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B Preface

Since the first edition of our book was published, increasing progress has been
seen in the understanding of the basic mechanisms involved in the pathophysiol-
ogy of bipolar mood disorders. When our first edition was prepared, there was
comparatively little research being conducted on the mechanisms involved in
this disorder. Recent years have seen an increasing interest in this field and an
increasing amount of activity. Important research initiatives have begun to eluci-
date the pathophysiology of this disorder. These research initiatives are beginning
to lead to breakthroughs in the understanding of the causation of bipolar mood dis-
orders and the development of novel treatments. Some of these new advances have
recently translated into newer treatments available for these disorders.

Of particular importance is the development of newer tools from neuro-
psychopharmacology, which have provided new ways to study various brain
systems, including post-receptor and transcriptional mechanisms. Developments
in neuroimaging have made possible the in vivo study of brain anatomy, neuro-
transmission, and metabolic processes. Important tools from genetics are becoming
available and are being applied to further the understanding of mechanisms
involved in bipolar disorders. Cognitive neuropsychology has also provided
improved tools for the more refined study of brain functions in these disorders.
These novel research avenues have provided new dimensions in exploring the bio-
logical mechanisms involved. New therapeutic developments have already become
available in the past few years. These advances are expected to gradually continue
to translate into new approaches for the treatment of bipolar disorder over the next
few to several years.

The updated findings from this research have not been comprehensively sum-
marized in a book focused specifically on the biological underpinnings of bipolar
mood disorders. There are some excellent books available on the subject of
bipolar disorders, but their focus is primarily on diagnostic issues, course of
illness, and treatment. To fill this gap, we are proud to present the second edition
of our book, Bipolar Disorders: Basic Mechanisms and Therapeutic Implications. This
volume presents outstanding manuscripts by the leaders in the particular areas
of biological research pertinent to bipolar disorders. Among other very important
topics, we have included chapters on genetics, neuroimaging, neuropsychology,
investigations of post-receptor and transcriptional abnormalities, potential inter-
actions between biology and psychosocial factors, childhood onset and late-life
bipolar disorder, and several other important topics. A chapter on the implications
of these research areas for ongoing therapeutic developments in this field is also
included. The potential therapeutic implications of new research, as in the first
edition, are emphasized throughout the book.

We are very happy to have had the collaboration of some of the leading scien-
tists in their respective fields of research, and believe this volume will be a valuable
resource for researchers in this field and in related areas. It is presented as a

iii



complete and accessible reference to the most updated information on the biologi-
cal basis and therapeutics of bipolar mood disorders. It should be useful as sup-
plemental reading for graduate and postgraduate courses on the neurobiology of
mental illness. Mental health practitioners will find it extremely useful as an
updated source with the most recent research progress in this field. We hope you
will share our excitement with these new developments.

Jair C. Soares
Allan H. Young
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B1 Classification of Bipolar Disorders—
Implications for Clinical Research

Ralph W. Kupka
Bipolar Disorders Program, Altrecht Institute for Mental Health Care,
Utrecht, The Netherlands

Willem A. Nolen
Department of Psychiatry, University Medical Center Groningen,
Groningen, The Netherlands

INTRODUCTION

The classification of mood disorders has been a subject of scientific debate for more
than 2500 years (1,2), and a precise delineation of these illnesses and its various
clinical manifestations has yet to emerge. Many aspects of this discussion have
recently been reviewed by Akiskal (2) and supplemented by commentaries from
authoritative researchers. In this chapter we will give an overview of the current
classification, the boundaries of bipolar disorder with other major psychiatric
illnesses, the validity and reliability of diagnosis, and the implications for neurop-
sychiatric research. As all classifications that are based on clinical description rather
than on etiology and pathophysiology are deemed to be temporary, we will begin
with a brief historical overview and end with some areas that need further
clarification.

A BRIEF HISTORY OF MOOD DISORDER

Mania and melancholia, already described by Hippocrates (460–377 BC), were
linked as manifestations of one illness by Aretaeus of Cappadocia (c. 150 AD). His
conception of mania being a consequence of melancholia was adopted throughout
the Middle Ages and Renaissance by writers such as Vesalius, Burton, Willis, and
Boerhaave (1). It was not until the 19th century that longitudinal clinical course
was taken into account in the description of psychopathology. In 1854, Falret and
Baillarger simultaneously but independently described a pattern of illness in
which mania, depression, and a symptom-free interval appeared in more or less
regular cycles over time (1). In addition to these severe forms of circular and peri-
odic insanity, in 1882, Kahlbaum described cyclothymia and dysthymia with milder
degrees of excitement and depression (1). It was Kraepelin who in 1899 brought all
affective syndromes together under the name of manic-depressive insanity: circular
and periodic forms, unipolar mania, recurrent depression, milder manifestations,
and even subclinical forms that were considered part of personal predisposition
or temperament (3). From his longitudinal descriptions of many cases he could
not delineate clear boundaries between these clinical pictures and hypothesized
that they were all manifestations of the same disease process. These observations
from the pre-pharmacological era are of great importance for the understanding
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of the natural course of bipolar disorder, since most patients in later longitudinal
studies have received both acute and prophylactic treatment, which may have
modified the course of illness for the better or the worse (4).

In 1957, Leonhard (5) proposed the distinction between unipolar depression
and bipolar illness, which was supported by Angst (6) and by Perris in 1966 (7),
and by Winokur, Clayton, and Reich in 1969 (8). Subsequently, the unipolar–
bipolar distinction was adopted by the American classification diagnostic and
statistical manual of mental disorders-III (DSM-III) in 1980 (9), and the revised
edition (DSM-III-R) in 1987 (10). At the same time the WHO classification Inter-
national Classification of Diseases-9 (ICD) (1978) (11) still described all types of
depressive and other forms of affective disorders under the category of manic-
depressive psychosis. However, in the current ICD-10 (1992) (12), bipolar affective
disorder is classified next to recurrent depressive disorder.

CURRENT CLASSIFICATION: DSM-IV AND ICD-10

DSM-IV (13) describes mood disorders in three parts: mood episodes, mood
disorders, and specifiers, that is, characteristics of the most recent episode or the
longitudinal course of recurrent illness. Mood episodes (manic, hypomanic,
depressive, or mixed) are building blocks of mood disorders, and cannot be diag-
nosed as separate illnesses. Mood disorders are subdivided in depressive disorders
and bipolar disorders, and two disorders based on etiology: somatic illness and
substance abuse (Table 1). Specifiers describing the most recent episode refer to
severity, whether or not it is in remission, and the presence of psychotic features
or other clinical characteristics (Table 2). Longitudinal course specifiers refer to
the degree of interepisodic recovery, seasonal pattern, and rapid cycling. These
elements of classification aim at identifying relatively homogeneous subgroups,
and are further enhanced by providing more or less detailed diagnostic criteria
for every category described (see next section).

Compared to the DSM-IV, the text revision published in 2000 (DSM-IV-TR)
(14) did not change the mood disorders section, nor the section on schizoaffective
disorders. Therefore, we further refer to DSM-IV.

Unlike previous editions of DSM and ICD, DSM-IV and ICD-10 agree
on major aspects of the classification of mood disorders, although there are
several differences, as outlined in Table 1. One major difference is that ICD-10
allows for classifying a single manic/hypomanic or a single depressive episode
next to bipolar affective disorder and recurrent depressive disorder, whereas
in DSM-IV a single manic episode is always considered as being part of bipolar
disorder, and likewise a single depressive episode is classified as major depressive
disorder. Both classification systems agree that the relatively rare condition
of repeated mania without a history of depressive episodes should be classified
as bipolar disorder. A recent study from the Zurich group suggested that
patients with a history of only mania(s) (M), or of mania(s) with only mild
depression(s) (Md), have a lower morbidity risk in first degree relatives and a
better prognosis than bipolar I patients with both mania(s) and full depression(s)
(MD) (15).

DSM-IV gives a detailed definition of bipolar II disorder, characterized by one
or moremajor depressive episodes accompanied by at least one hypomanic episode
in the absence of a history of manic or mixed episodes (16,17). In contrast, in ICD-10,
bipolar I and II disorders are not classified separately, but the latter is included in
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the category of “other bipolar affective disorders,” without further description.
However, in ICD-10 “bipolar affective disorder, current episode hypomanic”
could also include those patients who have never experienced a full manic
episode, that is, those with bipolar II disorder.

The problem of distinguishing hypomania from normal mood swings on the
one hand and from mania on the other, which may occur in any classification, will
be discussed in the next section.

TABLE 1 DSM-IV Classification of Mood Disorders with Corresponding ICD-10 Classification

DSM-IV/DSM-IV-TRa Codeb ICD-10c Code

Depressive disorders
Major depressive disorder
Single episode 296.2x Depressive episode F32.0–9
Recurrent 296.3x Recurrent depressive disorder F33.0–9

Dysthymic disorder 300.4 Dysthymia F34.1
Depressive disorder NOS 311 Other depressive episode F32.9

Other recurrent depressive
disorder

F33.9

Bipolar disorders
Bipolar I disorder
Single manic episode 296.0x Manic (including hypomanic)

episode
F30.x

Hypomanicd 296.40 Bipolar disorder, hypomanice F31.0
Manicd 296.4x Bipolar disorder, manice F31.1–2
Mixedd 296.6x Bipolar disorder, mixede F31.6
Depressedd 296.5x Bipolar disorder, depressede F31.3–5
Unspecifiedd 296.7 Bipolar disorder, unspecifiede F31.9

Bipolar II disorder 286.89 Other bipolar affective disorder F31.8
Hypomanicd

Depressedd

Cyclothymic disorder 303.13 Cyclothymia F34.0
Bipolar disorder NOS 296.80 Other bipolar affective disorder F31.8
Mood disorder due to
General medical condition
(depressive/manic/
mixed)

293.83 Organic mood disorders (manic/
bipolar/depressive/mixed)

F06.30–33

Substance induced mood
disorder (depressive/
manic/mixed)

292.84 Psychotic disorder due to
Psychoactive
Substance abuse
(depressive/manic/mixed)

F1x.54
F1x.55
F1x.56

Mood disorder NOS 296.90 Other mood disorders F38
Unspecified mood disorders F39

Schizoaffective disorderf 295.70 Schizoaffective disordersf F25
Bipolar type Manic type F25.0
Depressive type Depressive type F25.1

Mixed type F25.2

aDSM-IV-TR is unchanged from DSM-IV with regard to mood disorders.
bFor fifth digit see Table 2.
cNot all ICD-10 subcategories are listed.
dMost recent episode.
eCurrent episode.
fIncluded in the section: schizophrenia and other psychotic disorders.
Abbreviations: DSM, Diagnostic and Statistical Manual of Medical Disorders; ICD, International Classification of
Diseases; NOS, not otherwise specified.
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MANIA AND HYPOMANIA

At the core of the manic syndrome is a persistently elevated, expansive and/or irri-
table mood during at least seven days (or any duration when hospitalized),
accompanied by symptoms such as increased self-esteem, over-optimism or even
grandiosity, pressure of speech, racing thoughts, distractibility, increased energy,
increased sexual drive, overactivity or agitation, and loss of inhibitions leading to
reckless involvement in pleasurable, hazardous, or embarrassing activities that
may have serious marital, social, financial, or judicial consequences. Finally,
symptoms cause marked impairment in social or occupational functioning. Error
of judgment and lack of insight, which are often seen in manic patients, are
not specifically included in DSM-IV diagnostic criteria. Even patients who did
previously acknowledge having bipolar disorder may lose insight during a next
manic episode. Highly characteristic of the manic syndrome is a decreased
need for sleep combined with an increased feeling of energy, which is quite
distinct from insomnia in depression or other psychiatric disorders where the
diminished sleep coincides with feeling tired. In severe mania, psychotic symptoms
may occur, either mood-congruent such as delusions of grandiosity, or mood-
incongruent, such as persecutory delusions.

Diagnosing “classic” mania should not be too difficult a task for any clinician
with some experience. However, during an initial interview, an intelligent patient
may temporarily mislead the clinician by dissimulating the presence or the severity
of his symptoms and by finding apparently meaningful explanations for his
behaviors. In such cases, information from nurses and especially from close rela-
tives should confirm the diagnosis of mania. The latter may be even truer in case
of hypomania.

In DSM-IV, a hypomanic episode has essentially the same clinical features as a
manic episode, but lasts a shorter period. In hypomania, there is an unequivocal

TABLE 2 Diagnostic and Statistical Manual of Mental Disorders-IV Specifiers for Mood Disorders

Specifiers for most recent episodea Code Longitudinal course specifiersa

Severity
Mild xxx.x1
Moderate xxx.x2
Severe xxx.x3
Severe with psychotic features xxx.x4
Mood-congruent psychotic features
Mood-incongruent psychotic features

Course
In partial remission xxx.x5 With/without interepisode

recovery
In full remission xxx.x6 Seasonal patternb

Chronicb Rapid cyclingc

Postpartum onset
Associated features
Catatonic features
Melancholic featuresb

Atypical featuresb

aDSM-IV-TR is unchanged from DSM-IV with regard to mood disorders.
bSpecifier only for depressive episodes.
cSpecifier only for bipolar I and II disorders.

4 Kupka and Nolen



change from normal functioning, which is observable by others, lasting at least four
days. This separates hypomania from normal elevations of mood or the very mild
mood elevations that occur in cyclothymic disorder. On the other hand, the
symptoms are not severe enough to cause “marked impairment in social or
occupational functioning” as in mania. In the ICD-10 clinical descriptions and diag-
nostic guidelines (12) hypomania does not lead to “severe or complete disruption of
work or result in social rejection,” although “considerable interference with work or
social activity is consistent with a diagnosis of hypomania.” Thus, ICD-10 hypoma-
nia includes conditions that would justify a diagnosis of (mild) mania according to
DSM-IV criteria. Interestingly, the ICD-10 diagnostic criteria for research (18) are
more in accordance with DSM-IV, stating that hypomania leads to “some inter-
ference with personal functioning in daily living.” The problems that arise when
defining the boundary between hypomania and (mild) mania are discussed by
Goodwin, who points out that this boundary depends entirely upon the meaning
of ill-defined qualifying words like “some,” “considerable,” “marked,” “severe,”
or “complete” functional impairment (19). He also notes a tendency to avoid the
somewhat pejorative diagnosis of “mania” in favor of “hypomania” in clinical
settings.

The validity of a minimum duration of four days for a hypomanic episode
has been tested by the Zurich group that found that patients with brief hypomania
of one to three days duration did not significantly differ from those whose
hypomanic episodes lasted at least four days (20).

In patients presenting with a current depressive episode, a history of prior
hypomanic episodes is easily missed, especially since depression is the prevailing
condition in bipolar II disorder (21). Thus, many of these patients will be misdiag-
nosed as suffering from (recurrent) unipolar depression. Revealing past hypomanic
episodes may benefit from systematic inquiry in all aspects of the syndrome,
especially the behavioral symptoms rather than elevation of mood. Patients and
relatives will remember the short nights and the energetic overactivity more
sharply than a period of cheerfulness or irritability.

In a recent survey among U.S. citizens using the Mood Disorders Question-
naire (22), which systematically checks (hypo)manic symptoms, 3.7% screened
positive for bipolar I or II disorder. Of these, only 19.8% had previously received
a diagnosis of bipolar disorder, 31.2% had received a diagnosis of unipolar
depression, and 49.0% had received neither of these diagnoses (23).

Hypomanic or manic episodes may appear relatively late in the course of
bipolar disorder, inevitably leading to an initial diagnosis of unipolar depression.
The rate of spontaneous conversion from unipolar to bipolar mood disorder has
been estimated at median 9.7%, with a reported maximum of up to 37.5% (24).
Over the course of 11 years, hypomanic or manic episodes occurred in 12.5% of
559 prospectively followed unipolar patients (25). This phenomenon may in
part explain the long delay between the occurrence of first mood symptoms and
the diagnosis of bipolar disorder, which was on average 10 years in a survey
among DMDA members (26) and also among clinical populations (27).

DEPRESSION

Depression is the main burden of bipolar illness. Longitudinal follow-up data from
the Collaborative Depression Study showed that patients with bipolar I disorder,
despite adequate treatment, on average reported depressive symptoms in 31.9%,
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manic/hypomanic symptoms in 8.9%, and cycling/mixed symptoms in 5.9% of
weeks (28). In bipolar II disorder these percentages were even 50.3%, 1.3%, and
2.3% of weeks, respectively (28). The Stanley Foundation Bipolar Network reported
similar outcomes in treated bipolar I patients using daily prospective life chart data:
on average they were depressed 35.6% of the time, manic/hypomanic 12.6%, and
ultradian cycling 3.3% (29). Another research group using prospective life chart
data also found a depression-to-mania rating of 5.9 in bipolar I and 13.7 in
bipolar II patients (30).

Although a depressive episode in the course of bipolar disorder in general
has the same clinical features as unipolar depression, and both conditions have
identical diagnostic criteria in DSM-IV and ICD-10, cross-sectional as well as longi-
tudinal studies have revealed some features that may distinguish bipolar from
unipolar depression (31–37). These features are summarized in Table 3.

In patients with depression, a family history of bipolar disorder may point
to a bipolar course. The occurrence of brief episodes is also associated with
bipolar depression. DSM-IV requires for a major depressive episode a minimum
duration of at least two weeks. This may be appropriate in most cases of unipolar
depression and many cases of bipolar disorder, but patients with bipolar disorder
often also have brief episodes with rapid onset and remission, which may have
the full range of severities (32). Prospective life chart data from the Stanley Foun-
dation Bipolar Network showed that even patients with a nonrapid cycling
course have on average twice as many brief depressive episodes, that is, of less
than two weeks duration, than full-duration episodes (29). This was similar with
regard to brief manic and hypomanic episodes.

MIXED STATES

In mixed states the complexity of bipolar disorder reaches its maximum. Pure
depression and pure mania are the prototypical endpoints on a continuum of beha-
vioral and emotional disturbances. Mixed states have originally been described by
Kraepelin and his contemporary Weygandt as various admixtures of three dimen-
sions: mood, thinking, and psychomotor activity (38). They distinguished six
subtypes: depression with flight of ideas, excited depression, depressive-anxious
mania, mania with thought poverty, inhibited mania, and manic stupor.

In DSM-IV, a patient with a mixed episode meets both criteria for a manic
episode and a major depressive episode during at least one week, and may experi-
ence rapidly alternating moods of sadness, irritability, and dysphoria. It is thus

TABLE 3 Clues of Bipolarity in Patients with Major Depressive Episodes

Episode features Longitudinal illness history

Rapid onset and end of episode Family history of bipolar disorder
Brief episodes (,2 weeks) First episode at younger age (,25)
Psychotic features Frequent episodes
Atypical features History of brief major depressive episodes
Psychomotor retardation and anergia History of mania or hypomania
Hypersomnia History of antidepressant-induced hypomania
Mood lability History of postpartum depression
Nonresponse to antidepressants Cyclothymic or hyperthymic temperament
Response to lithium
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essentially a type of manic episode that also contains full syndromal depression
(“mixed mania”), which may be uncommon in clinical settings (39). This narrow
definition excludes many patients with combinations of syndromal and subsyndro-
mal symptoms of either polarity, for example, those with isolated depressive symp-
toms during a manic episode (“mixed mania”) or with some manic symptoms
during a major depressive episode (“mixed depression”). The prevalence of such
more broadly defined mixed states in clinical practice is probably much higher
than DSM-IV mixed episodes. It is estimated that mixed states occur in about
30% to 40% of acutely manic patients (32,40). Dysphoric mania, defined as a full
manic syndrome with the simultaneous presence of some depressive symptoms,
was present in 37% of manic patients in a clinical setting (41). In a recent study
among 908 treated bipolar outpatients mixed hypomania, that is, the co-occurrence
of depressive symptoms in patients with a hypomanic episode, was found in 57%
of visits for hypomanic episodes (42). Mixed hypomania was equally prevalent in
patients with bipolar I and II disorder, but more prevalent in women.

The concept and the terminology of mixed states are prone to confusion.
ICD-10 takes a somewhat broader view than DSM-IV on mixed states, defined
as either a mixture or a rapid alternation (usually within a few hours) of manic,
hypomanic, and depressive symptoms; the minimum duration of mixed episodes
is two weeks. The term “dysphoric mania,” originally meant to indicate a mixed
state, may be wrongly used to indicate “classic” mania with predominantly irritable
rather than euphoric mood. Moreover, the distinction between these two conditions
may be difficult and it is unclear whether this is clinically relevant since the
evidence that mixed states should be regarded as separate clinical entities is
controversial (40).

It is of clinical importance that mixed mania is less responsive to treatment, in
particular with lithium, than “classic” euphoric mania (43).

ANTIDEPRESSANT-INDUCED MANIA AND HYPOMANIA

According to DSM-IV, patients with unipolar major depression who become hypo-
manic or manic when treated with antidepressants receive an additional diagnosis
of substance-induced mood disorder with manic features. In these cases, it is
assumed that the manic syndrome is a direct physiological effect of antidepressant
medication, and such an episode should not lead to a diagnosis of bipolar disorder.
This also applies formood episodes induced by othermedications, alcohol, or drugs
of abuse. The concept that antidepressant-induced (hypo)mania in (unipolar) major
depression is not indicative of bipolar disorder has been strongly debated, and
evidence for an opposite point of view was recently reviewed by Chun and
Dunner (24). They found that cases of treatment-induced hypomania in 121
studies of antidepressants in major depressive disorder patients were relatively
rare, and within the rate of spontaneous conversion from unipolar to bipolar
disorder. They conclude that these patients should be recognized as having
bipolar disorder, and propose a revision of this category in DSM-V. Another argu-
ment for this position is that according to most guidelines, patients with a bipolar
depression should not be treated with an antidepressant alone, but only in combi-
nation with antimanic agents, that is lithium, an anticonvulsant, or, according to
some guidelines, an atypical antipsychotic. It appears logical to apply the same
approach for depressed patients with a history of an antidepressant-induced
hypomanic or manic episode, since when treated with antidepressant monotherapy
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there is a significant risk of another switch. Finally, it is also of interest that with-
drawal of antidepressants can induce mania (44). It is likely that for this condition
the same diagnostic considerations are relevant.

DIFFERENTIAL DIAGNOSIS: THE BOUNDARIES OF BIPOLAR DISORDER
External Boundaries
Cyclothymic disorder can be seen as the borderland between bipolar disorder
and normal mood fluctuations. Patients with cyclothymia exhibit mood instability,
that is (often numerous) periods with hypomanic symptoms that never meet cri-
teria for a manic episode and with depressive symptoms that never meet criteria
for major depressive episodes over the course of at least two years. A family
history of mood disorders is more common in cyclothymic patients in whom the
disorder proceeds to a full-blown bipolar disorder in the course of their life.

Borderline personality disorder is another disorder with affective instability.
Therefore, it may be difficult to distinguish borderline personality disorder from
cyclothymia and also from bipolar I or bipolar II disorder with rapid cycling
(i.e., at least four episodes per year) and especially ultrarapid cycling (i.e., mood
switches within a week of at least four episodes per month) or ultradian cycling
(i.e., mood switches within a single day) (45). Moreover, both conditions may
coexist. A controversial point of view is whether borderline personality disorder
in fact is part of the bipolar spectrum (2,46–48).

Schizoaffective disorder, bipolar type, fills the gap betweenmania with mood-
incongruent psychotic features and schizophrenia. A considerable number of
severely ill patients admitted to psychiatric hospitals have manic or depressive
episodes co-occurring with symptoms characteristic of schizophrenia, including
mood-incongruent delusions or hallucinations. In addition, patients have delusions
or hallucinations in the absence of prominent mood symptoms. The definition of
schizoaffective disorders has varied over the years among classification systems
and is still diffuse and uncertain (49). According to DSM-IV, such patients are classi-
fied as schizoaffective disorder when the co-occurrence of mood and psychotic
symptoms as described occurs during the same period of illness, which may last
for years. Nevertheless this definition is difficult to use in clinical practice, as
shown by the small interrater reliability when diagnosing patients with these
problems (50). It challenges the classic Kraepelinian dichotomy between manic-
depressive illness and schizophrenia, and may be an indication of a considerable
genetic overlap between these two groups of major psychiatric disorders (51).

Another diagnostic category that fits in the grey zone between bipolar
disorder and schizophrenia but has been omitted in DSM-IV and ICD-10 is
cycloid psychosis, as described by Leonhard (4). These conditions combine poly-
morphous psychotic symptoms with an episodic course and a generally favorable
prognosis (52).

The boundary between recurrent unipolar depression and bipolar disorder
has already been discussed, and will be further addressed in the section on the
bipolar spectrum. If one accepts the unipolar–bipolar dichotomy then the question
arises at which point these disorders split. This depends on the definition of
hypomania and its lower limit towards normality, being the mildest manifestation
of bipolarity. Current debate concentrates on the number of hypomanic symptoms
needed, and the minimum duration of a hypomanic episode. DSM-IV requires four
days, although at that time no data were present to determine whether three days
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would have been better (53). Recent studies by Angst et al. in Zurich (20) showed
that hypomanic episodes of one to three days were of comparable clinical
significance. Including brief hypomanic episodes into the definition of bipolar II
disorder changes the rate of all major and minor forms of unipolar versus bipolar
disorder (see later) (20).

Another area of potential diagnostic confusion lies in the distinction between
agitated unipolar depression and bipolar mixed states, especially the “mixed
depression” described earlier. There is some research evidence that agitated
unipolar depression is part of the bipolar spectrum (54).

Internal Boundaries
Separating bipolar II from bipolar I disorder depends on the definition of hypomania
and its upper limits towards mania (see earlier). In the longitudinal Collaborative
Depression Study, patients with bipolar I disorder had more severe episodes
whereas those with bipolar II disorder had a substantially more chronic course
with significantly more major and minor depressive episodes and shorter inter-
episodic well intervals (55). The authors conclude that these differences justify
classification as two separate subtypes, although the overall clinical similarities of
these subtypes suggest that they exist in a disease spectrum (55).

Rapid cycling, defined as the occurrence of at least four distinct mood
episodes in one year, has been introduced as a course specifier of bipolar I and II
disorder in DSM-IV (53,56). Rapid cycling is not mentioned at all in ICD-10.
Taking a conventional categorical approach, a meta-analysis of 20 studies compar-
ing rapid cyclers and nonrapid cyclers revealed some significant differences apart
from episode frequency, in particular a slight overrepresentation of women and of
bipolar II subtype among rapid cyclers (57). Associated with rapid cycling there
was also a trend for depressive episode at onset of illness, a history of serious
suicide attempts, a family history of affective disorder, and nonresponse to
lithium prophylaxis. However, recent large studies (29,58,59) have shed doubt
over the higher prevalence of rapid cycling among bipolar II patients. Moreover,
if one takes a dimensional approach, differences occur gradually with increasing
episode frequency and never reveal a cut-off point at four episodes per year or at
any other episode frequency, suggesting that rapid cycling is not a distinct
subtype but merely an extreme on a continuum of cycle frequency (29).

Finally, the boundary between mania and depression is blurred in patients
with mixed states. There is also a potential overlap between mixed states with
rapid mood shifts on the one hand, and ultra-rapid or ultradian cycling (45,47)
on the other. The latter conditions are not defined in DSM-IV but can be classified
as mixed episodes or alternatively in the residual category Bipolar Disorder Not
Otherwise Specified. A summary of key criteria defining the major boundaries of
bipolar disorder is given in Table 4.

THE BIPOLAR SPECTRUM CONCEPT

A broad definition of manic-depressive illness was originally proposed by Kraepe-
lin (3), and reintroduced by Akiskal (2,60,61), Goodwin and Jamison (32), Cassano
(63), and Angst (64), amongst others. This so-called bipolar spectrum includes syn-
dromal and subsyndromal clinical conditions beyond the more narrowly defined
DSM-IV and ICD-10 classifications of bipolar disorder. In recent years, different
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variants of a bipolar spectrum have been presented; an example as proposed by
Akiskal is given in Table 5.

The bipolar spectrum concept puts emphasis on validators other than polarity
(i.e., the occurrence of mania), such as a recurrent (“cycling”) course of illness, posi-
tive family history of mood disorder, and unfavorable outcome of antidepressant
treatment (62). In such a broad definition, recurrent brief depressions (“cycling
within the depressive pole”) that do not respond to or even get worse with
antidepressants may be part of the spectrum. Lifetime prevalence rates of bipolar
spectrum disorders range from 2.8% to 6.6% of the population (65).

One major rationale for a bipolar spectrum is that the application of narrow
diagnostic criteria may result in misdiagnosis of many cases that would benefit
from other treatments: mood stabilizing drugs rather than antidepressants.

A major objection towards the concept of a bipolar spectrum is that it shows
an expansive trend, incorporating subsyndromal conditions and conditions that
are only in part characterized by affective instability, such as borderline personality
disorder (66). This may weaken the core concept of bipolar disorder, which appears
to be a circumscript clinical entity suitable for genetic, biological, and treatment
studies (66). Reanalyzing the data of the epidemiologic catchment area (ECA)
study by taking into account all subsyndromal manic symptoms resulted in a
lifetime prevalence rate of 5.1% on top of the 0.8% for manic episodes (bipolar I)
and 0.5% for hypomanic episodes (bipolar II), yielding a total of 6.4% for bipolar
spectrum disorders (67). The prevalence of bipolar (and unipolar) mood disorders

TABLE 4 Key Boundaries of Bipolar Disorders in DSM-IV

Boundary Criteria defining boundary

Normal mood fluctuations versus dys/
hyper/cyclothymic temperament
versus mood disorder

Occurrence and severity of depressive and
hypomanic symptoms

Unipolar depression versus bipolar II
disorder

Number and duration of hypomanic symptoms

Bipolar II versus bipolar I disorder Impairment and duration of manic symptoms
Bipolar I versus schizoaffective disorder Timing of psychotic symptoms
Schizoaffective disorder versus
schizophrenia

Balance of psychotic and affective symptoms

Rapid cycling versus nonrapid cycling
course

Occurrence of 4 distinct mood episodes/year

Source: From Ref. 73.

TABLE 5 A Bipolar Spectrum as Proposed by Akiskal

Bipolar 1
2 Schizobipolar disorder

Bipolar I Manic-depressive illness
Bipolar I 1

2 Depression with protracted hypomania
Bipolar II Depression with spontaneous hypomanic episodes
Bipolar II 1

2 Depression superimposed on cyclothymic temperament
Bipolar III Recurrent depression with antidepressant-induced hypomania
Bipolar III 1

2
Recurrent depression with alcohol/substance-induced hypomania

Bipolar IV Depression superimposed on hyperthymic temperament
Bipolar V Recurrent depression (�5 episodes)

Source: From Ref. 61.
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is further exploded when thresholds are set even lower, such as in the Zurich
studies (20). Relaxing duration and severity criteria for hypomania resulted in an
almost equal lifetime prevalence of 24.6% for the depressive spectrum (including
major depression, dysthymia, minor depression, and brief recurrent depression)
and 23.7% for “soft” bipolar spectrum (including bipolar I and broadly defined
bipolar II, minor bipolar disorder, cyclothymia, and pure hypomania) (20). These
authors state that 11% constitutes the spectrum of bipolar disorders proper, and
another 13% “probably represent the softest expression of bipolarity intermediate
between bipolar disorder and normality.” If almost a quarter of the population is
included, it is questionable whether such broad definitions are still meaningful
indicators of psychopathology, given the lifetime prevalence of core bipolar I dis-
order of 0.5% in the same cohort, which is consistent with other epidemiological
studies (19).

ASSESSMENT OF BIPOLAR DISORDER

Diagnostic assessment of bipolar disorders has several aspects: a lifetime diagnosis
according to DSM-IV of ICD-10, a diagnosis of the current mood episode or a state
of interepisodic remission, rating the severity of the current mood disturbance, and
depicting the longitudinal course of the illness.

A diagnosis of bipolar disorder in clinical research settings is commonly
obtained by applying one of the semi-structured interviews for axis I diagnoses
by trained clinicians, such as the Structured Clinical Interview for DSM-IV axis I
disorders, Research Version, Patient Edition (SCID-I/P) (68), the related Mini
International Neuropsychiatric Interview (MINI) (69), or the Schedules for
Clinical Assessment in Neuropsychiatry (SCAN) (70). In epidemiological studies,
fully structured interviews are used, often by trained lay interviewers, such as
the Composite International Diagnostic Interview (CIDI) (71) (REF WHO). All
these instruments arrive at current or lifetime DSM-IV (SCID) or DSM-IV and
ICD-10 (SCAN, CIDI) diagnoses. Since each diagnostic criterion of each mood
episode as well as every psychotic symptom is rated separately, these instruments
are suitable for assessing symptom profiles beyond the diagnostic boundaries
described earlier. Semistructured interviews by trained cliniciansmay be somewhat
more specific in diagnosing bipolar disorder than structured interviews by lay
interviewers (72).

An self-rated instrument for screening for bipolar disorder is the Mood
Disorders Questionnaire (MDQ) (22), which has been applied in a large U.S.
population sample (23) and various European countries, and actually checks the
previous presence of manic symptoms according to DSM-IV criteria. If rated
positive it should be followed by a clinical interview.

A dimensional scale that was designed to serve as an adjunct to conventional
categorical diagnosis is the Bipolar Affective Disorder Dimension Scale (BADDS)
(73). It provides a description of some of the basic features of an individual’s
lifetime experience of psychopathology relevant to the bipolar spectrum. The
scale is mainly based on the ICD-10 criteria and has four dimensions: (i) mania:
the presence and severity of manic syndromes; (ii) depression: the presence and
severity of depressive syndromes; (iii) psychosis: the presence of psychotic symp-
toms and the balance of mood and psychotic symptomatology; and (iv) incon-
gruence: the mood congruence of psychotic symptoms and the temporal
relationships between affective and psychotic symptomatology. Using multiple
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data sources, every subject is scored in the range 1–100 on each of the four
dimensions. The instrument was developed within the context of family studies,
and incorporates the boundaries between unipolar, bipolar, schizoaffective,
and schizophrenic disorders (Table 4). It retains a measure of severity and also
includes mild or subclinical cases, and avoids hierarchical loss of information
inherent to classification systems. BADDS appears to be especially suitable to
assess bipolar spectrum disorders next to or beyond the strict DSM-IV or ICD-10
categories.

There are various symptom rating scales for measurement of severity of
mania and depression, such as the Young Mania Rating Scale (YMRS) (74), the
Bech Rafaelsen Mania Scale (BR-MAS) (75), the Hamilton Rating Scale for
Depression (HAMD) (76), the Montgomery Åsberg Depression Rating Scale
(MADRS) (77), and the Inventory of Depressive Symptomatology (IDS) (78). The
latter includes many “atypical” symptoms, which frequently occur in bipolar
depression, and is thus particularly suitable for this condition.

A problem typical for the assessment of change in bipolar disorder is that
improvement of a depressive episode may go hand in hand with emerging
mania, and vice versa, and that rapid changes of polarity may add to the overall
illness burden beyond depressive and manic symptoms per se. To address this
problem, the Clinical Global Impressions scale, Bipolar Version (CGI-BP), was
designed (79). This is a modification of the original CGI scale, providing global
severity ratings of both depression and mania, as well as a global severity rating
of overall bipolar disorder. A similar set of CGI scales was designed for the assess-
ment of change in clinical trials (79).

These scales all make a cross-sectional assessment of the manic or depressive
episode with a time span ranging from two days to two weeks. Given the waxing
and waning course of bipolar disorder, repeated cross-sectional assessments will
not reveal the frequently occurring mood episodes in between. For continuous
longitudinal assessments, either retrospective or prospective, a graphic method
such as the NIMH-Life Chart Methodology (NIMH-LCM) is more suitable
(Fig. 1) (80,81). This instrument has been validated in recent years (82,83), and is
available in a clinician-rated and a self-rated version. A similar instrument
for longitudinal assessment is the prospectively self-rated computerized ChronoR-
ecord (84).

FIGURE 1 One-year prospective daily life chart showing prototypical bipolar I disorder with a
continuous “rapid cycling” course in a man aged 67 with an illness history of over 50 years. Mania
above and depression below baseline. Source: From Ref. 29.
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DIAGNOSTIC VALIDITY AND IMPLICATIONS FOR
NEUROPSYCHIATRIC RESEARCH

Although our current diagnostic categories have limited validity and are provi-
sional until external validators are identified, the availability of clear diagnostic
categories with its criteria has nevertheless greatly improved the reliability of
diagnosis in clinical and research settings. In most neurobiological, genetic, and
treatment studies of bipolar disorder, subjects will have received a diagnosis of
(DSM-IV) bipolar disorder. Also, further distinctions are often made between
subjects with bipolar I or bipolar II disorder and subjects with a rapid cycling
course versus with slower cycle frequencies of less than four mood episodes per
year (often indicated as nonrapid cyclers). As discussed earlier, the boundaries
between these categories are arbitrary, and it is unlikely that these boundaries,
which are entirely based on clinical descriptive criteria, exactly point out the
potential boundaries between distinct disorders with a different etiologic or patho-
physiological background (73,85).

Dimensional diagnoses tend to be impractical and difficult to communicate
(85). However, the concurrent use of categorical and dimensional diagnostic
instruments as proposed by Craddock et al. (73) may be particularly appropriate
in bipolar spectrum disorders. The bipolar spectrum concept provides a compro-
mise, since its prototypical categories lie along a unipolar–bipolar continuum
and on continuums with other diagnoses such as psychotic disorders. It is also
useful for clinical practice, alerting clinicians to search for clues for bipolar disorder
in patients with mood disorders and treat them according to the best available evi-
dence. However, for neurobiological research, a broadly defined bipolar spectrum
as a whole may be over inclusive. Investigating relatively homogeneous subgroups
delineated by relatively narrow diagnostic categories that are now widely accepted
(major unipolar depression, bipolar I and bipolar II disorder) within the entire
bipolar spectrum could help to identify biological markers and the genetics for
core syndromes. Comparing shared and unshared neurobiological and genetic
features may eventually lead to subgroups that are more firmly based on etiology
and pathophysiology. This may also shed light on the true nature of overlapping
areas between prototypical phenotypes, such as “pseudo-unipolar” and schizoaf-
fective disorders.

The longitudinal evolution of bipolar disorder makes every diagnostic
assessment in a given individual temporary, since apparent unipolar depression
can turn out to be bipolar disorder, bipolar II disorder can progress to bipolar
I disorder, and bipolar disorder can deteriorate to schizoaffective disorder.
This may be particularly problematic in studies of unipolar depression. Patients
who have only had depressive episodes at the time of their participation in
such a study, but at a later point show features of bipolar disorder, may
compromise the identification of potential differences between unipolar and
bipolar disorder.

TOWARDS DSM-V

Despite the limitations and pitfalls of categorical diagnostic classifications (85),
DSM-IV and ICD-10 have greatly improved the reliability of the different mood
disorder diagnoses. For the sake of continuity in epidemiologic, neurobiologic,
and genetic research, we should be reluctant to change diagnostic criteria for
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mood episodes andmood disorders as long as there is no compelling evidence to do
so. Still, there are certain areas that are open for change.

First, the very restrictive definition of mixed episodes, in particular the
requirement of full syndromal criteria for mania and depression, could be
relaxed, as outlined earlier. Given all the possible variants of mixed states, it is
obvious that they can occur not only in bipolar I but also in bipolar II disorder.

Second, there is now enough evidence to include antidepressant-induced
(hypo)mania in the diagnostic category of bipolar disorder. Psychoactive substance-
or treatment-induced (hypo)mania could be a separate subcategory (bipolar III
disorder), or an episode specifier of bipolar I and II disorder.

Third, a better-operationalized and more consistent definition of the hypoma-
nia–mania boundary would improve the delineation of bipolar II versus bipolar I
disorder, even if it remains uncertain whether these subtypes are fundamentally
different.

Fourth, the concept of rapid cycling, which represents a dimension rather
than a subtype, could be defined along a continuum as proposed either by counting
episodes over a certain time period (e.g., a year) or at least by dividing it into
more subcategories (nonrapid, rapid, ultra-rapid, and ultradian cycling) as
suggested by Kramlinger and Post (45) which allows for the inclusion of briefer
but still significant episodes (29).

Finally, a specifier for depressive episodes indicating bipolarity in up till then
unipolar patients, including features as summarized in Table 3, could alert
clinicians and researchers for latent bipolar disorder, without prematurely crossing
the boundaries of the current diagnostic classifications.

CONCLUSION

Polarity and cyclicity have been described as core dimensions of manic-depressive
illness (Fig. 1) (32), which, despite its heterogeneity, can still be regarded as one of
the most consistently described disorders in psychiatry (2,12). From these dimen-
sions, a bipolar spectrum can be constructed, and within this bipolar spectrum,
various subtypes have been defined. In this chapter we have highlighted the
main areas of uncertainty and controversy about the internal and external bound-
aries of this spectrum, which rely exclusively on clinical description and still
lack external validators. It may well be that the most specific validators for
bipolar disorder will be revealed by studying patients with the core bipolar I syn-
drome (66). Eventually, neurobiological and genetic studies must not only provide
such validators for accurate and valid diagnoses, but above all direct towards a
more targeted treatment for the individual patient with a variant of bipolar
spectrum disorder.
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INTRODUCTION

Attitudes towards the study of lithium on behavior in animals and humans have
often been influenced by preconceived notions of the nature of psychiatry and
psychopharmacologic treatment. Many psychiatrists would like to see psychophar-
macological agents as “magic bullets” in a sense similar to antibiotics. Antibiotics
are not expected to have effects on organisms that are not infected with bacteria;
effects that do occur are seen as side effects unrelated to the mode of action. Thus
neuroleptic dopamine-blocking drugs are believed by many psychiatrists to have
no effects on persons who are not psychotic; antidepressants are seen as distin-
guished from stimulants of abuse as not having mood-elevating effects in the
absence of depression. The study of lithium’s effects has often been carried out in
a similar tradition. Moreover, lithium is seen as a difficult drug to give to normal
volunteers for the period of three weeks or a month that would approximate the
amount of time necessary for significant effect on a manic episode.

PSYCHOSTIMULANT-INDUCED MODELS

Animal studies have been a mainstay of the study of lithium effects on behavior
other than clinical studies of psychophathology. These animal studies were
reviewed in 1991 (1) and again in 2003 (2). The overriding majority of studies in
this field has used the concept of pharmacologically induced mania and depression
and has attempted to show lithium prevention. The usual agent for pharmacologi-
cal induction of mania has been amphetamine, although more specific and direct
dopamine agonists such as quinpirole have also been used (3). Using reserpine
or tetrabenazine to induce depression has also been studied (4,5). A background
concept has been the fact that low dose amphetamine has effects primarily on
open field activity whereas higher dose amphetamine causes stereotypy (6,7).
Dopamine blockers are well known to block both the low dose hyperactivity and
the high dose stereotypy of amphetamine, and this nicely fits their usefulness in
both mania and schizophrenia (8). Further support for the amphetamine-induced
hyperactivity model comes from the association of psychostimulants with the
onset of mania in susceptible individuals (9,10) and from some clinical studies
that support an effect of lithium in preventing the behavioral effects of stimulants
in people (11,12). To delineate the differences between the dissimilar responses to
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doses of amphetamine, attempts have been made to differentially look at the
effect of lithium pretreatment on low dose amphetamine effects versus high dose
amphetamine effects, the hypothesis being that lithium as an antimanic agent
will prevent the effects of low-dose amphetamine but because it is devoid of true
antipsychotic properties it will not be able to affect amphetamine-induced stereo-
typy. Often an underlying biochemical hypothesis was that low-dose amphetamine
released mostly serotonin and noradrenaline whereas high dose amphetamine
released more dopamine. All of these assumptions, hypotheses, and preconcep-
tions are today viewed skeptically. They were heuristic as hypotheses that
generated much good research; however, the yield of robust replicable data has
been poor. Given the fact that modern studies of psychopharmacologic agents
often require hundreds of patients to show statistically significant effects, it may
not be surprising that animal studies with 10 to 15 rats in each group often come
up with conflicting results. The heterogeneity of the amphetamine response is
well known (13), and lithium response may also be heterogeneous in outbred rat
strains (14,15). We shall discuss later the possibility of using this heterogeneity in
responses to advance research.

The effect of lithium to block hyperactivity in rats has also been given new
impetus by a paper from Caron’s group (16). They injected dopamine transporter
knockout mice with lithium (50, 100, or 200 mg/kg) a half hour after they were
placed in an open field and found significant reduction in horizontal activity in
mice injected with 100 and 200 mg lithium. This paradigm had previously been
used by Nixon et al. (17) and positive results had also been found. However, in
humans even very high doses of lithium do not have immediate effects in mania
but clearly do have side effects such as nausea and muscle weakness. Therefore,
it is difficult to evaluate these acute effects reported by Caron’s group (16),
especially in the light of the long history of contradictory results in this field.
Several reports demonstrate inhibition of amphetamine-induced hyperactivity by
acute and chronic lithium pretreatment in rats and mice (7,15,18–23). However,
other publications show absence of lithium effect in this model (8,24–27).
New data coming from Manji’s laboratory (28) also indicate that lithium’s effects
on amphetamine hyperactivity may be related to genetic background. A compre-
hensive study of 12 strains of mice (three outbred and nine inbred strains) shows
that acute lithium injection at 100 mg/kg attenuated amphetamine-induced
hyperactivity in four strains, had no effect in four strains, and augmented the
effects of amphetamine in one strain (other strains did not respond to amphetamine
treatment at the dose used). Moreover, chronic oral lithium treatment at concen-
trations that had been previously demonstrated to result in therapeutic blood
levels (four weeks, 2.4 g/kg in food), resulted in similar effects with acute admin-
istration in some strains but not in all (28). All in all, these results suggest that
the effects of lithium on amphetamine hyperactivity may be strain (genetically)
dependent and that there may be different mechanisms that are involved in
the short term (acute) and long term (chronic) effects of lithium in this model.
An additional level of complexity in evaluation of lithium’s effects on the
response to amphetamine is added by the fact that behavioral responses to
psychostimulants are strongly affected by the testing environment and pro-
cedure. These variations are more prominent during chronic psychostimulant
treatment but are also apparent after acute administration (29). For example,
hyperactivity measures had been shown to increase more in large open field
arena compared to smaller activity monitors (30) and an environment that is
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similar to the home cage had been demonstrated to hinder the development of
ambulatory activity (31).

It is possible to give amphetamine or methylphenidate to humans on chronic
lithium and this was done in many studies (11,14,21,32,33). While some have
claimed marked effects of lithium to attenuate the amphetamine-induced response,
others have found no effect at all (32). The numbers on subjects in these studies
are smaller than the large numbers of patients required to show a lithium effect
in a clinical situation and human heterogeneity may be the answer to the con-
tradictory results. We await a clear paradigm that will give robust findings in the
amphetamine hyperactivity model of mania in humans as in rodents. Perhaps
the issue is blood lithium levels since these have varied greatly between studies
and usually levels of 0.7 mM have been considered sufficiently similar to human
treatment to be an acceptable model. It is unclear why behavioral effects are so
difficult to demonstrate, whereas biochemical effects of lithium in normal subjects
are marked and highly replicable (34).

Interestingly, the notion of endophenotypes that had recently been strongly
emphasized in the research of bipolar disorder had renewed the interest of
scientists in the strength of amphetamine-induced behaviors and underlying
brain changes as important modeling tools.

Endophenotypes are quantifiable components in the genes-to-behaviors
pathways, distinct from psychiatric symptoms that make genetic and biological
studies of etiologies for disease categories more manageable (35). In the context
of modeling, endophenotypes approach can be helpful as it reduces the complexity
of symptoms and multifaceted behaviors, resulting in units of analysis that are
simpler to model in animals (36).

One of the tentative endophenotypes that had been repeatedly suggested
for bipolar disorder is dysregulation of dopaminergic function and hypersensi-
tivity to psychostimulants. This possible endophenotype was suggested based on
significant data in both human and animal studies. Impaired brain reward path-
ways, enhanced rewarding effects of psychostimulants in patients with affective
illness, possible relationship between dopamine release in the ventral striatum,
euphoric responses, and some evidence for genetic variance that may explain the
individual differences in brain response to psychostimulants all suggest that beha-
vioral changes observed after exposure to amphetamine may be useful as marker
for bipolar disorder (37). However, this new line of study, exploring amphetamine
responses not as a model of mania but as a model of an endophenotype of
bipolar disorder, must include additional experimentation that will look beyond
hyperactivity into different facets of amphetamine-induced behavior, the possible
relationship between such behaviors, the effects of mood stabilizers, and the
genetic predisposition related to individual variability in responses to amphet-
amine as well as to lithium effects on amphetamine-induced behavior. Some
suggestions along these lines are detailed later in this chapter.

LITHIUM AS AN ANTIDEPRESSANT

Beyond the amphetamine-related models, a very exciting advance in this field has
occurred recently, in a paper by O’Brien et al. (38) who used a specific regimen of
lithium administration to mice: mice received 0.2% lithium chloride in food for a
period of five days followed by 0.4% for 10 additional days and reported robust
effects in the Porsolt forced swim test. Previous studies of lithium in Porsolt
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forced swim test were equivocal, although Bourin’s group (39,40) showed that
lithium could reliably potentiate the effects of other antidepressants. The study of
Bourin et al. (39,40) used an acute lithium dose but it fit the preconceived notion
that in the clinic lithium is an augmenter of antidepressant response and not a
powerful antidepressant itself. However, the paradigm of O’Brien et al. (38)
suggests a powerful effect of lithium in the Porsolt forced swim test. This is unlikely
to be an artifact, since activity in the Porsolt forced swim test requires an increase in
struggling behavior. Previous concerns about lithium artifacts have usually pointed
out that lithium patients experience some sense of malaise and muscle weakness
and nausea. These would be unlikely to cause the reported effects in the Porsolt
forced swim test.

We (41) have been able to replicate the O’Brien et al. (38) finding and have
shown that it is dependent on blood levels. Blood levels greater than 1 mM are
necessary for the robust effect that O’Brien et al. (38) finds, whereas blood levels
of 0.7 mM show no effect in the Porsolt forced swim test at all. Many studies of
chronic lithium in the past were quite satisfied with levels of 0.7 mM on the
average and even studies with higher blood levels had a significant portion of
the animals with blood levels below 0.7 mM. This robust effect of lithium on the
Porsolt forced swim test provides an opening for behavioral pharmacological
analysis in the future. For instance, questions can be asked such as whether pre-
treatment with PCPA, a serotonin synthesis inhibitor, will prevent the effect of
lithium in the Porsolt forced swim test or whether presynaptic 5HT1a/1b or postsyn-
aptic 5HT2 or

˙
b-adrenergic receptors agonists/antagonists will modulate this effect.

A recent hypothesis of antidepressant action is induction of neurogenesis in the
hippocampus. It could be an interesting question, whether TrkB (BDNF) receptor
agonists/antagonists will affect the lithium’s antidepressant effect in the Porsolt
forced swim test. Interestingly, inhibition of the Erk-MAP kinase pathway was
demonstrated to decrease immobility time in the forced swim test (42). However,
the same treatment also increased activity in an open field and this effect was
ameliorated by chronic lithium treatment. Hence, suggesting that the effects of
Erk inhibition is less likely to be antidepressant-like and more likely to be pro-
manic (42), a notion that is further supported by other studies on the behavioral
effects of manipulating the Erk pathway (43,44). A key question would be
whether other mood stabilizers such as valproate have a similar effect in the
Porsolt swim test. Another key question will be whether the weight loss due to
reduced appetite in chronically lithium-treated rats might cause increased activity
in the Porsolt swim test. This needs to be done by “yoking” mice to others who are
eating lithium and let them eat only the exact same amount a day as the lithium-
treated animals eat. It is also possible to add a nontoxic bitter taste to the control
food to reduce the food intake and to see if this affects Porsolt results. Our
finding that lithium effects in the Porsolt swim test require a blood level greater
than 1 mM is actually congruent with clinical reports that the antidepressant
effects of lithium require higher blood levels than the prophylactic effect.

CURRENT PROBLEMS AND POSSIBLE SOLUTIONS

Although there were some advances in modeling bipolar disorders, it appears that
the field had been quite limited for many years compared with model development
for other psychiatric disorders. It is possible that, at least in part, the nature of the
disease that includes oscillating between depression and mania episodes hindered
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scientists from making serious attempts to model it. Just a few attempts were done
over the years to model the entire scope of bipolar disorder with manipulations
such as sleep deprivation (45) or intermittent cocaine administration (46), but for
a variety of reasons, these tentative models did not become a central tool to
explore the biology of bipolar disorder or to screen new drugs for it (2,47).

Bioassays
Attempts had also been made over the years to develop models that are more
a bioassay than a comprehensive behavioral model. An example of such incomplete
model is the study of Bersudsky et al. (48) showing lithium inhibition of
forskolin-induced hypoactivity. This study is based on the fact that lithium bio-
chemically inhibits forskolin induced rises in cyclic AMP. The behavioral finding
is therefore a bioassay of the chemical finding. However, to become a model it
would need to be corroborated by a finding that forskolin induces hypoactivity
or a depressive-like syndrome in humans. Another example is lithium augmenta-
tion of pilocarpine-induced seizures. This phenomenon had been repeatedly
demonstrated and can be used to explore lithium-mimetic drugs. Furthermore,
the increase in seizure susceptibility after lithium treatment was demonstrated to
be dependant on inositol depletion as it is blocked by inositol administration (49)
and augmented by inositol reuptake inhibition (50). Since the inositol depletion
theory (51) is one of the leading hypotheses regarding the therapeutic effects of
lithium, the use of pilocarpine-induced seizures as a rudimentary screening
model can be justified. However, the behavioral phenomenon is unrelated to the
features of the disease and therefore the utility of this paradigm as a real model
is questionable.

Whereas the models mentioned above did contribute to the research efforts on
bipolar disorder and its treatment, there is clearly a lack of better and more appro-
priate animal models for the disease. This deficiency is repeatedly emphasized as
one of the major problems hindering bipolar disorder research (52). Some new
approaches recently suggested in the literature are summarized below.

Modeling Facets of the Disease
One relatively simple approach stays within the realm of modeling based on face
validity, that is, the similarity in behavior observed in the disease and in the
model (53), and looking at components of the behavior rather than the entire
disease (54). However, in contrast to present work that is based mainly on very
few behavioral components of bipolar disorder (e.g., hyperactivity as a model
for manic behavior), this approach suggests a more comprehensive battery of
tests and models that will explore a broader range of the behavioral facets of the
disease. Accordingly, it may be possible to develop separate models for facets of
mania such as activity or restlessness; extreme irritability; reduced sleep; provoca-
tive, intrusive, or aggressive behavior; increased sexual drive; abuse of drugs; dis-
tractibility or reduced ability to concentrate; and poor judgment. Furthermore,
many such models were already developed in the context of research of other
disorders but they must be validated for bipolar disorder (54). If some of these
models can be validated, it may be possible to develop a battery of models that
will be appropriate for the screening of possible new mood stabilizers or to test
new hypotheses regarding the underlying biology of the disorder. One example
of such an initial validation attempt was recently demonstrated with a model for
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aggression (55). Since intrusive and aggressive behaviors are one of the facets of
mania, this study tested the validity of a commonly used test for aggression, the
resident intruder paradigm in mice, as a tentative model for this facet of mania.
The results of the study demonstrate that chronic administration of lithium or
valproate, at therapeutically relevant doses, ameliorates the aggressive behavior
in the resident intruder paradigmwithout affecting other aspects of social behavior.
Accordingly, this study suggests that the paradigm has predictive validity and can
be used as part of a battery of models for the study of new mood stabilizers (54).
Additional new models emphasized aggression in a competition for food task
(56) and irritability measured as resistance to capture (57,58).

Interestingly, even within this relatively simple approach, a number of candi-
date manipulations were identified that had been previously demonstrated
to result in a number of behavioral changes that are similar to facets of mania.
Therefore, if all these specific models will be validated, the resulting battery will
represent a group of bipolar-like behaviors (54). For example, psychostimulant
administration does not result only in hyperactivity (as discussed above) but was
also reported to induce reduced sleep, distractibility, risk taking behavior, and
increased responses to reward—all facets of mania (54).

From Molecules to Behavior
Although the approach described above may be conducive to further research,
modeling methods that concentrate on face validity of one component of the
disorder have been repeatedly criticized (59). Recent developments in basic
studies of the etiology of bipolar disorder coming from research using modern
techniques of brain imaging and novel methods of molecular biology may now
assist in the search for more comprehensive models that can be based more on
construct validity than on face validity, that is, models that will be developed
based on a possible mechanism rather than on behavioral similarities. One possible
strategy that can be employed was recently alluded to in a paper from the Soares
group (59). These authors suggest that genetic models can now be developed
for the disease and show that appropriate and relevant genes can be identified
by comparing genetic changes in available animal models to changes in patients.
For example, Machado-Vieira et al. (59) summarize findings regarding the genes
encoding GRK proteins and show they are related to defects in dopamine trans-
mission, to behavioral sensitization to psychostimulants in animals, and to a
more severe form of bipolar disorder in patients. Furthermore, postmortem
studies have shown changes in GRK genes in the prefrontal cortex of patients
who suffered from severe mood disorders (59). Altogether, the authors suggest
that modifications of the GRK genes (using transgenic techniques in mice for
example) may result in a better model for the disease that will be hypothesis-driven.

Other genes and intracellular pathways had been implicated during the last
decade in bipolar disorder and indeed some of these ideas can be used to create
hypothesis-driven models with strong construct validity.

Manipulations of many of these tentative genes proteins and intracellular
pathways in animals do indeed result in behaviors that resemble bipolar disorder
and were recently summarized in a review paper (44). Data regarding a variety of
manipulations, pharmacological and genetic, were summarized, and the conclusion
of the authors was that there is strong evidence for the involvement of PKC, GSK3,
and the Erk-pathway in bipolar-like changes with some evidence supporting
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additional mechanisms including AMPA receptors, inositol, glucocorticoid recep-
tors, and Bcl-2 (44). Much of the behavioral information presented in that review
was collected while studying other disorders or the functions of normal brain beha-
vior and studies in the context of bipolar disorder are now needed to further explore
the role of these molecules and pathways in bipolar-like behavior in animals. Yet,
the data support the notion that bipolar-like behavioral changes correspond with
manipulations of bipolar-related molecules and this now may be a reasonable
approach to develop more specific, hypothesis-driven models for the disease.

Individual Variability
Further exploration of the relationship between specific genes, molecules, path-
ways, and behavioral models, may be enhanced by looking at individual variability
of responses. The issue of individual differences in behavioral modeling has been
grossly neglected for many practical reasons, but this neglect may represent one
of our major failures. It is apparent that the etiology of bipolar disorder (as
of other psychiatric and nonpsychiatric diseases) is based on an interaction
between the underlying genetics and the environmental effects on the biology
where susceptible individuals that are exposed to environmental precipitating
factors will express the disease phenotype (60–62). However, in most of our
attempts to model bipolar disorder we expose a group of “normal” animals to a
specific manipulation (whether it is a lesion, a drug, or an environmental stimulus),
and we expect them to become “sick” and allow us to explore possible new thera-
pies or the underlying biology of the “sickness.” Alternatively, with the develop-
ments in transgenic technology, we manipulate a mouse gene that is implicated
in bipolar disorder or its treatment and expect the entire population of mutant
mice to behave differently than the wild type controls. These approaches to
modeling can be helpful when there is an expectancy that a single gene mutation
may be responsible for a major part of a disease or its treatment, but this is probably
not the case for bipolar disorder, and accordingly, this approach may be limited to
demonstrating involvement of specific genes in the disease.

Any scientist who has been studying behavior knows the wide range of indi-
vidual variability within groups. Usually we try to overcome this variability by
increasing group size, but further attention to individual responses may in fact
be conducive to our research. If indeed subgroups of animals within a group
exposed to a specific manipulation can be identified as responders versus non-
responders (higher vs. lower behavioral change), it will enable us to (i ) use the
responders as a better model for the disease and (ii ) explore the biological differ-
ences between the subgroups. Some work using such methods has been done in
the context of other psychiatric disorders with interesting results demonstrating a
relationship between the extent of a behavioral response and biological changes
(63–66). For example, Cohen and her colleagues (67–69) exposed outbred rats to
a traumatic experience (inescapable cat odor) and tested them for anxiety-like
measures immediately and 10 days after the exposure. Whereas all rats showed
anxiety-like responses immediately after exposure, only about 30% of animals
remained anxious at the later testing. Interestingly, the animals that had a long-
term effect on behavior also had long lasting changes in physiological measures
(heart rate variability) and biochemical measures (higher plasma corticosterone
and ACTH levels, increased sympathetic activity, diminished vagal tone, and
increased sympathovagal balance) suggesting that these animals may be an
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excellent model for post-traumatic stress disorder (66). It may now be interesting to
explore the underlying genetic differences that may account for the differential
responding in these subgroups of outbred rats. A number of attempts to look at
individual variability have also been done in the context of depression and
bipolar disorder (65,70,71), but for most of it, scientists who identified differential
responses tried to amplify them by breeding the different subgroups to create
different lines of responders versus nonresponders (72,73). This approach may
clarify some of the genetics by making an extreme “caricature” of the initial
strain. However, the process of inbreeding may also mask the variability of the
normal population since other biological changes that evolve during inbreeding
may overshadow the specific differences that were responsible for the initial differ-
ential responses.

Research that emphasizes diversity in responding presents two main pro-
blems. First, a technical issue: if we want to identify subgroups in a general popu-
lation, we must start with a much larger number of animals. In light of constraints
such as money, space, and constant ethical concerns about animal research, this
may not always be easy. The second problem is more conceptual. Looking at
individual variability demands that we first identify subgroups within a population
and then test them in the context of our study. For example, if one hypothesizes
that animals that show a higher response to psychostimulants may model the
susceptibility of manic patients to these drugs and wants to test the effects of a
new mood stabilizer in this model, the first stage would be to treat a large group
of animals with a psychostimulant, identify the high- versus low-responding
subgroups, then treat with the new mood stabilizer, and see if indeed it has an
effect in the susceptible group but not in the resilient animals (as we may expect
from a good mood stabilizer). However, in testing for the effects of the new drug,
the behavior is not only influenced by the new treatment or the initial differences
between the subgroups, but also by the experience the animals had during the
screening procedure. Yet, if we can identify screening procedures that are mini-
mally intrusive or invasive, further attention to individual variability may open
many new avenues for our research and may result in significantly better models.

Modeling Endophenotypes
An additional approach that in a way combines many of the tentative methods
described above is modeling endophenotypes of disease. As mentioned earlier,
endophenotypes are quantifiable components in the genes-to-behaviors pathways,
distinct from psychiatric symptoms. Endophenotypes are heritable; they are
associated with illness in the population; they are state-independent (manifest in
an individual whether or not illness is active) and may need to be elicited by a
challenge (36). In the context of animal models, it is important to emphasize that
endophenotypes are not synonymous with symptoms. As such, an animal model
of an endophenotype of bipolar disorder may not have face validity for any facet
of the disease but will have strong construct validity for the endophenotype [for
in-depth discussion of the validity of models in psychiatry see (2,47,74)]. Animal
models based on the endophenotypes approachmay not be ideal for drug screening
purposes but may have great importance in the attempts to explore genes and
validate neurobiological mechanisms in model organisms (36).

Current theories regarding tentative endophenotypes for bipolar disorder
based on genetic and biological studies of patients and families include attention
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deficits, circadian rhythm instability, irregularities in motivation and reward, brain
structural changes, increased sensitivity to stress and psychostimulants, and
limbic-hypothalamo-pituitary-adrenocortical (LHPA) axis malfunction (36,37).
Animal models that will represent any of these tentative endophenotypes will be
helpful to decipher the biological basis of these specific endophenotypes and the
relationship between a specific endophenotype and susceptibility to the disease.
Models for endophenotypes can be developed genetically, by modulation of
specific genes that are implicated in the endophenotype, but can also be developed
based on individual variability within groups of “normal” animals as described
above. For example, it was recently demonstrated that the aggression displayed
in the resident-intruder test is ameliorated by chronic mood stabilizers treatment
(55). This behavior had been previously shown to be LHPA-axis dependent
(56,75) and it would be interesting to see now if variability in this behavior may
be related to other behavioral measures related to the LHPA axis and to any specific
genetic features (55).

CONCLUSIONS

There are several directions in which this field can go heuristically:

1. Development of an entirely novel model. For instance, dogs aremore difficult to
study than rats, involving more expense and greater ethical concerns. However,
male dogs exposed to the scent of vaginal secretions of a female dog in heat
become hyperactive, aggressive, hypersexual, and will not sleep or eat for
days while under the influence of this scent. Since hypersexuality and hyper-
activity are clearly parts of mania and since a new love affair is a frequent
stimulus for the onset of a manic episode, this model could have face validity.
The effects of lithium and other mood stabilizers on this model could be an
important direction. The biochemical effects of the pheromones of female
canines in heat on the brain of the male dog might also elicit important
information.
Recent papers (16,38) suggest that the classic field of study of lithium effects on
amphetamine hyperactivity or on the forced swim test might actually have been
a correct direction and that the contradictory results might have been due to
inadequate lithium dosing. A major effort is now underway to resolve
whether this is the case. If so, studies of other mood stabilizers and the bio-
chemical effects of higher dose lithium in these models could lead to rapid
new information.

2. Validation of additional facets of the disease may provide researchers with a
larger and broader arsenal of tools to explore the different components of
mania and depressive behavior, especially in the context of drug and mutant
animals screening (54).

3. Further attention to individual variability in behavioral responsemay be critical
for the development of more clinically relevant models and can forward the
understanding of genetic differences that may account for behavioral diversity.
Individual variability can also be of great importance in the exploration of
models for the endophenotypes of disease.

4. The notion of endophenotypes in bipolar disorder, suggesting an intermediate
level of exploration between symptoms and disease that may be genetically and
biologically relevant, poses a set of new challenges in modeling (36). Each of the
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tentative endophenotypes of bipolar disorder includes a set of biological and
behavioral components that may be possible to model using either genetic tech-
niques or other manipulations. Appropriate models for endophenotypes will
have a major impact on further research into this rejuvenated hypothesis.

Animal models for bipolar disorder have been used for many decades with
significant success in studies related to both the development of new drugs and
the exploration of the biological basis of the disorder. Yet, it is now clear that
with the recent major developments in molecular and genetic methodologies and
brain imaging techniques, the available models cannot adequately respond to the
new challenges (52,76). It is now the time for behavioral scientists to make a
major effort, possibly combining all the approaches discussed above, to detect,
create, and validate new models that may provide better and more adequate
tools to further the research of bipolar disorder.
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INTRODUCTION

The catecholamine (CA) hypothesis of bipolar disorder (BD)—a deficiency of CA in
depression and excess in mania—was proposed nearly three decades ago. CA
abnormalities remain the most replicated finding in the pathophysiology of BD.
However, the role of CA abnormalities in the pathophysiology of BD still
remains unclear. For example, it is unclear whether changes in CAs seen in
manic and depressed states are secondary to the mood state or primary, and it
remains to be clarified whether abnormalities in the CA system are presynaptic
or postsynaptic. Rapid advances in the field of neuroscience in the last three
decades have increased our knowledge of the role of CAs in the working of the
nervous system and provided new tools to explore CA abnormalities. Clinical
research in CA abnormalities in BD has evolved from measurement of changes in
CAs in bodily fluids and peripheral tissue to neuroendocrine challenge studies to
molecular analysis of postmortem tissue and direct visualization of CA system
with brain imaging methods such as single photon emission computed tomography
(SPECT) and positron emission tomography (PET).

Preclinical and clinical literature on the role of CAs in depression and
psychiatric illnesses and mode of action of psychotropic drugs is fairly extensive.
In this review, the main focus is on studies that have specifically investigated the
role of CAs in BD. There are only a few preclinical studies regarding pathophysiol-
ogy of BD because of a lack of suitable animal models for bipolar illness. However,
there is an extensive preclinical literature regarding pathophysiology of depression
using animal models of depression. In this review, findings from depression
research are reviewed where they are relevant to understanding of pathophysiol-
ogy of BD.

This chapter first reviews the role of CAs in physiology of mood and mood
regulation. Next, studies that have investigated CA abnormalities in BD, using
different methodological paradigms, are reviewed. The interaction of CAs with
other neuromodulators is discussed, and a model for the role of CAs in mood
regulation is presented. Finally, methodological difficulties in conducting research
in the pathophysiology of BD and future directions of research in this area are
discussed.
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NEUROCHEMISTRY AND NEUROPHYSIOLOGY OF
CATECHOLAMINE
Neurochemistry and Neurophysiology of the Dopaminergic System
Dopaminergic cell bodies located in the ventral mesencephalon formmost dopamine
(DA) cell bodies and project widely throughout the central nervous system (CNS).
These cell bodies give rise to the nigrostriatal, mesocortical, and mesolimbic DA pro-
jections. A separate set of dopaminergic cell bodies projecting to the hypothalamus
and pituitary arise from a different brain region—the arcuate nucleus—and are
referred to as the tuberoinfundibular (TIDA) and tuberohypophysial neurons (2).
The arcuate nucleus receives input from cortical regions and is involved in
production of hormones such as growth hormone (GH) and prolactin in response to
different mood states.

Dopamine receptors have traditionally been divided into D1 and D2 types
based on the presence and absence of a positive coupling between receptors and
adenylate cyclase activity. D1 receptors mediate the dopamine-stimulated increase
in adenylate cyclase activity. D2 receptors are thought to mediate effects that are
independent of D1-mediated effects and also to exert an opposing influence on
adenylate cyclase activity (3). Recently, a number of subtypes of these receptors
have been discovered that are of particular importance to the study of psychiatric
disorders. D3 receptors, a subtype of D2 receptors, and D5 receptors, a subtype
of D1 receptors, are present in high levels in the limbic brain structures. The D4
receptor, a subtype of D2 receptor that has high levels in the frontal cortex,
midbrain, amygdala, medulla, and lower levels in the basal ganglia, has been
implicated in the action of clozapine, which reverses both the negative and positive
symptoms of schizophrenia (4). Self et al. (5) have described opposite modulation of
reward behavior by D1 and D2 receptors agonists. D1 receptor agonists decrease
the reinforcement of reward-seeking behavior, whereas D2 receptor agonists
increase reinforcement of reward-seeking behavior (5). It can be postulated that
the state of anhedonia seen in depression could be a manifestation of either increase
in activity of the D1 receptors and/or a decrease in activity at the D2 receptor site
and opposite changes could lead to mania.

Role of Dopamine in Reward Mechanisms
Dopamine has been implicated in the neurochemical mechanisms involved in
reward behavior. Schultz (6) has reported that DA neurons in the ventral tegmen-
tal area (VTA) and substantia nigra are preferentially activated in response to a
novel rewarding stimulus and encode for reward predictability. Wainer (7), in a
series of studies, reported that anhedonia seen in an animal model of depression
is related to dopamine receptor subsensitivity that is reversed by a variety of
antidepressant drugs. Furthermore, the reward potential of a number of addict-
ing drugs such as cocaine and opiates seem to be mediated via the mesolimbic
dopamine pathways involving the nucleus accumbens (3). Alteration in
reward-related behavior has been thought to be central to the pathophysiology
of BD (8,9). Mesocortical and mesolimbic dopaminergic pathways have been
shown to be involved in reward-related behavior. Manic behavior is frequently
associated with reward-seeking behavior and depression with withdrawal and
inability to derive pleasure from a rewarding stimulus (anhedonia). Therefore,
it is likely that abnormalities of mesocorticolimbic dopamine system may be
present in BD.
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NEUROCHEMISTRY OF THE NORADRENERGIC SYSTEM

The major noradrenergic (NA) nucleus in the brain is the locus coeruleus (LC),
which is located on the floor of the fourth ventricle in the rostra/pons (10). NA
neurons give rise to diffuse axonal projections and innervate virtually all areas of
the brain and spinal cord. The mammalian brain also contains smaller collections
of additional NA neurons and adrenergic neurons that are located in discrete
regions of the pons and medulla. These neurons show more restricted patterns of
axonal projections. The NA cell bodies exert influence on the brain and the body.
Therefore, they are involved in both modulating brain function and producing
the body’s response to emotions.

The NA cell bodies projecting to other brain regions seem to exert a modula-
tory effect on the target site. Not all NA-containing nerve terminals in the cortex
make synaptic contact with the local cortical neurons; rather, some of these
neurons release NA in a manner similar to that through which hormones are
secreted and thus have generalized effects on the CNS regions (11). The LC is
also very sensitive to both external environmental stimuli and also changes in the
body’s internal homeostasis. The LC output is involved in flight-and-fight
responses and regulates level of arousal, the responses of the sympathetic
nervous system including pulse rate and blood pressure, and the signaling of the
danger signal of the organism.

LC neurons receive a number of inputs that provide information about
the state of the body’s external and internal environment. These inputs include
other neurotransmitter systems, for example, the serotonin [5-hydroxytryptamine
(5-HT)], opioid, gamma aminobutyric acid (GABA), acetylcholine (ACh),
dopamine, and glutamate systems. A number of peptides influence the firing
rate of the LC neurons, most notable being the corticotropin-releasing hormone
(CRH). Finally, the NA system itself provides negative feedback to the LC
neurons (10,12). The synthetic pathway for CA involves a series of enzymatic
reactions. Tyrosine hydroxylase is the rate-limiting enzyme for the synthesis of
both norepinephrine (NE) and DA. Dopamine 3-hydroxylase, which converts
DA to NE, is present only in NA neurons. In adrenergic neurons, the enzyme
phenylethanolamine-N methyl transferase converts NE to epinephrine.

Adrenergic receptors have been classified as being either a- or b-adrenergic
subtype. Each of these subtypes has two secondary subtypes, (a l and a2; b1 and
b2). Each of these receptors has been cloned (4). Variant forms of these receptors
may exist with different regional distributions and functional properties.
Activation of the b-adrenergic receptors leads to physiological responses by stimu-
lating adenylate cyclase via coupling with Gs protein (13). Activation of the
al-adrenergic receptors leads to physiological responses through activation of Gx

proteins (13). Activation of a2-adrenergic receptors leads to physiological responses
via coupling with Gi and or Go proteins, which leads to activation of specific Kþ

channel and/or inhibition of adenylate cyclase (13). There are also a2-adrenorecep-
tors present on 5HT neuron terminals in the hippocampus, and electrophysiological
studies suggest that they exert a tonic inhibitory influence on the firing of 5HT
neurons (14).

Role of Norepinephrine in Reward Mechanisms
As noted earlier, abnormalities in rewardmechanisms are likely to be present in BD.
DA function has been implicated in maintenance of reinforcing properties of a
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rewarding stimulus. The role of NE in reward mechanisms is less clearly
understood. However, considering its role in attention and arousal, NE may be
involved in the initial phase of learning by increasing attention on the rewarding
stimulus (15), Increased LC firing has been reported with exposure to a rewarding
stimulus (15). Furthermore, LC firing has been shown to modulate the firing of DA
neurons (16). In mania, increased NE neurotransmission may be responsible for
increased attention to rewarding stimuli, and in depression a decrease in NE
may lead to lack of attention or interest in rewarding stimuli (8,9).

CATECHOLAMINE AND MOOD
Mood and Mood Regulation
Our understanding of what constitutes emotion or mood has changed with
changing sociocultural views about emotions and with scientific progress in the
investigation of neural substrate of emotions. A century ago, William James (17)
postulated that emotions arose from bodily reactions to stimuli, such as changes
in the autonomic and motor system led to changes in heart rate, blood pressure,
increased or decreased bodily secretions, and changes in motor activity, which
was then perceived as an emotion. Selye’s (18) discovery of the stress response
highlighted the role of hormones, particularly stress hormones such as cortisol, in
the regulation of emotion. Until recently, the neural substrate of mood and
emotion was thought to be confined to the older part of the brain, the so-called
emotional brain or the limbic circuit (19,20). Papez (20) described a circuit in the
brain, which he called the emotional brain, and postulated that changes in this
primitive part of the brain were responsible for changes in emotions. Recent
advances in neuroimaging and neurophysiology have brought to our attention
the role of cognition and neocortical function in the formulation and regulation
of mood. Damasio (21) postulated that emotions, instead of just a function of
primitive aspects of the brain, are more accurately conceptualized as arising from
interactive effects of the functioning of neocortex, limbic system, basal ganglia,
brain-stem autonomic nuclei, and bodily responses such as changes in blood
pressure and pulse rate.

Reciprocal links between the corpus striatum and the cerebral cortex have
been shown to be involved in the production of movements and more recently
have been implicated in the production of normal thought processes (22,23). The
basal ganglia plays a central role in regulation of the motor and cognitive
circuits. Recently, it has been proposed that a parallel medial prefrontal cortex–
striatum–palladium–thalamic circuit is responsible for mood regulation (24–29).
Such a hypothetical mood-regulating circuit (MRC) (30) is depicted in Figure 1.
Within this circuit the principal neurotransmitters for fast conductance (,1 msec)
(31) are glutamate (e.g., cortical–subcortical connections) (32) and GABA
(e.g., striatopallidial and pallidothalamic) (29,32). The double inhibition mediated
through GABA between the striatopallidial and pallidothalamic links can confer
an oscillating property to the activity of this circuit (29). The different states that
this circuit oscillates through can be conceptualized as varying mood states. The
fast-conductance feedback loops within this circuit can stabilize mood within
certain limits and prevent extreme changes in mood. However, feedback loop
circuits of this type have the disadvantage of uncontrollable oscillations when
any part of the circuit is damaged (33). Similarly, abnormalities in external
modulators could change the oscillatory properties of the circuit.
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Catecholamines as Modulators of the Mood-Regulating Circuit
A number of modulatory neurotransmitters modulate the fast-conductance neuro-
transmission mediated via glutamate and GABA (30,34) by acting on signal
transduction factors and change in neuronal excitability. The striatum plays an inte-
gral role in modulation of cortical outputs in the motor system and is postulated to
do the same for thought and emotions (22,23,29). The principal modulatory
neurotransmitter within the striatum is dopamine, which may act directly via G
protein-coupled receptors or indirectly via control of neuropeptide expression
(35). Mesostriatal dopamine projections from the midbrain provide the dopamin-
ergic modulation of the MRC in response to external rewards (6).

Diffuse projections from the LC also modulate the activity of the MRC.
NE neurons project more diffusely to the brain. NE has been shown to decrease
the signal-to-noise ratio for firing of neurons (7). Adrenergic input can modulate
neuronal excitability through its actions on such signal transduction mechanisms
as the cAMP system or G proteins (34,36).

Additional modulation is provided by other neurotransmitters such as 5HT,
ACh, neuropeptides, and hormones. The activity of the MRCmay also be regulated
by intracellular factors such as internal variations in signal transduction factors and
genomic factors. The central role of CAs in mood regulation is illustrated by mood
changes seen in a number of neuropsychiatric illnesses involving CA dysfunction.
Parkinson’s disease, which involves degeneration of DA neurons, is frequently
associated with depression. Patients with both BD and Parkinson’s disease have
been noted to have increased motor symptoms when depressed and decreased
symptoms during manic states, suggesting increased DA neurotransmission
during mania and decreased transmission in depression. Folstein et al. noted that

FIGURE 1 Relationship of catecholamine tracts originating from the midbrain to the MRS.
Abbreviations: DA, dopamine; GABA, gamma aminobatyric acid; NE, norepinephrine.
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Huntington’s disease, an autosomal dominant illness associated with DA neuronal
atrophy in the caudate and putamen region, is frequently accompanied by
depression (40% comorbidity) and mania (10% comorbidity). Familial calcification
of basal ganglia (Fahr’s disease) and striatal infarcts are also accompanied by
depression and mania (37). Together, these observations suggest that dopamine
abnormalities that are central to the motor abnormalities seen in these neuro-
psychiatric illnesses may also lead to dysregulation of the MRC. For example,
Swerdlow and Koob (29) have drawn a parallel between dyskinesias seen in
movement disorder associated with DA abnormalities and mood dysregulation
seen in BD.

The kindling and sensitization model proposed by Post and Weiss (38) draws
an analogy between seemingly increased incidence of mood episodes seen during
the natural course of BD and the increasing ability of a repeatedly administered
electrical or chemical stimulus to induce a seizure or changes in motor behavior.
There are some indications that CAs may be involved in this phenomenon
because kindled seizures are abolished by monoamine depletion with reserpine
(39) and administration of haloperidol. As discussed earlier, the neuromodulatory
properties of CAs can alter excitability of neurons; therefore, repeated release of
CAs may contribute to the kindling phenomena by altering signal transduction
mechanisms. Phasically applied DA has been shown to potentiate corticostriatal
neurotransmission and alter striatal neuronal plasticity (6,40). Recently, Antelman
et al. (1) reported a cycling animal model for BD. Repeated exposures to cocaine
led to cyclicity of amphetamine-induced efflux of dopamine from slices of rat
nucleus accumbens that was prevented by lithium treatment.

Catecholamines as Translators of Activity of MRC into the Body’s
Emotional Response
Changes in activity of the MRC are translated into bodily changes by the output of
the MRC directed at the hypothalamus, leading to neuroendocrinological changes
(e.g., through TIDA DA projections), actions on the parasympathetic and sympath-
etic (mediated through NE) nuclei in the brainstem, and actions on the motor circuit
(DA mediated). Activity of the sympathetic nervous system is mediated by
production of NE and epinephrine from the adrenal gland and nerve endings.
Increase in CM and their metabolites in serum, urine, and cerebrospinal fluid
(CSF) frequently accompany increased arousal and activity. Therefore, besides reg-
ulating mood, CAs are also the product of any changes in mood arising from dys-
function of the MRC. Biochemical changes in the CA system, particularly in the
periphery, are therefore dependent on the mood state and are not necessarily
indicative of etiology of the change in mood state. A review of abnormalities of
CAs in BD is best done keeping in mind these two separate components of the
CA system.

ABNORMALITIES OF THE CATECHOLAMINE SYSTEM IN
BIPOLAR DISORDER

“This hypothesis, which has been designated the ‘catecholamine hypothesis of
affective disorders,’ proposes that some, if not all, depressions are associated with
an absolute or relative deficiency of catecholamines, particularly norepinephrine,
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at functionally important receptor sites in the brain. Elation conversely may be
associated with an excess of such amines” (41).

The biogenic amine, or catecholamine, hypothesis was first described in the
literature, concurrently by Schildkraut (41) and Bunney and Davis (42). It was
noted that depletion in levels of norepinephrine and its metabolites, which could
be induced by antihypertensive agents such as reserpine, caused a depressive
state. Likewise, monoamine oxidase inhibitors, such as the antituberculosis
agent iproniazid, which blocked the enzyme responsible for the deactivation of
norepinephrine, were shown to have antidepressant properties. Imipramine,
initially developed for the treatment of schizophrenia, was also found to have
antidepressant properties, by blocking the reuptake of norepinephrine.

Shortly after, researchers focused on the contribution of other neurotransmit-
ters on the pathophysiology of BD. Mania was conceptualized as a state in which
there is an excess of the catecholamines while in depression there is a decrease in
CAs (43)—the so-called second generation CA hypothesis. Another hypothesis
incorporated the role of serotonin in CA dysfunctions—the permissive hypothesis
that stated that both mania and depression may be associated with decreased
serotonin function. Both Coppen (44) and Lapin (45) proposed an indoleamine
hypothesis, stating that decreased levels of serotonin contribute to depressive
illness. Prange and others (46) expounded on this idea by proposing the permissive
hypothesis of biogenic amines, which states that catecholamine activity is mediated
by a deficiency of serotonin transmission. Thus, in the context of decreased seroto-
nin, an increase in CA produces a manic state, while decrease in CA produces a
depressive state.

Abnormalities in Serum, Urine, and CSF Levels of Catecholamines
and Their Tetabolites
The original CA hypothesis of depression (41,42) postulated that depression was
caused by a decrease in the amount of CA production and mania was due to
a compensatory increase in CA production. Consequently, much of the earlier
studies of the pathophysiology of BD were directed toward measuring CAs and
their metabolites in bodily fluids. The results of these studies shed only limited
light on the pathophysiology of BD because many of these studies did not give con-
sistent results and because it is difficult to determine the relative contribution of
peripheral versus central origin of plasma and urinary CA metabolites homo-
vanillic acid (HVA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) levels. CSF
HVA levels are also considerably influenced by plasma levels and the brain (47),
and many studies did not make a correction for plasma levels while reporting
CSF levels of CAs and their metabolites. Furthermore, most CSF dopamine
metabolites are derived from the nigrostriatal pathways and do not necessarily
reflect the function of the mesocorticolimbic (MCL) system (7). Finally, it is difficult
to completely tease out state-related confounds. As peripheral MHPG, HVA, NE,
and epinephrine levels are considerably influenced by motor activity and degree
of arousal, changes in these measures in mania and depression are more likely to
be a state-related rather than a trait abnormality.

Abnormalities in Norepinephrine and Its Metabolites
No consistent relationship has been found in levels of MHPG in the CSF, serum, or
urine in studies of depressed patients (48). Schatzberg et al. (49) reported that
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bipolar depressed patients had significantly lower urinary MHPG levels than
unipolar nonendogenous depressed patients. Similar results were obtained for
plasma NE and MHPG levels. Some recent studies have supported this finding,
whereas others have not. Negative findings were reported from the Depression
Collaborative studies (50) and in a Swedish study (51). According to Schatzberg
and Schildkraut (52), the negative findings of these studies could be due to the
inclusion of more bipolar II patients than bipolar I patients. Other studies have
used more complex measures of CA levels in an effort to find a relationship with
the state of depression or to differentiate between different types of depression.
Ratio of NE and epinephrine to their metabolites, total body CA turnover, ratio
of NE to NE plus metabolites, and epinephrine to epinephrine plus metabolites
and discriminant functional analysis of 24-hour urinary CAs and metabolites
[depression (D)-type scores] have been studied. These studies showed that unipolar
depressed subjects have a higher excretion of CA than bipolar depressed subjects
and control subjects (53). These measures may be useful in differentiating
unipolar from bipolar depression; however, the significance of these findings for
the pathophysiology of BD is not clear.

Dopamine Abnormalities
A number of studies of turnover of dopamine (analogous to studies of NE and its
metabolites) and its metabolites have been carried out. CSF levels of the major
dopamine metabolite HVA have been consistently found to be decreased in
depression associated with psychomotor retardation but not in agitated depression
and are increased in mania (54). Therefore, reduced CSF HVA is thought to be
related more to the symptom of psychomotor retardation than to depressed
mood (7). A decrease in prolactin levels in seasonal affective disorder has been
reported and was seen in both unipolar and bipolar patients throughout the year
irrespective of depressive symptoms (9,55). The decreased prolactin level has
been proposed as a trait abnormality that could be secondary to increased DA
receptor sensitivity secondary to decreases in DA levels in bipolar depression.

CHALLENGE STUDIES
Depletion Studies
Effects of acute depletion of CA using alphamethylparatyrosine (AMPT), a tyrosine
hydroxylase inhibitor, have been studied in patients with depression and in healthy
subjects. In healthy subjects, chronic administration of AMPTdoes not cause depress-
ive symptoms (56). In bipolar depressed patients, AMPT has been noted to increase
depression and in manic subjects it can decrease the severity of mania (57). Berman
et al. (58) reported an increase in depressive symptoms after AMPT-induced CA
depletion in euthymic subjects with a remote history of unipolar depression.

Anand et al. (59) reported on the effects of CA depletion in euthymic bipolar
subjects stable on lithium therapy. AMPT administration in these subjects did not
lead to relapse of depressive symptoms. However, 36 to 48 hours after depletion
was completed and the subjects were recovering from the depletion with return
of plasma MA and MHPG levels back to baseline, subjects had a transient
relapse of hypomanic symptoms. This relapse of hypomanic symptoms was not
accompanied by increase in plasma HVA and MHPG levels from baseline. It was
hypothesized that the relapse of hypomanic symptoms could have been due to
either an increase in receptor sensitivity or increased central production or
release of CAs that was not detected in plasma.
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Stimulation Studies
CA-releasing agents such as amphetamine have been used to increase CA levels in
the brain. Though several studies have shown increased arousal and activation
after amphetamine injection in bipolar subjects and even nonbipolar subjects,
sustained mania has not been consistently recorded (60,61,62). The psycho-
stimulant effect of amphetamines is blocked by dopamine antagonists (63,64).
McTavish et al. (65) used a methamphetamine challenge in acutely manic and
healthy control subjects who four hours earlier had received a tyrosine-free
amino acid mixture, in a double-blind crossover with a control mixture. The
tyrosine depletion caused a lowering of the physiological and psychological
responses to methamphetamine.

The observation that of all pharmacological challenges, L-dopa is most likely
to induce mania lends support to the CA hypothesis for mania. Similarly, direct DA
agonists such as bromocriptine and piribedil can relieve bipolar depression and
even precipitate mania (66), and the antidepressant response to piribedil has
been associated with low pretreatment levels of HVA in the CSF (67). Cocaine, a
potent inhibitor of dopamine transporter (DAT), can cause mania-like symptoms
in healthy control subjects and precipitate mania in bipolar subjects. There has
been one report of precipitation of manic symptoms with administration of
yohimbine, an a2-adrenergic presynaptic autoreceptor antagonist (68). There are
also two case reports of secondary mania caused by caffeine (69,70).

Neuroendocrine Challenge Studies of Catecholamine Receptor
Function in Bipolar Disorder
Neuroendocrine challenge studies measure plasma levels of hormones after a chal-
lenge with a drug that acts on a particular receptor. Most of these studies have been
done in depression, but no consistent abnormalities have emerged. Similarly, in BD
no consistent results have been found in DA systems using this method. The neuro-
endocrine challenge paradigm has a number of limitations: it is difficult to find
agents that are specific to only a particular receptor subtype because in many
cases the challenge paradigm cannot differentiate between pre- and postsynaptic
effects of the challenging agent (71), and the evidence for receptor sensitivity is
indirect and is influenced by a number of intervening variables. Some of these limit-
ations can be circumvented by using agents that are more specific and by combining
challenge studies with brain imaging studies in which the changes in brain events
can be measured directly.

Dopamine Receptor Abnormalities
Meltzer et al. (72) andHirschowitz et al. (73) did not findan increasedGHresponse to
apomorphine (a postsynaptic D2 receptor stimulator) in manic subjects. McPherson
et al. (74) also failed to show aGHor prolactin change in response to apomorphine in
bipolar or unipolar depression. Linkowski et al. (75) and Nurnberger et al. (64) were
unable to differentiate manic subjects from other diagnostic groups on hormonal
responses to L-dopa and amphetamine.

Neuroendocrine Receptor Abnormalities
The GH response to clonidine that has been shown to be mediated through postsyn-
aptic a2 receptors (76) has been used in a number of studies. A blunted
GH response to clonidine was shown to be present in depression (77), and a number
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of studies have replicated this finding. However, Ansseau et al. (78) did not find any
differences betweenmanic anddepressed subjects onGHresponse to clonidine.More-
over, GH response to the dopamine antagonist apomorphine (79), amphetamines
blockade ofNA andDAuptake (80), and the serotonin agonistm-Chlorophenylpiper-
azine (mCPP) (81) has also been found to be reduced. GH release is also mediated
by somatomedins and somatostatin, which have been reported to be altered in
depressed patients (61,82). Therefore, it is possible that an abnormality intrinsic to
GH release may be present in affective disorders. More studies in drug-free bipolar
depressed subjects are needed to elucidate the cause of the blunted response in
depressed subjects (76).

In summary, no consistent change in a particular CA receptor type is seen
in BD. Methodological issues, particularly the lack of ideal animal models of BD
and the limitations of the neuroendocrine challenge paradigm, make it difficult to
draw firm conclusions from studies done so far. Brain imaging studies offer some
promise in the measurement of the DA and the 5T system. However, radioligands
for the adrenergic system have not been used often in clinical studies.

MECHANISM OF ACTION OF PHARMACOLOGICAL AGENTS USED
IN THE TREATMENT OF BIPOLAR DISORDER

The biochemical effects of medication used in the treatment of BD have been used
to elucidate the role of CAs in the pathophysiology of BD.

Medication Effects on the Dopamine System
A number of effective antimanic agents act on the dopamine system. Neuroleptics
such as haloperidol, which are D2 receptor antagonists, are one of the most effective
antimanic agents, lending support to the hypothesis of increased DA neurotrans-
mission in mania. Lithium and sodium valproate have both been shown to decrease
postsynaptic D2 receptor sensitivity. Waldmeier (83) reviewed the mechanism of
action of drugs useful in the treatment of BD and concluded that downregulation
of DA neurotransmission seemed to be a common property of medications useful
in the treatment of BD.

Willner (7) recently proposed the hypothesis that even selective serotonin
reuptake inhibitors (SSRIs) and tricyclic antidepressants improve depression by
increasing the sensitization of D2/D3 receptors in the MCL dopamine system.
The MCL dopamine system is primarily responsible for reward reinforcement
and experience of pleasure. Using the paradigm of locomotor response to
amphetamine or apomorphine as a measure of DA receptor function, Willner (7)
showed that most antidepressants increase the psychomotor stimulant response
to dopamine agonists. This response is primarily mediated through the MCL DA
system, and behavioral stereotypes mediated through the mesostriatal system
and neuroendocrine responses mediated through the TIDA DA system are not
affected. The effects of chronically administered tricyclic antidepressants are
reversed by administration of the DA antagonist sulpiride in the nucleus
accumbens but not in the dorsal striatum (84).

Medication Effects on the Neuroendocrine System
Özerdem et al. (85) demonstrated lithium administration (after 5 days and 4 weeks)
in healthy volunteers produces increased plasma NE and increased response to
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idazoxan, an a2-adrenoreceptor antagonist. Antimanic effects of lithium have been
shown to be accompanied by decreases in plasma and urinary MHPG levels (86).
Clonidine, an a2-agonist that decreases presynaptic NE release, has been reported
to have some antimanic activity (87,88). Nearly all antidepressants have been impli-
cated in precipitation of mania when used for the treatment of bipolar depression.
However, tricyclic antidepressants that predominantly decrease NE reuptake
have been identified as most likely to precipitate mania or increase cycling (89).
Paradoxically, bupropion, a dopamine reuptake inhibitor, is thought to be an anti-
depressant least likely to precipitate mania.

Catecholamine Studies in Peripheral Tissue
Due to the inaccessibility of the brain cells themselves, investigators have studied
biochemistry in blood cells for general abnormalities that may be common
to both blood cells and to neurons. In this regard, platelet studies have been con-
ducted because platelets have a number of important similarities with neurons.
However, the relationship of biochemical abnormalities in peripheral tissue to
that in the CNS is not clear.

Enzyme Studies
Enzymes responsible for production and degradation of CA are also present in
platelets. Platelet dopamine b-hydroxylase (DBH), the enzyme that converts DA
and NE, has been found to be lower in bipolar depressed subjects compared with
unipolar subjects (90–93). The lower levels of DBH in bipolar subjects compared
with unipolar subjects have been found most in subjects with a family history of
affective illness (94). Ikeda et al. (95) reported higher DBH levels in the manic
phase compared with the depressed phase. The value of platelet DBH levels
for the diagnosis of BD is limited by a large variation between individuals that
precludes accurate statistical evaluation.

Monoamine oxidase (MAO) deaminates both DA and NE to their inactive
metabolites. MAO is of two types: MAO-A is found predominantly in neurons
andmetabolizes both DA andNE, whereasMAO-B is found in platelets and metab-
olizes DA. Therefore, the interpretation of changes in platelets for changes in
neurons is questionable. MAO levels have been found to be lower than controls
in bipolar I depressed subjects, but this difference is not found in bipolar II
depressed subjects and unipolar depressed subjects (96).

Catechol-o-methyltransferase (COMT) is an extraneuronal enzyme that
degrades NE. It is also found in red blood cell membranes and is under genetic
control. In one study, this enzyme was found to be lower in bipolar depressed sub-
jects compared with unipolar subjects (97), but this finding has not been replicated
(98). Two interesting studies of velo-cardio-facial syndrome (22q11.2 deletion syn-
drome or DiGeorge syndrome) show that patients have a deletion of an allele
that results in low activity of COMT, and causes a rapid cycling BD (99). Graf
and colleagues (100) treated three of four patients with metyrosine, which
was given to reduce CA levels, and did in fact lower the baseline levels of CSF
HVA, and improve their aggression and behavioral symptoms. A larger study of
COMT is needed to clarify these findings.

Receptor Studies
Platelets and leukocytes have been most frequently used for peripheral
tissue receptor studies. Decreased prostaglandin E stimulation of platelet a2
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receptor-mediated cAMP production has been reported in unipolar depression
(101). Garcia-Sevilla et al. (102) investigated the a2-adrenergic receptor-mediated
inhibition of platelet adenylate cyclase and induction of platelet aggregation.
They found a hypersensitivity to a2-adrenergic receptor agonists in drug-free
depressed patients that was decreased after long-term antidepressant treatment
(102). Platelet a2 receptor number measurement has revealed an increase in
some studies, but no change has been found in other studies (103). Results of
studies of peripheral a2-adrenergic receptors have also been contradictory (104).
a2-Adrenergic receptor studies for bipolar depression patients need to be
conducted.

b-Adrenergic receptors have been studied on human leukocytes. Though no
studies have investigated the bipolar group separately, a decreased cAMP response
to b-adrenergic receptors seems to be predominantly found in unipolar depressed
subjects (105). Wright et al. (106) reported decreased b-adrenergic receptors in
bipolar subjects and their ill relatives, a finding that has not been replicated
(107,108).

Signal Transduction Mechanisms
Manji and Lenox (109) reported an increase in leukocyte membranes of immuno-
labeling of the 45-kDa form of Ga,s, in bipolar affective disorder group considered
as a whole (lithium-treated or untreated) compared with control subjects. It has
been shown that lithium competitively inhibits the phosphatidylinositol second
messenger signal transduction pathway (110–112). Manji et al. (113) reported
effects of lithium and sodium valproate on the protein kinase C (third messenger)
pathway, and the protein kinase C inhibitor tamoxifen has been shown to have
some antimanic efficacy. Both lithium and sodium valproate also seem to have
genomic effects (113,114). Freidman et al. (115) reported altered protein kinase C
activity during the manic phase of BD. Recently, Kaya and colleagues found that
in bipolar patients, lithium, thought to inhibit inositol monophosphatase (IMPase),
does in fact increase erythrocyte IMPase activity with prolonged use (116).

POSTMORTEM STUDIES IN BIPOLAR DISORDER

Postmortem studies can directly assess brain neurotransmitters and their receptor
systems. Though numerous postmortem studies have investigated the role of
DA receptors in schizophrenia, few or none have examined DA receptors
in autopsy specimens from patients with BD. A more detailed discussion of
postmortem studies can be found in Chapter 8. Young et al. (117–120) in a series
of studies reported abnormalities in CA and signal transduction mechanisms in
BD. Young et al. (117) reported an elevation of Gsa subunit in prefrontal cortex in
BD subjects; increased forskolin-stimulated cyclic AMP production in prefrontal,
occipital, and temporal cortex; but no increase in GTP-induced CAMP production
(118). Young et al. (119) did not find any differences between bipolar subjects and
control subjects on basal levels of NE or DA but did find an increased MHPG/
NE ratio in BD subjects. Young et al. (120) did not report any differences in b recep-
tor binding in any part of the brain in BD subjects and did not find any change in
Gsa subunit. Rahman et al. (121) reported a decrease in cytosolic cAMP-dependent
phosphokinase levels that could be secondary to increased AMP signaling in BD
subjects. Freidman and Wang (122) reported that in bipolar brain membrane
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there is enhanced receptor–G protein coupling and an increase in the trimeric state
of the G proteins and concluded that these changesmay contribute to produce exag-
gerated transmembrane signaling and to the alterations in affect that characterize
bipolar affective disorder. Wang and Freidman (123) also reported an increase in
phosphokinase C activity in postmortem brains of bipolar subjects. Recently,
Dean and others (124) measured zolpidem-insensitive and zolpidem-sensitive
(3H) flumazenil binding in the hippocampus of postmortem patients with schizo-
phrenia and BD. They found an increase in zolpidem-insensitive binding,
suggesting an increase in GABA receptors containing the a5 subunit, which may
be related to cognitive symptoms seen in BD.

Postmortem studies point to a possible increased CA turnover and abnormal
postsynaptic signal transduction mechanisms. However, postmortem studies have
several limitations: dynamic changes in CA cannot be measured, the affective state
of the subject at the time of death cannot be controlled, frequently the medication
status of the subjects is also not known, and cause of death can affect results.
Obtaining a more homogenous sample of postmortem brains in regard to cause of
death, documentation of medication status before death, and clinical diagnosis at
the time of death can circumvent these difficulties. Setting up brain banks and con-
sortiums (e.g., the Stanley Foundation Brain Consortium) can help researchers
with access to a larger number of brain samples.

BRAIN IMAGING OF CATECHOLAMINE SYSTEM IN
BIPOLAR DISORDER

Recent advances in brain imaging have opened new ways to directly measure
neurotransmitter receptor function in vivo. Compared with the number of
studies done in schizophrenia and depression, fewer brain-imaging studies have
been conducted in BD. Brain imaging studies are reviewed in detail in Chapter 9.
A short discussion is presented here of brain imaging studies that have direct
relevance to the role of CAs in BD.

Structural Brain Imaging Studies
These studies in BD have suggested the following abnormalities may be present:
increased rates of subcortical white matter and periventricular hyperintensities in
elderly and nonelderly patients (125,126), increased third and lateral ventricular
measures (127,128), and smaller cerebellar measures (129,130). There is also equiv-
ocal evidence of temporal lobe abnormalities (131). Several studies support the
finding of enlargement of the amygdala (132,133). Some studies have shown an
increased hippocampus volume (134) and increased caudate volumes in bipolar
subjects (126), a finding different from unipolar depression in which a decreased
hippocampal volume and decreased size of the caudate have been reported
(135,136). Drevets et al. (28) reported a structural defect in the subgenual prefrontal
cortex in subjects with familial depression (unipolar and bipolar depressed), a
finding that has been replicated (137).

Blood Flow Studies
Cerebral blood flow studies have provided evidence for functional abnormalities in
structures in the MRC in BD. Work by Al Mousawi et al. (138) reported lower blood
flow in the frontal lobe compared with the occipital lobe in BD. Gyulai et al. (139)
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reported asymmetries in anterior temporal lobes in both bipolar mania and
depression.Migliorelli et al. (140) reported reducedbloodflow in right basotemporal
cortex, whereas O’Connell et al. (141) reported increased activity in the temporal
lobes in manic subjects. Drevets et al. (28) reported decreased blood flow in the pre-
frontal subgenual cortex in depressed BD subjects and increased flow in mania.

Together the structural and functional studies of BD tend to point to abnorm-
alities in the prefrontal-striatal-thalamic-hippocampal area that may be abnormal in
BD. As discussed earlier, CAs, and in particular DA, are principal modulators of
this circuit.

Neurochemical Studies
PET, SPECT, andmagnetic resonance spectroscopy studies explore the neurochemical
abnormalities that may underlie the structural and blood flow abnormalities in BD.
Again, compared with a number of studies done in schizophrenia and depression,
very few neurochemical studies have been done in BD. PET studies of DA receptors
have shown an elevation of striatal D2 receptor numbers in psychotic mania but not
in nonpsychotic mania (142–145). In these studies, psychotic manic subjects were
more similar to schizophrenic subjects and non-psychotic manic subjects were more
similar to healthy control subjects on measures of D2 receptor binding. In another
study thatdidnotmakeadistinctionbetweenunipolar andbipolardepressedsubjects,
D’haenen and Bossuyt (146) reported bilateral increase in D2 receptors in the basal
ganglia. It is difficult to reconcile the findings of these studies unless increased D2
receptor numbers is a trait marker for BP; however, euthymic bipolar subjects were
not studied using these methods.

Anand et al. (147) using single photon emission tomography investigated the
presysnaptic dopamine release in response to an amphetamine challenge in euthy-
mic bipolar patients. Baseline postsynaptic receptor concentration as measured
using the D2 specific radioligand iodobenzamide [(123I)IBZM] was not different
from healthy subjects. Moreover, presynaptic dopamine released in response to
an amphetamine challenge measured indirectly by the degrees of displacement
of IBZM from baseline was also not different in euthymic bipolar patients and
healthy subjects. However, BD patients had a greater euphoric response to amphet-
amine challenge than healthy subjects. Together, these findings were consistent
with postsynaptic intracellular signal transduction abnormalities in the CA neuro-
transmission in BD.

A more recent PET study compared [(18)F]6-fluro-L-dopa uptake in manic
patients and healthy controls before and after treatment with divalproex (148).
Before treatment, there is no difference between the two groups, but post-treatment,
[(18)F]DOPA rate constants were significantly reduced compared to controls,
indicating that the bipolar patients had lower presynaptic dopamine activity.

Genetic Studies
BD is a psychiatric illness with a strong genetic basis. However, the exact genetic
abnormality is still not known. Chapter 13 details the role of genetic factors in BD,
and here a brief review of genetic studies pertaining to CA abnormalities is pre-
sented. Potential phenotypic abnormalities of the CA system from CA synthesis to
CA signal transduction have been reviewed above. A number of investigators
have tried to find a genetic association for these phenotypic abnormalities.
However, no consistent results have emerged.
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A number of studies have investigated the association between the tyrosine
hydroxylase (TH, the rate-limiting enzyme in CA synthesis) gene and BD. Though
some investigators have found a possible linkage between the M gene and BD
(149–150), most studies have found no such linkage (151–154). Turecki et al.
(153) conducted a meta-analysis of studies and concluded that there was no
overall association between BD and the TH gene. No linkage has been found
between BD and the DBH or dopa decaxboxylase gene. Some studies show
there is evidence of no genetic or allelic association between BD and the COMT
gene (155), although one study found a link between low-activity COMT and a
female bipolar I proband (156), and Kirov et al. (157) showed that the low activity
allele is common in rapid cycling patients. Lim et al. (158) and Rubinsztein et al.
(159) reported a possible allelic association between BD and the MAO-A enzyme,
whereas Parsian and Todd (160) did not find allelic association of BD with either
the MAO-A or MAO-B enzyme. Some investigators reported a possible linkage
between BD and the DAT gene (161,162), whereas others have been unable to
find this association (152,163). No association between any of the DA type 2, 3,
or 4 receptor genes and BD has been found (152,163,164), though Parsian and
Todd (160) reported a weak association. There has also been no link found
between the norepinephrine transporter (NET) and BD (165). Furthermore,
ongoing research has suggested a correlation between BD and the GABA-A recep-
tor a subunit genes (GABRA), such as GABRA-1 (166), GABRA-3 (167), GABRA-5
(168), although some studies contradict these findings (169,170). Finally, Ram et al.
(171) did not find genetic linkage between BD and the gene coding for the Gs,a

subunit protein.
In summary, no convincing linkage between a gene encoding for a particular

aspect of CA function and BD has been found. However, with rapid progress in
genetic molecular biology, more evidence may become available.

MODULATION OF CATECHOLAMINE NEUROTRANSMISSION AND
IMPLICATIONS FOR THE PATHOPHYSIOLOGY
OF BIPOLAR DISORDER
Modulation by Other Neurotransmitters
As discussed earlier, mood regulation can be conceptualized as stable oscillatory
activity of the MRC maintained by fast feedback mechanisms within the circuit
and external modulation by other neuromodulators such as DA, NE, 5HT, ACh,
and neuropeptides. Fluctuations of mood seen in BD can be conceptualized as
breakdown of these feedback and modulatory mechanisms. CAs modulate the
MRC system directly by their effects onMRC fast conductance pathways (mediated
via GABA and glutamate) and in turn are modulated by other neurotransmitters
themselves (e.g., 5HT, ACh, neuropeptides, etc.). Therefore, abnormal modulation
of the CA system by other modulators can lead to abnormalities inMRC. The role of
each of these modulators is described in more detail in other chapters of this book
and here a brief summary of interactions with the CA system is presented.

NE Modulation of DA Neurotransmission
There is a close relationship between NE and DA neurotransmission, NE being
involved in the attention and arousal of the organism and DA involved in the
motivational/reward aspects of a task (6,172). There has been a more detailed
investigation of the effect of NE on the DA system and less so of the effect of DA
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on the NE system. It has been suggested that, teleologically speaking, because DA is
the precursor of NE, it seems reasonable that the latter would have evolved as the
more developed system, modulating its antecedent, the more primitive one (54).
However, considering the complementary role of these neurotransmitters, both
have significant effect on the other’s function.

Earlier investigations of NE modulation of DA function revealed contradic-
tory findings. Antelman and Caggiula (173) reported that NE inhibits DA neuro-
transmission, whereas Archer et al. (174) suggested a facilitatory role of NE on
DA-mediated function. More recent evidence points to an excitatory role of NE
on the mesocortical DA system and inhibitory effect of noradrenergic system on
the prefrontal cortical DI receptor-mediated neurotransmission that is accompanied
by an increase in subcortical DA neurotransmission (175). Depletion of both NE and
DA results in greater blunting of GH response to clonidine in rats than depletion
alone (176). Therefore, overall the evidence points to a facilitatory role of NE on
the DA system within the MRC.

5HT Modulation of Catecholamine Neurotransmission
5HT neurons in the raphe nucleus in the brainstem have direct projections to the
striatum, frontal cortex, and the limbic system. Lesions of the 5HT system increase
low-affinity b-adrenergic receptor density (177), and 5HT has been shown to have
an inhibitory effect on the NE system through the presynaptic heteroreceptors (14).
However, other investigators have reported a synergistic role of 5HT and NE
neurotransmissions. Stimulation of postsynaptic 5HT2 receptor has been reported
to increase the response of midbrain NE neurons to sensory stimuli (178). A
number of different types of 5HT and DA receptors have been discovered, and
therefore the interactions between the two systems are likely to be complex.
However, most studies indicate that the 5HT system has an inhibitory effect on
the DA neurotransmission (179–182). The so-called permissive hypothesis of the
role of 5HT in BD postulates that both mania and depression are due to low
levels of 5HT. However, increase in 5HT, for example by treatment with SSRIs,
has been shown to induce mania. Lithium, which has been shown to facilitate
5HT neurotransmission (183), has both antimanic and antidepressant properties.
The mechanism of the differential effect of 5HT on mood is not known at present
and needs to be further investigated. CAs also have a modulatory effect on the
5HT system, but this has been less well investigated. For example, it has been
shown that NA denervation prevents tricyclic antidepressants from causing
sensitization of forebrain neurons to 5HT in laboratory animals (184).

Excitatory Amino Acids Modulation of Catecholamine Neurotransmission
Excitatory amino acids such as glutamate and aspartate act through the N-methyl-
D-aspartate (NMDA) and non-NMDA receptors. They influence monoamine trans-
mission, including dopamine and NE, and are in turn influenced by these
catecholamines (185). Chronic, but not acute, administration of noncompetitive
NMDA antagonists is associated with decreased density of b-adrenergic receptors
in mouse cortex (186). Chronic desipramine binding has been shown to increase
total NMDA receptor binding (187).

Most neurotransmission is thought to involve the glutamate system, CAs
modulate glutamate neurotransmission, and DA has a predominantly inhibitory
modulatory effect on glutamate transmission (4,35). However, the glutamate
system itself has been shown to have a modulatory effect on the CA system.
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NMDA receptors such as ketamine, phencyclidine, and MK-801 are known to
cause increased subcortical DA neurotransmission (188). This effect is frequently
associated with increased motor activity, mood elevations, and cognitive
dysfunction—symptoms similar to those seen in mania. Furthermore, medications
such as lamotrigine, which decrease glutamate release, have been shown to have a
mood-elevating effect (189,190). Cortical glutamate projections to the subcortical
regions have a net inhibitory effect on the subcortical system activity. One mechan-
ism of this inhibitory effect has been postulated by Grace et al. (191), who proposed
that the inhibition occurs by increased tonic DA release that then has an inhibitory
effect on the subcortical system neurons (including DA neurons) by a negative
feedback mechanism. Inhibition of this cortical glutamate projection to the subcor-
tical MRC could lead to increased firing of DA neurons and elevation in mood and
increased inhibition could lead to a depressed state. Anand et al. (189) reported
that decreasing glutamate neurotransmission by administration of the glutamate
release inhibitor lamotrigine leads to increased mood-elevating effects of the
NMDA receptor antagonist ketamine in healthy subjects.

In recent studies, Dager and colleagues (192) found that unmedicated patients
with BD, as compared to healthy controls, had increased levels of Glx (glutamateþ
glutamineþGABA) and lactate in the gray matter, as measured on proton echo-
planar spectroscopic imaging (PEPSI). This may represent a shift in redox states,
from oxidation to glycolysis. Their group also demonstrated that longitudinal
treatment of BD patients, versus controls, with lithium caused a decrease in Glx
concentrations, but not in lactate levels (193).

GABA Modulation of Catecholamine Neurotransmission
GABA is the most prevalent inhibitory neurotransmitter. However, GABA neuro-
transmission can be facilitatory in a circuit with two sequential GABA linkages.
This is the case in the MRC as depicted in Figure 1 in the linkages of the ventral
striatum to the palladium and the connection of the palladium to the thalamus.
Therefore, GABA neurotransmission could either facilitate or inhibit neurotrans-
mission in the MRC. Serum GABA levels have been found to be low in both
depression and mania and euthymic BD. Moreover, many of the mood-stabilizing
agents increase GABA neurotransmission in vitro and also have been shown to
increase CSF and plasma GABA levels (194–196).

Neuropeptide Modulation of Catecholamine Neurotransmission
Neuropeptides such as somatostatin, CRH, substance P, and neuropeptide Y can
alter neurotransmission function by direct action on noradrenergic or DA
neurons. CRH has been shown to acutely increase LC firing rate. However,
effects of chronically elevated CRH as seen in depression (197) on norepinephrine
neurons have not been delineated. Chronic desipramine treatment attenuates the
stress-induced activation of LC neurons mediated by CRH neurotransmission
(195). Desipramine treatment has been shown to reduce CSF–CRH concentration
(198). Neuropeptide Y (NPY) is another peptide that is colocalized with NE (199).
Treatment with norepinephrine uptake inhibitors such as desipramine results in
decreased NPY receptor density that could possibly be a clue to increased NPY
levels (200). Somatostatin, a tetradecapeptide, is rich in the hypothalamus, amyg-
dala, and nucleus accumbens. It is found to be involved in NE and DA neurotrans-
mission (201). Chronic desipramine dosing in rats results in increased binding to
somatostatin receptors in the nucleus accumbens (202). In the striatum, DA and
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various neuropeptides interact together to influence neurotransmission via GABA
and glutamate pathways (32). Depressed patients show decreased CSF concen-
trations of somatostatin (201,203), a nonspecific finding because it is also decreased
in a variety of other neuropsychiatric illnesses (201). However, Berrettini et al. (204)
did not find any abnormality in a number of neuropeptide levels in the CSF of
euthymic bipolar subjects compared with healthy control subjects.

ACh Modulation of Dopamine Neurotransmission
ACh is a major neurotransmitter with a predominant modulatory action on
synaptic neurotransmission. Its affect on the DA system has been well studied in
relation to the motor system where ACh has been shown to have an inhibitory
effect on DA-mediated function (32). Symptoms of Parkinson’s disease are
thought to arise from an imbalance between the ACh and the DA system. Similarly,
a decreased cholinergic tone is thought to remove the inhibitory effect on the CA
system, leading to mania, and an increased cholinergic tone could lead to
depression. The hypothesis that ACh could be involved in modulation of the CA
system and lead to changes in mood is supported by the observation that
physostigmine (a central cholinesterase inhibitor/cholinergic agonist) can lead to
a switch frommania to depression (205). The ability of lithium to prevent supersen-
sitivity of peripheral and central ACh receptors (as induced by denervation of
atropine) (206) may contribute to its mood-stabilizing properties. Thus, ACh by
its action on the CA system may play a critical role in mood stabilization, an area
that has been understudied and merits further investigation.

Hormonal Modulation of Catecholamines
Hormonal changes frequently accompany emotional changes. CAs themselves
directly regulate the production of a number of hormones such as GH and
prolactin, and these hormones have an inhibitory feedback effect on CA neurotrans-
mission at the level of the hypothalamus. Other hormones can also regulate CA
neurotransmission and thereby modulate mood. Thyroid hormone has a significant
effect on the adrenergic system, and alterations in thyroid function have been
implicated in rapid cycling BD and refractory RD. Whybrow and Prange (207) pro-
posed that the ability of thyroid hormone to increase P-adrenergic receptor
sensitivity to norepinephrine may underlie its ability to modulate mood. Steroids
can modulate CA function. Cortisol can lead to increased production of CM in
the periphery and the brain.

Modulation of CA Neurotransmission by Intracellular Factors
In addition to changes at the circuit and synaptic levels, CA neurotransmission may
be altered by changes in intracellular factors such as signal transduction, neuro-
trophic factors, and genetic factors. These effects may alter information processing
or neurotransmitter release by the target neurons in a fashion that alters neural
circuit behavior, and eventually depressive symptoms are alleviated (208). Phasic
intracellular changes in the neurons of the MRC can lead to changes in the activity
of these circuits that can then manifest as changes in mood. These intracellular
changes are described in detail in other sections of this book and here a brief
review of their role in CA neurotransmission is presented.

Wachtel (209) postulated that a dysregulation of neuronal second messen-
ger function is involved in depression. This hypothesis suggests that, in
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depression, there is an imbalance of the major second messenger systems in
the CNS resulting from diminished adenylate cyclase pathway activity and
increased phospholipase C pathway activity, and in mania, the reverse occurs.
Since it was discovered that lithium may work by inhibiting signal transduction
mechanisms such as the G proteins and phosphatidylinositol pathways,
extensive research has been done in this area. Lachman and Papolos (210,211)
presented a hypothesis of cyclical changes in G proteins that could lead to cycli-
cal changes in mood. More recently, investigators have started to look at protein
kinase abnormalities (113) that could change CA receptor sensitivity such as DA
receptor sensitivity in BD.

Other intracellular factors have been recently discovered that may have a role
in the pathophysiology of BD and the mechanism of action of antidepressants and
mood stabilizers. In preclinical studies, brain-derived neurotrophic factor (BDNF)
and its receptor trkB have been shown to be increased with electroconvulsive
therapy and BDNF mRNA is increased with chronic administration of several
different classes of antidepressant drugs but not with acute administration of
these drugs and not by administration of nonantidepressant psychotropic drugs
(212). Local infusion of BDNF in the brain has been shown to have antidepressant
effects in two behavioral models of depression, the forced-swim and learned
helplessness paradigms (213,214). Neurotrophins such as BDNF and neurotro-
phin-3 (NT-3) may therefore be targets of long-term antidepressant drugs. Their
putative antidepressant effects may be a result of the ability of neurotrophins to
increase monoaminergic neurotransmission and to increase the survival of
monoamine neurons. In this regard, NT-3 has been shown to be protective to
norepinephrine (NE) neurons (215). Glial cell line-derived neurotrophic factor
(GDNF) has been shown to increase sprouting of adult midbrain DA neurons (216).

Finally, a new area of study is clock genes, genes that encode for biological
rhythms through production of certain proteins at a certain cycle length
(217,218). Keeping in mind the close relationship of BD to biological rhythms,
further study of the relationship of these genes to CA activity may provide clues
to the pathophysiology of BD.

Bipolar and Unipolar Depression
A distinction between bipolar and unipolar depression (depression without history
of hypomania or mania) is often made, and efforts have been made to investigate
biological differences between unipolar and bipolar depression. At the same
time, many studies of neurobiology of depression have not reported results
separately for bipolar and unipolar depression. Though a number of research
studies have looked at this issue, it is not clear whether a distinction between
the two groups can be made in terms of CA abnormalities. Many studies have
reported a decreased excretion of NE and its metabolites in bipolar depression
compared with unipolar depression (52). Other findings are less well-replicated
[e.g., lower DBH activity (91,92) and reduced platelet MAO activity (96) in
bipolar depression compared with unipolar depression]. Clinical experience
indicates that some depressed subjects have never had hypomania or mania and
do not have a family history of BD. Therefore, investigation of the unipolar
versus bipolar group has the potentia1 for uncovering the nature of abnormality
that makes the bipolar group vulnerable to manic episodes. This area needs
further study.
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Bipolar Disorder and Psychotic Illness
BD has a close relationship with psychotic disorder in that both bipolar depression
and mania can be associated with psychotic illness and BD can coexist with schizo-
phrenia-like symptoms (schizoaffective disorder). A common link with CA
abnormality may exist, as CA abnormalities (particularly DA abnormalities) are
present in both disorders. Patients with delusional depression show an increase
in peripheral HVA excretion as opposed to nondelusional patients who show
decreased HVA secretion (219). Hyperactivity of the CA system is also suggested
by an increase in peripheral MHPG excretion in patients with delusional depression
(220). Agren (51) reported increased CSF HVA in psychotic depression and that
increased CSF HVA levels correlate with the degree of psychosis. Other studies
have not reported an increase in plasma HVA in psychotic depression (221).
DBH, the enzyme that converts DA to NE, has been found to be lower in psychotic
depression than in nonpsychotic depression. Hyperactivity of the DA system is one
of the prominent hypotheses for positive psychotic symptoms (222) as it is for
mania. Therefore, questions regarding the specificity of CA abnormality for BD
are raised (e.g., why are acutely psychotic subjects not manic or how can
acutely psychotic subjects be often depressed) (223). These contradictions can be
reconciled by conceptualizing that the effect of CA abnormalities on different
parallel cortical–subcortical circuits may lead to different illnesses (8,26,29)
depending to what extent the mood, motor, or cognitive circuit is affected.
For example, the same CA abnormality leading to dysregulation of the cortical–
subcortical circuit may lead to mainly movement disorder if it affects predomi-
nantly the motor circuit, thought disorder if it affects the cognitive circuit, and
mood disorder if it predominantly affects the mood circuit. Keeping in mind the
close proximity and distributed nature of these circuits (27), CA abnormality
would be expected to lead to a dysregulation in all three aspects of behavior but
lead to a different clinical picture depending on the extent of involvement of the
motor-, cognitive-, or mood-regulating part of the circuit (25,29). This is the case
for most neuropsychiatric disorders that usually present as a combination of
motor, mood, and cognitive abnormalities. In BD, the predominant dysfunction is
mood; however, involvement of the motor circuit in the form of increased or
decreased motor activity is frequently seen, and thought disorder in the form of
flight of ideas and frank psychosis is not uncommon.

PERSPECTIVE

A review of the role of CAs in the pathophysiology of BD presents a complex
picture (Table l). On one hand, CA abnormalities seem to be definitely present
during manic and depressed states but on the other the nature of the abnormality
remains elusive. The increase in CAs during mania and decrease in depression in
serum, urine, and CSF seems to be largely derived from changes in CAs in the per-
iphery, and therefore is likely to be, to a large extent, secondary to the manic or
depressed states themselves. If state-related CA changes are discounted, then
what kind of CA abnormality is likely to lie underneath in mania or depression?
The fact that drugs that increase CAs (e.g., amphetamine, cocaine, tricyclics, and
yohimbine) can induce mania suggests that an increase in CAs could underlie
the pathophysiology of mania. However, investigators have questioned whether
the transient euphoric state induced by CA-increasing drugs is a good model
of mania that involves a sustained change in mood over a period of time (43,61).
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TABLE 1 Role of Catecholamines in the Etiology of Depression and Mechanism of Action of
Antidepressants

Site of Action Findings Replicability

Synthesis AMPT inhibition of TH leads to improvement in mania and
worsening of bipolar depression

þ

Withdrawal from AMPT leads to improvement in mood in
healthy subjects and emergence of hypomanic
symptoms in euthymic bipolar disorder subjects.

þþ

Storage Reserpine can improve mania. þþ
Turnover # MHPG in serum and urine in bipolar depression þþ

# HVA in bipolar depression associated with psychomotor
retardation

þþ

Lithium decreases CA turnover þþ
Clonidine, an a2 receptor agonist, decreases manic

symptoms
þ

Autoreceptor
function

Yohimbine, an a2 autoreceptor antagonist, can induce
mania

þ

D2 autoreceptor antagonists have antidepressant
properties

þ

D2 autoreceptor stimulation in the striatum is associated
with decreased firing of DA neurons

þ

Postsynaptic
receptor
function

GH response to clonidine blunted in both mania and
depression

þþ

D2 receptor increased in psychotic mania þ
D2 receptor unchanged in euthymic bipolar disorder þ
D2 receptor down regulation may be a common mode of
action in antimanic drugs

þþ

Reuptake
inhibition

CA reuptake inhibitors are effective in bipolar depression þþþ

Amphetamine and cocaine inhibit CA uptake mechanisms
and can lead to mania-like states

þþþ

Second and third
messengers

Lithium mechanism of action linked with inhibition of PIP þþ

Antiphosphokinase drugs such as tamoxifen may be useful
in mania

þ

G protein abnormalities seen in euthymic bipolar disorder þþ
Neurotrophic
factors

Neurotrophic factor 3 increases NE transmission and
increases survival of NE neurons

þ

Transplantation of NE neurons in the frontal cortex
reverses depression in animal models

þ

Modulatory
factors

NMDA receptor stimulation by excitatory amino acids
causes increased subcortical CA transmission

þþ

NMDA antagonism leads to mood elevation þ
Glutamate release inhibition can lead to mood elevation þ
Somatomedins and neuropeptide Y influence NE
transmission

þ

5HT has inhibitory effects on the CA system through
heteroreceptors

þþ

Thyroid hormone increases CA receptor sensitivity þþ
Steroids can lead to increase DA release þ

Abbreviations: þ, one or few studies;þþseveral studies;þþþ, highly replicated by several research groups;þ/2,
mixed or inconsistent results; 5-HT, 5-hydroxytryptamine (serotonin); AMPT, alphamethylparatyrosine; CA,
catecholamine, DA, dopamine; GH, growth hormone; HVA, homovanillic acid; MHPG, methoxyhydroxyphenylglycol;
NE, norephinephrine; NMDA, N-methyl-D-aspartate; PIP, phosphatidylinositolphosphate; TH, tyrosine hydroxylase.
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If not a presynaptic increase in CA production, then an abnormality in postsynaptic
receptor sensitivity is suggested by findings such as decreased prolactin levels in
bipolar depressed subjects (55) and by emergence of hypomania during recovery
from CA depletion with AMPT (43,59). However, extensive research using the neu-
roendocrinological challenge paradigm has been unable to uncover a specific
abnormality in receptor sensitivity in bipolar depression ormania (76). Nonetheless,
change in postsynaptic receptor sensitivity, either due to change in the receptors
themselves or due to changes in second or third messenger systems, is suggested
by the effects of medications useful in the treatment of BD (e.g., neuroleptics, anti-
depressants, lithium, and valproate). Current understanding of mode of action of
these medications, the action of which is usually delayed and prolonged, suggests
effects on signal transduction mechanisms, genetic effects, and changes in neuro-
trophic factors. However, more research needs to be done in this area to ascertain
whether systems implicated in mode of action of medications are also found to be
abnormal in BD. Brain imaging studies promise state-of-the-art technology to
study brain structure and function in vivo. However, there is a paucity of brain
imaging studies of the CA system in BD. The studies that have been conducted
point to possible changes in postsynaptic CA receptors in BD (142,146).

The role of CA abnormalities is best understood in the context of the
role of CAs in emotions and mood. In this regard, variations of the cortico–
striatopallidial–thalamic circuit (depending on which areas of the brain are
included) can be conceptualized as circuits involved in motor, thought, and
mood production (8,25,26,29). Just as abnormalities of regulatory factors in the
motor circuit can lead to motor abnormalities such as dyskinesias, tremors, or rigid-
ity, abnormalities in cognitive circuit could lead to disruption of thought processes
(22), and abnormalities of the MRC could lead to disruption in mood regulation,
leading to fluctuations of mood between mania and depression (29). Therefore,
BD can be conceptualized as an abnormality of regulation of activity of the MRC.
As reviewed above, regulation of activity of the MRC is a function of a number
of different but interacting systems. Intracellular signal transduction mechanisms
and genetic mechanisms, some of which may be regulated by clock genes, regulate
intrinsic rhythmicity and sensitivity of neurons. Within the circuits themselves,
tight feedback control mediated by fast conductance via GABA and excitatory
amino acids (EAAs) maintains the oscillating activity of the system within a
certain range (33). Further regulatory control is provided by extrinsic neuro-
modulators such as CAs, 5HT, ACh, neuropeptides, and hormones. Among
these, the CAs are likely to have a primary role as is suggested by their prominent
role in reward mechanisms (6), widespread effects on the CNS, and as predominant
neuromodulators in the striatum (32), which has an important function in regulat-
ing cortical output (224). Furthermore, both DA and NE have been shown to have a
prominent role in arousal mechanisms, initiation and maintenance of motor
activity, diurnal rhythms, and sleep and cognitive functions that are frequently
abnormal in BD. Some investigators have suggested that the effect of other
neuromodulators (e.g., 5HT) on mood may ultimately be through effect on the
CA system, particularly the DA system (7). Therefore, the CA system may act as
a bridge between the MRC and other external neuromodulators and therefore
play a central role in mood regulation.

To further understand the factors involved in pathophysiology of BD, new
models of interactions of mood-regulating factors need to be developed. Some of
the models proposed for the role of CA in BD have been discussed above:

54 Garakani et al.



Bunney and Garland’s (43) model of phasic changes in postsynaptic receptor sen-
sitivity, Post and Weiss’s (38) kindling hypothesis, Antelman et al.’s (1) sensitiz-
ation-induced cycling model, the permissive hypothesis regarding 5HT
modulation of DA function, Grace et al.’s (191) model of cortical–subcortical inter-
action, Lachman and Papolos’ (210) model of cyclic changes in signal transduction
mechanism, and themore recent but still developing model of modification of beha-
vior by clock genes (217). New models need to be developed that can integrate the
role of all known neuromodulators. Such models will probably emerge with greater
understanding of mood regulation both at the molecular and the circuit levels.

The results of the studies reviewed earlier suggest an increase of CAs in
mania and a decrease in depression (though there is an increase of CAs
in bipolar depression associated with psychotic features). One major difficulty in
ascertaining the role of CA in BD is that CAs, besides modulating the activity of
the MRC, are also part of the output of the MRC. There is a close relationship
between CAs and neurophysiological mechanisms involved in arousal, neuroendo-
crine response, sympathetic and parasympathetic nervous system activity, and
motor activity and reward-related behavior. Therefore, it is difficult, if not imposs-
ible, to tease out whether CA abnormalities are secondary to the depressed or manic
state or whether they have a more primary role in the induction of these states. It
follows that a study of the manic or depressed state is unlikely to reveal the
central abnormality in BD, particularly regarding CA abnormalities. Strategies
that may be more successful are investigation of euthymic or well state, investi-
gation of early or prodromal stages of BD before a full-blown manic or depressed
episode have occurred, and investigation of well relatives of BD subjects. Studies
of variables that are state independent (e.g., genetic studies that are not affected
by these state-related constraints) need to be more intensively investigated.

Brain imaging studies have the greatest potential to unravel the role of CAs in
the pathophysiology of BD. Future studies that are able to measure different aspects
of the CA system at the same time (i.e., CA release, uptake, pre- and postsynaptic
receptors) will be able to provide a more dynamic picture of CA abnormalities in
BD. Measurement of different neurotransmitters and investigation of the inter-
actions of other neurotransmitters with the CA system will provide a better under-
standing of abnormalities of modulation of the MRC in BD. Moreover, these brain
imaging studies need to be conducted in all three states of the illness, preferably in
the same subjects. Finally, the mechanism of action of medications useful to treat-
ment of BD on the CA system needs to be further investigated.

Beside the methodological problems enumerated above, other difficulties in
conducting research into the pathophysiology of BD are multiple: constantly chan-
ging phases of the illness (i.e., depression, mania, mixed states, and euthymia), con-
founding effects of medication or substance abuse, and difficulty in recruitment of
subjects. Nevertheless, study of CA abnormalities in BD remains an exciting area of
investigation. Rapid developments in our ability to directly observe brain events
and study molecular and intracellular processes promise to reveal CA abnormal-
ities that may be central to the pathophysiology of BD.
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HISTORICAL OVERVIEW AND HIGHLIGHTS

For more than a century, acetylcholine has been postulated to be a factor in the regu-
lation and etiology of affect. In 1889, Willoughby (1) reported a case in which pilo-
carpine, now known to be a muscarinic cholinergic agonist, was used to alleviate
acute mania. Subsequently, in the late 1940s, 1950s, and early 1960s, a number of
authors observed the anergic, inhibitory, anxiety-enhancing and mood-depressing
effects of centrally acting cholinesterase inhibitors, compounds that inhibit the
breakdown of acetylcholine. The mood altering effects of these compounds, used
as insecticides in the agriculture industry and as nerve agents by the military,
were described naturalistically and as tested in experimental settings. The obser-
vations by Grob et al. (2), Gershon et al. (3,4), Bowers et al. (5), and Rowntree
et al. (6) led to a series of reports suggesting that increases in central acetylcholine
led to depression, anxiety, and anergia.

In the early 1970s, based on the above studies and on animal data reported by
Domino and Olds (7), Stark and Boyd (8), and Carlton (9), Janowsky et al. (10)
developed an adrenergic-cholinergic balance hypothesis of manic depression.
This hypothesis proposed that depression represents an overabundance of
central acetylcholine, relative to central adrenergic neurochemicals, and that
mania represents the converse. Part of the work of Janowsky et al. (10,11) involved
infusing the short acting reversible central cholinesterase inhibitor physostigmine
on one occasion and the noncentrally acting cholinesterase inhibitor, neostigmine
on another. Comparing behavioral effects, Janowsky and colleagues used this
paradigm in manics, depressives, schizophrenics, and normals and observed
decreased manic and increased depressive symptoms only in their physostigmine
treated subjects (11,12). This work was replicated during the 1970s and early 1980s
by a variety of investigators. In the late 1970s Sitaram et al. (13) observed that short-
ening of the cholinergic-sensitive sleep parameter, rapid eye movement (REM)
latency, by cholinomimetic drugs was exaggerated in affective disorder patients,
suggesting cholinergic supersensitivity in these patients, a finding subsequently
replicated in a number of studies.

In the late 1970s and early 1980s, Davis and Davis (14) and Risch et al. (15)
began a series of experiments in which they evaluated the effect of cholinergic
influences on stress-sensitive neurohormones including ACTH, beta-endorphin,
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cortisol, epinephrine, vasopressin, and prolactin in depressed patients, normals,
and patient controls. These authors discovered that the above neurohormones
were increased by cholinergic stimulation and antagonized by centrally acting
antimuscarinic agents such as atropine and scopolamine. Risch, Janowsky, and
colleagues (15,16) also observed that exaggerated increases in serum ACTH and
beta-endorphin levels occurred in depressed patients following cholinomimetic
administration, compared to the changes that occurred in patient controls who
did not have an affective disorder.

In the 1990s, peripheral cholinergic supersensitivity in affective disorder
patients was observed following administration of the muscarinic agonist pilocar-
pine, given to induce pupillary constriction (17), and following administration of
non-centrally acting cholinesterase inhibitor, pyridostigmine, given to stimulate
growth hormone release. In addition, in the mid- and late 1990s, Charles et al.
(18), Renshaw et al. (19) and others, using proton magnet resonance spectroscopy
techniques, found that the acetylcholine precursor choline and its related metab-
olites were increased in the brains of affective disorder patients. Furthermore,
the acetylcholine precursors lecithin and choline and the cholinesterase inhibitor
donepezil were reported to be useful in the treatment of mania and related
bipolar conditions (20,21). Finally, in the 2000s, the latest findings supporting a
role for acetylcholine in the etiology and phenomenology of the affective disorders
has involved discovering muscarinic receptor gene variants linked to major
depression.

BEHAVIORAL FINDINGS
Cholinomimetic Effects on Manic Symptoms
As noted above, some of the most direct and graphic evidence of a role for acetyl-
choline in the etiology and phenomenology of affective disorders is derived from
studies of manic patients who have been administered centrally acting cholinester-
ase inhibitors or directly acting muscarinic cholinergic agonists. As noted above,
the first report of this phenomenon was published byWilloughby (1), who reported
alleviation of mania by pilocarpine in 1889. Later, in the 1950s, Rowntree et al. (6)
gave DFP, an irreversible centrally acting cholinesterase inhibitor, to a group of
nine bipolar disorder patients and ten normal controls. Normal subjects developed
depression, apathy, lassitude, irritability, and slowness of thoughts and some
became depressed. These phenomena occurred before the onset of peripheral
cholinergic symptoms such as nausea, cramping, and diarrhea, suggesting a
central mechanism. Two of the bipolar patients who were tested while in remission
showed mental changes like those observed in the normals, showing anergia and
nausea without serious affective symptoms. Two hypomanic patients’ symptoms
improved with DFP administration, and these patients continued to be euthymic
after DFP administration had ceased. One hypomanic patient became less manic,
becoming slightly depressed after each of two courses of DFP, and this patient
became manic again after DFP withdrawal. One nearly remitted hypomanic
patient became floridly manic once DFP had been withdrawn, and one depressed
bipolar patient showed a considerable increase in depression.

Beginning in 1972, Janowsky et al. (10,11) noted that the centrally active chol-
inesterase inhibitor physostigmine caused a short lived and very obvious reduction
in hypomanic and/or manic symptoms in eight bipolar patients with manic or
mixed manic and depressive symptoms. Saline placebo and the non-centrally
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acting cholinesterase inhibitor neostigmine, which does not enter the brain, pro-
duced no changes in mood or behavior. Furthermore, physostigmine’s antimanic
effects were reversed by the centrally acting antimuscarinic drug, atropine,
suggesting that the antimanic effects of physostigmine were caused by a central
muscarinic mechanism. After the patients received physostigmine, the average
Beigel-Murphy mania “Elation-Grandiosity” subscale score was reduced by 78%
and the “manic intensity” scale score was reduced by 48% (10,11). Physostigmine
caused a decrease in specific manic symptoms including “is talking,” “is active,”
“jumps from one subject to another,” and “looks happy and cheerful.” “Grandios-
ity” was significantly decreased in the three patients in whom it was present during
the baseline period. “Irritability” was decreased in three patients and was increased
in five. Following physostigmine administration, depression, as measured by the
Bunney-Hamburg Depression Scale, showed an overall two-fold increase, with
five of the eight manic patients studied developing a depressed mood. Physostig-
mine’s effects lasted for a period of 20 to 90 minutes and were observed to begin
a few minutes after infusion occurred. The total amount of physostigmine given
varied from 0.25 mg to 3.0 mg. Physostigmine did not cause sedation as such,
and the patients were not obtunded. They showed no slurred speech or ataxia
and did not fall asleep. In addition to antimanic and mood depressing effects,
nausea and vomiting were also a common concomitant of physostigmine adminis-
tration (11,12,22), as had been noted occur in earlier studies (5,6).

Other studies subsequently replicated the antimanic effects of physostigmine.
In 1973, Modestin et al. (23,24) reported a lessening of manic symptoms following
the infusion of physostigmine in two of four manic patients. This effect did not
occur when neostigmine was administered. Davis et al. (25) reported that physos-
tigmine caused significant antimanic effects, especially in patients who were not
hostile and/or irritable. In addition, Carroll et al. (26) studied a manic patient
who had a corticosteroid-induced mania and noted that physostigmine caused a
decrease in euphoria and mobility. Similarly, Krieg and Berger (27) reported data
suggesting that the relatively specific muscarinic (M1) cholinergic agonist RS86
had significant antimanic effects.

However, several authors have wondered whether centrally active cholinomi-
metic agents were only effecting the affective and motoric components of mania,
and not effecting the cognitive aspects of mania. Thus, Carroll et al. (26) and
Shopsin et al. (28) brought up the question of whether cholinomimetics actually
effect what they considered “core” aspects of mania, such as manic grandiosity
and expansive thinking.

Manic Symptom Rebound Following Cholinomimetic Administration
There is some evidence that a late occurring effect of physostigmine administration
is the enhanced activation of manic symptoms and an increase in its animal ana-
logue, hyperactivity. Fibiger et al. (29) demonstrated in rats that increased central
cholinergic activity, caused by the administration of physostigmine, led first to
motor inhibition, and later to an increase over baseline in locomotion. This hyper-
activity was presumed to be due to compensatory increases in adrenergic neuro-
transmitter activity. Hyperactivity became apparent as the cholinergic behavioral
inhibition induced by the physostigmine wore off. The hyperactivity was exagger-
ated if a centrally acting antimuscarinic drug (i.e., scopolamine) was given at the
beginning of the hyperactivity phase. The rebound hyperactivity was completely
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prevented if the centrally active antimuscarinic drug was given prior to initial
physostigmine administration (29).

In parallel with the above preclinical study, an infrequent occurring
exaggeration of baseline manic symptoms following cholinesterase inhibitor
administration has also been found to occur in bipolar patients (10,11,23,24). Rown-
tree et al. (6) observed that one of the manics to whom he had administered DFP
subsequently became more manic than at baseline. Later, Shopsin et al. (28)
studied three highly manic patients given physostigmine up to 6 mg intravenously
and observed rebounding. All three initially experienced varying degrees of seda-
tion, drowsiness, a desire but inability to sleep, some dysthymia, and mild slurring
of speech. A reduction in spontaneous speech and activity were apparent during
this time. During this initial phase, the patients’ flight of ideas, rambling speech,
tangentiality, irritability, and cheerfulness were also attenuated. In this study,
all three patients spontaneously stated, that after receiving physostigmine, they
were “talked out” and did not want to be bothered. No vomiting occurred.
Apathy and anergia were apparent, yet no patient actually became depressed.
The most striking feature of this study was the late appearance in two patients of
a “rebound,” taking place approximately two hours after the physostigmine infu-
sion. A marked exacerbation of the manic state over baseline levels occurred,
lasting three to four hours, with a return to baseline at approximately six hours
following the last physostigmine injection.

Mood Effects of Centrally Active Anticholinergic Drugs
Whereas cholinomimetic agents appear to cause depression, there is evidence
that anticholinergic and anti-Parkinsonian medications have mood-elevating
properties. Jellinec et al. (30) and Smith (31) summarized data showing that anti-
Parkinsonian drugs, given to patients with Parkinsonian symptoms, caused
positive feelings and a reversal of depressed mood. Also, schizophrenics who
used or abused anti-Parkinsonian drugs have reported experiencing euphoria,
being “buzzed or high,” having a reduction in anxiety, having a sense of well
being, and feeling more sociable and more confident, cheerful, and energetic.
Coid and Strang (32) reported a case in which the anticholinergic agent procyclidine
appeared to cause mania in a bipolar patient. Furthermore, there are several reports
indicating that high doses of atropine and other centrally acting anticholinergics,
such as ditran and scopolamine, can cause euphoria and alleviate depression
(33,34,35,36). Similarly, Kasper et al. (33) observed antidepressant effects with the
anticholinergic anti-Parkinsonian drug biperiden, and this most often occurred in
patients with endogenous depression who had a non-suppressing dexamethasone
suppression test.

In a promising recent report, Furey and Drevets (37), using a placebo-
controlled double-blind crossover design in currently depressed patients, reported
that scopolamine four mcg/kg caused a significant and relatively dramatic
reduction in depression, as measured by the MADRAS depression scale and the
Montgomery Asberg Depression Rating Scale. Scopolamine relieved depression
both when compared to baseline and as compared to placebo. The dose utilized
was relatively high compared to previous trials evaluating the effects of scopola-
mine in alleviating depression.

In contrast, some studies have been less promising with respect to the ability
of centrally acting anticholinergic drugs to alleviate depression. Fritze et al. (38,39)
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added centrally acting anticholinergic agents to a treatment regime consisting of
standard antidepressant drugs and did not show increased efficacy. Similarly,
Gillin et al. (40) were unable to demonstrate that treatment of depressed patients
with biperiden led to alleviation of depression.

Marijuana-Physostigmine Interactions
Marijuana often induces a sense of well-being, euphoria, hilarity, increased
verbalizations, and flight of ideas not unlike some of the symptoms of hypomania
(41). El-Yousef et al. (42) reported that small doses of physostigmine antagonized
the intoxicating effects of marijuana in two normal volunteers. In addition, both
volunteers became very severely depressed following physostigmine adminis-
tration. Thus, marijuana was able to induce wittiness, creativeness, and hilarity
in the subjects who smoked it; following physostigmine administration, a lethargic,
drained, sad, extremely depressed state manifested by utterances of hopelessness,
uselessness, and worthlessness, sobbing and crying, and extreme psychomotor
retardation occurred (42). This state was much more extreme than that noted
after physostigmine was given alone. This observation was inadvertently replicated
by Davis et al. (43) in normal volunteers who had covertly smokedmarijuana before
receiving physostigmine. Thus, it appears that marijuana augments and amplifies
the effects of physostigmine.

The above clinical observations concerning a marijuana-physostigmine inter-
action were paralleled in a preclinical study performed by Rosenblatt et al. (44).
This study demonstrated that the active ingredient in marijuana, D-9 tetrahydro-
cannabinol, significantly increased physostigmine-induced lethality in rats. This
effect was prevented by the centrally and peripherally acting anticholinergic
agents, atropine and methylscopolamine respectively. Subsequently, cholinergic
behavioral effects were also found by Duncan and Dagirmanjian to be augmented
in rats by D-9 tetrahydrocannabinol (45).

Cholinomimetic-Catecholaminergic Interactions
A pharmacological model of naturally occurring adrenergic-cholinergic balance is
found in the interactions and reciprocal effects of psychostimulants, which increase
dopaminergic/noradrenergic activity, and cholinomimetics, which increase acetyl-
choline activity. Psychostimulant-induced increases in locomotor activity, self-
stimulation, and gnawing behavior in rats, which have been considered to be
animal models of mania, are rapidly antagonized by physostigmine, but not by
neostigmine (7,8,10,46). Conversely, physostigmine’s inhibitory effects in rats can
be reversed by methylphenidate (46).

In a study performed in the early 1970s by Janowsky et al. (47), manic and
schizophrenic patients were given intravenous physostigmine first, followed by
methylphenidate and vice versa. Physostigmine alone decreased average mania
ratings of talkativeness, happiness, activity, flight of ideas, and the overall Manic
Intensity Scale scores and Elation/Grandiosity scores on the Bunney-Hamburg
Mania Rating Scale. It also decreased activation and increased inhibition on the
Janowsky-Davis Activation-Inhibition Scale (47). When methylphenidate alone
was administered, six of the eight manics who received it rapidly and significantly
increased their talkativeness, activity, flight of ideas, manic intensity, and Janowsky-
Davis Activation Scale scores. The increase in the Janowsky-Davis Activation Scale
scores which methylphenidate induced was partially reversed by physostigmine,
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but not neostigmine. Conversely, physostigmine-induced increases in the Beha-
vioral Inhibition Scale scores were partially reversed by methylphenidate (46).

There is evidence that central cholinergic and catecholaminergic mechanisms
not only balance each other, but are interactive. One human study by Ostrow
et al. (48) demonstrated that physostigmine caused a rapid and dramatic drop
in the urinary norepinephrine metabolite, serum 3-methyoxy-4-hydroxphenylglcol
(MHPG) in a manic patient, presumably reflecting a drop in CNS noradrenergic
activity. This phenomenon was associated with the induction of a tearful depressed
state and improvement in the patients’ manic symptoms (48).

Also, a negative correlation was noted between amphetamine-induced beha-
vioral excitation and the ability of the muscarinic agonist arecoline, given on
another occasion to decrease REM latency, an acetylcholine-sensitive sleep parameter
(49). Likewise, Siever et al. (50) demonstrated that those individuals who showed the
most extreme physostigmine and arecoline-induced anergy and negative affect had a
blunted growth hormone response to the noradrenergic agonist clonidine, a sign of
decreased noradrenergic responsiveness. Similarly, Schittecatte et al. (51) demon-
strated that human depressives are subsensitive to the REM sleep-suppressing
effects of the noradrenergic agonist, clonidine. However, it is not clear whether this
subsensivity to clonidine reflects subsensitivity of the a-noradrenergic system as
such, or represents the consequences of cholinergic overactivity.

As with the above described behavioral and phenomenological studies, there
is a growing body of preclinical evidence suggesting that such monoamines as
dopamine, norepinephrine, and serotonin on the one hand, and acetylcholine on
the other, are reciprocally interactive. For example, Hasey and Hanin (52)
showed that the immobility-promoting effects of physostigmine could be modified
by manipulating the b-noradrenergic system. Ikarashi et al. (53) found that dopa-
mine 2 (D2) receptor stimulation in striatum led to a decrease in striatal acetyl-
choline release, suggesting a decrease in acetylcholine availability. Downs et al.
(54) demonstrated that brain dopamine depletion caused an exaggerated ACTH
response following physostigmine administration in rats, suggesting that the dopa-
mine depletion led to unantagonized acetylcholine activity. Similarly, imipramine, a
noradrenergic antidepressant, has been found to decrease acetylcholinesterase
activity in the hippocampus by Camarini and Benedito (55), who suggest that
this decreased acetylcholinesterase activity is a reflection of decreased acetylcholine
release.

With respect to serotonin, although the selective serotonin reuptake inhibitors
do not appear to directly block muscarinic receptors, Saito et al. (56) demonstrated
that acetylcholine release appears decreased by inhibitory serotonin (5HT) 1B
hetero-receptors found on cholinergic nerve terminals, and Crespi et al. (57)
found that 5HT3 receptor agonists decrease acetylcholine release by effecting
5HT3 heteroreceptors. Consistent with the above, the 5HT1A agonist 8-OH-DPAT
turned off cholinergic REM—on neurons, which normally activate REM sleep.
Inconsistent with the above antagonistic effects, however, 8-OH-DPAT also
enhanced acetylcholine release from rat hippocampus and cerebral cortex (58),
and the 5HT1A agonist MKC-242 increased extracellular acetylcholine activity (59).

Depressive Effects of Cholinomimetic Agents
Alongwith the antimanic effects of cholinomimetic agents, some of themost convin-
cing evidence that acetycholine is involved in the regulation of affect is the
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observation that centrally active cholinomimetic drugs can rapidly induce a
depressed mood. Cholinomimetic insecticides, as reported by Gershon et al. (3,4)
and experimental nerve agents, as reported by Bowers et al. (5) and Rowntree et
al. (6), cause depression in normals. A significant proportion of the manic patients
who receive centrally acting cholinomimetics develop depressive symptoms, and
this appears true for some normal volunteers and depressed patients as well
(10,11,12). For example, Janowsky et al. (10,11) reported that six of the eight
manics and two depressives studied showed increased depressed mood following
physostigmine infusion (12). In addition, five of six schizoaffective patients (four
excited, two depressed types) showed depressedmood and sadness after physostig-
mine infusion. Similarly, Davis et al. (25) and Modestin et al. (23,24) reported an
increase in depression, following physostigmine administration in some of the
manic patients they studied, as did Risch et al. (15) when giving arecoline to
depressed patients.

Furthermore, Risch et al. (60) found a statistically significant mean increase
in self and observer rated negative affect, including depression, in normals receiv-
ing intravenous physostigmine. Risch et al. (60) also found that normal volunteers
given the directly acting muscarinic cholinergic agonist arecoline developed
depression and other forms of negative affect including hostility and anxiety. Like-
wise, Mohs et al. (61) reported severe depression occurring in some Alzheimer’s
patients receiving the cholinergic agonist oxotremorine.

Consistent with the above information, acetylcholine precursors including
deanol, choline, and lecithin have been reported to cause depression. Thus,
Tamminga et al. (62) observed that a depressed mood was precipitated in some
schizophrenic patients treated with choline. Casey (63) observed that depressed
mood occurred in a subset of deanol-treated patients who had tardive dyskinesia.
Similarly, Bajada observed that depressed mood was a side effect of choline and
lecithin treatments employed to try to reverse the memory deficits of Alzheimer’s
disease (64).

Increasing central cholinergic activity also induces an anergic-inhibitory syn-
drome which appears very similar to the psychomotor retardation component of
endogenous depression. This “inhibitory syndrome” has been operationalized in
the Janowsky-Davis Activation-Inhibition Scale (11,12) and has been observed by
a number of authors who have administered or observed the effects of centrally
acting cholinomimetic drugs (6,11,15,25). The “Inhibition” part of the Janowsky-
Davis scale consists of a composite of items rating for having lethargy, having
slow thoughts, wanting to say nothing, being withdrawn, being apathetic,
lacking energy, being drained, being hypoactive, lacking thoughts, being motor
retarded, and being emotionally withdrawn.

Although a consistent effect of the administration of centrally acting
cholinomimetic drugs is the induction of depressed mood and behavioral
inhibition, a separate question is whether or not affective disorder patients show
a differential sensitivity to these agents. There is a growing body of evidence
that while non-affective disorder patients show the psychomotor retarding and
inhibitory effects after receiving centrally acting cholinomimetics, they less often
show the depressive effects of these agents when compared to patients with an
affective disorder. Thus, Janowsky et al. (11) showed that of eight schizophrenics
without an affective component to their illness, only one showed increased depress-
ive symptoms following physostigmine infusion. Oppenheimer et al. (65) found no
increases in depressed mood in his normal subject cohort when they were given
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physostigmine, although behavioral inhibition did occur. Similarly, Silva et al.
(unpublished data) showed no increase in depressed mood after giving physostig-
mine to her carefully screened normal controls, although behavioral inhibition and
nausea occurred in most of her subjects. Conversely, as described above, most
studies in which cholinomimetic agents are given to affective disorder patients
report depressive symptoms in the majority of subjects (11,12,65). Thus, in the
studies by Janowsky et al. (11,12), approximately 25% of normals and nonaffective
disorder patients were found to have increases in negative mood following physos-
tigmine administration, in contrast to approximately 75% of the affective disorder
patients studied. In addition, Edelstein et al. (66) reported that schizophrenic
patients who responded to physostigmine with a clearing of psychotic symptoms
were significantly more likely to respond with symptomatic improvement when
given lithium, presumably because their illness represented a variant of affective
disorder. Furthermore, Steinberg et al. (67) has found that increases in negative
affect after physostigmine administration occurred selectively in those borderline
personality disorder patients who had pre-existing affectively unstable personal-
ities. Patients with personality disorders whowere affectively stable (i.e., borderline
patients who were primarily impulsive) did not show negative affect after physos-
tigmine infusion.

In addition to evidence demonstrating that affective disorder patients are
more likely to become depressed while receiving physostigmine and other centrally
active cholinomimetic drugs than are controls or nonaffective disorder patients,
affective disorder patients may also be relatively more sensitive to the general beha-
vioral effects of centrally acting cholinomimetic agents. Rater and patient evaluated
increases in the Janowsky-Davis Inhibition Scale Score and on the self-rated anxiety,
hostility, and confusion subscales of the Profile of Mood States Scale showed signifi-
cantly greater increases in the depressed patients than in non-affective disorder
patients or normals after arecoline (15,16) or physostigmine infusion (16).

Whether or not behavioral supersensitivity to cholinomimetic drugs is a state
or trait marker of affective disorders is uncertain. Oppenheimer et al. (65) found
that most of the euthymic lithium-treated bipolar patients he studied developed
a depressed mood after receiving physostigmine. Similarly, Casey (63) noted that
tardive dyskinesia patients having a significant past history of affective disorder
were more likely to show increased affective symptoms when administered the
probable acetylcholine precursor, deanol, than were those without an affective dis-
order history. However, in contrast, Nurnberger (49,68,69) observed no difference in
behavior or mood sensitivity when euthymic affective disorder patients and
normals were compared after receiving arecoline. Thus, whether behavioral super-
sensitivity to centrally active cholinomimetic drugs in affective disorder patients is
a state- or trait-linked phenomenon is uncertain, although much evidence favors it
being a trait.

In spite of evidence suggesting that selective behavioral supersensitivity to
central cholinomimetic agents in affective disorder patients exists, it is alternatively
possible that cholinomimetic agents are actually affecting those underlying person-
ality characteristics which are risk factors for mood disorders. Thus, as noted above,
Steinberg et al. (67) found that increases in negative affect after physostigmine
administration occurred selectively in those personality disorder patients with
pre-existing affectively unstable personalities, as compared to those who were
affectively stable or had primarily impulsive traits. This differential effect was rela-
tively neurotransmitter-specific, since affectively unstable patients reacting to
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physostigmine with negative affect did not show mood changes following nor-
adrenergic, serotonergic, or placebo challenges. In work complementary to the
above study, Fritze et al. (38,39) noted that behavioral sensitivity to physostigmine
(i.e., increased inhibition) correlated with baseline irritability and emotional lability,
and with habitually passive stress coping strategies. These authors proposed that
cholinergic sensitivity may be predominantly related to stress supersensitivity
and coping profiles, rather than to specific affective disorder diagnoses.

BIOLOGICAL FINDINGS
Choline in Bipolar Patients
While there is considerable evidence suggesting that centrally acting muscarinic
agonists and cholinesterase inhibitors can effectively decrease manic symptoms
and/or precipitate depression, nonbehavioral biological markers also exist,
suggesting a role for acetylcholine in the affective disorders. One potential
marker of cholinergic changes in the affective disorders is erythrocyte choline
activity, and one function of choline is to be a precursor of acetylcholine. Slight
elevations in erythrocyte choline have been noted in patients with bipolar disorders
by Bidzinski et al. (70), and have also been observed in unipolar depressives and
schizophrenics. Furthermore, Stoll et al. (71) found that relatively increased levels
of red blood cell choline existed in a subgroup of manic patients, and it was
these manic patients who had relatively more symptoms at admission and a poor
outcome at discharge. In addition, bipolar patients having relatively low levels of
red blood cell choline had a history of having four times as many prior episodes
of mania compared to episodes of depression. In contrast, patients with high eryth-
rocyte choline levels had a history of similar numbers of manic and depressive
episodes (71).

SPECTROSCOPIC STUDIES IN AFFECTIVE DISORDER PATIENTS

In vivo protonmagnetic resonance spectroscopy provides ameans for more directly
assessing human brain choline activity in vivo, and possibly for indirectly assessing
central acetylcholine function, since choline is a major precursor of acetylcholine, as
well as many other compounds. Charles et al. (18) observed that there is a state-
dependent increase in choline in the brains of patients with major depression
when compared to controls. This increase in choline was noted to revert to
normal after successful antidepressant treatment of the depression. More recently,
Renshaw et al. (19) studied the basal ganglia of depressed and control subjects,
and noted an alteration in the metabolism of cytosolic choline compounds in the
depressives, particularly those who subsequently were responsive to fluoxetine.
In addition, Hankura et al. (72) found that depressed bipolar disorder patients
had higher absolute subcortical choline-containing compounds than did normals.
Thus, it would appear that depression is associated with increased central choline
activity, a probable marker of increased central acetylcholine activity.

Cholinomimetic Induced Changes in REM Sleep in Affective Disorder Patients
Depression is generally associated with characteristic sleep changes. Among these
is a decrease in the time until rapid eye movement (REM) sleep occurs (REM
latency), increased REM duration, and increased REM density (13). Significantly,
as with naturally occurring depression, centrally acting cholinergic agonists such
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as arecoline, pilocarpine, the muscarinic 1 (M1) agonist, RS86, and cholinesterase
inhibitors such as physostigmine have been shown to cause a shortening of REM
latency and an increase in REM density. Conversely, centrally acting anticholiner-
gic, dopaminergic, noradrenergic, and serotonergic agents cause an increase in
REM latency and a decrease in REM density and REM duration (73).

Significantly, in the vast majority of studies performed to date, after central
cholinomimetic drug administration, REM latency is supershortened and REM
density relatively increased in affective disorder patients. Thus, in a groundbreak-
ing study utilizing affective disorder patients, Sitaram et al. (13) found that
following arecoline infusion, mean REM latency was significantly more shortened
in euthymic bipolar patients and in a unipolar patient, compared to the shortening
that occurred in normal volunteers. Sitaram et al. (13) also found similar results in
six bipolar and two unipolar euthymic patients who had been kept off all medi-
cations for at least four months, thus, suggesting a trait phenomenon. Gillin et al.
(74) also demonstrated cholinergically supershortened REM latency in a group of
predominantly nonbipolar symptomatic depressives after infusion of arecoline,
compared to controls. Similarly, Berger et al. (75) demonstrated a super-shortening
of REM latency in nonbipolar depressives when compared to normals and to eating
disorder patients following administration of the cholinergic-muscarinic agonist
RS86. Berger also found that cholinomimetic-induced arousal and awakening
from sleep occurred more frequently in acutely symptomatic affective disorder
patients than in normals (75).

Gann et al. (76) investigated sleep EEG profiles following administration of
RS86 to patients with major depression and anxiety disorders and to normal con-
trols. RS86 caused supershortening of REM latency and an increase in REM
density and REM duration in patients with major depression. Patients with
anxiety disorders having secondary depression did not show enhanced REM
abnormalities following RS86 administration, and anxiety disorder patients
showed actually decreased REM density compared to controls. Similar results
with respect to REM sleep responses to RS86 were noted by Riemann et al. in
1994 (77). Likewise, Dube and coworkers (78) showed that the REM sleep response
to cholinergic stimulation with arecoline was significantly more pronounced in
primary depressives than in patients with manic disorders, or those with mixed
anxious/depressive symptoms, and Dahl et al. (79) noted similar results in children.

Using a converse approach, Poland et al. (80) demonstrated that the anticho-
linergic agent scopolamine caused a differential effect on REM density, reducing
REM activity in a way consistent with a cholinergic abnormality in depression.
Rao et al. (81) observed that scopolamine 1.5 mcg/kg IM, administered using a ran-
domized double-blind crossover design, suppressed REM sleep and nocturnal cor-
tisol levels. Importantly, and not supportive of cholinergic supersensitivity, both in
the depressed patient group and in the controls, scopolamine suppressed REM
sleep and cortisol levels equally. Likewise, Gillin et al. (82) noted that depressives,
withdrawn from chronically administered scopolamine, did not show expected
exaggerated cholinergic rebound effects, as measured by sleep EEGs. Similarly,
the muscarinic receptor blocker biperiden was not capable of reversing the
relapse back into depression following napping, which occurred in patients
whose depression had been alleviated by sleep deprivation (83).

Studies demonstrating cholinergic supersensitivity of REM variables in
symptomatic affective disorder patients are remarkably consistent in their results.
What is less certain is whether or not this REM linked supersensitivity is a trait
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or a state phenomenon. The work of Sitaram et al. (13) and Nurnberger et al. (68,69)
suggest that the changes are a trait phenomena. Remitted bipolar patients, pre-
viously untreated by drugs or off medications for months, were shown to have
exaggerated REM latency shortening after receiving arecoline (68,69). Furthermore,
Schreiber et al. (84) observed exaggerated shortening of REM latency and increased
spontaneous sleep onset REM periods following RS86 administration in healthy
nondepressed first degree relatives of nonbipolar patients with a DSM III diagnosis
of major depression. However, in contrast, Berger et al. (75,85) noted exaggerated
REM latency shortening following administration of RS86 only in actively
depressed major depressive disorder patients and not in remitted ones. Similarly,
Lauriello et al. (86) did not find an overall supersensitive REM latency shortening
response to pilocarpine in mildly depressed patients, although these authors did
note a greater cholinomimetic induced shortening of REM latency in their most
highly symptomatic depressed patients, again suggesting a state phenomena.

The presumed hypersensitivity of REM sleep parameters to cholinomimetic
agents in affective disorder patients appears to have a genetic component. A signifi-
cant concordance of REM sleep parameter changes in monozygotic twins to whom
arecoline was administered (69) was noted. Also, as observed in the work of
Sitaram et al. (87,88), affectively ill members of the same families showed exagger-
ated shortening of REM latency after an arecoline infusion. Furthermore, as
described above, the work of Schreiber et al. (84) suggests a genetic relationship
to RS86-induced REM shortening. In an early data analysis, it was shown that
those nondepressed first degree relatives who initially showed the greatest
degree of REM shortening following RS86 administration were eventually found
more likely to become clinically depressed upon later follow-up (Holsboer et al.,
personal communication).

Supersensitive Pupillary Responses to Pilocarpine
Sokolski and DeMet (17) have recently reported that the pupillary constriction
response to pilocarpine is exaggerated in patients with major depression. They
suggest that this supersensitivity is trait dependent. These authors note that the
pupillary response to pilocarpine is probably mediated by muscarinic 3 (M3) recep-
tors, possibly exerting their influence through G protein-phosphoinositol mechan-
isms. Similarly, Sokolski and DeMet have found that lithium and valproate acid-
induced improvements in manic patients were correlated with increases in pupil-
lary sensitivity to pilocarpine (89). Conversely, these authors also found that
manic patients showed decreasing pupillary sensitivity to pilocarpine as the inten-
sity of mania increased (90). These authors also demonstrated that individuals with
more severe mania required higher concentrations of the muscarinic agonist pilo-
carpine to elicit a 50% reduction in pupil size (90). Thus the more symptomatic
the manic patient was, the less sensitive he/she was to a cholinergic agonist, a
finding consistent with an adrenergic-cholinergic balance hypothesis of mania
and depression.

Cardiovascular Effects of Cholinomimetic Drugs
There is evidence that patients having major depressive disorder have increased
mean urinary epinephrine excretion, and to a lesser extent, norepinephrine
excretion. Depressed patients also have elevated pulse rates and blood pressure
levels (91,92). Physostigmine, administered to normal and affective disorder

Cholinergic-Muscarinic Dysfunction in Mood Disorders 77



patients causes profound increases in serum epinephrine levels, and slight increases
in serum norepinephrine levels (91). Interestingly, the release of epinephrine is
blunted, rather than exaggerated, in affective disorder patients (94). Furthermore,
physostigmine and arecoline have both been shown to increase pulse rates and
blood pressure in subjects pretreated with peripherally acting anticholinergic
drugs, an effect which occurs to a similar extent in affective disorder patients and
controls (90,91). These changes parallel preclinical observations in animals (93),
and provide one more parallel between the phenomenology of naturally occurring
depression and central cholinomimetic drug effects.

Growth Hormone Supersensitivity
Acetylcholine causes the release of growth hormone from the pituitary (95,96). Thus,
pilocarpine, acetylcholine, and physostigmine all increase growth hormone release
in vivo in rats and in vitro in rat pituitaries, and this increase is prevented and/or
reversed by administration of centrally and noncentrally acting anticholinergic
drugs (97). With respect to growth hormone release by cholinomimetics in
humans, Janowsky et al. (96) found no increase in serum growth hormone levels fol-
lowing physostigmine infusion. However, their subjects had been pretreated with
methscopolamine or propantheline (probanthene), both peripherally acting anticho-
linergic agents that block peripheral cholinergic effects including nocturnal
hormone secretion (97). O’Keane et al. (98) reported growth hormone release follow-
ing administration of the peripherally acting cholinomimetic agent pyridostigmine
to depressed patients who had not been treated with a peripheral anticholinergic
drug. These depressed patients showed exaggerated release of growth hormone
as compared to controls, a finding also noted in manic patients (99). This exagger-
ated growth hormone response was most predominant in males with high baseline
cortisol levels (99). Possibly suggesting some nonspecificity to the growth hormone
response, Lucey et al. (100) reported exaggerated pyridostigmine induced growth
hormone release in obsessive-compulsive disorder patients and O’Keane et al.
(101) noted an enhanced growth hormone response to pyridostigmine in schizo-
phrenics. However, Cooney et al. (102) noted that patients with schizophrenia and
those with panic disorder who had low depression scores did not differ from a
control group with respect to pyridostigmine-induced growth hormone release.
Rubin et al. (103) found that lowdose physostigmine (8mcg/kg, IV) caused exagger-
ated growth hormone levels in depressedwomen, as comparedwith depressedmen
and controls. In a related study, Coplan et al. (104) in 2000 reviewed evidence that
early sleep is associated with an increased secretion of growth hormone, and that
this increase is due to muscarinic inhibition of somatostatin, a growth hormone sup-
pressant. In a decade long follow-up study of depressed subjects and controls
Coplan et al. (104) noted that initially “normal” subjects who subsequently devel-
oped depression/dysthymia or suicidality over the next decade on average had a
more rapid increase in nocturnal growth hormone secretion and greater growth
hormone secretion over the next four hours of sleep, respectively (104). This was
most likely due to continuingly increased muscarinic activity.

Hypothalamic-Pituitary-Adrenal Axis Supersensitivity
A major characteristic of clinical depression is the activation of the hypothalamic-
pituitary-adrenal (HPA) axis, and the associated finding that some depressed
patients fail to have suppression of cortisol secretion after the administration of
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dexamethasone (105). Cholinomimetic drugs can release corticotropin (ACTH)
releasing factor (CRF) and elevate serum ACTH and cortisol levels in animals and
in humans (97). Physostigmine has also been shown by Doerr and Berger (106) to
reverse dexamethasone-induced suppression of cortisol in normals and in depress-
ives. Significantly, physostigmine-induced serum ACTH increases (but not cortisol
increases) are exaggerated in affective disorder patients (15), again suggesting
cholinergic supersensitivity. Thus, it appears that cholinomimetic-induced increases
in the HPA axis occur, and that these parallel hormonal phenomena noted in
endogenous depression, such as increased cortisol secretion, cortisol resistance to
suppression by dexamethasone, and elevated ACTH levels.

Beta-endorphin secretion, also regulated by CRF, like ACTH appears
naturalistically elevated in depressives and, like ACTH and cortisol, serum
b-endorphin levels are significantly increased by physostigmine and other cholino-
mimetics (15,16). Furthermore, affective disorder patients have been shown to have
significantly greater increases in b-endorphin levels after physostigmine infusion,
when compared to normal controls and to nonaffective disorder patients (16),
suggesting cholinergic supersensitivity.

A controversy has existed as to the interpretation of the above neuroendocrine
results. Davis and Davis (14) observed that serum prolactin, cortisol, and growth
hormone levels did not increase after physostigmine infusion unless other unplea-
sant symptoms occurred, such as dizziness, nausea, vomiting. They postulated that
cholinomimetic-induced increases in HPA axis hormone levels and in other hor-
mones may be due to a nonspecific stress effect, such as feeling nauseated or vomit-
ing, rather than to direct cholinergic mediation of the release of hormones.
Janowsky et al. (107) reviewed evidence suggesting that motion sickness, which
includes nausea, dizziness, and vomiting, almost certainly involves a central
cholinergic mechanism, and motion sickness is a potent stimulator of growth
hormone, prolactin, and cortisol secretion.

However, there is much evidence available to indicate that the increase in
HPA axis and other stress sensitive hormones occurring after cholinomimetic infu-
sion is not due to nonspecific stress as such. Hasey and Hanin (52) demonstrated
that centrally acting physostigmine caused significantly greater increases in cortisol
release in rats than did noncentrally acting neostigmine. This finding occurred even
though the peripheral toxicity of both drugs was recorded to be severe and equal to
one another. Risch et al. (15,108,109) have observed that in arecoline-treated subjects
in whom serum beta-endorphin, ACTH, and cortisol levels significantly increased,
a sizable proportion of the subjects could not tell when active drug and when
placebo had been administered.

Furthermore, Janowsky et al. (97) has noted that physostigmine’s anergic
effects precede its nauseating effects, and Raskind et al. (110) noted that increases
in serum ACTH, epinephrine, and cortisol occurred following administration of
physostigmine in aged controls and in Alzheimer’s patients, whether or not
nausea had occurred. Steinberg et al. (67) noted no correlations between the
mood response to physostigmine and changes in cortisol, prolactin, growth
hormone, or nausea. In addition, Janowsky and Risch (97) reported increases in
serum prolactin and cortisol in physostigmine-treated patients and normals that
concurrently manifested no nausea, emesis, or dizziness. Most recently, Rubin et
al. (111) observed that very low doses of physostigmine, causing elevation of
ACTH levels, caused only minimal or no subjective distress or nausea (111).
Rubin et al. (112) furthermore noted that a heightened sensitivity to low doses of
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physostigmine occurred in female depressives not associated with increased side
effects, with this group showing increased ACTH and cortisol levels when com-
pared to male depressives and controls. Thus, it is likely that the stress-like
effects of centrally acting cholinomimetic agents occurs via a direct mechanism,
rather than working by causing a nonspecific stress.

Acetycholine as a Regulator of Stress
As implied above, it is possible that acetylcholine as such actually has a major role
in moderating the body’s various stress responses. Stress, being multidimensional,
includes gastrointestinal, cardiovascular, behavioral, analgesic, immunological,
endocrinological, and psychopathological changes. Consistent with the stress-acti-
vating effects of central acetylcholine, centrally active cholinomimetic drugs cause
many, evenmost, of the same effects inman as do naturally occurring stressors. This
includes development of negative affect, including depression; irritability; and
anxiety; increases in stress sensitive neuroendocrines including ACTH, cortisol,
beta-endorphin, growth hormone, prolactin, epinephrine, and possibly norepi-
nephrine; increases in blood pressure and pulse rate; and increases in analgesia
and serum glucose levels (35,36,93). Furthermore, information from preclinical
studies suggests that many of the manifestations of stress may be mediated by
acetylcholine, acting alone and interacting with other depression-relevant neuro-
transmitters such as norepinephrine, dopamine, serotonin, and gamma aminobuty-
ric acid (GABA) (97).

Conversely, stress as such can cause significant changes in central acetylcholine
activity (97). Gilad et al. (113) demonstrated that stress causes an increase in central
acetylcholine release and a compensatory downregulation of muscarinic receptors.
Gilad et al. (113) also demonstrated that acetylcholine release is differentially exagger-
ated in stress sensitive rats. Other investigators have noted that hypothalamic acetyl-
choline turnover increases after continuing stress, and that central acetylcholine
receptor sites are increased during uncontrollable stress (114).

A more recent study by Mizuno and Kimura found that hippocampal acetyl-
choline release, as well as cortisol release, is increased following stress in young but
not aged rats (115). Mark et al. (116), using microdialysis techniques, have demon-
strated that inescapable stress selectively enhances acetylcholine release in rat hip-
pocampus and prefrontal cortex, a phenomenon that they found increased further
when the stress was lifted. Consistent with the above results, Day et al. (118,119)
observed that prenatally stressed rats, when they became adults, showed a
greater release of hippocampal acetylcholine when exposed to a mild stress, or
after being given corticotropin-releasing factor. In addition, Kaufer et al. (117) has
observed that stress and cholinesterase inhibitors alter the expression of genes
that ultimately alter acetylcholine receptor function.

CENTRAL MUSCARINIC REGULATION OF
CHOLINOMIMETIC EFFECTS

It would appear that cholinomimetic-induced changes in mood and behavior,
increases in cortisol, ACTH, prolactin, beta-endorphin, and epinephrine as well as
increases in blood pressure and pulse are due to a central rather than a peripheral
muscarinic effect. Janowsky et al. (95) andModestin et al. (23,24) noted that in contrast
to physostigmine, the peripherally acting cholinesterase inhibitor neostigmine did not
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exert behavioral effects. Janowsky et al. (96) also noted that increases in serumACTH,
cortisol, prolactin, and serum epinephrine levels, as well as increases in blood
pressure and pulse rate, nausea, and negative affect caused by physostigmine did
not occur following neostigmine administration, suggesting a central mechanism
for physostigmine’s effects. In addition, physostigmine-induced effects, as described
above, can be blocked by administration of the centrally acting anticholinergic drug,
scopolamine, but not by the noncentrally acting anticholinergic drugs, methscopola-
mine and propantheline, suggesting a central muscarinic mechanism. Conversely, it
would appear that some aspects of peripheral cholinergic supersensivity also exist
in affective disorder patients. Exaggerated release of growth hormone and increased
pupillary sensitivity to pilocarpine, both peripheral manifestations of cholinergic
supersensitivity, exist in affective disorder patients and canbeblocked byperipherally
acting anticholinergic agents.

MUSCARINIC RECEPTOR GENE AND BINDING ALTERATIONS
IN MAJOR DEPRESSION

Since the year 2000, several studies have suggested that aspects of the muscarinic
cholinergic 2 receptor (CHRM2) gene are selectively associated with major
depression. In 2002, Comings et al. (120) observed that there was a significant
increase in the frequency of 11 homozygotes of the CHRM2 receptor gene in 126
women with major depression, as compared to 304 women without major
depression. This finding did not occur in men with major depression. Subsequently,
Wang et al. in 2004 (121) reported that variation in the CHRM2 gene predisposed to
alcohol dependence and major depressive syndrome. These authors assert that
their results provide strong evidence that variance within or close to the CHRM2
gene locus influenced the risk for Major Depressive Syndrome and alcohol depen-
dence. Subsequently, Luo et al. (122) concluded that variation in the CHRM2 gene
differentially predisposed to affective disorders, alcohol dependence, and drug
dependence.

However, with respect to muscarinic binding, the evidence for an alteration in
binding in mood disorder patients is essentially negative. For example, there is little
evidence of alterations in binding to M2 and M4 receptors in anterior cingulate
cortex between major depressives, bipolars, schizophrenics, and controls (123).
Similarly, Katerina et al. (124), again using quantitative autoradiography to
measure [(3)H] pirenzepine binding to M1 and M4 receptors found no difference
in any laminae of the anterior cingulate cortex between bipolar and major depress-
ive patients and controls, although a trend toward decreased binding in major
depressives compared to controls was found. A significant effect in those who
had suicided was also noted (124).

THERAPEUTIC IMPLICATIONS

Application of the adrenergic (monoaminergic)-cholinergic balance hypothesis of
affective disorders to the treatment of depression and mania have sporadically
been attempted. As described above, centrally acting anticholinergic drugs such
as biperiden only equivocally have antidepressant efficacy, although results with
relatively high doses of scopolamine are promising (37). The treatment of mania
with centrally acting cholinomimetic agents has been more consistently rewarding.
The choline precursor lecithin was used by Cohen in the early 1980s to treat mania,
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with promising results (125). Stoll et al. (20) reported that choline augmentation of
lithium therapy in rapidly cycling bipolar disorder patients caused a substantial
reduction in mania in five, and a marked reduction of all symptoms in four patients
studied. Related to the above, Leiva (126) reported that phosphotidal choline was
effective in the treatment of mania. More recently, Burt et al. (21) observed that
the cholinesterase inhibitor donepezil (Aricept) 5.0 mg each day was useful in alle-
viating manic symptoms in six of eleven treatment resistant manic patients. Thus,
the use of cholinomimetic agents to treat mania appears to have therapeutic poten-
tial, although the widespread use of cholinomimetic agents to treat mania has not
occurred.

PERSPECTIVES

As reviewed above, there is considerable physiological and phenomenological data
indicating that muscarinic cholinergic mechanisms play an important part in the
etiology and modulation of affective disorders. However, it is very possible that
pharmacologically or naturally induced changes in acetylcholine can cause relevant
perturbations in downstream neurochemical modulators and neurotransmitters
(i.e., serotonin, dopamine, norepinephrine, GABA, etc.) or in second messengers
(127,128), or the converse, since most neurotransmitters and neuromodulators con-
sidered important in causing affective changes interact with acetylcholine, and all
these neurochemicals exert important regulatory influence on downstream
phenomena such as second messengers and G proteins. Evaluation of these
complex interactions will likely yield promising results with respect to understand-
ing the pathophysiology of affective disorders.

Significantly, exploration of the role of acetylcholine as it relates to bipolar
disorders and other mood disorders such as major depressive disorder has
remained a relatively under-explored area, in spite of much evidence supporting
an adrenergic-cholinergic balance hypothesis of mood disorders. Other neurotrans-
mitters and neurochemicals such as GABA, serotonin, norepinephrine, NMDA, and
dopamine continue to be more popular targets of psychobiological and psycho-
pharmacological research. However, applying 21st century technology such as
advances in molecular genetics or brain imaging to the understanding of the
relationship between acetylcholine and the affective disorders will help clarify
the role of this neurotransmitter. Studying the effects on the central cholinergic
nervous system of conventional and newer antidepressant and mood stabilizer
medications (129,130,131), and utilizing genetically determined animal models of
depression such as the hypercholinergic Flinders sensitive line rats (132,133),
should also yield especially promising leads. Such techniques have much potential
for supporting the possibility that acetylcholine is directly or indirectly involved in
the etiology and the expression of affective disorders, acting alone or through other
relevant neurotransmitters and/or second messengers.

REFERENCES

1. Willoughby EF. Pilocarpine in treating mania. The Lancet 1889; 1:1030.
2. Grob, A, Harvey AM, Langworthy OR, et al. The administration of diisopropyl-

fluorophosphonate (DFP) to man. Bull of Johns Hopkins Hospital 1947; LXXXI:
257–266.

82 Janowsky and Overstreet



3. Gershon S, Shaw FH. Psychiatric sequelae of chronic exposure to organophosphorous
insecticides. Lancet 1961; 1:1371–1374.

4. Gershon S, Angrist B. Effects of alterations of cholinergic function on behavior. In Cole
JO, Freedman AM, Friedhoff AJ, eds. Psychopathology and Psychopharmacology.
Baltimore: Johns Hopkins University Press, 1972:15–36.

5. Bowers MB, Goodman E, Sim VM. Some behavioral changes in man following anticho-
linesterase administration. J Nerv Ment Dis 1964; 138:383–389.

6. Rowntree DW, Neven S, Wilson A. The effect of diisopropylfluorophosphonate in
schizophrenia and manic depressive psychosis. J Neurol Neurosurg Psychiatry 1950;
13:47–62.

7. Domino EF, Olds ME. Cholinergic inhibition of self-stimulation behavior. J Pharmacol
Exp Ther 1968; 164:202–211.

8. Stark P, Boyd ES. Effects of cholinergic drugs on hypothalamic self-stimulation in dogs.
Am J Physiol 1963; 205:745–748.

9. Carlton Pl. Cholinergic mechanisms in the control of behavior by the brain. Psychol
Rev 1963; 70:16–39.

10. Janowsky DS, El-Yousef MK, Davis JM, et al. A cholinergic-adrenergic hypothesis of
mania and depression. Lancet 1972; 2:632–635.

11. Janowsky DS, El-Yousef MK, Davis JM, et al. Parasympathetic suppression of manic
symptoms by physostigmine. Arch Gen Psychiatry 1973; 28:542–547.

12. Janowsky DS, El-Yousef MK, Davis JM. Acetylcholine and depression. PsychosomMed
1974; 36:248–257.

13. Sitaram N, Nurnberger J, Gershon ES, et al. Cholinergic regulation of mood and REM
sleep: A potential model and marker for vulnerability to depression. Am J Psychiatry
1982; 139:571–576.

14. Davis BM, Davis KL. Cholinergic mechanisms and anterior pituitary hormone
secretion. Biol Psychiatry 1980; 15:303–310.

15. Risch SS, Kalin NH, Janowsky DS. Cholinergic challenge in affective illness: behavioral
and neuroendocrine correlates. J Clin Psychopharmacol 1981; 1:186–192.

16. Janowsky DS, Risch SC, Judd LL, et al. Cholinergic supersensitivity in affect disorder
patients: behavioral and neuroendocrine observations. Psychopharmacol Bull 1981;
17:129–132.

17. Sokolski KA, DeMet EM. Increased pupillary sensivity to pilocarpine in depression.
Prog Neuropsychopharmacol Biol Psychiatry 1996; 20:253–262.

18. Charles HC, Lazeyras F, Krishnan KR, et al. Brain choline in depression: in vivo detec-
tion of potential pharmacodynamic effects of antidepressant therapy using hydrogen
localized spectroscopy. Prog Neuro-Psychopharmacol Biol Psychiatry 1993; 18:1121–
1127.

19. Renshaw PF, Lafer B, Babb SM, et al. Basal ganglia choline levels in depression and
response to fluoxetine treatment: An in vivo proton magnetic resonance spectroscopy
study. Biol Psychiatry 1997; 41(8):837–843.

20. Stoll AL, Sachs GS, Cohen BM, et al. Choline in the treatment of rapid-cycling bipolar
disorder: clinical and neurochemical findings in lithium-treated patients. Biol Psychia-
try 1996; 40(5):382–388.

21. Burt T, Sachs GS, Demopulos C. Donepezil in the treatment of bipolar disorder. Biol
Psychiatry 1999; 45(8):959–964.

22. Janowsky DS, Risch SC. Role of acetylcholine mechanisms in the affective disorders. In:
Meltzer HY, ed. Psychopharmacology. The third generation of progress. New York:
Raven Press, 1987:527–534.

23. Modestin JJ, Hunger J, Schwartz RB. Uber die depressogene wirkung von physostig-
mine. Arch Psychiatrie Nervenkr 1973a; 218:67–77.

24. Modestin JJ, Schwartz RB, Hunger J. Zur frage der beeinflussung schizophrener symp-
tome physostigmine. Pharmacopsychiatria 1973b; 3:300–304.

25. Davis KL, Berger PA, Hollister LE, et al. Physostigmine in man. Arch Gen Psychiatry
1979; 35:119–122.

26. Carroll BJ, Frazer A, Schless A, et al. Cholinergic reversal of manic symptoms. Lancet
1973; 1:427–428.

Cholinergic-Muscarinic Dysfunction in Mood Disorders 83



27. Krieg JC, Berger M. Treatment of mania with the cholinomimetic agent RS-86. Br J
Psychiatry 1986; 1(48):613–615.

28. Shopsin B, Janowsky DS, Davis JM, et al. Rebound phenomena in manic patients
following physostigmine. Neuropsychobiology 1975; 1:180–187.

29. Fibiger HD, Lynch GS, Cooper HP. A biphasic action of central cholinergic stimulation
on behavioral arousal in the rat. Psychopharmacologia 1971; 20:366–382.

30. Jellinec T, Gardos G, Cole J. Adverse effects of antiparkinsonian drug withdrawal. Am J
Psychiatry 1981; 138(12):1567–1571.

31. Smith JA. Abuse of antiparkinsonian drugs: a review of the literature. J Clin Psychiatry
1980; 41:35–354.

32. Coid B, Strang M. Mania secondary to procyclidine (“Kemadrin”) abuse. Br J
Psychiatry 1982; 141:81–84.

33. Kasper S, Moises HW, Beckman H. The anticholinergic biperiden in depressive
disorders. Pharmacopsychiatry 1981; 14:195.

34. English DC. Reintegration of affect and psychic emergence with ditran. J Neuropsy-
chiat 1962; 3:304–310.

35. Meduna LJ, Abood LG. Studies of a new drug (ditran) in depressive states.
J Neuropsychiat 1959; 11:20–23.

36. Safer DJ, Allen RP. The central effects of scopolamine in man. Biol Psychiat 1971;
3:437–455.

37. Furey ML, Drevets WC. The old drug scopolamine offers new promise as a potent
antidepressant agent: a randomized, placebo-controlled clinical trial. Neuropsycho-
pharmacology 2005; 30(1):S170.

38. Fritze J, Lanczik M, Sofic E, et al. Cholinergic neurotransmission seems not to be
involved in depression but possibly in personality. J Psychiatry Neurosci 1995; 20(1):
39–48.

39. Fritze J. The adrenergic-cholinergic imbalance hypothesis of depression: a review and a
perspective. Rev Neurosci 1993; 4(1):63–93.

40. Gillin JC, Lauriello J, Kelsoe JR, et al. No antidepressant effect of biperiden compared
with placebo in depression: a double-blind 6-week clinical trial. Psychiatry Res 1995;
58(2):99–105.

41. Hollister L. Marijuana in man: three years later. Nature 1970; 227:968.
42. El-Yousef MK, Janowsky DS, Davis JM, et al. Induction of severe depression in

marijuana intoxicated individuals. Br J Addict 1973; 68:321–325.
43. Davis KL, Hollister LE, Overall J, et al. Effects on Cognition and effect in normal

subjects. Psychopharmacology (Berl.) 1976; 51:23–27,1.
44. Rosenblatt JE, Janowsky DS, Davis JM, et al. The augmentation of physostigmine

toxicity in the rat by D9-tetrahydrocannabinol. Res Com Chem Path Pharm 1972;
3:478–482.

45. Duncan E, Dagirmanjian R. Tetrahydrocannabinol sensitization of the rat brain to direct
cholinergic stimulation. Psychopharmacology 1979; 60:237–240.

46. Janowsky DS, El-Yousef MK, Davis JM. Cholinergic antagonism of methylphenidate-
induced stereotyped behavior. Psychopharmacologia 1972; 27:295–303.

47. Janowsky DS, El-Yousef MK, Davis JM. Antagonistic effects of physostigmine and
methylphenidate in man. Am J Psychiatry 1973; 130:1370–1376.

48. Ostrow D, Halaris A, Dysken M, et al. State dependence of noradrenergic activity in a
rapidly cycling bipolar patient. J Clin Psychiatry 1984; 45(7):306–309.

49. Nurnberger JL, Berrettini W, Mendelson WB, et al. Measuring cholinergic sensitivity:
I. Arecoline effects in bipolar patients. Biol Psychiatry 1989; 25:610–617.

50. Siever LJ, Risch SC, Murphy DL. Central cholinergic-adrenergic balance in the regu-
lation of affective state. Psychiatry Res 1981; 5:108–109.

51. Schittecatte M, Charles G, Machowsky R, et al. Reduced clonidine rapid eye movement
suppression in patients with primary major affective illness. Arch Gen Psychiatry 1992;
49:637–642.

52. Hasey G, Hanin I. The cholinergic-adrenergic hypothesis of depression reexamined
using clonidine, metoprolol, and physostigmine in an animal model. Biol Psychiatry
1991; 29:127–138.

84 Janowsky and Overstreet



53. Ikarashi Y, Takahashi A, Ishimaru H, et al. Suppression of cholinergic activity via the
dopamine D2 receptor in the rat striatum. Neurochem Int 1997; 30(2):191–197.

54. Downs NS, Britton KT, Gibbs DM, et al. Supersensitive endocrine response to
physostigmine in dopamine-depleted rats: a model of depression? Biol Psychiatry
1986; 21(8–9):775–786.

55. Camarini R, Benedito MA. Chronic imipramine treatment-induced changes in acetyl-
cholinesterase (EC 3.1.1.7) activity in discrete rat brain regions. Braz J Med Biol Res
1997; 30(8):955–960.

56. Saito H, Matsumoto M, Togashi H, et al. Functional interaction between serotonin and
other neuronal systems: focus on in vivo microdialysis studies. Jpn J Pharmacol 1996;
70(3):203–205.

57. Crespi D, Gobbi M, Mennini T. 5-HT3 serotonin hetero-receptors inhibit [3H] acetyl-
choline release in rat cortical synaptosomes. Pharmacol Res 1997; 35(4):351–354.

58. Fujii T, Yoshizawa M, Nakai K, et al. Demonstration of the facilitatory role of
8-OH-DPAT on cholinergic transmission in the rat hippocampus using in vivo micro-
analysis. Brain Res 1997; 761(2):244–249.

59. Sombonnthum P, Matsuda T, Asano S, et al. MKC-242, a novel 5-HT1A receptor agonist,
facilitates cortical acetylcholine release by a mechanism different from that of 8-OH-
DPAT in awake rats. Neuropharmacology 1997; 36(11–12):1733–1739.

60. Risch SC, Cohen PM, Janowsky DS, et al. Physostigmine induction of depressive symp-
tomatology in normal human subjects. Psychiatry Res 1981; 4:89–94.

61. Mohs R, Hollander E, Haroutunian V, et al. Cholinomimetics in Alzheimer’s Disease.
Int J Neurosci 1987; 32:775–776.

62. Tamminga C, Smith RC, Change S, et al. Depression associated with oral choline.
Lancet 1976; 2:905.

63. Casey DE. Mood alterations during deanol therapy. Psychopharmacology 1979;
187–191.

64. Bajada S. A trial of choline chloride and physostigmine in Alzheimer’s dementia. In:
Corkin S, Davis K, Growden J, eds. Alzheimer’s Disease: A Report of Progress.
New York: Raven Press, 1982:427–432.

65. Oppenheimer G, Ebstein R, Belmaker R. Effects of lithium on the physostigmine-
induced behavioral syndrome and plasma cyclic GMP. J Psychiatry Res 1979; 14:
133–139.

66. Edelstein P, Schulz JF, Hirschowitz J, et al. Physostigmine and lithium response in
schizophrenia. Am J Psychiatry 1981; 138:1078–1081.

67. Steinberg BJ, Trestman R, Mitropoulou V, et al. Depressive response to physostigmine
challenge in borderline personality disorder patients. Neuropsychopharmacology
1997; 17(4):264–273.

68. Nurnberger JL Jr, Jimerson DC, Simmons-Alling S. Behavioral, physiological and
neuroendocrine response to arecoline in normal twins and well state bipolar patients.
Psychiatry Res 1983a; 9:191–200.

69. Nurnberger JL Jr, SitaramN, Gershon ES, et al. A twin study of cholinergic REM induc-
tion. Biol Psychiatry 1983b; 18:1161–1173.

70. Bidzinski A, Puzynski S, Mrozek S. Choline transport in erythrocytes of healthy
controls and patients with endogenous major depression. New Trends Exp Clin
Psychiatry 1989; 5:179–185.

71. Stoll A, Cohen BM, Hanin I. Erythrocyte choline concentrations in psychiatric
disorders. Biol Psychiatry 1991; 29:309–321.

72. Hankura H, Kato T, Murashita J, et al. Quantitative proton magnetic resonance
spectroscopy of the basal ganglion in patients with affective disorder. Eur Arch
Psychiatry Clin Neuroscience 1998; 248(1):53–58.

73. Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: reciprocal discharge
by two brainstem neuronal groups. Science 1975; 89:55–58.

74. Gillin JC, Sutton L, Ruiz C, et al. The cholinergic rapid eye movement induction test
with arecoline in depression. Arch Gen Psychiatry 1991; 48:264–270.

75. Berger M, Riemann D, Hochli D, et al. The cholinergic rapid eye movement sleep
induction test with RS-86. Arch Gen Psychiatry 1989; 46:421–428.

Cholinergic-Muscarinic Dysfunction in Mood Disorders 85



76. Gann H, Riemann D, Hohagen F, et al. The sleep structure of patients with anxiety dis-
orders in comparison to that of healthy controls and depressive patients under baseline
conditions and after cholinergic stimulation. J Affect Dis 1992; 26:179–190.

77. Riemann D, Hohagen F, Krieger S, et al. Cholinergic REM induction test: muscarinic
supersensitivity underlies polysomnographic findings in both depression and schizo-
phrenia. J Psychiatr Res 1994; 28(3):195–210.

78. Dube S, Kuman N, Ettedgui A, et al. Cholinergic REM induction response: separation
of anxiety and depression. Biol Psychiatry 1985; 20:408–418.

79. Dahl RE, Ryan ND, Perel J, et al. Cholinergic REM induction test with arecoline in
depressed children. Psychiatry Res 1994; 51(3):269–282.

80. Poland RE, McCracken JT, Lutchmansingh P, et al. Differential response of rapid eye
movement sleep to cholinergic blockade by scopolamine in currently depressed,
remitted, and normal control subjects. Biol Psychiatry 1997; 41(9):929–938.

81. Rao U, Lin KM, Schramm P, et al. REM sleep and cortisol responses to scopolamine
during depression and remission in women. Int J Neurpsychopharmacol 2004; 7(3):
265–274.

82. Gillin JC, Sutton L, Ruiz C, et al. The effects of scopolamine on sleep and mood in
depressed patients with a history of alcoholism and a normal comparison group.
Biol Psychiatry 1991; 30:157–169.

83. Dressing H, Riemann D, Gann H, et al. The effects of biperiden on nap sleep after sleep
deprivation in depressed patients. Neuropsychopharmacology 1992; 7:1–5.

84. Schreiber W, Lauer CJ, Krumrey K, et al. Cholinergic REM sleep induction test in sub-
jects at high risk for psychiatric disorders. Biol Psychiatry 1992; 32:79–90.

85. BergerM, Lund R, Bronisch T, et al. REM latency in neurotic and endogenous depression
and the cholinergic REM induction test. Psychiatry Res 1983; 10:113–123.

86. Lauriello J, Kenny WM, Sutton L, et al. The cholinergic REM sleep induction test with
pilocarpine in mildly depressed patients and normal controls. Biol Psychiatry 1993; 33:
33–39.

87. Sitaram N, Jones D, Dube S, et al. Supersensitive ACh REM-induction as a genetic
vulnerability marker. Int J Neurosci 1985; 32:777–778.

88. Sitaram N, Jones D, Dube S, et al. The association of supersensitive cholinergic
REM-induction and affective illness within pedigrees. J Psychiatr Res 1987; 21:
487–497.

89. DeMet EM, Sokolski KN. Sodium valproate increases pupillary responsiveness to a
cholinergic agonist in responders with mania. Biol Psychiatry 1999; 46 (3):432–436.

90. Sokolski KN, DeMet EM. Cholinergic sensitivity predicts severity of mania. Psychiatry
Res 2000; 95(3):195–200.

91. Janowsky DS, Risch SC, Huey LY, et al. Effects of physostigmine on pulse, blood
pressure and serum epinephrine levels. Am J Psychiatry 1985; 142:738–740.

92. Janowsky DS, Risch SC, Judd LL, et al. Brain cholinergic systems and the pathogenesis
of affective disorders. In: Singh MM, Warburton DM, Lal H, eds. Central Cholinergic
Mechanisms and Adaptive Dysfunction. New York: Plenum, 1985:309–353.

93. JanowskyDS, Risch SC, ZieglerMG, et al. Physostigmine-induced epinephrine release in
patients with affective disorder. Am J Psychiatry 1986; 143(7): 919–992.

94. Kubo T. Cholinergic mechanism and blood pressure regulation in the central nervous
system. Brain Res Bull 1998; 46(6):475–481.

95. Dinan TG. Psychoneuroendocrinology of depression. Growth hormone. Psychiatr Clin
North Am 1998; 21(2):325–339.

96. Janowsky DS, Risch SC, Kennedy B, et al. Central muscarinic effects of physostigmine
on mood, cardiovascular function, pituitary, and adrenal neuroendocrine release.
Psychopharmacology 1986; 89:150–154.

97. Janowsky DS, Risch SC. Cholinomimetic and anticholinergic drugs used to investigate
an acetylcholine hypothesis of affective disorder and stress. Drug Dev Res 1984; 4:
125–142.

98. O’Keane V, O’Flynn K, Lucey J, et al. Pyridostigmine-induced growth hormone
responses in healthy and depressed subjects: evidence for cholinergic supersensitivity
in depression. Psychol Med 1992; 22(1):55–60.

86 Janowsky and Overstreet



99. Dinan TG, O’Keane V, Thakore J. Pyridostigmine induced growth hormone release in
mania: focus on the cholinergic/somatostatin system. Clin Endocrinol (Oxf) 1994;
40(1):93–96.

100. Lucey JV, Butcher G, Clare AW, et al. Elevated growth hormone responses to pyridos-
tigmine in obsessive-compulsive disorder: evidence of cholinergic supersensitivity. Am
J Psychiatry 1993; 150:961–962.

101. O’Keane V, Abel K, Murray RM. Growth hormone responses to pyridostigmine in
schizophrenia: evidence for cholinergic dysfunction. Biol Psychiatry 1994; 36(9):582–
588.

102. Cooney JM, Lucey JV, O’Keane V, et al. Specificity of the pyridostigmine/growth
hormone challenge in the diagnosis of depression. Biol Psychiatry 1997; 42(9): 827–833.

103. Rubin RT, Abbasi SA, RhodesME, et al. Growth hormone responses to low-dose physos-
tigmine administration: functional sex differences (sexual diergism) between major
depressives and matched controls. Psychol Med 2003; 33(4):655–665.

104. Coplan JD, Wolk SI, Goetz RR, et al. Nocturnal growth hormone secretion studies in
adolescents without major depression re-examined: integration of adult clinical
follow-up data. Biol Psychiatry 2000; 47(7):594–604.

105. Amsterdam JD, Maislin G, Skolnick B, et al. The assessment of abnormalities in
hormonal responsiveness at multiple levels of the hypothalamic-pituitary-adrenocorti-
cal axis in depressive illness. Biol Psychiatry 1989; 26:265–278.

106. Doerr P, Berger M. Physostigmine-induced escape from dexamethasone suppression in
normal adults. Biol Psychiatry 1983; 18:261–268.

107. Janowsky DS, Risch SC, Ziegler M, et al. Cholinomimetic model of motion sickness and
space adaptation syndrome. Aviat Space Eng 1984; 55:692–696.

108. Risch SC, Janowsky DS, Kalin NH, et al. Cholinergic beta endorphin hypersensitivity
associated with depression. In: Hanin I, Usdin E, eds. Biological Markers in Psychiatry
and Neurology. Oxford: Pergamon Press, 1982:269–278.

109. Risch SC, Janowsky DS, Gillin JC. Muscarinic supersensitivity of anterior pituitary
ACTH and beta endorphin release in major depressive illness. Peptides 1981; 9:
789–792.

110. Raskind MA, Peskind ER, Veith RC, et al. Neuroendocrine response to physostigmine
in Alzheimer’s Disease. Arch Gen Psychiatry 1989; 46:535–540.

111. Rubin RT, Rhodes ME, O’Toole S, et al. Sexual diergism of hypothalamo-pituitary-
adrenal cortical responses to low-dose physostigmine in elderly vs. young women
and men. Neuropsychopharmacology 2002; 26(5):672–681.

112. Rubin RT, O’Toole SM, Rhodes ME, et al. Hypothalamo-pituitary-adrenal cortical
responses to low-dose physostigmine and arginine vasopressin administration: sex
differences between major depressives and matched control subjects. Psychiatry Res
1999; 89(1):1–20.

113. Gilad GM. The stress-induced response of the septo-hippocampal cholinergic system.
A vectorial outcome of psychoneuroendocrinological interactions. Psychoneuroendo-
crinology 1987; 12(3):167–184.

114. Finkelstein Y, Koffler B, Rabey JM, et al. Dynamics of cholinergic synaptic mechanisms
in rat hippocampus after stress. Brain Res 1985; 43:314–319.

115. Mizuno T, Kimura F. Attenuated stress response of hippocampal acetylcholine
release and adrenocortical secretion in aged rats. Neurosci Lett 1997; 222:49–52.

116. Mark GP, Rada PV, Shorts TJ. Inescapable stress enhances extracellular acetylcholine in
the rat hippocampus and prefrontal cortex but not the nucleus accumbens or amygdala.
Neuroscience 1996; 74:767–774.

117. Kaufer D, Friedman A, Seidman S, et al. Acute stress facilitates long-lasting changes in
cholinergic gene expression. Nature 1998; 393(6683):373–377.

118. Day JC, Koehl M, Deroche V, et al. Prenatal stress enhances stress- and corticotrophin
releasing factor-induced stimulation of hippocampal acetylcholine release in adult
rats. J Neurosci 1998; 18:1886–1892.

119. Day JC, Koehl M, LeMoal M, et al. Cortiotropin-releasing factor administered centrally,
but not peripherally, stimulates hippocampal acetylcholine release. J Neurochem 1998;
71:622–629.

Cholinergic-Muscarinic Dysfunction in Mood Disorders 87



120. Comings DE, Wu S, Rostamkhani M, et al. Association of the muscarinic cholinergic 2
receptor (CHRM2) gene with major depression in women. Am J Med Genet 2002;
114(5):527–529.

121. Wang JC, Hinrichs AL, Stock H, et al. Evidence of common and specific genetic effects:
association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol
dependence and major depressive syndrome. Hum Mol Genet 2004; 13:1903–1911.

122. Luo X, Kranzler HR, Zuo L, et al. CHRM2 gene predisposes to alcohol dependence,
drug dependence and affective disorders: results from an extended case-control struc-
tured association study. Hum Mol Genet 2005; 14(16):2421–2434.

123. Zavitsanou K, Katsifis A, Yu Y, et al. M2/M4muscarinic receptor binding in the anterior
cingulate cortex in schizophrenia and mood disorders. Brain Res Bull 2005; 65(5):
397–403.

124. Katerina Z, Andrew K, Filomena M, et al. Investigation of m1/m4muscarinic receptors
in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major
depression disorder. Neuropsychopharmacology 2004; 29(3):619–625.

125. Cohen BM, Lipinski JF, Altesman RI. Lecithin in the treatment of mania: double-blind,
placebo controlled trials. Am J Psychiatry 1982; 139(9):1162–1164.

126. Leiva DB. The neurochemistry of mania: a hypothesis of etiology and rationale for
treatment. Prog Neuropsychopharmacol Biol Psychiatry 1990; 14(3):423–429.

127. Avissar S, Schreiber G. Muscarinic receptor subclassification and G-proteins: signifi-
cance for lithium action in affective disorders and for the treatment of extrapyramidal
side effects of neuroleptics. Biol Psychiatry 1989; 26:113–130.

128. Avissar S, Schreiber, G. The involvement of guanine nucleotide binding proteins in the
pathogenesis and treatment of affective disorders. Biol Psychiatry 1992; 31:435–459.

129. Hankura H, Kato T, Murashita J, et al. Quantitative proton magnetic resonance spec-
troscopy of the basal ganglion in patients with affective disorder. Eur Arch Psychiatry
Clin Neuroscience 1998; 248(1):53–58.

130. Jope RS. Lithium selectively potentiates cholinergic activity in rat brain. Prog Brain Res
1993; 98:317–322.

131. JanowskyD, Judd L. the effects of lithiumon cholinergicmechanisms. In: PerrisC, Struwe
G, Janson B, eds. Biological Psychiatry. Elseiver: Amsterdam/North-Holland Biomedical
Press, 1981:653–656.

132. Overstreet DH. The Flinders sensitive line rats: a genetic animal model of depression.
Neurosci Biobehav Rev 1993; 17:51–68.

133. Martin JR, Driscoll P, Gentsch C. Differential response to cholinergic stimulation in
psychogenetically selected rat lines. Psychopharmacology 1984; 83:262–267.

88 Janowsky and Overstreet



B5 Serotonergic Dysfunction in Mood Disorders

J. John Mann and Dianne Currier
Department of Psychiatry, Columbia University, New York,
New York, U.S.A.

INTRODUCTION

First purified from blood and named in 1948 (1), serotonin (5-hydroxytryptamine)
has a wide range of effects including cardiovascular regulation and intestinal
motility outside the brain, and within the brain it modulates: respiration, thermo-
regulation, circadian rhythm entrainment, sleep-wake cycle, appetite, aggression,
mood, sexual behavior, sensorimotor reactivity, pain sensitivity, and learning (2).
Dysfunction of the serotonergic system is thought to play a role in a variety of
psychiatric disorders including mood disorders, generalized anxiety disorder,
panic disorder, obsessive-compulsive disorder, social phobia, schizophrenia, anor-
exia nervosa, and Alzheimer’s dementia (2). This chapter outlines research findings
that provide the basis for our current understandings of the role of serotonin in
bipolar disorder.

HISTORICAL VIEW

Serotonergic dysfunction has long been implicated in the etiology of depressive dis-
orders. In 1955 it was observed that reserpine, an antihypertensive drug that preci-
pitated depression, depleted serotonin in the brain (3). In 1958, demonstration of the
antidepressant properties of imipramine and iproniazid was subsequently linked to
their actions as a serotonin reuptake inhibitor and monoamine oxidase inhibitor
respectively, and further suggested a role of serotonin in the pathophysiology of
depressive disorders. These findings contributed to the formulation, by Coppen
(4) and Lapin and Oxenkrug (5) of the indoleamine hypothesis of depression,
wherein the vulnerability to major depression was related to low serotonergic
activity, attributable to either less serotonin release, fewer serotonin receptors, or
impaired serotonin receptor-mediated signal transduction. In 1974 Prange et al.
(6) extended this hypothesis from major depression by proposing a permissive
hypothesis of serotonin function in bipolar disorder in which both the manic and
depressive phases of bipolar disorder are characterized by a deficit in central sero-
tonergic neurotransmission.

Over the ensuing 30 years a variety of research strategies have been pursued
to elucidate the role of serotonin in mania and depression, including studies of:
serotonin uptake and transporter binding in platelets; 5-hydroxyindole-acetic
acid (5-HIAA) the main serotonin metabolite in cerebrospinal fluid (CSF); neuro-
endocrine challenge tests that provoke release of serotonin or activate serotonin
receptors or block reuptake; postmortem studies of serotonin and its metabolites;
serotonergic receptor density; and signal transduction in the brain. More recently
molecular genetic studies and in vivo brain imaging studies of neuroreceptors
have been utilized to study the serotonin system.
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SEROTONERGIC FUNCTION IN MAJOR DEPRESSION

Most studies of serotonergic function in depression are conducted inmajor depress-
ive disorder (MDD), also known as unipolar depression, or in mixed groups of
MDD and bipolar depressed patients. This section considers studies of depressed
groups of any composition and a later section reviews studies of bipolar depression
specifically.

Cerebrospinal Fluid Studies
Levels of the major metabolite of serotonin, 5-hydroxyindoleacetic acid (5-HIAA),
in cerebrospinal fluid (CSF) have been studied as an index of central serotonin turn-
over in depressive and other psychiatric disorders. Such an approach assumes that
CSF 5-HIAA is related to brain serotonin activity. This premise is supported by the
rostral-caudal concentration gradient of CSF 5-HIAA and the observation in post-
mortem studies that CSF 5-HIAA correlates with levels of 5-HIAA in the prefrontal
cortex (7). Those findings are supplemented by the observation of a positive corre-
lation with the prolactin response to fenfluramine, indicating that CSF 5-HIAA is a
reasonable index of prefrontal serotonin turnover (8), although methodological
factors and differences in study population may underlie the disparate findings
of studies of CSF 5-HIAA and depression. Some report lower CSF 5-HIAA in
depressed patients compared with healthy volunteers (9–14) but others do not
(15–18). The level of CSF 5-HIAA generally does not correlate with severity of
depression. In contrast to studies of CSF 5-HIAA in depression, the evidence of a
relationship is more robust for suicidality. The finding of lower brainstem serotonin
and/or 5-HIAA in depressed suicides and lower CSF 5-HIAA in depressed suicide
attempters has been consistently replicated (19). The suicide-related finding may
reflect a deficit in serotonin input to the ventromedial prefrontal cortex considered
to underlie a predisposition to act on powerful feelings (20,21). Consistent with this
model, correlations are also reported between severity of lifetime externally
directed aggressive/impulsive behavior and low CSF 5-HIAA (22,23). This is a
biochemical trait that can predict future suicide risk (24).

Platelet Studies
Platelets have been used as a peripheral model for serotonin neurons in studies of
serotonin function in mood disorders. Platelets are more accessible for study than
obtaining CSF, and share many properties with central serotonin neurons, includ-
ing uptake, storage, and release of serotonin, some serotonin receptors, and seroto-
nin transporter binding sites (25,26). Lower serotonin uptake, due mainly to fewer
uptake sites (Vmax), in unmedicated depressed patients has been consistently
reported (27–31).

The ligands [3H]imipramine and [3H]paroxetine have been used to assay
serotonin transporter binding in platelets and postmortem brain. In the brain,
[3H]imipramine binds to at least two classes of sites: high- and low-affinity. The
high-affinity, sodium-dependent binding was found to be associated with the sero-
tonin transporter complex (32). Depressedunmedicated subjects have fewer transpor-
ter sites as measured by lower [3H]imipramine binding (31,33–38), though not all
studies agree (39–42). Meta-analysis of over 70 studies of [3H] imipramine compris-
ing more than 1900 depressed patients and slightly fewer controls found fewer
binding sites in depressed patients compared with controls (43). Studies using
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the ligand [3H]paroxetine, which is thought to be more selective, have also reported
lower binding (35,44,45) or no differences (38,46–48).

The 5-HT2A receptor has also been assayed in platelets with mixed results.
Many studies (49–54) but not all (55,56) report more 5-HT2A binding sites in
depressed patients compared with healthy controls. During treatment with anti-
depressants normalization of receptor density has been observed with symptomatic
improvement (57,58) but not always (59,60).

Neuroendocrine Challenge and Depletion Studies
Another indicator of central serotonin system function is a hormonal response to
the serotonin releasing agent/uptake inhibitor fenfluramine, and other related
direct and indirect serotonin agonists. Release of serotonin from raphe nuclei
projections to the hypothalamus causes the release of prolactin, cortisol, and adre-
nocorticotropic hormone (ACTH) from the pituitary. Thus, prolactin response is an
index of central serotonin responsivity (61). Fenfluramine challenge can measure
net serotonin transmission, including elements of presynaptic and postsynaptic ser-
otonergic functioning, which is not possible in cerebrospinal fluid and platelet
studies (62).

Fenfluramine causes the release of serotonin and inhibits serotonin reuptake,
thus the prolactin response to fenfluramine is an index of serotonin responsivity. A
blunted prolactin response to fenfluramine, indicating less serotonin release and/or
serotonin 5-HT1A or 5-HT2A receptor signal transduction, in depressed patients, has
been reported by many (63–69) but not all studies (70–72). Remitted patients still
have blunted response, the same as severely depressed patients (73). Tryptophan
is a precursor of serotonin and intravenous administration increases prolactin
secretion. Blunted prolactin response to tryptophan challenge has been reported
in major depression (74–76).

Other methods of studying serotonergic function are through the depletion of
serotonin by inhibition of tryptophan hydroxylase (TPH), the rate-limiting biosyn-
thetic enzyme for serotonin, with parachlorophenylalanine (PCPA) (77), or via
acute tryptophan depletion combined with competitive inhibition of brain uptake
by flooding with a bolus of large neutral amine acids (78,79). In long-term remitted,
medication-free depressed patients, depression recurs in hours after acute seroto-
nin or tryptophan depletion (80,81). In remitted patients taking serotonin-related
antidepressant medication, tryptophan depletion induces a transient and rapid
return of depression symptoms, while in untreated depressed patients or those
on noradrenergic antidepressants, there is no clear worsening (82).

Postmortem Studies
Postmortem studies have examined a variety of serotonergic indices. Most
postmortem studies are of depressed suicide victims and, given the evidence that
serotonergic anomalies characterize suicide across diagnostic categories, it can be
difficult to ascertain if abnormalities observed are related specifically to depression
or to suicide.

SEROTONIN AND 5-HIAA

Postmortem studies found no differences between depressed suicide victims and
control subjects in levels of serotonin in the hippocampus (83,84), occipital cortex
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(83), frontal cortex (84,85), temporal cortex (84,85), caudate (84), striatum (85), or
hypothalamus (85).

Postmortem studies of 5-HIAA have produced varied findings. In a study of
depressed nonsuicide deaths, 5-HIAA in frontal cortex tended to be lower than
in controls (86). Moreover, it was lower in patients who had not been on anti-
depressants in the month before death. In suicides Crow et al. (87) observed no
significant differences in 5-HIAA levels in the frontal cortex, occipital cortex, and
hippocampus of depressed compared with nondepressed suicide victims. Owen
et al. (83) reported no difference in 5-HIAA in the hippocampus when comparing
depressed suicide victims to nondepressed subjects but modestly higher 5-HIAA
compared with normal control subjects. Likewise Cheetham (84) found depressed
suicides did not differ from controls in levels of 5-HIAA in cortical regions, hippo-
campus, amygdala, and caudate; however, 5-HIAA levels were higher in the amyg-
dala but not the hippocampus in drug-free depressed suicides.

Serotonin Transporter
Stanley et al. (1982) were the first to report lower [3H]imipramine binding in the
prefrontal cortex of suicides compared with nonsuicides and this was soon con-
firmed in suicides with and without depression (88) compared with nonsuicides,
although others found no difference (83). It was not clear whether this finding
was associated with suicide or major depression. Depressed nonsuicides were
reported to have less serotonin transporter binding in the hippocampus and the
occipital cortex compared with normal controls (89). Others found no differences
(86,90). This question was resolved when a large study examining transporter
binding using [3H]cyanoimipramine found lower postmortem binding throughout
the prefrontal cortex of a group with a major depression (20) whereas in suicide
lower transporter binding appeared localized to the ventromedial prefrontal
cortex (20,21).

5-HT1A Receptor
Several postmortem studies have examined the role of 5-HT1A receptors in MDD
and suicide. In the main, controls are compared with suicide victims with major
depression. The only study of depressed individuals who died by means other
than suicide reported a trend for higher 5-HT1A binding compared with controls
(86). Several studies reported no differences between depressed suicides and
controls in the prefrontal cortex (91–93), cortex (92,94,95), occipital cortex (95), tem-
poral cortex (94), hippocampus (92,93,95), and amygdala (95). Others report higher
binding in prefrontal cortex (21), andmore rostral segments of raphe nuclei (96) and
lower binding in more caudal raphe nuclei (97), hippocampus (98), prefrontal
cortex, and temporal cortex. Arango et al. also report less gene expression in the
dorsal raphe (97).

5-HT2A Receptor
Postmortem studies of 5-HT2A receptors in the prefrontal cortex have likewise
produced conflicting results. The first study reported higher 5-HT2A binding in pre-
frontal cortex of suicides compared with nonsuicides (99). Other studies replicated
these findings (100–102). Pandey et al. subsequently showed that protein levels
were elevated and so was gene expression (102). A number of studies, using
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[3H]ketanserin, did not find 5-HT2A receptors significantly different in the prefron-
tal cortex in depressed suicides compared with controls (83,87,91,93,103–106).
Cheetham et al. (104) found that antidepressant-free depressed suicides had
lower 5-HT2A binding in the hippocampus than normal controls. Still other
studies find higher binding. One study of the prefrontal cortex found more
5-HT2A receptors (107) while another reported a trend in that direction (108). A
study of the prefrontal cortex and the amygdala in depressed suicides also reported
more 5-HT2A receptors (109). Ferrier et al. (86), in a nonsuicide postmortem sample,
noted a trend for 5-HT2A receptors to be elevated in the frontal cortex of patients
with major depression compared with dysthymia and nondepressed controls
with the trend more pronounced in subjects who had been depressed immediately
prior to death. Depressed non-suicides on antidepressants at the time of death did
not show differences in [3H]ketanserin binding in the frontal cortex compared with
controls (107), suggesting that antidepressant treatment may reduce 5-HT2A recep-
tors density in major depressives (107).

Imaging Studies
Positron emission tomography (PET) studies of 5-HT1A receptor binding potential
in depressed subjects with primary, recurrent, familial mood disorders report lower
mean 5-HT1A receptor binding potential in the midbrain raphe, limbic, and neocor-
tical areas in the frontal, mesiotemporal, occipital, and parietal cortices compared
with healthy controls (110,111). In the Drevets et al. (110) studies, the effect was
mainly seen in bipolar subjects or unipolar with bipolar first degree relatives.
Parsey et al. (2006) found depressed subjects who were antidepressant naı̈ve had
greater binding potential than controls. Moreover, higher 5HT1A binding was
associated with the higher expressing G allele of the functional 5HT1A G(-1019) pro-
moter polymorphism, and that allele was more common in the depressed group
(112). Imaging studies of 5-HT2A receptor binding in depressed subjects have
reported conflicting results. Some studies observe higher 5-HT2A receptor
binding in the prefrontal cortex; others report lower binding in the cingulate,
insula, and inferior frontal cortex; and still others observe no alterations (113). Vari-
ation in results may be related to the use of different ligands, patient heterogeneity,
or downregulation of 5-HT2A receptor binding by antidepressants (114,115). Lower
5-HT2A receptor binding in the hippocampus has also been reported in medication-
free depressed patients (116), supporting the findings of some postmortem studies
(104,106). A SPECT study using [2-123I]ketanserin to label 5-HT2A receptors found
higher uptake of the tracer in the parietal cortex of the patients, and a right
greater than left asymmetry in the infero-frontal region of the depressed subjects
compared with control subjects (117).

Other imaging studies report decreased uptake of 1-11C-hydroxytryptophan
across the blood-brain barrier in depressed subjects compared with normal subjects
(118). This finding suggests decreased serotonergic functioning secondary to
reduced availability of serotonin precursors such as 5-hydroxytryptophan. In a
FDG PET study of medication free major depression and healthy controls under-
going fenfluramine challenge, depressed patients had blunted regional brain
glucose utilization in response to serotonin release by fenfluramine compared
with controls (119). Finally, imaging studies of transporter binding report signifi-
cantly lower serotonin transporter binding in the brainstem and other brain
regions of medication-free unipolar depressed patients compared with healthy
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volunteers (112,120), although one study found higher binding in the hypothala-
mus/midbrain in depressed children and adolescents (121).

SEROTONERGIC FUNCTION IN MANIA

There is evidence for the contribution of serotonin dysfunction to mania, and invol-
vement of the serotonin system in the mechanism of action of mood stabilizers
(122); however, it is much less extensive than for depression. Moreover, altered
functioning of other neurotransmitters in mania such as norepinephrine, dopa-
mine, acetylcholine, and GABA and their interaction with serotonin are involved
in the pathogenesis of bipolar disorder. Differences in these neurotransmitter
systems possibly underlie differences in the pathogenesis of depressive and
manic episodes.

Cerebrospinal Fluid Studies
Manic patients are variously reported to have lower CSF 5-HIAA levels
(9,10,123,124), no difference (125–132), or higher CSF 5-HIAA compared with
healthy controls (133). The majority of studies (10,17,123,127,129, 132,134,135),
though not all (126), also found no difference in CSF 5-HIAA levels in mania
compared with depression, consistent with the permissive hypothesis for bipolar
disorders (6). This hypothesis states that low serotonin function has a role in epi-
sodes of both depression and mania.

Probenecid blocks the active transport of 5-HIAA out of the CSF andwas used
in older studies to boost levels of 5-HIAA when assays lacked the sensitivity of
current methods. It is potentially a more dynamic measure of central serotonergic
activity than basal level when CSF 5-HIAA is measured before and after
probenecid administration because by blocking egress of 5-HIAA, the rise in
5-HIAA reflects the rate of production and transport into CSF of 5-HIAA.
However, studies almost uniformly did not use probenecid in this way and just
made one measurement after it was administered. Such studies of CSF 5-HIAA
after probenecid administration in manics, depressives, and controls have
yielded mixed findings. Two studies found low CSF 5-HIAA in both manic and
depressed patients compared with controls (136,137), one reported lower CSF
5-HIAA accumulation in mania than depression and controls (127), and another,
with no control group, found similar levels in mania and depression (129).
Overall CSF studies suggest both mania and depression are associated with
impaired central serotonin function.

Platelet Studies
Studies of platelet serotonin uptake in mania have reported mixed results with two
studies finding no differences from healthy controls (28,138), one study reporting
greater serotonin uptake (139), and another less serotonin uptake compared with
controls (140). In the latter two studies not all manic patients were medication-
free, potentially confounding the findings. Two studies of transporter binding in
mania compared with depression found higher binding (141,142) and two others
found no difference (42,143). In all four studies binding in mania was not different
from healthy controls, which is inconsistent with the robust reports of lower
binding in major depression. Velayudhan et al. (144) used [125I]-ketanserin to
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examine platelet 5-HT2A receptor binding sites in drug-free manic patients and
found no differences compared with healthy controls.

Serotonin-induced platelet calcium mobilization is a measure of 5-HT2A

receptor signal transduction (145,146) and more robust responses are reported in
untreated mania compared with healthy controls and euthymic lithium-treated
bipolar patients (147) and in both manic and depressive phases of bipolar disorder
compared with normal controls and euthymic bipolar patients (148). Together these
two studies suggest an increase in sensitivity of 5-HT2A receptors in both mania and
bipolar depression.

Challenge Studies
Thakore et al. (149) found a blunted prolactin response to D-fenfluramine in medi-
cated manic subjects compared with healthy controls. That may indicate a deficit in
serotonin release because direct receptor agonists report enhanced 5-HT1A receptor-
mediated responses. Yatham (150,151) found no differences in prolactin response to
the 5-HT1A agonist buspirone or D,L-fenfluramine in mania compared with healthy
controls; however, using the more selective 5-HT1A agonist ipsapirone indicated
enhanced ACTH and cortisol responses in mania compared with controls (152).
ACTH and cortisol responses are mediated by postsynaptic 5-HT1A receptors
(153–155), thus suggesting an increase in postsynaptic 5-HT1A receptor sensitivity
in mania. Enhanced cortisol response has also been reported in mania in response
to 5-hydroxytryptophan (156), perhaps because the precursor corrects a deficit in
serotonin, and reflects the receptor supersensitivity. Consistent with this hypoth-
esis, both medicated and medication- free mania show enhanced plasma GH and
cortisol response to oral 5-hydroxytryptophan administration compared with
MDD (156–158).

Challenge studies provide information about the hypothalamic serotonin
activity only and not limbic or other cortical areas. Taken together, they suggest
central presynaptic serotonin activity is decreased and postsynaptic serotonin
receptor sensitivity is increased in mania.

Imaging Studies
A PET study of 5-HT2A receptors using [18F]-setoperone in manic patients before
and after treatment with valproate found that although all patients experienced
remission of manic symptoms after treatment, there was no difference in 5-HT2A

binding after treatment (159). This suggests that changes in brain 5-HT2A receptors
are not involved in the antimanic effects of this mood stabilizer. Given the efficacy of
atypical antipsychotics in mania, it may be that the role of 5-HT2A receptors in
mania is via down-stream signaling pathways.

Medication Studies
Medication studies offer insight into serotonergic functioning in bipolar disorder or
at least its role in the therapeutic action of these treatments. Lithium is effective in
bipolar disorder for mania and depression and as a mood stabilizer. Lithium
increases CSF 5-HIAA in mania (122,160–162) and in euthymic bipolar patients
(163). Lithium’s short-term effect on platelet serotonin uptake in mania is less
clear (138,164), but longer-term lithium treatment increases serotonin uptake in
mania (164). Lithium treatment increases cortisol response to 5 hydroxytryptophan
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in mania (156). There is no effect of lithium administration on 5-HT1A receptor-
mediated prolactin response to buspirone in manic patients but perhaps ACTH
or cortisol would be better indices for future studies (150). Tryptophan depletion
in recently remittedmania induces relapse of mania (165) but not in bipolar patients
that have been stable on lithium for a longer period of time (166–168).

FOCUS ON STUDIES OF BIPOLAR DISORDER PATIENTS

Most studies of serotonergic function do not separate results for bipolar depression
and MDD. As studies of bipolar mania have already been considered, this section
reviews findings in bipolar depression and euthymic bipolar patients.

Cerebrospinal Fluid Studies
Some studies of CSF 5-HIAA and bipolar depression find lower CSF 5-HIAA levels
compared with normal controls, but no difference compared to MDD (13,169). Low
CSF 5-HIAA is reported in bipolar depression, mania, and MDD compared with
controls, and little changed with clinical recovery (10). Others find no difference
between MDD, bipolar depressed, bipolar manic, and controls (17); euthymic bipo-
lars and controls (163); and MDD depressed, bipolar depressed, and controls (125).

Platelet Studies
In a study comparing depressed bipolar I and depressed bipolar II patients, platelet
serotonin content was higher in both groups compared with normal controls;
however, there was no difference between the two groups (170). Comparing seroto-
nin platelet uptake in different phases of bipolar disorder, two studies found that
medication-free bipolar subjects had higher platelet serotonin content than controls
in both depressed and hypomanic phases (171,172), while another study found
greater serotonin uptake in platelets only in depressed bipolar patients, with
manic and euthymic patients not different from healthy controls (173). Others
report low serotonin uptake in platelets in depressed bipolar patients, similar to
depressed MDD patients (28).

While 3H-imipramine studies of platelet serotonin transporters in depression
consistently find lower binding, and are mixed in mania, other studies in bipolar
disorder suggest that altered transporter function may be a trait characteristic of
the disorder. Lower binding is reported in depression, mania, and euthymia in
bipolar disorder compared with normal controls (174) and in euthymic bipolar
patients who had between 3–15 years of lithium treatment (175). However, not
all studies agree: Lewis and McChesney report lower binding in bipolar depression
compared with controls and mania (141), and Muscettola in 1986 found binding in
bipolar depression and hypomania no different from controls (42). Recent evidence
suggests genetic involvement, finding that both bipolar patients and their unaf-
fected relatives have fewer transporter binding sites compared with normal con-
trols (176). These studies did not report on suicidal behavior, which appears to be
associated with lower platelet paroxetine binding in bipolar suicide attempters
compared with bipolar nonattempters, who were all on mood stabilizers, and
healthy controls (177).

5-HT2A receptor binding in platelets, assessed with lysergic acid diethylamide
(LSD), was the same in manic and depressed bipolar subjects, and higher binding
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compared with normal controls (178). Moreover, binding was higher still in suicidal
compared with nonsuicidal bipolar patients, as reported by others in MDD (178).

Challenge Studies
Medication-free bipolar depression has a blunted prolactin response to fenflura-
mine, similar to MDD, when compared with healthy controls (66,179), although
others find no difference in prolactin response (180). Tryptophan challenge
produced blunted cortisol and ACTH responses in bipolar depressed (181), but
prolactin response was not different compared with depressed MDD or healthy
controls (182). Depressed bipolar disorder has an enhanced cortisol response to
hydroxytryptophan compared with depressed MDD (156,158), but not to ipsapir-
one, a selective partial agonist of pre- and postsynaptic 5-HT1A receptors, in
bipolar depression compared with healthy controls (183). In a tryptophan deletion
study, a mood-lowering effect was observed in euthymic bipolar subjects and their
unaffected first degree relatives compared with controls (176). Precursor challenges
are not in agreement in bipolar depression as to whether serotonin function is
impaired. Studies are lacking to determine whether 5-HT1A and 5-HT2A responses
are supersensitive in bipolar depression, as has been reported in mania.

Postmortem Studies
There have been few studies examining serotonergic indices in postmortem bipolar
depressed subjects. Lower 5-HIAA levels in the frontal and parietal cortex and
lower 5-HT/5-HIAA ratios in temporal cortex are reported compared with post-
mortem control brains (184). Bipolar subjects, on various medications including
antipsychotics, had lower serotonin transporter affinity in the stratum lacuno-
sum-moleculare region of the hippocampus and no change in 5-HT1A or 5-HT2A

receptor binding compared with controls (185). Wiste et al. found less postmortem
tryptophan hydroxylase (TPH) immunoreactivity, the rate-limiting biosynthetic
enzyme for serotonin, in serotonin nerve terminals in the locus coeruleus of
depressed bipolar suicides comparedwith depressed unipolar suicides and nonsui-
cide, nonpsychiatric controls (186). The same study found less tyrosine hydroxylase
immunoreactivity in depression, and one manic case had the highest level of any
case. These results are consistent with the serotonin-permissive hypothesis and
suggest that noradrenergic activity may be dependent on mood state.

Genetic Studies
Genetic factors are estimated to account for 60% to 85% of the liability for bipolar
disorder (187,188) and in recent years genetic studies have investigated association
between bipolar disorder and a number of serotonin-related genes including the
serotonin transporter, various serotonin receptors, and tryptophan hydroxylase 1,
reporting variable results.

In bipolar disorder, three meta-analyses report an association between bipolar
and the serotonin gene promotor 5-HTTLPR genotype (189–191), one finds a non-
significant trend for an association (192), and one finds no association (193). There
have been conflicting reports of association with bipolar disorder for a second
variant in the same gene, namely, a variable number of tandem repeat (194,190).

Meta-analyses find no evidence of an association of bipolar disorder with the
5-HT2A receptor T102C polymorphism (193,190). Recent large Europeanmulticentre
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studies also found no association between the 5-HT2A 1438G/A and the His452Tyr
polymorphisms and bipolar disorders (195). Associations have been reported
between bipolar disorder and the 5-HT3A variant C178T in 156 patients, but not
C195T (196), and with 5-HT4A in a small Japanese sample (197). A 5-HT5A receptor
allelic association was reported between the -19G/C polymorphism and bipolar
disorder (198), although others found no association between 12A/T and bipolar
disorder (199). Vogt and associates reported an association between a 5-HT6 (267C)
polymorphism and bipolar disorder in a small European sample (200), however
no association between 5-HT6 polymorphism (C267T) was observed in a Taiwanese
group (201). Vincent et al. found no association between a 5-HT7 variant and bipolar
disorder (202).

The tryptophan hydroxylase 1 A218C polymorphism was associated with a
small increase in susceptibly to bipolar disorder in a European sample (203) that
is not replicated in other studies (202,204–207) and in a large multi-center
European study of bipolar and MDD (208).

CONTRAST WITH FINDINGS IN MAJOR DEPRESSIVE DISORDER

Bipolar depression and major depressive disorder differ modestly in terms of the
clinical picture of depression. With respect to the serotonergic system there is
considerable evidence indicating serotonergic dysfunction in both disorders. The
biochemical differences that may exist are likely to relate to the predisposition to
mania in bipolar disorders.

PERSPECTIVES

The observations of serotonergic abnormalities in manic, depressed, and euthymic
bipolar patients, and the unaffected relatives of bipolar patients suggest that seroto-
nergic dysfunction is a trait-related characteristic of bipolar disorder rather than a
mood state-dependent characteristic. Further studies in well-defined bipolar
cohorts, in different phases of the disorder that include comparisons with MDD as
well as healthy controls, are required to determine the neurobiologic correlates
that are related to mood state. Such studies must include a consideration of the inter-
action of the serotonergic system with other neurotransmitters and the HPA axis.
Moreover, the role of genetic factors and their interaction with environment in the
development of this disorder requires investigation.
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7. Stanley M, Träskman-Bendz L, Dorovini-Zis K. Correlations between aminergic metab-
olites simultaneously obtained from human CSF and brain. Life Sci 1985; 37:1279–1286.

8. Mann JJ. Role of the serotonergic system in the pathogenesis of major depression and
suicidal behavior. Neuropsychopharmacology 1999; 21:99S–105S.

9. Dencker SJ, Malm U, Roos B-E, Werdinius B. Acid monoamine metabolites of
cerebrospinal fluid in mental depression and mania. J Neurochem 1966; 13: 1545–1548.

10. Mendels J, Frazer A, Fitzgerald RG, Ramsey TA, Stokes JW. Biogenic amine metabolites
in cerebrospinal fluid of depressed and manic patients. Science 1972; 175: 1380–1382.

11. Ågren H. Symptom patterns in unipolar and bipolar depression correlating with
monoamine metabolites in the cerebrospinal fluid. II. Suicide. Psychiatry Res 1980;
3:225–236.
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OVERVIEW AND HISTORICAL BACKGROUND

Although genetic factors play a major, unquestionable role in the etiology of bipolar
disorder, the biochemical abnormalities underlying the predisposition to and the
pathophysiology of this complex and intriguing neuropsychiatric disorder
remain to be fully elucidated. The brain systems that have heretofore received
the greatest attention in neurobiologic studies of these illnesses have been the
monoaminergic neurotransmitter systems, which were implicated by the following
observations:

1. Effective antidepressant drugs exert their primary biochemical effects by regu-
lating intrasynaptic concentrations of serotonin and norepinephrine

2. Antihypertensives that deplete these monoamines sometimes precipitate
depressive episodes in susceptible individuals.

3. Psychostimulants and dopamine agonists have been shown to be capable of
triggering manic episodes in susceptible individuals.

Furthermore, the monoaminergic systems are extensively distributed
throughout the network of limbic, striatal, and prefrontal cortical neuronal circuits
thought to support the behavioral and visceral manifestations of mood disorders
(1). Clinical studies over the past 40 years have attempted to uncover the biological
factors mediating the pathophysiology of bipolar disorder utilizing a variety of bio-
chemical and neuroendocrine strategies. Indeed, assessments of cerebrospinal fluid
(CSF) chemistry, neuroendocrine responses to pharmacological challenge, and neu-
roreceptor and transporter binding have, in fact, demonstrated a number of
abnormalities of the serotonergic, noradrenergic, and other neurotransmitter and
neuropeptide systems in mood disorders.

While such investigations have been heuristic over the years, they have been
of limited value in elucidating the unique biology of this affective disorder that
must include an understanding of the underlying basis for the predilection to epi-
sodic and often profoundmood disturbance that can become progressive over time.
Thus, bipolar disorder likely arises from the complex interaction of multiple sus-
ceptibility (and protective) genes and environmental factors, and the phenotypic
expression of the disease includes not only episodic and often profound mood dis-
turbance, but also a constellation of cognitive, motoric, autonomic, endocrine, and
sleep/wake abnormalities. Furthermore, while most antidepressants exert their
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initial effects by increasing the intrasynaptic levels of serotonin and/or norepi-
nephrine, their clinical antidepressant effects are only observed after chronic
(days to weeks) administration, suggesting that a cascade of downstream effects
are ultimately responsible for their therapeutic effects. These observations have
led to the appreciation that while dysfunction within the monoaminergic neuro-
transmitter systems is likely to play important roles in mediating some facets of
the pathophysiology of bipolar disorder, they likely represent the downstream
effects of other, more primary abnormalities (2).

The subsequent challenge for the basic and clinical neuroscientist will be the
integration of these molecular/cellular changes to the systems and ultimately to the
behavioral level wherein the clinical expression of bipolar disorder becomes fully
elaborated.

Despite these formidable obstacles, there has been considerable progress in
our understanding of the underlying molecular and cellular basis of this unique
affective disorder in recent years. In particular, recent evidence demonstrating
that impairments of signaling pathways may play a role in the pathophysiology
of bipolar disorder, and that mood stabilizers exert major effects on signaling path-
ways which regulate neuroplasticity and cell survival, have generated consider-
able excitement among the clinical neuroscience community, and are reshaping
views about the neurobiological underpinnings of these disorders (3–5). In this
chapter, we critically review and appraise these data and discuss their impli-
cations not only for changing existing conceptualizations regarding the pathophy-
siology of mood disorders, but also for the strategic development of improved
therapeutics.

Signaling Networks: The Cellular Machinery Underlying Information
Processing and Long-Term Neuroplastic Events
It is hardly surprising that abnormalities in multiple neurotransmitter systems
and physiological processes have been found in a disorder as complex as
bipolar disorder. Signal transduction pathways are in a pivotal position in the
central nervous system (CNS), able to affect the functional balance between mul-
tiple neurotransmitter systems and may therefore play a role in mediating the
more “downstream” abnormalities that likely underlie the pathophysiology of
affective disorders. Moreover, as we discuss below, recent research has clearly
identified signaling pathways as therapeutically relevant targets for our most
effective pharmacological treatments. Indeed, the molecular and cellular targets
underlying lithium and valproate’s abilities to stabilize a dysregulation of the
limbic system and limbic associated function strongly suggest that abnormalities
in signaling pathways may also play a critical role in the pathophysiology of
bipolar disorder.

Signal transduction pathways serve the critical roles of first amplifying and
“weighting” numerous extracellularly generated neuronal signals and then trans-
mitting these integrated signals to effectors, thereby forming the basis for a
complex information processing network (6). The high degree of complexity gener-
ated by these signaling networks may be one mechanism by which neurons acquire
the flexibility for generating the wide range of responses observed in the nervous
system. These pathways are thus undoubtedly involved in regulating such
diverse vegetative functions such as mood, appetite, and wakefulness and are
therefore likely to be involved in the pathophysiology of bipolar disorder.
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G-Proteins
Mammalian guanine nucleotide binding proteins (G proteins) can be categorized
into two major groups: heterotrimeric G proteins and small G proteins.
Heterotrimeric G proteins convey signaling from G-protein-coupled-receptors
(GPCRs) to their effectors, which include adenylyl and guanylyl cyclases (AC
and GC), phosphodiesterases (PDE), phopholipases A2 (PLA2), phospholipase C
(PLC), phosphoinositide 3-kinases (PI3Ks), ion channels, and Rho-GEF (Table 1).
These G proteins are composed of three distinct subunits, a, b, and g. These
trimeric complexes are loosely associated with the GPCRs. Upon receptor stimu-
lation, receptors and G proteins undergo conformational changes that lead to the
exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) at
Ga subunit and dissociation of Ga and Gbg subunits. Consequently, Ga and Gbg
stimulate effector molecules. Ga subunits process intrinsic GTPase activities,
thereby hydrolyzing GTP to GDT, resulting in Ga inactivation and reassociation
of Ga with Gbg. There are four Ga families expressed in the brains: Gas (Gas1–
4 and Gaolf), Gi (Gai1–3, Gao1–2, Gat1–2, Gagust, and Gaz), Gaq (Gaq, and
Ga11, 14–16), and Ga12 (Ga12–13) (Table 1).

Small G proteins are monomeric G proteins with molecular weight of 20 to
40 kDa. Like heterotrimeric G proteins, small G proteins bind to guanine nucleo-
tides, process intrinsic GTPase activity, and cycle through GDP- and GTP-bond
forms. Exchange of GDP for GTP causes major conformational changes of
these G proteins and their affinities for effector molecules. More than 150 small G
proteins have been identified. Small G proteins are classified into five families:
Ras, Rho, Rab, Ran, and Arf (Table 1). These G proteins have higher affinities for
GDP and GTP and lower intrinsic GTPase activity, and GDP to GTP exchange
activities. The functioning of these G proteins is modulated by regulator proteins:
guanine nucleotide exchange factors (GEFs), which promote exchange between
GDP and GTP, and GTPase-activating proteins, (GAPs) which stimulate hydrolysis
of the bound GTP. Rho and Rab proteins are regulated by a third class of proteins,

TABLE 1 Major Signaling GTPase G Proteins

Groups Types Effectors and effects

Ga proteins Gas ACs, increase in cAMP
Gai AC, inhibits cAMP production

Ion channel
Phosphodiesterase
Phospholipase

Gaq Phospholipase C-b, increase DAG and IPs, in turn
release Ca2þ and activate PKC

Ga12 RhoGEFs, activates Rho
Small G
proteins

Ras Regulate diverse signaling cascades involving gene expression
and cell proliferation, differentiation and survival

Rho Regulate diverse signaling cascades involving actin
organization, cell cycle progression and gene expression

Rab Regulate intracellular vesicular transport and trafficking of
protein between different organelles of the endocytic and
secretory pathways

Ran Function in nucleocytoplasmic transport of RNA and proteins
Arf Regulate vesicular transport

Abbreviations: AC, adenylyl cyclase; cAMP, cyclic AMP;DAG, diacylglycerol; IP, inositol phosphotase; PKC, protein
kinase C.
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guanine nucleotide dissociation inhibitors (GDIs). The GAPs for heterotrimeric G
proteins are termed as the intracellular regulator of G protein signaling (RGS) pro-
teins. RGS protein activities are regulated by a complex web of intracellular factors.

G Protein Abnormalities in Bipolar Disorder
Likely due to the fact that lithium affects G proteins (discussed below), several inde-
pendent laboratories have investigated the potential role of G protein abnormalities
in the pathophysiology of bipolar disorder. Potential G protein dysfunction in
bipolar etiology has been investigated. Young and associates reported increases
in protein levels of Gas, but not Gai, Gao, and Gb1/2, in the frontal and occipital
cortex of bipolar patients (7). Follow-up work from the same laboratory suggested
that these increases in Gas protein levels are likely due to changes in post-transla-
tional enzymatic modification such as endogenous ADP-ribosylation (8), rather
than being due to change in Gas gene transcription (9). Consistent with these find-
ings, Wang and Friedman reported elevated levels of Gas, but not Gai, Gao, Gaq,
Gaz, and Gb1/2, in frontal cortical membrane preparations of bipolar patients (10).
In a recent study, Gonzalez-Maeso et al. found that the frontal cortical membrane
levels of Gas, Gai1/2, Gai3, and Gao are not different between control subjects
and suicide victims with mood disorders. To investigate the functional coupling
of receptors to G proteins, Friedman and Wang utilized agonist-induced GTPgS.
They found increases in basal GTPgS binding, and increased GTPgS binding to
Gas induced by isoprenaline, Gai, Gao, and Gaq induced by carbachol, and Gas,
Gai, Gao, and Gaq induced by serotonin in postmortem frontal cortical samples
of bipolar patients (11). Gonzalez-Maeso et al. found selective increases in GTPgS
binding sensitivity in response to stimulation of a-adrenoceptor 2A, but not
5-HT1a, y-opioid, GABA-B, and muscarinic receptors in frontal cortical membrane
samples of suicide victims with mood disorders (12). Despite the increases in Gas
protein, Young and associates’ follow-up studies did not reveal any significant
increase in cAMP production induced by GTPgS, although there was an increase
in cAMP production induced by forskolin which stimulates AC directly (13).
Jope and associates found significant reductions in GTPgS, NaF, GTPgS plus
carbachol, and GTPgS plus serotonin-induced phosphatidylinositol hydrolysis in
occipital, but not temporal and frontal, cortical samples of bipolar subjects (14).
By contrast, Mathews and associates reported an increase in protein level of
Gaq11 in occipital, but not frontal or temporal, cortex of bipolar patients (15).
Finally, several studies have also found elevated Gas protein levels and mRNA
levels in peripheral circulating cells in bipolar disorder, although the dependency
on clinical state remains unclear (16–19).

Lithium and G Proteins
There are two proposedmagnesium sites onG proteins: high affinity sites (nM) essen-
tial forGTPase activity, and lowaffinity (mM)sites required for exchangeGDPforGTP
(20). In 1988, Avissar and associates reported that lithium at 0.6 mM concentration
completely blocked isoprenaline (b-adrenoceptor agonist), and carbachol (muscarinic
receptor agonist) induced [H3]GTP bindings in rat cerebral cortical membrane prep-
arations, invitro and in cerebral corticalmembranepreparations, fromrats chronically
treatedwith lithium (21). However, while there is some additional data in support of a
direct effect of lithium on G proteins (22), this has not been consistently found.

Moreover, the inhibitory effects of chronic lithium treatment on rat brain ade-
nylyl cyclase AC are not reversed by Mg2þ, and still persist after washing of the
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membranes, but are reversed by increasing concentrations of GTP (23–27). These
results suggest that the effects of chronic lithium (those which are more likely to
be therapeutically relevant) may be exerted at the level of signal-transducing G pro-
teins at a GTP responsive step (discussed below). These two distinct actions of
lithium on the AC system may explain the differing results which have been
obtained by investigators using rat membrane preparations from those using
slice preparations (2). Overall, for both Gs and Gi, lithium’s major effects in both
humans and rodents are most compatible with a stabilization of the heterotrimeric,
undissociated, inactive (abg) conformation of the G protein (16–18,28).

cAMP Signaling Cascade and PKA
CyclicAMP (cAMP) is a secondmessenger generated by adenylyl cyclase (AC) upon
extracellular stimulation (Fig. 1). There are at least nine isoforms of membrane-
bound ACs, most of them expressed in the brain (Table 2). All membrane-bound
ACs can be activated by forskolin and Gas proteins. In addition, Group I ACs can
be stimulated by calmodulin in Ca2þ-dependent manner. Group II ACs can be con-
ditionally activated byGbg. Group III ACs are highly sensitive to Gai inhibition and
also inhibited byCa2þ and protein kinaseA (PKA). Group IVAC is less responsive to
FSK. Protein kinase C (PKC)markedly activates AC2, AC5, andAC7 and inactivates
AC4 and AC9. There is also a soluble (cytosol) AC. This AC does not respond to FSK
and Gas, but becomes activated in presence of bicarbonate.

cAMP-dependent protein kinase A (PKA) in an inactivated state is a tetramer,
containing two of each regulatory and catalytic subunits. There are four regulatory
subunit isoforms (RIa, RIb, RIIa, and RIIb) and two catalytic subunit isoforms (Ca
and Cb). All isoforms are expressed in the brain (29). When intracellular cAMP
level rises, cAMP binds to the regulatory subunit of protein kinase A (PKA), and
this causes dissociation of the tetramer into its component monomers—two regulat-
ory subunits with cAMP attached, and two active catalytic subunit. The freed cata-
lytic subunits phosphorylate its cellular or nuclear substrates such as transcription
factor cAMP responding element binding protein (CREB). cAMP is converted to

FIGURE 1 Some signaling pathways being investigated in bipolar disorder studies. Abbreviations:
cAMP, cyclic AMP; DAG, diacyl glycerol; ERK, extracellular signal-regulated kinase; MEK, MAPK/
ERK kinase; PLC, phospholipase C; PKC, protein kinase C; RSK, ribosomal S6 kinase.
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AMP by cyclic nucleotide phosphodiesterases (PDE); this event turns off the cAMP
signaling at the second messenger level.

The cAMP/PKA Signaling Cascade in Bipolar Disorder
A limited number of postmortem brain studies suggest brain regional dysfunction
of cAMP signaling at PKA, but not at AC, may play a role in bipolar disorder.
Studies did not reveal any evidence for changes of basal and GTPgS-stimulated
AC activities in a variety of brain regions including prefrontal, temporal, and occi-
pital cortices, hippocampus, thalamus, and cerebellum in bipolar subjects
(13,30,31). An initial report showed that forskolin-stimulated cAMP production
was selectively increased in temporal and occipital cortexes of bipolar subjects
(13), and later studies confirmed this finding, at least in temporal cortex (30,31).
No differences were found between control and bipolar subjects in temporal cortex
protein levels of AC1, AC4, and AC5/6. (30). The initial PKA postmortem brain
study fromtheWarsh lab revealedwidespread reductions in cytosolic, but not particu-
late, cAMP binding sites in bipolar subjects (32). In follow-up studies, the researchers
found increases in PKAactivities basal and cAMP-stimulated cytosolic PKA activities
in temporal cortical samples. This higher PKA function seems due to reduction of
regulatory subunit proteins (33), rather than due to changes in mRNA levels of PKA
RIa, PKA RIIb, and PKA Ca (34).

The data obtained from behavioral studies using transgenic and knockout
mice indicate that selective components of cAMP-signaling cascade are required
for regulation of behavior relevant to mood disorders. Mice lacking AC8 show
reduced anxiety-like (or increased explorative) behaviors, which are more
obvious after restraint stress (35). AC5 null mice exhibited enhanced sensitivity
to D1 receptor agonist-induced locomotion and inverted locomotion response to
D2 receptor antagonists (36). AC1 and AC8 double knockout mice showed
signs of behavioral allodynia (37). Deletion of PKA RIIb in mice resulted in
lean body size (38), markedly increased home-cage activity (39,40), supersensitiv-
ity to amphetamine-induced locomotion (41), and more alcohol consumption and
insensitivity to alcohol-induced sedation (42). Mice lacking RIb were indistin-
guishable from wild-type mice on indices of anxiety, exploration, and memory
(43). Mice lacking PKA Cb also appear indistinguishable from wild-type mice
in a variety of behavioral tests or tasks (43,44). PDE1B knockout mice possess
baseline hyperlocomotion, enhanced locomotor response to psychostimulants,

TABLE 2 Membrane-Bound Adenylyl Cyclases

Group Type Distribution FSK Gas Gai/o Gbg Ca2þ PKA PKC

I AC1 Brain " " # ai # " CaM " w
AC3 Olfactory,

pancreas
" " # w " CaM " w

AC8 Brain, pancreas " " # w " CaM
II AC2 Lung, brain " " " c "

AC4 Widespread " " " c #
AC7 Widespread " " " c "

III AC5 Heart, striatum " " # # # "
AC6 Widespread " " # # # # and " c

III AC9 Widespread " w " # w #
Calcineurin

#

Note: ", stimulation; #, inhibition; c, conditional action; w, weak action.
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and spatial memory deficiencies (45). PDE4D, but not PDE4A and PDE4B, null
mice showed antidepressant-like behavioral change in the forced swim and tail
suspension tests (46).

Lithium and the cAMP/PKA Signaling Cascade
The effects of lithium on the cAMP system have been extensively studied, and
reveal a complex, region-specific effect, likely due to lithium’s effects at multiple
levels of this signaling cascade. Studies in the early 70s showed that lithium inhibits
membrane AC activities induced by GPCR and G protein stimulations (47–49),
perhaps due to direct competition with magnesium required for AC catalytic
activity. However, the clear inhibitory effects of lithium on AC are observed at con-
centrations above its therapeutic range. Lithium has been demonstrated to exert
complex effects on the activity of AC, with the preponderance of the data demon-
strating an elevation of basal AC activity, while attenuating a variety of receptor-
mediated responses (16,50). Lithium in vitro inhibits the stimulation of AC by the
poorly hydrolyzable analog of GTP, Gpp(NH)p, and also by Ca2þ/calmodulin,
suggesting that lithium in vitro is directly able to inhibit the catalytic unit of AC
(23–27). Since these inhibitory effects of lithium in vitro can be overcome by
Mg2þ, they have been postulated to be mediated (at least in part) by a direct com-
petition with magnesium (whose hydrated ionic radius is similar to that of lithium)
for a binding site on the catalytic unit of AC (23–27). However, the inhibitory effects
of chronic lithium treatment on rat brain AC are not reversed by Mg2þ, and still
persist after washing of the membranes, but are reversed by increasing concen-
trations of GTP (23–27). This has led to an investigation of lithium’s effects on
the AC system in vivo, using microdialysis. These studies found that chronic
lithium treatment produced a significant increase in basal and post-
receptor stimulated (cholera toxin or forskolin) AC activity, while attenuating the
b-adrenergic mediated effect (51,52). Interestingly, chronic lithium treatment
resulted in an almost absent cAMP response to pertussis toxin, suggesting a
lithium-induced attenuation of Gi function. It should be noted, however, that
chronic lithium has also been found to increase not only cAMP levels (53), but
also the levels of AC Type I and Type II mRNA and protein levels in frontal
cortex (54,55), suggesting that lithium’s complex effects on the system may rep-
resent the net effects of direct inhibition of AC, upregulation of AC subtypes, and
effects on the stimulatory and inhibitory G proteins. Most recently, lithium’s
effects on the phosphorylation and activity of CREB have been examined in
rodent brain and generally demonstrate a lithium-induced increase (56,57).

A series of studies have also examined lithium’s effects on AC in humans. In a
longitudinal study of healthy volunteers, two weeks of lithium administration was
found to significantly increase platelet basal and postreceptor stimulated AC
activity (58), effects which are strikingly similar to those observed in rodent
brain. Consistent with a lithium-induced increase in basal cAMP and AC levels,
a more recent study found that platelets obtained from lithium-treated euthymic
bipolar enhanced basal and the cAMP-stimulated phosphorylation of Rap1 (a
PKA substrate), as well as of a 38-kDa phosphoprotein (59). Somewhat surprisingly,
these investigators did not find similar effects of lithium in healthy subjects.

Carbamazepine and the cAMP/PKA Signaling Cascade
Carbamazepine appears to dampen cAMP signaling. An earlier study showed
that carbamazepine reduced cAMP levels in rabbit CSF (60), and attenuated
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basal- and stimulated-cAMP accumulation in cerebral tissue and cortical slices
(61,62). Post and associates showed that carbamazepine reduced CSF cAMP
levels in patients with mood disorders (63). In the follow-up studies, it was
found that carbamazepine inhibits receptor- and forskolin-stimulated cAMP pro-
duction in cultured cells and in membrane preparation made from cell and brain,
and phosphorylation of CREB in cells, perhaps through direct interaction with ade-
nylyl cyclase or proteins tightly associated with adenylyl cyclases (64).

Phosphoinositide Signaling Cascades and Protein Kinase C (PKC)
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor membrane phospholi-
pid. In response to extracellular stimulation, phosphoinositide-specific phospho-
lipase C (PLC) catalyzes hydrolysis of PI(4,5)P2 and results in the generation of
two intracellular messengers, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate
(I(1,4,5)P3) (Fig. 1) (65). PLC isozymes are divided into four types: PLCb, PLCg,
PLCd, and a new type of PLC, termed PLC-?. An isoform of PLC originally
known as PLC-a is a proteolytic fragment of PLC-d1. Gq family Ga proteins and
Gbg dimers activate PLCb. Receptor protein tyrosine kinases and nonreceptor
protein tyrosine kinases phosphorylate and activate PLCg. GPCR stimulations
can also activate PLCg through nonreceptor protein tyrosine kinases. Themolecular
mechanisms underlying activations of PLCd and PLC-? are not well established.

Once DAG is generated in response to extracellular signals, it activates
protein kinase C (PKC). PKC is a large family of proteins divided into three sub-
groups: classic PKC (cPKC including a, bI, bII, and g isoforms), new PKC (nPKC
including 1, h, d, u isoform), and atypical PKC (aPKC including z, i/l isoform).
cPKC isoforms, but not nPKC and aPKC isoforms, are also sensitive to Ca2þ iono-
phore. aPKC isoform does not respond to DAG, but are activated by other lipid
mediators such as FFA, PS, and PIP3. PKC g and 1 are the isoforms more selectively
expressed in the brain. Myristoylated alanine-rich C kinase substrate (MARCKS) is
an acidic protein and the most prominent substrate for PKC in the brain.

IP3, another signal generated through PIP2 hydrolysis catalyzed by PLC,
binds to the IP3 receptor, which functions as a calcium channel in the cell;
binding IP3 to its receptor releases intracellular calcium reservoirs from the endo-
plasmic reticulum. IP3 binding sets forth downstream effects such as activation
of calmodulins and calmodulin-dependent protein kinases and is then recycled
back to PIP2 by the enzymes inositol monophosphatase phosphatase (IMPase,
the rate limiting enzyme) and inositol polyphosphatase phosphatase (IPPase).

Lithium, at therapeutic concentration, directly inhibits IMPase and IPPase,
therefore blocking conversion of IPs to inositols and consequently dampening
PIP2 recycling and intracellular signaling requiring PIP2. The “inositol depletion
hypothesis” posited that lithium, as an uncompetitive inhibitor IMPase, produced
its therapeutic effects via a depletion of neuronal myo-inositol levels. Although this
hypothesis has been of great heuristic value, numerous studies examined the effects
of lithium on receptor-mediated PI responses, and although some report a
reduction in agonist stimulated PIP2 hydrolysis in rat brain slices following acute
or chronic lithium, these findings have often been small and inconsistent, and
subject to numerous methodological differences (66,67). Most recently, a magnetic
resonance spectroscopy study demonstrated that lithium-induced myo-inositol
reductions are observed in the frontal cortex of BD patients after only five days
of lithium administration, a time when the patients’ clinical state is completely
unchanged (68). Recent data suggest that valproate induces inositol depletion by
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blocking de novo inositol synthesis in yeast and cultured mammalian cells. These
data provide additional support for the role of inositol depletion in the initiation
of mood stabilizing effects. However, there is a lack of clear evidence for valpro-
ate-induced blockage of de novo inositol synthesis in the brain.

Given the predictable effects of inositol depletion on intracellular
PIP2-dependent signaling, it has been argued that reducing myo-inositol levels
per se is not associated with therapeutic response. This led to the working hypoth-
esis that some of the initial actions of lithium may occur with a relative reduction of
myo-inositol—that this reduction of myo-inositol initiates a cascade of secondary
changes in the PKC signaling pathway and gene expression in the CNS, effects
that are ultimately responsible for lithium’s therapeutic efficacy.

Indeed, evidence accumulating from various laboratories clearly demon-
strates that lithium, at therapeutically relevant concentrations, exerts major
effects on the PKC-signaling cascade (2,67,69,70). The preponderance of the cur-
rently available data suggest that acute lithium may activate PKC, whereas
chronic lithium exposure results in an attenuation of phorbol ester mediated
responses, accompanied by a downregulation of PKC isozymes in the brain.
Using quantitative autoradiographic techniques, it has also been demonstrated
that chronic (five weeks) lithium administration results in a significant decrease
in membrane-associated PKC in several hippocampal structures, most notably
the subiculum and CA1 region, in the absence of any significant changes in the
various other cortical and subcortical structures examined (71,72). Furthermore,
immunoblotting using monoclonal anti-PKC antibodies revealed isozyme-specific
decreases in PKC a and 1 (which have been particularly implicated in facilitating
neurotransmitter release), in the absence of significant alterations in PKCb,
PKCg, PKCd, or PKCz. It is also noteworthy that exposure of immortalized hippo-
campal cells (67), neuroblastoma cells or PC12 cells (73) to lithium (1.0 mM) in vitro
produces isozyme-selective decreases in PKCa, and (in the case of PC12 cells) PKC.

In view of lithium’s significant effects on PKC as outlined above, the effects of
valproate on various aspects of PKC functioning have also been investigated. It has
been found that the structurally highly dissimilar agent, valproate, produces effects
strikingly similar to lithium on the PKC signaling pathway (67,74). Interestingly,
chronic lithium and valproate appear to regulate PKC isozymes by distinct mech-
anisms, with valproate’s effects appearing to be largely independent of myo-
inositol.

A major strategy used to investigate the downstream consequences of
mood stabilizer-induced alteration in PKC isozymes is the examination of the
effects of chronic lithium on endogenous PKC substrates in brain. The most promi-
nent substrate for PKC in brain is an acidic protein, MARCKS (myristoylated
alanine rich C kinase substrate), which is implicated in regulating long term neuro-
plastic events. Lenox and associates (1992) demonstrated that chronic lithium
administration dramatically reduced MARCKS expression in hippocampus,
effects that were not immediately reversed following lithium discontinuation
(75). Subsequent studies carried out in immortalized hippocampal cells demon-
strate that this action of chronic lithium on MARCKS regulation is dependent
upon both the inositol concentration and the level of receptor-mediated activation
of phosphoinositide hydrolysis (76). Recent studies provide evidence for regulation
of transcription as a major site for the action of chronic lithium on MARCKS
expression in brain (77). Since MARCKS may offer a specific target for pharmaco-
logic agents targeting mood stabilizing drugs, the effects of the anticonvulsant
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valproate as well as lithium were studied in immortalized hippocampal cells,
showing a time- and concentration-dependent reduction in MARCKS protein
expression. The activity of valproate was observed within a concentration range
and time course considered consistent with clinical studies of patients with
bipolar disorder. Additionally, therapeutic concentrations of combined lithium
and valproate induced an additive reduction in MARCKS also consistent with
experimental findings that the two drugs work through different mechanisms on
the PKC system, plus consistent with the clinical observation of the additivity of
the two drugs in treatment responses (78).

Given that PKC signaling is a common target of lithium and valproate, and
that this signaling pathway plays a pivotal role in the regulation of neuronal excit-
ability, neurotransmitter release, and long term synaptic events, Manji and his
associates postulated that the attenuation of PKC activity may mediate the antima-
nic effects of lithium and valproate. In a pilot study it was found that tamoxifen
(a nonsteroidal antiestrogen known to be a PKC inhibitor at higher concentrations)
may indeed possess antimanic efficacy (79). These data further support the poten-
tial role of the PKC pathway in mediating the pathophysiology of BD.

Phosphatidylinositol-3-Kinase (PI3K) Signaling Pathway
PI(4,5)P2 is also an essential substrate for PI(3,4,5)P3 production in the phosphatidyl-
inositol-3-kinase (PI3K) signaling pathway (Fig. 1) (80). Activated receptor protein
tyrosine kinases phosphorylate and activate phosphatidylinositol-3-kinase (PI3K).
Class 1A PI3Ks, which are composed of heterodimers of an inhibitory adaptor/
regulatory (p85a/p85b/p85g) and a catalytic (p110a/p110b/p110d) subunit, are
initially purified from the brain tissue. PI3K catalyzes phosphorylation of
PI(4,5)P2. PI(3,4,5)P3 facilitate the recruitment of AKTs (AKT1/AKT2/AKT3) [also
known as protein kinase B (PKB)] to cell membrane. Akt is then phosphorylated
by constitutively active phosphoinositide-dependent kinase 1 (PDK1) (at threonine
308 in AKT1) to stabilize the activation loop, and by PDK2 in the hydrophobic
C-terminal domain (serine 473 in AKT1) for full activation. The downstream
target AKT is glycogen synthase kinase-3 (GSK-3), which is phosphorylated by
Akt at serine 21 of GSK-3a and serine 9 of GSK-3b, resulting in inactivation of its
catalytic activity. PTEN dephosphorylates the 3 position of PtdIns(3,4,5)P3 [and
PtdIns(3,4)P2] to reverse the action by PI3K (81).

Mood Stabilizers and PI3K Pathway
Although the inositol depletion theory predicts diminished PIP2-related intracellu-
lar signaling, recent data suggest an enhanced function of PI3K/AKT pathway by
lithium and valproate treatments. Lithium is known to protect neurons against a
variety of insults in cultured cells and in intact animals (82,83). The PI3K/AKT
pathway is one of the signaling cascades that regulate cell survival. In search for
the molecular mechanism by which lithium protects cerebellum granular cells
against glutamate toxicity, Chuang and associates discovered that lithium activated
the PI3K/AKT pathway. They revealed that lithium rapidly increases PI3K activity,
phosphorylation of AKT1 at serine 473, and phosphorylation of GSK-3a at serine 21
(84). Soon after the initial lithium findings, Jope and associates reported that valpro-
ate also activates the PI3K/AKT pathway in cultured cells supported by coherent
increases in phosphorylations of ATK1 at serine 473 and GSK-3b at serine 9 (85).
Acute treatment with lithium increases phosphorylations of AKT-1 at threonin
308, but not serine 473, and of GSK-3 a and b at AKT sites (86). Studies also
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showed that chronic treatment with lithium and valproate increased GSK-3b serine
9 phosphorylations in frontal cortex and hippocampus (85,87), effects that are
consistent with activation of the PI3K/AKT pathway by mood stabilizers. Other
signaling cascades may also be involved (see below).

The PI3K/AKT pathway is also affected by antipsychotics, psychostimulants,
and antidepressants; however, the behavioral and clinical relevance of these effects
are unclear. It is reported that acute and chronic treatment with haloperidol
increased phosphorylations of AKT1 at serine 473 and threonin 308 in whole
brains of mice, and chronic treatment also increased phosphorylations of GSK-3b
at serine 9 (88). Since chronic treatment with haloperidol is reported to decrease
GSK-3b serine 9 phosphorylation (87), it appears these whole brain effects are not
due to the changes in frontal cortex. In the same study, the investigators found
that clozapine treatment increased GSK-3b serine 9 phosphorylation. Effects of
psychostimulants on the AKT pathway are not consistent across studies.
However, cocaine increased striatal levels of phosphorylated AKT1 at threonin
308 and seronine 485 (89), while amphetamine decreased striatal levels of phos-
phorylated AKT1 at threonine 308, GSK-3a at serine 21, and GSK-3b at seronine
9 (86). Imipramine treatment increased GSK-3a at serine 21 and GSK-3b at seronine
9 (90,91,92). Mice lacking functional AKT1 carry defects in both fetal and postnatal
growth (93) and greater sensitivity to the sensorimotor gating-disruptive effects of
amphetamine (88). However, mice with one copy of functional GSK-3b showed
attenuated locomotor response to amphetamine (86). The genetic data on the
AKT1 association with bipolar disorder is inconclusive (94).

The Extracellular Signal-Regulated Kinase Pathway
The extracellular signal-regulated kinase (ERK) pathway is one of the key signaling
cascades mediating neurotrophic action and synaptic plasticity (Fig. 1). Neurotro-
phins such as nerve growth factor (NGF), brain-derived nerve growth factor
(BDNF), and NT-3/4 bind to specific Trks. This binding triggers a cascade of
events: Trk autophosphorylation and activation, recruitment of adaptor protein to
activation site on the cell membrane, guanine nucleotide exchange and activation
of small G protein Ras, Ras-facilitated dephosphorylation and phosphorylation
reactions leading to Raf activation, and a chain of sequential phosphorylation-
induced activations of MEK by Raf and ERK by MEK. ERK phosphorylates and
activates RSK. ERK and RSK phosphorylate and thereby modulate activity of pro-
teins with diverse functions including transcription factors, enzymes, ion channels,
structure proteins, and receptors. In addition to Trk, NMDA receptors, PLC-
coupled receptors, and adenylyl cyclase-coupled receptors also regulate the ERK
pathway, exerting their actions on synaptic plasticity in the CNS.

The ERK pathway is activated by mood stabilizers in brain regions involved
in mood regulation. Earlier works from several research groups showed that
lithium and valproate induce function of transcription factors such as AP-1 and
CREB and enhance expression of genes such as bcl-2 (95). These projects were
led by Chen and associates who suspected that the ERK might be targeted by the
mood stabilizers. They found that valproate activated the ERK pathway in cultured
human neuroblastoma cells and promoted neuronal differentiation and survival of
these cells (95). Later, they demonstrated that chronic treatments of rats with
lithium and valproate activated the ERK pathway in prefrontal cortex and hippo-
campus (57,96). They showed that lithium and valproate promote neurogenesis
in dentate gyrus of adult hippocampus, an effect mediated at least in part
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through their ERK pathway activating action (96,97). Lithium- and valproate-
induced activation of the ERK pathway is also observed in other laboratories
(98). ERK pathway-activating effects of carbamazepine (99), but not lamotrigine,
have been reported from some studies using cells.

Studies on the effects of antidepressants on the ERK pathway have thus far
yielded inconsistent results. Chronic treatment of rats with venlafaxine, a dual ser-
otonin and norepinephrine reuptake inhibitor, did not induce significant changes
on immunostaining of phosphorylated RSK in frontal cortex and hippocampus
(100). Chronic treatment of rats with fluoxetine and reboxetine, a selective norepi-
nephrine reuptake inhibitor, significantly reduced levels of phosphorylated ERK1,
but not those of phosphorylated ERK2 in nuclear fraction of hippocampal tissue
(101). The same treatments did not significantly alter levels of phosphorylated
ERK1 and phosphorylated ERK2 in prefrontal cortex. Chronic treatment of rats
with desipramine significantly elevated levels of phosphorylated ERK2 in
nuclear fraction of hippocampal tissue, but decreased levels of phosphorylated
ERK1 in nuclear fraction of prefrontal cortical tissue, without significant effects
on levels of phosphorylated ERK1 in nuclear fraction of hippocampal tissue and
levels of phospho-ERK2 in nuclear fraction of prefrontal cortical tissue (101). A
recent study found that chronic treatment of rats with fluoxetine significantly
reduced levels of phosphorylated ERK1 and phosphorylated ERK2 in nuclear frac-
tions of hippocampal and frontal cortical tissues and reduced levels of phosphory-
lated ERK1 in hippocampal synaptosomes (102). However, chronic treatment with
imipramine did not produce similar effects (102).

Studies conducted in cultured cells, and animals, show typical and atypical
antipsychotics stimulate the ERK pathway. These effects, as suggested in some
studies, are mediated through D2 and/or 5HT1A receptors and require pertussis
toxin-sensitive Gi and Go proteins. Given that antipsychotics are highly effective
in treatment of mania, it is reasonable to postulate that the ERK pathway activation
may represent a convergent point of action of antimanic agents with varied chemi-
cal structures (98).

Inactivation of ERK pathway in CNS induces animal behavioral alterations
reminiscent of manic symptoms; these complex behaviors likely depend on
ERK’s effects on discrete brain regions and the presence of other interacting mol-
ecules. U327 is a MEK inhibitor that can penetrate blood-brain barrier and attenu-
ated ERK pathway activity. Chen and associates reported that systematic
administration of U327 induced increases in locomotion and travel distance in
the large open field test (57). The injection also reduced immobility and increased
swimming time in the forced swim test. However, injection of its parent compound
U0126, which cannot penetrate the blood-brain barrier, did not induce any signifi-
cant effects on the outcomes of both tests, indicating the effects of U327 are due to
inhibition of MEK in the CNS (57). Mice lacking one of two ERK subtypes are indis-
tinguishable from wild-type mice in appearance and a variety of neurological and
behavioral tests. However, these mice are hyperactive in novel environments;
resistant to forced-swim induced immobility; supersensitive to rewarding property
of morphine; over-engaged in wheel running, a naturally hedonic activity of
rodents; and supersensitive to psychostimulant-induced locomotion (98). Direct
infusion of a MEK inhibitor, or direct expression of functional null mutant ERK1
in left anterior cingulate cortex produce similar behavior types (98). Abnormal
left anterior cingulate cortex in bipolar patients is a consistent finding from
human brain imaging studies. The left anterior cingulate cortex is one of the
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brain regions repeatedly found altered in bipolar disorder in brain imaging and
postmortem studies (98). These converging animal and human data support a criti-
cal role of the ERK pathway in therapeutic action of mood stabilizers. The roles of
the ERK pathway in the susceptibility and pathophysiology of bipolar disorders are
largely unknown.

Glycogen Synthase Kinase-3 (GSK-3)
Although it was originally identified as a key modulator of glycogen catabolism,
GSK-3 plays critical roles in a variety of neuronal processes such as progenitor
cell fate determination, neuronal survival and apoptosis, and synaptic plasticity
(103–107). It has a wide substrate range and is a converging point of several
signaling pathways described above (Fig. 1). Two GSK-3 subtypes have been ident-
ified, namely a and b, which share 97% sequence homology in their catalytic
domains. Both subtypes are expressed in the brain and generally (but not
always) have similar biological effects, while encoded by two separate genes.
Both kinases are constitutively active. The constitutive activity arises from phospor-
ylation of tyrosines 279 or 216 (a and b, respectively), although there is some evi-
dence of active regulation of these sites in the brain (108). RSK, Akt, PKA, and
PKC phosphorylate N-terminal serine residue of GSK-3 a and b (21 and 9, respect-
ively) and the phosphorylation results in GSK-3 inhibition. Protein phosphatase 1
(PP1) and protein phosphatase 2A dephosphorylate GSK-3 (109–111). In addition,
GSK-3 activity is regulated by binding proteins; for instance, in the Wnt signaling
pathway, GSK-3-catalyzed phosphorylation of b-catenin is regulated by proteins
adenomatous polyposis coli (APC), the scaffold protein Axin, and frequently
rearranged in advanced T-cell lymphomas 1 (FRAT1) (106,107).

Seminal work by Klein and Melton (1996) led to the critical discovery that
lithium inhibits GSK-3 activity through direct and indirect mechanisms. The
initial in vitro data showed the IC50 of lithium to inhibit GSK-3 in test tube is
about 1–2 or 2 mM (112,113), suggesting marginal direct inhibition of GSK-3 by
lithium at therapeutically relevant serum levels of 0.6–1.2 mM. This direct inhi-
bition is later identified to be through competition for magnesium (103,114).

The proposed indirect inhibition mechanisms include: (i) induction of GSK-3
phosphorylation-inactivation and (ii) inhibition of GSK-3 dephosphorylation-
reactivation by mood stabilizers. The original work by Chuang and co-workers
demonstrated that lithium activates the PI3K pathway and phosphorylations of
GSK-3a at serine 21, the phosphorylations-inactivation site, in cultured cells (84).
Jope et al. later demonstrated that lithium induced phosphorylation of GSK-3b at
serine 9 in mouse brain after chronic treatment with lithium. In addition to the
PI3K pathway, the effects of lithium on the ERK/RSK pathway and on PKC signal-
ing could also contribute to phosphorylation-inactivation of GSK-3 (85).

Phosphatase inhibitor-2 (I-2) is an inhibitory component of PP1 complex.
GSK-3 phosphorylates I-2 at threonine 72 (115), the phosphorylation alters inter-
action between I-2 and PP1 catalytic unit (116), resulting in increases in PP1 activity
(116), and therefore PP1-induced dephosphorylation-reactivation of GSK-3
(111,117). According to this loop, an initial break on GSK-3 activity may cause
further amplification of GSK-3 inhibitory signal. Although it is plausible, convin-
cing direct evidence for amplification of GSK-3 inhibition through this feedback
loop in the brain is lacking.

Chen and associates report that valproate, at therapeutic relevant concen-
trations, also inhibits GSK-3 activity in vitro (118). This finding has now been
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replicated by several, but not all, laboratories. Similar to the effects of lithium,
studies also found valproate increased phosphorylation of GSK-3 at the inactivation
sites (85), perhaps through its effects on PI3K (84,85) and ERK/RSK pathways
(98,119). Taken together, these data suggest a therapeutic relevancy of GSK-3 inhi-
bition in mood stabilization.

To further examine the therapeutic relevancy of mood stabilizer-induced
GSK-3 inhibition, researchers evaluated the effects of GSK-3 blockage on rodent
behavior. Reducing immobility in the forced swim test is one of the behavioral
effects induced by acute administration of antidepressants. A recent study
showed that lithium, similar to antidepressants, reduces the immobility in mice
(120). GSK-3b deficient mice (120) and GSK-3 inhibitor-treated mice (121) and
rats (122) exhibit similar reduction in immobility in the forced swim test, indicat-
ing GSK-3 inhibition mediates this behavioral effect of lithium. In support of such
a contention, recent studies showed that antidepressant (90) and atypical antipsy-
chotic (123), both agents known to reduce the immobility of animals in the forced
swim test, increase GSK-3 phosphorylations at the inactivation site in several
brain regions implicated in mood regulation. Lithium reduces holeboard explora-
tion and amphetamine-induced locomotion in rodents (120). These phenomena
are viewed as lithium-sensitive behavior related to antimanic action of this
agent. GSK-3 heterozygous knockout mice showed reduced holeboard explora-
tion (120) and rats that received GSK-3 inhibitor injection showed blunted
response to amphetamine challenge (122). It appears that GSK-3 inhibition
mediates antidepressant-like and antimanic agent-like behavioral effects (or
mood stabilizing effect). However, it remains to be elucidated how the similar
effects of mood stabilizers and antidepressants, two types of drugs with clearly
different clinical profiles, especially for manic episodes of bipolar disorder, on
brain GSK-3 phosphorylation at inactivation site result in different behavioral
outcomes.

PROSPECTS AND FUTURE DIRECTIONS

Overall, it should be clear from the information reviewed in this chapter
that bipolar disorder likely arises from abnormalities in cellular plasticity
cascades, leading to aberrant information processing in synapses and circuits
mediating affective, cognitive, motoric, and neurovegetative function. As we
have discussed, there is a considerable body of evidence in support of abnorm-
alities in the regulation of signaling as integral to the underlying neurobiology
of bipolar disorder. Indeed, the role of cellular signaling cascades offers much
explanatory power for understanding the complex neurobiology of manic-
depressive illness:

B Signaling cascades regulate the multiple neurotransmitter and neuropeptide
systems implicated in bipolar disorder.

B Abnormalities in cellular signaling cascades that regulate diverse physiologic
functions likely explains the tremendous comorbidity with a variety of
medical conditions (notably cardiovascular disease, diabetes mellitus, obesity,
and migraine) and substance abuse.

B Signaling pathways are clearly major targets for hormones that have been
implicated in the pathophysiology of manic-depressive illness, including
gonadal steroids, thyroid hormones, and glucocorticoids.
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B Cellular signal transduction cascades are clearly the targets for our most effec-
tive treatments for manic-depressive illness.

B Abnormalities in cellular plasticity cascades likely also represent the underpin-
nings of the impairments of structural plasticity seen in morphometric studies
of bipolar disorder.

In conclusion, there have truly been tremendous advances in our understand-
ing of the molecular and cellular underpinnings of bipolar disorder. Moreover,
studies of cellular plasticity cascades in bipolar disorder are leading to a reconcep-
tualization about the pathophysiology, course, and optimal long-term treatment of
the illness. This data suggests that, while bipolar disorder is clearly not a classical
neurodegenerative disease, it is in fact associated with impairments of cellular plas-
ticity and resilience. As a consequence, there is a growing appreciation that optimal
long-term treatment will likely be achieved by attempting to prevent the underlying
disease progression and its attendant cellular dysfunction, rather than exclusively
focusing on the treatment of signs and symptoms. There has, unfortunately, been
little progress in developing truly novel drugs specifically for the treatment of
manic-depressive illness, and most recent additions to the pharmacopeia are
brain-penetrant drugs developed for the treatment of epilepsy or schizophrenia.
This eramay now be over as there are a number of pharmacologic “plasticity enhan-
cing” strategies which may be of considerable utility in the treatment of bipolar
disorder. This progress holds much promise for the development of novel thera-
peutics for the long term treatment of severe, refractory mood disorders, and for
improving the lives of millions.
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B7 Searching for a Cellular Endophenotype for
Bipolar Disorder

Francine M. Benes
Department of Psychiatry, Harvard Medical School, Boston,
Massachusetts, U.S.A.

INTRODUCTION

A critical question regarding the etiopathogenesis of bipolar disorder is whether
there is a cellular endophenotype that can explain abnormalities at the level of
dysfunctional neurons and circuits. A recent study has suggested that apoptosis
could play a role in the pathophysiology of bipolar disorder. Is it possible that
this abnormality is related to an endophenotype for this disorder? Fundamental
differences in the genetic regulation of the apoptotic cascade, electron transport
chain, and antioxidation enzymes are present and uniquely different from those
seen in schizophrenia. These differences may reflect the cellular endophenotype
for bipolar disorder and are revieved below.

Postmortem evidence gathered over the past 20 years has suggested that
bipolar disorder and, to a lesser extent, schizophrenia may involve apoptotic cell
death (1,2). Several cell counting studies demonstrated a reduction of interneurons
in the anterior cingulate cortex of schizophrenics, although this change has consist-
ently shown a stronger covariation with affective disorder (3,4,5). Subjects with
bipolar disorder, like those with schizophrenia, show decreases in the expression
of mRNA for GAD65 (6,7) and GAD67 (7,8). Additionally, presynaptic axon
terminals containing GAD65 have also been found to be significantly reduced in
the anterior cingulate cortex of patients with bipolar disorder (9), suggesting that
neuronal cell death may be a feature of this disorder. The idea that bipolar disorder
involves cell death to a greater degree than schizophrenia is counterintuitive,
because the latter disorder involves a characteristic deterioration in function
that is not generally seen in affective disorder. This contrasts strikingly with the epi-
sodic nature of bipolar disorder and the characteristic return to normal baseline
functioning following a manic or depressive episode.

Based on postmortem evidence, a reduction of GABAergic interneurons
appears to be a more striking feature of bipolar disorder than schizophrenia (5).
On this basis, it was postulated that apoptotic cell death may play a role in the
pathophysiology of bipolar disorder to a greater extent than in schizophrenia
(1,2). Interestingly, schizophrenics show a marked reduction of single-stranded
DNA breaks, a marker for apoptosis, in the anterior cingulate cortex, whereas
bipolars do not show this change (10). This pattern is potentially explained by
the activation of a DNA “repair” mechanism that can offset the effects of the apop-
totic cascade (11).

Research aimed at elucidating the underlying neurobiology and genetics of
bipolar disorder, and factors associated with treatment response, have been
limited by a heterogeneous clinical phenotype and lack of knowledge about its
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underlying diathesis (12). An important concept regarding the etiopathogenesis of
bipolar disorder and schizophrenia that must be factored into this discussion
involves the concept of the endophenotype, defined as the “measurable components
unseen by the unaided eye along the pathway between disease and distal genotype”
(13). Endophenotypes are quantifiable components in the genes-to-behaviors
pathways, distinct from psychiatric symptoms, which make genetic and biological
studies of etiologies for disease categories more manageable (14). It is no surprise
then that the endophenotype concept has emerged as a strategic tool in neuropsy-
chiatric research. The question that is explored in the discussion that follows
is whether unique endophenotypes can be identified in bipolar disorder and schizo-
phrenia using gene expression profiling data. The potential strength of this approach
is the fact that databases obtained for these studies typically contain information
for as many as 20,000–30,000 different genes that can be organized according to
functionally relevant biopathways and/or clusters.

To explore this and other questions regarding the presence of a cellular endo-
phenotype for bipolar disorder, gene expression profiling (GEP) has been used as a
powerful screening tool, for the broad evaluation of molecular functions in subjects
with bipolar disorder.

THE STUDY OF APOPTOSIS IN HUMAN HIPPOCAMPUS

Briefly, the cohort used in this study consisted of normal controls, schizophrenics,
and bipolars that were matched for age and postmortem interval and have been
previously described in detail (15). The normal control, schizophrenic, and
bipolar subjects were reasonably well-matched for age, postmortem interval,
gender, and hemisphere. All of the schizophrenic subjects were treated with
neuroleptic agents and all of the bipolar subjectswere treatedwith lithium carbonate
and/or other mood stabilizing agents, including lithium carbonate, valproic acid,
carbamazepine, and clonazepam, during the year prior to death.

In analyzing the data, initial tests of significance did not show appreciable
changes in the apoptosis cascade in either group (16). Since the human hippo-
campus is composed of many different subregions, sublaminae, and cellular
subtypes, it is relatively difficult to detect subtle changes in the expression of
genes when whole extracts are analyzed, as they were in this study. To avoid
Type II statistical errors, that is, suggesting that there were no significant
changes, when in fact they might exist within discrete subregions, layers, or
cellular subtypes within the hippocampus, we developed a post hoc method for
analyzing gene expression profiling data that would minimize the risk of such
errors. It is becoming broadly recognized that gene expression profiling and
other genomics technology in the hunt for disease genes requires that we
develop methods for evaluating associations between multiple and complicated
factors (17) and assessing the reliability of microarray data (18,19). To overcome
these limitations, we used a post hoc analysis (20) of the microarray data from
bipolars and schizophrenics that evaluated functional clusters of genes using a
low stringency approach (21).

An ad hoc metric was developed based on a combination of probability
theory and two separate corrections for multiple comparisons. A requirement for
such an analysis is that changes in the hybridization of any particular gene to its
probe sets must occur independently of probe sets for other genes. If the probe
sets for all of the genes in one particular biopathway were all clustered within a
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discrete sector of a microarray, then the hybridization of the respective mRNAs
to their appropriate probe sets could not be assumed to be independent of one
another and probability theory could not be used for the analysis.

To analyze the data, it was also important to examine changes in gene
expression at the functional cellular level, so that a coherent understanding of the
data could be obtained. In order to identify biologically relevant clusters
of interrelated genes, GenMapp algorithms (www.genmapp.org) were used to
relate the dChip findings to several different biochemical pathways and/or
biologically related clusters of genes. The first stage of the analysis involved select-
ing genes according to high and low stringency criteria for inclusion in the
GenMapp biopathways analysis. The inclusionary criterion was initially set at
p ¼ 0.05 and this was progressively increased to 0.1, 0.15, 0.2, and 0.25, respectively.
When the inclusionary criterion was increased in a stepwise manner to p ¼ 0.25,
further increases in the number of genes entered into the GenMapp pathways
were observed. Beyond this p-value, some of the GenMapp pathways that
previously had not shown any activation began to show a random scatter of a
small number of genes. This suggested that further increases of the inclusionary
p-value would likely increase the background and compromise the signal-to-
noise ratio of the post hoc analysis. When the post hoc composite probability (Pc)
was calculated for the apoptotic cascade, it was 3 � 10227 for bipolars and
4 � 1029 for schizophrenics (Fig. 1).

As shown in Figure 1, there were striking differences in the changes in the
expression of genes associated with apoptosis in schizophrenics versus bipolars.
Some genes showed changes in the same direction in both groups, while most
others occurred in opposite directions. For example, while caspase 2was upregulated
in both groups, the antiapoptotic factor, Bcl-2, showed decreased expression in
bipolars, but increased expression in the schizophrenic group. The remainder of the
apoptosis genes showed fundamental differences in regulation in the two disorders.

For the bipolars, 24 out of a total of 44 genes in the apoptosis pathways satisfied
the low stringency criterion for inclusion in the analysis. As depicted in Figure 1,
there were several upregulated proapoptotic genes, including FAS ligand, FAS
receptor (22,23) perforin (24), TNFa (23,25), c-Jun (26), c-myc (27), BAK (28),
APAF-1 and caspases 2 (29) and 8 (23,30). Other genes that are thought to inhibit
apoptosis, such as TRAF1, IKK, IAP3, NF-kB (31), and Bcl-2 (32) also showed
increased expression in the bipolar group, but these changes would tend to counter-
act the influence of the 10 upregulated proapoptotic genes, particularly when
other key proapoptotic factors, such as JNKK and JNK (33) were found to be down-
regulated. The DNA repair enzyme, poly(adenosine diphosphate-ribosyl) polymer-
ase, [PARP (11)], also showed a decrease in regulation and this would tend to
increase the apoptotic potential of hippocampal cells in the bipolar group.

When the bipolars were broken down according to neuroleptic exposure
(Table 1), mRNA expression for the proapoptotic factors, FAS ligand, RIP, BID,
TRAF1, FADD, MDM-2, caspase 2, p53, and c-myc, as well as the antiapoptotic
factors, NIK, IKK, IAP3, were all increased in the drug naı̈ve bipolars, while the
proapoptotic factors JNKK and JNK, as well as the antiapoptotic factors, IAP2,
NF-kB-p105, and PARP, all showed decreased expression. The neuroleptic-free
bipolar subjects also showed a decreased expression of PARP (34). For the neuro-
leptic-treated bipolars, proapoptotic factors, such as perforin, TNF-a, caspase 6,
c-Jun, BAX, APAF-1, and caspase 2, all showed increased expression. Conversely,
antiapoptotic factors, such as IKK, NF-kB-p105, NF-kB-p65, MCL-1, Bcl-2, and
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Bcl-x, were all upregulated in the bipolars receiving neuroleptic. As shown in
Table 1, there was an overall increase of antiapoptotic changes in gene expression
in the bipolars, suggesting that neuroleptics may suppress apoptotic cell death in
this disorder. The potential effect of mood-stabilizers on changes in apoptosis
gene expression was also considered; however, all of the bipolar subjects were
actively treated with these agents at the time of death.

In the schizophrenic group, significant changes in the expression of genes
associated with apoptosis were also observed (post hoc Pc ¼ 4.3 � 1029), but there
were differences with respect to the specific genes affected and the direction of the
changes (Fig. 1). Four proapoptotic genes (RIP, BID, JNK, and caspase 2), and two
prosurvival genes (Bcl-x and Bcl-2) showed an overall increase of expression.
Other proapoptotic genes, such as granzyme B (24,35), caspase 8 (30,36), MEKK1
(27,37), and c-myc (27), showed decreased expression in the schizophrenic group.
These latter changes would tend to suppress the apoptotic potential of hippocampal
cells, as these four factors are believed to play a critical role in facilitating the pro-
gression of apoptosis. When the schizophrenic group was broken down according
to “low” (CPZ-equivalent dose ,500 mg/day; average ¼ 189+ 173 mg/day) and
“high” (CPZ-equivalent dose .500 mg/day; average ¼ 816+ 290 mg/day) dose
neuroleptic exposure, the proapoptotic factors Fas ligand, perforin, TRAIL,
caspase 8, MEKK1, p53, c-myc, BAX, and BAK showed decreased expression in
schizophrenics receiving low dose neuroleptic (Table 1). Some prosurvival genes,
such as TRAF1 and MDM-2, showed decreased expression, whereas others, such
as BCL-2, showed increased expression. In the “high” dose subgroup, the pattern
observed was quite different. Several proapoptotic genes, including perforin,
TRAIL, RIP, TNFa, caspase 2, and BAK, were upregulated, whereas anti-apoptotic
genes, such as IAP3, MCL-1, and PARP, were downregulated. Unlike the subjects
with bipolar disorder, the subjects with schizophrenia showed no difference in the
number of genes showing proapoptotic changes in expression. On the other hand,
the number of genes showing antiapoptotic changes in expression was markedly
reduced, suggesting that neuroleptics might have some ability to increase apoptotic
potential in hippocampal cells of schizophrenics. The DNA repair enzyme, PARP,
showed a decrease of expression in the schizophrenics treated with high dose neuro-
leptic and this change could potentially increase the amount of DNA fragmentation
present in these subjects (10). This observation further supports the view that the
decrease of DNA damage in schizophrenic is probably not due to a neuroleptic
effect (10).

TABLE 1 Proapoptotic and Prosurvival Changes in Gene Expression in Schizophrenics and
Bipolars with and Without Neuroleptic Exposure

Proapoptotic Antiapoptotic Total

Bipolars
Neuroleptic-free 12 (66.7%) 6 (33.3%) 18
Neuroleptic-treated 14 (56.0%) 11 (44.0%) 25

Schizophrenics
Low neuroleptic 9 (47.4%) 10 (52.6%) 19
High neuroleptic 10 (76.9%) 3 (23.1%) 13

Data represent the number of genes showing changes in expression in relation to neuroleptic drug exposure.
Proapoptotic refers to genes associated with facilitation of the apoptosis cascade and cell death (e.g., BAX and
APAF-1) that showed an increase of expression, or genes associated with an inhibition of apoptosis (e.g., Bcl-2
and MDM-2) that showed a decrease of expression. Antiapoptotic refers to an increased expression of genes that
inhibit apoptosis and a decreased expression of genes that facilitate apoptosis.
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As shown in Figure 2, the microarray data for several apoptotic genes, includ-
ing FAS ligand, granzyme B, c-myc, PARP, BAK, Bcl-2, and APAF-1, were validated
using qRT-PCR. In each case, the direction of change in expression for the control,
schizophrenic, and bipolar groups were consistent with that seen using the micro-
array approach, except that the magnitude of these differences were generally
much greater. For example, in the case of c-myc, the fold changes were 25.2 and
þ5.4, respectively, in the schizophrenics and bipolars. Although there was no
change in PARP expression in the schizophrenics when neuroleptic effects were
not considered, the bipolars showed a 28.2 fold decrease when compared to
either the schizophrenic or control groups. Overall, the magnitude of the differences
between the groups that were detected with qRT-PCR was much larger than those
obtainedwith themicroarrays and provided an important validation of themicroar-
ray results.

Numerous earlier studies from this laboratory had suggested that oxidative
stress might occur in bipolar disorder and schizophrenia (38). Excessive amounts

FIGURE 2 FRET-based quantitative RT-PCR validation of microarray analyses of apoptosis genes
in normal controls, schizophrenics, and bipolars. Standard curves for log concentration versus
threshold cycle, like that shown for G3PDH, were established for each of the genes evaluated with
qRT-PCR. In addition, mRNA for glyceraldehyde-3-phosphate dehydrogenase (G3PDH), a
“housekeeping” gene, was similar for the three groups (upper right hand) and this gene was used
to normalize the data for the target genes (lower tier). As predicted from the microarray data,
mRNA for c-MYC was markedly decreased in schizophrenics, but increased in bipolars. In
contrast, PARP was strikingly reduced in the bipolars, while schizophrenics showed no differences.
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of glutamatergic activity acting upon GABAergic interneurons in both disorders (8)
could potentially cause oxidative stress to these and other neuronal cells (9). In this
setting, the antioxidation system, consisting of several different enzymes (Table 2)
that are capable of clearing reactive oxygen species (ROS), could potentially be
activated. If this occurs, it would tend to offset the effects of the apoptotic
cascade that is driven by the accumulation of ROS intracellularly. As shown in
Table 2, it is notable that several such genes were significantly downregulated in
the bipolars, while the schizophrenics showed very little change in this system.
Together with a highly significant reduction in the expression of the mitochondrial
electron transport chain (39) that results in a decline of energy production, the
reduced ability to clear ROS from cells in the hippocampus of bipolars could
contribute to the activation of the apoptosis pathway in these subjects (40).

CONCLUSIONS

This study reports the results of a novel post hoc analysis of an extant microarray
database, together with GenMapp biopathways and clusters, to obtain a more
inclusive understanding of how complex aspects of transduction, signaling, and
metabolism may be altered in schizophrenia and bipolar disorder. Indeed, with
this new methodology, it has been possible to detect marked changes in the

TABLE 2 Comparison of Expression Profiling Results for Genes Associated with Antioxidant
Reactions in Normal Controls vs. Bipolars and Schizophrenics

Bipolar disorder
Lactoperoxidase U39573 1.09 0.064
Heme oxygenease 1 Z82244 1.14 0.131
Superoxide dismutase 1 X02317 21.21 0.081
Catalase AL030579 21.17 0.124
Glutathione peroxidase 2 (gastrointestinal) X53463 1.11 0.041
Glutathione peroxidase 4 (phospholipid
hydroperoxidase)

X71973 21.23 0.014

Glutathione peroxidase 1 X13710 21.14 0.134
Glyoxalase 1 NM006708 21.32 0.014
Microsomal glutathione S-transferase 3 AF026977 21.39 0.002
Hydroxyacyl glutathione hydrolase X90999 21.36 0.028
Glutathione S-transferase A4 AF025887 21.24 0.046
Glutathione S-transferase M3 (brain) AF043105 21.19 0.198
Esterase D/formylglutathione hydrolase AF112219 21.31 0.044
Glutathione synthetase U34683 21.23 0.015
Glutathione S-transferase A2 M16594 1.16 0.045
Glutathione S-transferase M5 L02321 1.14 0.032
Glutathione-S-transferase like; glutathione
transferase omega

U90313 21.25 0.021

C-terminal PDZ domain ligand of neuronal
nitric oxide synthase

AB007933 21.12 0.090

Human neuronal nitric oxide synthase
(NOS1) gene, exon 29, and complete cds

U17326 1.17 0.030

Human inducible nitric oxide synthase gene,
promoter and exon 1

D29675 1.13 0.083

Nitric oxide synthase 3 (endothelial cell) M93718 1.23 0.059
Schizophrenia
Glutathione synthetase U34683 21.18 0.050
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regulation of genes associated with the apoptosic cascade and would not have been
detected, given the relative insensitivity of the standard approaches that employ an
alpha level of p ¼ 0.05 (39). The more sensitive analysis described above has
revealed robust changes in the expression of apoptosis genes in hippocampal
cells in both schizophrenic and bipolar subjects. Although there is some overlap
in the genes showing differences in expression when compared to normal controls,
the preponderance of such changes has been found to be remarkably different in
schizophrenics when compared to bipolars. The hypothesis that apoptosis may
play a role in the pathophysiology of schizophrenia and bipolar disorder can be
traced to earlier microscopic studies in the anterior cingulate cortex (41,42) and
hippocampus (43) that suggested a loss of interneurons occurs in both disorders.
These changes were found to be far more striking in bipolars (30–35% reduction)
when compared to schizophrenics (12–15% reduction) and it was postulated that
there may be a more marked activation of apoptosis in affective disorder than in
schizophrenia. A subsequent study demonstrated that there was a paradoxical
reduction in the amount of DNA damage present in the anterior cingulate cortex
of schizophrenic subjects (10). Indeed, the findings reported here are consistent
with this latter observation, as there was a downregulation of several proapoptotic
genes, such as granzyme B, caspase 8, c-myc, and BAX. Based on the results
reported here, it seems more likely that GABA cell pathology in schizophrenia
(4) may by related to an disturbance of intracellular signaling pathways, rather
than to overt cell loss, as appears to be the case in bipolar disorder (34,44).

A noteworthy aspect of these findings is the observation that neuroleptic
exposure was associated with a decrease of apoptotic potential in bipolars, but an
increase in schizophrenics. Both typical (45) and atypical (46) antipsychotic drugs
have been found to promote cell survival, although the atypical agents may be
more effective in this regard (47). Indeed, several atypical antipsychotic drugs
appear to protect against DNA damage (47). To date, only one neuroleptic, the
typical agent perphenazine, has been associated with increased DNA fragmenta-
tion (48), although one study has reported that clozapine may act as a hapten
and increase inflammatory potential (49). Contrary to the latter report, clozapine
has also been found to activate Akt (50), a prosurvival factor that, in turn, inhibits
glycogen synthase kinase-3b (GSK-3b), a protein that drives intracellular signaling
toward cell death via the Wnt pathway. Lithium carbonate, a standard mood-
stabilizing agent, is also believed to inhibit GSK-3b (51). Both lithium and valproate
have also been found to be associated with increased expression of Bcl-2 (52,53) and
ultimately influence both signal transduction (51,54,55) and intracellular signaling
cascades that are fundamental to cell survival. Accordingly, the upregulation of
antiapoptotic genes in neuroleptic-treated bipolar subjects may reflect the fact that
all of these subjects were treated with mood-stabilizing agents during the year prior
to death.

IS THERE A CELLULAR ENDOPHENOTYPE IN THE HIPPOCAMPUS
OF BIPOLAR BRAIN?

Overall, the data reported here do support the hypothesis that there are fundamen-
tally different patterns of gene expression in subjects with bipolar disorder when
contrasted with those with schizophrenia (Fig. 3). These findings point to
the possibility that the activity of the apoptotic cascade and L-type calcium
channels are increased, while that for the electron transport chain and the
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anti-oxidation system are decreased in subjects with bipolar disorder. This dis-
tinctly proapoptotic pattern is in contradistinction to that seen in schizophrenics
that is antiapoptotic in nature. It is important to emphasize that the interpretation
of simultaneous changes in the expression of many genes that comprise a

FIGURE 3 Schematic diagrams depicting genes associated with the apoptosis cascade that show
changes in expression in bipolar disorder (upper) and schizophrenia (lower). In schizophrenia, as
postulated in an earlier study (10), there is an overall downregulation of the apoptosis cascade,
including granzyme B and caspase 8, in the cell periphery and the mitochondrial-associated
antiapoptotic factor, Bcl-2. In bipolars, proapoptotic factors, including two death ligands, FAS and
TNFa, as well as the FAS receptor, perforin, c-myc, and BAK are proapoptotic factors that are
upregulated. NF-kBp65 and p105 are also upregulated, but they may play a role in stimulating
the activity of the DNA repair enzyme, PARP-1, that is downregulated. Overall, the changes in
bipolars would promote apoptotic injury or death, while those in schizophrenics would promote cell
survival. Preliminary evidence has suggested that a voltage gated L-type calcium channel is
downregulated in schizophrenics and upregulated in bipolars, a pattern consistent with the idea
that oxidative stress may be contributing to the changes seen in the respective disorders.
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complex signaling pathway, such as apoptosis, is probably not straightforward, as it
is quite possible that such changes may not be additive in nature, as the post-
translational modification of their respective proteins may not result in
corresponding changes.

Given this caveat, however, the detection of differences in the regulation of
proapoptosis changes in gene expression in bipolar disorder and detection of the
opposite changes in schizophrenia may provide some insight into the differential
nature of cellular endophenotypes in the respective two disorders. What is cur-
rently lacking is a detailed understanding of how these changes in gene expression
are determined at the cellular level. Are there genetic or epigenetic mechanisms
involved in the control of apoptosis that are mutated? Is it possible that the
neuronal activity mediated by these neurons contained within the hippocampus
plays a role in determining the expression of apoptotic genes? Can environmental
factors mediated via central mechanisms within the brain contribute to the abnor-
mal regulation of apoptosis genes in bipolar subjects (56)? What is clear is that
the answers to these questions, by their very nature, will bring us closer to under-
standing the nature of a cellular endophenotype in bipolar patients.

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health
(MH42261, MH62822, MH/NS31862) and the generosity of Menachem and
Carmella Abraham, John and Virginia Taplin, and Anne Allen.

REFERENCES

1. Margolis RL, Chuang DM, Post RM. Programmed cell death: implications for neuropsy-
chiatric disorders. Biol Psychiatry 1994; 35:946–956.

2. Jarskog LF, Gilmore JH, Selinger ES, Lieberman JA. Cortical bcl-2 protein expression and
apoptotic regulation in schizophrenia. Biol Psychiatry 2000; 48:641–650.

3. Benes FM, McSparren J, Bird ED, Vincent SL, SanGiovanni JP. Deficits in small inter-
neurons in prefrontal and anterior cingulate cortex of schizophrenic and schizoaffective
patients. Arch Gen Psychiat 1991; 48:996–1001.

4. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizo-
phrenia and bipolar disorder. Neuropsychopharmacology 2001; 25:1–27.

5. Todtenkopf MS, Vincent SL, Benes FM. A cross-study meta-analysis and three-dimen-
sional comparison of cell counting in the anterior cingulate cortex of schizophrenic
and bipolar brain. Schizophr Res 2005; 73:79–89.

6. Guidotti A, Auta J, Davis JM, et al. Decrease in Reelin and glutamate acid
decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. Arch Gen
Psychiatry 2000; in press.

7. Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM. Differential hippocampal
expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar
disorder and schizophrenia. Arch Gen Psychiatry 2002; 59:521–529.

8. Woo TU, Walsh JP, Benes FM. Density of glutamic acid decarboxylase 67 messenger
RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit
NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch
Gen Psychiatry 2004; 61:649–657.

9. Benes FM, Todtenkopf MS, Logiotatos P, Williams M. Glutamate decarboxylase(65)-
immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and
bipolar brain. J Chem Neuroanatomy 2004; 20:259–269.

10. Benes FM, Walsh J, Bhattacharyya S, Sheth A, Berretta S. DNA fragmentation decreased
in schizophrenia but not bipolar disorder. Arch Gen Psychiatry 2003; 60:359–364.

Searching for a Cellular Endophenotype 141



11. Bouchard VJ, Rouleau M, Poirier GG. PARP-1, a determinant of cell survival in response
to DNA damage. Exp Hematol 2003; 31:446–454.

12. Hasler G, Drevets WC, Gould TD, Gottesman, II, Manji HK. Toward constructing an
endophenotype strategy for bipolar disorders. Biol Psychiatry 2006; 60:93–105.

13. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and
strategic intentions. Am J Psychiatry 2003; 160:636–645.

14. Gould TD, Gottesman II. Psychiatric endophenotypes and the development of valid
animal models. Genes Brain Behav 2006; 5:113–119.

15. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular
evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry
2004; 61:300–308.

16. Benes FM, Matzilevich D, Burke RE, Walsh J. The expression of proapoptosis genes is
increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 2006; 11:241–251.

17. Tsunoda T, Yamada R, Tanaka T, Ohnishi Y, Kamatani N. Environmental factor
dependent maximum likelihood method for association study targeted to personalized
medicine. Genome Informatics 2000; 11:96–105.

18. Asyali MH, Shoukri MM, Demirkaya O, Khabar KSA. Assessment of reliability of
microarray data and estimation of signal thresholds using mixture modeling. Nucleic
Acids Res 2004; 32:2323–2335.

19. Raffelsberger W, Dembele D, Neubauer MG, Gottardis MM, Gronemeyer H. Quality
indicators increase the reliability of microarray data. Genomics 2002; 80:385–394.

20. Benes FM, Burke RE, Walsh JP, Berretta S, Minns M, Konradi C. An upregulation of
multiple monoamine and peptide G-coupled protein receptors in rat hippocampus in
response to amygdalar activation. Molecular Psychiatry 2004; in press.

21. Konradi C, Eaton M, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochon-
drial dysfunction in bipolar disorder. Archives of General Psychiatry 2004; in press.

22. Shin SW, Park JW, SuhMH, Suh SI, Choe BK. Persistent expression of FAS/FASL mRNA
in the mouse hippocampus after a single NMDA injection. J Neurochem 1998; 71:1773–
1776.

23. HuWH, JohnsonH, ShuHB. Activation of NF-kB by FADD, Casper, and caspase-8. J Biol
Chem 2000; 275:10838–10844.

24. Ohara T, Morishita T, Suzuki H, Masaoka T, Ishii H. Perforin and granzyme B of
cytotoxic T lymphocyte mediate apoptosis irrespective of Helicobacter pylori infection:
possible act as a trigger of peptic ulcer formation. Hepatogastroenterology 2003;
50:1774–1779.

25. Thome M, Hofmann K, Burns K, et al. Identification of CARDIAK, a RIP-like kinase that
associates with caspase-1. Curr Biol 1998; 8:885–888.

26. Mielke K, Brecht S, Dorst A, Herdegen T. Activity and expression of JNK1, p38 and ERK
kinases, c-Jun N-terminal phosphorylation, and c-jun promoter binding in the adult rat
brain following kainate-induced seizures. Neuroscience 1999; 91:471–483.

27. Alarcon-Vargas D, Tansey WP, Ronai Z. Regulation of c-myc stability by selective stress
conditions and by MEKK1 requires aa 127–189 of c-myc. Oncogene 2002; 21:4384–4391.

28. Viktorsson K, Ekedahl J, Lindebro MC, et al. Defective stress kinase and BAK activation
in response to ionizing radiation but not cisplatin in a non-small cell lung carcinoma cell
line. Exp Cell Res 2003; 289:256–264.

29. Ferrer I, Lopez E, Blanco R, Rivera R, Krupinski J, Marti E. Differential c-Fos and caspase
expression following kainic acid excitotoxicity. Acta Neuropathol (Berl) 2000;
99:245–256.

30. Northington FJ, Ferriero DM, Martin LJ. Neurodegeneration in the thalamus following
neonatal hypoxia-ischemia is programmed cell death. Dev Neurosci 2001; 23:186–191.

31. Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J. NF-kB signals induce the
expression of c-FLIP. Mol Cell Biol 2001; 21:5299–5305.

32. Adams JM, Cory S. The BCL-2 protein family: arbiters of cell survival. Science 1998;
281:1322–1326.

33. Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA.
Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the
JNK3 gene. Nature 1997; 389:865–870.

34. Buttner EN, Bhattacharyya S,Walsh JP, Benes FM (2004) DNA fragmentation is increased
in non-GABAergic neurons in bipolar disorder. Submitted.

142 Benes



35. Sun J, Bird CH, Thia KY, Matthews AY, Trapani JA, Bird PI. Granzyme B encoded by the
commonly-occurring human RAH allele retains pro-apoptotic activity. J Biol Chem 2001;
279(17):16907–16911.

36. Wang CY, Guttridge DC, Mayo MW, Baldwin AS Jr. NF-kB induces expression of the
BCL-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis.
Mol Cell Biol 1999; 19:5923–5929.

37. Boldt S, Weidle UH, Kolch W. The kinase domain of MEKK1 induces apoptosis by
dysregulation of MAP kinase pathways. Exp Cell Res 2003; 283:80–90.

38. Benes FM. The role of stress and dopamine-GABA interactions in the vulnerability for
schizophrenia. J Psychiatr Res 1997; 31:257–275.

39. Benes FM, Burke RE, Berretta S, Walsh JP, Minns M, Konradi C. Amygdalar activation
induces an upregulation of multiple monoamine and peptide G-coupled protein recep-
tors occurs in rat hippocampus. Molecular Psychiatry 2004; in press.

40. Pollack M, Leeuwenburgh C. Apoptosis and aging: role of the mitochondria. J Gerontol
A Biol Sci Med Sci 2001; 56:B475–B482.

41. Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. Deficits in small inter-
neurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective
patients. Arch Gen Psychiatry 1991; 48:996–1001.

42. Benes FM, Vincent SL, Todtenkopf M. The density of pyramidal and nonpyramidal
neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychia-
try 2001; 50:395–406.

43. Benes FM, Kwok EW, Vincent SL, Todtenkopf MS. A reduction of nonpyramidal cells in
sector CA2 of schizophrenics and manic depressives [see comments]. Biol Psychiatry
1998; 44:88–97.

44. Woo TW, Walsh JP, Benes FM. Density of glutamate acid decarboxylase 67 messenger
RNA-containing neurons that express the N-methyl-D-aspartate subunit NR2a is
decreased in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch
Gen Psychiatry 2004.

45. Achour A, LuW, Arlie M, Cao L, Andrieu JM. Tcell survival/proliferation reconstitution
by trifluoperazine in human immunodeficiency virus-1 infection. Virology 2003;
315:245–258.

46. WeiZ,BaiO,Richardson JS,MousseauDD,LiXM.OlanzapineprotectsPC12cells fromoxi-
dative stress induced by hydrogen peroxide. J Neurosci Res 2003; 73:364–368.

47. Qing H, Xu H, Wei Z, Gibson K, Li XM. The ability of atypical antipsychotic drugs vs.
haloperidol to protect PC12 cells against MPPþ-induced apoptosis. Eur J Neurosci
2003; 17:1563–1570.

48. Gil-ad I, Shtaif B, Shiloh R, Weizman A. Evaluation of the neurotoxic activity of typical
and atypical neuroleptics: relevance to iatrogenic extrapyramidal symptoms. Cell Mol
Neurobiol 2001; 21:705–716.

49. Haack MJ, Bak ML, Beurskens R, Maes M, Stolk LM, Delespaul PA. Toxic rise of cloza-
pine plasma concentrations in relation to inflammation. Eur Neuropsychopharmacol
2003; 13:381–385.

50. Kang UG, Seo MS, Roh MS, Kim Y, Yoon SC, Kim YS. The effects of clozapine on the
GSK-3-mediated signaling pathway. FEBS Lett 2004; 560:115–119.

51. Li X, Bijur GN, Jope RS. Glycogen synthase kinase-3b, mood stabilizers, and
neuroprotection. Bipolar Disord 2002; 4:137–144.

52. Manji HK, Moore GJ, Chen G. Clinical and preclinical evidence for the neurotrophic
effects of mood stabilizers: implications for the pathophysiology and treatment of
manic-depressive illness. Biol Psychiatry 2002; 48:740–754.

53. Manji HK, Moore GJ, Rajkowska G, Chen G. Neuroplasticity and cellular resilience in
mood disorders. Mol Psychiatry 2002; 5:578–593.

54. Manji HK, Etcheberrigaray R, Chen G, Olds JL. Lithium decreases membrane-associated
protein kinase C in hippocampus: selectivity for the alpha isozyme. J Neurochem 1993;
61:2303–2310.

55. Chen G, Masana MI, Manji HK. Lithium regulates PKC-mediated intracellular cross-talk
and gene expression in the CNS in vivo. Bipolar Disord 2000; 2:217–236.

56. Benes FM. Emerging principles of altered neural circuitry in schizophrenia. Brain Res
Brain Res Rev 2000; 31:251–269.

Searching for a Cellular Endophenotype 143





B8 The Hypothalamic–Pituitary–Adrenal Axis in
Bipolar Disorder
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INTRODUCTION

One of the most consistent findings in biological psychiatry is derangement of
the hypothalamic-pituitary-adrenal (HPA) axis in patients with severe mood
disorders. The HPA axis consists of the hypothalamus, pituitary, and adrenal
glands, various hormones and releasing factors, and regulatory neural inputs (1).
It regulates the body’s acute response to stress, and its actions in this regard
include mobilizing energy reserves through increased gluconeogenesis, lipolysis,
and protein degradation (2). It also plays a role in long-term adaptive changes to
physiological functions, for example, by modulating immune responses, facilitating
learning, and activating the sympathetic nervous system (1). The purpose of this
review is to examine the physiology of the HPA axis; outline the evidence for its
implication in the pathogenesis of depression and bipolar disorder; summarize
treatment options that may be efficacious in restoring normal HPA axis functioning,
and thereby effective in treating mood disorders; and to suggest avenues for further
research.

PHYSIOLOGY OF THE HPA AXIS

The hypothalamus receives input from afferent catecholaminergic nerve fibers,
including noradrenergic fibers originating in the nucleus of the solitary tract
and the locus coeruleus (3), as well as from limbic structures, including the amyg-
dala, the hippocampus, and the stria terminalis. The medial parvicellular division
of the paraventricular nucleus of the hypothalamus produces corticotropin-
releasing hormone (CRH), a 41-amino acid peptide, and arginine vasopressin
(AVP), a nonapeptide, which are released into the portal circulation. CRH
interacts with the CRH1 receptor on the anterior surface of the pituitary gland,
stimulating the release of adrenocortcotropic hormone (ACTH) from the cortico-
tropes of the anterior pituitary. There is some evidence that AVP plays a role as
well, such that CRH and AVP act synergistically in regulating ACTH release
(3). ACTH enters the systemic circulation and binds to receptors on the adrenal
cortex, inducing the synthesis and release of the steroid hormone cortisol (4).
Once released into the serum, approximately 80% of cortisol molecules are
bound to cortisol-binding globulin (5). Cortisol itself plays a vital role in regulat-
ing the HPA axis, through a negative feedback loop in which it interacts with
receptors in the pituitary and hypothalamus to inhibit the synthesis and release
of CRH and ACTH.
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The actions of cortisol, including negative feedback, are mediated through
two distinct cytoplasmic corticosteroid receptors, referred to as the type I or miner-
alocorticoid receptor (MR), and the type II or glucocorticoid receptor (GR) (1). The
mineralocorticoid receptor has a high affinity for endogenous corticosteroids, and
regulates cortisol levels during normal physiological conditions, such as normal cir-
cadian fluctuations in hormone levels. The glucocorticoid receptor has a high affi-
nity for synthetic corticosteroids such as dexamethasone, but its affinity for
cortisol is approximately one-tenth that of the MR (6). It is believed to mediate cor-
tisol activity during periods when high concentrations are present, such as during
the stress response (2).

The glucocorticoid receptor is present in almost all somatic cells, though the
relative number of receptors varies between cell types. The receptor resides in the
cytoplasm in an inactive form, as part of a complex with numerous other peptides,
including heat shock proteins, phosphatase PP5, and immunophilins FKBP5 and
Cyp40. When a substrate, such as cortisol or dexamethasone, binds to the ligand-
binding domain at the carboxy-terminal end of the glucocorticoid receptor, the
receptor complex is activated, and is translocated into the cell nucleus (2). Two pro-
jections at the centre of the receptor molecule allow the complex to bind to DNA. On
binding, the receptor complex undergoes an allosteric change, permitting a second
receptor complex to bind and dimerization of the complexes to occur. Once dimer-
ization is complete, the cortisol-receptor complex induces transcriptional trans-
activation or repression of selected genes, via interaction of two domains, an
N-terminal glucocorticoid-independent domain and a C-terminal glucocorticoid-
dependent domain, with glucocorticoid receptor elements in promoter regions (2).

The functional integrity of the HPA axis may be assessed by challenging it
with synthetic or natural hormones or glucocorticoids. The dexamethasone sup-
pression test (DST) measures serum cortisol levels following administration of
the synthetic glucocorticoid dexamethasone. In subjects with an intact HPA axis,
dexamethasone acts through the negative feedback loop outlined above to inhibit
the release of CRH, ACTH, and cortisol. Escape from cortisol suppression is indica-
tive of an abnormally functioning HPA axis. Recently, a refined version of this test,
the combined dexamethasone/CRH test (7) has become widely utilized. The Dex/
CRH test involves administering a dose of human CRH following pretreatment
with dexamethasone. In patients with mood disorders, dexamethasone fails to
prevent a substantial release of ACTH and cortisol following CRH administration.
The Dex/CRH test has greater sensitivity in detecting abnormalities in the HPA axis
in patients with mood disorders compared to the DST (8).

HPA FUNCTION IN PATIENTS WITH MAJOR DEPRESSION

Most studies investigating alterations in HPA functioning in patients with mood
disorders have been carried out in patients with major depressive disorder. As
they have been important in guiding subsequent studies in bipolar patients, and
in understanding possible biological mechanisms of action, they are reviewed
briefly here. Abnormalities in the HPA axis were reported in depressed patients
more than 50 years ago (9). The most widely reported finding, that a significant per-
centage of patients with mood disorders hypersecrete cortisol, and do not suppress
cortisol production in response to administration of dexamethasone, a state akin to
a chronic sustained stress response, was first described 30 years ago (10).
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Since this initial work, numerous studies have demonstrated other abnormal-
ities in HPA axis functions. CRH levels have been reported as elevated in patients
with major depression (11,12). The Dex/CRH test has revealed that depressed
patients do not inhibit ACTH production to exogenous administration of CRH
stimulus following pre-treatment with dexamethasone (11,13). There is less consist-
ency in findings from studies of baseline levels of ACTH in depressed patients, with
some reporting elevated levels of ACTH (14–18), and others describing normal or
low ACTH levels (19–25). Enlarged pituitary and adrenal glands have been
reported in studies of depressed patients (26–29), though these may be a state
phenomenon, as adrenal gland volume has been reported to return to normal fol-
lowing remission of depression (30). Evidence for increased cortisol production
includes elevated levels in serum, urine, and cerebrospinal fluid.

One theory to explain the discrepant findings regarding ACTH levels in
depressed patients suggests that the physiology of hypercortisolism changes over
the course of depressive illness (4,31). According to this hypothesis, elevated
CRH levels lead to increased production of ACTH early in the course of depression.
Over time, however, the sensitivity of the pituitary gland to CRH attenuates, and
ACTH production decreases. As ACTH release drops, elevated levels of cortisol
are maintained due to increased adrenal cortical sensitivity to ACTH. Supporting
evidence for this theory includes the observations that depressed patients with
hypercortisolemia display attenuated release of ACTH when administered exogen-
ous CRF (30,32–34) and that the greatest attenuation of ACTH release occurs in the
most severely depressed patients (23). As well, it has been demonstrated that
administration of exogenous ACTH leads to a long-lasting hyper-responsiveness
to ACTH in healthy individuals (35,36).

Successful treatment of depression is generally, though not invariably, associ-
ated with normalization of HPA axis functioning. Lack of resolution of HPA axis
abnormalities in successfully treated patients has been shown to be predictive of
a poor prognosis (37–39). Such patients in one study had a six-fold greater risk
of relapse in the first six months after discharge from hospital (39). Recurrence of
HPA abnormalities during remission from depression is similarly predictive of
relapse (37), although whether this indicates a causal link, or simply that HPA
axis abnormalities are one of the first signs of relapse, is not clear.

HPA FUNCTION IN PATIENTS WITH BIPOLAR DISORDER

Evidence of hypercortisolemia and other HPA axis abnormalities have been repeat-
edly demonstrated in all phases of bipolar illness. A review of 17 studies of the DST
in manic patients reported an average nonsuppression rate of 39% across studies
(40). Elevated baseline serum cortisol levels (41), nonsuppression of cortisol on
the DST (42–45) and elevated cortisol release during the Dex/CRH test (46) have
been frequently reported in bipolar depression. Rybakowski and Twardowska
(46) also described a positive correlation between cortisol levels following CRH
administration and severity of depression. While the relative rates of HPA axis
hyperactivity in the manic and depressive phases of bipolar disorder have not
been systematically investigated, one small study utilizing the DST in rapid
cycling patients (47) detected higher levels of urinary free cortisol during
depression than mania.

Elevated cortisol levels (48,49) and nonsuppression of cortisol in response to
dexamethasone (41,50,51) have also been reported in patients experiencing mixed
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manic episodes. Studies that have compared patients with mixed mania to “pure”
manic patients (40,48,50) have consistently reported greater HPA axis abnormalities
in patients with mixed episodes, though possibly due to small sample sizes, the
differences were generally not statistically significant. One study (48) did report sig-
nificantly greater morning plasma cortisol, post-dexamethasone plasma cortisol,
and CSF cortisol in patients with mixed mania compared to those with pure mania.

Two small studies (total N ¼ 11) have reported on HPA axis functioning in
bipolar patients with a rapid cycling course, with conflicting results. Watson et al.
(52) found that cortisol response to the Dex/CRH was stable over two visits in
their sample, and was independent of mood state. Tomitaka et al. (47) found
greater cortisol levels during the DST in the depressed than the manic phase
of illness.

The debate over whether HPA axis abnormalities in bipolar patients are
dependent on illness state, or are trait features and so indicative of underlying
pathophysiologic processes, has received some attention in the literature. A
recent report on 53 bipolar subjects (8) found that remitted subjects and those
with ongoing depressive symptoms had similarly enhanced cortisol response to
the Dex/CRH test compared to normal controls. Another study (53) reported
only partial normalization of cortisol response to the Dex/CRH test following
remission from a manic episode. Cortisol levels during remission in this sample
were still greater than those in normal controls. Interestingly, during serial
testing of euthymic bipolar patients over four years (54), most patients displayed
intermittently positive DSTs. This finding could be consistent with either the influ-
ence of state factors, or an inherently oscillating biological process. Other studies
have reported elevated cortisol responses to the Dex/CRH test (55) and elevated
salivary cortisol levels (56) in first degree relatives of bipolar patients. Finally,
expression of glucocorticoid receptor alpha mRNA was noted to be reduced in
affectively ill and remitted bipolar patients, as well as their first degree relatives,
compared to a control group with no personal or family history of psychiatric
illness (57). Thus, while some of the results are preliminary, the preponderance of
evidence appears to suggest that HPA axis abnormalities in bipolar patients
persist into euthymia, and are present to some extent in unaffected family
members of bipolar probands.

Some evidence points toward distinct patterns of HPA axis abnormalities in
major depressive disorder and bipolar disorder. For example, while a number of
studies report a decreased density of brain GR receptors in both conditions, the
affected brain regions appear to be unique to the illnesses (see subsequently). As
well, reductions in GR receptors may be more pronounced in patients with major
depression. A direct comparison of lymphocyte GR numbers between patients
with major depressive disorder and bipolar manic patients described significantly
lower mean GR numbers in the depressed patients (58). Depressed or euthymic
bipolar patients were not studied, so the possibility that the difference was
related to mood state in the bipolar patients cannot be ruled out. Interestingly, non-
suppression of cortisol during the DST appears to be more common in bipolar
illness than in major depressive disorder (46,53). Finally, pituitary gland volume,
which has been demonstrated to be increased in patients with major depression
(27), was reported in one study to be reduced in bipolar patients compared to
both depressed patients and healthy controls (59).

As DST nonsuppression has been described in many axis I psychiatric dis-
orders, including major depressive disorder, schizophrenia, and eating disorders
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(60), its usefulness as a diagnostic instrument for bipolar illness is limited. Nonethe-
less, as in patients with major depressive disorder, persistence of HPA axis abnorm-
alities into remission in bipolar patients may have prognostic significance. In one
study, Vieta et al. (61) administered 100 micrograms of CRH to 42 lithium-treated
bipolar I patients in remission, and 21 healthy controls. The bipolar patients dis-
played higher baseline and peak ACTH concentrations than the control subjects.
A higher area under the ACTH concentration curve in bipolar subjects predicted
relapse at both 6 and 12 months. When bipolar subjects who subsequently relapsed
were removed from the analysis, the difference between bipolar subjects and con-
trols with respect to ACTH levels disappeared.

POSSIBLE MECHANISMS OF HPA AXIS ABNORMALITIES
IN PATIENTS WITH MOOD DISORDERS

Research on the mechanism of HPA axis abnormalities in patients with major
depressive disorder has focused on alterations in GR number or functioning (2).
Research investigating whether the number of CNS or peripheral GR receptors is
decreased in depressed patients has been contradictory (62), with some studies
suggesting a decreased number of receptors (58,63–66), while others have not
found differences between depressed patients and normal controls, or patients
with other psychiatric illnesses (67–74). Studies in patients with bipolar disorder
have also produced inconsistent results. One study of lymphocyte GR numbers
(75) actually reported an increase in bipolar patients compared to healthy controls.
Most other studies have used mRNA as a surrogate marker for receptors, and have
reported decreased GR mRNA in lymphocytes (51) and postmortem brain samples
(66,76). GRmRNA appears to be decreased in characteristic brain regions in specific
mental illnesses. For example, Webster et al. (77) reported reduced GRmRNA in the
entorhinal cortex, subiculum, and CA3 and CA4 of the hippocampus in bipolar
patients, a pattern different from that seen in patients with major depression or
schizophrenia. Perlman et al. (76) described decreased GR mRNA in the basolat-
eral/lateral nuclei of the amygdala in patients with bipolar disorder and schizo-
phrenia, but not patients with major depressive disorder.

The common clinical observation that depressed patients do not display
the physical signs of hypercortisolism typical of Cushing’s Syndrome suggests
hypofunctionality of GRs (78). Many studies have demonstrated decreased
GR functioning in patients with major depressive disorder, such as decreased
translocation into the cell nucleus following ligand binding (69,79,80), or dimin-
ished inhibition of lymphocyte proliferation (71,80–83). Fewer studies have
been carried out in patients with bipolar illness. One paper (84) reported that
GR binding to DNA was decreased in depressed bipolar patients compared to
healthy controls, and was at an intermediate level in euthymic bipolar patients.
This was despite the fact that the number of nuclear GR receptors was increased
in patients, suggesting normal or increased translocation into the nucleus.

Moutsatsou et al. (85) were unable to detect any mutations in GR DNA in 15
bipolar patients, using agarose gel electrophoresis, heteroduplex analysis, and
DNA sequencing. This highlights the fact that physiologic derangements other
than those directly involving GR structure could also contribute to the HPA axis
abnormalities that have been observed in patients with mood disorders. These
include changes in cortisol-binding globulin levels which alter bioavailability of
cortisol (86); decreased entry or increased removal of glucocorticoids from cells
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(87); alterations in intracellular metabolism of glucocorticoids (88); post-transla-
tional modifications such as phosphorylation (89); and expression or functioning
of other transcription factors (75), or components of the receptor complex other
than the GR (90,91). For example, Binder et al. (90) reported that overexpression
of the receptor complex component FKBP5 was associated with decreased GR func-
tion in squirrel monkeys. Also, depressed patients exhibit reduced activity of cyclic-
AMP-dependent protein kinase A (92), which normally plays a significant role in
increasing GR activity.

There is evidence that AVP activity is increased in patients with mood dis-
orders, and may play a role in maintaining ACTH release despite downregulation
of CRH1 receptors and likely CRH activity. AVP has been demonstrated to have
ACTH-releasing properties when administered to human subjects (93), through
interaction with the V3 (also known as the V1b) receptor on the anterior surface
of the pituitary gland (3). Studies employing stress paradigms in rats have demon-
strated elevated AVP synthesis (94). Also, while CRH mRNA and CRH1-receptor
mRNA levels are reduced by elevated glucocorticoid levels (95), V3 receptor
mRNA levels are increased. Studies in patients with mood disorders are highly sug-
gestive of increased AVP activity. Amixed sample of patients with major depressive
disorder or bipolar disorder, depressed phase, exhibited a greater cortisol response
when administered AVP than did control subjects (96). Watson et al. (52) reported
that AVP levels after pre-treatment with dexamethasone were higher in bipolar
patients and patients with major depressive disorder than in controls, suggesting
a lack of negative feedback from glucocorticoids on AVP release.

The role of limbic structures, such as the amygdala and hippocampus, and
brainstem regions such as the locus coeruleus, in mediating HPA axis abnormal-
ities in patients with mood disorders has received surprisingly little attention.
Several lines of evidence are suggestive in this regard. Electrical stimulation of
the hippocampus has been demonstrated to decrease plasma corticosteroid
levels in several species, including primates (97), and lesions of the hippocampus
result in glucocorticoid hypersecretion during activation of the HPA through
stress (98). Electrical stimulation of the amygdala in rats has been correlated
with decreased release of CRH into the hypophyseal portal bloodstream (99).
As well, depletion of biogenic amines in rats by reserpine is associated with
decreased density of GRs in the hippocampus, frontal cortex, pituitary, and lym-
phoid tissues (100). A recent report in euthymic bipolar patients described
increased amygdala volume with HPA axis abnormalities (101). A corticotropin-
releasing hormone receptor, CHR2, is primarily expressed in the limbic brain,
suggesting a bidirectional relationship between this region and the HPA axis
(102). Studies in this area are clearly hindered by the complex interrelationships
between limbic system structures, neurotransmitter systems, and the HPA axis
(103), though electrical stimulation or neurotransmitter depletion studies such as
those described above may prove to be fruitful areas of research.

CONSEQUENCES OF HYPERCORTISOLEMIA

Glucocorticoid and mineralocorticoid receptors are distributed differentially
throughout the central nervous system. MRs are localized exclusively in the
limbic system, particularly the hippocampus, parahippocampal gyrus, and the
entorhinal and insular cortices. GRs have a wider distribution, and are found in
limbic system structures, various nuclei of the hypothalamus, including the
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paraventricular nucleus, and particularly in the frontal cortex (6). The hippocampus
plays an important role in the formation of episodic or declarative memories, while
the frontal cortex mediates executive functioning and working memory.

Hypercortisolemia has been investigated in animal models, healthy human
volunteers, patients with endocrine diseases that cause hypercortisolism, such as
Cushing’s Syndrome, and in psychiatric patients. Investigations in rodents indicate
that chronic exposure to high levels of glucocorticoids is associated with cognitive
impairment. Young rats so exposed developmemory loss and hippocampal atrophy
similar to that seen in aged rats (104,105). Conversely, young rats that undergo
adrenalectomy, and are kept alive with low levels of exogenous glucocorticoids,
do not experience these changes as they age (105). Hippocampal changes appear
to be a result of dendritic atrophy of CA3 pyramidal cells (106). Further studies
have suggested that the ratio of MRs to GRs is important in mediating structural
and cognitive changes associated with hypercortisolism (6), and that excitatory
amino acids, serotonin, and NMDA also play roles in the development of cognitive
impairment and structural brain changes related to hypercortisolism (107).

Impairments in both declarative and working memory have also been
observed after glucocorticoid administration in healthy volunteers (108–110).
For instance, in a placebo-controlled crossover trial involving 20 healthy male
subjects, hydrocortisone 20 mg twice daily administered for 10 days was associated
with impairments on tests of cognitive functioning sensitive to frontal lobe
dysfunction. These deficits were reversible after discontinuation of hydrocortisone
administration.

A relationship between chronically elevated levels of endogenous corticoster-
oids and cognitive impairment has also been unambiguously demonstrated. Stark-
man et al. (111) detected a significant relationship between memory impairment,
high cortisol levels, and decreased hippocampal formation volume in a sample of
patients with Cushing’s syndrome. Lupien et al. (6) reported that long-term
elevation of endogenous corticosteroids in elderly human subjects was associated
with significantly impaired declarative memory, but not with changes in non-
declarativememory. Furthermore,MRI scans revealed that subjects with chronically
elevated cortisol levels had a 14% smaller hippocampal volume when compared to
subjects with normal cortisol levels over time. Whether such cognitive impairment
is reversible is not clear. Interestingly, however, loss of brain volume in 38 patients
with Cushing’s syndromewas reversed after hypercortisolemia was corrected (112).

Many studies document the existence of cognitive deficits in patients with
bipolar disorder. The data from these reports suggest that this impairment is a
trait phenomenon that persists even during euthymic intervals (113,114). One
report has correlated neuropsychological impairments in bipolar patients with glu-
cocorticoid receptor function, as measured by the DST (115). In this study, 17 euthy-
mic bipolar patients and 16 controls participated in tests of verbal declarative and
working memory. The patients made significantly more errors of omission and
commission on tests of working memory, and also displayed impaired verbal rec-
ognition memory. Commission errors on tests of working memory were highly cor-
related with nonsuppression of cortisol on the DST (r ¼ 0.64, P , 0.0006).

In addition to its effects on the central nervous system, cortisol is also known
to antagonize the effects of insulin and to raise blood pressure, thereby increasing
the risk of diabetes, hypertension, and coronary artery disease (6). This is particu-
larly noteworthy, given the known increase in early mortality in patients suffering
from bipolar disorder, particularly related to cardiovascular causes.
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In summary, then, sustained hypercortisolism is associated with structural
changes in the hippocampus, as well as deficits in workingmemory and declarative
memory, functions known to be mediated by the hippocampus and the frontal
lobes, areas of the brain which are rich in glucocorticoid receptors. The effects of
hypercortisolism may also increase the risk of cardiovascular disease and diabetes.

EFFECTS OF SOMATIC TREATMENTS

Research suggests that antidepressant treatment leading to the resolution of
depressive symptoms generally normalizes HPA axis functioning in patients with
major depression (116–119). HPA axis abnormalities frequently persist, however,
following unsuccessful antidepressant treatment (120). In contrast, there is evidence
that lithium therapy actually accentuates abnormalities on the DST and Dex/CRH
test, at least in patients with major depressive disorder. Bschor et al. studied
depressed patients who were refractory to at least four weeks of adequate anti-
depressant therapy. Significant increases in serum cortisol and ACTH were noted
with both the DST (121) and the Dex/CRH test (122) after lithium was added as
an augmenting agent. Similar results were observed in both responders and non-
responders, and were in fact more pronounced in responders, suggesting that res-
titution of normal HPA axis functioning is not a prerequisite for treatment response.
The mechanism by which lithium exerts this effect is not clear. Serotoninergic axons
are known to project to both the hippocampus and the paraventricular nucleus of
the hypothalamus (123), and it has been speculated that enhanced serotonin-
mediated release of CRH as a result of lithium treatment may underlie the HPA
effects of lithium (122).

Investigations on the effect of lithium on the HPA axis in bipolar patients are
relatively lacking. One recent study reported that response to the Dex/CRH test in
bipolar patients taking lithium was no different than that observed in patients
receiving other medications, providing preliminary evidence that lithium may
not potentiate HPA axis abnormalities in bipolar patients (8). Few other investi-
gations on the effects of mood stabilizing medications have been reported in
mood disorders patients. Studies utilizing the Dex/CRH test in euthymic patients
with major depressive disorder (39) and bipolar disorder (8) reported that patients
treated with carbamazepine experienced a greater rise in serum cortisol levels
following CRH administration than did patients receiving other medications.
However, this is likely related to a pharmacokinetic drug interaction rather than
a specific effect on the HPA axis, as carbamazepine is known to induce CYP3A4,
the primary enzyme responsible for dexamethasone metabolism. Given the result-
ing decrement in dexamethasone suppression of cortisol, CRH acts relatively
unopposed in elevating ACTH and cortisol levels. Confirming this hypothesis,
Watson et al. (8) found that patients taking carbamazepine had lower dexametha-
sone levels (P , 0.0005) than patients receiving other medications.

Research regarding the effects of lithium on the HPA axis has been carried out
in animals and healthy human subjects. Many (124–126) but not all (127) studies
indicate that rats receiving lithium over two to four weeks display increased GR
numbers in regions of the brain such as the hippocampus and the paraventricular
nucleus of the hypothalamus. A report on the effect of lithium on GR numbers in
mouse lymphoma cells, however, was negative. Two studies (128,129) suggest
that lithium diminishes GR functioning in rodents, possibly by way of interactions
with the GR receptor complex, particularly BAG-1, a protein constituent of the
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complex (129). A study involving human subjects (130), however, reported that
lithium, in contrast to antidepressant medications, did not induce translocation of
the GR into the lymphocyte nucleus. If lithium does indeed inhibit GR functioning,
this may explain its effect on accentuating HPA hyperactivity, a finding that has
been replicated in animals receiving lithium (131–133).

The effects of sodium valproate and carbamazepine on the HPA axis have
been studied in rodents and human volunteers. Valproate treatment for one
week led to decreased CRH concentrations in several brain regions, including
the amygdala and the paraventricular nucleus of the hypothalamus (134).
However, neither acute (135) nor chronic (136) treatment with valproate decreased
ACTH or cortisol levels induced by hypoglycemia in human subjects, nor did acute
treatment lead to decreased release of ACTH stimulated by naloxone (137). Both
valproate and carbamazepine, like lithium, were reported to impair GR function-
ing in rodents (128). Valproate, unlike the other two mood stabilizers, was also
associated with decreased nuclear and cytoplasmic GR numbers. In a study in
healthy human subjects, carbamazepine was associated with HPA axis hyperactiv-
ity, including robust ACTH response to CRH infusion, despite the presence of
hypercortisolemia (138).

DIRECTIONS FOR FUTURE RESEARCH

Based on the currently available data, it is not possible to conclude with certainty
that HPA axis abnormalities observed in patients with mood disorders have
etiological significance, or whether they are a consequence of other pathophysiolo-
gic processes. Recently, researchers have begun to focus on modulating HPA axis
functioning in patients with mood disorders as a possible treatment strategy.
If these investigations bear fruit, not only will they broaden the armamentarium
of available treatment options for major depression and bipolar illness, but they
will also provide evidence of a primary pathophysiologic basis for HPA axis
dysfunction.

Preliminary evidence exists for a number of different approaches, including the
use of the adrenal steroid dehydroepiandrosterone (139), which is known to have
antiglucocorticoid properties, and steroid synthesis inhibitors such as ketokonazone,
aminoglutethimide, and metyrapone (140,141). Interestingly, both glucocorticoid
receptor agonists such as dexamethasone (142,143) and antagonists such as mifepris-
tone (144) may have some efficacy in the treatment of mood disorders. Activation of
GRs leading to enhanced negative feedback at the level of the pituitary is hypoth-
esized to underlie the efficacy of GR agonists, while GR antagonists are believed to
have acute antiglucocorticoid activity, as well as leading to upregulation in GR
number and consequently improved negative feedback. A recent small double-
blind placebo-controlled crossover trial of mifepristone versus placebo in patients
with bipolar disorder (144) provides preliminary evidence that this treatment
yields benefits in both mood and cognition. Additional studies are needed to ade-
quately assess the efficacy of these treatment approaches.

Further research is also needed to clarify other aspects of HPA axis function-
ing in patients with mood disorders. The roles of AVP, as well as neuroregulatory
input from higher brain centers, such as limbic structures, in HPA axis dysfunction
have yet to be fully elucidated. Little research has focused on the role of the miner-
alocorticoid receptor in mediating HPA axis abnormalities, although one recent
study demonstrated deficits in mineralocorticoid receptor mRNA in the frontal
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cortex of patients with bipolar disorder and schizophrenia (143). Finally, most
investigations of HPA axis function have focused on patients with Bipolar I Dis-
order, and there is little or no information specifically regarding Bipolar II patients.
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HISTORICAL BACKGROUND

The research on neurobiological markers of bipolar disorder has progressed rapidly
over the past two decades. The rapid progress started with the early computed tom-
ography studies in the 1980s, followed by studies with newer brain imaging tech-
niques, in particular magnetic resonance imaging (MRI). These studies have
focused mainly on brain structures that form a limbic–thalamic–cortical circuit
and a limbic–striatal–pallidal–thalamic circuit, which are thought to play a role
in the pathophysiology of mood disorders (1–4) (Fig. 1). The prefrontal cortex,
amygdala-hippocampus complex, thalamus, basal ganglia, and connections
among these areas comprise neuroanatomic brain circuits involved in mood regu-
lation (1). Other areas, not spatially related to this fronto-limbic circuit, including
the cerebellum, with its vermal connections to limbic structures, also participate
in the regulation of mood (3). Functional, neurochemical and anatomical
abnormalities in these brain regions have been examined with several imaging
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tools including structural MRI, functional MRI (fMRI), magnetic resonance spec-
troscopy (MRS), single photon emission computerized tomography (SPECT), and
positron emission tomography (PET). These studies provide evidence of abnormal-
ities in the prefrontal cortex, medial temporal lobe structures, striatum, and cerebel-
lum of patients with bipolar disorder. Some of the suggested abnormalities include
the following: (i) Decreased N-acetyl-aspartate levels, which is possibly an early
marker of neuronal impairment and that could possibly be abnormal even before
detectable anatomical MRI changes take place. (ii) Cerebellar vermis size decreases
with repeated illness episodes, suggesting a neurodegenerative change. (iii) Amyg-
dala volumes are directly correlated with age in adolescent bipolar patients,
suggesting abnormal neurodevelopmental processes affecting the medial temporal
lobe structures during adolescence. (iv) Callosal white matter density seems to be
reduced in bipolar disorder, which may affect inter-hemispheric connections (5).

It is not known whether such abnormalities have a neurodevelopmental
origin or if they result from neurodegenerative or compensatory mechanisms.
In this chapter, we review existing neuroimaging literature on bipolar disorder,
speculate about their possible origins vis-à-vis a neurodevelopmental versus
neurodegenerative hypothesis, and assess emerging new findings that suggest
future directions for this research.

STRUCTURAL NEUROIMAGING
Total Brain Volume
Studies evaluating the total brain volume of bipolar patients have produced inter-
esting findings. A meta-analysis by McDonald and colleagues (6) including 404

OFC
(VLPFC)

SGPFC
(anterior cingulate)

DLPFC

Amygdala

Hippocampus

Hypothalamus

Striatum Thalamus Cerebellar vermis

Behavior Emotion Cognition

Vegetative
symptoms

FIGURE 1 Neural circuitry related to the regulation of mood. Abbreviations: DLPFC, dorsolateral
prefrontal cortex; OFC, orbitofrontal cortex; SGPFC, subgenual prefrontal cortex; VLPFC,
ventrolateral prefrontal cortex. Source: modified from Ref. 99.
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bipolar patients from 26 studies showed that global cerebral volume was preserved
in bipolar disorder with the right lateral ventricular enlargement as the only signifi-
cant abnormality, although the authors noted high levels of heterogeneity among
studies. A recent MRI study, using voxel-based morphometry to assess abnormal-
ities of total gray and white matter volumes throughout the entire brain, showed no
significant differences in gray matter volume between patients with bipolar I dis-
order (n ¼ 37, 31 on mood stabilizers, one on olanzapine, five untreated, eight on
mood stabilizers plus antipsychotics) and healthy controls. In contrast, bipolar sub-
jects showed frontal and parietal white matter deficits that overlapped anatomically
with findings for schizophrenic patients (7). This finding was confirmed and
extended in a longitudinal study by Farrow and colleagues (8), who followed
first-episode psychosis patients (25 with schizophrenia and 8 with bipolar disorder)
for 2.5 years after the initial scan. The authors noted that at the initial assessment,
bipolar patients had gray matter deficits in regions differing from schizophrenic
patients, localized to bilateral inferior temporal gyri. Also, at follow-up, bipolar
patients showed progressive gray matter reduction in the anterior cingulate
gyrus, which was not an area that initially differentiated them from healthy con-
trols, pointing to the need for longitudinal anatomical MRI studies in bipolar dis-
order in order to clarify a possible neurodegenerative component. Three other
studies also showed that bipolar patients have smaller cortical gray matter
volumes and a more-pronounced age-related decline in total brain gray matter
compared to healthy controls (9–11) suggesting some degree of neurodegeneration
involved in the pathophysiology of bipolar disorder.

Interestingly, chronic lithiumusemaybeprotective against this graymatter loss.
One longitudinal (12) study showed a 3% increase in total brain gray matter in eight
out of ten bipolar patients treated with four weeks of lithium, while there were no
changes in the white matter. Another study, although cross-sectional, showed that
bipolar patients treated with lithium had greater total gray matter volumes than
untreated bipolar patients and healthy controls, while therewere no significant differ-
ences in total white matter volumes across three groups (13). These findings are
thought to reflect neurotrophic effects of lithium, possibly with resulting neuropil
increase. Thepossibility ofmood stabilizers (particularly lithium)preventing or rever-
sing gray matter changes should be kept in mind when interpreting anatomical
MRI findings with medicated bipolar patients [i.e. 22 out of 37 bipolar patients
in the McDonald et al. (7) study were on lithium]. Further support for the neural
plasticity effects of lithium comes from Beyer and colleagues (14), showing enlarged
left hippocampus volumes in older (n ¼ 36, mean age ¼ 58 years) bipolar patients
compared to healthy controls. The authors thought this increase in hippocampal
volume might be associated with lithium use. Future larger longitudinal studies
may shed a light on the putative neurotrophic/neuroprotective effects of lithium
and valproate in bipolar patients with first- and multiple-episodes, and the relation-
ship of the brain changes with treatment response.

Prefrontal Cortex
The prefrontal cortex, including subgenual prefrontal cortex, anterior cingulate and
dorsolateral prefrontal cortex (DLPFC), is a key region in the neuroanatomic model
of mood regulation. The subgenual prefrontal cortex is the part of the anterior cin-
gulate situated ventral to the genu of corpus callosum, corresponding to Brodmann
area 24. Two studies (15,16) showed smaller left subgenual prefrontal cortex
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volumes in bipolar patients with a familial form of the disorder and one study (17)
noted smaller right subgenual prefrontal cortex gray matter volumes in a combined
sample of familial and non-familial bipolar patients. Drevets and colleagues also
conducted a postmortem study and showed that the anatomical reduction of sub-
genual prefrontal cortex gray matter was associated with a selective and significant
reduction in glial cell number and density, but not neuronal density or number, in a
small group of familial unipolar (n ¼ 6) and bipolar (n ¼ 4) patients compared with
healthy controls (n ¼ 11) (18). In contrast, Brambilla and colleagues (19) did not
show any volumetric abnormality in this brain region in familial or non-familial
bipolar patients. Also, no abnormalities in the subgenual prefrontal cortex
volume were found in a study of children and adolescents with bipolar disorder
(n ¼ 15) (20). These varying results could be due to different study samples, that
is, including patients with bipolar disorder I and II, with first-episode versus mul-
tiple-episodes, and especially having a familial affective disorder history (Table 1).
Moreover, the neurotropic effects of mood stabilizers should also be considered as a
potential confounder in these results, as only the Drevets et al. (15) study had a
mostly unmedicated sample.

Another region of the prefrontal cortex that has receivedmuch attention lately
is the anterior cingulate (Brodmann’s areas 24, 25, and 33). An early study (21) using
relatively thickMRI slices (6 mm) did not demonstrate any cingulate abnormality in
17 unmedicated patients with bipolar disorder with first-episode mania. However,
recent studies using thinner MRI slices show that left anterior cingulate gray matter
volume is smaller in adult (22) and juvenile (23) bipolar patients compared to
healthy controls. Complementary to the region-of-interest (ROI) volumetric
studies, research employing a statistical parametric mapping approach revealed
reduced graymatter density in the fronto-limbic cortex, particularly in the cingulate
(24,25) (Table 2). In Lyoo et al.’s study (25), the greater number of prior manic
episodes was correlated with a greater decrease in the gray matter density in left
medial frontal and right inferior frontal gyri, suggesting a neurodegenerative
effect over repeated episodes. As noted above, one of these studies showed a poss-
ible preventive or reversing effect of lithium on gray matter content, as the cingulate
volumes of lithium-treated bipolar patients did not differ from those of healthy
comparison subjects, while the untreated bipolar patients had smaller left anterior
cingulate volumes compared to healthy controls (22).

DLPFC (Brodmann’s areas 9 and 46) is a region with a main role in executive
functions, working memory, and regulation of emotion. One study showed signifi-
cantly smaller gray matter volumes in the left middle and superior, and the right
middle and inferior prefrontal regions in 17 bipolar patients hospitalized for a
manic episode and receiving various psychotropic medications (9). Patients in
this study also presented a smaller left inferior prefrontal gray matter with increas-
ing illness duration and smaller right inferior prefrontal gray matter related to
antidepressant exposure. Although based on a cross-sectional design and in a
small sample, the authors underline the need to further explore this possible
antidepressant-related volume reduction as a possible way to understand the
cycle acceleration induced by antidepressants in bipolar disorder. Consistent with
the finding of reduced gray matter volume in prefrontal cortex in adult patients
with bipolar disorder, a recent study using voxel-based morphometry demon-
strated decreased gray matter volume in the left DLPFC in pediatric bipolar
patients (n ¼ 20, mean age 13.4+ 2.5 years, bipolar I and II disorder, 19 of the
patients on psychotropic medications) (26).
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Available studies report smaller cingulate and subgenual prefrontal cortex
volumes in bipolar patients. DLPFC is an understudied region inMRI studies, poss-
ibly due to the lack of a sound manual ROI tracing method delineating Brodmann’s
areas 9 and 46. But with the availability of automated methods like voxel-based
morphometry, future MRI studies can be directed to further clarify the anatomical
changes in the DLPFC in bipolar patients.

White Matter and Corpus Callosum
One important aspect of the pathophysiology of bipolar disorder may be the loss of
effective connectivity between prefrontal areas and limbic regions, as evidenced by
white matter changes. One of the most consistently reported anatomical finding in
bipolar disorder is the “white matter hyperintensities” (27,28). These lesions rep-
resent a change in the water content in the brain, and their etiology is unknown,
although some associations with age, vascular pathology, and inflammatory
response in the anterior cingulate have been described (29,30). White matter hyper-
intensities have been associated with some clinical characteristics of the disease,
such as poor long-term outcome, female gender, multiple psychiatric admissions,
and better response to lithium treatment (27,31,32) and are present even in
bipolar adolescents (29).

The relationship between white matter hyperintensities, elements of one-
carbon cycle metabolism (including serum folate, vitamin B12, and homocysteine
levels), and the outcome of antidepressant treatment was investigated in a rela-
tively young sample of outpatients (mean age 40.6+10.3 years) with major depres-
sive disorder (33,34). It was shown that hypofolatemic and hypertensive patients
had more severe white matter hyperintensities than normal controls. Also, the
severity of subcortical white matter hyperintensities and the presence of hypofola-
temia independently predicted lack of clinical response to antidepressant treat-
ment. The authors concluded that hypofolatemia and hypertension might
represent modifiable risk factors to prevent the occurrence of white matter
hyperintensities.

Structural brain imaging studies also have revealed various other white
matter abnormalities in bipolar patients. White matter density reductions in the
anterior limb of internal capsule, connecting anterior thalamic nucleus to the
frontal lobe, were found in patients with familial bipolar I disorder, suggesting a
fronto-thalamic connection abnormality, common to both schizophrenia and
bipolar disorder (35). Studies have also shown white matter volume deficits in
bipolar I patients and their unaffected co-twins (in the left hemisphere) (36), familial
male bipolar I patients (37), first-episode bipolar patients (21), and children and
adolescents with bipolar disorder (in left superior temporal gyrus) (38). Presence
of white matter and axonal disorganization in frontal and prefrontal regions was
also shown in adult (39) and young first-episode (40) bipolar patients, by diffusion
tensor imaging studies.

The corpus callosum is the major white matter commissure connecting
the cerebral hemispheres. It plays a crucial role in inter-hemispheric communi-
cation (41) and higher cognitive processes, such as sensory-motor integration,
attention, arousal, language, and memory (42,43). Corpus callosum is also an
important structure for the development of structural brain asymmetry, resulting
in cerebral functional lateralization in humans. Anatomical asymmetry is believed
to be the substrate of the functional lateralization, and corpus callosum size reflects
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inter-hemispheric connectivity, suggesting that cerebral asymmetry occurs with
decreased callosal connectivity (44). Inter-hemispheric information exchange
decreases with increasing cerebral asymmetry, leading to hemispheric indepen-
dence/dominance. Therefore, corpus callosum abnormalities may also play a
major role in affecting the development of structural and functional lateralization
in bipolar disorder, ultimately resulting in abnormal inter-hemispheric
communication.

Corpus callosum area is reduced in adult bipolar patients (45,46). Abnormally
reduced corpus callosum signal intensity was found in adult bipolar patients (47),
and lower circularity of the spleniumwas observed in young (mean age 16) patients
with bipolar disorder (48), suggesting abnormalities in corpus callosum white
matter in bipolar patients, possibly due to altered myelination, which may lead
to impaired inter-hemispheric communication.

In conclusion, it is likely that white matter hyperintensities are involved in the
pathophysiology of bipolar disorder by interrupting essential neural pathways in
the brain that are involved in mood regulation, as put forth by Soares and Mann
(1). Researchers also suggested that left hemisphere white matter changes may
reflect genetic factors predisposing to bipolar disorder (36), and that glial loss
might underlie both the white matter hyperintensities and volume reductions
observed in bipolar patients (49). Evidence from brain imaging studies point to
the importance of examining white matter changes in bipolar disorders.

Medial Temporal Structures
Three different research groups (50–52) reported amygdala enlargement in adult
bipolar patients, suggesting that hypertrophy of this region might reflect dysfunc-
tion underlying the mood lability of bipolar disorder. In contrast, two studies
(53,54) found smaller amygdala sizes in adult bipolar patients. In children and
adolescents with bipolar disorder, there is more consistent evidence of smaller
amygdala volumes (54–59). In Chen and colleagues’ (55) cross-sectional study,
pediatric bipolar outpatients (n ¼ 16, 14 on mood stabilizers, 11 with comorbid
Axis I disorders) showed a direct correlation between left amygdala volume and
age, in contrast to healthy comparisons, who showed the expected inverse relation-
ship. The tendency for larger amygdala volumes to occur in the older bipolar
children may be the result of some compensatory mechanisms of developmental
abnormalities. One recent longitudinal study (59) rescanned the same 10 bipolar I
outpatients (7 with various Axis I comorbidities, all exposed to various psychotro-
pics between first and second scans) after an average of 2.5+0.4 years. The authors
reported the persistence of decreased amygdala volumes in adolescents and young
adults with bipolar disorder, with healthy controls having an increase in the left
amygdala volume and bipolar patients having a decrease in the right amygdala
volume, although both small and nonsignificant (59). Preliminary evidence
suggests that lithium and valproate treatment is associated with increased amyg-
dala volume in pediatric bipolar patients (58). In Chang et al.’s study (58),
bipolar patients with past lithium or valproate exposure tended to have greater
amygdala gray matter volumes than bipolar patients without such exposure, and
the authors concluded that prolonged medication exposure to lithium or valproate
may account for findings of increased amygdala volumes relative to healthy con-
trols in adults with bipolar disorder. Further support for this possible neurotropic
effect of mood stabilizers comes from a neuropathological study (60) reporting
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higher glial numbers in the amygdala of 10 bipolar patients who were chronically
treated with either lithium and valproate compared with 2 bipolar patients who did
not receive lithium and/or valproate and 10 healthy subjects, although this needs to
be replicated.

Hippocampus is another temporal lobe structure with important mood-
regulating functions. One study, using 0.5 T field strength and 10 mm image
slices, found smaller right hippocampus in 48 bipolar patients (more pronounced
in males) (61), but this finding was not replicated in several other studies with mod-
erate sample sizes (�25) (50,51,62–65). Only in one study (65) did the authors
compare drug-free (n ¼ 9) and lithium-treated bipolar patients (n ¼ 15), and they
did not find any significant differences of hippocampal measurements between
the two groups. One recent study (66) reported a trend toward smaller left hippo-
campal volumes in psychotic bipolar patients (n ¼ 38, 23 with psychosis) compared
to healthy subjects, suggesting that future anatomical studies measuring hippo-
campus in bipolar disorder should also take into account psychosis. Moderate to
severe forms of hippocampal shape anomaly (characterized by a rounded hippo-
campus) were observed in patients with familial schizophrenia, whereas patients
with familial bipolar disorder did not have such anomaly (67). The findings in chil-
dren and adolescents are different from the adults, as two studies found smaller
hippocampal volumes in children and adolescents with bipolar disorder relative
to healthy subjects (54,68). Two possible explanations for this discrepancy
between adult and pediatric findings are that age at onset may differentially
affect brain structure, or that childhood- or adolescent-onset bipolar disorder
may be a distinct disorder from adult-onset illness with a different set of neuroana-
tomic correlates, as put forth by Frazier and colleagues (68).

In conclusion, there is very credible evidence for smaller amygdala volumes
in pediatric bipolar disorder (69), and there is also some evidence from adult
studies to suggest enlargement of this structure. Brambilla and colleagues (5)
suggested that abnormal pruning mechanisms in childhood and adolescence
or, alternatively, compensatory mechanisms might lead to enlargement of the
amygdala in adulthood. An alternative explanation for a larger amygdala in adult-
hood, as put forth by Chang and colleagues (58), is prolonged exposure to lithium
or valproate. Longitudinal studies, in children and adolescents with bipolar dis-
order, in high-risk populations, and also with controlled medication treatment,
are needed to define the nature of amygdala abnormalities in bipolar disorder.
The hippocampal volume changes in bipolar disorder are not well established.
Also, antidepressant and antipsychotic treatments, as well as mood stabilizers,
may affect hippocampal volume, and so far no study has examined the hippo-
campus in a sizable sample of untreated bipolar individuals.

Thalamus
The thalamus is another key structure in brain anatomic circuits involved in the
pathophysiology of mood disorders. ROI-based MRI studies yielded conflicting
results concerning the thalamus in bipolar patients. Two studies with sizable
samples (i.e., �24) found larger thalamic volumes in bipolar patients (51,70). None-
theless, six other studies, with two conducted in young bipolar patients (68,71),
failed to replicate these findings (21,72–74). Also, no significant difference was
found in the thalamic volumes of first- versus multiple-episode adult bipolar
patients (73) and healthy controls. Young and colleagues (75) reported that
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neuron numbers and volumes in limbic thalamic nuclei were normal in patients
with schizophrenia and bipolar disorder. However, a recent study utilizing voxel-
based morphometry in patients with schizophrenia and bipolar disorder and
their unaffected relatives demonstrated gray matter reductions in the anterior thal-
amic nucleus (receiving major input from the hippocampus and mamillary bodies)
in all groups compared to healthy controls, suggesting that this abnormality might
be a marker of liability for both disorders (76) and especially for psychosis, but this
finding needs to be replicated.

In conclusion, there are no consistent findings about thalamic anatomical
changes in bipolar disorder. Again, the distinction between psychotic and non-psy-
chotic bipolar disorder may be playing a role here, and needs to be further investi-
gated, preferably with more advanced techniques that can measure specific
thalamic nuclei.

Basal Ganglia
The basal ganlia are part of the neural networks underlying mood regulation, with
extensive connections to prefrontal areas. The earlier anatomical studies about
the basal ganglia in bipolar disorder did not find any significant abnormalities
(21,61,70,77). However, a more recent study by Brambilla and colleagues (78)
reported that age and length of illness may have significant effects on basal
ganglia structures in bipolar patients (more pronounced among bipolar I patients).
In this study, the length of illness predicted smaller left putamen volumes, and
older patients (.36 years) had a significantly larger left globus pallidus than
younger ones (�36 years). Also, two studies in adult (51,79) and one in adolescent
(57) bipolar patients reported enlargement of basal ganglia structures. Recently,
caudate size was also shown to be decreased in older (mean age 58) bipolar patients
(14). The age-related decline in some basal ganglia structures is also documented
in children and adolescents with bipolar disorder by Sanches and colleagues (80).
They found a significant inverse correlation between age and the volumes of
left caudate, right caudate, and left putamen in bipolar patients, not present
in healthy controls. These findings suggest that bipolar patients may have
more pronounced age-related changes in basal ganglia structures than healthy
individuals (81).

Cerebellum
The cerebellar hemispheres do not seem to be affected in bipolar disorder, as shown
by several MRI reports (82–85). However, there may be anatomical changes in the
cerebellar vermis that originate from neurodegenerative processes during the
course of the illness. Vermis area V3 (the inferior posterior and flocculonodular
lobes, lobules VIII-X) seems to be smaller in patients with multiple episodes than
in first-episode bipolar patients and healthy volunteers (82,83,85). Another recently
conducted volumetric study showed that patients with multiple episodes had
smaller V2 volumes compared to first-episode patients and healthy controls (84).
In bipolar children and adolescents with familial mood disorder, smaller vermis
V2 area (superior posterior vermis, neocerebellar vermal lobules VI-VII) was
reported (85). Taken together, these findings suggest that cerebellar vermal abnorm-
alities occur in bipolar disorder, and that these are likely neurodegenerative and
progressive.
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FUNCTIONAL NEUROIMAGING
Blood Flow and Metabolism Studies
Earlier positron emission tomography (PET) studies (86–90) showed that bipolar
patients had decreased cerebral blood flow (i.e., hypofrontality) in prefrontal cor-
tices in the resting state. Martinot and colleagues also reported that successful
medication treatment with tricyclic antidepressants could reduce the left-right pre-
frontal asymmetry, but not the hypofrontality and whole-cortex hypometabolism
that was found in the patients in the depressed state (90), suggesting that this
was more a trait-like abnormality. Patients with bipolar affective illness (n ¼ 16)
also had significantly lower metabolic rates in their basal ganglia in comparison
to normal controls, by PET using [18F]2-deoxyglucose as a tracer (88).

These earlier SPECT and PET studies were followed by newer studies using
more sophisticated techniques to examine the effect of mood state and drug
treatment. Gyulai and colleagues (91) examined the same patients (n ¼ 12) in
depressed/dysphoric, manic/hypomanic, and euthymic states and concluded
that there may be a state-dependent dysfunction in the temporal lobe, as evidenced
by an asymmetric distribution of I-123 iofetamine in depression but not in euthy-
mia, in bipolar patients with rapid cycling. One SPECT study with n-isopropilio-
doamphetamine showed increased blood flow in the temporal lobe and basal
ganglia in manic state (n ¼ 11) (92). Recently, mood state-dependent alterations in
blood flow and metabolism in other brain regions were also reported. Blumberg
and colleagues reported greater manic versus euthymic state-related activity in
the anterior cingulate and caudate (93), and decreased activity in the orbitofrontal
cortex (94), although the sample sizes were small (5 manic and 6 euthymic patients
in both studies, on various psychotropics). The findings of Blumberg and col-
leagues’ studies also converge with Drevets and colleagues’ (15) report that
bipolar patients in the manic phase (n ¼ 4) have a higher metabolism in the subgen-
ual prefrontal cortex, compared to healthy subjects and bipolar depressed patients.
Goodwin and colleagues (95) reported decreased anterior cingulate and right
caudate blood flow after lithium withdrawal, whereas development of mania on
lithium withdrawal was associated with increased anterior cingulate blood flow.
One explanation put forth by Blumberg and colleagues (93) for the heightened
anterior cingulate and caudate activity was a compensatory mechanism for the
increased demand to limit “manic-type distractibility and maladaptive excessive
behaviors” under scan conditions. Cingulate hypermetabolism as an adaptive
response to depression, and its failure underlying a poor outcome to antidepressant
treatment, were also reported by Mayberg and colleagues (96). Also, an fMRI study
by Caligiuri and colleagues (97) showed that affective state in bipolar disorder
might be related to a disturbance of inhibitory regulation within the basal
ganglia and that antipsychotics and/or mood stabilizers might normalize cortical
and subcortical (basal ganglia and thalamus) hyperactivity.

Recently, Drevets and colleagues (98), using higher-resolution glucose metab-
olism images andMRI-basedROI analysis, showed that the amygdalametabolism in
remitted bipolar patients (n ¼ 8) was intermediate between that of healthy controls
(n ¼ 12) and depressed bipolar subjects (n ¼ 7), although not significantly different
from either. The left and right amygdala metabolism was increased in the remitted
bipolar patients who were not taking mood stabilizers relative to the patients who
were taking one of these agents and healthy comparisons. The authors concluded
that chronic mood stabilizer treatment might normalize the increased amygdala
metabolism, and thus reduce and prevent pathological mood episodes (98).
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In conclusion, there may be an elevated limbic activity with deficient frontal
modulation, underlying the illness recurrence in mood disorders (98,99).

Activation Studies
Functional imaging studies coupled with cognitive testing provide a helpful tool to
understand the neurophysiology of bipolar disorder. Bipolar patients have atten-
tion, memory, and executive deficits that are apparent during affective episodes
(72), but also persist in euthymia (100). Results from studies (100–103) indicate
that euthymic bipolar patients have poorer performance than healthy comparisons
on working memory tasks, and they exhibit increasing impairment as the task
becomes more difficult, and suggest that memory impairments might be more a
trait marker than state in bipolar disorder (104). One recent study examined
verbal learning in eight euthymic, remitted bipolar I patients (7 of them unmedi-
cated) with 15O PET scanning while doing a verbal learning paradigm. Bipolar
patients had more difficulties learning the lists of words compared with the
control subjects, and they had a blunted regional cerebral blood flow increase in
the left DLPFC during encoding the words (104).

The cognitive deficits that persist during euthymia were hypothesized to arise
from an over-reactive anterior limbic network (including prefrontal regions, thala-
mus, striatum, amygdala, and the cerebellar vermis), which affects the functioning
of the cognitive network through reciprocal connections. Strakowski and colleagues
reported evidence of anterior limbic overactivation during a simple attentional task
in euthymic, unmedicated bipolar patients (101). In this study, bipolar patients’
performance on the task was similar to that of healthy subjects, but they exhibited
activation in different cortical regions, and the authors interpreted this as a compen-
sation for interference from emotional brain networks in order to maintain task per-
formance. As a next step, they incorporated a more challenging attention task in
which compensatory mechanisms would be overwhelmed in patients, thereby
further differentiating brain activation patterns between the groups (105). Acti-
vation of the anterior cingulate (Brodmann’s area 24/32) and DLPFC (Brodmann’s
area 9) while performing the Stroop task were not significantly different between
groups, but patients demonstrated a pattern of lower activation in temporal
regions, midline cerebellum, ventrolateral prefrontal cortex, and putamen. Failure
to activate secondary brain regions involved in this task may have contributed
to impaired task performance in bipolar patients, as put forth by Strakowski and
colleagues (105).

Results of a recent SPECT study exploring the possible correlation of
neuropsychological functioning and cerebral blood flow in patients with bipolar
disorder (n ¼ 30, all unmedicated, 7 manic, 8 hypomanic, 12 depressed, and 3
euthymic) showed that worse performance on memory, executive, and attention
tasks was related to a greater perfusion in the striatum (106). In this study, patients
with poor performance on tests of executive functions also showed low perfusion in
the frontal region and cerebellum and high perfusion in the cingulate. In another
study, bipolar patients showed activation in the thalamus and amygdala in addition
to cortical activation in regions implicated in the cognitive processing of affective
stimuli (107). The authors concluded that the bipolar brain manifested a different
perfusion pattern than the healthy brain, and perhaps an abnormal cognitive
emotional processing through ventral prefrontal cortex dysfunction (103,107). A
recent 18F-fluorodeoxyglucose-PET study, conducted in a small group (n ¼ 8) of

172 Monkul et al.



unmedicated depressed bipolar patients using the continuous performance test to
assess sustained attention and vigilance, provided additional evidence that
decreased prefrontal activity may represent failure to activate some areas of inhibi-
tory control (108). This study showed that decreased subgenual prefrontal cortex
metabolism was related to decreased attention, and decreased DLPFC metabolism
was related to decreased inhibitory control.

Krüger and colleagues (109) assessed bipolar risk and resilience in a very
small group of lithium-responsive bipolar patients (n ¼ 9) and their healthy sib-
lings (n ¼ 9) using an emotional challenge test. They reported that both patients
and their siblings had rCBF increases in the anterior cingulate and decreases in
the orbitofrontal and inferior temporal cortices. In addition, the siblings had
an increased metabolism in the medial frontal cortex, a finding that was not
observed in the patients, which the authors commented as being a compensatory
response, and possibly conferring resilience to these high-risk individuals.
However, the lack of a healthy control group in this study limits the interpretation
of these findings. The authors also compared lithium-responsive patients to valpro-
ate-responsive bipolar patients from an earlier study by their group, and concluded
that changes specific to the DLPFC and rostral anterior cingulate distinguished
these patient groups from each other.

In conclusion, both resting blood flow and glucose metabolism studies using
SPECTand PETand studies using cognitive tasks during functional imaging comp-
lement results from other imaging modalities showing that limbic dysregulation by
prefrontal regions is a key element in the pathophysiology of bipolar disorder.

Neurochemical Brain Imaging
PET and SPECT Neuroreceptor Studies
Dopaminergic System
Dopaminergic system abnormalities are thought to underlie mania and depression,
and especially the psychosis associated with these conditions. Two PET studies
measuring dopamine D2 receptor density, as measured by D2 binding potential
with [11C]raclopride (110), and [11C]N-methylspiperone as a ligand (111) showed
that D2 receptors were unaltered in acute non-psychotic mania. Also, presynaptic
dopamine function as reflected by [18F]DOPA uptake does not seem to be altered
in medication-naı̈ve first-episode bipolar patients with non-psychotic mania
(112). In contrast, patients with psychotic mania have a higher D2 receptor
density compared with healthy comparisons, and the authors concluded that the
higher density of D2 receptors might be related to psychosis and not to manic symp-
toms (111). Yatham and colleagues (110) also showed that although divalproex
sodium treatment did not seem to affect D2 receptor availability, presynaptic dopa-
mine function in manic patients was lower after treatment with divalproex sodium
as measured by the [18F]6-fluoro-L-dopa ([18F]DOPA) uptake in the striatum (112).
The authors concluded that divalproex sodium might exert its antimanic effects via
reducing the rate of dopamine synthesis (110,112).

In vivo brain intrasynaptic release of dopamine after amphetamine release
can be quantified by currently available neuroimaging methods. A SPECT study
investigating the differences in amphetamine-induced dopamine release in euthy-
mic bipolar disorder patients and healthy comparison subjects found no differences
in baseline D2 receptor binding between the two groups (113). Although there was a
greater behavioral response to an amphetamine challenge in euthymic bipolar
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disorder patients, this was not accompanied by a significant difference in decrease
in [123I]IBZM binding between the two groups. As a decrease in [123I]IBZM binding
is related to the amount of striatal dopamine release, the authors concluded that
mania-like symptoms induced by amphetamine may not be related to increased
dopamine release.

Suhara and colleagues (114) studied D1 binding potential in 10 bipolar
patients in various mood states, and found that the binding potentials for the
frontal cortex were significantly lower in patients than healthy controls, whereas
those for striatum were not significantly different, suggesting that D1 dopamine
receptors in the frontal cortex may be in a different state in patients with bipolar dis-
order, but this finding needs to be replicated.

In conclusion, very few in vivo brain-imaging studies examined dopamine
receptors in bipolar patients, and they suggested that D2 receptor abnormalities
might be related to psychosis in bipolar patients, and dopamine receptor blockade
might contribute to the anti-manic property of medications. The levels of dopamine
receptors in brain regions other than striatum should be assessed in future studies.
Also, future research should be directed to examining dopamine transporters in
medication-free bipolar individuals.

Serotonergic System
Involvement of the serotonergic system in the pathophysiology of mood disorders
is suggested by PETstudies conducted mostly in patients with unipolar depression.
One study showed decreased mid-brain serotonin transporter (5-HTT) density
(115) in drug-free unipolar depressed patients. Another study conducted with 13
drug-free male patients with mood disorders (seven with major depressive dis-
order and six with bipolar disorder) showed no significant change in 5-HTT
binding in the midbrain, but there was elevated thalamic binding in unipolar
patients compared to bipolar patients and healthy controls (116).

5HT1A receptor binding potential was also studied in vivo, and found to be
reduced in the raphe and mesiotemporal cortex, most prominently in bipolar
depressive patients (n ¼ 4) and unipolar depressive patients with bipolar relatives
(n ¼ 4) (117). Sargent and colleagues (118) reported widespread reduction in corti-
cal postsynaptic 5-HT1A receptor binding potential measured by positron emission
tomography (PET) with [11C]WAY-1006357 in unmedicated depressed patients,
with a similar reduction in binding of [11C]WAY-100635 to 5-HT1A autoreceptors
in the raphe nuclei in the midbrain. These reductions persisted in patients who
responded clinically to treatment with selective serotonin reuptake inhibitors,
and the authors hypothesized that lowered post-synaptic 5-HT1A receptor
binding availability might be a trait abnormality and a vulnerability factor in recur-
rent unipolar depression. They tested this hypothesis recently with 14 male euthy-
mic unipolar patients, who had been free of psychotropic medications for at least
six months, and reported a persistent dysfunction in cortical 5-HT1A binding poten-
tial (119), supporting their hypothesis. Further studies are clearly needed to deter-
mine the origin of this reduction in cortical 5-HT1A receptor availability in bipolar
and unipolar patients.

Brain 5-HT2 receptors have also been examined in vivo in unipolar disorder
patients. A PET study (120) reported a decrease in uptake of [18F]altanserin in the
right anterior part of insular cortex and right posterolateral orbitofrontal cortex in
untreated unipolar depressed patients, consistent with 5-HT-2A receptor levels.
Three other PET studies, that used [18F]setoperone as a tracer, reported a significant
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decrease in [18F]setoperone binding in the frontal cortex (121) and frontal, temporal,
parietal, and occipital cortical regions (122) of depressed patients compared with
control subjects, or no difference between the two groups (123). Another recent
PET study using (18F)-setoperone and conducted in seven bipolar patients in a
manic episode (drug naı̈ve or psychotropic medication free for at least one week)
and treated with valproate (n ¼ 7) and lithium (n ¼ 1) for 3 to 5 weeks, showed
that treatment with valproate alone or in combination with lithium had no signifi-
cant effect on brain 5-HT2A receptor binding (124). 5-HT2A receptors seem to be
altered in major depression, and some researchers suggested that the reduction
in brain 5-HT2A receptor density might be the result of a homeostatic mechanism
by the brain to compensate for depression (122). Studying 5-HT2 receptors in
bipolar patients is an intriguing area of research, as atypical antipsychotics that
are effective in the treatment of acute mania and as mood-stabilizers have greater
affinity for 5-HT2A receptors than dopamine receptors (125).

Biochemical Findings
Magnetic resonance spectroscopy (MRS) is unique among in vivo brain imaging
modalities as being a noninvasive way to measure levels of different chemicals in
the brain. 1H-MRS can be used to quantitate neurochemicals such as N-acetyl-
aspartate (NAA), choline, myo-inositol, creatine, glutamate, glutamine, and
GABA. 31P-MRS provides information about phosphorus-based membrane pro-
cesses and metabolism, by estimation of brain levels of phosphomonoesters, phos-
phodiesters, and pH.

NAA is an amino acid found in high concentrations in mature neurons and
considered to be a marker of neuronal integrity, the formation and maintenance
of myelin and mitochondrial energy production (126,127). Lower dorsolateral
prefrontal cortex NAA levels were reported in adult (n ¼ 20, euthymic, unmedi-
cated) (128) and pediatric (129) bipolar patients, and also in both treatment-naı̈ve
(130) and medicated (131) adolescent patients with bipolar disorder. Decreased
NAA levels were reported in other brain regions including orbital frontal gray
matter (132) and hippocampus (133,134) in adult patients with bipolar disorder.
This decrease in NAA may be the result of neurodegenerative changes of long-
standing illness duration, as a recent study by Gallelli and colleagues (135) in 60
children of parents with bipolar I or II disorder (32 with bipolar disorder and 28
with subsyndromal symptoms of bipolar disorder) did not reveal any significant
changes in dorsolateral prefrontal NAA levels. Two other studies did not find sig-
nificant differences of dorsolateral prefrontal cortical NAA between mostly medi-
cated adult bipolar patients and healthy volunteers (133,136). There are other
negative studies where no abnormalities of NAA were found in other brain
regions such as the basal ganglia (133,137–139), cingulate (133), and thalamus
(133). However, these studies included mostly medicated subjects, and it is possible
that any regional abnormalities in NAA levels that were present and related to the
illness were altered by neurotrophic/neuroprotective effects of mood stabilizers.
Chronic lithium treatment was shown to increase NAA concentrations in total
brain (140), temporal lobe (141), and basal ganglia (139), providing indirect evi-
dence of its proposed neurotrophic/neuroprotective effects (142). Also, Brambilla
and colleagues (136) reported significantly higher NAA/PCrþCr ratios in
lithium-treated bipolar patients compared to unmedicated ones and healthy con-
trols. This NAA increase has not been demonstrated with sodium valproate (141).
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Choline is another neurochemical that can be measured via 1H-MRS; it is a
membrane component and considered a potential biomarker for the status of mem-
brane phospholipid metabolism. Choline levels (measured as a ratio to creatine) in
the basal ganglia were elevated in euthymic (138,139) and depressive (137) bipolar
patients. Lithium and valproate treatment do not alter basal ganglia choline reson-
ance in bipolar patients (143–145) or healthy volunteers (146). Thus, the increased
choline in basal ganglia may not be related to medication exposure, and may rep-
resent an important aspect of the pathophysiology of bipolar disorder, although
future studies with drug-free patients and technologies that would allow the
measurement of free choline are warranted.

Glutamate, glutamine, and GABA (Glx peak) are also of interest, as antigluta-
matergic and GABAergic anticonvulsants are useful in treating bipolar disorder
and glutamatergic abnormalities may be involved in neurotoxicity that is poten-
tially responsible for specific brain insults present in bipolar disorder. In a group
of depressed bipolar adolescents, Castillo and colleagues (147) reported a bilateral
increase in Glx in frontal cortex and basal ganglia. Another study that examined
medication-free patients with bipolar disorder found elevated gray matter Glx
and lactate concentrations, which were postulated to reflect bioenergetic alterations
(148). In an extension of the previous study, the authors showed that the gray
matter Glx elevation was reduced with lithium treatment, but not with valproate
treatment (145).

Myo-inositol (mI) is another important metabolite in proton spectroscopy
that is a substrate for phosphoinositide cycle and a marker for glia, as it is actively
transported into astrocytes (149). Lithium inhibits inositol monophosphatase and
polyphosphate-1-phosphatase that are involved in recycling inositol mono- and
poly-phosphates to myo-inositol. Sodium valproate also decreases myo-inositol
concentration and increases the concentration of inositol monophosphates in rat
brain (150). In unmedicated euthymic bipolar patients, myo-inositol levels appear
unchanged in the frontal lobe (128). Moore and colleagues (151) found decreased
myo-inositol in the right frontal lobe of depressed bipolar subjects following
acute (5–7 days) lithium administration, which persisted through one month of
treatment. However, the patients’ clinical state was clearly unchanged at this
time, supporting the hypothesis that the initial actions of lithium may occur with
a reduction of myo-inositol, and that this reduction initiates a cascade of secondary
changes that are ultimately responsible for the therapeutic efficacy of lithium.
Another study did not find any differences in myo-inositol levels in the cingulate
cortex of depressed bipolar patients and healthy controls (152). However,
Davanzo and colleagues (153) observed a significant decrease in anterior cingulate
mI/Cr ratios following seven days of lithium therapy in children and adolescents
with early-onset bipolar disorder, and children in the manic phase of bipolar
disorder had elevated mI/Cr levels within the anterior cingulate cortex.

Another metabolite that is closely related to myo-inositol and the phospha-
tidylinositol cycle is phosphomonoester (PME) level. PME can be quantified
using 31P-MRS and it represents precursors of membrane phospholipid metab-
olism. In a comprehensive series of studies, a group of investigators (154–156)
demonstrated that frontal lobe PME levels vary with mood state in bipolar patients.
Deicken and colleagues (157) also reported significantly reduced PME in both the
right and left temporal lobes in unmedicated, euthymic bipolar patients compared
with healthy controls. An increase in PME concentration with 7 and 14 days of
lithium administration in the human brain in vivo was observed (158), and as
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patients in the above-mentioned studies were mostly on lithium or off lithium for
short periods of time, increased levels of PME could reflect medication effects.
This is significant as lithium inhibits inositol monophosphatase, producing
increased levels of PME, which would be consistent with increased membrane
anabolism.

1H-MRS studies have been using the creatineþ phosphocreatine peak as an
unchanging internal standard, an application that has recently been challenged
by several studies showing that both creatine and phosphocreatine peaks change
in bipolar disorder. Hamakawa and colleagues (159) showed that creatine concen-
trations were reduced in the frontal lobe of patients with bipolar depression,
whereas in another study euthymic male bipolar I patients had higher creatine con-
centrations in the thalamus (160). Medication treatment also may modify creatine
levels, as O’Donnell and colleagues (161) showed that both lithium and valproate
changed creatine concentrations. Thus, with higher field strength magnets becom-
ing more available, researchers are now more inclined to quantify absolute meta-
bolite concentrations or brain water concentration as the reference peak.

In conclusion, MRS studies have identified changes in cerebral concentrations
of NAA, glutamate/glutamine, choline, myo-inositol, lactate, phosphocreatine,
phosphomonoesters, and intracellular pH in bipolar patients. A recent review of
MRS studies in bipolar disorder, focusing on the dysfunction of cellular energy
metabolism, proposed a hypothesis of mitochondrial dysfunction in bipolar dis-
order that involves impaired oxidative phosphorylation, a resultant shift toward
glycolytic energy production, a decrease in total energy production and/or sub-
strate availability, and altered phospholipid metabolism (127).

The MRS studies carried out in bipolar patients generally have used lower
field strength magnets, which did not allow optimal resolution of manymetabolites
of interest, a problem that has recently been targeted by improved MRS methods.
Also, longitudinal MRS investigations with larger samples of untreated patients
are needed to further explore the putative neuroprotective effects of lithium and
their relationship to treatment response in bipolar disorder.

Contrast with Findings in Unipolar Disorder
Strakowski et al. (162) reviewed magnetic resonance imaging studies of mood dis-
orders and concluded that bipolar and unipolar disorders may share the pathology
of reduced volumes of prefrontal structures, causing loss of cortical modulation
over limbic structures. In regards to subcortical brain regions, the most striking
difference between unipolar and bipolar disorders seems to be in medial temporal
lobe structures, when the hippocampus and amygdala are measured as discrete
structures. Magnetic resonance imaging studies demonstrate that hippocampal
volume is decreased in patients with recurrent depression, whereas hippocampal
volume is preserved in bipolar disorder (6,163). The cellular basis for this observed
reduction in hippocampal volume in unipolar depression may be a significant
reduction in neuropil (the lattice of glial cells and their processes, dendrites, and
proximal axons surrounding neuron cell bodies), as detected in a recent post-
mortem study by Stockmeier and colleagues (164).

The volumes of the basal ganglia are also different in unipolar and bipolar dis-
orders. In contrast to most of the studies of bipolar disorder, decreased volumes of
basal ganglia have been reported in unipolar depression, although it is not clear
whether medication effects are ruled out (81). Future studies comparing unmedi-
cated bipolar and unipolar patients for this specific brain region are needed.
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Bipolar disorder and unipolar depression also differ regarding the corpus cal-
losum abnormalities. In contrast to bipolar disorder, in unipolar depression the
anterior and posterior quarters of the corpus callosum were larger in depressed
patients than in controls in an earlier study (165). Consistent with this study,
Lacerda and colleagues (166) also found significantly increased anterior (middle
genu) and posterior (anterior and middle splenium) callosal sub-divisions in
patients with familial major depression. Although the functional significance of
the observed callosal changes and their roles in the pathophysiology of mood dis-
orders remain unclear, future neuroimaging and neuropsychological studies with
larger patient samples will possibly clarify the difference between bipolar and uni-
polar disorders regarding this brain structure.

As for the results of postmortem studies, there may be regional “disease-
specific” differences in glial pathology between unipolar and bipolar mood dis-
orders. These differences are more apparent ventrally in the orbitofrontal cortex
and subgenual anterior cingulate, and less pronounced in dorsal regions such as
the dorsolateral prefrontal cortex and the supracallosal part of the anterior cingu-
late (167). Rajkowska and colleagues (167) suggested that these disease-specific
changes might be a reflection of different circuits involved in the neuropathology
of these two disorders and/or a consequence of different medication treatments.
When abnormal prefrontal cortical markers of neural plasticity, neurotransmission
(dopaminergic D2 receptor RNA, glutamate receptor dysfunction), signal transduc-
tion, glial cells, and GABA containing interneuron function were analyzed in
schizophrenia, bipolar disorder and non-psychotic depression, bipolar disorder
was found to be more similar to schizophrenia than depression (168).

There also are differences between unipolar and bipolar disorders regarding
MRS findings. Decreased GABA levels were reported in occipital cortex in nonme-
dicated depressed unipolar patients (169), and occipital cortex GABA concen-
trations after SSRI treatment were significantly higher than the pretreatment
concentrations (170). Bipolar patients do not have such reductions in GABA
levels (171).

SUMMARY OF MAIN FINDINGS

Available findings from anatomical MRI studies implicate key regions involved in
mood regulation, such as anterior cingulate, subgenual prefrontal cortex, amyg-
dala, basal ganglia, and corpus callosum in adult and pediatric bipolar patients.
Both adult and pediatric bipolar patients seem to lose more brain gray matter by
aging than healthy controls, and this “cortical thinning” may be related to impair-
ment of emotional, cognitive, and sensory processing in bipolar disorder (11). There
seem to be regionally-specific brain abnormalities before the onset of disease, and
illness-specific, possibly neurodegenerative, changes taking place with repeated
episodes during the illness course. It is, however, not an easy task to differentiate
illness-related changes from medication treatment-related changes. Also, whether
these volume changes are related to changes in neuropil, neuronal size, or dendritic
or axonal consolidation and/or pruning, is not yet very clear, although findings
point to glial changes taking place in the early phases of the disease. The active epi-
sodes seem to have a neurotoxic effect, and those patients who show progressive
changes with recurring episodes may also be suffering from a more severe, recur-
rent form of bipolar disorder, whereas mood stabilizer treatment seems to
prevent and/or reverse some of the illness-associated changes (172). Psychotropic
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medications affect volumes of certain brain structures that are thought to play a role
in mood disorders (58,173,174), and some of the volumetric and neurochemical
changes seem to be reversed by mood-stabilizer treatment, such as lithium and
valproate. This points to the importance of keeping in mind the previous and
present exposure to psychotropic medications when interpreting the volumetric
and neurochemical findings.

Volume reduction in various brain regions is also corroborated by decreased
levels of N-acetyl-aspartate in DLPFC, which is the most consistently reported
finding in MRS studies, in adults as well as children and adolescents with
bipolar disorder, possibly developing only after the onset of bipolar disorder. In
addition, phosphomonoesther concentrations seem to be altered in different
mood states, reduced/unchanged in euthymic bipolar patients, and increased in
manic and hypomanic patients, suggesting that changes in phosphoinositol activity
occur in frontal and temporal regions.

PETand SPECTstudies characterizing receptor changes in the brain show ser-
otonin receptors may be involved in disease vulnerability and prevention or relief
from mood disorder symptoms. These studies also provide insight that increased
dopamine levels may be important in psychosis associated with mood disorders,
and reduction of dopamine synthesis may play a role in anti-manic efficacy.

Future longitudinal studies that prospectively examine the effects of
medication exposure and other factors associated with illness chronicity are
needed. Additionally, examining bipolar patients at the onset of illness would
help control for treatment effects and other variables associated with illness chroni-
city, and also confounding variables, such as medication history, electroconvulsive
therapy, and substance abuse. For future research, some of the above-mentioned
structural changes may qualify as putative brain structure endophenotypes, as
suggested by Hasler and colleagues (175), and to understand the potential rel-
evance of these brain changes to genetic susceptibility to the disorder.
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INTRODUCTION

Bipolar illness is, by definition, a cycling disorder. The longitudinal course is
characterized by recurrent episodes of depression and mania or hypomania, with
intervening periods of euthymia (1). The fact that cyclicity is a salient feature of
the clinical phenotype has led many investigators to speculate that abnormalities
in biological rhythms might prove etiologically or pathophysiologically significant
in the disease process, and several lines of evidence support a relationship between
biological rhythm disturbances in the onset and maintenance of bipolar episodes.
Notably, physiological and behavioral timekeeping processes are often altered in
bipolar patients, and there is evidence to suggest that a susceptibility to biological
rhythm instability may be a factor in the onset and maintenance of affective
episodes. For some patients, interventions that serve to stabilize or resynchronize
sleep and biological rhythms prove therapeutically effective. Furthermore, sleep
propensity is markedly altered during different phases of the disorder, and sleep
disturbance is perhaps the most potent predictor of mood deterioration. Lastly,
although quite preliminary, several recent studies have attempted to identify
mutations in genes involved in circadian clock regulation that might influence
the disease process in a subgroup of patients. The prevalence of biological
rhythm dysfunction in bipolar disorder, the cyclical presentation of symptoms,
and the strong link between sleep disturbance and episodes of mania and
depression suggest that these features are pathophysiologically important in the
disease process and might inform treatment development for this illness. This
chapter will review these areas of research in bipolar illness.

BIOLOGICAL RHYTHM DYSFUNCTION
Irregularities in the Timing of Activity–Rest
A number of studies have used actigraphy to record the onset and amplitude of
activity rhythms in bipolar patients across periods of clinical illness and euthymia.
Given that increased energy and activity, combined with decrements in perceived
need for sleep, are hallmarks of a manic episode, it is perhaps not surprising that
several studies have reported an overall increase in motor activity during the
manic phase of bipolar illness relative to either the euthymic or depressed phases
(2,3). In contrast, both diminished activity and a delay in the timing of normal
activity onset is reported in the depressed phase of bipolar disorder relative to
the activity level of patients with a purely unipolar course (4–6). In addition to
providing evidence of activity irregularities during periods of clinical illness, beha-
vioral rhythm alterations also serve as prognosticators of an approaching clinical
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episode, particularly an episode of mania. Patients who experienced relapse into
mania during lithium discontinuation were reported to have higher baseline
levels of daytime motor activity preceding the onset of mania. In contrast, those
patients who managed to remain euthymic showed no such increases in levels of
daily activity (7). Changes in the duration of sleep also provide an index of chan-
ging clinical state. Using actigraphy to longitudinally record sleep and activity
over 18 months in 11 bipolar patients, Leibenluft reported that reduced sleep dur-
ation and earlier awakening time were reliably prognostic for the onset of mania or
hypomania the following day (8). Similarly, in a recent meta-analysis of bipolar
prodromes, Lam and Wong reported that early predictors of an emerging
episode of mania were recognized by 97% of patients and of these, 77% reported
sleep disturbance, particularly sleep reduction and fragmentation, as the most
prominent early symptom of mania (9).

Although it is not entirely clear if rhythm and sleep disruption are causally
related to mood pathology, both clinical and experimental evidence support the
idea that disruptions of daily routine and activity patterns can lead to an episode
of clinical illness (10). Stressful life events, in particular, are often associated with
mood deterioration, and this effect is particularly marked when those stressful
life events result in abrupt changes in daily patterns of sleep timing and duration
(11–14). Malkoff-Schwartz et al. analyzed the association between stressful life
events and the onset of an affective episode in 39 bipolar patients and found that
life events characterized as subjectively stressful, which consequently led to a
disruption in normal social routines, were significantly predictive of the onset of
mania (15). Moreover, although clinicians have long recognized that reductions
in sleep duration are correlated with the onset of mania, the importance of sleep
loss as a trigger for mania is empirically supported by studies employing sleep
deprivation as a therapeutic intervention for depression. In a meta-analysis based
on 10 studies of sleep deprivation effects, Wu and Bunney found a 30% switch
rate into the manic or hypomanic state following one night of enforced sleep
deprivation as a treatment for depression (16). Although estimates of state switch-
ing following sleep deprivation vary, the clear relationship between mania and
sleep loss has led some to speculate that sleep loss is “a final common pathway
in the genesis of mania” (17). This data suggests that at least a subset of patients suf-
fering from bipolar disorder may have a particular sensitivity to biological rhythm
disruption. A closer analysis of the subset of patients who are susceptible to the
effects of rhythm disruption may offer insight into whether they show genetic
abnormalities in the circadian pacemaker.

Evidence of Circadian Abnormalities: Endocrine Variables
Based on the alterations in behavioral rhythms demonstrated by many patients,
Goodwin and Wirz-Justice hypothesized that patients with mood disorders,
including bipolar disorder, may have an endogenous circadian period that is sig-
nificantly shorter or longer than 24 hours. The alteration in the period of the cir-
cadian clock is thought to lead to an abnormal phase relationship between the
individual and the environment, and this lack of synchrony is thought to contrib-
ute to the onset and maintenance of affective episodes (18,19). The notion that
desynchrony between the internal and external environment might somehow con-
tribute to affective deterioration is intuitively appealing given that a synchronous
relationship between the endogenous rhythm of the clock and the external
environment is critical to well-being; the adverse affects on mood, cognition,
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and physiology that result from jet-lag, shift work, or other conditions that
produce desynchrony are pronounced (20). A number of empirical studies have
sought to substantiate this hypothesis by attempting to characterize endogenous
circadian pacemaker abnormalities in bipolar patients. These attempts, however,
have produced largely contradictory and inconclusive findings due, in part, to
the methodological difficulties inherent in accurately measuring human clock
function.

Mammalian circadian rhythms are governed by a master oscillator in the
suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN regulates a
number of physiological variables in humans, including temperature, certain
elements of the sleep–wake cycle such as rapid-eye movement sleep propensity,
as well as the secretion of a variety of hormones. Measurements of these variables
can, theoretically, be used to assess the period and amplitude of the endogenous cir-
cadian rhythm. The oscillation and amplitude of most output rhythms, however, is
masked by both behavior and environment (21). Protocols specialized for disentan-
gling the true period of the endogenous pacemaker from the environment can be
used to measure the period and phase of the endogenous clock accurately, but
unfortunately, few studies have used such rigorous experimental control in
studies of bipolar patients. As a result, most studies published to date have been
confounded by the masking effects of activity and light exposure on the rhythms
studied. In addition to these methodological difficulties, other factors such as
small sample size, psychotropic medication use by patients, and diagnostic incon-
sistency conspire to limit the ability of a given study to detect statistically significant
differences between groups.

Dysregulation of the hypothalamic pituitary axis (HPA) is a highly replicated
finding in at least a subset of patients with mood disorders. Frequently reported
findings include elevated levels of cortisol and corticotropin-releasing hormone
(CRH), nonsuppression of cortisol on the dexamethasone suppression test, and/
or a blunted adrenocorticotropic hormone (ACTH) response to CRH (22). Given
that the profile of cortisol secretion is regulated in large measure by the circadian
system, substantial research has focused on identifying abnormalities in the circa-
dian regulation of the HPA axis in depression, but support for abnormalities in
either phase or amplitude of circadian rhythms have been mixed. Linkowski, for
example, reported a significant phase advance of the serum cortisol and ACTH
rhythms in unipolar depressed patients, but although several of the patients with
a bipolar course also showed this phase advance, the effect did not reach signifi-
cance at the group level. A later study by this same group characterized sleep
and 24-hour profiles of cortisol in 14 patients during the manic state and reported
an elevation of nocturnal cortisol levels and an earlier occurrence of the nadir of the
circadian secretory profile relative to controls (23,24). In contrast, Cervantes and col-
leagues analyzed the amplitude and phase of the cortisol profile in 18 bipolar
patients in either the depressed, hypomanic, or euthymic phase relative to a
control group, and although they did report hypersecretion of serum cortisol in
the depressed and hypomanic phase, they found no evidence for a circadian
phase shift in either phase of the illness relative to controls (25). Sleep loss and
changes in sleep timing, both of which invariably accompany depression and
mania, are known to alter both the timing and amplitude of the cortisol secretory
profile and could thus easily account for the conflicting findings. In general,
mania-associated phase or amplitude abnormalities in the cortisol rhythm have
not been reported consistently.
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Attempts to characterize the phase and period of the endogenous clock in
patients with affective disorders have also been based on peripheral measurements
of the hormone melatonin. The pineal gland, which is responsible for the pro-
duction and secretion of melatonin, is directly controlled by the SCN. Since melato-
nin production is inhibited by light exposure, serial measurement under dim light
conditions has historically been thought to provide a valid estimate of circadian
phase. As a result, melatonin output has been widely used to assess the period of
the internal clock. Potential confounds to this measurement have been suggested
by more recent data, however; for instance, melatonin production is likely affected
by even dim light as well as postural position. In addition, the timing of the mela-
tonin secretory profile is further altered by sleep loss and hypercortisolemia, both of
which invariably accompany clinical illness (26). These confounds ultimately com-
plicate the interpretation of the many early studies that used melatonin output to
assess clock function.

A recent longitudinal analysis comparing the melatonin secretory profile of
bipolar patients in all phases (depressed, manic, and euthymic) of the disorder rela-
tive to controls reported no evidence for circadian phase differences during any
illness period, although the amplitude of melatonin secretion was diminished in
bipolar patients during all phases relative to controls. The authors speculated
that this diminished amplitude in melatonin production might result from an
abnormal response to light in bipolar patients, and suggested that this might
provide the mechanism for an abnormal coupling of the endogenous pacemaker
and the environment (27).

As a consequence, a number of recent analyses of melatonin abnormalities
have focused on the effects of light on melatonin suppression in bipolar patients.
Some, but not all studies support an increased sensitivity to light-induced suppres-
sion of melatonin in a subgroup of bipolar patients, and it has been hypothesized
that this sensitivity might result in circadian phase instability (28–30). Lewy et al.
compared the effects of light exposure on melatonin secretion between the hours
of 2 and 4 am in euthymic bipolar patients who were age and gender-matched
with controls. Bipolar patients were reported to have a 61.5% suppression of mela-
tonin after light exposure relative to a 28% suppression of melatonin in controls
(31). Similarly, in a recent comparison of euthymic bipolar, unipolar, and control
subjects, Nurnberger and colleagues reported enhanced melatonin suppression
by light in bipolar I patients relative to controls (32). This same group also reported
evidence of a hypersensitivity to light-induced melatonin suppression in the
offspring of bipolar disorder patients (33). The data do raise the possibility that
any circadian phase instability seen in bipolar patients may not be a dysfunction
in the clock itself, but may instead be a consequence of a more peripheral abnorm-
ality, which consequently results in an improper alignment between the clock and
the environment.

Seasonality in Bipolar Disorder
Most epidemiological studies support a seasonal component for bipolar disorder,
although there is some disagreement regarding the peak incidence for various
types of episodes, likely due in part to clinical heterogeneity. Nevertheless, there
is evidence for a significant peak of episodes of mania in the spring, with
some studies reporting a minor or major peak in the late summer or fall as well
(34–37). If all episode types are included, there is a more clear spring-fall pattern,
probably related to a fall increase in depressive or mixed episodes (38,39).
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Seasonality of mood disorders is also evident in seasonal affective disorder
(SAD), a condition originally described by Rosenthal to characterize a bipolar
patient who developed seasonally recurrent depressions (40). Although SAD has
since been reconceptualized as primarily a disorder in which patients are afflicted
by winter-onset depression, there are those patients who present with seasonally
induced mania in addition to winter depressions. Although the shorter photo-
period during winter is thought to be etiologically responsible for SAD, studies
attempting to show an increased prevalence at more northern latitudes have not
been conclusive; some have been equivocal (41,42), whereas others suggest
increased prevalence in regions with reduced winter light (43). Although the
results of epidemiological studies have been inconsistent, SAD patients have
been reported to demonstrate unusual responses to seasonal lighting changes.

The duration of the melatonin signal is directly related to the length of the
dark period, and in this waymelatonin secretion serves as the signal of photoperiod
length for many mammals. Wehr et al. have recently helped to characterize the
nature of circadian and circannual abnormalities in SAD. They reported that SAD
patients generate a seasonal change in the duration of the dim-light melatonin
secretion profile, specifically that they produced a longer duration of nocturnal
melatonin secretion in winter relative to summer, whereas control subjects fail to
show such seasonal alteration in melatonin secretion (44). These data suggest that
SAD patients, in contrast to normal subjects, exhibit a change-of-season signal
similar to that used bymammals that show significant seasonal changes in behavior
and physiology. Although this finding does not explain how abnormal responses
to the changing photoperiod lead to affective deterioration, it provides further
support for the idea that patients with bipolar disorder may have particular
sensitivities to biological rhythm disruption.

Cyclicity in bipolar illness not related to seasonality has primarily been
described in terms of rapid cycling over the course of hours or days (2); it is
likely that many bipolar patients may have underlying cycling with periods
ranging from days to weeks to months. In summary, mood disorders, in particular
bipolar disorder and SAD, are characterized by cycling that is often seasonally
related, suggesting a role for circadian and/or seasonal pacemakers in the onset
and maintenance of these disorders.

SLEEP ABNORMALITIES IN BIPOLAR DISORDER

Psychiatrists have been interested in the relationship between sleep and mental
illness since the time of Sigmund Freud when dream analysis was a major com-
ponent of the treatment for mental illness. After the discovery of rapid eye move-
ment (REM) sleep in 1953, psychiatrists, spurred on by the seeming similarities
between the hallucinations associated with psychosis and the hallucinogenic
quality of dreams, began to speculate that schizophrenia might represent a disorder
of REM sleep. Although this speculation did not prove accurate, an interest in the
relationship between specific sleep abnormalities and psychiatric disorders has per-
sisted. Sleep in depression has been studied more thoroughly that any other dis-
order, and as early as the 1950s abnormalities in both slow wave sleep (SWS) and
REM sleep were reported in depressed patients. Coincident with technological
advances in sleep science, a deeper understanding of the neural control of sleep was
developing. Given the widespread and robust changes in sleep architecture demon-
strated by patients with affective disorders, it was hoped that an understanding of
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the neural control of sleepmight offer insight into the neurochemical abnormalities of
patients with mood disorders.

Overview of Sleep Regulation
Sleep is modulated by the endogenous circadian clock as well as by the accumulation
of sleep need over the course of wakefulness. The daily temporal modulation of sleep
and wakefulness is described by the two-process mathematical model of sleep regu-
lation, first articulated by Borbely, where the circadian pacemaker (process C) inter-
acts with a sleep dependent homeostatic process (process S) to regulate sleep onset
and offset. The homeostatically regulated process S reflects an increasing sleep
drive, estimated from slow-wave analysis of the electroencephalogram (EEG), and
increases as duration of wakefulness increases. Process C is thought to be largely
governed by the circadian clock, and is subjectively measured by self-report assess-
ments of sleepiness during sleep-deprivation studies. REM sleep onset and offset is
governed largely, but not completely, by the circadian clock (45,46).

The transition fromwakefulness to sleep is regulated by a complex interaction
between circadian and homeostatic processes and by myriad neurochemical
changes. The idea that the rostral brainstem reticular formation plays a central
role in arousal has not changed in over 50 years, but our understanding of the
complex neural circuits and multiple neuromodulatory systems involved in
sleep–wakefulness has grown considerably. Arousal is mediated by two cholin-
ergic nuclei of the laterodorsal tegmental (LDT) and pedunculopontine tegmental
(PPT) nuclei of the brainstem reticular formation. The dorsal pathway to the thala-
mus, which sends a broad glutamatergic influence to the cortex, is the classical
substrate of cortical arousal. A ventral pathway projects to both the hypothalamus,
which, in turn, sends a diffuse histaminergic projection to the cortex as well as to the
basal forebrain. Cells of the basal forebrain synthesize both acetylcholine and
GABA and project broadly to the cortex. Sleep is produced by structures distributed
throughout the brain that exert inhibitory influences upon this arousal system.
Neurons from the lower brainstem exert an inhibitory influence on the rostral reti-
cular formation, and GABAergic neurons of the ventrolateral preoptic area of the
hypothalamus and adjacent regions of the basal forebrain send inhibitory signals
to both the histaminergic nucleus of the hypothalamus, as well as to the cholinergic
nuclei of the reticular formation, dampening cortical and behavioral arousal (47,48).

The neural control of REM sleep, initially proposed by McCarley and Hobson,
outlined a reciprocal relationship between so-called REM-off and REM-on neurons in
the regulation of REM sleep (49). Experimental evidence identified brainstem cholin-
ergic neurons of the LDT and PPT nuclei as the cells that control the onset of REM
sleep. Noradrenergic cells of the locus coeruleus and serotonergic cells of the dorsal
raphe nucleus project to the PPTand LDTand normally have an inhibitory influence
on these cholinergic cells. Just prior to the onset of REM sleep, these aminergic
cells (referred to asREM-onneurons)decreasefiring, thus lifting their inhibitory influ-
ence on PPT and LDT cholinergic neurons. The firing of these neurons supports an
increase in acetylcholine release and, ultimately, the cerebral arousal evidenced by
the activated EEG of REM sleep (49).

Sleep Abnormalities in Bipolar Depression
Some of the best-documented clinical findings in depressed patients involve sleep
disruption. Disturbed sleep, including prolonged sleep latency, early morning awa-
kenings, and reduced sleep efficiency, is characteristic of depressive episodes.
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Consistent changes in polysomnographic sleep characteristics of depressed patients
have also been widely and consistently reported. Depressed patients show a rela-
tive loss of slow-wave sleep (SWS), including a reduction in the absolute number
of EEG delta waves during the first nonrapid eye movement (NREM) period.
Changes in REM sleep are perhaps the most specific to mood disorders. In
healthy subjects, REM sleep propensity normally reaches its maximum in the
latter portion of the sleep period. In contrast, depressed patients often exhibit
abnormally early REM sleep onset (reduced REM latency), a larger proportion of
REM sleep during the first third of the night, and increased eye movements
during the REM sleep period (50). Although most of the studies on depression to
date have likely included a mixture of unipolar and bipolar patients, a few
studies have focused exclusively on the question of whether the sleep of bipolar
depressed patients differs from that of unipolar depressed patients.

Riemann et al. analyzed the EEG of 27 bipolar and unipolar depressed
patients age- and gender-matched with controls. Although, as expected, both the
unipolar and bipolar depressed patients showed increased REM density, increased
percentage of REM sleep throughout the night, and a loss of SWS, differences
between the two patient groups were subtle. The authors reported a trend
toward increased REM density in the first REM period in bipolar patients, but
this effect did not reach significance (51). Similarly, Fossion et al., comparing EEG
data of unipolar and bipolar depressed patients during an episode of major
depression, reported a trend toward a longer REM sleep latency in the bipolar
patients relative to the depressed patients, but this trend was only evident in the
more severely afflicted bipolar patients. A total of five studies, in addition to the
two reviewed, have directly compared the sleep EEG of bipolar and unipolar
depressed patients (52). Although there have been some subtle differences
between the sleep of unipolar and bipolar depressed patients, overall these
studies have failed to demonstrate compelling differences between the two (53–58).

Sleep Abnormalities in Bipolar Mania
A subjectively reported decrease in the need for sleep is one of the most remarkable
correlates of a manic episode. As mentioned early in the chapter, it is regularly
reported in the clinical literature that sleep disruption not only often predicts but
may also precipitate the onset of a manic episode. These striking clinical observations
have naturally led to an interest in analyzing the sleep EEG in acutelymanic patients,
but studying sleep inmania beyondbehavioral observation is challenging.As a result,
only a few controlled EEG studies have been performed during bipolar mania.

Hudson et al., studying nine bipolar manic patients and nine age-matched
healthy controls, reported an overall decrease in time spent asleep, reduced REM
latency, and increased REM density in the manic patients relative to controls. In a
later study, the same group performed a comparison between the sleep EEG in
19 bipolar manic patients, 19 age- and gender-matched depressed patients, and
19 healthy controls. As expected, both patient groups exhibited behavioral and
EEG abnormalities relative to healthy controls, but although manic patients were
reported to have a decreased total sleep time relative to the depressed patients,
EEG recordings failed to distinguish manic from depressed patients on measures
of REM latency and density (59). Similarly, Linkowski et al. found that EEG record-
ings did not distinguish bipolar manic patients from depressed patients or healthy
controls, with the exception of longer sleep latencies and diminished total sleep
time in the manic group (60).

Sleep and Biological Rhythms Abnormalities 195



Longitudinal Studies of Sleep in Bipolar Patients
Longitudinal studies have the potential to provide information that cannot be
achieved through cross-sectional analyses. These studies, however, are difficult to
conduct and the extant studies have produced conflicting data. Bunney et al. ana-
lyzing the EEG of one patient during three switches into mania and one switch out
of mania, reported that REM sleep was uniformly decreased as patients entered into
the manic state (61). The authors suggested that since noradrenergic cells of the
locus coeruleus and serotonergic cells of the dorsal raphe nucleus are thought to
inhibit REM sleep by suppressing cholinergic firing, the decrease in REM sleep pre-
ceding mania onset suggests the possibility of a decreasing cholinergic tone in
mania. The authors claimed that the data was supported by an early hypothesis
of mood disorders articulated by Janowsky, which argued for the pathophysiologi-
cal importance of increased cholinergic activity in depression and increased ami-
nergic activity in mania (62). In contrast to the Bunney data, however, Kupfer et
al. reported a higher REM density directly preceding the onset of a manic
episode in a rapid-cycling patient with a 48-hour cycle (63). Although longitudinal
designs have the potential to provide informative clinical data across behavioral
states, to date, these studies have proved inconsistent.

Sleep in Bipolar Remission
There is controversy over whether or not sleep abnormalities in bipolar patients
normalize with remission, or if these alterations reflect enduring trait or vulner-
ability markers. State-dependent abnormalities, which resolve when symptoms of
the affective disorder resolve, reflect alterations in neurobiological processes under-
lying an acute episode. Trait markers, in contrast, do not resolve with symptom
remission and suggest an increased risk for occurrence of the disorder, presumably
linked to genetic transmission. Several authors contend that some sleep alterations,
in particular REM abnormalities, normalize in unipolar and bipolar patients during
periods of euthymia, and may therefore be characterized as state-dependent.
Buysse et al. reported a decrease in REM density and a decrease in REM latency
during remission in depressed patients, and similar results have been reported in
several longitudinal studies, supporting the hypothesis that some REM abnormal-
ities may be episode-related biological features (64–67). Avariety of other findings,
however, do not support this view. Giles et al. reported a persistence of shortened
REM latencies and enhanced REM density during remission in bipolar and uni-
polar patients, and longitudinal studies have further shown REM latency to be
stable during depressive episodes and periods of euthymia (Rush, 68–70). Familial
analyses provide further support for REM abnormalities, including increased REM
density and decreased REM latency as stable traits in patients with mood disorders.
(69,71). Lauer, investigating 54 high-risk probands by polysomnography, found that
the EEG patterns of subjects without a personal history of depression, but with a
strong familial history, showed reduced SWS and increased REM density in the
first sleep cycle compared to control subjects with no personal or family history
of affective disorders (72). A recent study, attempting to identify risk factors for
the development of affective disorders similarly reported increased REM density
in the first REM period in 82 subjects with a familial history of affective disorders
(73). This group failed to find evidence of distinct differences between relatives of
unipolar and bipolar patients. EEG abnormalities, particularly increased REM
density, were similarly expressed in both first degree relatives of bipolar and
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unipolar patients, causing the authors to conclude that REM abnormalities might
represent vulnerability markers for mood disorders in general (74).

In summary, sleep disturbances are an integral feature of bipolar disorder.
Like the disorder itself, the associated sleep disturbances are heterogenous,
ranging from hypersomnia to difficulty initiating or maintaining sleep (75).
Although there is controversy over whether sleep abnormalities represent stable,
trait-like features of depressive and bipolar disorders, most studies appear to
support the notion that reduced REM latency and increased REM density, at
least, are stable features. The persistence of these abnormalities during periods of
euthymia does call into question whether or not these abnormalities are pathophy-
siologically significant or simply reflect a trait generally correlated with, but not
integral to, the pathophysiology of bipolar disorder. However, a major goal of
metal health research is to identify specific quantifiable, heritable markers of psy-
chiatric research, and particular sleep abnormalities may represent such markers.
Identifying discrete physiological features of bipolar disorder promises to not
only improve diagnostic reliability and consistency, but this strategy offers hope
for elucidating the genetic underpinnings of the disorder.

TREATMENTS FOR BIPOLAR DISORDER

Perhaps the most compelling demonstration for a significant role for sleep and
rhythm disturbances in bipolar disorder comes from treatment studies. Manipula-
tions of the sleep–wake cycle, including total sleep deprivation as well as phase
advances in the timing of sleep onset, have been demonstrated to produce mood
improvement in bipolar depressed patients and also to induce mania in susceptible
patients. In addition, fostering sleep and stabilizing its timing has been shown to be
helpful in decreasing the duration of a manic episode. The most widely prescribed
mood stabilizer, lithium, has demonstrated effects on both sleep and circadian
rhythmicity, as do most of the antidepressant medications prescribed for bipolar
depression, although it is not known if their therapeutic efficacy is related to
effects on circadian rhythms. How sleep and rhythm manipulations achieve thera-
peutic efficacy, or how, in some cases, these manipulations lead to mood symptoms,
is unclear. An understanding of the mechanism(s) through which these interven-
tions lead to mood deterioration or improvement may ultimately lead to the devel-
opment of pharmaceutical agents that produce more rapid symptom alleviation
than currently available pharmaceutical agents are able to do.

Manipulations of the Sleep–Wake Cycle: Sleep Deprivation
Total sleep deprivation for one night has been convincingly demonstrated to
produce rapid improvement in mood, as well as in cognitive and motor functions,
in approximately 60% of patients with unipolar depression. Late night sleep depri-
vation, where a patient is kept awake for the latter half of the nocturnal sleep
period, has also been shown to produce significant symptom alleviation. Selective
REM deprivation, a process in which the patient is awakened whenever he or she
shows polysomnographic evidence of REM sleep, has also been shown to have
some antidepressant effect, although there is a considerable latency between
initiation of the REM deprivation protocol and mood improvement (76). Although
the data supporting the therapeutic effect of sleep deprivation specifically in bipolar
disorder patients is not as extensive as that in unipolar depressed patients, there is
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evidence to both support and contraindicate this therapeutic sleep intervention in
bipolar patients. In terms of efficacy, the response of bipolar depressed patients
to sleep deprivation appears to be comparable to that seen in unipolar depressed
patients, with some studies suggesting a slightly better response in bipolar patients
(77). Early studies indicated that up to 30% of bipolar patients were at risk for enter-
ing a manic or hypomanic episode following a night of sleep deprivation. More
recent evidence, however, suggests that a switch into mania following a night of
sleep loss may be more characteristic of bipolar patients with a rapid cycling
course (78,79). A recent analysis of a large population of bipolar depressed patients
revealed a rate of switch into mania of approximately 5% following one night of
sleep deprivation, a rate comparable to that seen following initiation of antidepress-
ant treatment (79,80). The precise estimate of the rate of switch from depression to
mania is still controversial, and caution is warranted when sleep deprivation is
employed as a treatment for bipolar depression.

Sleep Deprivation: Potential Mechanisms
Although the effect of sleep deprivation therapy is transient, with relapse typically
occurring immediately following recovery sleep, it provides rapid symptom
improvement. This rapid effect is in contrast to antidepressant medications,
which typically require anywhere from several days to a week before symptom
relief occurs. Elucidating the biological mechanisms through which this rapid
therapeutic effect is achieved could thus aid in the development of antidepress-
ants that are superior to existing agents, and, to that end, many investigators
have attempted to characterize the mechanism of the therapeutic efficacy of
sleep deprivation. Although the neurobiological mechanisms of depression and
mania are complex, theoretical conceptualizations of depression have implicated
monoaminergic signaling as a significant factor in mood pathology.

The role of serotonin in modulating sleep and arousal, and the clinical efficacy
of antidepressant medications that enhance monoaminergic transmission in the
central nervous system, provides an overt link between the systems regulating
both mood and sleep. Selective serotonin uptake inhibitors (SSRIs) represent the
most widely prescribed class of antidepressant medication and the most consistent
effect of the SSRIs on sleep is a reduction of REM sleep. It has long been suggested
that the antidepressant effect of SSRIs might be tied to this reduction of REM sleep;
however, recently developed antidepressant drugs with therapeutic efficacy similar
to that of the SSRIs are not REM-suppressive, casting doubt on the importance of
REM reduction for mood elevation (81). Nevertheless, the serotonin system is
still thought be involved in the response to sleep deprivation. The SSRI drug fluox-
etine, the mixed serotonergic-noradrenergic drug amitriptyline, and the 5HT1-A-
beta adrenoreceptor blocker drug pindolol have been demonstrated to enhance
and sustain the response to sleep deprivation in depressed patients (82–84). In
further support of a role for the serotonin system, a recent study reported that a
polymorphism in the transcriptional control region of the serotonin transporter
(5-HTT), a polymorphism which ultimately increases central serotonin production,
is associated with a better response to sleep deprivation in bipolar patients relative
to those patients homozygous for the short variant of this allele. Another group,
however, failed to replicate this effect (85,86). Altered serotonin signaling clearly
does not explain all of the therapeutic effects of sleep deprivation, however, since
experimental depletion of tryptophan, which rapidly lowers brain serotonin
levels and produces relapse in medicated depressed patients, does not reverse
the antidepressant effects of sleep deprivation in unmedicated patients (87).
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Dopamine has also received attention as a possible mediator of the effects of
sleep derivation (88). Patients who show symptom improvement in response to
sleep deprivation have been shown to have lower levels of cerebral spinal fluid
homovanillic acid—a dopamine metabolite—before sleep deprivation and an
increase in this metabolite following sleep deprivation, when compared to those
patients who do not respond (88–90). Ebert et al., using SPECT to study receptor
occupancy of the dopamine D2 receptor, reported that sleep deprivation responders
had decreased occupancy of the D2 receptor following the sleep deprivation while
nonresponders showed an increase in D2 binding, and the authors interpreted
this result as an indication that sleep deprivation enhanced dopamine release in
responders to sleep deprivation. Later studies, however, failed to replicate this
finding and one group reported enhanced D2 binding in sleep deprivation respon-
ders (91,92). An additional piece of indirect evidence supporting the importance of
dopaminergic signaling in the effects of sleep deprivation comes from studies
of patients afflicted with Parkinson’s disease. Interestingly, following one night of
sleep deprivation, Parkinson’s patients show marked improvement in both
tremor and rigidity, suggesting a transient normalization of dopamine (93,94).
Although dopamine signaling may be increased following sleep deprivation, its
role in mood improvement is unclear.

Interestingly, recent data in animal models indicates that both antidepressant
medication and sleep deprivation lead to increased expression of genes involved
in synaptic potentiation and plasticity, suggesting a common mechanism for
their effects on depression. The time course of these changes in gene expression
parallels the time course of the antidepressant effect. Sleep deprivation results in
immediate increases in plasticity-related genes in rats (95) and an immediate anti-
depressant effect in humans, while chronic (but not acute) administration of
antidepressant medication results in increased expression of these same genes in
rodents (96). It has been suggested that the antidepressant effect of sleep depri-
vation may be directly related to synaptic potentiation and the induction of
such genes (97) and that “sleep deprivation may bring about its rapid antidepress-
ant effects by activation of the robust expression of plasticity genes, such as CREB
(cyclic AMP response element binding protein), BDNF (brain-derived neuro-
trophic factor) and TkrB (tyrosine kinase receptor beta), and consequently a
rapid antidepressant response” (98).

Despite these intriguing data, the mechanism of the antidepressant action of
sleep deprivation has not yet been identified. Nevertheless, a more complete under-
standing of the effects of sleep deprivation has the potential to lead to both a better
understanding of the neurobiology of mood disorders as well as the development
of improved pharmaceutical interventions.

Manipulations of the Sleep–Wake Cycle: Circadian Phase Advances
As described above, depressed patients often demonstrate a marked phase advance
in the first REM sleep period of the night. Given that REM sleep timing is regulated
largely by the circadian system, the appearance of REM sleep earlier in the night in
depressed patients has been hypothesized to reflect abnormally advanced circadian
rhythms relative to the sleep–wake cycle. Several investigators have therefore
argued that depressed patients may thus sleep at the wrong circadian time, and
have advocated shifting the sleep–wake period to earlier in the evening in an
effort to synchronize out-of-phase rhythms with hopes of inducing mood improve-
ment. Several studies employing sleep phase advance, in which a patient’s sleep
onset and offset time is moved to an earlier clock time, have been reported to

Sleep and Biological Rhythms Abnormalities 199



alleviate depressive symptoms, although the time to improvement is considerably
longer than that seen following one night of total sleep deprivation (99,100).
Additionally, sleep phase advances have also been shown to successfully preserve
the antidepressant effects of total sleep deprivation (101,102).

Although these data suggest that an abnormal phase relationship between
sleep and the endogenous circadian rhythm or abnormal circadian control of sleep
might be of pathophysiological significance, there is currently no evidence that
these sleep–wake manipulations alter REM sleep latency or distribution (103).
Reimann et al. recently examined REM sleep distribution of depressed patients fol-
lowing total sleep deprivationwith a subsequent sleep phase advance. Even in those
patients who responded positively to the therapeutic regimen, shortened REM
latencies persisted (104). The failure to correct the purported circadian abnormality
calls into question whether these REM sleep abnormalities are pathophysiologically
significant or whether they are merely epiphenomena of the depressed state.
Nevertheless, the efficacy of sleep phase advance has been shown to be superior to
sleep phase delays in the treatment of depression, providing support for the idea
that the timing of sleep and its interaction with other biological variables may
be an essential element in symptom relief. Moreover, a recent study provided
evidence for an interactive effect between sleep and the circadian system on mood
regulation in normal subjects, further highlighting the importance of proper
alignment of endogenous circadian phase and sleep–wakefulness timing for
mood regulation (105).

Treating and Preventing Mania: Rhythm Stabilization
Although much of the emphasis on treating and preventing mania in bipolar
patients is on pharmacotherapy, there is some evidence that rhythm stabilization
might be effective in both shortening the duration of an acute episode of mania
as well as in preventing episode recurrence. Several case studies have demon-
strated that enforced sleep and extended darkness successfully reduces the dur-
ation of acute episodes of mania in rapid-cycling bipolar patients (106,107). Wehr
and colleagues employed a protocol of 14 hours of enforced bed rest in complete
darkness for a bipolar disorder patient with a long history of rapid cycling. This
enforced sleep and darkness protocol effectively reduced the duration of an acute
manic episode, and additionally served to dramatically stabilize the patient’s
rapid-cycling course (108). Similarly, behavioral interventions aimed at normalizing
and structuring a regular pattern of sleep and daytime activity also appear to have
some efficacy in both reducing the duration of a manic episode, as well as extending
the time between episodes of clinical illness (109). As a result, Frank and Kupfer
developed social rhythm therapy and they advocate its use as an adjuvant to medi-
cation treatment for bipolar patients. This form of psychotherapy, which augments
the more conventional interpersonal therapy, employs behavioral strategies to
stabilize daily routines and rhythms (110,111). Currently, results are anticipated
from an ongoing large-scale clinical trial of social rhythm therapy at the University
of Pittsburgh.

Medication for Mania: Effects on Sleep and Circadian Rhythms
Lithium carbonate is the first line of treatment for bipolar patients. It has established
effects on both sleep and circadian rhythmicity, and these effects have been pro-
posed to at least partially explain its clinical effect (112,113). Several early studies
demonstrated that lithium remediated sleep abnormalities associated with
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depression in bipolar patients. A 150-night analysis of sleep in five bipolar patients
reported that chronic lithium administration produced a significant decrease in
both REM density as well as an increase in the latency to REM sleep (114).
In addition to confirming this finding, a follow-up study by Mendels et al. reported
that lithium administration also significantly increased stage 1, 3, and 4 sleep in
bipolar patients. Similarly, Hudson et al., studying nine bipolar manic patients,
reported evidence of both REM suppression and an increase in REM latency
following initiation of lithium carbonate therapy (59).

Lithium also has demonstrated effects on measures of circadian physiology
beyond REM sleep regulation in both healthy subjects and patients; it has been
demonstrated to delay the sleep–wake rhythm by approximately 15 minutes in
healthy human subjects (115). Campbell et al. examined the effects of lithium on
the circadian rhythms of body temperature and REM sleep in a single patient
with bipolar depression, and reported a phase delay of the body temperature
rhythm of 74 minutes after one week of lithium treatment. The authors also
reported a markedly increased REM sleep latency following lithium adminis-
tration as well as a significant decrease in REM density (115). The data are consist-
ent with the hypothesized phase-delaying properties of lithium, although it is not
clear if these properties are related to therapeutic effect. Interestingly, however,
recent data have demonstrated that both lithium and valproic acid, another
widely prescribed mood stabilizer, are capable of reducing melatonin suppression
by light in healthy controls. As discussed above, sensitivity of the pineal hormone
melatonin to bright light suppression has been posited as a putative marker of
affective disorders. Hallam et al. recently demonstrated that both lithium and
valproic acid significantly reduce the sensitivity of nocturnal melatonin secretion
to light in healthy volunteers (116). Both sets of data are in accord with a trend
for unmediated bipolar patients to demonstrate greater sensitivity to the melato-
nin-suppressing effects of light relative to lithium-treated patients (32). The clinical
relevance of this finding is not entirely clear, however.

GENES AND BIPOLAR DISORDER

Evidence from family, twin and adoption studies indicate that bipolar disorder has
a genetic basis with heritability estimates as high as 80% (117). To date, however,
neither genes of large or small effect have been identified. The search for genes
conveying risk for bipolar illness is complicated by the fact that the disorder is
both phenotypically and genetically heterogeneous (118). A number of genes inter-
acting with each other, as well as with environmental factors, likely conspire to
modulate susceptibility to the disease phenotype. Despite these complexities, a
substantial research effort is underway to identify genetic factors that contribute
to the bipolar disorder phenotype. In particular, several recent studies have
attempted to link particular genes involved in the regulation of the circadian
clock with a general susceptibility to bipolar disorder or with some specific
feature of the disease process.

The last decade has witnessed a phenomenal growth in our understanding
of the molecular basis of the circadian clock. In the 1980s, induced mutations in
fruit flies led to the identification of the first circadian clock mutants period
(Per) and frequency (Frq), and in the 1990s a similar mutagenesis approach in
mice isolated the first mammalian circadian mutation CLOCK (119,120). Although
most of our understanding of the molecular regulation of the circadian clock

Sleep and Biological Rhythms Abnormalities 201



comes from animal studies, genes dedicated to the generation and regulation
of circadian rhythms have also been identified in humans. Patients afflicted by
Familial Advanced Sleep Phase Syndrome (ASPS) have a short circadian period
with a four-hour advance of the daily sleep–wake cycle, and this trait has been
linked to a missense mutation that replaces a serine for a glycine in the human
Per2 gene (121), proving that, as is the case in lower animals, mutations in
circadian clock regulatory genes have demonstrable effects on the circadian phe-
notype. Researchers have therefore begun to consider the role of circadian genes
involved in other putative rhythmic disorders, including bipolar disorder.
Although the results of these studies have thus far failed to identify definitively
any gene or genes involved in susceptibility to bipolar disorder, our increasing
understanding of the molecular regulation of the circadian system has the poten-
tial to identify circadian genes that might contribute to some element of the
bipolar phenotype.

As noted above, lithium treatment is known to lengthen the period of circa-
dian rhythms in mammals (122). Although the mechanism through which this
effect is achieved is not entirely clear, lithium has been shown to directly inhibit
the activity of glycogen synthase kinase-3 beta (GSK3-B), a serine/threonine
kinase essential in a number of signaling pathways, which has recently been ident-
ified as a fundamental regulator of the mammalian circadian clock (123,124). The
inhibition of GSK3-B is speculated to be the mechanism through which lithium
lengthens the circadian period, an effect that has been linked to its therapeutic
efficacy, making GSK3-B a plausible candidate gene for bipolar disorder (125).
Three studies have attempted to link a particular allelic variant in the promoter
of the gene encoding the GSK3-B protein with particular features of bipolar dis-
order. Benedetti et al. analyzed 185 bipolar disorder patients and reported that
homozygotes for the wild-type variant (T/T) of the promoter had an earlier age
of onset than the carriers of the mutant (T/C) allele. These authors further evaluated
the association of GSK3-B with the response to both total sleep deprivation and to
lithium treatment in bipolar patients. In both cases, a moderate association was
made between the mutant allele (T/C) and an enhanced response to both thera-
peutic interventions relative to the (C/C) or (T/T) variants (126–128). Although
these associations are intriguing, sample sizes were small and differences in
allele frequency in different populations may introduce a bias. Importantly, there
is currently no experimental evidence that the particular allelic variant in the
GSK3-B promoter has any functional effect on GSK3-B gene expression or on the
expression of any constituent of the circadian clock in humans. Both larger
sample sizes as well as basic research on the functional role of GSK3-B variant
are necessary before any firm conclusions can be drawn.

CONCLUSION

Although not all patients with bipolar illness show evidence of sensitivities to bio-
logical rhythm or sleep disruption, nor do all patients respond to treatments that
normalize these rhythms, there is evidence that these abnormalities are important
in the disease process for at least a subset of bipolar patients. Given the increasing
recognition of etiological heterogeneity in bipolar illness, a critical next step is to
identify particular groups of patients who present with these abnormalities and
determine whether the abnormalities are merely epiphenomena of the disorder,
or, rather, are causally related. Advances in basic science and technology, including
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the sequencing of the human genome and refinements in neuroimaging technology,
will help to expand and refine our understanding of the central nervous system
mechanisms disrupted in bipolar disorder.
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INTRODUCTION

Until recently, the possibility of viruses or other infectious agents being involved
in the etiology of bipolar disorder had not been seriously considered. For
example, in their 782 page Manic-Depressive Illness, published in 1990, Goodwin
and Jamison (1) covered viral factors in two pages, almost all of which was
devoted to viral factors in unipolar depression, not bipolar disorder. A major
reason for the neglect of a possible viral etiology of bipolar disorder has been the
widespread assumption that it is predominantly or exclusively genetic in origin.

Findings suggest that viruses and other infectious agents should be
considered as part of a multifactorial etiological pathway for at least some cases
of bipolar disorder: viral infections are strongly influenced by genetic factors, and
thus viral and genetic etiologies are not incompatible; viral central nervous
system (CNS) infections may mimic bipolar disorder; and season-of-birth, urban
birth, and perinatal studies all point toward an environmental risk factor in
bipolar disorder that may be a virus. This chapter summarizes these three factors
and then discusses recent findings of specific infectious agents and bipolar disorder.
Immunological research, which is also consistent with an infectious etiology, is
discussed elsewhere in this volume.

GENETIC FACTORS IN MICROBIAL INFECTION

At first glance, the postulate that infections and other environmental factors may
play a role in the etiopathogenesis of bipolar disorder seems to contradict the
large body of evidence presented elsewhere in this volume indicating that
genetic factors are important predictors of disease susceptibility. However, it is
becoming increasingly clear that host factors under genetic control are major deter-
minants of host susceptibility to infectious agents and to the response to infection
after it has occurred (Table 1).

The human genes with the clearest association with susceptibility to infection
are those that encode components of the immune system. There are many single-
gene disorders associated with a complete ablation of a major component of
the immune system, such as major defects in T cells, B cells, macrophages, or
complement cascade (2). These rare defects are generally associated with serious,
often life-threatening, infection and are associated with a substantial rate of

209



morbidity and mortality (3). However, there are also more subtle genetic alterations
that are often specific for susceptibility or resistance to infection with defined patho-
genic agents. These polymorphisms are generally more common in human popu-
lations than single-gene defects leading to complete immunodeficiency (4).

The human infectious agents that have been studied in most detail in terms of
genetic patterns of susceptibility and resistance are the plasmodia that cause
malaria. Interest in genetic interactions between malaria parasites and host
genes was initiated by Haldane (5), who noted in 1948 that sickle cell disease,
thalassemia, and other homoglobinopathies were most prevalent in areas of the
world where malaria is endemic. Since this original observation, more than
120 mutations in the hemoglobin molecule have been identified that are associated
with protection against malaria. The mechanism by which altered hemoglobin
provides against malaria is not known with certainty but may be related to the
increased clearance of parasites in altered erythrocytes or by decreased parasitic
growth under conditions of lowered oxygen concentrations. Susceptibility to
malaria has also been associated with genetic polymorphisms in other molecules,
including HLA class I, HLA class II, and tumor necrosis factor alpha (TNF-a).
Epidemiological studies have indicated additional, as yet unrecognized, factors
that contribute to susceptibility to malaria. The large number of polymorphisms
associated with susceptibility to malaria is a testimony to both the pervasiveness
of malaria as a human pathogen and the diversity by which genetic mechanisms
may determine susceptibility and resistance to an infectious agent (6).

The association between genes and susceptibility to malaria has led to the
search for genes that confer susceptibility to other parasitic agents. For example,
investigators have identified a region on chromosome 5 (5q31-33) that is associated
with susceptibility to Schistosoma mansoni. Known genes in this region include a
gene cluster that encodes a number of immunologically active molecules, including
granulocyte-macrophage colony stimulating factor, immune regulatory factor 1,
and interleukins 3, 4, 5, and 13 (7). An analysis of parasitic infections in Brazil
identified additional regions that may determine susceptibility to leishmaniasis,
including HLA II and HLA III, and a region on chromosome 17q that encodes a
number of inducible cytokine molecules. Susceptibility to leishmaniasis may also
be determined by polymorphisms in the gene encoding the promoter region of

TABLE 1 Genetic Determinants of Infection

Immunological activity
T cells—cell-mediated immunity
B cells—antibody generation
Macrophages
Complement
Cytokines
Interferons

Microbial receptors
Monokines
Lectins
Fusin
Mannose-binding proteins

Miscellaneous
Hemoglobin variants
Blood groups
Determinants of mucosal integrity
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TNF-a (8). Finally, a study of hookworm in Gambia concluded that approximately
37% of the susceptibility to this infection was related to genetic factors; however,
the specific genetic factors have not yet been determined (9).

Genetic factors have also been recognized as important factors in sus-
ceptibility to bacterial infections. Although such factors have been recognized in
terms of the response to pyogenic bacteria such as Haemophilus influenzae (10),
most information in this area had been directed at slow-growing intracellular bac-
teria, particularly those of the family mycobacteraciae. For example, susceptibility
to Mycobacteria tuberculosis has been linked to the Nramp locus on human chromo-
some 2. This locus appears to control the functioning of bactericidal activity within
cells of the macrophage lineage and is thus central in determining the intracellular
survival of mycobacteria after phagocytosis (11). This gene locus may also be a
major determinant of disease response to other mycobacteria, including those
that cause leprosy. The response to lower pathogenicity mycobacteria, such as
bacillus C-G, is determined by another gene that encodes the receptor for TNF-a.
Individuals with defects in this gene have deficient upregulation of TNF-a
after infection with mycobacteria and subsequent deficiencies in bacterial clearance
(12). The response to mycobacteria may also be determined by other genes such
as the 5q31-33 and 17q loci described above. Genetic factors may also play a
role in the response to other slowly growing bacteria. For example, susceptibility
to Helicobacter pylori, the organism that causes intestinal ulcers, is determined,
to a great extent, by DQA genes that are components of the human major histocom-
patibility system (13).

The response to viral infection is also determined, in part, by genetic factors.
For example, infection with Epstein-Barr virus results in asymptomatic or mild
infection in most individuals. However, some infected individuals will develop
overwhelming infections or malignant tumors due to mutations involved in the
immune response to infection (14). The response to other viral agents, such as
those causing hepatitis, is also under the control of a number of genes, including
those that encode the TNF-a promoter, mannose-binding proteins, and components
of the histocompatibility locus (15). A striking example of genetically encoded
protection against viral infection is provided by analyses of infection with
human immunodeficiency virus type 1 (HIV-1). In this case, individuals with
homozygous mutations in the viral coreceptor CCR5 are protected against
infection despite exposure to high levels of infecting virus (16,17). Heterozygosity,
although not associated with protection, may result in a slower course of disease
progression in infected individuals (18). Interestingly, these mutations, which
occur in 1% to 3% of individuals of European extraction, do not appear to have a
deleterious effect on the host (19). The discovery of these protective genes has led
to research directed at providing similar protective mechanisms to individuals
who are not genetically endowed with this inherent mechanism of disease
protection.

It can be seen from the above discussion that many genes determine the sus-
ceptibility to human infectious diseases. Furthermore, the clinical manifestations of
these genes depend, to a great extent, on individual environmental exposures; most
genes do not have any effect on individuals who are not exposed to the infectious
agents. Genes of a similar nature could be operant in psychiatric diseases such as
bipolar disorder in that they may confer susceptibility to infectious agents in the
absence of other clinical manifestations. This concept is consistent with the fact
that most studies of the genetics of bipolar disorder have identified multiple
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genomic regions of weak effect, none of which appear to be completely determinant
for disease acquisition (20). It is of note in this regard that many regions associated
with the acquisition of human psychiatric disease, such as 6p, contain several
genes involved in the immune response to infectious agents (21). Further studies
of the genetics of bipolar disorder are likely to identify additional regions
involved in the immune response to infectious agents. However, the role of these
genes in the pathogenesis of bipolar disorder is unlikely to be accurately evaluated
without corresponding data related to exposure to infectious agents and other
environmental stimuli of the immune response.

VIRAL INFECTIONS OF THE CNS AND BIPOLAR DISORDER

The epidemic of HIV infection has served as a reminder that many viruses can
infect the central nervous system (CNS) and cause symptoms that are clinically
identical to the symptoms of bipolar disorder. For example, Harris et al. (22)
described 31 cases of new-onset psychosis in HIV-infected individuals. Of these,
25 had “mood and/or affective disturbance,” including nine with depressions,
three with euphoria or irritability, and two with both depression and euphoria.
Many of these individuals responded to antipsychotic medication. The Epstein-
Barr virus, which causes mononucleosis, can also cause bipolar-like symptoms.
For example, Weinstein et al. (23) described a 22-year-old woman who developed
“auditory hallucinations, pressure of speech and flight of ideas” one week after
having been diagnosed with mononucleosis. Similarly, Goldney and Temme (24)
described a 23-year-old woman with the onset of flight of ideas and mania six
weeks after mononucleosis; her psychiatric symptoms were controlled with
lithium but recurred when the lithium was stopped.

Koehler and Guth (25) described a 41-year-old man who had severe depres-
sion lasting three weeks and then abruptly switched to having classic mania
with pressure of speech, flight of ideas, psychomotor agitation, and grandiosity.
Symptoms of depression or mania lasted intermittently for six months, with a
good response to antipsychotic medication. Because he had a headache and stiff
neck at the onset of his illness, a lumbar puncture was done and revealed a
diagnosis of underlying herpes simplex encephalitis.

A similar case, suspected of being caused by Coxsackie virus, was reported by
Myers and Dunner (26). A 28-year-old woman developed increased energy,
decreased need for sleep, elation, pressure of speech, hypersexuality, and
disorganized behavior and was diagnosed as having bipolar disorder, manic
type. She was treated with antipsychotic medication and lithium, with improve-
ment of her symptoms. She then developed a fever, headache, and stiff neck; a
lumbar puncture and electroencephalograph were therefore done and suggested
a diagnosis of viral encephalitis. Her symptoms abated on medication, and she
was maintained on lithium for six months, at which time it was discontinued.
Six months later, she relapsed and had a second episode of mania.

There is, of course, no way to conclusively prove a cause-and-effect relation-
ship in such cases and rule out a coincidental but unrelated onset of bipolar
disorders and encephalitis. However, the co-occurrence of bipolar disorder symp-
toms with encephalitis has been repeatedly noted since the early 1900s and such
descriptions were especially prominent after the influenza pandemic (27) and
during the epidemic of encephalitis in the 1920s (28,29).
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ENVIRONMENTAL RISK FACTORS FOR BIPOLAR DISORDER

Despite the fact that genes are known to play a prominent role in the etiology of
bipolar disorder, it is also known that nongenetic environmental factors are also
operant. The pairwise concordance rate for bipolar disorder among monozygotic
twins was 56% (44/79 pairs) in five European studies (30), suggesting that environ-
mental factors also play a significant role. Recent studies of these environmental
factors are consistent with an etiological role for viruses.

One environmental factor is the season of birth of individuals who later
develop bipolar disorder. Torrey et al. (31), using time series analysis in a study
of 18,021 individuals in four states who were diagnosed with Diagnostic and
Statistical Method, 3rd edition serial (DSM-III-R) bipolar disorder, reported a
5.8% excess of births in December through March compared with 27.3 million
general births in the same states for the same years. Especially noteworthy were
the results in North Carolina, which had an 18% excess of bipolar disorder births
for February and a 22% excess for March. In this study, the 5.8% bipolar disorder
winter birth excess was slightly greater than the 5.0% excess for undifferentiated
schizophrenia for the same months. Individuals with severe depression showed a
different birth pattern, with a 5.4% excess for March, April, and May. The results
of this study of bipolar disorder births are consistent with four other studies of
bipolar disorder with much smaller numbers and are also consistent with previous
seasonal birth studies of manic-depressive psychosis and mania (32).

Urban birth is now a well-described risk factor for the development of later
schizophrenia, but far fewer studies have been done on bipolar disorder. A study
in The Netherlands reported some support for regarding urban birth as a risk
factor for “affective psychosis” (33), but studies from Denmark, using the Danish
Case Register, did not find an association for either affective psychosis or bipolar
disorder (34).

Another environmental factor that predisposes individuals to the later devel-
opment of bipolar disorder is having complications of pregnancy or delivery. Lewis
and Murray (35), using retrospective maternal histories, rated definite obstetrical
complications in individuals with one of eight different psychiatric diagnosis,
including 110 with bipolar disorder. Individuals with schizophrenia (17%) and
anorexia nervosa (16%) had the highest percentage of definite obstetrical compli-
cations, followed by bipolar disorder (11%), unipolar depression (10%), other
psychosis (7%), personality disorder (6%), neurosis (5%), and alcoholism and
drug dependence (3%).

Kinney et al. (36) compared obstetrical complications in 16 individuals with
DSM-III-R bipolar disorder and 20 of their unaffected siblings by blindly rating
their obstetrical records. The weighted-sum score for the affected individuals was
3.56 compared with 1.95 for their siblings (Wilcoxon test, p ¼ 0.01). According to
the authors, “the higher obstetrical complications (OC) scores in bipolar probands
were due to moderate elevations in the rates of a variety of different OCs.”

Viral Etiology in Bipolar Disorder
Using prospectively collected data from the 1958 British Perinatal Morality Survey,
Sacker et al. (37) compared 44 individuals with affective psychosis as diagnosed by
the Catego system with 16,812 control subjects. Among the 44 individuals, 15 had
mania, nine had depressive psychosis, and 20 had retarded depression. Compared
with control subjects, the group of individuals with affective psychosis had more
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mothers over age 34 at the time of delivery (p , 0.05) and more cesarean sections
and forceps deliveries ( p , 0.05), had been lighter at birth (,2500 g; p , 0.01),
had been more premature (gestation ,37 weeks; p , 0.01), and had been given
vitamin K at birth more often because of a risk of bleeding (p , 0.01).

Recent research, however, has cast doubt on the importance of perinatal
complications in bipolar disorder. Klaning et al. (38), using the Danish case register,
compared the incidence of bipolar disorder among twins, which are known to have
more perinatal complications, and singleton births; the incidence was found to be
the same. Scott et al. (39) examined all the relevant studies in a meta-analysis and
concluded that “there is no robust evidence that exposure to [obstetrical
complications] increases the risk of later development of BP [bipolar disorder].”

Findings for Specific Infectious Agents
In the modern era, the first infectious agent to be tentatively linked to the etiology of
bipolar disorder was the borna disease virus (BDV). Two studies in the 1980s
reported increased BDV antibodies in patients with unipolar and bipolar
depression (40,41). Interest in BDV increased in the 1990s when Salvatore et al.
(42) reported finding BDV in two out of five postmortem brain samples from
patients with bipolar disorder and Bode et al. (43) described a BDV-positive
patient with chronic bipolar disorder whose symptoms improved dramatically
when treated with amantadine, an antiviral medication.

Since that time, interest in BDVas a possible etiologic factor in bipolar disorder
has waned. Studies of BDV antibody in the sera of bipolar patients by Fu et al. (44),
Sauder et al. (45), Kim et al. (46), and Terayama et al. (47) have yielded negative find-
ings; additional unpublished studies in our laboratory have been uniformly nega-
tive. Studies of BDV in patients with unipolar depression have been modestly
more promising, and additional research may be warranted for that condition.

An infectious agent that has been intensively studied in relationship to its
possible role in causing schizophrenia is the influenza virus. For bipolar disorder,
there are fewer studies, and most of those combine bipolar disorder with unipolar
depression, with or without psychotic features, thus making any definitive view
of bipolar disorder problematic. In the study of Sacker et al. cited above (37),
there was a weak trend ( p , 0.1) for the mothers of the individuals with affective
psychosis to have had more influenza during pregnancy. Machón et al. (48) in
Finland reported a significant (p , 0.002) increase in the births of individuals
with “unipolar forms of major affective disorder” and a trend (p , 0.05) for an
increase of individuals with “bipolar forms of major affective disorder.” Cannon
et al. (49) in Ireland also reported a significantly (p ¼ 0.003) increased risk of
depressive disorder in the offspring of mothers exposed to influenza but no increase
in bipolar disorder. Three other studies in England (50), Queensland (51), Western
Australia (52) that examined the risk of affective disorders in offspring after
maternal exposure to influenza during pregnancy reported negative results.

The most interesting infectious agent to emerge from recent research on
bipolar disorder has been the herpes simplex virus, type 1 (HSV-1). This virus
has long been of interest to psychiatric researchers because of its known propensity
for neurotropism in general and its affinity for limbic tissue in particular, as well as
for its ability to remain latent in the brain and periodically recur. Cases of known,
HSV-2 encephalitis with clinical features of bipolar disorder have been well
described.
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In a series of studies Dickerson et al. (53,54) have shown that individuals
with schizophrenia and those with bipolar disorder who also have past exposure
to HSV-1, as demonstrated by antibodies, are significantly more likely to have
greater cognitive dysfunction, especially recent memory deficits, as measured
by the Repeatable Battery for the Assessment of Neuropsychological Status
(RBANS) test. In the bipolar study 49 patients who had HSV-1 antibodies had an
RBANS score of 77.5, compared with 68 patients who did not have antibodies
who had an RBANS score of 90.3 (p , 0.00002). Among the patients who had the
lowest RBANS scores (lowest quartile), 65 percent had HSV-1 antibodies; among
patients who had the highest scores (highest quartile), only 14 percent had HSV-1
antibodies. Treatment with lithium, other mood stabilizers, or antidepressants and
other possible confounding variables did not account for the association. There was
also no significant association between RBANS-measured cognitive dysfunction and
antibodies to other herpes family viruses, specifically HSV-2, Cytomegalo virus
(CMV), Epstein-Barr virus (EBV), Varicella-Zoster virus (VZV), or human herpes
virus-6 (HHV-6). The association between cognitive dysfunction andHSV-1 antibodies
was found only in the patient population and did not exist among the normal controls,
suggesting an interaction between the infectious agent and the disease.

Since it is known that genes play a significant role in the etiology of bipolar
disorder, Dickerson and her colleagues, using the same patients as in the above
study, examined a polymorphism on the catechol-O-methyltransferase gene at
amino acid 158 (COMT Val 158 Met polymorphism) to ascertain whether it might
explain the association of cognitive dysfunction and HSV-1 antibodies. They
found that the polymorphism and HSV-1 antibodies were both independent risk
factors for the cognitive dysfunction but that individuals with bipolar disorder
who had both “were more than 85 times more likely to be in the lowest quintile
of cognitive functioning as compared with the highest quintile when controlling
for potential confounding variables such as symptom severity and education”
(55). This strongly suggests an interaction between a genetic predisposition and
an environmental (specifically, infectious) factor.

Finally, there is a preliminary study linkingToxoplasma gondii to bipolardisorder.
T. gondii is a coccidian protozoawhose definitive host is felines. It is known to cause a
congenital syndrome when transmitted from the mother to the fetus early in preg-
nancy, but later perinatal infection or postnatal infection have been thought to be rela-
tively benign. In recent years, however, several research groups have reported
significantly increased antibodies to T. gondii in individuals with schizophrenia (56).
A study of 148 outpatients with bipolar disorder and 170 controls has also reported
an increase in T. gondii antibodies (Odds Ratio 5.4; p , 0.001) (57).

CONCLUSIONS

Bipolar disorder is a complex human disease state that may represent the
interaction of genetic susceptibilities and environmental risk factors. These environ-
mental factors may include infections and the inflammatory response to infectious
agents. It is of note in this regard that there are several pathways by which
infectious agents can induce disease processes. In classic infectious diseases,
there is a clear cause-and-effect relationship between acquisition of the infectious
agent and the initiation of the disease process. This is the case for agents that
conform to Koch’s postulates of cause and effect. As depicted in Figure 1, this is
the pattern followed by highly contagious infections such as plague, cholera, and
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measles that cause disease in virtually all susceptible individuals who are exposed
to a suitably large infectious dose. However, microbial agents can also induce
disease by less direct pathogenic mechanisms. For example, there are agents that
only cause disease in a subset of infected individuals. The factors that determine
which individuals become infected are determined by both genetic susceptibilities
and environmental factors such as nutritional status (Fig. 2). Finally, there are
infectious agents that initiate disease processes that can also be initiated by nonin-
fectious agents such as toxins. As depicted in Figure 3, these agents generally cause
chronic diseases of organ systems. In light of the above discussion concerning
genetic factors, it is likely that if infectious agents are involved in the pathogenesis
of bipolar disorder and other human psychiatric diseases, they are operating
following the model outlined in Figure 2 or 3. However, it is of note that for both

FIGURE 1 Model for infectious diseases for which there is a correspondence between a single
infectious agent and a defined disease process. The mediators of the disease process are
designated within the box.

FIGURE 2 Model for infectious diseases where infection may or may not lead to a disease state,
depending on the microbial and host factors designated within the box.

FIGURE 3 Model for infectious diseases in which infectious agents may combine with other
environmental factors to initiate a disease process. The expression of the disease process is also
modulated by the microbial and host factors designated in the box.
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models the successful prevention or treatment of the infectious agent would
result in a substantial decrease in both disease incidence and morbidity.

The identification of specific environmental factors related to bipolar disorder
would result in the development of improved strategies for the diagnosis and
management of this devastating disease.
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B12 EEGs and ERPs in Bipolar Disorders

R. Hamish McAllister-Williams
School of Neurology, Neurobiology, and Psychiatry, University of Newcastle
upon Tyne, Newcastle upon Tyne, U.K.

INTRODUCTION

The first report of an electroencephalographic (EEG) recording from amammal was
made more than a century ago (1) and the first human recording over 65 years ago
(2). A search of PubMed for papers referring to EEG or event-related potentials
(ERPs) and bipolar disorder (BD) flags nearly three hundred items (between 1966
and December 2005). However, of these papers, over two-thirds are more than 10
years old. EEG and ERP studies are not new but certainly are not increasing at
the rate seen with other experimental methodologies in psychiatric illnesses, such
as functional magnetic resonance imaging (fMRI) and molecular studies. Put
bluntly, EEG is not a “sexy” topic. This stems largely from the technique not deli-
vering important findings after years of study, with a few notable exceptions
such as the diagnosis of epilepsy and sleep disorders. However, EEG and ERP tech-
niques still have much to offer in the further elucidation of the pathophysiology of
mood disorders if used in appropriate ways. In the past, much reliance has been
placed on the visual inspection of paper and ink EEG recordings and rather
simple ERP paradigms with no a priori hypothetical rationale behind their
design. While this situation continues in clinical electrophysiology to a large
extent, the increasing use of novel computational analysis of EEG and ERP data,
often coupled with specific pharmacological or cognitive challenges, offers exciting
prospects for the future. This chapter is a selective review of EEG and ERP data to
illustrate this argument. It is not a comprehensive review of all of the EEG studies in
BD. In particular, sleep EEG research is not covered at all. The chapter is written
with the non-EEG specialist bipolar researcher in mind.

THE NORMAL EEG

The EEG [together with magneto-encephalography (MEG)] has an advantage over
any other form of functional imaging, such as fMRI or positron emission tomogra-
phy (PET), in that it records signals that are the direct result of electrical activity of
neurons, rather than some “downstream” consequence such as changes in oxygen
utilization or blood flow. Partly as a result of this, EEG and MEG have temporal
resolutions that are generally an order of magnitude better than fMRI or PET.
EEG also has an advantage of being relatively inexpensive, easy to conduct, and
well-tolerated compared with both fMRI and PET and does not require the use of
radio-ligands as in PET. This facilitates multiple recordings in subjects, such as in
cross-over or longitudinal studies. However, the EEG does have some drawbacks,
most notably problems of spatial resolution. This relates to how and what EEG
electrodes record.
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The EEG is generated by inhibitory and excitatory postsynaptic potentials at
cortical neuronal synapses. These postsynaptic potentials summate in the cortex
and can be recorded at the scalp as EEG. Action potentials probably do not contrib-
ute significantly to the EEG because there is little penetration of these into extra-
cellular space and hence transmission to the scalp. Rather, scalp EEG electrodes
record the summation of postsynaptic potentials of large areas of pyramidal
neurons in the underlying cortex. For a signal to be detectable these neurons
must be firing simultaneously with the cells oriented in parallel at 908 to the
plane of the scalp. Knowing this, one might wonder that it is possible to record
any electrical activity at the scalp. However, many cortical areas have intrinsic oscil-
latory activity that occurs synchronously across large groups of cells generating
rhythmic EEG activity. Cortical neuronal firing is heavily influenced by the thala-
mus which also has intrinsic oscillatory activity. In addition, many systems
project from the brainstem and basal forebrain areas and are able to alter cortical
rhythmic activity such as by desynchronizing cell firing. However, it should be
remembered that the EEG only directly records activity from superficial cortical
areas. Another problem in interpreting EEG data is that the polarity of the signal
is not determined simply by whether the postsynaptic potentials are excitatory or
inhibitory, but also by the location and orientation of the neurons. As a result it is
not possible to deduce an electrical response as reflecting activation or inhibition
in a neuronal network from the polarity of the EEG. The electrical activity from
neurons must pass through the tissue between them and the EEG electrodes
(brain, CSF, skull, and scalp) and is attenuated and modified by this. The degree
of attenuation is determined by the degree of synchronization of the postsynaptic
potentials, the orientation of the neurons, and the size of the participating area of
cortex. All of these factors mitigate against localizing the source of the electrical
activity recorded at the scalp. In fact, there is no unique solution that can be calcu-
lated for any recording. Instead, source localization methods must make certain
assumptions to be able to find a solution (e.g., that the activity originates in grey
matter, that there are a limited number of electrical sources, and/or that activity
at any particular location closely resembles neighboring locations). Different tech-
niques make different assumptions and hence localize scalp EEG activity as
having originated in different intracranial locations. This is a major weakness of
EEG studies. For a full and detailed understanding of the spatial location of cortical
networks involved in any particular task, as well as the temporal relationship
between the various components of the network, both EEG (or MEG) need to be
conducted alongside other neuroimaging techniques such as fMRI.

In the past, EEGwas recorded from a few scalp electrodes, often placed on the
midline of the head, with an analog signal passing to a pen and paper chart recor-
der. The resultant tracers were analyzed simply by inspection by experienced EEG
analysts. Such individuals are able to identify aberrant activity, particularly that
associated with epilepsy. They are also able to identify gross changes in the quan-
tities of the common frequencies seen in the EEG (delta,4 Hz, theta 4–8 Hz, alpha
9–13 Hz, and beta.13 Hz). Nowadays, EEG recordings can be made from dozens,
if not hundreds, of electrodes placed across the scalp. Signals are digitized, allowing
computer-based analysis, such as Fast Fourier Transformations (FFTs) that calculate
the “amount” of different frequencies in the whole EEG, and attempts at source
localization. An additional method of obtaining extra information from the EEG
is to record this while a subject is performing a particular cognitive task. The
EEG record is subsequently divided into epochs time-locked to the presentation
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of a stimulus or the subject’s response. Several epochs associated with particular
stimuli and/or responses can then be averaged together. This is what is meant by
“event-related potentials” (ERPs). By doing this, “noise” (unrelated EEG activity)
is averaged out, leaving only the electrical activity that relates to the task
the subject was performing. Over the years there have been a number of ERP para-
digms developed using visual or verbal stimuli such as the “P300” and “miss-
match negativity” (MMN). Unfortunately, many of these tasks depend to a large
extent on a whole variety of psychological processes and so their interpretation is
at times difficult.

CLINICAL EEG ABNORMALITIES IN BIPOLAR DISORDER

The obvious starting point for considering EEG abnormalities in BD patients are
observations that patients with epilepsy have high rates of mood disorders (3) and
bipolar patients are not infrequently treated with anticonvulsants (4). However,
while epidemiological studies demonstrate that up to half of patients with epilepsy
have clinically significant depression and/or anxiety (3), BD does not occur with a
higher than expected frequency (5). Classic bipolar I disorder is rarely seen, and
manic episodes occur almost exclusively in the setting of postictal psychosis or
after epilepsy surgery (6,7). This raises the question whether affective disorders in
epilepsy are different from those seen in nonepileptic patients. It is possible that epi-
lepsy is associated with a specific interictal dysphoric syndrome related to limbic
dysfunction (7) that differs from the pathophysiology underlying nonepilepsy
related depression. Nevertheless, it is of interest to note that depression is more
common in patients with left temporal lobe epilepsy (8), which does suggest that
it is not simply psychosocial factors that account for the high rates of comorbidity.
Intriguingly, the nature and even the direction of the causality between depression
and epilepsy is not clear given findings that depressive illness is associated with a
sixfold increase in the risk of the development of seizures in an elderly population
(9). Perhaps the association between the two conditions may be merely a reflection
of some common underlying pathology.

Despite the observation of no increase in the rate of BD in epilepsy, Post has
previously suggested that a possible pathophysiological process in BD is similar
to one seen in epilepsy, namely “kindling” (see Chapter 18) (10). This hypothesis
is based on physiological findings showing that intermittent subthreshold electrical
stimuli produce increasingly strong neuronal depolarization in the brain through a
process of sensitization. It is suggested that processes such as kindling predict that in
BD, psychosocial stressors would be more frequent earlier in the course of illness,
with the severity of stressor needed to precipitate an episode of illness decreasing
over time leading to the frequency of episodes increasing as originally observed
by Kraeplin and subsequently by others (11). If this is the case, then it may be that
some subictal electrical dysrhythmia may be associated with the development of
BD and be evident in EEG recordings from patients.

Reviews of the EEGs of bipolar patients do reveal an abnormal slowing of delta
and theta EEG activity (12) and the presence of various small spikes and focal slow
waves, usually in the frequency range of 4 Hz to 7 Hz (13,14). Abnormalities are
reported in 15% to 50% of patients (15–17). Most studies report that abnormalities
are seen bilaterally, though reports of unilateral bias more commonly relate to the
right (16,18,19) rather than the left hemispheres (17). As already stated, the EEG
abnormalities may, however, simply reflect an underlying brain abnormality that

EEGs and ERPs in Bipolar Disorders 223



predisposes both to BD and abnormal EEGs. There may also be a difference in
the underlying pathophysiology of bipolar patients with andwithout EEG abnormal-
ities since the former are less likely to have a family history of the disorder (12,15–17)
than the latter. The spike and slow wave abnormalities are also not specific to
BD (13,14), though they are reported more often in bipolar and schizoaffective than
schizophrenic patients (14).

The obvious clinical question that follows from these observations is whether
or not the presence of an EEG abnormality in a patient with BD has therapeutic
implications. It has been shown that EEG abnormalities are a risk factor for treat-
ment resistance in BD (20). A small observational study suggests that the presence
of EEG abnormalities is predictive of a poor lithium response (21), while another
supports this and suggests that EEG abnormalities do not mitigate against response
to valproate (22). Further, one nonrandomized study in 115 patients who were pre-
dominantly lithium refractory found that, perhaps not surprisingly, patients with a
history of seizures were more likely to respond to the anticonvulsant valproate.
However, those patients who simply had some EEG abnormality but no previous
seizures only “tended” to respond better to valproate (23). To date there are no
randomized controlled trials of BD patients who exhibit EEG abnormalities. Until
there are, it is difficult to be clear about the implications of any abnormalities
detected in clinical practice, though they may reflect a subset of BD patients with
no family history of the disorder and perhaps a different underlying pathology.

EFFECTS OF LITHIUM ON THE EEG

From a clinical perspective, the EEG currently has one main utility in BD: to identify
lithium neurotoxicity. Lithium has a narrow therapeutic range with serious side
effects seen at high plasma concentrations. Toxic symptoms become increasingly
common above serum levels of 1.2 mmol/L and affect the gastrointestinal tract, cer-
ebellum, and cerebrum. Early signs are mental lassitude sometimes occurring with
agitation. This can progress to confusionwith vomiting and diarrhea, coarse tremor,
Parkinsonism, ataxia, and dysarthria. Finally, seizures, coma, and death can result.
Of great concern is that long-term neurological deficits can result from acute lithium
toxicity in about 10% of cases (24). The problem the clinician faces is that neurotoxi-
city can occur at therapeutic plasma concentrations of lithium (25). The most
common presentation is of an encephalopathy, but (rarely) focal neurological
disturbances, psychotic episodes, or cognitive deficits can occur (26). Lithium neu-
rotoxicity appears to be more common in patients with pre-existing EEG abnorm-
alities [particularly temporal lobe epilepsy (27)]. Prompt diagnosis and treatment of
neurotoxicity may decrease the risk of long term sequelae. Essentially, the diagnosis
is made on clinical grounds, with lithium plasma levels being of little value unless
clearly raised. However, the EEG has a characteristic pattern in lithium neurotoxi-
city and so can aid diagnosis. There is an increase in theta and delta activity
with diffuse slowing and background disorganization (28). While clinical improve-
ment can be paralleled by improvements in the EEG, full resolution of all EEG
abnormalities can be delayed by some months.

CONVENTIONAL ERP ABNORMALITIES IN BIPOLAR DISORDER

Perhaps the most studied conventional ERP paradigm in BD is the auditory evoked
“P300” (or “P3”). This usually involves presentation of auditory tones to subjects,
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the majority of which are identical with random deviant tones occurring at a low
frequency (perhaps 1 in 10 tones). When the ERPs related to the standard tones
are compared with those related to deviant ones, the “deviant ERPs” show a
large positive going deflection occurring around 300 ms following the onset of
the tone. These “P300” deflections reflect multiple cognitive processes including
attention, working memory, and higher auditory processing and originate from
multiple cortical areas (29). In BD, as in schizophrenia (30) and depression (31),
there are reports of a delay in the latency of the P300 component compared with
that seen in healthy subjects (30,32,33). However, while in schizophrenia there
are also reports of a reduction in P300 amplitude (30), this is a more equivocal
finding in BD (30,33,34). The problem comes from interpreting these findings and
considering their implications. It has been found that an increased P300 latency cor-
relates with ratings of insomnia in patients (31) and may reflect impaired atten-
tional processing (31,33). Alternatively or additionally, prolonged P300 latency
may indicate possible abnormalities with auditory processing itself, though the
case for this is stronger in schizophrenic patients. This is argued on the basis that
abnormalities of earlier auditory ERP components (N1 and P2) are abnormal in
some studies of schizophrenic but not bipolar patients (33). This may relate to
psychosis per se rather than particular diagnoses since abnormalities in early audi-
tory ERP components in bipolar patients have been reported to correlate with a
longitudinal history of psychosis (35). It has also been suggested that the P300
may predict response to certain treatments, such that a “normal” P300 predicts
rapid response to ECT in melancholic depression (36). However, there are few
such studies in BD. Perhaps of greatest significance is a suggestion that P300
abnormalities may be a manifestation of some underlying trait abnormality since
they are seen at an increased frequency in at least some families of patients with
BD (32). It has subsequently been shown that P300 amplitude and latency cosegre-
gates with the recently described DISC1 and DISC2 genes on chromosome 1 (37)
that are risk factors for both schizophrenia and BD (38). It may be that these ERP
findings can thus be used as a biological marker of genetic risk.

Another auditory ERP that has been extensively studied in psychiatric popu-
lations is the MMN paradigm. This ERP technique involves presenting subjects
with auditory stimuli that follow some regular pattern. When there is some
deviation to this standard pattern, a negative deflection is seen around 150 ms
after the onset of the stimulus, even when subjects do not attend to the task. It
is argued that this deflection reflects sound processing (39). Of particular import-
ance, the MMN has been shown in animal and human studies to index N-methyl-
D-aspartate (NMDA) functioning (40,41). This is of interest since the MMN is
reliably found to be abnormal in schizophrenia (42–44), supporting hypotheses
of a glutamate abnormality underlying this illness. It is reported that the MMN
is normal in BD (44), though it would be of interest to explore this further exam-
ining for abnormalities in patients who have experienced or are experiencing
psychotic phenomena.

FUTURE OPPORTUNITIES FOR EEG AND ERP STUDIES
IN BIPOLAR DISORDER

With the exception of the diagnosis of lithium neurotoxicity, the EEG has little
current clinical utility in the management of BD. Further, conventional EEG analy-
sis and classical ERP studies have proved of limited value in the study of the
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etiopathogenesis of the disorder. However, to disregardEEG techniques in the study
of BD is to discard a potentially valuable technique that supplements other research
methodologies. The utility of the EEG in the study of any psychiatric illness is ham-
pered by the largely unsolved problem of extracting the relevant information from
the recording in a theory-guided manner. However, there are an increasing
number of ways that this problem can be solved. This relates to new statistical
methods of examining the EEG and coupling recordings with pharmacological
and/or cognitive challenges. This will be illustrated below.

Evolving Quantitative EEG Techniques
As described above, in the past, analog EEG signals were recorded on pen and ink
chart recorders. Now it is possible to digitize the signal for storage and analysis on
computers. Quantitative analysis of the EEG (qEEG) using FFTs is able to identify
alterations in the frequency components of the signal that would not be visible to
the naked eye. Such techniques have extended the previous observations of abnor-
mal EEGs in BD, for example showing increases in right temporal lobe theta and left
occipital beta frequencies (45). However, perhaps the most exciting of the new
methods of EEG analysis relate to methods for analyzing alterations in the synchro-
nization of various frequency components. It has been argued that synchronous
neuronal activity (precisely that recordable by EEG techniques), particularly at
high frequencies (upper alpha, 10–13 Hz; beta, 13–30 Hz; and gamma, .30 Hz)
is a mechanism by which there can be a functional integration of brain networks
during cognitive tasks. For example, during a working memory task, EEG record-
ings demonstrate an increase in synchronization of beta activity across bilateral
sites (46). By simultaneously recording EEG and fMRI it is possible to show that
this change in beta synchronization is associated with linkage between cross-hemi-
spheric regions (left angular gyrus and right superior parietal gyrus) and among
anterior–posterior regions (right dorsolateral prefrontal cortex, putamen, and
right superior temporal gyrus) (46). These are interesting observations not least
because they illustrate that by combining EEG and fMRI techniques, the advantages
of both (the ability to directly record neuronal electrical activity with high temporal
resolution, and high spatial resolution, respectively) can be combined. Using this
EEG methodology, it has been shown, for example, that synchronization decreases
with age and correlates with decrease in executive function performance (47), and is
lower in Alzheimer’s disease (48) and schizophrenia (49). It has been argued that
these findings reflect a breakdown of the synchrony of neural networks and that
this underlies the cognitive impairment seen in these conditions.There have been rela-
tively few similar studies in BD, but it has been reported that long-range synchrony is
reduced (50) and that there is abnormalhigh frequency synchronization (51). Thegreat
importance of synchronization experimentally is that it can be studied in vivo and in
vitro in animals. This has, for example, allowed the demonstration that nicotinic
acetylcholine receptor alpha subunits (52) and GABAA alpha5 receptors (53) play an
important role in the regulation of gamma oscillations in hippocampus. It is hoped
that as knowledge of the physiology and pharmacology of this brain oscillatory beha-
vior becomes increasingly understood, the EEGwill be able to act as an important tool
to explore hypothesized abnormalities in various psychiatric conditions including BD
and assess the effects of pharmacological challenges. In this regard, it is interesting to
note that repetitive transcranialmagnetic stimulation (rTMS) has been shown to influ-
ence gamma activity in prefrontal cortex (54) and that perhaps this plays a role in the
therapeutic activity of this treatment.
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A number of studies have specifically linked changes in synchronous EEG
activity with various cognitive functions. The increase in synchronization of beta
activity during working memory tasks has been described above (46), which is
of interest given the findings of working memory deficits in BD (55). Another
example that may also be relevant to BD are findings suggesting that the ratio
between delta and beta frequency activity is a biological maker of motivation, par-
ticularly the subject’s relative balance between reward- and punishment-driven
behavior (56). Interestingly, this ratio of delta to beta activity is influenced by
endogenous cortisol concentrations as a result, it has been argued, of cortisol-
enhancing subcortical–cortical communication, particularly strengthening cortical
control of subcortical drives (57). This provides a possible mechanism by which
motivation and behavior is influenced by stress as well as in BD, given findings
of abnormal hypothalamic-pituitary-adrenal (HPA) axis functioning (58).
There are clearly a number of lines of investigation needed to further clarify
these potential interactions.

Pharmaco-EEG Techniques
Pharmaco-EEG offers promise to the study of BD by following the example of
MMN studies in schizophrenia (described above) in identifying EEG indices of
neurotransmitter function. A number of possibilities exist. For example, it has
been shown by a number of groups that the systemic administration of buspirone
to healthy subjects leads to a negative shift of the awake EEG frequency spectrum
(due to an increase in theta and decrease in alpha activity) following buspirone
(59–62). Although buspirone is a relatively nonselective drug, the effects on the
EEG frequency spectrum may be mediated by somatodendritic 5-HT1A receptors.
This is supported by a number of observations. Firstly, the shift in EEG frequency
spectrum is mimicked by other more selective 5-HT1A partial agonists in man
(62,63) and is seen in animals following administration of buspirone as well as
the highly selective full 5-HT1A receptor agonist 8-OH-DPAT (64). Secondly,
source localization of the effect of buspirone using low resolution electromagnetic
tomographic analysis (LORETA) demonstrates a significant increase in theta EEG
activity in the hippocampus as well as neighboring cortical areas (62). Hippocam-
pal theta activity is well-known to be under ascending serotonergic control (65).
Animal studies using local application of 8-OH-DPAT into the raphe have
indicated that activation of somatodendritic 5-HT1A receptors causes a decrease
in hippocampal theta (66,67), an effect blocked by 5-HT1A antagonists (68).
Thirdly, a somatodendritic location for a 5-HT1A receptor-mediated negative
shift in the EEG frequency spectrum in man is also inferred from findings of
acute administration of SSRIs causing such a shift (69) and that pindolol
mimics, rather than blocks, the effect of buspirone on the awake EEG (70). Follow-
ing acute administration, SSRIs increase concentrations of 5-HT in the raphe nuclei
leading to somatodendritic 5-HT1A activation (71); pindolol acts as a 5-HT1A

antagonist at postsynaptic receptors but a partial agonist at somatodendritic recep-
tors (72). Taken together, these data indicate that the effect of buspirone on the
EEG frequency spectrum is a potentially valid index of somatodendritic 5-HT1A

receptor function. Using this methodology, it has recently been reported that
drug-free depressed patients have an increase in this autoreceptor function that
would be predicted as leading to a decrease in the overall activity of the seroto-
nergic system (73). It would be of great interest to extend these studies into
BD patients.
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Cognitive ERP Techniques
In the same way as identifying the pharmacological basis of various EEG or ERP
measures can provide valuable information when studied in patient populations,
so can linking cognitive function with EEG techniques. This is being increasingly
done with measures of synchronization as described above. However, traditional
ERP methods are also able to provide information regarding neuronal activity
underlying cognitive function that is not available with other methodologies.
A good example of this relates to the study of episodic memory retrieval.

When a past episodic memory is recollected, such as when a subject is pre-
sented with a “retrieval cue,” a mental representation of the past event is generated
involving a conscious reconstruction (74). It has been argued that there are “prere-
trieval” processes operating on the retrieval cue and “postretrieval” processes
operating on the products of retrieval (75). This hypothesis, and its neural under-
pinning, can be examined by studying the effects of brain lesions. For example,
bilateral damage to temporal lobes leads to an impairment of acquisition of new
memories and recollection of premorbid events, while prefrontal cortex lesions
have a limited effect unless highly elaborate encoding or retrieval is required
(76). The problem with lesion studies is that it is impossible to separate effects on
encoding and retrieval. To do this, functional imaging is required. fMRI studies
have shown that episodic memory retrieval is associated with bilateral parietal
lobe activation, reflecting activation of hippocampal memory stores (75).
However, in addition, complex retrieval tasks also lead to activation of the right
dorsolateral prefrontal cortex (75). This has been hypothesized to reflect the moni-
toring and evaluation of the products of retrieval, since the activity is greatest when
the information being retrieved is more ambiguous (77). ERP studies using specific
episodic memory retrieval paradigms have been used to explore the temporal
relationship between these two areas of activity and confirms that the right prefron-
tal activation begins later after stimulus presentation compared with the bilateral
parietal activity (78,79) consistent with the hypothesis. This illustrates the
utility of EEG studies in parallel with other forms of functional imaging in the
investigation of cognitive function.

This episodic memory retrieval ERP paradigm has been used to explore the
effects of corticosteroids given theories of a casual link between hypercortisolemia
and cognitive impairment in affective disorders (80). This has shown that cortisol
not only impairs recollection performance but also alters frontal cortex activity
(79), while the glucocorticoid functional antagonist dehydroepiandrosterone
(DHEA) improves performance apparently mediated by effects on parietal lobe
activity (81). Currently this ERP technique is being implemented in a cohort of
BD patients undergoing treatment with a glucocorticoid receptor antagonist and
the results are eagerly awaited.

CONCLUSIONS

EEG recordings have a role in the clinical management of patients with BD in aiding
diagnosis of lithium neurotoxicity. They have also demonstrated that there is a sig-
nificant minority of patients with a diagnosis of BD who exhibit EEG abnormalities.
Intriguingly, these patients may have a rather different underlying pathophysiology
as suggested by the lack of a family history of affective disorders. It is disappointing
that this has not been followed up to any extent to date. Likewise, while there are
hints that such patients may respond differently to medication, with a preferential
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response to anticonvulsants, there have been few if any attempts to develop specific
EEG criteria to classify this subgroup of patients or randomized controlled trials
(RCTs) performed to establish if there really is a management implication in
this differentiation.

The future holds immense potential for modern EEG techniques to add a
great deal of knowledge regarding the pathophysiology of BD. Quantitative analy-
sis, for example examining synchronous neuronal activity, may offer a window into
neuronal activity not available by any other experimental technique. Such studies,
in parallel with in vitro pharmacological investigations as well as neurocognitive
and molecular genetics, hold great promise. Similarly, the use of increasingly
specific cognitive and pharmacological challenges in combination with EEG and
ERP recordings offers the possibility of testing specific hypotheses regarding
brain function in patients.

Nevertheless, EEG techniques have not, so far, delivered the number and
importance of findings in BD (or psychiatric illness in general) that might have
been hoped for when they first became available for use in humans over 65 years
ago. The subsequent pessimism regarding EEGs that is found in many psychiatric
researchers, however, ignores some of the important findings that have been made
to date (which have often been inadequately followed up), but more importantly
fails to recognize the complementary role EEGs can play along side other research
techniques such as neuroimaging, cognitive neuroscience, neuropharmacology, and
neuroendocrinology. These opportunities are coming about because of exciting
developments in EEGmethodology and analysis. In illustrating a number of poten-
tial future avenues for research in BD using EEGs it is hoped that the vital role these
techniques can play will not be underestimated.

REFERENCES

1. Caton R. The electric currents of the brain. Brit Med J 1875; 2:278.
2. Berger H. Uber das elektrenkephalogramm des menschen. Arch Psychiat Nervenkr

1929; 87:527–570.
3. Harden CL. The co-morbidity of depression and epilepsy: epidemiology, etiology, and

treatment. Neurology 2002; 59(6 suppl 4):S48–S55.
4. McAllister-Williams RH. Relapse prevention in bipolar disorder: a critical review of

current guidelines. J Psychopharm 2006; 20(2 Suppl):12–16.
5. Harden CL, Goldstein MA.Mood disorders in patients with epilepsy: epidemiology and

management. CNS Drugs 2002; 16(5):291–302.
6. Nishida T, Kudo T, Nakamura F, et al. Postictal mania associated with frontal lobe

epilepsy. Epilepsy & Behavior 2005; 6(1):102–110.
7. Schmitz B. Depression and mania in patients with epilepsy. Epilepsia 2005; 46(suppl 4):

45–49.
8. Altshuler LL, Devinsky O, Post RM, et al. Depression, anxiety, and temporal

lobe epilepsy. Laterality of focus and symptoms. Arch Neurology 1990; 47(3): 284–288.
9. Hesdorffer DC, Hauser WA, Annegers JF, et al. Major depression is a risk factor for

seizures in older adults. Ann Neurology 2000; 47(2):246–249.
10. Post RM. Sensitization and kindling perspectives for the course of affective illness:

toward a new treatment with the anticonvulsant carbamazepine. Pharmacopsychiat
1990; 23(1):3–17.

11. Goodwin FK, Jamison KR.Manic-depressive Illness. NewYork: OxfordUniversity Press,
1990.

12. Hays P. Etiological factors in manic-depressive psychoses. Arch Gen Psychiatry 1976;
33(10):1187–1188.

13. Hughes JR. The EEG in psychiatry: an outline with summarized points and references.
Clin Electroencephalogr 1995; 26(2):92–101.

EEGs and ERPs in Bipolar Disorders 229



14. Inui K, Motomura E, Okushima R, et al. Electroencephalographic findings in patients
with DSM-IV mood disorder, schizophrenia, and other psychotic disorders. Biol
Psychiatry 1998; 43(1):69–75.

15. Kadrmas A, Winokur G. Manic depressive illness and EEG abnormalities. J Clin
Psychiatry 1979; 40(7):306–307.

16. Cook BL, Shukla S, Hoff AL. EEG abnormalities in bipolar affective disorder. J Affect
Disord 1986; 11(2):147–149.

17. Small JG, Milstein V, Malloy FW, et al. Clinical and quantitative EEG studies of mania.
J Affect Disord 1999; 53(3):217–224.

18. Bruder GE, Stewart JW, Towey JP, et al. Abnormal cerebral laterality in bipolar
depression: convergence of behavioral and brain event-related potential findings.
Biol Psychiatry 1992; 32(1):33–47.

19. Clementz BA, Sponheim SR, Iacono WG, et al. Resting EEG in first-episode schizo-
phrenia patients, bipolar psychosis patients, and their first-degree relatives. Psychophys
1994; 31(5):486–494.

20. Cole AJ, Scott J, Ferrier IN, et al. Patterns of treatment resistance in bipolar affective
disorder. Acta Psychiatr Scand 1993; 88(2):121–123.

21. Ikeda A, Kato N, Kato T. Possible relationship between electroencephalogram finding
and lithium response in bipolar disorder. Prog Neuro-Psychopharm Biol Psychiatr
2002; 26(5):903–907.

22. Reeves RR, Struve FA, Patrick G. Does EEG predict response to valproate versus lithium
in patients with mania? Ann Clin Psychiat 2001; 13(2):69–73.

23. Stoll AL, Banov M, Kolbrener M, et al. Neurologic factors predict a favorable valproate
response in bipolar and schizoaffective disorders. J Clin Psychopharmacol 1994; 14(5):
311–313.

24. Schou M. Long-lasting neurological sequelae after lithium intoxication. Acta Psychiatr
Scand 1984; 70(6):594–602.

25. Bell AJ, Cole A, Eccleston D, et al. Lithium neurotoxicity at normal therapeutic levels.
Brit J Psychiatry 1993; 162:689–692.

26. Sheean GL. Lithium neurotoxicity. Clin Exp Neurology 1991; 28:112–127.
27. Ferrier IN, Tyrer SP, Bell AJ. Lithium therapy. Adv Psychiat Treat 1995; 1:102–110.
28. Bartha L, Marksteiner J, Bauer G, et al. Persistent cognitive deficits associated with

lithium intoxication: a neuropsychological case description. Cortex 2002; 38(5):743–752.
29. Linden DE. The p300: where in the brain is it produced and what does it tell us?

Neuroscientist 2005; 11(6):563–576.
30. Souza VB, Muir WJ, Walker MT, et al. Auditory P300 event-related potentials and

neuropsychological performance in schizophrenia and bipolar affective disorder. Biol
Psychiatry 1995; 37(5):300–310.

31. Bruder GE, Towey JP, Stewart JW, et al. Event-related potentials in depression: influence
of task, stimulus hemifield and clinical features on P3 latency. Biol Psychiatry 1991;
30(3):233–246.

32. Blackwood DH, Sharp CW, Walker MT, et al. Implications of comorbidity for genetic
studies of bipolar disorder: P300 and eye tracking as biological markers for illness.
Brit J Psychiatry 1996; 168(suppl 30):85–92.

33. O’Donnell BF, Vohs JL, Hetrick WP, et al. Auditory event-related potential abnormalities
in bipolar disorder and schizophrenia. Int J Psychophysiol 2004; 53(1):45–55.

34. Defrance JF, Ginsberg LD, Rosenberg BA, et al. Topographical analysis of adolescent
affective disorders. Int J Neurosci 1996; 86(1–2):119–141.

35. Olincy A, Martin L. Diminished suppression of the P50 auditory evoked potential in
bipolar disorder subjects with a history of psychosis. Am J Psychiatry 2005; 162(1):43–49.

36. Ancy J, Gangadhar BN, Janakiramaiah N. “Normal” P300 amplitude predicts rapid
response to ECT in melancholia. J Affect Disord 1996; 41(3):211–215.

37. Blackwood DH, Visscher PM, Muir WJ. Genetic studies of bipolar affective disorder in
large families. Brit J Psychiatry 2001; 178(suppl 41):s134–s136.

38. Devon RS, Anderson S, Teague PW, et al. Identification of polymorphisms within
disrupted in schizophrenia 1 and disrupted in schizophrenia 2, and an investigation
of their association with schizophrenia and bipolar affective disorder. Psychiatric
Genetics 2001; 11(2):71–78.

230 McAllister-Williams



39. Nyman G, Alho K, Laurinen P, et al. Mismatch negativity (MMN) for sequences of
auditory and visual stimuli: evidence for a mechanism specific to the auditory modality.
Electroencephalogr Clin Neurophys 1990; 77(6):436–444.

40. Javitt DC, Steinschneider M, Schroeder CE, et al. Role of cortical N-methyl-D-
aspartate receptors in auditory sensory memory and mismatch negativity generation:
implications for schizophrenia. Proc Natl Acad Sci USA 1996; 93(21):11962–11967.

41. Umbricht D, Koller R, Vollenweider FX, et al. Mismatch negativity predicts psychotic
experiences induced by NMDA receptor antagonist in healthy volunteers. Biol Psychia-
try 2002; 51(5):400–406.

42. Gene-Cos N, Ring HA, Pottinger RC, et al. Possible roles for mismatch negativity in
neuropsychiatry. Neuropsychiatry Neuropsychol Behav Neurol 1999; 12(1):17–27.

43. Michie PT. What has MMN revealed about the auditory system in schizophrenia? Int J
Psychophysiol 2001; 42(2):177–194.

44. Umbricht D, Koller R, Schmid L, et al. How specific are deficits in mismatch negativity
generation to schizophrenia? Biol Psychiatry 2003; 53(12):1120–1131.

45. El Badri SM, Ashton CH, Moore PB, et al. Electrophysiological and cognitive function in
young euthymic patients with bipolar affective disorder. Bipolar Disorders 2001; 3(2):
79–87.

46. Mizuhara H, Wang LQ, Kobayashi K, et al. Long-range EEG phase synchronization
during an arithmetic task indexes a coherent cortical network simultaneously measured
by fMRI. Neuroimage 2005; 27(3):553–563.

47. Paul RH, Clark CR, Lawrence J, et al. Age-dependent change in executive function and
gamma 40 Hz phase synchrony. J Integrative Neurosci 2005; 4(1):63–76.

48. Stam CJ, Montez T, Jones BF, et al. Disturbed fluctuations of resting state EEG
synchronization in Alzheimer’s disease. Clin Neurophysiol 2005; 116(3):708–715.

49. Symond MP, Harris AW, Gordon E, et al. “Gamma synchrony” in first-episode schizo-
phrenia: a disorder of temporal connectivity? Am J Psychiatry 2005; 162(3): 459–465.

50. Bhattacharya J. Reduced degree of long-range phase synchrony in pathological human
brain. Acta Neurobiol Exp 2001; 61(4):309–318.

51. O’Donnell BF, Hetrick WP, Vohs JL, et al. Neural synchronization deficits to auditory
stimulation in bipolar disorder. Neuroreport 2004; 15(8):1369–1372.

52. Song C, Murray TA, Kimura R, et al. Role of alpha7-nicotinic acetylcholine receptors in
tetanic stimulation-induced gamma oscillations in rat hippocampal slices. Neuropharm
2005; 48(6):869–880.

53. Towers SK, Gloveli T, Traub RD, et al. Alpha 5 subunit-containing GABAA receptors
affect the dynamic range of mouse hippocampal kainate-induced gamma frequency
oscillations in vitro. J Physiol 2004; 559(Pt 3):721–728.

54. Schutter DJ, van Honk J, d’Alfonso AA, et al. High frequency repetitive transcranial mag-
netic over the medial cerebellum induces a shift in the prefrontal electroencephalography
gamma spectrum: a pilot study in humans. Neurosci Lett 2003; 336(2):73–76.

55. Thompson JM, Gallagher P, Hughes JH, et al. Neurocognitive impairment in euthymic
patients with bipolar affective disorder. Brit J Psychiatry 2005; 186:32–40.

56. Schutter DJ, van Honk J. Electrophysiological ratio markers for the balance between
reward and punishment. Cogn Brain Res 2005; 24(3):685–690.

57. Schutter DJ, van Honk J. Salivary cortisol levels and the coupling of midfrontal delta-
beta oscillations. Int J Psychophysiol 2005; 55(1):127–129.

58. Watson S, Gallagher P, Ritchie JC, et al. Hypothalamic-pituitary-adrenal axis function
in patients with bipolar disorder. Brit J Psychiatry 2004; 184:496–502.

59. Murasaki M, Miura S, Ishigooka J, et al. Phase I study of a new antianxiety drug,
buspirone. Prog Neuropsychopharmacol Biol Psychiatry 1989; 13(1–2):137–144.

60. Barbanoj MJ, Anderer P, Antonijoan RM, et al. Topographical pharmaco-EEG mapping
of increasing doses of buspirone and its comparison with diazepam. Human Psycho-
pharm 1994; 9:101–109.

61. Holland RL, Wesnes K, Dietrich B. Single dose human pharmacology of umespirone.
Eur J Clin Pharmacol 1994; 46:461–468.

62. Anderer P, Saletu B, Pascual-Marqui RD. Effect of the 5-HT(1A) partial agonist buspirone
on regional brain electrical activity in man: a functional neuroimaging study using low-
resolution electromagnetic tomography (LORETA). Psychiatry Res 2000; 100(2):81–96.

EEGs and ERPs in Bipolar Disorders 231



63. Saito A, Kinoshita T, Okajima Y, et al. Quantitative pharmaco-EEG study of ipsapirone
(BAY q 7821) in healthy volunteers. Jap J Neuropharm 1993; 15:359–373.

64. Bogdanov NN, Bogdanov MB. The role of 5-HT1A serotonin and D2 dopamine
receptors in buspirone effects on cortical electrical activity in rats. Neurosci Lett 1994;
177(1–2):1–4.

65. Vertes RP. Brain stem generation of the hippocampal EEG. Prog Neurobiol 1982;
19(3):159–186.

66. Vertes RP, Kinney GG, Kocsis B, et al. Pharmacological suppression of the median raphe
nucleus with serotonin1A agonists, 8-OH-DPAT and buspirone, produces hippocampal
theta rhythm in the rat. Neurosci 1994; 60(2):441–451.

67. Nitz DA,McNaughton BL. Hippocampal EEG and unit activity responses to modulation
of serotonergic median raphe neurons in the freely behaving rat. Learn Mem 1999;
6(2):153–167.

68. Marrosu F, Fornal CA, Metzler CW, et al. 5-HT1A agonists induce hippocampal theta
activity in freely moving cats: role of presynaptic 5-HT1A receptors. Brain Res 1996;
739(1–2):192–200.

69. Saletu B, Grunberger J, Linzmayer L. On central effects of serotonin re-uptake inhibitors:
quantitative EEG and psychometric studies with sertraline and zimelidine. J Neural
Trans 1986; 67(3–4):241–266.

70. McAllister-Williams RH,Massey AE. EEG effects of buspirone and pindolol: a method of
examining 5-HT(1A) receptor function in humans. Psychopharm 2003; 166(3):284–293.

71. Bel N, Artigas F. Fluvoxamine preferentially increases extracellular 5-hydroxytrypta-
mine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 1992; 229(1):
101–103.

72. Clifford EM, Gartside SE, Umbers V, et al. Electrophysiological and neurochemical
evidence that pindolol has agonist properties at the 5-HT(1A) autoreceptor in vivo.
Brit J Pharmacol 1998; 124(1):206–212.

73. McAllister-Williams RH, Marsh VR, Massey AE. Increased sensitivity of somato-
dendritic 5-HT1A autoreceptors in depression. J Psychopharm 2004; 18(3 Suppl):A7.

74. Tulving E. Multiple memory systems and consciousness. Human Neurobiol 1987;
6(2):67–80.

75. Rugg MD, Otten LJ, Henson RN. The neural basis of episodic memory: evidence from
functional neuroimaging. Philos Trans R Soc Lond B Biol Sci 2002; 357(1424):1097–1110.

76. Eskes GA, Szostak C, Stuss DT. Role of the frontal lobes in implicit and explicit retrieval
tasks. Cortex 2003; 39(4–5):847–869.

77. Henson RN, Rugg MD, Shallice T, et al. Confidence in recognition memory for words:
dissociating right prefrontal roles in episodic retrieval. J Cogn Neurosci 2000; 12(6):
913–923.

78. Allan K, Wilding EL, Rugg MD. Electrophysiological evidence for dissociable processes
contributing to recollection. Acta Psychol (Amst) 1998; 98(2–3):231–252.

79. McAllister-Williams RH, Rugg MD. Effects of repeated cortisol administration on brain
potential correlates of episodic memory retrieval. Psychopharm 2002; 160(1):74–83.

80. McAllister-Williams RH, Ferrier IN, Young AH. Mood and neuropsychological
function in depression: the role of corticosteroids and serotonin. Psychol Med 1998;
28(3):573–584.

81. Alhaj HA, Massey AE, McAllister-Williams RH. Effects of DHEA administration on
episodic memory, cortisol and mood in healthy young men: a double-blind, placebo-
controlled study. Psychopharm 2006; 188(4):541–551.

232 McAllister-Williams
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INTRODUCTION

Mental disorders in general, and mood (affective) disorders in particular, are
leading causes of morbidity which affect human populations around the world (1).
The term “affective disorder” includes a wide variety of conditions, from mild and
common mood variations to some of the most severe episodes of psychotic illness
seen in clinical practice. Co-occurrence of other clinical syndromes, such as anxiety
or substance abuse, is common. Genetic factors are known to play an important role
in influencing susceptibility to all these illnesses (2). Here, discussion will be
restricted to bipolar spectrum illness.

DIAGNOSIS AND EPIDEMIOLOGY

Affective disorders are complex genetic disorders in which the core feature is a
pathological disturbance of mood ranging from extreme elation or mania to
severe depression. Other symptoms also found in these disorders include disturb-
ances in thinking and behavior, which may include psychotic symptoms, such as
delusions and hallucinations. Historically, affective disorders have been classified
in a number of ways, with distinctions between endogenous and reactive episodes,
psychotic and neurotic symptomatology, and affective disorders arising de novo
(primary) and those episodes arising in the context of another disorder (secondary)
(3,4). The main nosological division in modern classification systems such as ICD-
10 (5) or DSM-IV (6) is between the unipolar and bipolar forms of the condition. The
diagnosis of bipolar disorder (BD) (also known as manic depressive illness)
requires that an individual has suffered one or more episodes of mania with or
without episodes of depression at other times during the life history. This require-
ment for the occurrence of an episode of mania at some time during the course of
illness distinguishes BD from unipolar disorder (also commonly known as unipolar
major depression, or simply unipolar depression) in which individuals suffer one or
more episodes of depression without ever experiencing episodes of pathologically
elevated mood. Although bipolar and unipolar disorders are not completely dis-
tinct nosological entities, their separation for the purposes of diagnosis and research
is supported by evidence from outcome, treatment, and genetic studies (4,7).
Indeed, it was family-genetic studies that persuaded the field to move to classifi-
cations that separated bipolar and unipolar mood disorders (8,9). In DSM-IV, BD
is sub-classified into bipolar I disorder, in which episodes of clear-cut mania
occur, and bipolar II disorder, in which only milder forms of mania (so-called
“hypomania”) occur. Although there is evidence to support this distinction (10),
the validity of this sub-classification awaits robust validation. The lifetime
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prevalence of narrowly defined BD is in the region of 0.5% to 1.5%with similar rates
in males and females and a mean age of onset around the age of 21 years (11).

Unipolar disorder is substantially more common than bipolar illness, but
measured prevalence rates differ markedly according to the diagnostic criteria,
methodology, and sample employed. For example, the large U.S. multi-site Epide-
miological Catchment Area (ECA) study reported a lifetime population prevalence
for DSM-III major depression of approximately 4.4% (12), whereas the U.S. National
Comorbidity Survey estimated the lifetime prevalence of DSM-IIIR major dep-
ression to be 17.1% with 10.3% of the population experiencing a major depressive
episode in the preceding 12 months (13). In contrast to bipolar illness, the rate of
unipolar disorder for women is about twice that for men: 21.3% and 12.7%, respec-
tively, in the U.S. National Comorbidity Survey (13), and this gender difference is a
consistent finding, at least in studies in the developed world. Affective disorders are
associated with high levels of service utilisation and morbidity and often prove
fatal, with up to 15% of patients eventually committing suicide (14). Reasonably
effective treatments are available for both manic and depressive episodes (15),
but current treatments have undesirable side effects, are not effective in all patients,
and the pathogenesis of affective disorders remains poorly understood. These facts
act as a major motivation for genetic investigation of affective illness with its
promise of improved understanding of etiology and more effective treatments.

CLASSICAL GENETIC EPIDEMIOLOGY OF BIPOLAR DISORDER

Many classical genetic studies of mood disorders have been undertaken. As men-
tioned above, prior to the mid-1960s, family studies of mood disorder did not
make the bipolar/unipolar distinction. However, these studies provided evidence
for familial aggregation of the broad mood disorder phenotype (16 ). Subsequent
family studies have provided persuasive evidence of familial aggregation of both
bipolar and unipolar disorder; twin and adoption studies point to genes as an
important cause of this familial resemblance (17–19). In all, there is a consistent
and impressive body of evidence that supports the existence of mood disorder sus-
ceptibility genes. These studies also demonstrate a graduation in risk of mood dis-
order between various classes of relatives with monozygotic co-twin showing
highest risk, through first degree relative to unrelated member of the general popu-
lation showing the lowest risk. Because of differences in methodologies and diag-
nostic classifications, the absolute measures of estimated lifetime risk vary
between studies. Table 1 shows a representative range of estimates for relative
risks and heritabilities.

As can be seen from Table 1, the classical genetic epidemiology literature
demonstrates that there is not a neat genetic separation between bipolar and uni-
polar disorders. It is not only bipolar illness that is found in the families of
bipolar probands. Other affective disorders also occur at increased rates compared

TABLE 1 Genetic Epidemiology of Mood Disorders

Bipolar disorder Unipolar depression

Recurrence risk in sibling of a proband (lS) 5–10 2.5–3.5
Proband-wise MZ twin concordance 45–70% 40–50%
Heritability estimate 80–90% 33–42%
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with the population. Indeed, the absolute risk of unipolar depression in first-degree
relatives of bipolar probands is actually numerically greater than the absolute risk
of bipolar illness. However, the background population prevalence is much higher
for unipolar illness than for BD (of the order of 10% vs. 1%) and therefore the relative
increase in risk is much lower, at approximately a doubling of risk (20). According
to one estimate, two-thirds to three-quarters of cases of unipolar depression in the
relatives of a bipolar individual can be considered to be “genetically bipolar,” that
is, they share a common genetic susceptibility with the bipolar form of affective
illness (21).

Mode of Inheritance
Although rare, it is likely that some families exist in which single genes may play
the major role in determining disease susceptibility. Early segregation analyses
on large multiply affected pedigrees produced mixed results with some studies
consistent with single gene models (22–25) and others unable to demonstrate
major locus transmission (26–28). However, caution is required in interpreting
these early positive results because of the limited power of the studies to dis-
tinguish between single gene and oligogenic models and because of the failure to
take account of an important parameter, the recurrence risk in monozygotic (iden-
tical) cotwins of a bipolar proband (29). The observed very rapid decrease
in recurrent risk from identical co-twins to first degree relatives and back to the
general population (as shown in Table 1) is not consistent with single gene
modes of inheritance (30). Rather, the substantial body of data from classical
genetic epidemiological studies is consistent with models of inheritance that
include multiple genes that interact with each other (often referred to in genetics
as “epistasis”) and environmental factors to confer susceptibility to illness (30).
As a consequence, the default model used for most current genetic studies is that
multiple genes interact with each other and with multiple environmental factors
to influence susceptibility to illness. This is essentially the traditional multifactorial
model. Other genetic/molecular mechanisms that are known to produce complex
patterns of inheritance and have been suggested as possible contributors to BD
include mitochondrial inheritance (31), and dynamic mutation (32).

X-linkage: Several large pedigrees were reported to show cosegregation of X-
linked markers (e.g., color-blindness or glucose-6-phosphatase deficiency) and BD
(33–35). These reports have been criticized on methodological grounds (36), and,
despite over half a century of debate, the contribution of X-linked genes to the
pathogenesis of BD remains uncertain. If X-linked genes do contribute, analyses
suggest that they can only account for a modest proportion of cases (26,37).

CHROMOSOME STUDIES

A potential shortcut to identifying the genomic location of susceptibility genes for a
disorder is recognition of the co-occurrence of the disorder and gross changes at the
chromosomal level. Affective disorders have not been found to be consistently
associated with chromosome abnormalities, although a number of such reports
have appeared in the literature (38). One interesting observation is that individuals
with trisomy 21 appear to be less susceptible to mania than are members of the
general population (39). This is consistent with the existence of a bipolar suscepti-
bility gene on chromosome 21, a possibility that finds support from some linkage
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studies. In contrast, chromosomal abnormalities have had an important influence
on the molecular genetic investigation of schizophrenia. The velocardiofacial syn-
drome (VCFS), caused by deletions at chromosome 22q11, is associated with a
high lifetime risk of psychosis. This has focused attention on the chromosome
22q11 region as likely to harbor one or more genes involved in susceptibility to psy-
chosis (40). The chromosome 1q42 region similarly was implicated through its invol-
vement in a chromosomal translocation in a large Scottish pedigree in which
multiple members had both psychiatric illness and the translocation (41). Study of
this pedigree resulted in identification of a gene that was disrupted by the transloca-
tion, and this was namedDisrupted in Schizophrenia 1 (DISC-1) (42). Of relevance to
the current chapter, and as will be discussed later, there is increasing evidence that
the psychiatric phenotypes associated with the chromosomal abnormalities at 1q42
and 22q11 have a substantial mood component and may, therefore, contribute to
bipolar spectrum illness.

MOLECULAR GENETIC STUDIES

Molecular genetic approaches have already achieved great success in discovering
the mutations that lead to simple (mendelian) genetic diseases. The continuing
challenge is to use the developing methodologies to uncover susceptibility genes
for complex diseases, such as BD. Conceptually, molecular genetic studies can be
divided into positional and candidate gene approaches. The positional approach
assumes no knowledge of disease pathophysiology but determines the broad
chromosomal locations of susceptibility genes, usually by linkage studies using
multiply affected families. The candidate gene approach, however, involves the
investigator making educated guesses at what genes may be involved in the patho-
physiology of a condition and then testing the involvement of these genes, usually
by association studies in which a set of cases is compared with a set of controls.
The candidate gene approach is built on the assumption that the investigator has
sufficient understanding of disease biology to be able to recognise suitable
candidate genes. In practice, both positional and candidate approaches are often
combined (43,44).

Linkage Studies in Bipolar Disorder
Linkage studies employing very large pedigrees and based on the assumption of
a single major gene are appropriate for simple mendelian disorders, but when
applied to complex disorders this approach can be problematic. In the late 1980s
two high-profile claims for linkage appeared in the journal Nature: Baron et al.
(35) reported linkage to X-chromosome markers in several Israeli pedigrees and
Egeland et al. (45) reported linkage to markers on chromosome 11p15 in a large ped-
igree of the Old Order Amish community. Other workers were unable to replicate
these findings and eventually in both cases the original groups published updated
and extended analyses of their own data in which the significant evidence of
linkage all but vanished (46,47). Reasons for this dramatic change in findings
included: (i) family members originally diagnosed as unaffected became ill for
the first time during follow-up, (ii) new family members were examined who did
not show evidence for linkage, and (iii) additional DNA markers were examined
which reduced the evidence for linkage. More detailed discussion of this issue
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and subsequent linkage findings in the 11p15 chromosomal region can be found
elsewhere (48).

Such a major setback was of course a disappointment but the field moved
forward with the development of methodologies more appropriate for the study
of complex genetic traits including a trend towards the use of smaller families (par-
ticularly affected sibling pairs) and analyses less sensitive to diagnostic changes
(44). Large, systematic molecular genetic linkage studies have been reported and
are ongoing in several centers around the globe. A variety of types of sample set
have been used, ranging from large densely affected pedigrees in genetic isolates
to large numbers of affected sibling pairs. The pattern of findings is consistent
with there being no gene of major effect to explain the majority of cases of BD and
with that expected in the search for genes for a complex disorder (49–51). Chromo-
somal regions of interest are typically broad (often .20–30 cM). No finding repli-
cates in all datasets and for individual positive findings levels of statistical
significance and estimated effect sizes are usually modest. Table 1 shows chromoso-
mal regions that have received support with genome-wide significance in at least
one study. Several regions have been implicated repeatedly by individual studies,
but usually at a lower level of significance and not sufficiently consistently to be
highlighted by meta-analyses.

Two meta-analyses of BD genome scans have been conducted. Badner and
Gershon (52) found the strongest evidence for susceptibility loci on 13q and 22q
when examining seven published genome scans for BD. However, the more
recent and detailed meta-analysis of Segurado et al. (53) conducted using the bin-
ranking methodology did not find genome-wide significant evidence for linkage
but provided a more modest level of support for regions on chromosomes
9p22.3–21.1, 10q11.21–22.1, 14q24.1–32.12, and regions of chromosome 18. This
meta-analysis demonstrated lesser consistency in the findings from bipolar scans
than from schizophrenia scans (54). Possible causes for this difference are discussed
elsewhere (55).

Since publication of the meta-analyses, several further genome-wide scans in
independent samples have been published, with several regions identified that
meet genome-wide significant or suggestive evidence for linkage. Of particular
note is the 6q21–q25 region which was not implicated in either meta-analysis,
but which is supported by one genome-wide significant (56) and three genome-
wide suggestive signals (57–59), making it one of the best-supported regions for
BD. Indeed, in the recent combined collaborative analysis of eleven bipolar
linkage scans, this region achieved genome wide significance (60).

Figure 1 shows chromosomal regions that have received genome-wide
significant support in at least one scan of BD. Of particular note are the 6q21–q25
region mentioned above and the 12q23–q24 region, which has two genome scans
reporting genome-wide significance (58,61) and is also supported by linkage analy-
sis in unipolar disorder (62) and by linkage of this region in two pedigrees that
show cosegregation bipolar spectrum illness and an autosomal dominant skin
disease, Darier’s disease (63).

Gene Studies of BD
To date there has not been unambiguous demonstration of a susceptibility gene
identified for BD by positional cloning. Potentially interesting findings have
come from the study of functional candidates and, most recently, investigation of
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genes first implicated in schizophrenia (some of which map in linkage regions of
interest in BD). However, none of the findings yet achieve the level of support
that dysbindin and neuregulin 1 (NRG1) have received in schizophrenia (55).

Functional Candidates
Most studies in the literature have focused on neurotransmitter systems influenced
bymedications employed in the management of the disorder, particularly the dopa-
mine, serotonin, and noradrenaline systems (64). For most genes studied, the usual
pattern has been for one or a few positive studies along with an even greater
number of negative replications. However, polymorphisms of known functional
relevance in three of the genes have been reported as significant at the P , 0.05
level in at least some published meta-analyses: MAOA (65), COMT (66), and
5HTT (67,68), all with modest effect sizes (odds ratios, OR � 2). The findings for
these functional polymorphisms remain to be tested in the necessary number of
independent, large samples that will be required to determine unambiguously
whether and to what extent variation within these genes contributes to suscepti-
bility to BD, or to some intermediate clinical phenotype (69,70). It is of interest
that COMT has also been implicated in schizophrenia (71) and has received
support from the same group in a modestly sized study of BD (72) although an
updated meta-analysis of the literature available in December 2005 found no sig-
nificant evidence for association at COMT (70).

FIGURE 1 Chromosome ideograms showing locations of genome-wide significant linkages
for bipolar spectrum phenotypes. The predominant phenotype used in the analysis is shown as:
BP: bipolar disorder; SABP: schizoaffective disorder, bipolar type. Note that most genome scans
of bipolar disorder have used a range of definitions of the bipolar phenotype from narrow (only
bipolar I disorder) to broad (including also bipolar II disorder, schizoaffective disorder, and unipolar
disorder).
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Most of the candidate gene reports in the literature describe studies in mod-
estly sized samples (a few hundred individuals) that are likely to be underpowered
for plausible effects sizes (69,70). As for all complex disorders, the trend in candi-
date gene studies of BD is for the use of larger samples, with increased power to
detect modest or small effect sizes, and examination of candidate genes predicated
onmore sophisticatedmodels of pathogenesis or directed by positional information
from linkage studies. Recently, replicable positive findings have started to emerge
from these approaches.

D-Amino Acid Oxidase Activator (G72)/G30 Locus
At least five independent datasets contribute evidence that variation at the DAOA/
G30 locus on chromosome 13q influences susceptibility to BD. This locus was impli-
cated originally as being involved in susceptibility to schizophrenia (73). It was a
novel locus with a designation of G72. The locus was renamed as D-amino acid
oxidase activator (DAOA), because biological studies suggested that the gene
product activated the enzyme, D-amino acid oxidase (DAO); genetic evidence
was also found in this original study for association of alleles at DAO with suscep-
tibility to schizophrenia. Subsequently linkage disequilibrium (LD) at the DAOA
locus was also reported with BD in two U.S. family samples (74), and this was repli-
cated in a further U.S. family sample (75), German case-control sample (76), and our
own large U.K. case-control sample (77). In all studies, evidence for LD came from
individual single nucleotide polymorphisms (SNPs) as well as multilocus haplo-
types, although there is variation between studies in the SNPs and haplotypes
showing LD. No pathologically relevant variant has yet been identified and the bio-
logical mechanism remains to be elucidated. It is of interest that DAO lies in the
12q23 region implicated in linkage studies of both bipolar and unipolar disorder
(Fig. 1). DAO has been examined in only one study of BD (76), which found no evi-
dence of LD. However, in view of the findings with DAOA, DAO warrants more
thorough study in BD.

Brain Derived Neurotrophic Factor
A functional candidate gene that has attracted a great deal of recent interest is Brain
Derived Neurotrophic factor (BDNF ) (78). BDNF is a member of the neurotrophin
superfamily. Neurotrophins are synthesized in neurons as proforms that can be
cleaved intra- or extracellularly, and both their synthesis and secretion depends
upon neuronal activity. BDNF plays an important role in promoting and modifying
growth, development, and survival of neuronal populations and, in the mature
nervous system, is involved in activity-dependent neuronal plasticity (79). These
processes are prominent in the synaptic plasticity hypothesis of mood disorder,
which focuses on the functional and structural changes induced by stress and anti-
depressants at the synaptic level. The BDNF gene lies on the reverse strand of
chromosome 11p13 and encodes a precursor peptide (proBDNF ), which is
cleaved proteolytically to form the mature protein (80). The 11p13 chromosomal
location of BDNF has been implicated in some linkage studies of BD, but not in
meta-analyses of linkage studies.

Consistent with the strong evolutionary conservation of the BDNF coding
sequence across species, only one frequent, nonconservative polymorphism in
the human BDNF gene has been identified, a SNP at nucleotide 196 within
the 50pro-BDNF sequence that causes an amino acid substitution of valine to meth-
ionine at codon 66 (Val66Met). There is cross-species conservation of the precursor
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portion of proBDNF that is consistent with potential functional importance, and it is
possible that the common Val66Met polymorphism could itself have a functionally
relevant effect by modifying the processing and trafficking of BDNF (81).

There have been three positive reports using family based association studies
of Caucasian BD samples of European-American origin and the Val66Met SNP: two
were based on adult bipolar samples (82,83) and onewas based on a small childhood
onset sample (84). All have shown over-transmission of the common Val allele. Evi-
dence with multilocus haplotypes was stronger in one study (83). There have been
four case-control association studies [of European (85,86), Chinese (87), and Japanese
origin (88)] to date, in which there is no evidence for an allelic or genotypic associ-
ation. In our own Caucasian bipolar case-control sample (N ¼ 3062) we found no
overall evidence of allele or genotype association. However, we found significant
association with disease status in the subset of cases that had experienced rapid
cycling (four or more episodes per year) at some time, and a similar association on
reanalysis of our previously reported family-based association sample (89). This
suggests that variation at the Val66Met polymorphism of BDNF may not play a
major role in influencing susceptibility to BD as a whole but, rather, may be associ-
ated with susceptibility to a specific aspect of the clinical bipolar phenotype. This
receives support from reanalysis of one of the original family-based samples that
shows the over-transmission of Val alleles is explained by the rapid cycling individ-
uals in the sample (90). It should, however, be noted that the Val66Met polymorph-
ism lies within a large haplotype block so it is difficult to determine which variant(s)
within the block is (are) pathogenically relevant.

Substantial additional genetic and biological work will be required to confirm
(or refute) the role of BDNF in influencing susceptibility to BD. Systematic study of
variation across the whole gene is required with study in further independent
samples.

Other Genes
We will briefly mention three other genes that have recently received attention as
potential BD susceptibility genes. Two of these are in the 22q chromosome
linkage region of interest. G-protein receptor kinase 3 (GRK3) was implicated
through positional follow-up of a linkage signal in a set of U.S. pedigrees and
was supported also by expression data in a rodent model of mania (91).
However, this has not yet received independent support. XBP1, a pivotal gene in
the endoplasmic reticulum (ER) stress response, was reported to show association
at a promoter polymorphism with BD susceptibility in two small association
samples (92). Some degree of circumstantial biological support for a functional
role for this polymorphism came from a cellular model of the action of mood-stabil-
izer medications. However, this report is highly likely to be a type I error because
the putative functionally relevant variant was found to have no influence on sus-
ceptibility in independent family-based and case-control association samples six
times larger than those in the initial report (93). This illustrates the caution that is
required in interpreting weakly supported putative genetic effects even in the
face of substantial biological plausibility (70). More promisingly, but as yet not
widely tested, is the report that P2X7, in the 12q24 region of linkage interest, influ-
ences susceptibility to both BD and unipolar depression (94). It can be expected that
several, probably many, other susceptibility genes will be identified over the
coming years—no single study will be definitive and the true status of each candi-
date is unlikely to become clear until several thousand cases have been studied.
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CONSIDERATION OF THE CLINICAL PHENOTYPE: CLINICAL
COVARIATES AND SUBTYPES

As discussed elsewhere (17), mood disorder researchers have been taking an inter-
est in a variety of clinical subtypes and covariates over recent years, as a way of
testing subsets of cases with increased clinical (and hopefully genetic) homogeneity.
Examples include rapid cycling (95), lithium responsiveness (96). bipolar affective
puerperal psychosis (triggering of bipolar episodes in females by parturition)
(97,98), early age at onset (99), and occurrence of psychotic features during illness
(100–102).

Consideration of the occurrence of psychotic features in BD raises the interest-
ing and biologically important issue of the overlap in genetic findings in BD and
schizophrenia. This is discussed in the next section.

OVERLAP IN FINDINGS BETWEEN BIPOLAR DISORDER
AND SCHIZOPHRENIA

Traditionally, psychiatric research in general, and the search for predisposing genes
in particular, has proceeded under the assumption that schizophrenia and mood
disorder are separate disease entities with separate underlying etiologies (and treat-
ments): the so-called “Kraepelinian dichotomy.” This distinction has pervaded
Western psychiatry since Emil Kraepelin’s influential nosological writings (103)
and survives in current operational classification systems such as ICD-10 (5) and
DMS-IV (6), although some workers, such as Crow, have argued for a continuum
approach to psychosis (104). The clinical reality is that many individuals with
severe psychiatric illness have features that fall between these two “extremes”
and have both prominent mood and psychotic features (often classified as “schizoaf-
fective disorder” or some similar atypical diagnosis). This suggests that there may
not be a neat biological distinction between schizophrenia and BD. This possibility
finds support in several observations from genetic research, including the
following:

Family Studies
Although schizophrenia and BD may “breed true” (105–107), families are known
where there are multiple cases of schizophrenia, BD, and cases with both psychosis
and mood disorder (108). Further, some studies have shown statistically significant
evidence that BD occurs at an increased rate in the relatives of probandswith schizo-
phrenia (109) and that BD occurs at an increased frequency in the relatives of bipolar
probands (110). Schizoaffective disorder has been shown to occur at an increased
rate in the families of probands with schizophrenia (111), and in the families of pro-
bands with BD (112). Both schizophrenia and BD have been shown to occur at
increased rates in the families of probands with schizoaffective disorder (112).
Together, these data suggest a more complex relationship between the psychoses
than is reflected in the conventional dichotomous view.

Twin Studies
Only one twin study has used an analysis that was unconstrained by the diagnostic
hierarchy inherent in current classification systems (i.e., the principle that schizo-
phrenia “trumps” mood disorder in diagnosis). This study demonstrated a clear
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overlap in the genetic susceptibility to syndromally defined mania and schizo-
phrenia (113). The findings suggested the existence of some susceptibility genes
that are specific to schizophrenia, others that are specific to BD, and yet others
that influence susceptibility to schizoaffective disorder, schizophrenia, and BD.

Linkage Studies
Genetic linkage studies have identified some chromosome regions that show con-
vergent or overlapping regions of interest in BD and schizophrenia, including
regions of 13q, 22q, 18 (52,114), and 6q. The hypothesis that loci exist that influence
susceptibility across the schizophrenia-bipolar divide receives further support from
the observation that a genome scan, using families ascertained on the basis of a
proband with schizoaffective disorder (a form of illness with prominent features
of both schizophrenia and BD), demonstrated genome-wide significance at 1q42
and suggestive linkage at 22q11, with linkage evidence being contributed equally
from “schizophrenia families” (i.e., where other members had predominantly
schizophrenia) and “bipolar families” (i.e., where other members had predomi-
nantly BD) (115).

Gene Studies
Most persuasively, several recent reports implicate variation at the same loci as
influencing susceptibility to both schizophrenia and BD.

Currently the best-supported locus for BD is G72(DAOA)/G30 on chromo-
some 13q (74–77), which also has positive association reported in schizophrenia
(73,76,116,117).

The DISC-1 locus at 1q42 receives linkage support in schizophrenia
(42,118,119), BD (120) and schizoaffective disorder (115) and, although it has been
named Disrupted in Schizophrenia 1, the family in which the translocation was
observed contained cases of both psychosis and mood disorder (42). Evidence for
allelic association at polymorphisms at this locus has been reported for schizo-
phrenia, BD, and schizoaffective disorder (121).

Neuregulin 1 is one of the best supported schizophrenia susceptibility genes
with several studies showing evidence that a so-called Icelandic “core haplotype”
is associated with increased risk in Icelandic, Scottish, and U.K. populations
(122–124). We have found that this same haplotype is significantly associated
with risk for BD and that it may exert a specific effect in the subset of functional psy-
chosis that has both manic and mood-incongruent psychotic features (125).

The COMT gene lies at 22q11, a region implicated in BD and schizophrenia
(and the region usually deleted in VCFS) (52). It is extremely likely that genetic vari-
ation in this region influences susceptibility across the psychosis spectrum (71,72),
although it is not yet clear that COMT itself is the (or the major) susceptibility gene
at this locus.

These gene findings provide strong evidence that, as suggested by the family
and twin data, there are genetic loci that contribute susceptibility across the Krae-
pelinian divide to schizophrenia, BD, and schizoaffective disorders. These findings
have important implications for classification of the major psychiatric disorders
because they demonstrate an overlap in the biological basis of disorders that,
over the last one hundred years, have been assumed to be distinct entities (126).
Molecular genetic findings are likely to catalyze a reappraisal of psychiatric nosol-
ogy as well as providing a path to understanding the pathophysiology that will
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facilitate development of improved treatments. Rather than classifying psychosis as
a dichotomy, a more useful formulationmay be to conceptualize a spectrum of clini-
cal phenotype with susceptibility conferred by overlapping sets of genes (126).

CONCLUSION

Positive findings are emerging frommolecular genetic studies of BD. Replication in
large, well-characterized samples are required to determine their robustness and
generalizability. It will be necessary to undertake detailed phenotype-
genotype studies across the mood-psychosis spectrum as well as functional
biological studies to determine how biological variation influences clinical
phenotype. It can be expected that some current findings will prove to be false posi-
tives and there will be many more susceptibility or disease-modifying genes to be
identified in future studies. New methodologies including whole genome associ-
ation studies can be expected to complement existing approaches to facilitate
progress.

In the past, psychiatric genetics has often attracted the pessimistic view that it
is an area of endeavor that is so complex that advances were unlikely. However,
promising findings are now emerging and the potential benefits for the practice
of clinical psychiatry should not be underestimated (127). In addition to facilitating
the development of treatments better targeted at the biochemical lesions involved
in disease, it is also likely to lead to the development of a more rational etiologi-
cally-based classification system which will provide a much better guide to treat-
ment and prognosis than current systems. Importantly, identifying susceptibility
genes will facilitate the identification of environmental factors that alter risk.
Once these environmental factors are characterized, it may prove possible to
provide helpful occupational, social, and psychological advice to individuals at
genetic risk of affective disorders. It is also likely that along this path we will
learn much about the biological basis of normal affective responses.

In addition to the undoubted benefits, the potential costs must also be con-
sidered (127). Major advances raise major ethical issues. Many of these issues are
no different from those that arise in the context of other complex familial disorders,
but the combination of genetics and mental illness raises particular concerns and
has justifiably received close scrutiny of ethical and psychosocial issues (128). It
is important that we continue to address potential problems such as the availability
of services, the right to information, and the testing of individuals below the age of
consent. The challenge is to translate advances in understanding of the complex
etiology of affective disorders into tangible improvements in clinical care.

SUMMARY

Key points are listed in Table 2. The enormous public health importance of mood
disorders, when considered alongside their substantial heritabilities, has stimulated
much work, predominantly in BD, aimed at identifying susceptibility genes using
both positional and functional molecular genetic approaches. Several regions of
interest have emerged in linkage studies and, recently, evidence implicating specific
genes has been reported; the best supported include BDNF and DAOA but further
replications are required and phenotypic relationships and biological mechanisms
need investigation. The complexity of psychiatric phenotypes is demonstrated by
the evidence accumulating for an overlap in genetic susceptibility across the
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traditional classification systems that divide disorders into schizophrenia and
mood disorders. Although no clear examples of gene–environment interaction
have yet been demonstrated in BD, it is to be expected that such mechanisms
will contribute to the genetic complexity.

ACKNOWLEDGMENTS

The author is grateful for research support to the U.K. Medical Research Council
and theWellcome Trust and is indebted to all the individuals who have participated
in the studies.

REFERENCES

1. Murray CJL, Lopez AD, eds. The Global Burden of Disease: A Comprehensive Assess-
ment of Mortality, Injuries, and Risk Factors in 1990 and Projected to 2020. Cambridge,
MA: WHO, 1996.

2. McGuffin P, Owen M, Gottesman II, eds. Oxford: Psychiatric Genetics and Genomics.
Oxford: Oxford University Press, 2002.

3. Kendell RE. The classification of depression: a review of contemporary confusion. Br J
Psychiatry 1976; 129:15–28.

4. Farmer A, McGuffin P. The classification of the depressions. contemporary confusion
revisited. Br J Psychiatry 1989; 155:437–443.

5. World Health Organisation. The International Classification of Diseases 10 Classifi-
cation of Mental and Behavioural Disorders. Diagnostic Criteria for Research.
Geneva: WHO, 1993.

6. American Psychiatric Association. Diagnostic and Statistical Manual of Mental
Disorders (Fourth Edition, Text Revision). Washington DC: APA, 2000.

7. Kendell RE. Diagnosis and classification of functional psychoses. Br Med Bull 1987;
43:499.

8. Perris C. A study of bipolar (manic-depressive) and unipolar recurrent depressive
psychoses. I. Genetic investigation. Acta Psychiatr Scand Suppl 1966; 194:15–44.

9. Angst J. On the etiology and nosology of endogenous depressive psychoses. A genetic,
sociologic and clinical study. Monogr Gesamtgeb Neurol Psychiatr 1966; 112:1–118.

10. Simpson SG, McMahon FJ, McInnis MG, et al. Diagnostic Reliability of Bipolar II
Disorder. Arch Gen Psych 2002; 59:736–740.

11. Smith AL, Weissman MM. Epidemiology. In: Paykel ES, ed. Handbook of Affective
Disorders. Edinburgh: Churchill Livingstone, 1992:111–129.

TABLE 2 Key Points

Family, twin, and adoption studies provide compelling evidence for the existence of
susceptibility genes for bipolar spectrum mood disorders.

Estimates of heritability typically exceed 80% for narrowly defined bipolar disorder.
The pattern of inheritance is consistent with the action of multiple genes and environmental
factors that interact to influence risk of illness.

Several chromosomal regions have been implicated repeatedly in linkage studies.
Evidence is accumulating to support the involvement of specific genes, including DAOA(G72)
and BDNF, in susceptibility to, or modification of the course of,
bipolar disorder.

No gene has yet received the level of systematic study in large samples that is likely to be
necessary to characterize its contribution to bipolar illness.

Increasing genetic data (both classical and molecular) challenge the traditional dichotomous
classification of functional psychoses and highlight the need for changes to psychiatric
nosology.

244 Craddock



12. WeissmanMM, Leaf PJ, Tischler GL, et al. Affective disorders in five United States com-
munities. Psychol Med 1988; 18:141–153.

13. Kessler RC, McGonagle KA, Zhao S, et al. Lifetime and 12-month prevalence of DSM
IIIR psychiatric disorders in the United States: results from the National Comorbidity
Survey. Arch Gen Psych 1994; 51:8–19.

14. Guze SB, Robins E. Suicide and primary affective disorders. Br J Psychiatry 1970;
117:437–438.

15. Daly I. Mania. Lancet 1997; 349:1159–1160.
16. Tsuang MT, Faraone SV. The Genetics of Mood Disorders. Baltimore: The Johns

Hopkins University Press, 1990.
17. Craddock N, Jones I. Genetics of Bipolar Disorder. J Med Genet 1999; 36:585–594.
18. Jones I, Kent L, Craddock N. Genetics of affective disorders. In: McGuffin P, Owen M,

Gottesman II, eds. Psychiatric Genetics and Genomics. Oxford: Oxford University
Press, 2002:211–245.

19. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review
and meta-analysis. Am J Psychiatry 2000; 157:1552–1562.

20. McGuffin P, Katz R. The genetics of depression and manic-depressive disorder. Br J
Psychiatry 1989; 155:294–304.

21. Blacker D, Tsuang MT. Unipolar relatives in bipolar pedigrees: are they bipolar? Psy-
chiatr Genet 1993; 3:5–16.

22. Rice J, Reich T, Andreasen NC, et al. The familial transmission of bipolar illness. Arch
Gen Psychiatry 1987; 44:441–447.

23. Pauls DL, Morton LA, Egeland JA. Risks of Affective illness among first-degree rela-
tives of bipolar I old-order Amish Probands. Arch Gen Psychiatry 1992; 49:703–708.

24. Crowe RR, Smouse PE. The genetic implications of age-dependent penetrance in
manic-depressive illness. J Psychiatr Res 1977; 13:273.

25. Spence MA, Flodman PL, Sadovnik AD, Bailey-Wilson JE, Ameli H, Remick RA.
Bipolar disorder: evidence for a major locus. Am J Med Genet (Neuropsychiatr
Genet) 1995; 60:370–376.

26. Bucher KD, Elston RC, Green R, et al. The transmission of manic depressive illness—II.
Segregation analysis of three sets of family data. J Psychiatr Res 1981; 16:65–78.

27. Goldin LR, Gershon ES, Targum SD, Sparkes RS, McGinnis M. Segregation and linkage
analyses in families of patients with bipolar, unipolar, and schizoaffective mood dis-
orders. Am J Hum Genet 1983; 45:274–287.

28. Sham PC, Morton NE, Rice JP. Segregation analysis of the NIMH Collaborative study.
Family data on bipolar disorder. Psychiatr Genet 1991; 2:175–184.

29. Craddock N, Van Eerdewegh P, Reich T. Single major locus models for bipolar disorder
are implausible. Am J Med Genet 1997; 74:18.

30. Craddock N, Khodel V, Van Eerdewegh P, et al. Mathematical limits of multilocus
models: the genetic transmission of bipolar disorder. Am J Hum Genet 1995; 57:690–
702.

31. McMahon FJ, Stine OC, Meyers DA, Simpson SG, DePaulo JR. Patterns of maternal
transmission in bipolar affective disorder. Am J Hum Genet 1995; 56:1277–1286.

32. O’Donovan M, Jones I, Craddock N. Anticipation and repeat expansion in bipolar dis-
order. Am J Med Genet C Semin Med Genet 2003; 123:10–17.

33. Reich T, Clayton P, Winokur G. Family history studies: V. The genetics of mania. Am J
Psychiatry 1969; 125:1358–1368.

34. Mendlewicz J, Fleiss JL, Fieve RR. Evidence for X-linkage in the transmission of manic-
depressive illness. J Am Med Assoc 1992; 222:1624.

35. Baron M, Risch N, Hamburger R, et al. Genetic linkage between X-chromosome
markers and bipolar affective illness. Nature 1987; 326:289–292.

36. Hebebrand J. A critical appraisal of X-linked bipolar illness. Evidence for the assumed
mode of inheritance is lacking. Br J Psychiatry 1992; 160:7–11.

37. Risch N, Baron M, Mendlewicz J. Assessing the role of X-linked inheritance in bipolar-
related major affective disorder. J Psychiatr Res 1986; 20:275–288.

38. Craddock N, Owen M. Chromosomal aberrations and bipolar affective disorder. Br J
Psychiatry 1994; 164:507–512.

Genetics of Bipolar Disorder 245



39. Craddock N, Owen M. Is there an inverse relationship between Down’s syndrome and
bipolar affective disorder? Literature review and genetic implications. J Intellect Dis
Res 1994; 38:613–620.

40. Murphy KC, Owen MJ. Velo-cardio-facial syndrome: a model for understanding the
genetics and pathogenesis of schizophrenia. Br J Psychiatry 2001; 179:397–402.

41. St Clair D, Blackwood D, Muir W, et al. Association within a family of a balanced auto-
somal translocation with major mental illness. Lancet 1990; 336:13–16.

42. Millar JK, Wilson-Annan JC, Anderson S, et al. Disruption of two novel genes by a
translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9:1415–1423.

43. Collins FS. Positional cloning moves from periditional to traditional. Nat Genet 1996;
9:347–350.

44. Craddock N, Owen MJ. Modern molecular genetic approaches to psychiatric disease.
Br Med Bull 1996; 52:434–452.

45. Egeland JA, Gerhard DS, Pauls DL, et al. Bipolar affective disorders linked to DNA
markers on chromosome 11. Nature 1987; 325:783–787.

46. Kelsoe JR, Ginns EI, Egeland JA, et al. Re-evaluation of the linkage relationship
between chromosome 11p loci and the gene for bipolar affective disorder in the Old
Order Amish. Nature 1989; 342:238–243.

47. Baron M, Freimer NF, Risch N, et al. Diminished support for linkage between manic-
depressive illness and X-chromosome markers in three Israeli pedigrees. Nat Genet
1993; 3:49–55.

48. Craddock N, Lendon C. Chromosome Workshop: Chromosomes 11, 14, and 15. Am J
Med Genet (Neuropsychiatr Genet) 1999; 88:244–254.

49. Suarez BK, Hample CL, Van Eerdewegh P. Problems of replicating linkage claims in
psychiatry. Genetic approaches to mental disorders. Washington DC: American Psy-
chiatric Press Inc., 1984:23–46.

50. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265:2037–
2048.

51. Kruglyak L, Lander ES. High-resolution genetic mapping of complex traits. Am J Hum
Genet 1995; 56:1212–1223.

52. Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar dis-
order and schizophrenia. Mol Psychiatry 2002; 7:405–411.

53. Segurado R, Detera-Wadleigh SD, Levinson DF, et al. Genome scan meta-analysis of
schizophrenia and bipolar disorder, part III: Bipolar disord. Am J Hum Genet 2003;
73(1):49–62.

54. Lewis CM, Levinson DF, Wise LH, et al. Genome scan meta-analysis of schizophrenia
and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003; 73(1):34–48.

55. Craddock N, O’DonovanMC, OwenMJ. The genetics of schizophrenia and bipolar dis-
order: dissecting psychosis. J Med Genet 2005; 42:193–204.

56. Middleton FA, Pato MT, Gentile KL, et al. Genomewide linkage analysis of bipolar dis-
order by use of a high-density single-nucleotide-polymorphism (SNP) genotyping
assay: a comparison with microsatellite marker assays and finding of significant
linkage to chromosome 6q22. Am J Hum Genet 2004; 74(5):886–897.

57. Dick DM, Foroud T, Flury L, et al. Genomewide linkage analyses of bipolar disorder: a
new sample of 250 pedigrees from the National Institute of Mental Health Genetics
Initiative. Am J Hum Genet 2003; 73(1):107–114. Erratum in: Am J Hum Genet 2003;
73(4):979.

58. Ewald H, Flint T, Kruse TA, et al. A genome-wide scan shows significant linkage
between bipolar disorder and chromosome 12q24.3 and suggestive linkage to chromo-
somes 1p22–21, 4p16, 6q14–22,10q26 and 16p13.3. Mol Psychiatry 2002; 7(7):734–744.

59. Lambert D, Middle F, Hamshere ML, et al. Stage 2 of the Wellcome Trust UK-Irish
bipolar affective disorder sibling-pair genome screen: evidence for linkage on chromo-
somes 6q16–q21, 4q12–q21, 9p21, 10p14–p12 and 18q22. Mol Psychiatry 2005;
10(9):831–841.

60. McQueen MB, Devlin B, Faraone SV, et al. Combined analysis from eleven linkage
studies of bipolar disorder provides strong evidence of susceptibility Loci on chromo-
somes 6q and 8q. Am J Hum Genet 2005; 77(4):582–595.

246 Craddock



61. Shink E, Morissette J, Sherrington R, et al. A genome-wide scan points to a
susceptibility locus for bipolar disorder on chromosome 12. Mol Psychiatry 2005;
10:545–552.

62. Abkevich V, Camp NJ, Hensel CH, et al. Predisposition locus for major depression at
chromosome 12q22–12q23.2. Am J Hum Genet 2003; 73:1271–1281.

63. Green E, Elvidge G, Jacobsen N, et al. Localization of bipolar susceptibility locus by
molecular genetic analysis of the chromosome 12q23–24 region in two pedigrees
with bipolar disorder and Darier’s disease. Am J Psychiatry 2005; 162:35–42.

64. Craddock N, Dave S, Greening J. Association studies of bipolar disorder. Bipolar
Disord 2001; 3:284–298.

65. PreisigM, Bellivier F, Fenton BT, et al. Association between bipolar disorder andmono-
amine oxidase A gene polymorphisms: results of a multi-center study. Am J Psychiatry
2000; 157:948–955.

66. Jones I, Craddock N. Candidate gene studies of Bipolar Disorder. Ann Med 2001;
33:248–256.

67. Anguelova M, Benkelfat C, Turecki G. A systematic review for association studies
investigating genes coding for serotonin receptors and the serotonin transporter: I.
Affective disorders. Mol Psychiatry 2003; 8:574–591.

68. Lasky-Su JA, Faraone SV, Glatt SJ, et al. Meta-analysis of the association between two
polymorphisms in the serotonin transporter gene and affective disorders. Am J Med
Genet 2005; 133:110–115.

69. Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theor-
etical and practical concerns. Nat Rev Genet 2005; 6:109–118.

70. Craddock N, Owen MJ, O’Donovan MC. The catechol-O-methyltransferase (COMT)
gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol Psychiatry
2006; 11(5):446–458.

71. Shifman S, Bronstein M, Sternfeld M, et al. A highly significant association between a
COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71:1296–1302.

72. Shifman S, Bronstein M, Sternfeld M, et al. COMT: a common susceptibility gene in
bipolar disorder and schizophrenia. Am J Med Genet 2004; 128B(1):61–64.

73. Chumakov I, Blumenfeld M, Guerassimenko O, et al. Genetic and physiological data
implicating the new human gene G72 and the gene for D-amino acid oxidase in schizo-
phrenia. Proc Natl Acad Sci USA 2002; 99:13675–13680.

74. Hattori E, Liu C, Badner JA, et al. Polymorphisms at the G72/G30 gene locus, on 13q33,
are associated with bipolar disorder in two independent pedigree series. Am J Hum
Genet 2003; 72:1131–1140.

75. Chen YS, Akula N, Detera-Wadleigh SD, et al. Findings in an independent sample
support an association between bipolar affective disorder and the G72/G30 locus on
chromosome 13q33. Mol Psychiatry 2004; 9:87–92.

76. Schumacher J, Jamra RA, Freudenberg J, et al. Examination of G72 and D-amino-acid
oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol
Psychiatry 2004; 9:203–207.

77. Williams NM, Green EK, Macgregror S, et al. Variation at the DAOA/G30 locus influ-
ences susceptibility to major mood episodes but not psychosis in schizophrenia and
bipolar disorder. Arch Gen Psychiatry 2006; 63(4):366–373.

78. Green E, Craddock N. Brain-derived neurotrophic factor as a potential risk locus for
bipolar disorder: evidence, limitations, and implications. Curr Psychiatry Rep 2003;
5:469–476.

79. Duman RS. The neurochemistry of mood disorders: preclinical studies. In: Charney DS,
Nestler EJ, Bunney BS, eds. The Neurobiology of Mental Illness. New York: Oxford
University Press, 1999:333–347.

80. Seidah NG, Benjannet S, Pareek S, Chretien M, Murphy RA. Cellular processing of the
neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases.
FEBS Lett 1996; 379:247–250.

81. Egan MF, Kojima M, Callicott JH, et al. The BDNF Val66Met polymorphism affects
activity-dependent secretion of BDNF and humanmemory and hippocampal function.
Cell 2003; 112:257–269.

Genetics of Bipolar Disorder 247



82. Sklar P, Gabriel SB, McInnis MG, et al. Family-based association study of 76 candidate
genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neurotrophic
factor. Mol Psychiatry 2002; 7:579–593.

83. Neves-PereiraM, Mundo E, Muglia P, et al. The brain-derived neurotrophic factor gene
confers susceptibility to bipolar disorder: evidence from a family-based association
study. Am J Hum Genet 2002; 71:651–655.

84. Geller B, Badner JA, Tillman R, et al. Linkage disequilibrium of the brain-derived
neurotrophic factor Val66Met polymorphism in children with a prepubertal and early
adolescent bipolar disorder phenotype. Am J Psychiatry 2004; 161(9):1698–1700.

85. Oswald P, Del-Favero J, Massat I, et al. Non-replication of the brain-derived neuro-
trophic factor (BDNF) association in bipolar affective disorder: a Belgian patient-
control study. Am J Med Genet 2004; 129B(1):34–35.

86. Skibinska M, Hauser J, Czerski PM, et al. Association analysis of brain-derived neuro-
trophic factor (BDNF) gene Val66Met polymorphism in schizophrenia and bipolar
affective disorder. World J Biol Psychiatry 2004; 5(4):215–220.

87. Hong CJ, Huo SJ, Yen FC, et al. Association study of a brain-derived neurotrophic-
factor genetic polymorphism and mood disorders, age of onset and suicidal behaviour.
Neuropsychobiology 2003; 48(4):186–189.

88. Nakata K, Ujike H, Sakai A, et al. Association study of brain-derived neurotrophic
factor (BDNF) gene with bipolar disorder. Neurosci Lett 2003; 337:17–20.

89. Green E, Raybould R, McGregor S, et al. Genetic variation at brain-derived neuro-
trophic factor (BDNF) is associated with rapid cycling in a UK bipolar case-control
sample of over 3000 individuals. Br J Psychiatry 2006; 188:21–25.

90. Müller DJ, De Luca V, Sicard T, et al. Brain-derived neurotrophic factor (BDNF) gene
and rapid cycling bipolar disorder: family-based association study. Br J Psychiatry
2006; 189:317–323.

91. Barrett TB, Hauger RL, Kennedy JL, et al. Evidence that a single nucleotide polymorph-
ism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar
disorder. Mol Psychiatry 2003; 8(5):546–557.

92. Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, et al. Impaired feedback regulation of
XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 2003; 35(2):171–175.

93. Cichon S, Buervenich S, Kirov G, et al. Lack of support for a genetic association of the
XBP1 promoter polymorphism with bipolar disorder in probands of European origin.
Nat Genet 2004; 36(8):783–784.

94. Barden N, Harvey M, Shink E, et al. Identification and characterisation of a gene pre-
disposing to both bipolar and unipolar affective disorders (abstract). Am J Med Genet
2004; 130B(1):122.

95. Kirov G, Murphy KC, Arranz MJ, et al. Low activity allele of catechol-O-methyltrans-
ferase gene associated with rapid cycling bipolar disorder. Mol Psychiatry 1998; 3:342–
345.

96. Turecki G, Grof P, Grof E, et al. Mapping susceptibility genes for bipolar disorder: a
pharmacogenetic approach based on excellent response to lithium. Mol Psychiatry
2001; 6(5):570–578.

97. Jones I, Craddock N. Familiality of the puerperal trigger in bipolar disorder: results of a
family study. Am J Psychiatry 2001; 158:913–917.

98. Coyle N, Jones I, Robertson E, et al. Variation at the serotonin transporter gene
influences susceptibility to Bipolar affective puerperal psychosis. Lancet 2000;
356:1490–1491.

99. Faraone SV, Glatt SJ, Su J, et al. Three potential susceptibility loci shown by a genome-
wide scan for regions influencing the age at onset of mania. Am J Psychiatry 2004;
161(4):625–630.

100. O’Mahony E, Corvin A, O’Connell R, et al. Sibling pairs with affective disorders: resem-
blance of demographic and clinical features. Psychol Med 2002; 32(1):55–61.

101. Craddock N, Jones I, Kirov G, et al. The bipolar affective disorder dimension scale
(BADDS)—a dimensional scale for rating lifetime psychopathology in bipolar spec-
trum disorders. BMC Psychiatry 2004; 4:19.

248 Craddock



102. Potash JB, Zandi PP, Willour VL, et al. Suggestive linkage to chromosomal regions
13q31 and 22q12 in families with psychotic bipolar disorder. Am J Psychiatry 2003;
160(4):680–686.

103. Kraepelin E. Manic-Depressive Insanity and Paranoia (trans. Barclay RM). Edinburgh:
Livingstone, 1919.

104. Crow TJ. The continuum of psychosis and its genetic origins. The sixty-fifth Maudsley
lecture. Br J Psychiatry 1990; 156:788–797.

105. Gershon ES, Hamovit J, Guroff JJ, et al. A family study of schizoaffective, bipolar I,
bipolar II, unipolar, and normal control probands. Arch Gen Psychiatry 1982;
39:1157–1167.

106. Frangos E, Athanassenas G, Tsitourides S, et al. Prevalence of DSM III schizophrenia
among the first-degree relatives of schizophrenic probands. Acta Psychiatr Scand
1985; 72:382–386.

107. Baron M, Gruen R, Asnis L, et al. Schizoaffective illness, schizophrenia and affective
disorders: morbidity risk and genetic transmission. Acta Psychiatr Scand 1982;
65:253–262.

108. Pope HG Jr, Yurgelun-Todd D. Schizophrenic individuals with bipolar first-degree rela-
tives: analysis of two pedigrees. J Clin Psychiatry 1990; 51:97–101.

109. Tsuang MT, Winokur G, Crowe RR. Morbidity risks of schizophrenia and affective dis-
orders among first degree relatives of patients with schizophrenia, mania, depression
and surgical conditions. Br J Psychiatry 1980; 137:497–504.

110. Valles V, Van Os J, Guillamat R, et al. Increasedmorbid risk for schizophrenia in families
of in-patients with bipolar illness. Schizophr Res 2000; 42:83–90.

111. Kendler KS, Karkowski LM, Walsh D. The structure of psychosis: latent class
analysis of probands from the Roscommon Family Study. Arch Gen Psychiatry
1998; 55:492–499.

112. Rice J, Reich T, Andreasen NC, et al. The familial transmission of bipolar illness. Arch
Gen Psychiatry 1987; 44:441–447.

113. Cardno AG, Rijsdijk FV, Sham PC, et al. A twin study of genetic relationships between
psychotic symptoms. Am J Psychiatry 2002; 159:539–545.

114. Berrettini W. Evidence for shared susceptibility in bipolar disorder and schizophrenia.
Am J Med Genet 2003; 123C:59–64.

115. Hamshere ML, Bennet P, Williams N, et al. Genomewide linkage scan in schizoaffective
disorder: significant evidence for linkage at 1q42 close to DISC1, and suggestive evi-
dence at 22q11 and 19p13. Arch Gen Psych 2005; 62(10):1081–1088.

116. Wang X, He G, Gu N, et al. Association of G72/G30 with schizophrenia in the Chinese
population. Biochem Biophys Res Commun 2004; 319:1281–1286.

117. Korostishevsky M, Kaganovich M, Cholostoy A, et al. Is the G72/G30 locus associated
with schizophrenia? single nucleotide polymorphisms, haplotypes, and gene
expression analysis. Biol Psychiatry 2004; 56(3):169–176.

118. Ekelund J, Hovatta I, Parker A, et al. Chromosome 1 loci in Finnish schizophrenia
families. Hum Mol Genet 2001; 10:1611–1617.

119. Ekelund J, Hennah W, Hiekkalinna T, et al. Replication of 1q42 linkage in Finnish
schizophrenia pedigrees. Mol Psychiatry 2004; 9(11):1037–1041.

120. Macgregor S, Visscher PM, Knott SA, et al. A genome scan and follow-up study identify
a bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry 2004;
9(12):1083–1090.

121. Hodgkinson CA, Goldman D, Jaeger J, et al. Disrupted in schizophrenia 1 (DISC1):
association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J
Hum Genet 2004; 75(5):862–872.

122. Stefansson H, Sigurdsson E, Steinthorsdottir V, et al. Neuregulin 1 and susceptibility to
schizophrenia. Am J Hum Genet 2002; 71:877–892.

123. Stefansson H, Sarginson J, Kong A, et al. Association of neuregulin 1 with schizo-
phrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72:83–87.

124. Williams NM, Preece A, Spurlock G, et al. Support for genetic variation in neuregulin 1
and susceptibility to schizophrenia. Mol Psychiatry 2003; 8:485–487.

Genetics of Bipolar Disorder 249



125. Green EK, Raybould R, Macgregor S, et al. The schizophrenia susceptibility gene, neur-
egulin 1 (NRG1), operates across traditional diagnostic boundaries to increase risk for
bipolar disorder. Arch of Gen Psych 2005; 62:642–628.

126. Craddock N, Owen MJ. The beginning of the end for the Kraepelinian dichotomy. Br J
Psychiatry 2005; 186:364–366.

127. Jones I, Kent L, Craddock N. Clinical implications of psychiatric genetics in the new
millennium—nightmare or nirvana? Psychiatric Bulletin 2001; 25:129–131.

128. Nuffield Council on Bioethics. Mental Disorders and Genetics: the Ethical Context.
London: Nuffield Council on Bioethics, 1998.

250 Craddock



B14 Neurocognitive Findings in
Bipolar Disorder

David C. Glahn
Department of Psychiatry and Research Imaging Center, University of Texas Health
Science Center at San Antonio, San Antonio, Texas, U.S.A.

Carrie E. Bearden
Semel Institute for Neuroscience and Human Behavior, University of California,
Los Angeles, California, U.S.A.

INTRODUCTION

The study of neuropsychological functioning in patients with bipolar disorder
(BD) is expanding rapidly. Indeed, there was a threefold increase in the number
of peer-reviewed publications on this topic from 2000 to 2005, as compared with
the preceding five-year period (Fig. 1). Although significant increase in publication
rate is expected in areas of new exploration, the study of neuropsychological
functioning in BD is neither new nor dependent upon the development of novel
technologies. Rather, this increase in scientific interest is driven by a recognition
that poor neuropsychological functioning in patients with BD is at least partially
independent of mood state (1–5), that cognitive problems may contribute signi-
ficantly to lack of full functional recovery from affective episodes (6,7), and that
neuropsychological deficits may provide clues into the neurophysiologic and neu-
roanatomic abnormalities implicated in the pathophysiology of the illness (8,9).
While it is unclear at this time how common cognitive impairments are among
individuals diagnosed with BD, a significant portion of patients with BD complain
of cognitive difficulties (10,11). However, formal neuropsychological deficits have
also been documented in asymptomatic patients who do not complain of cognitive
difficulties (10,11), indicating that neuropsychological impairments may be more
widespread than clinical experience would suggest.

In this chapter, we review the current literature on the cognition of BD.
While earlier reviews of this literature have been conducted by our group and
others (12–14), the exponential increase in recent publications warrants an
updated review and synthesis of the literature. Our review is organized around a
set of guiding questions:

B Is neuropsychological dysfunction limited to specific cognitive domains in BD?
B To what extent are impairments explained by current mood state?
B Does the course of illness impact neuropsychological functioning?
B Is neuropsychological dysfunction in BD explained by comorbid psychiatric

illnesses (e.g., substance abuse, anxiety)?
B Is impairment secondary to the use of psychotropic medications?
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TAXONOMY OF COGNITION

As more is learned about how information is processed in the brain, parcellation
of cognitive processes into theoretically distinct domains becomes increasingly
difficult. Current neuroscience models propose that most neuropsychological
processes are supported by distributed large scale neural networks with numerous
spatially distinct brain regions (15). In such networks, regional specialization is best
discussed in terms of a continuum, where several regions may be responsible, to
varying degrees, for similar types of information processing (16). Furthermore,
there is increasing evidence that specific brain regions (17) and even specific
neurons (18,19) can be engaged in putatively distinct cognitive processes.

Despite growing evidence that the organization of the central nervous system
is complex and does not easily map on to a simple taxonomy (e.g., memory, atten-
tion, problem-solving), the organization of cognitive processes into specific
domains or functions has been embraced in clinical and experimental neuropsy-
chology and is a useful way to conceptualize an individual’s functional impairment
or disability (20). In this chapter we review evidence for neuropsychological
dysfunction in BD using organizing principles developed for the measurement
and treatment research to improve cognition in schizophrenia (MATRICS) initiative
(21). As part of this initiative, a panel of experts was convened to determine the
cognitive domains implicated in schizophrenia that are relatively independent of
each other. Based on empirical evidence and expert opinion, the panel concluded
that treatment research in schizophrenia should focus on the following cognitive
domains: attention/vigilance, working memory, verbal learning and memory,
visual learning and memory, reasoning and problem solving, and speed of proces-
sing (21,22). Although these domains were originally designed to assess cognitive
change in schizophrenia, applying them to BD is a natural extension, given that
measures assessing these same domains are also commonly applied in studies of
cognition in BD patients. Since the intent of this panel was to develop a consensus
cognitive performance battery to be used in clinical trials of promising pro-cognitive
agents, general verbal ability or intelligence was excluded because of its marked
resistance to change (20). As our goal is to review cognitive dysfunction in BD
more generally, we will additionally include a discussion of general intellectual
ability. Thus, we focus on seven putatively distinct cognitive domains.

FIGURE 1 The number of peer-reviewed journals involving neurocognitive impairment in bipolar
affective disorder.
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ATTENTION/VIGILANCE

Attention is the ability to focus “awareness” to a specific stimulus in the environment
and, often, to respond to that stimulus. Although a myriad of potential attentional
subsystems have been proposed, one important distinction is that of top-down
versus bottom-up processing (23). Top-down processing refers to the flow of
information from “higher” to “lower” brain regions (24), conveying knowledge
derived from previous experience rather than sensory stimulation in preparing
and applying goal-directed selection for stimuli and responses. This system is also
modulated by the detection of stimuli (25,26). A complex network of brain
systems serves top-down attentional processing, including parts of the intraparietal
cortex and superior frontal cortex (27,28). Bottom-up processing refers to infor-
mation processing that proceeds in a single direction from sensory input, through
perceptual analysis, towards motor output, without involving feedback informa-
tion flowing backwards from “higher” to “lower” cortices (23). This system is
specialized for the detection of behaviorally relevant stimuli, particularly when
they are salient or unexpected (25). Bottom-up processing is associated with
temporo-parietal and inferior frontal cortices (29,30), and is largely lateralized to
the right hemisphere.

While attentional dysfunction can denigrate performance on a wide variety
of cognitive measures, attention is most often measured with a continuous
performance task (CPT) (31). During the CPT, subjects attend to a series of
stimuli and respond in some way when a particular stimulus or groups of
stimuli appear. CPT tasks involve several aspects of top-down attention including
vigilance, rapid encoding of stimuli, response readiness, and stimulus-response
mapping. Dependent measures of the CPT include target detection, or how often a
subject responds when the appropriate stimulus is present, and false alarms, or
how often a subject responds to inaccurate stimuli. Other (less commonly used)
attentional measures include the span of apprehension task (SPAN), a sustained
attention measure (32); the dichotic listening task (a test of auditory selective
attention); and the stroop color and word tests (SCWT), which measure attentional
interference (33).

Evidence for Impairment
At the level of clinical observation, patients with BD have difficulty concentrating
for extended periods of time and are often quite distractible (34), suggesting that
attentional dysfunction is associated with the illness. Consistent with these obser-
vations, clinically stable but symptomatic patients with BD are impaired on
measures of target detection from the CPT (35–38). This impairment appears to
be relatively independent of potential working memory confounds (39).

Visual backward masking measures are associated with bottom-up atten-
tional processes and have been used to investigate early sensory processing
in bipolar illness. The prototypical visual backward masking paradigm presents
a target stimulus followed quickly (e.g., 20–50 milliseconds) by a masking
stimulus designed to remove any sensory trace of the target. The object is to deter-
mine the extent to which a subject can process the target stimulus before the mask
disrupts ongoing visual processing. Backward masking deficits have been reported
in manic bipolar patients, and these impairments persist when mania resolves (40).
MacQueen et al. (41) also reported that euthymic bipolar patients were significantly
slower and had more errors than healthy controls on two complementary visual
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backward masking tasks: one requiring subjects to locate a target stimulus, the
other requiring identification of a target stimulus.

Effect of Mood State
Several studies have documented an association between poor CPT performance and
the severity ofmanic symptoms (36,42–47). Clark andGoodwin (43) report thatwhile
manic patients with BD have impaired target detection and increased rates of false
alarms, euthymic patients only show target detection deficits, even after controlling
for residual affective symptoms. Elsewhere, Clark et al. (35) report that after statisti-
cally controlling for residual symptoms, the only neuropsychological measure that
distinguished euthymic patients with BD from matched healthy controls was target
detection on the CPT. Given that two additional groups have replicated this finding
(3,5), poor target detection may represent a trait marker for BD (13,43). However,
currently there is little evidence that unaffected relatives of patients with bipolar
illness suffer attentional deficits (48).

Impact of Clinical Course
While most investigators report that attentional processing is negatively correlated
with duration or severity of illness (43,49,50), others find no relationship (37).
Although hospitalized patients with bipolar illness improve from admission to
discharge, their target detection remains significantly worse than the general popu-
lation (36), suggesting that the extremes of depressive ormanic symptoms exacerbate
attentional dysfunction already present in these patients. Finally, visual backward
maskingperformancemaybe sensitive to the totalnumberofdepressive episodes (41).

SPEED OF PROCESSING

Speed of processing is the time needed for one to complete a simple cognitive
task (20), which often includes encoding some information, making a decision
about that information, and formulating and executing a response. The cognitive
demands of speed-of-processing tests are relatively simple, involving perceptual
and motor components, and emphasize speed of performance. For example,
neuropsychological tests of speed of processing assess the speed with which
digit/symbol pairings can be completed (Digit Symbol), target symbols can be
located (letter or symbol cancellation), number or number/letter sequences on a
page can be identified and connected (Trails A/B), and colors can be named
(stroop color-word interference test). Although verbal fluency is traditionally
thought of as a language or semantic task, since the dependent measure is typically
the number of words starting with a given letter that can be generated in a brief time
period, it is also conceptualized as a speed-of-processing task (22).

While speed-of-processing measures can be influenced by a host of environ-
mental or illness-related factors and by age-related declines (51), these measures are
thought to index neuronal efficiency and to be sensitive to subtle brain dysfunction
(52). Current cognitive neuroscience models of processing-speed tasks highlight the
timely interplay of a prefrontal decision-making node and posterior heteromodal
cortical regions, including parietal and temporal regions (53,54). These models
emphasize the integration of information across spatially distinct brain regions,
rather than the activity of a specific region, suggesting that cognitive slowing as
indexed by processing rate is directly related to neuronal efficiency (52).
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Evidence for Impairment
Depending on the specific measure employed, neuropsychological investigations of
BD that include measures tapping this construct tend to find evidence for some
degree of impairment (14); specifically, on a rapid visual-information processing
task (35), the digit-symbol subtest of the Wechsler Adult Intelligence Scale
version III (WAIS-III) (5), Trail-making Tests A and B (2,55,56), and verbal fluency
measures (3). Moreover, performance on the digit-symbol subtest discriminated
patients with BD with a family history of psychosis from bipolar patients without
history of psychosis (57).

Slow processing speed can reduce neuropsychological performance on a
wide variety of tests (58), particularly learning and memory measures (59,60).
Speed-of-processing impairments have also been reported in unipolar depression,
and may mediate memory deficits found in these patients (61). Kieseppa et al.
found that reduced speed of processing is related to poor verbal learning and
memory in euthymic patients with BD (62). However, others have not replicated
this finding (63).

Effect of Mood State
Clinical observation would suggest that speed of processing increases in mania and
decreases with depression. Depressed mood is related to impairment on speed-
of-processing tests in both unipolar (61) and bipolar disorders (9,64). Contrary to clini-
cal intuition, manic or hypomanic patients also show cognitive slowing on neuropsy-
chological measures (9,64–66). This may be because manic patients have difficulty
focusing on the task at hand, and thus perform more slowly. Euthymic bipolar
patients are significantly impaired on the digit-symbol substitution test (5), a classic
speed-of-processing measure. In contrast, Martinez-Aran et al. (3) reported that
depressed bipolar patients generated fewer words than manic or euthymic bipolar
patients, who did not differ from comparison subjects, suggesting that verbal
fluency may be influenced by mood state. Together, these data suggest that speed
of processing is impaired in BD; however, the specific neuropsychological measure
employed is important, and there are no consistent findings across mood state.

Impact of Clinical Course
Denicoff and colleagues (49) report that with increasing illness duration, perform-
ance on a timed letter-cancellation task decreased significantly. Similarly, with
increasing number of manic episodes, patients’ performance on the letter fluency
test is reduced (67). Others have reported poorer performance on processing
speed measures to be associated with both overall illness duration (3,5) and more
hospitalization episodes (56), suggesting that both duration and severity of
illness may reduce speed of processing. While it is tempting to posit that history
of psychotropic medication usage is associated with reduced processing speed,
Clark and coworkers (35) found that current or past medication usage did not
impact this measure. Furthermore, when this sample was limited to those patients
not on medications (n ¼ 11), patients were still significantly slower than healthy
comparison subjects.

WORKING MEMORY

The information-processing capacity of the central nervous system is limited,
necessitating a time-restricted approach to the processing of ambient sensory
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information (15,68,69). One conceptualization of working memory is that it
provides the temporary storage facilities needed to prolong the neuronal response
to a brief sensory event beyond the duration of the actual event or its iconic (or
echoic) representation, and thus allows for ‘higher’ cognitive processes such
as reasoning, planning, language, and other forms of abstract thought (69a,70).
Baddeley proposed a tripartite organization of working memory consisting of a
central executive component, which controls the manipulation of information
held in memory and the distribution of finite processing resources (e.g., attention),
and two slave systems, the articulatory loop and visuospatial scratch pad, which
maintain mental representations of verbal and visuospatial information, respect-
ively (71,72). Generally, the results of neuroimaging studies are consistent with
the functional and anatomical segregation of the storage aspects of working
memory into separate systems specialized for verbal and spatial information
(73–77). These systems appear to follow the general pattern of hemispheric
specialization, with verbal material maintained primarily in left hemisphere
regions and spatial material maintained primarily in right hemisphere regions
(73) and with segregated regions for passive storage versus active rehearsal
within each domain (77). Executive or manipulation processes rely on prefrontal
processing, specifically in the dorsolateral prefrontal cortex (74,77).

Evidence for Impairment
Neuropsychological measures of working memory include those designed to
assess maintenance [e.g., delayed response task (78)] and manipulation [e.g.,
letter-number sequencing (79) or n-back paradigms (80)] with either verbal or
visual spatial information. Several papers report that patients are not impaired
on the forward condition of the digit span subtest of the WAIS-III (3,81,82), a
measure associated with verbal memory capacity and attention. Using the
CANTAB computerized neurocognitive test battery, Rubinsztein et al. (83) found
that clinically remitted bipolar patients showed impairment on tests assessing
recognition for geometric patterns and spatial locations (Table 1). Using the
same tests in a larger sample of euthymic bipolar patients, Thompson et al. (5)
observed impairment only on spatial (but not pattern) recognition memory, with
additional deficits in paired associate learning, a measure assessing memory
for location of specific visual patterns, and on a delayed (but not simultaneous).
Matching to Sample task, suggesting difficulty with the memory component
of this task. In addition, while Ferrier et al. (2) described significant impairment
in delayed visuospatial memory in remitted bipolar patients, this measure was
no longer significantly impaired after covarying for affective symptoms.
While some reports suggest that bipolar patients are not impaired on spatial
delayed match to sample tests (35,82,84,85), others find spatial maintenance
impairments, particularly in the manic phase of the illness (9,86). Discrepant
results may be due to heterogeneity across patient samples, or differences in the
specific task demands of the working memory measures employed. Indeed,
Glahn et al. found that all clinically stable but symptomatic patients with
BD were impaired on a verbal manipulation task [backwards digit span subtest
of the WAIS-III (The psychological Corporation 1997)]; however, only patients
with a lifetime history of psychosis were impaired on a spatial delayed response
task (81).

Many investigators report dysfunction on tasks requiring on-line manipu-
lation of information in patients with BD (3,5,83,87,88); however this finding
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is not universal (9,35). To date, few studies have employed the same measures of
cognitive manipulation, making it difficult to interpret inconsistent results.

Effect of Mood State
Most reports of clinically symptomatic (82,84) and symptom-free (35) patients with
BD do not show evidence for impaired short-term maintenance of information in
BD. However, Sweeney et al. (9) found that, with increasing delay interval, both
depressed and mixed/manic patients with BD were impaired, and that with a 12
second delay, the mixed/manic patients performed significantly worse than
depressed patients with BD. As most reports of working memory maintenance
did not include such long delay intervals, it is difficult to determine if these findings
are at odds with other reports. In contrast, working memory tests that require the
manipulation of remembered information appear to be impaired across phases of
illness to a comparable degree (3,5,50), but see (9).

Impact of Clinical Course
Rubinsztein and associates (83) reported a significant association between the number
of months hospitalized and visual workingmemory impairment. Thompson et al. (5)

TABLE 1 Visual Spatial Memory Tasks

Visual-spatial memory task Description

Pattern recognition test (85a) 12 abstract colored visual patterns are presented
sequentially. In the recognition phase, the same patterns
(each paired with a novel pattern) are presented in the
reverse order and subjects are asked to respond by
touching the pattern that they have already seen.

Spatial recognition test (130) Five squares are presented sequentially in different
locations. In the recognition phase, each square is
presented again, now paired with a novel location.
Subjects must touch the correct location of the box they
had been presented with earlier.

Rey-Osterreith complex
figure test (124)

The subject copies a complex figure and then, after a
delay, reproduces the figure from memory.

Simultaneous and delayed
matching to sample task (130)

This task assesses subjects’ ability to recognize complex
visual designs after different delay intervals (0, 4, and 12
sec). Subjects are shown a target at screen center, and
after the delay interval four surrounding stimuli are
presented.

Pattern recognition memory
task (130)

After a series of patterns is displayed, subjects are
presented pairs of patterns, one shown previously and
one being a novel pattern. They are asked to indicate the
pattern they were shown previously.

Visual-spatial paired associate
learning task (130)

Designs are presented in boxes on the screen at varying
locations. The designs are then presented sequentially
in the center of the screen and subjects are instructed to
indicate the box in which each design was initially
presented.

Spatial recognition memory
task (130)

Five squares are presented in sequence at different
locations on the screen, and then subjects are presented
a pair of squares and asked to identify which is at a
location where a square was previously presented.
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documented significant relationships between total number of hospitalizations and
spatial working memory. In contrast, Clark et al. (35) reported no significant relation-
ships with the total number of hospital admissions, but found that the number of
admissions specifically for depressive episodes was positively related to errors on a
spatial working memory task. While Frangou and coworkers (143) report that
increaseddurationof illness impactsexecutive functioning,others report thatduration
of illness and/or number of hospitalizations does not significantly affect working
memory performance in bipolar patients (81,89). At issue may be the exact measures
used, as Frangou and colleagues (143) only found an association between duration of
illness and executive dysfunction on just one of several working memory measures
employed. Current use of antipsychotic medications was associated with poorer
manipulation of information held online in BD (50).

LEARNING AND MEMORY: VERBAL AND VISUAL

The explicit recall of previously learned information is known as declarative
memory. In contrast to working memory, which involves the ability to maintain
and/or manipulate information over a brief time period, this process relies on the
ability to adequately encode, store, and retrieve information from long-term
memory (90,91). Encoding refers to the process that converts a perceived event
into a lasting neurophysiological trace (91), while retrieval involves reactivation
of a stored representation, leading to an explicit ‘memory’ of the event. These cog-
nitive functions (encoding, storage, and retrieval) are thought to be subserved by
distinct brain regions. In particular, the temporal-hippocampal system has been
demonstrated by both animal and human work to play a critical role in both encod-
ing and retrieval of verbal information (92–94), while strategic or executive aspects
of memory are heavily dependent upon prefrontal cortical function (95,96).

In studies of adult lesion patients, there appears to be a distinction between
visual and verbal memory circuits that mirrors the hemispheric organization of
the rest of the brain; that is, lesions to the right hippocampus or right temporal
lobes have been shown to impair memory of visual and spatial information, includ-
ing recall of complex geometric figures, paired-associate learning of nonsense
figures, and performance on maze-learning, face-recognition, and spatial memory
span tasks (97–101), while left-sided lesions appear to differentially impair
memory for verbal information (99,100,102,103). Such findings have been validated
by neuroimaging studies (104–106).

Evidence for Impairment: Verbal Learning and Memory
Verbal declarative memory impairments are among the most consistently reported
cognitive difficulties in patients with BD (7,63,65,88,89,107–113). Given that these
deficits have been observed in euthymia (2,3,5), have also been observed in
unaffected relatives of patients with bipolar illness (48,114), and may lead to
clinically significant impairment in everyday functioning (1,2,4,6), declarative
memory dysfunction may represent a vulnerability marker for bipolarity.

Despite the potential importance of memory deficits for psychosocial and
occupational outcome of patients with bipolar illness (6), the nature of these impair-
ments is not well understood. There is some evidence that poor memory perform-
ance is secondary to strategic or organizational dysfunction rather than impaired
memory processes per se (110); given that executive functions (i.e., the ability to
plan and reason, and inhibit behaviors) are known to play a significant role in
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learning andmemory performance (115), and are frequently shown to be impaired in
bipolar patients (see discussion above), this seems unsurprising. However, few
studies have directly investigated the role of learning strategies inmemory perform-
ance in bipolar illness; while Deckersbach et al. (110) found that recall difficulties in
euthymic bipolar patients were partially accounted for by poor semantic clustering
strategies, our group did not replicate this finding (63). Rather, we find that verbal
declarative memory deficits are more consistent with encoding impairments in
adults and children with BD (63,116).

Effect of Mood State: Verbal Learning and Memory
Sweeney et al. (9) identified widely distributed cognitive deficits in mixed/manic
bipolar patients, while depressed bipolar and unipolar patients demonstrated
impairments only on an episodic memory test, suggesting amore selective dysfunc-
tion in mesial temporal lobe function during depressive episodes. Moreover,
Henry et al. (117) found that bipolar patients in the manic state displayed poorer
performance on a verbal learning task relative to their own performance when
clinically remitted. However, they were not impaired on short-term free recall,
regardless of mood state, suggesting that manic or depressive symptomatology
may affect complex processing or memory functions, but not simpler cognitive
processes (117).

Using the California verbal learning test (CVLT) (118), two studies of acutely ill
inpatients in various mood states demonstrated significantly decreased recognition
performance relative to healthy comparison subjects (65,108). Several studies using
similar verbal learning tests have found that euthymic patients have normal perform-
ance on recognition measures (3,5,88,107,111,112), suggesting that verbal recognition
deficitsmay be state-related, rather than a core deficit of BD (119). In contrast to recog-
nition memory, free recall deficits appear to be relatively independent of mood state
(3,63), suggesting that retrieval of verbal information from memory may reflect a
trait-related impairment in patients with BD.

Impact of Clinical Course: Verbal Learning and Memory
Verbal memory performance may be adversely affected by severity of illness, as
measured by number of hospitalizations, number and duration of manic and/or
depressive episodes, and age at onset (35,56,109,120). Five out of six studies
found at least one significant correlation between number of manic episodes and
poorer verbal memory performance (3,35,109,110,113). In particular, four of these
investigations found a relationship between past manic episodes and poorer
delayed verbal memory (recall or recognition of a word list after a delay) (121).
However, other studies have found no relationship between illness variables and
memory performance (1,122).

Although one study found the number of depressive episodes to be inversely
correlated with verbal memory performance (110), four others failed to find a
relationship between number of depressive episodes and verbal memory perform-
ance (3,5,109,112). Martı́nez-Arán et al. (3) found a significant relationship between
the total number of hospitalizations and poorer verbal memory performance.
However, there is little evidence that age at illness onset bears relationship
to verbal declarative memory performance, with several studies showing no
relationship (3,5,119,123). Similarly, of the few existing studies that have examined
length of time euthymic in relation to cognitive function (5,35,87), none have found
an association between these variables.
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Evidence for Impairment: Visual Learning and Memory
In general, there is less consistent evidence for impairment in nonverbal memory
processes in patients with bipolar illness than exists for the verbal domain (12,14).
However, this may be attributable to fact that relatively few studies have examined
aspects of visual and spatial memory in bipolar patients, and those that have rarely
employed the same measures, leading to difficulty synthesizing information across
studies. Two studies found euthymic bipolar patients to be impaired on the
Rey-Osterrieth complex figure test (ROCFT) (124), a nonverbal memory test that
allows assessment of organizational strategies during learning (107,119). Further-
more, Deckersbach et al. (119) found that, compared with control participants,
euthymic bipolar-I patients relied less on organizational strategies during encoding
on this test. However, other studies have reported no impairment on this task
(125,126). In addition, visuo-constructive ability, as measured by the WAIS Block
Design task, appears unimpaired in euthymic bipolar patients (113,127).

Effect of Mood State: Visual Learning and Memory
There is increasing evidence that nonverbal memory impairment is not purely a
function of mood state (107,119). However, visual and spatial memory impairments
may be exacerbated during the mixed/manic phase of illness, and thus are not
entirely state-independent (9).

Impact of Clinical Course: Visual Learning and Memory
One study reported a relationship between the number of both manic and
depressive episodes and increasing impairment on a visual memory task, the
ROCFT (110), although others found no significant relationships between manic
episodes and performance on computerized measures of visuospatial memory
(41,83). Thompson et al. (5) additionally noted poorer performance on the Paired
Associates Learning task in those with longer duration of illness. Of studies that
have instead examined the total number of mood episodes, regardless of polarity,
El-Badri and colleagues (87) observed that number of episodes was negatively
related to visual memory performance. However, other studies have found
no relationship between number of lifetime mood episodes and both verbal and
visual memory performance (88). Furthermore, Ferrier and co-workers categorized
patients based on number of episodes (no more than two major mood episodes
in the past five years, vs. three or more major mood episodes) and found no
differences between the groups on any neuropsychological measure.

REASONING AND PROBLEM SOLVING

The MATRICS group notes that the label Reasoning and Problem Solving has
the advantage of distinguishing this domain from the executive processes of
working memory (128) and demonstrate that this domain is empirically dissociable
(based on factor analyses) from working memory (22). That being said, many of the
tasks included in the reasoning and problem-solving domain are often discussed as
measures of executive functioning. The primary differences between ‘executive’
working memory and reasoning and problem-solving tasks is that working memory
tasks tend to have explicit memory demands (e.g., n-back paradigms) or are designed
to determine working memory capacity (e.g., letter-number sequencing).

Cognitive measures conceptualized as Reasoning and Problem Solving
include sorting cards using an abstract principle that changes over time
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[e.g., Wisconsin Card Sorting Test (WCST) (129), ID/ED shift (130)], nonverbal
reasoning to complete a sequence of visual patterns [e.g., Matrix Reasoning (131)
or the Raven’s Progressive Matrices (131a)] or to construct a visual pattern [e.g.,
Block Design (131)], moving round disks between pegs in the smallest number of
steps to achieve a specific order [e.g., Tower of London (130)], and similar verbal
and nonverbal problem-solving tasks (Table 2). Such higher-level cognitive pro-
cesses often demand relatively intact lower-level processes, but also involve
additional complex strategic planning and decision-making skills. While these
tasks involve a myriad of cognitive processes, they tend to be highly correlated
and are often described as ‘frontal lobe’ measures (132). Human functional neuroi-
maging studies demonstrate that reasoning and problem-solving tasks engage a
wide range of brain regions, including prefrontal, temporal, parietal, occipital,

TABLE 2 Reasoning and Problem Solving Findings in Bipolar Patients

Article Task Finding

Altshuler et al.,
2004

Wisconsin card sort Clinically stable bipolar patients (n ¼ 40) had
more perseverative errors and fewer
categories than healthy subjects (n ¼ 22)

Frangou et al.,
2005

Wisconsin card sort Euthymic bipolar patients (n ¼ 44) did not differ
from healthy subjects (n ¼ 44)

Martinez-Aran
et al., 2004b

Wisconsin card sort Depressed (n ¼ 30), manic/hypomanic
(n ¼ 34), and euthymic (n ¼ 44) bipolar
patients had more perseverative errors than
healthy subjects (n ¼ 30)

Zubieta et al.,
2001

Wisconsin card sort Euthymic bipolar patients (n ¼ 15) had more
perseverative errors and fewer correct
responses than healthy subjects (n ¼ 15)

Clark et al., 2001 ID/ED shift Manic bipolar patients (n ¼ 15) had more
reversal and extradimensional shifting errors
than healthy subjects (n ¼ 30)

Clark et al., 2002 ID/ED shift Euthymic bipolar patients (n ¼ 30) had more
extradimensional shifting errors than healthy
subjects (n ¼ 30)

Olley et al., 2005 ID/ED shift Euthymic bipolar patients (n ¼ 15) did not differ
from healthy subjects (n ¼ 13)

Glahn et al.,
2006a

Progressive matrices Bipolar outpatients in various clinical states
(n ¼ 60) did not differ on a standard
progressive matrices from healthy
comparison subjects (n ¼ 60)

Badcock et al.,
2005

Tower of London/
stockings of
Cambridge

Manic bipolar patients (n ¼ 14) did not differ
from healthy comparison subjects (n ¼ 33)

Rubinsztein
et al., 2000

Tower of London Euthymic bipolar patients (n ¼ 18) took longer to
provide correct responses than healthy
comparison subjects (n ¼ 18)

Thompson et al.,
2005

Tower of London Euthymic bipolar patients (n ¼ 63) were required
more moves and longer times than healthy
comparison subjects (n ¼ 63)

Olley et al., 2005 Tower of London/
stockings of
Cambridge

Euthymic bipolar patients (n ¼ 15) did not differ
from healthy subjects (n ¼ 13)

Clark et al., 2002 Tower of London Euthymic bipolar patients (n ¼ 30) did not differ
from healthy subjects (n ¼ 30)
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and cerebellar cortices (133–135). Although these data suggest that reasoning and
problem solving tasks evoke large-scale cortical networks, Duncan and Owen (132)
note that three prefrontal regions are consistently recruited: the mid-dorsolateral,
mid-ventrolateral, and dorsal anterior cingulate regions.

Evidence for Impairment
Table 2 presents findings from four prototypical Reasoning and Problem Solving
tests. Patients with BD appear to be impaired on specific reasoning and problem-
solving measures (e.g., WCST), but not on other measures (e.g., progressive
matrices). On other measures like the ID-ED shift task and the Tower of London
(Stockings of Cambridge) task, findings are mixed, with some investigators report-
ing impairments and others not (Table 2). The inconsistency of findings suggests
that the reasoning and problem-solving domain includes clearly dissociable
cognitive processes, only some of which may be disrupted in BD. Patients with
BD consistently make more perseverative errors than healthy comparison subjects
on the WCST, suggesting difficulties with cognitive flexibility (3,107,123). However,
findings on the ID-ED test, which is conceptually very similar to the WCST, are
mixed, indicating that other cognitive factors (e.g., strategy or poor inhibition)
may lead to at least some of the observed impairments on the WCST. Alternately,
differences in the composition of the patient and comparison samples studied
may lead to discrepant results.

Whilemost investigators find that planning, as indexed by the Tower of London
task, is impaired in BD (5,83), others find no evidence for impairment (35,136). Olley
et al. (137) found that patients with BD trended towards impairment on this
measure (p ¼ 0.068).

Patients with BD do not appear to be impaired on progressive matrices. As
these measures are closely related to general intellectual processing and given that
there is little evidence that bipolar patients have reduced intellectual abilities
(12,14), it is unsurprising that performance on progressive matrices is intact (138).

Effect of Mood State
While several investigators propose that cognitive flexibility (83,139) and planning
(65) are markedly more impaired in mania, others report no differences between
depressed, manic, or euthymic patients on these same measures (3). In one of the
more detailed examinations of a reasoning and problem-solving test, Murphy
and colleagues (64) measured decision making in manic and depressed bipolar
patients and healthy comparison patients. To do so, they employed an experimental
risk-taking task previously shown to engage inferior and orbital prefrontal cortex
(140) where subjects were asked to win as many points as possible by choosing
outcomes based on variably-weighted probabilities and by placing ‘bets’ on each
decision. Depressed and manic patients were impaired on this task (64), as
evidenced by slower deliberation times, a failure to accumulate as many points
as controls, and suboptimal betting strategies. Interestingly, manic, but not
depressed, patients made suboptimal decisions this measure. However, manic
patients were not impaired on a conceptually similar gambling task (65).

Impact of Clinical Course
Given the variability of findings discussed above, it is difficult to draw clear con-
clusions concerning the effects of clinical course on performance on reasoning
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and problem-solving tests in BD. Clark et al. (35) report that Tower of London per-
formance was negatively correlated with duration of illness in euthymic patients,
potentially explaining some of the variable results reported in the literature on
this measure. In addition, there is some evidence that rule learning and cognitive
flexibility (as measured by the Wisconsin Card Sort) are impaired prior to illness
onset and impairment on this measure in children at risk for BD predicts latter
illness onset (141). Furthermore, performance on this measure worsens with
increasing numbers of manic or depressive episodes (123) and longer duration of
illness (3).

GENERAL INTELLECTUAL FUNCTIONING

Given that the frontal lobes occupy 30% to 40% of the neocortex (142), many theor-
ists ascribe intellectual capabilities to frontal lobe function. To date, the cognitive
neuroscience of general intellectual function is underdeveloped, largely because
there is little evidence to suggest regional specificity in brain regions underlying
these functions (132,134). Nevertheless, some researchers have proposed that
working memory capacity, or the capability for executive attention, is the psycho-
logical core of the construct of general intelligence, or “g” (143). Because the
dorsolateral prefrontal cortex (DLPFC) is critical to working memory capacity,
normal individual differences in both working memory capacity and “g” may be
mediated by individual differences in DLPFC function (132,142).

Evidence for Impairment
There is little evidence for impairment in global cognitive abilities in patients with
bipolar illness, particularly during periods of euthymia (12,14). Although early
studies reported relatively lower nonverbal or performance IQ (PIQ) than verbal
IQ (VIQ) in bipolar patients (144,145), both verbal and performance IQ were well
within the normal range. In addition, because the majority of these earlier studies
did not describe the patients’ clinical state at the time of testing, it is not clear
what impact current clinical symptomatology may have had on IQ performance.
Further, in contrast to patients with schizophrenia, epidemiologic studies offer
little evidence for impairment in premorbid intellectual ability in patients with
BD (146,147).

Effect of Mood State
In one of the few test-retest investigations of IQ in BD, Donnelly and colleagues
found evidence that the same patients, when in a hypomanic or euthymic state,
have higher IQs than when depressed (148). This finding was not attributable to
practice effects, as the patients’ IQ scores declined again when retested in the
depressed state. However, this finding has yet to be replicated with patients
meeting current diagnostic criteria for bipolar illness. Little is currently known
about the effects of clinical course on IQ.

COMORBID PSYCHIATRIC ILLNESSES

While the effects of comorbid attention deficit hyperactivity disorder (ADHD) have
been investigated in the small number of studies examining neurocognitive func-
tion in pediatric bipolar patients (149,159), cognitive differences as a function of
psychiatric comorbidity have only been examined in a few studies of adult patients
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with BD. In particular, van Gorp et al. (113) found that bipolar patients both with
and without alcohol dependence performed more poorly than controls on tests of
verbal memory; however, bipolar subjects with a history of alcohol dependence
had additional decrements in executive functions as compared with controls.
While our group also found that current substance abuse was associated with
poorer verbal learning and memory in bipolar patients, this association did not
reach statistical significance after correcting for multiple comparisons (63). In
addition, comorbid anxiety disorder did not affect verbal memory performance.
Given that 30% to 50% of patients with BD have comorbid substance abuse (151),
as well as very high rates of other comorbidities, particularly anxiety and personal-
ity disorders (152), the impact of comorbid disorders on cognitive function in
bipolar illness clearly warrants further investigation.

While gender differences have rarely been investigated in studies of cognition
in BD, there is some evidence that gender may modulate the severity of cognitive
deficits in BD, with male patients demonstrating poorer neurocognitive perform-
ance (9). Other clinical factors, particularly history of psychosis, may adversely
impact cognitive function (81), though systematic, large-scale investigations of
the effect of psychosis on neuropsychological functioning in BD have not yet
been published.

EFFECTS OF PSYCHOTROPIC MEDICATIONS

Although current and past use of psychotropic medications could impact neurocog-
nitive functioning, systematic investigation of the cognitive impact of these agents
in patients with BD has been limited. A prior qualitative review concluded that
while lithium had a negative effect on memory and speed of information
processing, patients were often unaware of these deficits (153). Although Kessing
et al. (120) found both the number of episodes and length of lithium treatment to
be inversely correlated with performance on two of five tests of global cognitive
function, Engelsmann and coworkers (154) found that mean memory test scores
remained quite stable over a six-year interval in lithium-treated bipolar patients.
Further, there were no significant differences between patients with short- versus
long-term lithium treatment on any measure, after controlling for age and initial
memory scores, suggesting that long-term lithium usage is unlikely to cause
progressive cognitive decline (154).

Some antidepressant medications have been shown to have adverse cognitive
effects, particularly those with anticholinergic properties (155). Although evidence
to date does not indicate cognitive side effects of selective serotonin reuptake
inhibitors (e.g., paroxetine, sertraline), the long-term impact of these medications
on cognition is not yet known (155). While few studies have examined neuro-
cognitive performance in unmedicated bipolar patients, we previously found
comparably impaired verbal memory in patients receiving psychotropic medi-
cation (n ¼ 32) and those who were drug-free (n ¼ 17) (63). Further, Strakowski
and colleagues recently studied euthymic, unmedicated bipolar subjects with
functional MRI, while performing a sustained attention task, the continuous
performance task-identical pairs version (CPT-IP) (156,157). Despite comparable
task performance to controls, the bipolar patients showed a different pattern of
brain activation, involving overactivation of anterior limbic areas, with correspond-
ing abnormal activation in visual associational cortical areas. Taken together, these
findings suggest that cognitive deficits, and underlying abnormalities in neuronal
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activation, in patients with bipolar illness are not primarily attributable to the use of
psychotropic medications. However, large-scale, longitudinal investigations of
bipolar patients on different medication regimens are warranted to fully address
this question.

CONCLUSIONS

Table 3 summarizes our findings of cognitive dysfunction in BD. In rather broad
strokes, we find evidence for neuropsychological impairment in six of the seven
cognitive domains reviewed.

However, this impairment is often subtle, or presents only specific measures
of a cognitive construct and not others. Indeed, by closely examining the types of
tests on which patients with BD show impairment, we conclude that the pattern
of deficits suggests dysfunction in prefrontal and medial temporal lobe circuits.
Evidence for frontal lobe dysfunction includes poor top-down attention as
indexed by CPT tests, reduced speed-of-processing measures that include decision
making (e.g., digit-symbol coding), impairment on working memory tasks requir-
ing manipulation of information, and reduced cognitive flexibility and planning
abilities. Evidence for temporal lobe dysfunction includes poor recall of verbal
and nonverbal information. At this time, it is impossible to determine if these
impairments are independent or interactive with one another or even if these
impairments are seen in the same patients. Indeed, it is possible that patients
with different pathologies are included in the overarching bipolar diagnostic
category, and that neuropsychological measures may be useful in dissociating sub-
groups of patients. While the current review cannot address this issue, as sample
sizes increase, such segregation analyses become possible. Such analyses could
potentially delineate different groups of bipolar patients with distinct neuropsycho-
logical profiles, and potentially with different functional outcomes or treatment
responses.

Relatively few of the cognitive deficits reported in BD are entirely explained
by mood state at the time of assessment. In general, acute manic or depressive
symptoms appear to intensify neuropsychological impairments found in euthymia.
However, there are a number of notable exceptions to this generalization.
For example, recognition of verbal memoranda is seemingly disrupted in manic
and depressed patients but generally intact in euthymic patients. Other neuropsy-
chological measures, particularly those involving verbal or semantic fluency, are
reduced in bipolar patients when depressed, but not in manic or euthymic patients.
Yet, deficits on most measures requiring cognitive flexibility or planning, vigilance,
manipulation of information held on line, or recall of verbal or visual information
appear to be present regardless of mood state. It should be noted that very few
longitudinal neuropsychological studies have been conducted with bipolar patients
and that within subject measurements are needed to definitively address this issue.

The impact of clinical course is difficult to estimate. Most current investi-
gations correlate the number of manic or depressive episodes or total duration of
illness or hospitalizations with cognitive measures. However these indices of clini-
cal course are often dependent upon accurate patient report. For example, the
number of manic or depressive episodes is difficult to determine in patients with
mixed manic and depressive symptoms, and does not provide an indication of
how long these symptoms persisted, or the intensity of these symptoms. Duration
of illness is difficult to accurately determine, given that illness onset is often subtle
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and the measure does not provide an indication of clinically significant mood
changes. Depending on health care availability, the number of hospitalizations
could be biased by the socioeconomic status of the patient rather than his or her
degree of psychiatric distress. Perhaps a better measure of clinical course would
be the number of days well (or sick) in a given time period. However, this

TABLE 3 Neuropsychological Findings in Bipolar Disorder

Cognitive
domain

Impairment in
bipolar disorder

Effect of
mood state

Impact of clinical
course

Attention Consistent evidence for
top-down and
bottom-up impairments

Manic and depressive
mood states
exacerbate poor
attentional
processing found in
euthymic patients

Poor clinical course
is associated
with increased
impairment

Speed of
processing

Evidence for consistent
deficits on measures
other than verbal
fluency. Verbal fluency
impairments reports
in some studies.
Impairments may be
associated with
memory difficulties.

Depressed and manic
patients are impaired
on numerous
measures. Euthymic
patients are impaired
on the digit-symbol
test

Poor clinical course
is associated
with increased
impairment

Working memory Little evidence for
impaired maintenance
of information;
significant evidence
for manipulation/
executive dysfunction.

Depressed, manic and
euthymic patients are
impaired on
manipulation/
executive measures.

Reports are mixed
whether duration
of illness is
associated
with poor
manipulation/
executive
processing

Verbal learning
and memory

Consistent evidence for
impairment in recall
of verbal information

Recognition
impairments are
linked to mood state,
recall deficits are not

Number of manic
episodes and
number of
hospitalizations
are negatively
correlated with
memory
performance

Visual learning
and memory

Although there are
relatively few studies,
consistent evidence
for impairment

Euthymic patients are
impaired on
measures of visual
recall

Unclear

Reasoning and
problem solving

Impairment on specific
problem solving or
planning measures,
but not progressive
matrices

Manic and depressive
mood states may
exacerbate poor
problem solving
performance found in
euthymic patients

Duration of illness
and number of
manic episodes
are negatively
correlated with
cognitive flexibility
and planning
performance

General intellectual
functioning

Little evidence for
impairment

Unknown Unknown

266 Glahn and Bearden



measure is subject to a number of the same concerns, particularly in cross-sectional
studies. These difficulties point to the importance of obtaining collateral infor-
mation (i.e., hospital records, informant reports) to more accurately quantify
history of illness variables. Despite the difficulties with standard indices of clinical
course, the literature to date generally indicates that patients with more severe clini-
cal presentations tend to have poorer memory functioning and cognitive flexibility.
It is unclear whether these patients truly represent a “severe” subgroup distinct
from patients with less severe clinical course, or if the increased impairment in
those patients with a more chronic, severe illness course are secondary to different
medication regimens or other clinical or behavioral factors. In addition, while early
studies often failed to characterize current mood state in cognitive studies of bipolar
illness, researchers are increasingly employing rigorous definitions of euthymia
(based not only on current symptom ratings, but length of time euthymic) to
characterize patient samples. This practice should become the “gold standard” in
all future studies of neurocognition in bipolar illness.

Patients with BD are often prescribed multiple psychotropic medications as
well as other nonpsychiatric agents. This practice makes determining the effects
of a single medication on cognitive processing difficult. There are a number of
studies currently underway on medication-naı̈ve or -free subjects and we should
soon have a better understanding of the neuropsychological function of BD inde-
pendent of psychotropic medications. Ultimately, the study of bipolar patients
alone cannot determine whether neurocognitive deficits are the result of the under-
lying, pre-existing pathophysiology or the result of the illness itself and related
factors (such as sub-syndromal symptoms, acute or chronic medication effects, or
permanent structural changes wrought by prior episodes of acute illness). One
potential way to address these issues is to study those without overt symptom
expression, but with high genetic risk for BD. Although several manuscripts
focusing on unaffected siblings and relatives of bipolar patients have been pub-
lished in the last year (48,62,114,125,158–160), to date the majority of these
studies include relatively small sample sizes, limiting potential conclusions.
However, current findings do tend to corroborate findings in euthymic patients
of subtle learning andmemory deficits (62,114,125) and possibly impaired planning
and attentional function as well (48,161,162). Further study of such at-risk individ-
uals will elucidate neurocognitive and neurobiological vulnerability markers that
can provide important clues into the underlying pathophysiology of the illness.

Cognitive impairment in patients with bipolar illness is increasingly under-
stood as both persistent during symptom-free periods, and to be associated
with functional outcome. Improving our understanding of the clinical implications
of such neurocognitive dysfunction, and its effects on psychosocial and occu-
pational functioning, is of primary importance in improving long-term outcome
for this highly disabling mental illness.
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INTRODUCTION

Fifty years after the discovery of lithium (1), bipolar disorder (BD) remains a major
therapeutic challenge. Extensive research has demonstrated that people with BD
typically suffer multiple recurrences of mania and/or depression throughout
their lifetimes, often despite continuous maintenance pharmacotherapy (2–6).
Markar and Mander (4), for example, followed a group of bipolar patients on
lithium prophylaxis and found that only 30% to 40% remained well over a three-
year period. Recently, clinical research has begun to examine the efficacy of
adding psychosocial treatments to pharmacotherapy for BD (7). Outcomes in
these studies are often measured both in terms of symptom reduction and in
terms of the duration of well periods (8–10). The inclusion of time to relapse as
an outcome measure in these studies presumes that most individuals with BD
will relapse over time, often despite use of so-called maintenance medications.
The occurrence of breakthrough episodes coupled with the poor work, family,
and social functioning found over the long-term course of illness in patients with
BD (11) makes it critical that we examine environmental as well as biological
factors in an effort to better understand mechanisms underlying the pathophysiol-
ogy of BD.

Examining the role that environmental stressors play in the onset, recovery,
and recurrence of bipolar episodes provides a way to understand how psychosocial
factors may influence the course of a disorder that is often thought of as purely bio-
logically driven. Indeed, our own clinical experience would suggest that changes in
social roles (e.g., getting a divorce, becoming a parent), changes in routines (e.g.,
travel across multiple time zones), and interpersonal losses (e.g., death of a loved
one) are frequently associated with the onset of new episodes in bipolar patients.
In this chapter, we review research that has examined the relationship between
life stress and the long-term course of BD as well as the methodological inconsisten-
cies that are found in this research. We also address some of the biological and beha-
vioral processes that may modify this relationship. Additionally, the question of
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whether stress plays a greater role earlier as opposed to later in the course of illness
is examined.

METHODOLOGICAL ISSUES

Before embarking on an examination of the relationship between environmental
stressors and the long-term course of BD, the pervasive methodological inconsis-
tencies and inadequacies found in the previous research on life stress and the
course of BD need to be discussed. Two methods of life event measurement have
dominated research on stress and BD: checklist measures and personal interview
measures. Checklist approaches have several weaknesses. Often the items on
these lists are ambiguous, which may lead to inaccurate interpretations and unreli-
able reports of basic information by respondents (12,13). Checklists often allow a
wide range of severity in one category (e.g., a bad flu, terminal cancer, and
chronic arthritis could all be reported under a “serious illness” category). Addition-
ally, idiosyncratic interpretations influence checklist events such as “serious illness
of close family member” by allowing the respondent to determine which illnesses
are “serious” and which family members are “close” (14).

Perhaps one of the greatest problems that can arise when examining the role
of psychosocial events in episode onset is that events may occur as a result rather
than a cause of the disorder. Checklist measures are unable to sort out this confound
because of the lack of specificity in the timing of events in relation to the onset of
symptoms of a new episode. Studies using checklist methods are more likely to
misdate distant events into a more recent time period (15,16). One-on-one inter-
viewing, on the other hand, is more effective in obtaining accurate answers and
dating (17), which is critical when trying to separate the events from early symp-
toms of psychopathology. The optimal strategy involves the use of reliable and
accurate techniques for dating episode onset in relation to the occurrence of a life
event. Such techniques are more likely to be associated with interview methods.

Many studies use retrospective designs that include prolonged recall periods
and questionnaire methods that contribute to biased or incomplete reporting, errors
in recall, inadequate sampling of important events, and inaccuracies in dating event
onset and duration. One of the main problems with retrospective designs is the
limitations in the long-term recall of stressful life events. Additionally, patients
may experience some memory bias regarding life stress over time to fit their experi-
ence to their conceptualization of their illness (i.e., a “search after meaning”).

Another prominent issue in stress disorder research is whether to use objec-
tive ratings (investigators’ interpretations of threat level) or subjective ratings
(respondents’ interpretations of threat level) of stress. Selye (18), for example,
noted the importance of differentiating between objective external stressors and
perceived stress, stating “the stressor effects depend not so much upon what we
do or what happens to us but on how we take it.” However, research examining
the role stress might play in the etiology and course of a disorder is complicated
by the fact that it can be difficult to distinguish a person’s perception of stress
from the disorder itself or some prodromal sign of it. Moreover, psychological pro-
cesses such as minimization, denial, and exaggeration may lead to a respondent
being unable to report accurately on his or her response to an event. However, if
one takes the respondent entirely out of the equation and merely looks at the
event isolated from any personal context, the meaning may be entirely lost and
the process does indeed become “arbitrary” as Selye noted.
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In an effort to integrate all the aforementioned concerns, the Bedford College
Life Events and Difficulties Schedule (LEDS) (19) uses a contextual interview-based
approach to obtain an accurate portrayal of a subject’s life events and difficulties. In
the LEDS system, “an assessment of meaning or understanding on part of an inves-
tigator can take into account not only the immediate situation (a woman losing a
job) but the wider context (she is unmarried, in debt, and living with her school-
aged child)” (20). The contextual severity of threat and a variety of other dimen-
sions are rated using the “event dictionary” that contains extensive rules, criteria,
and more than 2000 case exemplars of life events and difficulties. Contextual
ratings of threat are based on the notion of the likely response of an average
person to an event occurring in the context of a particular set of biographical cir-
cumstances. The ratings reflect the threat associated with an event, taking into
account the subject’s particular set of circumstances while excluding both the
respondent’s emotional reaction and any psychiatric or physical symptoms that fol-
lowed the event.

The LEDS system enables researchers to obtain information on life events in a
way that minimizes self-report problems including denial, minimization, lack of
spontaneous recall, and exaggeration of past life events. Additionally, the use of
a semistructured interview format allows comprehensive assessment of events
across broad domains. Interviewers use “anchors” (e.g., holidays, birthdays) as
probes to date events accurately within the period of interest. Most important,
the LEDS system has the capability of taking life circumstances into account so
that the meaning of the event is not lost. This approach to the assessment of life
events has yielded consistently strong associations between life stress and the
onset or recurrence of a variety of physical and psychiatric illnesses (20). Of note,
differing treatment outcome results were found in a comparison of checklist and
LEDS methodologies (21). Results indicated that LEDS events predicted decreased
likelihood of remission while the checklist method was not associated with differ-
ential outcome in the same sample. Because of the relative strength of interview
and/or LEDS-based methodology, the following review places more emphasis on
research using those methods.

STRESSORS IN DEPRESSION AND MANIA

Avast amount of evidence indicates a role for life events in the onset and course of
unipolar depression (14,19). The effects of life events on BD, on the other hand, have
not been as extensively studied. The lack of strong research in this area may be a
result of the long-held assumption that biological factors play a more important
role than psychosocial factors in the onset and timing of new episodes in BD.
Despite this, a handful of relatively well-designed studies have recently been pub-
lished regarding the relationship between life stress and the onset or recurrence of
bipolar episodes. Although the existing evidence remains limited, the data have
suggested that stressful life events influence the onset of both first and subsequent
episodes of BD (22).

EPISODE ONSET

Among the first questions that may be answered using life event methodology is
“are stressful life events related to the initial onset of BD?” Despite the fact that
the study of disorder onset is exceedingly difficult to conduct, two studies have
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demonstrated an association between life stress and the initial onset of mood dis-
orders in general or BD in specific. Hillegers et al. (23) adapted the LEDS for use
with adolescents and administered the interview to 140 children of bipolar
parents. They found that overall life event load was associated with about a 10%
increase in the risk of mood disorder onset for these children. Unfortunately, this
study was not able to determine the relationship between life events and onset of
bipolar versus unipolar depression, given that this determination is impossible in
cases where a depressive episode is the initial episode of a mood disorder. Using
the Holmes-Rahe Social Readjustment scale, Glassner and Haldipur (24) found evi-
dence that individuals with late onset BD (defined as onset after age 20) retrospec-
tively reportedmore life events associated with both their first and their most recent
mood episodes. These studies provide some evidence that life stress may be related
to the onset of mood episodes, but are methodologically limited as well.

Perhaps because of the challenges of assessing the impact of stress on first
episodes of mood disorder as well as the clinical importance of understanding
relapse triggers, most extant research in this area has concentrated on the associ-
ation between life stress and either recurrence or exacerbation of mood episodes.
Although the balance of evidence suggests that stressful life events are associated
with return or increase of mood symptoms, not all studies find such a relationship.
Studies using checklist methodologies for assessing life events have generally failed
to find a relationship between life events and bipolar episode onset (25,26) (see
Table 1 for more specific methodological information). Yet each study had extensive
design flaws that limit the strength of its results. Hall et al. (25) studied 38 bipolar I
patients who were asked to complete a questionnaire consisting of 86 events over a
10-month period. They found that the 17 patients who relapsed into an episode of
either depression or hypomania did not differ in frequency of life events from the 21
patients who did not relapse within the 10-month interval. However, the study may
not have used an adequate observation period and did not control for the effects of
medication compliance. Additionally, because depressive and manic episodes were
defined as deviations from normal mood, the patients categorized as relapsers may
have been relatively similar to those who did not relapse, thus resulting in no sig-
nificant differences. Finally, the time studied was not limited to three months or less
before episode onset, which may be a more accurate predictor of relapse. Mayo (26)
also found no excess of stressful events in the six months before hospitalization in
28 bipolar, 7 unipolar, and 5 schizoaffective patients. However, this study also had
methodological flaws (e.g., no analyses by diagnostic group; life event recall went
back, on average, 18 years).

Most studies using more rigorous interview-based life event assessment
methods have found a significant relationship between life events and episode
onset (30–35). The only exceptions are Chung et al. (36) and McPherson et al.
(37). Using the interview-based LEDS system, Chung et al. (36) assessed life
event rates in the six months before episode onset and did not find a significant
difference between hypomanic patients and surgical control subjects, schizophrenic
patients, and schizophreniform patients. The hypomanic patients and control sub-
jects did not exhibit a significant difference in the number of events experienced
over six months. However, given the basic differences typically found between
bipolar I and II patients [e.g., differences in episode severity and genetics (38,39)],
it is questionable whether life event data on hypomanic episodes are generalizable
to bipolar I patients. McPherson et al. (37) interviewed 61 bipolar I inpatients at
three-month intervals over a two-year period. Life events were collected using
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the semistructured Interview for Recent Life Events (40). The events were also rated
for threat and independence using modified LEDS criteria. Onset of relapse was
taken from the time of the first clear symptom. Fourteen of 61 (23%) manic/hypo-
manic relapses and 9 of 32 (28%) depressive relapses were preceded by a moderate
to severe independent event in the previous month. However, these rates were not
significantly greater than the life event rates occurring during control periods.

Although Hunt et al. (Table 2) (34) used the identical measures and design as
McPherson et al. (37) (Table 1), they did find empirical support for a relationship
between life events and new episodes. In the patients who relapsed, 10 of 52
(19%) had at least one severe event in the month before relapse compared with 7
of 144 (5%) during control periods ( p , 0.01). McPherson et al. suggest they may
have failed to find a relationship because their sample was more seriously ill and
at a later stage of illness and because life events may play a more important role
in earlier episodes of the illness, as Post (46) has suggested. Additionally, their
sample was from a more affluent area, in contrast to Hunt et al.’s inner-city
sample, which had a greater proportion of ethnic minorities. This suggests that
the threshold for relapse might be lowered by chronic psychosocial difficulties.

As seen in Table 2, many additional studies have found a relationship
between life events and bipolar episodes. For example, Kennedy et al. (30) com-
pared 20 manic inpatients with orthopedic outpatients and control subjects
matched for age, sex, marital status, social class, and immigration status who
were interviewed 6 to 21 months after hospital discharge. They found that rates
of events with severe, marked, or moderate objective negative impact were
elevated in the four months before psychiatric hospital admission when compared
with post-discharge rates. Ambelas (47) found that 28% of manic patients
experienced a stressful life event in the four weeks preceding their hospitalization,
compared with only 6% of surgical control subjects. Joffe et al. (48), using the PERI-
M (42), found that subjects with mania had significantly more unanticipated and
uncontrollable events as compared with bipolar patients in an episode-free period.

The most methodologically strong studies have used interview-based assess-
ments of life events. Using the LEDS interview-basedmethod, Sclare and Creed (33)
found that 11 of 24 (44%) bipolar I patients experienced a severe event in the 26
weeks before onset, compared with 5 of 24 (21%) experiencing a severe event in
the 26 weeks after recovery. Beside its use of a well-validated method of life
event measurement, another strength of this study was its use of symptom onset
as the definition of a new episode. Because hospitalization often does not occur
until several weeks after the onset of symptoms (49), one cannot be sure if an
event precipitated onset or if it occurred as a result of the disorder when hospital-
ization is used as the onset date.

Two other interview-based studies also found an association between life
events and episode onset. Using a modified version of the LEDS, Bebbington et
al. (35) found higher rates of severe life events in the six months before onset
than in a comparable period among normal control subjects. In a prospective
design, Ellicott et al. (32) examined the impact of life stress on the course of
bipolar illness over a 2-year period, while controlling for medication compliance.
Using a LEDS-based method of life stress assessment of 61 bipolar I outpatients,
they found that patients with a high level of stress were at 4.53 times higher risk
of experiencing a new episode than patients experiencing no stress. Patients with
low and average levels of stress did not have a greater risk of relapse than those
without stress, indicating a threshold at which a patient becomes vulnerable to
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the impact of threatening events. There were also no significant differences between
the group that relapsed and the group that did not in terms of maintenance medi-
cation levels or medication compliance ratings. More recently, Cohen and
colleagues (50), using Hammen’s interview for episodic stress, found a relationship
between level of stress and relapse rates over a one-year period.

As evidence suggesting a relationship between stressful events andmood dis-
turbance in BD has accumulated, researchers have begun to turn their attention to
the potentially differential impact of differing types of stress on recurrence of
depressed versus manic symptoms as well as to interaction effects between life
stress and cognitive or personality styles. In terms of type of episode triggered,
Johnson and colleagues (51), using LEDS methods, found that events having to
do with goal attainment were associated with increased manic symptoms even
when baseline level of mania was statistically controlled. Malkoff-Schwartz and col-
leagues (52) reported that patients who became manic endorsed more severe life
events in the 20 weeks prior to a recent episode compared with depressed
bipolar patients. Similarly, Joffe et al. (48) showed that, although manic and non-
manic bipolar patients did not differ in terms of severity of events or total
number of stressful events experienced, patients with recent mania reported
more uncontrollable or unexpected events prior to the onset of mania. In contrast,
Reilly-Harrington et al. (53) did not find a relationship between the number of
events reported by bipolar and unipolar patients in terms of depressive symptom
onset. Cohen et al. (50) found a marginal trend suggesting that life stress may
play a larger role in the onset of depression than mania.

Other research has turned its attention to the impact of interactions between
personality types or cognitive styles and stressful events on mood episodes among
bipolar patients. Reilly-Harrington and colleagues (53) showed that negative cogni-
tive style and the occurrence of life events interacted to predict depressive symp-
toms in both unipolar and bipolar patients. Further, Alloy and colleagues (54)
found that negative attributional style interacted with life events to predict dys-
phoria and that positive attributional style interacted with positive events to
predict hypomania among hypomanic or dysthymic undergraduates. However,
these results were only found at the second assessment and not at baseline or
third assessment, calling the robustness of these findings into question. Two
other studies have examined the impact of events that are congruent with sociotro-
pic or autonomous personality styles. Hammen et al. (55) found that events congru-
ent with sociotropic or autonomous personality type were related to episode type
for unipolar but not bipolar individuals. This lack of association for bipolar individ-
uals was repeated in a later study from the same group (56).

Another area of related research has examined levels of familial expressed
emotion (EE), which is often conceptualized as chronic interpersonal stress. For
example, Miklowitz et al. (31) studied levels of familial EE and psychiatric
relapse in 23 bipolar manic patients over nine months. Ratings of EE were based
on the amount of criticism, hostility, and emotional overinvolvement found in
the key relatives of patients. Manic or depressive relapse was 5.5 times more
likely in patients from high EE homes than those from low EE homes. Priebe
et al. (57) conducted a small study of EE in the key relatives of 21 patients with
bipolar and schizoaffective disorder who had been well established on lithium
therapy. Patients living with high EE relatives were found to be less stable, both
in the three-year period before and in the nine-month period after the initial assess-
ment. Similarly, Yan and colleagues (58) found that EE was marginally predictive of
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depressive relapse (p , .06) but not manic relapse among 47 medicated bipolar
patients. Interestingly, Miklowitz and colleagues (59) found that although severity
of criticism received from relatives was not associated with symptom outcome or
proportion of well days at one year, the degree to which the patient was upset by
criticism did predict symptom severity (p , .02) as well as well days (p , .003
when controlling for several other factors). However, this may speak more to the
impact of individual differences in interpersonal sensitivity rather than EE per se.
Regardless, high levels of familial EE (or patient negative reaction to EE)
can easily be viewed as a chronic interpersonal stressor, and these results provide
additional evidence suggestive of a significant association between stress
and relapse.

STRESS AND RECOVERY FROM AN EPISODE

Based on the assumption that “reactive” episodes may be more responsive to treat-
ment than “endogenous” episodes, several studies have set out to examine the con-
nections between stress and recovery from affective episodes. In unipolar
depressed patients, the findings have been mixed. Some studies reported that life
stress occurring before treatment entry predicted a positive treatment response
(60), whereas others found the opposite (61,62) or found no association at all (63).
Unfortunately, only two studies to date have looked at stress and recovery from
bipolar episodes. Johnson and Miller (64) found that bipolar I patients who experi-
enced at least one severe negative life event during an episode took more than three
times as long to achieve recovery as those without severe life events. However, a
study by Hlastala and colleagues (65) did not replicate these results. In that
sample of 96 bipolar I patients, the occurrence of acute and chronic stressors occur-
ring during treatment was not significantly related to time to recovery from manic,
depressed, or mixed/cycling episodes. Several differences between the studies may
have contributed to these discrepant findings. Primary among these differences is
that patients in the Hlastala et al. study (65) were participating in a randomized
controlled study with strictly defined treatment protocols. In contrast, the
Johnson and Miller study (64) was a naturalistic one with variable types, quantity,
and quality of treatments. Therefore, in the Hlastala et al. study, it is possible that
the “ceiling” effect of standardized treatment attenuated the impact of life events
on time to remission. Obviously, more research needs to focus on the relationship
between life stress and such important long-term course parameters as recovery
and treatment response.

SUMMARY

Although the methodological inconsistencies of the previous research make it
difficult to draw any strong conclusions, stressful life events appear to operate as
contributing factors in a significant number of patients with BD. Most previous
studies have shown evidence for this relationship, whereas the few studies that
were unable to confirm the relationship were laden with methodological problems.
Many researchers who failed to find a relationship between life events and episode
onset, in fact, concluded that the null findings may reflect the possibility that life
stress only plays a role in precipitating episodes early in the course of illness, as
Post (46) has suggested (see subsequently and Chapter 16 of this volume).
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BIPOLAR DISORDER-SPECIFIC MECHANISMS OF THE
STRESS-EPISODE RELATIONSHIP
Kindling and Behavioral Sensitization
According to the kindling/behavioral sensitization model of recurrent affective dis-
orders (46,66), the first episodes of BD are more likely to be associated with major
psychosocial stressors than are episodes occurring later in the course of the illness.
The kindling model relies on two principles of neuropsychological research: elec-
trophysiological kindling (progressive vulnerability to seizures) and behavioral
sensitization (progressive change in psychomotor stimulant response). Research
on the development of amygdala-kindled seizures in response to electrical stimu-
lation has shown that after a sufficient number of electrically induced seizures,
spontaneous epilepsy will occur, even in the absence of electrical triggers. When
used to understand recurrent affective disorders, the model is a nonhomologous
paradigm that hypothesizes that “exogenous” stress (i.e., a precipitating “stimu-
lant”) will be less likely to be associated with the onset of new episodes as the dis-
order progresses, resulting in spontaneous episodes and/or rapid cycling. In other
words, this model implies that bipolar patients become so sensitized to stress, as a
consequence of experiencing multiple episodes, that they eventually require only
the slightest stimulus to precipitate relapse.

Post (46) has described two types of sensitization: stressor sensitization and
episode sensitization. Episode sensitization is the phenomenon of increased sever-
ity, increased symptom profile, and decreased time between episodes over the
course of the disorder. Some research has shown that cycle length tends to
shorten with each recurrence (67). However, this phenomenon is not found in all
bipolar patients. Roy-Byrne et al. (68) noted after following 50 bipolar patients
for over five years that approximately 52% showed a sensitization pattern of pro-
gressively shorter intervals during the course of the illness, whereas 48% showed
no particular pattern with longer intervals randomly distributed throughout the
course of the illness. Additionally, in those patients who experience a rapid-
cycling pattern, most return to non–rapid-cycling episode patterns within a
three-year period (69).

Stressor sensitization is said to occur when the provocation of new episodes,
later in the course of the illness, requires lower and lower levels of stress. The role of
psychosocial stressors in the initial onset of affective disorders was noted by early
descriptive psychopathologists. Kraepelin (70) stated that new episodes of manic-
depressive illness “begin not infrequently after the illness or death of a relative,”
but stress should not be viewed as necessary for the onset of recurrent episodes
because they may be “to an astonishing degree independent of external influences.”
Additionally, Stern (71) postulated that subsequent episodes, following the acti-
vation of the “manic mechanism,” require less in the way of stress.

Post (46), in his review of the evidence for the kindling model, based his con-
clusions primarily on studies examining recurrent unipolar depression. Only six
studies have looked at the possibility of differential effects of stress as a function
of the number of episodes experienced in bipolar I patients. Of those six studies,
three lend support to the model, whereas three do not. Dunner et al. (72) examined
the occurrence of stressful life events before the initial and subsequent episodes in
79 bipolar I patients. Fifty percent reported an event before the first episode,
whereas only 15% reported an event preceding subsequent episodes. Ambelas
(73) also found a significant difference in life event rates among bipolar patients
with one episode versus those with repeated episodes. Sixty-six percent of patients
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in their first episode of mania experienced a stressful event in the four weeks pre-
ceding onset, whereas only 50% of individuals in repeat admissions appeared to
have experienced an event.

Similarly, Glassner et al. (74) found a stronger association between stressful life
events and onset in the first episode compared with subsequent episodes in 25
bipolar I patients. Seventy-five percent reported experiencing a life event in the
year before their first episode, whereas 56% reported experiencing a life event in
the year before their most recent episode. However, after increasing their sample
size, they did not find the same pattern (24). The rates of stressful life events in
bipolar patients who were classified as having either an early (�20 years old) or
late onset were similar in the year before their first episode or latest episode.

Swendsen et al. (75) used a LEDS-based methodology to examine the occur-
rence of stressful life events in 45 bipolar I patients for one year after achieving clini-
cal remission or their best clinical state. They found that patients who experienced
moderate to severe levels of stress were significantly more likely to experience a
recurrence than patients who experienced no or minimal stress, regardless of
how many previous episodes they had experienced. High stress was also a signifi-
cant predictor of recurrence among those with 12 or greater previous episodes. The
author concluded that these results, obtained using a more rigorous measure of life
stress than previous studies, are inconsistent with the kindling model.

In a more direct test of the kindling model, Hammen and Gitlin (76) followed
52 bipolar I patients for two years, while interviewing every three months for major
life events using a LEDS-based methodology. Over the two-year follow-up period,
36 patients experienced either a relapse or recurrence. The relapse/recurrence
group was more likely than the episode-free group to have experienced a severe
life event within the six months before the relapse/recurrence. Forty percent of
the subjects with eight or less previous episodes experienced a major life event in
the six months preceding relapse/recurrence, whereas an even greater proportion
(76%) of those subjects with nine or more previous episodes experienced a major
life event in the six months preceding relapse/recurrence. Interestingly, backward
survival analyses revealed that those with nine or more episodes relapsed more
rapidly after a major event than the group with fewer episodes. These results
seem to provide contradictory evidence when applied to the kindling model.
They suggest that patients with more episodes may be more reactive to stress
because they relapsed more quickly after a life event, which supports a model of
stressor sensitization. However, the data also suggest that patients with a greater
number of episodes may still need high levels of stress preceding onset, which con-
tradicts what has traditionally been viewed as support for the kindling model.

Our own work testing Post’s hypotheses (77) has not demonstrated compel-
ling evidence in support of the kindling model. Sixty-four bipolar I patients, who
were participants in the Pittsburgh Study of Maintenance Therapies in Bipolar Dis-
order, were interviewed about a year before onset of their index episode. The
Bedford College LEDS (19) was used to determine severe events (events with
threat level rated as the highest two points on a four-point scale) and nonsevere
events (events with threat level rated as the lowest two points on a four-point
scale) occurring during the three months before episode onset and during a three
month episode-free control period. Based on these ratings, each patient was cate-
gorized as having experienced either “high,” “moderate,” or “low” stress during
the three month observation periods. Cumulative logit analyses were used to
examine the relationship between number of previous episodes and the type of
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stress (i.e., high, moderate, and low) experienced in both the preonset and control
period. The analyses did not support the hypotheses that the number of episodes
experienced would predict stress level in the preonset and control periods.
However, age was found to be a significant predictor of stress level in the preonset
period ( p ¼ 0.03), with older subjects evidencing lower levels of stress before
episode onset than younger subjects. These results suggest that a more complex
relationship may exist among age, stress, and onset of new episodes than can be
adequately explained by the kindling model. Additionally, previous research sup-
porting a “kindling” process in bipolar patients may be an artifact of ignoring the
effects of age when examining a longitudinal process.

Summary
Although Post’s model has been accepted by many researchers and clinicians, the
evidence for kindling/behavioral sensitization in bipolar patients is equivocal at
best. The studies that appear to support the model have extensive methodological
weaknesses, including reliance on chart review (73) and self-report checklist ques-
tionnaires of stressful life events (72). Additionally, one study (74) expected the sub-
jects to recall as far back as 10 years or more to obtain information on life events
preceding their first episodes. Although the studies that are inconsistent with the
kindling model (75–77) are methodologically stronger (i.e., interview- based
LEDS methodology and prospective design), further research is needed before
any strong conclusions can be made.

Finally, Post’s kindling model is a very difficult model to test adequately
because of its internal inconsistencies. Implicit in this model are two distinct
phenomena that are tied together—kindling and sensitization. The kindling
aspect of the model presupposes that the illness becomes autonomous after experi-
encing a certain number of episodes and stressors. The sensitization aspect of the
model is inherently different, however. Implicit in a sensitization model is that
patients with recurrent affective disorder become increasingly sensitized to stress
as a function of how many affective episodes they have experienced. Thus, very
minor amounts of stress should play an increasingly greater role in the onset of
new episodes.

This inconsistency has led to multiple interpretations of past research, such
that depending on how the data are approached, the kindling/sensitization
models (which are really two distinct although conceptually linked models) may
or may not be “supported.” For example, Hammen and Gitlin (76), as described
previously, found that patients with a greater number of episodes relapsed more
quickly than patients with fewer episodes after a stressful life event. They con-
cluded that the data do not support the kindling model because these patients
did not have “autonomous” episodes (i.e., stress had an even greater effect on
episode onset among those who had experienced many episodes). However,
another conclusion from this data could be that those patients with more episodes
were “sensitized” to stress, thus they relapsed more quickly after a stressful event.
Although Post (46) concedes that “the processes involved in sensitization may be
more directly analogous to those occurring in the affective disorders because of
the behavioral rather than convulsive endpoints observed” (p.1001), the model con-
tinues to be interpreted in various ways by researchers and clinicians. For an excel-
lent review of these issues as they pertain to depression, see Monroe and Harkness’
2005 review (78).
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STRESS, HPA AXIS DYSFUNCTION, AND BIPOLAR EPISODES

A large body of research has shown a strong relationship between stress
and increased hypothalamic-pituitary-adrenal (HPA) axis activity. Elevations of
epinephrine, norepinephrine, and cortisol have repeatedly been found among
persons experiencing chronic and acutely stressful events (79). Thus, early studies
demonstrating elevated cortisol levels in depressed patients were generally
regarded as a normal adaptational response to a stressed state (i.e., depression)
(80). However, some investigators viewed such elevations as being the result of an
abnormality in the HPA system (81).

Extensive research on unipolar depressed patients partially supports this
hypothesis. Elevated levels of glucocorticoids in cerebrospinal fluid, plasma,
saliva, and/or urine, which is commonly used as evidence for HPA axis dysfunc-
tion, have been found in more than one half of hospitalized depressed patients
(82,83). In addition, a large proportion of depressed patients show evidence of
impaired HPA feedback inhibition (84,85) and abnormal circadian regulation of
the HPA axis (86,87).

Unfortunately, the findings on the relationship between HPA axis dysfunction
and bipolar episodes are not as clear. In general, the previous research has found
more evidence for increased HPA activity in bipolar depression than in mania.
Some studies have found normal HPA activity in patients experiencing pure
manic episodes (88–90), although some studies have not (84,91). Some work has
shown that DST response is more exaggerated in bipolar depression than in uni-
polar depression, even when in recovery from a major depressive episode (92). In
a critical review of the literature on dexamethasone suppression test (DST) in
bipolar episodes, Goodwin and Jamison (67) concluded that DST nonsuppression
occurs more frequently in the depressive and mixed phases than pure manic
phases of the illness. One interesting study (93) found that among three rapid-
cycling patients, DST results were abnormal in and before depressed episodes
but normal during manic episodes. However, contradictory evidence can be
found in the work of Cervantes and colleagues (94). In their small sample of
patients with bipolar I disorder, abnormal cortisol levels were found among
patients in both depressed (n ¼ 5) and manic (n ¼ 5) states. Many studies agree
that HPA abnormality usually resolves itself after recovery from an episode
(95,96), indicating that DST nonsuppression is a state marker rather than an under-
lying biological abnormality. However, not all studies reach the same conclusion.
For example, Cervantes et al. (94) found elevated cortisol levels among even euthy-
mic bipolar patients (n ¼ 8) when compared with non-psychiatric controls.

There has been some evidence that HPA dysregulation may have utility in
predicting episode onset. Goodyer et al. (97) found that HPA abnormality prospec-
tively predicted the occurrence of major depressive episodes among adolescents at
high risk for depression. Further, Vieta and colleagues (98) found evidence that
remitted bipolar patients with elevated corticotrophin levels had higher incidents
of mania during the subsequent six months. One possibility is that HPA dysfunc-
tion is caused by acute or chronic stress in vulnerable individuals, promoting
mood episodes. Ellenbogen et al. (99) found that the non-disordered children of
bipolar parents showed abnormally elevated cortisol levels across the day. They
suggest that prolonged exposure to stress (due to the difficulties associated with
living with a psychiatrically ill parent) may have promoted HPA changes in
these children. Brown and colleagues further suggest that prolonged exposure to
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elevated cortisol levels may alter the structure of the hippocampus, both promoting
mild cognitive abnormalities and increasing vulnerability to stress (100). They
suggest that this feedback loop may be promoted by initial mood episodes and
may facilitate future episodes.

In addition to a more biological mechanism, hypercortisolemia as a result of
HPA axis dysfunction may play a role in the onset of bipolar episodes through its
ability to affect sleep rhythms. It has been well established that most patients
experiencing an episode of either mania or depression display specific disturbances
in their biological rhythms (101,102), particularly in their sleep-wake cycle
(101,103). Corticosteroids have an ability to disrupt sleep by causing increased
awakenings and decreased slow wave sleep (104). Thus, a person may experience
one or more “sleepness nights” not only because of the psychological sequelae, but
because of the hormonal effects of acute or chronic stress resulting in a bipolar
episode. This sleep disruption mechanism parallels another hypothesized
pathway to the onset of manic and depressive episodes in bipolar patients—
social rhythm disruption (105,106).

SOCIAL RHYTHM DISRUPTION AND BIPOLAR EPISODES

Another promising area of research connecting environmental stressors to the onset
of new episodes has been through their ability to disrupt social and circadian
rhythms (105,106). Goodwin and Jamison (67) have integrated large volumes of
research on the pathophysiology of bipolar episodes, postulating that “instability
is the fundamental dysfunction in manic depressive illness” (p.594). One particu-
larly salient contributor to this instability may be a disruption in a patient’s social
routines. The social zeitgeber and biological rhythm theory (105,106) articulates
this pathway, which is both biological and behavioral in nature, through which
life events may precipitate and/or exacerbate affective episodes.

This theory suggests that stressful life events can often act as “social agents of
circadian disruption” by causing alterations in social routines that ordinarily act to
synchronize circadian rhythms, leading to the onset of affective episodes in vulner-
able persons. For example, when an individual loses a typical “nine to five” job, he
or she may not only experience certain psychological aspects of this loss but also
lose a significant social zeitgeber (i.e., social cues and demands that act to entrain
the biological clock.). Most likely that person will alter his or her regular sleeping
times, meal times, and times of activity and rest. Such disruptions in social routines
could act to disrupt circadian rhythms that have been implicated in the pathogen-
esis of both depression and mania (102,107–110).

To date, only one study has directly examined the role of social rhythm dis-
ruption (SRD) in the onset of depressive and manic episodes in bipolar I patients.
Our research group (111) rated life event descriptions obtained using LEDS (20)
for degree of SRD during eight-week preonset and control periods. Life events
that were classified as disrupting social routines (i.e., “SRD events”) were associ-
ated with the onset of manic, but not depressive, episodes. Because social rhythm
disruption may have more gradual effects on depressive compared with manic
onsets, the eight-week preonset window may have been of insufficient duration
to observe an association between SRD events and bipolar depressive episodes.
Alternatively, SRD events may be important in the onset of manic but not depress-
ive episodes.
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Further evidence of the relationship between social rhythm disruption and
bipolar episodes comes from a treatment outcome study conducted in our clinic
(112). This study compared Interpersonal and Social Rhythm Therapy (IPSRT)
with intensive clinical management (ICM) for bipolar I disorder. The IPSRT treat-
ment emphasized increased schedule regularity (in addition to psychotherapy
and medication management) as one component of the treatment while the ICM
arm consisted of education about BD, sleep hygiene, non-specific support, and
medication management. Results indicated that participants who received IPSRT
in the active phase of treatment had longer survival time before a bipolar recurrence
and were less likely to have a recurrence in the two year maintenance phase.
Further, increased social rhythm regularity during the acute treatment phase was
associated with reduced odds of recurrence in the maintenance phase. This work
provides empirical support for the theory that social rhythms play an important
role in the course of BD.

CONCLUSIONS

External stressors appear to play a substantial role in the course of BD. Stressful life
events appear to influence not only the timing of initial and recurrent episodes but
also the recovery from what is often a difficult, even excruciating, struggle to
recover from such episodes. Further elucidation of the mechanisms through
which stress may affect bipolar episodes is clearly needed. Unfortunately, not
enough is known about exactly how stress might precipitate bipolar episodes. Bio-
logical mechanisms, such as neuroendocrine abnormalities, and behavioral mech-
anisms, such as SRD, appear to yield interesting findings. Researchers and
clinicians alike would benefit greatly from a better understanding of different bio-
logical, behavioral, and psychological pathways that relate external stressors to the
onset and maintenance of affective episodes.

Beside the specific mediators of stress that were discussed earlier, moderators
of the stress-episode relationship need to be examined. For example, in our own
work, it remains to be seen whether increasing the regularity of daily routines med-
iates the SRD–onset relationship. Analysis of this relationship will be undertaken
shortly. Other psychosocial variables such as personality factors, social support,
and self-esteem may play a large role in how a patient with BD reacts to both
chronic and acute stressors. Research on unipolar depressed patients suggests
that life stress may have more potent effects if it is related to a patient’s particular
personality or cognitive vulnerabilities (113,114). However, this area of research has
not received strong support in the literature so far. Although Hammen et al. (56)
were able to find support for this phenomenon in unipolar depressed patients,
they did not in bipolar patients (55). Interestingly, events that were rated as inter-
personal in nature predicted higher symptom severity scores in all patients, regard-
less of their personality type. Perhaps bipolar patients are especially vulnerable to
problems that arise in the context of their relationships with others.

The effects of patient-generated stressors are also commonly ignored. It is
likely that patients with bipolar illness tend to generate moderately stressful
events as a result of their illness and that these events in turn serve to delay or
prevent remission or to provoke new symptomatic exacerbations. This idea is
similar to that proposed by Hammen (115), who concluded that women with
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recurrent unipolar depression tend to generate stressful conditions by their
symptoms, behaviors, characteristics, and the social context in which they find
themselves. Both interpersonal and practical (e.g., lack of employment, housing,
etc.) problems that occur as a consequence of a manic or depressive episode
could contribute to a chronic or worsening course of illness over the long term.

Further emphasis on the role of stressors in the pathophysiology of BD is a
promising way to integrate biological and psychosocial perspectives on the
etiology and long-term course of BD. We must keep in mind that even the most
“biologically based” illnesses exist in a psychosocial context; thus, a more complete
understanding of psychosocial influences could provide useful information for the
treatment and prevention of future episodes in patients suffering from this often-
disabling illness.
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B16 The Kindling/Sensitization Model:
Implications for the Pathophysiology
of Bipolar Disorder

Robert M. Post
Mood and Anxiety Disorders Program, National Institute of Mental Health,
Department of Health and Human Services, National Institutes of Health, Bethesda,
Maryland, U.S.A.

HISTORICAL OVERVIEW

It is remarkable that almost one hundred years ago Dr. Emil Kraepelin (1) described
the essential process of affective illness progression, based on his careful charting of
episodes of affective illness and the potential precipitating circumstances with
which they were associated. While he spoke of the inherent variability of the
illness course both within and between subjects, he noted an overall tendency for
the illness to increase in frequency over time, with a decreasing duration of well
intervals between successive episodes. At the same time, he noted that the first epi-
sodes of mania or depression were often precipitated by psychosocial stressors, but
that with the appearance of enough episodes, they would begin to recur in a highly
similar form “quite without external occasion” (p. 181) (1). Thus, he captured the
ideas of both increasing automaticity and vulnerability to recurrence as a function
of number of prior episodes. He attributed this progression to inherent genetic
mechanisms interacting with recurrences of stressors and episodes themselves.

In dissecting the inherent course of bipolar illness and its response to
treatment, a careful Kraepelinian-like graphic depiction of episodes appeared fun-
damental to further understanding pathophysiology and treatment responsivity.
The new system, termed the National Institute of Mental Health—Life Chart Meth-
odology (NIMH-LCMTM) increased the detail of Kraepelin’s schema for document-
ing manic and depressive episodes (2–4). It also allowed for different levels of
manic and depressive episode severity (from mild to low and high moderate to
severe) based on the degree of dysfunction with which the manic and depressive
symptoms were associated. A self-rated version of the NIMH-LCM is also available
and includes a rating of mood from 0 to 100, with zero representing “most
depressed ever,” 50 representing “balanced or euthymic,” and anything over 50
toward 100 would be “activated, energized, or more speeded up than usual.”

On the patient’s rating form, not only was this subjective mood assessment
included, but number of hours of sleep, positive and negative life events and stres-
sors, side effects, and comorbid symptoms could also be entered on a daily basis.
These ratings and the severity of mania and depression are charted retrospectively
on a monthly basis along with the medications the patient may or may not have
taken, and prospectively on a daily basis including dose and numbers of pills taken.

In this way, the prior course of illness could be delineated in a retrospective
fashion and continued to be monitored in much greater detail prospectively in
order to assess eventual treatment response. A series of specific techniques were
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used for enhancing recall from patients, family members, and previous physicians,
and hospital notes and records were examined tomaximize the accuracy of the deli-
neation of the prior illness course. The prospective LCM form has been validated
against more conventional cross-sectional elements and, in addition, has inherent
face validity and the benefit of a continuous rating system, not one that is intermit-
tently measured with the potential liability of missing major fluctuations in mood
and behavior in the interval (5–7).

Using retrospective life chart data, we delineated the overall Kraepelinian
tendency for illness progression in our select group of treatment-refractory
unipolar and bipolar affectively-ill patients. There was also a small subgroup
who cycled very rapidly even from the onset of their illness. Examining the
course in those not responding adequately to treatment is a critical point to be
emphasized. It is more likely to mirror the Kraepelinian delineation of the course
of illness prior to the advent of major psychopharmacological interventions. It is
also an area subject to a great deal of misinterpretation, as some critics have
suggested that somehow the sensitization/kindling models employed to conceptu-
alize mechanisms underlying illness progression mean that this process is invari-
ably relentless and not subject to treatment intervention. On the contrary, episode
recurrence, cycle acceleration, and illness progression canmost often be interrupted
with adequate treatment. However, intervention later rather than earlier in the
course of illness may be associated with greater difficulty in achieving remission
and require more complex treatment regimens (8).

Stress and Episode Sensitization: Homologous Models
for Affective Illness Prognosis
The fundamentals of the kindling and sensitization model and the predictions
derived from themhave been spelled out in detailwith appropriate supporting refer-
ences (9–15). Briefly, the sensitization component of the model derives from obser-
vations that animals exposed to repeated doses of psychomotor stimulants, in the
same behavioral context, show increasingmotor activity and stereotypic disorganiz-
ation to the same dose over time. The psychomotor stimulants in their early phase of
use in humans are excellentmodels for hypomania andmania, and later in the course
of use are associated with dysphoric mania and paranoid psychosis. Thus, the sen-
sitization model in animals provides potential mechanisms for considering how
recurrent manic episodes could increase severity and invulnerability to recurrence.

In addition, a second component to the sensitization model is important
in relationship to predictive validity. Stimulant-induced behavioral sensitization
shows cross-reactivity to a variety of stressors (16–18). Following the elucidation
of the cross-sensitization between stimulants and stressors, stress-sensitization
paradigms began to be studied in their own right. Depending on the quality,
intermittency, intensity, and phase of development, initial stressors could lead to
long-term increases in reactivity to subsequent stressors.

These preclinical data support evidence for long-lasting modification of reac-
tivity in adults from early life experiences in newborns and infants (19,20). There is
also evidence for cross-reactivity between stressors and subsequent adoption of
cocaine self-administration habits (Table 1) (21–26), indicating that in some
instances there are bi-directional cross sensitivities between stressors and stimu-
lants. These data are particularly noteworthy from the perspective that there is a
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markedly increased incidence of substance abuse in those with recurrent unipolar
and bipolar affective disorders compared with the general population (27,28).

Kindling as a Nonhomologous Model for Illness Progression
The kindling paradigm provides another, altogether different, model for under-
standing increased physiological and behavioral reactivity to repeated stimulation
of the brain. The most commonly studied type is amygdala kindling, where animals
are stimulated electrically once a day for one second at intensities below the
threshold for afterdischarges (ADs) (29). The repeated stimulation both lowers
the AD threshold, and the ADs emerge with increasing duration and complexity
in the amygdala, and subsequently spread throughout the brain. This AD spread
is associated with progressive increases in the severity of behavioral response
from stage 1 (behavior immobility with whisker twitching) to stage 3 (unilateral
forepaw convulsions) to generalized stage 5 (bilateral forepaw convulsions with
rearing and falling) (30,31). There is also a parallel spatiotemporal induction of neu-
rotrophic factors, immediate early genes, and late effector genes that likely mediate
both the primary long-lasting kindled “memory trace” and short-lived endogenous
anticonvulsant adaptations (32). The relative balance of these primary pathological
versus secondary adaptive changes in gene expression could explain the intermit-
tent emergence (or not) of seizures and affective episodes.

Goddard et al. (29), who first described the kindling phenomenon, considered
it an interesting model for neuronal learning and memory because the effects
appeared to be long-lasting, if not permanent. Intermittent stimulation was import-
ant, because animals stimulated continuously or once every five minutes never
kindled, whereas more periodic stimulation, optimally at once every 24 hours,
led to kindling progression (29).

TABLE 1 Relationship of Early and Concurrent Stressors to Acquisition, Maintenance, and
Reinstatement of Cocaine Self Administration (in Rodents)

Stressor Age Cocaine effect Authors

Social stress Adult Acquisition of cocaine
self-administration

Haney et al., 1995 (21)

Uncontrollable foot-
shock

Adult Cocaine self-
administration (only if
corticosteroids
elevated)

Goeders and Guerin,
1994 (22)

Social defeat � 4
(sensitization to
stress)

Adult Cocaine amount (binge
size) Motor response
to stimulants (i.e.,
cross-sensitization)

Covington and Miczek,
2001 (23)

Stressors or cocaine
cues

Adult Cocaine lever pressing
Reinstatement of
extinguished
response

Goeders and Clampitt,
2002 (24)

Three hour maternal
deprivation stress
X 7 (neonate)

Stress (neonate)
drug intake
(adult)

Alcohol and cocaine self
administration
(reversal with
antidepressant
treatment)

Huot et al., 2001 (25);
Meaney et al., 2002
(26)
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If fully kindled animals are stimulated repeatedly, many will go on to have
spontaneous seizures, that is, identical appearing stage 4 and 5 behavioral convul-
sions to those observed before, but now occurring without amygdala stimulation or
even prior to the animal’s being picked up or handled. Although there is some hom-
ology of affective disorder behaviors and inducing factors in the preclinical models
of stress and psychomotor stimulant sensitization noted above, there is obviously
no behavioral homology in the kindling paradigm where seizures (as opposed to
affective episodes) are the endpoints of interest (33).

Nonetheless, the kindling paradigm is pertinent not only for considering
increased reactivity to the same stimulation over time, but also how this process
progresses and emerges into a new phenomenon of spontaneity or automaticity in
which seizures occur in the absence of the inducing stimuli. Understanding how
animals progress from triggered amygdala-kindled seizures to spontaneous ones
may give hints to similar transitions occurring in the affective disorders, especially
since initial episodes are often triggered by psychosocial stressors and later epi-
sodes can occur more spontaneously (10,14). However, a caveat is that the precise
neuroanatomical and neurotransmitter systems underlying seizure progression
are likely quite different from those underlying affective episode progression.

EVIDENCE FROM ANIMAL STUDIES

The potential mechanisms underlying behavioral sensitization to psychomotor
stimulants and amygdala-kindling seizure evolution are reviewed elsewhere
(34–42). Here we focus on selected newer data from animal studies which are par-
ticularly revealing, and potentially relevant to the clinical observations of long-
lasting increased vulnerability to stressors and the precipitation of pathological
affective behaviors.

Persisting Effects of Stress on Neurobiology and Behavior
One paradigm well-studied by Levine et al. (43,44) involves separation of rat pups
from their mothers for a period of 24 hours (while body temperature is maintained).
This results in a long-lasting increase in cortisol secretion and anxiety-like beha-
viors into adulthood. New data suggest that this one-day stressor is associated
with increases in preprogrammed cell death (apoptosis) (45) and in decreases in
brain-derived neurotrophic factor (BDNF) (45,46) and calcium calmodulin kinase-
II (CaMK-II) (47). These latter two changes are of considerable interest in relation
to the critical roles of BDNF and CaMK-II in long-term learning and memory.
Animal strains where either of these substances is knocked out fail to remember
how to navigate a previously learned water maze and show deficits in long-term
potentiation (LTP) (48–50).

Animals subjected to repeated neonatal separation stress show long-lasting
decrements in not only hippocampal BDNF (51), but also BDNF in prefrontal
cortex (52). Again, these findings are particularly noteworthy, in that decrements
in plasma and brain BDNF have been noted in some studies of patients with affec-
tive disorders and in brain autopsy specimens (especially when these subjects were
not treated with antidepressants) (53–57). Decrements in prefrontal cortical CaMK-
II have also been observed selectively in BD, but not in patients with schizophrenia
or controls (58).
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Interestingly, repeated stressors in neonatal rodents lead to deficits in hippo-
campal volume and associative learning. In contrast, the amygdala increases in
size compared with litter-mate controls and is associated with increased anxiety-
like emotional hyper-reactivity (53,54). The elegant studies of Plotsky and Meany
deserve special focus because of their potential relevance to long-lasting changes
in neurochemistry, endocrinology, and behavior based on early life experience in
the rodent. Neonatal rat pups subjected to ten days of 15-minute periods ofmaternal
separation not only show few adverse consequences, but have increased hippocam-
pal volume and preserved learning and memory performance into old age.

In contrast, those neonatal rat pups subjected to repeatedmaternal separations
for three hours (rather than 15minutes) show lifelong increases in the rat equivalent
of human cortisol (corticosterone) and in anxiety-like behaviors (59–62). These
stressors have now been associated with increased levels of corticotropin-releasing
hormone (CRH) both in hypothalamus and amygdala (59). These and related
studies indicate that depending on the quality, duration, and timing of early stres-
sors, the central nervous system (CNS) can have a lifelong change in its set point
for peptide, endocrine, and anxiety-related behaviors.

Interestingly, the mechanisms underlying these long-term changes greatly
depend on reactions in the infant/mother dyad. In the 15-minute separation para-
digm, the rat pup upon reunion is greeted with increased licking and grooming.
In contrast, in the three-hour separation paradigm, the frantic mother rodent no
longer recognizes the returned rat pup as her own and in her agitation ignores and
sometimes even tramples over the returned pup. If a substitute rat pup is put in
the litter during the separation period (i.e., the mother is not aware that one of her
pups is missing), she remains calm and the rat pup returning from the three-hour
separation is dealt with normally and never develops the hypercorticosteronemia
or anxiety-related behaviors.

Naturally occurring high-licking maternal behavior is associated with
offspring who are low in anxiety and corticosterone. Conversely, low-licking
mothers tend to have high anxious, high corticosterone offspring. This apparently
familial trait is not genetic because cross-fostering studies indicate that, again, it is
maternal behavior and not genetic inheritance that drives these long-lasting
changes. Moreover, if a rat pup born of a low-licking mother is fostered by a
high-licking mother and that pup has offspring as an adult, those pups retain the
high-licking, low-anxiety and low-corticosterone signature, indicating that there
can be transgenerational transmission ofwhatmay have previously been considered
a genetic trait (63).

More recent studies of Meaney et al. have implicated changes in DNAmethyl-
ation in such transgenerational cross-fostering experiences (64). Moreover, the
elegant studies of Insel and associates have also revealed that many traits in
animals are based on either: (i) in utero environmental experiences, or (ii) those
occurring in early infancy, or both. These data were gleaned from pregnant
femaleswhowere cross-implanted or rat pupswhowere cross-fostered, or both (65).

We cite these studies in the current context to emphasize the environmentally-
based malleability to many different types of behavior and endocrine reactivity
that may have previously been thought to be transmitted on a genetic basis. In
parallel, these studies offer alternative insights for considering how pathological
changes in neurochemistry may occur in patients with BD, not only on the basis
of well-documented genetic vulnerability, but likely through environmental-
experiential routes as well.
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Bi-Directional Cross Sensitization Between Stressors
and Substances of Abuse
The stressor models noted previously show that maternal stress predisposes
animals to the adoption of substance self-administration (25,26), which is particu-
larly pertinent to the recurrent affective disorders. Patients with BD are at markedly
increased risk for the adoption of alcohol and substance abuse problems. Not only
is manic behavior associated with greater degrees of indiscretion and poor judg-
ment (66), but the stress and episode sensitization mechanisms occurring concur-
rently with the affective episodes themselves may yield increased vulnerability to
the adoption of substance abuse.

Obviously, the cooccurrence of two chronic, difficult-to-treat illnesses (BD and
a substance abuse disorder) could markedly complicate treatment and overall
illness outcome (67). This result would also be consistent with the neurochemistry
data indicating that many of the changes in gene expression induced by chronic
stimulant administration appear to mirror (and potentially exacerbate) some of
the underlying pathophysiological processes occurring in BD (Fig. 1) (58,68–94).

However, this convergence and overlap of potential pathophysiological
mechanisms raises the possibility of treatment simplification and a double
improvement effect from a single treatment intervention. This clinically optimistic
perspective so far is not in line with the available data indicating that those with
comorbid substance abuse have a more difficult course of bipolar illness than
those without (95,96). Moreover, recent analyses indicate that even those with a
prior history of alcohol abuse (and not current problems) continue to have a
more difficult course of BD than those without such a prior history of such difficul-
ties (97). In support of the therapeutic viewpoint, however, are the data that many
patients who experience treatment-related stabilization of their bipolar illness are
able to abstain from alcohol and substance abuse (98). Moreover, a number of

FIGURE 1 Convergence of structural, biochemical, and functional abnormalities in bipolar illness.
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medications have been found in controlled studies to be useful in primary
substance abuse problems, whether or not these agents are also mood stabilizers
(99,100).

EVIDENCE FROM THE COURSE OF ILLNESS AND
NEUROIMAGING STUDIES

The data of Kessing et al. (101) based on the Danish case registry, and the more
recent replication of this data in Switzerland (102), provide very strong evidence
for the episode sensitization phenomenon. These investigators find that the best
predictor of increased incidence and shorter latency to a relapse is the number of
prior hospitalizations. It is also important and potentially disturbing to note that
this relapse occurred despite naturalistic treatment in the community, and one
looks forward to assessing whether optimal prophylactic intervention would
have prevented this general pattern in those who received it.

The stress sensitization component of recurrent affective disorders is most ele-
gantly dissected in the twin studies of Kendler et al. (103,104) in recurrent unipolar
depression. These investigators found that stressors were more likely to occur in
close relationship to the precipitation of the initial nine episodes of depression,
but became less relevant thereafter. They also examined how this sensitization/
kindling phenomenon interacted with genetic vulnerability. They noted that
those with higher risks related to the presence of a strong family history of affective
illness appeared to be prekindled, that is, those patients were found to have lesser
degrees of stress at the onset of even their initial episodes compared with those
without this genetic familial vulnerability.

These data are the precursors to elegant studies of environmental/genetic
interactions based on the delineation of common variants in single nucleotide poly-
morphisms (SNPs) that may be associated with illness onset or treatment response.
The data of Caspi et al. (105) provide a remarkable demonstration of such an inter-
action. They examined a large group of individuals who suffered early traumas in
childhood (typically physical or sexual abuse) who were then re-exposed to a stres-
sor in adulthood. The serotonin (5-HT) transporter (5-HT T) to which the serotonin-
selective reuptake inhibitor (SSRI) antidepressants bind and are thought, in part, to
exert their antidepressant actions, has two common variants, or SNPs. The long (l)
variant is a more efficient transporter (5-HT-Tll) compared with the short (s) variant
(5-HT-Tss). In the study of Caspi et al. those patients at high risk for depression
because of previous life experience who had the long variant (5-HT Tll) appeared
relatively immune from stress-induced precipitation of a depressive episode
during adulthood. In contrast, those patients with the 5-HT Tss form, and to a
lesser extent, those with the sl SNP, showed a significantly higher incidence of
depression following these stressors in adulthood.

These findings were partially replicated by Kendler et al. (106), and the para-
digm of potent environmental–SNP interactions was also revealed to be of critical
importance in another study by Caspi et al. (107). In this instance, marijuana
smoking during adolescence yielded an increased incidence of psychosis and
schizophrenia only in the subgroup of patients with increased genetic
vulnerability because of the catechol-O-methyltransferase polymorphism (COMT
val158val allele), which is associated with lesser degrees of prefrontal cortical
dopamine levels.
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One looks forward to the dissection of these types of more complex gene/
environmental interactions in bipolar illness, in which a variety of environmental
stressors and substance abuse comorbidities are known to be particularly prevalent.
Uncovering these dual vulnerability mechanisms at the level of SNPs and the
environment could also eventually assist in the earlier initiation of prophylactic
treatment, and in the choice of the most appropriate one.

Evidence of Stressor Involvement in the Onset and
Course of Bipolar Disorder
We have observed that childhood adversity (a self-reported history of physical or
sexual abuse) in bipolar illness is associated with an earlier illness onset, a more dif-
ficult retrospective course of illness, and more Axis I, II, and III comorbidities com-
pared with bipolar patients without such a history (108). These retrospective
reports were validated prospectively by clinicians’ ratings of patients during natur-
alistic treatment, and those patients with a history of early adversity had an
increased severity of depression and more time depressed in prospective follow-
up compared with those without (108,109).

Interestingly, those with a history of early adversity had an increased inci-
dence of negative life events (but not positive events) at both the onset of their
illness and in relationship to the most recent episode compared with those
without this early adversity. These data raise the issue of not only stress vulner-
ability, but also of increased proclivity for exposure to stressful life events in
those with these early histories of adversity. The sensitization model postulates
increased stressor reactivity as a function of stressor recurrences rather than
decreased reactivity, so that such an association of increased negative life events
at illness onset and at the most recent episode does not contradict the sensitization
prediction. Nonetheless, in the relative absence of negative life events, the predic-
tion derived from the sensitization/kindling model would be that those patients
with a greater number of prior episodes would be more vulnerable to recurrence
than those with fewer episodes.

Neurochemistry and Neuroimaging Studies
We have previously reviewed some of the emerging evidence for functional and
neurochemical alterations in patients with affective disorder based on brain
imaging studies, and on autopsy specimens from those who died with this
illness, compared with other psychiatric illnesses and controls (110–113). As illus-
trated in Figure 1, there is converging evidence for frontal deficits in both neuronal
and glial systems associated with decreased functioning of the prefrontal cortex,
especially during depression.

At the same time, there is also evidence for amygdala and ventral striatal
overactivity in adults with bipolar illness. One study by Altshuler et al. (79), but
not several others (74,114,115), indicated that increased amygdala volume was
directly related to the number of prior hospitalizations for mania. A series of neu-
roimaging studies have now been performed in children and adolescents with
bipolar illness, and the findings show that these youngsters had decreased
volume of the amygdala compared with controls (114,116–118), in contrast to the
preponderance of evidence for increases in amygdala volume in the adults
(80,81,119).
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These changing alterations as a function of age and course of illness deserve
further attention and study. If replicated, they have very interesting clinical and
theoretical implications. Does the initially smaller volume of the amygdala in ado-
lescents relate to some of the neurocognitive and emotional facial recognition def-
icits (likely trait deficits) that even children with early onset bipolar illness seem to
experience, and then with increasing age, course of illness, or other mechanisms
this deficit changes to relative amygdala hypertrophy compared with controls
later in life? The rodent studies of McEwen (120) suggest that the occurrence of neo-
natal stressors is associated in adulthood with relative increases in amygdala size
and concordant prefrontal and hippocampal volume deficits. Thus, it would be
important to examine the stress versus episode sensitization mechanisms (vs.
genetic mechanisms) that could account for these developmental changes, based
on comparing those patients with and without a history of early adversity for
various indices of amygdala volume and function.

The transition from a small to large amygdala as a function of age and devel-
opment could also be related to use-dependent neuroplasticity, similar to that
observed with taxi drivers in London who appear to have increased hippocampal
volumes comparedwith those whose work relies less on spatial navigation (121). Of
course, it is possible that the hippocampal differences predated engaging in the
taxi-driving occupation, and those who decided to become taxi drivers were self-
selected based on their spatial navigational skills (and attendant increased hippo-
campal volume).

Nonetheless, experience-dependent changes in neuronal volume and plas-
ticity have been demonstrated directly in a variety of other animal and human para-
digms, raising the possibility that the experience of many bouts of pathological
affect could be related to this change in trajectory of amygdala volume in those
with bipolar illness. Clearly, further work remains to assess these findings and
examine underlying pathophysiological mechanisms for an initially small amyg-
dala volume in childhood bipolar illness changing to a larger volume in adulthood
compared with controls.

Based on the sensitization/kindling hypothesis one would postulate neuro-
chemical abnormalities might emerge as a function of number, severity, and
duration of prior affective episodes and illness. A variety of neurobiological find-
ings potentially compatible with such a hypothesis of illness progression have
now been reported (13,112,122) although causal mechanisms remain to be demon-
strated (Table 2) (13,79,83,123–133). It could be that those with increased brain path-
ology from the outset are more vulnerable to an adverse course of illness, rather
than the long duration or greater recurrence of illness driving these neurological
abnormalities.

Nonetheless, such course of illness and neurobiological correlates are worthy
of consideration and at least raise the possibility that more active illness interven-
tion and episode prevention could prevent some of these neurobiological
changes (134). One highly suspicious marker in this regard is the finding of
Kessing et al. (130) that the occurrence of one or two episodes of unipolar or
bipolar depression is associated with a normal risk of experiencing dementia in
late life compared with the general population. However, the occurrence of four
or more episodes approximately doubles the risk for such late life cognitive
impairment. Their more recent analysis further suggests that with every new
episode of illness there is an increasing 6% to 13% likelihood of such cognitive
difficulties.
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TABLE 2 Neurobiological Correlates of Number of Episodes, Hospitalizations, or Duration of
Recurrent Affective Illness

Finding UP/BP Correlates Authors

Hippocampus
Volume decreased (MRI) UP Increased number of

previous episodes,
longer illness duration

MacQueen et al.,
2003 (123)

Volume decreased (MRI) UP Longer duration of
illness

Sheline et al., 1999
(124)

Vermal brain regions
Vermal subregion V2
volume decreased (MRI)

BP Increased number of
previous episodes

Mills et al., 2005
(125)

Amygdala
Volume increased (MRI) BP Increased number of

previous manic
episodes

Altshuler et al., 2000
(79)

Left subgenual and rostral anterior cingulate
Decreased cerebral
glucose metabolism

UP Increased number of
previous episodes

Kimbrell et al., 2002
(83)

Neurocognitive
Increased dysfunction and
disability

BP Increased number of
previous episodes,
longer illness duration

Denicoff et al., 1999
(126)

BP Increased number of
hospitalizations,
longer illness duration

Thompson et al.,
2005 (127)

BP Increased number of
hospitalization
episodes

Tham et al., 1997
(128)

BP Increased number of
previous months
hospitalized

Rubinsztein et al.,
2000 (129)

Risk of dementia UP/BP Increased number of
previous episodes

Kessing et al., 2004
(130)

Endocrine
Increased dexamethasone-
CRH response

UP/BP Increased number of
previous episodes

Kunzel et al., 2003
(131)

UP/BP Increased number of
previous episodes

Hatzinger et al.,
2002 (132)

Decreased pharmacological response to
Lithium Increased number of

previous episodes or
hospitalizations

Nine studies (Post
et al., 2003) (13)

Lamotrigine Increased number of
previous episodes

Obrocea et al., 2002
(133)

Gabapentin Increased number of
previous episodes

Obrocea et al., 2002
(133)

Abbreviations: BP, bipolar; CRH, corticotropin-releasing hormone;MRI, magnetic resonance imaging; UP, unipolar.
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Regardless of whether or not adequate pharmacological prophylaxis would
prevent the increased incidence of late-life dementia syndromes associated with
four or more depressive episodes, from the clinical perspective there would still
be much merit in attempting to intervene in this fashion. Effective prophylactic
treatment would have at least prevented these several episodes of clinical
depression, which would have considerable benefits whether or not the fundamen-
tal course or any of its neurobiological correlates (Table 2) were altered in a positive
fashion as well. In other words, there is little to lose and much to gain from more
aggressive attempts at pharmacological prophylaxis.

Early Age of Onset and Greater Number of Episodes:
Poor Prognosis Factors
The number of episodes of prior depression or the occurrence of rapid or faster
cycling may also be associated with a poor prognosis for affective illness recurrence
and eventual treatment response. Both adult- and childhood-onset illness is under-
diagnosed and under-recognized in the community and in clinical populations
(135–137). To the extent that episode sensitization is changing the long-term
course of illness in an adverse direction, altered strategies for early intervention
are strongly indicated.

A strategy for early intervention would be particularly important in child-
hood- and adolescent-onset bipolar illness, which is associated with serious long-
term consequences and poorer treatment response in adulthood (108,109,138,139).
However, childhood-onset illness (prior to age 13) several decades ago was associ-
ated with an average 16-year delay prior to the first pharmacological treatment for
mania or depression, and adolescent-onset (ages 13–19) was also associated with a
disturbingly long average 12-year delay between the onset of first symptoms of the
illness and first treatment. In contrast, the delays are much shorter for early and late
adult-onset bipolar illness (139).

These findings, together with the observation that early onset bipolar illness is
associated with an extremely adverse outcome (even in adulthood at average age
40) when patients are treated naturalistically by experts, strongly point out the
need for earlier recognition, diagnosis, and treatment of these young children.
Again, it would be hoped that introducing such effective treatment would help
ameliorate the poor prognosis in adulthood, or potentially even prevent the devel-
opment of more full-blown illness altogether.

What is now remarkable, but not widely recognized in the community, are the
findings that lithium, valproate, and the antidepressants can all increase brain-
derived neutrotrophic factor (BDNF) and neurogenesis (54,140–143), potentially
ameliorating some of the neurobiological deficits listed in Table 2. Thus, these
agents have clinical and theoretical support in not only helping to prevent episodes,
but also potentially either reversing or preventing the progression of biological
alterations in the illness (Table 3). Such a possible dual benefit of treatment might
help some patients overcome their reluctance to start or sustain long-term prophy-
lactic treatment.

IMPLICATIONS FOR PSYCHOPHARMACOLOGICAL INTERVENTIONS

We have already outlined the strong clinical and theoretical rationale—based on the
kindling and stress sensitization models—for earlier and more effective
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prophylactic treatment intervention in bipolar illness, for the possibility of not only
preventing episodes, but also preventing their associated episode sensitization,
stress sensitization, cross-sensitization to comorbid substance abuse, and the neuro-
biological alterations that may evolve and progress with each of these difficulties. In
addition to emphasizing the importance of early intervention, the kindling and sen-
sitization models help to conceptualize other psychopharmacological approaches
and treatment predictions noted below.

Effective Treatment May Differ as a Function of
Stage of Illness Intervention
Both the kindling and sensitization paradigms reveal that treatment effectiveness
may differ as a function of stage of illness intervention. Different psychopharmaco-
logical interventions prevent the development of behavioral sensitization as
opposed to its later expression. Similarly, the data are extremely clear that pharma-
cological interventions that prevent the development of kindling are not necessarily
the same that prevent the full-blown expression of completed amygdala-kindled
seizures (10,11,14).

While this might be expected, it is even more remarkable that once amygdala-
kindled animals have made the transition from triggered to spontaneous seizures,
there appears to be another pharmacological divergence. Most striking is the obser-
vation that diazepam, which is effective in the initial development and completed
middle phase of amygdala-kindled seizures, becomes ineffective in preventing the
late spontaneous seizures (144). Conversely, in a double-dissociation, phenytoin,
which is not effective in preventing kindling development and is ambiguous on
the completed amygdala-kindled seizure phase, becomes highly effective in pro-
phylaxis of the spontaneous variety.

These striking differences in pharmacological effectiveness of interventions as
a stage of syndrome evolution are consistent with the observations that the neuro-
chemical and neuroanatomical substrates involved in both sensitization and in
kindling likewise evolve over time. The initial effects on physiology, immediate
early genes, and peptides are largely confined to the amygdala in the earliest
stages of kindling evolution, but then progressively become more widely distribu-
ted throughout the brain, involving unilateral and then bi-lateral hippocampal and
diverse cortical areas as full-blown kindled seizures are engendered (10,14). Like-
wise, the mechanisms underlying behavioral sensitization to the psychomotor
stimulants appear to evolve from those that are local in the ventral-tegmental
area (VTA) to those in the amygdala and nucleus accumbens (145,146), depending
on the context-specific nature of the sensitization, and then eventually into a variety
of cortical areas.

Thus, to the extent that bipolar illness also evolves from well-state vulner-
ability, to symptomatic illness, to fully-developed affective episodes initially trig-
gered but eventually occurring spontaneously with faster cycling and ultradian
switching of mood phases, one would also expect differences in pharmacological
responsivity as a function of these stages of illness evolution. This obviously
becomes critically important in assessing which very early interventions at first
symptoms (secondary prevention), or primary prevention strategies in those at
highest risk, might be effective in preventing initial phases of illness development,
as opposed to the drug response data in adults that are acquired after the illness has
become fully manifest.
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A person’s age and developmental phase would also combine to produce
differences in neurochemistry. Drug responses in childhood might not be identical
with those observed in adulthood. For example, we know that the GABA-B agonist
baclofen is an effective anticonvulsant on amygdala-kindled seizures in very young
rodents (147), but not in adults. Similar questions arise in the therapeutics of BD as
to whether or not effective interventions in adults will apply in parallel to those in
the youngest children and adolescents. Clearly, more empirical data are needed in
this realm.

Combination Therapy May Be Required
In adults, a modicum of data support changes in illness responsivity as a function of
number of prior episodes and/or rapidity of cycling. With the exception of isolated
studies (148), most data suggest that prophylactic treatments are less effective in
those with a high number of prior episodes or rapid cycling compared with
those with fewer episodes or nonrapid cycling. This reduced responsiveness in
those with greater number of prior episodes not only includes response to
lithium, but also emerging studies on a poorer response to valproate, carbamaze-
pine, lamotrigine, and even more recently, the atypical antipsychotics (149–153).

Partially convergent with this perspective are the recent findings that the
majority of patients in a variety of clinical and academic treatment settings
require complex pharmacotherapy in order to bring the illness into partial or full
remission. The data of Frye et al. (8) are interesting in this regard because they illus-
trate the need over the past several decades for increasingly complex treatment (or
polypharmacy) in order to discharge bipolar patients from a clinical research hos-
pital and achieve approximately the same degree of success of about 80% improve-
ment. In the 1970s and 1980s, the average number of drugs required to achieve this
acute improvement at discharge were one and two, respectively, and this increased
to three in the 1990s, and in the most recently discharged cohorts, to an average of
3.5 to 4 drugs.

This increased need for complex combination therapy coincided with the
more recent patients having an earlier onset of their illness, greater amounts of
time depressed prior to coming to NIH, and increased rapid cycling, each of
which has been associated in some studies with greater degrees of treatment resist-
ance. Whether these population characteristics change over time relates to an
inherent selection bias toward more treatment-refractory patients in more recent
cohorts, or whether there is an increasing severity and difficulty in achieving
response to treatment in the general community, remains for further examination.

Many other clinics have observed this trend for the requirement of an average
of three or four medications during naturalistic treatment of bipolar illness, includ-
ing the Pittsburgh group (154,155), and the outpatient collaborative network as
described by Kupka et al. (156). In the Kupka et al. study, those patients with
rapid cycling required an average of 4.5 classes of psychopharmacological medi-
cations over a year of treatment in contrast to 3.5 in those without a history of
rapid cycling. Gitlin et al. (157) also report a high incidence of complex combination
treatment in their setting, as well as others (158,159).

This trend toward a greater need for combination treatment and polyphar-
macy appears to extend to childhood onset bipolar illness cohorts as well. The
majority of patients in the study of Kowatch et al. (160) required combination treat-
ment and the more recent studies of Findling et al. indicated a very high failure rate
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on lithium or valproate monotherapy (161). A report from the American Psychiatric
Institute for Research and Education described children with bipolar illness as
having the most complex pharmacological regimens compared with all other chil-
dren with psychiatric diagnoses (162). Birmaher et al. (163) also described the need
for complex regimens in order to bring youngsters with bipolar illness into remis-
sion; this group not only required multiple medications, but 11.5 months on the
average until remission for bipolar I, 9.2 months for bipolar II, and most distress-
ingly, more than two years (34 months) for those with bipolar NOS.

In these instances and in the studies of Geller et al. (164), only a relatively
short period of time was required for what was considered a remission. Both of
these prospective cohorts found a very high incidence of relapse even in those
who had previously been “stabilized.” Thus, the nature and complexity of combi-
nation treatment optimally required to achieve and maintain remission in
childhood-onset bipolar illness requires much more concerted psychopharmacolo-
gical research attention than does the adult bipolar variety.

Despite having a large number of classes of psychopharmacological interven-
tions and a number of agents in each class, there is little systematic guidance for
clinicians and patients to choose among these agents, especially after the first or
second treatment intervention. While a large variety of factors appear to contribute
to the increasing recognition of the generally poor prognosis of even adult-onset
bipolar illness in many academic settings, the failure to have a systematic database
from which to make informed clinical treatment decisions is likely an important
contributing factor. In the kindling model, combination treatment slows tolerance
development more effectively than monotherapy (14,15,165).

Difficulties in Achieving and Maintaining Remission
While many psychopharmacological studies describe clinically successful
endpoints of 50% improvement in manic or depressive symptomatology, this end-
point is often inadequate from a patient or clinician’s perspective. Here, one is striv-
ing for complete remission of bipolar symptomatology and return to one’s usual
employment, educational, or social role with a minimum of illness-related interfer-
ence. Not only is this state highly sought after, but preliminary evidence suggests
that minor mood fluctuations may be precursors to more major ones and full-
blown episode breakthrough (135,166,167). Thus, there is increasing movement
toward the goal of achieving complete remission in both the unipolar and bipolar
recurrent affective disorders. This will likely also contribute to the need for increas-
ingly complex psychopharmacological regimens, because such “miracle” mono-
therapy treatment responses are less frequently observed than one would desire
(168). In the kindling paradigm, minor breakthrough episodes predict more com-
plete loss of drug effectiveness via tolerance (14,15).

Remission is not an endpoint with a high incidence rate in many
psychopharmacological studies, even in those in which patients are selected for
lack of comorbidities and symptom extremes such as suicidality. Since the majority
of bipolar patients experience considerable illness comorbidity and some 25% to 50%
of bipolar patients make a medically serious suicide attempt prior to average age 40
(169,170), the presence of these characteristics in representative patients often
requires highly individualized additional psychopharmacological approaches.

Fortunately, a variety of interventions have been demonstrated to be effective
in patients with the primary comorbidity of substance abuse (i.e., those with alcohol
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or cocaine abuse in the absence of bipolar illness) based on double-blind controlled
clinical trials, but, unfortunately, relatively few of these options have been specifi-
cally tested in patients with these comorbidities in the context of BD (99,100). Thus,
in this area as well, the patient and clinician are mostly building treatment regimens
based on indirect inferences and best guesses from other data sets, rather than a
strong body of controlled evidence. To the extent that inadequate definition of
appropriate treatment paradigms both for the primary illness and its comorbidities
contribute to illness progression and, eventually, treatment resistance, this tremen-
dous lack of systematic data requires major remedies. In the kindling tolerance
paradigm, increasing illness drive via increased intensity of stimulation facilitates
and speeds the loss of efficacy via tolerance. In bipolar illness, comorbid conditions
may be conceptualized in formal ways of increasing illness drive that require
specific treatment.

Two Types of Acquired Treatment Resistance
A further complicating factor is that once a period of illness remission is achieved
in a given patient, there is still no guarantee that it can be maintained over the long
term. We and others have described two different types of acquired development of
treatment resistance, that is, the development of lack of responsivity to
a pharmacological agent after an initial extended period of good response. These
two types of treatment-resistance include (i) tolerance and (ii) treatment-discon-
tinuation-related refractoriness.

Tolerance
In a cohort of treatment-refractory bipolar patients, we have observed a consider-
able incidence of the development of gradual loss of efficacy via a tolerance-like
process. We call it ‘tolerance-like’ because there is often a lack of incontrovertible
data that patients remained highly compliant and took the appropriate doses of
medication, achieving the same blood levels to which they had previously
responded. However, based on patient report this is often the case, and despite
excellent adherence, episodes begin to break through a previously effective
regimen with increasing frequency, severity, or duration. We have observed this
with lithium, valproate, and carbamazepine and potentially with lamotrigine and
gabapentin as well (10). Others have seen this phenomenon with lithium, such as
in the experience of Maj et al., where patients who were completely remitted on
lithium for a period of two years were then followed for a total of five years, and
a substantial subgroup of patients began to show illness re-emergence (171).

As described in detail elsewhere, tolerance to most anticonvulsant interven-
tions develops readily in the amygdala-kindled seizure model and provides a
basis for exploring treatment approaches that may sustain anticonvulsant efficacy
for a longer period of time or indefinitely (15). Based on these preclinical studies
we have observed that: (i) some drugs such as valproate are much less susceptible
to tolerance development than others, such as carbamazepine, lamotrigine, or leve-
tiracetam; (ii) higher or consistent doses appear less likely to be associated with tol-
erance than minimally effective doses that are gradually escalated; (iii)
combinations of agents with different mechanisms of action may be more effective
than either agent alone; (iv) intervening earlier in the development of
full-blown amygdala-kindled seizures, that is, shortly after these have begun to
be observed, also appears associated with a reduced likelihood of developing
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tolerance compared with the same dose of drug given to animals late in their course
after many dozens of kindled seizures.

Once tolerance has developed, the preclinical tolerance model suggests both
the utility of adding drugs with a novel mechanism of action, or returning to an
originally effective drug after a brief period of time off that agent (11,165). None
of these predictions from the preclinical model have been directly tested in patients
with recurrent BD, although they clearly need to be.

One caveat that requires attention is that a considerably longer period of time
well (in remission) compared with that observed during previous well intervals
between episodes should be required prior to considering a putative psychophar-
macological agent likely effective in prophylaxis. It is only after this demonstration
of sustained efficacy that one can begin to consider a true tolerance process. If only a
short well interval is observed on a given agent, it is not clear whether the drug was
effective, or ineffective and merely accompanied by the expected course-of-illness
variation between episodes.

Lithium Discontinuation-Induced Refractoriness
A second type of acquired treatment resistance is that exemplified by lithium-
discontinuation-induced treatment refractoriness (172,173). In this instance, a sus-
tained and long period of illness remission has been observed on lithium (often six
to eight years of wellness) compared with much shorter well intervals observed
between episodes (on the order of months) prior to treatment. The patient and/or
physician then decides on this basis of sustained wellness that lithium could or
should be discontinued, and even after a very slow taper period, episodes of
illness re-emerge. However, the patient is no longer responsive to the reinitiation
of lithium treatment at equal or higher doses and blood levels than those that
had previously been effective (174).

This phenomenon is not common, but may occur in about 10–15% of patients,
and adds further indirect evidence for illness progression with the occurrence of
new episodes potentially heightening “illness drive” and the vulnerability to suc-
cessive recurrences. Also potentially complicating this process is the withdrawal
of a drug such as lithium which considerable evidence suggests may be neuropro-
tective or neurotrophic, which could further enhance the development of treatment
refractoriness. Moreover, an additional seizure episode in the kindling model may
propel the patient to a new stage of illness evolution that is no longer responsive to
the previously effective agent (15,165).

Neuroprotective Effects of the Mood Stabilizers
Lithium not only increases cell survival factors such as BDNF and Bcl-2, but it inhi-
bits cell death factors such as Bax and p53 (175,176). Lithium also facilitates the rate
of neurogenesis and has facilitatory effects on glial activity, growth, and survival as
well. Thus, new episodes occurring in the absence of lithium may be occurring in
the absence of lithium’s neurotrophic and neuroprotective effects, thus incurring
a greater degree of pathophysiological change than might have occurred if the
patient had continued lithium or some other maintenance treatment with similar
properties.

Whatever the mechanisms involved, we know a number of patients who have
experienced such a phenomenon, and each of these individuals greatly regrets ever
having stopped their previously effective lithium treatment. Whether similar
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phenomena of discontinuation-induced refractoriness occur in a small percentage
of patients after discontinuation of other effective stabilizers remains to be deli-
neated. However, in recurrent unipolar illness, we have also observed a number
of individuals who have repeatedly responded acutely to traditional antidepress-
ants or monoamine oxidase inhibitors, but following repeated drug discontinu-
ations and depressive episode recurrences then begin to fail to respond to these
agents in subsequent episodes. Even if this pattern occurs in only a small percen-
tage of patients who repeatedly discontinue effective antidepressant treatment for
recurrent unipolar depression, it could have a substantial public health impact.
These preliminary observations are convergent with the data of Keller et al. (166)
that every episode of recurrent depression carries about a 10% increased risk of
the development of treatment-nonresponsive illness.

Developing clinical and biological markers to which patients may be vulner-
able to these types of acquired treatment resistance would have considerable
benefit for clinical therapeutics. Similarly, there is only a modicum of data to
suggest which clinical factors may help increase the chance of a given patient’s
responding to a given mood stabilizer or atypical antipsychotic.

Prediction of Individual Treatment Response
Given the large number of agents potentially available, it would appear wise to
consider the suggestions of David Cox of Perlagen Sciences, Inc., for using a
profile of some 25 to 30 SNPs, not to define new pathophysiological mechanisms
and treatment approaches, but in helping (more immediately) to delineate which
patients are likely to be responders to specific existing treatment or be subject to
their rare extreme adverse events (177). Use of multiple SNP illness vulnerability
factors could also help assess the risk of bipolar illness onset and, at the same
time, assist in the assessment of the risk-to-benefit ratio for early treatment
initiation.

In this fashion, Cox argues that the expected benefits of the molecular biology
revolution could be quite readily and rapidly applied for clinical therapeutic benefit
a great many years before any of these factors are used to develop new illness
targets and therapeutic strategies aimed at such single dysfunctions. Gene-driven
new therapies appear to be an inordinately difficult problem even in Huntington’s
disease where the single gene and protein defect are known. Treatment advances
based on this information have yet to be realized. In contrast, the process of
gene-driven therapeutics would appear extraordinarily more difficult for most psy-
chiatric illnesses in which there are likely multiple genes of small effect. In this case,
even directly altering one or more such small pathophysiological defects may or
may not be therapeutically successful.

If using such SNP profiles in concert with a series of other clinical and biologi-
cal predictors of response, one might hope to be able to increase the percentage a
good initial treatment response from the approximately 50% range that is consist-
ently observed in acute studies in mania (for lithium, the mood stabilizing anticon-
vulsants, and the atypical antipsychotics) to an 80% or 90% likelihood of response.
In this fashion one might be able to intervene both earlier and more effectively with
the appropriate agent(s) and help prevent more recurrent episodes, but also their
potential adverse illness course consequences predicted by the kindling and sensit-
ization models.
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SUMMARY OF FINDINGS

Bipolar disorder has emerged in the last several decades as an illness that is more
difficult to treat than previously surmised. If the goal is long-term sustained remis-
sion, about two-thirds of the bipolar patients in academic outpatient settings would
be considered treatment-resistant. Several different studies suggest that on average,
patients with bipolar illness are ill about half the time despite treatment in the com-
munity or by experts in academia, and that time depressed exceeds time manic by a
factor of approximately three. Correlates of these more adverse and poor prognosis
outcomes include earlier age of onset of illness and more episodes experienced
prior to study entry.

Both the preclinical models of sensitization and kindling and the empirical
data on course of bipolar illness itself suggest that processes of illness progression
occur in the absence of effective treatment.While the basic tenets of the sensitization
and kindling model have been generally well-validated in the clinical literature (i.e.,
stress sensitization and episode sensitization), further precision is required to delin-
eate the neurobiological mechanisms underlying stress, episode, and substance
abuse sensitization, and how they may interact with each other and with genetic
vulnerability.

Even in the absence of compelling evidence for the course of illness modi-
fications induced by stressors and episodes as postulated in the sensitization and
kindling models, the utility of the clinical perspective derived from this longitudi-
nal view of the illness would appear to have merit in its own right. Helping to
ameliorate the impact of stressors and engage in the effective prevention of
manic and depressive episodes would, in any case, be a critical goal and help
avoid much suffering. To the extent that this model provides an additional theor-
etical rationale for early, effective, sustained prophylactic treatment for the recur-
rent affective disorders, it also may help support more active therapeutic and
public health measures directed toward these potentially disabling illnesses.
Most of the longitudinal course of illness predictions of the model are ultimately
directly testable, but some may be ethically difficult and unjustified, such as ran-
domizing patients to early intervention versus delayed or no treatment. Indirect
inferences may nonetheless be gleaned from naturalistic treatment comparisons,
and many direct randomized controlled studies of the relative effectiveness of
two different early treatment approaches (178) are feasible and very much
needed.
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B17 Biologic Factors in Different Bipolar
Disorder Subtypes

Michael A. Cerullo and Stephen M. Strakowski
Division of Bipolar Disorders Research, Department of Psychiatry, University
of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A.

INTRODUCTION

Modern psychiatric nosology, and the classification of mood disorders, did not
really take shape until the early twentieth century with the work of Emil Kraepelin.
Kraepelin was one of the pioneers in differentiating psychiatric conditions.
However, he combined most forms of mood disorder, including unipolar and
bipolar depression, into the large category of manic-depressive insanity (1). It
wasn’t until the late 1950s and 1960s that unipolar and bipolar depression were
separated into unique diagnostic syndromes [see Akiskal (2) for review]. The key
element that separates bipolar disorder (BD) and its subtypes from unipolar
disorder is the occurrence of mania or hypomania. Over the last three decades
there have been varying suggestions of how to subdivide BD (2). In this chapter,
we focus on what we feel are the most well-established subgroups within and
separate from BD type I, namely, BD type II, cyclothymic disorder, rapid cycling,
and psychotic mania. Type II BD and cyclothymia are specific diagnoses in the
DSM-IV (3), while rapid cycling and psychotic mania are DSM-IV specifiers that
can be applied to either type I or II BDs (Table 1).

This chapter extends an earlier comprehensive review chapter on the sub-
types of BD from the previous edition of this book (4). For each of the four major
subtypes covered, we will discuss epidemiology, etiology, and treatment of the
condition. The DSM-IV also includes two additional subtypes of BD: BD not other-
wise specified (NOS), and mood disorder due to a general medical condition. There
is very limited research on Bipolar Disorder NOS, hence this is not discussed in the
present review. Secondary mania is an important and large topic in itself but is not
discussed in this chapter. For a comprehensive review of secondary mania see
Strakowski et al. (5).

Before discussing these specific subtypes of BD in detail, a few general
remarks are warranted. Although much has been written on BD as a spectrum
illness (6), the scarcity of empirical evidence prevents meaningful speculation in
this regard. The major problem with the spectrum concept, and any other nosology
with multiple subtypes of BD, is that so little is known about the etiology of even the
most established (i.e., bipolar I) forms of the disorder. Hence multiple subtypes of
the disorder become difficult to substantiate. Only when the molecular and neuroa-
natomic mechanisms of major subtypes (e.g., bipolar type I or II) are further under-
stood will it be possible to determine whether other variants of the disorder are
minor dysfunctions of the same systems or have separate and unique etiologies.
For example, even the biologic differences between unipolar and bipolar depression
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remain to be elucidated (7,8). There is only limited research that compares and con-
trasts possible etiological mechanisms for the different subtypes of BD. Yet the rapid
advances in our knowledge of BD should leave us optimistic about future under-
standing of the subtypes of this condition. As more is learned about the etiology
of bipolar I, there will be molecular mechanisms and neuroanatomic circuits to
compare when studying the variant subtypes.

BIPOLAR DISORDER, TYPE II

Bipolar disorder, type II is characterized in the DSM-IV (3) by the occurrence of at
least one clear episode of hypomania (with no history of ever having a full manic
episode) and the occurrence of at least one major depressive episode.

Epidemiology
Although first described by Dunner et al. in 1976 (9), BD type II was not recognized
as a separate diagnostic entity until the publication of the DSM-IV in 1994. There is
still considerable controversy surrounding estimates of the prevalence of bipolar II
disorder. Although a recent review cites a prevalence of 3% to 5% (10), there is
little consensus in the literature. Using the definition in DSM-III (11), the U.S.
National Epidemiologic Catchment Area Study (12) found a lifetime prevalence
of only 0.5% for hypomanic episodes. Angst (13) reviewed eight other studies
examining the epidemiology of bipolar II and found prevalence ranges between
0.3% and 2%.

Judd and Akiskal (14) reanalyzed the U.S. National Epidemiologic Catchment
Area data using less restrictive criteria for hypomania and found a prevalence of
6.4% for the bipolar spectrum. Similar results were found in the Zurich study,
another important study of the epidemiology of bipolar II that followed 4547
subjects from the canton of Zurich from 1979 to 1993 (13). They found a prevalence
rate of 5.5% for hypomania. Together, then, these estimates suggest that type II BD is
relatively common, probably occurring in 2% to 4% of the population.

TABLE 1 Subtypes of Bipolar Disorder and Their DSM-IV Descriptors

Subtype DSM-IV description

Bipolar I At least one manic episode must occur; no
requirement for a depressive episode

Bipolar II At least one episode of hypomania and one
depressive episode

Cyclothymic disorder Two years of numerous periods of
hypomanic symptoms and depressive
symptoms, with no period of two or more
months without symptoms

Rapid cycling Applied to bipolar I disorder with four or
more manic, mixed, or depressive
episodes in one year; or bipolar type II
disorder with four or more hypomanic or
depressive episodes in one year

Psychotic mania Applied to bipolar I patients during a manic
or mixed episode with psychosis
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Biology
Genetic studies provide the strongest evidence to distinguish type I and II BDs.
Maier (15) compared the lifetime prevalence of affective disorders in relatives
of bipolar I and II patients. The risk of having bipolar I disorder was equivalent
in relatives of bipolar I and II patients. However, the risk of having bipolar II was
greater in relatives of patients with bipolar II (6.1%) compared with relatives of
patients with bipolar I (1.8%). Gershon et al. (16) also found a higher prevalence
of bipolar II disorder in relatives of patients with bipolar II and similar rates
of bipolar I illness in relatives of patients with bipolar I and II. However, these
conditions did not “breed true,” suggesting considerable overlap in familial risk.

There have been few neuroimaging studies that compare bipolar I and II
patients. The only structural MRI study comparing the two subtypes was by
Sassi et al. (17) in which they examined the pituitary volume in bipolar versus uni-
polar patients. They separated the bipolar patients into bipolar I (n ¼ 18) and
bipolar II (n ¼ 5), and did not find any differences in pituitary volume between
these two groups. The small sample provided limited power, however, so that
these results are not particularly informative. Functional imaging studies
have also looked at differences between bipolar I and II disorder. A PET study
examining cerebral glucose metabolism during a continuous performance test
by Ketter et al. (18) compared 14 bipolar I and 29 bipolar II patients. The direct
comparison of the two groups showed no differences in global metabolism, but
bipolar I patients had increased metabolism in the supragenual anterior cingulate,
right middle frontal gyrus, and right inferior parietal lobule compared with
bipolar II patients. An fMRI study by Malhi et al. (19) examined 10 hypomanic
patients during an emotional task and found activation in the caudate and
thalamus compared with the control group. However, this study was limited in
that the hypomanic patients were not further diagnosed as having either bipolar
I or II illness.

A small number of magnetic resonance spectroscopy studies have compared
patients with bipolar I and II disorder. Winsberg et al. (20) looked at ratios of NAA,
choline, and myo-inositol to creatine-phosphocreatine (Cr-PCr) in the dorsolateral
prefrontal cortex in 10 bipolar I and 10 bipolar II patients during euthymia.
Compared with controls, bipolar I patients had lower NAA/Cr-PCr ratios in both
hemispheres, while bipolar II patients had lower NAA/Cr-PCr ratios compared
with controls only in the left hemisphere. When both groups were compared
directly, bipolar II patients had higher NAA/Cr-PCr ratios in both hemispheres.
Another study by Kato et al. (21) looked at the Cho/Cr-PCr ratio in the left subcor-
tical region (which included the basal ganglia) in 10 bipolar I patients and 9 bipolar
II patients during euthymia. The Cho/Cr-Pcr ratio was higher in the bipolar II
patients compared with the bipolar I patients.

Taken together, these results provide some evidence that theremay be biologi-
cal differences between bipolar I and II disorder and provide incentive for further
comparative studies. The genetic studies are consistent with several possible
relationships between the two disorders, including the possibility that bipolar II is
a less severe variant of bipolar I and the possibility that the two disorders have sep-
arate but overlapping etiology. Neuroimaging research suggests that there may be
functional brain differences between the two groups in frontal brain networks,
but this finding is based only a single study and clearly needs replication. The mag-
netic resonance spectroscopy studies provide evidence for metabolic difference in
the dorsolateral prefrontal cortex and subcortical regions.
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Treatment
Li
An early prospective study of lithium in bipolar type II patients suggested that
lithium was effective in preventing depressive relapse (22), but the small sample
size (n ¼ 18) and lack of statistical analysis limited the study. An early double-
blind placebo-controlled study looking at 22 bipolar II patients by Kane et al. (23)
showed that lithium was effective in preventing relapse. A retrospective study
(24) of 102 bipolar II patients showed that lithium was effective in preventing the
relapse of depression. A more recent retrospective study of lithium therapy in
188 bipolar I and 129 bipolar II patients who were followed for an average of 8.4
years (25) found lithium to be more effective in bipolar II than bipolar I patients
with decreased disease relapse, less percent of time spent ill, and fewer illness
episodes per year.

Anticonvulsants
A double-blind, placebo-controlled study of lamotrigine as maintenance prophy-
laxis in rapid cycling BDs showed that in the subgroup of 52 bipolar II patients
(with rapid cycling) compared with placebo there was a significantly higher
percentage of patients who were stable without relapse at six months (26).
Divalproex sodium monotherapy was shown to reduce Hamilton Depression
Scale ratings by 50% in 19 depressed bipolar II subjects in a 12-week open label
study (27).

Antidepressants
Amsterdam and Brunswick (28) recently reviewed the use of antidepressants in
bipolar II depression. They concluded that the data supported the use of anti-
depressant therapy in bipolar II depression and that this use is associated with a
low risk of inducing switching to mania or hypomania. Amsterdam et al. published
several recent studies of the effectiveness of antidepressant treatment in bipolar II
patients. In one double-blind study, 89 bipolar II patients in remission from a
recent depressive episode were given either fluoxetine or placebo for 52 weeks
(29). These subjects were compared with 89 unipolar patients matched for age
and gender and 661 unmatched unipolar patients. Relapse prevention rates were
equivalent to those in the unipolar patient groups. The rate of switching to mania
or hypomania was equivalent to the matched unipolar controls but increased com-
pared with the unmatched controls (3.8% vs. 0.3%). In another study, venlafaxine
was compared in 17 bipolar II patients and 31 matched unipolar patients, with
both groups in a current depressive episode (29). There was no difference in
response in the two groups, and there were no episodes of switching in the
bipolar II group. In a recent study by Amsterdam et al. (30), 37 bipolar II patients
were given fluoxetine monotherapy for depression in an open label trial. Eleven
of 23 patients who completed the eight-week trial showed a reduction in Hamilton
Depression Rating scores greater than 50% and three patients (7.3%) had symptoms
suggestive of hypomania.

RAPID CYCLING

Rapid cycling is a specifier in the DSM-IV (3) that can be applied to either bipolar I
or bipolar II disorder when patients have multiple mood episodes in one year.
In bipolar I disorder, rapid-cycling patients must have at least four manic, mixed,
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or depressive episodes in one year. Bipolar type II patients are required to have at
least four hypomanic or depressive episodes in one year.

Epidemiology
Although psychiatrists have long been aware of rapid mood shifts in some patients,
not until 1974 did Dunner and Fieve (31) introduce the current nosology of rapid-
cycling BD in a paper studying factors correlated with poor lithium response in
bipolar patients. In their paper, Dunner and Fieve arbitrarily set the criteria to be
a minimum of four mood swings in a one year period. This nosology for rapid
cycling was then included as a specifier in the DSM-IV for both bipolar I and
bipolar II disorders.

Kupka et al. (32) recently completed an important meta-analysis examining
every study of rapid-cycling BD published since 1974. Among 2054 bipolar I and
II patients in eight studies, 335 (16.3%) had rapid cycling. These studies included
both inpatient and outpatient subjects, and the prevalence of rapid cycling
ranged from 12% to 24% in the individual studies. Women and those with
bipolar II disorders showed higher rates of rapid cycling (although the overall
size of this effect was small) than men and those with bipolar I respectively. Since
this meta-analysis, there have been two other large studies looking at rapid-
cycling BD. A study by Schneck et al. (33) looked at the data for the first 483
bipolar I or II patients enrolled in the Systematic Treatment Enhancement
Program (STEP) for one year after their diagnosis. They found an overall rate of
rapid cycling of 20%. There was a higher rate of rapid cycling among women
(23% vs. 16%), and rapid-cycling patients had an earlier age of onset of illness,
were more depressed at study entry, and had poorer global functioning in the
year before study entry. There was no significant difference between the rate of
rapid cycling in bipolar I versus bipolar II disorder. The next major study was by
Kupka et al. (34). They followed 539 outpatients with bipolar I and II disorder for
one year and found that 38.2% had rapid cycling. They found no difference in
rate of rapid cycling between men and women. There was a significantly higher
rate of rapid cycling in bipolar I (41.3%) versus bipolar II disorder (27.9%). The
rapid-cycling patients spent more time in both manic (and hypomanic) and
depressive states over the course of a year than those without rapid cycling.
They also found that rapid cycling was associated with a greater number of pre-
vious mood episodes, previous rapid cycling, a history of childhood physical
and/or sexual abuse, and lifetime drug abuse. The authors considered different
cut-off ranges for number of episodes in a one-year period. Increasing the cut-off
to eight episodes in a year, only 13.5% of the patients would meet criteria
for rapid cycling. However, none of the cut-off ranges showed any evidence of
nonlinearity that would suggest a natural cut-off point to separate rapid cyclers
from nonrapid cyclers.

In addition to the prevalence of rapid cycling, it is also important to under-
stand when it occurs during the course of bipolar illness and whether it is a tempor-
ary condition or a more long lasting subtype. Strakowski et al. (35) followed 144
subjects for up to five years after their first hospitalization for mania. At the end
of the follow-up period, only 10% of patients had ever met the criteria for rapid
cycling. These results suggest that rapid cycling may develop with illness pro-
gression over time. Koukopoulos et al. (36) followed the course of illness in 109
rapid-cycling bipolar patients for up to 36 years (with a minimum period of
two years). They found that rapid cycling emerged in 96 patients (88%) after
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antidepressant and other medication treatment. The mean total duration of rapid
cycling was eight years while the mean total duration of affective episodes was
22 years. Baldessarini et al. (37) found that among patients who met the criteria
for rapid cycling at one time, these patients did not consistently maintain rapid-
cycling status and had only moderately greater lifetime rates of rapid cycling
compared with other bipolar patients. These last two results support the concept
of rapid cycling as a temporary condition during BD.

Biology
Unfortunately, there have been few studies directly examining the structural and
functional neuroanatomic networks or molecular mechanisms of bipolar patients
with rapid cycling. One area which has been studied involves thyroid function in
rapid-cycling patients. In their prior review, Gary et al. (4) discussed thyroid
axis dysfunction in rapid-cycling patients. Some, but not all, of the studies reviewed
suggested a higher prevalence of thyroid disorders in rapid-cycling versus
non–rapid-cycling bipolar patients. Two of the studies showed increased hypo-
thyroidism in rapid-cycling patients after treatment with lithium carbonate
(38,39). A recent meta-analysis by Kupka et al. (32) also looked at studies of
rapid-cycling that included measures of thyroid function, and only two of the
seven studies (39,40) found significantly higher cases of hypothyroidism among
rapid-cycling patients.

In their discussion, Gary et al. (4) suggested that rapid-cycling patients may
be more severely ill and therefore more likely to be exposed to lithium, which in
turn leads to the greater proportion of patients with thyroid dysfunction. Two
recent papers looking at thyroid dysfunction in rapid-cycling patients address
this concern. Kupka et al. (41) found increased rates of thyroperoxidase antibodies
in bipolar patients, but this was not associated with either lithium treatment or
rapid-cycling BD, suggesting there are independent risk factors in bipolar patients
for developing hypothyroidism. Gyulai et al. (42) compared 20 rapid-cycling
patients with controls on a lithium challenge. Rapid-cycling bipolar patients had
a significantly higher change in maximum thyroid-stimulating hormone (TSH)
after the lithium challenge than controls, supporting the idea that rapid-cycling
bipolar patients are more vulnerable to lithium-induced thyroid dysfunction.
Clearly, more studies are needed to help clarify these contradicting results.

Treatment
Li
The nosology of rapid-cycling arose from Dunner and Fieve’s (31) study looking at
bipolar patients unresponsive to lithium. They found that 82% of rapid cyclers
failed lithium compared with 41% of nonrapid cyclers. This result was then
replicated by Koukopoulos et al. (43) who found a poor response to lithium in 72%
of rapid cyclers. However, several recent studies have challenged this finding. The
meta-analysis by Kupka et al. (32) discussed previously also examined response to
lithium. In patients who were treated with lithium prophylaxis, there were no
differences in recurrence rates between rapid and non–rapid-cycling bipolar patients
(47% vs. 34%, respectively, which was nonsignificant).

The most recent and methodologically sound study looking at lithium treat-
ment in rapid cyclers was that by Baldessarini et al. (37). The authors followed 360
bipolar I and II patients over 13 years. Their results indicated that rapid-cycling BD
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was not associated with greater morbidity during lithium maintenance treatment.
There were no significant differences in several critical outcome measures
between rapid and non–rapid-cycling bipolar patients, including: months remain-
ing stable on treatment, proportion of time spent in mania and depression, and
psychiatric hospitalizations.

Valproate
Calabrese et al. (44) examined the effectiveness of valproate in 78 rapid-cycling
bipolar patients in a 16-month open label trial. Valproate showed a good acute
response in 54% of patients in a manic state, 72% of those in mixed states, and
only 19% of those in a depressive state. A good prophylactic response was seen
in 72% of manic patients, 94% of mixed patients, and 33% of depressive patients.
Another open-label trial by Calabrese and Delucchi (45) examined 55 rapid-
cycling patients over eight months on valproate. The results were similar to the
Calabrese et al. study (44) but showed greater efficacy in depression (47% in
acute depression and 76% in prophylactic treatment). Calabrese et al. (46) recently
completed a large randomized double-blind study of valproate versus lithium
in rapid-cycling bipolar patients. The chance of relapsing into either a manic
or depressive episode was not statistically different for lithium (56%) versus
valproate (50%).

Lamotrigine
Bowden et al. (47) looked at the efficacy of lamotrigine in 41 rapid-cycling and 34
non–rapid-cycling patients with BD in a 48-week open label prospective study.
Patients with depressive and mild-to-moderate symptoms improved from baseline
on lamotrigine in both patient groups (with no significant difference between
the groups). However, rapid-cycling patients with severe mania showed little
improvement in their symptoms.

A large double-blind, placebo-controlled study of lamotrigine as maintenance
prophylaxis in 324 patients with rapid-cycling bipolar I and II disorders (26)
showed a statistically significant greater percent of the treatment group was
stable without relapse at six months compared with placebo (41% vs. 26%).
Another smaller double-blind placebo-controlled study of lamotrigine showed an
improved antidepressant response compared with placebo in rapid-cycling
patients (48).

Carbamazepine
Okuma (49) looked at 215 bipolar patients treated with lithium versus carbamaze-
pine in a retrospective study and found that rapid cycling (at the time of study or in
the past) predicted nonresponse to both medicines. Denicoff et al. (50) completed a
three-year double-blind crossover study of lithium, carbamazepine, and the combi-
nation of both medications in 52 outpatients with BD. Rapid-cycling patients
responded poorly to both lithium (28% response) and carbamazepine (19%
response), but did better on the combination (56.3% response).

Olanzapine
Gonzalez-Pinto et al. (51) studied olanzapine as an add-on in an open-label trial in
13 bipolar I patients during a mixed mood episode. All patients had a history of
rapid cycling within the last year. Ten of the 13 patients responded to olanzapine
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(in which response was defined as a decrease of 50% score on the Young Mania
Rating Scale and the Hamilton Rating Scale for Depression).

A recent meta-analysis by Vieta et al. (52) pooled the data from two double-
blind placebo-controlled trials of olanzapine to include 90 patients with rapid
cycling. The results indicated that olanzapine was more effective in the early treat-
ment of mania in rapid-cycling versus non–rapid-cycling bipolar patients.
However, olanzapine was less effective in the long-term treatment of rapid
cyclers who were significantly more likely to experience recurrence (especially
depression), to have rehospitalizations, and to have suicide attempts compared
with nonrapid cyclers.

Comparisons of Treatments
A recent meta-analysis of long-term treatment of rapid-cycling bipolar patients by
Tondo and Baldessarini (53) looked at treatments with carbamazepine, lamotrigine,
lithium, topiramate, and valproate. They found lower effectiveness of all treatments
in rapid-cycling versus non–rapid-cycling patients. They concluded that there
were few studies providing direct comparisons of the different medications and
there was no evidence of any medicine being superior.

CYCLOTHYMIC DISORDER

Cyclothymic disorder appears as one of four subtypes of BD in the DSM-IV. The
diagnostic criteria require a period of hypomanic symptoms and depressive
symptoms (which do not meet the criteria for a major depressive episode) that
continue for at least two years with no period of two ormoremonths without symp-
toms. The diagnosis also requires that no major depressive, manic, or mixed
episode be present during the first two years of the disorder. If these episodes
occur after two years of the start of the cyclothymic symptoms, then the appropriate
mood disorder can be diagnosed concurrently with cyclothymic disorder.

Epidemiology
Kraepelin considered cyclothymia as a possible constitutional disposition that
could lead to manic-depressive illness (54). In the DSM-II (55), cyclothymia was
considered a part of the affective personality disorders category. In the DSM-III
(11), cyclothymia was included in the mood disorders and the diagnosis required
numerous hypomanic and depressive symptoms to be present continuously for
at least two years without symptom-free periods of two months or greater. This
nosology persisted in the DSM-IV (3).

Unfortunately, there are no epidemiological studies looking at cyclothymic
disorder as defined by the DSM-III or IV. Weissman and Myers (56) interviewed
1095 households and found a lifetime rate of cyclothymic personality of 0.4% as
defined by the Schedule for Affective Disorders and Schizophrenia Diagnostic
Research Criteria. Placidi et al. (57) examined 1010 students between 14 and 26
years old and found a prevalence of 6.3% for cyclothymic temperament.

Biology
To our knowledge there are no studies that have attempted to examine the under-
lying molecular or neuroanatomic etiology of cyclothymic disorder.
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Treatment
There are no double-blind placebo-controlled studies examining treatments for
cyclothymic disorder. A retrospective study by Peselow et al. (24) looked at
cyclothymic patients taking lithium over a two-year period. The probability
of remaining free of a depressive episode was only 26% to 36% (compared with
42–55% for bipolar II patients and 31–42% for unipolar patients). The probability
of suffering a depressive episode severe enough to require hospitalization during
the two years was 69% in the cyclothymic patients (compared with 51% and 64%
for bipolar II and unipolar patients, respectively).

A prospective study by Jacobsen (58) looked at valproate in cyclothymia.
Twenty-six patients (15 cyclothymic, 11 bipolar II) out of 33 started on daily valpro-
ate doses between 125 and 250 mg and titrated up reported partial or complete
stabilization of their mood. The cyclothymic patients required lower doses and
blood levels to achieve stabilization compared with the bipolar II patients.

PSYCHOTIC MANIA

Psychosis is a specifier in DSM-IV that can be added to bipolar I disorder during a
manic, mixed, or depressed episode. If psychosis is present the mood episode
becomes “severe with psychotic features.” In this chapter we are concerned with
psychosis that occurs during a manic or mixed episode. Whether the psychosis is
mood congruent or incongruent is also relevant, and most studies of psychotic
mania classify the manic episode as psychotic only when the psychosis is mood
incongruent.

Epidemiology
Distinguishingmood from psychotic disorders has been one of the major challenges
of psychiatric nosology and was one of the major accomplishments of Kraepelin (1).
Yet, many questions remain about the overlap of these two major groups of illness.
The DSM-III (11) included psychosis as a specifier for a manic or depressive
episode. In the DSM-IV (3), this specifier can also be applied to mixed episodes.
A factor analytic study of 576 manic patients by Sato et al. (59) supports the
concept of psychotic mania as a subtype of acute mania. The subgroup of psychotic
mania was significantly different from three other subgroups of mania (pure mania,
aggressive mania, and mixed mania) on measures of suicidality at admission,
global assessment of functioning score at discharge, number of residual symptoms
at discharge, and gender.

In their textbook on BD, Goodwin and Jamison (60) reviewed prior studies of
BD and found a lifetime prevalence of 60% for having at least one psychotic
symptom. More recent epidemiological figures are hard to come by, but Conus
and McGorry (61) estimated the prevalence of psychotic symptoms in the range
of 63–88% in the first episode of mania based on their review of first episode
bipolar studies. In another study (62), 90 out of 139 (65%) manic patients had psy-
chotic symptoms. Strakowski et al. (35) found that psychosis during mania was
more common in bipolar I patients who had alcohol use disorders one year prior
to the episode than patients with no history of alcohol use disorders. Two studies
(63,64) have found that psychotic symptoms are associated with an earlier age of
onset of illness in BD. Finally, a recent study of hallucinations in mood disorders
and schizophrenia found that only 11.2% of manic patients had hallucinations (65).
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Biology
Toni et al. (66) studied the family history of mental illness in 155 manic inpatients,
86 with mood-incongruent psychosis. Those with mood-incongruent psychosis had
a family history of schizophrenia of 4% compared with 0% in those without mood-
incongruent psychosis. However, this study included those with schizoaffective
disorder as well as bipolar I, which limited the conclusions that could be drawn
regarding the genetics of BD. Potash et al. (67) looked at 65 families of probands
with bipolar I disorder. They found that psychotic symptoms during affective
episodes occurred more often in family members of bipolar I subjects with psycho-
sis than family members of bipolar I subjects without psychosis, suggesting that
psychotic symptoms cluster in certain bipolar pedigrees. Potash et al. (68) replicated
these results using 69 new BD pedigrees. Potash et al. (69) then performed genetic
linkage analysis on the ten families with the highest number of psychotic mood
disorders. They found linkage to chromosomal regions 13q31 and 22q12.

Strasser et al. (70) performed structural MRI scans on 23 bipolar subjects with
psychosis (21 with bipolar I and 2 with bipolar II), 15 bipolar subjects without psy-
chosis (nine with bipolar I and six with bipolar II), 33 schizophrenic subjects, and 44
healthy controls. Psychosis was defined as the occurrence of hallucinations or
delusions during one affective episode (mania, mixed, or depressive). The bipolar
subjects with psychosis and the schizophrenic subjects had enlarged lateral and
third ventricles compared with healthy controls and bipolar patients without
psychosis. There was no difference in hippocampal volume when the two groups
of bipolar subjects were compared with each other or with healthy controls. In con-
trast, schizophrenic subjects showed reduced left hippocampal volume compared
with healthy controls. Two PET studies (71,72) have also found similarities
between schizophrenia and bipolar subjects with psychosis. Pearlson et al. (71)
found increased basal ganglia D2 dopamine receptor density in psychotic bipolar
and schizophrenic subjects compared with healthy controls and bipolar subjects
without psychosis. Wong et al. (72) found increased caudate D2 dopamine receptor
density in psychotic bipolar subjects compared with bipolar subjects without psy-
chosis and healthy controls, and increased caudate D2 dopamine receptor density in
schizophrenic subjects compared with healthy controls. These neuroimaging
studies suggest that there may be similar etiological mechanisms in BD with psy-
chosis and schizophrenia, although it is possible the changes are merely correlative
with psychosis.

Another major research focus in psychotic mania has been examining
whether there is a worse prognosis and increased severity of symptoms in psycho-
tic mania versus mania without psychosis. Although there have been several
studies of this question, there is no clear consensus. In a retrospective study,
Kessing (73) examined 149 manic patients without psychosis and 202 patients
with psychosis. The patients with psychotic mania had longer admissions
compared those without psychosis, but no difference was found in the risk of
relapse between the two groups.

Strakowski et al. (74) followed 50 manic patients for eight months after their
first psychiatric hospitalization for BD. Those patients with mood incongruent psy-
chosis at hospitalization had significantly more weeks during follow-up of both
mood-incongruent and mood-congruent psychosis as well as poorer overall func-
tioning during the outcome interval of eight months. MacQueen et al. (75)
studied 62 outpatients with bipolar I disorder (16 with psychosis) in a prospective
study. Although psychotic patients were more symptomatic during the acute manic
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episode there were no differences in ratings of function and well-being when both
groups were euthymic. In a prospective study, Miklowitz (76) examined 23 hospi-
talized manic patients, 11 with psychosis. Although the two groups did not differ in
rates of relapse, those with psychotic symptoms had poorer social adjustment and
were less medically compliant. Swann et al. (77) looked at the role of psychosis in
the severity of symptoms and treatment response in a randomized double-blind
treatment study of lithium, divalproex sodium, and placebo in 179 hospitalized
manic patients. Those patients with psychosis had lower Global Assessment
Scale scores but similar response to treatment.

Treatment
Li
In the prospective study of 139 bipolar patients (90 with psychotic mania) men-
tioned earlier, Coryell et al. (62) did not find any difference in response to lithium
in psychotic mania versus mania without psychosis. As mentioned above, Swann
et al. (77) did not find any differences in efficacy between lithium and divalproex
in the treatment of psychotic mania. In a prospective study of 30 patients with
acute mania (24 with psychotic symptoms), Zemlan et al. (78) found that lithium
was more effective in those with psychotic symptoms. Rosenthal et al. (79)
studied 66 bipolar I patients, 44 whom had psychosis at some point during their
illness (30 during mania, 5 during depression, and 9 during both mania and
depression). They found that psychosis during mania was a predictor of good
response to lithium. However, in a retrospective study of 145 bipolar patients
(94 with psychotic mania), Yazici et al. (80) found a first episode of mania that
included psychosis was one of four variables that predicted a poor response
to lithium.

Clozapine
Green et al. (81) studied clozapine in the treatment of refractory psychotic mania. In
an open-label trial, 22 psychotic manic patients were given clozapine for 12 weeks.
Clozapine proved effective in the treatment of these patients, showing a mean
improvement of 56.7%, 56.6%, and 39.1% on the Brief Psychiatric Rating Scale
(BPRS), Young Mania Rating Scale (YMRS), and Clinical Global Impressions
(CGI), respectively.

Olanzapine
In an 18-month double-blind maintenance study of the prevention of relapse of
bipolar I disorder, Tohen et al. (82) looked at olanzapine versus placebo added to
valproate or lithium and found a significant reduction of symptomatic relapse
with the addition of olanzapine. The presence of psychotic features had no effect
on the outcome. In a double-blind study of olanzapine versus divalproex in acute
mania (83), the subgroup of bipolar patients without psychosis showed decreased
YMRS scores with olanzapine compared with divalproex. The presence of psycho-
tic features had no effect on outcome. Tohen et al. (84) looked at olanzapine versus
haldol in a 12-week double-blind study of the treatment of acute mania. Patients
receiving olanzapine had significant improvement in manic symptoms (lower
YMRS scores) in the subgroup of patients without psychosis, but not in the sub-
group of patients with psychosis. Chengappa et al. (85) combined the results
from two prior randomized double-blind studies of olanzapine versus placebo in
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acute bipolar mania and found that olanzapine was significantly better than
placebo at reducing manic symptoms (lower YMRS scores) in patients with
psychosis.

Risperidone
Sachs et al. (86) examined risperidone versus haldol or placebo as an add-on to
lithium or divalproex in a double-blind study of acute mania. Risperidone was
effective in lowering YMRS scores in patients without psychosis (mean change
213.3) and those with psychosis (mean change 215.4) compared with the placebo
group. Hirschfeld et al. (87) studied the effectiveness of risperidone versus
placebo for acute mania in a three-week double-blind trial. Risperidone was
effective in lowering YMRS scores in patients with and without psychosis. In a
double-blind study of risperidone compared with haldol and placebo in acute
mania, Smulevich et al. (88) showed that risperidone was effective in acute mania
(lower YMRS scores) compared with placebo at three weeks in patients with and
without psychosis.

Quetiapine
McIntyre et al. (89) examined quetiapine versus haldol monotherapy in a 12-week
double-blind placebo-controlled study of acute mania. In patients without psycho-
sis, both quetiapine and haldol showed improvements in YMRS scores compared
with placebo on days 21 and 84. However, in the subgroup of patients with
psychosis, quetiapine did not show improvement in YMRS scores compared with
placebo on either day 21 or 84. Sachs et al. (90) examined quetiapine versus
placebo added to lithium or divalproex in a double-blind study of acute mania.
Quetiapine was superior to placebo in improving YMRS scores, and the presence
of psychotic symptoms did not show an interaction with the treatment effect,
indicating quetiapine was effective in bipolar patients with psychosis. Yatham et
al. (91) also looked at quetiapine versus placebo added to lithium or divalproex
in a double-blind study of acute mania. They also found that the presence of
psychosis did not alter the effectiveness of quetiapine.

SUMMARY

In this paper we reviewed the epidemiology, biology, and treatment of four sub-
types of BD: bipolar II, rapid cycling, cyclothymia, and psychotic mania. Among
the four disorders, bipolar II disorder has the strongest support for being a distinct
diagnostic entity. There is evidence suggesting bipolar II patients have different
genetic risk factors compared with bipolar I patients. The neuroimaging studies
reviewed are beginning to find differences that if replicated could lead to elucida-
tion of different etiological mechanisms and risk factors between bipolar I and II.
Studies of BD with rapid cycling have focused on thyroid abnormalities and differ-
ent response to treatments. The evidence regarding thyroid abnormalities is incon-
sistent and more studies are needed before any conclusions can be drawn. The
studies of treatment response are also inconsistent, but the newer studies suggest
that lithium can be effective in bipolar patients with rapid cycling. In addition,
recent outcome studies suggest that rapid cycling may be a temporary condition
during the course of BD.

Regarding psychotic mania, genetic studies suggest it may cluster in certain
families, and biological studies have shown similar brain deficits to those found
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in schizophrenic patients. Recent studies of psychotic mania have shown that aty-
pical antipsychotics are an effective treatment while studies regarding prognosis
remain mixed. Almost no research has been done on cyclothymia and even the
most basic epidemiological data remain uncertain in this disorder.

PERSPECTIVE

Clearly more research is needed to better understand the subtypes of BD. With so
little evidence it is premature to consider BD a spectrum illness. When the molecu-
lar and neuroanatomic aspects of bipolar I disorder are better understood this
should enable the comparison of the proposed subtypes to bipolar I disorder.
These comparative studies may lead to the elucidation of the etiology of each
subtype as well as the etiology of the entire spectrum of BDs.

In terms of treatment, we should also be wary of assuming that medications
that are effective for bipolar I will be effective for other possible subtypes of the
disorder. Only rigorous double-blind studies can assure us of the effectiveness of
medications, and more such studies are needed for many of the subtypes of BD.

While psychiatric nosology has come a long way since Kraepelin’s formu-
lation of manic-depressive insanity, there is still a long road ahead. The most
fundamental questions about the etiology of the mood disorders remain unan-
swered. Only an understanding of the etiology of the illnesses we treat can bring
us to the next level of nosology beyond Kraepelin and the DSM-IV.
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INTRODUCTION

From its earliest descriptions, clinicians, and researchers have observed bipolar
disorder (BD) in children and adolescents. Pediatric manifestations of BD were
recognized in antiquity by Aretaeus and documented in case reports in the 19th
century by Esquirol (1). However, despite this long history, the exact clinical pres-
entation of juvenile BD remains highly controversial. Clinical, neurocognitive, and
pathophysiological comparisons to adult BD require further study. In the past
decade, a growing number of studies on pediatric BD indicate unparalleled
academic interest in understanding the pathophysiology of the disorder and its
developmental trajectory (2).

DIAGNOSING BIPOLAR DISORDER IN CHILDREN

Pathophysiological studies in psychiatry typically involve intensive biological
assessments of a relatively small sample of patients. In such studies, investigators
try to recruit a clinically homogeneous sample, since clinical homogeneity should
be associated with decreased biological variability between patients, and thus
with an increased probability of finding significant differences between patients
and controls in the pathophysiological variable of interest. In the case of pediatric
BD, considerable controversy has surrounded the diagnosis, complicating investi-
gators’ ability to recruit homogeneous patient samples and to compare results
across sites. Therefore, to understand the current state of research on the biological
underpinnings of BD in children, one must appreciate the nature of this diagnostic
controversy, and how the diagnosis is applied differently in different research
settings.

In diagnosing pediatric BD, researchers disagree as to whether distinct mood
episodes, and/or euphoria, should be required to make the diagnosis. Diagnostic
and Statistical Manual-Fourth Edition-Text Revision (DSM-IV-TR) clearly requires
episodes of mania or hypomania for the diagnosis; indeed, technically, one diag-
noses a manic episode, not mania per se. Criterion A of manic and hypomanic epi-
sodes requires “a distinct period of elevated, expansive, or irritable mood” (italics
added) lasting at least seven days in the case of mania, or four days in the case of
hypomania (3). However, based in part on earlier case reports (4), researchers
suggested that children with BD differ from adults in having less distinct episodes,
instead presenting with persistent and severe irritability accompanied by the “B”
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symptoms of mania, such as agitation, distractibility, and pressured speech (5–7).
These investigators suggested that the clinical presentation of children with BD is
usually that of a chronic mixed mania (5,8).

Researchers also debate whether euphoria should be required for the diagno-
sis of mania in children. DSM-IV-TR states that a manic episode can be character-
ized by either irritability or elated mood. However, the issue is contentious in
pediatric psychiatry because irritability is very common in childhood psycho-
pathology (9). Indeed, if one does not require an episodic course for the diagnosis
of BD in children, then the boundary between BD and attention deficit hyperactiv-
ity disorder (ADHD) accompanied by severe irritability, is unclear (10–12).

In response to the controversies described above, Leibenluft et al. (13)
proposed a phenotyping system for BD in children. This phenotyping system
was designed to facilitate research by creating homogeneous subgroups among
the various populations of children receiving the diagnosis. In this system, one sub-
group of children, the narrow phenotype (NP-BD), has the least equivocal pres-
entation; these children have had at least one distinct episode clearly meeting
DSM-IV-TR criteria for mania or hypomania, with a duration of at least four days
for hypomania and seven days for mania (Table 1). In fact, the criteria for narrow
phenotype illness in Leibenluft et al. are narrower than the DSM-IV-TR criteria
for a manic episode, since Leibenluft et al., like Geller et al. (14,15), require
elation or grandiosity to be the episode’s predominant mood state, whereas
DSM-IV-TR allows irritability.

Two intermediate phenotypes were designed to address the disagreements
concerning the required duration of an episode, and the question of whether
euphoria should be required to make the diagnosis of mania (13). One intermediate
phenotype includes children whose episodes meet full duration criteria for hypo-
mania or mania, but exhibit irritability rather than euphoria. The second

TABLE 1 Narrow Phenotype Diagnostic Criteria

Mania: (hypo)mania, with full-duration episodes and hallmark symptoms
Modification to the DSM-IV-TR criteria for manic episode
The child must exhibit either elevated/expansive mood or grandiosity, while also meeting other
DSM-IV-TR criteria for a (hypo)manic episode.

Guidelines for applying the DSM-IV-TR criteria
Episodes must meet the full duration criteria (i.e., �7 days for mania and �4 days
for hypomania) and be demarcated by switches from other mood states (depression,
mixed state, euthymia).

Episodes are characterized by a change from baseline in the patient’s mood (DSM-IV-TR
criterion A) and simultaneously, by the presence of the associated symptoms
(DSM-IV-TR criterion B). For example, the distractibility of a child with ADHD would
count toward a diagnosis of (hypo)mania only if his/her distractibility worsened at the same
time that he/she experienced mood elevation.

Decreased need for sleep should be distinguished from insomnia (i.e., nonspecific difficulty
sleeping, which is associated with fatigue).

Poor judgment per se is not a diagnostic criterion for (hypo)mania; the poor judgment must
occur in the context of “increased goal-directed activity” or “excessive involvement in
pleasurable activities that have a high potential for painful consequences.”

Abbreviations: ADHD, attention deficit hyperactivity disorder; DSM-IV-TR, Diagnostic and Statistical Manual-Fourth
Edition-Text Revision.
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intermediate phenotype includes children who exhibit distinct euphoric episodes
that are shorter than the four days required by DSM-IV-TR.

Finally, children meeting criteria for the “broad phenotype” exhibit chronic
impairing irritability accompanied by hyperarousal symptoms; the latter are
similar to those seen in children with ADHD. These youth have neither distinct epi-
sodes nor euphoria, and their receipt of a bipolar diagnosis has been perhaps the
major source of controversy in the literature. While acknowledging that children
with this clinical presentation have been called the “broad phenotype” of BD (16),
Leibenluft et al. (13) label themas having “severemoodandbehavioral dysregulation
(SMD),” to emphasize the fact that the question of whether they are indeed suffering
from a phenotype of BD is open to empirical investigation. These SMD criteria of
Leibenluft et al. (Table 2) were designed to: (i) operationalize clearly the criteria for
irritability (i.e., increased reactivity to negative emotional stimuli at least three
times aweek); (ii) ensure that the irritabilitywas severe (specifically, severely impair-
ing in one setting and at least mildly impairing in a second); (iii) ascertain a sample
who, in addition to irritable outbursts, exhibited abnormal baselinemood, in order to
exclude children with “tantrums” who are otherwise well-functioning; (iv) capture
the population of children who exhibit those “B” criteria of mania that overlap
with symptoms of ADHD (i.e., exhibit three or more of the following: insomnia,
agitation, distractibility, pressured speech, flight of ideas or racing thoughts, intru-
siveness); and (v) exclude children with an episodic illness or any of the symptoms
specific to mania (i.e., euphoria, grandiosity, decreased need for sleep). In designing
these criteria, amajor goalwas to clearlydefine a population of childrenwho could be
compared on a number of biological variables to childrenmeeting narrowphenotype
criteria for BD.

TABLE 2 Severe Mood Dysregulation (SMD) Diagnostic Criteria

Inclusion criteria
Age 7–17 years, with symptom onset before age 12.
Abnormal mood (specifically, anger or sadness) present at least 1/2 of the day most days and of
sufficient severity to be noticeable by others (e.g., parents, teachers, or peers).

Hyperarousal, as defined by �3: insomnia, agitation, distractibility, racing thoughts or flight of
ideas, pressured speech, or intrusiveness.

Compared with peers, the child exhibits markedly increased reactivity to negative emotional
stimuli manifest verbally or behaviorally—temper tantrums out of proportion to the inciting
event and/or child’s developmental stage—occurring .3 times/week during past four weeks.

Symptoms are present for �12 months without �2 months symptom-free.
Symptoms are severe in at least 1 setting and at least mild in a second setting—e.g.,
school, home, peers.

Exclusion criteria
Child has any “cardinal” BD symptoms: elevated/expansive mood, grandiosity, or episodically
decreased need for sleep.

Distinct episodes �4 days.
Individual meets diagnostic criteria for schizophrenia, schizophreniform disorder, schizoaffective
illness, pervasive developmental disorder, or post-traumatic stress disorder.

Individual meets criteria for substance use disorder in the past three months.
IQ , 70.
Symptoms are direct physiological effect of drug abuse or general medical/neurological condition.

Abbreviations: BD, bipolar disorder; IQ, intelligent quotient.
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PREVALENCE ESTIMATES OF PEDIATRIC BIPOLAR DISORDER

Despite the controversy surrounding the diagnostic boundaries of pediatric BD,
estimates across epidemiologic studies reveal a relatively consistent prevalence.
This consistency may be due to the fact that the epidemiologic studies have all
used DSM conventions in making the diagnosis in children, requiring clear epi-
sodes with the requisite duration (i.e., these studies exclude children with the
“broad phenotype” of the illness). Using the kiddie schedule for affective disorders
and schizophrenia for school-age children (K-SADS) (17) to examine DSM-III-R BD
in adolescents aged 14 to 18 years, Lewinsohn et al. (18) found a lifetime prevalence
of approximately 1%. Not surprisingly, the prevalence of youth with subsyndromal
BD (i.e., a distinct period of abnormally elevated, expansive, or irritable mood for
less than four days, or a hypomanic episode with no history of a depressive
episode) is higher (5.7%) than the prevalence of youth with BD (19,20). Similarly,
Carlson and Kashani (21) examined the rates of BD in 150 nonreferred 14- to 16-
year-old and found that approximately 1.5% met research diagnostic criteria
(RDC) (22) criteria for BD-II or cyclothymia. No child met DSM-III RDC criteria
for BD-I, because the degree of impairment was insufficient. In another study exam-
ining 717 adolescents 10 to 20 years old (mean age 15 years), Johnson and colleagues
(23) found that 14 youth (1.9% of the sample) met criteria for BD according to the
diagnostic interview schedule for children (DISC) (24). An additional 10 adoles-
cents (1.4% of the sample) experienced subthreshold BD, as the number of their
hypo/manic symptoms was one symptom below threshold. In a younger sample,
data from the great smoky mountains study (GSMS) (25) found a 0.1% prevalence
of hypomania and no cases of mania in children aged 9 to 13 years old. Applying
Leibenluft et al.’s (13) phenotype criteria to the GSMS dataset, Brotman et al. (26)
found a 3.3% prevalence of SMD, or the broad phenotype of BD. Taken together,
epidemiologic data suggest that the prevalence of DSM-based BD is quite low;
not surprisingly, when criteria are relaxed, that is, not requiring clear episodes, or
allowing shorter episodes and/or fewer criteria “B” symptoms, population fre-
quency estimates increase.

COGNITIVE AND EMOTIONAL PROCESSING

Classical cognitive paradigms assessing memory and attention can help to eluci-
date the neuropsychological deficits apparent in youth and adults with BD. Specifi-
cally, the study of cognitive impairments can clarify the neurobiological substrates
of the disorder, such as deficits in cortical functioning, and potentially demonstrate
the relationship between neural correlates and clinical symptoms (27,28). It is par-
ticularly important to differentiate nonspecific cognitive deficits from those associ-
ated with BD. In addition, it is essential to parse deficits that persist during
euthymia from those that occur only during acute mood episodes in order to deter-
mine the extent to which BD patients do not achieve functional and full cognitive
recovery during remission, and to identify possible endophenotypes of the
illness, that is, behavioral markers associated with risk (29). Neuropsychological
studies in BD adults have demonstrated state- and trait-related deficits in set shift-
ing, planning, attention, and memory (27,30–36). However, as detailed below,
fewer studies have explored neuropsychological impairment in pediatric BD. In
addition, as also discussed below, more recent research has assessed patients’
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processing of emotional stimuli in an attempt to explore the emotional impairments
of BD youth (27).

Memory, Learning, and Attention
In BD adults, several studies have demonstrated impairments in memory and
verbal learning (35,37–39). Building on these studies, Dickstein et al. (40) used
the Cambridge neuropsychological test automated battery (CANTAB) (Cambridge
Cognition Ltd., Cambridge, U.K.) to assess visual/visuospatial memory and other
neuropsychological parameters in NP-BD children. Consistent with adult BD find-
ings (41,42), NP-BD youth exhibited impairments in pattern recognition memory
(PRM). Moreover, NP-BD youth demonstrated decreased spatial memory span
relative to control children, again similar to impairments seen in adult BD patients
(42,43). Because such memory deficits have been observed in adults with unipolar
depression (43) and adults with ADHD (44,45), it remains unclear if these impair-
ments are specific to BD.

Also consistent with studies in adult BD (37,39), McClure et al. (46) found
subtle memory deficits in NP-BD youth on the California verbal learning test for
children (CVLT-C) (47). The impairments were particularly strong in NP-BD chil-
dren with comorbid ADHD. In a related study controlling for ADHD comorbidity,
Doyle et al. (28) found deficits in sustained attention, working memory, and proces-
sing speed in BD youth. However, it is important to note that the criteria for BD in
these two studies differed.Whereas the former (46) employed Leibenluft et al.’s (13)
narrow phenotype BD criteria, the criteria for the latter study (28) included youth
with intense irritability, without euphoric/elated mood, and a nonepisodic illness.

In contrast to the developmental continuity of memory deficits found in adult
and pediatric BD on the CANTAB and CVLT, studies using the continuous per-
formance test (CPT) to study sustained attention have revealed more discrepant
results. That is, while numerous adult BD studies have demonstrated attentional
deficits with this task (34,48–50), results from pediatric BD studies have been less
conclusive. In a pilot study, DelBello et al. (51) found no differences in sustained
attention between adolescents with BD and controls. However, McClure et al.
(52) found that NP-BD subjects did not make more commission errors than did con-
trols, but did demonstrate lower discriminability (i.e., hit rate minus false alarms).
These results are not dissimilar from what one would expect in a sample of bipolar
adults (34).

Response Flexibility and Motor Inhibition
Response flexibility, or the ability to modify one’s behavior based on changing con-
tingencies, is germane to the study of BD for several reasons. First, response flexi-
bility is mediated by the ventral prefrontal cortex (VPFC), which has been
implicated in the pathophysiology of BD. Nonhuman primate and adult control
studies have shown that behavioral responses to changing contingencies engage
a neural circuit encompassing the amygdala, VPFC, and striatum (53). Both
lesion (54) and functional magnetic resonance imaging (fMRI) studies (55–61)
demonstrate functional abnormalities in these regions in patients with BD (see
below for neuroimaging in pediatric BD). Integrating neural findings with clinical
observation, our research group is testing the hypothesis that BD patients demon-
strate inflexibility in their responses to changes in emotional stimuli. Clinically,
depressed patients respond similarly to positive and negative stimuli, in that
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neither are rewarding. On the other hand, manic patients cannot respond with
appropriate flexibility to negative stimuli (e.g., they either deny the existence of
such stimuli, or become irritable in response to them). As detailed below, we
have demonstrated that children with BD, regardless of mood state, have deficits
in adapting to changes in emotional contingencies. We hypothesize that such
response inflexibility, when present in euthymia, is a forme fruste of a more
marked deficit that is present during mania or depression and is relevant to the
clinical symptoms of these aberrant mood states. Thus, the examination of impair-
ments in response flexibility may elucidate the pathophysiology of pediatric BD.

Several studies, using different behavioral paradigms, have demonstrated
that NP-BD children and adolescents have impaired response flexibility. Two
studies have used reversal learning, or the ability to reverse previously acquired
stimulus/reward associations, to measure cognitive and response flexibility in
NP-BD subjects. In the first, Dickstein et al. (40) showed that NP-BD subjects, com-
pared with typically developing youth, have impaired attentional set shifting,
specifically on the simple reversal stage, of the CANTAB’s intradimensional/extra-
dimensional (ID/ED) shift task (42). Similarly, Gorrindo et al. (62) found that euthy-
mic NP-BD subjects made more errors during probabilistic reversal and took longer
to learn the new rewarded object than did control subjects. In sum, two out of two
studies that have examined reversal learning in pediatric BD have shown that NP-
BD subjects have impaired response flexibility.

Motor inhibition is a specific type of response flexibility, because inhibiting a
prepotent response, or substituting an alternate response for an inhibited one,
requires cognitive and motor flexibility. From a clinical perspective, deficits in
motor inhibition may contribute to the impulsivity and affective aggression charac-
teristic of BD youth, as such youth may have difficulty inhibiting physical and
emotional responses to environmental triggers. To investigate motor control in chil-
dren with BD, McClure et al. (52) administered the stop and change paradigms (63).
Again demonstrating response inflexibility, compared with controls, NP-BD youth
had a significantly longer reaction time when substituting an alternate response for
an inhibited behavior on the “change” task, and demonstrated a trend toward a
delay in their ability to inhibit a prepotent response on the “stop” task.

Attention-Emotion Interactions and Emotion Recognition
To elucidate the pathophysiology of the emotional dysregulation seen in BD
children, researchers have begun to explore the influence of emotional stimuli
on attention allocation. Adverse attention–emotion interactions may be important
in BD because the development of effective emotion regulation requires attentional
control; that is, children’s ability to deliberately control attention is essential
to moderating internal affective states (64,65). For example, directing attention
away from frustrating stimuli is a common method for modulating irritability
and anger.

Although the disrupting effects of emotional stimuli on attentional allocation
has received extensive study in patients with anxiety disorders (66) or depression
(67,68), only recently have investigators begun to explore impaired attention–
emotion interactions in pediatric BD. Rich et al. (65) used an affective Posner task
(69) in which subjects completed the same attentional task three times: first at base-
line, then with contingencies (i.e., monetary reward and punishment), and finally in
the presence of frustration (i.e., rigged feedback). The BD patients, once again,
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demonstrated response inflexibility, in that controls, but not BD youth, responded
to the introduction of contingencies and frustration with decreased response time.
Furthermore, there was evidence that the patients’ response inflexibility might be
secondary to adverse attention–emotion interactions. Specifically, in controls, par-
ietal P300 evoked response potentials (ERPs) showed increased amplitude in the
frustration task compared with the other two tasks, whereas the P300 amplitude
in patients was unchanged across the three tasks. Given that P300 amplitude is
thought to be a measure of allocation of attention, these data indicate that controls
marshaled increased attentional resources in the presence of a heightened emotion-
al context, but BD youth were unable to do so (Fig. 1). These data further suggest
that the BD patients’ response inflexibility may be associated with deficits in execu-
tive attention arising only in emotional, but not in nonemotional, contexts. Specu-
latively, it is possible that the BD children were unable to focus their attention on
the task while frustrated because they were distracted by the emotion that they
were experiencing.

Other studies have assessed processing deficits and the influence of emotion
on attention by examining children’s ability to categorize facial displays of emotion.
Clinically, BD youth demonstrate social problems and experience high rates of peer
rejection. In addition, adults with BD display impaired recognition of facial
emotions, particularly during acute mood states (70,71). To examine such potential
impairments in BD youth, McClure et al. (52,72) administered the diagnostic analy-
sis of nonverbal accuracy scale (DANVA) (73) and found that NP-BD youth per-
formed worse than anxious adolescents and psychiatrically healthy control
subjects on a facial emotional recognition task. Yet, it remains unclear if these
impairments are specific to certain facial emotions, such as anger, or represent a
more general and extensive emotion recognition deficit.

Further data by Rich et al. (74) suggest that BD children may mislabel facial
emotions because their affective response to the emotional expression impedes
the attention allocation needed for emotion categorization. Specifically, BD children
and controls completed emotional (e.g., “how afraid are you?”) and nonemotional
(i.e., “How wide is the nose?”) ratings of neutral faces. They found that compared

FIGURE 1 P3 ERP wave at parietal sites in the setting of frustration.
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with control youth, NP-BD children reported more fear when viewing these rela-
tively innocuous stimuli. However, NP-BD and control children did not differ in
nonemotional rating of the faces, again suggesting impaired attention–emotion
interactions in BD youth.

Once behavioral deficits are identified in NP-BD youth, compared with
controls or other psychiatric populations, fMRI can be used to explore the brain
mechanisms mediating these between-group differences. MRI and other neuroima-
ging techniques are capable of elucidating aberrant biological mechanisms in pedi-
atric BD, including structural abnormalities and dysfunctional circuitry.

NEUROIMAGING IN PEDIATRIC BIPOLAR DISORDER

Unlike in adults, researchers cannot use positron emission tomography (PET) to
study BD youth, due to concerns about radiation exposure. However, numerous
groups have utilized magnetic resonance imaging (MRI) technology, which uses
no radiation and is noninvasive, to evaluate structural, chemical, and functional
alterations in pediatric psychopathology. Taken as a whole, these studies demon-
strate that fronto-amygdala-striatal abnormalities differentiate BD children and
adolescents from typically developing control youth (75).

STRUCTURAL NEUROIMAGING IN PEDIATRIC BIPOLAR DISORDER

The vast majority of published pediatric BD neuroimaging studies are structural
MRI studies, that is, studies that use MRI to determine volumetric differences in
brain structures between BD youth and controls. While size does not correlate
directly with function, structural MRI studies allow the identification of regions-
of-interest (ROI) that may mediate the manifestations of BD.

The primary focus of structural MRI studies in pediatric BD has been on
limbic structures, most notably the amygdala. Studies have demonstrated that
the amygdala mediates numerous functions central to emotion regulation in
general, as well as to BD specifically. Such functions include modulating somatic
signs of negatively-valenced emotions, such as fear, anxiety, and depression
(76,77). The amygdala also shapes behavior in response to rewards and incentives
(78–80), which is germane to BD given the DSM-IV-TR clinical criteria of excessive
goal-directed activity and pleasure-seeking during mania, and of anhedonia during
depression. Of the six published studies that have evaluated amygdala volume in
pediatric BD, four showed that BD children and adolescents had decreased amyg-
dala volume, especially on the left, compared with typically developing youth
[including one (81) comparing NP-BD youth, in particular, to controls] (81–84).
In the fifth study, a similar finding emerged as a trend (85). Only one study failed
to show decreased amygdala volume in pediatric BD subjects (86), possibly due
to the young average age of both BD and control subjects (mean age 11.3+ 2.7
BD and 11.0+ 2.6 controls) or due to BD subjects having a significantly lower IQ
than controls (mean verbal IQ 99.2+ 14.2 BD and 114.9+ 11.4 controls). Moreover,
Blumberg et al. (87) recently published a two-year follow-up study demonstrating
that decreased amygdala volume in pediatric BD subjects remains a stable trait
feature compared with healthy controls. The consistency of these structural MRI
studies demonstrating decreased amygdala volume in pediatric BD subjects
stands in marked contrast to neuroimaging studies of BD adults that show either
increased or unchanged amygdala volume compared with controls (88–92). Such
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a consistent finding in pediatric BD suggests that there may be a neurobiological
difference between prepubertal- and adult-onset BD.

Structural MRI studies have also evaluated the hippocampus, another limbic
structure implicated in memory for emotional events. At present, two studies have
found decreased hippocampal volume in pediatric BD compared with controls
(82,86), while three have not (81,84,85). Frazier et al. (86), in the more recent of
the two studies demonstrating decreased hippocampal volume in BD adolescents,
found that this effect was driven by the female BD subjects. Again, structural MRI
studies of hippocampal volume in BD adults have found inconsistent results; one
study found decreased volume (93) while several others found no difference (89–
92,94). These negative studies should be interpreted with caution, however, due
to the possibility of type II errors.

Only recently have neuroimaging studies moved beyond the focus on limbic
regions to evaluate other regions, such as the frontal cortex. These studies find that,
compared with controls, NP-BD youth have decreased volume of the left dorsolat-
eral prefrontal cortex (DLPFC) (Brodmann’s area 9—Fig. 2) (81), an area that exerts
top-down attentional control in response to emotionally-evocative stimuli (95).
Similar decreases in DLPFC volume and density have been found in BD adults

FIGURE 2 Pediatric BD subjects (N ¼ 20) show volume reduction of left dorsolateral prefrontal
cortex in comparison to age and gender matched controls (N ¼ 20). 1.5 Tesla magnetic
resonance imaging scan axial three-dimensional spoiled gradient recalled echo in the steady state
(FSPGR) analyzed with voxel-based morphometry. Note: Scale (right) represents T-scores,
increasing from black to white. (x ¼ 232, y ¼ 42, z ¼ 32; t ¼ 4.52, Z ¼ 4.01; pcorrected ¼ 0.04).
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(96,97). Other structural MRI studies indicate that BD children and adolescents
have decreased volume in the anterior cingulate cortex (ACC) (98), an area that
mediates conflict monitoring, but BD youth do not appear to have decreased sub-
genual prefrontal cortex (PFC) volume (99), a region implicated in adult mood dis-
orders (100). Given the frontal lobe’s complex neuroanatomy and equally complex
role in psychopathology, additional work is required to elucidate the frontal neuro-
morphometric alterations associated with pediatric BD.

The striatum, a neural region encompassing basal ganglia structures includ-
ing the caudate, putamen, and accumbens area, is another area implicated by
recent studies in the pathophysiology of pediatric BD. The striatum plays an
important role in regulating attention and motor responses (101,102), as well as
in adjusting behavior in response to rewarding or pleasurable stimuli (103–107).
Thus far, four studies have evaluated striatal volume in pediatric BD, yielding
inconsistent results. Specifically, compared with typically developing controls,
one study showed that BD children and adolescents have greater basal ganglia
volume (108). Another study found that pediatric BD subjects had greater
putamen, but not caudate, volume (83). A third study did not find between-
group differences in either caudate or putamen volume in BD versus control
youth; however, results indicated that in the BD group there was an inverse
relationship between age and volume of the caudate bilaterally and the left
putamen (109). The fourth study to evaluate striatal volume in pediatric BD utilized
voxel-based morphometry (VBM), an automated technique allowing volumetric
evaluations of small ROIs, such as the accumbens area, and found decreased
volume in the left accumbens area in NP-BD youth compared with controls (81).
To the best of our knowledge, no other study has measured accumbens volume
in BD subjects, whether pediatric or adult, largely due to the difficulty associated
with hand-tracing this region reliably. Given the role of the ventral striatum—
that is, accumbens area—in reward-processing, further work is necessary to deter-
mine the neurodevelopmental trajectory of striatal volumes in BD.

In sum, the most consistent structural MRI alteration found in BD children
and adolescents is decreased amygdala volume. However, in total, structural neu-
roimaging research in pediatric BD implicates a fronto-amygdala-striatal circuit as
mediating the pathophysiology of the disorder.

FUNCTIONAL NEUROIMAGING IN PEDIATRIC BIPOLAR DISORDER

The second neuroimaging technique used to examine the underlying pathophysiol-
ogy of pediatric BD is fMRI. This neuroimaging technique relies upon the fact that
the MR signal of blood is different when it is carrying oxygenated versus deoxyge-
nated blood. This blood-oxygen level dependent (BOLD) signal change can be
recorded from a subject’s brain across time; therefore, one can compare the
BOLD signal, and corresponding neural activity, occurring in specific brain
regions during different event types. For example, subjects may be scanned while
performing a computerized task designed to isolate a psychological process—for
example, recognizing angry or neutral faces. Although there are numerous fMRI
studies of BD adults, there are only two published fMRI studies of BD children
and adolescents.

First, Blumberg et al. (56) demonstrated that, compared with controls, BD
adolescents had increased activation in the left putamen and thalamus during
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incongruent versus congruent trials on a Stroop color-naming task. In comparison,
previous fMRI studies of BD adults showed increased activation of the ventral PFC
during similar tasks requiring conflict monitoring (55,110). In the second fMRI
study in pediatric BD, Chang et al. (111) reported findings from two tasks: a visuos-
patial workingmemory task and a task with positively and negatively valenced pic-
tures. Pediatric BD subjects had increased activation on the two-back working
memory task in the bilateral ACC and left-sided putamen, thalamus, and DLPFC
compared with controls. In addition, pediatric BD subjects exhibited greater acti-
vation than controls in the bilateral DLPFC, inferior frontal gyrus, and right
insula while viewing negatively valenced nonface images. Finally, BD subjects
had greater activation in the bilateral caudate and thalamus, left middle/superior
frontal gyrus, and left ACC when viewing positively valenced pictures (111).

These fMRI studies are consistent with the structural MRI studies previously
discussed. In total, they support the hypothesis that pediatric BD subjects have both
structural and functional alterations of fronto-amygdala-striatal structures. Future
fMRI studies will likely address the extent to which these are trait abnormalities
versus mood-state dependent changes. Moreover, as high rates of comorbidity (par-
ticularly, ADHD and anxiety disorders) have been reported in BD youth (112),
additional work is needed to assess the role of comorbid diagnoses on the neural
abnormalities seen in BD youth. Finally, further research is necessary to determine
whether these patterns of altered neural activity are specific to pediatric BD or if
they are nonspecific markers of more generalized psychopathology.

The Neurochemistry of Pediatric Bipolar Disorder
The same MRI machines used for structural and functional imaging can also deter-
mine neurochemical alterations associated with psychopathology. This third form
of neuroimaging, known as magnetic resonance spectroscopy (MRS), relies on
the principle that the electron cloud surrounding all molecules is differentially
and characteristically shifted by the applied magnetic field of the MR scanner.
Instead of recording spatial information (structural MRI) or BOLD signal change
(functional MRI), MRS records these characteristic chemical shifts in order to deter-
mine the concentration of known neurochemicals.

Spectroscopy studies of adults have advanced what is known about both the
pathophysiology of BD and the mechanism of action of commonly used anti-manic
medications, most notably lithium. Two chemicals in particular have been major
foci of research in BD: (i) N-acetyl asparatate [(NAA), an intraneuronal marker
whose levels are decreased in neuropathology, such as brain tumors—increased
levels are thought to be markers of neuronal health] and (ii ) myo-inositol (a com-
ponent of the intracellular second messenger system). Several MRS studies have
demonstrated that BD adults have decreased NAA in comparison to healthy con-
trols in frontal ROIs (113), including the DLPFC (114). In addition, lithium increases
frontal NAA in both BD adults and controls (115), a finding which suggests that
lithium may have neuroprotective effects (116). Moreover, according to the “myo-
inositol depletion hypothesis of mania,” mania is due to an increase of second mes-
sengers, such as myo-inositol, causing an aberrant and excessive increase in cell sig-
naling; in turn, anti-manic agents, such as lithium, deplete this excessive supply of
myo-inositol, restoring balance to the cells and the patient (117). MRS studies indi-
cate that lithium and valproate decrease frontal myo-inositol concentrations when
taken by adults at therapeutic doses (118,119). However, although lithium can
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reduce myo-inositol to “normal” concentrations after only one week of treatment,
and these levels remain decreased with maintenance lithium treatment, there is
no significant correlation between reduction in mania and reduction in myo-inosi-
tol in adults (118).

As with all neuroimaging, far fewer MRS studies have been conducted in BD
children and adolescents in comparison to the number done in BD adults. In fact,
only three MRS studies have been published in pediatric BD. The first showed
that pediatric patients with familial BD had significantly decreased NAA in the
DLPFC compared with controls (120). The second found that acute lithium treat-
ment (e.g., seven days) significantly decreased myo-inositol in the ACC and that
this decrease was more prominent in lithium responders than in nonresponders
(121). The third MRS study, conducted by the same group, demonstrated that pedi-
atric BD subjects had significantly increased ACCmyo-inositol compared with both
controls and to youth with intermittent explosive disorder (122). Together, these
MRS studies confirm that pediatric BD is characterized by specific neurochemical
alterations that change in response to psychopharmacological treatment. Moreover,
unlike in BD adults, these acute changes seem to correlate with treatment response
in BD children and adolescents.

FutureMRS studies will facilitate greater understanding of the neurochemical
basis of BD in children and adolescents. Moreover, several research groups are
working to enable reliable quantification of neurochemicals more directly linked
to BD and other mood and anxiety disorders, such as gamma-aminobutyric acid
(GABA). Additionally, MRS studies will allow the exploration of state versus trait
issues and the therapeutic effect of psychotropic medications. In turn, MRS will
enable the design of targeted interventions, including novel medications, to treat
or even prevent morbidity and mortality from BD.

FUTURE DIRECTIONS

What will be the future direction of research into the biological mechanisms of
pediatric BD? Forthcoming studies will likely expand upon those of the present
by evaluating children with different phenotypes of pediatric BD. For example,
future work may compare neuropsychological and imaging findings in NP-BD
and SMD youth. Studies determining pathophysiological similarities and differ-
ences between youth with NP-BD and those with ADHD or MDD will enable
researchers to ascertain specific neural and cognitive correlates of pediatric BD.
Moreover, researchers must continue to examine the influence of medications,
comorbidity status, and mood state while interpreting neuropsychological and
fMRI results. In addition, researchers can build on recent neuropsychological and
MRI work elucidating brain development (123) to determine how the brains of
children and adolescents with BD grow, develop, and prune differently than typi-
cally developing youth.

Finally, a consensus is emerging that the search for risk-related genes in BD
and other complex neuropsychiatric illnesses would be facilitated by the identifi-
cation of endophenotypes, which are behavioral deficits (e.g., impaired atten-
tion–emotion interactions) or biological findings (e.g., abnormalities in the
fronto-amygdala-striatal circuit) that are familial and associated with risk for an
illness (124,125). The identification of such endophenotypes would allow the field
to move beyond DSM-based phenotypic characterization of affected individuals
and those at risk. Specifically, if non-symptomatic children with a first-degree
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relative with BD demonstrate similar deficits to those observed in NP-BD patients
(e.g., deficits in response reversal or emotion identification), such impairments can
be conceptualized as endophenotypes, or trait-markers of BD. Employing this strat-
egy, researchers have begun to explore the psychiatric phenomenology of BD off-
spring (126) and to perform structural and functional neuroimaging in such
youth (84,111). These initial studies suggest structural and functional differences
in children at risk for BD compared with control youth. Studies are also beginning
to explore neurocognitive function in first-degree relatives of BD patients (127,128)
and children temperamentally “at risk” for BD (129). Future studies should con-
tinue to explore potential neuropsychological deficits in these at risk youth. Ulti-
mately, it is likely that research will begin to integrate at-risk studies with
behavioral and neuroimaging work, examining the relationship between endophe-
notypic markers, such as neuropsychological deficits, genes, and brain
development.
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B19 Biological Factors in Bipolar Disorders
in Late Life
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HISTORICAL PERSPECTIVE

Current understanding of bipolar disorder (BD) in late life builds on early clinical
descriptions by European psychiatrists, and these descriptions emphasized links to
brain pathology. Manic signs and symptoms were described in the context of brain
lesions and disorders at least as early as the nineteenth century (1). Welt (2)
described behavioral “disinhibition” in patients with lesions of the orbital surface
of the frontal lobes. This was termed “Witzelsucht” by European psychiatrists (3),
and “pseudopsychopathic syndrome” by neurologists (4). These observations set
the stage for more recent investigations of brain pathology associated with mania
and depression in old age. Early writings mention the association between
brain vascular disease and mood disorder in late life (5). Kay et al. (6) and Post
(7) proposed that mood disorder with onset in late life reflects in part age-associated
brain changes.

In the mid-20th century, investigation of mood disorders in late life was
advanced by validation of the distinction between unipolar major depression
(UMD) and BD in younger patients (8). The introduction of lithium salts (9) and
other mood stabilizers reinforced the utility of the BD category across the age spec-
trum. It also encouraged both testing distinctions within BD such as atypical or type
II patients, and broadening the concept of BD.

Kraepelin discussed the incidence of first episode mania, depression and
mixed states across the age span in “manic depressive insanity” (5). In a sample
of 903 cases, he observed that mania as first episode of illness was less frequent
with increased age, although the incidence tended to increase between age 45 to
50 years. He also observed that, in contrast to depressive first episodes, mixed
first episodes declined consistently with age. Yet, he noted that affective episodes
could appear first at “old-old” age, for example, 80 years. Kraepelin did not
differentiate UMD from BD, however.

Roth and colleagues (10) and other clinicians (7) commented on age and
symptom in BD patients. They suggested that although manic syndromes in the
elderly were similar qualitatively to those in younger patients, older patients
demonstrate attenuation or exaggeration of particular features, and had milder
features overall, compared with younger patients.

Those psychiatrists also pointed out that cognitive impairments frequently
accompany manic syndromes, particularly in aged manic patients; they described
disorientation, and delirium in these patients (5,7,10). Kraepelin observed
that dementia was not a necessary outcome of late onset affective episodes,
however.
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As outlined below, BD in elders provides a potentially rewarding context for
studying biological factors mediating and moderating this illness and its treatment.
The literature now includes early results of the application of standardized
assessment methods and longitudinal characterization, in addition to cross-
sectional description. Beyond mood dysregulation, research has recently been
focused on comorbidities and behavioral dysfunction in this complex clinical popu-
lation. While most studies continue to target type I BD, there is new attention being
paid to other aspects of the BD spectrum in old age. Investigators have begun to
study bipolarity in elders treated in non-psychiatric settings. Research has also
begun to address causal factors, vulnerabilities, and pathophysiologies, and the
implications of social context and life events in BD elders.

CLINICAL OVERVIEW
Clinical Features and Differential Diagnosis
Reviews of clinical descriptive studies are available (11–13), and this material is
summarized in what follows.

Diagnostic criteria for BD, developed in young adult patients, need to be
applied in the elderly to test their limits. Exclusion criteria for studies need to be
considered carefully, as “casting a wide net” is appropriate to initial studies
of this poorly understood population. There has been little systematic investigation
of differences in intensity or frequency of particular psychopathologic features in
geriatric manic patients, and these reports have suggested extensive overlap with
younger patients (14).

The differential diagnosis of mania in late life overlaps that in younger
patients and it includes schizophrenic and schizoaffective disorders (15). In older
compared with younger patients, mood disorders related to illness or medical
treatment are more prevalent, particularly in late onset cases (16). Delirium and
dementia both can present manic signs and symptoms (10).

Epidemiology
Elderlypatientswithmanic statesandBDspresent relatively frequently topsychiatric
units serving the aged (17). These patients pose a growing public health challenge.
Manic states represent up to one fifth of psychiatric hospitalizations among elders
(17). Assessments of community prevalence in elders have been low (18).

While the incidence of BDs is highest in early life, there is a wide range in age
at onset (11,19). First episodes of mania can occur in the hundredth decade.
A number of studies of geriatric manic inpatients found a median age at onset
for first manic episode in the sixth decade (20,21). It appears that various selection
factors generate the spectrum of BD patients presenting at geriatric services. One
subset of geriatric BD patients has had recurrent early onset BD illness, while
another group has had recurrent depressive episodes prior to the late onset of a
manic episode (change in polarity), and another has new onset of mood disorder
in late life (22). This heterogeneity of antecedent illness course in geriatric BD
patients represents an opportunity for clinically and heuristically useful investi-
gation, including characterization using biological measures. Lin-Pl et al. (23)
suggest that since age at onset in mixed age patients not only defines subgroups
with differing clinical characteristics but also manifests familial aggregation, it
may be a characteristic of BD patients that may prove to be a useful phenotype
for genetic studies.
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Gender differences have received limited study in elders with BD. Two
studies have suggested that rates of first hospitalization for mania increase in late
life in men but not in women (24,25).

Course
Chronicity, Relapse, Recurrence
Early reports suggested that aged manic patients are vulnerable to prolonged time
to recovery or to chronicity (26). Also, limited information regarding patterns of
relapse and recurrence in geriatric BD patients suggests that BD elders are at risk
for further episodes (13).

Cognitive Dysfunctions and Dementias
Cognitive impairments are described in BD patients when symptomatic and after
successful treatment, and these impairments are not explained by comorbid
substance abuse (27). Impairments occur in BD patients across the age spectrum
but may be more prominent with older age (28,29). Various domains of cognitive
function can be impaired. Deficits are described in geriatric manic patients
(30,31), and they include executive dysfunction, memory, and speed of processing.
BD depressed elders demonstrate memory impairments (29), and although cogni-
tion improves with treatment in aged BD patients (32), and while deficits can
improve with symptomatic improvement, successfully treated BD elders (31)
demonstrate impairments. The relationships between cognitive impairments and
other clinical dimensions in elderly BD patients appear complex. Some impair-
ments may reflect the consequences of illness, for example, illness episodes, associ-
ated hypothalamic-adrenocortical dysregulation, and somatic treatments. Yet these
cognitive impairments may offer a window into the dysfunction of specific brain
neuronal circuits in BD elders.

The relationship of BD to dementia is poorly understood. Recent investigation
(33) found greater dementia on follow-up in both BD and UMD elders compared
with comparison groups with medical illness; this is consistent with an earlier
report concerning cognitive performance (34).

Comorbid Substance Abuse
In BD elders there is little data regarding comorbid substance abuse (35).
Examination of one administrative database found excess substance abuse in BD
elders compared with aged controls, but less substance abuse in elder BD patients
compared with younger patients (36).

Mortality
Geriatric BD patients are at risk for high mortality, even compared with geriatric
patients with UMD (37). This increased mortality may reflect medical comorbidity
and other causes. Suicide rates in mixed-age BD illness are elevated but these rates
await study in the elderly.

Causal Factors
Age-associated causal factors may modify the form of illness, that is, clinical
features, in early-onset BD. On the causal factors involved in early life illness,
such as genetic characteristics, perinatal insults, and other early adverse life
events, aging would superimpose other causal factors, for example, effects of
illness episodes and treatments or other comorbid conditions.
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Age-associated causal factors may also contribute to late onset of BD illness.
These may include cardiovascular risk factors and other medical and neurological
conditions and their treatments. Late onset illness also may involve familial/genetic
mechanisms related to early life BD, and genetic factors related to neurological
disease and vascular disease.

Consideration of the specificity of relationships between biological and other
causal factors and geriatric BD requires comparison with other aged patient
groups. In this discussion, we emphasize the comparison of BD with UMD in old
age; while the literature concerning causal factors in UMD in late life is more
extensive than that in BD, direct comparisons of aged UMD and BD patients are
few. Comparisons of findings in chronic psychoses with those in UMD are even
more sparse. Despite the possible link between BD in late life to increased risk of
dementia, direct comparisons of biological measures between the disorders are
not available.

Familial Influences
An important familial component to the etiology of type I BDs in young adults
has been established by twin and adoption studies (38). In geriatric patients, late
age-at-onset BD is associated with lower rates of familial mood disorder than
early onset illness (20); this is analogous to findings in mixed-age BD samples
(39). At the same time, age at onset of BD illness aggregates in families (23).

Vascular Disease and Stroke
Avascular component to pathogenesis has been postulated for BD (40), as it has in
major depression (41–43). This concept has in part been derived from comorbidity
data, and studies of stroke.

Systolic blood pressure in mixed-age manic patients is greater than in controls
(44); hypertension can also be noted in geriatric mania (45). Smoking is more
prevalent in mixed-age BD patients than in controls (45).

Patients with stroke and other brain lesions can develop mania (46). In a series
of eight patients with brain injuries who developed mania (47), all had damage to
the right hemisphere. Further, in a series of patients with BD associated with cer-
ebrovascular lesions (48), seven of nine had bilateral hemispheric damage, and
one had combined brain stem and bilateral hemispheric damage; none had
lesions exclusively located in the left hemisphere; subcortical damage tended to
be more frequent than cortical, brainstem, or cerebellar involvement; clinical sub-
types and patterns of cycling in these patients resembled those in idiopathic BD.
Differences in illness course has been linked to lesion location: unipolar mania
was associated with cortical lesions and BD course associated with subcortical
lesions in one report (49). In stroke patients, investigators have presented evidence
for interaction of causal factors; those with mania had higher rates of familial mood
disorder than non-manic patients (50).

Stroke associated with UMD appears to differ in neuroanatomic localization
compared with that associated with mania or BD illness. Although there has
been disagreement, left anterior lesions are predominant in UMD patients (51).

Other Medical Disorders and Treatments
Krauthammer and Klerman (16) and others have highlighted the association
between manic states and a range of medical disorders and treatments. Such “sec-
ondary” or “symptomatic” mania is noted more often in late-onset compared with
early-onset cases (20).

364 Young et al.



Manic psychopathology can be detected in patients with dementia. Rates
of such co-occurrence may be low in ambulatory care settings (52). The diagnosis
of mania in demented patients may involve specific challenges, such as labeling
as agitation.

Psychosocial Adversity
A history of precipitating psychosocial events has been noted in some geriatric
manic patients (17), and lack of perceived social support is described in BD
elders (53). However, there was no systematic comparison to younger patients or
to elders with UMD.

LABORATORY MEASURES, VULNERABILITY AND PATHOPHYSIOLOGY
IN BIPOLAR ELDERS
Laboratory Measures
Structural neuroimaging has been applied in early studies of BD elders. There has
been scant investigation using other types of measures. The investigation of geria-
tric BDs is has primarily addressed type I disorder, and manic states related to
medical disorders. The following discussion focuses on studies that included a
sample of BD elders. We present examples of studies of age- or age-at-onset
effects in younger BD patients, and mention any direct comparisons with geriatric
UMD patients.

Genetic Variation
Studies of candidate genotypes focused on BD elders appear to be lacking. In
mixed-age BD patients with wide range of index ages and ages at onset (54), the
apolipoprotein (Apo)-E4 allele was linked to patients with both early age at onset
and psychotic features. Apo E polymorphisms have been linked to vulnerability
to degenerative dementia and to vascular risk factors.

Certain genetic influences associated with BD illness in young adults may be
“weaker” in later onset cases of BD (54), and other vulnerabilities such as medical/
neurologic comorbidities and other age-associated processes may be necessary to
trigger onset of illness in these patients. “Two-hit” pathogenetic models of late
onset BD have been discussed (55), which involve a genetic vulnerability to early
life BD interacting with other factors, either genetic or non-genetic. Possible
second genetic mechanisms proposed included triplet repeat expansion, damage
to mitochondrial DNA, and age-specific changes in gene expression.

Neuroimaging
Brain Morphology
There have been few structural neuroimaging studies of BD in older adult
(age .50–55 years) or elderly (age .60 years) patients. Table 1 summarizes these
studies, which use magnetic resonance imaging (MRI) and computed tomography
(CT). The table includes an aggregate of more than 200 patients. Subjects in several
studies (56–60) were only on their sixth decade of life. The studies differed metho-
dologically in their focus on global measures, regional volumes, and/or signal
hyperintensities (SHs). Of course, younger adults with BD illness also have abnor-
mal brain morphology, including volume abnormalities and SHs (61), and some
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types of morphological abnormalities overlap those in patients with other disorders
such as schizophrenia (62,63).

The three studies that included global measures all found greater cortical
atrophy in the patients than in aged comparison subjects, and in one the atrophy
was associated with late age at onset. One of two studies that examined lateral
ventricle–brain ratio (VBR) (64) found higher values in BD patients.

Two studies (58,59) primarily examined regional volumes. One found signifi-
cant caudate volume decrease on the right in patients, controlling for age and sex. In
the other, hippocampal volume on the left was larger in patients compared with
controls, and this was associated with lithium exposure. Total brain volume was
smaller in patients with later age at onset.

An early study of SHs in older adult and elderly BD patients (57) found
increased number of larger SHs with age. Two reports have found greater frontal
deepwhitematter SHs inBDelders comparedwith controls (56,65),while adifference
regarding subcortical gray was found in one (56). Fujikawa (60) found that patients
with late onset mania had greater silent cerebral infarcts than geriatric patients
with early onset mood disorders. In the deAsis et al. (65) study, right-sided frontal
deep white matter SHs were associated with later age at onset of BD illness.

An early study of mixed age BD patients using diffusion tensor imaging
found evidence of microstructural disorganization of white matter tracts involving
orbitofrontal cortex (66). Such findings are consistent with disconnection of circuits
involving subcortical and limbic structures.

Two structural imaging studies (67,60) compared aged BD and UMD patients.
The former found cortical atrophy in both BD and UMD aged patients. Fujikawa
(60) found that elderly BD patients had greater silent cerebral infarcts than aged
UMD patients.

Causal factors implicated in BD in late life may be expressed as abnormal
brain morphology. In BD patients, brain morphology abnormalities have been
found to be related to familial risk (68). The relationships of SH to familial factors
and vascular burden in BD elders has not been examined directly, as they have
in UMD (69–71). SHs in normal elders are associated with genetic differences (72).

As with cognitive dysfunctions, some morphological abnormalities in BD
elders may be consequences of early life BD illness and its treatment. These
factors include effects of repeated episodes of illness, related endocrine dysregula-
tion, comorbid substance abuse, and effects of therapeutic drugs.

Functional Neuroimaging
Aged BD depressed patients examined under resting conditions using single
photon emission tomography (73) had lower cerebral blood flow (CBF) in the pre-
frontal cortices and limbic and paralimbic areas compared with normal controls.
Similar differences were noted in geriatric UMD patients in this study, but the
patient groups were not directly compared.

Electrophysiological Studies
Studies of electroencephalographic (EEG) measures in geriatric BD appear to be
lacking. Age effects on EEG in normals have been described (74).

Neuroendocrine and Neurochemical Studies
With few exceptions, peripheral neuroendocrine function has not been investigated
in geriatric BD patients. Lithium antagonizes thyroid axis function in elders (75) as
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it does in younger patients; the rates of lithium induced-dysfunction may be greater
in old age. Change in thyroid axis function occurs in normals with age (76–79). We
are unaware of studies of thyroid axis response to lithium in geriatric UMD.

There is anecdotal evidence for gonadal hormone dysregulation in BD in
old age.

Late-onset mania has been reported during estrogen replacement (80),
consistent with reports of antidepressant effects in young adult UMD. Gonadal hor-
mones apparently have not been directly assessed in late life BD, however.

Catecholaminergic, serotonergic, GABAergic and acetylcholinergic neuro-
transmitter systems have all been implicated in the pathophysiology of BDs (81).
Neurotransmitter and metabolite concentrations in body fluids have not been
evaluated in BD elders.

Indirect evidence suggests acetylcholinergic dysregulation in late life BD. Tri-
cyclic antidepressants, which have prominent anticholinergic effects, have been
linked to onset of mania in elders (82). Age effects on cholinergic neurons and
receptors have been reported in normals (83–85). On the other hand, cholinergic
agents can precipitate UMD in elders (86,87).

Signal transduction molecules that are altered by mood stabilizer treatments
have been implicated in the pathophysiology of dementia, for example, tau protein
(88); this association provides a rationale for preventative intervention trials. Data
concerning measures of these molecules in elderly BD patients are not available.

Preliminary investigation of nutrients in elderly psychiatric patients, includ-
ing BD patients, has suggested associations between serum homocysteine and
folate concentrations and abnormal brain morphology on neuroimaging (89).
High homocysteine levels were associated with greater SHs on MRI, while low
folate levels were associated with low volume of hippocampus and amygdala.

Somemorphological abnormalities in BD elders may be consequences of early
life mood disorder and its treatment. These factors include effects of repeated epi-
sodes of illness and related endocrine dysregulation, comorbid substance abuse, or
effects of treatments.

Endophenotypes
The geriatric BD literature does not include study of laboratory measures of biologi-
cal factors in probands in relationship to presence or absence of familial mood dis-
orders. Endophenotypes (62) have been proposed for early onset BD. The criteria
for endophenotypes allow differentiation of abnormalities that are consequences
of existing illness from those that reflect causal factors. In young adults, proposed
endophenotypes have included cognitive dysfunctions (90) and neuroimaging
abnormalities (62,68), both of which are apparently characteristics of remitted
BD elders.

Pathophysiology
The pathophysiological abnormalities in geriatric BD are not understood. Models
of pathophysiology in BD have been proposed based on emerging concepts
derived from clinical findings in patients with coarse brain disease including
stroke, traumatic injury, and dementia (1), studies of mixed age BD patients
using functional neuroimaging (47), and animal models. While initially focusing
on location of lesions of specific brain structures, and differences between right
and left-sided lesions, current thinking emphasizes neuronal circuits or networks,

Biological Factors in Bipolar Disorders in Late Life 369



that is, frontostriatal and anterior limbic (91,92), that link these structures. Nodal
points on these circuits include prefrontal cortex, thalamus, striatum, amygdala,
baso-temporal lobe/hippocampus, and cerebellum. Furthermore, functional MRI
in BD patients has suggested relative hyperactivity of ventral frontal and limbic
regions, for example, orbitofrontal cortex and perigenual cingulate and amygdala,
and hypoactivity of dorsal regions including dorsolateral prefrontal cortex and
dorsal anterior cingulate. Findings from preliminary structural imaging studies
and cognitive investigation in BD elders are consistent with aspects of these
models, but such research is at a very early stage.

BIOLOGICAL FACTORS AND THERAPEUTICS

Biological investigation can potentially contribute to management of aged BD
patients through characterization of subgroups of patients with poor tolerance
for pharmacotherapy or who may be resistant to somatic or psychosocial interven-
tions. This information may help elucidate mechanisms of effects of standard treat-
ments, and help identify patients for whom innovative therapeutic approaches can
be tested.

Pharmacokinetic Factors
Age-related changes in physiology, and comorbid conditions and their manage-
ment, have potential implications for dosing of mood stabilizers and other agents
in elderly BD patients. These include hepatic changes, decline in renal clearance,
changes in fat/lean body mass ratio, altered binding protein concentrations, and
drug–drug and drug–dietary interactions (93). Some of these changes can lead
to increased concentration/dose ratio. Unnecessarily high exposure to therapeutic
agents can lead to poor tolerability and related treatment failure.

Pharmacodynamics
Side Effects/Tolerability
While it is not clear howmuch age alone increases risks associated with exposure to
defined mood stabilizer exposure, specific comorbidities identify elderly patients at
risk for toxicities. Himmelhoch (35) found that poor tolerance of acute lithium treat-
ment in geriatric manic patients was related to neurological disease; patients with
dementia or neurologic abnormalities did worse with lithium exposure. Similarly,
dementia patients with manic features tolerated moderate valproate doses poorly
in a randomized controlled trial (94).

Relationships between tolerated concentrations of mood stabilizers and acute
or long-term efficacy are not clear. Identification of clinical or laboratory predictors
of response to low dose and low concentration, either intended or necessitated by
limited tolerability, could help minimize side effects in such patients. Schaffer and
Garvey (95) reported a series of geriatric manic patients treated with 0.4–0.8 mEq/L
with favorable result in 14 cases. Other investigators (96) reported that concen-
trations above 0.8 mEq/L were associated with best anti-manic response.

Geriatric manic states associated with antidepressant treatment were
characterized in one study by later age at onset, but not by differing index age
(82); the antidepressants were primarily tricyclics. This finding is consistent with
findings of another study of tricyclic antidepressant pharmacotherapy (97);
it contrasts with a report in young patients (98), and suggests that risk factors for
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antidepressant-associated mania may differ with age; factors associated with late
onset may sensitize to some drug effects.

Laboratory predictors of low adverse outcomes in BD elders are not reported.
However, in UMD patients, neuroimaging abnormalities have been associated with
side effects of antidepressant agents (99). Genetic variation has also been linked to
adverse effects of psychotropics (100,101).

Therapeutic Effects
Age alone may attenuate anti-manic response to mood stabilizer treatment. An
early study noted decreased efficacy of naturalistic acute lithium treatment across
the age spectrum (102). In another study (103), longer hospitalizations were associ-
ated with increased age in amixed-agemanic sample, only 10% of whomwere aged
�60 years.

Neurological disease may modify anti-manic response to mood stabilizers.
Dementia may limit benefit from lithium treatment of mania (35). Early findings
suggest a relationship between cognitive dysfunction and poor symptomatic
outcome of naturalistic inpatient treatment (104).

A retrospective study in young manic patients indicated better outcome of
valproate treatment in those with forms of neurological disorder (105). Whether
specific neurological dysfunctions predict therapeutic benefit from anticonvulsant
treatment remains to be tested in elder BD patients.

Laboratory measures may prove useful in prediction of individual variation
in therapeutic response to adequate trials of pharmacotherapy in BD elders. In
an early report concerning geriatric BD manic patients, larger VBR was associated
with poorer response to naturalistic pharmacotherapy with lithium (106). SHs were
associated with poor outcomes in mixed-age patients with BD (107,108). Early
reports suggest that poorer outcomes of continuation-maintenance lithium treat-
ment of BD patients are mediated by several genetic polymorphisms (109).

Novel Treatment Strategies
Since some BD elders tolerated conventional treatments poorly or may havemodest
benefit from them, testing novel treatment approaches is an important aim for
research. Early findings regarding biological and clinical factors suggest that par-
ticular strategies may be rewarding: for example, cardiovascular interventions
such as smoking cessation, blood pressure management, and improved nutrition.
Given the overlap between BDs and cognitive impairments in elders, and an associ-
ation between anticholinergic agents and mania, studies of cholinergic agents may
be particularly relevant; cholinesterase inhibition can benefit manic states in young
adulthood (110). Another example of innovative treatment is behavioral rehabilita-
tion: given the occurrence of behavioral dysfunction in geriatric BD patients (111),
disabilities can be a focus of interventions. Cognitive assessment and laboratory
characterization may aid the design of studies to test innovative treatments.

SUMMARY AND PROSPECTS

Age effects on clinical features of BD have received preliminary study, and there
is only limited information regarding the laboratory measures and age in BD.
Vascular changes and other forms of brain aging may contribute to onset of BDs
for the first time late in life. Structural neuroimaging studies have supported
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this concept. There has been virtually no application of genotyping or peripheral
physiological markers to the study of late life BD.

Preliminary evidence suggests that brain change in geriatric BD may predict
response to acute pharmacotherapeutic interventions. Evidence regarding predic-
tors of outcomes of long-term pharmacological and psychosocial interventions is
entirely lacking.

Ongoing demographic shifts and economic pressures necessitate a more ade-
quate knowledge base in BD elders regarding etiological factors, vulnerabilities,
pathophysiologies, and approaches to management. Recent advances regarding
genetics and molecular targets of mood stabilizers suggest new research opportu-
nities in late life BD. In BD elders, cognitive and affective neuroscience methods
may prove useful as aides in prognostic assessment and treatment. Studies of
pathophysiologies of late life BDsmay also providemodels for the pathophysiology
of early life BDs.
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B20 Perspectives for New Pharmacological
Interventions

Charles L. Bowden
University of Texas Health Science Center at San Antonio,
San Antonio, Texas, U.S.A.

ASSESSMENT OF CURRENT STATUS OF THERAPEUTICS

The range of treatments approved for bipolar disorder (BD) has broadened substan-
tially over the past decade, with all treatments other than lithium only having
received regulatory approval as of 1995 or later. The expanded range of treatments
has had the greatest impact on management of mania both acutely and in mainten-
ance care. Studies of mania have had several advantages over studies of depression
or other behavioral facets of BDs. A straightforward paradigm of studying a drug
versus placebo in hospitalizedmanic patients and employment of change in a short,
two-item scale has proved a robust model for all currently approved drugs (1,2).
Enrollment into such studies has been relatively easy to achieve, as hospitalization
is clinically indicated for most such patients, patients are readily assessed while in
an inpatient setting, and side effects are relatively well-tolerated for a short period
by manic patients.

Fewer studies and fewer treatments are available for depression in BD.
Complexities include difficulties in establishing prior manic or hypomanic episodes
when cross-sectionally evaluating patients while depressed, higher rates of
response on placebo in depression trials, and limited evidence regarding whether
depression in bipolar I and II patients can be equated (3–5).

Recent studies provide the first well-designed evidence of maintenance effec-
tiveness of treatments, particularly lithium, lamotrigine, olanzapine, and dival-
proex, but not yet other bipolar drugs.

Studies of new molecules have been limited in part by current rating scales,
which, though adequately sensitive to identify overall reduction from syndromal
levels of severity, do not have sufficient numbers of items to provide component
analyses that could establish the areas of behavior that might be specific to one
drug or a particular combination regimen. Therefore, a putative treatment that
might benefit a particular spectrum of bipolar symptomatology, for example,
anxiety or irritability, is unlikely to be tested with adequate sensitivity by
primary scales. This limitation of both scales and current clinical trial study para-
digms has become more evident with data indicating higher comorbidity of BD
with other axis 1 disorders than any other axis 1 conditions and studies that estab-
lish a relatively consistent group of components, or domains of disturbed behavior
in BDs (Table 1) (6–9).

Relatedly, evidence indicates that there is relatively selective efficacy of some
mood stabilizers on components of bipolar conditions, rather than across-the-board
efficacy (10). Specifically, lithium and divalproex both were markedly superior to
placebo in reducing hyperactivity, only divalproex significantly reduced irritability,
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and neither drug significantly reduced depressive or psychotic symptoms (10).
Other studies also support evidence of a pharmacodynamic effect of divalproex
on irritability (11–13).

The most recently systematically studied group of drugs, the atypical
antipsychotics, appear broadly efficacious in mania. These drugs have a common
pharmacodynamic mechanism of blockade of dopamine type 2 (D2) receptors,
with lesser effects on serotonergic systems, particularly 5-hydroxy tryptamine
type 2 (5HT2) (14).

The behavioral effects of the class of drugs appears to be relatively similar,
with most reducing specific manic behaviors, but also nonspecific symptomatology
in mania as well, for example, impaired sleep, reduced appetite, and anxiety (15).

A broad range of drugs from other classes, but most with some anti-epileptic
properties, have been studied and appear to be ineffective in syndromal benefits in
BDs. These include gabapentin, topiramate, levetiracetam, gabatril, verapamil, and
zonisamide (4,16,17). However, except for topiramate and gabapentin, the quality
of studies of these drugs is marginal.

With these drugs as well as those reviewed earlier, pharmaceutical companies
have limited laboratory and clinical investigative tools to test the spectrum of
efficacy of new molecules. The exception in approach to characterization of spec-
trum efficacy is lamotrigine, which was first studied in BD in a large, open trial
of bipolar patients in all illness states, with systematic, open rating scales designed
to capture evidence of locus of behavioral benefits (3). For the other drugs, research
pharmaceutical companies have generally made decisions regarding presumptive
area of benefit, and moved directly to studies of that syndrome within BD.
However, animal models have been of limited benefit in BD, whether for mania
or depression (18).

Specific Targets for New Treatment Development
Some facets of bipolar symptomatology can be understood from descriptive
studies. A substantial portion of patients treated with monotherapy regimens for
mania or depression continue to have syndromal mania or depression (19–22).
Only one randomized study has been conducted in specifically rapid-cycling
patients. Whereas lamotrigine was superior to placebo among bipolar II rapid-
cycling patients, it was not significantly superior among bipolar I rapid cyclers
(23). Maintenance studies indicate that as monotherapy, all drugs tested in ade-
quate designs do not adequately control symptoms while achieving adequate toler-
ability for more than 30% of patients enrolled (24,25). Recent studies in mania,
depression, and maintenance indicate that 15% to 20% higher rates of responding
patients result when complementary medications are added to the primary

TABLE 1 Domains of Disturbed Behavior and Symptoms Identified in Studies of Bipolar Disorder

Bowden Suppes Cassidy Swann Altman Double

Elevated energy X X X X X
Psychosis X X X X X X
Irritability X X X X X
Affective instability X X X X X
Elated X X X X X
Anxious/depressed X X X X
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monotherapy treatment. Such studies indicate that the strategy needed to achieve
such benefit is generally to add the second drug to a first medication which has
not alleviated manic or depressive symptoms despite a trial of reasonable duration
and dosage (20,26–28).

Studies that have commenced treatment with the combination regimen have
failed to show, or showed less robustly, a difference in favor of the combination
regimen over lithium or valproate alone (26). Mixed mania appears to be generally
more difficult to treat effectively (29), although divalproex provides acutely better
efficacy than lithium (30). However, during maintenance treatment, studies indicate
that patients with mixed features at the time of enrollment generally do less well
than initially euphoric manic patients, regardless of specific monotherapy treat-
ment, with evidence that such patients are more sensitive to adverse effects and
discontinue treatment more often for adverse effects (22).

Taken in the aggregate, these studies indicate that there is need for either new
drugs with different mechanisms from those currently in use, and/or for regimens
that combine currently available drugs in ways that broaden spectrum of
efficacy while providing adequate tolerability. While the need would appear
more pressing for mixed mania, rapid cycling, and maintenance care than for
mania, all subtypes would appear to have a substantial portion of patients
who might have better symptomatic and functional outcomes with more effective
regimens and/or new drugs.

Novel Targets, Innovative Approaches
A series of studies indicate that lithium and valproate share substantial overlap of
effects on certain neuronal intracellular signaling systems. These include inositol
depletion, protein kinase C (PKC) activity, stimulation of the extracellular signal-
regulated kinase (ERK) pathway, the Wnt signaling pathway, and increased
phosphorylation of glycogen synthase kinase-3 (GSK-3) (31,32). An ERK kinase
inhibitor induced effects similar to those of amphetamines, suggesting that the
ERK pathway may contribute to antimanic effects of mood stabilizers (33).

In the search for a common mechanism of mood stabilizers, lithium signifi-
cantly inhibits brain GSK-3 in vivo at concentrations relevant for the treatment of
BD (34). Lithium increased the phosphorylation of GSK-3 beta both in cells and
in mouse brain after chronic administration, but did not alter the phosphorylation
of Akt. GSK-3 is associated with functional roles in neuroprotection and circadian
rhythms. Bipolar patients have abnormal circadian rhythm activity in relationship
to levels of activity, interests, and sleep; thus this mechanism provides a possible
functional pathway by which valproate and lithium impact biological systems
that underpin manic behaviors (35).

Lithium and valproate reduce protein kinase C isozymes in rat brain. Both
drugs increase DNA binding of the activating protein-1 (AP-1) family of transcrip-
tion factors for PKC (36). Valproate, but not lithium, is incorporated into neuronal
membranes in an active saturable process, and binds at sites of naturally occurring
long chain phospholipids (37).

Having overlapping effects does not mean identical pharmacodynamic
properties. For example, the effect of lithium on GSK-3 is direct, while that of
valproate is indirect, probably through its inhibitory effects on histone deacetylase.
Valproate (VPA) blocks histone deacetylase. Inhibition of histone deacetylase is
linked to activation of Akt and thereby inhibition of the Akt/GSK-3beta signaling
pathway.
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Lithium and VPA induce similar changes in the morphology of axons by
increasing growth cone size, spreading, and branching (38). VPA increases the
DNA binding of AP-1 transcription factor, and the expression of genes regulated
by the ERK-AP-1 pathway (39).

Neurokinin (NK)-1-receptor antagonists may affect mood states and sub-
stance P (SP) may worsen mood. VPA dose-dependently inhibited SP-induced
interleukin (IL-6) synthesis, whereas carbamazepine and lithium showed no inhi-
bitory effect. VPA also downregulated the expression of the substance P receptor
(NK-1-receptor) (40).

VPA also activates the peroxisome proliferator-activated receptors (PPAR)-
gamma and delta, a mechanism not shared by other antibipolar drugs, and prob-
ably contributory to its augmenting insulin responsivity (41,42).

Lamotrigine produces use-dependent inhibition of sodium channels, in
a fashion differing from other sodium channel inhibiting anti-epileptic drugs
(43–45). Small studies suggest that some drugs that block calcium channels may
have some behavioral effects in BDs (46). These overlapping intracellular targets
thus provide possible pathways that could be used to identify, and compare in pre-
clinical testing, new molecules with plausible potential for efficacy on some clinical
aspects of BDs.

Prospects for New Drug Development
Rating Scale Issues
Rating scales which encompass the spectrum of symptoms of BD should be avail-
able and utilized. The benefits of such ratings are that profiles of a specific drug’s
actions can be identified, and patients selected in early clinical trials who have
characteristics are likely to respond to the drug. This strategy stands in contrast
to the current approach often used—deciding more on hunch than evidence that
a drug will have anti-manic or antidepressant effects, then studying the drug
solely or principally in such patients. One of the most persuasive indirect indicators
of the limitations of this strategy is that several drugs initially studied in and
approved for one disorder are eventually found to have clinically significant
benefits in component behaviors of the originally studied syndrome. Examples
are gabapentin, shown ineffective in mania (16) but efficacious in social phobia
(47); topiramate, also ineffective in mania, but beneficial in at least two conditions
associated with impulsivity, binge eating disorder, and alcoholism (48); and specific
serotonin receptor inhibitor (SSRIs), all initially studied and approved for
depression but more recently shown as efficacious in various anxiety disorders.

Only an integrated scale is likely to provide principle behavioral component
factor ratings of use for the purpose of discrimination of the profile of benefit. Indi-
vidual item analysis can partially suffice for this purpose, but items are inherently
less reliable than are factors composed of several statistically related items. Such a
scale can still provide manic and depressive subscales which are preferable for
certain purposes, for example, primary outcome measures for regulatory trials,
but not for new drug development.

Systematic, Open Trials
Open studies in a relatively broad spectrum of behaviorally disturbed individuals
can substantially aid in new drug development. Certainly in major depression and
BDs, but likely in most other axis I disorders, the range of fundamentally disturbed
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behaviors is sufficiently broad that determination of the profile of drug action will
benefit from studies in a range of patients. The range should differ by severity, and
for BD, by syndromal subtype. The development of lamotrigine was speeded and
more efficiently targeted by employment of a first large scale open study, rather
than a randomized study in a single phase of illness (49,50). An extension of this
strategy is that early studies should be considered for application in more than
one syndrome, if there is evidence that the component behavioral disturbances
on which the drug acts is found in several axis I conditions (31,36,51).

Study of Early Behavioral Effects
As reported previously for major depressive disorder, it is likely that early beha-
vioral improvements, especially if associated with eventually remitted states, will
be indicative of the primary profile of a drug’s behavioral effects. Conversely, a
focus on change at the point that remission has taken place is likely to be less reveal-
ing of pharmacodynamic profile, since once recovery is well underway, all aspects
of behavior are likely to show secondary, if not primary resolution. Phrased differ-
ently, well is well. We have shown major differences in the profile of action of the
noradrenergic acting drug desipramine compared with the serotonergic acting
drug paroxetine in recent studies by means of these study designs (52,53).

Novel Use of Time to Event Analyses
Expanded application of time to recovered/remitted status has substantial potential
to aid in new drug development. Historically, psychotropic drug studies have been
short, and have taken global change from baseline to study endpoint as the primary
outcome measure, based on a single day’s ratings for patients with as little as one
day’s exposure to the drug, even though trial duration was up to 12 weeks or
longer. This chapter is not aimed at all considerations in defining outcomemeasures
and selecting statistical tests, but there are data indicating that larger effect size
differences for drug versus placebo comparisons can be obtained when a degree
of symptomatic improvement must be maintained for several weeks (54). The
time duration can be selected in relationship to length of the study, and should
reflect contemporary clinical practices. The statistical techniques supportive of
these analyses include mixed model repeated measures, analysis of variance
(ANOVA), logistic regression, and Kaplan Meier and log rank survival analyses,
with the event required to be sustained. Because early discontinuation is not ran-
domly distributed across treatment arms in studies of BDs, it is generally invalid
to treat most, if not all, early discontinuations as right-censored (55).

Selection of Candidate Drugs
A greater emphasis on studies of drugs with novel mechanisms or extensions of
mechanisms associated with existing drugs should energize new drug develop-
ment in bipolar as well as other disorders. Although it is possible that other
drugs with D2 receptor blockade properties could prove to have quantitative as
opposed to small, incremental differences compared with currently available D2
blocking drugs, the possibility is low, given the overlap of actions of both
atypical antipsychotics, and traditional with atypical antipsychotics (56).

It is reasonable to test all newmolecules which may have mechanisms related
to currently established treatments for BDs carefully. Mechanisms that would
bear consideration, but of course are not limited to the above discussed targets,
are: GSK-3 inhibition, ERK pathway stimulation, inositol pathway inhibition,
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Wnt signaling inhibition, use-dependent sodium channel inhibition, calcium
channel inhibition, and histone deacetylase inhibition. For some of these mechan-
isms, no truly established efficacious drug is currently available. Nevertheless,
given small, positive studies with data from more than one drug, were a more
potent, or selective calcium channel blocker to be developed, it might have
behavioral effects of greater magnitude than drugs studied previously.

Attention to Anxiety
Anxiety states are both linked to BDs through lifetime combinations, and also
important components of the behavioral components of BDs. Although it is poss-
ible that adequate control of anxiety is provided by drugs such as benzodiazepines,
almost no primary analyses of anti-anxiety effects of treatments employed for BD
have been conducted. Anxiety disorders show the highest rates of comorbidity
with BD of any group of illnesses (6). Further, a lifetime diagnosis of anxiety
disorder predicted worse outcomes of bipolar depressed patients (54). Hypercorti-
solism, which is associated with anxiety and fearfulness, is elevated in bipolar
depression and mania, with the highest rates of elevation reported in mixed or dys-
phoric manic patients (57). Drugs that have some pharmacodynamic impacts on
hypothalamic pituitary adrenocortical function, for example, CRH antagonists,
would seem plausibly beneficial in aspects of BDs, including anxiety/fearfulness.

The Role of Regulatory Agencies
In the United States, the Food and Drug Administration (FDA) conducts indepen-
dent analyses of data submitted for new drug indications. The quality of staff in
agencies that the author has had opportunities to interact with is consistently
high. However, there are often an inadequate number of personnel in relationship
to the prompt review of the complex data in multiple categories of documents that
must be reviewed, for each drug and each proposed indication. While it is occasion-
ally the case that political considerations influence priorities or policies, in general
scientific criteria and reasonable concerns about protection of public health interest
drive most actions.

An important point is that regulatory agencies do not set criteria in a vacuum,
nor ignore scientific evidence. Further, it is not the FDA or its equivalent that has
established criteria that have generally been employed in new drug indication clini-
cal research programs. For example, there is no written statement that submission
of a total score on the Montgomery Asberg Depression Rating Scale (MADRS) and
report of the proportion of patients who achieve 50% reduction in such score from
baseline is required for consideration of an indication for acute depressive episodes
in bipolar depression. Rather, regulatory agencies consider proposals from industry
scientists, weigh the reasonableness of the proposed study methodology, and
provide some, albeit limited, feedback if they recognize issues that seem important
but unresolved in the proposed plan of the study. It is the case that precedent plays
a major role. In part, this reflects an aim of equipoise within agencies. For reasons of
fairness to companies which compete, and some general guidelines that can
be understood by all stakeholders in new drug approval processing, agencies
are inclined to maintain in effect criteria that were applied in other recent, related
applications for a new indication.

However, as scientific evidence changes, considerations for novel endpoints
or study designs also change. An important simple example is the recent conduct
of studies combining two drugs for treatment of mania in BD. Until the late
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1990s, no such studies had been conducted with large samples and with intent of
regulatory submission. Many scientists working with mood disorders doubted
that the addition of a second agent known to be an effective first agent would
provide a statistically significant advantage in a trial. With results that indicated
clear additional benefit could be obtained, particularly when the second agent
was added to a drug that had not fully controlled manic symptomatology (in
effect an enriched, but clinically generalizable strategy) the FDA responded with
approval for the combination regimens (20,26). In instances where legitimate
major divergent opinion regarding interpretation of evidence-based study
designs, the FDA, scientific organizations, and industry have often utilized
regularly scheduled or single issue meetings to convene experts from appropriate
interest groups to work through the issues for purposes of developing policies.

SUMMARY

This chapter summarizes factors that may facilitate or impede the development of
new drug treatments for BDs. What seems most evident as a guide to maximizing
opportunities for the much needed addition of new treatments for aspects of BD
care is that current paradigms are broadly inadequate. Even where aspects of
efficacy are adequate, there are numerous drugs for which tolerability and safety
are still problematic. Strategies and solutions for these issues must be multifaceted.
The link of drug development strategies to animal and human evidence of targets in
central nervous system (CNS) neurons is a given that all persons involved in new
drug development recognize. Strategies that build on extension of drugs within a
class, although understandable, has had some undesirable consequences. At the
least, it impels pharmaceutical companies to overemphasize small differences
between compounds. Additionally, it sometimes misleads the lay public in believ-
ing that breakthroughs have occurred when differences are actually modest.
Further, it deploys limited resources, essentially reducing efforts that might be
more productively deployed elsewhere.

A rethinking of strategies for early phase I and II studies is suggested by this
author. Reliance on total scores from scales with incomplete spectrum of items to
cover the domains of behavioral disturbance in a disorder, certainly one with as
much established complexity as BD, can only inadequately establish the spectrum
of efficacy of putative new treatments. The approach in terms of more scientifically
sophisticated use of rating scales also requires some rethinking about early clinical
studies. Research program planners should consider testing in a broader spectrum
of patients both within a single syndrome, using current Diagnostic and Statistical
Manual-IV (DSM-IV) criteria, but also beyond the bounds of a single syndrome
when there are lines of evidence to indicate pharmacodynamic actions that might
be clinically important in more than one syndrome.
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B21 Physical Comorbidity in Bipolar Disorder

Paul Mackin and Sylvia Ruttledge
School of Neurology, Neurobiology, and Psychiatry, University of Newcastle upon Tyne,
Newcastle upon Tyne, U.K.

INTRODUCTION

A number of studies have reported that bipolar disorder (BD) is associated with a
mortality rate approximately twice that of the general population (1–5). Suicide is
the leading single cause of excess mortality, but natural deaths contribute signifi-
cantly to reduced life expectancy. The precise magnitude of the problem of physical
comorbidity in BD is unclear, and an international project is currently underway
that aims to review the worldwide literature as it pertains to physical illness in
schizophrenia and mood disorders (6). It is hoped that this project will bring
together the various sources of evidence with a view to generating specific sugges-
tions for the improvement of care for people with mental illnesses. Research activity
in the field of physical comorbidity in BD has increased considerably over recent
years, although output has lagged behind similar research in schizophrenia. It is
hoped that this welcome trend will continue, and ultimately lead to evidence-
based guidelines for detecting and managing physical illnesses in this population.

This chapter does not aim to provide a comprehensive overview of the
problem of physical illness in BD, but rather focuses upon specific disease areas
that have attracted the most research interest, namely cardiovascular disease, nutri-
tional and metabolic diseases, and endocrine diseases. All health professionals
involved in the management of BD will be acutely aware of the impact of many
of the psychotropic drugs on physical health (e.g., weight gain, thyroid dysfunc-
tion, etc.). Disentangling the effects of drugs on physical health from the impact
of genetic background and lifestyle issues, for example, is far from straightforward.
We also summarize the contribution of commonly prescribed psychotropic drugs to
physical comorbidity. The chapter concludes with a consideration of the possible
reasons for the observed excess of physical illness in people suffering from BD.

CARDIOVASCULAR DISEASE

Coronary heart disease (CHD) and stroke are the principle components of
cardiovascular disease (CVD). Approximately 80% of the worldwide burden of
CVD occurs in low-income and middle-income countries, but much of our
current understanding of the causes and outcome of CVD is derived from
developed countries (7). For example, CVD is the leading cause of death in the
United States, and stroke ranks third, accounting for nearly 40% of all deaths (8).
Almost one million people in the US die of CVD each year, and many of these
deaths are preventable (8). CVD is a leading cause of premature, permanent disabil-
ity, and the economic impact is considerable—around $394 billion in 2005, resulting
from health care expenditure, and loss of productivity from death and disability (8).
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A recent case-control study in 52 countries has shown that nine easily
measured and potentially modifiable risk factors account for over 90% of the risk
of an initial acute myocardial infarction, and the effect of these risk factors is con-
sistent in men and women, across different geographic regions and ethnic groups
(7). Worldwide, the two most important risk factors are smoking and abnormal
lipids (7). Psychosocial factors, abdominal obesity, diabetes, and hypertension are
also associated with increased risk of myocardial infarction (7). Modification of
these risk factors is of paramount importance in reducing the burden of cardiovas-
cular disease around the world.

There is a burgeoning literature examining the relationship between major
depressive disorder and cardiovascular disease, and some of the literature regard-
ing the epidemiology of comorbid coronary artery disease and depression has been
reviewed previously (9). The prevalence of depression in cardiac disease is reported
to be 17% to 27% (9), and a number of studies have reported that depression may
contribute to the progression of existing coronary disease and have a deleterious
effect on outcome (10–13). Possible pathophysiological mechanisms have been
reviewed previously (13–15). Patients with BD have also been shown to have
increased rates of cardiovascular mortality (1,16), although this has been a relatively
neglected area of research. Indeed a recent review of medical comorbidities in BD
(17) presents no specific data on cardiovascular morbidity in this population,
although mean rates are given for comorbid obesity (21%) and Type 2 diabetes
(10%), both risk factors for the development of CVD.

Despite the large number of studies examining the relationship between
depressive disorder and cardiovascular disease, there are few studies which have
investigated the burden of cardiovascular disease in BD. Kilbourne et al. (18)
report the prevalence of general medical conditions in a population-based
sample of patients diagnosed with BD in the Veterans Administration (VA). In a
cross-sectional study of 4310 patients receiving care at VA facilities within the
mid-Atlantic region of the United States, general medical conditions were identified
from ICD-9 codes recorded on the National Patient Care Database. The total count
of general medical conditions between the bipolar cohort and the national VA
cohort was compared. In the bipolar cohort the prevalence of hypertension was
34.8%, ischemic heart disease 10.6%, congestive heart failure 3.2%, peripheral vas-
cular disease 2.9%, and stroke 1.7%. It is noteworthy that there was a statistically
lower prevalence of cardiovascular diseases in the bipolar cohort compared with
the national VA cohort, although the bipolar sample was approximately four to
seven years younger than the national cohort with the same condition. Although
this is a valuable study that addresses an important gap in the literature, there
are several methodological limitations. The data are derived from administrative
data sets and diagnoses are not confirmed by formalized procedures. As the
recorded conditions are those that have been observed by the provider, the true
prevalence of general medical comorbidity may have been underestimated. Con-
versely, only those patients receiving care (who are more likely to have multiple
diagnoses) are included in the database, which may overestimate the true preva-
lence of medical comorbidity.

The same group has published a similar study, using the same database,
which reports general medical comorbidity in older patients with serious mental
illness (schizophrenia, schizoaffective disorder, or BD) (19). Of the 8083 patients
included in the study, 2446 (30%) had a diagnosis of BD. Overall, older, versus
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younger, patients weremore likely to be diagnosed with general medical comorbid-
ity. The most common comorbid condition among the whole cohort was cardiovas-
cular disease (30.7%); hypertension was 25.5%, congestive heart failure 2.6%,
peripheral vascular disease 1.8%, stroke 2.1%, and ischemic heart disease 6.7%.
The prevalence rates specific to BD are not given in this study.

Beyer et al. (20) also assessed the presence of general medical conditions in
1379 U.S. outpatients with a diagnosis of bipolar I disorder. Data were extracted
from the Duke University Medical Center database. The number of comorbid
medical conditions increased as a function of age. Diseases of the circulatory
system were present in 13% of patients with BD. Specific cardiovascular diseases
are not specified with the exception of “cardiac disease/hypertension,” which
had a prevalence of 10.7%. This study has similar methodological shortcomings
to that of Kilbourne et al. (18). In addition, the lack of a comparison group prevents
any evaluation of howmedical comorbidity in BD compares with that in the general
population.

One study has examined the prevalence of QTc prolongation in a cohort of 65
outpatients from the North East of England receiving antipsychotic drugs
(BD ¼ 30.8%, schizophrenia ¼ 30.8%, schizoaffective disorder ¼ 13.8%, other
mood disorders ¼ 24.6%) (21). The QTc interval on the electrocardiogram is a
measure of ventricular repolarization, and prolongation of the QTc interval is
associated with cardiac arrhythmias and sudden death. Only two patients (3%)
had prolongation of the QTc interval, and there was a significant correlation
between increasing age and QTc interval. The findings of this study should be con-
sidered preliminary given the small sample size and the cross-sectional nature of
the study, and further investigation of cardiac physiology and its relationship
with mood disorders and adverse outcomes is needed.

Strudsholm et al. (22) investigated the risk for pulmonary embolism in
patients with BD. Danish national registers were used to examine somatic and psy-
chiatric information on 25,834 patients with BD and 117,815 controls matched for
age and sex. Patients with BD had a significantly increased occurrence of pulmon-
ary embolism [increased incidence rate ratio (IRR) ¼ 1.61; 95% CI ¼ 1.38–1.88]. The
authors offer several possible explanations for the association between BD and pul-
monary embolism, including the effects of restraint (as immobility predisposes to
deep vein thrombosis in the lower extremities and pelvis), antipsychotic-induced
apathy and consequent immobility, and infectious endocarditis resulting from
intravenous drug use. One of the strengths of this study is that all admitted patients
were included in the analysis. However, the lack of formalized diagnostic pro-
cedures, and the possibility of better detection of other medical conditions (such
as pulmonary embolism) in hospitalized patients may have influenced the results
of this study.

The paucity of studies of cardiovascular morbidity in patients with BD is of
some concern, particularly given that large cohort studies appear to indicate that
BD is associated with high levels of medical comorbidity, which includes cardiovas-
cular disease. Well-designed, prospective studies are needed in patients with BDs to
investigate in detail how genetic factors, structural/functional/hormonal changes,
and psychosocial stress contribute to the development of cardiovascular disease in
this population. In addition, studies assessing the effectiveness of psychosocial and
behavioral interventions in modifying the risk for cardiovascular disease are
urgently needed.

Physical Comorbidity in Bipolar Disorder 389



NUTRITIONAL AND METABOLIC DISEASES
Obesity
In recent decades there has been a right-shift in the weight curve for the general
population, and the problem of obesity is now often referred to as a pandemic.
Obesity poses a particular problem in the management of patients with BD
because antipsychotic drugs (23), mood stabilizers such as lithium (24) and valpro-
ate (25), and many antidepressants (26,27) are all associated with weight gain.
Obesity, in turn, is a component of the metabolic syndrome (MS), and a risk
factor for type 2 diabetes mellitus (DM), hypertension, dyslipidemia, ischemic
heart disease, and some cancers (28). In addition to pharmacological treatment,
risk factors for weight gain and obesity in these patients include comorbid binge-
eating disorder, the number of previous depressive episodes, excessive carbo-
hydrate consumption, and low rates of exercise (29).

In a systematic review of 45 studies, patients with BDwere at greater risk than
the general population for being overweight and obese (30). The prevalence of over-
weight, obesity, and extreme obesity in BD patients reflects the prevalence locally in
the general population—American patients had a higher Body Mass Index (BMI)
than European patients (29). A New Zealand study of 89 BD patients and 445
age- and sex-matched controls found that female patients were more often over-
weight (44% vs. 25%) and obese (20% vs. 13%) than female community control sub-
jects (31). Significantly more patients receiving antipsychotic medications (APs)
were obese compared with patients not receiving APs. As a cross-sectional study,
it was not possible to tease apart important drug–disease state interactions, that
is, whether the higher prevalence of obesity among patients treated with APs
was due to the APs, or whether APs may have been associated with greater
illness severity, which, in turn, may have been associated with a greater risk of
obesity (30). A follow-up lifestyle study showed total fluid intake and intake of
sweetened drinks were higher in BD, with total energy intake particularly higher
for female patients (31). BD patients reported fewer episodes of low-to-moderate
intensity and high intensity physical activity as compared with the “general popu-
lation.” This study was, however, based on self report only.

Drug-induced weight gain is a crucial issue in the management of BD. In a
study by Fagiolini et al. (32), most patients received lithium as their primary
mood stabilizer. Among the patients treated with lithium, during acute treatment,
14 of the 47 patients (30%) gained at least 5% of their baseline BMI, and during
maintenance treatment, 11 of the 45 patients (24%) gained more than 5% of their
BMI. The authors speculated that a greater number of prior depressive, but not
manic, episodes is associated with an increased likelihood of being overweight or
obese at study entry. Further, higher scores on the Hamilton Rating Scale for
Depression and negative scores on the Bech-Rafaelsen Mania Scale predicted an
increase in BMI during acute treatment. Weight at treatment initiation was inver-
sely related to weight gain during treatment, and the obese group had no significant
weight gain during the acute phase of treatment.

Obesity has been associated with a shorter time to bipolar recurrence in the
maintenance phase and more depressive recurrences overall (33), but as some com-
mentators have pointed out, this study may have been confounded by a greater
number of previous bipolar episodes and higher baseline Hamilton Depression
Rating Scale in obese BD patients (28). Again, the direction of causation between
obesity and psychiatric outcome is still unclear.
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Metabolic Syndrome
Metabolic syndrome (MS) is a constellation of interrelated metabolic risk factors
that appear to directly promote the development of atherosclerotic cardiovascular
disease (ASCVD). Patients with MS are also at increased risk for developing type 2
diabetes mellitus (DM), which in turn is associated with increased cardiovascular
morbidity and mortality. Some atypical APs have been shown to increase the risk
of metabolic disturbances. Indeed, patients with BD exhibit risk factors for MS inde-
pendent of medication use and are predisposed to increased incidence of smoking,
poor nutrition, poor health care, and decreased energy expenditure, all of which are
risk factors for diabetes, obesity, and dyslipidemia (34).

There are only a few empirical studies of the prevalence of MS in BD patients.
In one survey of 103 patients from psychiatric outpatient services in the north of
England (32% BD), 12% of patients (overall) had impaired glucose homeostasis dis-
order (6% impaired fasting glucose and 6% with DM) and 8% met World Health
Organization criteria for MS (35). This is likely to be a conservative estimate as
measures of blood pressure or urinary albumin excretion were not available.

Diabetes Mellitus
Retrospective chart reviews show up to three times the prevalence of type 2 DM in
bipolar 1 disorder compared with national norms (36,37). In another chart review
study (38), BMI and psychiatric diagnosis but not medication were associated
with new-onset type 2 DM. Chart reviews of inpatients are, however, problematic
regarding selection bias and the reliability and validity of the diagnosis of both
type 2 DM and BD (28).

The mechanisms of the observed relationship between BD and DM are
unclear. It remains to be determined if susceptibility genes for BDs and glucose
homeostasis disorders cosegregate. Hypercortisolemia-induced insulin resistance
and abdominal adiposity is another mechanism that may account for the observed
increased incidence of DM in patients with BD.

There is clear and consistent evidence that commonly prescribed psychotropic
medication for the management of BD also contributes to the problem of increased
adiposity and disorders of glucose homeostasis in this patient population (39).
Currently available studies examining this complex area are usually small and con-
ducted in single sites, are prone to selection and ascertainment bias, are often retro-
spective, and rarely control for confounding factors. There is a dearth of systematic
research regarding predictive risk factors for weight gain and MS, and the impact
of psychiatric comorbidity [e.g., binge-eating disorder (30)], course of illness [e.g.,
number of depressive episodes (33)], and illness–treatment interactions (33,40).

ENDOCRINE DISEASES
Menstrual Abnormalities and Polycystic Ovarian Syndrome
Prospective studies have produced inconsistent findings as to whether there is an
association between mood symptoms and the menstrual cycle for women with
BD (41,42). Studies show that medications such as selective serotonin reuptake
inhibitors, alprazolam, and buspirone may precipitate premenstrual mood disturb-
ances (mania) in vulnerable individuals (43–45).

Although menstrual abnormalities are commonly reported in females prior
to diagnosis of BD and initiation of pharmacologic treatment, studies show a

Physical Comorbidity in Bipolar Disorder 391



correlation between menstrual abnormalities and the use of medications (46).
Polycystic ovarian syndrome (PCOS) is a syndrome of ovarian dysfunction and
is characterized by hyperandrogenism and menstrual irregularities (47). The
associated endocrine profile is elevated testosterone and luteinizing hormone,
and low or normal follicle-stimulating hormone. Clinical symptoms include hir-
sutism, acne, and anovulation. Many women with PCOS also have obesity and
insulin resistance (47). Debate surrounds the possible role of anticonvulsants, par-
ticularly valproate, in the pathogenesis of PCOS. Much of the available data is
limited by the fact that it comes from research in women with epilepsy (48).
The relationship between the reproductive endocrine system and BD in women
is poorly defined, and whatever data are available are hampered by small
patient numbers (49–51). In one of the few “larger” studies, Rasgon et al. (46)
in an investigation of the reproductive function and prevalence of PCOS in 80
females with BD found that 65% reported menstrual abnormalities, and 50%
reported such abnormalities prior to the diagnosis of BD. Valproic acid was
linked to menstrual abnormalities in all but one of these patients. A history of
menstrual abnormalities and obesity were predictors for menstrual and hormonal
abnormalities (including an increase in the levels of luteinizing hormone, follicle-
stimulating hormone, and testosterone over time) following treatment for BD. BMI
was significantly positively correlated with free testosterone levels and insulin
resistance across all patients, regardless of medication used.

Women with PCOS often develop dyslipidemia, including increased levels of
cholesterol, triglycerides, and LDL cholesterol, and decreased levels of HDL choles-
terol (52), thus increasing further the risk of cardiovascular disease.

It is therefore important that a thorough history prior to the initiation of medi-
cation therapy be taken in order to determine the cause and risks of reproductive
endocrine disorders. Patients should be closely monitored for menstrual abnormal-
ities especially when receiving combination therapy with valproic acid to minimize
the risk of PCOS (46). Women of reproductive age should be informed of the risks
and benefits of their pharmacologic treatment options, and should understand that
the impact of managing a chronic mood disorder on reproductive function requires
consideration from the outset (53).

Thyroid Abnormalities
Perturbations in the hypothalamic-pituitary-thyroid (HPT) axis, including state-
dependent blunting of the serum thyroid stimulating hormone (TSH) response to
thyrotropin-releasing hormone (TRH) have been demonstrated in depressed
patients (54,55). Thyroid function during manic episodes is less documented but
available data show blunted responses of TSH to TRH, similar to those described
during depression (56,57) as well as elevations in serum free thyroxine (FT4) index
(58) and decreases in serum T3 levels (59). Cassidy et al. (60) compared rates of pre-
viously diagnosed thyroid disease in 443 inpatients with BD along sex, race, and
manic subtype (mixed vs. pure). Overall, hypothyroidism was more frequent in
white patients and females, and increased with age. No differences were noted
between patients sampled during mixed or pure manic episodes. The participation
of inpatients and its implied severity of illness togetherwith the lack of application of
research diagnostic criteria for hypothyroidism limit this study’s findings.

Using Danish register data, Thomsen and Kessing (61) examined the risks of
hyperthyroidism among three study cohorts of inpatients with a diagnosis of
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depression, BD, or osteoarthritis. There was a trend towards a significant risk of
hyperthyroidism for patients with BD compared with patients with osteoarthritis.
The lack of formalized diagnostic procedures in this study, however, could have
influenced the results. Moreover, the use of individuals with osteoarthritis as a
control group in this study can be regarded as not ideal as the biological association
between osteoarthritis and hyperthyroidism is not yet clearly delineated.

Some studies have reported a correlation between rapid-cycling BD and
hypothyroidism (62–64). These findings, however, are limited by methodological
considerations such as medication status, recruitment bias, broad criteria for defin-
ing hypothyroidism, and comparison groups (65). Furthermore, several studies
have failed to find an association with hypothyroidism per se and have cast
doubt on the direction of causality (66,67).

Psychotropic Drugs
Antipsychotic Drugs
A recently published consensus statement (2004), developed by four North Amer-
ican medical associations, highlighted the problem of antipsychotic-induced meta-
bolic disturbances in patients receiving atypical APs (23). Among the atypical APs,
clozapine and olanzipine are associated with significant increases in weight, while
ziprasidone and aripiprazole are associated with minimal weight change (68,69).
Risperidone and quetiapine appear to be associated with intermediate effects
with regard to their propensity to cause weight gain and glucose homeostasis dis-
turbances (23). Crucially, these differencesmay in turn affect compliance withmedi-
cation and risk of relapse (40,70).

The consensus panel advised that there be monitoring at baseline and during
treatment with APs and suggested that history of obesity, diabetes, dyslipidemia,
hypertension, or cardiovascular disease (including family history) be obtained.
Further, they advised that height, weight (to calculate BMI), and waist circumfer-
ence are obtained, together with estimations of blood pressure, fasting blood
glucose concentrations, and lipid profiles. These parameters should be regularly
monitored following commencement of treatment in order to detect emerging
metabolic disease. The consensus statement recommends that if individuals gain
more than 5% of their initial weight, consideration should be given to switching
to another atypical AP. A “cost/benefit” judgment should be made, of course, to
assess the psychiatric status of the patient and the potential benefit of the atypical
APs before discontinuing (23).

More recently, results from the first phase of the Clinical Antipsychotic Trials
of Intervention Effectiveness (CATIE) trial in patients with schizophrenia revealed
that patients taking olanzapine experienced more weight gain and metabolic
changes associated with an increased risk of diabetes than patients taking other aty-
pical APs (risperidone, quetiapine, and ziprasidone) (71). Similar large prospective
studies examining the impact of antipsychotic treatment on metabolic dysfunction
are needed in patients with BD.

The mechanism of AP-associated diabetes is unclear. Altered glucose homeo-
stasis may be mediated through a variety of mechanisms, including increased food
intake leading to increased adiposity and insulin resistance, effects on the insulin-
signaling pathway, and changes in pancreatic b-cell function causing altered insulin
release or altered hepatocyte/myocyte function resulting in impaired insulin
sensitivity.
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Hyperprolactinemia is a common side effect of some APs (34). Prolactin levels
may be elevated in patients treated with either typical or atypical APs. Hyperpro-
lactinemia can be distressing for the individual, and may cause menstrual irregula-
rities, sexual dysfunction, galactorrhea, and gynecomastia. The extent of prolactin
elevation appears to be dose related, and increases in prolactin sufficient to sup-
press the sex steroid axis may result in hypogonadism and perturbations in bone
metabolism, including osteoporosis. Data regarding the effects of APs on bone
metabolism in relation to patients with BD is limited by small patient numbers,
the participation of patients with a schizophrenia diagnosis, limited controls, a
lack of prospective studies, and multiple confounders such as hypogonadism,
poor diet, and cigarette smoking (72). Hypergonadism may be more likely to
occur in women with schizophrenia compared with men taking typical APs:
Kinon et al. (73) reported prolactin levels 2.6 times higher in women compared
with men. There is no comparable study in BD. There appear to be clear differences
between antipsychotic agents with regard to their propensity to cause increases in
prolactin release. One study reported hyperprolactinemia in 88% of female patients
treatedwith risperidone (73). Other atypical APs such as olanzapine and quetiapine
result in moremodest prolactin elevations than equivalent doses of risperidone (74)
or haloperidol (75).

Mood Stabilizers
Mood stabilizers are central to the pharmacologic treatment of BD. Some mood
stabilizers have been associated with weight gain, including valproic acid, carba-
mazepine, and lithium. In the case of lithium, both randomized controlled trials
and open-label naturalistic outcome studies show significantly more BD patients
gaining weight (76,77). Lithium appears to exert insulin-like activity on carbo-
hydrate metabolism in some patients, leading to increased glucose absorption
into adipocytes. This effect may stimulate appetite indirectly. Lithium may also
have direct appetite-stimulating effects on the hypothalamus. Relieving thirst by
consuming high-calorie beverages has been proposed as another weight-gaining
mechanism (77). Lamotrigine has been studied in an 18 month randomized con-
trolled maintenance trial in 463 outpatients with bipolar 1 disorder (78). The
mean change in body weight at week 76 was 1.2 kg (2.7 lb) for patients receiving
placebo, 22.2 kg (24.9 lb) for lamotrigine, and 4.2 kg (9.3 lb) for lithium. While
there was no significant difference in mean weight between patients receiving
lamotrigine versus placebo, the differences in weight change were statistically sig-
nificant between the lamotrigine and lithium groups. The proportion of patients
who experienced �7% increase in body weight from baseline to final study visit
was 7% for the lamotrigine group, 10% for lithium, and 6% for placebo.

While there are few long-term randomized controlled studies of divalproex
(valproate) in the treatment of BD, weight gain greater than 5% from baseline
was significantly more common in patients receiving divalproex (21%) compared
with placebo (7%) (76). As with lithium, similar mechanisms have been proposed
for this weight gain, including impaired fatty acid metabolism (79). Patients receiv-
ing carbamazepine with major depression, but not with mania, experienced a sig-
nificant increase in body weight compared with placebo (80). In addition to
appetite stimulation, fluid retention and edema have been reported as mechanisms
underlying this weight gain (81). Again, given the important role of mood stabil-
izers in managing BD, the psychiatric status of patients needs to be considered
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before switching medications possibly causing weight gain, to minimize the risk of
destabilizing the patient’s psychiatric condition.

Anticonvulsants such as carbamazepine and valproic acid have also been
associated with osteopenia (82,83), with the extent of bone loss being related to
the duration of treatment. Lithium also has a potential negative impact on bone
metabolism given its association with hyperparathyroidism (84,85).

The rate of hypothyroidism in lithium-naı̈ve patients was found to be signifi-
cantly lower than those treated with lithium (6.3–10.8% vs. 28.0–32.1%) (86). It has
been suggested that two categories of bipolar patients are more likely to be at high
risk for developing hypothyroidism in the course of lithium treatment. The first cat-
egory comprises females who have had a longer course of illness predominated by
depressive episodes. The second category comprises those with rapid cycling and
mixed mania, that is, those who are diagnosed with moderate or severe mania and
have experienced a frequent recurrence of mood episodes. In contrast, hypothyr-
oidism is associated with longer illness course in lithium-naı̈ve mania and with
more mood episodes in lithium-naı̈ve bipolar depression (86). In a study of
adults over 65 years of age (87), lithium users were significantly more likely to be
treated with T4 therapy (as a proxy for hypothyroidism) than were valproate
users, with hypothyroidism appearing to develop twice as frequently among this
age cohort than among a mixed-age population.

Barriers to Care
There are many reasons why people with BD may suffer from increased rates of
physical illnesses such as obesity, diabetes, and cardiovascular disease. Poor diet,
tobacco smoking, and lack of exercise are all associated with poor physical
health, and may play a significant role in increasing physical morbidity in
BD (31). In addition, use of medical care often decreases after the onset of a psychia-
tric disorder (88), and even when patients are engaged in health care services,
rates of undiagnosed physical illnesses are often high (35). Other patient
characteristics may also contribute to poor detection and diagnosis of physical
illness such as impaired ability to verbalize concerns (89,90), poor insight into
illness (90), denial of illness (91), or an unwillingness to consult a doctor other
than their psychiatrist. When patients are cared for by psychiatrists, primary care
physicians, and physicians from other disciplines, there may be a shared assump-
tion that a colleague is taking responsibility for managing a particular medical
problem, when in fact the problem is not being attended to at all.

A study by Cradock-O’Leary et al. (92) used the Department of Veterans
Affairs database to examine the use of medical services by 17,653 patients who
were treated in Southern California and Nevada during the year 2000. Adults of
all ages with a diagnosis of BD had an especially high risk of not receiving general
medical services. The authors suggest interventions such as improving provider
competencies through education and profiling, and organizational interventions
such as computerized reminders to prompt mental health professionals to refer to
primary care for appropriate screening.

Although there is evidence that BD is associated with increased mortality,
some studies suggest that mortality may be reduced in some bipolar patient
groups. Attendance at lithium clinics and longer-term use of medication have
been shown to be associated with reduced mortality from all causes in people
with BD (93–95). These findings are not easy to explain, and may be attributable
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to a number of factors such as the selection of specific patients to attend such clinics,
attendance at these clinics by individuals motivated to adhere to treatment and
therefore more likely to be motivated to take a greater interest in physical health
issues, or specific effects of medication on longevity.

There are few studies specifically examining the impact of differing models of
care on physical well-being and comorbidity in severe mental illness. One random-
ized trial from the United States valuated an integrated model of primary medical
care for a cohort of patients with serious mental disorders, and the authors con-
cluded that on-site, integrated primary care was associated with improved
quality and outcomes of medical care (96). There is a growing acknowledgment,
backed up by a burgeoning literature on physical comorbidity in severe mental
illness, that health professionals involved in the care of people with BD must be
mindful of the possibility of coexisting physical illness. There is a need for
greater communication and collaboration at the primary/secondary care interface,
and for the establishment of clear guidelines outlining responsibilities and proto-
cols for screening and managing physical health and disease in patients with BD.
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INTRODUCTION

Research findings regarding bipolar disorder (BD) continue to clarify the classifi-
cation, mechanism of action, and treatment regarding these conditions. However,
much research needs to be done in order to elucidate definitive methods of classi-
fication and more precise treatment approaches. We stand on the verge of the
genomic period and its application to psychiatry and in particular our knowledge
about BD. This exciting opportunity will largely allow for more precise classifi-
cation and treatment of these conditions. However, these research advances will
take some time. In this chapter, we review the recent advances in research involving
BD and discuss continued gaps in our knowledge regarding these conditions. We
also outline some areas for future research.

SUMMARY OF CLINICAL RESEARCH ADVANCES

Two major clinical areas of research should be noted. First of all, there is increasing
attention to the concept of bipolar spectrum disorder (BSD), or “soft” BD (1–3). The
relationship of patients with depression and mild and often times brief hypomanic
periods is a major focus of research interest. Several review articles and research
findings point toward a need to loosen the criteria for BD in DSM-V in order to
expand the concept of bipolar II and include many individuals who are currently
termed “bipolar disorder, not otherwise specified” as having true BD. Data
supporting the inclusion of these “soft” bipolar cases as true bipolars are largely
validated from family history studies.

Treatment studies of BD have recently pointed to the effects of lithium as an
antisuicidal agent (4,5). Although not definitively demonstrated by direct placebo-
controlled data, there is mounting evidence from a variety of research method-
ologies supporting the antisuicide effect of lithium. Since suicide is an unfortunate
outcome in many patients with BD, the use of lithium to reduce suicidal behavior
would seem to be an important clinical approach, and, hopefully, there will be an
increased use of lithium treatment for patents with bipolar conditions. Other treat-
ment studies have pointed toward the use of atypical neuroleptics not only for treat-
ment of mania but more recently for treatment of the acute depressed phase of BD
and perhaps for maintenance therapy to prevent recurrences of mania and
depression in bipolar patients (6,7). Additional research on anticonvulsants, such
as lamotrigine, has also added to our database regarding effective maintenance
therapies (8).
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Neuroimaging studies have continued to point toward some abnormalities,
particularly in brain structure, of bipolar patients (9).

MAIN GAPS IN KNOWLEDGE AND METHODOLOGICAL
DIFFICULTIES: BASIC SCIENCES

Despite remarkable advances in the treatment of BD over the last generation, we
still have a limited understanding of its pathophysiology. We have no indication
of what causes the underlying biochemical changes associated with the symptoms
that we can observe and only clues about the mechanisms of action of the treat-
ments that we already use. This is different than many other human conditions
in which there is an understanding of at least some aspects of the pathophysiology.
For example, myocardial infarctions occur when inadequate oxygen is delivered to
the heart muscle, and treatments that change the metabolic supply and demand
dynamics may be useful therapeutics. In this example, we also have a clear sense
of the differences between causal and therapeutic mechanisms.

The problem of understanding the pathophysiology of BD has been tackled
using both human- and animal-based strategies. In humans, genetic associations
have been investigated using a variety of strategies and these are discussed
elsewhere in this volume. However, genetic strategies are hampered by the possible
mismatch between the timing of gene expression and manifestation of the illness.
Critical genes may be involved at early developmental stages in the pathogenesis of
BD and these may not be easily traced at later stages of adulthood (when symptoms
manifest) or in postmortem analyses. While the methodology for analyzing gene
expression and protein content in discrete brain regions has leaped forward in
recent years, it is possible that even consistent changes detected in brains of affected
individuals are not closely linked to the proximate genetic causes of bipolar illness.
For example, altered expression of a transcription factor or other regulatory protein
during brain maturation may lead to altered neuronal signaling or synaptic organiz-
ation at a later point that in turn destabilizes mood or impacts decision making or
other elements of behaviors associated with mania and depression. The biochemical
changes involved in such later eventsmaybe critical to themanifestation of symptoms
but may not be specific at all to BD. Ironically, time-tested histological methods may
give quite sensitive clues implicating altered expression or activity of regulatory
factors that guided neuronal development and circuitry wiring decades before the
appearance of affective or cognitive symptoms. Some genes may contribute to a
general susceptibility to one ormore psychiatric disorders,while othersmay influence
a vulnerability to deterioration over time, specific features shared with diseases such
as schizophrenia or responsiveness to the therapeutic treatments (10). On the other
hand, the investigation of adult brain neurochemistry may yield valuable clues to
identify novel proteins or genes that can be targeted for treatment purposes, even if
the targets are not closely linked to the original pathophysiology in individuals
with BD.

A number of new treatments for BD have been developed in recent years, and
it is a natural strategy to try to determine which neurochemical effects of these
medications are critical for stabilizing mood. This strategy is certainly likely to
lead to the identification of novel treatments, but it may not explain why BD
occurs. Even if clues to the pathogenesis of BD are identified based on studies of
clinically useful medications, tracing back from effective treatments to biochemical
causes of BDwill be difficult. For example, there has been continued progress in our

402 Neumaier and Dunner



understanding of the physiological effects of lithium. Recent evidence has focused
on lithium inhibition of inositol monophosphatase leading to depletion of phospho-
tidyl inositol or inhibition of glycogen synthase kinase-3, a member of the Wnt sig-
naling cascade (11); both of these observations are also reviewed in this volume.
Others have suggested that mitochondrial dysfunction lies at the core of BD (12),
but it is difficult to separate cause from effect since depressive and manic states
may exact different metabolic demands on discrete brain circuits. In addition, the
neuroprotective features of lithium have also received considerable attention and
may bear on its long-term mechanism of action (13). Some investigators have
reasoned that biochemical effects that are common to more than one mood stabil-
izer are most likely to be essential factors in mood stabilization; however, this
presumes that different medications act on the same set of neurons to achieve
their therapeutic effects, which is unlikely to be the case. For example, consider
that both b-blockers and nitrates can alleviate angina, but they have unrelated mol-
ecular mechanisms and sites of action. Furthermore, this strategy may not detect
treatments with novel mechanisms of action if different points within a functional
neuronal circuit are involved. For example, dihydroxyphenylalanine (L-DOPA) and
anticholinergics both reduce the symptoms of Parkinsonism but act at different
points in the neural circuit. Similarly, atypical antipsychotics and anticonvulsants
are effective in treating BD, yet it is possible that the most easily identifiable neuro-
chemical effects of these medications are far removed from their eventual benefits in
bipolar patients. Anticonvulsants can have quite immediate effects on the vulner-
ability to seizure activity by blocking sodium channels, but the therapeutic effects
of these medications develop over weeks to months in BD. Similarly, many investi-
gations have tried to discriminate between the immediate and delayed effects of
lithium and other mood stabilizers; each time a new acute or sustained effect of
thesemedications is discovered it raises the hope that a new class of improvedmedi-
cations will become possible. However, acute effects such as channel blockade may
or may not be critical to the sustained effects of these drugs (such as changes in gene
expression) involved in their ultimate mechanism of action.

We have recently learned from the example of the long and short polymorph-
isms in the serotonin transporter promoter (5HTTLPR) that genetics alone may not
predict the risk for developing depression; Caspi and colleagues have elegantly
demonstrated a critical interaction between genetic traits and environmental
exposure to stress in modulating the risk for depressive symptoms (14). Similarly, it
is well-established that stressful life experiences (15), drugs and alcohol (16), and
potentially many other factors influence the onset, severity, and course of BD.
Genes and environment are just as likely to interact to produce illness in BD as in
major depression. We do not know enough about the mechanistic aspects of how
stress influences mood episodes to say whether the stress effect is common or distinct
between these disorders. Besides the similarity that stress can exacerbate the course of
both unipolar depression and BD, antidepressants can treat the depressive features of
both conditions. While antidepressants reliably reduce the risk for relapse and recur-
rences in unipolar depression, these drugs can aggravate the course of cycling in some
bipolar individuals. This important difference suggests that the biological underpin-
nings of unipolar depression andBDare different, butwe still do not knowwhat brain
regions and neural circuits account for this. Furthermore, some bipolar individuals
seem much more vulnerable to antidepressant-induced cycling than others, and it
is possible that this reflects different “subtypes” at least in terms of the vulnerability
to changes in monoamine neurotransmission in mania and increased mood cycling.
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Animal models have been very helpful in developing new antidepressants
but have not led to new, validated treatments for BD. Even in schizophrenia,
another disorder with uncertain etiology, animal behavior has been useful in iden-
tifying potential neuroleptics that led to a new generation of antipsychotic drugs
(although this strategy led to the development of many similar medications, it
took the clinical observation that clozapine was unusually effective to open up
the conceptual constraints).

MAIN GAPS OF KNOWLEDGE AND METHODOLOGICAL
DIFFICULTIES
Clinical Studies
There are four major target areas important in the treatment of bipolar patients:
acute mania, acute depression, prevention of mania or hypomania, and prevention
of depression. Of these targeted areas, treatment of acute mania is robustly studied
with many types of treatments approved and/or shown to be effective. The same
cannot be said, however, for acute bipolar depression. This area remains an import-
ant area for research since most patients with BD spend the majority of their ill time
in the depressed phase. However, only one treatment (the combination of olanza-
pine and fluoxetine) is officially approved by the Food and Drug Administration
(FDA) for bipolar I depression and no treatments are specifically approved for
bipolar II depression. Treatment approaches for bipolar depression need to be
further researched.

Maintenance studies have suggested that olanzapine and lamotrigine are
effective for the prevention of recurrence of mania and depression in bipolar I
patients. The difficulties in conducting such studies, however, suggest that
further research into prevention of relapse may be limited.

Recently, the vagus nerve stimulator (VNS) has been approved in the United
States for patients with treatment-resistant depression. Approximately 10% of the
patients in the clinical trails using the VNS were bipolar, suggesting further research
of VNS into BD specifically may be of interest. One such study is currently underway
in rapid-cycling bipolar patients (17).

We previously have pointed to difficulties in placebo-controlled studies of
bipolar I patients because of ethical issues regarding the use of placebo in such
patients. We suggest that most patients with BD are not treated with monotherapy
and it might be useful for the pharmaceutical industry to change their research
designs to gain approval of “add-on” therapies. Knowledge of what works and
what does not work for the various phases of BD will be quite important as increas-
ing numbers of such patients are identified.

An important knowledge gap is the anticipated findings from genetic studies
that would point to a better system for classification and perhaps a more direct
approach toward pathophysiology of BDs and direct treatments of these conditions.
Although genetic research in BD is certainly not stalled, it is interesting that major
findings continue to be elusive (18). Increasing methodological advances that
permit rapid identification of genetic markers for conditions will likely be import-
ant in ultimately elucidating the multiple genes thought to be responsible for
bipolar conditions.

The clinical interface between neuroimaging techniques and BD also shows a
good deal of promise. Various neuroimaging techniques including magnetic reson-
ance imaging (MRI), CT scanning, magnetic resonance spectroscopy (MRS), and
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others are currently being investigated regarding bipolar patients in order to
determine metabolic and structural changes associated with bipolar conditions.

The issue of diagnosis ofmania in children is considerablyproblematic. It is our
belief that this controversy will likely be resolved through validation of diagnosis
likely from genetic studies. Until then, the issue of the existence and identification
of children with BD, particularly mania, remains considerably problematic. Clinical
classification studies and treatment studies will not seemingly solve the issue of the
correct diagnosis that might be applied to these individuals.

PATHOPHYSIOLOGY OF BIPOLAR DISORDER, INTEGRATION
OF AVAILABLE BASIC SCIENCE

Animal models of mental illnesses have always been strongly influenced by the pre-
vailing conceptual frame of the era. Therefore, animal models that have been pro-
posed have evolved from a focus on reflecting the behavioral states to
responsiveness to lithium and now to perturbations of the molecular signaling
pathways that are presumed to be involved in the disorder. Creating valid
disease models is a risky balance of circular reasoning that cannot be easily
avoided. BD, along with psychosis, has been particularly difficult to model using
animal behavior. Some neurobehavioral disorders, such as seizures, are easier to
model than complex behavioral disorders because the manifestations (e.g., epilepti-
form activity with motor seizure) appear quite similar across species; even
depression and anxiety have been modeled using a variety of strategies that have
demonstrated good construct and predictive validity (19). This may be because it
is easier to interpret these behaviors objectively or because they are similarly
present in a range of species. Most attempts to model BD have focused on an
attempt to induce a depressive syndrome (these have been well validated) and
then a hyperactive syndrome to capture the manic phase. One example is the use
of amphetamine, which can induce hyperactivity, sleep disturbance, abnormal
sensory gating, etc. in rodents during acute exposure followed by a dysphoric syn-
drome upon drug discontinuation. Similar symptoms are encountered when
humans abuse stimulants, but this psychiatric presentation is very different from
BD in many ways. This strategy may also be limited because the amphetamine
may only model “downstream” behavioral aspects of mania or depression. Simi-
larly, other hyperdopaminergic states, including the dopamine transporter knock-
out mouse line, have been considered to model aspects of BD and some of these
behavioral effects are reversible by lithium (20). However, this rationale focuses
on the mood and activity components (which dopamine may indeed mediate in
part) but not the chronobiological aspect of BD. Sleep disturbance is a critical
feature of both manic and depressive episodes and sleep deprivation may precipi-
tate mania. There is a strong seasonal component in the cycling of some patients,
and the spontaneous development of an acute manic or depressive episode
without experimental provocation is an important component of a more valid
animal model. Since circadian rhythms usually oscillate predictably in the brain,
and lithium may regulate this (21), there is likely to be some link between dysfunc-
tion of these reliable biological clocks and the erratic fluctuations that characterize
BD (22). It seems likely that this “lesion” lies upstream of dopaminergic function.
Thus, animal behavioral models based on mimicking some of the behaviors associ-
ated with BD may be useful in developing novel mood-stabilizing treatments, but
they are unlikely to capture the essential nature of BD.
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Lithium has also been noted to have activity-dependent effects on cyclic AMP
levels and other cellular effects (13,23); the idea that a mood stabilizer might have
state-dependent effects on signaling mechanisms is appealing and might be a
clue to improved animals models of BD. Thus, an improved animal model of
bipolar illness would (i) show behaviors that reflect both depressive and manic
phases in the same animal over time; (ii) mimic a range of mood, motivational, cog-
nitive, and activity features of mania and depression; (iii) display spontaneous
switches between phases as well as precipitated episodes following exposure to
sleep deprivation, psychostimulants, antidepressants, etc; and (iv) demonstrate
reduced behavioral symptoms after chronic administration of a variety of known
mood stabilizers. While this is a tall order to fill, it provides caution that any
animal models that address only some of these components must be judged care-
fully so as to avoid overinterpreting the generalized applicability of associated
findings.

PATHOPHYSIOLOGY OF BIPOLAR DISORDER, INTEGRATION
OF CLINICAL FINDINGS

Studies regarding the mechanism of action of lithium have continued in the
hope that elucidation of a definitive mechanism might lead to the development
of a distinct pathophysiology for BDs. There are similar studies regarding other
treatments of BD, such as atypical antipsychotics and certain anticonvulsants,
and it is hoped that knowledge of their mechanism of action might also lead
toward the pathophysiology of BD disorder. However, at this point in time, it
seems prudent to think of the future as being related to the development of the
genetic findings for BD and a pathophysiology being derived from such findings.
Treatment studies for BD continue, although, again, most of the attention for new
medication development has been focused on major depression and, in the case
of BD, on acute mania.

SUMMARY

We stand on the verge of very exciting findings that await the proper research
studies. Increasing attention to BD research is likely to have tremendous benefit
in terms of our understanding the pathophysiology of these conditions as well as
identification of individuals with these conditions and more direct approaches to
their treatment.
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