a frame-capture image of a dynamic process.

In Ref. [31] the authors demonstrated that coresponse networks can be used
efficiently to perform network analysis. To this aim, they used a mixed metabolite
and gene network, constructed from Arabidopsis sulfur starvation data. For further
analysis, they decreased the network size, concentrating only on those submodules
interesting for them. Interestingly, they observed that their network followed a
power-law distribution, and also that the genes having the highest centrality were
coming from the biological classes of nucleotide metabolism, protein destination,
and intracellular transport. Unfortunately, no comparison was made to the size of
these biological classes within their network.
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A similar approach was taken by Ref. [9]. Using publicly available yeast microarray
data, they demonstrated a modular structure of the correlation networks. They also
showed that within some modules, a correlation between centrality and essentiality
could be observed.

In Ref. [45], the authors proposed a more advanced form of analysis by using
a conserved correlation network, which was inferred from different organisms, and
again they found a power-law distribution of the obtained network. After formatting
their network, they could identify highly connected components within the network,
which were significantly enriched in biological processes. On a similar trail [2] com-
pared coexpression networks from several model organisms and reported that for the
studied organisms, connectivity followed a power law. Moreover like the other studies
they inferred that high degree of connectivity is often associated with gene essentiality
as well as with gene/function conservation. Furthermore, by comparing the networks
they could show that functionally related genes are frequently coexpressed in multiple
organisms. However, the relative importance of the coexpressed genes amongst the
studied organisms varies.

These holistic analyses provide insight into the organization of the biological
processes in an organism and can identify critical connections. Network analyses
which emanate from and are targeted on specific physiological pathways represent
an alternative approach which may hold greater potential to both identify further
components involved in the pathway and to identify the functional context of it. In
the context of gene expression network analysis, the guide gene approach represents
such a targeted approach.

13.5.2 The Guide Gene Approach’

As mentioned in the previous section, guide genes are tools one may use to probe a
correlation network. This allows one to focus on the connections in the immediate
proximity of the guide gene, and on the genes in this area, providing direct access to
transcript coresponse analyses. This approach not only focuses on a localized region
in the complete network but may also delineate those areas within the network that
may be associated with the process in which the guide gene has a role (see footnote).
The term guide gene reflects the importance of a careful selection of these genes since
the quality of results critically depends on their specificity. The proper selection of
guide genes allows the addressing of various biological questions, that is, What could
be the function of this unknown gene? Could this protein function in a large protein
complex? and so forth. Initially, potential guide genes could be selected based on
biological knowledge, such as components of signaling or biosynthetic pathways,
stimulus-response genes, components of a protein complex, a known subcellular lo-
calization, or regulatory factors. Guide genes could also be derived from preliminary
experimental data, and transcript coresponse analysis may help with further guide
gene selection refinement. For example, if only a few target genes of a transcription

"While we generally speak of transcript coresponse analyses here, most examples can be directly
transformed for similar analyses based on metabolite or protein samples.
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factor have been identified, then the expression of these target genes should be asso-
ciated with the transcription factor. Thus, the transcription factor and the target genes
could be used in an intersection gene query (see below) to screen for further poten-
tial target genes. Interestingly, because the coresponses mirror networks, associated
genes also mirror factors that in turn regulate expression of the transcription factors.
In contrast to direct approaches, transcript coresponse analysis has, in principle, the
potential to identify upstream regulatory factors.

Either a single gene can be used in a screen for associated genes (single gene query)
or two or more genes can be used (intersection or multiple gene query). Single gene
queries may result in the identification of several hundred or even thousands of genes.
Thus, single guide genes may not provide enough specificity. Specificity could be
conferred by a second or additional guide genes. The additional guide gene(s) must
meet certain requirements, however. Transcript levels of guide genes must show asso-
ciation to each other (see Section 13.3.3 for statistical details), otherwise no associated
genes would be identified in common. Guide genes also must show variability (i.e.,
nonperfect association), because otherwise a single gene query would give identical
results. The guide genes should be involved in the same pathway (which could also
mean a specific intersection of two pathways) otherwise the associated genes will not
reflect a common regulation.

The suitability of guide genes for identification of associated genes critically
depends on the data matrix. The data matrix must meet several requirements:

e Possess a high number of variables that meet quality parameters in most profiles
(discussed in Section 13.3.7; the experiments underlying a data matrix must
allow detection of associated genes).

e Include tissues in which the guide gene is expressed.

e Provide sufficient variability (i.e., experiments are different and include an
adequate number of profiles) (low variability may not separate unspecific
associations; however if the data matrix includes very different conditions only
constitutive and highly robust associations can be identified).

e Does not include profiles of mutants or transgenics impaired in the pathway or
response of interest (organisms that do not show an intact response or pathway
of interest cannot reveal associations with that response or pathway).

If from a biological point of view, or due to experimental findings, a guide gene
appears suitable, it may still perform poorly in an association analysis. The most
common reasons are if there is weak expression of the guide gene (i.e., detectable
transcript levels in only a limited number of profiles), the experiments are based on
biologically artificial conditions such as treatment of tissues with synthetic hormones,
or the overexpression of a gene (whereas the data matrix reflects intact physiological
networks) or finally, the guide gene and/or associated genes are also involved in and/or
regulated by other pathways, resulting in weak or unspecific associations.

Suitability of guide genes can be tested using known pathway-involved genes. For
example, if a receptor is required for the activity of certain genes, these genes should
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be identified in a coresponse analysis using the receptor gene as guide gene. Likewise,
if a transcription factor is required for the activity of certain genes, these target genes
should show association to the transcription factor. However, initial evaluation of
guide genes using published data harbors the risk to confer bias, since published data
are based on specific experimental conditions (as discussed in Section 13.4.1).

Depending on the guide gene(s), the data matrix and the statistical parameters (see
above) screens for associated genes could identify only a few genes or thousands of
genes. Both a low number of associations and a high number of associated genes may
be undesired. A low number of associated genes may not reveal sufficient insight
into associated networks, may not allow the detecting of potential genes for further
analysis, and could reflect the use of an improper data matrix. Conversely, a high
number of associated genes likely mirrors different regulatory pathways, and associ-
ated genes likely are under control of a common (unknown) regulatory factor. Thus,
numerous associated genes may not mirror specific regulatory events. An intersection
gene query with additional guide genes may improve the result.

Importantly, associations do not allow discrimination between primary and sec-
ondary events. Possible approaches to dissect between primary and secondary effects
include analyzing a time series (e.g., adding an essential gene by an inducible system
in a knock out mutant background), or the detailed analysis of mutants or transgenic
organisms that show altered levels of a transcript, stimulus, or metabolite of interest.
The usefulness of these experiments for association studies is dubious, however.
Association studies of time series experiments may barely provide novel information.
In fact, transient effects may result in an increase of weak association measures (see
Section 13.4.2). Association studies of mutants and transgenic organisms in which
the pathway of interest is disrupted hold the problem that physiological networks
(and associations) are disrupted as well. Thus, direct approaches are required for
dissecting primary and secondary events.

13.5.3 A Simple Coregulation Test: Photosynthesis

Photosynthesis is a complex process involving the concerted action of numerous
proteins with various protein complexes [8]. Light is collected by two large protein
complexes, the light-harvesting complexes [ and II (LHC I and LHC II)), and the energy
is transmitted in the form of excitons to two reaction centers (P700 and P680). Here
electron transport is driven by these excitons and mediated through other protein
complexes. The electrons stem from one of the photosystems (PS II) involving a
water-splitting complex-producing molecular oxygen. The electron transport causes
a proton gradient over membranes, which is used by ATPases to phosphorylate ADP
and thereby providing ATP for the Calvin cycle and other physiologic processes.
The electrons finally reduce redox-proteins. Some of the redox-proteins reduce sulfur
bridges of enzymes of the Calvin cycle and hereby activate them. Other redox-proteins
provide reducing equivalents for sustaining the Calvin cycle.

To further increase the complexity, genes for proteins involved in photosynthesis
are expressed in the chloroplast itself as well as in the nucleus. For some proteins,
gene expression for subunits even occurs in both the nucleus and the chloroplast.
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The best-known example is RubisCO, where the small subunit is expressed in the
nucleus and the large subunit in the chloroplast. Furthermore, many photosynthetic
proteins depend upon cofactors. Chlorophyll a/b binding (cab) proteins obviously
need chlorophyll for light harvesting. This means that expression of genes involved
in tetrapyrrol biosynthesis have to be tightly coordinated with genes coding for cab
proteins.

Based on all these reasons, gene expression for proteins involved in photosynthesis
can be regarded as a highly coregulated network. Expression for some of the genes is
known to depend on light. For others, the precise means of regulation is still unknown.
Further, the exact nature how chloroplastic and nuclear photosynthesis gene expres-
sion is coordinated is unknown. The following exemplary correlation analysis was
undertaken to confirm the strong coregulation of the expression of genes for proteins
involved in photosynthesis.

To analyze coregulation of photosynthetic genes the CSB.DB tool [42] was used.
Because one wishes to observe a general overview of a complex process, the set
of experiments on which the coexpression analysis is based should be as broad as
possible, as a bias could distort the results (see Section 13.4.2). Therefore the data
matrix nasc0271 was chosen. This data matrix contains results of 51 experiments
carried out under various experimental conditions. Nasc0271 consists of validly mea-
sured expression levels of 9694 genes. The ranking of the pair wise comparison was
based on the nonparametric Spearman coefficient. Because positive coresponse of
photosynthetic genes was the aim of the analysis, the output of positive significant
coresponding genes with Bonferroni correction [6] was used.

To carry out the coresponse analysis, a gene of interest was chosen. In this case we
chose a gene coding for a chlorophyll a/b binding protein CP26 (lhcb5, At4g10340).
CP26 is associated with the light-harvesting complex of photosystem II [53]. Two
groups of chl a/b binding protein are usually distinguished within the LHC II. As
the major LHC II proteins of the outer antennae bind more than 50% of the total
chlorophyll, their role is most likely collecting light energy [46]. CP26 belongs to the
minor LHC II proteins. Minor LHC II proteins are supposed to be more involved in
energy distribution and photoprotection [13]. These proposed functions make CP26
an interesting candidate gene to analyze coresponse behavior.

The output of the analysis revealed 787 significantly coresponding genes for lhcb5.
Values of Spearman’s Rho rank correlation for the best coresponding genes were
very high. The best coresponding gene coding for the chloroplastic NADP-GAP DH
(At3g26650) showed a Spearman value of 0.9843. This means that changes of NADP-
GAP DH gene expression were almost identical to those of lhcb5 in 51 expression
profiles using various experimental conditions.

The aim of the analysis was to identify how strong photosynthetic genes corespond
over 51 expression profiles. To achieve this aim photosynthetic genes have to be
identified and separated from other genes. We therefore manually reannotated the
50 closest coresponding genes (Spearman 0.9843 down to 0.8729) and assigned the
genes into bins. We used four bins directly involving photosynthesis, namely genes
coding for photosystem II proteins, for photosystem I proteins, for protein involved
in electron transport, and for proteins of the Calvin cycle. The fifth bin contains genes
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TABLE 13.1 Bins of the 50 Closest Coresponding Genes to CP26

Bin Count Genes

PSII 14 At1g06680, At1g29930, Atlgd4575, Atlg62520,
Atlg67740, Atlg79040, At2g06520, At2g30570,
At2g34430, At3g21055, At3gd7470, Atdg21280,
At5g01530, At5g54270

PS1 13 At1g08380, At1g30380, Atlg31330, Atlg52230,
At1g55670, At3g16140, At3g54890, At3g61470,
At4g02770, Atdg]2800, At4g28750, At5g64040,

AtCg00340

Electron transport 5 At1g20340, At1g60950, At2g26500, AtCg00480,
AtCg00720

Calvin cycle 5 At1g12900, At2g39730, At3g26550, At5g38420,
At5g61410

Plastidic ribosome 4 At3g27830, At3g54210, At4g34620, At5g30510

Other 9 At1g08380, At1g23400, At1g52220, Atlg72610,
At3g49260,

At3g56940, Atdg01150, At4g30950, At5235630

coding for plastidic ribosomal subunits. The rest of the genes were assigned into the
bin other (Table 13.1).

Overall there was a very strong coresponse of /hcb5 with genes coding for photo-
synthesis proteins, as these represented 37 out of the 50 highest coresponding genes.
Interesting to note is that the number of coresponding genes coding for proteins of
PS II and PS I was almost identical. Five genes each coding for proteins involved in
electron transport and Calvin cycle were amongst the 50 best coresponding genes.
Interestingly, two out of the best coresponding genes were from the Calvin cycle bin,
namely the aforementioned gene for NADP-GAP DH (At3226650, Spearman 0.9843,
Rank 1) and a gene coding for the small subunit of RubisCO (At5g38420, Spearman
0.9641, Rank 3).

That four genes coding for plastidic ribosomal subunits were in the group of the
50 best coresponding genes reflects nicely that plastidic gene expression is closely
concerted with nuclear expression of photosynthesis genes.

Closer analysis of bin “others” revealed that seven out of the nine genes code
for chloroplastic proteins. Four are annotated as expressed proteins (At1g08380,
At1g52220, At1g23400, and At4g01150). One gene codes for a putative ZIP pro-
tein, located in the thylakoid membrane (At3g56940). The other two genes code for
well known plastidic proteins involved in fatty acid desaturation (FADG6, At4g30950)
and plastidic glutamine synthesis (GS, At5g35630). There were only two genes not
fitting into this photosynthesis/plastidic environment, a gene coding for a calmodulin
binding protein (At3g49260) and the gene coding for GER1 (Atl1g72610).

In a second approach, a neighborhood gene analysis was carried out with all
787 highly significantly coresponding genes. All the genes were assigned to the
MapMan [50] bins using the CSB.DB tool [42].
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TABLE 13.2 Neighborhood Gene Analysis. The 787
Coresponding Genes were Assigned into the MapMan

Bins.

MapMan Bin name %
Photosynthesis 22.0
Tetrapyrrole synthesis 18.9
Redox regulation 59
Others 533

Table 13.2 shows that by far largest groups of coresponding genes consisted of
genes involved in photosynthesis and tetrapyrrole synthesis. This was an expected
outcome. Particularly that genes involved in tetrapyrrol synthesis coresponded with
lheb5 shows the expected link between genes for chlorophyll-producing proteins and
chlorophyll-binding proteins. The third largest bin contained genes coding for proteins
involved in redox regulation. This result was again expected, as redox regulation is
involved in activating Calvin cycle enzymes.

In summary, starting from a single gene coding for an LHC II protein, we
could show that coresponse analysis yielded an expected pattern of genes involved
in photosynthesis and related processes. Through closer analysis of the 50 best
coresponding genes, we identified only two genes that did not match the postulated
photosynthesis/chloroplast environment. Expanding the analysis, the 787 highly
significantly coresponding genes revealed that the analysis reflected the known
framework of genes involved in photosynthesis. Neighborhood search revealed that
most of the coresponding genes were indeed involved in photosynthesis, tetrapyrrol
synthesis, and redox regulation.

13.5.4 A Complex Coregulation Test: Brassinosteroids

In the following section, we discuss critical aspects of transcript coresponse
analysis of a more complex biological system by describing a coresponse screen
for brassinosteroid (BR)-related genes. Similar approaches are conceivable for other
signaling pathways. BRs are essential for plant growth and development [29]. The
primary direct action of BR is the modification of gene expression. Therefore,
identification of BR-regulated genes provides insights into their mode of action and
physiological effects. Both direct approaches (i.e., expression profiling experiments
using mutants or BR-treated plants) and transcript coresponse analysis hold the
potential to identify pathway-involved genes. However, transcript coresponse takes
the analysis a step further in comparison to direct approaches because BR-related
non-BR-responsive genes can be identified. These associated genes provide insight
into the functional environment of guide gene(s) used. Both BR-biosynthesis
and BR-signaling genes represent specific guide genes that may be used for the
identification of BR-associated genes [26]. However, due to their weak expression,
BR-biosynthetic genes are barely detected in numerous expression profiles, whereas
several BR-signaling genes were reliably detected in many profiles.



328 CORRELATION NETWORKS

Seven components of BR-signaling (BRII, BRL1, BRL3, BAKI, BIN2, BESI, and
BZR1) were tested using CSB.DB and the data matrix nasc0271 (described above,
see Section 13.5.3), as well as the complex matrices nasc0272 and nasc0273. These
complex matrices comprised data for approximately 45% of known BR-responsive
genes (see [26] for details). Only the BRII, BAKI, and BIN2 genes identified several
known BR-responsive genes. BRII and BAKI outperformed BIN2 in single gene
queries, and the BRI1/BAK] intersection gene query also outperformed BRI1/BIN2
and BAKI/BIN2 intersection gene queries. The BRI1 receptor is the major BR-receptor
required for most responses. Loss of function mutations result in extreme dwarfism
and nearly complete BR-insensitivity in Arabidopsis. BAK1 is a coreceptor with
BRI1. The BRII/BAK] intersection gene query produced a recovery rate of 34.7% of
known BR-related genes and demonstrated that an intersection query using BRI/ and
BAK1 was optimal to identify pathway-involved genes in the nasc0271 data matrix.

Suspected pathway-involved genes (identified using coresponse analysis) can then
be tested experimentally. In the BR-example, publicly available expression profiles
and additional experiments were used to test BR-responsiveness of all genes showing
significantly correlated expression with the BRI/ and BAKI genes. These profiles
and experiments analyzed transcript levels in BR-mutants (i.e., BR-deficient and
BR-insensitive mutants), BR-treated plants, and plants treated with inhibitors of BR-
biosynthesis. 24% of the associated genes turned out to be BR-responsive in at least
two experiments [26].

The finding that only a subset of known BR-responsive genes is identified via
associations with BRII and BAK]I likely reflects that published expression profiles
represent specific experimental conditions. On the contrary, after experimental
confirmation, 76% of all associated genes appeared not to be under direct control
of BR. These associated genes mirror the “functional environment” of the guide
genes used for analysis. Virtually, no pathway acts independently of other pathways,
but instead is embedded in a context. This context is difficult to identify through
direct approaches, but becomes accessible by transcript coresponse analysis. Thus,
transcript coresponse analysis can both identify pathway-involved genes and provide
insights into underlying biological associations and cross talk.

13.6 SUMMARY

In this chapter, we have attempted to describe the basic notation and mathematics
behind generating a correlation matrix, and have discussed the critical parameters
that must be considered before data are included in the matrix. We have also tried to
stress the importance of a proper discretization and filtering of the correlation matrix
to ensure that biologically meaningful results are generated so that the generated
network is the best reflection of the underlying data. We have tried to indicate the
strengths and weaknesses in analyzing correlation networks both at the global and
local levels. We have as well tried to show some of the results that may be garnered
through looking at the complete network at once (global analysis) and as well have
stressed a way to analyze the network at a local level with a hypothesis-driven guide
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gene approach. Finally, using two biological examples of the guide gene approach,
we have attempted to aid the reader in a biological interpretation of the output.

The authors would like to stress again that the analysis of correlation-based
networks is critically dependent on the underlying data that makes the matrix, and
the specific biological question that one asks. In the end, the specific tool(s) used
to probe the network for meaningful output is also question dependent, and the
resulting output must be critically evaluated.

13.7 EXERCISES

The following exercise section is intended to demonstrate basic statistical steps
regarding generation and analyses of correlation-based probability networks. It will
mainly focus on statistical points. For biological interpretation, the critical reader is
refered to the Section 13.5. The examples in the Section 13.5 may serve as a basis for
repeating the analyses by using different publicly available web resources as cited in
Section 13.4.3.

1. One of the crucial steps in correlation-based network analyses represents the
choice of association measure. The first example will briefly illustrate the dif-
ferent results that may be observed depending on the coefficient of association.
This choice has advantages and disadvantages depending on the researcher’s
question.

A data matrix with five variables (var.1-var.5) and 10 units (exp.1—exp.10)
is given in Table 13.3.

TABLE 13.3 Artificial m x n Data Set

Variables / Experiment (exp.)

Units 1 2 3 4 5
var.1 1.11 0.08 0.11 0.78 —0.33
var.2 0.83 —0.25 —0.43 0.60 —0.82
var.3 0.26 —-1.37 —1.25 —-0.54 —1.59
var.4 —0.65 —0.07 0.17 —0.66 0.59
var.5 0.12 —0.10 0.24 0.23 —0.02
Variables / Experiment (exp.)

Units 6 7 8 9 10
var.1 —0.67 —0.15 0.56 —0.35 1.95
var.2 —1.56 —-0.91 —0.03 —-0.92 1.36
var.3 —2.00 —-1.23 —0.81 -1.73 0.60
var.4 0.84 0.22 —0.54 0.97 —0.98

var.5 0.32 0.14 —0.16 —0.10 2.33
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(a)

(b)

()

(d)

(e

Generate a (line) plot for each of the variables by plotting the units (x-axis)
against their respective observations (y-axis) to get a first impression of
the data matrix. You may add lines to aid interpretation.

Compute the Pearson correlation of var.1 versus all other variables (five
results). In Microsoft (MS) Excel you can use the function “pearson”; in
the statistical software environment R, you can use the function “cor” or
“cor.test.”

Compute the Spearman correlation of var.1 versus all other variables (five
results) as Pearson correlation on ranked data. In MS Excel, you can use
the function “rank” to rank the observations and than run the “pearson”
function. In R you can use the function “cor” or “cor.test” by changing
the method parameter to “spearman.”

Compute the Euclidean distance of var.1 versus all other variables (five
results). In R you can use the function “dist.” In MS Excel you have to
calculate it by using the following formula:

n

deX, V)= | S (X; — Yi)?
1

=

that is, calculate the square difference of var.1 and, for example, var.2 for
each unit, sum over all units, and calculate the square root of this sum.
Compare the calculated similarity and dissimilarity coefficients for each
variable. Generate scatterplot(s) of var.1 (x-axis) versus all other variables
to aid interpretation.

2. A Pearson correlation between two variables of 0.7 is observed on the basis of

3, 10, 50, and 100 paired observations n. Compute the degree of freedom (df),
the 7 statistic (fs, acc. Equation 13.6) and the p-value. In MS Excel, the p-value
can be computed by the function “tvert” and using the parameter ts, df, and
2 for a two-sided test. In R you can use the function “pt” (Note: A one-sided
value will be returned).
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Activation domain, 211
Adjacency list, see list, adjacency
Adjacency matrix, see matrix, adjacency
Adjacent, 17
Aeropyrum pernix, 239
Affimetrix microarray, see microarray,
Affimetrix
Affinity capture, 216-218
Affinity chromatography, 209-211
Affinity purification, 216, 218
tandem, 217
Algorithm, 24
approximation, 118
bottleneck k-center, see bottleneck
k-center algorithm
bottleneck min-max k-clustering, see
bottleneck algorithm for min-max
k-clustering
breadth first search, see breadth first
search
bubble sort, see bubble sort
degree centrality, see degree centrality
algorithm

depth first search, see depth first search

Dijkstra, see Dijkstra algorithm
eccentricity centrality, see eccentricity
centrality algorithm
Floyd-Warshall, see Floyd-Warshall
algorithm
greedy, see greedy algorithm
greedy clique partitioning, see greedy
clique partitioning algorithm
greedy dominating set, see greedy
dominating set algorithm
Kruskal’s, see Kruskal’s algorithm
metabolic network reconstruction, see
metabolic network reconstruction
algorithm
quick sort, see quick sort
AMAZE, 188
Anisotropic network, 189
Apoptosis, 172, 186
Arc 141. See also edge
directed, 170
read, 144
Association, 309-310
constitutive, 316
measure, see measure, association
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Assortative, see network, assortative

Attribute, see sample, attribute

Autoactivation, 212

Autochthonous ecosystem, 294

Autotroph, 290

Average neighbor degree, see degree,
average neighbor

Average path length, see path length, average

Bacillus subtilis, 239-240
Barabasi-Albert network, see network,
Barabasi-Albert
Bayesian analysis, see phylogenetic tree
reconstruction, bayesian analysis
Betweenness centrality, see centrality,
betweenness
BFS, see breadth first search
Binary food web, see food web, binary
Binary tree, see tree, binary
BIND, 221
Biochemical reaction, see reaction,
biochemical
Biochemical network, 9
Bioconductor, 80
Bioenergetic web, 293
BioLayout, 222
Biological classes, 321
CYTOMER, see CYTOMER
Gene Ontology, 321
MapMan, 321, 326
Biological module, see module, biological
Biomass, 293
Biomolecular Interaction Network Database,
see BIND
Bipartite graph, see graph, bipartite
Boost Graph Library, 80
Bottleneck k-center algorithm, 130-131
Bottleneck algorithm for min-max
k-clustering, 124
Bottleneck graph, see graph, bottleneck
Brassinosteroid, 327
Breadth first search, 25, 74
Bubble sort, 24

Caenorhabditis elegans, 9, 70, 215, 223
Cannibalism, 287, 290

Cascade model, 292

CDS, see set, connected dominating
Cell biology, 6

Cell type, 6
CentiBiN, 80
Central vertex, see vertex, central
Centrality, 42, 67, 239-240
analysis tools, 80
betweenness, 42, 240. See also centrality,
shortest path betweenness
Bonacich’s eigenvector, 78
closeness, 42, 72-73, 75, 240
degree, 42, 69, 74, 223, 240. See also
degree
eccentricity, 71, 75
eigenvector, 79
feedback based, 77-80
gene, see gene centrality
GeneRank, 80
in-degree, 70
index, 67
Katz’s status index, 77
lethality rule, 223
measure, 67
normalization, 68
out-degree, 70
PageRank, 79
shortest path based, 69-77
shortest path betweenness, 73-74
Channeling, metabolic, see metabolic
channeling
Character, 257
matrix, 260
molecular, 257
morphological, 257
phylogenetic, 257
selection, 258
state, 257-258
Characteristic path length, see path length,
characteristic
Child, see vertex, child
Chromatography, affinity, see affinity
chromatography
Circular feeding relationship, see feeding
relationship, circular
Class, isotrophic, see isotrophic class
Clique, 115-116, 224
maximal, 116
maximum, 116
number, 116
Closeness centrality, see centrality,
closeness



Cluster
-cover, 118
-partition, 118
-head, 126
Clustering, 113, 118-131, 191, 290. See also
network, decomposition
coefficient, 39, 55, 197-198
center-based, 125-131
clique-based, 119-125
exclusive, 118
hierarchical, 119, 243
k-center, 129-131
k-means, 129
min-max k, 122-125
overlapping, 118
problem, 118
pyramidal, see pyramidal clustering
model
type I, 118
type IL, 118
with dominating sets, 126
Co-expression network, see network,
co-expression
Commodity, 295
Community matrix, 289
Community structures, 50
Compartment, 293
Compartmentation, 6, 187, 290
Component
connected, 18
strongly connected, 20, 165
Computational tree logic, 166167
model validation, 168—169
Confidence interval, 313
Confidence level, 313
Connectance, 299
directed, see directed connectance
Connected component, see component,
connected
Connected graph, see graph, connected
Connected vertices, see vertex, connected
Connectedness, 49, 290
Connection matrix, 236
Connectivity, 239, 319
Context dependent effect, see effect, context
dependent
Core, see module, core
Co-response analysis, see transcript
co-response analysis
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Co-response network, see network,
co-response
Correlation, 310-313
back-transformation, 313
confidence, 313
direction, 310
Kendall’s 7, 311
magnitude, 310
matrix, 318
non-parametric, 310
partial, 311-312
partial first order, 312
partial higher order, 312
Pearson product moment, 191, 310
Spearman rank-order, 310
statistical testing, 313
transformation, 313
Correlation coefficient, 310
partial, 311
Correlation network, 11, 57, 306, 314-328
construction, 308
CSB.DB, 325-326
CTL, see computational tree logic
Currency metabolite, see metabolite,
currency
Cut-off value, 318, 320
Cycle, 18
CYTOMER, 200
Cytoplasm, 6, 186
Cytoscape, 80, 222, 227, 234, 236

Data, 307
independent, 321
matrix, see matrix, data
publicly available, 316, 318
reduction, 113
set, 307
Database, 188, 220-221
Database of Interacting Proteins, see DIP
Deadlock, see Petri net, deadlock
Decomposition, see metabolic network,
decomposition
split, see split decomposition
Degree, 17, 20, 35, 290. See also centrality,
degree
average neighbour, 38
correlation, 38
centrality, see centrality, degree
centrality algorithm, 74
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Degree (Continued )
exponent, 38, 193
in-, 20
out-, 20
Degree distribution, 35
cumulative, 36
degree exponent, 38
exponential, 36
Poissonian, 44
power law, 36, 191, 193, 196, 319
scale-free, 46, 193
Depth, 22
Depth first search, 25, 195
Detrivore, 286, 290
DFS, see depth first search
Diameter, 33, 115, 191, 196, 223
Differential equation, ordinary, see ordinary
differential equation
Dijkstra algorithm, 34, 74
DIP, 220
Directed connectance, 290
Directed graph, see graph, directed
Disassortative, see network, disassortative
Discretization matrix, see matrix,
discretization
Dissimilarity, 309
matrix, see matrix, dissimilarity
measure, see measure, dissimilarity
Distance, 18, 33, 71
matrix, 260
method, see phylogenetic tree
reconstruction, distance method
DNA, 4, 184
-binding domain, 211
-fingerprinting method, 257
library, 211
Domain
activation, see activation domain
DNA-binding, see DNA, -binding domain
Dominating set, see set, dominating
Domination number, see set, domination
number
Drosophila melanogaster, 9, 70, 104, 174,
187, 216, 223

EC number, 235

Eccentricity centrality, see centrality,
eccentricity

Eccentricity centrality algorithm, 75-76

EcoCyc, 188
Ecological information network, 288,
298-300
Ecological network, 11, 283-300
Ecology, 7
ECOPATH, 298
ECOSIM, 298
Ecosystem, autochthonous, see
autochthonous ecosystem
Edge, 16, 141. See also arc
connectivity, 115
directed, 20
hyper-, 20
undirected, 19
Effect, context dependent, 316
Efficiency, see network, efficiency
Egestion, 288
Eigenvector centrality, see centrality,
eigenvector
Elementary (flux) mode, 155, 243, 246. See
also Petri-net, t-invariant
EndoNet, 199-200
Endoplasmatic reticulum, 6
Entropy, Shannon, see Shannon
entropy
Enzyme, 5, 188-189, 233-234, 246
Erdos-Rényi network, see network,
Erdos-Rényi
ERSEM, 299
Erythrocyte, 145-147
Escherichia coli, 8,70, 72, 92, 97,
101-102, 106, 173-174, 187, 215,
234,239, 244
Essential gene, see gene essentiality
Essential protein, see protein, essential
Eukaryotes, 6
Eulerian path, 28
Evolution, 7, 184, 224
reticulate, 256, 270
taxa, 259
Excretion, 294
Exclusive clustering, see clustering,
exclusive
Experimental validation, 321
Extreme pathway, 155, 243, 246

FANMOD, 97
Feedback, 191, 287
Feeding relationship, circular, 287



Firing

rate, 170

rule, 142
Fisher-z-transformation, 313, 318
Flow, 293

web, 293
Floyd-Warshall algorithm, 34
Flux, 293, 298
Food web, 11, 283-298

theory, 288

binary, 288-293

pelagic, 284, 299

quantitative trophic, 288, 293-298

trophic, 293

Galled tree, see tree, galled
Gene
activation, 98
brassinosteroid-related, 327-328
centrality, 321
connectivity, 322
essentiality, 322
expression, 5, 9, 184, 186
expression regulation, 5, 184
guide, 319-320, 322-324
network, 320
Ontology, see biological classes, Gene
Ontology
operon encoded, 320
overrepresentation, 320
regulated, 98, 101
regulator, 98, 101
Gene regulation network, 9, 98, 101,
105-106, 143, 185-188.
See also transcriptional regulation
network
evolution, 102
GeneNet, 188
Genome, 6, 234-235
Genomics, 8, 218
GEPASI, 188
Global analysis approach, 321
Glycolysis, 145-146
Graph, 15-16, 33, 67, 86, 115. See also
network and Petri net
acyclic, 18
attributed, 19, 141
bipartite, 21, 55, 141, 186
bottleneck, 123
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canonical label, 95

clique, see clique

complement, 115

connected, 18, 86

cycle, see cycle

diameter, see diameter

directed, 20, 33, 88, 234

edge, see edge

hyper-, 20, 141

isomorphic, 18, 86

isomorphism, 18, 95

k™ power of, 131

layout, see layout

loop-free, see loop-free

mixed, 20, 88

path, see path

reachability, see Petri net, reachability

graph

reaction, 234

simple, 20

strongly connected, 20

sub-, see subgraph

undirected, 19, 33, 88

vertex, see vertex
Graphlet frequency distance, 93, 104
Greedy algorithm, 120, 127-128, 270
Greedy clique partitioning algorithm, 120
Greedy dominating set algorithm

connected, 128

minimal independent, 127
Guide gene, see gene, guide
Guild, trophic, 283-284, 290, 293

Haplotype analysis, 267

Height, 22

Herbivore, 284, 299

Heuristic, 118

Hierarchical clustering, see clustering,
hierarchical

Hierarchical modularity, see modularity,
hierarchical

Highly optimized tolerance, 50

High-throughput technology, 308

HITS, 79

Holistic approach, 8

Homo sapiens, 239

HOT, see highly optimized tolerance

Hub, 193, 223, 225

Hyper-graph, see graph, hyper-
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Idd-ctl, 171

Immunoprecipitation, 209-210

INA, 171

Incident, 17

Incidence matrix, see Petri net, incidence
matrix

Independence number, see set, independence
number

Independent data, see data, independent

Independent set, see set, independent

Induced subgraph, see subgraph, induced

Information

mutual, see mutual information
theory, 311

Ingestion, 294

Interactome, 209

Interactomics, 225

Intercellular regulatory network, see
regulatory network, intercellular

Isomorphic graph, see graph, isomorphic

Isomorphism, see graph, isomorphism

Isotrophic class, 285

Isotropic network, 189

JUNG, 80

Kairomone, 299

Katz’s status index, see centrality, Katz’s
status index

KEGG, 10, 188, 235

Kendall’s T, see correlation, Kendall’s 7

Kruskal’s algorithm, 270

Large-scale network, see network,
large-scale

Layout, 17

motif-preserving, see motif, -preserving

layout

Leaf, see vertex, leaf

Lethality, synthetic, see synthetic lethality

Likelihood, see phylogenetic tree
reconstruction, likelihood based method

Linkage density, 290

List, adjacency, 23, 33

Logical node, see node, logical

Loop, 17

Loop-free, 17

MALDI, 218

MapMan, see biological classes, MapMan
Marking, 141
dead, 150
reachable, 143, 152
Mass-balance, 294
Mass spectrometry, 210, 216
Matching index, 41
MATLAB, 96
Matrix, 314
adjacency, 23, 33, 289, 314, 318
assisted laser desorption ionization, see
MALDI
character, see character matrix
complex, 316
community, see community matrix
connection, see connection matrix
correlation, see correlation matrix
data, 314, 318, 323
discretization, 314
dissimilarity, 309
distance, see distance matrix
probability, 314
relationship, 314
similarity, 309
variable-by-unit, 308, 318
variable-by-variable, 318
Matter, recycling of, 288. See also recycling
MAVisto, 97
Maximal common transition sets, see Petri
net, MCT-set
Maximal independent set, see set, maximal
independent
Maximum independent set, see set,
maximum independent MCT-set, see
Petri net, MCT set
Maximum likelihood, see phylogenetic tree
reconstruction, likelihood based method
Measure
association, 309
dissimilarity, 309
similarity, 309-310
Median-joining network, 270
Median network, 269
MEGA, 261-262
Member, 16
Metabolic
capacity, 243
channelling, 208
pathway, 233, 242, 246



Metabolic network, 10, 47, 55, 143, 187,
233-249
analysis, 246
decomposition, 243
reconstruction, 235
Metabolic network reconstruction algorithm,
235-236
Metabolite, 5, 184, 233, 239, 247
currency, 234, 237-238
Metabolome, 8
Metabolomics, 8
MFinder, 96-97
MIAME, 316
MIAMET, 316
Microarray
Affymetrix, 317
normalization, 317
protein, 219
Minimal dominating set, see set, minimal
dominating
Minimum dominating set, see set, minimum
dominating
Minimum spanning tree, see tree, minimum
spanning
MINT, 221
MIS, see set, maximal independent
Mitochondrium, 6
Mixed graph, see graph, mixed
Model checking, 166
Modularity, 50, 197, 242-243
hierarchical, 197, 243
coefficient, 244
organization, 243
Module, 223
biological, 320
core, 243
periphery, 243
Moieties, 155
Molecular Interaction Database, see MINT
Motif, 10, 51, 86, 224, 288
analysis tools, 96-97
bi-fan, 101-102, 106
detection, 94
distribution, 54
dynamic properties, 98-102
feed-forward loop, 98-103, 106
frequency, 86, 88, 96, 105
frequency concept, 88
generalization, 102-103
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homologous cluster, 102-103

match, 86, 95

match overlap, 88, 102

origin, 98, 102, 105-106

-preserving layout, 88

size, 86

statistical significance, see statistical
significance

superstructure, 102

theme, 103

validation, 54

vertex role, 102

Mutual information, 38, 311

NCPA, 269
Neighbor, 17
joining, 260
Nested clade population analysis, see NCPA
Net of life, 11
Network, 15, 145. See also graph and Petri
net
anisotropic, see anisotropic network
assortative, 38
Barabasi-Albert, 46
biochemical, see biochemical network
centrality, see centrality
clustering, see clustering
co-expression, 70, 186. See also network,
co-response
conceptualization, 54
connectivity, see connectivity
co-response, 321, 327. See also network,
co-expression
correlation, see correlation network
decomposition, see metabolic network,
decomposition
diameter, see diameter
directed, see graph, directed
disassortative, 38
disconnected, 68
distance measure, 104
ecological, see ecological network
ecological information, see ecological
information network
efficiency, 33
Erdos-Rényi, 44
evolution, 105
food web, see food web
gene, see gene network



342 INDEX

Network (Continued )
gene regulation, see gene regulation
network
generation model, 91, 104
isotropic, see isotropic network
median, see median network
median-joining, see median-joining
network
metabolic, see metabolic network
modularity, see modularity
motif, see motif
Petri net, see Petri net
phylogenetic, see phylogenetic network
properties, 9, 33
protein interaction, see protein interaction
network
random, 239
randomization, 53, 90
regulatory, see regulatory network
robustness, see robustness
scale-free, 9, 196-197, 223, 239
signal transduction, see signal
transduction network
simple, 88
small-world, 9, 35, 45, 191, 196, 223, 239,
242
spectral density, 43
superfamily, 105
surrogate, 52
theme, see motif, theme
transcriptional regulation, see
transcriptional regulation network
undirected, see graph, undirected
Watts-Strogatz, 45
NETWORK, 270
NETWRK, 298
Niche model, 293
Node 141-142. See also vertex
boundary, 142
hierarchical, 145
logical, 144
pre-, 142
post-, 142
Normalization, 317. See also microarray,
normalization
Normalized profile, see profile,
normalized
NP-hard, 117
Nucleus, 6, 186

Null hypothesis, see statistics, null
hypothesis
Null model, see statistics, null model

Observation, 307, 309
bivariate normal distributed, 310-311
bivariate outlier, 310-311
quality, 309
transformed, 309
ODE, see ordinary differential equation
-ome, 8
-omics, 8
O-notation, 24
Operon encoded gene, see gene, operon
encoded
Open reading frame, 214
Ordinary differential equation, 140, 169,
171
OREF, see open reading frame
Organ, 6
Osmotroph, 290
Osprey, 80
Outlier, 311
Overlapping clustering, see clustering,
overlapping

P53, 194-198
PageRank, see centrality, PageRank
Pajek, 80, 96, 188
Parent, see vertex, parent
Parsimony, see phylogenetic tree
reconstruction, parsimony method
statistical, see statistical parsimony
Partial correlation coefficient, see correlation
coefficient, partial
Path, 18
distance, see distance
shortest, 18, 196
signal transduction, see signal
transduction path
simple, 18
Path length, 18, 298
average, 49, 55, 196, 223, 298
characteristic, 33
Pathway, 145
extreme, see extreme pathway
generic, 155
metabolic, see metabolic pathway
structure, 243



PAUP, 261-262
PAUPRAT, 262
Pearson product moment correlation, see
correlation, Pearson product moment
Pelagic food web, see food web, pelagic
Pentose phosphate pathway, 146
Periphery, see module, periphery
Petri net 139-142. See also graph and
network
analysis tools, 171
arc, see arc
atomic, 143
bounded, 148, 151, 164
clean, 142
condition, 141
connected, 153
conservative, 153
continuous, 169-170
deadlock, 154
deadlock-free, 150, 165
environment, 159
execution, 142
free of boundary nodes, 153
free of static conflicts, 153
homogeneous, 153
incidence matrix, 156
initial marking, 141, 170
k-bounded, 165
live, 148, 150, 165
marked, 142
marking, see marking
MCT-set, 162
minimal invariant, 156
minimal t-invariant, 162
model analysis, 148
model validation, 148, 168—-169
node, see node
ordinary, 153
p-invariant, 155-157
p-invariant covered, 156
place, see place
pure, 153
qualitative, 139-140
quantitative, 140
reachability graph, 164—165
realizable t-invariant, 157
reversible, 148, 151, 165
state space, 143
strongly connected, 153
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strongly live, 150
structural deadlock, 153
structurally bounded, 151
support, 156
t-invariant, 155-157. See also elementary
(flux) mode
t-invariant covered, 156
token, 141-142
transition, see transition
trap, 154
trivial t-invariant, 157
unmarked, 142
Pheromone, 299
Photosynthesis, 324
genes, 325
PHYLIP, 261-262
Phylogenetic network, 11, 264-275
Phylogenetic profiling, 218
Phylogenetic reconstruction, 256-257. See
also phylogenetic tree reconstruction
Phylogenetic tree, 7, 11, 256-264
galled, see tree, galled
Phylogenetic tree reconstruction
bayesian analysis, 264
distance method, 260
likelihood based method, 263
parsimony method, 262
Phylogeny, 256
Physarum polycephalum, 174
Place, 141-142
bounded, 151
continuous, 169
logical, 147
pre-, 141-142
post-, 141-142
vector, 156
Plastid, 6
Pollinator, 299
Population, 283
Post-place, see place, post-
Post-set, see set, post-
Posttranslational modification, 212, 217
Power, 313
Power law degree distribution, see degree
distribution, power law
Power of test, 313
Predation, 288
Predator, 283, 287, 289
Preferential attachment, 46
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Pre-place, see place, pre-
Pre-set, see set, pre-
Prey, 283, 289
Primary profile, see profile, primary
Probability matrix, see matrix, probability
Production, 294, 298
Profile, 308
normalized, 309
primary, 308
secondary, 308
Prokaryotes, 6
Protein-protein interaction, see protein
interaction
Protein, 5, 184, 207, 233
essential, 70
interaction, 189-190, 207-220
Protein interaction network, 10, 106,
121-122, 186-187, 189-190, 220-225
Protein microarray, see microarray, protein
Proteome, 8
Proteomics, 8, 209
Pyramidal clustering model, 271

Quantitative trophic food web, see food web,
quantitative trophic
Quick sort, 24

R, 80
Raf-1/MEK/ERK pathway, 173
Random network, see network, random
Rank, see vertex, rank
Reachability graph, see Petri net,
reachability graph
Reaction
biochemical, 233-234
graph, see graph, reaction
Reactom, 188
Read arc, see arc, read
Recycling, 288. See also matter, recycling of
Reductionist approach, 8
REGE coefficient, 285
Regulatory network, 184—186. See also gene
regulation network
intercellular, 198-200
RegulonDB, 188
Relationship, 310
linear, 310
matrix, see matrix, relationship
Remineralization, 288

Respiration, 294, 298

Reticulate evolution, see evolution, reticulate
RNA, 5, 184

Robustness, 49, 191

Root, see vertex, root

RubisCO, 325

Saccharomyces cerevisiae, 10, 70-74, 79,
92,97, 101-106, 122, 172, 186, 193,
211,217

Saccharomyces Genome Database, see SGD

SALSA, 79

Sample, 308

attribute, 308

Scale-free network, see network, scale-free

Scaling law, 292

SCC, see component, strongly connected

Secondary profile, see profile, secondary

Set, 16

connected dominating, 116, 127

data, see data set

dominating, 116, 126

domination number, 116

independence number, 116

independent dominating, 116, 126

independent, 115-116

maximal independent, 116

maximum independent, 89, 116

maximal common transition, see Petri net,
MCT-set

minimal dominating, 116

minimum dominating, 116

pre-, 142

post-, 142

SGD, 226

Shannon entropy, 311

Shortest path betweenness centrality, see
centrality, shortest path betweenness

Signal transduction network, 10, 101, 105,
143, 185-186, 188-191

Signal transduction path 189

Significance score, 53

Similarity, 309

measure, see measure, similarity
matrix, see matrix, similarity

Simple path, see path, simple

Single gene query, 323

Small-world network, see network,
small-world



Snoopy, 171
Solanum tuberosum, 172
Source vertex, see vertex, source
Spanning tree, see tree, spanning
Spearman rank-order correlation, see
correlation, Spearman rank-order
Species, 283, 290
SPECTRONET, 270
SPECTRUM, 270
Split decomposition, 274
SPLITS TREE, 275
Staphylococcus aureus, 216
State space, see Petri net, state space
Statistical parsimony, 267
Statistical significance, 89-92, 95, 105
profile, 92, 105
Statistical testing, 52, 313
Statistics, 89
null hypothesis, 52, 89
null model, 52, 90, 105, 292
P-value, 92
Z-score, 92
Streptococcus pneumonia, 238
Subgraph, 17, 86
induced, 17, 86
Synthetic lethality, 219
System boundaries, 289
Systems biology, 8, 183

Tandem affinity purification, see affinity
purification, tandem

Target vertex, see vertex, target

Taxa evolution, see evolution, taxa

TCL, see computational tree logic

TCS, 268

Threshold, see cut-off value

Tissue, 6

TNT, 262

Token, see Petri net, token

Transcript co-response analysis,
327-328

Transcription, 5, 186

factor, 186, 190, 192-193, 211

Transcriptional regulation network, 9, 186,
191-198. See also gene regulation
network

Transcriptome, 8

Transcriptomics, 8

TRANSFAC, 188
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Transformed observation, see observation,
transformed
Transition, 141-142
continuous, 169
dead, 150
enabled, 142
fire, 142
firing, 143
input, 142, 148
-invariant, see Petri net, t-invariant
live, 150
macro, 145
output, 142, 148
pre-, 142
post-, 142
vector, 156
Translation, 5, 186
TRANSPATH, 188, 190, 200
Tree, 22, 256
binary, 22
depth, see depth
galled, 266
height, see height
minimum spanning, 270
phylogenetic, see phylogenetic tree
reconstruction, 260-264
rooted, 22
spanning, 22, 128
Trophic food web, see food web,
trophic
Trophic guild, see guild, trophic
Two-hybrid system, see yeast two-hybrid
system

Undirected graph, see graph, undirected

Unit, 307

Unweighted pair-group method with
arithmetic means, see UPGMA

UPGMA, 260

Vacuole, 6

Validation, experimental, see experimental
validation

Variable, 307, 309

relation, 309

Variable-by-unit matrix, see matrix,
variable-by-unit

Variable-by-variable matrix, see matrix,
variable-by-variable
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Vertex, 16, 20, 141, 239. See also node target, 20
central, 67 VisANT, 80
child, 22 Visone, 80
connected, 18
connectivity, 115 Walk, 18
distance, see distance length, 18
end-, 17, 20 Watts-Strogatz network, see network,
inner, 22 Watts-Strogatz
leaf, 22
parent, 22 Yeast, see Saccharomyces cerevisiae
rank, 67 Yeast two-hybrid system, 211-215
root, 22
source, 20 Z-transformation, see

strongly connected, 20 Fisher-z-transformation
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