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Preface

What can the book do for you?

As was the case for the first two editions of this book, this new edition tries to present
a balanced overview of modern macroeconomic theory. I follow two guiding princi-
ples. First, I adopt a rather eclectic approach by paying attention not just to the most
recent insights in the field but also to developments that are currently less popular.
In doing so, I hope to provide students with a better overview of current and past
debates in macroeconomic theory. History can teach us useful lessons, provided we
are willing to listen! For example, I continue to include discussions of the IS-LM
model, the adaptive expectations hypothesis, and the Solow-Swan growth model
(to mention a few). Though these theories are currently less fashionable (and, as
some economists argue, may even be “outdated”), it is my firm conviction that they
nevertheless provide important insights. For example, to fully appreciate the impor-
tance of the rational expectations hypothesis, a good understanding of the adaptive
expectations hypothesis (its immediate predecessor) is indispensable. Similarly, to
really understand the contributions made in recent years by New Keynesian Dy-
namic Stochastic General Equilibrium (DSGE) economists, it is very useful to have
a firm understanding of the IS-LM model. Also, a good grasp of the Solow-Swan
model helps in appreciating the Ramsey model and the endogenous growth models
formulated in the 1980s and 1990s. Of course, as the saying goes, “old habits die
slowly” and the IS-LM model is still used extensively even though, as Blanchard has
pointed out, many people may not even know they are using it (2000, p. 1405).

The second guiding principle concerns the expositional style of the book. In addi-
tion to introducing the different theories by verbal and graphical means, I have also
aimed to successively develop “the tools of the trade” of modern macroeconomics.
In this aspect the book is related to Allen’s (1967) marvellous macroeconomic tool-
book. So instead of only providing students with a verbal/intuitive understanding
of the material (valuable as it is), I also explain the basic modelling tricks of mod-
ern macroeconomics. Where needed the full details of both the models and their
solutions are presented. Students who have worked through the textbook (and its
accompanying manual) should have little or no problems reading the recent journal
literature in macroeconomics or building their own macro models.

How can the book be used?

Depending on the background of students, the book can be used in the undergrad-
uate and/or the graduate curriculum. Part I, consisting of Chapters 1-9, can be used
in an intermediate macroeconomics course in the undergraduate curriculum. For
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example, I use Chapters 1-6 in my seven-week macroeconomics course in the third-
year of the bachelor program at the University of Groningen. Economics students
in this course have been exposed to Blanchard et al. (2013) in their first two years,
whilst econometrics students have studied Gärtner (2016) in their second year of
studies. In addition, these students have studied basic mathematical methods at the
level discussed, for example, in Hoy et al. (2011).

Parts II and III of the book consist of Chapters 10-19. They are aimed at advanced
bachelor students, first-year master students, and beginning doctoral students. In
the graduate curriculum, the book can be used as the main text in a first-semester
macroeconomics course or as a supplementary text for an advanced graduate macro
course. At the University of Groningen, for example, I use Chapters 12-15 in my
half-semester macroeconomics course in the regular masters programs. In the re-
search master courses I also cover Chapter 10 and most of Chapters 16-19. The book
is also well-suited for beginning doctoral students with no (or insufficient) previous
training in macroeconomic theory. Parts of Chapters 12-16 were used in the vari-
ous graduate courses I have taught over the years for the Netherlands Network of
Economics (NAKE), the Tinbergen Institute, CESifo, and the Institute for Advanced
Studies (Vienna).

Intermezzos

The book contains a number of so-called intermezzos. I use the term ‘intermezzo’
in an extended and unusual sense. Recall that in music an intermezzo is a com-
position that is played in between acts of a play or movements of a much larger
musical piece. In this book, the intermezzos do not make any sound but, like in
music, they are ‘small morsels in between big chunks’. They serve a number of pur-
poses. First of all, they ensure that upon first reading students are not distracted by
complex technical intricacies. Second, they allow for in-depth coverage of a number
of key results in theoretical macroeconomics. Furthermore, in combination with the
chapter appendices and the mathematical appendix at the end the book, they cover
all technicalities necessary for a sound understanding of modern macroeconomics.
Whereas the appendices are purely aimed at mathematical results, the intermezzos
focus more on the fault line between mathematics and theoretical macroeconomics.
Finally, the intermezzos serve as reference tools for readers who wish to reacquaint
themselves with things they used to know but have forgotten.

Starred sections

In this edition I have also included sections marked with a superscript star (F).
These sections contain material that is more difficult than the rest of the chapter in
which they are located. Students may choose to skip the starred material when first
reading the chapter. Upon completion of the book the successful student will find
that most (or even all) stars have become invisible.

Changes for the Third Edition

The book has been thoroughly rewritten. Compared to the second edition, it has
grown in size by about one hundred pages. The main changes are as follows.
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• The current book includes forty-seven intermezzos, of which sixteen are new.
All of these have been extensively checked and streamlined. They are num-
bered and carry an informative title. A List of Intermezzos is included in the
preamble of the book which facilitates cross-referencing. The numbering sys-
tem is as before, with the first digit denoting the chapter in which the inter-
mezzo is located. The new intermezzos are 1.1, 1.2, 5.1, 5.2, 8.2, 8.3, 9.1, 12.2,
13.3, 16.1, 17.1, 18.1, 18.2, 19.1, 19.2 and 19.3.

• The new Chapter 2 deals exclusively with the open economy. It follows logi-
cally from the first chapter and contains material from Sections 1 and 2 of the
old Chapter 10.

• Chapter 3 is a rewritten version of the old Chapter 2.

• Chapter 4 has been renamed to better reflect its contents. It contains a rewritten
version of the old Chapter 4 as well as Section 3 (on the Dornbusch model) from
the old Chapter 10.

• Chapter 5 is an expanded and rewritten version of the old Chapter 3. It now
includes a small open economy model and explains the Dynare software pack-
age that can be used to solve rational expectations models.

• Chapter 6 is a lightly rewritten version of the old Chapter 5.

• Chapter 7 is a thoroughly edited and shortened version of the old Chapters
6 and 7. It also contains some new material on union- and efficiency-wage
models in general equilibrium.

• Chapter 8 is an expanded version of the old Chapter 8. It now contains a section
on endogenous job destruction.

• Chapter 9 has been renamed to better reflect its contents. In addition it has been
expanded and now includes a discussion of dynamic inconsistency of individ-
ual choices resulting from present-biased (or quasi-hyperbolic) preferences.

• Chapters 10 and 11 are lightly edited versions of the old Chapters 11 and 12.

• The old Chapter 12 (on exogenous growth) has been split into two much ex-
panded chapters. The new Chapter 12 deals exclusively with Solow-Swan style
growth models. It has been expanded somewhat and now also features a sec-
tion of the two-sector Meade-Uzawa model.

• Chapter 13 contains Sections 13.5–13.7 from the old Chapter 13. In addition
it has been expanded dramatically. It now includes models with endogenous
labour supply (using material from the old Chapter 15), search unemployment,
and money balances entering the felicity function. This is the pivotal chapter
in the book as the Ramsey-Cass-Koopmans model that it covers in all its guises
plays a central role in the material that follows from there on.

• Chapter 14 is a lightly edited version of the old Chapter 14. Similarly, Chapters
15 and 16 are lightly edited versions of the old Chapters 16 and 17.

• Chapter 17 is brand new. It provides a brief (and mostly intuitive) discussion of
the method of dynamic programming (DP). In addition it introduces the con-
cept of complete markets and shows how one can construct a “representative
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agent” in such a setting. Whilst a deep knowledge of DP is not really essential
to understand Chapters 18–19, it is indispensable if one wants to proceed to
the more advanced literature in macroeconomics, e.g. the graduate textbook
by Ljungqvist and Sargent (2012).

• Chapter 18 is the first chapter on the DSGE approach. It contains material from
the old Section 15.5. It has been edited thoroughly and now includes discus-
sions of the stochastic discount factor and shows how DSGE models can be
simulated with the aid of the Dynare software package (introduced in Chapter
5).

• Chapter 19 is brand new. It contains a thorough discussion of the New Keyne-
sian DSGE approach and finishes with a brief assessment of the state of the art
at the time of writing. This assessment replaces the Epilogue from the second
edition.

Visible means of support

It somehow seems impossible to produce a book of this size without generating (free
of charge) some typos and errors. Needless to say, all such errors and typos will be
published as I become aware of them. I will make the errata documents available
through the website for the book:

http://www.heijdra.org/fomm3

So please let me know about any typos and/or errors that you may spot. This is what
you can do for the book! The contact address is: info@heijdra.org. As a (weak
substitute for a) reward, I will mention your name prominently on the website (as
having contributed to the public good). Of course, your name will also feature in the
Acknowledgements section in any future edition of the book.

The website also includes ready-to-use slides for all chapters in PDF format.
Teachers who wish to adapt these slides to their own purpose or software platform
can download the LATEX 2ε code and all figures (in EPS and EMF formats) and pro-
ceed from there.

I have updated and streamlined the accompanying Exercise and Solutions Manual
which is published by Oxford University Press. This hands-on exercise book con-
tains a large number of problems plus model answers. These problem sets allow the
interested student to further develop his/her skills.
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Part I

Intermediate macroeconomics





Chapter 1

Review of the AD-AS model

The purpose of this chapter is to achieve three goals:

1. To (partially) refresh and extend the macroeconomic knowledge from first-year
courses.

2. To investigate the effectiveness of monetary and fiscal policy on output, em-
ployment, the interest rate, and the price level.

3. To introduce the most important past and current schools of thought in macro-
economics.

In order to achieve these goals, we first have to discuss some elementary concepts
relating to the aggregate labour market and the demand for money. It turns out that
the most important differences of opinion between (most varieties of) Classical and
Keynesian economists can be traced back to their respective assumptions regarding
the labour market, expectation formation, and money demand.

1.1 The aggregate labour market

Our discussion of the labour market in this chapter is very basic. In Chapters 7–8
we return to this important topic in more detail. The stylized account of the labour
market uses the devices of the aggregate demand for and supply of labour.

1.1.1 The demand for labour

The central element in the basic theory of labour demand is the production func-
tion. Perfectly competitive profit-maximizing entrepreneurs utilize this production
function under the restriction that the capital stock is given in the short run. The
production function is thus given by:

Y = F(N, K̄), (1.1)

where Y is real output, K̄ is the given capital stock (machines, PCs, cars), N is the
amount of labour employed, and F(N, K̄) is the production function. The margi-
nal products of labour and capital are denoted by FN ≡ ∂F(N, K̄)/∂N and FK ≡
∂F(N, K̄) /∂K̄, respectively. Furthermore, we assume that the marginal product of
labour (capital) declines as employment (capital) is increased, i.e. FNN ≡ ∂2F(N, K̄)/
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∂N2 < 0 (FKK ≡ ∂2F(N, K̄)/∂K̄2 < 0). Too many cooks in the kitchen spoil the
broth. We also assume that the factors are cooperative in the sense that increasing
one factor raises the marginal productivity of the other factor (∂2F(N, K̄)/∂K̄∂N ≡
FKN = FNK ≡ ∂2F(N, K̄)/∂N∂K > 0). The use of robot mixers in the kitchen thus en-
hances the productivity of the cooks. Finally, we assume constant returns to scale so
that doubling all factors of production induces a doubling of output. More precisely,
F(λN, λK̄) = λF(N, K̄) with λ any positive constant.

Short-run profits are defined as revenues minus the wage bill:

Π ≡ PY−WN, (1.2)

where Π is nominal profit, P is the price charged by the firm, and W is the nominal
wage rate. In words, all revenue (PY) that is not paid to the variable production
factor labour in terms of wages (WN) is considered profit, which is the reward that
accrues to the owners of the capital stock (note that we ignore taxes for the moment).

We assume perfect competition on the aggregate goods market, so that the indi-
vidual firm cannot exert any influence on the price it charges for its product. Hence,
the only choice that is open to the firm (in the short run) is to determine the amount
of production (Y) and employment (N) such that profit is maximized. By substitut-
ing the production function in the profit definition, we see that once employment
is chosen, output is also automatically chosen. The problem for the firm is thus to
choose N to maximize Π:

max
{N}

Π ≡ PF(N, K̄)−WN. (1.3)

The firm can do no better than to follow the following decision rule:

dΠ
dN

= 0: PFN(N, K̄)−W = 0, (1.4)

where the second-order condition implies that (1.4) describes a maximum: d2Π/dN2

= PFNN < 0 (because P > 0 and FNN < 0 by assumption). The interpretation of (1.4)
is clear; the firm should keep expanding its employment up to the point where the
marginal unit of labour exactly breaks even (in the sense that the additional output
produced by the marginal worker yields a revenue that exactly covers the wage that
is paid to the worker). In terms of Figure 1.1, the profit maximum occurs at point A.
(At points B and C the firm makes no profits.)

The decision rule (1.4) is a vitally important element in the macroeconomic labour
market story. It is also relatively uncontroversial: virtually all macroeconomists be-
lieve in some version of equation (1.4). We can easily transform (1.4) into the demand
for labour, a schedule which shows how much labour a firm wants to hire for a given
real wage rate. Formally, we can view equation (1.4) as an implicit relationship be-
tween ND (the superscript “D” stands for demand) on the one hand and the real
wage, W/P, and the given capital stock, K̄, on the other. The partial derivatives
of this implicit relationship can be obtained by using the trick of implicit functions.
First, we totally differentiate equation (1.4):

dFN(ND, K̄) = d(W/P) ⇒ FNNdND + FNKdK̄ = d(W/P), (1.5)

or, after rearranging terms:

dND = − FNK
FNN

dK̄ +
1

FNN
d(W/P). (1.6)
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Figure 1.1: Short-run profit maximization
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Since FNN < 0, the marginal product of labour falls as more units of labour are em-
ployed. As a result, equation (1.6) states that a higher real wage (d(W/P) > 0)
diminishes the demand for labour (dND < 0) ceteris paribus (i.e. holding K̄ con-
stant). Hence, 1/FNN in equation (1.6) can be interpreted as the partial derivative of
the implicit function between ND and (W/P, K̄) with respect to the real wage, W/P.

The partial derivative with respect to the capital stock is obtained in a similar
fashion (and is equal to −FNK/FNN > 0). Since labour and capital are coopera-
tive factors of production, increasing the capital stock raises the marginal product
of labour. For a given real wage rate, the profit-maximizing firm thus hires more
labour.

In summary, we can write:

ND = ND(W/P, K̄) ND
W/P ≡

1
FNN

< 0, ND
K̄ ≡ −

FNK
FNN

> 0. (1.7)

In terms of Figure 1.2, varying the real wage rate implies a movement along a given
demand for labour curve, whilst increasing the capital stock shifts the demand curve
to the right. A higher cost of labour or a lower capital stock necessitates a higher
marginal productivity of labour and thus a lower demand for labour.

Intermezzo 1.1

The Cobb-Douglas production function and labour demand. In this
intermezzo we discuss an often-used two-factor production function fea-
turing constant returns to scale. The Cobb-Douglas function can be writ-
ten as:

F(N, K) ≡ Z0KαN1−α, 0 < α < 1, (a)

where α is an efficiency parameter and Z0 is a scaling factor. Several
things are worth noting. First, it is easy to verify that this function fea-
tures constant returns to scale:

F(λN, λK) = Z0 (λK)α (λN)1−α = λα+1−αZ0KαN1−α = λF(N, K). (b)

Second, the marginal products of labour and capital are both positive:

FN(N, K) = (1− α)Z0

(
K
N

)α

> 0, (c)

FK(N, K) = αZ0

(
K
N

)−(1−α)

> 0. (d)

Third, each factor features diminishing marginal productivity, and the
factors are cooperative:

FNN(N, K) = −α(1− α)Z0

(
K
N

)α 1
N

< 0, (e)

FKK(N, K) = −α(1− α)Z0

(
K
N

)−(1−α) 1
K

< 0, (f)

FNK(N, K) = α(1− α)Z0

(
K
N

)α 1
K

> 0. (g)
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Figure 1.2: The demand for labour

Fourth, for a given capital stock K̄ the competitive labour demand func-
tion can be written as:

ND =

(
(1− α)Z0

w

)1/α

K̄, (h)

where w ≡ W/P is the real wage rate. The (absolute value of
the) wage elasticity of labour demand—defined in general as εD ≡
−FN(N, K̄)/(NFNN(N, K̄))—thus equals εD = 1/α for the Cobb-Douglas
production function. Fifth, provided labour is paid its marginal product,
the labour income share in production is constant, i.e. wN/F(N, K) =
1− α.

****

1.1.2 The supply of labour

In the previous section we implicitly assumed that firms can freely observe the ac-
tual values of the price level and the wage rate (P and W). This is realistic enough,
because all the individual firm must do is to observe its own price and the wage paid
to its own workers.

Matters are somewhat more complicated for the households, who are the suppli-
ers of labour in our stylized account of the labour market. Indeed, in the decision
about goods consumption and labour supply, the households may know their own
nominal wage (W) with certainty, but they may not know how much they can ac-
tually consume with that wage. The household has to estimate the price of a whole
basket of goods, a task inherently more difficult than the one facing the individual
firm. The simplest way to introduce this asymmetry in information is to assume that
the household forms a guess about the aggregate price level, denoted by Pe (where
the superscript “e” stands for expected).



8 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

The household derives utility from goods consumption (denoted by C) and leisure
(1−NS). The household “owns” one unit of time, of which NS units are spent work-
ing, so that time available for leisure is equal to 1− NS. We write the utility function
in general terms as U(C, 1−NS) and assume positive but diminishing marginal util-
ities: UC > 0, U1−N > 0, UCC < 0, and U1−N,1−N < 0. Some extra consumption of
goods and leisure is fun, but less so if you already consume a lot or have plenty of
spare time to enjoy. In addition, we assume that indifference curves bulge toward
the origin, i.e. UCCU1−N,1−N −U2

C,1−N > 0.
The household chooses that combination of C and 1− NS for which the highest

possible satisfaction is attained (as measured by U(·, ·) ), given the expected price
level, Pe, and the (expected) budget restriction PeC = WNS. We assume that the
household has no sources of income other than wages. Formally, we can thus write
the problem for the household as follows:

max
{C,NS}

U ≡ U(C, 1− NS) subject to PeC = WNS. (1.8)

This problem looks rather prohibitive, but we can make it easier by substituting the
level of consumption implied by the budget restriction (C = (W/Pe)NS) into the
utility function. The household then only has to choose the level of labour supply:

max
{NS}

U ≡ U
(
(W/Pe)NS, 1− NS

)
. (1.9)

This yields a straightforward decision rule for the household:

dU
dNS = 0 : (W/Pe)UC −U1−N = 0. (1.10)

The first term on the left-hand side (i.e. (W/Pe)UC) measures the marginal benefit
of supplying one extra unit of labour to the labour market. By working more, the
household obtains more income, especially if the real wage is high, and hence more
consumption. The second term (i.e. U1−N) measures the marginal cost of that extra
unit. By supplying more labour, the household misses out on valuable leisure time.
In an optimum the household sets the marginal benefit equal to the marginal cost of
supplying an additional unit of labour.

In principle we could now proceed by investigating what happens to labour sup-
ply and consumption if the expected real wage rate is varied. Mathematically this is
slightly more involved than for the labour demand equation, so that we first derive
the basic intuition concerning labour supply by graphical means. (The mathematical
derivation of labour supply is given in Chapter 7.)

In Figure 1.3 we plot consumption on the vertical axis and leisure on the horizon-
tal axis. The initial expected real wage is (W/Pe)0, and the budget line goes through
C̄0 (≡ (W/Pe)0) on the C-axis, and 1 on the (1−NS)-axis. The optimal consumption-
leisure choice occurs at the point where an indifference curve has a tangency with
the budget line. This occurs at point E0, where consumption is C0, leisure is 1− NS

0 ,
and the level of utility is U0. By plotting the implied value of labour supply, NS

0 ,
against the expected real wage rate in Figure 1.4, we obtain the first point on the
labour supply curve.

Suppose now that the expected real wage is a bit higher, say (W/Pe)1. In terms
of Figure 1.3 this implies that the budget line rotates in a clockwise fashion around
the intersection point on the leisure axis. The new intersection on the consumption
axis is at C̄1 (≡ (W/Pe)1). For the case drawn, the new optimum choice occurs at
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Figure 1.3: The consumption-leisure choice

point E1, which lies above and to the left of the initial point E0. Consumption is C1,
leisure is 1−NS

1 , and the level of utility is U1. By plotting the implied value of labour
supply, NS

1 , against the real wage rate in Figure 1.4, we obtain the second point on
the labour supply curve. By connecting the two points we obtain the labour supply
schedule, labelled NS (W/Pe), which for the case drawn slopes upward.

Unlike the labour demand curve, which always slopes downwards, the slope
of the labour supply curve is not necessarily positive. The reason is that there are
two, potentially offsetting, effects that confront the household when the expected
real wage rises. The first effect is called the pure substitution effect. To determine this
effect, we ask ourselves what combination of consumption and leisure the house-
hold would choose at the higher expected real wage if it were somehow restricted
to remain at the initial level of utility U0. In Figure 1.3, we see that the household
would choose point E′, where consumption is CC, leisure is 1− NS

C, and labour sup-
ply is NS

C (the subscript “C” stands for compensated). The move from the initial
point E0 to the (hypothetical) compensated point E′ constitutes the pure substitution
effect (i.e. SE). Intuitively, the pure substitution effect says that a household will buy
less of anything for which the price has risen. A rise in the expected real wage rate
means that the price of leisure has gone up. Consequently, the household buys less
of it. This gives us an interesting result: the compensated labour supply curve is always
upward sloping (see NS(W/Pe, U0) in Figure 1.4).

The second effect is called the income effect. It says that, for a given initial level
of labour supply NS

0 , a higher expected real wage implies a higher expected real in-
come, or, (W/Pe)1NS

0 > (W/Pe)0NS
0 . Provided leisure is a normal good the house-

hold would react to this higher income by purchasing more leisure, not less. Hence,
the income effect (i.e. IE), which is represented by the move from point E′ to E1,
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Figure 1.4: The supply of labour

works in the opposite direction to the pure substitution effect. As it happens, Figure
1.3 has been drawn for the case where the substitution effect dominates the income
effect, so that labour supply slopes up. The other cases cannot be excluded on a pri-
ori grounds, however, and the issue can only be fully resolved by empirical means
(see Chapter 7).

Mathematically, we can represent the labour supply curve in general form by:

W/Pe = g(NS), gN R 0 ⇔ SE R |IE|, (1.11)

where |IE| is the absolute value of the income effect and SE is the substitution ef-
fect. A higher real wage thus has two effects on labour supply. On the one hand,
it makes leisure more expensive which induces households to have less leisure and
work more hours (the SE). On the other hand, a higher real wage raises the income
of households so they become lazier and work less hours (the IE).

Intermezzo 1.2

The Stone-Geary utility function and labour supply. In this intermezzo
we study the optimal labour supply decision when the household’s util-
ity function is of the Stone-Geary form. In the present context, utility
depends on consumption and leisure and can be written as:

U(C, 1− N) ≡ (C + γ)β (1− N)1−β, 0 < β < 1, γ > 0, (a)

where β and γ are taste parameters. (Note that (a) reduces to a Cobb-
Douglas utility function if we assume that γ = 0.) It is easy to verify some
of the key properties of the Stone-Geary utility function (for C + γ > 0
and 1− N > 0). First, marginal utility of consumption and leisure are
both positive:

UC(C, 1− N) = β

(
1− N
C + γ

)1−β

> 0, (b)
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U1−N(C, 1− N) = (1− β)

(
1− N
C + γ

)−β

> 0, (c)

Second, the marginal utilities are diminishing:

UCC(C, 1− N) = − 1− β

C + γ
UC(C, 1− N) < 0, (d)

U1−N,1−N(C, 1− N) = − β

1− N
U1−N(C, 1− N) < 0. (e)

Third, the marginal utility of consumption is increasing in leisure and
vice versa:

UC,1−N(C, 1− N) =
1− β

1− N
UC(C, 1− N)

=
β

C + γ
U1−N(C, 1− N) > 0. (f)

Fourth, for a household that maximizes U(C, 1−N) subject to the budget
constraint C = weN, where we ≡W/Pe, the first-order condition is given
by weUC(C, 1− N) = U1−N(C, 1− N), or:

1− β

β

C + γ

1− N
= we. (g)

The budget constraint can be rewritten in terms of spending on consump-
tion goods and leisure:

C + we (1− N) = we, (h)

and after combining (g) and (h) we easily find the Marshallian (uncom-
pensated) consumption and labour supply choices:

C = εwe − (1− β)γ, NS = β− γ(1− β)

we . (i)

Fifth, in the text we write the optimal labour supply choice as we =
g(NS). The functional form of g

(
NS) can be easily recovered from the

second expression in (i):

g(NS) ≡ γ(1− β)

β− NS . (j)

The g
(

NS) function is upward sloping and features a vertical asymptote
at NS = β. Since labour supply cannot be negative, it follows that 0 ≤
NS < β. The (uncompensated) wage elasticity of labour supply – defined
in general as εS ≡ g(N)/(NgN(N)) – equals εS = (β− NS)/NS for the
Stone-Geary utility function considered here. Sixth, to find the Hicksian
(compensated) labour supply function we make use of the expenditure
function. In the present context the expenditure function is defined as
follows:

E (Pe, W, U0) ≡ min
{C,1−N}

PeC + W(1− N)
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subject to U0 = U(C, 1− N) (k)

Intuitively, E (Pe, W, U0) represents the minimum amount of spending
on consumption and leisure that gives rise to a certain utility level, U0,
taking as given the (expected) prices of goods and labour. For the utility
function (a) we find that:

E (Pe, W, U0) = −γPe +

(
Pe

β

)β ( W
1− β

)1−β

U0 (l)

The expenditure function is an extremely convenient tool because Shep-
hard’s lemma tells us that the expression for the Hicksian demand for
leisure is obtained by taking the partial derivative of E (Pe, W, U0) with
respect to the price of leisure, W, i.e.:

1− NS
c ≡

∂E (Pe, W, U0)

∂W
=

(
Pe

β

)β ( W
1− β

)−β

U0, (m)

where NS
c is the Hicksian labour supply function. By noting that we ≡

W/Pe and simplifying we find:

NS
c = 1−

(
1− β

βwe

)β

U0. (n)

Clearly the Hicksian labour supply function is increasing in we. It is left
as an exercise for the reader to prove that—in a diagram like Figure 1.4—
through a given (we, N) point on the Marshallian labour curve passes a
corresponding Hicksian labour supply curve that is flatter.

****

Equation (1.11) can be written in a more useful form by writing:

W/P = (Pe/P)g(NS). (1.12)

The interpretation is easy. If households overestimate the price level (i.e. Pe > P),
they will demand a higher real wage for a given level of labour supply than if they
had estimated the price level correctly. This is exactly the mechanism behind the
Lucas Supply Curve that we discuss in Chapter 5.

1.1.3 Aggregate supply in the goods market: Adaptive expectations

We have developed a logically consistent description of the aggregate labour market
consisting of equations (1.7) and (1.12). We must now assume something about the
way in which households form their expectations. Since we shall return to this issue
in Chapters 4 and 5 in more detail, we simply postulate two alternative assumptions
regarding the expected price level: (i) the adaptive expectations hypothesis (AEH) and
(ii) the perfect foresight hypothesis (PFH).

Under the AEH the expected price level is given in the short run, but moves
slowly to correct for past expectational errors. Using t as an index for time (e.g.
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years), the AEH mechanism is:

Pe
t+1 = Pt + (1− λ) [Pe

t − Pt] , 0 < λ < 1. (1.13)

This equation says that households expect the price in the future period t + 1 to be
equal to the actual price in the current period t if their expectations proved correct in
the current period. If, instead, they have mis-estimated the price level in the current
period (Pe

t 6= Pt), they incorporate part of the expectational error in the revision of
their expectation in the current period, where λ represents the speed with which
households update their price expectations. We find it convenient to use the short-
hand notation for the AEH:

∆Pe
t+1 = λ [Pt − Pe

t ] , 0 < λ < 1, (AEH), (1.14)

where the ∆-operator stands for the change in a variable from one period to the next,
i.e. ∆Pe

t+1 ≡ Pe
t+1 − Pe

t . Equation (1.14) captures sluggish adjustment of expectations
regarding the price level.

The second, diametrically opposed, assumption regarding expectations is the
PFH. It simply states that households expect the price level that actually holds:

Pe
t = Pt, (PFH). (1.15)

The PFH can be seen as the deterministic counterpart to the rational expectations
hypothesis (REH) discussed in Chapter 5.

The labour market description can be used, in combination with either the AEH
or PFH, to describe the supply curve (AS) on the aggregate goods market. Obviously,
the form of this AS curve depends on the particular expectations hypothesis used.
We first consider the AS curve under the AEH. This is illustrated in Figure 1.5. Sup-
pose that the initial price level is P0 and that the expected price level is equal to this,
i.e. Pe

0 = P0. In that case, households make no expectational error, supply the “cor-
rect” amount of labour, labour market equilibrium determines the right amount of
employment and the correct real wage, and output is (via the short-run production
function) equal to so-called potential output Y∗. In terms of Figure 1.5, north-west
panel, the labour supply function (1.11) is given as W = Pe

0 g(NS), and the labour
demand function (1.7) is given implicitly by W = P0FN(ND, K̄) (note that we have
put the nominal wage, W, on the vertical axis). The equilibrium nominal wage is W0
and employment is N∗, so that Y∗ = F(N∗, K̄). Now consider a higher actual price
level, say P1. The expected price level is still equal to Pe

0 and the labour supply curve
is unchanged. The demand for labour shifts up, to W = P1FN(ND, K̄), so that labour
market equilibrium is at point A, the nominal wage rate is W1, employment is N1
(greater than N∗), and output is Y1 (greater than Y∗). This yields the second point
on the AS curve. Employment and output are larger because the actual real wage is
lower. This is due to the fact that households have underestimated the price level
and consequently overestimated their real wage. Point B corresponds to a lower ac-
tual price level and a lower level of aggregate supply of goods; it can be derived in
a similar fashion as point A. In the north-east panel of Figure 1.5, the curve labelled
ASAEH is upward sloping and passes through points B, E0, and A.

The AS curve under the PFH is even easier to derive. Expected and actual prices
always coincide, so labour supply is always based on the correct information (as
is labour demand), employment is always equal to N∗, output is equal to Y∗, and
the aggregate supply curve, ASPFH, is vertical. This is also illustrated in Figure 1.5,
where the equilibrium points associated with P1 and P2 are given by, respectively,
points E1 and E2.
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Figure 1.5: Aggregate supply and expectations

Before we move on, we find it instructive to give an analytical derivation of the
AS curve. The labour demand and labour supply curves (1.7) and (1.11) may be
written in terms of elasticities:

dND

ND =
dK̄
K̄
− εD

[
dW
W
− dP

P

]
, (1.16)

dNS

NS = εS

[
dW
W
− dPe

Pe

]
, (1.17)

where εD ≡ −FN/(NFNN) and εS ≡ g(N)/(NgN) denote the wage elasticities of
labour demand (expressed in absolute value) and labour supply, respectively.1 We
assume that the substitution effect dominates the income effect in labour supply, so
that εS > 0. We furthermore assume equilibrium on the labour market, N = ND =
NS, so that the above expressions for labour demand and labour supply can be used
to solve for the real wage:

dW
W
− dP

P
=

1
εD + εS

[
dK̄
K̄
− εS

(
dP
P
− dPe

Pe

)]
. (1.18)

If we substitute this result into the labour demand schedule and subsequently into
the differentiated production function,

dY
Y

=
FN
Y

dN +
FK
Y

dK̄ = ωN
dN
N

+ (1−ωN)
dK̄
K̄

, (1.19)

where ωN ≡ WN/PY stands for the national income share of wages, we obtain an
expression for the relative change in the aggregate supply of goods:

dY
Y

=
ωNεDεS
εD + εS

(
dP
P
− dPe

Pe

)
+

(1−ωN)εD + εS
εD + εS

dK̄
K̄

, (AS). (1.20)

1In the derivation of (1.16) we have made use of the following property of linear homogeneous pro-
duction functions: KFNK = −NFNN . See Intermezzo 4.3 in Chapter 4 on production theory for further
properties.
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Ceteris paribus, a bigger capital stock boosts the marginal productivity of labour
and thus the real wage. This attenuates the rise in the aggregate supply of goods.
Anticipated price changes (dPe/Pe = dP/P) do not affect real wages, employment,
or the aggregate supply of goods. Unanticipated price changes, however, do affect
these variables. For example, if the actual price level turns out to be bigger than
the expected price level, the real wage falls and thus employment and the aggregate
supply of output rise.

Expression (1.20) corresponds to the AS curve derived graphically in Figure 1.5.
As we have derived above, under the PFH we clearly have a vertical AS curve which
shifts to the right if the capital stock expands. Under the AEH, the expected price
level is fixed in the short run so that the AS curve slopes upwards. In this case, the
AS curve also shifts to the right if the capital stock rises. Over time, expectations
regarding the price level may be adjusted which leads to shifts in the AS curve. For
example, if in any period the actual price level rises above the expected price level,
in subsequent periods the expected price level will be revised upwards. This lowers
the purchasing power households expect from their wage income, so households
decide to work fewer hours. This induces a rise in the real wage and thus a fall in
labour demand and employment. Consequently, aggregate supply of output falls.
This argument shows why a rise in the expected price level shifts the AS curve to the
left.

1.1.4 Nominal wage rigidities

As we have seen above, the AEH assumption ensures that the nominal price level af-
fects aggregate supply in the economy. We now consider an alternative assumption.
Modigliani (1944) demonstrated that there is a way in which an upward-sloping
(segment of the) aggregate supply curve can be generated even if we adopt the PFH.
Modigliani assumes that nominal wages are inflexible downwards, but perfectly flex-
ible in the upward direction. Workers hate wage cuts, but love a rise. In Figure 1.6,
we assume that the rigid nominal wage is equal to W0 and that P0 is the price level
at which full employment holds. We assume the PFH (1.15). The situation for price
levels exceeding P0 is straightforward. The nominal wage rises to keep the real wage
constant and maintain full employment. The situation is different for a lower price
level than P0, however. For example, if P = P2, the demand for labour is given by
W = P2FN(ND, K̄), but the effective supply of labour is the horizontal line segment
W0C. Since we assume that the nominal wage rate is not allowed to fall, employment
equals N2 (< N∗) and there are NS

2 − N2 units of labour unemployed. By not allow-
ing their wages to fall in nominal terms, the households end up partially pricing
themselves out of the labour market.

1.2 Aggregate demand: Review of the IS-LM model

From our first-year course in macroeconomics, we recall that the demand side of the
economy can be described by means of the IS-LM model. For the closed economy
this model can be written as:

Y = C + I + G, (1.21)
C = C(Y− T), 0 < CY−T < 1, (1.22)
I = I(R), IR < 0, (1.23)

T = T(Y), 0 < TY < 1, (1.24)
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Figure 1.6: Aggregate supply with downward nominal wage rigidity

M/P = l(Y, R), lY > 0, lR ≤ 0, (1.25)

where I is investment, G is government spending, T represents taxes, and R is the
rate of interest. Equation (1.21) is the usual national income accounting identity,
(1.22) is the consumption function expressing C as a function of disposable income,
Y− T, where CY−T denotes the marginal propensity to consume (MPC, in short) out
of disposable income. The investment equation is given in (1.23). A higher rate of
interest means that the cost of capital is high, leading entrepreneurs to lower the
level of investment. Equation (1.24) shows that tax receipts depend on the level of
income generated in the economy; TY stands for the marginal tax rate. Equations
(1.21)–(1.24) implicitly define the IS curve, that is the combinations of R and Y for
which there exists spending equilibrium. Finally, equation (1.25) is the money mar-
ket equilibrium condition, equating the real money supply, M/P, to the real demand
for money. This last schedule has proved a real bone of contention between the dif-
ferent schools of thought in macroeconomics, and consequently it warrants some
further discussion.

1.2.1 The demand for money

Why do people hold money, even though it does not pay any interest? This is one of
the unresolved questions in macroeconomic theory. Over the centuries, some of the
finest minds in economics have broken their heads over this issue, and some (partial)
answers are indeed available. Keynes claimed that the money theory proposed in his
General Theory represented a radical break with the traditional wisdom of his days.
In this section we show in what sense Keynes may have meant this statement.

There are two main motives for holding money balances, the transactions motive
and the speculative motive. The transactions motive runs as follows. People like to
consume goods steadily over the course of the month (say), but usually only get
their income paid once a month or once a week. Since cash is used as payment
in many transactions, people need a certain amount of cash during the period in
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between pay cheques. They could, of course, put their income in the bank in an
interest-earning savings account and get the necessary amount needed for transac-
tions each day (hour, minute, second?), but that would involve a lot of trips to the
bank and involve substantial transaction costs and a loss of valuable leisure time.
A more reasonable approach would be for the households to decide on an opti-
mal cash management problem: choose the number of trips to the bank such that
the marginal costs and benefits of the savings account are equated. Out of this cash
management problem we would certainly obtain an interest sensitivity of money de-
mand, since interest represents the income foregone when wealth is held in the form
of money. We would also expect that the transactions demand for money would
depend positively on the real stream of transactions that the household wishes to
conduct. Economy-wide we can proxy this effect on real money demand with the
specification (1.25).

Intermezzo 1.3

Baumol’s transactions theory of the demand for money. Let k be
the number of transactions per period (month or week), so that aver-
age money holdings are given by M/P = 1

2 Y/k. Households choose the
number of transactions and thus average money holdings by minimizing
the sum of foregone interest on money holdings (the opportunity cost)
and transactions costs: 1

2 RY/k + ck, where c denotes the cost per transac-
tion (bank costs plus leisure time). Minimization by choice of k yields the
first-order condition:

−RY
2k2 + c = 0.

The second-order condition is RY/k3 > 0, confirming that the optimum
is indeed a minimum. The first-order condition implies the following
optimum number of transactions and demand for money:

k =

√
RY
2c

,
M
P

=
Y
2k

=

√
cY
2R

.

Hence, the higher the cost per transaction, c, and the lower the oppor-
tunity cost of holding money, R, the higher the demand for real money
balances. Money demand rises with the square root of income and is
proportional to the price level.

****

Another motive for holding money that was stressed by Keynes is the so-called
speculative motive (called “the demand for money to hold as an asset” by Modigliani
(1944)). Money has two important properties: it is very liquid, and it is risk free in
the absence of inflation (a euro is still a euro tomorrow). Other assets such as shares
and bonds fluctuate in value (even in real terms, once corrected for inflation) and are
hence both more risky and less liquid. Keynes (and Modigliani, 1944) suggests re-
gressive expectations as a rationale behind the liquidity preference. The story runs as
follows. If the rate of interest is very low then prices of bonds are very high (the price
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Figure 1.7: The liquidity preference function

of a consol that pays 1 euro indefinitely is PB = (1 + R)−1 + (1 + R)−2 + · · · = 1/R.
Hence, bond prices and interest rates move in opposite directions). Investors expect
that high prices of bonds cannot persist forever, and thus anticipate that bond prices
will fall (PB falls, or R rises). In other words, they expect a capital loss on bonds,
which prompts them to hold most of their wealth in the form of money (we take
into account the differences in riskiness of money and bonds to avoid the conclusion
that the agents choose a corner solution: either all money or all bonds). The specula-
tive demand for money thus motivated depends negatively on the interest rate, i.e.
lR ≤ 0.

Keynes suggested that, for a given output level Y, the liquidity preference func-
tion l(Y, R) may have the form as drawn in Figure 1.7. If the rate of interest is very
high (R ≥ RMAX), households will not hold any cash for speculative purposes. Bond
prices are very low and capital gains on bonds are expected. So why hold money?
On the other hand, Keynes argued, if the rate of interest is very low (R ≤ RMIN) then
people would become indifferent between holding their wealth in terms of money
or bonds. The liquidity preference function would become perfectly elastic at that
minimum rate of interest, RMIN. This is called the liquidity trap, the consequences of
which are studied below.

1.2.2 The IS-LM model

The money market is represented by equation (1.25). The LM curve represents all
combinations of output Y and the rate of interest R for which the money market is
in equilibrium. Formally, the properties of the LM curve can be found by using the
implicit function trick once again:

d(M/P) = lYdY + lRdR ⇒ dR =
d(M/P)− lYdY

lR
. (1.26)

The slope of the LM curve is thus −lY/lR ≥ 0, while the effect of the real money
supply on the rate of interest is equal to 1/lR ≤ 0. Graphically, the LM curve is
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Figure 1.8: Derivation of the LM curve

derived as in Figure 1.8.2 In that figure, the LM curve in the top right-hand panel is
obtained by trying different interest rates and completing the dotted rectangles. For
example, for R = RMAX, the relevant rectangle is made up of points A1A2A3A4.

We have shown with equation (1.26) that the LM curve, typically, slopes upwards
and shifts to the right if real money balances expand. A higher interest rate lowers
money demand, so national income must be higher to boost money demand back to
the unchanged level of money supply. A higher money supply or a lower price level
pushes up bond prices and thus lowers the interest rate. We note that the LM curve
is vertical for high rates of interest, and horizontal for low rates of interest (provided
we accept Keynes’ liquidity preference function as drawn in Figure 1.7).

The IS curve represents combinations of output Y and the rate of interest R for
which there exists aggregate spending balance. Formally, by using equations (1.21)–
(1.24) we derive the IS curve as follows:

Y = C(Y− T(Y)) + I(R) + G ⇒
dY = CY−T(1− TY)dY + IRdR + dG, (1.27)

or, after rearranging:

dY =
dG + IRdR

1− CY−T(1− TY)
. (1.28)

Increasing government spending stimulates output for a given level of the interest
rate. Students are invited to derive the IS curve graphically as well.

1.2.3 The AD curve

As we know from first-year courses in macroeconomics, the demand side of the
economy is in equilibrium if there is simultaneous spending and money market

2For the special case where the demand for money is additively separable and can be written as k(Y) +
l(R). This assumption facilitates the graphical derivation of the LM curve because it allows us to place
k (Y) and l (R) in separate panels in Figure 1.8.
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equilibrium. This demand-side equilibrium corresponds to the intersection of the
IS and LM curves and is summarized by the AD curve, that is those combinations
of output Y and the price level P for which there is money market equilibrium and
spending equilibrium. By using (1.26) and (1.28), the expression for the AD curve
can be obtained:

dY =
dG + (IR/lR)(M/P) [dM/M− dP/P]

1− CY−T(1− TY) + lY IR/lR
, (AD). (1.29)

The AD curve can also be derived graphically. This is left as an exercise for the
students.

The intuition is as follows. A higher price level erodes the real value of money
balances and thus exerts an upward pressure on the interest rate. This depresses ag-
gregate investment and thus lowers the aggregate demand for goods. Consequently,
the AD curve generally slopes downwards. A higher level of public spending or a
boost to the nominal money supply boosts aggregate demand and thus shifts out the
AD curve. The former case induces a rise, while the latter case a fall, in the interest
rate.

1.2.4 Effectiveness of fiscal policy

The output multiplier for public spending given in equation (1.28) equals the in-
verse of the marginal propensity to save out of income plus the marginal tax rate,
i.e. 1/[1− CY−T(1− TY)], and thus exceeds unity.3 This multiplier is relevant when
the interest rate is exogenous (i.e., when we consider only the IS curve) or if invest-
ment does not depend on the interest rate. It was first derived by a colleague of
John Maynard Keynes, namely Richard Kahn (1931). An instructive way to write
this multiplier is as follows:

dY
dG

= 1 + CY−T(1− TY) + C2
Y−T(1− TY)

2 + C3
Y−T(1− TY)

3 + · · ·

=
1

1− CY−T(1− TY)
. (1.30)

Let us assume for the sake of argument a marginal propensity to consume of three
quarters (CY−T = 3/4) and a marginal tax rate of one third (TY = 1/3). The impact
effect of a one million euro bond-financed increase in public spending yields a one
million euro increase in aggregate demand and national income. Of that increase in
national income one sixth of a million is saved and another one third of a million is
taken by the tax men. The remainder, i.e. half a million euros, is consumed and is
the second-round boost to national income. Of that second-round boost one twelfth
of a million is saved and one sixth of a million is brought to the tax men. A quarter
of a million is left for consumption and induces the third-round boost to national
income. This multiplier process is continued ad infinitum leading to a total increase
in national income of two million euros (namely 1 + 0.5 + 0.25 + 0.125 + · · · ) and
corresponding to a Kahn multiplier of two. Hence, for every euro pumped by the
government into the economy, national income expands by two euros.

3Since CY−T and TY are both between zero and one, it follows that 0 < CY−T (1− TY) < 1 so that
the multiplier exceeds unity. Aggregate saving is defined as S(Y) ≡ Y − C(Y − T(Y)) − T(Y) so that
the marginal propensity to save out of income equals SY ≡ (1− TY)(1− CY−T), which clearly satisfies
0 < SY < 1. The savings identity furthermore implies that (1− TY)CY−T ≡ 1− (SY + TY), from which it
follows that 0 < SY + TY < 1. The multiplier can thus also be written as dY/dG = 1/ (SY + TY).
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The magnitude of the Kahn multiplier is smaller if saving leakage and tax leak-
age are substantial, that is if the marginal propensity to consume is small and the
marginal tax rate is large. For example, if the marginal tax rate is zero, the multiplier
is four instead of two. For a small open economy, this multiplier is smaller again if
there is a lot of import leakage (see Chapter 2).

Expression (1.29) shows the Keynesian multiplier for a bond-financed rise in pub-
lic spending, which is relevant when the interest rate is endogenous (i.e., when we
consider both the IS and the LM curve) and the price level is rigid (at least in the short
run). This multiplier is thus only relevant under the assumption of sticky prices. The
Keynesian multiplier is smaller in magnitude than the Kahn multiplier given by ex-
pression (1.30) on account of crowding out of private investment. This is captured
by the additional positive term lY IR/lR in the denominator of the Keynesian mul-
tiplier. The intuition is as follows. A bond-financed rise in public spending leads
to a greater supply of government bonds and thus exerts a downward pressure on
bond prices and an upward pressure on interest rates. This leads to a fall in private
investment and a fall in aggregate demand and employment, so that the Keynesian
multiplier is smaller in magnitude than the Kahn multiplier. The extent of crowding
out is more significant if private investment is very sensitive to changes in the inter-
est rate (|IR| large) while money demand is not very sensitive (|lR| small) to changes
in the interest rate and sensitive to changes in national income (lY large).

1.3 Schools in macroeconomics

We now have all the ingredients that are needed to characterize the different schools
of thought in macroeconomics. We briefly distinguish: (1) the classical economists,
(2) the Keynesians, (3) proponents of the neo-Keynesian synthesis, (4) the mone-
tarists, (5) the new classical economists, (6) the supply siders, and last but not least
(7) the new Keynesians.

1.3.1 Classical economists

Names that spring to mind are Adam Smith [1723–1790], David Hume [1711–1776],
David Ricardo [1772–1823], John Stuart Mill [1806–1873], Knut Wicksell [1851–1926],
Irving Fisher [1867–1947], and Keynes [1883–1946] in the Treatise on Money of 1930.
We can roughly characterize the classical view on money by the crude quantity the-
ory of money. In terms of our model, the LM curve (1.25) is replaced by a special
case in which money demand does not depend on the interest rate:

M = kPY. (1.31)

Hence, there is no reason to hold money for speculative purposes (lR ≡ 0), and the
velocity of circulation, 1/k, is constant. The classical view regarding the supply side
of the economy is characterized by a strong belief in markets and the efficacy of the
price mechanism. In terms of our model, this implies flexible wages and prices, per-
fect foresight, labour market clearing, and a vertical AS curve. See Figure 1.9. Hence,
fiscal and monetary policy cannot affect the levels of employment and output.

The classical model can be seen as a special case of the IS-LM-AS model devel-
oped above, with lY = k = constant and lR = 0. This means that the LM curve
is vertical, so that fiscal policy is useless in affecting employment and output. In-
creasing government spending leads to a higher rate of interest and full crowding
out of private investment, but not to changes in the price level. Monetary policy, on
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Figure 1.9: Monetary and fiscal policy in the classical model



CHAPTER 1: REVIEW OF THE AD-AS MODEL 23

the other hand, has no effects on the real sphere of the economy, and only leads to a
higher price level. This property is called the neutrality of monetary policy. The clas-
sical economists thus believed in a dichotomy: the real and monetary sectors could
essentially be studied separately. Demand-side policies merely affect the interest rate
and/or the price level, while supply-side policies affect the real wage, employment,
and output.

1.3.2 Keynesians

Will we ever know what Keynes really meant when he wrote the General Theory?
Probably not, but a number of insights into what Keynes may have meant can be
obtained by following Modigliani’s (1944) suggestion that the main Keynesian inno-
vations consist of the liquidity preference schedule and the assumption of nominal
wage rigidity.

With respect to his liquidity preference theory of money, Keynes himself used the
classical economists as scapegoats. In doing so, he used the gimmick of the liquidity
trap. Suppose, Keynes argued, that the rate of interest is so low that the economy
is on the horizontal part of the LM curve. Suppose, furthermore, that the level of
spending at that interest rate is too low to support full employment of the factors of
production, and that prices and wages are flexible. In terms of Figure 1.10, the rate
of interest is RMIN, and output is Y0 < Y∗. Keynes came to the startling conclusion
that the classical model is inconsistent in that case. Aggregate supply is vertical at
Y = Y∗, but demand falls short of Y∗, and no amount of price/wage reductions will
restore equilibrium. The self-correcting feature of the market, which is of course the
hallmark of classical theory, simply does not work.

Monetary policy will not help, according to Keynes, because the additional money
will simply be absorbed by investors with no noticeable effect on the interest rate.
Fiscal policy, on the other hand, will work really well. In terms of Figure 1.10, the
additional government spending will stimulate aggregate demand (corresponding
to a shift in the IS curve) and hence employment and output.

Nowadays, the liquidity trap is seen as a nice way to get people to take notice
of the Keynesian ideas. In fact, Keynes’ classical colleague and contemporary, A.
C. Pigou, quickly pointed out that Keynes’ inconsistency result disappears once a
wealth effect is introduced in the consumption function. In that case, the position
of the IS curve will depend on real money balances M/P, the AD curve will slope
downwards (and not be vertical, as Keynes suggested), and full employment will be
restored provided prices and wages are flexible.

1.3.3 The neo-Keynesian synthesis

The neo-Keynesian synthesis was developed by neoclassical economists who al-
lowed for a short run with Keynesian properties and a long run with classical prop-
erties. Since it contains classical and Keynesian elements, the approach is often re-
ferred to as the neoclassical synthesis. Names of neo-Keynesian synthesizers: Franco
Modigliani [1918–2003], Paul Samuelson [1915–2009], James Tobin [1918–2002], Ro-
bert Solow [1924–], and in the 1950s and 1960s virtually all macroeconomists ex-
cept Milton Friedman [1912–2006]. There are actually different versions of the neo-
Keynesian synthesis, depending on the assumption made about the labour market.
The first version maintains (as does Modigliani, 1944) that nominal wages are rigid
downwards. This opens up the possibility of unemployment and an upward slop-
ing section of the AS curve (see section 1.1.4 and Figure 1.6). To get some adjustment
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Figure 1.10: Monetary and fiscal policy in the Keynesian model
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over time, we add a Phillips curve relationship to the model, i.e. Ẇ = αu (α < 0),
where u is unemployment, defined as u ≡ (NS − N)/NS. Introduction of a Phillips
curve thus makes the change in nominal wages dependent on the amount of unem-
ployment. As a result, full employment will be restored after some time.

The second version of the neoclassical synthesis allows nominal wages to be fully
flexible, but uses the AEH (1.14) to make the expected price level a slowly moving
variable. The model corresponding to the neo-Keynesian synthesis corresponds to
the AS curve (1.20), the AD curve (1.29), and the AEH (1.14). Again, full employment
will eventually be restored, depending on the speed at which agents adapt to expec-
tational errors. The effects of fiscal and monetary policy are illustrated in Figure 1.11.
A bond-financed rise in public spending from G0 to G1 induces an outward shift of
the IS curve and thus the AD curve. On impact, output rises above Y∗ even though
there is some crowding out of private investment on account of the rise in the rate of
interest. The impact multiplier is, in fact, smaller than the Keynesian multiplier con-
tained in expression (1.29). The reason is that the rise in aggregate demand caused by
the increase in public spending causes the price level to rise from P0 to P1 on impact
(through an upward move along the initial aggregate supply curve, AS(Pe = P0)).
The higher price level induces a contraction in the supply of real money balances
and thus causes a rise in the interest rate and a fall in aggregate demand (associated
with the backward shift in the LM curve). Consequently, the short-run multiplier is
smaller than the Keynesian multiplier. We thus conclude that the short-run employ-
ment and output multipliers for a bond-financed rise in public spending are lower if
saving, tax, and import leakages are substantial, crowding out of private investment
is substantial, and the price level rises a lot. The short-run effects on employment
and output are small if the AD curve is relatively flat and the AS curve is relatively
steep. In subsequent periods, households revise their expectations regarding the
price level upwards. This lowers the expected real wage and the supply of labour.
Hence, the AS curve shifts backwards over time until output and employment are
cut back to their equilibrium levels. The long-run effect of the fiscal expansion is
thus merely a rise in the price level with no effect on employment or output.

Figure 1.11 may also be used to investigate the effects of an expansion of the
nominal money supply from M0 to M1 under the AEH. The outward shift of the LM
curve lowers the interest rate and pushes up aggregate demand. Consequently, the
AD curve shifts out. On impact the price level also rises, which attenuates the rise in
national income. Over time the expected price level is revised upwards, and the AS
curve shifts to the left until the original equilibrium of employment and output are
reached again. In the short run a monetary expansion thus induces a boom in em-
ployment and output and a fall in the interest rate, but in the long run employment
and output are unaffected and the price level rises in proportion with the rise in the
nominal money supply. Although money is not neutral in the short run, it is neutral
in the long run.

1.3.4 The monetarists

Names: Milton Friedman [1912–2006] and his friends. They assumed that the inter-
est sensitivity of investment is very high (i.e. |IR| large) so that the IS curve is very
flat. Consequently, fiscal policy leads to strong crowding out of private investment.
Furthermore, the monetarists, like the classical economists, had strong sympathy for
the quantity theory of money which implies a steep or vertical LM curve. In contrast
to the classical economists, Friedman does not accept the REH. Instead, he adopted
the AEH. Fiscal policy is, under monetarist assumptions, unable to influence em-
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Figure 1.11: Monetary and fiscal policy in the neo-Keynesian synthesis model
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ployment and output. This is why the monetarists were so vehemently against the
Keynesians who believed in pump priming the economy in recessions.

Undoubtedly, the monetarists’ assumptions imply that monetary policy has real
effects. Indeed, from the quantity theory we have M = kPY, so that dM > 0 implies
that dPY = (1/k)dM > 0. The distribution of the total effect (dPY) over real effects
(dY) and nominal effects (dP) depends on the assumptions made about the labour
market and the formation of expectations. Under the AEH there are temporary ef-
fects on real output. The policy maker may therefore be tempted to use a monetary
expansion to combat unemployment. According to the monetarists, however, policy
makers are typically not very good at timing monetary policy. There are long and
variable time lags before a macroeconomic problem is recognized, before an appro-
priate macroeconomic policy is implemented, and before a policy has the required
effect. As a result, monetary policy can actually accentuate business cycle fluctua-
tions in the economy (if the policy is set too late, for example). This is why Friedman
(1968) suggests that the central bank should follow a constant growth rule for some
monetary aggregate and not tinker with monetary policy in order to try to influence
aggregate demand and employment.

1.3.5 New classical economists

Names: Robert Lucas [1937–], Thomas Sargent [1943–], Robert Barro [1944–], and
Edward Prescott [1940–]. Natural successors of the classical economists. These mod-
ern day classical economists stress mathematical techniques and are called “fresh
water” economists, because they work (or used to) at universities near the big lakes
in the Mid West (Chicago, Carnegie-Mellon, Minneapolis) and should be contrasted
with the more Keynesian, “salt water” economists who work at US universities on
the East Coast (Harvard, MIT, Yale, Princeton).

These new classical economists have shed themselves more thoroughly of the
neo-Keynesian synthesis than the monetarists, and firmly back classical ideas such
as flexible prices and wages, rational expectations or perfect foresight, the efficiency
of the market, and full employment. All fluctuations that we observe in the economy
are due not to nominal rigidities but to rational agents responding to the incentives
as they observe them. Strong endorsement of rational expectations and microeco-
nomic underpinning of macroeconomic relations, such as the consumption function,
the investment function, and the labour market. An early gimmick that was used
to get the profession’s attention was the so-called policy ineffectiveness proposition
(PIP), according to which the policy maker either cannot (strong PIP) or should not
(weak PIP) use countercyclical policy–see also the discussion of the classical proposi-
tion that monetary policy is neutral at the end of section 1.3.1. This school of thought
will be discussed in more detail in Chapter 5.

1.3.6 Supply siders

Names: Arthur Laffer [1940–] and Robert Mundell [1932–]. These are radical conser-
vatives who despise government intervention in markets and emphasize the distort-
ing effects of taxation, beautifully criticized by Krugman (1994). Their policy advice
was quite simple: cut tax rates and thus stimulate the economy. They argued that
there was no need to cut government spending because the tax cut would pay for it-
self. Reagan loved the story, especially as it suggested that you could have your cake
and eat it: no need to restrain public spending on defence while having an excuse to
substantially cut the tax rate.
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The central element was the so-called Laffer curve, first drawn on the back of an
envelope. This Laffer curve can be derived from a small modification of our model
of the labour market, namely equations (1.7) and (1.12). Assume that there is only
one tax, levied on labour income and paid by households, denoted by tL, and that
there is perfect foresight (so that Pe = P). The labour market model is then given by:

(1− tL)W/P = g(NS), W/P = FN(ND, K̄), ND = NS = N. (1.32)

It is easy to see (from (1.12)) that 1− tL plays the same role as P/Pe in the expression
for the AS curve (1.20). Ignoring potential tax effects on capital accumulation (and
setting dK̄/K̄ = 0) we can write the relative change in national income as:

dY
Y

= −ωNεDεS
εD + εS

dtL
1− tL

. (1.33)

This expression can be used to find the relative change in revenue from the tax on
labour in real terms (i.e. T ≡ tLWN/P = tLωNY):

dT
Y
≡ ωN

(
dtL + tL

dY
Y

)
= ωN

[
dtL − tL

ωNεDεS
εD + εS

dtL
1− tL

]
, (1.34)

where we assume that the share of labour in value added (ωN) is constant (i.e.,
dωN = 0) as will be the case for a Cobb-Douglas production function (see Inter-
mezzo 1.1). The first term within square brackets on the right-hand side shows the
direct revenue (also called the tax-rate) effect of the labour tax for a given level of
wage income. The second term within square brackets on the right-hand side shows
the tax-base effect. If the labour tax rate is increased and labour supply slopes up-
wards (εS > 0), then labour supply and employment decrease. Hence, labour tax
revenue will fall as well. We note that, for small labour tax rates (tL ≈ 0), the (neg-
ative) tax-base effect is dominated by the (positive) tax-rate effect on public revenue
so that public revenue increases with the tax rate.

For large labour tax rates, however, the (positive) tax-rate effect can be dominated
by the (negative) tax-base effect, especially if labour demand and labour supply are
very elastic. In that case, labour tax revenue declines as the tax rate increases. Con-
versely, cutting the labour tax rate may actually boost revenue. Similar reasoning led
Laffer to suggest that the revenue function would look like a parabola: for high tax
rates the disincentive effect of the tax would be so strong that revenue would actu-
ally decline as the tax rate is increased further. This occurs beyond point A in Figure
1.12 at which tax revenue is maximized. If the tax rate is small, e.g. at point B, a rise
in the tax rate boosts public revenue. Beyond point A, say at point C, a reduction in
the tax rate would lead to an increase in tax revenue. Clearly, when the tax rate is
zero or unity, tax revenue is zero.

Although Laffer’s advice itself is logically consistent and appeals to wishful thin-
kers, it was empirically irrelevant: the US economy was at a point like B in Figure
1.12. As a result, huge deficits and a massive build-up of government debt occurred
despite substantial tax cuts in the US during the Reagan years.

1.3.7 New Keynesians

Names: (1970s) George Akerlof [1940–], Edmund Phelps [1933–], John B. Taylor
[1946–], Stanley Fischer [1943–], (1980s) Olivier-Jean Blanchard [1948–], Michael Wo-
odford [1955–], and Greg Mankiw [1958–]. These are “salt water” economists who



CHAPTER 1: REVIEW OF THE AD-AS MODEL 29

Figure 1.12: The Laffer curve

derive their main inspiration from the insights of John Maynard Keynes. Markets
may not be as perfect as the classical economists suggest. Early new Keynesians
accepted the REH but stressed the existence of nominal rigidities, arising from, for
example, multi-period nominal wage contracts. Such rigidities invalidate the PIP of
the new classical economists. Hence, new Keynesians argue that the government
can and should stabilize the economy, even under REH.

The most recent wave of new Keynesian economics is more micro-based. The
predominance of imperfect competition, coordination failures, and credit restrictions
are stressed. Although it is too early to call in the jury for a verdict, it is clear that
this is a very promising avenue of research. Chapter 11 gives some of the details.

1.4 Punchlines

In a closed economy, aggregate demand effects can be found with the aid of the IS-
LM model (open economy issues are studied in Chapter 2). A rise in public spending
sets in motion a multiplier process which leads to a larger rise in national income.
However, the multiplier process is dampened by saving and tax leakages. In ad-
dition, there is crowding out of private investment on account of the higher interest
rate. An expansion of the nominal money supply or a fall in the aggregate price level
also increases aggregate demand and employment. In this case the interest rate falls
so that private investment is boosted.

Aggregate supply is essentially determined by equilibrium in the labour market.
Labour demand rises if there is a cut in the real wage or a boost to the capital stock.
The wage elasticity of labour supply is positive if the substitution effect dominates
the income effect in labour supply. Labour supply slopes downwards in the opposite
case, with the income effect dominating the substitution effect. Due to asymmetry in
information, firms observe the wages to be paid to workers while households have to



30 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

form expectations regarding the aggregate price level when deciding on their labour
supply. Hence, equilibrium employment and the aggregate supply of goods rises if
the capital stock expands, the labour income tax falls, and if there is an unanticipated
rise in the price level.

Macroeconomic equilibrium occurs when aggregate demand and aggregate sup-
ply of goods match up. The easiest case is the one assumed by classical economists:
a quick clearing of all markets and perfect foresight. In that case, monetary policy
is neutral in the sense that it cannot affect the real wage, employment, or output,
neither in the short nor in the long run. A doubling of the money supply simply
leads to a doubling of the aggregate price level. A fiscal expansion is fully crowded
out by a fall in private investment on account of a rise in the interest rate, so that
neither employment nor output is affected. Hence, only supply-side policies, such
as changes in the capital stock or in the various tax rates, can affect employment and
output. Modern day versions of the classical economists are the new classicals, also
called the “fresh water” economists, who stress rational expectations in stochastic
environments and microeconomic foundations of macroeconomic relationships. A
related breed of macroeconomists are the supply siders who believe in cutting taxes
as this would boost tax revenue and alleviate the need to cut public spending. The
supply siders were very influential in the 1980s, but have largely been discredited.

The older variety of Keynesian economists assumed sticky prices in the short run,
so that employment and output were mainly determined by aggregate demand in
the short run. A recent school of new Keynesians give the microeconomic underpin-
nings by stressing imperfect competition, coordination failures, and credit restric-
tions. The neo-Keynesian synthesis allows for a Keynesian short run and classical
long run by introducing the assumption of adaptive expectations regarding the price
level. In the short run the multiplier associated with a fiscal expansion is further re-
duced due to the rise in the price level. This leads to a contraction in real money
balances, a further rise in the interest rate, and thus a dampening of the expansion
in aggregate demand. Over time households revise their expectations upwards. As
a result, aggregate supply and employment fall until the original equilibrium is re-
stored again. The long-run output and employment multipliers for a rise in govern-
ment spending are thus zero because any expansion of aggregate demand is fully
offset by reductions in private investment caused by a higher interest rate.

Monetarists are somewhere in between the classical and Keynesian economists.
They allow for adaptive expectations, but believe in the ineffectiveness of fiscal pol-
icy and the potential harmfulness of using monetary policy to manage aggregate
demand. Monetarists believe in long and variable time lags in monetary policy and
therefore advocate a constant and modest rate of monetary growth. Clearly, mone-
tarists are also deeply suspicious of using fiscal policy to fight unemployment.

Further reading

The classic statement of the IS-LM model is presented by Hicks (1937). Mathemati-
cal treatments of the IS-LM approach published in the 1970s include Branson (1972),
Burrows and Hitiris (1974), and Turnovsky (1977). Even at present, most interme-
diate textbooks still contain a thorough discussion of the IS-LM model. The ones
we are familiar with are: Burda and Wyplosz (2005), Mankiw (2007), Blanchard
(2006), Carlin and Soskice (2006), Gärtner (2016), and Abel and Bernanke (2005). The
expectations-augmented Phillips curve was proposed independently by Friedman
(1968) and Phelps (1967). Phelps et al. (1970) is a classic collection of the first wave
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of articles aiming to improve the microeconomic foundations of macroeconomics.
Gordon (1974) presents a nice overview of the discussion between the monetarist
Friedman and his various critics. Students interested in the historical aspects of the
quantity theory of money should consult Laidler (1991). Feldstein (1986) presents an
interesting discussion of supply side economics. Mankiw and Romer (1991) present
a number of key articles in the new Keynesian school. To celebrate the arrival of a
new millennium a number of very interesting articles have appeared giving an over-
view of twentieth century developments in macro–see Blanchard (2000) and Wood-
ford (1999). Snowdon, Vane, and Wynarczyk (1994) also present a good overview
of the various schools of thought. Klamer (1984) contains interviews with some of
the principal new classical economists and some critics of this approach. Students
interested in a thorough treatment of labour demand should refer to Hamermesh
(1993). Recently, a large literature has been developed on learning and expectations
formation. An excellent but rather advanced textbook on this material is the one by
Evans and Honkapohja (2001).





Chapter 2

The open economy

The purpose of this chapter is to discuss the following issues:

1. How do we add the international sector to the IS-LM model?

2. What is the Mundell-Fleming contribution?

3. What are the implications of openness on the effects of fiscal and monetary
policy? How do the degree of capital mobility and the exchange rate system
affect the conclusions?

4. How can we introduce short-run aggregate supply into the open economy mo-
del?

5. How are shocks transmitted across countries?

2.1 Some international bookkeeping

From national income accounting principles we know that for the open economy
aggregate output can be written as:

Y ≡ C + I + G + (EX− IM), (2.1)

where Y is aggregate output, C is private consumption, I is investment, G is gov-
ernment consumption, EX are exports, and IM are imports. Aggregate spending by
domestic residents is called absorption and is defined as A ≡ C + I + G. Exports are
added to domestic absorption in the calculation of aggregate output because foreign-
ers also spend on our goods, but imports must be deducted because what we import
(i.e. parts of C, I, and G) does not lead to domestic production.

In view of the definition of absorption A, equation (2.1) can also be written as:

Y ≡ A + (EX− IM), (2.2)

which says that income equals aggregate spending by domestic residents plus net
exports (the term in brackets).

We also recall that aggregate output in an economy can be measured in differ-
ent manners. Particularly, total output produced within the country is measured
by gross domestic product (GDP), whereas total output produced by residents of
the country (anywhere in the world) is measured by gross national product (GNP).
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For the first definition the relevant criterion is “where the output is produced” and
for the second definition “by whom it is produced”. The difference between GNP
and GDP therefore depends on net factor payments received from abroad (such as
income from capital in the form of interest and dividends, and labour income re-
ceived by domestic residents from abroad). In practice we shall ignore the difference
between the two concepts regarding aggregate output.

Yet another definition is obtained from (2.1) by adding international transfer re-
ceipts TR and deducting net taxes T (total taxes minus domestic transfers) on both
sides:

Y + TR− T ≡ C + I + (G− T) + (EX + TR− IM), (2.3)

where the left-hand side of (2.3) gives the definition of disposable income of resi-
dents. By noting that aggregate saving by the private sector S is defined as S ≡
Y + TR− T − C, equation (2.3) can be written as:

(S− I) + (T − G) ≡ (EX + TR− IM) ≡ CA. (2.4)

The current account surplus CA is identically equal to the private sector savings sur-
plus S− I plus the government budget surplus T − G. The current account surplus
measures the rate at which the aggregate economy is adding to its net external as-
sets: by spending less than your income (as a nation) you build up claims on the rest
of the world. Hence, ignoring valuation changes of the existing stock of net foreign
assets (NFA) we have:

∆NFA ≡ CA, (2.5)

or, equivalently,

∆NFA ≡ (S− I) + (T − G). (2.6)

Hence, a country for which S = I and G > T is out of necessity running down its
stock of net foreign assets (it is “borrowing from the rest of the world”).

As a final step we must link the situation of the balance of payments to what
happens in the financial sector by means of some elementary money accounting. In
equation (2.6) the aggregate change in net foreign assets is determined (i.e. lump-
ing together all sectors of the economy such as the central bank, commercial banks,
treasury, and the non-bank private sector). We denote what happens to the central
bank’s net foreign asset position by ∆NFAcb. The monetary authority’s balance sheet
can be written (in stylized form) as shown below.
Here NFAcb includes foreign exchange reserves net of liabilities to foreign official
holders, and DC includes securities held by the central bank (such as T-bills), loans,
and other credit. High powered money consists of currency CP (cash in vaults and
currency in the hands of the public) plus commercial bank deposits at the central
bank RE (so that H ≡ CP + RE). High powered money is often referred to as “base
money”.

By taking first differences we can derive from the central bank’s balance sheet
that the change in the net foreign asset position of the central bank is equal to the
difference between the rate of high powered money creation minus the rate of do-
mestic credit creation:

∆NFAcb ≡ ∆H − ∆DC. (2.7)
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Balance sheet of the central bank

Assets Liabilities

Net foreign assets NFAcb

Domestic credit DC High powered money H
——– ——

Equation (2.7) demonstrates an important mechanism that was first suggested by the
eighteenth century Scottish philosopher and economist David Hume. If the mone-
tary authority intervenes in the foreign exchange market (by buying or selling for-
eign exchange) the stock of net foreign assets changes and, by (2.7), the stock of high
powered money changes as well, i.e. ∆H = ∆NFAcb. Hence, foreign exchange sales
(purchases) automatically reduce (increase) the stock of high powered money (and,
by the money multiplier, the money stock as well; see below).

The monetary authority can (temporarily) break this automatic link between H
and NFAcb by engaging in so-called sterilization operations. In terms of (2.7) the cen-
tral bank can sterilize the effect of changes in its net foreign asset position by manip-
ulating domestic credit, i.e. ∆H = 0 if ∆DC = −∆NFAcb. For example, if the central
bank sells foreign exchange reserves (so that ∆NFAcb < 0) and simultaneously uses
an expansionary open market operation (a purchase of domestic bonds on the open
market) of appropriate magnitude, so that ∆DC = −∆NFAcb > 0, then ∆H = 0.

In a fractional reserve banking system, commercial banks are required to hold a
fraction of their deposits in the form of reserves with the central bank (RE). The
money stock, MS, as measured by the sum of deposits at the commercial banks, D,
plus currency, CP, is then a multiple of the stock of high powered money:

MS ≡ D + CP = µH ⇔ ∆MS = µ∆H, (2.8)

where µ > 1 is the money multiplier.1

2.2 The IS-LM model for a small open economy

Up to this point all we have done is manipulate some unexciting (but rather es-
sential) identities. We can give the story some theoretical content by specifying the
behavioural equations of the model. First, we write (2.2) in the form of a condition
for spending equilibrium in the aggregate goods market as:

Y = A(R, Y) + G + X(Y, Q), (2.9)

1Assume that the commercial banks are required by law to hold a fraction c1 of their deposits as re-
serves with the central bank, RE= c1D, where 0 < c1 < 1. Suppose furthermore that the public desires
a constant ratio between currency holdings and deposits, say CP/D = c2. Then, since MS ≡ D + CP =
(1 + c2)D and H = (c1 + c2)D, we can derive that MS = µH, where µ ≡ (1 + c2)/(c1 + c2) > 1. A higher
legal reserve requirement or a lower desired currency-deposits ratio both decrease the money multiplier.
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where A(R, Y) is the part of domestic absorption that depends on the rate of interest
R and the level of aggregate output Y, and G is the exogenous level of government
spending. X(Y, Q) is net exports (≡ EX−IM) expressed as a function of output and
the relative price of foreign goods Q ≡ EP∗/P, where E is the nominal exchange
rate (domestic currency per unit of foreign currency), P∗ is the foreign price level,
and P is the domestic price level. We refer to Q as the real exchange rate. In view of
the definition of the nominal exchange rate, a depreciation (or devaluation) of the
domestic currency is represented by an increase in E.

Since investment depends negatively on the interest rate and the marginal propen-
sity to consume out of current income is between zero and unity, we have that
AR < 0 and 0 < AY < 1. Furthermore, the net export function satisfies XY < 0
(since imports depend positively on income) and XQ > 0 (as it is assumed that
the Marshall-Lerner condition holds–see also equations (2.38)–(2.39) below). Equation
(2.9) is the open economy IS curve. Like its closed economy counterpart, it is down-
ward sloping in (R, Y) space, but the import leakage makes it steeper than for the
closed economy.

The money market can be modelled in the standard fashion.

MD/P = l(R, Y), (2.10)

MS = µ
[
NFAcb + DC

]
, (2.11)

MD = MS = M, (2.12)

where MD and MS are, respectively, money demand and supply. The money de-
mand function features partial derivatives lR < 0 and lY > 0 (see Chapter 1). Equa-
tions (2.10)–(2.11) define the open economy LM curve, which is upward sloping in
(R, Y) space. The modification brought about by the recognition of the openness
of the economy consists of the potential endogeneity of the money supply through
changes in the stock of net foreign assets of the central bank. The model is closed by
assuming that both domestic and foreign prices are fixed (and normalized to unity,
i.e. P∗ = P = 1), and by making an assumption regarding the degree of international
capital mobility.

We can distinguish several degrees of “financial openness” of an economy. First,
it can be assumed that the small open economy (SOE) has no trade in financial assets
with the rest of the world (ROW). This extreme case is referred to as one of capi-
tal immobility. This case was relevant during the 1940s and early 1950s when many
countries had capital controls. A second case is that of perfect capital mobility. Finan-
cial capital is perfectly mobile and flows to that location where it earns the highest
yield. Domestic and foreign bonds are perfect substitutes and portfolio adjustment is
instantaneous so that yields are equated across the world. This case is often deemed
to be relevant to the situation from the 1980s onward. Finally, the intermediate case
is referred to as one of imperfect capital mobility.

The balance of payments, B, can be written as the sum of the current account and
the capital account. Ignoring net international transfers, the former coincides with
the trade account:

B ≡ X(Y, Q) + KI(R− R∗) ≡ ∆NFAcb, (2.13)

where B is the balance of payments, KI is net capital inflows (depending on the in-
terest differential), and R∗ is the interest rate in the ROW. If KI is positive this means
that domestic residents are selling more financial assets (such as bonds) to the ROW
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Figure 2.1: The degree of capital mobility and the balance of payment

than they are buying from the ROW. In that case the country as a whole is a net bor-
rower from the ROW. The three assumptions regarding capital mobility that were
mentioned above can now be made more precise.

(i) Capital Immobile Capital immobility means that KI(R−R∗) ≡ 0 no matter what
the interest differential is. In this case, the balance of payments equilibrium co-
incides with equilibrium on the current account, i.e. B = ∆NFAcb = X(Y, Q) =
0.

(ii) Capital Perfectly Mobile With perfect capital mobility, arbitrage in the capital
markets and the resulting capital flows ensure that R = R∗ always. This case
can be represented mathematically by assuming that KIR → ∞.

(iii) Capital Imperfectly Mobile For the intermediate case of imperfect capital mo-
bility, differences between R and R∗ can exist in equilibrium and 0 < KIR � ∞.

Figure 2.1 shows the balance of payments (BP) curves in (R, Y) space for the different
cases. In each case, the BP curve depicts combinations for R and Y for which the
balance of payments is in equilibrium (B = 0). The slope of the BP curve can be
obtained by differentiating (2.13):(

dR
dY

)
B=0

= − XY
KIR
≥ 0. (2.14)

For case (i), the BP curve does not depend on the interest rate (KIR = 0) and is thus
vertical. In case (ii), KIR → ∞ so that the BP curve is horizontal. Finally, for case (iii),
KIR is positive but finite, so that the BP curve is upward sloping.

2.2.1 Fixed exchange rates and immobile capital

The IS curve is given by (2.9), the LM curve in (2.10)–(2.12), and the BP curve in
(2.13) (with B = 0 and KI ≡ 0 imposed). For the case under consideration the
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Figure 2.2: Monetary and fiscal policy with immobile capital and fixed exchange
rates

macroeconomic system can be summarized by:

Y = A(R, Y) + G + X(Y, E), (2.15)

µ
[
NFAcb + DC

]
= l(R, Y), (2.16)

∆NFAcb = X(Y, E), (2.17)

where Y, R, and NFAcb are endogenously determined whilst E, DC, and G are exoge-
nous policy variables. Graphically the situation in the economy can be drawn as in
Figure 2.2. The initial IS-LM-BP equilibrium is at point e0 where output is Y0 and the
interest rate is R0. For points to the right of the BP curve output and imports are too
high and the current account is in deficit (X < 0), with the reverse holding for points
to the left of the BP curve. It is assumed that output is below full employment output
YF and that the policy maker wishes to conduct economic policy aimed at increasing
employment and output.

Since the money supply is generally endogenous in the open economy, operating
under fixed exchange rates, we must be precise about what is meant by monetary
policy. An open market operation in the form of a purchase of bonds by the central
bank leads to an increase in domestic credit ∆DC > 0, and to an increase in the
money supply (the right-hand side of (2.16)). In terms of Figure 2.2, the LM curve
shifts from LM(M0) to LM(M1) in the short run. At point e′, output is higher and
the interest rate is lower than before the shock, but the current account is in deficit
(B = X < 0). Since the country is spending more than it is earning, the demand for
foreign exchange exceeds the supply of foreign exchange. The monetary authority
is committed to maintaining a fixed exchange rate, however, and it must satisfy the
excess demand for foreign exchange by running down its international reserves, i.e.
∆NFAcb < 0. In the absence of sterilization this means that the money stock starts
to decrease again. This causes the LM curve to gradually shift to the left, and the
economy moves along the IS curve back to point e0. Ultimately, the initial increase
in domestic credit is exactly offset by the loss in foreign exchange reserves, and only
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the composition (but not the size) of the central bank’s portfolio has been changed
as a result of the monetary policy.

Now consider what happens if the policy maker wishes to stimulate the econ-
omy by means of fiscal policy, consisting of a bond-financed increase in government
spending. In this scenario the Treasury issues new bonds to pay for the additional
government spending, thus ensuring that the money supply stays constant as the
level of domestic credit is unchanged. The money raised by the bond sale is spent
again on the additional government goods. Assume furthermore that government
spending is entirely on domestically produced goods (a simplification that is relaxed
below in section 2.3). In terms of Figure 2.2, the IS curve shifts from IS(G0) to IS(G1)
and the new short-run equilibrium is at point e′′. In view of the increase in output,
imports are higher, the current account is in deficit (X < 0), and the money supply
gradually declines (from M0 to M2) as the central bank foreign exchange reserves
dwindle. The ultimate equilibrium is at point e1, output is unchanged, and the in-
terest rate is higher.

In conclusion, neither monetary nor fiscal policy can (permanently) raise the level
of income in the absence of capital mobility. The balance of payments is only in
equilibrium if the current account is, but the latter does not itself depend on the rate
of interest. This very strong conclusion is modified once the extreme assumption of
capital immobility is relaxed.

2.2.2 Fixed exchange rates and perfect capital mobility

With perfect capital mobility, the BP curve is horizontal and R = R∗ always. For this
case the macroeconomic system is given by:

Y = A(R∗, Y) + G + X(Y, E), (2.18)

µ
[
NFAcb + DC

]
= l(R∗, Y), (2.19)

where the endogenous variables are Y and NFAcb, whereas the exogenous variables
are E, DC, and G. In terms of Figure 2.3, the initial equilibrium is at e0. Monetary
policy, consisting of an increase in domestic credit, shifts the LM curve from LM(M0)
to LM(M1). At point e′ the domestic interest rate is below the world interest rate and
a massive capital outflow would occur, which worsens the capital account. Since
output (and hence imports) is higher, the current account is also worse than at point
e0. The money supply will decrease (instantaneously) as investors purchase foreign
exchange in order to buy profitable foreign financial assets. Since the exchange rate is
fixed, the monetary authority sells them the required foreign exchange, which means
that its stock of net foreign assets decreases, i.e. ∆NFAcb < 0. The adjustment occurs
instantaneously, since all that happens is a portfolio reshuffling by investors. Hence,
the economy stays at point e0. The shift in LM due to the increase in domestic credit
is immediately reversed by the loss of foreign exchange reserves, or, in terms of (2.7),
∆NFAcb + ∆DC≡ ∆H = 0. Monetary policy is totally ineffective even in the short
run.

Fiscal policy, on the other hand, is very effective in this case. Consider again
a bond-financed increase in government spending. In terms of Figure 2.3, the IS
curve shifts to the right from IS(G0) to IS(G1). This puts upward pressure on the
domestic interest rate (at point e′′) which causes massive net capital inflows. As in-
vestors from the ROW wish (in net terms) to buy domestic securities, the supply of
foreign exchange outstrips the demand for foreign exchange. In order to maintain
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Figure 2.3: Monetary and fiscal policy with perfect capital mobility and fixed ex-
change rates

the fixed exchange rate, the central bank purchases the excess supply of foreign ex-
change and its stock of net foreign assets, and hence the money supply increases
(instantaneously), i.e. ∆MS = µ∆NFAcb > 0. This causes the LM curve to shift from
LM(M0) to LM(M1). Only at point e1 are the domestic and foreign interest rates
equated and is the money supply stabilized. Since capital is perfectly mobile, the
shift from e0 to e1 occurs instantaneously. Hence, fiscal policy is highly effective in a
small open economy operating under fixed exchange rates and experiencing perfect
capital mobility.

2.2.3 Flexible exchange rates with perfect capital mobility

Under flexible exchange rates, variations in the value of the domestic currency (E)
ensure that the balance of payments is always in equilibrium. Indeed, the exchange
rate is endogenously determined by balance of payments equilibrium, since it im-
plies that the demand for and supply of foreign exchange are equated:

B ≡ ∆NFAcb = 0 ⇔ X(Y, E) + KI(R− R∗) = 0, (2.20)

where we have set P∗ = P = 1 so that Q = E in the expression for net exports. Sup-
pose that there is a current account deficit, so that exports are smaller than imports.
Since exports give rise to a supply of foreign exchange, and imports cause a demand
for foreign exchange, this means that X < 0 represents an excess demand for for-
eign exchange. This excess demand for foreign exchange is met by capital inflows,
consisting of investors from the ROW buying domestic bonds. Since they have to
pay for these bonds, the capital inflow gives rise to a supply of foreign exchange. In
equilibrium, therefore, E adjusts until X(Y, E) = −KI(R− R∗) since only then does
demand equal supply in the foreign exchange market.

This has an important consequence for economic policy, since it implies that the
monetary authority has control over the domestic money supply under flexible ex-
change rates. The reason is that the central bank, by allowing the exchange rate to
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float freely, does not need to intervene in the foreign exchange market. This means
that its stock of net foreign assets is fixed, so that changes in domestic credit translate
directly into changes in the money supply.

The equilibrium exchange rate follows from the IS-LM equilibrium with R = R∗

imposed. By using (2.9)–(2.12) and imposing R = R∗, equilibrium in the money
market and the (demand side of the) goods market implies:

M = l(R∗, Y), (2.21)
Y = A(R∗, Y) + G + X(Y, E), (2.22)

where we have also substituted P = 1 in (2.21). Equation (2.21) represents money
market equilibrium at the given world interest rate R∗. Since the money supply
is constant, (2.21) determines a unique level of output that is independent of the
exchange rate. In terms of Figure 2.4, this curve is drawn as LL(M0) in panel (b).
Equation (2.22) represents domestic spending equilibrium at the world rate of in-
terest. Since a high value for E (a weak domestic currency) stimulates net exports,
(2.22) implies a positive relationship between output and the exchange rate that has
been drawn as the schedule YY in panel (b) of Figure 2.4. Indeed, the slope of the YY
schedule can be obtained from (2.22) as:(

dE
dY

)
YY

=
1− AY − XY

XQ
> 0. (2.23)

Monetary policy is highly effective in this case. In terms of Figure 2.4, an increase
in domestic credit shifts the LM curve in panel (a) from LM(M0) to LM(M1) and the
LL curve from LL(M0) to LL(M1). At point e′ the domestic interest rate is below the
world interest rate, and a massive capital outflow occurs. There is excess demand
for foreign exchange which leads to an instantaneous depreciation of the domestic
currency (from E0 to E1 in panel (b)). This stimulates net exports as domestic goods
are now cheaper to foreigners, and shifts the IS curve from IS(E0) to IS(E1). The
new equilibrium, which is attained instantaneously, is at point e1 where output is
increased.

Fiscal policy, in the form of a bond-financed increase in government spending,
turns out to be entirely ineffective (as was to be expected from the discussion sur-
rounding the LL and YY curves). In terms of Figure 2.5, the fiscal impulse shifts the
IS curve in panel (a) from IS(G0, E0) to IS(G1, E0), and the YY curve in panel (b) from
YY(G0) to YY(G1). This puts upward pressure on domestic interest rates, and at point
e′ massive capital inflows occur leading to an excess supply for foreign exchange. In
response, the domestic currency appreciates (E falls from E0 to E1), which leads to a
deterioration of the current account and shifts IS back from IS(G1, E0) to IS(G1, E1),
which coincides with IS(G0, E0). In the new equilibrium, which is again attained in-
stantaneously, output and the rate of interest are unchanged and the exchange rate
has appreciated. Fiscal policy is completely ineffective under flexible exchange rates.

An immediate policy consequence of this ineffectiveness result is that the small
open economy operating under flexible exchange rates is, in a sense, insulated from
foreign spending disturbances (such as shocks to the demand for its exports), pro-
vided these shocks are uncoordinated and consequently have no effect on the world
rate of interest. For example, if a spending bust occurs in Germany leading to a de-
crease in the demand for exports from Norway, the Norwegian exchange rate will
depreciate and no output effects will occur under flexible exchange rates. Matters
are different, of course, if a global shock hits the economy. If all countries, except
Norway, pursue expansionary aggregate demand policies, the world interest rate
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Figure 2.4: Monetary policy with perfect capital mobility and flexible exchange
rates
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Figure 2.5: Fiscal policy with perfect capital mobility and flexible exchange rates
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Table 2.1. Imperfect capital mobility under fixed and flexible exchange rates

Flexible exchange rates

dG dM dR∗

dY − lRXQ/KIR
|∆| ≥ 0 XQ(1−AR/KIR)

|∆| > 0 − lRXQ
|∆| > 0

dR lY XQ/KIR
|∆| ≥ 0 −XQ(1−AY)/KIR

|∆| ≤ 0 0 <
lY XQ
|∆| ≤ 1

dE lRXY/KIR−lY
|∆| ≶ 0 1−AY−XY+ARXY/KIR

|∆| > 0 −AR lY−lR(1−AY−XY)
|∆| > 0

Fixed exchange rates

dG dE dR∗

dY 1
|Γ| > 0 XQ(1−AR/KIR)

|Γ| > 0 AR
|Γ| < 0

dR −XY/KIR
|Γ| ≥ 0 − (1−AY)XQ/KIR

|Γ| < 0 0 < 1−AY−XY
|Γ| ≤ 1

dM lY−lRXY/KIR
|Γ| ≷ 0 |∆|

|Γ| > 0 AR lY+lR(1−AY−XY)
|Γ| < 0

Notes: |∆| ≡ XQ [lY (1− AR/KIR)− lR(1− AY)/KIR] > 0
|Γ| ≡ 1− AY − XY + ARXY/KIR > 0

will rise. This will affect the Norwegian economy even if it is operating under flex-
ible exchange rates. In terms of Figure 2.6, the rise in R∗ shifts the YY curve to the
left and the LL curve to the right. The domestic currency depreciates, due to the cap-
ital outflows, and output increases. A global shock is transmitted to the small open
economy through its effect on the world rate of interest. We return to the issue of
shock transmission below—see Section 2.4.

2.2.4 Imperfect capital mobility

If financial capital is imperfectly mobile, we have a “weighted average” of the two
previous extreme cases. In formal terms the model is given by the LM, IS, and BP
curves:

M = l(R, Y), (2.24)
Y = A(R, Y) + G + X(Y, E), (2.25)
0 = X(Y, E) + KI(R− R∗). (2.26)

The balance of payments curve is upward sloping (see (2.14)), and points to the left
(right) of the BP curve are consistent with a balance of payments surplus (deficit).
The IS, LM, and BP curves have been drawn in Figure 2.7, where the BP curve has
been drawn flatter than the LM curve. Instead of discussing fiscal and monetary
policy under fixed and flexible exchange rates by graphical means, we present the
different comparative static effects in mathematical form in Table 2.1. The results in
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Figure 2.6: Foreign interest rate shocks with perfect capital mobility and flexible
exchange rates
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Figure 2.7: Monetary policy with imperfect capital mobility and flexible exchange
rates

Table 2.1 are obtained as follows. First we totally differentiate the LM, IS, and BP
curves. After some manipulations we obtain: lY lR 0 −1

1− AY − XY −AR −XQ 0
XY/KIR 1 XQ/KIR 0




dY
dR
dE
dM

 =

 0
dG
dR∗

 . (2.27)

Of course, equation (2.27) cannot be used to solve for all four variables appearing
on the left-hand side since we only have three equations. This “problem” is solved,
however, by specifying the exchange rate regime. Under flexible exchange rates the
money supply is exogenous (and the column for dM is moved to the right-hand side
of (2.27)) and (2.27) determines dY, dR, and dE, as a function of the exogenous vari-
ables dM, dG, and dR∗. Under fixed exchange rates, on the other hand, the exchange
rate is exogenous (and the column for dE is moved to the right-hand side of (2.27))
and (2.27) determines dY, dR, and dM, as a function of the exogenous variables dE,
dG, and dR∗.

In order to demonstrate the link between the mathematical results in Table 2.1
and the graphical representation in Figure 2.7, consider the case of monetary policy
under flexible exchange rates. The increase in domestic credit shifts the LM curve
from LM(M0) to LM(M1). At point e′, output and imports are too high and net capital
inflows too low, so that there exists a balance of payments deficit (B < 0), which
manifests itself as an excess demand for foreign exchange. The domestic currency
depreciates (E rises), the IS curve shifts from IS(E0) to IS(E1), and the BP curve shifts
from BP(E0) to BP(E1). Both the current account and the capital account recover
somewhat due to the depreciation and the slight increase of the domestic interest
rate (that occurs in moving from e′ to e1). The new equilibrium is at e1. Although it is
impossible to deduce by graphical means alone, the results in Table 2.1 demonstrate
that the ultimate effect on the domestic interest rate is negative.

Of course, since the results of Table 2.1 are derived for any value of KIR, the polar
cases of immobile and perfectly mobile capital can be obtained as special cases from
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the table by setting KIR = 0 and KIR → ∞, respectively. The students are advised to
verify that this is indeed the case.2

2.3 Aggregate supply considerations

Up to this point we have assumed that domestic and foreign price levels are constant
(P = P∗ = 1). Whilst this may be appropriate under some conditions (e.g. in the very
short run), it is nevertheless important to add a supply side to the Mundell-Fleming
model of the small open economy. We use a model inspired by Argy and Salop
(1979), Armington (1969), and Branson and Rotemberg (1980) to demonstrate the
importance of supply-side effects. This model will also be used (in simplified form)
in Section 2.4 on the transmission of shocks in a two-country model of the world. We
restrict attention to the case of perfect capital mobility and flexible exchange rates.

2.3.1 The Armington approach

Now that we wish to model the production side of the economy, we have to be more
precise about the various price indexes. There are two goods, a domestic good with
price P, and a foreign good with price P∗ in foreign currency (EP∗ is the price of the
foreign good in domestic currency). These goods are imperfect substitutes for each
other (otherwise one would expect purchasing power parity (PPP) to hold, so that
the real exchange rate, EP∗/P, would be identically equal to unity at all times). Real
household consumption C and investment I are assumed to be determined by the
usual macro-relations:

C = C(Y), I = I(R), (2.28)

with 0 < CY < 1 and IR < 0. Real government spending G is exogenously given.
We now need to confront the issue of sourcing of the goods. For example, once

the households know how much they wish to consume in the aggregate and in real
terms, the next issue for them is to decide on where to purchase the goods (and the
same holds for investment by firms and government consumption). The trick that
was devised by Armington (1969) is to assume that, for example, C is in fact “con-
structed” out of domestically produced goods (labelled by Cd) and foreign produced
goods (labelled by C f ). Since the two goods are assumed to be imperfect substitutes,
we cannot simply add Cd and C f to find C (a German apple is not quite the same
as a Dutch apple, even though they are both round and taste good). A particularly
simple way to capture the imperfect substitution idea is to assume that:

C = Φ(Cd, C f ) ≡
(

Cd
α

)α ( C f

1− α

)1−α

, (2.29)

with 0 < α < 1 denoting the relative weight given to domestically produced goods
used in consumption.In the decision about sourcing, the households wish to attain

2For KIR = 0 we find from Table 2.1 that |∆| = ∞, |Γ| = −∞, and

KIR · |∆| = −XQ [lY AR + lR (1− AY)] , KIR · |Γ| = ARXY .

For KIR → ∞, we find that 1/ KIR → 0 and:

|∆| = XQ lY , |Γ| = 1− AY − XY .
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the composite consumption level C (that is determined by (2.28) once Y is known)
as cheaply as possible. Since the (domestic currency) prices of domestic and foreign
goods are P and EP∗, respectively, the households decide on Cd and C f such that total
nominal consumption spending, PCd + EP∗C f , is minimized given the restriction
imposed by (2.29). For a given level of total consumption, C(Y), the optimal choices
regarding domestic and foreign consumption goods (Cd and C f ) are given by:

Cd = αQ1−αC(Y), C f = (1− α)Q−αC(Y), (2.30)

where Q ≡ EP∗/P is the real exchange. Furthermore, optimal nominal consumption
spending can be written as PCC = PCd + EP∗C f where PC is is a consumer price
index (CPI):

PC ≡ Pα (EP∗)1−α (2.31)

The interpretation of the results given in (2.30) is as follows. First, for a given real
exchange rate, a rise in real income raises the demand for both domestic and foreign
consumption goods equiproportionately. Second, for a given level of aggregate in-
come, an increase in the real exchange rate (a real depreciation) increases the demand
for domestic goods and decreases the demand for foreign goods.

Intermezzo 2.1

Imperfect substitution between domestic and foreign goods. In this
intermezzo we study the Armington trick and derive the unit expendi-
ture (or cost) function. For consumption we call this the consumer price
index (CPI), but for investment (government consumption) it stands for
the unit cost of constructing a given quantity of I (G) using domestic and
foreign goods Id and I f (Gd and G f ) as inputs. Here we explain in detail
how the expression for the consumer price index PC is obtained. In the
present context the expenditure function is defined as follows:

E (P, EP∗, C0) ≡ min
{Cd ,C f}

PCd + EP∗C f

subject to C0 = Φ(Cd, C f ). (a)

Intuitively, E (P, EP∗, C0) represents the minimum amount of spending
on domestic and foreign consumption goods that gives rise to a cer-
tain level of composite consumption, C0, taking as given the prices of
domestic and foreign goods (expressed in the domestic currency). The
Lagrangian associated with the minimization problem is L ≡ PCd +

EP∗C f + θ
[
C0 −Φ(Cd, C f )

]
where θ is the Lagrange multiplier. The

first-order necessary conditions are:

∂L
∂Cd

= P− θΦCd(Cd, C f ) = 0,

∂L
∂C f

= EP∗ − θΦC f (Cd, C f ) = 0,

∂L
∂C f

= C0 −Φ(Cd, C f ) = 0.
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For the Cobb-Douglas aggregation function (2.29) these conditions sim-
plify to:

P = αθ
C0

Cd
, (b)

EP∗ = (1− α)θ
C0

C f
, (c)

C0 =

(
Cd
α

)α ( C f

1− α

)1−α

. (d)

It follows from (b) that Cd = αθC0/P and from (c) that C f = (1 −
α)θC0/ (EP∗). Substituting these results into (d) gives:

C0 =

(
αθC0

αP

)α ( (1− α)θC0

(1− α)EP∗

)1−α

= θC0P−α (EP∗)−(1−α) ,

or:

θ = Pα (EP∗)1−α . (e)

Substituting (b) and (c) into the expression for total expenditure, PCd +
EP∗C f , gives the expenditure function:

E (P, EP∗, C0)
[
= PCd + EP∗C f

]
= αθC0 + (1− α) θC0 = θC0. (f)

The total expenditure needed to construct C0 units of composite con-
sumption is θC0 so θ represents the unit cost of consumption. In the text
we denote θ by PC. Note finally that by employing Shephard’s lemma
we can find the derived demands for domestic and foreign consumption
goods:

Cd =
∂E (P, EP∗, C0)

∂P
= C0

∂PC
∂P

= αC0

(
EP∗

P

)1−α

, (g)

C f =
∂E (P, EP∗, C0)

∂EP∗
= C0

∂PC
∂EP∗

= (1− α)C0

(
EP∗

P

)−α

. (h)

****

By using the same approach for investment and government spending – such
that I = Φ(Id, I f ) and G = Φ(Gd, G f ) – we obtain expressions for Id, I f , Gd, and G f :3

Id = αQ1−α I(R), I f = (1− α)Q−α I(R), (2.32)

Gd = αQ1−αG, G f = (1− α)Q−αG. (2.33)

Real exports are denoted by EX and are sold to the ROW at the same price that
domestic customers pay for these goods (P), and spending on imported goods (in

3We assume for the sake of convenience that I and G are similar composites as C. This assumption
ensures that the price indices for investment and government spending are the same as the CPI, so that
the real exchange rate does not affect relative prices within a country.
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terms of domestic currency) equals EP∗(C f + I f + G f ), so that the national income
identity (2.1) can be written as:

P Y ≡ PCC + PC I + PCG + P EX− EP∗
[
C f + I f + G f

]
= P Cd + P Id + P Gd + P EX ⇒

Y ≡ Cd + Id + Gd + EX, (2.34)

which shows (more clearly than (2.1)) that only domestically produced goods enter
into the aggregate production measure for the domestic economy. By looking in
more detail at the sourcing issue we find that Cd, Id, and Gd all depend on the real
exchange rate—see equations (2.30), (2.32), and (2.33). In summary, we now have an
IS equation (similar in form to (2.9)) in which the real exchange rate affects domestic
spending equilibrium.

By defining net exports (in real terms) by X ≡ EX − (EP∗/P)[C f + I f + G f ],
noting (2.30)–(2.33) and assuming that the demand for exports depends on the real
exchange rate,

EX = EX0

(
EP∗

P

)β

= EX0Qβ, β ≥ 0, (2.35)

(where EX0 represents all exogenous influences on the country’s exports) we obtain
the net export function defined by the model:

X (R, Y, Q, G, EX0) ≡ EX0Qβ −Q(1− α)Q−α [A(R, Y) + G] , (2.36)

where A(R, Y) ≡ C(Y) + I(R). Several features are worth noting in the compar-
ison between (2.36) and the net export function used throughout section 2.2 (i.e.
X(Y, Q)). First, domestic absorption, and not just aggregate domestic income, ap-
pears in (2.36). Since domestic absorption depends on the rate of interest, and some
investment goods are purchased from the ROW, the BP curve has a positive slope
even under perfectly immobile capital (compare to section 2.2.1). A higher rate of in-
terest chokes off aggregate investment, decreases imports of investment goods, and
causes a trade account surplus. To restore equilibrium on the trade account, income
(and hence imports) must rise.

A second feature of (2.36) is that we can now be more precise about the Marshall-
Lerner condition. Indeed, by differentiating (2.36) with respect to the real exchange
rate Q (holding EX0 and A(R, Y) + G fixed), we obtain:

XQ

Y
=

βEX0Qβ−1

Y
− (1− α)2Q−α [A(R, Y) + G]

Y
=

βωX − (1− α)ωM
Q

, (2.37)

where XQ ≡ ∂X/∂Q. Note that ωX ≡ EX/Y, and ωM ≡ Q[C f + I f + G f ]/Y are,
respectively, the domestic output shares of exports and imports. This expression
shows that net exports improve as a result of a real exchange rate depreciation if the
following condition holds:

QXQ

Y
= βωX − (1− α)ωM > 0, (2.38)

or, if the trade balance is initially in equilibrium (so that imports and exports are of
equal magnitude and ωM = ωX), the condition is:

β + α− 1 > 0. (2.39)
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This is the famous Marshall-Lerner condition: if the sum of the elasticities of export
and import demand exceeds unity, a depreciation of the currency improves the trade
account, so that XQ > 0. The intuition behind the Marshall-Lerner condition is as
follows. A depreciation of the currency (a rise in Q) makes domestic goods cheaper
for the ROW and increases export earnings. This improves net exports. The rise in
Q also makes foreign goods more expensive to domestic residents. If real imports
were unchanged, spending on imports would rise because of the depreciation, which
would worsen net exports. Domestic residents, however, substitute domestic goods
for foreign goods, as a result of the depreciation, and this effect mitigates the rise in
import spending and its adverse effect on net exports. The strength of the export
effect is regulated by the export elasticity β and that of the import spending effect
is regulated by 1− α. The Marshall-Lerner condition ensures that the export effect
dominates the import spending effect, which translates as β > 1− α or, equivalently,
β + α > 1.

2.3.2 The extended Mundell-Fleming model

In this section we develop the extended Mundell-Fleming model of a small open
economy which possesses the following main features. First, there is perfect mobility
of financial capital. Second, exchange rates are fully flexible. Third, domestic and
foreign goods are imperfect substitutes so the real exchange rate will generally differ
from unity (as PPP fails). Fourth, on the supply side the labour market may be
characterized by nominal or real wage rigidity. We analyse the extended Mundell-
Fleming model in its loglinearized form.

2.3.2.1 Aggregate demand side

The aggregate demand side of the model consists of the IS, LM, and BP curves. The
IS curve is derived as follows. First, by substituting the relevant expressions from
(2.30) and (2.32)–(2.33) as well as (2.35) into (2.34), we obtain:

Y = αQ1−α [C + I + G] + EX0Qβ, (2.40)

which can be written in loglinearized form as:

Ỹ = (1−ωX)
[
ωCC̃ + ωI Ĩ + ωGG̃ + (1− α)Q̃

]
+ ωX

[
ẼX0 + βQ̃

]
, (2.41)

where Ỹ ≡ dY/Y, C̃ ≡ dC/C, Ĩ ≡ dI/I, G̃ ≡ dG/G, Q̃ ≡ dQ/Q, ẼX0 ≡ dEX0/EX0.
Note that ωX ≡ EX0Qβ/Y is the output share of exports, and ωC ≡ C/[A + G],
ωI ≡ I/[A + G], and ωG ≡ G/[A + G] denote, respectively, the share of consump-
tion, investment, and government spending in total domestic absorption (ωC +ωI +
ωG = 1).

Next, we loglinearize the expressions for aggregate consumption and investment
(see (2.28)) to obtain:

C̃ = εCYỸ, Ĩ = −ε IRdR, (2.42)

where 0 < εCY ≡ YCY/C ≡ MPC/APC < 1 and ε IR ≡ −IR/I > 0 are, respectively,
the income elasticity of the aggregate consumption function and (the absolute value
of) the interest semi-elasticity of the investment function.4 Note that εCY equals the

4We use the term semi-elasticity to indicate that ε IR relates the percentage rate of change of investment
to the absolute change in the interest rate. In the case of interest rates, the use of semi-elasticities is natural.
For example, if ε IR = 2, a one percentage point increase in the rate of interest (say a rise in r from 5 to 6%
per annum) causes a fall in investment of 2%.
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marginal propensity over the average propensity to consume, and is thus less than
unity for the usual Keynesian consumption function.

Finally, by substituting the expressions from (2.42) into (2.41) and solving for Ỹ
we find the IS curve:

Ỹ =
[βωX + (1− α) (1−ωX)] Q̃− (1−ωX)ωIε IRdR

1−ωCεCY (1−ωX)

+
(1−ωX)ωGG̃ + ωXẼX0

1−ωCεCY (1−ωX)
, (2.43)

where we note that the denominator is between zero and one (because 0 < ωC < 1,
0 < εCY < 1, and 0 < ωX < 1). Domestic demand depends positively on the real
exchange rate, government consumption, and exogenous exports, and negatively on
the domestic interest rate.

The money market of the model is summarized by the LM curve M/P = l(R, Y),
which can be loglinearized to:

M̃− P̃ = −εMRdR + εMYỸ, (2.44)

where εMY ≡ YlY/l > 0 and εMR ≡ −lR/l > 0 are, respectively, the income elas-
ticity and (the absolute value of) the interest semi-elasticity of the money demand
function.

Since we assume perfect capital mobility, the world interest rate determines the
domestic rate (R = R∗), so that:

dR = dR∗. (2.45)

2.3.2.2 Aggregate supply side

The aggregate supply side of the model summarizes the situation on the labour
market and yields an expression for the aggregate supply of goods. Compared to
its closed economy counterpart, the aggregate supply model for the open economy
contains some novel elements. Domestic firms are perfectly competitive (and do not
attempt to exploit the export demand function (2.35), as a monopolist would) and
maximize short-run profit Π ≡ PF(N, K̄)−WN, where N is employment, W is the
nominal wage, and K̄ is the given capital stock. The labour demand function is im-
plicitly defined by the marginal productivity condition PFN(N, K̄) = W, which can
be loglinearized to:

P̃ + F̃N = W̃ ⇒ Ñ = −εNW [W̃ − P̃], (2.46)

where εNW ≡ −FN/(NFNN) > 0 is the (absolute value of the) real wage elasticity
of labour demand. It is assumed, following Branson and Rotemberg (1980), that
the labour market is characterized by unemployment because the wage is too high.
We model this by assuming that labour supply is perfectly elastic at a level of the
nominal wage set according to a wage-setting rule of the form W = W0Pθ

C, where
W0 is an exogenous parameter, PC is the consumer price index (CPI) given in (2.31)
above, and 0 ≤ θ ≤ 1. Depending on the assumed value of θ, three cases can be
considered.

• If θ = 1, workers are said to have a real wage target. They demand to be fully
compensated for any changes in the CPI that may occur, i.e. W/PC = W0 is
held constant and thus does not depend on the CPI.
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• If θ = 0, workers are said to have a nominal wage target in that they demand the
nominal wage to be constant, i.e. W = W0. Their real wage is W0/PC which
falls if the CPI rises.

• If 0 < θ < 1, workers take the CPI into account but suffer from money illusion
in the sense that they do not keep the real wage in terms of the CPI constant,
i.e. W/PC = W0Pθ−1

C which falls if the CPI rises.

Branson and Rotemberg (1980) suggest on the basis of empirical evidence that θ = 0
is relevant for the US economy in which there is little or no indexing of nominal
wages, and θ = 1 is more relevant to the situation in the UK, Germany, Italy, and
Japan, where wage indexing is much more common. Here we study the general
case by allowing 0 ≤ θ ≤ 1. The wage setting rule in its most general form can be
loglinearized to:

W̃ = W̃0 + θP̃C. (2.47)

Once the wage rate is set, domestic producers determine employment (by (2.46)),
after which output is determined by the production function which can be loglin-
earized to:

Ỹ = ωN Ñ, (2.48)

where 0 < ωN ≡ WN/(PY) < 1 is the share of labour income in aggregate output.
Rewriting (2.31) in terms of Q we find PC ≡ PQ1−α which we loglinearize to obtain:

P̃C = P̃ + (1− α) Q̃. (2.49)

By substituting (2.46)–(2.47) and (2.49) into (2.48) we obtain the AS curve:

Ỹ = −εYW [W̃0 + θP̃C − P̃]

= −εYW [W̃0 + θ (1− α) Q̃− (1− θ) P̃], (2.50)

where εYW ≡ ωNεNW is the (absolute value of the) wage elasticity of output sup-
ply. The intuition behind the AS curve can be explained with the aid of Figure 2.8.
In panel (a), labour demand (2.46) is depicted by the downward sloping line ND.
Labour supply is obtained by substituting (2.49) into (2.47) and solving for the real
wage facing domestic producers, W̃ − P̃. Mathematically, the real supply price of
labour is given by the term in square brackets on the right-hand side of (2.50). In
general, it depends negatively on P̃ and positively on Q̃. The initial labour supply
curve is depicted by NS

0 , and the initial equilibrium is at point e0 in panels (a) and
(b), employment is N0, and output is Y0.

Next we consider what happens if the domestic price or the real exchange rate
changes. Under nominal wage rigidity (θ = 0), the labour supply curve only de-
pends on P̃. In terms of panel (a), an increase in the domestic price level shifts the
labour supply downward, to NS

1 , and moves the equilibrium to point e1. Employ-
ment and output both increase. Workers demand a fixed nominal wage, so that a
domestic price increase erodes the real producer wage which prompts firms to ex-
pand employment and output. This explains the positive sign for P̃ in (2.50) when
θ = 0.

Under real wage rigidity (θ = 1), the real supply price of labour only depends on
Q̃. An increase in the real exchange rate shifts labour supply up, from NS

0 to NS
2 , and

shifts the equilibrium from e0 to e2. Employment and output both decrease. Workers
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Figure 2.8: Aggregate supply in the open economy
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Table 2.2. The extended Mundell-Fleming model

Ỹ =
(1−ωX)

[
−ωIε IRdR∗ + ωGG̃

]
+ ωXẼX0

1− (1−ωX)ωCεCY
, (T2.1)

+
[(1− α)(1−ωX) + βωX ] Q̃

1− (1−ωX)ωCεCY

M̃− P̃ = −εMRdR∗ + εMYỸ, (T2.2)

Ỹ = −εYW
[
W̃0 + θ(1− α)Q̃− (1− θ)P̃

]
(T2.3)

Notes: Endogenous variables are Ỹ ≡ dY/Y, Q̃ ≡ dQ/Q, P̃ ≡ dP/P. Exogenous variables
are dR∗, M̃ ≡ dM/M, G̃ ≡ dG/G, W̃0 ≡ dW0/W0, ẼX0 ≡ dEX0/EX0. The absorption
shares of consumption, investment, and government spending are given by, respectively, ωC,
ωI , and ωG. These shares add up to unity. The export share in GDP is ωX . The income
elasticity of aggregate consumption is εCY , the interest semi-elasticity of aggregate invest-
ment is ε IR, the income elasticity of money demand is εMY , the interest semi-elasticity of
money demand is εMR, the wage elasticity of output supply is εYW , the real exchange rate
export elasticity is β, the real exchange rate import spending elasticity is 1 − α. Money il-
lusion exists if 0 < θ < 1, real wage rigidity if θ = 1, nominal wage rigidity if θ = 0.

demand a fixed real consumer wage, W/PC, and an increase in the real exchange
rate raises the real producer wage which prompts firms to cut back employment and
output. This explains the negative sign for Q̃ in (2.50) when θ = 1.

Finally, under money illusion (0 < θ < 1), aggregate supply depends positively
on the domestic price level and negatively on the real exchange rate.

2.3.2.3 Full model

The full model consists of the IS curve (2.43), the LM curve (2.44), the BP curve
(2.45), and the AS curve (2.50). For convenience, the equations are gathered in Table
2.2, where we have substituted the BP curve into the IS and LM curves. The en-
dogenous variables are aggregate output Ỹ, the domestic price level P̃, and the real
exchange rate Q̃. Once the latter two are determined, the nominal exchange rate is
also determined since Ẽ ≡ P̃ + Q̃− P̃∗, where P̃∗ is exogenous due to the small open
economy assumption. The other exogenous variables are M̃ ≡ dM/M, G̃ ≡ dG/G,
dR∗, ẼX0 ≡ dEX0/EX0, and W̃0 ≡ dW0/W0. The comparative static effects can be
obtained in the standard fashion and have been collected in Table 2.3.

Graphically the comparative static effects can be illustrated as follows. Consider
the case of a positive demand shock (say G̃ > 0). In the standard Mundell-Fleming
model with fixed prices and flexible exchange rates, such a shock does not affect
aggregate output (and hence employment). This is the well-known insulation prop-
erty of flexible exchange rates. The results in Table 2.3 suggest that this insulation
property no longer holds for the augmented Mundell-Fleming model developed in
this section (as dY/dG > 0), unless there exists nominal wage rigidity (θ = 0). The
basic intuition behind this result can be explained with the aid of Figure 2.9. In the
left-hand side of Figure 2.9, the perfect-capital-mobility version of the LM curve is
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Table 2.3. Wage rigidity and demand and supply shocks

ωG(1−ωX)G̃ M̃ εYWW̃0
ωXẼX0

Ỹ θ(1−α)εYW
|∆| ≥ 0 (1−θ)δ1εYW

|∆| ≥ 0 − δ1
|∆| < 0

Q̃ − 1+(1−θ)εMYεYW
|∆| < 0 (1−θ)δ2εYW

|∆| ≥ 0 − δ2
|∆| < 0

P̃ − θ(1−α)εMYεYW
|∆| ≤ 0 θ(1−α)δ2εYW+δ1

|∆| > 0 δ1εMY
|∆| > 0

Ẽ − 1+(1−αθ)εMYεYW
|∆| < 0 (1−αθ)δ2εYW+δ1

|∆| > 0 δ1εMY−δ2
|∆| ≷ 0

P̃C − (1−α)(1+εMYεYW )
|∆| < 0 (1−α)δ2εYW+δ1

|∆| > 0 δ1εMY−(1−α)δ2
|∆| ≷ 0

Notes: δ1 ≡ (1− α)(1−ωX) + βωX > 0
δ2 ≡ 1− (1−ωX)ωCεCY, 0 < δ2 < 1
|∆| ≡ θ(1− α)εYWδ2 + [1 + (1− θ)εMYεYW ] δ1 > 0

Figure 2.9: Aggregate demand shocks under wage rigidity
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drawn. As we can easily deduce from (T2.2), ceteris paribus R∗ and M, the LM
curve represents a downward sloping relationship between the domestic price level
and output. An increase in the world interest rate or the domestic money supply
shifts the LM curve up.

Equation (T2.1) is the perfect-capital-mobility version of the IS curve. Ceteris
paribus G, EX0, and R∗, the IS curve represents an upward sloping relationship be-
tween output and the real exchange rate–see the right-hand panel in Figure 2.9. A
second relationship between output and the real exchange rate is obtained by sub-
stituting the LM curve (T2.2) into the AS curve (T2.3) and solving for Ỹ:

Ỹ =
−εYW

[
W̃0 + θ(1− α)Q̃− (1− θ)

(
M̃ + εMRdR∗

)]
1 + (1− θ)εMYεYW

, AS(LM). (2.51)

As is illustrated in the right-hand panel of Figure 2.9, the AS(LM) curve is downward
sloping for 0 < θ ≤ 1 (real wage rigidity or money illusion) and horizontal for θ = 0
(nominal wage rigidity). If there is real wage rigidity (θ = 1), the AS(LM) curve
is independent of the money supply and the world interest rate (because the price
level does not affect the AS curve in that case). In contrast, if there is nominal wage
rigidity (θ = 0), the AS(LM) curve is independent of the real exchange rate and shifts
up when the money supply or the world interest rate is increased.

2.3.2.4 Fiscal policy

In the right-hand panel in Figure 2.9, an increase in government spending shifts the
IS curve up from IS(G0) to IS(G1). In the absence of nominal wage rigidity (θ > 0),
AS(LM) is downward sloping and the equilibrium shifts from e0 to e1. The real ex-
change rate appreciates (from Q0 to Q1), but not by enough to undo the expansion-
ary effect of increased government spending on output. The domestic price level
falls (see the left-hand panel) as does the nominal exchange rate (Ẽ < P̃ < 0).

If there is nominal wage rigidity (θ = 0), the AS(LM) curve is horizontal and the
equilibrium shifts from e0 to e2. Output and the domestic price level are unchanged,
and the real exchange rate appreciation exactly reverses the stimulative effect of the
additional government spending. Since real output depends on what happens to
the real producer wage (as producers do not have money illusion), nominal wages
must be free to fall (along with the domestic price level) if there are to be any pos-
itive output effects. This explains why output effects are zero under nominal wage
rigidity.

2.3.2.5 Monetary policy

The effects of monetary policy have been illustrated in Figure 2.10. To keep this
figure uncluttered we ignore the nominal wage rigidity case and thus assume that
0 < θ ≤ 1 so that the AS(LM) curve is downward sloping. The initial equilibrium
is at point e0. An increase in the money supply shifts the LM curve to the right in
the left-hand panel, say from LM0 to LM1. If there is money illusion (0 < θ < 1)
then the AS(LM) curve shifts to the right, from AS(LM)0 to AS(LM)1, and the new
equilibrium is at point e1. The domestic price level increases (from P0 to P1), the real
exchange rate depreciates (from Q0 to Q1), and output increases (from Y0 to Y1). The
output increase results from the fact that the real supply price of labour falls, i.e., in
terms of Figure 2.8(a), the net effect of the increases in P and Q is to shift the labour
supply curve down.
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Figure 2.10: Monetary policy under wage rigidity

In contrast, if there is real wage rigidity (θ = 1) then the money shock leaves
the AS(LM) curve unaffected and nothing is changed in real terms, i.e. in the right-
hand panel of Figure 2.10 the equilibrium stays at point e0 and both output and the
real exchange rate are unaffected. In the left-hand panel of Figure 2.10, the new
equilibrium is at point e2, and the domestic price increases from P0 to P2. Monetary
policy cannot be used to affect output in this case.

2.4 Transmission of shocks in a two-country world

In section 2.3 we introduced a simple Mundell-Fleming type model with a rudimen-
tary aggregate supply side. Some microeconomic foundations were provided for the
supply side of the model and for the issue of sourcing. The model of section 2.3 was
used to study a small open economy under flexible exchange rates and perfect capi-
tal mobility. One of the reasons so much attention was paid to the details of sourcing
and price indexes is to be able to construct a (logically consistent) model of the world
economy.

Assume that the world consists of two countries (or regions) that are identical
in structure and look like the small open economy discussed in section 2.3. One
immediate consequence of this assumption is that we must do away with the ad hoc
export demand function (2.35). Indeed, we know from (2.30)–(2.33) that the domestic
economy’s demand for imports is given by:

C f + I f + G f = (1− α)

(
EP∗

P

)−α

[C(Y) + I(R) + G]

= (1− α)

(
EP∗

P

)−α

[A(R, Y) + G] . (2.52)

But the domestic economy’s exports are (in a two-country world) just the foreign
country’s demand for imports which, in view of the symmetry assumption, take a



CHAPTER 2: THE OPEN ECONOMY 59

form similar to (2.52):

EX ≡ C∗f + I∗f + G∗f = (1− α)

(
EP∗

P

)α

[A(R∗, Y∗) + G∗] , (2.53)

where stars denote foreign variables, e.g. C∗f is the demand for domestically pro-
duced consumption goods by foreign residents. Several things are worth noting.
First, the real exchange rate from the perspective of the foreign country is P/(EP∗) ≡
1/Q. This explains the positive sign of the exponent on the real exchange rate in
(2.53). Second, a comparison of (2.53) and (2.35) reveals that the two coincide if
α = β and EX0 ≡ (1− α)[A(R∗, Y∗) + G∗]. This shows that EX0 is no longer exoge-
nous in a two-country model – foreign absorption is endogenous. In loglinearized
terms, we find:

ẼX0 = ωCεCYỸ∗ −ωIε IRdR∗ + ωGG̃∗. (2.54)

By setting β = α and substituting (2.54) in equation (T2.1) in Table 2.2, we obtain the
IS curve for the domestic economy in a two-country setting:

Ỹ =
−ωIε IRdR∗ + ωG

[
(1−ωX)G̃ + ωXG̃∗

]
+ ωXωCεCYỸ∗

1− (1−ωX)ωCεCY

+
[(1− α)(1−ωX) + αωX ] Q̃

1− (1−ωX)ωCεCY
. (2.55)

By comparing (T2.1) and (2.55), it is clear that the IS curve is augmented in a num-
ber of ways. First, the interest rate exerts a stronger effect on domestic production
than before. The reason is that an decrease (increase) in the interest rate increases
(decreases) investment in both countries, and since some investment goods are im-
ported, spillover effects exist. Second, foreign government spending spills over into
the domestic economy, both directly (via the term involving G̃∗) and indirectly (via
the term with Ỹ∗).

Of course, the foreign country also has an IS curve (labelled IS∗) which is similar
in form to (2.55). By making the appropriate substitutions, the IS∗ curve can be
written as:

Ỹ∗ =
−ωIε IRdR∗ + ωG

[
(1−ωX)G̃∗ + ωXG̃

]
+ ωXωCεCYỸ

1− (1−ωX)ωCεCY

− [(1− α)(1−ωX) + αωX ] Q̃
1− (1−ωX)ωCεCY

. (2.56)

The real exchange rate affects foreign spending negatively because it is measured
from the point of view of the domestic country (i.e. Q ≡ EP∗/P). By using (2.55)–
(2.56) to solve for Y and Y∗, the following simplified expressions for IS and IS∗ are
obtained:

Ỹ =
−(1 + γ)ωIε IRdR∗ + ωG

(
[1−ωX(1− γ)] G̃ + [γ + ωX(1− γ)] G̃∗

)
(1− γ2) [1− (1−ωX)ωCεCY]

+
(1− γ) [(1− α)(1−ωX) + αωX ] Q̃

(1− γ2) [1− (1−ωX)ωCεCY]
, (2.57)

Ỹ∗ =
−(1 + γ)ωIε IRdR∗ + ωG

(
[1−ωX(1− γ)] G̃∗ + [γ + ωX(1− γ)] G̃

)
(1− γ2) [1− (1−ωX)ωCεCY]
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− (1− γ) [(1− α)(1−ωX) + αωX ] Q̃
(1− γ2) [1− (1−ωX)ωCεCY]

, (2.58)

where 0 < γ ≡ ωXωCεCY/[1− (1−ωX)ωCεCY] < 1.
Domestic output depends on both domestic and foreign government spending in

this symmetric model of the world economy. It is, however, not a priori clear which
effect dominates, the “own” effect (via G̃) or the spillover effect (via G̃∗). By compar-
ing the coefficients for G̃ and G̃∗ in (2.57)–(2.58), it can be seen that the own effect is
larger than the spillover effect provided the economies are not “too open”, i.e. pro-
vided the share of exports in GDP is less than one-half (ωX < 1

2 ). This requirement
is intuitive, since a high value of ωX implies that the two economies are more sensi-
tive to foreign than to domestic influences (in colloquial terms, if the foreign country
sneezes, the domestic country catches a cold if ωX is high).

Since it is more convenient to work with a logarithmic version of the model (and
in order to cut down on notation), we capture the salient aspects of equations (2.57)
and (2.58) with, respectively, equations (T4.1) and (T4.2) in Table 2.4. The compos-
ite parameters εYR, εYQ, and εYG are related to the other parameters of the model
according to:

εYR ≡
(1 + γ)ωIε IR

(1− γ2) [1− (1−ωX)ωCεCY]
> 0,

εYQ ≡
(1− γ) [(1− α)(1−ωX) + αωX ]

(1− γ2) [1− (1−ωX)ωCεCY]
> 0,

εYG ≡
[1−ωX(1− γ)]ωG

(1− γ2) [1− (1−ωX)ωCεCY]
> 0,

0 < η ≡ γ + ωX(1− γ)

1−ωX(1− γ)
< 1,

where the final inequality follows from the condition ωX < 1
2 .

In order to discover how the two-country model works, we look at three pro-
totypical cases. We start with the case with nominal wage rigidity in both countries
(θ = θ∗ = 0). Next we study the case with real rigidity in both countries (θ = θ∗ = 1).
Finally, we consider the Branson-Rotemberg case in which the domestic country fea-
tures real wage rigidity (θ = 1) and the foreign economy operates under nominal
wage rigidity (θ∗ = 0).

2.4.1 Nominal wage rigidity in both countries

If there exists nominal wage rigidity in both countries, the relevant model is obtained
from Table 2.4 by setting θ = θ∗ = 0. The resulting model can be written in a compact
format as:

y = −εYRR∗ + εYQq + εYG [g + ηg∗] , (2.59)
y∗ = −εYRR∗ − εYQq + εYG [g∗ + ηg] , (2.60)

m− p = εMYy− εMRR∗, (2.61)
m∗ − p∗ = εMYy∗ − εMRR∗, (2.62)

y = −εYW [w0 − p] , (2.63)
y∗ = −εYW [w∗0 − p∗] , (2.64)
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Table 2.4. A two-country extended Mundell-Fleming model

y = −εYRR∗ + εYQq + εYG [g + ηg∗] , (T4.1)
y∗ = −εYRR∗ − εYQq + εYG [g∗ + ηg] , (T4.2)

m− p = εMYy− εMRR∗, (T4.3)
m∗ − p∗ = εMYy∗ − εMRR∗, (T4.4)

y = −εYW [w− p] , (T4.5)
y∗ = −εYW [w∗ − p∗] , (T4.6)
w = w0 + θpC, (T4.7)

w∗ = w∗0 + θ∗p∗C, (T4.8)
pC = p + (1− α)q, (T4.9)
p∗C = p∗ − (1− α)q, (T4.10)

Notes: All variables except the interest rate are in logarithms and starred variables refer to the
foreign country. Endogenous variables are the outputs (y, y∗), the real exchange rate (q), the
rate of interest (R∗), price levels (p, p∗), nominal wages (w, w∗), and consumer price indexes
(pC, p∗C). Exogenous are government spending (g, g∗), the money stocks (m, m∗), and the
wage targets (w0, w∗0). Elasticities of (T4.1)–(T4.2) can be recovered from (2.57)–(2.58).

which constitutes a simultaneous system of six equations determining six endoge-
nous variables (y, y∗, p, p∗, q, and R∗) as a function of the exogenous variables (g,
g∗, m, m∗, w0, and w∗0). In the appendix to this chapter, we use “brute force” and
solve the system analytically by means of matrix inversion. Here, however, we use
a more subtle approach which analyses the model by graphical means. The method
exploits the structure of the model in such a way that the two-country equilibrium
can be characterized by simple two-dimensional equilibrium loci. The one-million
euro question is, of course, how one should go about this.

Figure 2.11 reveals the answer. The LM(ASN) curve is obtained by substituting
the ASN curve (2.63) (where “N” stands for nominal) into the LM curve (2.61) (the
LM∗(AS∗N) curve is obtained in an analogous fashion). This is a useful thing to do
because it gives us expressions for the domestic and foreign price and output lev-
els in terms of a single endogenous variable (viz. the world interest rate) and the
exogenous variables:

p =
m + εMRR∗ + εYWεMYw0

1 + εYWεMY
, (2.65)

p∗ =
m∗ + εMRR∗ + εYWεMYw∗0

1 + εYWεMY
, (2.66)

y =
εYW [m + εMRR∗ − w0]

1 + εYWεMY
, LM(ASN) curve (2.67)

y∗ =
εYW [m∗ + εMRR∗ − w∗0 ]

1 + εYWεMY
. LM∗(AS∗N) curve (2.68)

The curves LM(ASN) and LM∗(AS∗N) are drawn in the left-hand panel of Figure 2.11,
and coincide in the initial equilibrium due to the symmetry assumption.

The goods market equilibrium schedule under nominal wage rigidity, GMEN , is
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Figure 2.11: Fiscal policy with nominal wage rigidity in both countries

obtained by substituting (2.67) into the IS curve (2.59) and solving for R∗ in terms
of the real exchange rate and the exogenous variables (and similarly for GME∗N , we
substitute (2.68) into (2.60)):

R∗ =
(1 + εYWεMY)

[
εYQq + εYG(g + ηg∗)

]
+ εYW [w0 −m]

εYR(1 + εYWεMY) + εYWεMR
, GMEN curve

(2.69)

R∗ =
(1 + εYWεMY)

[
−εYQq + εYG(g∗ + ηg)

]
+ εYW [w∗0 −m∗]

εYR(1 + εYWεMY) + εYWεMR
. GME∗N curve

(2.70)

In the right-hand panel of Figure 2.11, GMEN is upward sloping in (R∗, q) space be-
cause a real depreciation (a rise in q) stimulates domestic output and, consequently,
the demand for real money balances. Money market equilibrium can only be re-
stored if the interest rate is higher. Of course, the slope of GME∗N is opposite in sign
because −q measures the real exchange rate from the foreign country’s perspective.

That’s it! We have “tamed” the six-equation simultaneous system (2.59)–(2.64)
and can now represent its core properties with a simple, two-panel diagram. We are
now ready to look at the effects of domestic and foreign fiscal and monetary policies.

2.4.1.1 Fiscal policy

Fiscal policy in the domestic country (represented by a rise in g) shifts up both GMEN
and GME∗N but, provided the own effect of government spending dominates (so that
η < 1), the former shifts by more than the latter (i.e. ∂R∗/∂g is largest for GMEN).
The new equilibrium is at e1, the domestic economy experiences a real appreciation,
and output in both countries rises. Hence, the fiscal stimulus in the domestic economy
also stimulates the foreign economy. This is why this phenomenon is called a locomo-
tive policy: one country is able to pull itself and the other country out of a recession
by means of fiscal policy. Why does it work? The increased government spending
in the domestic economy leads to upward pressure on domestic interest rates. The
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resulting capital inflows cause the domestic currency to appreciate, so that the de-
mand for foreign goods is increased. This stimulates output in the foreign country.
The resulting increase in the interest rate causes the price levels of both countries to
rise by the same amount (see (2.65)–(2.66) above). Since nominal wages are fixed,
the real producer wage falls in both countries, which explains the increase in output
and employment.

For future reference we derive the expressions for the output multipliers (details
are found in the appendix). First, we use (2.69) and (2.70) to derive the effect of
domestic and foreign fiscal policy on the world interest rate:

dR∗

dg
=

dR∗

dg∗
=

(1 + η)εYG(1 + εYWεMY)

2 [εYR(1 + εYWεMY) + εYWεMR]
> 0. (2.71)

Next, we use (2.67), (2.68), and (2.71) to derive the output effects:

dy
dg

=
dy
dg∗

=
dy∗

dg
=

dy∗

dg∗
=

(1 + η)εYGεYWεMR
2 [εYR(1 + εYWεMY) + εYWεMR]

≡ πN > 0. (2.72)

The key thing to note is that own and foreign fiscal policy have the same output
effects in both countries.

2.4.1.2 Monetary policy

Unlike fiscal policy, monetary policy in the domestic country does not benefit but
harm the foreign country. This is illustrated with the aid of Figure 2.12. The increase
in the domestic money stock shifts the domestic goods market equilibrium locus
from GMEN(m0) to GMEN(m1) and the LM(AS) curve from LM(ASN)0 to LM(ASN)1.
There is downward pressure on domestic interest rates, and the capital outflows lead
to a depreciation of the currency. This shifts domestic demand towards domestically
produced goods and away from foreign goods. Also, foreigners shift towards goods
produced in the domestic economy. In view of (2.66), the foreign price level falls
and consequently the real producer wage rises. This explains the fall in output and
employment in the foreign country. For obvious reasons monetary policy is referred
to as a beggar-thy-neighbour policy: the domestic economy is stimulated at the expense
of the foreign economy.

In a similar fashion, an increase in the foreign money supply boosts foreign out-
put and reduces domestic output. In this case the foreign country beggars its neigh-
bour, the domestic economy.

2.4.2 Real wage rigidity in both countries

If both countries experience real wage rigidity, the relevant model is obtained from
Table 2.4 by setting θ = θ∗ = 1. Upon making the relevant substitutions, the model
reduces to:

y = −εYRR∗ + εYQq + εYG [g + ηg∗] , (2.73)
y∗ = −εYRR∗ − εYQq + εYG [g∗ + ηg] , (2.74)
p = m− εMYy + εMRR∗, (2.75)

p∗ = m∗ − εMYy∗ + εMRR∗, (2.76)
y = −εYW [w0 + (1− α)q] , ASR curve (2.77)

y∗ = −εYW [w∗0 − (1− α)q] . AS∗R curve (2.78)
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Figure 2.12: Monetary policy with nominal wage rigidity in both countries

Again relegating the brute-force method to the appendix, we study the model by
graphical means. Under real wage rigidity, the aggregate supply curves in the two
countries only depend on a single endogenous variable (the real exchange rate) and
some exogenous variables. In the bottom panel of Figure 2.13, ASR and AS∗R have
been illustrated.

The goods market equilibrium schedules for the two countries are obtained by
equating the respective AS and IS curves (viz. (2.77) and (2.73) for the domestic
country and (2.78) and (2.74) for the foreign country) and and solving for R∗ in terms
of the real exchange rate and the exogenous variables. The subscript “R” is used to
indicate that real wages are rigid in the two countries:

R∗ =
εYWw0 +

[
εYQ + (1− α) εYW

]
q + εYG [g + ηg∗]

εYR
, GMER curve

(2.79)

R∗ =
εYWw∗0 −

[
εYQ + (1− α) εYW

]
q + εYG [g∗ + ηg]

εYR
. GME∗R curve

(2.80)

In the top panel of Figure 2.13, GMER is upward sloping and GME∗R is downward
sloping.

Once again we have managed to represent the core properties of a six-equation
simultaneous system of equations with a simple, two-panel diagram. Let us look at
the effects of domestic and foreign fiscal and monetary policies.

2.4.2.1 Fiscal policy

In sharp contrast to our conclusion in the previous section, fiscal policy constitutes
a beggar-thy-neighbour policy under real wage rigidity. This can be illustrated with
the aid of Figure 2.13. The increase in government spending in the domestic country
(g) produces an upward shift in both GMER and GME∗R, with the former experi-
encing the bigger shift because the “own” effect exceeds the “spillover” effect (i.e.
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η < 1). To restore equilibrium, the interest rate rises and the real exchange rate ap-
preciates (for the domestic country). The equilibrium shifts from e0 to e1 in the top
panel of Figure 2.13.

The output effects in the two countries are opposite in sign. In the bottom panel
of Figure 2.13, equilibrium in the domestic country shifts from e0 to e1 and output
is stimulated. The equilibrium for the foreign country, in contrast, shifts from e0
to e∗1 , and foreign output contracts! How does this work? Since the real consumer
wage (W/PC) is fixed, the producer wage (W/P) falls in the domestic economy and
output and employment are stimulated. The opposite holds in the foreign country,
where the real producer wage (W∗/P∗) rises. By raising g, the domestic policy maker
causes a fall in q (a depreciation of the foreign currency) which prompts foreign
workers to demand higher nominal wages in order to keep their real consumption
wage (W∗/P∗C) constant.

For future reference we derive the expressions for the various output multipliers.
First we use (2.79) and (2.80) to derive the effect of domestic and foreign fiscal policy
on the real exchange rate:

dq
dg

= − dq
dg∗

= − (1− η)εYG

2
[
εYQ + (1− α) εYW

] < 0. (2.81)

Next, we use (2.77), (2.78), and (2.81) to derive the output effects:

dy
dg

= − dy
dg∗

=
dy∗

dg∗
= −dy∗

dg
=

(1− η)(1− α)εYWεYG

2
[
εYQ + (1− α) εYW

] ≡ πR > 0. (2.82)

Equation (2.82) provides a clear statement of the beggar-thy-neighbour property of
fiscal policy when both countries experience real wage rigidity.

2.4.2.2 Monetary policy

Not surprisingly, domestic monetary policy has no real effects under real wage rigid-
ity. As none of the equilibrium loci (ARR, AS∗R, GMER, and GME∗R) are affected, the
interest rate, output levels, and the real exchange rate are also unaffected. It thus
follows that an increase in m causes an (equal) increase in the domestic price level
(dm = dp) and the nominal wage rate (dp = dw). Since the real exchange rate is
unaffected, the nominal exchange rate depreciates by the full amount of the change
in the domestic price (de = dp).

In a similar fashion, and for exactly the same reasons, an increase in the foreign
money supply has no real effects at all and just leads to nominal wage and price
increases and a nominal depreciation of the foreign currency, i.e. dw∗ = dp∗ =
−de = dm∗ > 0.

2.4.3 Real wage rigidity in Europe and nominal wage rigidity in
the United States

In an influential paper, Branson and Rotemberg (1980) argue (on the basis of em-
pirical evidence) that nominal wage rigidity characterizes the US economy whilst
real wage rigidity well describes the European countries. Letting Europe denote the
home country and the US the foreign country (and ignoring the rest of the world for
convenience), the model describing this configuration is obtained from Table 2.4 by
setting θ = 1 and θ∗ = 0.
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Figure 2.13: Fiscal policy with real wage rigidity in both countries
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Figure 2.14: European fiscal policy with real wage rigidity in Europe and nominal
wage rigidity in the United States

The analysis of the effects of fiscal and monetary policy can once again proceed
by graphical means. Since Europe experiences real wage rigidity, it is fully described
by GMER and ASR, which we restate for convenience:

R∗ =
εYWw0 +

[
εYQ + (1− α) εYW

]
q + εYG [g + ηg∗]

εYR
, GMER curve

(2.83)

y = −εYW [w0 + (1− α)q] . ASR curve
(2.84)

The US economy, on the other hand, experiences nominal wage rigidity, and is de-
scribed by GME∗N and LM∗(AS∗N):

R∗ =
(1 + εYWεMY)

[
−εYQq + εYG(g∗ + ηg)

]
+ εYW [w∗0 −m∗]

εYR(1 + εYWεMY) + εYWεMR
, GME∗N curve

(2.85)

y∗ =
εYW [m∗ + εMRR∗ − w∗0 ]

1 + εYWεMY
. LM∗(AS∗N) curve (2.86)

The different schedules have been drawn in Figures 2.14-2.16. In each case, the initial
equilibrium is at e0.

2.4.3.1 Fiscal policy

In Figure 2.14, a European fiscal expansion (a rise in g) leads to an upward shift of
both GMER and GME∗N , with the former experiencing the larger shift (because η < 1
and εYWεMY > 0):(

∂R∗

∂g

)
GMER

≡ εYG
εYR

>
ηεYG

εYR + εYW εMR
1+εYW εMY

≡
(

∂R∗

∂g

)
GME∗N

. (2.87)
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Figure 2.15: US fiscal policy with real wage rigidity in Europe and nominal wage
rigidity in the United States

The real exchange rate of Europe appreciates and the new equilibrium is at e1. We
show in the appendix that the output multipliers are both positive:

dy
dg

= (1− α) εYWεYG ·
(1− η) εYR [1 + εMYεYW ] + εYWεMR

− |∆| > 0, (2.88)

dy∗

dg
= εMRεYWεYG ·

(1 + η) εYQ + η (1− α) εYW

− |∆| > 0, (2.89)

where |∆| < 0. Both y and y∗ increase, but it is not a priori clear which effect domi-
nates. For reasonable parameter values, the effect on own output is likely to exceed
the induced effect on foreign output, i.e. dy/dg > dy∗/dg. This is the case illus-
trated in Figure 2.14 (see the third quadrant). The European fiscal impulse consti-
tutes a locomotive policy since it ends up simultaneously stimulating US output and
employment.

A US fiscal expansion (a rise in g∗) shifts both GMER and GME∗N , but is not clear
which shift dominates:(

∂R∗

∂g

)
GMER

≡ ηεYG
εYR

S
εYG

εYR + εYW εMR
1+εYW εMY

≡
(

∂R∗

∂g

)
GME∗N

. (2.90)

In Figure 2.15 we draw the case for which the shift in GME∗N is dominant. The equi-
librium shifts from e0 to e2. The rate of interest is higher, there is a real depreciation
in Europe, but output falls because real producer wages in Europe rise. Output and
employment in the US rise, so that the US fiscal expansion constitutes a beggar-thy-
neighbour policy. It leads to lower output and higher unemployment in Europe.

In the appendix we derive the expressions for the general case:

dy
dg∗

= (1− α) εYWεYG ·
− (1− η) εYR [1 + εMYεYW ] + ηεYWεMR

− |∆| R 0, (2.91)

dy∗

dg∗
= εMRεYWεYG ·

(1 + η) εYQ + (1− α) εYW
]

− |∆| > 0. (2.92)
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Figure 2.16: US monetary policy with real wage rigidity in Europe and nominal
wage rigidity in the United States

2.4.3.2 Monetary policy

Monetary policy in Europe has no real effects: GMER and ASR are both independent
of the European money supply (see above). In contrast, expansionary US monetary
policy (a rise in m∗) constitutes a locomotive policy for Europe. This has been illus-
trated in Figure 2.16. The increase in the US money stock shifts GME∗N down and
LM∗(AS∗N) to the right. The equilibrium shifts from e0 to e1. The European real ex-
change rate appreciates and the interest rate falls. Both y and y∗ rise, and the US
monetary impulse thus stimulates both economies. By inflating the foreign price
level, the real producer wage abroad falls. This explains why foreign output rises.
Similarly, the real exchange rate appreciation causes European producer wages to
falls, thus also enabling an increase in output there.

2.5 Punchlines

In this chapter we conclude our discussion of the IS-LM model that was commenced
in Chapter 1, by discussing the contributions made by Mundell and Fleming (MF)
and subsequent work in the area. In the MF framework it is explicitly recognized that
most countries are open economies, i.e. they trade goods and financial assets with
each other. There are two crucial aspects characterizing the open economy, namely
its “financial openness” and the exchange rate system it maintains.

By financial openness we mean the ease with which domestic residents substitute
domestic and foreign assets in their portfolios as yields between assets differ. If
substitution is very easy then yields will equalize. This situation is often referred
to as one of perfect capital mobility. At the other extreme, if domestic residents are
not willing to hold foreign assets at all (or if there are strictures against it) then the
economy is “financially closed” and there is said to be no capital mobility at all. The
intermediate case, with imperfectly mobile capital, can also be distinguished.

There are two prototypical exchange rate systems. Under a system of fixed ex-
change rates, the monetary authority keeps the exchange rate for the domestic cur-
rency fixed by means of interventions on the foreign exchange market. Unless the



70 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

policy maker engages in sterilization operations, the money supply will be endoge-
nous under this regime. With a system of flexible exchange rates, the monetary au-
thority does not intervene in the foreign exchange market. As a result the equilib-
rium exchange rate is endogenously determined by the forces of demand and supply
in that market.

The results of monetary and fiscal policy depend both on the degree of capital
mobility and on the exchange rate system. With immobile capital and under fixed
exchange rates neither monetary nor fiscal policy can permanently affect aggregate
output. With perfectly mobile capital and fixed (flexible) exchange rates, monetary
policy is ineffective (effective) and fiscal policy is effective (ineffective) at influencing
output. All these results are based on the assumption of a fixed price level.

In order to endogenize the price level we add a simple model of aggregate supply
to the MF framework. The key features of this model are as follows. First, perfectly
competitive firms set prices of the domestic good. Second, domestic and foreign
goods are distinct and are imperfect substitutes for each other. Third, to give the
model some Keynesian features it is assumed that the (real or nominal) consumer
wage is fixed and that the demand for labour determines employment and output.
Finally, because domestic consumers use both domestic and foreign goods, the con-
sumer price index, upon which the wage claims are potentially based, depends on
both the domestic and the foreign price (and thus on the nominal exchange rate).

Armed with this extended MF model we investigate the effects of monetary and
fiscal policy under perfect capital mobility. Not surprisingly, the wage setting regime
plays a crucial role. Under real (nominal) wage rigidity, monetary policy is ineffec-
tive (effective). With real wage rigidity fiscal policy boosts output, reduces the do-
mestic price, and leads to an appreciation of both the nominal and the real exchange
rate. In contrast, with nominal wage rigidity fiscal policy does not affect output
and the domestic price and merely leads to an appreciation of the real and nomi-
nal exchange rate. All these results hold for a small open economy which faces an
exogenously given world interest rate.

In order to endogenize the world interest rate we assume that the world con-
sists of two identical countries which can each be described by the extended MF
model. The two-country MF model shows how shocks are transmitted internation-
ally. Depending on the configuration of wage-setting regimes in the two countries,
macroeconomic policy initiatives may spill over across countries.

Further reading

The classic references on the open economy IS-LM model are Mundell (1968) and
Fleming (1962). See Frenkel and Razin (1987) for a review article. Good textbook
treatments are found in Branson (1972) and Turnovsky (1977). For two-country mod-
els see Cooper (1968), Dornbusch (1976b), Argy and Salop (1983), and Aoki (1981).
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Appendix: Analysing two-country models

In this appendix we provide analytical solutions for the two-country model pre-
sented in Table 2.4. We exploit the symmetry of the model by utilizing the Aoki
(1981) transformation. This transformation works as follows. Instead of working
with the ten-equation system of Table 2.4, it works with two (much smaller) subsys-
tems that are very easy to analyse, namely the average subsystem and the difference
subsystem. For each set of variable x and x∗, the following transformed variables
are defined:

xa ≡
x + x∗

2
, xd ≡

x− x∗

2
. (A2.1)

Intuitively, xa represents the world average of the variable, whilst xd is the scaled
difference between the domestic and foreign values of the variable. Of course, once
we know xa and xd, we can recover the domestic and foreign values of x by noting
that:

x ≡ xa + xd, x∗ ≡ xa − xd. (A2.2)

A.1 Symmetric case

For the symmetric case with θ = θ∗, the difference subsystem implied by Table 2.4
can be written in matrix format as:

∆D ·

 yd
q
pd

 =

 (1− η) εYGgd
md
−εYWw0d

 , (A2.3)

where ∆D is defined as follows:

∆D ≡

 1 −εYQ 0
εMY 0 1

1 θ (1− α) εYW − (1− θ) εYW

 , (A2.4)

where yd ≡ (y− y∗)/2, pd ≡ (p− p∗)/2, gd ≡ (g− g∗)/2, md ≡ (m−m∗)/2, and
w0d ≡ (w0 −w∗0)/2. The difference subsystem determines the endogenous variables
yd, q, and pd, as a function of the exogenous variables, gd, md, and w0d. The key thing
to note is that ∆D is only a three-by-three matrix, and is thus relatively easy to invert:

∆−1
D ≡

1
|∆D|

·

 −θ (1− α) εYW − (1− θ) εYWεYQ −εYQ
1 + (1− θ) εYWεMY − (1− θ) εYW −1

θ (1− α) εYWεMY −
[
θ (1− α) εYW + εYQ

]
εMYεYQ

 , (A2.5)

where |∆D| ≡ −
[
θ (1− α) εYW + εYQ [1 + (1− θ) εYWεMY]

]
< 0.

The average subsystem implied by Table 2.4 can be written as:

∆A ·

 ya
R∗

pa

 =

 (1 + η) εYGga
ma
−εYWw0a

 , (A2.6)

where ∆A is defined as follows:

∆A ≡

 1 −εYR 0
εMY −εMR 1

1 0 − (1− θ) εYW

 , (A2.7)
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where ya ≡ (y + y∗)/2, pa ≡ (p + p∗)/2, ga ≡ (g + g∗)/2, ma ≡ (m + m∗)/2, and
w0a ≡ (w0 + w∗0)/2. The average subsystem determines the endogenous variables
ya, R∗, and pd, as a function of the exogenous variables, ga, ma, and w0a. Again,
matrix inversion is practicable:

∆−1
A ≡

1
|∆A|

·

 (1− θ) εYWεMR (1− θ) εYWεYR εYR
1 + (1− θ) εYWεMY − (1− θ) εYW −1

εMR εYR − (εMR + εMYεYR)

 , (A2.8)

where |∆A| ≡ (1− θ) εYW [εMR + εMYεYR] + εYR > 0.
The reduced-form expressions for q and R∗ are obtained from the second row of

(A2.3) and (A2.6), respectively:

q =
− [1 + (1− θ) εYWεMY] (1− η) εYGgd + (1− θ) εYWmd − εYWw0d

θ (1− α) εYW + εYQ (1 + (1− θ) εYWεMY)
, (A2.9)

R∗ =
[1 + (1− θ) εYWεMY] (1 + η) εYGga − (1− θ) εYWma + εYWw0a

(1− θ) εYW [εMR + εMYεYR] + εYR
. (A2.10)

The real exchange rate only depends on the difference variables (gd, md, and w0d),
and we immediately find the policy effects:

dq
dg

= − dq
dg∗

=
− (1− η) εYG [1 + (1− θ) εYWεMY]

2
[
θ (1− α) εYW + εYQ (1 + (1− θ) εYWεMY)

] < 0, (A2.11)

dq
dm

= − dq
dm∗

=
(1− θ) εYW

2
[
θ (1− α) εYW + εYQ (1 + (1− θ) εYWεMY)

] ≥ 0, (A2.12)

where dq/dm = −dq/dm∗ = 0 only for the case of real wage rigidity (θ = 1).
The world interest rate only depends on the average variables (ga, ma, and w0a)

and the policy effects are thus given by:

dR∗

dg
=

dR∗

dg∗
=

[1 + (1− θ) εYWεMY] (1 + η) εYG
2 [(1− θ) εYW [εMR + εMYεYR] + εYR]

> 0, (A2.13)

dR∗

dm
=

dR∗

dm∗
=

− (1− θ) εYW
2 [(1− θ) εYW [εMR + εMYεYR] + εYR]

≤ 0, (A2.14)

where dR∗/dm = dR∗/dm∗ = 0 only for the case of real wage rigidity (θ = 1). By
setting θ = 0, in (A2.13) we obtain (2.71) in the text. Similarly, by setting θ = 1 in
(A2.11) we obtain (2.81).

The comparative static effects for y, y∗, p, and p∗ can be obtained by recognizing
the results in (A2.2). By using (A2.6) and (A2.3) we find the following expressions
for ya and yd:

ya =
(1− θ) εYWεMR (1 + η) εYGga + (1− θ) εYWεYRma − εYRεYWw0a

(1− θ) εYW [εMR + εMYεYR] + εYR
, (A2.15)

yd =
θ (1− α) εYW (1− η) εYGgd + (1− θ) εYWεYQmd − εYQεYWw0d

θ (1− α) εYW + εYQ (1 + (1− θ) εYWεMY)
. (A2.16)

The fiscal policy effects can be obtained as follows:

dy
dg

=
dya

dg
+

dyd
dg

=
(1− θ) εYWεMR (1 + η) εYG

2 [(1− θ) εYW [εMR + εMYεYR] + εYR]
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+
θ (1− α) εYW (1− η) εYG

2
[
θ (1− α) εYW + εYQ [1 + (1− θ) εYWεMY]

] , (A2.17)

dy∗

dg
=

dya

dg
− dyd

dg
=

(1− θ) εYWεMR (1 + η) εYG
2 [(1− θ) εYW [εMR + εMYεYR] + εYR]

− θ (1− α) εYW (1− η) εYG

2
[
θ (1− α) εYW + εYQ [1 + (1− θ) εYWεMY]

] , (A2.18)

dy
dg∗

=
dya

dg∗
+

dyd
dg∗

=
dy∗

dg
, (A2.19)

dy∗

dg∗
=

dya

dg∗
− dyd

dg∗
=

dy
dg

. (A2.20)

By setting θ = 0 in (A2.17)–(A2.20) we obtain (2.72) in the text, and by setting θ = 1
we obtain (2.82).

For the monetary policy effects we obtain from (A2.15)–(A2.16):

dy
dm

=
dya

dm
+

dyd
dm

=
(1− θ) εYWεYR

2 (1− θ) εYW [εMR + εMYεYR] + εYR

+
(1− θ) εYWεYQ

2
[
θ (1− α) εYW + εYQ (1 + (1− θ) εYWεMY)

] , (A2.21)

dy∗

dm
=

dya

dm
− dyd

dm
=

(1− θ) εYWεYR
2 (1− θ) εYW [εMR + εMYεYR] + εYR

−
(1− θ) εYWεYQ

2
[
θ (1− α) εYW + εYQ (1 + (1− θ) εYWεMY)

] , (A2.22)

dy
dm∗

=
dya

dm∗
+

dyd
dm∗

=
dy∗

dm
, (A2.23)

dy∗

dm∗
=

dya

dm∗
− dyd

dm∗
=

dy
dm

. (A2.24)

Obviously, for θ = 1 (real wage rigidity) money is neutral. For θ = 0, we obtain the
results described in the text.

In closing we note that the comparative static results for p and p∗ can be obtained
from (A2.6) and (A2.3) by using (A2.2). This is left as an exercise to the reader.

A.2 Asymmetric case

For the asymmetric case, with θ = 1 and θ∗ = 0 the Aoki transformation does not
yield a simplification, and we write the simultaneous system directly in terms of the
original variables:

∆ ·


y
y∗

p
p∗

q
R∗

 =


εYG [g + ηg∗]
εYG [ηg + g∗]
m
m∗

−εYWw0
−εYWw∗0

 , (A2.25)
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where ∆ is defined as:

∆ ≡


1 0 0 0 −εYQ εYR
0 1 0 0 εYQ εYR

εMY 0 1 0 0 −εMR
0 εMY 0 1 0 −εMR
1 0 0 0 (1− α) εYW 0
0 1 0 −εYW 0 0

 (A2.26)

After some manipulation, we find that:

|∆| ≡ − (1− α) εYW

[
εYWεMR + εYR [1 + εMYεYW ]

]
− εYQ

[
εYWεMR + 2εYR [1 + εMYεYW ]

]
< 0. (A2.27)

By using Cramer’s Rule we obtain the policy effects on output in the two regions.
The fiscal policy multipliers are reported in the text—see equations (2.88), (2.91),
(2.89), and (2.92). The monetary policy effects are given by dy/dm = dy∗/dm = 0
and:

dy
dm∗

=
(1− α) εYRε2

YW
− |∆| > 0, (A2.28)

dy∗

dm∗
=

εYRεYW
[
(1− α) εYW + 2εYQ

]
− |∆| > 0. (A2.29)



Chapter 3

Dynamics in aggregate demand
and supply

The purpose of this chapter is to study the following four issues relating to the im-
plicit dynamics present in macroeconomics models:

1. The AEH and stability of the IS-LM-AS model under the neo-Keynesian syn-
thesis,

2. A theory of investment and the implied stock-flow interaction between invest-
ment and the capital stock,

3. A first view of the government budget restriction and the implied stock-flow
interaction between the government deficit and debt or money, which allows a
comparison of stability and effectiveness of money-financed and bond-financed
increases in government spending, and

4. The concept of hysteresis or path dependence arising in a model where the
equilibrium rate of unemployment is determined by the past rate of unem-
ployment and temporary shocks have permanent effects.

3.1 What is stability?

Throughout this chapter the notion of stability will play a fundamental role. A stable
system may be defined as one in which the unique equilibrium (also called station-
ary state) is eventually restored following a shock to one or more of the exogenous
variables. Obviously, to operationalize this definition we must in each case indicate
exactly what we mean by an equilibrium, and which variables we classify as exoge-
nous. When the system has multiple equilibria (or stationary points), there may be
stable and unstable equilibria. If there is a unique stable equilibrium, we shall choose
that equilibrium as the relevant one and can still speak of a stable system.

The reason that economists like to focus attention on stable systems is that the
alternative is unpalatable: unstable systems are not very useful for understanding
the economy. An unstable system has no stable equilibria. Such an unstable sys-
tem may very well have one or more unstable equilibria, but it is not likely to be at
any of those equilibria at any point in time. Indeed, even if such a system starts in an
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equilibrium, a very small shock will permanently displace the system from that equi-
librium. Therefore, only by pure coincidence would the system be in an equilibrium.
Since economists know a lot more about equilibria than they do about disequilib-
rium situations, they like to study models that predict that the system converges
along an equilibrium adjustment path to a stable equilibrium (see also Chapter 4).
Note that this notion of equilibrium can also be extended to uncertain environments,
in which case one would talk, for example, of stochastic steady states (see Chapter
5).

A very useful piece of methodological advice is contained in the so-called corre-
spondence principle, which was transplanted from physics to economics by Paul Sa-
muelson in his classic Foundations of Economic Analysis published in 1947. In words,
the correspondence principle states that we should have confidence in, and use, only
stable systems. As it will turn out, adherence to this principle often yields impor-
tant information on the comparative static (or even comparative dynamic) predic-
tions that can be derived from a theory. More precisely, the mathematical conditions
that are necessary to have a stable system often enable macroeconomists to sign the
steady-state multipliers for changes in government policy or other exogenous vari-
ables. We will give a number of applications of the correspondence principle during
the course of this chapter.

In this chapter we restrict attention to models exhibiting a particular form of
stability, the one that is most familiar to students of physical systems. All models
discussed in this chapter display stability of a backward-looking kind. At a particu-
lar instant in time, the model determines the endogenous variables as a function of
the exogenous variables and the predetermined state variables. Loosely put, his-
tory (as summarized by the state variables) determines the present situation. These
backward-looking models are fairly mechanical, very much as switching on a ma-
chine will cause effects now and in the future but a machine will not switch itself on
in anticipation of a future operation. In Chapter 4 we shall look at models exhibiting
a completely different kind of stability, namely forward-looking stability. There history
and the future jointly determine the current situation. Such forward-looking mod-
els are not considered in this chapter. These models arise in cases where economic
psychology is relevant; for example, firms investing in anticipation of an investment
subsidy being abolished in the future, consumers rushing to the store in the expecta-
tion of a future sales tax increase, or a little boy who starts salivating at the promise
of a Chelsea bun.

We also look in Section 3.5 at a macroeconomic model for which the steady state
is not uniquely defined. Instead, the equilibrium at which the economy finally set-
tles down depends on the course of history, i.e. the equilibrium is path-dependent.
Although this property seems eminently reasonable to historians and other social sci-
entists, it must be stressed that the steady-state equilibrium of most economic models
does not depend on the course of history. (Mathematically, path-dependent systems
are characterized by a zero eigenvalue of the Jacobian matrix in the continuous-time
case or a unit root in the discrete-time case. See the Mathematical Appendix for fur-
ther details.) An interesting feature of models with the hysteresis property is that
temporary shocks can have permanent effects. For example, a temporary adverse
shock to the labour market can lead to a lasting increase in the rate of unemploy-
ment.
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3.2 Adaptive expectations and stability

In Chapter 1 we saw that one variant of the neo-Keynesian synthesis model can be
obtained under flexible wages and prices by assuming that price expectations are
formed according to the adaptive expectations hypothesis (AEH). The model can be
written in a very compact form as:

Y = AD(G, M/P), (3.1)
Y = Y∗ + φ [P− Pe] , φ > 0, (3.2)

Ṗe = λ [P− Pe] , λ > 0. (3.3)

Equation (3.1) is the AD curve, which summarizes the simultaneous occurrence of
money market equilibrium and spending equilibrium. The AD curve depends on
two exogenous variables, namely government consumption, G (via the IS curve),
and the nominal money supply, M (via the LM curve). The partial derivatives of
the AD curve with respect to its arguments have been interpreted in Chapter 1 and
follow immediately from equation (1.29):

ADG ≡
1

1− CY−T(1− TY) + lY IR/lR
> 0, (3.4)

ADM/P ≡
IR/lR

1− CY−T(1− TY) + lY IR/lR
> 0, (3.5)

where CY−T is the marginal propensity to consume, TY is the marginal tax rate, IR is
the interest sensitivity of investment, and lY and lR denote, respectively, the income
and interest sensitivity of money demand. We recall from Chapter 1 that 0 < CY−T <
1, 0 < TY < 1, IR < 0, lY > 0, and lR < 0. Clearly, aggregate demand rises if
government spending or real money balances are increased. In the bottom part of
Figure 3.1 the AD curves are downward sloping, i.e. ADP ≡ −

(
M/P2) ·ADM/P < 0.

Equation (3.2) is the specification for aggregate supply in the goods market. Po-
tential output, also called the full-employment level of output, Y∗, depends on supply-
side variables. For example, potential output is an increasing function of the capital
stock–see expression (1.20). Due to the fact that the expected and the actual price lev-
els do not always coincide under the assumption of adaptive expectations, labour
supply and consequently output can differ (in the short run) from their respective
full-employment levels. The parameter φ follows from the AS curve (1.20):

φ ≡ ASP =
ωNεDεS
εD + εS

Y
P

> 0, (3.6)

where ωN is the national income share of wages, and εD and εS denote the wage elas-
ticity of, respectively, labour demand and labour supply. We recall from Chapter 1
that 0 < ωN < 1 and εD > 0. Recall furthermore that, due to diminishing returns to
labour, the demand curve for labour is downward sloping, and that εD is measured
in absolute value terms. Finally, provided the substitution effect dominates the in-
come effect in labour supply, we also have that the labour supply curve is upward
sloping, i.e. εS > 0. Hence, the parameter φ determines the slope of the short-run
AS curve–the higher a value of φ, the flatter the short-run AS curve, and the larger
the output fluctuations that occur as a result of a given shift in aggregate demand.
Indeed, by rewriting (3.2) somewhat, the AS curve can be written as:

P = Pe +
1
φ
[Y−Y∗] , (3.7)
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Figure 3.1: Fiscal policy under adaptive expectations
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from which it follows readily that (dP/dY)Pe=P0
= 1/φ. In the bottom part of Figure

3.1, the curve labelled AS(Pe = P0) depicts the short-run aggregate supply curve
when the expected price level is equal to P0. Note that the difference between the
full-employment level of output and the actual level of output, Y∗−Y, is sometimes
called Okun’s gap. It is also a measure of (involuntary) unemployment.

Finally, equation (3.3) is the continuous time version of the AEH expressed in
equation (1.14). Agents revise their expectations regarding the price level if there
is a discrepancy between the actual and the expected price level. The parameter
λ is an indicator for the speed at which agents adapt their expectations (i.e. the
promptness with which they correct their mistakes). A crucial aspect of the AEH is
that the expected price level is a state variable, which means that its value is given
at a particular instant in time. Hence, under the AEH the expected price level, Pe,
is treated just like the capital stock, namely as something that is determined in the
past. Suppose we want to compute the level of Pe at some particular time t. Just as
the capital stock depends on past investment outlays, the expected price level Pe(t)
depends on actual price levels from period t into the indefinite past. To show that
this is indeed the case, we solve the differential equation (3.3) to obtain the following
expression for the expected price level:

Pe(t) =
∫ t

−∞
λP(τ)e−λ(t−τ)dτ. (3.8)

The expected price level in period t, denoted by Pe(t), depends on the entire path
of (exponentially weighted) price levels in the past. Due to the discounting, distant
prices have relatively little influence on the expectation of the current price level.

Intermezzo 3.1

The expected price level under the adaptive expectations hypothesis.
By explicitly recognizing the dependence on time, τ, equation (3.3) can be
written in terms of a first-order differential equation for Pe(τ) featuring
a constant coefficient, λ, and a time-varying forcing term, P(τ):

Ṗe(τ) + λPe(τ) = λP(τ). (a)

By multiplying both sides of (a) by the integrating factor, eλτ , we find
that: [

Ṗe(τ) + λPe(τ)
]

eλτ = λP(τ)eλτ ⇔
d

dτ
Pe(τ)eλτ = λP(τ)eλτ ⇔

dPe(τ)eλτ = λP(τ)eλτdτ. (b)

Integrating both sides for τ ∈ (−∞, t] gives:∫ t

−∞
dPe(τ)eλτ = λ

∫ t

−∞
P(τ)eλτdτ

Pe(τ)eλτ
∣∣∣t
−∞

= λ
∫ t

−∞
P(τ)eλτdτ

Pe(t)eλt − lim
τ→−∞

Pe(τ)eλτ = λ
∫ t

−∞
P(τ)eλτdτ. (c)
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But lim
τ→−∞

Pe(τ)eλτ = 0 so we can rewrite (c), by taking eλt to the other

side, and obtain the expression for Pe(t) as given in equation (3.8). Sar-
gent (1987b, pp. 117–118) studies the case for which expected inflation,
rather than the expected price level, is adjusted according to the AEH.

****

The neo-Keynesian model of aggregate demand and supply summarized by equa-
tions (3.1)–(3.3) can be solved quite easily for the short run, the transition period, and
the long run. Graphically, the solution has already been discussed in Chapter 1 and
is illustrated again in Figure 3.1. The initial situation is point E0, where output is
equal to its potential level (Y = Y∗), the rate of interest is equal to R0, and the price
level is equal to P0. Now consider the following experiment in order to determine
the stability of our model: does the economy automatically return to an equilibrium
after a shock, say an increase in government spending? The (affirmative) answer
is easily illustrated with the aid of the diagram. Following the increase in govern-
ment spending (dG > 0), the IS curve and hence the AD curve both shift to the
right. Expectations are given in the short run, so that the economy operates along
the short-run aggregate supply curve through E0. At point A the price level has in-
creased from P0 to P′ and output has also increased (to Y′). Is there an equilibrium
at point A or, more precisely from a mathematical point of view, is A a stationary
point? Clearly, there is equilibrium in the sense that the AD curve and short-run AS
curve intersect. Given their price expectations, households are happy to supply the
amount of labour they do, and all markets clear. There is, however, a disequilibrium
regarding expectations: at point A households base their plans on the expectation
that the price is P0 but the actual price level is higher (P′ > P0). The AEH suggests
that this discrepancy will be eliminated over time. Hence, A is not a stationary point.
As the expected price level is increased, the short-run AS curve will start to shift up
and to the left and the economy will move along the new AD curve towards point
E1. Point E1 is a point of full equilibrium, because all markets clear and there is an
expectational equilibrium. Hence, point E1 is both an equilibrium from an economic
point of view and a stationary point. Consequently, the IS-LM-AS model is stable.

It is not always so easy to use graphical devices to demonstrate stability. For that
reason the following, slightly more formal method, may be used. Recall that in the
short run, the expected price level Pe is a predetermined, or state, variable. Con-
sequently, we can use expressions (3.1)–(3.2) to solve for the short-run equilibrium
values of the price level, P, and output, Y, conditional on the exogenous variables
(G, M, and Y∗) and the predetermined state variable (Pe). Put differently, we know
that (3.1)–(3.2) give rise to two implicit functions of the following form:

P = Φ(G, M, Y∗, Pe), Y = Ψ(G, M, Y∗, Pe). (3.9)

Of course we do not know the explicit functional forms of Φ(·) and Ψ(·) but that is
not a problem. All we need to know is the partial derivatives of these functions, and
they can be easily obtained by employing the implicit function theorem. We briefly
remind the reader how to do this. In the first step we totally differentiate equations
(3.1)–(3.2) to obtain:

dY = ADGdG + (1/P)ADM/PdM− αdP, (3.10)
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dY = dY∗ + φ [dP− dPe] , (3.11)

where α ≡ (M/P2)ADM/P > 0 is a composite parameter. In the second step we
solve these two expressions for the change in the price level, dP, and in output, dY:

dP =
ADGdG + (1/P)ADM/PdM− dY∗ + φdPe

φ + α
, (3.12)

dY =
φADGdG + (φ/P)ADM/PdM + αdY∗ − αφdPe

φ + α
. (3.13)

Since both φ and α are positive, the denominator of (3.12) and (3.13) is guaranteed
to be positive. In the final step we recover the partial derivatives of Φ(·) and Ψ(·)
by in each case letting one of dG, dM, dY∗, and dPe be non-zero. For example, by
using (3.12) we find that ΦG = ADG/(φ + α) > 0, ΦM = (1/P)ADM/P/(φ + α) > 0,
ΦY∗ = −1/(φ + α) < 0, and ΦPe = φ/(φ + α) > 0. Hence, the first expression in
(3.9) says that P is an increasing function of Pe, G, and M but a decreasing function
of Y∗.

In a similar fashion we can deduce from (3.13) that ΨG = φADG/(φ + α) > 0,
ΨM = (φ/P)ADM/P/(φ + α) > 0, ΨY∗ = α/(φ + α) < 0, and ΨPe = −αφ/(φ +
α) > 0. Hence the Keynesian multiplier which is relevant when prices are sticky,
i.e. ADG, is weakened on account of the rise in the price level and the associated
contraction in real money balances. The extent of this weakening is captured by the
factor φ/ (φ + α) which is positive but less than unity. We see that the flatter the AS
curve, i.e. the smaller the change in the price level caused by a change in aggregate
demand (the higher is φ), the smaller is the rise in the price level and the dampening
of the short-run Keynesian multiplier. A very steep AS curve (a low value of φ)
implies that a rise in government spending yields a relatively large boost to the price
level and a small rise in employment and output.

The implicit function P = Φ(G, M, Y∗, Pe) (stated in (3.9)) is very useful for our
stability analysis, because it summarizes all the effects that influence the price level,
P, at a particular instant in time. By substituting this function into equation (3.3) we
obtain:

Ṗe = λ [Φ(G, M, Y∗, Pe)− Pe] ≡ Ω(Pe, G, M, Y∗), (3.14)

where Ω (·) is yet another implicit function relating the time rate of change in the
expected price level to that price level and to the exogenous variables. The par-
tial derivatives of this implicit function are once again obtained by employing the
implicit function theorem. Indeed, by totally differentiating equation (3.3), and sub-
stituting (3.12), we obtain:

dṖe = λ [dP− dPe]

= − λα

φ + α
dPe +

λADGdG + (λ/P)ADM/PdM− λdY∗

φ + α
, (3.15)

from which we conclude that ΩPe = −λα/ (φ + α) < 0, ΩG = λADG/(φ + α) > 0,
ΩM = (λ/P)ADM/P/(φ + α) > 0, and ΩY∗ = −λ/(φ + α) < 0.

Let us now return to the stability experiment mentioned above. We leave exoge-
nous variables other than government spending unchanged (i.e. dM = dY∗ = 0 and
dG > 0) and determine the “law of motion” of the expected price level. The result-
ing phase diagram is found in Figure 3.2. From the expressions in (3.15) it is clear that
Ṗe = Ω(·) is a decreasing function of Pe (since ΩPe < 0). The initial equilibrium
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Figure 3.2: Stability and adaptive expectations

or steady state is given by point E0. If government spending is increased, the Ṗe

line shifts up and to the right (since ΩG > 0). Even though Pe is fixed in the short
run, Ṗe jumps to a positive value (point A). The expected price level starts to rise,
which is represented by the arrows along the new Ṗe line. Eventually, the economy
reaches point E1, which is the new equilibrium and steady state. This experiment
shows that the crucial property that is needed for stability is that changes in the ex-
pected price level should taper off. More formally, stability implies (and is implied
by) ∂Ṗe/∂Pe ≡ ΩPe < 0. If this stability condition holds, the model is, of course,
stable in the face of shocks to other kinds of exogenous variables as well.

In order to test one’s understanding of the material it is useful to examine the
stability of an alternative neo-Keynesian synthesis model, namely one where the
nominal wage adjusts sluggishly in response to conditions in the labour market. This
is left as an exercise.

3.3 Investment, the capital stock, and stability

In Section 3.2 we saw an example of stability analysis involving expectations. In this
section and the next, we look at stability in a class of dynamic systems that stresses
the interaction between stocks and flows. A very prominent example of interaction
between stocks and flows is the one between the level of the capital stock and the
rate of investment. This interaction is typically ignored in the IS-LM model, which
renders the IS-LM model less useful for understanding transient and long-run issues.
Notable exception to this ad hoc approach are Tobin and Buiter (1976) and Sargent
(1987b). Before turning to the stability issue in the context of investment-capital
dynamics, we first briefly introduce a theory of investment (by the typical firm) that
is based on microeconomic foundations. This theory will be further developed in
Chapter 4, but is used here to motivate the form of the investment function that is
appropriate if dynamic issues are taken into account.
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Figure 3.3: Adjustment costs of investment

3.3.1 Adjustment costs and investment

Firms invest in order to add units of capital to the stock they already have and to
replace the worn out capital stock. They do this because they want to conduct their
operations in the most profitable way. In Chapter 1 we have already described a very
basic static model of producer behaviour. The objective of this section is to expand
our basic model of producer behaviour to a dynamic setting. By doing so, the issue
of optimal investment plans can be studied.

We make the following assumptions regarding the typical firm. First, the firm
has static expectations regarding all prices and the interest rate. Second, technology
is constant. Third, the firm is a perfect competitor in the markets for its inputs and
its output. Fourth, the investment process is subject to adjustment costs. Adding
new machines is disruptive to the production process and leads to lost revenue. For
low levels of investment these adjustment costs are low, but these costs rise more
than proportionally with the level of investment. The adjustment cost function is
(for simplicity) assumed to be quadratic: bPI I2, where b is a positive constant, PI is
the price of new machines, and I is the level of gross investment by the firm. The
adjustment cost function is illustrated in Figure 3.3. The production function is still
given by Y = F(N, K) and has the properties stated in Chapter 1.

Finally, we assume that the typical firm maximizes the present value of the net
payments it can make to the owners of its capital stock (i.e. the shareholders), subject
to the restrictions of the production function and the capital accumulation identity.
The market rate of interest on bonds, R, is used as the discount factor. In Intermezzo
3.2 we demonstrate that this assumption is justified in a decentralized market setting
with a well-functioning stock market.

Since the problem of the firm is essentially dynamic, all variables must be given
a time index. In order to obtain the simplest possible expressions, the derivation
proceeds in discrete time. Nominal cash flow at the beginning of period t, Πt, is
defined as:

Πt = PF(Nt, Kt)−WNt − PI It − bPI I2
t , (3.16)

where Nt is employment in period t, Kt is the capital stock at the beginning of period
t, and It is the level of investment in period t. Note that the prices of goods and
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labour (P, PI , W) have no time index because we assume that firms expect these to
be constant over time. The first two terms on the right-hand side of (3.16) represent
sales revenue minus the wage bill; they are familiar from Chapter 1. The third term
represents the current outlays on new investment goods, and the fourth term repre-
sents the adjustment costs. The identity linking rates of investment and the capital
stock is given in discrete time as:

Kt+1 − Kt = It − δKt, 0 < δ < 1, (3.17)

where δ represents the constant rate of physical deterioration of the capital stock due
to wear and tear.

In period 0 (‘today’) the objective function of the firm, i.e. the present value of
present and future cash flow streams, can be written as:

V̄0 ≡
∞

∑
t=0

(
1

1 + R

)t
Πt

=
∞

∑
t=0

(
1

1 + R

)t [
PF(Nt, Kt)−WNt − PI It − bPI I2

t

]
. (3.18)

Due to the dynamic nature of the problem, the firm must formulate plans regarding
production now and in the indefinite future (Yt, for t = 0, 1, 2, · · · , ∞). It does so by
choosing paths (for time periods t = 0, 1, 2, · · · , ∞), for employment (Nt), investment
(It), and the capital stock (Kt+1) such that (3.18) is maximized subject to (3.17).

Intermezzo 3.2

The cost of capital to the firm: Modigliani-Miller. Which rate should
the firm use to discount its present and future profits? Does the firm’s
dividend policy matter to the valuation of its shares on the stock market?
These and related questions were first analysed in a number of highly in-
fluential papers by Modigliani and Miller (1958), Miller and Modigliani
(1961), and Miller (1977). Miller and Modigliani (1961, p. 413) consider
the following scenario: suppose a firm wants to invest by buying a $100
machine. How should it finance this investment–by reducing dividends
(and thus relying on retained earnings) or by issuing new shares? Their
surprising answer is that, in an ideal economy characterized by perfect
capital markets, rational behaviour, and perfect certainty, the firm’s divi-
dend policy does not matter. This is the famous Modigliani-Miller theorem
(MMT hereafter). As it turns out this theorem also gives an answer to our
first question concerning the appropriate discount rate for the firm.

Before giving a simple demonstration of the MMT it is important to
emphasize the assumptions upon which its validity is based (Miller and
Modigliani, 1961, p. 412). By perfect capital markets it is meant that no
buyer or seller of securities has market power. There are no brokerage
fees, transaction costs, and tax distortions. By rational behaviour it is meant
that investors prefer more wealth to less and do not care about the form
in which their wealth accrues (e.g. by cash payments or by valuation
changes). Finally, by perfect certainty it is meant that all investors are fully
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aware of all future investment programmes and the future profits of ev-
ery corporation. Presumably because these assumptions are rather strin-
gent, the late Modigliani himself reputedly always added the proviso “to
a first approximation” when talking about the validity of the MMT (see
Blanchard and Fischer, 1989, p. 314 fn. 35).

Suppose that there are many firms (indexed with i), facing identical
technology and adjustments costs, and that the shares of all firms are
traded in the stock market. Assume furthermore that, apart from hold-
ing shares in the various companies, investors can also hold a one-period
government bond which pays (1 + R) euros per euro invested each pe-
riod. We assume that the firms issue no (corporate) debt and that the
interest rate, wages, and prices are constant, both at present and in the
future. Under the assumptions made, the fundamental principle of valua-
tion says that the yield per euro invested must be the same for all financial
assets:

di
t + pi

t+1 − pi
t

pi
t

= R, (a)

where di
t is the dividend per share paid by firm i at the end of period t,

pi
t is the price of a share in firm i (exclusive of period t− 1 dividend) at

the start of period t. The left-hand side of (a) shows that the yield on one
euro invested in shares of firm i consists of dividend plus capital gains
expressed in terms of the price of a share in that firm. The right-hand side
of (a) shows that this common yield on shares must be equal to the yield
on one-period government bonds.

Note that (a) can be rewritten as:

pi
t =

1
1 + R

[
di

t + pi
t+1

]
. (b)

This expression can be rewritten in terms of the value of the firm as a
whole by defining Vi

t ≡ pi
tn

i
t, where ni

t is the number of shares of firm i
at the beginning of period t:

Vi
t =

1
1 + R

[
ni

td
i
t + ni

t pi
t+1

]
=

1
1 + R

[
ni

td
i
t +
(

ni
t + ni

t+1 − ni
t+1

)
pi

t+1

]
=

1
1 + R

[
Di

t + Vi
t+1 −mi

t+1 pi
t+1

]
, (c)

where Di
t ≡ ni

td
i
t is total dividends paid at the end of period t to the ni

t
‘old’ stockholders and mi

t+1 ≡ ni
t+1 − ni

t is the number of new shares
sold during period t at the ex-dividend closing price pi

t+1. Suppose that
PI Ii

t(1+ bIi
t) is the given firm’s investment level (inclusive of adjustment

costs) and that Xi
t ≡ PF(Ki

t, Ni
t) −WNi

t is the firm’s gross profit, both
measured at the beginning of period t. Then the amount of outside capi-
tal that the firm needs to finance its investment plans at the beginning of
period t + 1 is:

mi
t+1 pi

t+1 = PI Ii
t+1(1 + bIi

t+1) + Di
t − Xi

t+1. (d)
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By substituting (d) into (c) we obtain the following expression for the
value of the firm at the start of period t:

Vi
t =

1
1 + R

[
Xi

t+1 − PI Ii
t+1(1 + bIi

t+1) + Vi
t+1

]
. (e)

The crucial thing to note is that the level of dividends does not affect
anything in (e)! Hence, the current value of the firm is independent of
its current dividend policy. Solving (e) by repeated substitution of terms
like Vi

t+1, Vi
t+2, etc., we find the following expression for Vi

t after T sub-
stitutions:

Vi
t =

t+T

∑
s=t+1

(
1

1 + R

)s−t
Πi

s +

(
1

1 + R

)T
Vi

t+T , (f)

where we have used the definition of cash flow, Πi
s (cf. the one given in

(3.16)). By letting T → ∞ in (f) we obtain:

Vi
t =

∞

∑
s=t+1

(
1

1 + R

)s−t
Πi

s. (g)

As is pointed out by Auerbach (1979b, p. 437), the expression in (g)
holds provided the value of the firm grows at a slower rate than R so
that limT→∞(1 + R)−TVi

t+T = 0 in (f). This is a so-called No-Ponzi-Game
(NPG) condition which prohibits the firm from running a “chain letter
scheme” by supporting dividend payments solely from new share issues.
(We shall encounter NPG conditions in various setting throughout the
book).

By dropping the now superfluous firm index i and noting that the
firm also has some cash flow at the beginning of the period t, we find
that the objective function of the firm can be written as:

V̄t ≡ Vt + Πt =
∞

∑
s=t

(
1

1 + R

)s−t
Πs. (h)

By normalizing the planning period t = 0 we obtain the expression (3.18)
in the text. Cash flows should be discounted by the cost of capital which,
in the present setting, equals the rate of return on government bonds.

The Modigliani-Miller theorem has been extended and generalized
over the last four decades. Useful extensions in a macroeconomic setting
are Auerbach (1979b), Sinn (1987), and Turnovsky (1995, ch. 10). All these
authors focus on the effect of real world taxes on the validity of the MMT.

****

Two things are noteworthy about the firm’s optimization problem. First, the
choices regarding investment and the capital stock are not independent because the
capital accumulation identity (3.17) implies a path of the capital stock once a path for
investment is chosen. Second, in the planning period, t = 0, the firm has an installed
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capital stock already, so that K0 is not a choice variable to the firm. Formally, the
maximization problem can be solved by means of the Lagrange multiplier method.
The Lagrangian is:

L0 ≡
∞

∑
t=0

(
1

1 + R

)t [
PF(Nt, Kt)−WNt − PI It − bPI I2

t

]
−

∞

∑
t=0

(
1

1 + R

)t
· λt · [Kt+1 − (1− δ)Kt − It] , (3.19)

where λt is the Lagrange multiplier for the capital accumulation constraint that is
relevant in period t (in order to simplify the notation these multipliers are weighted
by the discount factor). The first-order conditions are (for t = 0, · · · , ∞):

∂L0

∂Nt
=

(
1

1 + R

)t
[PFN(Nt, Kt)−W] = 0, (3.20)

∂L0

∂Kt+1
=

(
1

1 + R

)t [PFK(Nt+1, Kt+1) + λt+1(1− δ)

1 + R
− λt

]
= 0, (3.21)

∂L0

∂It
=

(
1

1 + R

)t [
−PI − 2bPI It + λt

]
= 0. (3.22)

(Note the timing of the Lagrange multiplier in the first-order condition for capital!)
Although (3.20)–(3.22) look monstrously difficult, they can nevertheless be read-

ily interpreted. Note that (1 + R)−t > 0 so that the terms in square brackets on
the right-hand sides of (3.20)–(3.22) must be zero to satisfy the first-order conditions.
Hence, equation (3.20) amounts to the marginal productivity condition for the labour
input that was already derived for the static case (see equation (1.4)). It is intuitively
obvious why these two first-order conditions coincide: labour is a fully flexible factor
of production, and the choice of how much labour to use is not a dynamic one.

Equations (3.21) and (3.22) can be combined to yield an expression for the optimal
path of investment. First, (3.22) is used to get expressions for λt and λt+1:

λt = PI [1 + 2bIt] , λt+1 = PI [1 + 2bIt+1] . (3.23)

By substituting these expressions into (3.21), we obtain the first-order condition for
investment:

PFK(Nt+1, Kt+1) + λt+1(1− δ)− λt(1 + R) = 0 ⇒
PFK(Nt+1, Kt+1) + (1− δ)PI [1 + 2bIt+1]− (1 + R)PI [1 + 2bIt] = 0 ⇒

It+1 −
1 + R
1− δ

It +
PFK(Nt+1, Kt+1)− PI(R + δ)

2bPI(1− δ)
= 0. (3.24)

This equation is an unstable difference equation for investment, because the coeffi-
cient for It is greater than unity. The steady-state solution for investment is found by
setting ∆It+1 = 0, or It+1 = It = I:

I =
1
2b

[
PFK(N, K)
PI(R + δ)

− 1
]

. (3.25)

The intuition behind expression (3.25) is very simple. If the value of the marginal
product of capital (PFK) is greater than the rental price of capital (i.e. the opportunity
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cost of capital plus the depreciation charge, (R + δ)PI), the firm should invest. Note
furthermore that in the absence of adjustment costs (b = 0), the firm has no well-
defined optimal investment policy. In that case (3.25) reduces to PFK = PI(R + δ),
which is a static condition determining the optimal capital stock for the firm. Hence,
in the absence of adjustment costs, the firm has an infinite speed of investment and
immediately adjusts its capital stock to the optimal level.

In Chapter 4 we shall demonstrate more formally that the steady-state invest-
ment plan (3.25) is also the optimal solution to the firm’s maximization problem. In-
tuitively, the firm chooses the smoothest possible investment path in order to avoid
very high adjustment costs in periods of high investment. An uneven path of invest-
ment, e.g. low now, high later, would have low adjustment costs now but very high
adjustment costs later. Due to the fact that the adjustment cost function is convex
(e.g. quadratic), these higher costs later dominate the low costs early on.

One final remark about expression (3.25) concerns the price of investment goods,
PI . The IS-LM model is essentially a one-good model, so one would expect that the
investment good is actually the same as the consumption good and thus P ≡ PI .
There is, however, a reason why the two prices can diverge, even in a one-good
setting. Suppose that the government wishes to stimulate investment. It could do so
by subsidizing investment goods. In that case the price of investment goods faced
by firms is equal to PI ≡ (1− sI)P, where sI is the subsidy. Equation (3.25) then
becomes:

I =
1
2b

[
FK(N, K)

(1− sI)(R + δ)
− 1
]

. (3.26)

It is clear from this expression that the investment subsidy is successful in stimulat-
ing investment, i.e. ∂I/∂sI > 0. We return to the important issue of how government
policy can be used to stimulate private investment in Chapter 4.

3.3.2 Stability

The investment theory developed in the previous section may be summarized by the
general functional form for investment:

I = I(R, K, Y), IR < 0, IK < 0, IY > 0, (3.27)

where we assume that there is no investment subsidy (so that PI = P). We also
assume that the marginal product of capital (that appears in expression (3.26)) de-
pends positively on Y and negatively on K. This is, for example, the case for the
Cobb-Douglas production function, Y = Z0KεN1−ε (with 0 < ε < 1), for which
FK = εY/K, ∂FK/∂Y > 0, and ∂FK/∂K < 0 (see Intermezzo 1.1 for more details
on this type of production function). An alternative, more ad hoc derivation of this
investment relationship is the so-called accelerator theory of investment. This pro-
ceeds by postulating a desired level of the capital stock, say KD(Y, R) with KD

Y > 0
and KD

R < 0, and assuming that investment takes place in order to close the gap be-
tween the desired and the actual level of the capital stock, say I = b(KD − K) with b
now being the speed of adjustment. Clearly, this accelerator view of investment may
also be seen as a special case of this general functional form for investment.

In order to investigate stability in the IS-LM model, we first simplify matters
by postulating that the price level is constant, i.e. we assume that the AS curve
is perfectly elastic at the given price level which we normalize to unity (P = 1).
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Throughout this section we hold the money supply constant. The model of aggregate
demand with dynamics in the capital stock can thus be written as:

Y = C(Y− T(Y)) + I(R, K, Y) + G, (3.28)
M = l(Y, R), (3.29)

K̇ = I(R, K, Y)− δK. (3.30)

Equation (3.28) is the IS curve, (3.29) is the LM curve, and (3.30) is the capital accu-
mulation identity (3.17) rewritten in continuous time and with (3.27) substituted. We
assume that the IS curve is downward sloping in Figure 3.4, i.e. 0 < CY−T (1− TY) +
IY < 1.

The capital stock is predetermined in the short run, so that the IS-LM equations
(3.28)–(3.29) jointly determine short-run equilibrium values for output, Y, and the
rate of interest, R, in terms of K and G:

Y = Φ(K
−

, G
+
), R = Ψ(K

−
, G
+
), (3.31)

where Φ (·) and Ψ(·) are implicit functions. The pluses and minuses summarize
the signs of the partial derivatives of these implicit functions. These are obtained
in the standard manner by employing the implicit function theorem. The spending
multiplier is, for example, given by:

ΦG =
1

1− CY−T(1− TY)− IY + IRlY/lR
> 0. (3.32)

The positive output effect in investment (IY > 0) ensures that the multiplier is larger
than its counterpart in the standard IS-LM model—see equation (3.4). In terms of
Figure 3.4, an increase in government consumption shifts the IS curve to the right,
and moves the equilibrium from point E0 to point A. The remaining partial deriva-
tives are given by:

ΦK = IKΦG < 0, ΨG = − lY
lR

ΦG > 0, ΨK = − lY IK
lR

ΦG < 0. (3.33)

The interested reader should verify that the move from E0 to A in Figure 3.4 explains
the signs of ΦG and ΨG, whilst the move from E0 to B explains the signs of ΦK and
ΨK. Clearly, a fiscal contraction or a higher capital stock lowers the interest rate and
depresses aggregate demand and hence output.

It is immediately obvious that the stability issue is not as easy as for the case of
price expectations under the AEH. Indeed, equation (3.30) says that K̇ depends on K
directly and indirectly via induced effects on Y and R. By using (3.31) in (3.30) we
find that the function relating K̇ to K and G can be written as:

K̇ = I
(
Ψ (K, G) , K, Φ(K, G)

)
− δK ≡ Ω (K, G) , (3.34)

where the partial derivatives of Ω (K, G) are given by:

ΩK ≡ IRΨK + IK + IYΦK − δ, (3.35)
ΩG ≡ IRΨG + IYΦG. (3.36)

Recall that the stability requirement is that changes in the capital stock must taper
off, i.e. stability requires that ∂K̇/∂K ≡ ΩK < 0 holds. But is ΩK negative? Glancing
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Figure 3.4: Comparative static effects in the IS-LM model

at (3.35), “stabilizing” influences exist because IK < 0, IYΦK < 0, and −δ < 0.
A high capital stock and (thus) a low level of aggregate demand both imply a low
level of gross investment. In addition, a high capital stock implies a high level of
depreciation. Hence, net investment is at a low level and the capital stock will fall
in future periods back to its equilibrium value. However, a “destabilizing” influence
is clearly the term IRΨK > 0. Intuitively, the destabilizing effect is due to the fact
that a higher capital stock induces a lower interest rate (as ΨK < 0) and stimulates
investment (as IR < 0).

What would the well-trained economist do in such a situation where stability
is not guaranteed? Typically, one would appeal to Samuelson’s correspondence
principle and simply assume stability, i.e. postulate that the destabilizing effect of
IRΨK > 0 is dominated by the sum of the stabilizing effects (IK + IYΦK − δ) < 0, so
that ΩK is negative and the K̇ lines in Figure 3.5 are downward sloping. This is the
approach taken here also.

Given that stability has been assumed, what happens if the government increases
its expenditure on goods and services (dG > 0)? Equation (3.34) says that the K̇ line
may shift up or down depending on the sign of ∂K̇/∂G ≡ ΩG–recall that IRΨG is
negative whilst IYΦG is positive. A typical monetarist (see Chapter 1) would suggest
a strong interest rate effect on investment (|IR| large), and a large effect on the interest
rate but a small effect on output of a rise in government spending (ΨG large and
ΦG small). Consequently, a monetarist might suggest that ΩG is negative. This is
illustrated in Figure 3.5. According to the monetarist view, the K̇ line shifts down,
and in the long run the capital stock is crowded out by government spending.

A typical Keynesian might argue the reverse: |IR| small, ΨG small, and ΦG large,
so that ΩG > 0. This implies that the K̇ line shifts up and to the right, so that the
capital stock is stimulated in the long run by a rise in government spending. The
Keynesian predictions regarding the effects on the rate of interest and output have
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Figure 3.5: The effect on capital of a rise in public spending

been illustrated in Figure 3.6. In the short run the capital stock is fixed (at K0) and
the IS curve shifts to the right (from IS(K0, G0) to IS(K0, G1)) as a result of the increase
in government consumption. The economy moves from E0 to A, and output and
employment increase. Despite the higher interest rate, firms wish to add to their
capital stock, i.e. net investment is positive at point A (K̇ > 0). Over time the capital
stock increases and the IS curve gradually shifts to the left. In the new steady state,
K̇ = 0, the capital stock is equal to K1, IS(K1, G1) is the relevant IS curve, and the
equilibrium is at point E1.

The long-run effect on output is guaranteed to be positive (though more so under
the Keynesian assumptions). This can be shown as follows. In the long run it must
be the case that K̇LR = Ω

(
KLR, G

)
= 0, where the superscript LR denotes long-run

values. Hence, the long-run effect on the capital stock is given by:(
dK
dG

)LR
=

ΩG
−ΩK

, (3.37)

where stability ensures that the denominator is positive. To a Keynesian, the ad-
ditional government spending “crowds in” the capital stock and the numerator is
positive, and the reverse holds for a monetarist. By using the long-run capital stock
effect (3.37) and the implicit function for output (the first expression in (3.31)), YLR =
Φ
(
KLR, G

)
, we obtain the following long-run output multiplier for a rise in public

spending:(
dY
dG

)LR
= ΦK

(
dK
dG

)LR
+ ΦG

= ΦG

[
IK

(
dK
dG

)LR
+ 1

]

=
(δ− IK)ΦG
−ΨK

> 0, (3.38)

where we have used (3.33) and (3.36) to simplify the expression. In the stable case
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Figure 3.6: Capital accumulation and the Keynesian effects of fiscal policy

(with −ΨK > 0) Samuelson’s correspondence principle thus yields useful informa-
tion on the sign of the denominator. Since the numerator of expression (3.38) is posi-
tive as well (as IK < 0 and ΦG > 0), output must rise in the long run. The Keynesian
assumptions imply that investment is not very sensitive to the rate of interest while
money demand is very sensitive to changes in the interest rate (a steep IS curve and
a flat LM curve), and that investment reacts strongly to changes in output. In that
case, crowding out of private investment is small relative to the output effect on in-
vestment. It thus follows that output and capital both rise after an increase in public
spending. The monetarist assumptions are the opposite (a steep LM curve, a flat IS
curve, and a small output effect on investment). Hence, a rise in public spending
depresses capital and output rises by less in the long run.

This example must not be taken too seriously, of course, in view of the fact that it
is highly implausible that the actual AS curve is horizontal (as was assumed in this
section). It merely serves to illustrate the stability issues surrounding the stock-flow
interaction between the capital stock and investment.

3.4 Wealth effects and the government budget constraint

Another example of stock-flow interaction are the intrinsic dynamics in the IS-LM
models that arise once we allow for the wealth effects in consumption and money
demand if the government issues extra bonds or prints more money to finance its
deficit. Blinder and Solow (1973) suggest that this issue can be fruitfully studied
with the aid of the IS-LM model with a fixed price level (horizontal AS curve). We
again normalize the price level at unity, i.e. P = 1. Despite its simplistic treatment
of aggregate supply, the Blinder-Solow extension of the IS-LM model is an impor-
tant one, because the textbook IS-LM model is somewhat of a curious construct as it
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measures in one diagram both flow concepts (through the IS curve) and stock con-
cepts (through the LM curve). In the textbook IS-LM model it is not really possible
to even ask the question of how the effectiveness of, say, a fiscal expansion depends
on the mode of government finance. It is for this reason that we now turn to the
crucial question of allowing for the dynamics arising from private wealth and the
government budget restriction.

The government can issue consols (bonds of infinite term to maturity) that promise
the owner a fixed periodic payment of 1 euro from now to infinity. Such consols are
popular wedding presents among economists, since they remind the partners to buy
a rose each time the coupon is paid at the wedding anniversary. If the rate of interest
is R, how much would an investor be willing to pay for such a bond? Obviously, the
price of the bond, PB, would be exactly equal to the present value of the stream of
income derived from the bond, or, in continuous time:

PB =
∫ ∞

0
1 · e−Rτdτ = − 1

R
· e−Rτ

∣∣∣∞
0
=

1
R

. (3.39)

If the government has issued B of such bonds in the past, then the payments it must
make each period are equal to B times 1 euro. Hence, B represents both the number
of consols in the hands of the public and the interest payments of the government to
the public. If the government issues new consols (Ḃ > 0), it receives PB Ḃ in revenue
from this bond sale. Furthermore, the government can meet its obligations by simply
printing money (Ṁ > 0). With goods prices fixed at unity, the government budget
restriction can be written as:

G + B = T + Ṁ + (1/R)Ḃ. (3.40)

The left-hand side represents the nominal spending level of the government inclu-
sive of interest (i.e. coupon) payments to private agents. The right-hand side of
the government budget restriction shows the three financing methods open to the
government, namely taxation, money finance, and bond finance.

The level of taxation, T, depends on all income received by the households, i.e.
inclusive of real interest receipts B:

T = T(Y + B), 0 < TY+B < 1, (3.41)

where TY+B is the marginal tax rate. The total amount of real private financial wealth
in the economy, A, is the sum of the fixed capital stock, K̄, the real money supply,
and the real value of bond holdings by the public:

A ≡ K̄ + M + B/R. (3.42)

As a final modification, Blinder and Solow (1973) suggest that both consumption and
money demand depend positively on the level of wealth:

C = C(Y + B− T, A), 0 < CY+B−T < 1, CA > 0, (3.43)
M = l(Y, R, A), lY > 0, lR < 0, 0 < lA < 1, (3.44)

where CA and lA represent the wealth sensitivity of, respectively, consumption and
money demand. Equation (3.43) is a mixture of two theoretical notions. As we
shall see in Chapter 6, the forward-looking theory of consumption typically assumes
households to have unlimited access to a perfect capital market. This suggests that
private consumption should depend on total wealth (i.e. financial wealth plus hu-
man wealth, the present value of lifetime earnings) and, possibly, the rate of interest
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as well. Furthermore, bonds should not be counted as part of private wealth. In
contrast, the Keynesian theory of consumption suggests a central role for current
income. As we shall see in Chapter 6, however, there is an empirically plausible ra-
tionale for the specification adopted in (3.43). For now we simply use (3.43) without
further comment and leave some of these issues as an exercise and for Chapter 6.

Money demand, given by the right-hand side of (3.44), is also different from the
one used in equation (1.25). The rationale for this money demand function is a port-
folio allocation model. The household chooses to allocate its total financial wealth,
A, over the three different financial assets that exist in the model: bonds, claims to
physical capital, and money. Under the assumption that claims to physical capital
and bonds are perfectly substitutable, the rate of return on these assets must be the
same (and equal to R). This explains why only R appears in (3.44). Obviously, if
wealth rises, one would expect all components of the wealth portfolio to rise, in-
cluding the demand for money. This explains the positive wealth effect in money
demand.

3.4.1 Short-run macroeconomic equilibrium

In the short run, the money supply and the level of government debt are predeter-
mined variables. The IS curve is obtained by combining (3.41)–(3.43) with the stan-
dard investment function, I = I (R), and the national income identity for the closed
economy, Y = C + I + G:

Y = C (Y + B− T(Y + B), K̄ + M + B/R) + I(R) + G. (3.45)

The LM curve is given by equation (3.44). By total differentiation of (3.44) and (3.45),
keeping K̄ constant (dK̄ = 0) and noting (3.42), we obtain:

dY =
dG + [CY+B−T(1− TY+B) + CA/R] dB + CAdM

1− CY+B−T(1− TY+B)

+

[
IR − CAB/R2] dR

1− CY+B−T(1− TY+B)
, (3.46)

dR =
− (lA/R) dB + (1− lA) dM− lYdY

lR − lAB/R2 . (3.47)

The IS curve is downward sloping and the LM curve slopes up, just as in the basic
IS-LM model. The short-run equilibrium values of output, Y, and the rate of interest,
R, can once again be expressed in terms of the key predetermined and exogenous
variables:

Y = Φ(G
+

, B
?
, M
+
), R = Ψ(G

+
, B
+

, M
?
), (3.48)

where Φ(·) and Ψ(·) are implicit functions. By using (3.46) and (3.47), expressions for
the partial derivatives can be obtained in the usual manner. For the implicit function
for output we find:

ΦG =
1

1− CY+B−T(1− TY+B) + ξlY
> 0, (3.49)

ΦB =
CY+B−T(1− TY+B) + CA/R− ξlA/R

1− CY+B−T(1− TY+B) + ξlY
R 0, (3.50)

ΦM =
CA + ξ(1− lA)

1− CY+B−T(1− TY+B) + ξlY
> 0, (3.51)
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whilst for the implicit function for the interest rate we obtain:

ΨG =
lY

lAB/R2 + |lR|
ΦG > 0, (3.52)

ΨB =
(lA/R) [1− CY+B−T(1− TY+B)]

lAB/R2 + |lR|
ΦG

+
lY [CY+B−T(1− TY+B) + CA/R]

lAB/R2 + |lR|
ΦG > 0, (3.53)

ΨM =
lYCA − (1− lA) [1− CY+B−T(1− TY+B)]

lAB/R2 + |lR|
ΦG R 0. (3.54)

In these expressions, ξ is a positive composite parameter, defined as ξ ≡ [CAB/R2 +
|IR|]/

[
lAB/R2 + |lR|

]
> 0. The interpretation of these partial derivatives is facil-

itated with the aid of Figures 3.7-3.9. For example, in the top panel of Figure 3.7,
the initial equilibrium is at point E0. An increase in government spending shifts the
IS curve from IS(G0,M0) to IS(G1,M0). At point A income is higher than before and
there is an excess demand for money (an excess supply of bonds). This causes a fall
in bond prices, i.e. a rise in the interest rate, which moves the economy to point E′.
In terms of Figure 3.7, both output and the rate of interest are higher, hence ΦG > 0
and ΨG > 0. (The partial derivatives for changes in M and B are discussed below.)

In Figure 3.7 we have shown that an increase in government spending causes
a short-run increase in output, Y, and the rate of interest, R. This is not the end
of the story, of course, since we have not yet taken the government budget restric-
tion into account. Blinder and Solow (1973) consider two extreme cases. In the first
case, the government prints new money to finance the additional government spend-
ing. Consequently, the money stock changes over time to balance the government’s
books, i.e. Ṁ 6= 0 and Ḃ = 0. In the second case considered by Blinder and Solow
(1973), the government balances its books by issuing additional bonds, i.e. Ṁ = 0
and Ḃ 6= 0. The questions that can be analysed now are: (i) is the model stable un-
der both financing methods, and (ii) what is the relationship between the different
output multipliers for government spending with respect to different modes of gov-
ernment finance. At first blush one would ignore wealth effects and suggest that
a money-financed increase in government spending boosts output by more than a
bond-financed rise in government spending, because it is associated with a fall in
the interest rate and thus an additional boost to aggregate money demand as the LM
curve shifts out. At second blush this may not turn out to be correct as the wealth
effects in consumption and money demand affect the multipliers as well. We now
investigate this in more detail.

3.4.2 Money finance

Under money finance the government budget restriction reduces to Ṁ = G + B −
T(Y + B), where B is fixed. This government budget restriction thus represents a
function relating Ṁ to government spending G and output Y. But output itself de-
pends on G and M, via the output relationship Y = Φ(G, B, M) given in (3.48), so
the implicit relationship between Ṁ, G, and M can be written as:

Ṁ = G + B− T(Φ(G, B, M) + B) ≡ Ω (M, G) , (3.55)

where we suppress the variable held constant (B) in this financing scenario in the im-
plicit function Ω (M, G). The partial derivatives of the Ω (M, G) function are given
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Figure 3.7: The effects of fiscal policy under money finance
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by:

ΩM ≡ −TY+BΦM < 0, (3.56)

ΩG ≡ 1− TY+BΦG =
(1− CY+B−T) (1− TY+B) + ξlY
1− CY+B−T(1− TY+B) + ξlY

> 0, (3.57)

where we have used (3.49) to arrive at the second expression in (3.57). Hence, it is
immediately obvious that the model is stable under money finance. Indeed, it fol-
lows from (3.56) that ∂Ṁ/∂M ≡ ΩM < 0 so that changes in the money stock dampen
out over time. Furthermore, (3.57) shows that the initial effect of the fiscal impulse
is to cause a budget deficit, i.e. ∂Ṁ/∂G ≡ ΩG > 0. The impact, transition, and long-
run effects of a money-financed increase in government spending are illustrated in
Figure 3.7. In the bottom panel, the stable adjustment path consists of a jump from
E0 to E′ at impact, followed by a gradual move from E′ to E1 during transition. Not
surprisingly, the money supply increases in the long run, from M0 to M1. From the
diagram in the top panel it is obvious that the long-run effect on output exceeds the
short-run effect, i.e. point E1 lies to the right of point E′. The steady-state government
budget restriction is obtained by setting Ḃ = Ṁ = 0 in (3.40) above. We find that
G + B = T(YLR + B), from which we easily derive the long-run output multiplier:(

dY
dG

)LR

MF
≡ 1

TY+B
> ΦG ≡

(
dY
dG

)SR

MF
, (3.58)

where the subscript “MF” denotes money financing. Money finance leads to a stable
adjustment process. Both the IS and the LM curve shift out leading to an expansion
of output and tax revenue thereby reducing the government deficit until balanced
budget and steady state are reached. Output has to rise by just enough to generate
sufficient tax revenue to pay for the rise in government spending. This is why the
long-run output multiplier for a money-financed increase in government spending
is equal to one over the marginal tax rate.

3.4.3 Bond finance

Under bond finance the government budget restriction reduces to (1/R)Ḃ = G+ B−
T(Y + B) and M is fixed. But both Y and R depend on G and B, via the expressions
stated in (3.48) above. Hence, it would appear that the implicit relationship between
Ḃ, B, and G is quite complex in this case:

Ḃ = R ·
[
G + B− T(Y + B)

]
= Ψ(G, B, M) ·

[
G + B− T(Φ(G, B, M) + B)

]
≡ Λ (B, G) , (3.59)

where we have once again suppressed the variable held constant in the implicit func-
tion Λ (B, G) (M in this scenario). Evaluated at a steady-state, however, the partial
derivatives of the Λ (B, G) function are not very complicated:1

ΛB ≡ R
[
1− TY+B(1 + ΦB)

]
R 0, (3.60)

ΛG ≡ R
[
1− TY+BΦG

]
> 0. (3.61)

1These partial derivatives are obtained by totally differentiating the first line of (3.59) around an initial
equilibrium in which Ḃ = 0. This implies that the term [G + B− T] dR = 0 so that only the effects
operating via the Φ(G, B, M) function feature in (3.60)–(3.61).
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It follows from (3.60) that it is not at all obvious that the model is stable under bond
finance. Recall that the model is stable if (and only if) changes in debt eventually
dampen over time, i.e. ∂Ḃ/∂B ≡ ΛB is negative. The correspondence principle
instructs us to only use stable models, so we must impose the following (necessary-
and-sufficient) stability condition:

ΛB ≡
∂Ḃ
∂B

< 0 ⇔ 1− TY+B(1 + ΦB) < 0 ⇔ ΦB >
1− TY+B

TY+B
> 0. (3.62)

This condition says that the wealth effect on aggregate demand, ΦB, must be positive
and sufficiently large in magnitude. In (3.50) we showed, however, that ΦB cannot
be signed a priori. This is because a rise in the level of debt boosts private wealth,
private consumption, and thus aggregate demand and output (the outward shift
of the IS curve), but it also increases money demand and thus depresses aggregate
demand and output (inward shift of the LM curve). As was demonstrated by Blinder
and Solow (1976a, p. 184), a necessary (but not sufficient) condition for stability is
that the weighted wealth sensitivity of consumption, CA |lR|, exceeds the weighted
wealth sensitivity of money demand, lA |IR|. Put differently, if CA |lR| < lA |IR| then
the stability condition (3.62) simply cannot be satisfied. To prove this rather subtle
claim, we use (3.49)–(3.50) and substitute the definition of ξ, stated below (3.54), to
find:

TY+B
1− TY+B

ΦB = CY+B−TTY+BΦG +
TY+B

1− TY+B
ΦG

CA |lR| − lA |IR|
lAB/R + R |lR|

. (3.63)

Clearly, the first term on the right-hand side of (3.63) is between zero and one (be-
cause 0 < CY+B−T < 1 and 0 < TY+BΦG < 1). If CA |lR| < lA |IR| the second term
is negative, so the left-hand side of (3.63) must be less than one thus violating the
stability condition (3.62)!2

But the condition, CA |lR| > lA |IR|, which of course implies that ΦB is positive,
is not sufficient for stability. This is because the additional debt also gives rise to
additional government outlays on interest payments and the potential danger of a
self-fuelling explosion of government debt. The interest payments must ultimately
be financed by means of higher tax revenues for otherwise the government books
will not be balanced (i.e. it must be the case that eventually Ḃ = 0). This is why the
marginal tax rate plays a crucial role in the necessary-and-sufficient stability con-
dition (3.62). More precisely, with a high marginal tax rate, more tax revenues are
generated for a given expansion of output and thus it is more likely that the deficit is
eliminated and the build-up of government debt is arrested (i.e. stability is ensured).

The impact, transition, and long-run effects of a bond-financed rise in govern-
ment spending are illustrated in Figure 3.8 for the stable case. From the diagram it
is obvious that the long-run effect on output exceeds the short-run effect, i.e. point
E1 lies to the right of point E′. Mathematically, we derive the long-run output mul-
tiplier as follows. First, we totally differentiate the steady-state government budget
restriction, G + B = T (Φ(G, B, M) + B), with respect to G and B to find the long-run
effect on government debt:(

dB
dG

)LR

BF
=

ΛG
−ΛB

=
1− TY+BΦG

TY+B(1 + ΦB)− 1
> 0, (3.64)

2To see that this is the case, note that:

TY+B

1− TY+B
ΦB < 1 ⇔ ΦB <

1− TY+B

TY+B
,

where the second expression is easily seen to violate the stability condition (3.62).
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Figure 3.8: Fiscal policy under (stable) bond financing
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where the sign follows from (3.61) and the stability condition (3.62). Next, we totally
differentiate the implicit function for output, Y = Φ(G, B, M), with respect to Y, G,
and B and substitute (3.64). After some straightforward manipulation we find the
long-run output multiplier:(

dY
dG

)LR

BF
≡ ΦG + ΦB

1− TY+BΦG
TY+B(1 + ΦB)− 1

> ΦG ≡
(

dY
dG

)SR

BF
. (3.65)

The inequality follows readily from the fact that ΦB is positive (see (3.62)) and long-
run government debt rises (see (3.64)).

As a final remark, consider the long-run multipliers under the two financing
methods. It is obvious from (3.58) and (3.65) that, provided the stability condition
(3.62) holds, the bond-financed output multiplier exceeds the money-financed mul-
tiplier:(

dY
dG

)LR

BF
>

(
dY
dG

)LR

MF
. (3.66)

The intuition is straightforward. The long-run increase in output under bond finance
must exceed the one under money finance, because the additional interest payments
must also be financed by means of higher tax receipts and this requires a higher
steady-state national income. This has been illustrated in Figure 3.9, where point E0
indicates the initial equilibrium, point E′ stands for new equilibrium that is attained
immediately after government consumption is increased (the impact effect, which is
common to both financing modes), and points EM and EB represent the long-run out-
come under money finance and bond finance, respectively. Figure 3.9 clearly shows
that bond finance (provided it is stable!) yields a bigger long-run multiplier than
money finance even though the interest rate rises by more. Providing the intuition
behind the shifts in the IS, LM, and tax schedules is left as an exercise.

3.5 A first look at hysteresisF

We now consider a special class of models that have the hysteresis property.3 With
hysteresis we mean a system whose steady state is not given, but can wander about
and depends on the past path of the economy. Mathematically, we will see that this
property implies that the Jacobian matrix of a continuous-time system has, apart
from some “stable” eigenvalues (i.e. with a negative real part), a zero eigenvalue.
For a discrete-time system there will be a unit root next to the other eigenvalues
that are supposed to be smaller than one in absolute value. (See the Mathemati-
cal Appendix.) Systems with hysteresis can thus be viewed as being in the twilight
zone between stable and unstable systems. Such systems are important in macroeco-
nomics, because they allow us to depart from the rigid framework of equilibrium,
a-historical economics. The best economic example of hysteresis is due to people
becoming alienated from the labour market if they remain unemployed for a long
enough period of time.

3.5.1 Alienation of the unemployed

So far, we have assumed that the equilibrium, steady-state, or potential level of out-
put, Y∗, depends on the (exogenous) capital stock and supply-side policies (e.g. tax

3The material in this section is technically more advanced than the rest of this chapter and may be
skipped upon first reading.
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Figure 3.9: Long-run effect of fiscal policy under different financing modes
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rates on labour). Associated with the potential level of output is an equilibrium,
steady-state, or natural rate of unemployment. The implied natural rate of unem-
ployment is a constant, albeit that it may depend on various tax rates, and does not
depend on past history. Here we will develop a different model of aggregate sup-
ply. In order to do this, we depart from the concept of a path-independent natural
rate of unemployment.4 We will assume a discrete-time system. To prepare for the
discussion to follow, we write the discrete-time counterparts to (3.12) and (3.13) in
short-hand notation as:

dPt =
φdPe

t + dδt − dY∗t
φ + α

, (3.67)

dYt =
−αφdPe

t + φdδt + αdY∗t
φ + α

, (3.68)

where α is defined below equation (3.11), and dδt ≡ ADGdGt + (1/P)ADM/PdMt is
an aggregate demand shock in period t. Similarly, the discrete-time version of the
AEH can be written as:

dPe
t+1 = (1− λ) dPe

t + λdPt, (3.69)

where the expectational adjustment coefficient satisfies 0 < λ < 1.
The alienation idea is rather simple: people that stay unemployed become alien-

ated from the labour market, stop searching for a job, and no longer count as part
of the potential work force. Plausible explanations are that long-term unemployed
lose skills if they remain without a job or are stigmatized by firms. Hence, people
that stay unemployed for long enough no longer add to downward wage pressure
and become part of the natural rate of unemployment. We assume that the natural
unemployment rate at any point in time is determined by the past unemployment
rate. A simple, but convenient way to capture this hypothesis is to assume that the
potential (or natural) output level at time t + 1, Y∗t+1, is given by the actual output
level at time t, Yt, minus an exogenous adverse supply shock in period t, denoted by
σt. In total derivative format we get dY∗t+1 = dYt − dσt and we can use expression
(3.68) to write potential output in the next period as a function of the current levels
of potential output, the expected price, the supply shock, government spending and
the money supply:

dY∗t+1 =
φdδt − αφdPe

t + αdY∗t − (φ + α)dσt

φ + α
. (3.70)

Hence, a recession caused by tight monetary or fiscal policy or other falls in aggre-
gate demand can lead to a future fall in potential output and thus a future rise in the
corresponding natural unemployment rate.

By using (3.67) in (3.69) we obtain the discrete-time equivalent for the expression
of next period’s expected price level as a function of the current levels of the expected
price, potential output, government spending, and the money supply:

dPe
t+1 =

λdδt − λdY∗t + [(1− λ)α + φ]dPe
t

φ + α
. (3.71)

4Indeed, this hysteresis effect is already present in the analysis of Phelps (1972, pp. 76–80).
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3.5.2 History matters

The system defined by the difference equations (3.70) and (3.71) generates the dy-
namics in the potential level of output, Y∗t , and the expected price level, Pe

t . It can be
written in a single matrix expression as:[

dY∗t+1
dPe

t+1

]
= J ·

[
dY∗t
dPe

t

]
+

1
φ + α

[
φdδt − (φ + α) dσt
λdδt

]
, (3.72)

where the Jacobian matrix, J, is given by:

J =
1

α + φ

[
α −φα
−λ (1− λ)α + φ

]
. (3.73)

It is not difficult to show that the two eigenvalues of J are given by, respectively,
µ1 = 1 and µ2 = α(1− λ)/(φ + α).5 The important thing to note is that 0 < µ2 < 1,
i.e. the unit root is accompanied by a stable root.

In order to analyse the dynamic properties of this system in more detail, we use
a trick and write JS = SΛ, where Λ denotes the diagonal matrix of eigenvalues:

Λ ≡
[

1 0
0 α(1−λ)

φ+α

]
, (3.74)

and S is the matrix whose columns correspond to the eigenvectors of J.6 It is easy to
show that the matrix S and its inverse S−1 are given by:

S =

[
−α φ
1 λ

]
and S−1 =

1
αλ + φ

[
−λ φ
1 α

]
. (3.75)

Next, we premultiply both sides of (3.72) by S−1 and write the transformed system
as:

Zt+1 = ΛZt + Ξt, (3.76)

where the auxiliary variables Zt and Ξt are defined as follows:

Zt ≡
[

Z1,t
Z2,t

]
≡ S−1 ·

[
dY∗t
dPe

t

]
, (3.77)

Ξt ≡
1

α + φ
S−1 ·

[
φdδt − (φ + α) dσt
λdδt

]
=

1
α + φ

[
0
1

]
dδt +

1
αλ + φ

[
λ
−1

]
dσt. (3.78)

The transformed system (3.76) is much easier to analyse than the original system
(3.72) because Λ is diagonal (whereas J is not), i.e. there are no simultaneity effects
anymore. The transformed system in fact consists of two first-order difference equa-
tions stacked on top of each other.

5The easiest was to check this result is as follows. We know that the product of the two eigenvalues
of J is given by the determinant, i.e. µ1µ2 = |J| = α(1− λ)/(α + φ), and the sum of the two eigenvalues
is given by the trace, i.e. µ1 + µ2 = tr(J) = [(2− λ)α + φ]/(α + φ). The solution mentioned in the text
satisfies both equalities, so it must be the right one.

6In formal terms, since J has distinct eigenvalues, its eigenvectors are linearly independent so that J
can be diagonalized as S−1 JS = Λ (Strang, 1988, pp. 254–260). By pre-multiplying both sides of this
expression by S, the result in the text is found. See also Azariadis (1993, pp. 34–38) and the Mathematical
Appendix.
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3.5.2.1 Aggregate demand shocks

First we restrict attention to demand shocks only. By setting dσt = 0 for all t, we find
that (3.76) implies:

Z1,t = Z1,t−1, (3.79)

Z2,t = µ2Z2,t−1 +
1

φ + α
dδt−1. (3.80)

Demand shocks do not affect the difference equation for Z1,t and we thus conclude
from (3.79) that Z1,t = 0 for all t.7 Equation (3.80) is a stable difference equation
(because 0 < µ2 < 1) which can be solved by repeated substitution. After T− 1 such
substitutions we find:

Z2,t = µT
2 +

1
φ + α

[
dδt−1 + µ2dδt−2 + µ2

2dδt−3 + · · ·+ µT−1
2 dδt−T

]
. (3.81)

By letting T → ∞, however, we find that the first term on the right-hand side of
(3.81) goes to zero (as 0 < µ2 < 1 so that µT

2 → 0) so that we are left with:

Z2,t =
1

α + φ

∞

∑
i=0

[
α(1− λ)

α + φ

]i
dδt−1−i, (3.82)

where we have substituted the expression for µ2 stated below equation (3.73). The
solutions for the original, untransformed, variables are obtained by substituting
Z1,t = 0 and (3.82) into equation (3.77):[

dY∗t
dPe

t

]
= SZt =

[
−α φ
1 λ

] [
0

Z2,t

]
=

[
φ
λ

]
1

α + φ

∞

∑
i=0

[
α(1− λ)

α + φ

]i
dδt−1−i.

(3.83)

Hence, in contrast to economies in which hysteresis is not present, demand-side poli-
cies have real effects in the long run as well as in the short run. For example, the
long-run effects of a sustained increase in government spending (i.e. dMt = 0 and
dδt ≡ ADGdG) on the actual and potential levels of output are easily seen to be equal
to:8 (

dY∗

dG

)LR
=

φ

α + φ

∞

∑
i=0

[
α(1− λ)

α + φ

]i
ADG =

φ

αλ + φ
ADG. (3.84)

Clearly, temporary shocks to the aggregate demand for goods do not induce perma-
nent effects on the levels of output. This can be seen by using (3.83) to derive the
effect of a past demand shock on current potential output:

dY∗t
dδt−j

=
φ

α + φ

[
α(1− λ)

α + φ

]j−1

(3.85)

Clearly, the effect of the shock wears off because the term in square brackets on the
right-hand side goes to zero as j gets large.

7In principle Z1,t = Z̄1, with a non-zero Z̄1 also solves (3.79). Assume, however, that the system was
in a steady-state at some past time t∗ < t. Clearly, at time t∗ we have that dY∗t = dPe

t = 0 and thus that
Z1,t = 0 also. The only feasible solution is that Z̄1 = 0.

8We use the fact that 0 < µ2 < 1 so that the infinite sum converges, i.e.:

∞

∑
i=0

[
α(1− λ)

α + φ

]i

=
∞

∑
i=0

µi
2 =

1
1− µ2

=
α + φ

αλ + φ
.
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3.5.2.2 Aggregate supply shocks

To demonstrate that temporary shocks to aggregate supply may in the presence of
hysteresis indeed lead to permanent changes in output and the natural rate of un-
employment, we solve the system of difference equations when there are adverse
shocks to aggregate supply dσt (and no demand shocks, i.e. dδt = 0 for all t). Fol-
lowing the same steps as before, we find the following solutions for the transformed
variables:

Zt =
1

αλ + φ

[
λ ∑∞

i=0 dσt−1−i

−∑∞
i=0

[
α(1−λ)

α+φ

]i
dσt−1−i

]
. (3.86)

By using (3.77) we thus find the solutions for dY∗t and dPe
t :[

dY∗t
dPe

t

]
= SZt =

1
αλ + φ

[
−α φ
1 λ

] [ λ ∑∞
i=0 dσt−1−i

−∑∞
i=0

[
α(1−λ)

α+φ

]i
dσt−1−i

]
. (3.87)

We immediately observe an essential difference between aggregate supply and ag-
gregate demand shocks. Although the effects of temporary shocks to aggregate de-
mand fade out with time, the effects of temporary shocks to aggregate supply are
permanent. Indeed, a supply shock j periods ago affects current potential output
according to:

dY∗t
dσt−j

= − 1
αλ + φ

[
αλ + φ

(
α(1− λ)

α + φ

)j−1
]

. (3.88)

The second term within the square brackets fades out as j increases, but the first term
does not fade out and is the reason why temporary shocks have permanent effects.

3.6 Punchlines

We have extended the static IS-LM-AS model by adding some essential dynamic
features to do with adaptive expectations, capital accumulation, and the build-up of
government debt. Allowing for adaptive expectations in aggregate supply ensures
that fiscal and monetary policy can have transient real effects. This is why this ex-
tension corresponds to a neo-Keynesian synthesis with a Keynesian short run and a
classical long run. Hence, an expansion of aggregate demand leads in the short and
medium run to a rise in output but as expectations catch up with the rise in prices the
initial gains in output are wiped out. Money is thus neutral in the long run. Stability
of the expectational adjustment process is guaranteed.

To allow for finite speeds of investment and sluggish adjustment in the capital
stock, it is useful to introduce adjustment costs when investment takes place. In that
case, employment still follows from the condition that the marginal productivity of
labour must equal the real wage but the marginal productivity of capital no longer
equals the user cost of capital (i.e. the rental charge plus the depreciation charge).
Instead, investment is high if the gap between the marginal productivity of capital
and the user cost of capital is large. This amounts to an investment function which
states that investment increases if output rises and the capital stock or the interest
rate declines. Such a specification also arises if one adopts an accelerator view of in-
vestment. Introducing this specification of investment and the capital accumulation
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identity into the basic model of aggregate demand, typically does not lead to instabil-
ity. Under the Keynesian assumptions, i.e. investment not very sensitive, but money
demand very sensitive to changes in the interest rate, a rise in public spending leads
to higher levels of capital and output. However, under the monetarist assumptions,
i.e. investment very sensitive, but money demand insensitive to changes in the in-
terest rate, an increase in public spending crowds out capital. Output nevertheless
still rises in the long run.

A third extension to allow for dynamics in the basic IS-LM-AS model is to in-
corporate wealth effects in consumption and money demand. This extension is es-
sential, because the basic IS-LM framework compares apples with oranges as the IS
curve refers to flow concepts while the LM curve relates to stock concepts. There is
something fundamentally wrong with seeking equilibrium in both stock and flow
concepts without allowing for a time dimension. To allow for this time dimension,
we assume that consumption and money demand rise if wealth (consisting of claims
to physical capital, real money balances and government bonds) increases. Con-
sumption also depends on disposable income, where taxes are levied on both pro-
duction and interest income. The government budget constraint states that the pub-
lic sector financial deficit, i.e. primary public spending plus interest payments minus
tax revenue, must be financed by printing money or issuing bonds. Since a money-
financed increase in public spending induces downward pressure on the interest rate
while a bond-financed increase in public spending induces upward pressure on the
interest rate, one might think at first sight that money finance is more expansionary
than bond finance. Surprisingly, this is not the case in the long run. In fact, provided
the debt dynamics is stable, the long-run bond-financed multiplier is larger than the
money-financed multiplier because national income must rise to generate sufficient
tax revenue not only to cover the rise in public spending but also the interest on the
accumulated government debt. The money-financed multiplier simply equals one
over the marginal tax rate, whereas the bond-financed multiplier is larger than this.
Money finance automatically leads to a stable process, since the initial government
deficit is gradually eliminated as money supply expands, the interest rate falls, and
national income and tax revenue rise. In contrast, bond finance may lead to a never-
ending explosion of government debt if over time the build-up of government debt
raises money demand and pushes up the interest rate so much that national income
and tax revenue fall. The result is an ever-increasing government deficit. This insta-
bility can only be stopped if the wealth effect in consumption is strong enough, that
is if the rise in private wealth and consumption boosts aggregate demand, national
income and tax revenue sufficiently to ensure that the government deficit becomes
smaller over time. Hence, to ensure stability under bond finance the wealth effect
in consumption must be relatively strong compared to the wealth effect in money
demand. By appealing to the Samuelsonian correspondence principle, a simple sta-
bility condition can be derived which ensures that debt will be stabilized in the long
run.

Finally, we also provided an example of hysteresis, or path dependence of the
steady state, by suggesting that the natural level of output depends on the past
level of output. Alternatively, the natural unemployment rate is supposed to be
determined by the past unemployment rate. This captures the phenomenon that the
long-term unemployed become alienated from the labour market, stop searching for
a job, and no longer exert downward wage pressure. Two lessons can be drawn from
this analysis. First, permanent changes in fiscal and monetary policy have lasting ef-
fects on employment and output. Second, as far as supply-side policy and shocks
are concerned, even temporary changes have permanent effects on employment and
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output. Temporary adverse supply shocks can thus lead to permanently higher lev-
els of unemployment.

Further reading

Key readings in the adjustment cost approach to investment are Eisner and Strotz
(1963), Lucas (1967), Gould (1968), and Treadway (1969). Abel (1990) gives an over-
view of this literature. The classic articles on the government budget constraint are
Blinder and Solow (1973, 1976a, 1976b). See also Tobin and Buiter (1976), Turnovsky
(1977), and Scarth (1988). For early applications of dynamic methods to the study
of the macroeconomy readers are referred to Samuelson (1947), Baumol (1959), and
Allen (1967). See Cross (1988) for a collection of papers dealing with hysteresis.





Chapter 4

Perfect foresight and economic
policy

The purpose of this chapter is to investigate the effects of different economic policies
when agents are blessed with perfect foresight. The specific goals for this chapter are
the following:

1. To complete our discussion of the dynamic “forward-looking” theory of invest-
ment by firms that was commenced in Chapter 3.

2. To use the investment theory to determine how the government can use tax
incentives (such as an investment subsidy) to stimulate capital accumulation.
This is an example of fiscal policy where the government changes a relative
price in order to prompt a substitution response.

3. To loosely embed the investment theory in an IS-LM framework and to inves-
tigate how anticipation effects influence the outcome of traditional budgetary
policies.

4. To study how exchange rate expectations influence the effects of fiscal and
monetary policy in a small open economy facing perfect financial capital mo-
bility and operating under flexible exchange rates.

4.1 Dynamic investment theory

In Chapter 3 we sketched a theory of investment by firms that is based on forward-
looking behaviour and adjustment costs of investment. For reasons of intuitive clar-
ity, the model was developed in discrete time. It turns out, however, that working in
continuous time is much more convenient from a mathematical point of view. The
first task that must be performed therefore is to redevelop and generalize the model
in continuous time.

4.1.1 The basic model

Assume that the real profit of the representative firm is given by what is left of rev-
enue after the production factor labour and investment outlays have been paid:

π(t) ≡ F(N(t), K(t))− w(t)N(t)− pI(t) [1− sI(t)]Φ(I(t)), (4.1)
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where π(t) is real profit in period t, F(·, ·) is the constant returns to scale produc-
tion function, w(t) is the real wage rate (≡ W(t)/P(t)), pI(t) is the relative price of
investment goods (≡ PI(t)/P(t)), sI(t) is the investment subsidy, and Φ(·) is the
adjustment cost function, with ΦI > 0 and ΦII > 0. By assuming that the good
produced by the firm is the same as the investment good (the so-called single good
assumption), we obtain the simplification pI(t) = 1. In some cases it is convenient
to assume that the adjustment cost function is quadratic:

Φ(I(t)) = I(t) + b [I(t)]2 , b > 0. (4.2)

The capital accumulation identity is given by:

K̇(t) = I(t)− δK(t), δ > 0. (4.3)

The firm must choose a path for its output such that the present value of its profits is
maximized. Since real profits are defined in (4.1), the appropriate discount rate is the
real rate of interest on alternative financial assets. This real interest rate is denoted
by r and is assumed to be constant over time throughout (the body of) this section.
Under these assumptions, the net present value of the stream of profits now and in
the future is given by:

V(0) ≡
∫ ∞

0
π(t)e−rtdt

=
∫ ∞

0
[F(N(t), K(t))− w(t)N(t)− [1− sI(t)]Φ(I(t))] e−rtdt. (4.4)

To the extent that shares of this company are traded in the stock exchange, and share
prices are based on fundamentals and not on the speculative whims and fancies of
irrational money sharks, its value on the stock market should equal V(0) in real
terms, or P(0)V(0) in nominal terms.

The firm maximizes (4.4) under the restriction (4.3). With the aid of the Maximum
Principle the solution to this problem can be found quite easily.1 The current-value
Hamiltonian can be written as:

HC(t) ≡ F(N(t), K(t))− w(t)N(t)− [1− sI(t)]Φ(I(t))
+ q(t) [I(t)− δK(t)] . (4.5)

Formally, q(t) plays the role of the Lagrange multiplier for the capital accumulation
restriction. The economic interpretation of q(t) is straightforward. It can be shown
that q(0) represents the shadow price of installed capital K(0). In words, q(0) mea-
sures by how much the value of the firm would rise (dV(0)) if the initial capital
stock were increased slightly (dK(0)), i.e. q(0) ≡ dV(0)/dK(0) (see Intermezzo 4.1
on Tobin’s q below).

The firm can freely choose employment and the rate of investment at each instant,
so that the following first-order conditions (for t ∈ [0, ∞)) should be intuitive:

∂HC(t)
∂N(t)

= FN(N(t), K(t))− w(t) = 0, (4.6)

1Note that the method sketched here is a generalization of the Lagrange multiplier method used in
Chapter 3. An explanation of the Maximum Principle based mainly on pure economic intuition can be
found in Dorfman (1969). Other excellent sources are Dixit (1990), Léonard and Long (1992), Chiang
(1992), and Intriligator (1971). See also the Mathematical Appendix.
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∂HC(t)
∂I(t)

= q(t)− [1− sI(t)]ΦI(I(t)) = 0. (4.7)

The interpretation of (4.6) is the usual one: the value-maximizing firm chooses the
amount of labour such that the marginal product of labour equals the real wage rate.
Note that (4.7) implies a very simple investment function:

[1− sI(t)]ΦI(I(t)) = q(t) ⇒ I(t) ≡ I(q(t), sI(t)), (4.8)

where Iq ≡ ∂I (·) /∂q = 1/[(1 − sI)ΦII ] > 0 and Is ≡ ∂I (·) /∂sI = ΦI/[(1 −
sI)ΦII ] > 0. In words, higher values for q and sI both imply a higher rate of in-
vestment. Indeed, for the quadratic adjustment cost function (4.2), the investment
function has a very simple form:

ΦI(I(t)) = 1 + 2bI(t) =
q(t)

1− sI(t)
⇒ I(t) =

1
2b

[
q(t)

1− sI(t)
− 1
]

. (4.9)

The parallel with the expression derived in Chapter 3 (i.e. equation (3.26)) should be
noted. Note that we have not used the symbol q for nothing: the investment theory
developed here is formally known as Tobin’s q-theory, after its inventor James Tobin
(1969).

The first expression in equation (4.8) allows a very simple interpretation of the
optimality condition for investment. It instructs the firm to equate the marginal cost
of investment (equal to (1− sI)ΦI) to the shadow price of capital, which is the margi-
nal benefit of investment. In other words, by spending money today on investment
you add value to your company. This added value is measured by the shadow price.

Equations (4.6)–(4.7) are in essence static conditions of the form “marginal cost
equals marginal benefit”. The truly intertemporal part of the problem is solved by
choosing an optimal path for the shadow price of capital. The first-order condition
for this choice is:

q̇(t)− rq(t) =
[
−∂HC(t)

∂K(t)
≡
]
− [FK(N(t), K(t))− δq(t)] . (4.10)

This condition can be written in several ways, two of which are:

q̇(t) = (r + δ)q(t)− FK(N(t), K(t)), (4.11)

and:

q̇(t) + FK(N(t), K(t))
q(t)

= r + δ. (4.12)

Equation (4.12) allows for a very intuitive interpretation. The shadow return on
the possession and use of physical capital is the sum of the shadow capital gain
(q̇(t)) and the marginal product of capital [FK(N(t), K(t))], expressed in terms of the
shadow price (to make it a rate of return). This shadow rate of return must equal the
market rate of return on other financial assets (that are perfect substitutes for shares)
plus the rate of physical deterioration of the capital stock. The depreciation costs
must be counted as a cost item because capital evaporates over time, regardless of
whether the firm uses the capital for production or not. Hence, in determining the
optimal path for q(t) the firm is guided by the implicit arbitrage equation (4.12).

We have developed Tobin’s marginal q-theory of investment in this section. It is
shown in Intermezzo 4.1 that, provided some more specific assumptions are made
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about the adjustment cost function, Tobin’s average q-theory coincides with his mar-
ginal q-theory. Average q for the firm is defined as q̄(0) ≡ V(0)/K(0). In words, q̄
represents the value that the stock market ascribes to each unit of installed capital of
the firm (at replacement cost; see Intermezzo 4.1).

And this is exactly where the great beauty of the theory lies. In principle one can
look up the stock market value of a firm from the financial pages in the newspapers,
and divide this by the replacement value of its capital stock (slightly more work),
and calculate the firm’s q. The value of q that is obtained in this manner reflects all
information that is (according to the stock market participants) of relevance to the
particular firm (see Hayashi (1982) for further remarks).

Intermezzo 4.1

Tobin’s q-theory of investment. In this intermezzo we demonstrate that
Tobin’s average and marginal q coincide under certain conditions. The
proof is adapted from Hayashi (1982). Suppose that the profit function
in equation (4.1) is adjusted by including the existing capital stock in the
adjustment cost function:

π(t) ≡ F(N(t), K(t))− w(t)N(t)− [1− sI(t)]Φ (I(t), K(t)) , (a)

where π(t) is real profit, w(t) is the real wage rate [≡ W(t)/P(t)], and
sI(t) is the investment subsidy. The adjustment cost function is homoge-
neous of degree one in I(t) and K(t), so that Φ = ΦI I + ΦKK (see also
Intermezzo 4.3). The partial derivatives of Φ (·) are given by ΦI > 0,
ΦK < 0, ΦII > 0, ΦIK < 0, and ΦKK > 0. Hence, adjustment costs are
decreasing in the capital stock. Large firms experience less disruption for
a given level of investment than small firms.

The firm is assumed to maximize the present value of profits, using
the (time-varying) real interest rate r(t) as the discount factor. Equation
(4.4) is altered to:

V(0) ≡
∫ ∞

0

[
F(N(t), K(t))− w(t)N(t)

− [1− sI(t)]Φ (I(t), K(t))
]
e−R(t)dt, (b)

where V(0) is the real stockmarket value of the firm, and R(t) is a dis-
counting factor that depends on the entire path of short interest rates up
to t:

R(t) ≡
∫ t

0
r(τ)dτ ⇒ dR(t)

dt
= r(t). (c)

As the saying goes, variety is the spice of life, so let us solve the opti-
mization problem with the regular (rather than the current-value) Hamil-
tonian (see the Mathematical Appendix for the difference between the
two). The regular Hamiltonian is given by:

H(t) ≡
[

F(N(t), K(t))− w(t)N(t)− [1− sI(t)]Φ (I(t), K(t))
]
e−R(t)

+ λ(t) [I(t)− δK(t)] ,
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where λ(t) is the co-state variable. The first-order conditions for this
problem are:

∂H(t)
∂N(t)

= 0: FN(N(t), K(t)) = w(t), (d)

∂H(t)
∂I(t)

= 0: λ(t)eR(t) = [1− sI(t)]ΦI(I(t), K(t)), (e)

dλ(t)
dt

= −∂H(t)
∂K(t)

: ⇐⇒[
λ̇(t)− δλ(t)

]
eR(t) = −FK (N(t), K(t))

+ [1− sI(t)]ΦK (I(t), K(t)) , (f)

where we have already deleted the (non-zero) exponential term e−R(t)

from (d). By defining q(t) ≡ λ(t)eR(t), so that q̇(t) ≡ eR(t)λ̇(t) + r(t)q(t),
we find that (e) and (f) can be rewritten as:

q(t) = [1− sI(t)]ΦI(I(t), K(t)), (g)
q̇(t) = (r(t) + δ) q(t)− FK (·) + [1− sI(t)]ΦK (·) . (h)

Expressions (d), (g) and (h) generalize, respectively, (4.6), (4.7), and (4.10)
to the case of a linear-homogeneous adjustment cost function and a time-
varying rate of interest.

Recall that t = 0 is the planning period. We want to establish a re-
lationship between the real stockmarket value of the value-maximizing
firm, V(0), and the installed capital stock in the planning period, K(0).
We note from (b) that V(0) is the present value of cash flows, π(t), de-
fined in (a). Cash flow in period t can be written as:

π(t) = F(N(t), K(t))− w(t)N(t)− [1− sI(t)]Φ (I(t), K(t))
= FN (·) N(t) + FK (·)K(t)− w(t)N(t)− [1− sI(t)]Φ (·)
= FK (·)K(t)− [1− sI(t)]Φ (I(t), K(t)) , (i)

where we have used the linear homogeneity of F (i.e. Euler’s theorem,
which implies that F = FN N + FKK) in going from the first to the second
line, and expression (d) in getting from the second to the third line. Next
we note that:

d
dt

[q(t)K(t)] ≡ q(t)K̇(t) + K(t)q̇(t)

= q(t)I(t) + [r(t)q(t)− FK (·) + [1− sI(t)]ΦK (·)]K(t)
= [1− sI(t)]ΦI (·) I(t) + r(t)q(t)K(t)− FK (·)K(t)
+ [1− sI(t)]ΦK (·)K(t), (j)

where we have used (4.3) and (h) to get from the first to the second line,
and (g) to get from the second to the third line. But the linear homogene-
ity of Φ implies that Φ = ΦI I + ΦKK, so that (j) can be simplified even
more:

d
dt

[q(t)K(t)] = r(t)q(t)K(t)− FK (·)K(t) + [1− sI(t)]Φ (·)
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= r(t)q(t)K(t)− π(t), (k)

where we have used (i) to arrive at the final expression. Multiplying both
sides of (k) by e−R(t) we obtain:

d
dt

[
q(t)K(t)e−R(t)

]
= −π (t) e−R(t). (l)

By taking dt to the other side and integrating for t ∈ [0, ∞) we obtain:∫ ∞

0
d
[
q(t)K(t)e−R(t)

]
= −

∫ ∞

0
π(t)e−R(t)dt ≡ −V(0) ⇒

lim
t→∞

q(t)K(t)e−R(t) − q(0)K(0) = −V(0) ⇒

V(0) = q(0)K(0), (m)

where we note that R(0) = 0 (so that e−R(0) = 1) and arrive at the final
expression by imposing the transversality condition, according to which
limt→∞ q(t)K(t)e−R(t) = 0. Expression (m) is the one we were after. It
says that a firm with an installed capital stock of K(0) at time t = 0 will
have a stockmarket value of q(0) times K (0). Hence, q(0) represents the
stock market value of one unit of installed capital. Note, finally, that (m)
also implies that Tobin’s marginal and average q coincide in this case.
Tobin’s marginal q measures by how much the stockmarket value of the
firm would rise if the installed capital stock would increase slightly, i.e.
it is dV (0) /dK(0). Tobin’s average q measures the stockmarket value
per unit of capital, i.e. it is V(0)/K(0). In this model the two concepts
coincide. Hayashi (1982) discusses cases where this is no longer the case.

****

4.1.2 Fiscal policy: Investment subsidy

The model can now be used to investigate the immediate, transitional, and long-run
effects of governmental efforts to stimulate investment. Omitting the (now almost
superfluous) time index, the model consists of equations (4.3) (with the investment
function given in (4.8) substituted), (4.11), and (4.6):

K̇ = I(q, sI)− δK, (4.13)
q̇ = (r + δ)q− FK(N, K), (4.14)

w = FN(N, K). (4.15)

Despite its simplicity, the model allows several economically interesting variations
to be considered within the same framework. Clearly, in view of (4.15), some as-
sumption must be made about the real wage rate w. At least three types of labour
market assumptions can be distinguished: (i) the model is interpreted at firm level
and the real wage is assumed to be exogenously given (and constant); the model is
interpreted at the level of the aggregate economy and (ii) full employment of labour
is postulated or (iii) a macroeconomic labour supply equation is added to it (e.g.
equation (1.11) with Pe = P). We consider these three cases in turn.
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Figure 4.1: Investment with constant real wages

4.1.2.1 Constant real wages

If the real wage rate is constant, the assumption of perfect competition in the goods
market (and the implied homogeneity of the production function) renders the model
very simple indeed. Of course, aside from the microeconomic interpretation given
above, this case is also relevant for an entire economy with rigid real wages. Since
the production function is homogeneous of degree one (constant returns to scale),
the marginal products of labour and capital are homogeneous of degree zero (see
Intermezzo 4.3 below). This implies that FN(N, K) can be written as FN(1, K/N),
which depends on the capital-labour ratio only. Equation (4.15) can be rewritten as
w = FN(1, K/N), and uniquely determines the K/N ratio for the firm. This ratio
is constant over time because w is assumed to be constant. This also implies that
the marginal product of capital is constant, since FK(N, K) = FK(1, K/N) = FK, a
constant.

By assuming a constant real wage, the labour demand equation can be ignored,
and the model consists of equations (4.13)–(4.14). The qualitative content of the mo-
del can be summarized graphically by means of Figure 4.1. The K̇ = 0 line represents
all combinations of K and q such that the capital stock is in equilibrium. In view of
(4.13), this implies that gross investment is exactly equal to replacement investment
along the K̇ = 0 line, i.e. I(q, sI) = δK. Formally, we obtain from (4.13):

dK̇ = Iqdq + IsdsI − δdK, Iq > 0, Is > 0. (4.16)

which implies that the slope of the K̇ = 0 line is:(
∂q
∂K

)
K̇=0

=
δ

Iq
> 0. (4.17)

In words, a higher capital stock necessitates a higher level of steady-state gross in-
vestment. This is only forthcoming if q is also higher.

Equation (4.16) also implies that an increase in the investment subsidy shifts the
K̇ = 0 line down and to the right:(

∂q
∂sI

)
K̇=0

= − Is

Iq
< 0. (4.18)
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The after-subsidy cost of investing falls and as a result firms are willing to invest the
same amount for a lower value of q.

For points off the K̇ = 0 line, the dynamics of the capital stock is also provided
by equation (4.16):

∂K̇
∂K

= −δ < 0. (4.19)

The graphical interpretation is as follows. At point A the capital stock is in equilib-
rium. If K is slightly higher (say at A′ to the right of point A), (4.19) predicts that
depreciation exceeds gross investment so that the capital stock falls over time, i.e.
K̇ < 0. This dynamic effect is indicated by a horizontal arrow towards the K̇ = 0
line. Obviously, for points to the left of the K̇ = 0 line, the arrows point the other
way (see point A′′). The basic insight is, of course, that the capital accumulation
process is self-correcting, i.e. for a given value of q, K has an automatic tendency to
return to the K̇ = 0 line.

The q̇ = 0 line represents all points for which the firm’s investment plans are in
equilibrium. By differentiating (4.14) we obtain:

dq̇ = (r + δ)dq + qdr, (4.20)

where we have used the fact that the marginal product of capital is constant. From
(4.20) it is clear that the q̇ = 0 line is horizontal:(

∂q
∂K

)
q̇=0

= 0. (4.21)

This is intuitive: since both the rate of interest and the marginal product of capital are
constant (and hence independent of K), q itself is also constant and independent of K
in the steady state. If the (exogenous) rate of interest rises, future marginal products
of capital are discounted more heavily, so that the steady-state value of q falls:(

∂q
∂r

)
q̇=0

= − q
r + δ

< 0. (4.22)

For points off the q̇ = 0 line, the dynamic behaviour of q is also provided by (4.20):

∂q̇
∂q

= r + δ > 0. (4.23)

The graphical interpretation is as follows. At point B the value of q is consistent with
an equilibrium investment plan. Now take a slightly higher value of q, say the one
associated with point B′, directly above point B. Clearly, in view of the fact that both
r and FK are constant, this higher value of q can only satisfy the arbitrage equation
(4.12) if a (shadow) capital gain is expected, i.e. if q̇ > 0. The opposite holds at
points below the q̇ = 0 line (say point B′′, as is indicated with the arrows in Figure
4.1). Intuitively, therefore, the q-dynamics is inherently unstable. Slight moves away
from the q̇ = 0 line are not self-correcting but reinforcing.

By combining the information regarding the K-dynamics and q-dynamics, the
forces operating on points in different regions of Figure 4.1 are obtained and sum-
marized by the arrows. For example, at point B′ there are automatic forces shifting
the (q, K) combination in a north-easterly direction. In Figure 4.2, a number of repre-
sentative trajectories have been drawn. Note especially what happens if a trajectory
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Figure 4.2: Derivation of the saddle path

crosses through the K̇ = 0 line. Take point A, for example. As the (q, K) combination
moves in a south-easterly direction, it gets closer and closer to the K̇ = 0 line. As
it reaches this line (at point A′), however, the value of q keeps falling and the level
of gross investment becomes too low to sustain the given capital stock. As a result,
the trajectory veers off in a south-westerly direction towards point A′′ (never to be
heard of again).

From the different trajectories that have been drawn in Figure 4.2, it can be judged
that the model appears to be very unstable: all trajectories seem to lead away from
the steady-state equilibrium point at E0. There is, however, one path that does give
rise to stable adjustment, namely the q̇ = 0 line itself. Consider, for example, point
C. It lies on the q̇ = 0 line (so there are no forces operating to change the value of
q over time), but it lies to the left of the K̇ = 0 line. But, the K-dynamics is stable,
so the capital stock will automatically rise towards its level at point E0. A similar
conclusion holds for point C′.

In conclusion, for each given initial level of the capital stock, there is exactly one
path towards the steady-state equilibrium. And this is very fortunate indeed, because
one would have an embarrassment of riches if this were not the case. Indeed, sup-
pose that the model were globally stable, so that “all roads lead to Rome”, i.e. all
(q, K) combinations would eventually return to point E0. That would lead to a very
troublesome conclusion, namely that the shadow price of capital (q) is not deter-
mined at any point in time!

The particular type of stability that is exemplified by the model is called saddle-
point stability: there is exactly one stable adjustment path (called the saddle path)
that re-establishes equilibrium after a shock. Technically speaking, the requirement
that the economy be on the saddle path has more justification than just convenience:
ultimately, an exploding solution is seen by agents not to be in their own best inter-
ests, so that they have good reason to restrict attention to the saddle-path solution.
The remainder of this chapter will be used to demonstrate the remarkable predictive
content of models incorporating saddle-point stability.
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Consider the case of an unanticipated and permanent increase in the investment sub-
sidy. This means that at some time tA the government announces that sI will be
increased “as of today”. In other words, the policy change is implemented imme-
diately. For future reference, the implementation date is denoted by tI . Hence, an
unanticipated shock is a shock for which announcement and implementation dates
coincide, i.e. tA = tI . The effects of the policy measure can be derived graphically
with the aid of the phase diagram in the top panel of Figure 4.3. We have already
derived that an increase in sI shifts the K̇ = 0 line to the right, so that the ultimate
equilibrium will be at point E1. How does the adjustment occur? Very simple. Since
E0 is on the q̇ = 0 line (which is also the saddle path for this model), the higher sub-
sidy gives rise to higher gross investment (because Is > 0) and the adjustment path is
along the saddle path from E0 to E1. Note that the capital stock adjusts smoothly, due
to the fact that adjustment costs make very uneven investment plans very expensive.
The adjustment over time has also been illustrated in Figure 4.3.

As a second “finger exercise” with the model, consider an unanticipated and
permanent increase in the exogenous rate of interest r as illustrated in Figure 4.4.
Equation (4.22) shows that this shock leads to a downward shift in the q̇ = 0 line
because future marginal products of capital are discounted more heavily. What does
the adjustment path look like now? Clearly, the new equilibrium is at point E1 and
the only path to this point is the saddle path going through it. Since K is fixed in
the short run, the only stable adjustment path is the one with a “financial correction”
at the time of the occurrence of the shock (at time tA): q jumps down from point E0
to point A directly below it. The intuition behind this financial correction is aided
by solving the unstable differential equation for q, stated in equation (4.14) above,
forward in time. Intermezzo 4.2 derives the general solution:

q(t) ≡
∫ ∞

t
FK(τ) exp

[
−
∫ τ

t
[r(s) + δ] ds

]
dτ. (4.24)

Hence, as was already hinted at above, q represents the discounted value of present
and future marginal products of capital, so that an increase in r (either now or in
the future) immediately leads to a revaluation of this stream of returns. After the
immediate financial correction, the adjustment proceeds smoothly along the saddle
path towards the ultimate steady-state equilibrium point E1.

Intermezzo 4.2

Tobin’s q as the present value of marginal products of capital. Recog-
nizing the possible time dependence of the interest rate and the marginal
product of capital, we write the differential equation for Tobin’s q as:

q̇(τ)− [r(τ) + δ] q(τ) = −FK(τ). (a)

Clearly, equation (a) is an unstable differential equation because r (τ) + δ
is assumed to be positive. However, we can still compute the forward-
looking solution to this expression. Technically, the trick that we use is
very similar to the one used in Intermezzo 3.1, i.e. we find a suitable inte-
grating factor and solve the differential equation by integration. Experi-
ence suggests that the correct integrating factor is e−R̄(t,τ), where R̄(t, τ)
is defined as:

R̄(t, τ) ≡
∫ τ

t
[r (s) + δ] ds. (b)



CHAPTER 4: PERFECT FORESIGHT AND ECONOMIC POLICY 119

Figure 4.3: An unanticipated and permanent increase in the investment subsidy
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From this expression we can derive readily that R̄ (t, t) = 0 and
dR̄(t, τ)/dτ = r(τ) + δ. Following steps similar to those in Intermezzo
3.1. we derive:

[q̇(τ)− [r(τ) + δ] q(τ)] e−R̄(t,τ) = −FK(τ)e−R̄(t,τ) ⇔
d

dτ
q(τ)e−R̄(t,τ) = −FK(τ)e−R̄(t,τ) ⇔

dq(τ)e−R̄(t,τ) = −FK (τ) e−R̄(t,τ)dτ. (c)

Integrating (c) for τ ∈ [t, ∞) we obtain:∫ ∞

t
dq(τ)e−R̄(t,τ) = −

∫ ∞

t
FK(τ)e−R̄(t,τ)dτ

q(τ)e−R̄(t,τ)
∣∣∣∞
t
= −

∫ ∞

t
FK(τ)e−R̄(t,τ)dτ

lim
τ→∞

q(τ)e−R̄(t,τ) − q(t)e−R̄(t,t) = −
∫ ∞

t
FK(τ)e−R̄(t,τ)dτ. (d)

But the transversality condition implies that lim
τ→∞

q(τ)e−R̄(t,τ) = 0, i.e.

we restrict attention to the fundamental replacement value of installed
capital. Furthermore, we have that R̄ (t, t) = 0. By substituting these
results in (d) we obtain equation (4.24).

****

As a final example of how the model works, consider the case where the firm
hears at time tA that interest rates will rise permanently at some future date tI . This
is an example of a so-called anticipated shock. Formally, an anticipated shock is one
that is known to occur at some later date. Obviously, the only real news reaches
the agent at time tA. Everything that happens after that time is known to the agent.
What happens to the value of q can already be gleaned from (4.24). Discounting
of future marginal products becomes heavier (than before the shock) after the rate
of interest has actually risen, i.e. for t ≥ tI . Hence, q must fall at the time the
news becomes available. But by how much? This is best illustrated with the aid of
Figure 4.5. Consider the following intuitive/heuristic solution principle: a discrete
adjustment in q must occur at the time the news becomes available (i.e. at tA), and
there cannot be a further discrete adjustment in q after tA. Intuitively, an anticipated
jump in q would imply an infinite (shadow) capital gain or loss (since there would be
a finite change in q in an infinitesimal amount of time). Hence, the solution principle
amounts to requiring that all jumps in q occur when something truly unexpected
occurs (which is at time tA). Obviously, at tA there is an infinite capital loss, but it is
unanticipated.

With the aid of this solution principle, the adjustment path can be deduced. We
start our detective task at time tI and work backward in time toward tA. At the time
of the interest rate increase the (q, K) combination must be on the new saddle path,
i.e. at point B on the line labelled (q̇=0)1. If it were to reach B too soon (say at time
t < tI) or too late (t > tI), equilibrium would never be re-established without further
jumps in q that are prohibited. Between tA and tI the dynamic forces determining
q and K are those associated with the old equilibrium E0 (see the arrows). Working
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Figure 4.4: An unanticipated and permanent increase in the rate of interest
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Figure 4.5: An anticipated and permanent increase in the rate of interest
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backwards, there is exactly one trajectory which starts at time tA at point A and
arrives at point B at the right time, tI . Hence, the unique path that re-establishes
equilibrium after the shock is the one comprised of a discrete adjustment at tA from
E0 to A, followed by gradual adjustment from A to B in the period before the interest
rate has risen, arrival at point B at tI , followed by further gradual adjustment in the
capital stock from B to E1.

In comparison with the case of an unanticipated rise in the interest rate, the paths
of q and investment are more smooth in the anticipated case (compare Figures 4.4
and 4.5, lower panel). The reason is, of course, that the firm in the case of an antic-
ipated shock has an opportunity to react to the worsened investment climate in the
future.

4.1.2.2 Full employment in the labour market

Up to now we have interpreted the model given in (4.13)–(4.15) as applying to a
single firm facing a constant real wage. Suppose that we reinterpret the model at a
macroeconomic level, i.e. I and K now represent economy-wide gross investment
and the capital stock, respectively, and the interpretation of q is likewise altered.
Assume furthermore that the economy is characterized by full employment in the
labour market, and that labour supply equal unity so that w = FN (1, K) is the market
clearing wage rate, and the macroeconomic marginal product of capital is given by
FK(1, K). The model now consists of the following two equations:

K̇ = I(q, sI)− δK, (4.25)
q̇ = (r + δ)q− FK(1, K). (4.26)

It is clear that the major change caused by our reinterpretation is that the marginal
product of capital is no longer constant as it depends on the capital stock. Intuitively,
since the labour input is fully employed (N = 1), the economy experiences dimin-
ishing returns to capital, since FKK < 0. This also causes the q̇ = 0 line to be affected:(

∂q
∂K

)
q̇=0

=
FKK

r + δ
< 0. (4.27)

Intuitively, steady-state q is downward sloping in K because the more capital is used,
the lower is its marginal product. As a result, the discounted stream of marginal
products (which is q) falls.

In Figure 4.6, the saddle path is derived graphically. The dynamic forces are
much more complicated in this case. This is because the steady-state level of q and
the q-dynamics itself are now both dependent on K. In addition to trajectories from
points like A and C, there are now also trajectories from points like B and D that pass
through the q̇ = 0 line. The major alteration compared to our earlier case is that the
saddle path no longer coincides with the q̇ = 0 line.

As a first policy measure, consider an anticipated abolition of the investment sub-
sidy, as was for example the case in the Netherlands in the late 1980s. Using the
intuitive solution principle introduced above, the effects of this announced policy
measure can be derived with the aid of Figure 4.7. The ultimate effect of the aboli-
tion of the subsidy is to increase the relative price of investment goods and to shift
the K̇ = 0 line up and to the left. In the long run the economy ends up at point E1,
with a lower capital stock and a higher value of q (due to the higher steady-state
marginal product of capital). Since the capital stock is given at time tA, discrete ad-
justment in q must occur at the time of the announcement tA, and the economy must
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Figure 4.6: Investment with full employment in the labour market

be on the new saddle path at the time of implementation tI , the adjustment path
must look like the one sketched in the diagram. At tA there is a financial correction
that pushes the economy from E0 to A directly above it (K = K0 at impact). Between
tA and tI the economy moves in a north-easterly direction towards point B, where it
arrives at tI . After that, there is gradual adjustment from B to the new steady state
at E1.

The striking (though intuitive) conclusion is that investment goes up initially!
Firms in this economy rush to put in their investment orders in order to be able to get
the subsidy while it still exists. This is of course exactly what happened in the Dutch
case. The adjustment paths for all variables have been drawn in the lower panel
of Figure 4.7. The conclusion of this experiment must be that anticipation effects
are very important and can give rise to (at first glance) unconventional dynamic
adjustment.

4.1.2.3 Temporary or permanent investment subsidy?

Suppose that the policy maker wishes to stimulate the economy and has decided to
do so by creating investment incentives in the form of an investment subsidy. If the
policy maker desires the maximum stimulus to emerge for a given subsidy, should
he introduce a permanent or a temporary investment subsidy? Intuition would sug-
gest that a temporary subsidy would have a larger impact on current investment
because firms would squeeze in their investments while the subsidy exists. This is
an intertemporal substitution argument: firms are tempted to bring forward their in-
tertemporal investment plans to “make hay while the sun shines”. It turns out that
our simple model in fact predicts this kind of response.

The temporary subsidy is announced and introduced at time tA = tI and simul-
taneously announced to be abolished again at some fixed time in the future tE (> tI
of course). The duration of the shock is thus given by tE − tI . Our heuristic solution
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Figure 4.7: An anticipated and permanent abolition of the investment subsidy
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principle can again be used to graphically derive the adjustment path with the aid of
Figure 4.8. Working backwards in time, the following must hold: (i) at tE the econ-
omy must be on the saddle path towards the eventual steady-state equilibrium E0;
(ii) between tA and tE the dynamic forces operating on q and K are those associated
with the equilibrium E1 (which would be relevant if the subsidy were permanent).
The arrows are drawn in Figure 4.8. At tA the capital stock is given (at K0) and the
discrete financial adjustment must take place.

Using all this information, the adjustment path is easily seen to consist of a jump
from E0 to A at time tA, gradual adjustment from A to B between tA and tE, followed
by gradual adjustment from B to E0 after tE. The time paths for all variables are
drawn in the lower panel of Figure 4.8.

Of course, the path associated with an unanticipated and permanent subsidy is an
immediate jump at tA from E0 to A′ followed by gradual adjustment from A′ to E1.
This shows that the effect on current investment (i.e. I(tA)) is highest for a temporary
investment subsidy (compare points A and A′). This is because, for a given invest-
ment subsidy, the value of q falls by less in the case of a temporary subsidy. Hence,
if the policy maker is concerned about stimulating current investment, a temporary
investment subsidy is one way to achieve it.

Intermezzo 4.3

Some production theory: the two-factor production function. If Y =
F(N, K) is a linear homogeneous production function, it possesses sev-
eral very useful properties (see e.g. Ferguson, 1969, pp. 94–96):

(P1) FN N + FKK = Y (Euler’s theorem);
(P2) FN and FK are homogeneous of degree zero in N and K, hence;
(P3) NFNN + KFNK = 0 and KFKK + NFKN = 0;
(P4) σKN ≡ FN FK/(YFKN) is the substitution elasticity between capital

and labour.

Also, Young’s theorem ensures that FNK = FKN . Armed with these
useful properties equations (4.29) and (4.30) can be derived. First, totally
differentiate FN(N, K):

dFN = FNNdN + FNKdK. (a)

But (P3) ensures that FNN = −(K/N)FNK, so that (a) can be written as:

dFN = −(K/N)FNKdN + FNKdK = −FNKK
[

dN
N
− dK

K

]
⇒

dFN
FN

=
FNKK

FN

[
dK
K
− dN

N

]
. (b)

It remains to be shown that FNKK/N can be written in terms of an income
share and the substitution elasticity defined in (P4):

FNKK
FN

=
FKK

Y
· FNKY

FN FK
=

1−ωN
σKN

. (c)

Combining (c) and (b) yields (4.29). Note that we have used (P1) and
(c) to derive that FKK/Y = 1− FN N/Y = 1− wN/Y = 1− ωN . The
derivation of (4.30) is left as an exercise.

****
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Figure 4.8: An unanticipated and temporary increase in the investment subsidy
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4.1.2.4 Interaction with the labour supply decision

As a final application of the model, we now consider the general case where the mo-
del is interpreted at a macroeconomic level, and equations (4.13)–(4.15) are appended
with a labour supply equation of the form familiar from Chapter 1:

w(1− θL) = g(N), (4.28)

where θL is the tax rate on labour income, and we assume that gN > 0, i.e. the
substitution effect dominates the income effect in labour supply.

What happens to investment and employment if the tax on labour is reduced?
And how do these effects occur over time? Obviously, in order to examine the effect
on investment, the effect on the steady-state value of q must be determined. As is
clear from (4.14), we need to know what happens to the marginal product of capi-
tal, FK. Similarly, in order to study the consequences of labour market equilibrium,
we must confront labour supply (4.28) with labour demand (4.15), where the latter
depends on the marginal product of labour, FN . Since the economy is operating un-
der perfect competition, the production function is linear homogeneous (constant
returns to scale), and FN and FK depend only on K/N. The expressions for FN and
FK can be linearized as follows (see Intermezzo 4.3 below):

F̃N =
1−ωN

σKN

[
K̃− Ñ

]
= w̃, (4.29)

F̃K = − ωN
σKN

[
K̃− Ñ

]
, (4.30)

Ñ = εS
[
w̃− θ̃L

]
, (4.31)

where F̃K ≡ dFK/FK, F̃N ≡ dFN/FN , Ñ ≡ dN/N, K̃ ≡ dK/K, w̃ ≡ dw/w, θ̃L ≡
dθL/(1− θL), ωN ≡ NFN/Y, εS ≡ g(N)/(NgN) > 0, and σKN ≡ FN FK/(YFNK) ≥ 0.
In words, a variable with a tilde represents the proportional rate of change in that
variable, ωN is the share of income paid out to the factor labour, εS is the labour
supply elasticity (see Chapter 1) that is assumed to be positive, and σKN (≥ 0) is the
substitution elasticity between capital and labour. Intuitively, it measures how easy
it is to substitute one factor of production for the other. The easier the substitution,
the higher the value for σKN . Note that we have already imposed that the labour
market is in equilibrium.

By using (4.29) and (4.31), the equilibrium employment level and the wage rate
can be written as functions of K̃ and θ̃L:

w̃ =
(1−ωN)

[
K̃ + εS θ̃L

]
σKN + (1−ωN)εS

, (4.32)

Ñ =
εS(1−ωN)K̃− εSσKN θ̃L

σKN + (1−ωN)εS
. (4.33)

By substituting (4.33) into (4.30), the expression for F̃K is obtained:

F̃K = −
ωN
[
K̃ + εS θ̃L

]
σKN + (1−ωN)εS

. (4.34)

This expression is particularly important. It says that the marginal product of capital
increases if the tax on labour is reduced. The reason is that a decrease in the labour
tax stimulates employment (since εS > 0), which means that capital becomes more
productive (since FKN > 0).
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The immediate, transitional, and long-run effects of a permanent and unantici-
pated reduction in the labour income tax are illustrated in Figure 4.9. As the labour
tax falls, the marginal product of capital rises (for all levels of the capital stock) and
the q̇ = 0 line shifts up and to the right. The economy jumps from E0 to A, and the
value of q jumps from q0 to q′. Entrepreneurs observe a very good business climate
and feel a strong incentive to expand business by investing. The economy moves
smoothly along the saddle path from A to E1. The situation in the labour market is
depicted in Figure 4.10. The immediate effect of the tax reduction is an expansion
of labour supply from NS

0 to NS
1 . Employment is immediately stimulated and rises

from N0 to N′. This is not the end of the story, however. Due to the fact that more
capital is put in place (factories are expanded) labour becomes more productive as
well. In terms of Figure 4.10, the labour demand schedule starts to gradually shift up
and to the right, and employment expands further. The ultimate steady-state equi-
librium is at E1. The time paths for the main macroeconomic variables have been
sketched in the bottom panel of Figure 4.9.

4.2 A dynamic IS-LM model

Tobin’s q-theory has become very popular among macroeconomists. The reason is
that it allows for a very simple description of the dynamics of the investment process,
and gives predictions that are not grossly contradicted by empirical evidence. In this
section we discuss Blanchard’s (1981) version of the IS-LM model which loosely in-
corporates the q-theory along with the assumptions of fixed prices and slow quantity
adjustment. This allows us to study the macroeconomic effects of traditional fiscal
policy in an explicit forward-looking framework. The model that is used is described
by the following equations:

YD = aq + (1− b)Y + G, a > 0, 0 < b < 1, (4.35)

Ẏ = σ
[
YD −Y

]
, σ > 0, (4.36)

M
P

= kY− lRS, k > 0, l > 0, (4.37)

RS = RL −
ṘL
RL

, (4.38)

q̇ + π

q
= RS, (4.39)

π = −α0 + α1Y, α0 > 0, α1 > 0, (4.40)

where YD is real spending on goods and services, q is Tobin’s average q, Y is the
level of real production (and income), G is an index of fiscal policy, Ẏ [≡ dY/dt] is
the time rate of change in output, RS is the rate of interest on short-term bonds, RL
is the interest rate on consols (see Chapter 3), M is the nominal money supply, and
P is the fixed price level which we normalize to unity (P = 1). We refer to RS and RL
as, respectively, the “short rate” and the “long rate”.

Equations (4.35)–(4.36) together describe a dynamic IS curve. Equation (4.35)
shows that spending depends on Tobin’s average q, both because of its positive effect
on investment and (potentially) because of positive wealth effects in consumption.2

Furthermore, spending depends on income and on an index of fiscal policy G.
2Recall that qK is the value of the nation’s capital stock. To the extent that domestic households own the

firms, qK is part of wealth which may affect consumption. Strictly speaking, household bond holdings
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Figure 4.9: A fall in the tax on labour income: investment and employment effects
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Figure 4.10: The short-run and long-run labour market effects

Equation (4.36) shows the dynamic behaviour of output. If demand exceeds pro-
duction (YD > Y) then inventories are run down and output is gradually increased.
Unlike in the standard IS-LM model, output is now modelled as a state variable
which can only move gradually over time.

Equation (4.37) is a linear money demand equation (ignoring the wealth effect).
The demand for real money balances depends negatively on the short rate of interest
and positively on income. In discrete time, the short rate of interest is the rate of
interest on single-period bonds. Such bonds have no capital gain/loss because they
mature after a single period. In continuous time, the short rate represents the rate of
interest on a bond with an infinitesimal term to maturity. Hence, there are no capital
gains/losses in this case either.

Equation (4.38) is the arbitrage equation between short bonds and consols. It is
derived as follows. We assume that the two types of financial instruments are perfect
substitutes, so that their respective rates of return must equalize. For short-term
bonds this rate of return is RS since there are no capital gains/losses. For consols
there may, however, be capital gains/losses. Recall from Chapter 3 that the price of
consols is the inverse of the rate of interest on consols, i.e. PB ≡ 1/RL. The rate of
return on a consol is equal to the sum of the coupon payment (1 euro each period)
plus the expected capital gain (ṖB) expressed in terms of the price of the consol (PB):

return on consol ≡ 1 + ṖB
PB

=
1− (1/R2

L)ṘL

1/RL
= RL −

ṘL
RL

, (4.41)

where we have used PB ≡ 1/RL and ṖB = (−1/R2
L)ṘL to arrive at the final expres-

sion. This rate of return on consols must be the same as the short rate of interest:

RL −
ṘL
RL

= RS. (4.42)

and the real money supply should also affect consumption (as in the Blinder-Solow model studied in
Chapter 3) but this effect is ignored by Blanchard.
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Equation (4.42) is known as the term structure of interest rates.
Equation (4.39) is another arbitrage equation. Since q measures the value of

shares, the rate of return on shares is the sum of the periodic dividend payment
(π) plus the expected capital gain on shares (q̇), expressed in terms of the share price
(q) itself:

return on share ≡ π + q̇
q

. (4.43)

Since shares and the other non-monetary financial assets are perfect substitutes, the
rate of return on shares must be the same as the short rate of interest. This is what
(4.39) says. Finally, equation (4.40) is an ad hoc relationship between profit (or divi-
dends) and output. If output is high, the marginal product of capital is also high (for
a given capital stock) and so are profits. Conversely, if output is low, then the firm
may not be able to meet its fixed cost so that profit may be negative.

The model can be condensed to two equations by means of simple substitutions:

Ẏ = σ [aq− bY + G] , (4.44)

q̇ =
kY−M

l
q− α1Y + α0. (4.45)

Clearly, the model gives rise to a non-linear system of differential equations in Y and
q. The exogenous variables are G and M. Once the paths for Y and q are known, the
paths for the remaining variables can be solved also. The dynamic properties of the
model can be studied with the aid of the phase diagrams in Figure 4.11.

Equation (4.44) shows that the Ẏ = 0 line is linear and upward sloping. In-
creasing government spending shifts the Ẏ = 0 line down and to the right, and the
dynamic forces operating on points off the Ẏ = 0 line are stabilizing, i.e. for a given
level of q, output automatically returns to the equilibrium line over time. In sum-
mary:(

∂q
∂Y

)
Ẏ=0

=
b
a
> 0,

(
∂q
∂G

)
Ẏ=0

= −1
a
< 0,

∂Ẏ
∂Y

= −σb < 0. (4.46)

The q̇ = 0 line is slightly more complicated due to its non-linearity. By using (4.45)
we find that the q̇ = 0 can be written as follows:

q =
α1Y− α0

(kY−M) /l
. (4.47)

The denominator on the right-hand side is the short interest rate which must be
positive. Indeed, if RS were negative, people would just hold their wealth in the
form of money balances, kept in an old sock in some cupboard. In terms of Figure
4.11, only output values exceeding M/k are thus feasible. It is not difficult to see
that the slope of the q̇ = 0 line depends on the relative strength of two effects: if Y
increases, both profits and the short rate of interest rise. The profit effect increases
steady-state q but the interest rate effect decreases it. As a result, the net effect on
the steady-state value for Tobin’s q is not a priori clear. Using (4.47) and taking
derivatives we find:(

∂q
∂Y

)
q̇=0

=
α1

RS
− α1Y− α0

RS

k
lRS
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(a) Bad news case

(b) Good news case

Figure 4.11: Dynamic IS-LM model and the term structure of interest rates
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=
1

RS

[
α1 −

qk
l

]
≶ 0, (4.48)

where the first term in the square brackets represents the profit effect and the sec-
ond term is the interest rate effect. Depending on the parameter values, the model
describes either one of two cases, both of which have been illustrated in Figure 4.11.
Using the terminology of Blanchard (1981), we distinguish:

Bad news case If M/k > α0/α1 then q has a lower bound of α1l/k and limY↓M/k q =
+∞. The profit effect of output is dominated by the interest rate effect and the
q̇ = 0 line is downward sloping, as in Figure 4.11(a).

Good news case If M/k < α0/α1 then q has an upper bound of α1l/k and limY↓M/k q =
−∞. The profit effect of output dominates the interest rate effect and the q̇ = 0
line is upward sloping, as in Figure 4.11(b).

Note that for both cases, equation (4.47) implies that an increase in the money supply
shifts the q̇ = 0 line up and to the right:(

∂q
∂M

)
q̇=0

=
q

lR2
S
> 0. (4.49)

Finally, the dynamic adjustment in Tobin’s q can be deduced in a straightforward
fashion from equation (4.45):

∂q̇
∂q

= RS > 0. (4.50)

In terms of Figure 4.11, points above (below) the q̇ = 0 line are associated with
capital gains (losses) on shares. Hence, the dynamics of q for points off the q̇ = 0 line
is destabilizing. The dynamic behaviour of the model can once again be determined
graphically with the aid of Figure 4.11. In both cases the model is saddle-point stable,
and the initial equilibrium is at E0, with output equal to Y0 and Tobin’s q equal to q0.
The saddle path is downward (upward) sloping in the bad (good) news case.

Now consider what happens if the policy maker announces a permanent fiscal
expansion to be implemented some time in the future (hence tI > tA). In the interest
of brevity we restrict attention to the bad news case. In the top part of Figure 4.12
the q̇ = 0 line is drawn as a linear line for convenience. The initial equilibrium is at
point E0. Using the heuristic solution principle used extensively in this chapter, the
adjustment path is easily derived. At time tA there is a stockmarket correction and
q jumps from q0 to q′. Agents know that output will expand in the future and as a
result short interest rates will eventually rise also. Even though profits increase also,
the interest rate effect dominates in this case, so that the discounted value of profits
(i.e. q) must fall. Between tA and tI , output, profits, and the short rate actually fall.
This is because aggregate spending (YD) has collapsed due to the fall in q (recall
that the additional government spending has not yet materialized). At time tI the
economy arrives at point B and the fiscal impulse is implemented. The Ẏ = 0 locus
shifts to the right and demand exceeds production (YD > Y). This leads to a gradual
increase in production (and thus profits and the short rate) along the saddle path
from B to E1. Ultimately, the economy ends up with a higher level of output and a
lower value of q.

What happens to the other variables over time has been illustrated in the lower
panel of Figure 4.12. The path of the short rate of interest is implied by the path for
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Figure 4.12: Anticipated fiscal policy
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income Y and the LM curve (4.37) and has already been discussed. The long rate
of interest must satisfy (4.38). We know that in the long run both the short and the
long rate must rise, i.e. dRL(∞)

dG = dRS(∞)
dG > 0. In view of the solution principle, RL

can only jump at time tA since no anticipated infinitely large capital gains/losses are
allowed. If RL were to jump down to a level below RS, equilibrium would never be
restored since then ṘL = RL(RL − RS) < 0, and RL would continue to fall over time
(whereas its steady-state level is higher than before the shock). Hence, RL must jump
up at time tA to a level above RS (but below its new steady-state level). Thereafter,
ṘL = RL(RL − RS) > 0, and RL gradually starts to rise further over time towards its
new steady-state level.

The lesson we learn from this policy experiment cannot be overemphasized. In
the presence of forward-looking agents endowed with perfect foresight the announce-
ment of expansive fiscal policy to take place in the future will actually give rise to a
recession in the short run. This is not because the government consumes less in the
short run (which it does not) but because agents are fully aware of what will hap-
pen to output, Tobin’s q, and interest rates in the future, and condition their plans
accordingly.

4.3 Exchange rate expectations and fiscal and monetary
policy

As a final example of perfect foresight macroeconomics we study a small open econ-
omy operating under flexible exchange rates and facing perfect (financial) capital
mobility. We augment the analysis conducted in Chapter 2 by explicitly incorpo-
rating forward-looking behaviour in international financial markets. In our earlier
chapter we have been somewhat inconsistent in our discussion of the economy oper-
ating under flexible exchange rates. The nature of this inconsistency can be gleaned
by looking at the uncovered interest parity condition. Consider a domestic investor
who has AC100 to invest either at home, where the interest rate on short-term bonds
is RS, or in the US, where the interest rate on such bonds is R∗S. If the investor chooses
to purchase a domestic bond, he will get AC100·(1 + RS) at the end of the period, so
that the gross yield on his investment is equal to 1+ RS. If, on the other hand, the in-
vestor purchases the US bond, he must first change currency (from euros to dollars),
and purchase US bonds to the amount of AC100/E0 US dollars, where E0 is the nom-
inal exchange rate at the beginning of the period (the dimension of E is, of course, AC
per $). At the end of the period he receives (AC100/E0) · (1 + R∗S) US dollars, which
he converts back into euros by taking his dollars to the foreign exchange market,
thus obtaining (1+ R∗S)·(AC100/E0) · E1 = AC100 · (1+ R∗S) · (E1/E0) euros. Of course,
the investor must decide at the beginning of the period on his investment, and he
does not know the actual exchange rate that will hold at the end of the period. The
estimated gross yield on his foreign investment therefore equals (1 + R∗S) · (Ee

1/E0),
where Ee

1 is the exchange rate the investor expects at the beginning of the period to
hold at the end of the period. If the investor is risk-neutral, he chooses the domestic
(foreign) bond if 1 + RS > (<)(1 + R∗S) · (Ee

1/E0), and is indifferent between the two
investment possibilities if the expected yields are equal.

The point of all this is that the expected yield differential between domestic and
foreign investments depends not only on the interest rates in the two countries (RS
and R∗S) but also on what is expected to happen to the exchange rate in the period of
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the investment:

yield gap ≡ (1 + RS)− (1 + R∗S)
Ee

1
E0

= (1 + RS)− (1 + R∗S)
(

1 +
∆Ee

E0

)
= (1 + RS)−

(
1 + R∗S +

∆Ee

E0
+ R∗S

∆Ee

E0

)
≈ RS −

(
R∗S +

∆Ee

E0

)
,

(4.51)

where we have used the fact that Ee
1 ≡ E0 + ∆Ee in the first line. The cross-term

R∗S∆Ee/E0 can be ignored because it typically is of second-order magnitude (i.e.,
very small). Equation (4.51) can be written in continuous time as:

yield gap = RS − (R∗S + ėe), (4.52)

where e ≡ ln E, so that ėe ≡ dee/dt ≡ Ėe/E. Expressions (4.51) and (4.52) are intu-
itive. If the domestic currency is expected to appreciate during the period (ėe < 0),
then the domestic currency yield on the US bond is reduced because the dollar earn-
ings on the bond are expected to represent fewer euros than if no appreciation is
expected. In the case of perfect capital mobility, arbitrage will ensure that the yield
differential is eliminated, in which case (4.52) reduces to the famous uncovered in-
terest parity condition:

RS = R∗S + ėe. (4.53)

4.3.1 The Dornbusch model

In Chapter 2 we simply postulated that RS = R∗S under perfect capital mobility. This
would, of course, be correct if investors never expect the exchange rate to change.
Whilst this may be reasonable under a (tenable) fixed exchange rate regime, it is a
somewhat unfortunate and inconsistent assumption to adopt about investors’ ex-
pectations in a regime of freely flexible exchange rates. Investors know that the
exchange rate can (and generally will) fluctuate, and consequently will form ex-
pectations about the change in the exchange rate. In a seminal contribution to the
literature, Dornbusch (1976a) fixed this embarrassing problem by introducing the
perfect foresight assumption in an otherwise standard Mundell-Fleming model of a
small open economy facing perfect capital mobility and sticky prices.

The Dornbusch model is summarized in Table 4.1. Equations (T1.1) and (T1.2)
are, respectively, the IS curve and the LM curve for a small open economy.3 Un-
covered interest parity is given in equation (T1.3), and equation (T1.4) is the Phillips
curve. If output is higher than its full employment level ȳ, prices gradually adjust to
eliminate Okun’s gap. The adjustment speed of the price level is finite, due to the
assumption of sticky prices. This means in formal terms that 0 < φ � ∞. Finally,
equation (T1.5) represents the assumption of perfect foresight. Agents’ expectations
regarding the path of the exchange rate coincide with the actual path of the exchange
rate.

The model exhibits long-run monetary neutrality, as ṗ = 0 implies that y = ȳ
and ė = 0 implies that RS = R∗S, so that (T1.2) shows that m− p is constant. In the
long run, the domestic price level and the nominal money supply move together.
Furthermore, there is also a unique equilibrium real exchange rate, defined by (T1.1)

3Note that we could have introduced the real interest rate, RS − ṗ, in the IS equation (T1.1) as invest-
ment is likely to depend on the real rather than the nominal interest rate. In the interest of simplicity,
however, we have abstracted from this slight complication.
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Table 4.1. The Dornbusch Model

y = −εYRRS + εYQ [p∗ + e− p] + εYGg, (T1.1)
m− p = −εMRRS + εMYy, (T1.2)

RS = R∗S + ėe, (T1.3)
ṗ = φ [y− ȳ] , (T1.4)

ėe = ė. (T1.5)

Notes: All variables except the domestic and foreign interest rates are in logarithms and
starred variables refer to the foreign country. Endogenous variables are domestic output y,
the nominal exchange rate e, the domestic rate of interest RS, and the domestic price level
p. Exogenous are government spending g, the money stock m, the foreign interest rate R∗S,
domestic full employment output ȳ, and the foreign price level p∗. The coefficients satisfy:
εYR > 0, εYQ > 0, εYG > 0, εMR > 0, εMY > 0, and φ > 0.

with y = ȳ and RS = R∗S substituted. This equilibrium real exchange rate is not
affected by monetary policy, but can be affected by fiscal policy.

But we are really interested in the short-run dynamics implied by the model. To
study this, we must first reduce the model to two differential equations in e and
p. This task is achieved in the following way. In the first step we solve the IS-LM
equations (T1.1)–(T1.2) for output and the short-term interest rate, conditional on the
exogenous variables (g, m, p∗), the nominal exchange rate e, and the domestic price
level p. We thus obtain quasi-reduced-form expressions for output and the domestic
interest rate:

y =
εMRεYQ [p∗ + e]−

[
εYR + εMRεYQ

]
p + εMRεYGg + εYRm

εMR + εMYεYR
, (4.54)

RS =
εMYεYQ [p∗ + e] +

[
1− εMYεYQ

]
p + εMYεYGg−m

εMR + εMYεYR
. (4.55)

The quasi-reduced-form expressions are quite convenient because they summarize
how the instantaneous equilibrium values of output and the interest rate depend on
the dynamic variables (e and p) and the exogenous variables. The signs of the coeffi-
cients for e and p can be explained with the aid of Figure 4.13. Consider an economy
facing a price level of p0 and a nominal exchange rate of e0. The initial equilibrium
is at point A. If the nominal exchange rate increases to e1 (a depreciation) and the
price level stays unchanged then the IS curve shifts to the right, and the equilibrium
shifts to point B. It follows that y and RS are both increasing functions of e. Next
we consider what happens if the price level increases to p1 whilst the exchange rate
stays equal to e0. There are now two effects. On the one hand, real money balances
decrease and the LM curve shifts to the left, which leads to upward pressure on the
interest rate. On the other hand the domestic price increase also leads to an appreci-
ation of the real exchange rate which shifts the IS curve to the left, decreases output
and hence the (transactions) demand for money. This money-demand effect causes
downward pressure on the interest rate. We assume for simplicity that the money-
supply effect dominates the money-demand effect, i.e. the parameters are such that
0 < εMYεYQ < 1. In terms of Figure 4.13 this means that point C lies northwest from
point A.
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Figure 4.13: Understanding the quasi-reduced-form expressions for y and RS

In the second step of the derivation of the system of differential equations we
substitute (4.54)–(4.55) and (T1.5) into (T1.3) and (T1.4), to obtain the dynamic repre-
sentation of the model:

 ė

ṗ

 =


εMYεYQ

εMR + εMYεYR

1− εMYεYQ

εMR + εMYεYR

φεMRεYQ

εMR + εMYεYR
−

φ
[
εYR + εMRεYQ

]
εMR + εMYεYR


 e

p



+


εMYεYQ p∗ + εMYεYGg−m

εMR + εMYεYR
− R∗S

φ[εMRεYQ p∗ + εMRεYGg + εYRm]

εMR + εMYεYR
− φȳ

 . (4.56)

The only sign that is ambiguous in the Jacobian matrix on the right-hand side of
(4.56) is the one for ∂ė/∂p. But with the assumption (made above) of a dominant
money-supply effect we find that ∂ė/∂p > 0.

The model can be analysed with the aid of Figure 4.14. The ė = 0 line is obtained
by taking the first equation in (4.56), setting ė = 0, and solving it for e as a function
of p and the exogenous variables:

e + p∗ =
−(1− εMYεYQ)p− εMYεYGg + m + (εMR + εMYεYR)R∗S

εMYεYQ
. (4.57)

Along the ė = 0 line the domestic interest rate equals the foreign interest rate (RS =
R∗S). It is downward sloping in view of our assumption (made above) that εMYεYQ <
1. For points above the ė = 0 line the nominal (and the real) exchange rate is too
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Figure 4.14: Phase diagram for the Dornbusch model

high, output is too high, and the domestic rate of interest is higher than the world
rate (RS > R∗S). Uncovered interest parity predicts that an exchange rate depreciation
is expected and occurs (ėe = ė > 0). The opposite holds for points below the ė = 0
line. These dynamic forces on the nominal exchange rate are indicated by vertical
arrows in Figure 4.14. More formally we can derive the same result by noting that
(4.56) implies:

∂ė
∂e

=
εMYεYQ

εMR + εMYεYR
> 0, (4.58)

which shows that the interest parity condition introduces an unstable element into
the economy in the sense that exchange rate movements are magnified, rather than
dampened, according to (4.58).

The ṗ = 0 line is obtained by taking the second equation in (4.56) and solving it
for e as a function of p and the exogenous variables:

e + p∗ =
(εYR + εMRεYQ)p− εMRεYGg− εYRm + (εMR + εMYεYR)ȳ

εMRεYQ
. (4.59)

Along the ṗ = 0 line there is full employment (y = ȳ). It is upward sloping because
an increase in the domestic price level reduces output via the real balance effect. To
restore full employment, the nominal exchange rate must depreciate. For points to
the right of the ṗ = 0 line, output is below its full employment level (y < ȳ) and the
domestic price level is falling. The opposite holds for points to the left of the ṗ = 0
line. The dynamic forces operating on the price level are indicated by horizontal
arrows in Figure 4.14. In formal terms, the second equation of (4.56) shows that the
real side of the model exerts a stabilizing influence on the economy:

∂ ṗ
∂p

= −φ(εYR + εMRεYR)

εMR + εMYεYQ
< 0. (4.60)
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The long-run steady-state equilibrium is at point a0 in Figure 4.14, where ṗ = ė = 0
so that both RS = R∗S and y = ȳ hold.

What about the stability of this steady-state equilibrium? Will a shock away from
a0 eventually and automatically be corrected in this model? The answer is an em-
phatic “no” unless we invoke the perfect foresight hypothesis. The dashed trajecto-
ries drawn in Figure 4.14 eventually all turn away from the steady-state equilibrium.
There is, however, exactly one trajectory which does lead the economy back to equi-
librium. This is the saddle path, SP. If and only if the economy is on this saddle path,
will the equilibrium be reached. Since agents have perfect foresight they know that
the economy will fall apart unless it is on the saddle path (p and/or e will go to non-
sense values). Consequently, they expect that the economy must be on the saddle
path, and by their behaviour this expectation is also correct. If anything unexpected
happens, the nominal exchange rate immediately adjusts to place the economy on
the new saddle path. Since the price level is sticky, it cannot jump instantaneously
and consequently the nominal exchange rate takes care of the entire adjustment in
the impact period.

4.3.1.1 Fiscal policy

As an example of adjustment, consider the case of an unanticipated and permanent ex-
pansionary fiscal policy. In terms of Figure 4.15, the increase in g shifts the ṗ = 0 line
to the right and the ė = 0 line to the left, leaving the long-run price level unchanged.
At impact the exchange rate adjusts downward from point a0 to a1. There is no tran-
sitional dynamics, and the Dornbusch model predicts exactly the same adjustment
pattern as the traditional Mundell-Fleming approach does in this case. Since there
is no need for a long-run price adjustment the assumption of price stickiness plays
no role in the adjustment process, and because the fiscal impulse is unanticipated,
the interest parity condition does not introduce transitional dynamics into the ex-
change rate in this case. Students are advised to verify that the announcement of
a future permanent increase in government spending leads to an immediate appre-
ciation of the currency, followed by falling prices and a further appreciation of the
exchange rate, in the period between announcement and implementation of the pol-
icy. Once government spending has gone up, the price level starts to rise again and
the exchange rate appreciates further. In the long run, the equilibrium is at a1, with a
permanently lower exchange rate and the same price level, and the adjustment path
is a0 to a′ at impact, gradual movement from a′ to a′′ between announcement and
implementation, followed by gradual movement from a′′ to a1 after implementation.

4.3.1.2 Monetary policy

An unanticipated and permanent expansionary monetary policy produces the famous
overshooting result. In terms of Figure 4.16, an increase in the money supply shifts
both the ė = 0 line and the ṗ = 0 line to the right, leaving the long-run equilib-
rium real exchange rate unchanged (recall that money is neutral in the long run).
In the short run, however, prices are sticky and the exchange rate makes a discrete
adjustment from e0 to e′. The depreciation of the currency leads to an increase in the
demand for aggregate output (y > ȳ) and the domestic price level starts to rise. A
gradual adjustment along the saddle path SP1, with an appreciating real exchange
rate, leads the economy back to the long-run equilibrium. The nominal exchange
rate actually overshoots its long-run target in the impact period. The intuition be-
hind this result is that agents expect a long-run depreciation of the nominal exchange
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Figure 4.15: Fiscal policy in the Dornbusch model

rate, and hence domestic assets are less attractive. There is a net capital outflow and
the spot rate depreciates. The exchange rate overshoots in order for investors in do-
mestic assets to be compensated (for the fact that RS < R∗S) during adjustment by
an exchange rate appreciation. Hence, point a1 must be approached from a north-
westerly direction.

4.3.2 Price stickiness and overshooting

The finite speed of adjustment in the goods market (a distinctly Keynesian feature)
plays a crucial role in the exchange rate overshooting result illustrated in Figure
4.16. To demonstrate that this is so, suppose, for example, that φ→ ∞, so that (T1.4)
predicts that y = ȳ always, as prices adjust infinitely fast. This means that we can
solve (T1.1)–(T1.2) for the domestic rate of interest and price level as a function of
the nominal exchange rate e and the exogenous variables. For the domestic interest
rate we obtain:

RS =
(εYQεMY − 1)ȳ + εYQ(p∗ + e) + εYGg− εYQm

εYR + εYQεMR
, (4.61)

which, together with (T1.5), can be substituted into (T1.3) to get the expression for
the rate of depreciation of the exchange rate under perfectly flexible prices:

ė =
(εYQεMY − 1)ȳ + εYQ(p∗ + e) + εYGg− εYQm

εYR + εYQεMR
− R∗S. (4.62)

This is an unstable differential equation in e only (it does not feature the price level,
p). In terms of Figure 4.17, the only stable solution, following an unanticipated in-
crease in the money supply, is an immediate discrete adjustment of the exchange
rate from e0 to e1. Consequently, both immediately before and immediately after the
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Figure 4.16: Monetary policy in the Dornbusch model
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Figure 4.17: Exchange rate dynamics with perfectly flexible prices

shock, the exchange rate is constant (ė = 0) so that the domestic rate of interest stays
equal to the world rate at all times (RS = R∗S). Unanticipated monetary policy does
not lead to overshooting if prices are perfectly flexible.

This does not mean, of course, that overshooting is impossible when the price
level is fully flexible. In some cases, anticipation effects can also cause overshooting
of the exchange rate. Assume that the monetary impulse is announced at time tA to
be implemented at some later time tI (> tA). If agents have perfect foresight, the ad-
justment path will be an immediate depreciation at time tA from e0 to e′, followed by
gradual further depreciation between tA and tI , represented by the movement from
point a′ to a′′ along the ė(m0) line. Exactly at time tI , the money supply is increased
(as was announced), the ė = 0 line shifts to the right to ė(m1), and the exchange rate
settles at its new equilibrium level e1. Agents anticipate a depreciation of the cur-
rency in the long run since the money supply increases. There can be no anticipated
jumps in the exchange rate, since these would imply infinitely large expected capital
gains/losses, so that one side of the market would disappear. Consequently, interest
parity dictates adjustment, and the exchange rate starts to depreciate immediately.4

There is still no overshooting in this case.
Matters are different if the monetary impulse is implemented immediately (tA =

tI) but is of a temporary nature. Specifically, it is announced (and believed by the
agents) that the money supply will be decreased to its old level at some time tE in
the future. In that case, the adjustment path is given by an immediate depreciation
at tA = tI from e0 to e′′, followed by gradual appreciation between tA and tE (de-
scribed by the movement from point b′ to b′′). At the time the money supply is
decreased again, the exchange rate has fallen back to its initial level, the ė = 0 line

4The smaller the difference between implementation and announcement dates (tI − tA), the larger is
the jump in the exchange rate at impact. This can be seen intuitively, by noting that if (tI − tA) → 0, the
jump is instantaneous from e0 to e1, and if (tI − tA) → ∞, the policy measure is postponed indefinitely,
and nothing happens to the exchange rate.
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shifts from ė(m1) = 0 to ė(m0) = 0, and equilibrium is restored. A temporary mone-
tary expansion causes the exchange rate to overshoot its long-run (unchanged) level.
Agents expect no long-run depreciation but the domestic interest rate is temporarily
below the world rate of interest, so that interest parity predicts that ė < 0 along the
transition path.

4.4 Punchlines

The key concept that is developed in this chapter is that of saddle-point stability. To
illustrate this concept we develop Tobin’s q theory of investment in continuous time.
This theory, which was also discussed briefly in discrete time in Chapter 3, is quite
attractive because it is very simple but nevertheless yields predictions which accord
with intuition and (some of the) empirical evidence. In the q theory, investment
by firms depends on the shadow price of installed capital goods, which is called
Tobin’s marginal q. This shadow price is a forward-looking concept, and it incor-
porates all the information that is of relevance to the firm. Under some conditions
Tobin’s marginal q coincides with average q, which can be measured in a relatively
straightforward fashion by looking at the stockmarket value of the firm.

In order to understand the capital dynamics implied by Tobin’s q theory, we
study the effect of an investment subsidy in a number of different settings. In the
simplest possible setting we interpret the theory at the level of an individual firm
for which the real wage rate and thus the marginal product of capital is constant. In
a more complex setting we interpret the theory as pertaining to the economy as a
whole. This necessitates an assumption about the labour market. We consider two
cases; one with a fixed supply of labour and the other with an elastic labour sup-
ply. The latter case allows for a discussion of the effects of a labour income tax on
employment, investment, and the capital stock.

Since the q theory is inherently forward looking, the effects of a policy shock de-
pend critically on whether the shock is anticipated or not. A policy shock is unantici-
pated (anticipated) if the time of implementation coincides with (postdates) the time
of announcement. An anticipated shock which affects either the marginal product
of capital or the interest rate will have an immediate effect on investment because
Tobin’s q is the present value of present and future marginal capital productivity.
Graphically the model can be shown to be saddle-point stable, i.e. there is a unique
trajectory towards the new equilibrium following a shock. At impact the capital
stock is predetermined (accumulated in the past) but Tobin’s q can jump to incorpo-
rate new information.

The model gives rise to some interesting policy implications. For example, an an-
ticipated abolition (or reduction) of the investment subsidy leads to an investment
boom at impact because firms rush to put in their investment orders to get the sub-
sidy while it still exists. Similarly, a temporary investment subsidy causes a larger
impact effect on investment than a permanent subsidy does. Intuitively this happens
because firms bring forward their intertemporal investment plans in order to “make
hay while the sun shines”. The fact that these predictions accord with intuition lends
the theory some credibility.

Another attractive feature of Tobin’s q theory is that it is easily incorporated in
the IS-LM model. In doing so one of the objections raised against that model, namely
that it contains only rudimentary dynamics, is substantially weakened. By also mod-
elling gradual output adjustment and a simple (forward-looking) term structure of
interest rates, the dynamic IS-LM model gives rise to a rich array of intertemporal
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effects. For example, with an anticipated increase in government consumption it is
possible that output falls during the early phase of the transition. This is because
the downward jump in Tobin’s q causes a fall in investment and aggregate demand
which is not counteracted because the additional government consumption has not
yet materialized. In the long run, of course, output rises beyond its initial level.

In the last part of this chapter we introduce forward-looking elements in a sticky-
price model of a small open economy facing perfect capital mobility. A striking fea-
ture of this model is that an unanticipated and permanent monetary expansion may
produce overshooting of the exchange rate. Intuitively, agents expect a long-run
depreciation of the nominal exchange rate which, ceteris paribus, makes domestic
assets less attractive than foreign assets. There is a net capital outflow and the spot
exchange rate depreciates. During transition the domestic interest rate falls short of
the world interest rate. As a result the exchange rate overshoots its long-run equilib-
rium value because part of the yield on domestic assets consists of a gradual appreci-
ation of the exchange rate. The overshooting result caused a big stir in the late 1970s
because it provided an economically intuitive rationale for the large swings that are
often observed in the exchange rate. Large changes in the exchange rate need not be
due to the behaviour of irrational currency speculators after all!

Further reading

The material on the investment subsidy is motivated in part by the analyses of Abel
(1982) and Summers (1981). Abel (1981) shows how the investment model can be
generalized by allowing for a variable utilization rate of capital. The recent invest-
ment literature stresses the irreversibility of investment and/or non-convex adjust-
ment costs. Key articles are: Abel and Eberly (1994), Abel et al. (1996), Dixit and
Pindyck (1994), and Caballero and Leahy (1996). A good survey is Caballero (1999).

Sargent (1987b) and Nickell (1986) develop a dynamic theory of labour demand
based on adjustment costs on the stock of labour. Hamermesh and Pfann (1996)
present a survey of this literature. Saddle-point equilibria naturally arise in the open
economy context. Key papers are Dornbusch (1976a) and Buiter and Miller (1981,
1982), and a good survey is Scarth (1988, ch. 9).



Chapter 5

Rational expectations and
economic policy

In this chapter we continue our investigation of forward-looking expectations mech-
anisms. We move to an economic setting in which market participants experience
stochastic shocks. More specifically the purpose of this chapter is to discuss the fol-
lowing issues:

1. What do we mean by rational expectations (also called model-consistent ex-
pectations)?

2. What are the implications of the rational expectations hypothesis (REH) for
the conduct of macroeconomic policy? What is the meaning of the so-called
policy-ineffectiveness proposition (PIP)?

3. What are the implications of the REH for the way in which we specify and use
macroeconometric models, and what is the Lucas critique?

4. To what extent can countercyclical economic policy be conducted in a small
open economy facing perfect financial capital mobility when agents are blessed
with rational expectations?

5. What is the lasting contribution of the rational expectations revolution?

5.1 What are rational expectations?

5.1.1 The basic idea

More than half a century ago, John Muth published an article in which he argued
forcefully that economists should be more careful about their informational assump-
tions, in particular about the way in which they model expectations. Muth’s (1961)
point can be illustrated with the aid of the neoclassical synthesis model under the
adaptive expectations hypothesis (AEH) that was discussed in Chapter 3. Consider
Figure 5.1, which illustrates the effects of monetary policy over time. The initial equi-
librium is at point E0, with output equal to its full-employment level Ȳ and the price
level equal to P0. There is an expectational equilibrium, because P = Pe at point
E0. If the monetary authority increases the money supply (in a bid to stimulate the
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Figure 5.1: Monetary policy under adaptive expectations

economy), aggregate demand is boosted (the AD curve shifts from AD0 to AD1), the
economy moves to point A, output increases to Y′, and the price level rises to P′. In
A there is a discrepancy between the expected price level and the actual price level.
This discrepancy is slowly removed by an upward revision of the expected price
level, via the adaptive expectations mechanism (e.g. equation (1.14)). In the diagram
this is represented by a gradual movement along the new AD curve towards point
E1, which is the new full equilibrium.

The adjustment path of expectations is very odd, however, because agents (e.g.
households supplying labour) make systematic mistakes along this path. The time
paths for the actual and expected price levels are illustrated in Figure 5.2, as is the
expectational error (Pe − P). The initial shock causes an expectational error that is
slowly eliminated. All along the adjustment path, the error is negative and stays
negative, and agents keep guessing wrongly.

This is very unsatisfactory, Muth (1961) argued, because it is diametrically op-
posed to the way economists model human behaviour in other branches of eco-
nomics. There, the notion of rational decision making (subject to constraints) oc-
cupies centre stage, and this does not appear to be the case under the AEH. As a
result, Muth proposed that: “. . . expectations, since they are informed predictions of
future events, are essentially the same as the predictions of the relevant economic
theory” (1961, p. 316).

With respect to the model illustrated in Figure 5.1, this would mean that agents
hear at time t0 that the money supply has been increased from M0 to M1, use the
relevant economic theory (equations (3.1)–(3.2)), calculate that the correct price level
for the new money supply is P1, adjust their expectations to that new money sup-
ply (Pe

1 = P1), and supply the correct amount of labour. As a result, the economy
jumps from E0 to E1, output is equal to Ȳ and the price level is P1. Of course, this
adjustment story amounts to the perfect foresight hypothesis (PFH) version of the
policy-ineffectiveness proposition (PIP). Since there is no uncertainty in the model,
forecasting is not difficult for the agents. They realize that a higher money supply
induces a higher price level and thus adjust their wages upwards. As a result, the
real wage, employment, and output are unaffected.
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Figure 5.2: Expectational errors under adaptive expectations
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In reality all kinds of chance occurrences play an important role. In a macroeco-
nomic context one could think of stochastic events such as fluctuation in the climate,
natural disasters, shocks to world trade (German reunification, OPEC shocks, the
Gulf War), etc. In such a setting, forecasting is a lot more difficult. Muth (1961) for-
mulated the rational expectations hypothesis (REH) to deal with situations in which
stochastic elements play a role. The basic postulates of the REH are: (i) information
is scarce and the economic system does not waste it, and (ii) the way in which expec-
tations are formed depends in a well-specified way on the structure of the system
describing the economy.

In order to clarify these postulates, consider the following example of an isolated
market for a non-storable good (so that inventory speculation is not possible). This
market is described by the following linear model:

QD
t = a0 − a1Pt, a1 > 0, (5.1)

QS
t = b0 + b1Pe

t + Ut, b1 > 0, (5.2)

QD
t = QS

t [≡ Qt] , (5.3)

where Pt is the price of the good in period t, QD
t is the quantity demanded, QS

t is
the quantity supplied, and Pe

t is the price level that suppliers expect in period t− 1
to hold in period t. The random variable Ut represents all stochastic elements that
impinge on the supply curve. If the good in question is an agricultural commodity,
for example, then Ut could summarize all the random elements introduced in the
supply decision by the weather, crop failures, animal diseases, insect plagues, etc.

Equation (5.1) shows that demand only depends on the actual price of the good.
In other words, the agents know the price of the good, and there are no stochastic
events occurring on the demand side of the market, such as random taste changes,
income fluctuations, etc. Equation (5.2) implies that there is a production lag: sup-
pliers must decide on the production capacity before knowing exactly what will be
the price at which they can sell their goods. They make this decision on the basis of
all information that is available to them. In the context of this model, the information
they possess in period t− 1 is summarized by the so-called information set, Ωt−1:

Ωt−1 ≡
{

Pt−1, Pt−2, ...; Qt−1, Qt−2, ...; a0, a1, b0, b1; Ut ∼ N(0, σ2)
}

. (5.4)

What does this mean? First, the agents know all prices and quantities up to and in-
cluding period t− 1 (they do not forget relevant past information). Obviously, the
information set Ωt−1 does not include Pt, Qt, and Ut. Second, the agents know the
structure of the market they are operating in (recall: “. . . the relevant economic the-
ory” is used by agents). Hence, the model parameters a0, a1, b0, and b1 are known
to the agents as is the structure of the model given in (5.1)–(5.3). Third, although
the actual realization of the stochastic error term Ut is not known for period t, the
probability distribution of this stochastic variable is known. For simplicity, we as-
sume that Ut is distributed as a normal variable with an expected value of zero
(E (Ut) = 0), no autocorrelation (E (UtUs) = 0 for t 6= s), and a constant variance
of σ2 [≡ E(Ut − E (Ut))2], where E(·) is the unconditional expectations operator. This
distributional assumption is written in short-hand notation as N(0, σ2). Recall from
first-year statistics that the normal distribution looks like the symmetric bell-shaped
curve drawn in Figure 5.3. Fourth, past realizations of the error terms are, of course,
known. Agents know past observations on Qt−i and Pt−i, and can use the model
(5.1)–(5.3) to find out what the corresponding realisations of the shocks must have
been (i.e. Ut−i).
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Figure 5.3: The normal distribution

The REH can now be stated very succinctly as:

Pe
t = E (Pt | Ωt−1) ≡ Et−1Pt, (5.5)

where Et−1 is short-hand notation for E(· | Ωt−1), which is the conditional expectation
operator. In words, equation (5.5) says that the subjective expectation of the price
level in period t formed by agents in period t− 1 (Pe

t ) coincides with the conditional
objective expectation of Pt, given the information set Ωt−1.

How does the REH work in our simple model? We obtain the answer in a number
of steps. First, equilibrium outcomes are calculated. Hence, (5.3) is substituted into
(5.1) and (5.2), which can then be solved for Pt and Qt in terms of the parameters and
the expected price Pe

t :

Pt =
a0 − b0 − b1Pe

t −Ut

a1
, (5.6)

Qt = b0 + b1Pe
t + Ut. (5.7)

Equation (5.6) is crucial. It says that the actual price in period t depends on the price
expected to hold in that period, and the realization of the stochastic shock Ut. More
precisely, a higher expected price level or a positive supply shock (bigger Pe

t or Ut)
boosts the supply of goods, and thus the equilibrium price level must fall in order to
clear the market. The REH postulates that individual agents can also calculate (5.6)
and can take the conditional expectation of Pt:

Et−1Pt = Et−1

[
a0 − b0 − b1Pe

t −Ut

a1

]
=

a0 − b0

a1
− b1

a1
Et−1Pe

t −
1
a1

Et−1Ut. (5.8)

Consider the three terms on the right-hand side of (5.8) in turn. The first term is
obvious: the conditional expectation of a known constant is that constant itself. The
second term can similarly be simplified: Pe

t is a known constant, so that Et−1Pe
t = Pe

t .
The third term can be simplified by making use of our knowledge concerning the
distribution of Ut. Since Ut is not autocorrelated, the conditional expectation of it is
equal to its unconditional expected value, i.e. Et−1Ut = 0. As a result of all these
simplifications, Et−1Pt can be written as:

Et−1Pt =
a0 − b0

a1
− b1

a1
Pe

t . (5.9)
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But the REH states in (5.5) that the objective expectation, Et−1Pt, and the subjective
expectation, Pe

t , coincide. Hence, by substituting Et−1Pt = Pe
t into (5.9) we obtain the

solution for Pe
t :

Pe
t =

a0 − b0

a1
− b1

a1
Pe

t ⇒ Pe
t = Et−1Pt =

a0 − b0

a1 + b1
. (5.10)

The final expression is the rational expectations solution for the expected price level.
The actual price level Pt is stochastic (of course, since it depends on the stochastic
supply shock Ut). By substituting (5.10) into (5.6), the expression for Pt is obtained:

Pt = P̄− 1
a1

Ut, (5.11)

where P̄ ≡ (a0− b0)/(a1 + b1) is the equilibrium price that would hold if there were
no stochastic elements in the market. Equation (5.11) says that the actual price Pt
fluctuates randomly around P̄. The expectational error is equal to Pt − Et−1Pt =
−(1/a1)Ut, and exhibits no predictable pattern. Also, the average of this error is
zero, so that agents do not make systematic mistakes. If there is an expected negative
supply shock, for example due to an agricultural disaster, the price level rises.

What would have been the case under the AEH? Can we derive an equation for
Pt under the AEH that we can then compare to the REH expression in (5.11)? The
answer is “yes of course”, but only after using some technical tricks to get rid of
terms involving Pe

t and Pe
t−1. Here goes. Obviously, under AEH, the expectational

errors do display a predictable pattern. Recall (from (1.14)) that the AEH says that
the expected price level can be written as a weighted average of last period’s actual
price level and last period’s expected price level:

Pe
t = λPt−1 + (1− λ)Pe

t−1, 0 < λ < 1. (5.12)

By using (5.6), once for Pt and once more for Pt−1 we find:

Pt =
a0 − b0 − b1Pe

t −Ut

a1
, (5.13)

Pt−1 =
a0 − b0 − b1Pe

t−1 −Ut−1

a1
. (5.14)

Now comes the trick: multiply (5.14) by 1− λ and deduct the result from (5.13) to
get:

Pt− (1−λ)Pt−1 =
λ(a0 − b0)

a1
− b1

a1
[Pe

t − (1−λ)Pe
t−1]−

1
a1
[Ut− (1−λ)Ut−1]. (5.15)

But, according to (5.12), the first term in square brackets on the right-hand side is
equal to λPt−1, so after gathering terms we can rewrite (5.15) as:

Pt =
λ(a0 − b0)

a1
+

[
1− λ

a1 + b1

a1

]
Pt−1 −

1
a1
[Ut − (1− λ)Ut−1], (5.16)

and more compactly as:

Pt − P̄ = µ [Pt−1 − P̄]− 1
a1

Vt, (5.17)
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where µ ≡ 1− λ a1+b1
a1

is a composite parameter, P̄ = (a0− b0)/(a1 + b1) is the deter-
ministic equilibrium price, and Vt ≡ Ut− (1−λ)Ut−1 is a composite stochastic term.
The trick works! But before getting carried away on a wave of pure joy we must first
check a technical feature of this AEH solution for the price path. Indeed, even ab-
stracting from the random term, Vt, the difference equation for the price level must
be stable for this model to be of any use under the AEH (remember the correspon-
dence principle). In particular, the stability condition requires µ to be less than unity
in absolute value. Expressed in terms of the expectational adjustment parameter, λ,
the stability condition is thus 0 < λ < min [1, 2a1/ (a1 + b1)].1

The key thing to note about equation (5.17) is that the equilibrium price, Pt, dis-
plays a clearly recognizable pattern under the AEH: Pt depends on its own lagged
value Pt−1, and the composite error term Vt displays autocorrelation (i.e., E (VtVt−1) =
−(1− λ)σ2). It is not difficult to show that the expectational error under the AEH
can be written as follows:

Pe
t − P̄ = − λ

a1

∞

∑
i=0

µiUt−1−i. (5.18)

To help understand (5.18), consider the effect of an isolated supply shock in period
t− 1, i.e. set Ut−1−i = 0 for i ≥ 1. Repeated use of (5.18) shows that this shock will
affect the expectational errors from period t onward, i.e. Pe

t − P̄ = − (λ/a1)Ut−1,
Pe

t+1 − P̄ = − (λµ/a1)Ut−1, Pe
t+2 − P̄ = −

(
λµ2/a1

)
Ut−1, etcetera. Of course, be-

cause the model is stable, the effect of Ut−1 will ultimately die down, but depending
on the magnitude of µ this may take a long time indeed.

Figure 5.4: Actual and expected price under REH

1The function min [x, y] is the minimum-value function, i.e. min [x, y] = x if x ≤ y and min [x, y] = y if
x > y.



154 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

The issue can be further illustrated with the aid of Figures 5.4 and 5.5, which
show the paths of the actual price level, Pt, and the expected price level, Pe

t , under,
respectively, the REH and the AEH. The diagrams were produced as follows. First,
the computer was instructed to draw 100 (quasi-) random numbers from a normal
distribution with mean zero and variance σ2 = 0.01. These random numbers are
the supply shocks of the model (that is, Ut for t = 1, · · · , 100). The parameters
of demand and supply were set at a0 = 3, a1 = 1, b0 = 1, and b1 = 1, which
implies that the deterministic equilibrium price is P̄ = 1. Obviously, from (5.10)
we find that under the REH, Pe

t = P̄ = 1. This is the dashed line in Figure 5.4.
The actual price level under the REH is given by (5.11), and is drawn as a solid
line fluctuating randomly around the dashed line. In Figure 5.5 the expected and
actual price levels have been drawn for the same stochastic Ut terms as before but
assuming that the AEH is valid. To generate these numbers we set λ = 0.8 and
assume that Pe

0 = P0 = P̄ and U0 = 0. Not surprisingly, there is a clear pattern in the
way expectations continually lag behind actual price movements (as (5.12) of course
suggests theoretically).

Figure 5.5: Actual and expected price under AEH

5.1.2 Do we really believe the idea?

In the previous section we have postulated the REH in the form of a statement like
(5.5). Muth (1961) offers an intuitive defence for the equality of conditional and sub-
jective expectations. First, if the conditional expectation of the price level based on
the model (Et−1Pt) were considerably better at forecasting Pt than the subjective ex-
pectation of suppliers (Pe

t ), there would be an opportunity for making larger than
normal profits for an alert “insider”, i.e. someone who does use the information
contained in the model. This insider could, for example, start his/her own busi-
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ness, engage in inventory speculation (in the case of storable goods), or operate a
consulting firm specialized in selling forecasting services to the existing suppliers.

It has unfortunately proved very difficult indeed to come up with a formal mo-
del of this “market for information”. This is because (i) information is costly to get,
and (ii) is at least partially a public good. Agents that possess information can, by
their actions in the market place, unwittingly reveal the content of this information
to agents who have not acquired it. As a result, there may be a strong “free-rider”
problem in the market for information. Using this type of argument, Grossman and
Stiglitz (1980) conclude that it is impossible for the market for information to be ef-
ficient. Other authors investigate the question whether agents can learn to converge
to rational expectations—see, for example, Friedman (1979), DeCanio (1979), and Pe-
saran (1987). The conclusions of this literature suggest that is not always the case.
To quote DeCanio, “the economical use of information will not necessarily generate
rational expectations” (1979, p. 55).

So there are good reasons to believe that the use of the REH cannot be justified as
an outcome of an informational cost-benefit analysis. Yet, many economists today ac-
cept the REH as the standard assumption to make in macro-models involving uncer-
tainty. The reason for this almost universal acceptance is again the correspondence
principle. Since we know little about actual learning processes, and the REH de-
scribes an equilibrium situation, it is the most practical hypothesis to use. Of course,
the equilibrium described by models involving the REH is inherently stochastic. For
that reason, REH solutions for models can be referred to as stochastic steady-state so-
lutions.

5.2 Applications of the REH in macroeconomics

The idea behind rational expectations remained unused for a decade, before new
classicals like Robert Lucas, Thomas Sargent, Neil Wallace, and Robert Barro ap-
plied it to macroeconomic issues. They took most of their motivation from Fried-
man’s (1968) presidential address to the American Economic Association, and con-
sequently focused on the role of monetary policy under the REH.

Their basic idea can be illustrated with a simple loglinear model, that is based on
Sargent and Wallace (1975):

yt − ȳ = φ(pt − Et−1 pt) + ut, φ > 0, (5.19)
yt = α + β(mt − pt) + γEt−1(pt+1 − pt) + vt, β > 0, γ > 0, (5.20)

mt = µ0 + µmmt−1 + µyyt−1 + zt, 0 ≤ µm ≤ 1, (5.21)

where yt ≡ ln Yt, ȳ ≡ ln Ȳ, mt ≡ ln Mt, and pt ≡ ln Pt are, respectively, actual
output, full-employment output, the money supply, and the price level, all measured
in logarithms. The random terms are given by ut ∼ N(0, σ2

u), vt ∼ N(0, σ2
v ), and zt ∼

N(0, σ2
z ). They are assumed to be independent from themselves in time, E(utus) =

E(vtvs) = E(ztzs) = 0 for t 6= s, and from each other, E(utzt) = E(utvt) = E(vtzt) =
0.

Equation (5.19) is the expectations-based short-run aggregate supply curve, i.e.
it is the loglinear stochastic counterpart to equation (3.2) above. If agents under-
estimate the price level (pt > Et−1 pt), they supply too much labour and output
expands. Equation (5.20) is the AD curve. The real balance term, mt − pt, reflects
the influence of the LM curve, i.e. the Keynes effect, and the expected inflation rate,
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Et−1(pt+1− pt), represents a Tobin effect.2 The intuition behind the Tobin effect is as
follows. Investment depends on the real interest rate, so that, for a given level of the
nominal interest rate, a higher rate of expected inflation implies a lower real rate of
interest, and a higher rate of investment and hence aggregate demand.

Finally, equation (5.21) is the policy rule followed by the government. This spec-
ification nests two interesting special cases: (i) a monetarist like Friedman would
advocate a constant money supply (since there is no real growth in the model) and
would set µm = µy = 0, so that mt = µ0 + zt; (ii) a Keynesian like Tobin would be-
lieve in a countercyclical policy rule, i.e. µm = 0 but µy < 0. If output in the previous
period is low (relative to its full-employment level, for example), then the monetary
authority should stimulate the economy by raising the money supply in this period.
The interpretation of the error term in the money supply rule is not that the mone-
tary authority deliberately wishes to make the money supply stochastic, but rather
that the central bank has imperfect control over this aggregate. We could also allow
money supply to depend on other elements of the information set, i.e. pt−1, pt−2, · · · ,
mt−2, mt−3, · · · , yt−2, yt−3, · · · , but that does not affect the qualitative nature of our
conclusions regarding the effectiveness of monetary policy whatsoever.

How do we solve the model given in (5.19)–(5.21)? It turns out that the solution
method explained above can be used in this model also. First, we equate aggregate
supply (5.19) and demand (5.20) and solve for the price level:

pt =
α− ȳ + βmt + φEt−1 pt + γEt−1 (pt+1 − pt) + vt − ut

β + φ
. (5.22)

Second, we take expectations of pt, conditional on the information set Ωt−1:

Et−1 pt =
α− ȳ + βEt−1mt + φEt−1Et−1 pt

β + φ

+
γEt−1Et−1 (pt+1 − pt) + Et−1(vt − ut)

β + φ
. (5.23)

But the conditional expectation of a conditional expectation is just the conditional
expectation itself, i.e. we only need to write Et−1 once on the right-hand side of (5.23).
The shock terms vt and ut are not autocorrelated, so the conditional expectation of
these shocks is zero, i.e. Et−1vt = 0 and Et−1ut = 0. In other words, knowing the
actual realization of these shocks in the previous period (vt−1 and ut−1), as the agents
do, does not convey any information about the likely outcome of these shocks in
period t. After substituting all these results into (5.23), one obtains a much simplified
expression for Et−1 pt:

Et−1 pt =
α− ȳ + βEt−1mt + φEt−1 pt + γEt−1 (pt+1 − pt)

β + φ
. (5.24)

By deducting (5.24) from (5.22), a very simple expression for the price surprise is
obtained:

pt − Et−1 pt =
1

β + φ
(vt − ut) +

β

β + φ
(mt − Et−1mt) . (5.25)

2To see that pt+1 − pt represents the inflation rate we note that pt+1 − pt ≡ ln (Pt+1/Pt). Next we note
that for values of x close to x0 = 1, we have that ln x ≈ x − 1. Hence, ln (Pt+1/Pt) ≈ Pt+1/Pt − 1 =
∆Pt+1/Pt, where the final expression is the inflation rate.
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Only unanticipated shocks to AD and AS, and unanticipated changes in the money
supply can cause agents to be surprised. Indeed, (5.21) implies that mt − Et−1mt =
zt, so that (5.25) and (5.19) imply the following expression for output:

yt − ȳ =
φvt + βut + βφzt

β + φ
. (5.26)

The similarity between expressions (5.11) and (5.26) should be obvious. Equation
(5.26) represents the stochastic steady-state solution for output. Given the model
and the REH, output fluctuates according to (5.26).

Equation (5.26) has an implication that proved very disturbing to many econo-
mists in the early 1970s. It says that monetary policy is completely ineffective at in-
fluencing output (and hence employment): regardless of the policy rule adopted by
the government (passive monetarist or activist Keynesian), output evolves according
to (5.26) which contains no parameters of the policy rule!3 This is, in a nutshell, the basic
message of the policy-ineffectiveness proposition (PIP). In the words of Sargent and
Wallace:

In this system, there is no sense in which the authority has the option
to conduct countercyclical policy. To exploit the Phillips curve, it must
somehow trick the public. By virtue of the assumption that expectations
are rational, there is no feedback rule that the authority can employ and
expect to be able systematically to fool the public. This means that the
authority cannot exploit the Phillips curve even for one period. (1976, p.
177)

Of course, the PIP caused an enormous stir in the ranks of the professional econo-
mists. Indeed, it seemed to have supplied proof that macroeconomists are useless. If
macroeconomic demand management is ineffective, then why should society fund
economists engaging themselves in writing lengthy scholarly treatises on the subject
of stabilization policy?

Intermezzo 5.1

The method of undetermined coefficients in a rational expectations
model. Rational expectations models can often be solved by employ-
ing a “guess and verify” method. Intuitively, this method of undeter-
mined coefficients, as it is commonly called, works as follows. First we
guess a functional form for the candidate solution. This guess will con-
tain parameters whose values are, of course, unknown at this stage. In
the second step we incorporate the candidate solution into the model and
derive the solution that is implied by the guess. Finally, in the third step
we verify that the implied solution and the initial guess can be made con-
sistent with each other in a unique fashion. If that is so, then the candiate
solution turned out to be correct and the unique REH solution of the mo-
del is obtained. In the remainder of this intermezzo we solve the model
given in (5.19)–(5.21) using the method of undetermined coefficients. As

3The REH solution for the price level will, of course, depend on the parameters of the policy rule. This
is demonstrated in Intermezzo 5.1 where the method of undetermined coefficients is used to derive the
solution.
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a by-product of this exercise we also obtain the REH solution for the price
level.

The fundamental expectational difference equation (FEDE) of the mo-
del is obtained by substituting (5.21) into (5.22):

pt =
α− ȳ + β[µ0 + µmmt−1 + µyyt−1 + zt] + φEt−1 pt

β + φ

+
γEt−1 (pt+1 − pt) + vt − ut

β + φ
. (a)

Equation (a) looks like an ugly beast but it does suggest a suitable trial
solution of the form:

pt = π0 + πmmt−1 + πyyt−1 + πzzt + πvvt + πuut, (b)

where the values of the πj coefficients are to be determined. Equation (b)
is a reasonable guess because, at the very least, it contains all the variables
that are included in the FEDE given in (a), namely a constant term, mt−1,
yt−1, zt, vt, and ut. This concludes step 1 of the derivation.

In step 2 we squeeze out every bit of information contained in (b). A
direct implication of (b) is that:

Et−1 pt = π0 + πmmt−1 + πyyt−1, (c)

where we have used the fact that Et−1zt = Et−1vt = Et−1ut = 0. Fur-
thermore, since the πj coefficients are time-invariant it follows from (b)
that:

pt+1 = π0 + πmmt + πyyt + πzzt+1 + πvvt+1 + πuut+1, (d)

so that:

Et−1 pt+1 = π0 + πmEt−1mt + πyEt−1yt, (e)

where we note that Et−1zt+1 = Et−1vt+1 = Et−1ut+1 = 0. From equation
(5.19) we derive that:

Et−1yt = ȳ, (f)

since Et−1(pt − Et−1 pt) = Et−1ut = 0. And from (5.21) we obtain:

Et−1mt = µ0 + µmmt−1 + µyyt−1, (g)

as Et−1zt = 0. Substituting (f)–(g) into (e) we obtain:

Et−1 pt+1 = π0 + πmµ0 + πyȳ + µmπmmt−1 + µyπmyt−1. (h)

Step 2 is completed by substituting (c) and (h) into (a) and gathering
terms:

pt =
α− ȳ + βµ0 + φπ0 + γȳπy + γµ0πm

β + φ
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+
βµm + πm (φ− γ (1− µm))

β + φ
mt−1 +

βµy + (φ− γ)πy + γµyπm

β + φ
yt−1

+
β

β + φ
zt +

1
β + φ

vt −
1

β + φ
ut. (i)

Equation (i) is the implied solution we were looking for.
In step 3 we check whether or not (i) and (b) can be made consistent

with each other by suitable choice of the πj coefficients. This amounts to
the following set of restrictions that must hold:

π0 =
α− ȳ + βµ0 + φπ0 + γȳπy + γµ0πm

β + φ
, (j)

πm =
βµm + πm (φ− γ (1− µm))

β + φ
, (k)

πy =
βµy + (φ− γ)πy + γµyπm

β + φ
, (l)

πz =
β

β + φ
, πv =

1
β + φ

, πu = − 1
β + φ

. (m)

From (k) we find the unique solution for πm:

πm =
βµm

β + γ(1− µm)
. (n)

By using (n) in (l) we find the unique solution for πy:

πy =
βµy

β + γ(1− µm)
. (o)

Finally, by using (n) and (o) in (j) we obtain the unique solution for π0:

π0 =
α− ȳ

β
+

(β + γ)µ0 + γȳµy

β + γ(1− µm)
. (p)

Since all πj coefficients are uniquely determined we have found the REH
solution for the price level:

pt =
α− ȳ

β
+

(β + γ)µ0 + γȳµy

β + γ(1− µm)
+

βµm

β + γ(1− µm)
mt−1

+
βµy

β + γ(1− µm)
yt−1 +

βzt + vt − ut

β + φ
. (q)

****

On top of this came the second strike of the new classicals against the then pre-
dominantly Keynesian army of policy-oriented macroeconomists. Lucas (1976) ar-
gued that the then popular large macroeconometric models (with a strong Keyne-
sian flavour) are useless for the exact task for which they are being used, namely the
evaluation of the effects of different types of economic policy. This so-called Lucas
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critique can be illustrated with the aid of our model. Suppose that the economy has
operated under the policy rule (5.21) for some time, that agents know and under-
stand it, and that the economy is in a stochastic steady state, so that output follows
the stochastic process given by (5.26).

By solving (5.21) for zt and substituting the result into (5.26), it is clear that output
can be written as follows:

yt − ȳ = ζ0 + ζ1yt−1 + ζ2mt + ζ3mt−1 + ψt, (5.27)

where ζ0, ζ1, ζ2, and ζ3 are composite coefficients and ψt is a composite stochastic
variable:

ζ0 ≡ −
βφµ0

β + φ
, ζ1 ≡ −

βφµy

β + φ
, ζ2 ≡

βφ

β + φ
, (5.28)

ζ3 ≡ −
βφµm

β + φ
, ψt ≡

φvt + βut

β + φ
. (5.29)

An econometrician trying to obtain estimates for the ζ-parameters would run a re-
gression of the form (5.27) and would find a well-fitting model. Under rational ex-
pectations and with a given monetary policy rule there will be a stable relationship
between, on the one hand, current output and, on the other hand, lagged output and
the current and lagged money supply. But can the policy maker use knowledge of
this relationship to stimulate the economy? An innocent but popular interpretation
might suggest that a monetary expansion would yield an expansion of output and
employment (because the estimate for ζ2 is undoubtedly positive). Indeed, many
economists use simulations of econometrically estimated models to give policy rec-
ommendations. Lucas pointed out, however, that the model would be useless for
policy simulations because its coefficients are not invariant to the policy rule under
the REH, i.e. the ζ-parameters are mixtures of structural parameters (like β and φ)
and policy-rule parameters (µ0, µm, and µy). Indeed, suppose that the government
would switch from a passive to a strong countercyclical viewpoint, reflected in a
change from µy = 0 to a large negative value for the parameter µy. Predictions
with the model based on the existing estimates of the ζ-parameters would seriously
misrepresent the real effects of this policy switch, due to the fact that the actual ζ-
parameters would change. For example, an increase in |µy|would increase the actual
value of |ζ1|.

Of course, Lucas is right in principle. Provided one compares only stochastic
steady states, the effects mentioned by him will indeed obtain. But in practice the
Lucas critique may be less relevant, especially in the short run. As we have argued
above, very little is known about the learning processes that may prompt agents to
converge to a rational expectations equilibrium. To the extent that it may take agents
some time to adapt to the new policy rule, it may well be that both (5.27) and (5.21)
give the wrong answers. This may explain why econometrically estimated full-scale
models embodying the REH are still relatively scarce.4

5.3 Should we take the PIP seriously?

Shortly after the publication of Sargent and Wallace’s (1976) seemingly devastating
blow to advocates of (Keynesian) countercyclical policy, it was argued that the PIP

4In Chapters 18 and 19 we discuss calibrated stochastic general equilibrium models under the REH.
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is not the inevitable outcome of the REH (that, of course, made a lot of Keynesians
happy again, and may have promoted the broad acceptance of the REH). The crucial
counter-example to the PIP was provided by Stanley Fischer (1977), a new-Keynesian
economist. With the benefit of hindsight, his argument is predictable, especially in
view of Modigliani’s (1944) influential interpretation of Keynes’ contribution. Fis-
cher asks a very simple question: what happens with the PIP if money wages are
rigid, for example due to nominal wage contracts?

5.3.1 One-period nominal wage contracts

Fischer’s (1977) model is very simple. The AD curve is monetarist in nature:

yt = mt − pt + vt, (5.30)

which can be seen as a special case of (5.20) with α = γ = 0 and β = 1. The supply
side of the economy consists of workers signing one-period or two-period nomi-
nal wage contracts, after which the demand for labour curve determines the actual
amount of employment. We first consider the case of one-period wage contracts. We
assume that workers aim (and settle) for a nominal wage contract for which they
expect full employment in the next period, when the wage contract is in operation.
This is illustrated in Figure 5.6. Workers know the supply and demand schedules
for labour, and estimate the market clearing real wage, ω̄. Since the contract is spec-
ified before the price in period t is known, the workers use the expected price level
to determine the market clearing real wage. If their price expectation is pe

t , then ex-
pected full employment occurs at point E0. If the actual price level in period t is
higher (p0

t > pe
t ) then employment occurs at point A. Employment is higher than

full employment, n̄t, because the actual real wage rate, wt − p0
t , is lower than the full

employment real wage rate, ω̄. In the opposite case, with p1
t < pe

t , the real wage rate
is too high and the economy settles at point B.

Let wt(t− 1) denote the (logarithm of the) nominal wage that is specified at the
end of period t − 1, to hold in period t. Since the real wage that clears the labour
market is equal to ω̄, it follows that wt(t− 1) is set as:

wt(t− 1) = ω̄ + Et−1 pt, (5.31)

where we can simplify notation further by normalizing ω̄ = 0. The supply of output
depends negatively on the actual real wage:

yt = − [wt(t− 1)− pt] + ut, (5.32)

so that (5.31) and (5.32) imply a Lucas-type supply curve:

yt = [pt − Et−1 pt] + ut. (5.33)

Note that (5.33) is a special case of (5.19) with ȳ = 0 and φ = 1.
Regarding the shocks to aggregate demand and supply, Fischer assumes that they

are independent from each other but display autocorrelation, i.e.:

ut = ρuut−1 + εt, |ρu| < 1, vt = ρvvt−1 + ηt, |ρv| < 1, (5.34)

where εt ∼ N(0, σ2
ε ) and ηt ∼ N(0, σ2

η) are uncorrelated white noise terms (often
referred to as innovations). Finally, we assume that the monetary policy rule adopted
by the policy maker has the following form:

mt = µu1ut−1 + µu2ut−2 + µv1vt−1 + µv2vt−2. (5.35)



162 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

Figure 5.6: Wage setting with single-period contracts

Hence, in period t the policy maker reacts only to aggregate demand and supply
shocks that occurred in periods t− 1 and t− 2. (Reacting to shocks that occurred in
the more distant past do not affect the model so we can safely set µui = µvi = 0 for
i = 3, 4, · · · , ∞.)

Not surprisingly, in view of the similarities with our earlier model, Fischer’s one-
period contract model implies that the PIP is valid. The REH solution is constructed
as follows. First, solving (5.30) and (5.33) for pt yields:

pt = 1
2 [mt + vt − ut + Et−1 pt] . (5.36)

This is the price level at which the AD curve intersects with the Lucas supply curve.
By taking conditional expectations on both sides of (5.36) we obtain:

Et−1 pt = 1
2 [Et−1mt + Et−1vt − Et−1ut + Et−1 pt] . (5.37)

Subtracting (5.37) from (5.36) yields the expression for the expectational error:

pt − Et−1 pt = 1
2

[
(mt − Et−1mt) + (vt − Et−1vt)− (ut − Et−1ut)

]
. (5.38)

What does the surprise term (5.38) look like? First, (5.35) implies that agents know
the money supply in period t once they have lagged information (there is no stochas-
tic element in the policy rule). Hence, mt − Et−1mt = 0. Second, the fact that the AD
and AS shocks are autocorrelated implies that agents can use information on the
shocks in the previous period (i.e. vt−1 and ut−1) to forecast the shocks in period t:

Et−1ut = ρuut−1, Et−1vt = ρvvt−1. (5.39)

By using these forecasts in equation (5.38), and substituting the price surprise into
(5.33), the REH solution for output is obtained:

yt = 1
2 [ηt − εt] + ut. (5.40)

The coefficients of the policy rule (i.e. µui and µvi) do not influence the path of out-
put, so that PIP holds. In other words, anticipated monetary policy is unable to
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cause deviations of output from its natural level. It will, of course, affect the path of
equilibrium prices under rational expectations:5

pt = [µu1 − ρu] ut−1 + [µv1 + ρv] vt−1 +
1
2 [ηt − εt] . (5.41)

5.3.2 Overlapping wage contracts

Now consider the case where nominal contracts are decided on for two periods. We
continue to assume that nominal wages are set such that the expected real wage is
consistent with full employment. Hence, in period t there are two nominal wage
contracts in existence. Half of the workforce is on the wage contract agreed upon in
period t− 1 (to run in periods t and t + 1), and the other half has a contract formu-
lated in period t− 2 (to run in periods t− 1 and t). In symbols:

wt(t− 1) ≡ Et−1 pt, wt(t− 2) ≡ Et−2 pt. (5.42)

Notice the difference in the information set used for the two contracts.
The economy is perfectly competitive, so that there is only one output price, and

aggregate supply is equal to:

yt = 1
2 [− (wt(t− 1)− pt) + ut] + 1

2 [− (wt(t− 2)− pt) + ut] , (5.43)

where the first term in brackets on the right-hand side is the output of firms with
workers on one-year old contracts, and the second term is the output of firms with
workers on two-year old (expiring) contracts. By substituting (5.42) into (5.43), we
obtain the aggregate supply curve for the two-period contract case:

yt = 1
2 [pt − Et−1 pt] + 1

2 [pt − Et−2 pt] + ut. (5.44)

Hence, this supply curve has two surprise terms, differing in the information set.
The rest of the model consists of the aggregate demand curve (5.30) and the money
supply rule (5.35).

The model can be solved by repeated substitution. Because the derivations are
non-trivial and somewhat tedious we show the details in Intermezzo 5.2 where we
find that the REH solution for output can be written as follows:

yt = 1
2 [ηt + εt] + 1

3 [µu1 + 2ρu] εt−1 +
1
3 [µv1 + ρv] ηt−1 + ρ2

uut−2. (5.45)

This is the crucial counter-example to the PIP. It is the black swan that disproves the
proposition that all swans are white. Equation (5.45) contains the policy parameters
µu1 and µv1, so that output can be affected by monetary policy even under rational
expectations. As Fischer puts it, the intuitive reason for his result is that “...between
the time the two-year contract is drawn up and the last year of operation of that
contract, there is time for the monetary authority to react to new information about
recent economic disturbances” (1977, p. 199). Because of the two-period contracts,
half of the workers have implicitly based their contract wage on “stale” information.

But Fischer’s blow to the new classicals was made even more devastating by the
following. Clearly, output can be affected by monetary policy. But should it be af-
fected, and if so, how? Equation (5.45) implies that output fluctuates stochastically,

5Upon reading Intermezzo 5.1 the interested reader can derive equation (5.41) as the solution to (5.36)
by noting (5.35) and using the following trial solution:

pt = π0 + πuut−1 + πvvt−1 + πεεt + πηηt.
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so some measure of the degree of fluctuations over time is required. An often-used
measure is the asymptotic variance of yt, designated by σ2

y (see Intermezzo 5.3). Intu-
itively, the asymptotic variance measures the severity of the fluctuations in output.
Using standard (but somewhat tedious) techniques, the asymptotic variance of the
output path described by (5.45) can be written as:

σ2
y ≡ σ2

ε

[
1
4 +

ρ4
u

1− ρ2
u
+ 1

9 (µu1 + 2ρu)
2
]
+ σ2

η

[
1
4 +

1
9 (µv1 + ρv)

2
]

. (5.46)

So, to the extent that fluctuations in output are a good proxy for loss of economic
welfare, the policy maker could attempt to minimize the asymptotic variance of out-
put by choosing its reaction coefficients µu1 and µv1 appropriately. It turns out that
the optimal values for these parameters are equal to:

µu1 = −2ρu, µv1 = −ρv. (5.47)

Intuitively, the policy parameters should be set at values that neutralize the effects
of the shocks that occur in period t − 1, namely εt−1 and ηt−1. In view of (5.45),
the coefficients given in (5.47) do exactly that. Of course, not all output fluctuations
can be eliminated by the policy maker. This is because both the first and the fourth
term on the right-hand side of (5.45) cannot be affected by the policy maker. For
the first term this is because the policy maker has no better information about the
innovations in the present period than the public possesses. For the fourth term it is
because ut−2 was known when the oldest contracts were signed in period t− 2, and
is thus incorporated in the oldest contract.

Intermezzo 5.2

Solving the two-period overlapping wage contract model. The REH
solution for the two-period contract model is obtained as follows. First,
(5.30) and (5.44) can be solved for pt:

pt = 1
2 [mt + vt − ut] + 1

4 [Et−1 pt + Et−2 pt]. (a)

By taking expectations conditional upon period t− 2 information of both
sides of (a), we obtain:

Et−2 pt = 1
2 [Et−2mt + Et−2vt − Et−2ut]

+ 1
4 [Et−2Et−1 pt + Et−2Et−2 pt] . (b)

We already know that Et−2Et−2 pt = Et−2 pt, but what does Et−2Et−1 pt
mean? In words, it represents what agents expect (using period t − 2
information) to expect in period t − 1 about the price level in period t.
But a moment’s contemplation reveals that this cannot be different from
what the agents expect about pt using t− 2 information, i.e. Et−2Et−1 pt ≡
Et−2 pt. This is an application of the so-called law of iterated expectations.
In words this law says that you do not know ahead of time how you are
going to change your mind. Only genuinely new information makes you
change your expectation. Hence, (b) can be solved for Et−2 pt:

Et−2 pt = Et−2mt + Et−2vt − Et−2ut. (c)
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Similarly, by taking expectations conditional upon period t− 1 informa-
tion of both sides of (a), we obtain:

Et−1 pt = 1
2 [Et−1mt + Et−1vt − Et−1ut]

+ 1
4 [Et−1Et−1 pt + Et−1Et−2 pt] . (d)

Obviously, Et−1Et−1 pt = Et−1 pt, but what does Et−1Et−2 pt mean? In
words, it represents what agents expect (using period t− 1 information)
to expect in period t − 2 about the price level in period t. But Et−2 pt is
known in period t − 1, so that Et−1Et−2 pt ≡ Et−2 pt (the expectation of
a constant is the constant itself). By substituting (c) into (d), the solution
for Et−1 pt is obtained:

Et−1 pt = 2
3 Et−1mt + 1

3 Et−2mt + 2
3 [Et−1vt − Et−1ut]

+ 1
3 [Et−2vt − Et−2ut] . (e)

If we now substitute (c) and (e) into (a), the REH solution for the price
level is obtained:

pt = 2
3 Et−1mt + 1

3 Et−2mt + 1
2 (vt − ut) + 1

6 Et−1(vt − ut)

+ 1
3 Et−2(vt − ut). (f)

This can be substituted into the AD equation (5.30) to obtain the expres-
sion for yt:

yt = 1
3 (mt − Et−2mt)− 1

2 (vt − ut)− 1
6 Et−1(vt − ut)

− 1
3 Et−2(vt − ut) + vt, (g)

where we have used the fact that Et−1mt = mt.
The monetary surprise (mt − Et−2mt) must now be calculated. Using

(5.35), we find that:

mt = µu1ut−1 + µv1vt−1 + µu2ut−2 + µv2vt−2, (h)

and:

Et−2mt = µu1Et−2ut−1 + µv1Et−2vt−1 + µu2Et−2ut−2 + µv2Et−2vt−2

= µu1ρuut−2 + µv1ρvvt−2 + µu2Et−2ut−2 + µv2Et−2vt−2, (i)

where we have used (5.39), and note that Et−2ut−2 = ut−2 and
Et−2vt−2 = vt−2. Equations (5.34) implies that Et−2ut−1 = ρuut−2 and
Et−2vt−1 = ρvvt−2. Using (h) and (i) we thus find:

mt − Et−2mt = µu1 [ut−1 − ρuut−2] + µv1 [vt−1 − ρvvt−2]

= µu1εt−1 + µv1ηt−1. (j)

Equation (j) can be understood at an intuitive level. Agents can perfectly
forecast the money supply one period ahead (i.e. Et−1mt = mt) but not
two periods ahead. That is because in period t− 1 an innovation in the de-
mand and supply shock occurs (equal to εt−1 and ηt−1, respectively) that
the monetary policy maker will react to (provided µu1 6= 0 and µv1 6= 0).
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Figure 5.7: The optimal contract length

In other words, the innovation that occurs in period t − 1 is not fore-
castable by agents who have signed their contract in period t− 2.

If we substitute (j) into (g), the final expression for output is obtained:

yt = 1
3 [µu1εt−1 + µv1ηt−1] +

1
2 (vt + ut)− 1

6 Et−1(vt − ut)

− 1
3 Et−2(vt − ut)

= 1
3 [µu1εt−1 + µv1ηt−1] +

1
2 (ρvvt−1 + ηt + ρuut−1 + εt)

− 1
6 (ρvvt−1 − ρuut−1)− 1

3 (ρ
2
vvt−2 − ρ2

uut−2)

= 1
2 [ηt + εt] + 1

3 [µu1 + 2ρu] εt−1 +
1
3 [µv1 + ρv] ηt−1 + ρ2

uut−2.
(k)

In going from the first to the second line we use (5.34)–(5.39), and note
that Et−2vt = ρ2

vvt−2 and Et−2ut = ρ2
uut−2. In going from the second

to the third line, we have used the fact that vt−1 = ρvvt−2 + ηt−1 and
ut−1 = ρuut−2 + εt−1. The reason why we make these substitutions is
that we want to express the output solution as much as possible in terms of
current and lagged innovation terms (εt−i and ηt−i) for which we know
the statistical properties.

****

Chadha (1989) has extended Fischer’s (1977) analysis to the multi-period overlap-
ping contract setting using the insights of Calvo (1982) that are discussed in detail
below in Chapter 11. In his model, he is able to analyse contracts of any particular
duration (not just one-period and two-period contracts as in Fischer’s model). He
is furthermore able to express the asymptotic variance in output as a function of the
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contract length. This diagram is given in Figure 5.7. The conclusion is very surpris-
ing indeed: there is an optimal contract length of T∗ > 0, which Chadha estimates
to be around 3.73 quarters for the US economy (1989, p. 492). Hence, intuitively,
contracts act as “shock absorbers” of the economy.

There are a number of other reasons why PIP fails–see Buiter (1980) for an inter-
esting discussion. For example, private agents may not have rational expectations,
or there may be nominal price stickiness. Furthermore, even though anticipated
monetary policy may not be able to cause deviations of output from its natural level,
anticipated monetary policy may affect the natural rate itself. A theoretic (albeit em-
pirically not so relevant) example is the Mundell-Tobin effect: a higher monetary
growth rate depresses the real interest rate, and this boosts capital accumulation and
the natural level of output.

Intermezzo 5.3

Asymptotic variance. Rational expectations models often use the asymp-
totic variance of output as a welfare measure. Intuitively, the asymptotic
variance measures the degree of fluctuations over time in output. An
economy with violent (mild) fluctuations has a high (low) asymptotic
variance. Suppose that the path for output is described by the following
equation:

yt = λyt−1 + xt + εt, | λ |< 1, (a)

where yt is output, xt is some (vector of) deterministic exogenous vari-
able(s), and εt is a white noise stochastic error term with mean zero and
variance σ2

ε . How would a Martian judge the degree of fluctuations in
output, not knowing any realizations of output and the error term, but
in full knowledge of equation (a) and the stochastic process of the error
terms. The answer is that he would calculate the asymptotic variance:

σ2
y ≡ Et−∞ [yt − Et−∞yt]

2 , (b)

where the notation Et−∞ formalizes the idea of no information about the
actual realizations mentioned above. It is as if the Martian makes his
calculations at the beginning of time.

The asymptotic variance of output implied by the process in (a) is
calculated as follows. First, we write Et−∞yt = λEt−∞yt−1 + xt and work
out the square:

[yt − Et−∞yt]
2 = [λyt−1 + xt + εt − λEt−∞yt−1 − xt]

2

= [λ (yt−1 − Et−∞yt−1) + εt]
2

= λ2 [yt−1 − Et−∞yt−1]
2 + ε2

t + 2λεt [yt−1 − Et−∞yt−1] , (c)

where we have used the fact that Et−∞xt = xt and Et−∞εt = 0. Taking
expectations of both sides of (c) yields:

Et−∞ [yt − Et−∞yt]
2 = λ2Et−∞ [yt−1 − Et−∞yt−1]

2

+ Et−∞ε2
t + 2λEt−∞εt [yt−1 − Et−∞yt−1] . (d)
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The second term on the right-hand side is the variance of the error term
(σ2

ε ≡ Et−∞ε2
t ), and the third term is zero because the error term is inde-

pendent of lagged output. The term on the left-hand side is the asymp-
totic variance of yt, and the first term on the right-hand side is λ2 times
the asymptotic variance of yt−1. Because the process in (a) is stationary
(|λ| < 1), these two asymptotic variances are identical. Using all this
information, the final expression for the asymptotic variance becomes:

σ2
y = λ2σ2

y + σ2
ε ⇒ σ2

y =
σ2

ε

1− λ2 . (e)

Intuitively, the asymptotic variance of output is a multiple of the variance
of the error term due to the persistence effect via lagged output. If λ is
close to unity, there is a lot of persistence and the variance multiplier is
very large.

****

5.4 Rational expectations in a small open economyF

As a final example of rational expectations macroeconomics we study a small open
economy facing perfect (financial) capital mobility and operating under flexible ex-
change rates. More specifically we consider a discrete-time version of the Dornbusch
model that was discussed in detail in Chapter 4. The macro-economy is described
by the following set of equations:

yt = α− ηRt + δ[p∗t + et − pt], η > 0, 0 < δ < 1, (5.48)
mt − pt = β− λRt + yt, η > 0, (5.49)

Rt = R∗t + Etet+1 − et, (5.50)
pt+1 − pt = φ[yt − ȳ], φ > 0, (5.51)

where all variables except the domestic and foreign interest rates are in logarithms,
starred variables refer to the foreign country, and the subscript denotes time periods.
The endogenous variables are domestic output yt, the nominal exchange rate et (ex-
pressed in AC per $), the domestic rate of interest Rt, and the domestic price level pt.
The exogenous variables are the foreign interest rate R∗t , domestic full employment
output ȳ, and the foreign price level p∗t . (We leave the status of the money supply
open at this stage.) The model is obtained by re-expressing the continuous-time ver-
sion of the Dornbusch model (given in Table 4.1) in discrete time and by imposing
some simplifications. Specifically, we ignore the fiscal policy index and we have
imposed some notational simplifications.

Equations (5.48) is the open-economy IS curve expressing (the demand for) out-
put as a function of the interest rate and the real exchange rate. Equation (5.49) is the
LM curve representing money market equilibrium. Real money demand depends
negatively on the interest rate and positively on output. The output elasticity of
money demand is set equal to unity. Uncovered interest parity is given in equation
(5.50). It shows that any gap between the domestic and foreign interest rate, Rt− R∗t ,
must equal the (rationally) expected rate of depreciation of the domestic currency,
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Etet+1 − et. Finally, equation (5.51) is an old-fashioned Phillips curve showing that
the rate of price change is proportional to the difference between actual and full-
employment output. The adjustment speed of the price level is positive but finite,
due to the assumption of sticky prices.

The small open economy under consideration is facing two types of exogenous
stochastic shocks that originate from the rest of the world, namely a foreign price
shock and a world interest rate shock. To keep things simple we assume:

p∗t = p̄∗ + vt, (5.52)
R∗t = R̄∗ + ut, (5.53)

where p̄∗ and R̄∗ are constants. The shocks are (i) independent (from each other and
through time) and (ii) normally distributed with zero mean and constant variances,
i.e. vt ∼ N(0, σ2

v ) and ut ∼ N(0, σ2
u). The price shock impinges on the IS curve (5.48)

whilst the interest rate shock affects the uncovered interest parity condition (5.50).
In order to prepare for the dynamic analysis to come we follow the usual steps.

First we use equations (5.48)–(5.49) to derive the quasi-reduced form expressions for
yt and Rt:

yt =
λα− ηβ + δλ [ p̄∗ + vt + et]− (δλ + η)pt + ηmt

λ + η
, (5.54)

Rt =
α + β + δ [ p̄∗ + vt + et] + (1− δ)pt −mt

λ + η
. (5.55)

Second, we substitute (5.53) and (5.55) into (5.50) to obtain the fundamental expecta-
tional difference equations for the nominal exchange rate:

Etet+1 =

[
1 +

δ

λ + η

]
et +

1− δ

λ + η
pt +

α + β + δ [ p̄∗ + vt]−mt

λ + η
− R̄∗ − ut. (5.56)

Note that the coefficient for the current exchange rate et exceeds unity alerting us to
the fact that the uncovered interest parity condition is “destabilizing”. Finally, we
substitute (5.52) and (5.54) into (5.51) to obtain the fundamental difference equation
for the domestic price level:

pt+1 =
δλφ

λ + η
et +

[
1− φ

δλ + η

λ + η

]
pt +

λφα− ηφβ + δλφ [ p̄∗ + vt] + ηφmt

λ + η
− φȳ.

(5.57)

For price changes to be a stabilizing influence, the coefficient for the current price
level pt must be between unity in absolute value. It clearly is less than unity, but if φ
is very large it may be less than−1 which would be destabilizing. This explains why
we need to make an additional assumption regarding the speed of price adjustment
below.

The description of the model is completed once an assumption is made regard-
ing the money supply process. We proceed in the following way. In subsection 5.4.1
we first consider the benchmark version of the model, that of the unmanaged econ-
omy in which the policy maker is passive and keeps the money supply constant. In
subsection 5.4.3 we consider the more challenging case in which monetary policy is
used to stabilize the economy.
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5.4.1 Unmanaged economy

In the absence of activist monetary policy, mt = m̄, and the dynamic system describ-
ing exchange rate and price fluctuations can be written in the following compact
matrix expression:[

Etet+1 − ê
pt+1 − p̂

]
= ∆

[
et − ê
pt − p̂

]
+

[
(δ11 − 1)vt − ut
δ21vt

]
, (5.58)

where ê and p̂ are the deterministic steady-state values for, respectively, the nominal
exchange rate and the domestic price level:

ê =
δ [m̄− β− p̄∗]− α + (1− δ)ȳ + (λδ + η)R̄∗

δ
, (5.59)

p̂ = m̄− β− ȳ + λR̄∗, (5.60)

and ∆ is the Jacobian matrix (featuring typical element δij):

∆ ≡


1 +

δ

λ + η

1− δ

λ + η

δλφ

λ + η
1− φ(δλ + η)

λ + η

 . (5.61)

Intuitively, ê and p̂ are the equilibrium values for the exchange rate and the price
level that would be reached if there would never be any stochastic shocks at all (i.e.
ut = vt = 0 for all t).

5.4.1.1 Stability

The first task at hand concerns the stability analysis. As this is far from trivial in
a simultaneous discrete-time model we show some of the details here. Since the
domestic price level is a predetermined (“sticky”) variable, and the exchange rate
is a non-predetermined (“jumping”) variable, the parameters must be such that the
model is saddle-point stable. In a discrete-time setting this requires that ∆ features
one stable root, say |ξ1| < 1, and one unstable root, say ξ2 > 1. Note that the Jacobian
matrix in (5.61) can be written as ∆ ≡ I + ∆∗ where ∆∗ is given by:

∆∗ ≡ ∆ ≡


δ

λ + η

1− δ

λ + η

δλφ

λ + η
−φ(δλ + η)

λ + η

 . (5.62)

The determinant and trace of ∆∗ are given by:

|∆∗| = − δφ

λ + η
= χ1χ2 < 0, tr∆∗ =

δ− φ (δλ + η)

λ + η
= χ1 + χ2, (5.63)

where χ1 and χ2 are the characteristic roots of ∆∗. It follows from the first expression
that these roots have opposite signs, i.e. χ1 < 0 and χ2 > 0. The characteristic roots
of ∆ ≡ I + ∆∗ are given by ξ1 = 1 + χ1 and ξ2 = 1 + χ2 (see Section A.7.4 in the
Mathematical Appendix) so that ξ1 < 1 and ξ2 > 1 for sure. But saddle-path stability
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in the discrete-time case also requires that the stable root satisfy ξ1 > −1 which is the
case if and only if χ1 > −2. Without an additional restriction on the φ parameter it
is not possible to prove that saddle-point stability holds in this discrete-time model.

To further investigate the conditions under which the model is saddle-point sta-
ble we need to consider the roots of the characteristic equation of ∆ which can be
written as:

Ψ(s) = s2 − s · tr∆ + |∆| (5.64)

= s2 − s · [2 + tr∆∗] + 1 + tr∆∗ + |∆∗| . (5.65)

where we have used the fact that tr∆ = 2 + tr∆∗ and |∆| = 1 + tr∆∗ + |∆∗| to arrive
at the second expression. By definition we have that Ψ(ξ1) = Ψ(ξ2) = 0. In Figure
5.8 the solid line depicts the characteristic equation (a parabola that opens up) for
the case in which 0 < ξ1 < 1 and ξ2 > 1. But, depending on the magnitude of φ
several cases are consistent with saddle-point stability. To see why this is so, we first
define the following critical values for φ:

φ̄l ≡
λ + η + δ

δλ + η + δ
, φ̄u ≡

2(λ + η) + δ

δλ + η + δ/2
, (5.66)

where we note that φ̄l is such that Ψ(0) = 0 and φ̄h is such that Ψ(−1) = 0. Four
cases can be distinguished. Regardless of the magnitude of φ, the unstable root satis-
fies ξ2 > 1 so that part is boring. The attention is focused on the sign and magnitude
of the stable root, ξ1.

• Case 1: low price flexibility. For 0 < φ < φ̄l we find Ψ(0) = |∆| > 0 and thus
0 < ξ1 < 1.

• Case 2: first knife-edge case. For φ = φ̄l we find Ψ(0) = |∆| = 0 and thus
ξ1 = 0. This case is illustrated with the dashed line in Figure 5.8.

• Case 3: high price flexibility. For φ̄l < φ < φ̄u we find Ψ(0) = |∆| < 0 and
Ψ(−1) > 0 and thus −1 < ξ1 < 0. See the dash-dotted line in Figure 5.8.

• Case 4: second knife-edge case. For φ = φ̄u we find Ψ(0) = |∆| < 0 and
Ψ(−1) = 0 and thus ξ1 = −1. See the dotted line in Figure 5.8.

The trick that we use to designate these cases is the following. First, for φ = φ̄l
we find that |∆| = 0 so that the stable root is equal to zero, i.e. ξ1 = 0. Since
|∆| = 1 + tr∆∗ + |∆∗| we find (by using (5.63)) that ∂|∆|

∂φ = − δ(1+λ)+η
λ+η < 0. In other

words, |∆| is decreasing in φ and it follows that for φ < φ̄l we have |∆| > 0 so that
0 < ξ1 < 1. Similarly, for φ > φ̄l we have |∆| < 0 so that ξ1 < 0. Now we must
ensure saddle-point stability by requiring that φ ≤ φ̄h so that Ψ(−1) ≥ 0.

5.4.1.2 Solution

Assuming that the price adjustment parameter φ is such that 0 < φ < φ̄u the issue
of saddle-point stability has been settled and we can derive the REH solution for the
model. We solve the model by using the method of undetermined coefficients—see
Intermezzo 5.1 for a simple and intuitive introduction to this method.6 Again the
derivations are far from trivial so we show some of the details here.

6Here we follow the approach suggested by Campbell (1994). See Appendix B.2 of Chapter 18 for
another application of this method. In Chapters 18 and 19 we will discuss a number of solutions methods
that are much more general.
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Figure 5.8: Price flexibility and the characteristic roots of ∆

In the first step we postulate a trial solution which expresses et in terms of the
state variables pt, ut, and vt:

et − ê = πe0 + πep(pt − p̂) + πeuut + πevvt, (5.67)

where the πej parameters are to be determined. It follows from (5.67) that for period
t + 1 we have:

et+1 − ê = πe0 + πep(pt+1 − p̂) + πeuut+1 + πevvt+1, (5.68)

so that:

Etet+1 − ê = πe0 + πep(pt+1 − p̂), (5.69)

where we have used the fact that Etut+1 = Etvt+1 = 0 and Et pt+1 = pt+1 (see
equation (5.57)).

In the second step we substitute (5.69) and (5.67) into (5.58) to obtain:[
πe0 + πep(pt+1 − p̂)

pt+1 − p̂

]
= ∆

[
πe0 + πep(pt − p̂) + πeuut + πevvt

pt − p̂

]
+

[
(δ11 − 1)vt − ut
δ21vt

]
. (5.70)

The key thing to note is that equation (5.70) gives two solutions for pt+1 that must
both hold for all possible values of the triple (pt, ut, vt). Indeed, recalling that the
typical elements of ∆ are denoted by δij we find that the first row of (5.70) implies:

pt+1 − p̂ =
(δ11 − 1)πe0 + (δ11πep + δ12)(pt − p̂) + (δ11πeu − 1)ut

πep

+
(δ11(1 + πev)− 1) vt

πep
, (5.71)
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whilst the second row yields:

pt+1 − p̂ = δ21πe0 + (δ21πep + δ22)(pt − p̂) + δ21πeuut + δ21(1 + πev)vt. (5.72)

Equating the two expressions for pt+1 and gathering terms gives:

0 = θ0 + θp(pt − p̂) + θuut + θvvt, (5.73)

where the πej parameters must be set such that θ0 = θp = θu = θv = 0. This gives
the following set of restrictions:

θ0 ≡
[

δ11 − 1
πep

− δ21

]
πe0 = 0, (5.74)

θp ≡
δ11πep + δ12

πep
− (δ21πep + δ22) = 0, (5.75)

θu ≡
δ11πeu − 1

πep
− δ21πeu = 0, (5.76)

θv ≡
δ11(1 + πev)− 1

πep
− δ21(1 + πev) = 0. (5.77)

Although this set of restrictions may look like an insurmountable obstacle to the
uninitiated, it turns out that they are relatively easy to solve. The trick is to start
with the right equation. Note that πep appears in all expressions but that it is the
only unknown parameter in (5.75). Hence this is the logical place to start. Solving
(5.75) for πep gives δ11πep + δ12 = (δ21πep + δ22)πep or:

0 = δ21π2
ep + (δ22 − δ11)πep − δ12. (5.78)

This is a quadratic equation in πep which has two distinct roots:

π
(1)
ep =

δ11 − δ22 +
√
(δ22 − δ11)2 + 4δ12δ21

2δ21
> 0, (5.79)

π
(2)
ep =

δ11 − δ22 −
√
(δ22 − δ11)2 + 4δ12δ21

2δ21
< 0, (5.80)

where the signs follow from the fact that δ12 > 0 and δ21 > 0. We seem to have hit a
brick wall as there are two solutions whilst the method of undetermined coefficients
requires a single unique solution for πep! So which one should we take, the positive
or the negative solution?

To answer this question we note that the coefficient for pt in (5.71) can be written
as:

πpp ≡ δ11 +
δ12

πep
= 1 +

δ

λ + η
+

1− δ

λ + η

1
πep

. (5.81)

For the positive root, πep = π
(1)
ep , this coefficient exceeds unity for sure leading to

an explosive trial path for the price level. Hence, there is a strong presumption that
we must select the negative root, πep = π

(2)
ep , as the unique value for πep that is

consistent with saddle-point stability. But a hunch is not enough. It remains to be
proved that π

(2)
ep is associated with a stable value for πpp. Note that (5.72) implies that
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πpp = δ21πep + δ22 so the result to be proved is that |z| < 1 where z ≡ δ21πep + δ22.
By multiplying (5.78) by δ21 and using the definition of z we obtain:

0 = δ2
21π2

ep + (δ22 − δ11)δ21πep − δ12δ21

= (z− δ22)
2 + (δ22 − δ11) (z− δ22)− δ12δ21

= z2 − z · tr∆ + |∆| ≡ Ψ(z).

Under saddle-path stability Ψ(z) has two roots, namely z(1) = ξ1 (such that |ξ1| < 1)
and z(2) = ξ2 > 1. To obtain a stable price path we must select the first of these
roots, i.e. πpp = ξ1 and

∣∣πpp
∣∣ < 1. Since πep = δ12/(πpp − δ11), δ12 > 0, and δ11 > 1,

it follows that πep is negative (as we suspected above). In summary we have now
established the following results:

πep =
δ + φ(δλ + η)−

√
[δ + φ(δλ + η)]2 + 4δ(1− δ)λφ

2δλφ
< 0, (5.82)

πpp = ξ1 = 1− φ
δλ(1− πep) + η

λ + η
,

∣∣πpp
∣∣ < 1. (5.83)

Now that we have selected the appropriate value for πep, equations (5.74), (5.76),
and (5.77) can be solved for, respectively, πe0, πeu and πev:

πe0 = 0, (5.84)

πeu =
1

δ11 − δ21πep
=

λ + η

λ + η + δ[1− λφπep]
> 0, (5.85)

πev = −
δ
[
1− λφπep

]
λ + η

1
δ11 − δ21πep

= −
δ
[
1− λφπep

]
λ + η + δ[1− λφπep]

< 0. (5.86)

For future reference we note that 1 + πev = πeu. Because we have found unique
values for πe0, πep, πeu, and πev we have obtained the unique rational expectations
solution of the model. The saddle path is given by:

et − ê = πep(pt − p̂) + πeuut + πevvt. (5.87)

Note that (5.87) expresses et as a downward sloping function of pt (as πep < 0). Since
pt is predetermined at time t, a positive world interest rate shock (ut > 0) leads to
an immediate depreciation of the currency (as πeu > 0) whilst a positive world price
shock (vt > 0) has the opposite effect on the exchange rate (as πev < 0).

What about the remaining endogenous variables? By using (5.54)–(5.55), (5.87),
and noting that mt = m̄ we find the equilibrium paths for output and the domestic
interest rate:

yt − ȳ =
δλπeu [ut + vt]−

[
δλ(1− πep) + η

]
(pt − p̂)

λ + η
, (5.88)

Rt − R̄∗ =
δπeu [ut + vt] +

[
1− δ

(
1− πep

)]
(pt − p̂)

λ + η
, (5.89)

where we have used the fact that 1+πev = πeu to simplify these expressions. Finally,
by using (5.88) in (5.51) we find the expression for next period’s price level:

pt+1 − p̂ = pt − p̂ + φ
δλπeu [ut + vt]−

[
δλ(1− πep) + η

]
(pt − p̂)

λ + η
. (5.90)
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It is clear from (5.88)–(5.89) that both output and the domestic interest rate fluctuate
randomly as a result of the foreign price- and interest rate shocks. The output re-
sults critically depend on the assumption of price stickiness. Indeed, if prices were
perfectly flexible (φ → ∞), then output would equal its full employment level at all
times and international shocks would only affect the domestic interest rate and price
level, as well as the exchange rate. Indeed, denoting variables with a tilde as the
REH solutions under perfect price flexibility, it is easy to show that:7

ỹt = ȳ, (5.91)

R̃t − R̄∗ =
δ

(1 + λ)δ + η
[ut + vt] (5.92)

p̃t − p̂ =
δλ

(1 + λ)δ + η
[ut + vt] (5.93)

ẽt − ê =
δλ + η

(1 + λ)δ + η
ut −

δ

(1 + λ)δ + η
vt. (5.94)

5.4.1.3 Measures of economic fluctuations

As was pointed out above, the early rational expectations literature often uses the
asymptotic variance of output as a measure of economic welfare—see Section 5.3.2.
In Intermezzo 5.3 we explained how an asymptotic variance can be calculated in the
context of a simple single-equation stochastic process. In this section we show how
the asymptotic variance of output (and various other measures of variability) can be
computed for the much more complicated sticky-price model.

We start by writing equation (5.90) in short-hand notation as:

pt+1 − p̂ = πpp(pt − p̂) + πpuut + πpvvt, (5.95)

and taking the unconditional expectations of both sides:

Et−∞(pt+1 − p̂) = πppEt−∞ (pt − p̂) , (5.96)

where we have used the fact that Et−∞ut = Et−∞vt = 0. By deducting (5.96) from
(5.95), noting Et−∞ p̂ = p̂, and squaring the resulting expression, we obtain:

[pt+1 − Et−∞ pt+1]
2 = π2

pp [pt − Et−∞ pt]
2 + π2

puu2
t + π2

pvv2
t

+ 2πpuπpp [pt − Et−∞ pt] ut + 2πpvπpp [pt − Et−∞ pt] vt

+ 2πpuπpvutvt. (5.97)

Finally, after taking the unconditional expectation of both sides of (5.97) we obtain:

Et−∞ [pt+1 − Ept+1]
2 = π2

ppEt−∞ [pt − Et−∞ pt]
2 + π2

puEt−∞u2
t + π2

pvEt−∞v2
t

+ 2πpuπppEt−∞ [pt − Et−∞ pt] ut + 2πpuπpvEt−∞utvt

+ 2πpvπppEt−∞ [pt − Et−∞ pt] vt, (5.98)

7By setting ỹt = ȳ, equations (5.48)–(5.49) and (5.52) can be used to obtain quasi-reduced-form expres-
sions for R̃t and p̃t. Using the former one in (5.50) and noting (5.53), the expectational difference equation
for the nominal exchange is obtained:

Etet+1 − ê =
[

1 +
δ

δλ + η

]
(et − ê) +

δ

δλ + η
vt − ut.

This equation can be solved by using the trial solution et − ê = πe0 + πeuut + πevvt.
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which can be rewritten as:

var(pt+1) = π2
ppvar(pt) + π2

puvar(ut) + π2
pvvar(vt) + 2πpuπppcov(pt, ut)

+ 2πpvπppcov(pt, vt) + 2πpuπpvcov(ut, vt), (5.99)

where var(xt) ≡ Et−∞ [xt − Et−∞xt]
2 is the asymptotic variance of xt and cov(xt, yt)

≡ Et−∞[xt − Et−∞xt][yt − Et−∞yt] is the asymptotic covariance between xt and yt.
The expression in (5.99) can be simplified quite a bit. First, by assumption var(ut)

= σ2
u and var(ut) = σ2

v . Second, because both ut and vt are not autocorrelated by
assumption (Et−∞utus = Et−∞vtvs = 0 for all s 6= t) it follows that the asymptotic
covariance between the price and the stochastic shock terms is zero, i.e. cov(pt, ut) =
cov(pt, vt) = 0. Third, since ut and vt are independent from each other (Et−∞utvt =
0), it follows that cov(ut, vt) = 0. Fourth, since the stochastic process in (5.95) is
stationary (because |πpp| < 1) the asymptotic variances of pt+1 and pt are identical,
i.e. var(pt+1) = var(pt). Fifth, equation (5.90) implies that πpv = πpu. Incorporating
all these simplifications we thus obtain the following expression for the variability
of the price level:

var(pt) =
π2

pu

1− π2
pp

[
σ2

u + σ2
v

]
. (5.100)

Note that the denominator is positive (as |πpp| < 1) and may be quite small (if
|πpp| is close to unity). Hence, the individual variances σ2

u and σ2
v may be blown up

substantially because 1/(1− π2
pp) can be quite large.

To find the asymptotic variance of yt we write (5.88) in short-hand notation as:

yt − ȳ = πyp(pt − p̂) + πyu[ut + vt]. (5.101)

Going through similar steps as before we easily find that the asymptotic variance of
output is given by:

var(yt) = π2
ypvar(pt) + π2

yu[σ
2
u + σ2

v ]

=

[
π2

yu + π2
yp

π2
pu

1− π2
pp

]
[σ2

u + σ2
v ], (5.102)

where we have used (5.100) to get from the first to the second line. In the sticky-
price model output displays fluctuations both because of the direct effect of the inter-
national shocks and because of their indirect effect operating through the domestic
price level. This conclusion stands in stark contrast to the case with perfectly flexible
prices for which the variability in output is zero (this follows readily from (5.91)).

5.4.2 Introduction to Dynare

In the previous subsection we have analysed the key properties of a discrete-time
sticky-price model of a small open economy. In addition we solved this model under
rational expectations by making use of the method of undetermined coefficients.
We were able to derive conditions under which the model is saddle-path stable, to
prove that the saddle-path is downward sloping, and to prove stability of the price
adjustment process. By now the reader should be convinced that matters can become
analytically intractable quite rapidly. Even though the dynamical system in (5.58)
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only contains two equations, a lot of hard work was needed to prove the relevant
features of the model. For higher-dimensional systems the pen-and-paper method
used above will fail for sure.

Fortunately there now exists a very useful (and free) software package that does
all the hard work for us at lightning speed. As is explained on the Dynare website:8

Dynare is a software platform for handling a wide class of economic
models, in particular dynamic stochastic general equilibrium (DSGE) and
overlapping generations (OLG) models. The models solved by Dynare
include those relying on the rational expectations hypothesis, wherein
agents form their expectations about the future in a way consistent with
the model.

The DSGE and OLG models mentioned in the quotation are studied below—see
Chapters 19 and 16. Here we illustrate the use of Dynare in the context of the sticky-
price model given in (5.58). In doing so we prepare the way for much more compli-
cated Dynare applications to come in this and subsequent chapters.

Dynare comes in three flavours, a version that runs under Matlab (licensed soft-
ware), one that operates under Octave (which is free software), and a stand-alone
version written in C++ (also free of charge). Throughout the book we restrict atten-
tion to the Matlab implementation of Dynare. Pratap (2017) is an excellent primer on
Matlab, whilst Adjemian et al. (2011) is a very extensive Dynare Reference Manual.
Dynare, like life itself, is based on the give-and-take principle. It needs informa-
tion from you (as the programmer) and in return it will give you lots of interesting
output.

5.4.2.1 What Dynare needs from you

The central component of any Dynare application is the so-called model file which
must have the file extension mod. Table 5.1 lists the Dynare code for the sticky-price
model. The model file is called Program05 01.mod as is indicated in the commented
line at the top. (Note that any line that starts with a percentage sign (%) is ignored by
Dynare and that Dynare statements are terminated by a semi-colon (;) even if they
run across several lines.)

Let us run through the different components of the model file. There are four
Dynare related blocks of statements. In Block 1 the variables and parameters are
defined. The command var defines the endogenous variables (yt, Rt, et, pt+1, p∗t ,
and R∗t in (5.48)–(5.53)), varexo defines the exogenous variables (ut and vt), and
parameters defines the structural parameters and constants of the model (α, β, η, δ,
λ, φ, m̄, ȳ, R̄∗, and p̄∗).

Dynare is a numerical (rather than symbolic) package so it needs numbers to
work with. In Block 2 all parameters defined in the previous block are given actual
values. In addition starting values for some endogenous variables are also provided.
These values are mostly “cooked”, i.e. the constants are chosen to get nice round
figures for the endogenous variables and the parameters are not based on empirical
estimates but rather are meant to illustrate the workings of Dynare. Note, however,
that R̄∗ = 5, implying that world interest rates fluctuate randomly around a value of
five percent per annum. Furthermore, e0 ≡ ln(E0) = −0.12 implying a euro-dollar

8See http://www.dynare.org. This website is a veritable goldmine. It not only provides download
links to the software package and the supporting manuals but also contains news of upcoming Dynare
events, working papers, and other resources. With Dynare you’ll never walk alone.

http://www.dynare.org
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Table 5.1. A Dynare model file for the sticky-price model

% Discrete -Time Dornbusch Overshooting Model with Rational Expectations

%

% Dynare model file: Program05_01.mod

%

%----------------------------------------------------------------

% Block 0. Housekeeping

%----------------------------------------------------------------

close all;

%----------------------------------------------------------------

% Block 1. Define the variables and parameters

%----------------------------------------------------------------

var y R e p pstar Rstar ;

varexo u v ;

parameters alpha beta eta delta lambda phi m_bar y_bar Rstar_bar

pstar_bar;

%----------------------------------------------------------------

% Block 2. Parameter values

%----------------------------------------------------------------

eta = 0.1;

delta = 0.8;

lambda = 0.5;

phi = 0.2;

pstar_bar = 1;

y_bar = 1;

Rstar_bar = 5;

m_bar = 1;

alpha = 1.596;

beta = 1.5;

y0 = y_bar;

R0 = Rstar_bar;

p0 = 1;

e0 = -0.12;

%----------------------------------------------------------------

% Block 3. Model

%----------------------------------------------------------------

model (linear );

y = alpha - eta * R + delta *( pstar + e - p(-1)) ;

m_bar = beta + p(-1) - lambda * R + y ;

R = Rstar + e(+1) - e ;

p = p(-1) + phi *(y - y_bar) ;

pstar = pstar_bar + v ;

Rstar = Rstar_bar + u ;

end;
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Table 5.1, continued

%----------------------------------------------------------------

% Block 4. Computation

%----------------------------------------------------------------

% Compute initial steady state and verify the calibration

initval;

y = y0;

R = R0;

p = p0;

e = e0;

pstar = pstar_bar;

Rstar = Rstar_bar;

end;

steady;

% Compute the characteristic roots

check;

% Define the stochastic shock processes

shocks;

var u; stderr 1;

var v; stderr 0.2;

end;

% Simulate the stochastic model

stoch_simul;
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exchange rate of E = 0.887, i.e. 88.7 euro cents per US dollar, which is roughly the
spot rate at the time of writing this sentence (June 2015).

Block 3 contains the core of the Dynare code, namely a statement of the model in a
format that Dynare can understand. The equations of the model are found between
the statements model (linear) and end. The equations are separated from each
other by semi-colons. Dynare does not “know” which variables are considered to be
predetermined so it needs a little help here from the programmer. In particular the
program is instructed that the price level is a predetermined variable by adopting
the following timing convention. Instead of writing pt+1 and pt appearing in (5.51)
as p(+1) and p, we must write these variables as p and p(-1), i.e. prices must be
measured at the end (rather than the beginning) of the period. In doing so Dynare
”knows” that p(-1) (i.e. pt) must be treated as a predetermined variable. Note that
for non-predetermined (jumping) variables Dynare uses the same notation as in the
theoretical model, that is e and e(+1) designate, respectively, et and et+1.

In Block 4 the actual computations are done. The Dynare command steady com-
putes the deterministic steady state, using the starting values stated between the
commands initval and end.9 Furthermore, the command check computes the char-
acteristic roots of the Jacobian matrix (ξ1 and ξ2). In between the commands shocks
and end we specify the stochastic process for the shock terms (ut and vt). The state-
ment var u; stderror 1 means that we set the standard error of ut equal to unity,
i.e. σu = 1. And var v; stderror 0.2 means that σv = 0.2. Since we assume ut and
vt to be independent there is no need to specify a value for the covariance (which is
zero by default). The last command in Block 4 is stoch simul. As the name suggests
it solves the stochastic rational expectations model.

5.4.2.2 What Dynare gives you

In order to run Dynare using the model file Program05 01.mod we start up Matlab,
navigate to the directory where the model file is located, and, at the Matlab prompt,
we enter the command dynare Program05 01. In Table 5.2 we show (a lightly edited
version of) what will be written to the computer screen. We have added the labels
(T2.1)–(T1.7) to facilitate the discussion of these results.

In block (T2.1) of Table 5.2 we see that Dynare needs to do a lot of preparatory
things before it can actually start the required computing. The details of these pre-
liminary tasks need not concern us here. In block (T2.2) Dynare tells us that, for the
parameter values adopted, the eigenvalues are equal to ξ1 = 0.8043 and ξ2 = 2.362.
The φ value chosen thus corresponds to Case 1 mentioned above (that of low price
flexibility). Since Dynare knows that there is one forward-looking variable (namely
e(+1) in the language it can understand) and one unstable root, it gives the green
light: “The rank condition is verified”.

In block (T2.3) Dynare reports the deterministic steady-state results (ŷ, R̂, ê, p̂, p̄∗,
and R̄∗), and in block (T2.4) the covariance matrix of the shocks is listed featuring
σ2

u and σ2
v on the main diagonal. The first really interesting set of results is given

in block (T2.5). There Dynare reports what it calls “policy and transition function”.
They are the rational expectations solutions for the different variables. For example,
the column for p is the computed counterpart to equation (5.95) which it rewrites as:

pt+1 = p̂ + πpp(pt − p̂) + πpuut + πpvvt. (5.103)

9Note that by specifying model (linear) in Block 3 we tell Dynare that the model is linear in the
variables. In such a case there is no requirement to specify starting values for the endogenous variables,
i.e. the model will also run without values for y0, R0, p0, and e0.
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Table 5.2. Output from the Dynare model file Program05 01.mod

>> dynare Program05_01

(T2.1)

Configuring Dynare ...

[mex] Generalized QZ.

[mex] Sylvester equation solution.

[mex] Kronecker products.

[mex] Sparse kronecker products.

[mex] Local state space iteration (second order ).

[mex] Bytecode evaluation.

[mex] k-order perturbation solver.

[mex] k-order solution simulation.

[mex] Quasi Monte -Carlo sequence (Sobol).

[mex] Markov Switching SBVAR.

Starting Dynare (version 4.4.3).

Starting preprocessing of the model file ...

Found 6 equation(s).

Evaluating expressions ... done

Computing static model derivatives:

- order 1

Computing dynamic model derivatives:

- order 1

- order 2

Processing outputs ... done

Preprocessing completed.

Starting MATLAB/Octave computing.

(T2.2)

EIGENVALUES:

Modulus Real Imaginary

0.8043 0.8043 0

2.362 2.362 0

There are 1 eigenvalue(s) larger than 1 in modulus

for 1 forward -looking variable(s)

The rank condition is verified.

(T2.3)

STEADY -STATE RESULTS:

y 1

R 5

e -0.12

p 1

pstar 1

Rstar 5

MODEL SUMMARY

Number of variables: 6

Number of stochastic shocks: 2

Number of state variables: 1

Number of jumpers: 1

Number of static variables: 4
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Table 5.2, continued

(T2.4)

MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS

Variables u v

u 1.000000 0.000000

v 0.000000 0.040000

(T2.5)

POLICY AND TRANSITION FUNCTIONS

y R e p pstar

Rstar

Constant 1.000000 5.000000 -0.120000 1.000000 1.000000

5.000000

p(-1) -0.978665 0.042669 -0.217998 0.804267

0 0

u 0.282199 0.564398 0.423298 0.056440 0

1.000000

v 0.282199 0.564398 -0.576702 0.056440

1.000000 0

(T2.6)

THEORETICAL MOMENTS

VARIABLE MEAN STD. DEV. VARIANCE

y 1.0000 0.3030 0.0918

R 5.0000 0.5756 0.3313

e -0.1200 0.4392 0.1929

p 1.0000 0.0969 0.0094

pstar 1.0000 0.2000 0.0400

Rstar 5.0000 1.0000 1.0000

(T2.7)

MATRIX OF CORRELATIONS

Variables y R e p pstar Rstar

y 1.0000 0.9475 0.8637 0.3128 0.1863 0.9314

R 0.9475 1.0000 0.8931 0.6000 0.1961 0.9806

e 0.8637 0.8931 1.0000 0.4923 -0.2626 0.9637

p 0.3128 0.6000 0.4923 1.0000 0.1165 0.5827

pstar 0.1863 0.1961 -0.2626 0.1165 1.0000 0.0000

Rstar 0.9314 0.9806 0.9637 0.5827 0.0000 1.0000

(T2.8)

COEFFICIENTS OF AUTOCORRELATION

Order 1 2 3 4 5

y -0.0979 -0.0787 -0.0633 -0.0509 -0.0409

R 0.0043 0.0035 0.0028 0.0022 0.0018

e -0.0237 -0.0190 -0.0153 -0.0123 -0.0099

p 0.8043 0.6468 0.5202 0.4184 0.3365

pstar -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

Rstar 0.0000 0.0000 0.0000 0.0000 0.0000

Total computing time : 0h00m03s

>>
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Hence, what Dynare calls the constant is actually p̂ (not what we would call πp0).
Note that πpp = 0.8043 and πpu = πpv = 0.0564. The column for e reports the
parameters of the saddle path, i.e. Dynare finds that πep = −0.2180, πeu = 0.4233,
and πev = −0.5767.

In blocks (T2.6)–(T2.8) Dynare reports what it calls the “theoretical moments”, i.e.
the means and variances of the different endogenous variables (in (T2.6)), the corre-
lations between the variables (in (T2.7)), and the autocorrelation of these variables
(in (T2.8)). It calls these measures “theoretical” because they are directly based on
the computed policy functions and the theoretical properties of the shocks (ut and
vt). (Dynare also has the option to compute “empirical moments”, in which case it
computes the means and variances by generating quasi-random vectors for ut and
vt not unlike what we did in the context of the Muth model above.) Note from (T2.6)
that there is huge amount of turbulence in this toy economy, e.g. the asymptotic
standard deviation of output is a whopping thirty percent of steady-state output,
and exchange rates also fluctuate wildly. Note that the asymptotic standard devia-
tion of prices is rather modest owing to the fact that we have postulated a low degree
of price flexibility.

A rather interesting message is displayed by Dynare at the end of Table 5.2.
The entire computation takes the machine three seconds! Compare this to the time
and effort required to derive these same results with the analytical pen-and-paper
method employed above and it becomes obvious why Dynare is such a popular
software package!

5.4.3 Managed economy

In this section we briefly study to what extent countercyclical monetary policy can
be used in the sticky-price model under rational expectations. We assume that the
policy maker employs the following countercyclical monetary policy rule:

mt = m̄− µ [yt−1 − ȳ] , µ > 0. (5.104)

If output in period t − 1 falls short of (exceeds) its full employment level then the
policy maker increases (decreases) the money supply in period t. Since the model has
a rather Keynesian flavour (as prices are sticky) there is a strong presumption that
countercyclical policy should not only be possible in this model but also desirable in
the sense that it leads to a lower asymptotic variance of output.

To verify this presumption we need to solve the model under rational expecta-
tions. The pen-and-paper method would proceed as follows. First, we note that the
economy is now represented by a three equation system of expectational difference
equations taking the following form: Etet+1 − ê

pt+1 − p̂
mt+1 − m̄

 = ∆

 et − ê
pt − p̂

mt − m̄

+

 (δ11 − 1)vt − ut
δ21vt
−µδ21vt

 , (5.105)
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Table 5.3. A Dynare model file with a monetary policy rule

% Discrete -Time Dornbusch Overshooting Model with Rational Expectations

%

% Dynare model file: Program05_02.mod

%

%----------------------------------------------------------------

% 0. Housekeeping

%----------------------------------------------------------------

close all;

%----------------------------------------------------------------

% 1. Define the variables and parameters

%----------------------------------------------------------------

var y R e p m pstar Rstar ;

varexo u v ;

parameters alpha beta eta delta lambda phi m_bar y_bar Rstar_bar

pstar_bar mu ;

%----------------------------------------------------------------

% 2. Parameter values

%----------------------------------------------------------------

eta = 0.1;

delta = 0.8;

lambda = 0.5;

phi = 0.2;

pstar_bar = 1;

y_bar = 1;

Rstar_bar = 5;

m_bar = 1;

alpha = 1.596;

beta = 1.5;

mu = 0.5;

y0 = y_bar;

R0 = Rstar_bar;

p0 = 1;

e0 = -0.12;

%----------------------------------------------------------------

% 3. Model

%----------------------------------------------------------------

model (linear );

y = alpha -eta * R + delta *(pstar + e - p(-1)) ;

m = beta + p(-1) - lambda * R + y ;

R = Rstar + e(+1) - e ;

p = p(-1) + phi *(y - y_bar) ;

m = m_bar - mu * (y(-1) - y_bar);

pstar = pstar_bar + v ;

Rstar = Rstar_bar + u ;

end;
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Table 5.3, continued

%----------------------------------------------------------------

% 4. Computation

%----------------------------------------------------------------

% Compute initial steady state and verify the calibration

initval;

y = y0;

R = R0;

p = p0;

e = e0;

m = m_bar;

pstar = pstar_bar;

Rstar = Rstar_bar;

end;

steady;

check;

shocks;

var u; stderr 1;

var v; stderr 0.2;

end;

stoch_simul;

where the Jacobian matrix (featuring typical elements δij) is given by:

∆ ≡



1 +
δ

λ + η

1− δ

λ + η
− 1

λ + η

δλφ

λ + η
1− φ (δλ + η)

λ + η

φη

λ + η

− µδλ

λ + η

µ (δλ + η)

λ + η
− µη

λ + η


. (5.106)

The characteristic polynomial of ∆ is:

Ψ(s) = s3 − s2 · tr∆ + s · Γ− |∆| , (5.107)

where Γ ≡ ∑3
i=1 Mii, and Mij is the minor of element δij (i.e. the determinant of

the two-by-two submatrix obtained by deleting row i and column j from ∆). Clearly
Ψ(s) is a cubic equation which, in principle, features three characteristic roots, say ξ1,
ξ2, and ξ3. Since there is one jumping variable (et) and two predetermined variables
(pt and mt), the model is saddle-point stable provided there is one unstable root (say
ξ2 > 1) and two stable roots (featuring |ξ1| < 1 and |ξ3| < 1). Since it is much
harder to characterize the roots of a cubic equation than it is for a quadratic equation
not much analytical progress can be made here. Of course it is still possible to use
the method of undetermined coefficients. As the reader will be asked to verify in a
question in the book manual, the appropriate trial solution expresses et in terms of
the variables pt, mt, ut, and vt:

et − ê = πe0 + πep(pt − p̂) + πem(mt − m̄) + πeuut + πevvt, (5.108)
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where the πej parameters are to be determined.
The upshot of the discussion thus far is that the analytical pen-and-paper method

grinds to a screeching halt even for a relatively low-dimensional model such as is
given here. Of course Dynare has no trouble with this model at all. Indeed, the model
file reported in Table 5.3 will do the job for us. Compared to Program05 01.mod only
five adjustments need to be made to obtain Program05 02.mod:

• The money supply must be declared as an endogenous variable (see the var

line in Block 1)

• The parameter µ must be declared (see the parameters line in Block 1)

• A value for µ must be given (see Block 2)

• The equation for the money supply rule must be specified in the model section.

• A starting value for the steady-state money supply is (optionally) given in the
initval section.

Table 5.4 lists selected portions of the output from Program05 02.mod. The most
notable features are as follows. First, there are indeed two stable characteristic roots
(ξ1 = 0.8713 and ξ3 = −0.3376) and one unstable root (ξ2 = 2.5500) as is required for
saddle-point stability. Second, as we observe from the computed policy functions,
Dynare confirms that the trial solution (5.108) is actually the correct one. Third, the
asymptotic standard deviation is reduced a little bit under an active monetary policy
of the form given in (5.104). As we conjectured above, as a result of its Keynesian
feature of backward-looking price stickiness, the PIP does not hold in this model.

5.5 Punchlines

To most economists, one of the unsatisfactory aspects of the adaptive expectations
hypothesis (AEH) is that it implies that agents make systematic mistakes along the
entire adjustment path from the initial to the ultimate equilibrium. In the early 1960s,
John Muth argued that such an outcome is difficult to reconcile with the predomi-
nant notion adopted throughout economics, namely that agents use scarce resources
(like information) wisely. He formulated the rational expectations hypothesis (REH)
which, in essence, requires the subjective expectation of households regarding a par-
ticular variable to be equal to the objective expectation for that variable conditional
upon the information set available to the agent.

Muth’s idea was introduced into the macroeconomic literature in the early 1970s
by a number of prominent new classical economists. They argued that under the
REH, monetary policy is ineffective (at influencing aggregate output and employ-
ment) because agents cannot be systematically fooled into supplying too much or
too little labour. This is the so-called policy ineffectiveness proposition (PIP) which
caused a big stir in the ranks of professional macroeconomists in the mid 1970s.
Another implication of the REH is that, according to the Lucas critique, the then pre-
dominant macroeconometric models are useless for the task of evaluating the effects
of different macroeconomic policies.

As was quickly pointed out by proponents of the New Keynesian school, the REH
does not necessarily imply the validity of the PIP. Stanley Fischer demonstrated that
if nominal wage contracts are set for more than one period in advance (and are not
indexed) then even under rational expectations, monetary policy can (and indeed
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Table 5.4. Selected output from the Dynare model file Program05 02.mod

>> dynare Program05_02

STEADY -STATE RESULTS:

y 1

R 5

e -0.12

p 1

m 1

pstar 1

Rstar 5

EIGENVALUES:

Modulus Real Imaginary

0.3376 -0.3376 0

0.8713 0.8713 0

2.55 2.55 0

There are 1 eigenvalue(s) larger than 1 in modulus

for 1 forward -looking variable(s)

The rank condition is verified.

POLICY AND TRANSITION FUNCTIONS

y R e p m

Constant 1.000000 5.000000 -0.120000 1.000000 1.000000

y(-1) -0.294165 0.411670 -0.316248 -0.058833 -0.500000

p(-1) -0.860444 0.279112 -0.040666 0.827911 0

u 0.261480 0.522960 0.392220 0.052296 0

v 0.261480 0.522960 -0.607780 0.052296 0

THEORETICAL MOMENTS

VARIABLE MEAN STD. DEV. VARIANCE

y 1.0000 0.2977 0.0886

R 5.0000 0.5496 0.3021

e -0.1200 0.4216 0.1777

p 1.0000 0.0853 0.0073

m 1.0000 0.1489 0.0222

pstar 1.0000 0.2000 0.0400

Rstar 5.0000 1.0000 1.0000

Total computing time : 0h00m06s

>>
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should) be used to stabilize the economy. Hence, the validity of the PIP hinges not
so much on the REH but rather on the type of model that is used. If the REH is intro-
duced in a classical model then the implications are classical whereas a Keynesian
model with the REH yields Keynesian implications.

It is almost universally agreed that the PIP cannot be taken seriously, except per-
haps as an extreme position taken to promote a discussion. Furthermore, due to the
fact that Fischer and others demonstrated that the REH does not necessarily imply
the PIP, acceptance of the REH as a modelling device is also almost universal. The
Lucas critique is valid, but its empirical short-run relevance is seriously doubted
by both theoretical econometricians (Favero and Hendry, 1992) and applied policy
modellers. A reason for this lukewarm reception may be the absence of a credible
theory of how agents learn new policy rules.

In the last part of this chapter we revisit the sticky-price model of a small open
economy facing perfect capital mobility that was introduced in the previous chapter.
In this discrete-time Dornbusch model the economy is continually hit by stochastic
shocks originating from the rest of the world. Under rational expectations the model
is saddle-path stable provided the domestic price is sufficiently sticky. The saddle
path is a downward sloping relationship between the spot exchange rate and the
predetermined price level with the international shocks acting as shift factors. With
sticky prices both quantities and all “prices” (the exchange rate and the domestic
interest and inflation rates) fluctuate as a result of the international shocks. The
flexibility of exchange rates and the domestic interest rate does not insulate the small
open economy from international shocks. In contrast, with perfectly flexible prices
(the absence of price stickiness) these shocks would have no effect at all on output,
and the entire adjustment would be borne by adjustments in the exchange rate as
well as the domestic interest rate and price level.

The chapter demonstrates that the analytical analysis of discrete-time stochas-
tic models quickly becomes intractable. Whereas in continuous-time models it suf-
fices to establish the signs of characteristic roots, in discrete-time models the absolute
magnitudes of these roots (relative to unity) are crucial. This explains why the use
of numerical methods is virtually unavoidable, even in relatively low-dimensional
systems of expectational difference equations. Fortunately an easy-to-use software
package is available in the form of Dynare. This package is introduced in the con-
text of the Dornbusch model in which the policy maker, instead of staying passive,
follows a countercyclical monetary policy rule to reduce output fluctuations.

Further reading

The classic articles setting out the rational expectations approach in a macroeco-
nomic context are Lucas (1972, 1973), Sargent (1973), Sargent and Wallace (1975,
1976), and Barro (1976). Papers stressing the stickiness of wages or prices include
Fischer (1977), Phelps and Taylor (1977), Barro (1977), Gray (1976, 1978), and Tay-
lor (1979, 1980). For good surveys of the rational expectations literature, see Shiller
(1978), McCallum (1980), Maddock and Carter (1982), Sheffrin (1996), and Attfield et
al. (1985). General solution methods for linear rational expectations models are dis-
cussed by, among others, Taylor (1986), Blanchard and Kahn (1980), King and Watson
(1998, 2000), Klein (2000), and McCallum (1998). Several key articles on the rational
expectations approach are collected in Lucas and Sargent (1981), Miller (1994), and
Hoover (1992). The interested reader should also consult the collections of essays by
Lucas (1981) and Sargent (1993). See Frydman and Phelps (1983) for a collection of
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essays on learning under rational expectations. On non-uniqueness in linear rational
expectations models, see Blanchard and Kahn (1980, p. 1308), and McCallum (1983a,
1999).

As was acknowledged by Lucas himself, an early statement of the Lucas critique
is found in Marschak (1953). For an early application of the rational expectations
hypothesis to finance, see Samuelson (1965). McCallum (1983b) presents a model of
the liquidity trap and finds the rational expectations solution. The pre-REH literature
on optimal stabilization policy is well surveyed by Turnovsky (1977, chs. 13-14). See
also the classic analysis by Poole (1970) on the optimal choice of policy instruments
within the stochastic IS-LM model. For an early analysis of economic policy under
rational expectations, see Fischer (1980b).

Michel Juillard and colleagues have developed Dynare, a software package de-
signed to perform computer simulations for stochastic dynamic general equilibrium
models. At the time of writing, the most recent version of Dynare is version 4.4.3. It
can be downloaded free of charge from the Dynare website:

http://www.dynare.org.

On this website you also find the Reference Manual, see Adjemian et al. (2011).

http://www.dynare.org




Chapter 6

The government budget deficit

The purpose of this chapter is to discuss a number of issues relating to the govern-
ment budget constraint. The specific goals for this chapter are:

1. To explain and assess the validity of the Ricardian equivalence theorem.

2. To explain the notion of tax smoothing and the golden financing rule.

3. To show how the fiscal stance of the government should be measured.

An important secondary aim of this chapter is the introduction and analysis of a sim-
ple two-period optimizing model of household consumption (and labour supply)
behaviour. In this chapter the forward-looking theory of household behaviour is
shown to be very a useful tool with which the intuition behind the Ricardian equiv-
alence theorem can be explained. But, as shall be demonstrated below, the ideas
introduced here are much more widely applicable. Concepts such as intertempo-
ral utility optimization and consumption smoothing form vital elements of modern
microeconomically founded macroeconomics.

6.1 Ricardian equivalence

The Ricardian equivalence theorem was formulated, as the name suggests, by the
British classical economist David Ricardo (1817, p. 245), who immediately dismissed
it as being irrelevant in practice. In an influential paper, however, the new classical
economist Robert Barro (1974) forcefully argued that the Ricardian equivalence the-
orem is worthy of professional attention and yields important policy prescriptions.

Loosely speaking, the Ricardian equivalence theorem can be stated as follows: for
a given path of government spending the particular method used to finance these
expenditures does not matter, in the sense that real consumption, investment, and
output are unaffected. Specifically, whether the expenditures are financed by means
of taxation or debt, the real consumption and investment plans of the private sector
are not influenced. In that sense government debt and taxes are equivalent.

In other words, government debt is simply viewed as delayed taxation: if the
government decides to finance its deficit by issuing debt today, private agents will
save more in order to be able to redeem this debt in the future through higher taxa-
tion levels. Consequently, if the Ricardian equivalence theorem is valid, the Blinder
and Solow (1973) model (discussed extensively in Chapter 3) is seriously flawed.
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In that model real private consumption (in equation (3.43)) depends on net wealth,
which includes government debt! Under Ricardian equivalence, government debt in the
hands of the public should not be counted as net wealth since it is exactly matched
by the equal-sized liability in the form of future taxation. In order to explain and
evaluate the Ricardian equivalence theorem we first need to build a simple dynamic
model of household consumption.

6.1.1 A simple model

Suppose that historical time from now into the indefinite future is split into two
segments. The first segment (called period 1) is the present, and the second segment
(called period 2) is the future (obviously, by construction, there is no period 3). There
is perfect foresight on the part of both households and the government. We look at
the behaviour of the representative household first. It lives as long as the govern-
ment does, and achieves utility by consuming goods in both periods. Labour supply
is exogenous and household income consists of exogenous “manna from heaven”.
Lifetime utility V is given by:

V = U(C1) +
1

1 + ρ
U(C2), ρ > 0, (6.1)

where Ct is consumption in period t (= 1, 2), U(·) is the instantaneous utility (or
“felicity”) function, and ρ is the pure rate of time preference, representing the effects
of “impatience”. The higher ρ, the heavier future instantaneous utility is discounted,
and the more impatient is the household. The felicity function has the usual prop-
erties, i.e. U′(·) > 0 and U′′(·) < 0. At the end of period 0 (i.e. the “past”), the
household has financial assets amounting in real terms to A0 over which it also re-
ceives interest payments at the beginning of period 1 equal to r0 A0, where r0 is the
real rate of interest on period 0 savings. The exogenous non-interest income pay-
ments are denoted by Y1 and Y2, respectively, so that the periodic budget restrictions in
the two periods are:

A1 = (1 + r0)A0 + (1− θ1)Y1 − C1, (6.2)
A2 = (1 + r1)A1 + (1− θ2)Y2 − C2 = 0, (6.3)

where r1 is the interest rate on savings in period 1, θ1 and θ2 are the proportional tax
rates on non-asset income in the two periods, and A2 = 0 because it makes no sense
for the household to die with a positive amount of financial assets (A2 ≤ 0), and it is
also assumed that it is impossible for the household to die in debt (A2 ≥ 0). (Below,
we modify the model and show that households with children may wish to leave an
inheritance.) Note that (6.2)–(6.3) incorporate the assumption that interest income is
untaxed.

If the household can freely borrow or lend at the going interest rate r1, then A1
can have either sign, and equations (6.2)–(6.3) can be consolidated into a single life-
time budget restriction. Technically, this is done by substituting out A1 from (6.2)–(6.3):

[A1 =]
C2 − (1− θ2)Y2

1 + r1
= (1 + r0)A0 + (1− θ1)Y1 − C1 ⇒

C1 +
C2

1 + r1
= (1 + r0)A0 + H, (6.4)
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where the right-hand side of (6.4) represents total wealth, which is the sum of initial
financial wealth inclusive of interest received, (1 + r0)A0, and human wealth, H:

H ≡ (1− θ1)Y1 +
(1− θ2)Y2

1 + r1
. (6.5)

Equation (6.4) says that the present value of consumption expenditure during life
must equal total wealth.

In order to demonstrate the Ricardian equivalence theorem, we need to introduce
the government and its budget restriction. We start as simple as possible by assum-
ing that the government buys goods for its own consumption (G1 and G2), and fi-
nances its expenditure by taxes and/or debt. There is no money in the model, so
money financing is impossible. The government, like the household, exists for two
periods, and can borrow or lend at the interest rate r1. In parallel with (6.2)–(6.3), the
government’s periodic budget restrictions are:

[D1 ≡] r0B0 + G1 − θ1Y1 = B1 − B0, (6.6)
[D2 ≡] r1B1 + G2 − θ2Y2 = B2 − B1 = −B1, (6.7)

where Dt and Bt denote, respectively, the deficit and government debt in period
t (= 1, 2), respectively, and B2 = 0 because the government, like the household,
cannot default on its debt and is assumed to remain solvent (no banana republic!).
Using the same trick as before, equations (6.6)–(6.7) can be consolidated into a single
government budget restriction:

[B1 =] (1 + r0)B0 + G1 − θ1Y1 =
θ2Y2 − G2

1 + r1
⇒

(1 + r0)B0 + G1 +
G2

1 + r1
= θ1Y1 +

θ2Y2

1 + r1
, (6.8)

where the left-hand side of (6.8) represents the present value of the net liabilities of
the government, and the right-hand side is the present value of net income of the
government (i.e. the tax revenue).

Since government bonds are the only financial asset in the toy economy, house-
hold borrowing (lending) can only take the form of negative (positive) holdings of
government bonds. Hence, equilibrium in the financial capital market implies that:

At = Bt, (6.9)

for t = 0, 1, 2. Formally, equilibrium in the capital market determines the equilibrium
interest rates, r0 and r1.

The first demonstration of the Ricardian equivalence theorem is obtained by solv-
ing the consolidated government budget restriction (6.8) for (1 + r0)B0, and substi-
tuting the result into the lifetime household budget restriction (6.4) taking (6.9) into
account:

C1 +
C2

1 + r1
= (1 + r0)B0 + (1− θ1)Y1 +

(1− θ2)Y2

1 + r1

= θ1Y1 +
θ2Y2

1 + r1
− G1 −

G2

1 + r1
+ (1− θ1)Y1 +

(1− θ2)Y2

1 + r1

= Y1 − G1 +
Y2 − G2

1 + r1
≡ Ω. (6.10)
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The final expression shows that the tax parameters drop out of the household’s life-
time budget restriction altogether. Only the present value of (exogenously given)
government spending affects the level of net wealth of the household. Consequently,
the choices of C1 and C2 do not depend on the tax parameters θ1 and θ2 either. The
way in which the government finances its expenditure has no real effects on con-
sumption.

So if consumption plans are unaffected by the timing of taxation, then what is?
The answer is, of course, household saving. In order to demonstrate this, and to
facilitate the subsequent discussion, we use a specific functional form for the felicity
function U(·), one that yields very simple expressions for the optimal consumption
and saving plans:

U(Ct) = ln Ct. (6.11)

(The most general version of the two-period consumption model is studied in Inter-
mezzo 6.1.) The household chooses C1 and C2 such that (6.1) is maximized subject to
(6.10) and given the felicity function (6.11). Again the optimality conditions can be
obtained by using the Lagrange multiplier method. The Lagrangian is:

L ≡ ln C1 +
1

1 + ρ
ln C2 + λ

[
Ω− C1 −

C2

1 + r1

]
, (6.12)

so that the first-order conditions are:

∂L
∂C1

=
1

C1
− λ = 0, (6.13)

∂L
∂C2

=
1

(1 + ρ)C2
− λ

1 + r1
= 0, (6.14)

and the third condition, ∂L/∂λ = 0, yields the budget restriction (6.10).1 By combin-
ing (6.13)–(6.14), the so-called consumption Euler equation is obtained:

λ =
1

C1
=

1 + r1

(1 + ρ)C2
⇒ C2

C1
=

1 + r1

1 + ρ
. (6.15)

In words, equation (6.15) can be understood as follows. Assume, for example, that
the interest rate exceeds the pure rate of time preference, i.e. r1 > ρ. Then it follows
from (6.15) that the household finds it optimal to set C2/C1 > 1, i.e. C2 > C1. The
household wishes to enjoy relatively high consumption in the second period. This
is understandable in view of the fact that a low value of ρ (relative to r1) implies
that the household has a lot of patience, and hence a strong willingness to postpone
consumption. This is the intertemporal substitution mechanism in consumption.

Equation (6.15) determines the optimal time profile of consumption, i.e. it shows
consumption in the future relative to consumption now. The level of consumption is
obtained by substituting (6.15) into the household budget restriction (6.10):

C1 =
1 + ρ

2 + ρ
Ω, C2 =

1 + r1

2 + ρ
Ω. (6.16)

1The optimized value of the Lagrange multiplier has a straightforward economic interpretation. It rep-
resents the marginal lifetime utility of lifetime wealth, i.e. λ = dV/dΩ. In words, if a Martian gives
the household dΩ extra lifetime wealth then optimal consumption plans will be changed and as a result
lifetime utility will rise by dV = λdΩ.
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Figure 6.1: Ricardian equivalence experiment

The expression for household saving (S1) is determined by the identity S1 ≡ A1 −
A0 = B1 − B0, or:

S1 = r0B0 + (1− θ1)Y1 −
1 + ρ

2 + ρ
Ω, (6.17)

from which we see immediately that the tax rate θ1 does not vanish from the expres-
sion for household saving in the first period.

Now consider the following Ricardian experiment. The government reduces the
tax rate in the first period (∆θ1 < 0) but keeps its goods consumption (G1 and G2)
constant. The tax cut may be quite substantial so we do not rely on differentiation—
we use the notation ∆θ1 rather than dθ1 to alert the reader to this fact. We pro-
ceed under the assumption—verified below—that the interest rate stays constant,
i.e. ∆r1 = 0. Then equation (6.17) implies that

∆S1 = −Y1 ∆θ1 > 0, (6.18)

(because ∆Ω = 0) but the government budget restriction (6.8) implies that taxes in
the second period must be increased:

Y1 ∆θ1 +
Y2

1 + r1
∆θ2 = 0 ⇒ ∆θ2 = − (1 + r1)Y1

Y2
∆θ1 > 0, (6.19)

as the present value of government liabilities are unchanged by assumption. Hence,
the reaction of the household to this Ricardian experiment is to increase its saving
in the first period (∆S1 > 0) in order to be able to use the extra amount saved plus
interest in the second period to pay the additional taxes (∆θ2 > 0). In Figure 6.1, the
Ricardian experiment has been illustrated graphically.

The initial income endowment point is at Ey
0. It represents the point at which the

household makes no use of debt in the first period (i.e. A1 = B1 = 0) and simply
consumes according to (6.2)–(6.3). Since the household can freely lend/borrow at
the going rate of interest r1, however, it can choose any (C1, C2) combination along
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the budget line AB. Suppose that the optimal consumption point is at EC, where
there is a tangency between an indifference curve and the budget line. The optimal
consumption levels are given by C∗1 and C∗2 , respectively. The household saves B1
in the first period, and receives (1 + r1) B1 in interest income in the second period.
As a result of the Ricardian experiment (∆θ1 < 0), non-asset income rises in the first
period and falls in the second period, but the net wealth of the household (Ω) is
unchanged. Hence, all that happens is that the income endowment point shifts along
the given budget line in a south-easterly direction to Ey

1. The optimal consumption
point does not change, however, since nothing of importance has changed for the
household. Hence, the only thing that happens is that the household increases its
saving (by an amount ∆B1) in the first period and it does so by purchasing more
bonds from the government. Demand for and supply of government debt expand
by the same amount so that no change in the interest rate, r1, is required to maintain
capital market equilibrium.

There are many theoretical objections that can be levelled at the Ricardian equiv-
alence theorem. In the next subsections we discuss the most important theoretical
reasons causing Ricardian equivalence to fail. The interested reader is referred to the
symposium on the budget deficit (published in the Journal of Economic Perspectives)
for further details; see in particular the contributions by Barro (1989) and Bernheim
(1989).

Intermezzo 6.1

The two-period consumption model. Because the two-period consump-
tion model has played such an important role in the macroeconomic lit-
erature, it pays to have a very good understanding of its basic properties.
Assume that the representative household’s lifetime utility function is
given in general terms by:

V = V(C1, C2), (a)

where Ct is consumption in period t, and we assume positive but di-
minishing marginal utility of consumption in both periods, i.e. V1 ≡
∂V/∂C1 > 0, V2 ≡ ∂V/∂C2 > 0, V11 ≡ ∂2V/∂C2

1 < 0, and V22 ≡
∂2V/∂C2

2 < 0. Note that (6.1) is a special case of (a) incorporating a zero
cross derivative V12 ≡ ∂2V/∂C1∂C2. In the general case considered here,
no such restriction is placed on V12. To avoid uninteresting corner so-
lutions, however, we assume that indifference curves bulge towards the
origin, i.e. V11V22 −V2

12 > 0.
Abstracting from taxes, the household’s periodic budget identities are

given by A1 + C1 = (1 + r0)A0 +Y1 and C2 = (1 + r1)A1 +Y2 which can
be consolidated to yield the lifetime budget constraint:

C1 +
C2

1 + r1
= (1 + r0)A0 +

[
Y1 +

Y2

1 + r1

]
≡ Ω, (b)

where Yt is exogenous non-interest income in period t, A0 is initial finan-
cial wealth, Ω is initial total wealth (i.e. the sum of financial and human
wealth), and rt is the interest rate in period t. The household chooses
C1 and C2 in order to maximize lifetime utility (a) subject to the lifetime
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budget constraint (b). The first-order conditions are given by (b) and the
Euler equation:

V1(C1, C2)

V2(C1, C2)
= 1 + r1, (c)

where we indicate explicitly that Vi in general depends on both C1 and
C2 (because V12 6= 0 is not excluded a priori).

Equations (b)–(c) define implicit functions relating consumption in
the two periods to the interest rate and total wealth which can be written
in general terms as Ct = Ct(Ω, r1) for t = 1, 2. To find the partial deriva-
tives of these implicit functions we employ our usual trick and totally
differentiate (b)–(c) to obtain the following matrix expression:

∆
[

dC1
dC2

]
=

[
1
0

]
dΩ +

[
C2

(1+r1)2

V2

]
dr1, (d)

where the matrix ∆ on the left-hand side of (d) is defined as:

∆ ≡
[

1 1
1+r1

V11 − (1 + r1)V12 V12 − (1 + r1)V22

]
, (e)

and we have already incorporated Young’s theorem according to which
V12 = V21 (Chiang, 1984, p. 313). The second-order conditions for utility
maximization ensure that the determinant of ∆ is strictly positive (see
Chiang (1984, pp. 400–408) for details), i.e. |∆| > 0. This means that the
implicit function theorem can be used (Chiang, 1984, p. 210).

Let us first consider the effects of a marginal change in wealth. We
obtain from (d):

∂C1

∂Ω
=

V12 − (1 + r1)V22

|∆| R 0, (f)

∂C2

∂Ω
=

(1 + r1)V12 −V11

|∆| R 0. (g)

Several observations can be made regarding these expressions. First, the
effect of wealth changes on consumption in both periods is ambiguous
in general. Second, if lifetime utility satisfies V12 ≥ 0 then ∂Ct/∂Ω > 0
for t = 1, 2, and present and future consumption are both normal goods.
Third, if V12 < 0 then either present consumption or future consumption
may be an inferior good (∂Ci/∂Ω < 0). It follows from (b), however, that
at most one good can be inferior, i.e.:

∂C1

∂Ω
+

1
1 + r1

∂C2

∂Ω
= 1. (h)

Next we consider the effects of a marginal change in the interest rate r1.
It follows from the budget restriction (b) that a change in r1 not only
changes the relative price of future consumption (on the left-hand side
of (b)) but also affects the value of human wealth (and thus total wealth)
given in square brackets on the right-hand side of (b). Indeed, in view of
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the definition of Ω, we find ∂Ω/∂r1 = −Y2/(1+ r1)
2 < 0, i.e. an increase

in the interest rate reduces the value of human wealth because future
wage income is discounted more heavily. By taking this human-wealth
effect into account we obtain the following partial derivatives from (d):

∂C1

∂r1
=

V12 − (1 + r1)V22

|∆|
A1

1 + r1
− 1
|∆|

V2

1 + r1
R 0, (i)

∂C2

∂r1
=

(1 + r1)V12 −V11

|∆|
A1

1 + r1
+

1
|∆| V2 R 0, (j)

where we have used the second period budget identity, (1 + r1)A1 =
C2 − Y2, to simplify these expressions. Again several observations can
be made regarding the expressions in (i)–(j). First, without further re-
strictions on V12 and A1 the effects are ambiguous. By differentiating the
lifetime budget equation (b) we find:

∂C1

∂r1
+

1
1 + r1

∂C2

∂r1
=

A1

1 + r1
, (k)

from which we deduce that for an agent who chooses to save in the first
period (A1 > 0), either present or future consumption (or both) rise if the
interest rate rises. Second, if A1 > 0 and V12 ≥ 0 then ∂C1/∂r1 R 0 and
∂C2/∂r1 > 0. Third, if the agent’s utility maximum happens to coincide
with its endowment point (so that A1 = 0) then it neither saves nor dis-
saves in the first period and it follows that ∂C1/∂r1 < 0 and ∂C2/∂r1 > 0.

In the literature it is often assumed that the utility function is ho-
mothetic. A homothetic utility function can be written as V(C1, C2) =
G (H(C1, C2)) , where G(·) is a strictly increasing function and H(C1, C2)
is homogeneous of degree one in C1 and C2 (see e.g. Sydsæter and
Hammond, 1995, p. 573). We recall the following properties of such
functions from Intermezzo 4.3 in Chapter 4: (P1) H1C1 + H2C2 = H,
(P2) H1 and H2 are homogeneous of degree zero in C1 and C2, (P3)
H12 = −(C1/C2)H11 = −(C2/C1)H22 and thus H11 = (C2/C1)

2H22,
and (P4) σ12 ≡ −d ln(C1/C2)/d ln(H1/H2) = H1H2/(HH12) ≥ 0. Since
H11 < 0 and H22 < 0 it follows from (P3) that H12 > 0 and from (f)–(g)
that present and future consumption are both normal goods. To see why
this is the case, we note that (c) simplifies to H1/H2 = 1 + r1 so that V11,
V12, and V22 in (d)–(f) are replaced by, respectively, H11, H12, and H22.

To study the effect of a change in the interest rate we note that the
first-order condition (c) becomes H1/H2 = 1 + r1. Since H1 and H2 are
homogeneous of degree zero, this Euler equation pins down a unique
C1/C2 ratio as a function of 1 + r1. By loglinearizing the Euler equation
(c) and the budget restriction (b) (holding (1+ r0)A0, Y1, and Y2 constant)
we obtain the following expression:[

ω1 1−ω1
−1 1

] [
dC1/C1
dC2/C2

]
=

[
A1/Ω

σ12

]
dr1

1 + r1
, (l)

where ω1 ≡ C1/Ω and 1−ω1 ≡ C2/[(1+ r1)Ω] are the budget shares of,
respectively, first- and second-period consumption. Solving (l) we obtain
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the comparative static effects:

∂C1

∂r1
=

C1

1 + r1

[
(1−ω1)−

Y2

(1 + r1)Ω
− (1−ω1)σ12

]
, (m)

∂C2

∂r1
=

C2

1 + r1

[
(1−ω1)−

Y2

(1 + r1)Ω
+ ω1σ12

]
, (n)

where we have also used (1 + r1)A1 = C2 − Y2. The three terms appear-
ing in square brackets on the right-hand sides of (m) and (n) represent,
respectively, the income effect, the human-wealth effect, and the substitution
effect (see also Obstfeld and Rogoff (1996, p. 30) for this terminology). We
illustrate these effects in Figures A and B.

Figure A: Special case with σ12 = Y2 = 0

Figure B: General case σ12 > 0 and Y2 > 0

In both figures, the ultimate effect of an increase in the interest rate
r1 is given by the move from E0 to E1. This total effect can be decom-
posed in the usual Hicksian fashion. In doing so we exploit the fact that
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for homothetic utility functions the slope of the indifference curves is the
same along a straight ray from the origin. In Figure A we study a very
simple case for which the substitution elasticity between current and fu-
ture consumption is zero (σ12 = 0, so that indifference curves are right
angles), and for which there is no future non-interest income (Y2 = 0).
The increase in the interest rate rotates the budget constraint in a clock-
wise fashion, and moves the optimum point from E0 to E1. Both C1 and
C2 increase, and the move from E0 to E1 is due to the income effect (IE)
only.

In Figure B we study the general case, for which σ12 > 0 and Y2 > 0.
Again the increase in r1 changes the optimum from E0 to E1. Two wealth
expansion paths are drawn in Figure B, one for the old and one for the
new interest rate. The move from E0 to E′ is the substitution effect (SE)
and the move from E′ to E′′ is the income effect (IE). If the household were
to have no non-interest income in the second period (Y2 = 0) this would
be all as the human-wealth effect would be absent. If Y2 is positive, how-
ever, the increase in the interest rate reduces human wealth and shifts
the budget restriction inward. Hence, the human-wealth effect (HWE) is
represented by the move from E′′ to E1.

****

6.1.2 Distorting taxes

Up to this point we have assumed that non-interest income in the two periods is
exogenous. It is easy to imagine that, for example due to an endogenous labour
supply decision, this type of income depends on the tax rate on labour income (see
Chapter 1 and below). If that is the case, we should write the non-asset income
points as Y1(θ1, θ2) and Y2(θ1, θ2), and the path of taxes may directly influence the
income endowment point, and potentially also the level of net household wealth.
Consequently, Ricardian equivalence should be expected to fail. In the remainder of
this section we show how labour supply can be endogenized in a dynamic setting.

In the two-period setting, the intertemporal labour supply model could take the
following format. We change the lifetime utility function (6.1) to:

V = U(C1, 1− N1) +
1

1 + ρ
U(C2, 1− N2), ρ > 0, (6.20)

where Nt is labour supply (and 1− Nt is leisure) in period t. Just as in Chapter 1, the
household has a time endowment of unity, which it must allocate over leisure and
work. The felicity function is given by:

U(Ct, 1− Nt) = ln
(

Cε
t [1− Nt]

1−ε
)

, 0 < ε < 1. (6.21)

To keep matters simple, the sub-felicity function, u (Ct, 1− Nt) ≡ Cε
t [1− Nt]

1−ε, takes
the Cobb-Douglas form, implying that the intratemporal substitution elasticity be-
tween consumption and leisure is equal to one.2 As a result, the felicity function
itself is loglinear in Ct and 1− Nt.

2The intratemporal substitution elasticity, σC,1−N , measures the degree of substitutability between con-
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The periodic budget constraints are still given by (6.2)–(6.3), but with Yt replaced
by wtNt, where wt is the gross (before-tax) real wage rate in period t.3 The lifetime
budget constraint is thus:

C1 +
C2

1 + r1
= (1 + r0)A0 + (1− θ1)w1N1 +

(1− θ2)w2N2

1 + r1
. (6.22)

As it turns out, a rather useful trick is to treat the labour supply decision as a pur-
chase decision of leisure. Intuitively, by supplying Nt units of labour to the labour
market, the household implicitly “buys” 1− Nt units of leisure from itself. Straight-
forward manipulation of (6.22) yields the consolidated budget constraint in terms of
spending on goods and leisure:

C1 +(1− θ1)w1 [1− N1] +
C2 + (1− θ2)w2 [1− N2]

1 + r1
= (1 + r0) A0 + H̄ ≡ Ω̄, (6.23)

where Ω̄ is redefined total wealth and H̄ is redefined human wealth:

H̄ ≡ (1− θ1)w1 +
(1− θ2)w2

1 + r1
. (6.24)

Intuitively, H̄ is the after-tax market value of the household’s time endowment in
present-value terms.

The household chooses C1, C2, 1− N1, and 1− N2 in order to maximize (6.20)
subject to (6.23) and noting the felicity function (6.21). The Lagrangian for this opti-
mization problem is:

L ≡ ε ln C1 + (1− ε) ln (1− N1) +
ε

1 + ρ
ln C2 +

1− ε

1 + ρ
ln (1− N2)

+ λ

[
Ω̄− C1 − (1− θ1)w1 [1− N1]−

C2 + (1− θ2)w2 [1− N2]

1 + r1

]
, (6.25)

and the (interesting) first-order conditions are:

∂L
∂C1

=
ε

C1
− λ = 0, (6.26)

∂L
∂ [1− N1]

=
1− ε

1− N1
− λ (1− θ1)w1 = 0, (6.27)

∂L
∂C2

=
ε

(1 + ρ)C2
− λ

1 + r1
= 0, (6.28)

∂L
∂ [1− N2]

=
1− ε

(1 + ρ) [1− N2]
− λ (1− θ2)w2

1 + r1
= 0. (6.29)

sumption and leisure in the same time period. For a linear homogeneous subfelicity function, σC,1−N is
defined as:

σC,1−N ≡
uCu1−N

u · uC,1−N
.

For u (Ct, 1− Nt) we easily obtain σC,1−N = 1. See also Intermezzo 4.3 in Chapter 4 for a definition of the
substitution elasticity in the context of production theory.

3In the absence of physical capital, labour is the only production factor and the constant returns to
scale production function can be written as Yt = ω0 Nt. Perfectly competitive firm behaviour ensures that
wt = ω0 for t = 1, 2, i.e. in the absence of technological change ω0 and thus the real wage rates, w1 and
w2, are constants.
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(As before, the condition, ∂L/∂λ = 0, just gives us back the budget restriction (6.23).)
It is clear from (6.26)–(6.29) that the solutions for Ct and 1 − Nt can all be ex-

pressed in terms of the Lagrange multiplier, λ, and the relevant relative price terms.
We can thus use the following solution method. First, we substitute the first-order
conditions into (6.23) and solve for 1/λ. After some steps we obtain:

Ω̄ = C1 + (1− θ1)w1 [1− N1] +
C2 + (1− θ2)w2 [1− N2]

1 + r1

=
ε

λ
+

1− ε

λ
+

ε

λ (1 + ρ)
+

1− ε

λ (1 + ρ)
=

2 + ρ

1 + ρ

1
λ

⇔

1
λ
=

1 + ρ

2 + ρ
Ω̄. (6.30)

Hence, in this simple dynamic consumption-labour-supply model, the Lagrange
multiplier, representing the marginal utility of lifetime wealth, is inversely related
to the total wealth level itself.

In the second step, we use (6.30) in (6.26)–(6.29) to obtain the solutions that we
are looking for:

C1 = ε
1 + ρ

2 + ρ
Ω̄, C2 = ε

1 + r1

2 + ρ
Ω̄, (6.31)

(1− θ1)w1 [1− N1] = (1− ε)
1 + ρ

2 + ρ
Ω̄, (6.32)

(1− θ2)w2 [1− N2] = (1− ε)
1 + r1

2 + ρ
Ω̄. (6.33)

Several points are worth noting about these expressions. First, the consumption ex-
pressions in (6.31) are very similar to the ones for the basic model as stated in (6.16).
The key difference lies in the fact that only part of total wealth, εΩ̄, enters the ex-
pressions in (6.31). This is not surprising, in view of the fact that the household now
spends on goods and leisure in the extended model. Note, however, that the Euler
equation for consumption implied by the two expressions in (6.31) is the same as
in the basic model (see (6.15) above). Second, the expressions in (6.32)–(6.33) show
that the household spends constant fractions of total wealth on leisure. Note further-
more that (6.32) and (6.33), taken in combination, imply an Euler equation for leisure
demand (and thus implicitly for labour supply) in the two periods:

1− N2

1− N1
=

1 + r1

1 + ρ
· 1− θ1

1− θ2
· w1

w2
. (6.34)

The optimal intertemporal division of leisure consumption is governed by the prod-
uct of three ratios on the right-hand side of (6.34), namely the interest-impatience
ratio (first term), the relative-tax ratio (second term), and the relative gross-wage ra-
tio (third term). Holding constant the last two ratios, an increase in the interest rate
boosts the interest-impatience ratio and induces the household to adopt a steeper
time profile for leisure, i.e. to postpone current leisure consumption to the future
(and to work relatively hard in the current period). Similarly, holding constant the
interest ratio, an increase in either the relative tax ratio or the relative gross-wage
ratio prompts households to work relatively hard in the current period (when taxes
are relatively low or gross wages are relatively high). The mechanism just described
is called the intertemporal substitution effect in labour supply. It plays a vital role in
the real business cycle models studied in Chapter 18 below.
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By using (6.32)–(6.33) and (6.23)–(6.24), we find that the labour supply model
yields the following expressions for pre-tax non-interest income in the two periods:

Y1 ≡ w1N1 = w1
1 + ε (1 + ρ)

2 + ρ
− 1− ε

1− θ1

1 + ρ

2 + ρ

[
(1 + r0) A0 +

(1− θ2)w2

1 + r1

]
,

(6.35)

Y2 ≡ w2N2 = w2
1 + ρ + ε

2 + ρ
− 1− ε

1− θ2

1 + r1

2 + ρ

[
(1 + r0) A0 + (1− θ1)w1

]
. (6.36)

As was asserted at the beginning of this section, both Y1 and Y2 depend in a rather
complicated fashion on, among other things, the tax rates in the two periods. It fol-
lows that the Ricardian tax cut experiment in general will not only affect household
saving (as in the basic model) but will also change the labour supply decisions and
thus the macroeconomic equilibrium.

Intermezzo 6.2

Ricardian equivalence in a small open economy. As a second example
of the effects of distorting taxes on the validity of the Ricardian equiva-
lence theorem, we consider the case of a small open economy in which
interest income is taxed. In such an economy, households and the gov-
ernment can borrow or lend at an exogenously given world interest rate,
rt. Denoting net foreign assets owned by domestic households by Ft, the
financial capital market equilibrium condition (6.9) changes to:

At = Bt + Ft. (a)

Households can thus hold their financial wealth in the form of govern-
ments bonds or in net financial assets (or both). The two types of assets
are perfect substitutes so their rates of return equalize. Assume that non-
interest income is exogenous (as in the basic model) but that there is a
comprehensive income tax, and that interest income from all sources is
also taxable (i.e., a residence-based interest income tax). Equations (6.2)–
(6.3) are modified to:

A1 = A0 + (1− θ1) [Y1 + r0 A0]− C1, (b)
A2 = A1 + (1− θ2) [Y2 + r1 A1]− C2 = 0. (c)

By eliminating A1 from (b)–(c) and noting (a), we obtain the consolidated
household budget restriction:

C1 +
C2

1 + r1 (1− θ2)
= [1 + r0 (1− θ1)] [B0 + F0]

+ (1− θ1)Y1 +
(1− θ2)Y2

1 + r1 (1− θ2)
. (d)

Assuming a utility function as in (6.1), the household’s Euler equation is
now given by:

U′ (C1)

U′ (C2)
=

1 + r1 (1− θ2)

1 + ρ
. (e)
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The future tax rate affects the intertemporal price of future consumption
and thus influences the optimal choice between current and future con-
sumption. We should thus expect that Ricardian equivalence no longer
holds in this setting. Hence, this is yet another example of Ricardian non-
equivalence caused by the fact that a distorting tax is being changed in
the Ricardian experiment.

The proof on Ricardian non-equivalence proceeds as follows. The
budget restrictions for the government, (6.6)–(6.7), are given by:

B1 = (1 + r0) B0 + G1 − θ1 [Y1 + r0 (B0 + F0)] , (f)
B2 = (1 + r1) B1 + G2 − θ2 [Y2 + r1 (B1 + F1)] = 0. (g)

Using (f)–(g), we find that the consolidated government budget con-
straint is:

G1 +
G2

1 + r1 (1− θ2)
= − [1 + r0 (1− θ1)] B0 + θ1 [Y1 + r0F0]

+
θ2 [Y2 + r1F1]

1 + r1 (1− θ2)
. (h)

Next we look at the solvency condition faced by the nation as a whole.
National solvency follows automatically from the fact that both house-
holds and the government are solvent economic agents. We note from (a)
that Ft = At − Bt. By substituting (b)–(c) and (f)–(g) into this expression
we can derive expressions for the path of net foreign assets in the two
periods:

F1 = (1 + r0) F0 + Y1 − C1 − G1, (i)
F2 = (1 + r1) F1 + Y2 − C2 − G2 = 0. (j)

Eliminating F1 from these expressions we find the national budget con-
straint:

(1 + r0) F0 = M1 +
M2

1 + r1
, (k)

where Mt ≡ Ct + Gt − Yt is net imports, i.e. domestic consumption mi-
nus domestic production of goods. To the extent that the nation initially
possesses net foreign assets (F0 > 0) it can afford to be a net importer of
goods in present value terms.

In Figure A, the broken line NBCMAX represents the maximum attain-
able private consumption bundles implied by the national budget con-
straint in the hypothetical case that the government does not consume
anything (i.e. Gt = 0). It is the maximum size of the national cake avail-
able for private consumption. The actual national budget constraint with
positive levels of government consumption is denoted by NBC.
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Figure A: Ricardian equivalence and interest-income taxation

Now consider the usual Ricardian experiment of a tax cut in the cur-
rent period (∆θ1 < 0), matched by a tax increase in the future (∆θ2 > 0).
Assume for simplicity that initially the future tax is zero, i.e. θ2 = 0. In
that case the household budget constraint (d), denoted by HBC0 in Figure
A, coincides with the national budget constraint, NBC. The household
chooses the consumption point E0, which is at the intersection of HBC0
and the implicit Euler equation (e).

The Ricardian experiment leaves that national budget constraint (k)
unaffected but changes both the intercept and the slope of the household
budget constraint (d). The increase in θ2 raises the relative price of future
consumption, and the household chooses the consumption point E1. Of
course, by definition E1 must be located on both the national budget con-
straint, NBC, and the new household budget constraint, HBC1. The Ri-
cardian experiment is not neutral because current consumption increases
and future consumption falls. The future tax distorts the savings decision
and creates a welfare loss for the household. Expressed in terms of future
consumption, the welfare loss is given by the vertical distance between
the dashed line tangent to U0 at point E′ and the HBC1 line.

****

6.1.3 Borrowing restrictions

In the basic case considered in Section 6.1.1 we have assumed that households can
borrow/lend at the same rate of interest as the government. In practice this is un-
likely to be the case, as is evidenced by the prevalence of credit rationing of young
agents with high earning potential but no tangible appropriable collateral (slavery is
not allowed, so future labour income typically cannot serve as collateral). Further-
more, households are more risky to lend to than (stable) governments, suggesting
that the former may pay a larger risk premium than the latter. It turns out that bor-
rowing restrictions can invalidate the Ricardian equivalence proposition.
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Figure 6.2: Liquidity restrictions and the Ricardian experiment

For simplicity we return to the basic model (with exogenous labour supply) and
assume that a household is unable to borrow altogether but can lend money at the
going interest rate r1. In the case discussed so far, this would be no problem because
the household chose to be a net lender in the first period. Let us now augment the
scenario by assuming that income is low in the first period and high in the second
period. This case has been drawn in Figure 6.2. The income endowment point is
Ey

0, and the optimal consumption point in the absence of borrowing restrictions is EC
U .

This point is not attainable, however, since it involves borrowing in the first period,
which is by assumption not possible for the household. The effective choice set is
consequently only AEy

0C0
10 and the optimal consumption point (C0

1 , C0
2) is at the kink

in the budget line (at point Ey
0).

If we now conduct the Ricardian experiment of a tax cut in the first period matched
by a tax increase in the second, the income endowment point shifts along the unre-
stricted budget line AB, say to point Ey

1. As a result, the severity of the borrow-
ing constraint is relaxed and the optimal consumption point (C1

1 , C1
2) is at point Ey

1.
The effective choice set has expanded to AEy

1C1
10, and real consumption plans (and

household utility) have changed for the better.
Obviously, a similar story holds in the less extreme case where the borrowing rate

is not infinite (as in the case discussed here) but higher than the rate the government
faces. In that case the budget line to the right of the income endowment point is not
vertical but downward sloping, and steeper than the unrestricted budget line AB
(see the dashed line segments). As a result, the Ricardian experiment still leads to an
expansion of the household’s choice set and real effects on the optimal consumption
plans.
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Figure 6.3: Overlapping generations in a three-period economy

6.1.4 Finite lives

Everybody knows that there are only two certainties in life: death and taxes. Hence,
one should feel ill at ease if Ricardian equivalence only holds if households live for-
ever. In the examples discussed so far, households, the government, and the en-
tire economy last for two periods, which effectively amounts to saying that, like the
government, the household has an infinite life. Suppose that we change the model
slightly by introducing two representative households, that each live for only two
periods, and that the government and the economy last for three periods. The old
household lives in periods 1 and 2, whilst its offspring, the young household, lives
in periods 2 and 3. The structure of the overlapping generations is drawn in Figure
6.3.

We describe the old generation first. They are assumed to possess the following
lifetime utility function:

Vo = ln Co
1 +

1
1 + ρ

ln Co
2 + αVy, α ≥ 0, (6.37)

where the superscript “o” designates the old generation, and “y” the young genera-
tion. Equation (6.37) says that if α > 0, the old generation loves its offspring, in the
sense that a higher level of welfare of the young also gives rise to a higher welfare
of the old. The old can influence the welfare of the young by leaving an inheritance.
Assume that this inheritance, if it exists, is given to the young just before the end of
period 2 (see Figure 6.3). The inheritance is the amount of financial assets left over
at the end of the old generation’s life, i.e. Ao

2. Clearly, it is impossible to leave a
negative inheritance, so that the only restriction is that Ao

2 ≥ 0.
The consolidated budget restriction of the old generation is derived in the usual

fashion. The periodic budget restrictions are:

Ao
1 = (1 + r0)Ao

0 + (1− θ1)Yo
1 − Co

1, (6.38)
Ao

2 = (1 + r1)Ao
1 + (1− θ2)Yo

2 − Co
2, (6.39)
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from which Ao
1 can be eliminated to yield:

Co
1 +

Co
2 + Ao

2
1 + r1

= (1 + r0)Ao
0 + Ho ≡ Ωo, (6.40)

where Ωo is total wealth and Ho denotes human wealth of the old generation:

Ho ≡ (1− θ1)Yo
1 +

(1− θ2)Yo
2

1 + r1
. (6.41)

Equation (6.40) says that the present value of consumption expenditure (including
the bequest to the young) during life must equal total wealth. Equation (6.41) implies
that tax changes in periods 1 and 2 affect the old household via its human wealth.

In order to determine the optimal size of the bequest from the perspective of the
old generation, we need to know the link between the size of the inheritance and
lifetime utility of the young generation, i.e. we must find the relationship between
Vy and Ao

2, which we write as Vy = Φ(Ao
2). By studying the optimal choices made

by the young generation we can find the functional form for Φ(Ao
2).

By assumption the young generation has no offspring (presumably because “the
end of the world is nigh”), does not love the old generation, and hence has the stan-
dard utility function which only depends on own consumption levels:

Vy = ln Cy
2 +

1
1 + ρ

ln Cy
3 . (6.42)

Its consolidated budget restriction is derived in the usual fashion. The periodic bud-
get restrictions are:

Ay
2 = (1− θ2)Y

y
2 − Cy

2 , (6.43)

Ay
3 = (1 + r2)[Ao

2 + Ay
2] + (1− θ3)Y

y
3 − Cy

3 = 0, (6.44)

from which Ay
2 can be eliminated to yield:

Cy
2 +

Cy
3

1 + r2
= Ao

2 + Hy ≡ Ωy, (6.45)

where Ωy is total wealth and Hy is the amount of human wealth of the young gen-
eration:

Hy ≡ (1− θ2)Y
y
2 +

(1− θ3)Y
y
3

1 + r2
. (6.46)

The optimal plan for the young generation is to choose Cy
2 and Cy

3 such that (6.42)
is maximized subject to (6.45). The solutions are similar to those given in (6.16):

Cy
2 =

1 + ρ

2 + ρ
Ωy, Cy

3 =
1 + r2

2 + ρ
Ωy. (6.47)

By substituting these optimal plans into the lifetime utility function (6.42), we obtain
the expression relating optimal welfare of the young generation as a function of the
exogenous variables, including the inheritance Ao

2:

Vy = ln
(

1 + ρ

2 + ρ

)
+

1
1 + ρ

ln
(

1 + r2

2 + ρ

)
+

2 + ρ

1 + ρ
ln(Ao

2 + Hy) ≡ Φ(Ao
2), (6.48)
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where we have used the definition of Ωy. Clearly, the marginal utility (to the young)
of a bequest is positive:

Φ′(Ao
2) =

2 + ρ

1 + ρ

1
Ao

2 + Hy > 0. (6.49)

Note that the marginal utility of a bequest is diminishing in total lifetime wealth of
the young. Hence, if the young generation lives during very prosperous economic
times and has a high level of human wealth then a given-sized bequest received from
the old generation has less of an impact that if times were bleak during the young
generation’s life.

Now that we know the functional form of Φ(Ao
2), we can return to the decision

problem faced by the old generation. This generation is aware of the relationship
given in (6.48), and uses it in the decision regarding its own optimal plan. Hence,
the old generation chooses Co

1, Co
2, and Ao

2 such that (6.37) is maximized subject to
(6.40), (6.48), and the inequality restriction Ao

2 ≥ 0. The first-order conditions are
obtained by postulating the Lagrangian:

L ≡ ln Co
1 +

1
1 + ρ

ln Co
2 + αΦ(Ao

2) + λ

[
Ωo − Co

1 −
Co

2 + Ao
2

1 + r1

]
, (6.50)

so that the first-order conditions are:

∂L
∂Co

1
=

1
Co

1
− λ = 0, (6.51)

∂L
∂Co

2
=

1
(1 + ρ)Co

2
− λ

1 + r1
= 0, (6.52)

∂L
∂Ao

2
=

[
αΦ′(Ao

2)−
λ

1 + r1

]
≤ 0, Ao

2 ≥ 0, Ao
2

∂L
∂Ao

2
= 0. (6.53)

(The fourth condition, ∂L/∂λ = 0, yields the budget restriction (6.40).) Equation
(6.53) is the Kuhn-Tucker condition for the optimal inheritance Ao

2 that must be used
because of the inequality restriction (see e.g. Chiang (1984, ch. 21) and the Math-
ematical Appendix). The mathematical details need not worry us too much at this
point because the economic interpretation is straightforward. If α = 0 (unloved off-
spring), then the first expression in equation (6.53) implies that ∂L/∂Ao

2 = −λ/(1 +
r1) < 0 (a strict inequality, because (6.51) shows that λ = 1/Co

1 > 0). The comple-
mentary slackness condition, Ao

2∂L/∂Ao
2 = 0, thus implies that Ao

2 = 0. In words, no
inheritance is given to offspring that are unloved. More generally, if α is so low that
∂L/∂Ao

2 < 0, giving an inheritance would detract from the old generation’s lifetime
utility, which means that the inheritance is set at the lowest possible value of Ao

2 = 0.
Weakly loved offspring also do not receive an inheritance!

Hence, if there is to be a positive inheritance (Ao
2 > 0) then it must be because

the first expression in (6.53) holds with equality, i.e. αΦ′(Ao
2) =

λ
1+r1

. By using (6.49)
and (6.52) we thus obtain:

α(2 + ρ)

Ao
2 + Hy =

1
Co

2
. (6.54)

Furthermore, (6.51)–(6.52) can be combined to yield the familiar Euler equation for
consumption.

Co
2 =

1 + r1

1 + ρ
Co

1. (6.55)
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Finally, by using (6.40) and (6.54)–(6.55), the solutions for optimal consumption and
the (positive) inheritance can be solved:

Co
1 =

(1 + ρ) [Ωo + Hy/(1 + r1)]

(2 + ρ)(1 + α)
, (6.56)

Co
2 =

(1 + r1)Ωo + Hy

(2 + ρ)(1 + α)
, (6.57)

Ao
2 =

α(1 + r1)Ωo − Hy

1 + α
. (6.58)

Several things are worth noting. First, if α is very large (unbounded love for the
offspring) the old generation consumes next to nothing, and the bequest approaches
its maximum value of (1 + r1)Ωo. Second, the optimal bequest is decreasing in the
human wealth of the young. i.e. ∂Ao

2/∂Hy < 0. Of course, by the same logic it
follows that consumption of the old generation in both periods of life is increasing
in Hy (∂Co

1/∂Hy > 0 and ∂Co
2/∂Hy > 0).

It can now be demonstrated that, provided the optimal bequest stays positive, Ricar-
dian equivalence holds in this economy despite the fact that households have shorter
lives than the government! To prove this surprising result we proceed as follows.
Since there are now three periods, the government budget restriction is given by:

(1 + r0)B0 + G1 +
G2

1 + r1
+

G3

(1 + r1) (1 + r2)
= θ1Yo

1 +
θ2(Yo

2 + Yy
2 )

1 + r1

+
θ3Yy

3
(1 + r1) (1 + r2)

. (6.59)

As before, the left-hand side of (6.59) represents the present value of net liabilities
of the government whilst the right-hand side is the net present value of the govern-
ment’s tax income.

Consider the following Ricardian experiment: the government reduces the tax
rate in period 1 (∆θ1 < 0) and raises it in period 3 (∆θ3 > 0), such that (6.59) holds
for an unchanged path of government consumption, i.e.:

0 = Yo
1 ∆θ1 +

Yy
3

(1 + r1) (1 + r2)
∆θ3 (balanced-budget). (6.60)

Taken in isolation this experiment makes the old wealthier and the young poorer. But
what do (6.56)–(6.58) predict will be the result of this Ricardian experiment? Clearly,
from (6.56) we have that:

∆Co
1 =

1 + ρ

(2 + ρ)(1 + α)

[
∆Ωo +

1
1 + r1

∆Hy
]

. (6.61)

But (6.40)–(6.41) predict that:

∆Ωo = −Yo
1 ∆θ1 > 0, (6.62)

and (6.46) implies that:

∆Hy = −
Yy

3
1 + r2

∆θ3 = (1 + r1)Yo
1 ∆θ1, (6.63)
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where we have used (6.60) to relate ∆θ3 to ∆θ1. Hence, it follows from (6.62)–(6.63)
that ∆Ωo + (1/(1 + r1))∆Hy = 0, and (6.61) is reduced to:

∆Co
1

∆θ1
= 0, (6.64)

and, of course, also (by (6.57)):

∆Co
2

∆θ1
= 0. (6.65)

The Ricardian experiment does not affect the consumption plans of the old genera-
tion at all! Apparently they do not feel wealthier as a result of the experiment. What
is the intuition behind this result? The answer is found by totally differentiating
equation (6.58) and noting (6.62)–(6.63):

∆Ao
2 =

α(1 + r1)∆Ωo − ∆Hy

1 + α

=
−α(1 + r1)Yo

1 − (1 + r1)Yo
1

1 + α
∆θ1 = −(1 + r1)Yo

1 ∆θ1 > 0. (6.66)

The entire tax cut is simply added to the inheritance. In period 1 the old generation
buys government bonds (that have just been emitted by the government to finance its
deficit, hence there is no upward pressure on the interest rate!) on which it receives
interest. The additional bonds plus interest are added to the inheritance so that the
young generation is able to meet its higher tax bill. Equations (6.45)–(6.47) and (6.66)
therefore predict that the consumption of the young generation is unchanged as well:

∆Ωy = ∆Ao
2 −

Yy
3

1 + r2
∆θ3

= −(1 + r1)Yo
1 ∆θ1 −

Yy
3

1 + r2
· −

Yo
1 (1 + r1) (1 + r2)

Yy
3

∆θ1 = 0, (6.67)

which implies that

∆Cy
2 = ∆Cy

3 = 0. (6.68)

In conclusion, the fact that individual lives are finite does not mean that Ricardian
equivalence automatically fails. Provided future generations are linked to the cur-
rent generation through operative (positive) bequests, the unbroken chain of con-
nected generations ensures that Ricardian equivalence holds. Of course, once a
single link of the chain snaps (zero bequests, childless couples), generations are no
longer linked and Ricardian equivalence does not hold in general. In closing we note
that leaving no inheritance is the optimal feasible strategy if the degree of “altruism”
α is low, or if future income growth is high.4 Students should test their understand-
ing of this material by showing that Ricardian equivalence also fails, even if there are
positive inheritances, if there is an inheritance tax that is varied in the experiment.

6.1.5 Some further reasons for Ricardian non-equivalence

Distortionary taxes, borrowing constraints, and finite lives may invalidate the Ricar-
dian equivalence theorem. A fourth reason why this theorem may fail is the occur-
rence of net population growth, by which we mean the future arrival of new agents

4Barring transfers in the opposite direction, i.e. from child to parent.
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that are not connected—via operative bequests—to agents who are currently alive.
Intuitively, the burden of future taxation is borne by more shoulders, so that the bur-
den per capita is lower for future generations than for current generations. Hence,
one expects real effects from a Ricardian experiment that shifts taxation to the future.
(We demonstrate this with a formal model in Chapter 13 below.)

A fifth reason why Ricardian equivalence may fail has to do with issues such as
irrationality, myopic behaviour, and lack of information. Households may not be as
farsighted and rational as we have assumed so far, and may fail to fully understand
the implications of the government budget restriction. Furthermore, they may sim-
ply not have the cognitive power to calculate an optimal dynamic consumption plan,
and simply stick to static “rule of thumb” behaviour like “spend a constant fraction
of current income on consumption goods”.

A sixth reason why Ricardian equivalence may fail has to do with the “bird in
the hand” issue. A temporary tax cut, accompanied by a rise in government debt,
acts as an insurance policy and thus leads to less precautionary saving and a rise
in private consumption (Barsky et al., 1986). The main idea is that the future rise
in the tax rate reduces the variance of future after-tax income, so that risk-averse
households have to engage in less precautionary saving. A temporary tax cut thus
has real effects, because it is better to have one bird in the hand than two in the bush.
This critique of Ricardian debt equivalence relies on the absence of complete private
insurance markets. A related reason for failure of debt equivalence is that people are
uncertain of what their future income and thus also what their future bequests will
be (Feldstein, 1988). People may thus value differently, on the one hand, spending a
sum now, and, on the other hand, saving the sum of money and then bequeathing.

Finally, a frequently stated but incorrect “reason”and popular argument is that
government debt matters in as far as it has been sold to foreigners. The idea is that
in the future our children face a burden, because they have to pay higher taxes in
order for the government to be able to pay interest on and redeem government debt
to the children of foreigners. A rise in government debt is thus thought to constitute
a transfer of wealth abroad. However, the original sale of government debt to for-
eigners leads to an inflow of foreign assets whose value equals the present value of
the future amount of taxes levied on home households which is then paid as interest
and principal to foreigners. Hence, this critique of Ricardian debt equivalence turns
out to be a red herring.5

6.1.6 Empirical evidence

The Ricardian equivalence theorem has been the subject of many empirical tests ever
since its inception by Barro (1974). Much of the relevant literature was surveyed
by Bernheim (1987) and Seater (1993). There is a substantial part of the empirical
literature that finds it hard to reject the Ricardian equivalence theorem. Nevertheless,
the jury is still out as solid tests with microeconomic data still have to be performed.
Even though Seater (1993) concludes that debt equivalence is a good approximation,
Bernheim (1987) in his survey comes to the conclusion that debt equivalence is at
variance with the facts. Even though debt equivalence is from a theoretical point of
view invalid, and according to most macroeconomists empirically invalid as well,
one might give the supporters of Ricardian debt equivalence, for the time being,
the benefit of the doubt when they argue that the Ricardian proposition is from an

5It must be stressed that in Intermezzo 6.2 Ricardian equivalence fails not because we study an open
economy but because a distorting interest-income tax is varied in the experiment.



CHAPTER 6: THE GOVERNMENT BUDGET DEFICIT 213

empirical point of view not too bad. Hence, in the following section we see what role
there is for government debt if Ricardian equivalence is assumed to hold.

6.2 The theory of government debt creation

Is there any role for government debt if it barely affects real economic outcomes
such as investment and consumption? According to the neoclassical view of pub-
lic finance the answer is yes. Government debt can be quite useful to mitigate the
intratemporal distortions arising from government policy. In particular, govern-
ment debt may be used to smooth tax rates and thus to minimize the distortive-
ness of the tax system and to reduce fluctuations in private consumption over time.
Such neoclassical views on public finance give prescriptions for government bud-
get deficits and government debt that are more or less observationally equivalent to
old-fashioned Keynesian views on the desirability of countercyclical policy. After a
simple discussion of the intertemporal aspects of the public sector accounts, we re-
view the principle of tax smoothing in a simple two-period model. In the light of
this discussion we are able to comment on the golden rule of public finance as well
as some other rules of thumb.

6.2.1 A simple model of tax smoothing

Assume that the policy maker can only raise revenue by means of a distorting tax
system (e.g. labour taxes). Assume furthermore, that there are costs associated with
enforcing the tax system, so-called “collection costs”, and suppose that we can mea-
sure the welfare loss of taxation (LG) as a quadratic function of the tax rates (θ1 and
θ2), and a linear function of income levels in the two periods (Y1 and Y2):

LG ≡ 1
2 θ2

1Y1 +
1
2

θ2
2Y2

1 + ρG
, ρG > 0, (6.69)

where ρG is the (policy maker’s) political pure rate of time preference. We continue
to assume that household income is exogenous. Intermezzo 6.3 provides a simple
example in which direct collection costs are absent but a labour-income tax gives
rise to a welfare loss that is approximately quadratric in the tax rate and linear in the
income measure. This intermezzo also clarifies how a labour income tax distorts the
labour supply choice.

The government budget restrictions (6.6)–(6.7) are generalized somewhat by dis-
tinguishing between consumption and investment expenditure by the government,
denoted by GC

t and GI
t , respectively (t = 1, 2):

(D1 ≡) r0B0 + GC
1 + GI

1 − θ1Y1 = B1 − B0, (6.70)

(D2 ≡) r1B1 + GC
2 − RI

2 − θ2Y2 = B2 − B1 = −B1, (6.71)

where Dt is the deficit in period t and RI
2 is the gross return on public investment

obtained in period 2. The net rate of return, rG
1 , on such investments can determined

by employing the definition RI
2 ≡ (1 + rG

1 )G
I
1, or:

rG
1 ≡

RI
2 − GI

1
GI

1
. (6.72)
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Obviously it makes no sense for the government to invest in period 2 since the world
ends at the end of that period (hence GI

2 = 0). Note furthermore that (6.70)–(6.71)
also imply the following relationship between the deficits in the two periods and the
initial debt level:

D1 + D2 + B0 = 0. (6.73)

To the extent that the initial debt level is positive (B0 > 0), the sum of the deficits
in the two periods must be negative (i.e. amount to a surplus). The consolidated
government budget restriction can be obtained in the usual fashion:

[B1 =] (1 + r0)B0 + GC
1 + GI

1 − θ1Y1 =
θ2Y2 + (1 + rG

1 )G
I
1 − GC

2
1 + r1

⇒

Ξ1 = θ1Y1 +
θ2Y2

1 + r1
, (6.74)

where Ξ1 is the present value of the net liabilities of the government:

Ξ1 ≡ (1 + r0)B0 + GC
1 +

GC
2

1 + r1
+ (r1 − rG

1 )
GI

1
1 + r1

. (6.75)

We immediately see the golden rule of government finance: as long as rG
1 = r1, gov-

ernment investment expenditure can be debudgeted from the government budget
constraint. In words, public investments that attain the market rate of return do not
give rise to a net liability of the government and hence do not necessitate present or
future taxation. They can be financed by means of debt without any problem (more
on this below).

Intermezzo 6.3

Welfare loss of taxation. In this intermezzo we compute the welfare loss
of a labour income tax. We use a simple static model and show that this
loss is (approximately) quadratic in the tax rate. The example is meant
to clarify and motivate the form of the objective function of the policy
maker as it is postulated in equation (6.69) in the text.

The representative household has a Cobb-Douglas utility function
featuring consumption, C, and leisure, 1− N:

U = Cε (1− N)1−ε , 0 < ε < 1, (a)

where U is utility. The household budget constraint is given by:

PC− (1− θ)WN = 0, (b)

where P is the price of the consumption good and W is the before-tax rate.
The labour income tax is given by θ, so W̄ ≡ (1− θ)W is the after-tax
wage rate. The key thing to note is that the household has no non-labour
income at all.

To study the welfare cost of the labour income tax we follow the ex-
penditure function approach of Diamond and McFadden (1974). In for-
mal terms, the expenditure function is defined in this case as:

E(P, W̄, U0) ≡ min
{C,N}

PC− W̄N
∣∣∣ U0 = Cε (1− N)1−ε (c)
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= −W̄ +

(
P
ε

)ε ( W̄
1− ε

)1−ε

U0. (d)

Expression (d) is obtained by using the Lagrange multiplier method to
solve the constrained minimization problem contained in (c) and sub-
stituting the results for C and 1 − N back into the objective function,
PC − W̄N. Intuitively, E(P, W̄, U0) represents the minimum possible
amount of spending on C and −N such that, at given prices P and W̄,
the utility level U0 is attained. Assume that in the initial situation there is
no labour income tax, so that W = W̄. Obviously, since there is no non-
labour income, it follows that E(P, W, U0) = 0. (If there would be non-
labour income, say equal to Y0, then the budget constraint (b) would be
modified to PC− W̄N = Y0 and we would have that E(P, W, U0) = Y0.)
Shephard’s lemma is a very useful property of the expenditure function. It
says that the Hicksian (utility-constant) consumption demand and labour
supply are obtained by differentiating the expenditure function with re-
spect to the relevant price:

CD(W̄/P, U0) =
∂E(P, W̄, U0)

∂P
=

(
ε

1− ε

W̄
P

)1−ε

U0, (e)

NS(W̄/P, U0) = −
∂E(P, W̄, U0)

∂W̄
= 1−

(
ε

1− ε

W̄
P

)−ε

U0, (f)

where the superscripts “D” and “S” stand for, respectively, demand and
supply.

Figure A: Labour market equilibrium

Labour is assumed to be the only factor of production. The perfectly com-
petitive representative firm faces the constant returns to scale production
function, Y = ω0N, where ω0 is a positive constant. Profit maximiza-
tion yields a horizontal labour demand function, i.e. the demand price of
labour is:

W
P

= ω0, (g)
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and excess profit is zero (thus rationalizing the absence of non-labour
income for the representative household). The situation on the labour
market has been illustrated in Figure A, where ND

0 is the initial labour
demand curve and NS is the Hicksian labour supply curve. Since there
is no tax initially, the market clearing real wage rate equals ω0 and the
equilibrium occurs at point E0.

Now consider the situation in the presence of a positive labour in-
come tax, θ. Since the after-tax wage to consumers is plotted on the verti-
cal axis, labour demand is now given by ND

1 and W̄/P = (1− θ)ω0. In a
Hicksian sense, labour market equilibrium occurs at point E1, where em-
ployment is equal to N1. We define the Hicksian tax revenue, expressed
in units of the consumption good, as:

T(θ, ω0, U0) ≡ θω0N1 = θω0NS((1− θ)ω0, U0). (h)

This tax revenue is represented by the area abE1c in Figure A. The welfare
loss due to the tax is measured by the area aE0E1c:

welfare loss ≡
∫ ω0

(1−θ)ω0

NS(s, U0)ds

=
∫ ω0

(1−θ)ω0

[
1−

(
ε

1− ε

)−ε

s−εU0

]
ds

= θω0 −
(

1
ε

)ε ( ω0

1− ε

)1−ε

U0

[
1− (1− θ)1−ε

]
= E(1, (1− θ)ω0, U0)− E(1, ω0, U0)

= E(1, (1− θ)ω0, U0), (i)

where we have set P = 1 in the various expressions because the con-
sumption good acts as the numeraire commodity. In going from the third
to the fourth third line we have used the fact that E(1, ω0, U0) = 0 (see
above). The welfare loss thus represents the amount of lump-sum income
one would have to give the representative household in order to attain
the initial utility level U0 at the tax-inclusive real wage rate, (1− θ)ω0.
We can now follow Diamond and McFadden (1974, p. 5) and define the
excess burden (or deadweight loss) associated with the tax as follows:

EB ≡ E(1, (1− θ)ω0, U0)− T(θ, ω0, U0). (j)

Intuitively, the excess burden measures the difference between the
amount needed for compensation of the household and the revenue that
is collected from the household.
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Figure B: Optimal consumption and labour supply

The excess burden can be represented graphically with the aid of Fig-
ure B. In that figure, the indifference curve is given by:

C = (1− N)(ε−1)/ε U1/ε
0 , (k)

and the pre-tax and post-tax budget lines are given by, respectively,
C = ω0N and C = (1− θ)ω0N. Clearly, the indifference curve is up-
ward sloping and convex, and labour supply cannot exceed unity. The
initial equilibrium is at point E0 whilst the new (compensated, utility-
constant) equilibrium is at point E1. Point E1 is found by finding the
point of tangency between the indifference curve and a line parallel to
the post-tax budget line. The vertical intercept represents the expendi-
ture needed to attain U0 at the new after-tax wage rate, i.e. the line
segment ac is equal to E(1, (1− θ)ω0, U0). Note that, by construction,
we have that E(1, (1− θ)ω0, U0) = C1 − ω0N1 + T(θ, ω0, U0). Next we
draw a line through point E1 that is parallel to the initial budget line.
This line has the general form C = z + ω0N. Since this line passes
through the new compensated equilibrium point (C1, N1), we must have
that z = E(1, (1− θ)ω0, U0)− T(θ, ω0, U0). It thus follows that the line
segment bc in Figure A represents the excess burden of the tax, whereas
the line segment ab is the compensated tax revenue.

It remains to derive the relationship between the excess burden and
the tax rate. By using (d), (f), (h), and (j) we find after some manipulation
that:

EB = −ω0 +

(
1
ε

)ε ( ω0

1− ε

)1−ε

U0 f (θ) , (l)

where f (θ) is defined as:

f (θ) ≡ 1− εθ

(1− θ)ε , for 0 ≤ θ < 1. (m)
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It is straightforward to find that f (0) = 1, f ′ (0) = 0, and f ′′ (0) =
ε (1− ε), so a quadratic approximation of f (θ) around θ = 0 gives
f (θ) ≈ 1 + 1

2 ε (1− ε) θ2. Using this result in (l) yields:

EB ≈ −ω0 +

(
1
ε

)ε ( ω0

1− ε

)1−ε

U0

[
1 + 1

2 ε (1− ε) θ2
]

= E(1, ω0, U0) +
1
2 θ2 (1− ε)

(
εω0

1− ε

)1−ε

U0

= 1
2 θ2 (1− ε)Y0, (n)

where we have used the fact that E(1, ω0, U0) = 0 in going from the first
to the second line, and C0 = Y0 =

( εω0
1−ε

)1−ε U0 in going from the second
to the third line. The ultimate expression in (n) shows that the excess
burden is quadratic in the tax rate and linear in output.

****

The (exogenously given) growth rate of income in this economy is defined as
γ ≡ (Y2 −Y1) /Y1, so that we can write Y2 = (1 + γ)Y1, and everything can be
written in terms of Y1. Specifically, the welfare loss function (6.69) can be rewritten
as:

LG ≡
[

1
2 θ2

1 +
1
2

1 + γ

1 + ρG
θ2

2

]
Y1, (6.76)

whilst the consolidated budget constraint (6.74) becomes:

ξ1 = θ1 +
1 + γ

1 + r1
θ2, (6.77)

where ξ1 ≡ Ξ1/Y1 is net government liabilities expressed as a share of income in the
first period:

ξ1 ≡ gC
1 +

1 + γ

1 + r1
gC

2 +
r1 − rG

1
1 + r1

gI
1 + (1 + r0)b0, (6.78)

and where gC
t ≡ GC

t /Yt, gI
1 ≡ GI

1/Y1, and b0 ≡ B0/Y1.
The policy maker is assumed to minimize the welfare loss due to distortionary

taxation (6.76), subject to the revenue requirement restriction (6.77) and taking as
given ξ1. We thus assume that government consumption and investment spending
are exogenous. i.e. only the taxation decision is “on the table” in this model. The
Lagrangian is:

L ≡
[

1
2 θ2

1 +
1
2

1 + γ

1 + ρG
θ2

2

]
Y1 + λ

[
ξ1 − θ1 −

1 + γ

1 + r1
θ2

]
, (6.79)

where λ is the Lagrange multiplier. The key first-order conditions are:

∂L
∂θ1

= θ1Y1 − λ = 0, (6.80)
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∂L
∂θ2

=
1 + γ

1 + ρG
θ2Y1 − λ

1 + γ

1 + r1
= 0, (6.81)

and the third condition, ∂L/∂λ = 0, yields the revenue requirement restriction
(6.77). By combining (6.80)–(6.81), the Euler equation for the government’s optimal
taxation problem is obtained:

θ2 =
1 + ρG
1 + r1

θ1. (6.82)

This expression is intuitive: a short-sighted government (ρG greater than r1) would
choose a low tax rate in the current period and a high one in the future (θ2 > θ1).
In doing so, the “pain” of taxation is postponed to the future. The opposite holds
for a very patient policy maker. This is called the tax-tilting effect by Ghosh (1995, p.
1034).

Equations (6.77) and (6.82) can be combined to solve for the levels of the two tax
rates:

θ1 =
(1 + r1)

2ξ1

(1 + r1)2 + (1 + γ)(1 + ρG)
, (6.83)

θ2 =
(1 + ρG)(1 + r1)ξ1

(1 + r1)2 + (1 + γ)(1 + ρG)
. (6.84)

Since b0 is predetermined and b2 = 0, the optimal path of government debt is fully
characterized by b1 ≡ B1/Y2 which, by using (6.70), can be written as:

(1 + γ)b1 = (1 + r0)b0 + gC
1 + gI

1 − θ1. (6.85)

For given values of b0, gC
1 , gC

2 , and gI
1, the value of ξ1 follows readily from (6.78), and

equations (6.83)–(6.85) determine the optimal choices for θ1, θ2, and b1. We observe
that the existing debt, b0, exerts an influence on the optimal tax rates only via ξ1. In
that sense it is only of historical significance: the debt was created in the past and
hence leads to taxation now and in the future.

The optimal taxation problem is illustrated in Figure 6.4. The straight line through
the origin is the Euler equation (6.82), and the downward sloping line is the revenue
requirement line (6.77). The concave curves are iso-welfare loss curves (i.e. com-
binations of θ1 and θ2 for which LG is constant). The closer such a curve is to the
origin, the smaller is the welfare cost of taxation. The given revenue is raised with
the smallest possible welfare loss at the point of tangency between a given revenue
requirement line and an iso-welfare loss curve. This happens at point E.

6.2.2 Implications from the tax smoothing model

In this subsection we employ a special case of the tax-smoothing theory that is ob-
tained by assuming that r1 = ρG. In that case, the tax-tilting effect is absent and
(6.83)–(6.84) predict that the two tax rates are equal in the two periods:

θ1 = θ2 =
1 + r1

2 + r1 + γ
ξ1. (6.86)

Debt is used to keep the tax rates constant (perfectly smoothed over time), hence
the name “tax smoothing”. In order to facilitate the graphical interpretation of the
tax smoothing optimum and to derive some of its key implications, we use equation
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Figure 6.4: Optimal taxation

(6.70) and express the deficit in the first period in terms of national income in that
period:

d1 = r0b0 + gC
1 + gI

1 − θ1, (6.87)

where d1 ≡ D1/Y1. Similarly, in view of (6.73), the adding-up constraint can be
written as d1 + (1 + γ) d2 + b0 = 0, so that the deficit in the second period satisfies:

d2 = − b0 + d1

1 + γ
, (6.88)

where d2 ≡ D2/Y2. We can now define the spending point as that (θ1, θ2) combination
along the revenue requirement line for which d1 = 0. As is clear from (6.87), the first-
period tax exactly covers government spending on goods and interest payments on
pre-existing debt in the first period. For points along the revenue requirement line
that lie south-east from the spending point, the first period tax is more than high
enough to cover first-period spending and, as a result, there is a first-period surplus
(d1 < 0). The opposite holds for points north-west of the spending point. In Figure
6.5 it is assumed that the spending point is at ES

0 on the revenue-requirement line
RRL0. Since the optimal taxation point ET

0 lies north-west from the spending point
ES

0 , there is a first-period deficit equal to da
1 in the lower panel. Note that DL0 is the

deficit locus, i.e. the graphical representation of equation (6.87).
With the aid of this simple model a number of “rules of thumb” can be derived

for the government’s finances.

Rule #1 Government investment projects exactly earning the market rate of return
can be financed by means of debt. As was mentioned above, if rG

1 = r1 then
public investments do not feature in the expression for ξ1—see (6.78). Hence,
if the government decides to increase gI

1 then optimal taxes are unchanged but
the deficit and public debt both increase, i.e. ∆d1 = (1+γ)∆b1 = ∆gI

1. In terms
of Figure 6.5, in such a scenario the spending point moves from ES

0 to ES
1 , the

deficit line shifts to DL1, the optimal taxes remain unchanged, and the increase
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Figure 6.5: Optimal taxation, tax smoothing, and deficit financing
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in infrastructural government spending is accommodated by an increase in the
first-period deficit from da

1 to db
1.

Rule #2 Public consumption spending and losses on public investment projects should
be financed by means of taxation. Of course, by the same logic, profits on pub-
lic investments must be used to reduce taxes.

Rule #3 The composition of a given level of ξ1 does not matter. Consider, for ex-
ample, a temporary rise in government consumption, i.e. an increase now that
is exactly offset by a decrease in the future, or (1 + r1)∆gC

1 = − (1 + γ)∆gC
2 .

Since ξ1 is unchanged, optimal tax rates are unchanged and debt financing is
called for. In terms of Figure 6.5 the change only shifts the spending point (say
from ES

0 to ES
1 ) but leaves the optimal taxation point unaffected. The tempo-

rary increase in government spending is thus accommodated by an increase
in the first-period deficit (and hence debt). This is a neoclassical policy pre-
scription that looks a lot like old-fashioned Keynesian countercyclical policy.
During (temporary) recessions government consumption may be higher and
there is no harm in letting the debt increase a little bit provided future gov-
ernment consumption is curbed appropriately. (Of course, the tax smoothing
model employed here does not include a description of the macro-economy
so the similarity between the neoclassical and Keynesian prescriptions is only
suggestive.)

Rule #4 If there is a change in the government’s net liabilities, ξ1, then it is optimal
to adjust both tax rates immediately. For example, assume that the government
credibly announces that it will lower its consumption spending in the future
(∆gC

2 < 0). Then both tax rates should be lowered immediately. In terms of
Figure 6.5, the revenue requirement line shifts from RRL0 to RRL1, the opti-
mal taxation point shifts to ET

1 , and the spending point moves from ES
0 to ES

2
directly below it. The first-period deficit increases from da

1 to dc
1 as a result.

Mathematically, we obtain ∆d1/∆gC
2 = −(1 + γ)/(2 + r1 + γ).

Rule #5 If the government decides to implement a so-called “balanced decline” of
the public sector, for which ∆gc

1 = ∆gc
2 = ∆g < 0, then both tax rates should be

reduced and there is no effect on the first-period deficit, i.e. ∆θ1 = ∆θ2 = ∆g
and ∆d1 = 0. In terms of Figure 6.5 the spending point shifts from ES

0 to ES
3 ,

the optimal taxation point moves from ET
0 to ET

1 , and the deficit line shifts from
DL0 to DL2.

6.3 Punchlines

In this chapter two concepts, both relating to the government budget constraint, are
introduced and analysed, namely the so-called Ricardian equivalence theorem (RET)
and the theory of tax smoothing.

Starting with the first of these, the RET can be defined as follows. For a given
path of government spending, the particular financing method used by the government
(bonds or taxes) does not matter. More precisely, when the RET is valid, the financing
method of the government does not affect real consumption, investment, output,
and welfare, and government debt is seen as a form of delayed taxation. It must be
stressed that the RET is not a statement about the effects of government consumption
but rather deals with the way these expenditures are paid for by the government.
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The intuition behind the RET is quite simple. If the government cuts taxes today
and finances the resulting deficit by means of debt, then households will realize that,
since total resources claimed by the government have not changed in present value
terms, eventually the tax will have to be raised again sometime in the future. To
ensure that it will be able to meet its future tax bills, the household reacts to the tax
cut by saving it. The tax cut does not affect the lifetime resources available to the
households and thus does not affect their consumption plans either.

Although the RET was not taken seriously by David Ricardo himself, it was (and
still is) taken seriously by most new classical economists. A lot of objections have,
however, been raised against the strict validity of the RET. First, if the Ricardian
experiment involves changing one or more taxes which distort economic decisions
(for example, because labour supply is endogenous and reacts to the timing of taxes)
then the RET will fail. Intuitively, the lifetime resources available to the households
will in that case depend on the particular time path of taxes and not just on the
present value of taxes.

Second, if the household is unable to borrow freely, for example because future
labour income cannot be used as collateral, then the RET fails. Again, the reason for
this failure is that the household choice set (and the severity of the household’s bor-
rowing constraints) is affected by the time path of taxes chosen by the government.

Third, if households have finite lives whilst the government (and the economy
as a whole) is infinitely lived, the RET may or may not be valid. It turns out that
it matters whether the overlapping generations which populate the economy are
altruistically linked with each other or not. Generations are altruistically linked if
they care about each other’s welfare (like children caring for their parents or vice
versa). In the absence of intergenerational altruism, the the RET fails. Intuitively,
a tax cut now matched (in present value terms) by a tax hike later on will make
present generations wealthier and future generations poorer. With intergenerational
altruism it is possible that the RET holds because transfers between generations will
take place. Intuitively, a tax cut today will be passed on to future generations in the
form of an (additional) inheritance.

Other objections to the RET relate to net population growth, informational prob-
lems (irrationality, myopia, and lack of information), and the so-called “bird in the
hand” fallacy. The upshot of the discussion is that there are ample theoretical reasons
to suspect that the RET is not strictly valid. Unfortunately, as is often the case, the
empirical evidence regarding the approximate validity of the RET is inconclusive.

Even if one is willing to assume that the RET is valid, this does not mean that
public debt has no role to play in the economy. Indeed, according to the theory of
tax smoothing the government can use public debt to smooth its tax rates over time.
To the extent that these tax rates are distorting the behaviour of private agents, tax
smoothing is socially beneficial because it minimizes the distortions of the tax system
as a whole. A number of intuitive “rules of thumb” follow from the theory.

Further reading

Although he did not use the term as such, the notion of Ricardian equivalence was
introduced to modern macroeconomists by Barro (1974). Buchanan (1976) coined the
term “Ricardian equivalence theorem,” and O’Driscoll (1977) documents Ricardo’s
own misgivings about the result that is now known under his name. For good survey
articles on Ricardian equivalence, see Bernheim (1987) and Seater (1993). Bernheim
and Bagwell (1988) are very critical of the dynastic approach used by Barro and ar-
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gue that it should not be used to study the effects of public policies. They take the
altruistic approach as given, and demonstrate that there will be strong inter-family
linkages in such a setting (due to marriages, etcetera). This in turn will produce neu-
trality results that are unrealistically strong (such as the equivalence of distorting
taxes and lump-sum taxes, and the inability of governments to engage in redistribu-
tion). Arguing backwards, they conclude that there must be something wrong with
the dynastic approach itself.

The earliest contributions to the macroeconomic theory of tax smoothing are
by Prescott (1977) and Barro (1979). Subsequent contributions to the literature in-
clude Lucas and Stokey (1983), Kingston (1984, 1991), Roubini (1988), Huang and
Lin (1993), Ghosh (1995), and Fisher and Kingston (2004, 2005). As was pointed out
by Sargent (2001), in a stochastic framework the optimal time path of taxes depends
critically on whether or not the government is able to issue state-contingent debt.
Whereas the tax smoothing literature typically assumes government spending to be
exogenous, Judd (1999) presents an analysis of the joint determination of optimal
taxation and spending in a deterministic setting.

Readers interested in the various issues surrounding the government budget con-
straint and the deficit are referred to Buiter (1985, 1990). The intertemporal con-
sumption model used in this chapter is due to Fisher (1930). Further results on the
two-period consumption model are presented by Obstfeld and Rogoff (1996, ch. 1).
See Deaton (1992) and Attanasio (1999) for advanced surveys of intertemporal con-
sumption theory.



Chapter 7

A closer look at the labour
market

In the previous chapters we have demonstrated that the aggregate labour market
forms a crucial component of most short-run macroeconomic models. Up to this
point the focus has been on identifying the determinants of aggregate demand and
supply on that market. In this chapter and the next we delve a little deeper into the
labour market. More specifically, the goal of this chapter is to discuss the following
issues:

1. What are some of the most important stylized facts about the labour market in
advanced capitalist economies?

2. How can we explain some of these stylized facts with the standard model of
the labour market used so far? How do these theories fall short of providing a
full explanation?

3. How does the tax system affect the macroeconomic labour market and which
side of the market ends up bearing the tax burden?

4. What models of trade union behaviour exist, and what do they predict about
unemployment?

5. What do we mean by efficiency wages and how do they lead to equilibrium
unemployment?

7.1 Some stylized facts

The stylized facts about the labour market in advanced capitalist countries can be
subdivided into the two categories of time series evidence and cross-section informa-
tion. The main indicator of labour market performance is the unemployment rate.
Ever since the Great Depression of the 1930s this has been at the forefront of macro-
economic research. The following stylized facts about unemployment can be estab-
lished for most countries in the Western world (see Layard et al. (2005, ch. 1) for
further details).
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(a) United States (b) Japan

(c) Netherlands (d) Sweden

Figure 7.1: Postwar unemployment in selected OECD countries

Stylized Fact 1: The unemployment rate fluctuates over time In Figure 7.1 we
plot the unemployment rate for a number of regions and countries for the post-war
period.1 Several things are worth noting. First, in all countries depicted the unem-
ployment rate fluctuates quite a lot over time. Second, in the two European countries
unemployment was relatively low and stable up until the time of the first oil shock
in 1973. After that, for about a decade the employment rate followed a steady trend
upward in the Netherlands, peaking in the early eighties after which a downward
trend in the unemployment rate is clearly visible. Interestingly, Sweden experienced
a low and steady unemployment rate until the beginning of the 1990s after which it
experienced an upward trend (as the Dutch did a decade before). Third, the impact
of the great financial crisis is clearly visible for all countries from 2009 onward.

Stylized Fact 2: Unemployment fluctuates more between business cycles than
within business cycles In Figure 7.2 we plot the unemployment rate for the US
and the UK for extended periods of time.2 The Great Depression truly deserves its

1The data for 1955-1990 are taken from Layard et al. (2005, pp. 526–528). Subsequent data are gathered
from various issues of the OECD Employment Outlook. Where possible we make use of standardized
unemployment data.

2The data for the period until 1993 have been taken from Mitchell (1998a, pp. 163, 165, 168–169) for the
United Kingdom and from Mitchell (1998b, pp. 112, 114) for the United States. The data for the period



CHAPTER 7: A CLOSER LOOK AT THE LABOUR MARKET 227

name, especially in the US. Unemployment was very high for a prolonged period
of time and peaked at close to 25%! Another thing to note is that, if unemployment
were purely a business-cycle phenomenon, one would expect a much more regular
pattern than the one observed in these figures. To put the same argument somewhat
differently, the time series of unemployment displays a lot of persistence; much more
than is consistent with the business cycle. To demonstrate this phenomenon, we fol-
low Layard et al. (2005, p. 77) and regress unemployment on its own lagged variable
and a constant. For the UK during the period 1856-2014 we find:

Ût = 0.7305
(2.97)

+ 0.8575
(20.88)

Ut−1, R̄2 = 0.734, (7.1)

whilst for the US during the period 1891-2014 we obtain:

Ût = 1.0157
(2.64)

+ 0.8548
(18.30)

Ut−1, R̄2 = 0.731, (7.2)

where Ut is the actual unemployment rate at time t and Ût is the unemployment rate
predicted by the regression equation. The numbers in parentheses are the estimated
t-statistics of the coefficient estimates and R̄2 is the coefficient of determination cor-
rected for the degrees of freedom (i.e. the sample proportion of the variability in
the dependent variable that is explained by the model). In both countries the coef-
ficient for lagged unemployment is high (and close to unity) and highly significant.
This suggests a lot of persistence in the unemployment time series. High persistence
implies that it takes a long time before the effects of a particular shock die out (see
equation (7.6) below).

Stylized Fact 3: The duration of unemployment spells differs between countries
Even if countries have exactly the same unemployment rate, the composition of this
labour market indicator may be quite different. In particular, in most European coun-
tries a substantial fraction of the unemployed have been jobless for more than one
year. In contrast, in the United States (at least in the years before the great finan-
cial crisis) such long-term unemployment is much less severe. Broadly speaking,
in the United States the inflow from employment to unemployment (the rate of job
losses) is much higher than in Europe, but so is the outflow from unemployment to
employment (the rate of job finding). As a result unemployment spells are shorter
in the United States than in the European countries. We shall return to the topic of
unemployment duration in Chapter 8.

Stylized Fact 4: In the very long run unemployment shows no trend This fact has
been graphically illustrated in Figure 7.2. Although there are sharp peaks and deep
troughs, there does not seem to be any noticeable trend in the unemployment rate
for the US and the UK. This is all the more remarkable in view of the enormous pro-
ductivity gains that have been made in the last century and a half. Apparently, the
nineteenth century Luddite fear of physical capital permanently pushing workers
into unemployment has proved unfounded.

More formally, and in terms of equations (7.1)–(7.2), the coefficient of the lagged
unemployment rate is high but less than unity. Ultimately, there are mechanisms at
work whereby unemployment returns to some average level. The convergence to
this average level is very slow, however, as can be demonstrated as follows. From

1994-2014 have been taken from OECD (2001, Table 21), OECD (2006, Table A), and OECD (2015).
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(a) United Kingdom, 1855–2014

(b) United States, 1890–2014

Figure 7.2: Unemployment over the centuries
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equations like (7.1)–(7.2) we can determine the long-term steady-state unemploy-
ment rate Ū. First, we write the equations in general form as:

Ut = α0 + α1Ut−1, 0 < α1 < 1, (7.3)

where α0 is the intercept and α1 is the coefficient for the lagged dependent variable.
Next we note that in the steady state, Ut = Ut−1 = Ū, so that it follows from (7.3)
that Ū = α0/ (1− α1). Using the estimates from (7.1), for example, we find that Ū =
0.7305/ (1− 0.8575) = 5.13% for the UK.3 From (7.3) we can compute the adjustment
speed by solving the difference equation for Ut. Suppose that the unemployment
rate at time t = 0 (the reference period) is equal to U0. Then (7.3) can be solved by
repeated substitutions of the kind:

U1 = α0 + α1U0,
U2 = α0 + α1U1 = α0 + α1 [α0 + α1U0]

...
...

Ut = α0

[
1 + α1 + α2

1 + ... + αt−1
1

]
+ αt

1U0. (7.4)

This expression can be rewritten in the following (more elegant) form:4

Ut − Ū = [U0 − Ū] αt
1. (7.5)

Equation (7.5) can be used to determine how long it takes for any discrepancy be-
tween U0 and Ū to be eliminated. Suppose that the unemployment rate is currently
U0 and the long-run unemployment rate is Ū. How many periods does it take, for
example, before half of the difference [U0 − Ū] is eliminated? The answer, which we
denote by tH , is called the half-life of the adjustment. Intuitively, we can use tH as
an indicator for the adjustment speed in the system. It is calculated as follows:

UtH − Ū ≡ [U0 − Ū] αtH
1 = 1

2 [U0 − Ū] ⇒
αtH

1 = 1
2 ⇒

tH ln α1 = − ln 2 ⇒ tH = − ln 2
ln α1

. (7.6)

For the UK this amounts to tH = − ln 2/ ln 0.8575 = 4.51 years (see (7.1)). Hence,
it takes almost five years before half of the difference between the actual and the
long-run unemployment rate is eliminated.

Stylized Fact 5: The level of the unemployment rate differs a lot between coun-
tries As we can see from Figure 7.1 the level of the rate of unemployment differs a
lot even between supposedly similar advanced OECD countries like the US, Japan,
the Netherlands, and Sweden. And even within Europe there are marked differ-
ences, with Sweden currently experiencing high unemployment compared to the
Netherlands (where it used to be the other way around in the 1980s).

3We ignore the fact that we are using estimates for α0 and α1, and should really be constructing confi-
dence intervals for Ū.

4The trick is to write the term in square brackets as:

1 + α1 + α2
1 + · · ·+ αt−1

1 =
1− αt

1
1− α1

.

By using this result plus the definition of Ū (stated below equation (7.3)), equation (7.5) is obtained.
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Stylized Fact 6: Few unemployed have themselves chosen to become unemployed
Only a very small minority of the unemployed have quit a job in order to become
unemployed (for example, to search for a new job). The vast majority of unemploy-
ment occurs because the workers are laid off by their employer. This fact will prove
important in Chapter 8, where we discuss search behaviour.

Stylized Fact 7: Unemployment differs a lot between age groups, occupations, re-
gions, races, and sexes There is a lot of heterogeneity in several dimensions. For
example, women experience much higher unemployment rates than men, and the
young have higher unemployment rates than older workers. Furthermore, unem-
ployment depends a lot on the educational attainment of workers. Broadly speaking,
the unemployment rate is lower when the level of educational attainment is higher.

As these stylized facts show, there is quite a lot to be explained about the labour
market. The remainder of this chapter proceeds as follows. In Section 7.2 we demon-
strate how the standard labour market story used so far can explain some of the styl-
ized facts. We also show in which important aspects it fails to provide an adequate
explanation. One of these failures concerns the observed (relative) inflexibility of the
real wage rate with respect to demand and productivity shocks. For that reason we
discuss two theories that can explain real wage inflexibility in the final two sections
of this chapter.

7.2 Standard macroeconomic labour market theory

7.2.1 Skilled and unskilled labour

Up to this point we have modelled the labour market in the same way one would
model the market for peanuts, i.e. by postulating aggregate demand and supply
schedules (for labour in this case; see Chapter 1). A high level of aggregation is the
hallmark of macroeconomics, and one might be tempted to conclude that for that
reason the macro approach cannot be used to account for the evidence unearthed in
the previous section. Fortunately, such a negative conclusion is unwarranted.

For example, suppose that one wishes to use the standard approach to explain
why low-education workers experience a higher unemployment rate than high-edu-
cation workers (see Stylized Fact 7). The way this problem is typically approached by
macroeconomists is to distinguish two types of labour. Call the low-education work-
ers “unskilled” labour (denoted by NU) and the high-education workers “skilled”
labour (NS). The production function of the representative firm is given by:

Y = G(NU , NS, K̄) ≡ F(NU , NS), (7.7)

where Y is output, and the capital stock is fixed in the short run at K̄. Hence,
F(NU , NS) is the short-run production function featuring positive but diminishing
marginal products, i.e. FU ≡ ∂F/∂NU > 0, FS ≡ ∂F/∂NS > 0, FUU ≡ ∂2F/∂N2

U < 0,
and FSS ≡ ∂2F/∂N2

S < 0. In addition, we assume that short-run isoquants bulge
toward the origin, i.e. ∆ ≡ FSSFUU − F2

SU > 0, where FSU ≡ ∂2F/∂NS∂NU . Whereas
G(NU , NS, K̄) features constant returns to scale to the three factors of production,
F(NU , NS) exhibits decreasing returns to the two types of labour.

The representative firm maximizes profit by choosing the optimal production
level. With perfect competition in the output market and both input markets, the
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output price P and the wage rates WU and WS are taken as given by the firm and the
choice problem is:

max
{NU ,NS}

Π ≡ PF(NU , NS)−WU NU −WSNS, (7.8)

which yields the usual marginal productivity conditions:

PFU(NU , NS) = WU , PFS(NU , NS) = WS. (7.9)

In words, the value of the marginal product of each type of labour must be equated
to its wage rate. Obviously, the expressions in equation (7.9) can be used to derive
the demand functions for the two types of labour. By total differentiation of the two
equations, we obtain the following matrix expression:[

dNS
dNU

]
=

1
∆

[
FUU −FSU
−FSU FSS

] [
dwS
dwU

]
, (7.10)

where wS ≡WS/P and wU ≡WU/P are the real wages rates on, respectively, skilled
and unskilled labour, and ∆ is a positive constant defined in the text below equation
(7.7). Equation (7.10) can be used to find all the comparative static results of the
demand functions for the two types of labour which we write as follows:

ND
S = ND

S (wS, wU), ND
U = ND

U (wS, wU). (7.11)

Clearly, the “own” real wage effects are guaranteed to be negative because both
labour types feature a diminishing marginal product:

ND
SS ≡

∂ND
S

∂wS
=

FUU
∆

< 0, ND
UU ≡

∂ND
U

∂wU
=

FSS
∆

< 0. (7.12)

The “cross” real wage effects, however, cannot be signed without making an addi-
tional assumption. In particular, we assume that skilled and unskilled labour are
gross substitutes in the short-run production function. This implies that FSU is nega-
tive, and the cross partial derivatives are both positive:

ND
SU ≡

∂ND
S

∂wU
= − FSU

∆
> 0, ND

US ≡
∂ND

U
∂wS

= − FSU
∆

> 0. (7.13)

In words, if unskilled labour becomes dearer, the demand for skilled labour in-
creases, and similarly if skilled labour becomes more expensive, the demand for
unskilled labour increases. This is because the two factors can be used as substi-
tutes in the production process. (Intermezzo 7.1 studies the issue of short-run gross
substitutability or complementarity in more detail.)

In order to close the model as simply as possible, we assume that the supply
curves of the two types of labour are perfectly inelastic.

NS
S = N̄S, NS

U = N̄U . (7.14)

The equilibrium in the two labour markets can be drawn as in Figure 7.3.
If wages are perfectly flexible, full employment is attained in both markets. This

is the case at points ES
0 and EU

0 , respectively. In the left-hand panel the demand for
skilled labour—conditional on the market-clearing wage rate for unskilled labour—
is denoted by ND

S (wS, w∗U). It intersects with skilled labour supply at point ES
0 . Sim-

ilarly, in the right-hand panel the demand for unskilled labour—conditional on the
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Figure 7.3: The markets for skilled and unskilled labour

market-clearing wage rate for skilled labour—is denoted by ND
U (w∗S, wU). This curve

intersects with the unskilled labour supply curve at point EU
0 .

How can this model provide an explanation for the high unemployment rate
among unskilled workers? A simple explanation runs as follows. Suppose that
there is a minimum wage law, which states that the real wage of any worker (irre-
spective of that worker’s skill level) must not fall below w̄. This minimum wage is
assumed to be at a level below the market clearing real wage in the market for skilled
labour (w̄ < w∗S), but above the equilibrium real wage in the unskilled labour mar-
ket (w̄ > w∗U). As a result, the minimum wage is binding in the market for unskilled
labour, and unemployment emerges in that market equal to the segment AB in the
right-hand panel of Figure 7.3. This is the partial equilibrium effect of the minimum
wage. But it is not the end of the story, however, since the (artificially) high real
wage of unskilled workers prompts the representative firm to substitute skilled for
unskilled labour. In the left-hand panel the demand for skilled labour shifts to the
right (from ND

S (wS, w∗U) to ND
S (wS, w̄)), the new equilibrium is at ES

1 , and the equi-
librium skilled real wage rate rises to w1

S. The higher equilibrium wage for skilled
labour partially offsets the initial unemployment effect by stimulating the demand
for unskilled labour a little. Indeed, in the right-hand panel, demand shifts from
ND

U
(
w∗S, wU

)
to ND

U
(
w1

S, wU
)

and the new equilibrium is at EU
1 . Unemployment is

equal to the segment EU
1 B.

In summary, the introduction of a binding minimum wage has the following ef-
fects. All skilled workers obtain higher wages. Some unskilled workers also receive
a higher wage than before (namely the minimum wage) but others are unemployed.
In conclusion, since minimum wages exist in most advanced countries, even our
very simple standard model can be used to derive sensible conclusions about the
labour market. In particular, high minimum wages constitute a potential explana-
tion for Stylized Fact 7: unemployment among unskilled workers is high because
this type of labour is simply too dear. Most economists agree that this is partially
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true, but that other elements also play a role.
In this subsection we have developed a very simple representation of the bottom

end of the labour market. There is unemployment in the market for unskilled labour
because this type of labour is too expensive: the marginal product of this type of
labour is simply too low, given the existence of a binding minimum wage, to be
consistent with full employment.

A number of policy options exist to solve this type of unemployment. First, the
minimum wage could be abolished. This will obviously work, but may cause polit-
ically undesirable income distribution effects, social unrest, etc. Hence, some pack-
age of transfers to unskilled workers may be unavoidable. Second, unskilled labour
could be subsidized. In terms of Figure 7.3, this amounts to shifting the demand
for unskilled labour up and to the right. The demand for unskilled labour is artifi-
cially stimulated to make the minimum wage less of a disequilibrium wage. Third,
the government can directly employ some unskilled workers at the going minimum
wage. Again, the demand for unskilled labour shifts to the right, and unemployment
is reduced. The problem with this option is that the jobs that are created tend to be
“dead-end” jobs (like having three men guarding the Town Clerk’s bicycle). For all
three options discussed so far, there is a revenue requirement on the part of the gov-
ernment. To the extent that the additional tax revenue that is needed can only be
raised in a distorting fashion (see Chapter 6), the net benefits to society are far from
obvious. This is especially the case for the third option, since nothing of value to
society may be created in dead-end jobs.

A fourth option may be more attractive. The government could invest in (re-
) training projects specifically targeted at unskilled workers. By making unskilled
labour more productive, it is possible to stimulate the demand for those workers
and reduce unemployment. In the terminology of Chapter 6, a golden rule of fi-
nancing could be used: to the extent that the rate of return on public investment in
(re-) training schemes equals the market rate of return, such schemes may even be fi-
nanced by means of debt, thus obviating the need for distorting taxation. The return
to making unskilled workers more productive includes two components. First, as
the unemployment rate falls, spending on unemployment benefits falls, thus reduc-
ing the government’s revenue requirement. Second, as the previously unemployed
find work, they also start to pay taxes, thus further reducing the government’s rev-
enue requirement.

Intermezzo 7.1

Some production theory: the three-factor production model. In this
intermezzo we study the three-factor production model, when one of the
factors is constant in the short run. A three-factor production function is
weakly separable in production factors x1 and (x2, x3) if it can be written
as:

Y = F (x1, Z) , Z = G (x2, x3) . (a)

We assume that both F (x1, Z) and G (x2, x3) are linear homogeneous in
their respective arguments, so doubling x1 and Z results to a doubling
of Y, whilst doubling x2 and x3 results in a doubling of Z. Note that Z
can be interpreted as a composite input, that is produced by combining
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primary inputs x2 and x3. We know (from Intermezzo 4.3) that:

Y = F1x1 + FZZ, Z = G2x2 + G3x3, (b)

where F1 ≡ ∂F/∂x1 > 0, FZ ≡ ∂F/∂Z > 0, G2 ≡ ∂G/∂x2 > 0, and
G3 ≡ ∂G/∂x3 > 0. We know also that:

F11x1 + F1ZZ = 0, FZ1x1 + FZZZ = 0, (c1)
G22x2 + G23x3 = 0, G32x2 + G33x3 = 0, (c2)

where F11 ≡ ∂2F/∂x2
1 < 0, F1Z = FZ1 ≡ ∂2F/∂x1∂Z > 0, FZZ ≡

∂2F/∂Z2 < 0, G22 ≡ ∂2G/∂x2
2 < 0, G23 = G32 ≡ ∂2G/∂x2∂x3 > 0,

and G33 ≡ ∂2G/∂x2
3 < 0. The two functions have the usual property that

isoquants bulge toward the origin:

F11FZZ − F2
1Z > 0, G22G33 − G2

23 > 0. (d)

Finally, we define the substitution elasticities of the two functions in the
usual way:

σF ≡
F1FZ
YF1Z

> 0, σG ≡
G2G3

ZG23
> 0. (e)

We wish to have loglinearized expressions for the marginal products of
the three factors, Fi ≡ ∂Y/∂xi. We show the derivations for F1 and F2
in detail. Clearly, F1 ≡ F1 [x1, G (x2, x3)] is a function of all three inputs.
Totally differentiating we get:

dF1 = F11dx1 + F1ZdG (x2, x3) = F11dx1 + F1Z [G2dx2 + G3dx3] .

Dividing both sides by F1 we obtain:

dF1

F1
=

x1F11

F1

dx1

x1
+

x2F1ZG2

F1

dx2

x2
+

x3F1ZG3

F1

dx3

x3

F̃1 =
x1F11

F1
x̃1 +

x2F1ZG2

F1
x̃2 +

x3F1ZG3

F1
x̃3, (f)

where F̃i ≡ dFi/Fi, and x̃i ≡ dxi/xi. The terms on the right-hand side of
(f) can be re-expressed in a more intuitive format. Starting with the first
term, we obtain:

x1F11

F1
= −ZF1Z

F1

FZ
FZ

Y
Y

= −YF1Z
F1FZ

· ZFZ
Y

= −1−ω1

σF
, (g1)

where we have used the first expression in (c1) in the first step. Note that
ω1 ≡ x1F1/Y and 1−ω1 ≡ ZFZ/Y are the income shares of, respectively,
x1 and the composite input Z. In a similar fashion we get:

x2F1ZG2

F1
=

YF1Z
F1FZ

· ZFZ
Y
· x2G2

Z
=

(1−ω1)ω2

σF
, (g2)

x3F1ZG3

F1
=

YF1Z
F1FZ

· ZFZ
Y
· x3G3

Z
=

(1−ω1) (1−ω2)

σF
, (g3)
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where ω2 ≡ x2G2/Z and 1− ω2 ≡ x3G3/Z. By substituting (g1)–(g3)
into (f) we thus obtain:

F̃1 = −1−ω1

σF
x̃1 +

(1−ω1)ω2

σF
x̃2 +

(1−ω1) (1−ω2)

σF
x̃3. (h)

The marginal product of x1 depends negatively on the quantity of x1
used, and positively on the quantities used of the other two factors.

Next we turn to the marginal product of the second production factor,
x2. Note that F2 ≡ FZ [x1, G (x2, x3)] · G2 (x2, x3) (by the product rule) so
upon total differentiation we obtain:

dF2 = G2FZ1dx1 +
[

G2
2 FZZ + FZG22

]
dx2 + [G2G3FZZ + FZG23] dx3

dF2

F2
=

x1G2FZ1

FZG2

dx1

x1
+

x2G2
2 FZZ + x2FZG22

FZG2

dx2

x2

+
x3G2G3FZZ + x3FZG23

FZG2

dx3

x3
. (i)

The coefficients on the right-hand side of (i) can once again be simplified
substantially:

x1FZ1

FZ
=

x1F1

Y
· YFZ1

F1FZ
=

ω1

σF
, (j1)

x2G2
2 FZZ + x2FZG22

FZG2
= − x2G2

Z
· YF1Z

F1FZ
· x1F1

Y
− ZG23

G2G3
· x3G3

Z

= −
[

ω1ω2

σF
+

1−ω2

σG

]
, (j2)

x3G2G3FZZ + x3FZG23

FZG2
= − x3G3

Z
· YF1Z

F1FZ
· x1F1

Y
+

ZG23

G2G3
· x3G3

Z

= (1−ω2)

[
−ω1

σF
+

1
σG

]
, (j3)

where we have used (c1)–(c2) to simplify the expressions. Hence, by us-
ing (j1)–(j3) in (i) we get:

F̃2 =
ω1

σF
x̃1 −

[
ω1ω2

σF
+

1−ω2

σG

]
x̃2 + (1−ω2)

[
−ω1

σF
+

1
σG

]
x̃3. (k)

The marginal product of x2 depends negatively on the quantity of x2
used, and positively on the quantities used of factor x1. The effect of
factor x3 is ambiguous.

Finally, for F3 ≡ FZ [x1, G (x2, x3)] G3 (x2, x3) we obtain:

F̃3 =
ω1

σF
x̃1 + ω2

[
−ω1

σF
+

1
σG

]
x̃2 −

[
ω1 (1−ω2)

σF
+

ω2

σG

]
x̃3. (l)

We reach a similar conclusion as for factor x2. The marginal product of
x3 depends negatively on the quantity of x3 used, and positively on the
quantities used of factor x1. The effect of factor x2 is ambiguous.

Up to this point we have been silent about the identity of the three
factors. Three different cases can now be considered:
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1. The factors are x1 = K̄, x2 = NU , and x3 = NS. The productivity
conditions are wU = F2 and wS = F3. The income shares are ωK ≡
K̄FK/Y = ω1, ωU ≡ NU FU/Y = (1−ω1)ω2, and ωS ≡ NSFS/Y =
(1−ω1) (1−ω2).

2. The factors are x1 = NS, x2 = NU , and x3 = K̄. The productivity
conditions are wU = F2 and wS = F1. The income shares are ωS =
ω1, ωU = (1−ω1)ω2, and ωK = (1−ω1) (1−ω2).

3. The factors are x1 = NU , x2 = NS, and x3 = K̄. The productivity
conditions are wU = F1 and wS = F2. The income shares are ωU =
ω1, ωS = (1−ω1)ω2, and ωK = (1−ω1) (1−ω2).

Case 1. Using the productivity conditions stated in (7.9) and (k)–(l) we
find the following system determining the demands for the two types of
labour as a function of factor prices and the given capital stock:

J1

 ÑU

ÑS

 =


w̃U −

ω1

σF

˜̄K

w̃S −
ω1

σF

˜̄K

 , (m)

where wi is the real wage rate for labour of type i, and w̃i ≡ dwi/wi. The
Jacobian matrix, J1, is defined as:

J1 ≡


−ω1ω2σG + (1−ω2) σF

σFσG

(1−ω2) [σF −ω1σG]

σFσG

ω2 [σF −ω1σG]

σFσG
−ω1 (1−ω2) σG + ω2σF

σFσG

 . (n)

After some manipulation we find that |J1| = ω1/ (σFσG) > 0. Since
J−1
1 = adj (J1) / |J1| we find that equation (m) can be solved:

 ÑU

ÑS

 =


−ω1 (1−ω2) σG + ω2σF

ω1

ω2 [ω1σG − σF]

ω1

 w̃U

+


(1−ω2) [ω1σG − σF]

ω1

−ω1ω2σG + (1−ω2) σF
ω1

 w̃S +

 1

1

 ˜̄K. (o)

Using the definitions of the income shares for case 1, we find that ω1 =
ωK, ω2 = ωU/ (1−ωK), and 1−ω2 = ωS/ (1−ωK). Hence, the expres-
sion in (o) can in principle be rewritten in observable income shares. Note
that the sign of the cross effects ∂NU/∂wS and ∂NS/∂wU is determined by
the sign of ωKσG − σF, which itself depends on the capital income share
and on the two substitution elasticities. If ωKσG > σF then skilled and
unskilled labour are gross substitutes in production in the short run. Vice
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versa, if ωKσG < σF they are gross complements in the short-run produc-
tion function.

Cases 2 and 3 are left as exercises to the reader. It is not difficult to
show that the two types of labour must be gross complements in short-
run production in cases 2 and 3.

****

7.2.2 The effects of taxation

Before leaving the standard model of the aggregate labour market, we turn to an
analysis of the effects of taxation on employment and the real wage rate. This anal-
ysis was commenced in Chapter 1 (see section 1.3.6 on the supply siders) and is
completed here. In addition to considering flat tax rates on consumption and the use
of labour by firms, we also study the effects of progressivity of the labour income
tax. Attention is restricted to the short run, i.e. the capital stock is assumed to be
constant (and equal to K̄). There is only one type of labour, and the representative
firm maximizes short-run profit which is defined as:

Π ≡ PF(N, K̄)−W(1 + θE)N, (7.15)

where θE is an ad valorem tax levied on the firm’s use of labour (e.g. the employer’s
contribution to social security). The usual argument leads to the marginal produc-
tivity condition for labour, FN(ND, K̄) = w(1 + θE) where ND is the competitive
demand for labour and w ≡ W/P is the gross real wage. The first-order condition
can be linearized:

ÑD = −εD
[
w̃ + θ̃E

]
, (7.16)

where εD ≡ −FN/(NFNN) is the absolute value of the labour demand elasticity
(εD > 0), ÑD ≡ dND/ND, θ̃E ≡ dθE/(1 + θE), and w̃ ≡ dw/w.

Most income tax systems in use in the developed countries are progressive, in the
sense that the tax rate rises with the tax base (labour income in this case). Since
we wish to investigate the effects of progressivity on the labour supply decision by
households, we specify the general tax function T(WNS). The marginal income tax
rate θM facing households coincides with the derivative of this function with respect
to labour income, i.e. θM ≡ dT(WNS)/d(WNS). In the absence of taxable income
from other sources, the average income tax rate is simply θA ≡ T(WNS)/(WNS).
The key thing to note is that, in general, both θM and θA depend on the tax base,
WNS.

The household’s utility function is assumed to be of the usual kind:

U = U(C, 1− NS), (7.17)

with UC > 0, U1−N > 0, UCC < 0, U1−N,1−N < 0, and UCCU1−N,1−N − U2
C,1−N > 0.

In addition to facing (progressive) income taxes, the household also has to pay an ad
valorem tax on consumption goods (e.g. a value-added tax, θC), so that the household
budget restriction is:

P(1 + θC)C = WNS − T(WNS). (7.18)
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The household maximizes utility by choosing the optimal level of consumption and
labour supply. The Lagrangian is:

L ≡ U(C, 1− NS) + β
[
WNS − T(WNS)− P(1 + θC)C

]
, (7.19)

and the first-order conditions for utility maximization are:

∂L
∂C

= UC − βP(1 + θC) = 0, (7.20)

∂L
∂NS = −U1−N + β

[
W − dT(WNS)

d (WNS)

d
(
WNS)
dNS

]
= −U1−N + βW (1− θM) = 0, (7.21)

where we have used the definition of the marginal income tax rate to arrive at the ul-
timate expression in (7.21). By solving (7.20) and (7.21) for β we obtain the expansion
path:

β =
UC

P(1 + θC)
=

U1−N
W(1− θM)

⇒

U1−N
UC

=
w (1− θM)

1 + θC
, (7.22)

where we have used the definition of the gross real wage, w ≡W/P. Equation (7.22)
drives home a very important point: in the optimum the marginal rate of substi-
tution between leisure and consumption depends on the marginal (and not on the
average) income tax rate facing households! This result follows from the assumption
that labour is perfectly divisible, i.e. the household can freely choose the number of
minutes of its time endowment that it wants to supply to the labour market. This is
called the labour supply choice at the intensive margin.

In order to facilitate the discussion to come, we assume that the utility function
(7.17) is homothetic (see Intermezzo 7.1 above) and define the substitution elasticity
between consumption and leisure along a given indifference curve as follows:

σCM =
%ge change in C/(1− NS)

%ge change in U1−N/UC
≡ d ln(C/(1− NS))

d ln(U1−N/UC)
≥ 0, (7.23)

where we have used the fact that d ln x = dx/x represents the proportional change in
variable x. Intuitively, σCM measures how “easy” it is (in utility terms) for the house-
hold to substitute consumption for leisure. A household with a very low value of
σCM, finds substitution very difficult, whereas a household with a high σCM is quite
happy to substitute consumption for leisure. In graphical terms, the former house-
hold has sharp kinks in its indifference curves,5 whereas the latter has relatively flat
indifference curves. The substitution elasticity can be used in the linearization of
(7.22):

d ln
(

U1−N
UC

)
= w̃− θ̃M − θ̃C =

1
σCM

[
C̃− (1̃− NS)

]
⇒

5This does not imply that this household is kinky. It just means that the household is very reluctant
to deviate from a fixed proportion between consumption and leisure. In case σCM = 0, the indifference
curves are right angles, and nothing will make the household deviate from a fixed proportion between
consumption and leisure.
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C̃ +
1

ωL
ÑS = σCM

[
w̃− θ̃M − θ̃C

]
, (7.24)

where θ̃M ≡ dθM/(1 − θM), θ̃C ≡ dθC/(1 + θC), and ωL ≡ (1 − NS)/NS is the
initial ratio of leisure to labour supply. By using the definition of the average tax
rate, θA, the budget restriction (7.18) can be rewritten as (1 + θC)C = (1− θA)wNS.
By linearizing this expression we obtain:

C̃ + θ̃C = w̃− θ̃A + ÑS, (7.25)

where θ̃A ≡ dθA/(1− θA). Hence, the average income tax rate influences the budget
restriction of the household.

By solving (7.24)–(7.25) for the change in labour supply, the following expression
is obtained:

ÑS = (1− NS)
[
σCM

[
w̃− θ̃M − θ̃C

]
−
[
w̃− θ̃A − θ̃C

] ]
= εc

SW
[
w̃− θ̃M − θ̃C

]
+ εSI

[
θ̃A + θ̃C − w̃

]
= εSW

[
w̃− θ̃C

]
− εc

SW θ̃M + εSI θ̃A, (7.26)

where εc
SW ≡ σCM(1− NS) is the compensated wage elasticity, and −εSI ≡ −(1− NS)

is the income elasticity. The compensated wage elasticity corresponds to the substi-
tution effect and is always non-negative (because σCM ≥ 0 and 0 < NS < 1). As its
name suggests the income elasticity of labour supply corresponds to the income ef-
fect and is always negative. The total effect of a change in the gross wage is measured
by the uncompensated wage elasticity, εSW ≡ εc

SW − εSI = (σCM − 1)(1− NS), which
may be positive, zero, or even negative, depending on the magnitude of σCM. If the
elasticity of substitution between leisure time and consumption exceeds unity (i.e.
σCM > 1) , then the substitution effect dominates the income effect and thus labour
supply is an increasing function of the real wage. Otherwise, the income effect domi-
nates the substitution effect, and labour supply slopes backwards. Empirical studies
report that the wage elasticity of labour supply (εSW) is fairly small for males, but
bigger for females (see Pencavel, 1986 and Killingsworth and Heckman, 1986).

The demand and supply equations of the standard model of the labour market
(expanded with various tax rates) are given in linearized form by, respectively, equa-
tions (7.16) and (7.26). There are several ways to close the model. For example, the
equilibrium interpretation postulates flexible wages and assumes continuous market
clearing. Since we also wish to discuss the effect of different tax rates on unemploy-
ment, the disequilibrium interpretation requires the real wage to be fixed at a level
that is too high for market clearing. In Table 7.1 we summarize the effects of the dif-
ferent taxes on employment, the gross real wage rate, and unemployment for both
the equilibrium and disequilibrium interpretations of the model.

7.2.2.1 Tax effects with flexible wages and a clearing labour market

In this subsection we assume that the wage rate is flexible and clears the labour
market. Mathematically, we have that Ñ = ÑD = ÑS so that (7.16) and (7.26) can be
rewritten as:

Ñ = −εD
[
w̃ + θ̃E

]
, (7.27)

Ñ = εSW
[
w̃− θ̃C

]
− εc

SW θ̃M + εSI θ̃A. (7.28)
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Table 7.1. Taxes and the competitive labour market

(a) Flexible wage (b) Fixed consumer wage

w̃ Ñ dU w̃ Ñ dU

θ̃M
εc

SW
εSW + εD

−
εDεc

SW
εSW + εD

0 0 0 −εc
SW

θ̃A − εSI
εSW + εD

εDεSI
εSW + εD

0 1 −εD εc
SW + εD

θ̃M = θ̃A
εSW

εSW + εD
− εDεSW

εSW + εD
0 1 −εD εD

θ̃E − εD
εSW + εD

− εDεSW
εSW + εD

0 0 −εD εD

θ̃C
εSW

εSW + εD
− εDεSW

εSW + εD
0 1 −εD εD

w̃C – – – 1 −εD εSW + εD

Notes: (a) coefficients satisfy εD > 0, εc
SW > 0, εSI > 0;

(b) for a dominant substitution effect, εSW ≡ εc
SW − εSI > 0;

(c) stability condition is εSW + εD > 0.
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Solving these expressions for Ñ and w̃ we find:

w̃ =
εc

SW θ̃M − εSI θ̃A − εD θ̃E + εSW θ̃C

εD + εSW
, (7.29)

Ñ = −εD ·
εc

SW θ̃M − εSI θ̃A + εSW θ̃E + εSW θ̃C

εD + εSW
. (7.30)

For the sake of convenience, the various comparative static effects have been summa-
rized in panel (a) of Table 7.1. We now consider the labour market effects of several
tax policy initiatives.

First, suppose that the policy maker wishes to make the tax system more progres-
sive, without however, changing the average tax rate. In terms of Table 7.1(a), this
means that θ̃M > 0 and all other tax rates remain constant (θ̃A = θ̃E = θ̃C = 0). Due
to the higher marginal tax rate, households supply less labour at the same gross real
wage rate, and labour supply shifts to the left, say from NS

0 to NS
1 in Figure 7.4. The

equilibrium moves from E0 to E1, and the gross wage rate increases.6 These results
have been reported in the row for θ̃M in Table 7.1(a). Obviously, because the labour
market clears there is no effect on unemployment.

Note that part of the tax increase is shifted from households to the firms, namely
the line segment BE1. This tax shifting phenomenon can be explained with the aid
of Figure 7.4. Following the tax shock, the price of labour paid by firms rises from
w0 to w1. The price of labour that is received by households, however, falls from w0
to w′. Note that with the original marginal tax rate, N1 units of labour would have
been supplied at the wage w′. It thus follows that the line segment AB represents
the part of the tax increase that is borne by households, whilst BE1 is the part borne
by firms. The degree of tax shifting depends on the elasticities of the demand and
supply curves. For example, if labour demand is perfectly elastic (horizontal) then
households bear the full burden. At the opposite extreme, firms bear the full burden
if labour supply is vertical (and εSW = 0).

As a second policy shock, consider the case in which the policy maker increases
the average income tax (θ̃A > 0), whilst keeping the marginal tax on labour and all
other taxes unchanged (θ̃M = θ̃E = θ̃C = 0). Now the effects on the labour market
are completely different. The situation (for the case with εSW > 0) is depicted in
Figure 7.4. As a result of the higher average tax, households feel poorer (due to
the income effect) and decide to supply more labour. This shifts the labour supply
curve to the right, say from NS

0 to NS
2 , and the equilibrium moves from E0 to E2. As

a result of the tax increase, the gross real wage falls and employment rises. What
is the degree of tax shifting in this case? Because the taxes affecting labour supply
via the substitution effect (i.e. θM and θC) are unchanged, the traditional incidence
analysis is not relevant. It is nevertheless possible to decompose the total effect on
wages into a part borne by households and a part borne by firms. If labour supply
were inelastic (εSW = 0), then N′ units of labour would be supplied inelastically
after the tax shock, labour market equilibrium would be at point F, and the wage
would fall from w0 to w′′. With elastic labour supply (εSW > 0), however, labour
market equilibrium occurs at point E2 and the wage settles at w2. Hence, because
of the wage effect in labour supply, firms have to pay w2 instead of w′′. Hence, the

6This holds regardless of the sign of εSW , provided the stability condition εSW + εD > 0 is satisfied. In
terms of Figure 7.4, the labour supply curve can be downward sloping (εSW < 0) but it must be steeper
than the labour demand curve. Otherwise, high wages would be associated with excess demand for
labour. There is no plausible real wage adjustment mechanism that would lead to stability in that case.
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Figure 7.4: The effects of taxation when wages are flexible

line segment DF represents the part of the tax effect on wages that is borne by firms,
whilst CD is the part borne by households.

7.2.2.2 Tax effects with rigid consumer wages and unemployment

Assume now that (for whatever reason) the real consumer wage is exogenously fixed
above the level consistent with full employment. The real consumer wage is defined
as the real wage after income taxes and the tax on goods have been taken into ac-
count, i.e. wC ≡ w(1− θA)/(1 + θC). In loglinearized form we have that:

w̃C ≡ w̃− θ̃A − θ̃C. (7.31)

In view of this definition, equations (7.16) and (7.26) can be rewritten in terms of the
exogenous real consumer wage:

ÑD = −εD
[
w̃C + θ̃A + θ̃E + θ̃C

]
, (7.32)

ÑS = εSWw̃C + εc
SW
[
θ̃A − θ̃M

]
. (7.33)

By assumption the real consumer wage is too high for full employment, so that the
minimum transaction rule7 says that employment is determined by the demand for
labour, i.e. N = ND which implies in loglinearized form that Ñ = ÑD. The unem-
ployment rate is defined as U ≡ (NS − ND)/NS ≈ ln NS − ln ND, so that we have
for the change in the unemployment rate:

dU = ÑS − ÑD. (7.34)

Equations (7.32)–(7.34) determine employment, labour supply, and the unemploy-
ment rate as a function of the tax rates and the exogenous real consumer wage.
Equation (7.31) can be used to determine what happens to the gross real wage.

7This rule states that the short side of the market determines the quantity that is actually traded. Mar-
ket exchange is voluntary and nobody is forced to trade more than he/she wishes. The actual amount
traded is thus the minimum of demand and supply.
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Figure 7.5: The effects of taxation with a fixed consumer wage

Consider first what happens if the marginal tax rate on labour is increased (θ̃M >
0), leaving all other taxes unchanged (θ̃A = θ̃E = θ̃C = 0). For the given real con-
sumer wage, labour supply is decreased and labour demand is unchanged. Conse-
quently, unemployment is reduced. Some of the unemployed hours of labour are no
longer supplied due to the disincentive effect of the higher marginal tax rate. This
policy experiment has been illustrated in Figure 7.5, where RCW depicts the real
consumer wage, NS

0 is the initial labour supply curve, and ND
0 is the initial labour

demand curve. The economy is initially at E0 and unemployment is given by the line
segment E0A. The tax shock shifts the labour supply curve to the left, say from NS

0
to NS

1 . Provided the shock is not too large, the consumer-wage restriction remains
binding and point B lies to the right of point E0. There is no effect on employment
and the reduction in unemployment is represented by the horizontal segment BA.
It follows from (7.31) that the gross wage rate remains constant, i.e. w̃ = 0 (since
w̃C = θ̃A = θ̃C = 0).

As a second policy shock, consider the case in which the policy maker increases
the average income tax (θ̃A > 0), whilst keeping the marginal tax on labour and all
other taxes unchanged (θ̃M = θ̃E = θ̃C = 0). There are several effects. It follows
from (7.32) that labour demand shifts to the left, say from ND

0 to ND
1 in Figure 7.5.

Similarly, we find from (7.33) that labour supply shifts to the right, say from NS
0 to

NS
2 . The employment point moves from E0 to C and unemployment increases from

E0A to CD. Why is employment reduced in such a dramatic fashion? The answer is
furnished by (7.31), which implies that w̃ = θ̃A > 0 (since w̃C = θ̃C = 0). Taken
in isolation an increase in the average tax rate leads to a reduction in the consumer
wage which can only be undone by an increase in the gross wage rate. And since
labour demand is at the short side of the market the increase in the gross wage rate
translates directly into an employment reduction.

The students are advised to work through the remaining entries of Table 7.1(b),
and verify their understanding by drawing pictures.
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Figure 7.6: Labour demand and supply and the macroeconomic wage equation

7.2.3 The Holy Grail of macroeconomics

There exists a fundamental tension in the labour market theories that are based
on perfectly competitive behaviour and flexible wages. From microeconometric re-
search we know that the labour supply curve of (especially male) workers is highly
inelastic (almost vertical). Macroeconometric research, on the other hand, shows
that employment does fluctuate, for example due to productivity or demand shocks,
without significant wage fluctuations occurring. In terms of Figure 7.6, this im-
plies that the macroeconomic supply equation is not vertical but (almost) horizontal.
What could be the microeconomic rationale behind such a horizontal real wage equa-
tion? In other words, why are real wages inflexible? A number of theories have been
proposed to answer this question. In the remainder of this chapter we study two of
these in detail, namely a theory based on the wage setting power of labour unions
(in Section 7.3) and a theory based on wages acting as an incentive and motivation
device for workers (in Section 7.4).

7.3 Trade unions and the labour market

The typical layman’s sentiment about trade unions probably runs as follows. Pow-
erful trade unions are just like monopolists. They sell labour dearly, cause high real
wages, and hence are really to blame for low employment and high unemployment.
In this section we evaluate this sentiment using the tools of neoclassical economics.
We proceed as follows. First, in subsection 7.3.1 we study trade union behaviour in
a partial equilibrium setting, i.e. we consider the case with a single representative
union interacting with a single representative firm. Second, in subsection 7.3.2 we
investigate a general equilibrium model of the dual economy in which firms oper-
ating in the primary sector are unionized and firms in the secondary sector are not.
Under certain conditions the layman’s sentiments about trade unions are shown to
be correct.
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7.3.1 Unions in partial equilibrium

We study the interaction between a single perfectly competitive firm and a single
union. The firm is obliged to buy its labour inputs from the union. In order to
prepare for the things to come we first characterize the objective functions of the two
parties, starting with the description of union behaviour.

The trade union has a registered membership of T workers whose labour market
interests it represents. We assume that labour is indivisible, i.e. the worker is either
employed on a full-time basis and works for L = L̄ hours, or he is unemployed in
which case L = 0. Each unemployed worker receives the unemployment benefit B
from the government. The worker enjoys both consumption C and leisure 1− L and
has a direct utility function which we write as Φ(C, 1− L). Under the assumption
that workers have no non-labour income and do not save or borrow, it follows that
an unemployed worker attains the utility level uu(b) ≡ Φ(b, 1) where b ≡ B/P is the
real dole payment and P is the price level. In contrast, an employed worker receives
wage income WL̄, where W is the nominal wage rate. As a result he achieves the
utility level ue(w) ≡ Φ(wL̄, 1− L̄), where w ≡W/P is the real wage rate.8

All individuals are identical and in each period the union randomly selects Te of
its members to be employed during that period. It follows that each worker has the
probability Te

T of being employed in a particular period. Obviously, the probability
of being unemployed is given by 1− Te

T . Following Booth (1995, p. 91) we assume
that the objective function of the representative trade union, V(w, L), is the expected
utility of a representative union member:

V(w, Te) ≡ Te

T
· ue(w) +

[
1− Te

T

]
· uu(b). (7.35)

Of course the union cannot employ more members than it has, i.e. Te ≤ T is a
feasibility constraint. But by employing Te of its members, who each work for L̄
hours, the union effectively supplies N ≡ Te L̄ hours of labour to the firm so that the
union’s objective function can be rewritten in a more convenient form as:

V(w, N) ≡ N
Nmax · u

e(w) +

[
1− N

Nmax

]
· uu(b), (7.36)

where Nmax ≡ TL̄ is the maximum amount of hours the union can supply, and
N

Nmax and 1 − N
Nmax represent the probabilities of, respectively, being employed or

unemployed in a particular period.
The representative firm is modelled in the standard fashion. The short-run pro-

duction function is written as Y = AF(N, K̄), where Y is output, K̄ is the fixed capi-
tal stock, A is a productivity index, and F(·, ·) features constant returns to scale and
positive but diminishing marginal labour productivity (FN > 0 > FNN). Nominal
short-run profit of the firm is defined as Π ≡ PY −WN so that the (short-run) real
profit function can be written as:

π(w, N) ≡ AF(N, K̄)− wN. (7.37)

8In the jargon of microeconomics, Φ(C, 1− L) is the direct utility function, and ue(w) and uu(b) are
indirect utility functions. An indirect utility function differs from a direct utility function in that it depends
on prices and income rather than on quantities. The two are intricately linked, however. Indeed, the
indirect utility function is obtained by substituting the optimal quantity choices of the household back
into the direct utility function.
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Figure 7.7: The iso-profit locus and labour demand

All models discussed in this section can be solved graphically. In order to do so,
however, a number of graphical schedules must be derived. First, the labour de-
mand schedule is obtained by finding all (w, N) combinations for which profit is
maximized by choice of N. Formally, we have πN ≡ ∂π/∂N = 0, which yields:

πN = AFN(N, K̄)− w = 0 ⇔ ND = ND(w, A, K̄), (7.38)

where ND
w ≡ ∂ND(·)/∂w < 0, ND

A ≡ ∂ND(·)/∂A > 0, and ND
K̄ ≡ ∂ND(·)/∂K̄ > 0.

The labour demand curve is downward sloping in (w, N) space—see Figure 7.7.
The second graphical device that is needed to characterize the firm is the iso-profit

curve. It represents the combinations of w and N for which profits attain a given level.
It can be interpreted as the firm’s indifference curve. The slope of an iso-profit curve
can be determined in the usual fashion:

dπ = 0: ⇒ πwdw + πNdN = 0 ⇒
(

dw
dN

)
dπ=0

= −πN
πw

. (7.39)

We know from equation (7.37) that πw = −N < 0, so that the slope of an iso-profit
line is determined by the sign of πN . But πN ≡ AFN − w, and FNN < 0, so that
πN is positive for a low employment level, becomes zero (at the profit-maximizing
point), and then turns negative as employment increases further. Hence, in terms
of Figure 7.7, the iso-profit curves are upward sloping to the left of the labour de-
mand schedule, downward sloping to the right of labour demand, and attain a max-
imum for points on the labour demand schedule. In Figure 7.7 a number of iso-profit
curves have been drawn, each associated with a different level of profit. Clearly, for
a given level of employment N, the level of profit is increased if the wage rate falls,
i.e. ∂π/∂w = πw < 0. Hence, the level of profit increases the further down the
demand for labour curve the firm operates, i.e. πA < πB < πC.

Trade union behaviour can also be represented graphically. The third schedule
to be derived concerns the union’s indifference curve. Obviously, the union will not
be able to supply any workers to the firm if the wage rate is so low – relative to
the unemployment benefit and the value of leisure – that at an unemployed union
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Figure 7.8: Indifference curves of the union

member is better off than an employed member, i.e. if w is such that uu(b) > ue(w)
all union members will refuse to work and will just collect the dole. By implicitly
defining the reservation wage, wR, such that ue(wR) = uu(b), it follows that the wage
rate bargained by the union must satisfy the restriction w ≥ wR. In terms of Figure
7.8, this restriction is represented by the horizontal line BC (which stands for benefit
curve, because the level of b has an important influence on its location). Furthermore,
as was mentioned above the union is unable to supply any more workers than its
current membership. Hence, there is an additional restriction N ≤ Nmax, which is
the full employment line FE in Figure 7.8. The feasible region is thus given by all
combinations of w and N such that w ≥ wR and 0 ≤ N ≤ Nmax. The slope of an
indifference curve of the union is determined in the usual way:

dV = Vwdw + VNdN

=
Nue

w
Nmax dw +

ue(w)− uu(b)
Nmax dN = 0 ⇒(

dw
dN

)
dV=0

= −ue(w)− uu(b)
Nue

w
< 0, (7.40)

where ue
w ≡ ∂ue(w)/∂w. Hence, the union’s indifference curves are downward slop-

ing (because ue
w > 0 and ue(w) > uu(b)). Furthermore, union utility rises in a

north-easterly direction (because Vw > 0 and VN > 0), i.e. VC > VB > VA in Figure
7.8.

7.3.1.1 The monopoly model of the trade union

Perhaps the oldest trade union model is the monopoly model developed by Dunlop
(1944). As its name suggests, the trade union is assumed to behave like a monopolis-
tic seller of labour. It faces the firm’s demand for labour (defined implicitly in (7.38))
and sets the real wage such that its utility (7.36) is maximized. Formally, the problem
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facing a monopoly union is as follows:

max
{w}

V(w, N) subject to πN(w, A, N, K̄) = 0, (7.41)

where the restriction πN = 0 ensures (by equation (7.38)) that the monopolistic union
chooses a point on the labour demand function. In words, the demand for labour acts
like the “budget restriction” for the monopolistic union. By substituting the labour
demand function (given in (7.38)) into the union’s utility function, the optimization
problem becomes even easier:

max
{w}

V
(

w, ND(w, A, K̄)
)

, (7.42)

so that the first-order condition is:
dV
dw

= 0 : Vw + VN ND
w = 0, (7.43)

which implies that Vw/VN = −ND
w . The slope of the union’s indifference curve

should be equated to the slope of the demand for labour.9 For future reference we
rewrite the expression in (7.43) in a much more intuitive form:

Vw + VN ND
w =

N
Nmax · uw +

1
Nmax · [u

e(w)− uu(b)] ND
w

=
N

wNmax ·
[

wee
w + [ue(w)− uu(b)]

wND
w

N

]
= 0

⇒ ue(w)− uu(b)
wue

w
=

1
εD

, (7.44)

where εD ≡ −wND
w /N is the absolute value of the labour demand elasticity. Equa-

tion (7.44) can be seen as a kind of markup rule familiar from monopolistic pricing in
the goods market.10 The monopoly union sets the wage for its employed members
in such a way that their utility is a markup factor times the utility of its unemployed
members. Note that the unemployment benefit is the foundation upon which the
union can build its wage claim.

The monopoly union solution is illustrated in Figure 7.9. The wage rate is set
at wM, the union attains a utility level VM, and employment is NM. The union
has (Nmax − NM) of its members unemployed. How does this unemployment level
compare to the competitive solution? If there were no unions and this was the only
firm in the economy, then the effective labour supply would coincide with the BC
line. The forces of the free market would force the wage rate down to w = wR, so
that point C in Figure 7.9 represents the competitive point. Employment is equal
to NC which is greater than employment with monopoly unions, i.e. NC > NM.
Hence, in a partial-equilibrium sense, the monopoly union causes more unemploy-
ment than would be the case under perfect competition, and the layman’s sentiments
mentioned in the introduction are confirmed (see more on this below).

9It is possible that the union cannot choose this interior solution because the firm would make too little
profit there. In such a case a corner solution is attained, and (7.43) does not hold with equality. We ignore
this case here.

10A monopolistic firm facing marginal cost c and the demand curve q = p−ε sets its price such that
(p− c)/p = 1/ε. By defining the wage elasticity of the indirect utility function as εU ≡ wue

w(w)/ue(w)
we can rewrite (7.44) as:

ue(w)− uu(b)
ue(w)

=
εU

εD
.
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Figure 7.9: Wage setting by the monopoly union

In the monopoly union model the trade union unilaterally picks the wage and
the firm unilaterally chooses the level of employment it wants at that wage. In the
next union model this setting is made more realistic by assuming that the firm and
the union bargain over the wage rate.

7.3.1.2 The “right-to-manage” model

The right-to-manage (RTM) model was first proposed by Leontief (1946). The firm
still has “consumer sovereignty” in the sense that it can unilaterally determine the
employment level (hence the name “right to manage”), but there is bargaining be-
tween the firm and the union over the real wage. The outcome of the bargaining
process is modelled as a so-called generalized Nash bargaining solution (see e.g. Bin-
more and Dasgupta, 1987, and Booth, 1995, pp. 150–151). According to this solution
concept, the real wage that is chosen after bargaining maximizes the geometrically
weighted average of the gains to the two parties. In logarithmic terms we have:

max
{w}

Ω ≡ β ln
[
V(w, N)−Vmin

]
+ (1− β) ln

[
π(w, N)− πmin

]
subject to πN(w, A, N, K̄) = 0, (7.45)

where Vmin ≡ uu(b) is the fall-back position of the union, πmin is the fall-back po-
sition of the firm, and β represents the relative bargaining strength of the union
(0 ≤ β ≤ 1). Obviously, the monopoly union model is obtained as a special case
of the RTM model by setting β = 1. We have already argued that the union has no
incentive to accept wages lower than the reservation wage wR, where utility of the
union is at its lowest value of V(wR, N) = uu(b). This rationalizes the fall-back posi-
tion of the union. For the firm a similar fall-back position will generally exist. To the
extent that the firm has fixed costs, minimum profit must be positive, i.e. πmin > 0.

The maximization problem is simplified substantially if we substitute the con-
straint (the labour demand function) into the objective function. Indeed, by substi-
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tuting the second expression in (7.38) into (7.45) we obtain:

max
{w}

Ω ≡ β ln
[
V(w, ND(w, A, K̄))−Vmin

]
+(1− β) ln

[
π(w, ND(w, A, K̄))− πmin

]
,

(7.46)

for which the first-order condition is:

dΩ
dw

= β · Vw + VN ND
w

V −Vmin + (1− β) · πw + πN ND
w

π − πmin = 0. (7.47)

The numerator of the first term on the right-hand side of (7.47) can be simplified to:

Vw + VN ND
w =

N
wNmax ·

[
wue

w − εD [ue(w)− uu(b)]
]
, (7.48)

where we recall that εD ≡ −wND
w /N is the absolute value of the labour demand

elasticity. Furthermore, the numerator of the second term on the right-hand side of
(7.47) becomes:

πw + πN ND
w = πw = −N, (7.49)

since the solution lies on the labour demand curve, so that πN = 0. By substituting
(7.48)–(7.49) into (7.47), and simplifying, we obtain:

β

V −Vmin

[
Vw + VN ND

w

]
= − 1− β

π − πmin πw ⇒

N
wNmax

[
wue

w − εD [ue(w)− uu(b)]
]
=

(1− β)(V −Vmin)

β(π − πmin)
N ⇒

wue
w − εD [ue(w)− uu(b)] =

(1− β)wN
β(Y− wN − πmin)

[ue(w)− uu(b)] ,

(7.50)

where we have used the definition of π (in (7.37)) and the fact that V − Vmin =
(N/Nmax)(ue(w)− uu(b)) in the final step. Continuing the derivation, we find the
real wage expression for the RTM model (in a form directly compatible to (7.44)):

ue(w)− uu(b)
wue

w
=

1
εD + φ

, φ ≡ (1− β)ωN
β(1−ωN −ωπ)

≥ 0, (7.51)

where ωN ≡ wN/Y is the share of labour income in total income, and ωπ ≡ πmin/Y
is the share of the minimum profit level in total income.

Equation (7.51) shows that the real wage markup that rolls out of the bargaining
process is lower than under the monopoly union model (unless the union has all the
bargaining power, in which case β = 1, φ = 0, and (7.44) and (7.51) coincide). The
RTM solution can be illustrated with the aid of Figure 7.10. For ease of reference, the
monopoly solution M and associated iso-profit curve πM have also been drawn. The
RTM solution lies on the labour demand curve, but at a wage level below that for
the monopoly solution. It is indicated by point R where the profit level of the firm
is πR > πM. Compared to the competitive solution (at point C), there is still less
employment and thus more unemployment. Compared to the monopoly solution,
however, unemployment is lower.
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Figure 7.10: Wage setting in the right-to-manage model

The exact location of point R depends on the bargaining strength of the union, as
represented by the parameter β. The higher β is, the closer point R lies to point M.
On the other hand, if β is very low, then φ is very large (see (7.51)) and the wage is
close to the competitive solution, i.e. w ≈ wR. Hence, depending on the magnitude
of β, R can be anywhere on the labour demand curve between points M and C.

A major problem with the RTM solution is that the chosen wage-employment
outcome is Pareto-inefficient, i.e. it is possible to make one of the parties involved
in the bargain better off without harming the other party. This can be demonstrated
with the aid of Figure 7.10. At point R, the union attains a utility level of VR and
the firm has a profit level of πR. The firm is indifferent for all (w, N) combinations
along the iso-profit curve πR, but the union’s utility strictly increases if a point off
the labour demand curve is chosen. Indeed, the efficient solution occurs at the point
where there is a tangency between the iso-profit curve πR and an indifference curve
for the union. This occurs at point ER, where the union attains a utility level VRE >
VR. (For the same reason, point M is also inefficient, but point C is efficient. Verify
these claims.)

Economists are not particularly fond of inefficient solutions, especially in the
“small numbers” case–that we are considering here–with only two parties bargain-
ing. One would expect that the two parties would be sufficiently smart to eliminate
the type of inefficiency that exists in the RTM and monopoly model. For that reason,
the efficient bargaining model was developed by McDonald and Solow (1981).

7.3.1.3 The efficient bargaining model

McDonald and Solow (1981) analyse the case where the union and the firm bargain
simultaneously over wages and employment. Again the bargaining problem can be
analysed within a generalized Nash bargaining setup. Now the negotiations lead to
the maximization of Ω by choice of the appropriate wage-employment combination:

max
{w,N}

Ω ≡ β ln
[
V(w, N)−Vmin

]
+ (1− β) ln

[
π(w, N)− πmin

]
. (7.52)
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Figure 7.11: Wages and employment under efficient bargaining

The first-order conditions for this problem are:

∂Ω
∂w

=
β

V −Vmin ·Vw +
1− β

π − πmin · πw = 0, (7.53)

∂Ω
∂N

=
β

V −Vmin ·VN +
1− β

π − πmin · πN = 0. (7.54)

By combining (7.53)–(7.54), the so-called contract curve is obtained:

− 1− β

π − πmin =
β

V −Vmin
Vw

πw
=

β

V −Vmin
VN
πN

⇒ VN
Vw

=
πN
πw

. (7.55)

In words, the contract curve (CD in Figure 7.11) represents the locus of (w, N) com-
binations for which efficient bargaining solutions are obtained. For any point on
the contract curve, there is no (w, N) combination that makes one party better off
without simultaneously harming the other party. In graphical terms, the contract
curve represents all tangency points between iso-profit curves and union indiffer-
ence curves.

One immediate implication of the efficient bargaining model is that the real wage
exceeds the marginal product of labour. Indeed, (7.55) says that πN = VNπw/Vw < 0
(since VN > 0, Vw > 0, and πw < 0). Hence:

πN ≡ AFN(N, K̄)− w < 0 ⇔ w > AFN(N, K̄). (7.56)

Hence, with the exception of the competitive solution, efficient contracts are not on
the labour demand curve. Of course, we have already discussed three points on the
contract curve, namely points C, ER, and EM in Figure 7.10. Of these only point C is
on the labour demand curve.

In Figure 7.11, the entire contract curve is drawn as the dashed line connecting
points C and D. We assume that full employment is possible in principle. This means
that the profit level associated with the full employment level on the contract curve
(point D) exceeds the fall-back profit level of the firm (i.e. πFE > πmin). In that case,
the entire line segment CD constitutes the contract curve.
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As it stands, the model is not yet fully specified because it does not yield a predic-
tion about any particular wage-employment outcome—all (w, N) combinations along
the line CD are efficient. McDonald and Solow (1981, p. 903) suggest closing the mo-
del by postulating a so-called “fair share” rule. After repeated interactions in the
past, the union and the firm have somehow settled on a “fair” division of the spoils.
In terms of the model, the equity locus (EE) is implicitly defined as:

wN = ω
f
NY = ω

f
N AF(N, K̄), 0 < ω

f
n < 1, (7.57)

where ω
f
N is the “fair” share of the spoils going to the union (the firm gets 1−ω

f
N of

output in the form of profits). The slope of the equity locus can be determined in the
usual fashion:

Ndw + wdN = ω
f
N AFNdN ⇒

(
dw
dN

)
EE

=
ω

f
N AFN − w

N
< 0, (7.58)

where the sign follows from the fact that πN ≡ AFN − w < 0 (for each N between
NC and Nmax the equity locus lies above the labour demand function, w > AFN , so
that a fortiori w > ω

f
N AFN). The equity locus is downward sloping and shifts up

and to the right if labour’s share of the pie (ω f
N) is increased.

By combining the equity locus EE and the contract curve CD, the equilibrium
wage-employment combination is obtained at E0. A very surprising conclusion is
reached. Compared to the competitive solution (point C), employment is higher
(and unemployment is lower) under the efficient bargaining model (NEB > NC).
The layman’s sentiment, mentioned in the introduction to this chapter, is only par-
tially correct. Wages are higher than in the competitive solution (wEB > wR) but
employment is also higher than in the competitive solution. The intuition behind
this result is that the union prevents the firm from grabbing the maximum profit
level (at point C), and instead turns some of this profit into jobs for union members.

Armed with this intuition, the second conclusion that can be drawn on the basis
of the efficient bargaining model is perhaps less paradoxical than it may appear at
first sight. Wage moderation, as modelled by a smaller share of the pie for labour
(ω f

N down), turns out to be bad for employment! Graphically, a lower ω
f
N shifts the

EE locus down and to the left, shifting the equilibrium from E0 to E1. The power
of the firm is de facto increased, and the wage-employment combination is forced
closer to the competitive solution.

It is fair to say that the efficient wage bargaining model yields some rather sur-
prising conclusions. The problem with the model appears to be its tenuous empirical
relevance. Although simultaneous bargaining over wages and employment is effi-
cient, it is hardly ever observed in practice. It therefore appears that the RTM model
(which includes the monopoly model as a special case) has a closer affinity to reality
than the efficient bargaining model. In other words, in the real world the relevant
case appears to be that firms and unions negotiate over the wage rate, but that the
firm can unilaterally determine the employment level.

7.3.2 Unions in general equilibrium

In a partial equilibrium setting it is clear that trade unions typically end up not em-
ploying all their members. If all firms in the economy would be unionized then there
would be no other option for the unemployed union members than to stay at home
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Figure 7.12: Unions and wage dispersion in a two-sector model

and wait for better luck next time. The general equilibrium results would be identi-
cal to the partial equilibrium results! But this is not a very realistic scenario. In most
countries there are sectors that are heavily unionized and others that are not union-
ized at all. In this more realistic scenario the general equilibrium repercussions of
union wage setting are much more interesting.

To investigate some of the issues that arise in a general equilibrium context, it is
instructive to study the effects of trade union behaviour in a two-sector setting. This
allows us to study the spillover effects that unions may have on the non-unionized
sector of the economy. Suppose that labour is homogeneous, but that there are two
sectors in the economy. The first sector, called the primary sector, is unionized, and the
second, called the secondary sector, has a competitive system of wage determination.
The total labour force is fixed, and equal to N̄. Employment and the real wage rate in
sector i are denoted by, Ni and wi. Firms in both sectors are perfectly competitive and
produce a homogeneous good using the short-run production function Yi = F(Ni, k̄)
where k̄ is the fixed capital stock (assumed to be of the same size for all firms). The
competitive labour demand in sector i is defined implicitly as:

wi = FN(Ni, k̄) ⇔ ND
i = ND

i (wi, k̄). (7.59)

In Figure 7.12 the situation on the labour market is depicted in an Edgeworth box
diagram. Employment in the primary sector is measured from left to right with the
origin at O1. Employment in the secondary sector is measured from right to left with
origin O2. The size of the box is equal to the total supply of labour N̄. In the absence
of unions, and with perfect mobility of labour between the two sectors, the common
wage rate would be at the market clearing competitive level wC, and employment in
the two sectors would be NC

1 and NC
2 , respectively.

Now consider the effect of unionization. To keep things as simple as possible
we consider the case where there is a single monopolistic union.11 The union has
a membership of Nmax

1 (in labour hours) and FE is the full employment locus. As

11This is equivalently to assuming that the primary sector is composed of a large number of identical
union-firm pairs. Normalizing this large number to unity yields the case considered in the text.
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we discovered above, the union set the wage rate wM
1 where there is a tangency

between the labour demand curve and a union indifference curve. Employment in
the primary sector is equal to NM

1 which falls short of Nmax
1 . If the jobless workers

would be trapped in the primary sector then there would be unemployment equal
to Nmax

1 − NM
1 . But in the two-sector model there are other options available to the

unemployed worker.
Recall that an unemployed worker implicitly receives the reservation wage, wR

(in the form of the unemployment benefit b and leisure). But if all unemployed
primary sector workers would supply their labour to the secondary sector, then em-
ployment in that sector would be equal to NM

2 and the wage rate would be wa
2 which

is strictly greater than the reservation wage wR. Unemployed primary sector work-
ers are better off moving to the secondary sector.

We thus learn an important lesson. With free intersectoral mobility of labour the
union causes identical workers to receive different wages in the two sectors but it
does not cause unemployment. Put differently, there is full employment of labour at
the aggregate level, but wage disparity between the primary and secondary sectors
(such that wM

1 > wa
2). Workers in the secondary sector would rather work in the pri-

mary sector (because wages are higher there), but are prevented from getting work
there because of the union’s wage-setting power.

Unemployment re-emerges in the two-sector model if intersectoral labour mobil-
ity is less than perfect. Consider the following scenario. From an ex ante perspective,
labour is fully mobile across sectors. At the beginning of each period, workers must
choose between two options. Option 1 is to accept a job in the secondary sector at
the going wage rate w2. Option 2 is to enter the primary sector, join the union, and
enter the “queue of workers” waiting for a job in that sector. Only a fraction of the
workers in the queue obtain a job (at wage rate wM

1 which exceeds w2) while the rest
of them remain unemployed and receive the unemployment benefit b (they cannot
turn around and join the secondary sector by assumption!).

In equilibrium each worker must be indifferent between the two options, i.e. the
following equality must hold:

ue(w2) =
N1

Nmax
1

ue(w1) +

[
1− N1

Nmax
1

]
uu(b). (7.60)

Here the left-hand side represents the certain utility one obtains by taking a job in
the secondary sector and receiving the wage w2. The right-hand side of (7.60) is
the expected utility of a worker who decides to take a gamble on joining the union
and entering the primary sector. With probability N1

Nmax
1

he obtains a job and gets

the utility level ue(w1) whilst with probability 1− N1
Nmax

1
he is unemployed and gets

utility uu(b). Intuitively, the arbitrage equation (7.60) pins down the intersectoral
allocation of labour and thus the membership of the union.

In summary, the equilibrium in the two-sector model with imperfect labour mo-
bility is characterized by:

ue(w1)− uu(b)
w1ue

w(w1)
=

1
εD

, (7.61)

w1 = FN(N1, k̄), (7.62)

w2 = FN(N2, k̄), (7.63)

ue(w2) =
N1

N1 + U1
ue(w1) +

[
1− N1

N1 + U1

]
uu(b), (7.64)
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Figure 7.13: Unions and unemployment in a two-sector model

N̄ = N1 + U1 + N2, (7.65)

where the endogenous variables are w1, w2, N1, U1, and N2. The exogenous variables
are the unemployment benefit b, total labour supply N̄, and the capital stock per firm
k̄. Equation (7.61) is the wage setting rule of the monopoly union, (7.62)–(7.63) show
that employment in each sector must be on the labour demand equation. Equation
(7.64) is obtained from (7.60) by noting that Nmax

1 = N1 + U1. Finally, (7.65) is the
equilibrium condition.

The unemployment equilibrium is illustrated in Figure 7.13. The employment
levels are NM

1 and NA
2 , respectively, and equilibrium “wait unemployment” equals

UM
1 . As a result of the intersectoral labour mobility friction, wages in the secondary

sector are higher than with full mobility because the UM
1 hours-worth of disap-

pointed union members are barred from entering the secondary sector and driving
down wages there.

7.3.3 Unions and real wage rigidity

Recall that one of the reasons for being interested in models of union behaviour in
the first place is to investigate their potential in explaining the (near) horizontal real
wage equation (see Figure 7.6). What happens, for example, if there is a productivity
shock in the two-sector general equilibrium model of the previous subsection? Given
the assumptions underlying that model, such a shock will lead to an upward shift
in both labour demand curves. The monopoly union sets its real wage according
to (7.61). So if the demand elasticity εD is constant (as is, for example, the case for a
Cobb-Douglas production function), then the productivity shock has no effect on the
real wage rate chosen by the monopoly union, i.e. w1 is unchanged and employment
N1 is increased in response to the productivity shock. The model thus predicts a rigid
real wage in the unionized sector. In contrast, in the secondary (non-unionized) sec-
tor both the real wage and the employment level will be affected by the productivity
shock.



CHAPTER 7: A CLOSER LOOK AT THE LABOUR MARKET 257

Figure 7.14: Efficiency wages

7.4 Efficiency wages and the labour market

As is argued by Stiglitz (1986, p. 182), the basic hypothesis underlying the group
of efficiency wage theories is that the net productivity of workers is a function of
the wage rate they receive. In that case firms may not lower the wage even if there
is excess supply of labour because they may fear that the adverse effect on worker
productivity outweighs the reduction in the wage per worker, thus increasing actual
total labour cost. As a result, there may be unemployment even in a world popu-
lated by non-unionized and perfectly competitive firms. The law of demand and
supply is repealed. Furthermore, since the relationship between wages and worker
productivity may differ between industries, wages (for otherwise identical workers)
may also differ across industries, thus repealing the law of one price.

Stiglitz (1986) mentions five structurally different explanations for the link be-
tween the wage a worker gets and his productivity. First, it has been argued in the
development economics literature that there is a direct link between productivity
and the level of nutrition, especially at low levels of nutrition. This link gives rise
to an S-shaped wage-productivity curve as is drawn, for example, in Figure 7.14.
The second theory leading to efficiency wage effects is based on labour turnover.
The lower the wage, the higher the rate of labour turnover. To the extent that the
firm must incur training costs for new workers, this mechanism gives rise to a link
between the wage and the worker’s productivity. The third theory is based on im-
perfect information on the part of the firm about the characteristics of the worker.
By paying a high wage the firm obtains a high-quality labour force. The fourth
theory is based on the imperfect information that the firm has about the workers’
actions and the cost of monitoring them. Unemployment works as a disciplining
device (Shapiro and Stiglitz, 1984): if workers are caught shirking on the job, they
are fired and become unemployed (for some time). Note that there are other (po-
tentially more efficient) means by which the firm can induce the good behaviour of
its work force. An example is the use of bonding. Upon entering employment in
the firm, the worker pays a bond upfront, to be forfeited to the firm if he is caught
shirking. Apart from the moral hazard problem that the firm may have (wrongfully
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accusing the worker of shirking, leading to the forfeit of her/his bond), poor work-
ers may have no way to borrow the money for the performance bond. Hence, to
the extent that poor/unskilled workers have restricted access to the capital market,
this theory may explain why these groups experience a higher unemployment rate
(Stiglitz, 1986, p. 186). The fifth theory suggests that workers’ performance depends
on whether they believe they are being treated fairly. In this sociological theory the
workers are particularly interested in their wage relative to that of other workers.
In his insightful survey article, Katz (1986) adds a sixth reason why firms may be
willing to pay efficiency wages, namely to prevent unionization. Loosely put, in this
union-threat model a firm can prevent its unionization by paying its workers a wage
that is equal to what these workers would receive in the presence of a union minus
the cost to the workers of organizing such a union.

In the remainder of this section we consider a generic efficiency-wage model in
which a worker’s effort level is assumed to increase in the wage he receives. This
reduced-form approach has the virtue of being relatively simple to analyse.

7.4.1 Efficiency wages in partial equilibrium

Assume that there are many identical perfectly competitive firms that are indexed
by i = 1, . . . , M, where M is a large number so that each firm is tiny with respect to
the market it operates in. Firm i produces homogenous output Yi using a short-run
production function of the following type:

Yi = AF(Li, k̄), (7.66)

where A is an exogenous productivity index, k̄ is the fixed capital stock, and Li is the
effective labour input, i.e. the total number of efficiency units of labour employed by
the firm:

Li ≡ EiTi L̄. (7.67)

It is important to recognize the dimension of Li. Firm i has Ti workers who are
each employed for L̄ hours per unit of time. The effort level of a worker in firm i is
denoted by Ei. In standard models of labour demand, Ei is assumed to be constant
(typically equal to unity). In contrast, the basic insight of efficiency wage theories is
that effort responds to the economic incentives offered to the worker. To make this
notion more precise we assume that Ei depends positively on the real wage paid in
firm i (wi) and negatively on the (implicit or explicit) real wage that can be obtained
elsewhere (the reservation wage, wR):

Ei ≡ e(wi, wR), (7.68)

where e (·) is the effort function featuring partial derivatives ew ≡ ∂e/∂wi > 0
and ewR ≡ ∂e/∂wR < 0. The idea is simple: if you pay your workers well (as did pi-
oneer car maker Henry Ford), they are likely to display a lot of effort. Conversely, “if
you pay peanuts, you get (lazy) monkeys”. By letting Ni ≡ Ti L̄ denote the number
of worker-hours that are employed in firm i, we can rewrite the short-run produc-
tion function as Yi = AF(Ei Ni, k̄). The firm maximizes real short-run profit, which is
defined as follows:

πi ≡ AF(Ei Ni, k̄)− wi Ni, (7.69)



CHAPTER 7: A CLOSER LOOK AT THE LABOUR MARKET 259

where wi is the real hourly wage rate paid by firm i. The firm chooses its level of
employment (Ni) and its wage rate (wi) in order to maximize profit. The first-order
conditions are:

∂Πi
∂Ni

= AEiFL(Ei Ni, k̄)− wi = 0, (7.70)

∂Πi
∂wi

=
[
AFL(Ei Ni, k̄)ew(wi, wR)− 1

]
· Ni = 0, (7.71)

where FL ≡ ∂F/∂ (Ei Ni) is the marginal product of labour measured in efficiency
units. By substituting these two conditions, the expression determining the efficiency
wage for firm i is obtained:

wiew(wi, wR)

e(wi, wR)
= 1. (7.72)

This expression is often referred to as the Solow condition, after one of its discoverers
Robert Solow (1979). In words it says that the firm should find the wage for which
the elasticity of the effort function equals unity. The firm should keep increasing its
wage rate as long as the effort rises faster than the wage rate (and the wage per unit
of effort keeps falling). In terms of Figure 7.14, the optimum is at point E0. This is
the only point where the tangent of the effort curve goes through the origin, thus
ensuring that the unit-elasticity condition (7.72) is satisfied.12

In order to further characterize the optimal wage set by the firm we follow Sum-
mers (1988) by postulating that the effort function (7.68) takes the following form:

Ei = (wi − wR)
ε , 0 < ε < 1, (7.73)

where ε measures the strength of the productivity-enhancing effects of high wages
which we call the leap-frogging effect. This effort function is illustrated in Figure 7.15.
Of course this function is not S-shaped but it does capture the relevant (concave)
part of the function depicted in Figure 7.14 where the point satisfying the Solow
condition is located. Note that the effort function is vertical at point A and that the
Solow condition is satisfied at point E0 in Figure 7.15. In view of (7.72) and (7.73),
the efficiency wage chosen by firm i is easily calculated:

wi
Ei

∂Ei
∂wi

= 1 ⇒
w∗i − wR

w∗i
= ε ⇔ w∗i =

wR
1− ε

. (7.74)

The firm pays a constant markup (1/(1− ε)) times the value of the outside option
as given by the reservation wage. At the efficiency wage the optimal effort level is
equal to:

E∗i =

(
εwR
1− ε

)ε

. (7.75)

Once the efficiency wage, w∗i , and the optimal effort level, E∗i , have been determined,
the number of worker-hours N∗i that are employed by firm i is implicitly determined
by equation (7.70):

AE∗i FL(E∗i N∗i , k̄) = w∗i . (7.76)

12The ray from the origin has slope Ei/wi . At point E0 this ray is tangent to the effort curve, i.e. Ei/wi =
ew or wiew/Ei = 1 at that point. At point A (B) the effort curve is steeper (flatter) than the ray from the
origin and wiew/Ei > 1 (< 1). Hence, wA

i is too low, and wB
i is too high.
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Figure 7.15: A tractable effort function

Since, by assumption, firms face the same technology and effort function, it follows
that firms make identical choices regarding the real wage, effort level, and employ-
ment, i.e. w∗i = w∗, E∗i = E∗, L∗i = L∗, and N∗i = N∗.

Simple as it is, the partial equilibrium model already teaches us two things. First,
holding constant the reservation wage wR, a productivity shock has no effect on the
efficiency wage chosen by the firms, and thus only affects employment. Indeed, it
follows from (7.76) that dN∗i /dA = −FL/

(
AE∗i FLL

)
> 0, i.e. a positive (negative)

productivity shock leads to an expansion (contraction) of employment. Hence, this
model provides a partial equilibrium reason for the horizontal real wage equation
drawn in Figure 7.6. Second, from the structure of the model there is no reason at
all to expect that full employment will prevail. Indeed, the aggregate demand for
labour-hours is given by MN∗ which may well fall short of the aggregate supply of
labour hours, N̄ ≡ T̄L̄, where T̄ is the number of workers in this economy. Loosely
put, the wage rate cannot do two things at the same time. In the efficiency wage mo-
del, the optimal wage minimizes the firm’s labour cost per efficiency unit of labour.
It is not set in such a way as to guarantee full employment of labour. Of course this
argument is based on partial equilibrium reasoning so the next task at hand is to
embed the efficiency wage model in a general equilibrium context.

7.4.2 Efficiency wages in general equilibrium

Up to this point we have not yet determined the reservation wage, wR. By definition
wR refers to some kind of outside option that a worker in a particular firm faces. To
keep the model as simple as possible we once again study a two-sector economy.
In Figure 7.16 the situation on the labour market is depicted in an Edgeworth box
diagram. In the primary sector there are M active firms. In order to economize on
notation we normalize the number of firms to unity (M = 1). It follows that the
optimal choices made in the primary sector are fully characterized by:

wE
1 =

wR
1− ε

, (7.77)
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EE
1 =

(
εwR
1− ε

)ε

, (7.78)

wE
1 = AEE

1 FL(EE
1 NE

1 , k̄), (7.79)

where wE
1 , EE

1 , and NE
1 denote the optimal choices in the primary sector for, respec-

tively, the wage, the effort level, and the employment level. The superscript thus
denotes that the efficiency-wage solutions are used whilst the subscript designates
the primary sector. We know from our discussion above that the employment level
lies on the conditional labour demand curve evaluated at the optimal effort level,
i.e. w1 = AEE

1 FL(EE
1 N1, k̄) implicitly defines the curve ND

1 = ND
1 (w1, EE

1 , k̄) that has
been drawn in Figure 7.16. In that figure the efficiency wage solution is located at
point E.

In the second sector firms are assumed to have no access to efficiency wages, i.e.
it is assumed that worker effort in that sector is constant (at E2 = Ē2) irrespective
of the wage rate. We assume that Ē2 is quite low compared to EE

1 so that worker
productivity is low in the secondary sector. In the absence of efficiency wage consid-
erations the competitive labour demand in the secondary sector is defined implicitly
as:

w2 = AĒFL(Ē2N2, k̄) ⇔ ND
2 = ND

2 (w2, Ē2, k̄). (7.80)

Just as for the primary sector, we have normalized the number of firms in the sec-
ondary sector to unity. In Figure 7.16 the labour demand equation ND

2 (w2, Ē2, k̄)
schedule has been drawn with respect to the origin at O2.

We recall from our discussion surrounding unions in general equilibrium (in Sec-
tion 7.3.2) that equilibrium unemployment will be zero in the absence of intersectoral
mobility frictions. Something similar is the case here. Those workers who cannot
find a job in the primary sector will find employment for sure in the secondary sec-
tor. Efficiency wage theory yields rigid wages in the primary sector but no unem-
ployment.

Just as for the union case, unemployment re-emerges in the two-sector model if
intersectoral labour mobility is less than perfect. We consider the same friction as be-
fore. From an ex ante perspective, labour is fully mobile across sectors. In particular
at the beginning of each period, workers must choose between two options. Option
1 is to accept a job in the secondary sector at the going wage rate w2. Option 2 is to
join the group of workers chasing after a job in the primary sector. Only a fraction
of the workers in this group obtain a job and receive the wage rate wE

2 while the rest
of them remain unemployed and receive the unemployment benefit b (they cannot
turn around and join the secondary sector by assumption!).

In equilibrium each worker must be indifferent between the two options, i.e. the
following equality must hold:

ue(w2) = pE
1 ue(wE

1 ) +
(

1− pE
1

)
uu(b), pE

1 ≡
NE

1
NE

1 + UE
1

, (7.81)

where pE
1 represents the ex ante probability of finding a job in the primary sector.

The left-hand side of (7.81) represents the certain utility one obtains by taking a job
in the secondary sector and receiving the wage w2. The right-hand side of (7.60) is the
expected utility of a worker who decides to take a gamble by entering the primary
sector. With probability pE

1 he obtains a job and gets the utility level ue(wE
1 ) whilst

with probability 1 − pE
1 he is unemployed and gets utility uu(b). Intuitively, the
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Figure 7.16: Efficiency wages and unemployment in a two-sector model

arbitrage equation (7.60) pins down the intersectoral allocation of labour. In terms
of Figure 7.16 the IAL curve represents the optimal allocation of labour over the two
sectors. Employment in the primary sector is NE

1 , there are UE
1 unemployed worker-

hours in that sector, and employment in the secondary sector is equal to NA
2 .

So what is the reservation wage of a worker in the primary sector? Recall that wR
represents the value of the outside option for the individual worker, i.e. it represents
what a worker would get if he is not employed by firm i. By assumption this worker
cannot move to the secondary sector in the current period. But the worker does
know what other firms in the primary sector are paying and is assumed to be able to
rejoin the pool of unemployed instantaneously and find a job at some other firm.13

It follows that wR is a weighted average of the average wage paid by other firms in
the primary sector (w̄1) and the unemployment benefit (b):

wR = pE
1 w̄1 + (1− pE

1 )b. (7.82)

But equation (7.82) is not the end of the story. As we showed above, all firms in the
primary sector set the same efficiency wage, i.e. w̄1 = wE

1 . By substituting this into
(7.82), and using (7.77) we obtain the expressions wR and w1:

wE
1 =

wR
1− ε

=
1− pE

1
1− ε− pE

1
b. (7.83)

Up to this point we have shown step-by-step which conditions must be satisfied in
the two-sector model. Of course, in general equilibrium everything is determined
simultaneously as everything depends in principle of everything else. Gathering
all the previous results it is clear that the equilibrium in the two-sector model with
imperfect labour mobility and efficiency wages in the primary sector is fully charac-
terized by:

w1 =
1− N1

N1+U1

1− ε− N1
N1+U1

b, (7.84)

13In contrast, in section 7.3.2 above we implicitly assumed that a worker could only join a single union.
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E1 = εwε
1, (7.85)

w1 = AE1FL(E1N1, k̄), (7.86)

w2 = AĒFL(Ē N2, k̄), (7.87)

ue(w2) =
N1

N1 + U1
ue(w1) +

[
1− N1

N1 + U1

]
uu(b), (7.88)

N̄ = N1 + U1 + N2, (7.89)

where the endogenous variables are w1, E1, N1, U1, w2, and N2. The exogenous vari-
ables are the unemployment benefit b, total labour supply N̄, and the capital stock
per firm k̄. Equation (7.84) is obtained from (7.83) by substituting the definition of
the job-finding probability, p1. Equation (7.85) is obtained by substituting the expres-
sion for the reservation wage—stated in (7.83)—into (7.78). Expressions (7.86)–(7.87)
show that employment in each sector must be on the labour demand equation. Equa-
tion (7.89) is obtained from (7.81) by using the definition of p1. Finally, (7.89) is the
equilibrium condition.

7.5 Punchlines

We started this chapter by establishing some stylized facts about the labour market in
advanced capitalistic economies. In such economies, unemployment shows a lot of
fluctuations over time which are quite persistent (more so than the business cycle).
Across countries the duration of unemployment spells can differ quite a lot, with
long-term unemployment much more prevalent in Europe than in the US. Looking at
very long data sets reveals that there is no long-run trend in the unemployment rate.
The unemployment rate differs between apparently similar countries suggesting an
explanatory role for dissimilar labour market institutions. The majority of job loss
(inflow into unemployment) is due to layoffs by firms, not voluntary quitting by
workers. Finally, the unemployment rate differs between age groups, occupation,
regions, races, and sexes.

The standard labour market model employed in the early chapters of this book
can easily be augmented to explain some of these stylized facts. For example, the
lower unemployment rate among high-education workers vis-à-vis low-education
workers can be modelled by distinguishing two types of workers, namely skilled
and unskilled, and by assuming that there is a minimum (real) wage which is bind-
ing for the latter type of workers. In that case there is unemployment in the market
for unskilled workers. The unemployment is directly caused by the binding mini-
mum wage. Abolishing the minimum wage would solve the unemployment prob-
lem because the unskilled wage rate would fall to clear the market.

The standard model is also quite useful to study the impact of taxation on the
aggregate labour market. We consider a wide array of taxes, namely a progressive
system of (labour) income taxes, a payroll tax, as well as a tax on consumption. In
the standard model with flexible wages, taxes affect equilibrium wages and employ-
ment but do not give rise to unemployment. Ceteris paribus the average income tax
rate, an increase in the marginal income tax chokes off labour supply and leads to
lower employment, a higher producer wage, and a lower consumer wage. On the
other hand, if the marginal tax is kept unchanged and the average tax is increased
then labour supply increases (because leisure is a normal good), both producer and
consumer wages fall, and employment rises. Simple expressions can be derived
which show which side of the labour market ends up paying the tax (so-called tax
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incidence).
If the consumer wage is assumed to be fixed above the market clearing level then

employment is demand determined and unemployment emerges. Now, the effects
of the tax system on both the level of employment and the unemployment rate can
be traced. Raising the marginal income tax or lowering the average tax both lead to a
reduction in the unemployment rate. In the former case labour demand (and hence
employment) is unchanged but labour supply drops off. In the latter case labour
demand (and employment) is boosted and labour supply falls.

Although the standard labour demand model is thus quite flexible there is one
stylized fact for which it cannot easily furnish a credible explanation, namely the fact
that the real wage appears to be rather rigid in the face of productivity and demand
shocks. The standard model can be made consistent with this rigidity by assuming
a highly elastic labour supply curve, but that assumption is grossly at odds with
microeconometric evidence. For that reason, a number of economists have started to
look for alternative reasons for real wage rigidity.

The first rationale for real wage rigidly is provided by the macroeconomic theory
of trade unions. Three of the most important models of trade union behaviour have
been studied, namely the monopoly union model, the right-to-manage model, and
the efficient bargaining model. The objective function of the union is the expected
(or average) utility of the union’s members.

In the monopoly union model, the union unilaterally picks a wage rate such that
union utility is maximized subject to the proviso that the solution lies on the labour
demand curve. The union thus acts as the monopolistic seller of labour, exploiting
the downward-sloping labour demand curve of the firm. The optimal wage choice of
the union can be represented as a simple markup expression involving unemploy-
ment benefit and the elasticity of the labour demand function. The union’s choice
implies that both the wage and the unemployment rate are above their respective
competitive levels. Productivity shocks typically lead only to employment changes
so that the model is consistent with real wage rigidity. (The proviso must be made
because a union which is fully employed is only interested in higher wages so that
positive productivity shocks do not translate into employment expansions.)

In the right-to-manage model, the firm is still allowed to decide on employment
but the wage is the outcome of a bargaining process between the union and the
firm. Using the concept of generalized Nash bargaining, the resulting wage can
again be written in a markup format. In addition to unemployment benefit and de-
mand elasticity an additional component entering the markup solution is the relative
bargaining strength of the union. An attractive feature of the right-to-manage mo-
del is that it contains the monopoly union solution and the competitive solution as
special (extreme) cases. An unattractive feature of the right-to-manage solution is
that it is Pareto inefficient, i.e. it is possible to make one of the parties involved in
the bargaining strictly better off without making the other party worse off.

The efficient bargaining model solves this problem by assuming that the firm and
the union bargain over both the wage and the employment level. The outcome of this
bargaining process is a range of efficient wage-employment combinations. When
combined with a “fair share” rule, dividing output over the two parties, the model
predicts a unique wage-employment solution. Interestingly, wage and employment
are higher than under the competitive solution as the union turns profits into jobs.
Wage moderation, consisting of a smaller share of the output going to labour, is
bad for employment because the wage-employment solution moves closer to the
competitive solution.

A second rationale for real wage rigidity is provided by the theory of efficiency
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wages. The basic hypothesis underlying this theory is that the net productivity of
workers is a function of the wage rate they are paid. A famous example of effi-
ciency wages is provided by the case of Henry Ford, who paid very high wages
and achieved a very high level of productivity as a result. The implications of the
efficiency-wage hypothesis are quite far-reaching. First, the law of demand and sup-
ply is no longer relevant. Even if there is excess supply of labour, the firm may not
lower its wage rate because the adverse effect on its workers’ productivity may out-
weigh the beneficial reduction in the wage bill. Furthermore, the law of one price is
also repealed. Since the effort-wage relationship may differ across industries, wages
may also differ for otherwise identical workers.

In the final part of this chapter we developed a simple general-equilibrium model
in which efficiency wages lead to real wage rigidity and a positive equilibrium unem-
ployment rate. Crucial determinants of the equilibrium unemployment rate are the
level of the unemployment benefit, the so-called leapfrogging coefficient (summariz-
ing the productivity-enhancing effect of high wages), and the degree of intersectoral
labour mobility.

Further reading

All serious students of the macroeconomic labour market should take notice of La-
yard et al. (2005) and Boeri and van Ours (2013). Nickell and Layard (1999) survey
the effects of labour market institutions on unemployment. On European unem-
ployment, see the studies by Bean (1994) and by Machin and Manning (1999). An
outstanding textbook on the economics of labour markets is the one by Cahuc et al.
(2014). Key readings on the efficiency wage theory are collected in Akerlof and
Yellen (1986). Katz (1986), Stiglitz (1986), and Weiss (1991) present very good critical
surveys. Solow (1979) is an early contribution to the literature. Hoel (1990) studies
the impact of progressive income taxes in an efficiency wage model. Raff and Sum-
mers (1987) argue convincingly that Henry Ford’s introduction of the five-dollar day
in 1914 had all the results stressed by efficiency wage theories: productivity and
profits increased, and workers queued for jobs at the Ford Motor Company. See also
Brinkley (2003, ch. 8) for background details on Ford’s decision to increase wages
dramatically. On dual labour markets, see McDonald and Solow (1985), Bulow and
Summers (1986), Atkinson (1994), and Saint-Paul (1996). For a good survey article on
tax incidence in macro models, see Kotlikoff and Summers (1987). For good surveys
of the economic literature on trade unions, see Oswald (1982, 1985), Farber (1986),
Pencavel (1991), and Booth (1995). Manning (1987) embeds the union model in a
sequential bargaining framework. Koskela and Vilmunen (1996) study the effects
of income taxes in a union model. See Cross (1988) for an interesting collection of
articles on hysteresis. Union-based models have been used to explain unemploy-
ment persistence, see for example Gottfries and Horn (1987). Lindbeck and Snower
(1988) is a good reference to the insider-outsider literature. Calmfors and Driffill
(1988) suggest that the unemployment rate may have something to do with the de-
gree of corporatism that exists in the economy, and that unemployment tends to be
low for the extreme cases when (1) unions are small and weak or (2) when there
is a small number of highly centralized unions. The former cannot do much dam-
age and the latter tend to internalize the government budget constraint in setting
their wage claims. A national union cannot overbid its own wage claim (Layard et
al., 2005, p. 30). There is a third approach to real wage rigidity which goes by the
name of implicit contract theory. A key paper is Azariadis (1975). Good surveys on
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this literature are Azariadis (1981), Azariadis and Stiglitz (1983), and Rosen (1985).
Bénassy (1993b) has shown that implicit contract theory does provide a rationale for
real wage rigidity but not for (involuntary) unemployment. In fact, implicit con-
tract models typically predict overemployment rather than unemployment. For that
reason it is no longer at the top of the research agenda of most macroeconomists
studying the labour market.



Chapter 8

Search in the labour market

In this chapter we abandon the notion of an aggregate labour market altogether. In-
stead we look directly at the determinants of the two principal labour market flows,
namely the flow from unemployment to employment (job finding) and the reverse
flow (job destruction). The keyword for this chapter is two-sided search. Unem-
ployed workers are looking for a job, and firms with a vacancy are searching for a
worker. The search process is costly because it takes time and resources. The specific
purpose of this chapter is to discuss the following issues:

1. How can we model the search behaviour of workers and firms?

2. What does the resulting search equilibrium look like? And how does the model
explain the duration of unemployment?

3. What is meant by efficient unemployment? What does the Hosios condition
say about this concept?

4. How does taxation affect the equilibrium unemployment rate? How can we
reduce the equilibrium unemployment rate?

5. How do job-specific shocks give rise to endogenous job destruction?

8.1 Search in the labour market

The labour market in many countries is characterized by huge gross flows of workers
leaving a job and entering unemployment and vice versa. For example, for the US
the flow of workers entering or leaving a job amounts to 7 million per month (Blan-
chard and Diamond, 1989, p. 1)! It would be tempting to argue that these enormous
flows, due to the simultaneous occurrence of job creation and job destruction, are
bound to cause problems. There are a lot of workers looking for jobs, and vice versa.
At a macroeconomic level, however, it appears that (at least in the US) the labour
market is relatively efficient at matching jobs and workers. As we saw in Chapter 7,
US unemployment seems to be relatively low and stable (in non-crisis times). The
modern theory of search behaviour in the labour market is specifically aimed at de-
scribing this matching process that takes place in the labour market. This theory is
radically different from the previous labour market theories discussed so far in that
the notion of an aggregate labour market is abandoned. As Diamond (1982b, p. 217)
explains, rather than assuming that the market is the mechanism by which workers
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and jobs are brought together, the modern approach assumes that there is a search
process which stochastically brings together unemployed workers and vacant jobs
in a pair-wise fashion. This two-sided search process takes time and consequently
causes loss of output. When a worker and a job meet each other, negotiations take
place to determine the wage.

8.1.1 A canonical two-sided search model

In this section we present the canonical two-sided search model.1 The modern theory
of search makes use of the so-called matching function. This is a hypothetical concept,
not unlike the production function, which turns out to be very convenient analyt-
ically. A matching function determines the number of job vacancies that are filled
(“matches”), each instant, as a function of the number of unemployed job-seeking
workers and the number of vacancies that exist (plus exogenous variables). Firms
have jobs that are either filled or vacant. It is assumed that only vacant jobs are on
offer. The firm is not searching for workers to replace existing (but unsatisfactory)
workers. Workers either have a job or are unemployed, and only the unemployed
engage in search. There is no on-the-job search in the model discussed in this section.
By making these assumptions, the two activities of production of goods and trade in
labour are strictly separate activities.

Firms and workers know the job-matching technology, and know that there is
an exogenously given job destruction process.2 At each moment in time, a proportion
of the existing filled jobs are destroyed, say because of firm-specific shocks making
previously lucrative jobs unprofitable. In equilibrium, there is thus a constant inflow
into unemployment, and the model predicts an equilibrium unemployment rate that is
strictly greater than zero.

It is assumed that there are many firms and many workers, and that every agent
behaves as a perfect competitor. The fixed labour force consists of N workers, and
each worker who has a job supplies one unit of labour. (There is no decision on hours
of work by the worker, and the effort of each worker is constant.) The unemployment
rate is defined as the fraction of the labour force without a job, and is denoted by
U. The vacancy rate is the number of vacancies expressed as a proportion of the
labour force, and is denoted by V. Hence, at each moment in time, there are UN
unemployed workers and VN vacant jobs “trying to find each other”.

The number of successful matches at each instant in time depends on UN and
VN according to the matching function:

MN = G(UN, VN), (8.1)

where MN is the total number of matches, so that M is the matching rate, and
G(UN, VN) is a linearly homogeneous function that can be rewritten as G(UN, VN)
= NG(U, V). We assume that GU > 0, GV > 0, GUU < 0, GVV < 0, and GUUGVV −
G2

UV > 0. The intuitive idea behind (8.1) is that at each instant MN meetings occur
between an unemployed worker and a firm with a job vacancy. Which particular
worker meets which particular job vacancy is selected randomly.

Consider a small time interval dt. During that time interval, there are MNdt
matches and VN vacant jobs, so that the probability of a vacancy being filled during

1The exposition given in this section closely follows Pissarides (1990, ch. 1). We focus on an intuitive
discussion of the model. More formal discussions of the matching model can be found in Mortensen and
Pissarides (1999a,1999b). In Chapter 13 a macroeconomic matching model is constructed and analysed.

2In Section 8.3 we endogenize the job destruction rate along the lines suggested by Mortensen and
Pissarides (1994) and Pissarides (2000, ch. 2)
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dt equals (MN/VN)dt. By defining q ≡ MN/VN = M/V, we can use equation
(8.1) to write q as:

q ≡ G(UN, VN)

VN
=

VN · G (U/V, 1)
VN

= G (U/V, 1) ≡ q(θ), (8.2)

where θ ≡ V/U is the vacancy-unemployment ratio that plays a crucial role in the
analysis. Obviously, since q(θ)dt measures the probability that a vacancy will be
filled in the time interval dt, q(θ) can be interpreted as the instantaneous probability
of a vacancy being filled, and the expected duration of a job vacancy is 1/q(θ). All
these results are derived more formally in Intermezzo 8.1 below.

In view of the assumptions about G(U, V), the following properties of the q(θ)
function can be demonstrated:

dq
dθ

= −GU

θ2 < 0, (8.3)

and

εq(θ) ≡ −
θ

q
dq
dθ

=
GU
θq
⇒ 0 < εq(θ) < 1, (8.4)

where εq(θ) is the absolute value of the elasticity of the q(θ) function.3

Unemployed workers also find a match in a stochastic manner. For workers, the
instantaneous probability of finding a firm with a vacancy is given by MN/UN, the
number of vacancies expressed as a fraction of the number of unemployed workers.
This instantaneous probability can be written in terms of θ also:

G(UN, VN)

UN
=

VN · G(UN/VN, 1)
UN

= (V/U) ·G (U/V, 1) = θq(θ) ≡ f (θ). (8.5)

The f (θ) function has the following elasticity:

ε f (θ) ≡
θ

f
d f
dθ

=

[
q(θ) + θ

dq
dθ

]
θ

θq(θ)
= 1 +

θ

q
dq
dθ

= 1− εq(θ) > 0. (8.6)

Since f (θ) represents the instantaneous probability of an unemployed worker find-
ing a job, the expected duration of unemployment equals 1/ f (θ) = 1/(θq(θ)). This
is intuitive, since unemployed workers find it easier to locate a job (and hence ex-
pect a shorter duration of unemployment) if θ is high, i.e. if there are relatively
many vacancies. The definitions of q(θ) and f (θ) in (8.2) and (8.5) show that there
is an intricate connection between the process linking workers to jobs, and the one
linking jobs to workers. This is obvious, since workers and vacancies meet in pairs.

The variable θ is the relevant parameter measuring labour market pressure to
both parties involved in the labour market. This parameter plays a crucial role be-
cause the dependence of the search probabilities on θ implies the existence of a trad-
ing externality. There is stochastic rationing occurring in the labour market (firms with
unfilled vacancies, workers without a job) which cannot be solved by the price mech-
anism, since worker and vacancy must first get together before the price mechanism
can play any role. The degree of rationing is, however, dependent on the situation in
the labour market, which is summarized by θ. If θ rises, the probability of rationing

3The trick is to write (8.1) as MN = [GUU + GVV] N, which implies q = GU/θ + GV . Hence, εq(θ) =
GU/(qθ) = 1− GV /q, which is between 0 and 1 because 0 < GV < q.
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is higher for the average firm and lower for the average worker. The particular ex-
ternal effect that is present in the model is called the congestion or search externality
by Pissarides (1990, p. 6).

As was pointed out above, it is assumed that there is an exogenously given job
destruction process that ensures that a proportion δm of all filled jobs disappears at
each instant. In a small time interval dt, the probability that an employed worker
loses his/her job and becomes unemployed is thus given by δmdt (of course, by the
same token, the probability that a filled job is destroyed is also equal to δmdt). Hence,
the average number of workers that become unemployed in a time interval dt equals
δm(1−U)Ndt, and the average number of unemployed who find a job is given by
f (θ)UNdt. In the steady-state the unemployment rate is constant, so that the ex-
pected inflow and outflow must be equal to each other:

δm(1−U)Ndt = f (θ)UNdt. (8.7)

By assuming that the labour force N is large, expected and actual inflows and out-
flows can be assumed the same, so that (8.7) can be solved for the actual equilibrium
unemployment rate:

U =
δm

δm + f (θ)
, (8.8)

which implies that ∂U/∂δm > 0 and ∂U/∂θ < 0.

8.1.1.1 Firms

Each firm is extremely small, has a risk-neutral owner, and has only one job, which
is either filled or vacant. If the job is filled, the firm hires physical capital K at a given
interest rate r, and produces output F(K, 1). The production function is constant
returns to scale and satisfies FK > 0 > FKK and FL > 0 > FLL. If the job is vacant,
on the other hand, the firm is actively searching for a worker and incurs a constant
search cost of c per time unit. As was pointed out above, the probability that the firm
finds a worker in time interval dt is given by q(θ)dt. Since each firm only has one
job, the number of jobs and firms in the economy coincide, and the free entry/exit
condition determines the number of jobs/firms.

Let JO denote the present value of the profit stream originating from a firm with
an occupied job, and let JV designate the same for a firm with a vacancy. With a
perfect capital market the firm can borrow freely at the given interest rate, and the
following steady-state arbitrage equation holds for a firm with a vacancy:

rJV = −c + q(θ) [JO − JV ] . (8.9)

In words, equation (8.9) says that a vacant job is an asset of the firm. In equilibrium,
the value of this asset must be such that the capital cost rJV is exactly equal to the
return from the asset. The return consists of two parts, i.e. the constant search cost
that must be incurred each time unit (−c) plus the expected capital gain due to the
fact that the vacant job can be filled in the future (with instantaneous probability
q(θ)). The capital gain is the difference in value of a filled and a vacant job, i.e.
JO − JV .

Since anyone who is prepared to incur the constant search cost each time unit can
set up a firm (with a vacancy) and start looking for a worker, free entry of firms will
occur until the value of a vacant job is exactly equal to zero. Conversely, if a vacant
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job is worth a negative amount, exit of firms takes place and vacancies disappear.
This implies the following expression:

JV = 0 ⇔ 0 = −c + q(θ)JO ⇔ JO =
c

q(θ)
. (8.10)

The final expression is intuitive. The expected duration of a vacancy is 1/q(θ) during
which the search cost c must be incurred. In equilibrium the number of jobs/firms
must be such that the expected profit of a filled job is exactly equal to the expected
cost of the vacancy.

For a firm with a filled job, the following steady-state arbitrage equation can be
derived:

rJO = [F(K, 1)− (r + δk)K− w]− δm JO, (8.11)

where r+ δk is the rental charge on capital goods, δk is the depreciation rate of capital,
and w is the real wage rate. Equation (8.11) says that the asset value of a filled job
is JO and its capital cost equals rJO. This must equal the return from the filled job,
which consists of two parts. The first part is the surplus created in production, i.e.
(the value of) output that remains after the production factors capital and labour
have been paid (the term in square brackets). The second part is the expected capital
loss due to job destruction (δm JO).

The size of each firm with a filled job is determined in the usual manner. The
firm chooses the amount of capital it wants to rent such that the value of the firm is
maximized. In terms of (8.11) we can write this problem as:

max
{K}

(r + δm)JO ≡ F(K, 1)− (r + δk)K− w ⇒ FK(K, 1) = r + δk. (8.12)

This is the usual condition equating the marginal product of capital to the rental
charge on capital. Since both the interest rate r and the capital depreciation rate
are constant, equation (8.12) fixes a unique capital intensity K∗ and thus ensures
that the marginal product of labour (which we call job productivity) is a constant,
p ≡ FL(K∗, 1). Finally, by linear homogeneity of the production function we obtain
the result that F(K∗, 1)− (r + δk)K∗ = p so that equation (8.11) can be rewritten as
follows:

rJO = [p− w]− δm JO. (8.13)

It is important to recognize that job productivity p is constant in this chapter because
both the interest rate r and the depreciation rate are.

Finally, by combining (8.10) and (8.13) we obtain the job creation condition:

p− w
r + δm

=
c

q(θ)
. (8.14)

The left-hand side of (8.14) represents the value of an occupied job, equalling the
present value of rents (accruing to the firm during the job’s existence) using the risk-
of-job-destruction-adjusted discount rate, r + δm, to discount future rents. The right-
hand side of (8.14) is the expected search costs. With free exit/entry of firms, the
value of an occupied job exactly equals the expected search costs.4

4If there were no search costs for the firm (c = 0), the model would yield the standard productivity
condition for labour (p = FL = w). With positive search costs, however, the factor labour receives less
than its marginal product. This is because the marginal product of labour must be sufficiently large to
cover the capital cost of the expected search costs.
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8.1.1.2 Workers

The worker is risk neutral, lives forever, has a time preference rate equal to r, and
consequently only cares about the expected discounted value of income (Diamond,
1982b, p. 219). A worker with a job earns the wage w, whilst an unemployed worker
obtains the exogenously given “unemployment benefit” b. This may consist of a real
transfer payment from the government but may also include the pecuniary value
of leisure. Let YE denote the present value of the expected stream of income of a
worker with a job, and let YU denote the same for an unemployed worker. Then the
following steady-state arbitrage equation can be derived for a worker without a job:

rYU = b + f (θ) [YE −YU ] . (8.15)

In words, equation (8.15) says that the asset YU is the human wealth of the unem-
ployed worker. The capital cost of the asset must be equal to the return, which con-
sists of the unemployment benefit, b, plus the expected capital gain due to finding
a job, i.e. YE − YU . As Pissarides (1990, p. 10) points out, rYU can be interpreted in
two ways. First, it is the yield on human wealth of an unemployed worker during
search. It measures the minimum amount for which the worker would be willing
to stop searching for a job, and hence has the interpretation of a reservation wage.
The second interpretation is that of “normal” or “permanent” income: the amount
that the unemployed worker can consume whilst still leaving his/her human wealth
intact.

For a worker with a job the steady-state arbitrage equation reads as follows.

rYE = w− δm [YE −YU ] . (8.16)

The permanent income of an employed worker differs from the wage rate because
there is a non-zero probability of job destruction causing a capital loss of YE −YU .

By solving (8.15)–(8.16) for rYU and rYE, the following expressions are obtained:

rYU =
(r + δm)b + θq(θ)w

r + δm + θq(θ)
, (8.17)

rYE =
δmb + [r + θq(θ)]w

r + δm + θq(θ)
=

r(w− b)
r + δm + θq(θ)

+ rYU , (8.18)

where the second expression in (8.18) shows that w ≥ b must hold for anybody to be
willing to search for a job.

Intermezzo 8.1

Some statistical theory. The search-theoretic approach makes use of
some statistical techniques that may not be immediately obvious. In this
intermezzo some important notions are reviewed. Further details can be
found in Ross (1993, ch. 5).

A very convenient probability distribution is the exponential distri-
bution. A continuous random variable X is exponentially distributed if
its probability density function has the form:

φ(x) =
{

λe−λx x ≥ 0
0 x < 0,

(a)
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where λ > 0. The cumulative distribution function is given by:

Φ(x) ≡
∫ x

−∞
φ(y)dy =

{
1− e−λx x ≥ 0
0 x < 0

(b)

The cumulative distribution function Φ(x) measures the probability that
the random variable X attains a value less than or equal to x, or in sym-
bols:

Φ(x) ≡ P{X ≤ x}. (c)

The exponential distribution has the following properties. First, E(X) =
1/λ, the expected value of X is 1/λ. Second, the variance of X is
V(X) ≡ E(X2)− [E(X)]2 = 1/λ2. Third, the random variable X is mem-
oryless. Suppose that X is the lifetime of some light bulb. Then, if the
light bulb is still working at some time t, the distribution of the remain-
ing amount of time that it will continue to shine light is the same as the
original distribution. Colloquially speaking, the light bulb does not “re-
member” that it has already shone for t periods. Formally, a random
variable is memoryless if the following holds:

P{X > s + t | X > t} = P{X > s}. (d)

The memoryless property implies a very simple expression for the failure
rate function (often called the hazard rate function). The failure rate func-
tion fr(t) represents the conditional probability density that a t-year old
item (such as a light bulb or a human being) fails. It is defined as:

fr(t) ≡ φ(t)
1−Φ(t)

. (e)

For the exponential distribution, the memoryless property implies that
the distribution of remaining life for a t-year old item is the same as for a
new item. As a result, the failure rate function should be constant. Using
(a)–(c), we find that this is indeed the case:

fr(t) ≡ φ(t)
1−Φ(t)

=
λe−λt

e−λt = λ. (f)

We shall have the opportunity to use this property in economically very
interesting applications in the present chapter and in Chapter 15.

The search-theoretic approach also makes extensive use of the notion
of a Poisson process. A Poisson process is a counting process with a number
of properties. A stochastic process {M(t), t ≥ 0} is called a counting
process if M(t) represents the number of “events” that have occurred up
to time t. For example, if M(t) represents the number of goals scored
by one’s favourite soccer star by time t, an “event” consists of your star
hitting the back of the net once more. In the context of matching, M(t)
represents the number of all matches that have occurred by time t. The
counting process M(t) must satisfy: (i) M(t) ≥ 0; (ii) M(t) is integer
valued; and (iii) if s < t, then M(t)−M(s) ≥ 0; and (iv) for s < t, M(t)−



274 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

M(s) equals the number of events that have occurred in the interval (s, t)
(Ross, 1993, p. 208).

A Poisson process is a specific kind of counting process. Formally, the
counting process {M(t), t ≥ 0} is called a Poisson process with rate λ
(> 0) if: (i) M(0) = 0; (ii) the process has independent increments; (iii)
the number of events in any interval length t is Poisson distributed with
mean λt. Hence,

P{M(t + s)−M(s) = m} ≡ e−λt (λt)m

m!
, (g)

for m = 0, 1, 2, 3, · · · . For our purposes it is important to know some-
thing about interarrival times. Suppose that we have a Poisson process
M(t), and that the first event has occurred at time T1. We define Tn as
the elapsed time between the (n − 1)st and the nth event (for n > 1),
and refer to Tn as the interarrival time. Of course, Tn is stochastic. A
very useful property of the Poisson process is that Tn (n = 1, 2, 3, · · · ) are
independent identically distributed exponential random variables with
parameter λ and hence have a mean of 1/λ (Ross, 1993, p. 214).

Within the context of the matching model this is a very handy prop-
erty. Since interarrival times are distributed exponentially, the hazard
rate fr(t) = λ is constant and λdt represents the probability that a failure
will take place in the time interval dt. Note that a “failure” implies that
a match has occurred in this context. Hence, λ can be interpreted as the
instantaneous probability of a match occurring.

As is stressed by Pissarides (2001), job matching is by definition a
pair-wise event (namely between a firm with a vacancy and an unem-
ployed worker), so that the rates of transition for jobs and for work-
ers are related Poisson processes. For example, as is shown in (8.9), a
firm with a vacancy faces a Poisson process with instantaneous proba-
bility q (θ) of meeting an unemployed worker (a match) and striking a
deal with this worker. Similarly, as is shown in (8.15), the unemployed
worker also faces a Poisson process, but one with instantaneous proba-
bility f (θ) ≡ θq (θ) of meeting a firm with a vacancy that he/she is able
to strike a deal with. For job destruction a similar connection between
the firm and its worker exists—see equations (8.11) and (8.16).

****

8.1.1.3 Wages

What happens when a job seeker encounters a firm with a vacancy? Clearly there
is a pure economic rent created by the encounter, existing of the sum of the foregone
expected search costs by the firm. But how is this surplus shared between the two
parties? In this search context, it is clearly not possible to refer to some going market
wage rate, because the concept of an aggregate labour market with impersonal ex-
change has been abandoned. The exchange that takes place between the two parties
is one-on-one, and the division of the rent is a matter of bargaining. Fortunately,
as we saw in Chapter 7, there is a useful solution concept in two-person bargaining



CHAPTER 8: SEARCH IN THE LABOUR MARKET 275

situations, called the generalized Nash bargaining solution.
We assume that all firm-worker pairings are equally productive, so that the wage

rate is the same everywhere. This allows us to focus on the symmetric equilibrium
solution of the model, which is reasonable because the aim of this chapter is to dis-
cuss the macroeconomic implications of search theory, not to develop an empirically
adequate description of the labour market. We furthermore assume that each firm-
worker pair that is involved in wage negotiations takes the behaviour of other such
pairings as given.

Consider a particular firm-worker pairing i. What does the firm get out of a deal?
Obviously the firm changes status from a firm with a vacancy (with value Ji

V = 0,
due to free exit/entry) to a firm with an occupied job (with value Ji

O). Hence, it
follows from (8.13) that the expected gain to the firm is:

Ji
O =

p− wi
r + δm

. (8.19)

Equation (8.19) shows what the firm is after: it wants to squeeze as much surplus
as possible out of the worker by bargaining for a wage wi far below the marginal
product p of the worker.

What does the worker get out of the deal? If a deal is struck, the worker changes
status from unemployed to employed worker, which means that the net gain to the
worker is:

r
[
Yi

E −YU

]
= wi − δm

[
Yi

E −YU

]
− rYU , (8.20)

where YU does not depend on wi, but rather on the expectation regarding the wage
rate in the economy as a whole (see equation (8.17)). If the worker does not accept
this job offer (and the wage on offer wi) then he must continue searching as one of
many in the “pool of the unemployed”. The relevant wage rate that the unemployed
worker takes into account to calculate the value of being unemployed is not wi but
rather the expected wage rate elsewhere in the economy.

Using the generalized Nash bargaining solution, the wage wi is set such that Ω is
maximized:

max
{wi}

Ω ≡ β ln[Yi
E −YU ] + (1− β) ln[Ji

O − JV ], 0 < β < 1, (8.21)

where JV (= 0) and YU can be interpreted as the “threat” points of the firm and the
worker, respectively. The relative bargaining strengths of the worker and the firm
are given by, respectively, β and 1− β. The usual rent-sharing rule rolls out of the
bargaining problem defined in (8.21):

dΩ
dwi

=
β

Yi
E −YU

·
dYi

E
dwi

+
1− β

Ji
O − JV

·
dJi

O
dwi

= 0⇒

β

r + δm
· 1

Yi
E −YU

− 1− β

r + δm
· 1

Ji
O − JV

= 0 ⇒

Yi
E −YU =

β

1− β
·
[

Ji
O − JV

]
. (8.22)

This rent-sharing rule can be turned into a more convenient wage equation in two
ways.
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First, by substituting (8.19)–(8.20) into (8.22) and imposing JV = 0 (due to free
exit/entry) we obtain:

(1− β)Yi
E = βJi

O + (1− β)YU ⇒

(1− β)
wi + δmYU

r + δm
= β

p− wi
r + δm

+ (1− β)YU ⇒

(1− β) [wi + δmYU ] = β [p− wi] + (1− β)(r + δm)YU ⇒
wi = (1− β)rYU + βp. (8.23)

The worker gets a weighted average of his/her reservation wage (rYU) and marginal
product (p = FL). The stronger is the bargaining position of the worker, the larger is
β and the closer is the wage to the marginal product of labour.

The second expression for the wage equation is obtained as follows. We know
that job productivity is the same for each firm with an occupied job (this is because
they all choose the same capital stock, so that Ki = K). Hence, the wage rate chosen
by firm i is also the same for all firms, wi = w. This implies that rYU can be written
as follows:

rYU = b + θq(θ) [YE −YU ] = b + θq(θ)
β

1− β
JO

= b + θq(θ)
β

1− β

c
q(θ)

= b +
βθc

1− β
, (8.24)

where we have used the rent-sharing rule (8.22) and the free-entry condition (8.10)
to arrive at the final expression. This result is intuitive. In words, it says that the
reservation wage rYU is increasing in the unemployment benefit b, the relative bar-
gaining strength of the worker β, the employers’ search cost c, and the tightness in
the labour market θ. By substituting (8.24) into (8.23) we obtain the alternative wage
equation:

w = (1− β)b + β [p + θc] . (8.25)

Workers get a weighted average of the unemployment benefit and the surplus, which
consists of the marginal product of labour plus the expected search costs that are
saved if the deal is struck (recall that cθ ≡ cV/U represents the average hiring costs
per unemployed worker).

8.1.2 Market equilibrium

We now have all the necessary ingredients of the model. For convenience, the full
model is summarized by the following three equations which together determine
the equilibrium values for the endogenous variables, w, θ, and U.

p− w
r + δm

=
c

q(θ)
, (8.26)

w = (1− β)b + β [p + θc] , (8.27)

U =
δm

δm + f (θ)
. (8.28)

The exogenous variables are p, c, and b, whilst δm and β are structural parameters.
Equation (8.26) is a form of the zero profit condition implied by the assumption of
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free exit/entry of firms, and (8.27) is the wage-setting equation that rolls out of the
Nash bargaining between a firm with a vacancy and an unemployed job seeker. Fi-
nally, (8.28) is the expression for the equilibrium unemployment rate. This equation
is also known as the Beveridge curve (Blanchard and Diamond, 1989).

The model is recursive. First, equations (8.26)–(8.27) determine equilibrium val-
ues for w and θ as a function of the exogenous variables and parameters. Second,
(8.28) determines the unemployment rate, U, as a function of θ. Once θ and U are
known, the total number of jobs is given by (1 − U)N + θUN, and employment
equals L = (1−U)N.

The graphical representation of the model is given in Figure 8.1. In panel (a) the
ZP curve is the zero-profit condition (8.26). It is downward sloping in (w, θ) space:(

dw
dθ

)
ZP

=
(r + δm)c

q(θ)2 q′(θ) < 0. (8.29)

Intuitively, a reduction in the wage increases the value of an occupied job and thus
raises the left-hand side of (8.26). To restore the zero-profit equilibrium the expected
search cost for firms (the right-hand side of (8.26)) must also increase, i.e. q(θ) must
fall and θ must rise.

Also in panel (a), the WS curve is the wage-setting curve (8.27). This curve is
upward sloping in (w, θ) space:(

dw
dθ

)
WS

= βc > 0. (8.30)

Intuitively, the wage rises with θ because the worker receives part of the search costs
that are foregone when he strikes a deal with a firm with a vacancy (see above).
By combining ZP and WS0 in panel (a), the equilibrium wage, w∗, and vacancy-
unemployment ratio, θ∗, are determined–see point E0 in panel (a).

In panel (b) of Figure 8.1, the straight line from the origin, labelled LMT0, depicts
the equilibrium vacancy-unemployment ratio (i.e., the indicator for labour market
tightness) by writing it in the form V = θ∗U. The line labelled BC depicts the Bev-
eridge curve (8.28), rewritten in (V, U) space:

U =
δm

δm + f (V/U)
. (8.31)

The slope of the Beveridge curve is:(
dV
dU

)
BC

= −1
θ

f ε f

δm + f [1− ε f ]
< 0, (8.32)

where f and ε f are given, respectively, in (8.5) and (8.6). The Beveridge curve is
downward sloping (since f > 0 and 0 < ε f < 1). Intuitively, for a given unemploy-
ment rate, a reduction in vacancy rate leads to a fall in the instantaneous probability
of finding a job ( f ), i.e. for points below the BC curve the unemployment rate is less
than the rate required for flow equilibrium in the labour market (U < δm/(δm + f )).
To restore flow equilibrium the unemployment rate must rise.

8.1.3 Comparative static effects

In order to demonstrate some of the key properties of the model we now perform
some comparative static experiments. The first experiment has some policy rele-
vance and concerns the effects of an increase in the unemployment benefit b. It is
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Figure 8.1: Search equilibrium in the labour market

clear from (8.27) that an increase in b leads to upward pressure on the wage rate
as the fall-back position of workers in the wage negotiations improves. In terms
of Figure 8.1, the wage setting equation shifts up from WS0 to WS1 and the equi-
librium shifts from E0 to E1 in panel (a). The equilibrium wage rate increases and
the vacancy-unemployment ratio decreases. Intuitively, the policy shock causes the
value of an occupied job to fall. In panel (b) of Figure 8.1, the reduction in the
vacancy-unemployment ratio is represented by a clockwise rotation of the LMT line,
from LMT0 to LMT1. Since nothing happens to the Beveridge curve, the equilibrium
shifts from E0 to E1 in panel (b), the vacancy rate falls, and the unemployment rate
rises.

As a second comparative static experiment we consider what happens when the
exogenous rate of job destruction δm rises. This shock is more complicated than the
first one because it affects both the incentive for firms to create vacancies and the
Beveridge curve itself. Indeed, it follows from equation (8.31) that:

∂U
∂δm

=
1−U

δm + f [1− ε f ]
> 0, (8.33)

i.e. an increase in the job destruction rate δm shifts the Beveridge curve to the right.
It is clear from equation (8.26) that, ceteris paribus the wage, the increase in the job
destruction rate reduces the value of an occupied job as the rents accruing to the
firm are discounted more heavily. Hence, in terms of panel (a) of Figure 8.2, the ZP
curve shifts to the left from ZP0 to ZP1. Since nothing happens to the wage-setting
curve, the equilibrium in panel (a) shifts from E0 to E1 and both the wage and the
vacancy-unemployment ratio fall. In panel (b) of Figure 8.2, the LMT curve rotates
in a clockwise fashion from LMT0 to LMT1. As was noted above, the direct effect
of an increase in the job destruction rate is to shift the Beveridge curve outward, say
from BC0 to BC1 in panel (b). We show in Intermezzo 8.2 that the outward shift in the
Beveridge curve dominates the clockwise rotation in the LMT curve (provided a very
mild sufficient condition is satisfied) so that the new equilibrium E1 lies in a north-
easterly direction from the initial equilibrium E0 so that both the unemployment
and vacancy rate increase.
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Figure 8.2: The effects of a higher job destruction rate

Intermezzo 8.2

Comparative static effects in the matching model of unemployment.
In section 8.1.3 we graphically derive some results regarding shocks to
the unemployment benefit, b, and the job destruction rate, δm. Here we
derive these results analytically. First we loglinearize equations (8.26)–
(8.27). After some manipulation we obtain:[

εq(w− p) −1
−βcθ 1

] [
θ̃

dw

]
=

[
(p− w)

[
c̃ +

(
δm

r+δm

)
δ̃m

]
(1− β)db + βcθc̃

]
, (a)

where εq is defined in (8.4), θ̃ ≡ dθ/θ, c̃ ≡ dc/c, and δ̃m ≡ dδm/δm.
Solving (a) yields the solutions for θ̃ and dw:

θ̃ ≡ Ṽ − Ũ =
− (p− w + βθc) c̃− (p− w)

(
δm

r+δm

)
δ̃m − (1− β)db

εq (p− w) + βcθ
,

(b)

dw = (p− w)

−βθc
[
(1− εq)c̃ + δm

r+δm
δ̃m

]
+ εq(1− β)db

εq (p− w) + βcθ

 . (c)

It follows that an increase in the unemployment benefit (db > 0) raises the
wage (dw > 0) and reduces the vacancy-unemployment ratio (θ̃ < 0) as
is illustrated in Figure 8.1. An increase in the job separation rate (δ̃m > 0)
leads to a reduction in both the wage and the vacancy-unemployment
ratio (dw < 0 and θ̃ < 0) as is illustrated in Figure 8.2. Finally, an in-
crease in the search costs (c̃ > 0) reduces both the wage and the vacancy-
unemployment ratio (dw < 0 and θ̃ < 0). Students are invited to draw
the corresponding graph and to provide the economic intuition.
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It remains to show that an increase in the job destruction rate raises
both the unemployment and vacancy rates, as is asserted in the discus-
sion surrounding Figure 8.2. By loglinearizing (8.31) we obtain:

Ṽ =
1

1− εq
δ̃m −

δm + f εq

f
(
1− εq

) Ũ, (d)

where Ũ ≡ dU/U, Ṽ ≡ dV/V, and where εq and f are given, respec-
tively, in (8.4) and (8.5). By using (b) and (d) (and setting c̃ = db = 0) we
obtain a system in Ṽ and Ũ:[

1 δm+ f εq
f (1−εq)

1 −1

] [
Ṽ
Ũ

]
=

[
1

− δm
r+δm

(1−εq)(p−w)

εq(p−w)+βcθ

]
δ̃m

1− εq
. (e)

Solving (e) yields the following expressions:

Ṽ =
f

δm + f
·
[

1−
δm + f εq

f
δm

r + δm

p− w
εq(p− w) + βcθ

]
δ̃m ≷ 0, (f)

Ũ =
f

δm + f
·
[

1 +
δm

r + δm

(1− εq)(p− w)

εq(p− w) + βcθ

]
δ̃m > 0. (g)

Unemployment unambiguously rises but the effect on the vacancy rate is
ambiguous in general. It is not difficult to show, however, that the term
in square brackets on the right-hand side of (f) is positive if a rather weak
sufficient condition is satisfied. First we note that (8.26) gives rise to the
following result:

p− w
εq(p− w) + βcθ

=
r + δm

εq(r + δm) + β f
. (h)

By using (h) the term in square brackets on the right-hand side of (f) can
be simplified to:

[.] = 1−
δm + f εq

f
δm

r + δm

r + δm

εq(r + δm) + β f

=
f
[
rεq + β f

]
− δ2

m

f
[
εq(r + δm) + β f

]
=

f rεq + f 2 [β− (δm/ f )2]
f
[
εq(r + δm) + β f

] . (i)

The denominator in (i) is positive, and, since f rεq > 0, a sufficient condi-
tion for the numerator to be positive also is β > (δm/ f )2 or:

β >

(
U

1−U

)2
, (j)

where we have used the fact that U = δm/(δm + f ). Provided the relative
bargaining power of the worker (β) is not very small, the inequality in (j)
is satisfied and the term in square brackets on the right-hand side of (f)
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is positive. In fact, the sufficient condition is quite weak. Even for the
relatively high unemployment rate of 25% (U = 0.25) the condition is
satisfied if β > 1/9. See, also Pissarides (1990, p. 16) who derives a more
stringent sufficient condition.

In section 8.2.1 we modify the model to take into account the effects
of taxation on the labour market. An increase in the labour income tax
rate operates just like an increase in the unemployment benefit so the
results follow immediately. Keeping all exogenous variables other than
the payroll tax constant we find by differentiating (8.36) and (8.41):[

εq
w(1+tE)−p

1+tE
−1

− βcθ
1+tE

1

] [
θ̃

dw

]
=

[
w
− β[p+cθ]

1+tE

]
t̃E, (k)

where t̃E ≡ dtE/(1 + tE). Solving (k) yields the solutions for θ̃ and dw:

θ̃ = − w(1 + tE)− β [p + θc]
εq [p− w(1 + tE)] + βcθ

t̃E < 0, (l)

dw = − β

1 + tE

θcw (1 + tE) + εq [p− w (1 + tE)] [p + θc]
εq [p− w(1 + tE)] + βcθ

t̃E < 0, (m)

where it follows from (8.41) that the numerator of (l) is positive.
In section 8.2.2 we study the effects of an increase in the deposit on

labour, b. Keeping all exogenous variables other than the deposit con-
stant we find by differentiating (8.45) and (8.48):[

εq (w− p− rsH) −1
−βcθ 1

] [
θ̃

dw

]
=

[
−1
β

]
rdsH . (n)

Solving for θ̃ and dw yields:

θ̃ =
1− β

εq (p + rsH − w) + βθc
rdsH > 0, (o)

dw =
β
[
θc + εq (p + rsH − w)

]
εq (p + rsH − w) + βθc

rdsH > 0. (p)

****

8.1.4 Efficiency

The matching model described in this section incorporates a trading externality. The
matching probability of unemployed workers and firms with a vacancy depends on
the number of traders in the market, i.e. on U and on V. When an unemployed
worker and a firm with a vacancy meet and strike a deal (by agreeing on a particular
wage rate), they do not take into account that in doing so they affect the labour
market tightness ratio, V/U, and thus alter both the job-finding rate and the worker-
finding rate for other participants in the labour market. The critical question is now
whether the Nash-bargained wage rate internalizes the external effect, and produces
an efficient outcome, or not? Put differently, is search unemployment efficient or
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not?
In a celebrated paper, Hosios (1990) argues in very general terms that the search

equilibrium is Pareto efficient if, for each agent, the social contribution to and private
gain from participating in the matching process are equal to each other. In the context
of our particular model, the matching function features constant returns to scale and
the equilibrium is efficient provided the Hosios condition is satisfied:5

β = εq (θ) , (8.34)

where β is the bargaining weight of workers and εq (·) ≡ GUU/G is the elasticity of
the matching function with respect to unemployment (see also (8.4) above).

As is explained in detail by Pissarides (2000, p. 185), the Hosios condition must be
seen as a knife-edge condition which is very unlikely to hold in real economies. This
can be demonstrated most easily in the special case with a Cobb-Douglas matching
function, M = Uεq V1−εq for which the elasticity is a constant and the Hosios con-
dition reduces to εq = β. But these coefficients are completely independent and are
thus unlikely to be equal to each other: β is the “bargaining strength” of the worker
whereas εq is an aspect of the matching technology. In conclusion, the decentralized
matching model is likely to be inefficient.

8.2 Applications of the canonical search model

In this section we use the canonical model developed above to study two policy
issues. First, we continue our study of the effects of taxation on the labour market.
Second, we study the idea of treating workers like empty beer bottles. Specifically,
we look at what happens if employers must pay (receive) a deposit if they lay off
(hire) a worker.

8.2.1 The effects of taxation

We assume that there are two separate taxes levied on labour. First, the employer
must pay an ad valorem tax on the use of labour (a payroll tax), which is denoted by
tE. Second, the household faces a proportional tax on labour income, denoted by tL.

The effects of the employers’ tax on labour are as follows. First, equation (8.11) is
modified to:

rJO = F(K, 1)− (r + δk)K− w(1 + tE)− δm JO, (8.35)

so that the marginal productivity condition for capital (equation (8.12)) is unaffected,
but the free entry/exit condition (8.14) is modified to:

p− w(1 + tE)

r + δm
=

c
q(θ)

. (8.36)

The effects of the labour income tax are as follows. First, since the unemployment
benefit is untaxed and exogenous, equation (8.15) is unchanged, but the after-tax real
wage rate w(1− tL) appears in (8.16), so that (8.17)–(8.18) are modified to:

rYU =
(r + δm)b + θq(θ)w(1− tL)

r + δm + θq(θ)
, (8.37)

5A formal derivation of this condition is presented in Chapter 13.
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Figure 8.3: The effects of a payroll tax

rYE =
δmb + [r + θq(θ)]w(1− tL)

r + δm + θq(θ)
=

r [w(1− tL)− b]
r + δm + θq(θ)

+ rYU , (8.38)

where the second expression in (8.38) shows that w(1− tL) ≥ b must hold for any-
body to be willing to search, i.e. the labour income tax must not be too high.

The second effect of the income tax operates via the wage bargaining process. By
following the derivation in section 8.1.1.3, the rent-sharing rule (8.22) is modified to:

Yi
E −YU =

β

1− β

1− tL
1 + tE

[
Ji
O − JV

]
, (8.39)

so that the wage equation (8.23) becomes:

wi = (1− β)
rYU

1− tL
+ β

p
1 + tE

, (8.40)

and (8.25) can be written as:

w = (1− β)
b

1− tL
+ β

p + θc
1 + tE

. (8.41)

The core part of the model consists of the Beveridge curve (8.28), the zero-profit
curve (8.36), and the wage-setting curve (8.41). It is possible to explain the intuition
behind the comparative static effects of the various tax rates by graphical means.
(The formal derivations are found in Intermezzo 8.2.)

First we consider in Figure 8.3 the effects of an increase in the payroll tax, tE.
It follows from (8.36) that the zero profit curve shifts to the left (from ZP0 to ZP1
in panel (a)) as a result of the shock. Ceteris paribus the gross wage rate, the tax
increase reduces the value of an occupied job so that the zero profit equilibrium is
consistent with a lower vacancy-unemployment ratio. The payroll tax also features
in the wage-setting equation. Indeed, it follows from (8.41) that the increase in the
payroll tax puts downward pressure on the wage rate. Intuitively this is because the
firm is interested in the net surplus of the match (equal to (p + θc)/(1 + tE)), i.e. it
takes the payroll tax into account. Part of this surplus features in the wage which
thus falls on that account. In terms of Figure 8.3, the wage-setting curve rotates in a
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Figure 8.4: The effects of a labour income tax

clockwise fashion from WS0 to WS1 in panel (a). The equilibrium shifts from E0 to
E1, and both the wage rate and the vacancy-unemployment ratio fall (see Intermezzo
8.2). In panel (b) the LMT curve rotates in a clockwise fashion from LMT0 to LMT1
and the equilibrium shifts from E0 to E1. The equilibrium vacancy rate falls and the
unemployment rate increases.

As a second comparative statics exercise we now consider the effects of an in-
crease in the labour income tax, tL. The effects of this shock are illustrated in Figure
8.4. The increase in the labour income tax has no effect on the zero-profit curve but
the wage-setting equation shifts up from WS0 to WS1 in panel (a). Intuitively, it fol-
lows from (8.41) that the tax increase raises the tax-inclusive value of the outside
option (b/ (1− tL)) for the household in the wage bargaining process because the
unemployment benefit is untaxed. This leads, ceteris paribus, to upward pressure
on the wage rate. In panel (a) the equilibrium shifts from E0 to E1, the gross wage
rate increases, and the vacancy-unemployment ratio falls. In panel (b) the LMT curve
rotates in a clockwise fashion from LMT0 to LMT1, the equilibrium shifts from E0 to
E1, and equilibrium vacancies fall whilst the unemployment rate rises. The tax shock
works in exactly the same way as an increase in the unemployment benefit.

8.2.2 Deposits on workers?

Some people return empty bottles to the store because they find it unacceptable from
an environmental point of view to litter them. Most people, however, are less inter-
ested in this noble pursuit of a responsible attitude towards the natural environment,
and only return the bottles because there is money to be made in the form of a de-
posit that will be refunded. One could argue that a similar system should be tried in
the labour market. Why not have the firm pay a deposit when it fires a worker, to be
refunded when it (re-) hires that (or another) worker? It turns out that this question
can be analysed in the search-theoretic framework developed in this chapter.

Suppose that a firm that hires a worker receives a fixed once-off payment of sH
from the government, but that a firm that fires a worker must pay sH to the govern-
ment. Clearly, equation (8.9) would be modified to reflect this payment:

rJV = −c + q(θ) [JO + sH − JV ] . (8.42)
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If a firm with a vacancy finds a worker, its capital gain will be JO − JV plus the pay-
ment from the government. Free exit/entry of firms will then imply the following
expression for the value of an occupied job:

JV = 0 ⇒ JO =
c

q(θ)
− sH . (8.43)

Equation (8.43) shows that the deposit acts like a lump-sum subsidy to firms with
a vacancy and thus stimulates job creation. The expected search costs c/q(θ) are
reduced by the lump-sum payment received from the government.

For a firm with a filled job, the steady-state arbitrage equation reads as follows:

rJO = F(K, 1)− (r + δk)K− w− δm [JO + sH ] . (8.44)

If the job is destroyed, the firm not only loses the value of the occupied job, but must
also pay back the deposit on its worker to the government. As a result, the expected
capital loss is δm(JO + sH). (Since the job destruction rate δm is exogenous, the firm
can do nothing to reduce the probability of an adverse job-destroying shock.) The
marginal productivity condition for capital (8.12) still holds so that job productivity
is still constant and equal to p ≡ FL = F(K, 1)− (r + δk)K. By combining this result
with (8.43)–(8.44) we obtain the new zero profit condition (the counterpart to (8.14)):

(r + δm)

[
c

q(θ)
− sH

]
= p− w− δmsH ⇒

c
q(θ)

=
p− w + rsH

r + δm
. (8.45)

Not the deposit itself but its capital value rsH acts like a subsidy on the use of labour.
The rent-sharing rule (equation (8.22)) is modified to reflect the payment the firm

receives if it employs the worker:

Yi
E −YU =

β

1− β

[
Ji
O + sH − JV

]
, (8.46)

so that the wage equation (8.23) becomes:

wi = (1− β)rYU + β [p + rsH ] . (8.47)

Since the reservation wage is still given by (8.24), the wage equation (8.47) can be
rewritten for the symmetric case (with wi = w) as:

w = (1− β)b + β [p + rsH + θc] . (8.48)

The model consists of equations (8.28), (8.45), and (8.48).
In Figure 8.5 we illustrate the effects of an increase in the deposit, sH . It follows

from (8.45) that the zero profit curve shifts up (from ZP0 to ZP1 in panel (a)) be-
cause the interest payments the firm earns on the deposit increase the value of an
occupied job. These interest payments, however, also influence the wage rate via
the wage-setting equation (8.48). Hence, the wage-setting equation shifts up from
WS0 to WS1 in panel (a). It is shown in Intermezzo 8.2 that both the wage and the
vacancy-unemployment ratio rise as a result of the shock, i.e. point E1 lies to the
north-east of the initial equilibrium E0. In panel (b) the LMT curve rotates in a coun-
terclockwise fashion from LMT0 to LMT1 and the equilibrium shifts from E0 to E1.
The equilibrium vacancy rate rises and the unemployment rate falls.
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Figure 8.5: The effects of a deposit on labour

8.3 Endogenous job destructionF

Up to this point we have assumed that the job destruction rate δm is constant so
that the only endogenous variable determining the steady-state unemployment rate
is the job finding rate f (θ) which itself depends on the job creation process—see
equation (8.8). As is pointed out by Pissarides (2000, p. 37), however, the empirical
evidence strongly suggests that the job destruction rate is not constant but should
be seen as an endogenous variable responding to exogenous shocks. He also argues
that most job destruction is due to idiosyncratic shocks. In this section we study
the model of Mortensen and Pissarides (1994) which endogenizes the job destruc-
tion process. Just as for the canonical model we restrict attention to the steady-state
unemployment equilibrium and develop the model intuitively.

8.3.1 Basic assumptions

In order to generate a mechanism by which existing matches can be terminated vol-
untarily, it is assumed that labour productivity fluctuates idiosyncratically, i.e. at
the level of the single-job firm. In particular, the production function facing the
individual firm takes the form F(K, N) where K is the firm’s rented capital stock,
N ≡ xL measures employment in terms of efficiency units of labour, and L = 1
as the firm employs a single worker. By assumption, the random variable x satis-
fies 0 ≤ x ≤ 1. Any changes in x correspond to idiosyncratic shocks. In order to
streamline the discussion somewhat we incorporate the optimal capital rental deci-
sion of the firm upfront. Since the technology features constant returns to scale, it
follows that F(K, x) = KFK(K, x) + xFN(K, x). Active firms will rent capital such
that FK(K, x) = r + δk. Since r and δk are both constant by assumption, this condition
fixes the K/x ratio for active firms and explains why the marginal product of labour
is also constant, i.e. FN(K, x) = p. The net product (or “market value”) of a job,
F(K, x)− KFK(K, x), can thus be written as px.

If a firm with a vacancy meets a worker and creates a new job, then it is assumed
to be able to choose its start-up job productivity level, i.e. the firm can choose the
value of x at the moment of job creation. Of course, profit maximization implies
that it will set x = 1. As in the canonical model idiosyncratic shocks hit existing
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jobs at the Poisson rate δm. It is assumed that for existing firms at each moment in
time a new value of x is drawn from a probability distribution function Φ(x) on the
unit interval. The new value of x can be higher or lower than the old value. At
each moment in time the firm can either accept the new value of x and continue
production or destroy the job. The destruction choice is irreversible: the firm cannot
rehire a worker it has just fired a moment before.

Before going into the details of the model we first explain the job-scrapping rule
intuitively. Let JO(x) be the value of an occupied job with productivity parameter
x and let JV denote the value of a vacancy (equal to zero under free exit and entry).
Then the firm retains the job if JO(x) ≥ JV = 0. As the value of an occupied job is
increasing in the idiosyncratic productivity level, J′O(x) ≥ 0 (see below), it follows
that the optimal strategy for the firm is to choose a reservation productivity R such that
JO(R) = 0. To summarize, the job scrapping rule works as follows. If the firm is hit
by a shock such that x < R then the job is destroyed immediately and the worker
becomes unemployed. Otherwise, if x ≥ R then the job is retained. The probability
of job destruction following a shock is therefore Φ(R).

For readers who are a bit rusty on statistics and distribution functions, consider
the simplest possible case where x is distributed according to the uniform distribu-
tion, i.e. Φ(x) = 0 for x < 0, Φ(x) = x for 0 ≤ x ≤ 1, and Φ(x) = 1 for x ≥ 1.
The top panel of Figure 8.6 shows the cumulative distribution function for positive
values of x. Denoting the probability density by φ(x) ≡ Φ′(x) we find that φ(x) = 1
for 0 ≤ x ≤ 1 and is zero elsewhere. If the reservation productivity is R then jobs are
scrapped for all values of x ∈ [0, R) and jobs are maintained for x ∈ [R, 1].

The steady-state unemployment rate can be computed as follows. In a small time
interval dt, the probability that an employed worker loses his/her job and becomes
unemployed is thus given by δmΦ(R)dt. Hence, the average number of workers
that become unemployed in a time interval dt equals δmΦ(R)(1− U)Ndt, and the
average number of unemployed who find a job is given by f (θ)UNdt. In the steady-
state the unemployment rate is constant, so that the expected inflow and outflow
must be equal to each other, δmΦ(R)(1−U)Ndt = f (θ)UNdt. Since the labour force
N is large, expected and actual inflows and outflows are the same, so that the steady-
state equilibrium unemployment rate is given by:

U =
δmΦ(R)

δmΦ(R) + f (θ)
. (8.49)

This expression generalizes (8.8). There are now two mechanisms explaining the un-
employment rate. The job destruction mechanism works via Φ(R). Ceteris paribus
θ, an increase in the reservation productivity R increases the rate of job destruction
which leads to an upward shift of the Beveridge curve, ∂U/∂R > 0. The job creation
mechanism operates via the job finding rate f (θ). Just as in the canonical model, an
increase in θ leads to an increase in the job-finding rate and a reduction in equilib-
rium unemployment, i.e. ∂U/∂θ < 0.

In the remainder of this section we discuss how the equilibrium values for R
and θ follow from the maximizing behaviour of firms and workers facing stochastic
rationing. We follow the same approach as for the canonical model.
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Figure 8.6: The uniform distribution and job scrapping
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8.3.2 Model

8.3.2.1 Firms

The value of a vacancy is given by:

rJV = −c + q(θ)[JO(1)− JV ], (8.50)

where c is the cost of searching and q(θ) is the instantaneous probability of a vacancy
being filled. Note that the capital gain upon finding a worker is given by JO(1)− JV
because any new job is created at the maximum productivity level, x = 1. The zero-
profit condition JV = 0 yields:

JO(1) =
c

q(θ)
. (8.51)

The value of a firm with an occupied job with productivity level x ∈ [R, 1] is given
by:

rJO(x) = [x− w(x)] + δm

∫ 1

0
[max{JO(z), 0} − JO(x)]dΦ(z). (8.52)

The left-hand side is the asset value of the job and the right-hand side represents its
return. The first return component is the difference between the market value of the
job minus the wage that the firm pays to its worker. The second term summarizes
the scrapping choice that the firm needs to make. For each z such that z ∈ [R, 1] the
firm continues its operations and gets a capital gain (or loss) of JO(z)− JO(x) whilst
for z ∈ [0, R) it destroys the job and makes a capital loss of −JO(x). The integral
term thus represents the expected capital gain.

Note that since JO(z) < 0 and max{JO(z), 0} = 0 for z ∈ [0, R) the second term
on the right-hand side of (8.52) can be rewritten as:∫ 1

0
[max{JO(z), 0} − JO(x)]dΦ(z) = −

∫ R

0
JO(x)dΦ(z) +

∫ 1

R
[JO(z)− JO(x)]dΦ(z)

= −Φ(R)JO(x) +
∫ 1

R
[J(z)− JO(x)]dΦ(z). (8.53)

By using (8.53) in (8.52) an alternative expression for JO(x) is obtained:

rJO(x) = px− w(x) + δm

[∫ 1

R
JO(z)dΦ(z)− JO(x)

]
. (8.54)

8.3.2.2 Workers

The value of an unemployed job-seeker’s human wealth is given by:

rYU = b + f (θ)[YE(1)−YU ], (8.55)

where b is the unemployment benefit and f (θ) ≡ θq(θ) is the instantaneous proba-
bility of finding a job and getting a capital gain equal to the change in human wealth,
YE(1)− YU . As we noted before, any new job is created at value x = 1 so YE(1) fea-
tures in the capital gains term in (8.55).

Next we turn to the value of an employed worker’s human wealth. For a worker
productivity level x this value is given by:

rYE(x) = w(x) + δm

∫ 1

0
[max{YE(z), YU} −YE(x)] dΦ(z)
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= w(x) + δm

∫ 1

R
[YE(z)−YE(x)]dΦ(z)− δmΦ(R)[YE(x)−YU ], (8.56)

where we have eliminated the max {·} function in going from the first to the sec-
ond line by using the same reasoning as before. As in the canonical model, the
worker’s permanent income rYE(x) differs from the wage rate w(x) because of the
status changes that result from the idiosyncratic shocks. The second term on the
right-hand side of (8.56) gives the expected capital gain for all z ∈ [R, 1], i.e. for all
shocks under which the job remains open. The third term is the expected capital loss
for all other shocks z ∈ [0, R) when the job is destroyed and the worker becomes
unemployed.

8.3.2.3 Wages

Wages are renegotiated every time a productivity shock arrives. For each x ∈ [R, 1]
the wage is determined by generalized Nash bargaining. For each agent, the threat
point is the option to look out for an alternative match partner. The wage rate wi(x)
that rolls out of the negotiations is such that Ω is maximized:

max
wi(x)

Ω = β ln[Yi
E(x)−YU ] + (1− β) ln[Ji

O(x)− JV ]. (8.57)

Since what goes to the worker must come from the firm, ∂Yi
E(x)/∂w(x) = −∂Ji

O(x)
/∂w(x), so that the first-order condition yields the rent-sharing rule:

Yi
E(x)−YU =

β

1− β
[Ji

O(x)− JV ]. (8.58)

In Intermezzo 8.3 we show that the following wage equation can be derived:

w(x) = (1− β)b + β[px + cθ]. (8.59)

This expression generalizes equation (8.25) from the canonical model. The wage
depends positively on the job’s productivity but not on the productivities achieved
in other firms. Note furthermore that the equilibrium wage rate does not take future
wage fluctuations into account. Agents are risk neutral, and there is Nash bargaining
at each value of x.

Since JO(R) = 0 by definition, it follows from the rent-sharing rule that YE(R) =
YU . Hence, the reservation productivity R is jointly rational: neither party wants to
sustain a match when the productivity is below R. As such, all job separations are
privately efficient (but not socially efficient due to search externalities).

Intermezzo 8.3

Some tedious derivations for the matching model of unemployment.
Two expressions for the wage equation can be derived from the rent-
sharing rule (8.58). First we use (8.56) to find the expression for Yi

E(x):

(r + δm)Yi
E(x) = wi(x) + δm

∫ 1

R
YE(z)dΦ(z) + δmΦ(R)YU . (a)

Second, we use (8.54) to find:

(r + δm)Ji
O(x) = px− wi(x) + δm

∫ 1

R
JO(z)dΦ(z). (b)
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Next, by substituting (a)–(b) into (8.58) and noting that JV = 0 we find:

(1− β)

[
wi(x) + δm

∫ 1

R
YE(z)dΦ(z)− (r + δm[1−Φ(R)])YU

]
= β

[
px− wi(x) + δm

∫ 1

R
JO(z)dΦ(z)

]
, (c)

which can be solved for wi(x):

wi(x) = (1− β)

[
(r + δm[1−Φ(R)])YU − δm

∫ 1

R
YE(z)dΦ(z)

]
+ β

[
px + δm

∫ 1

R
JO(z)dΦ(z)

]
. (d)

By symmetry wi(x) = w(x) for all i so that Yi
E(x) = YE(x) and Ji

O(x) =
JO(x). The rent-sharing rule (8.58) implies:∫ 1

R
(1− β)YE(z)dΦ(z)−

∫ 1

R
βJO(z)dΦ(z) =

∫ 1

R
(1− β)YUdΦ(z)

= (1− β)[1−Φ(R)]YU .
(e)

From (8.55), the rent-sharing rule for new jobs, and the zero-profit condi-
tion (8.51) we have:

rYU = b + θq(θ)
β

1− β
JO(1) = b +

βθc
1− β

. (f)

By substituting (e)–(f) into (d) we obtain the wage equation (8.59).
The job creation condition (8.60) is derived as follows. By using the

wage equation (8.59) the job value equation (8.54) can be written as:

(r + δm)JO(x) = (1− β)[px− b]− βcθ + δm

∫ 1

R
JO(z)dΦ(z). (g)

The reservation threshold condition JO(R) = 0 implies:

(1− β)[pR− b] = βcθ − δm

∫ 1

R
JO(z)dΦ(z). (h)

Substitution of (h) into (g) yields:

JO(x) =
(1− β)p[x− R]

r + δm
. (i)

By combining (i) with the zero-profit condition (8.51) we obtain the job
creation condition (8.60).

The job destruction condition (8.61) is derived as follows. Given the
expression for JO(x) in (i) we can write:∫ 1

R
JO(z)dΦ(z) =

(1− β)p
r + δm

∫ 1

R
[z− R]dΦ(z). (j)

By substituting (j) into (h) we obtain the job destruction condition (8.61).
By using (f) in (8.61) we find (8.65).

****
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8.3.3 Market equilibrium

We now have all the ingredients of the model. The full model is summarized by the
following four equations:

(1− β)
p [1− R]
r + δm

=
c

q(θ)
, (8.60)

pR +
δm

r + δm

∫ 1

R
p[z− R]dΦ(z) =

βcθ

1− β
+ b, (8.61)

U =
δmΦ(R)

δmΦ(R) + f (θ)
, (8.62)

w(x) = (1− β)b + β[px + cθ]. (8.63)

The endogenous variables are the labour market tightness indicator θ, the reser-
vation productivity R, the unemployment rate U, and the productivity dependent
wage schedule w(x). The exogenous variables are the unemployment benefit b, the
firm’s search cost c, the marginal product of labour p, and the interest rate r. Note
that the model is block recursive. Equations (8.60)–(8.61) can be used to find the
equilibrium values for for R and θ. Using these values equation (8.62) determines
the equilibrium unemployment rate whilst (8.63) fixes the wage schedule. Equations
(8.62)–(8.63) need no further comment as they have been discussed above.

Equation (8.60) is the job creation condition. It has been derived in Intermezzo
8.3. Intuitively it says that the firm’s share of the expected net surplus of a new job
(left-hand side) must equal the expected recruitment cost (right-hand side). In Figure
8.7 the job creation condition is represented by the JC locus. The slope of the JC curve
is given by:(

dR
dθ

)
JC

=
c

p [q(θ)]2
r + δm

1− β
q′(θ) < 0, (8.64)

where the sign follows from the fact that q′(θ) < 0. Intuitively, a higher value of
θ implies higher expected search costs because the expected duration of a vacancy
increases. To restore the job creation equilibrium the reservation productivity must
go down so that a greater proportion of existing jobs survive.

Equation (8.61) is the job destruction condition—see Intermezzo 8.3 for its deriva-
tion. Intuitively this expression says that the reservation product plus the option
value of continuing the match (left-hand side) must equal the foregone income plus
expected returns from search (right-hand side). It is shown in Intermezzo 8.3 that in
equilibrium the job creation condition can be formulated alternatively as:

δm

r + δm
p
∫ 1

R
[z− R]dΦ(z) = rYU − pR, (8.65)

where rYU can be interpreted as the “reservation wage” of unemployed workers.
This expression is useful because it establishes a very important property of the mo-
del, namely pR < rYU , i.e. the reservation productivity falls short of the reservation
wage. This is because jobs have an option value: firms will keep some jobs that
generate negative profits in the short run as there is a probability that productivity
will improve in the future. This is known as labour hoarding. In Figure 8.7 the job
destruction condition is represented by the JD locus. The slope of this curve is given
by: (

dR
dθ

)
JD

=
βc

(1− β)p

[
1− δm

r + δm
[1−Φ(R)]

]−1
> 0. (8.66)
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Figure 8.7: Job creation and destruction in the labour market

Intuitively, a higher value of θ increases wages which results in a lower reservation
productivity so that a higher proportion of jobs are destroyed at each time. In Figure
8.7 the equilibrium is at point E0 where θ = θ∗ and R = R∗.

As was pointed out by Pissarides (2000, p. 40) the traditional depiction of the
Beveridge curve (8.62) in (V, U) space—as we used above in Figures 8.1 to 8.5—is no
longer helpful when job destruction is endogenous. This is because this curve now
depends on both θ and R (rather than just θ as for the canonical model). In (V, U)
space, changes in R would have to be represented by shifts in the Beveridge curve.
Fortunately there is an alternative method by which the effects on unemployment
and vacancies of changes in the exogenous variables can be visualized—see Figure
8.8.

In the top panel of Figure 8.8 the UR locus depicts all combinations of R and U for
which there is unemployment equilibrium. Formally this locus is obtained by com-
bining the job creation condition and the Beveridge curve. Indeed, it follows from
(8.60) that θ depends negatively on R along the job creation locus. Consequently for
each point on the JC locus we can write the job finding rate as a decreasing function
f (R) of the reservation productivity, i.e. f ′(R) < 0. Substituting f (R) into (8.62)
gives the mathematical expression for the UR locus:

U =
δmΦ(R)

δmΦ(R) + f (R)
. (8.67)

The slope of the UR locus can easily be determined:(
dU
dR

)
UR

= δm
f (R)Φ′(R)−Φ(R) f ′(R)

[δmΦ(R) + f (R)]2
> 0, (8.68)

where the sign follows from the fact that Φ′(R) > 0 and f ′(R) < 0. So if the joint
equilibrium of job creation and destruction gives rise to a labour market tightness
index equal to θ∗0 and a reservation productivity of R∗0 then in the top panel of Figure
8.8 the equilibrium unemployment rate will be equal to U∗0 . In the lower panel of
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that figure the LMT0 locus depicts the function V = θ∗0 U. Hence, the vacancy rate is
given by V∗0 in the bottom panel.

Armed with the diagrammatic apparatus we are able to investigate the steady-
state effects of shocks in the exogenous variables. For reasons of space we restrict
attention to the case of an increase in the unemployment benefit. It follows from
(8.61) that the job destruction locus in Figure 8.7 shifts up whilst the job creation
line stays put as b does not feature in (8.60). Without cluttering the diagram we can
thus conclude that R∗ will increase and θ∗ will fall. In the top panel in Figure 8.8
the reservation productivity changes from R∗0 to R∗1 , the equilibrium shifts from E0
to E1, and unemployment increases from U∗0 to U∗1 . In the bottom panel of Figure 8.8
the decrease in θ, say from θ∗0 to θ∗1 , causes a clockwise rotation of the labour-market
tightness locus, say from LMT0 to LMT1. We conclude that the unemployment rate
increases and that the vacancy rate decreases. The latter effect is, however, not un-
ambiguous as it depends on the magnitude of the change in θ.

8.4 Punchlines

In this chapter we discuss the search and matching approach to the labour market.
This is by far the most technically demanding theory of the labour market discussed
in this book thus far because it abandons the notion of an aggregate labour market
altogether and instead directly models the flows of labour that occur in the economy,
namely the movements of workers from unemployment into jobs and vice versa.

Because the theory is inherently quite demanding, we start by developing a sim-
ple canonical search model. The central elements in the model are the following.
First, there are frictions in the process by which job-seeking unemployed workers
come into contact with firms that are looking for a worker to fill a vacancy. These
frictions are costly and time consuming. Second, the crucial analytical device that
makes the model tractable is the so-called matching function. (This function plays a
similar role in the flow approach to the labour market that the neoclassical produc-
tion function plays in the theory of factor productivity and growth.) The matching
function relates the probabilities of workers meeting firms (and firms meeting work-
ers) as a function of an aggregate labour market tightness variable. This tightness
indicator is the ratio of vacancies and unemployed workers.

If the vacancy-unemployment ratio is high (low) then the probability that an un-
employed job seeker finds a firm with a vacancy is high (low) and expected duration
of the search for a job is low (high). The matching function also explains the con-
ditions facing the other party on the market. Indeed, if the vacancy-unemployment
ratio is high (low), then there are many (few) firms trying to locate an unemployed
worker so that the probability that an individual firm is successful is low (high) and
the expected duration of the firm’s search process is high (low).

The third key ingredient of the search model concerns the wage formation pro-
cess. Once a firm with a vacancy meets an unemployed worker a pure economic
rent is created consisting of the sum of foregone expected search costs by the firm
and the worker. This surplus must be divided somehow between the firm and the
worker. The typical assumption in this literature is that the two parties bargain over
the wage.

The fourth ingredient of the model is the so-called Beveridge curve which relates
the equilibrium unemployment rate to the (exogenous) job destruction rate (regulat-
ing the flow into unemployment) and the workers’ job finding rate (regulating the
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Figure 8.8: The effects of a higher unemployment benefit
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flow out of unemployment). The job destruction rate is strictly positive because pre-
viously profitable firm-worker matches are destroyed due to idiosyncratic shocks.

The model yields a general equilibrium solution for, inter alia, the unemploy-
ment rate and the vacancy rate as a function of the exogenous variables. We perform
various comparative static experiments. For example, an increase in the job destruc-
tion rate leads to an increase in both the unemployment and vacancy rates and to
a decrease in the vacancy-unemployment ratio. The matching model incorporates a
trading externality which is unlikely to be internalized by the Nash-bargained wage
outcome. As a result, equilibrium unemployment is likely to be inefficient.

Next we apply the canonical search model in a number of different policy set-
tings. First, we show how the search equilibrium is affected by the tax system. Sec-
ond, we show that a worker-deposit scheme can be used to affect the equilibrium
unemployment rate. (Under the scheme the firm receives a grant from the govern-
ment when it hires a worker but must repay the grant when the job is destroyed
again.)

Finally, we study an extension to the canonical model which endogenizes the job
destruction rate. Job productivity has a deterministic and a stochastic component.
Existing jobs are hit by idiosyncratic shocks which may make them so undesirable
to both parties that the job is terminated. There is a reservation productivity below
which jobs are scrapped. In the extended model the equilibrium unemployment rate
depends on the two endogenous processes of job destruction and job creation.

Further reading

Key references to the modern search-theoretic literature are Mortensen (1978, 1982a,
1982b, 1986, 1989), Diamond (1984a, 1984b), Pissarides (1990, 1994), Mortensen and
Pissarides (1994), and Blanchard and Diamond (1994). A good place to start read-
ing this challenging literature is Pissarides (2000). Mortensen and Pissarides (1999a,
1999b) present good (but advanced) surveys of the literature. Pissarides (2001, 2011)
present very accessible discussions. Rogerson et al. (2005) present a general survey
of search-theoretic models of the labour market.

Hosios (1990) studies the welfare-theoretic properties of the search model. Mi-
croeconomic evidence on the job destruction/creation process is presented by Davis
et al. (1996). For a very extensive survey of the matching function, see Petrongolo
and Pissarides (2001). Mortensen and Pissarides (2001) and Heijdra and Ligthart
(2002, 2009) study the effects on taxation in a matching model.



Chapter 9

Dynamic inconsistency in
public and private decision
making

The purpose of this chapter is to discuss the following issues:

1. What do we mean by dynamic inconsistency?

2. When is economic policy dynamically inconsistent and hence not credible?

3. How can reputation effects come to the rescue if optimal monetary policy is
inconsistent?

4. Why does it sometimes pay to appoint a conservative to head the central bank?

5. How can the taxation of capital give rise to dynamic inconsistency?

6. Are individual consumers dynamically inconsistent? And how can inconsis-
tent consumers commit themselves?

9.1 Dynamic inconsistency

9.1.1 A classic tale

As anyone with more than a fleeting interest in literature knows, Ulysses had a hard
time getting back to his island of Ithaca after helping the Greeks win the war against
the Trojans. Apparently the Greeks had forgotten to suitably thank the gods upon
winning the war, and this had irritated them to such an extent that they decided to
make the Greeks suffer. To cut a long story short, it took Ulysses ten years plus a lot
of trouble to get home. During this journey he and his men have to pass the island of
the Sirens. These Sirens were excellent singers but had a dangerous streak to them.
As the witch Circe warns Ulysses:

Your next encounter will be with the Sirens, who bewitch everybody that
approaches them. There is no home-coming for the man who draws near
them unawares and hears the Sirens’ voices; no welcome from his wife,
no little children brightening at their father’s return. For with the music
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of their song the Sirens cast their spell upon him, as they sit there in a
meadow piled high with the mouldering skeletons of men, whose with-
ered skin still hangs upon their bones. (Homer, 1946, p. 190 [Book XII,
lines 36-110])

Ulysses is facing a difficult choice. He would like to listen to the Sirens (who would
not?) but he does not want to end up as a skeleton just yet. Fortunately Circe also
suggests a solution to the decision problem Ulysses faces. As Ulysses later tells his
men, their ears should be plugged with beeswax so that they cannot hear the Sirens,
and:

I alone . . . might listen to their voices; but you must bind me hard and
fast, so that I cannot stir from the spot where you will stand me, by the
step of the mast, with the rope’s end lashed round the mast itself. And if
I beg you to release me, you must tighten and add to my bonds. (Homer, 1946,
p. 193 [Book XII, lines 110-164]; emphasis added)

The plan is executed, they sail past the Sirens’ island, and Ulysses instructs his men
to release him. He wants to go the island. His men, suitably instructed, ignore
his pleas and add to his bonds. They escape the perilous Sirens with no additional
problems.

Ulysses’ decision problem is a classic example of dynamic inconsistency, and
Circe’s suggestion constitutes a smart solution to the problem. The optimal policy
for Ulysses and his men is to listen to the Sirens and continue the journey to Ithaca.
After all, they are good singers. Unfortunately, this policy is inconsistent, since it
leads to death and decay, and Ithaca will not be reached. Circe’s solution is to make
Ulysses commit himself to his long-term goal of reaching Ithaca by plugging the ears
of his crew, and tying himself to the mast. By giving up his authority for a brief spell,
he and his men are better off as a result. The commitment solution is consistent but
suboptimal, as his men don’t get to hear the music.1

9.1.2 A neoclassical tale

Dynamic inconsistency also features prominently in the economics literature. One
of the simplest examples of dynamic inconsistency concerns the conduct of mone-
tary policy with an expectations-augmented Phillips curve (Kydland and Prescott,
1977). Our version of their example makes use of the Lucas supply curve. Aggre-
gate supply of goods y depends on the full employment level of output ȳ, the in-
flation surprise π − πe, and a stochastic error term ε (with properties E (ε) = 0 and
E
(
ε2) = σ2):

y = ȳ + α [π − πe] + ε, α > 0, (9.1)

where y and ȳ are both measured in logarithms. If the actual inflation rate, π, exceeds
the expected inflation rate, πe, workers have overestimated the real wage, labour
supply is too high, and output is higher than its full-employment level.

We assume that agents hold rational expectations (REH, see Chapter 5), so that
the expected inflation rate coincides with the mathematical expectation of the actual

1One wonders why Ulysses did not tie all his men but one to the mast, and plug that one man’s ears
with beeswax. That way a higher level of welfare would have been attained and consistency would have
been ensured. Homer does not explain. Perhaps the mast only held one person, or the entire crew was
needed to sail the boat.
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inflation rate predicted by the model, i.e. πe ≡ E (π). The policy maker is assumed
to have an objective function (often referred to as a social welfare function) which de-
pends on inflation and an output target y∗ that is higher than the full employment
level of output (y∗ > ȳ). Although this may appear odd, the policy maker deems the
full-employment level of output to be too low from a societal point of view. This is,
for example, due to the existence of distorting taxes, imperfectly competitive mar-
kets, or unemployment benefits.2 The cost function of the policy maker is given by:

Ω ≡ 1
2 [y− y∗]2 + β

2 π2, β > 0, (9.2)

where β measures the degree of inflation aversion of the policy maker. The higher β,
the higher the welfare costs associated with inflation, and the stronger is the inflation
aversion. The policy maker cannot directly influence the expectations held by the
private agents and consequently takes πe as given in its optimization problem. There
is information asymmetry in the sense that the policy maker can observe the realization
of the supply shock, ε, but the public cannot. As a result, the policy-ineffectiveness
proposition (PIP) fails and economic policy has real effects (see Chapter 5). The
policy maker chooses the inflation rate and output level such that social costs (9.2) are
minimized subject to the Lucas supply curve (9.1). The Lagrangian for this problem
is:

L ≡ 1
2 [y− y∗]2 + β

2 π2 + λ [y− ȳ− α(π − πe)− ε] , (9.3)

so that the first-order conditions are:

∂L
∂y

= [y− y∗] + λ = 0, (9.4)

∂L
∂π

= βπ − αλ = 0. (9.5)

By combining (9.4)–(9.5) we obtain the “social expansion path”, giving all combina-
tions of inflation and output for which social costs are minimized:

y− y∗ = −(β/α)π ⇔ π = −(α/β) [y− y∗] . (9.6)

This downward-sloping line has been drawn in Figure 9.1. Graphically the line rep-
resents all points of tangency between an iso-cost curve of the policy maker and a
Lucas supply curve. In view of the definition of the social welfare function (9.2),
the iso-cost curves are concentric ovals around the bliss point E, where π = 0 and
y = y∗. The slope of the iso-cost curves is obtained in the usual fashion:

dΩ = 0 :
dπ

dy
= −y− y∗

βπ
. (9.7)

It follows that the iso-cost curve is horizontal (dπ/dy = 0) for y = y∗ and is vertical
(dπ/dy→ ∞) for π = 0.

By combining (9.1) and (9.6), we obtain the expression for inflation under discre-
tion, denoted by πD:

π = πe + (1/α) [y− ȳ− ε] = πe + (1/α) [−(β/α)π + y∗ − ȳ− ε] ⇒
2Obviously, the first-best policy would be to remove these pre-existing distortions directly. It is as-

sumed that this is impossible, however, so that monetary policy is used as a second-best instrument to
boost output. See Persson and Tabellini (1989, p. 9).
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Figure 9.1: Consistent and optimal monetary policy

(1 + β/α2)π = πe + (1/α) [y∗ − ȳ− ε] ⇒

πD =
α2πe + α [y∗ − ȳ− ε]

α2 + β
. (9.8)

We use the term “discretion” because the policy maker chooses the optimal inflation
rate in each period as it pleases, i.e. after it has observed the supply shock ε. Equation
(9.8) says that inflation under discretion is high if expected inflation is high, if the
ambition of the policy maker (i.e. y∗ − ȳ) is large, and if there is a negative aggregate
supply shock (ε < 0, which is the case, for example, with an OPEC shock).

This is not the end of the story, of course, since under rational expectations agents
in the private sector know that the policy maker will choose the inflation rate πD
under discretion, so that they will form expectations accordingly:

πe
D ≡ E (πD) ⇒ πe

D =
α2πe

D + α [y∗ − ȳ]
α2 + β

⇒

πe
D ≡

α

β
[y∗ − ȳ] , (9.9)

where we have used E (ε) = 0 (agents do not observe the supply shock but expect
it to be zero). Equation (9.9) is the rational expectations solution for the expected
inflation rate. By substituting (9.9) into (9.8) and (9.6), respectively, we obtain the
expressions for actual inflation and output under discretionary monetary policy:

πD =
α

β
[y∗ − ȳ]− α

α2 + β
ε, (9.10)

yD = ȳ +
β

α2 + β
ε. (9.11)
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These results are intuitive. Equation (9.10) says that under the REH the actual in-
flation rate is high if the output ambition of the policy maker is high or if there are
negative supply shocks. Equation (9.11) shows that, for example, a negative supply
shock is partially accommodated by expansionary monetary policy (only partially as
β/(α2 + β) < 1).3 This is especially the case if the policy maker has “leftist” pref-
erences, i.e. has a low aversion towards inflation, represented by a low value of β.
A left-wing policy maker attaches a greater importance to the stabilization of out-
put (and hence, employment) fluctuations. A similar conclusion is obtained if the
Lucas supply curve is very flat. In that case, α is very large and a large degree of
accommodation takes place.

The problem with the discrete solution is that it is suboptimal! This can be demon-
strated graphically with the aid of Figure 9.1. The discrete solution is represented
by point ED, where we have drawn the Lucas supply curve, LSCD, for a realization
of the supply shock equal to ε = 0. Suppose, however, that the policy maker could
announce to the public that it would choose a zero inflation rate, i.e. π = 0. If
the public believes this announcement, the REH implies that expected inflation will
also be zero, i.e. πe = 0, so that the relevant Lucas supply curve would be the one
through the origin (i.e. LSCR which passes through point ER). Through this point,
there is an iso-cost curve ΩR that is closer to the bliss point E, and consequently in-
volves strictly lower social costs, i.e. ΩR < ΩD. Hence, for this case the solution
is:

πR = πe
R = 0, (9.12)

yR = ȳ + ε, (9.13)

where we have used the subscript “R” to designate that this is policy under a rule.
Instead of choosing the optimal inflation and output combination each period, the
policy maker follows a simple money growth rule that ensures that the inflation rate
is zero, as promised. Equation (9.13) shows that no accommodation of supply shocks
is possible under this rule (obviously, since accommodation would lead to inflation,
which violates the promise). The advantage is that there is no inflation under the
rule, as (9.12) shows.

The problem with this optimal policy is that it is inconsistent! This can also be
illustrated with the aid of Figure 9.1. The solution under the inflation rule πR = 0
is given at point ER, and the relevant Lucas supply curve goes through that point
(LSCR). But the policy maker has an even more attractive option than ER if it faces
LSCR, namely the “cheating” point EC, where there is a tangency between LSCR and
the iso-cost curve ΩC. In the cheating solution, the policy maker creates an inflation
surprise π > πR = πe

R = 0 in order to boost output y > ȳ.
Formally, the cheating solution for inflation, denoted by πC, is obtained by sub-

stituting πe = πR = 0 into (9.8):

πC =
α [y∗ − ȳ− ε]

α2 + β
, (9.14)

so that output is:

yC =
β

α2 + β
ȳ +

α2

α2 + β
y∗ +

β

α2 + β
ε. (9.15)

3With a completely passive central banker, output would be y = ȳ + ε, i.e. the full supply shock
would enter output. In contrast, under the discretionary solution, output is equal to yD in (9.11). By
creating inflation, only a fraction, β/

[
α2 + β

]
, of the supply shock enters output. Monetary policy thus

accommodates the shock somewhat.
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The upshot of this is, of course, that the solution under the zero-inflation rule is
not credible. Only if the policy maker is able to commit himself by being tied to the
“mast” of zero inflation (like Ulysses), does the rules solution have credibility.

Before turning to one possible commitment mechanism, we summarize the ar-
gument up to this point. There are three possible options that the policy maker has
in the current setup. It can pursue discretionary policy (equations (9.10)–(9.11)), fol-
low a zero-inflation rule (equations (9.12)–(9.13)), or cheat (equations (9.14)–(9.15)).
By substituting the different solutions for output and inflation into the welfare cost
function (9.2) (assuming ε = 0 for simplicity), we obtain the following expressions:

ΩC = 1
2

β

α2 + β
[ȳ− y∗]2 , (9.16)

ΩR = 1
2 [ȳ− y∗]2 , (9.17)

ΩD = 1
2

α2 + β

β
[ȳ− y∗]2 , (9.18)

from which we infer that ΩD > ΩR > ΩC > 0. The cheating solution is closest
to the bliss point, is credible but it violates the REH. The rules solution is optimal
and satisfies REH, but is open to temptation and is hence not credible. Finally, the
solution under discretion is suboptimal, satisfies REH, and is credible.

9.1.3 Reputation as an enforcement mechanism

In the previous subsection we have shown that the only policy which is both credi-
ble and consistent with rational expectations is the suboptimal discretionary policy.
Given the structure of the problem, it appears that the economy is likely to end up
in the worst possible equilibrium. In an influential article, however, Barro and Gor-
don (1983b) have demonstrated that reputation effects can come to the rescue, and
prevent this worst-case scenario from materializing. Their argument can be made
with the aid of the model developed in section 9.1.2. In order to keep the discussion
here as simple as possible, we assume that there are no stochastic shocks (ε ≡ 0).
There is repeated interaction between the policy maker and the public (represented,
for example, by the unions who set the nominal wage rate).

The cost function of the policy maker consists of the present value of the costs
incurred each period, and is defined as:

V ≡ Ω0 +
Ω1

1 + r
+

Ω2

(1 + r)2 + · · · =
∞

∑
t=0

Ωt

(1 + r)t , (9.19)

where r is the real discount factor (e.g. the real rate of interest), and Ωt is the cost
incurred in period t:

Ωt ≡ 1
2 [yt − y∗]2 + β

2 π2
t , (9.20)

and the Lucas supply curve is given by:

yt = ȳ + α [πt − πe
t ] , α > 0. (9.21)

It is assumed for simplicity that both y∗ and ȳ are constant over time and thus do not
feature a time subscript.

As in section 9.1.2, there are again a number of choices that the policy maker can
make. A discretionary policy involves setting inflation according to (9.10) in each
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period (with ε = 0 imposed). This yields a cost level of ΩD in each period (see
(9.18)), so that the present value of social costs equals VD:

VD ≡ 1 + r
r

ΩD. (9.22)

Now consider what happens if the policy maker chooses to follow a constant-inflation
rule, πt = πR, where we generalize the previous discussion by allowing the constant
inflation rate πR to be non-zero. If this inflation rate is believed by the public, it will
come to expect it, so that the expected inflation rate will also be equal to πR in each
period, so that output will equal ȳ in each period. By substituting these solutions
into (9.20) the periodic cost level under the rule is obtained:

ΩR(πR) = ΩR + β
2 π2

R, (9.23)

where ΩR is the welfare cost under the zero-inflation rule as defined in (9.17), and
we have indicated that under the more general inflation rule, the cost level depends
positively on the chosen inflation level. By substituting (9.23) into (9.19), the present
value of costs incurred under the rule VR(πR) is obtained:

VR(πR) ≡
1 + r

r

[
ΩR + β

2 π2
R

]
. (9.24)

Finally, as before, the cheating solution is derived by determining the optimal choice
for the policy maker given that the public expects it to stick to the announced in-
flation rate πR. By substituting πe = πR into equation (9.8), and setting ε = 0, the
expression for the cheating inflation rate πC is obtained:

πC =
α2πR + α [y∗ − ȳ]

α2 + β
, (9.25)

which implies that output under cheating is given by:

yC =
β

α2 + β
ȳ +

α2

α2 + β
y∗ − αβ

α2 + β
πR. (9.26)

By substituting (9.25)–(9.26) into (9.20), the periodic cost level associated with cheat-
ing is obtained:

ΩC(πR) =
1
2

[
β

α2 + β
[ȳ− y∗]− αβ

α2 + β
πR

]2

+ β
2

[
α2

α2 + β
πR +

α

α2 + β
[y∗ − ȳ]

]2

, (9.27)

where ΩC depends on the chosen inflation level under the rule. Obviously, (9.27)
and (9.16) coincide for πR = 0, and ΩC(πR) is greater than ΩC for any non-zero
value of πR.

We are now in a position to introduce the policy maker’s reputation into the anal-
ysis. Suppose that the public trusts the policy maker in period t, if it has kept its
promise in the previous period t − 1 (in the sense that it did as it was expected to
do). If that is the case, the public expects that the rule will be followed in period t so
that inflation will be set at πR. On the other hand, if the policy maker did not keep
its promise in period t − 1, the public loses trust in the policy maker, and instead
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expects the discrete solution to obtain in period t. In formal terms, the postulated
mechanism adopted by the public can be written as follows:

πe
t =

{
πR if πt−1 = πe

t−1
πD,t if πt−1 6= πe

t−1. (9.28)

Equation (9.28) implies that the public adopts the tit-for-tat strategy in the repeated
prisoner’s dilemma game that it plays with the policy maker. If the policy maker
“misbehaves” it gets punished by the public for one period. To see that this is indeed
the case, consider the following possible sequences of events. We start in period 0
and assume that the policy maker has credibility in that period (i.e. in period −1 it
has kept its promise), and so expected inflation in period 0 equals the level specified
by the rule, i.e. πe

0 = πR.
The first scenario that the policy maker can follow in period 0 is to keep its

promise, and to produce inflation equal to πR. The public observes this inflation
rate, concludes that the policy maker is trustworthy, and continues to expect that in-
flation will be set according to the rule. By sticking to its promise, the policy maker
has maintained its reputation, and no punishment takes place.

The second scenario that the policy maker can follow is to cheat in period 0. It has
an incentive to do so since the periodic cost level attained in period 0 is then given
by (9.27) which is lower than periodic cost under the rule as given in (9.23). In fact,
the temptation that the policy maker is subjected to in period 0 can be calculated:

T(πR) ≡ ΩR(πR)−ΩC(πR)

= 1
2 [ȳ− y∗]2 + β

2 π2
R − 1

2

[
β

α2 + β
[ȳ− y∗]− αβ

α2 + β
πR

]2

− β
2

[
α2

α2 + β
πR +

α

α2 + β
[y∗ − ȳ]

]2

, (9.29)

where we have used (9.27) and (9.23), and T(πR) is the temptation to cheat if the pol-
icy rule stipulates an inflation rate πR. In Figure 9.2 we have plotted this quadratic
temptation function. Several points of this function are easy to find. If the rule infla-
tion rate πR = 0, T(0) is equal to:

T(0) ≡ ΩR −ΩC = 1
2

α2

α2 + β
[y∗ − ȳ]2 , (9.30)

and T(πR) = 0 if the rule inflation equals the discrete inflation rate πD given in (9.10)
(with ε = 0 imposed):

T(πD) = 0. (9.31)

The inflation rate under discretion is also the point where temptation is minimized.
For higher inflation rates, the T(πR) curve starts to rise again.

But under the second scenario, the policy maker is punished in period 1, because
it did not keep its promise in period 0. The public has lost confidence in the policy
maker, and expects the discrete solution for period 1. This causes costs in period 1
to be higher than they would have been, since ΩD > ΩR(πR), and these additional
costs must be taken into account in the decision about whether or not to stick to
the rule in period 0. From the point of view of the policy maker, the punishment it
receives consists of the discounted value of the additional costs it incurs in period 1:

P(πR) ≡
ΩD −ΩR(πR)

1 + r
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Figure 9.2: Temptation and enforcement

=

[
1
2

α2 + β

β
[ȳ− y∗]2 − 1

2 [ȳ− y∗]2 − β
2 π2

R

]
1

1 + r

=

[
1
2

α2

β
[ȳ− y∗]2 − β

2 π2
R

]
1

1 + r
, (9.32)

where we have used (9.18) and (9.23). Again, a number of points on the punishment
curve can be found easily. First, if the rule inflation πR = 0, P(0) is equal to:

P(0) = 1
2

1
1 + r

α2

β
[ȳ− y∗]2 . (9.33)

Assuming that the interest rate is sufficiently high (r > α2/β), it follows from the
comparison of (9.33) and (9.30) that P(0) < T(0). Furthermore, P(πR) = 0 for the
discrete inflation rate πD:

P(πD) = 0. (9.34)

Finally, for rule inflation rates larger than πD, P(πR) < 0. The quadratic punishment
function P(πR) has been drawn in Figure 9.2.

In period 1 the public expects the policy maker to produce the discretionary in-
flation rate πD, and given this expectation it is also optimal for the policy maker to
do so. Hence, in period 1 expected and actual inflation coincide, and confidence in
the policy maker is restored (see (9.28)). As a result, the public expects the rule infla-
tion rate to be produced in period 2. By assumption the policy maker does indeed
produce the rule inflation, because we have investigated the effects of a single act of
cheating by the policy maker. No further costs are associated with the cheating that
takes place in period 0, and P(πR) and T(πR) fully summarize the relevant costs and
benefits of a single act of cheating in period 0.4

4At the beginning of period 2 the policy maker faces exactly the same problem as at the beginning of
period 0. Hence, if it pays to cheat in period 0 it also does in period 2. Vice versa, if it does not pay to
cheat in period 0 then it also does not pay in period 2. For that reason we only need to check whether
cheating pays for one deviation.
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Clearly, if the temptation of cheating exceeds the punishment, the policy maker
will submit to temptation and cheat. The public knows this and does not believe
the rule at all in such a case. In technical terms, the rule inflation is then not enforce-
able. This immediately explains that the zero inflation rule is not enforceable. The
temptation to cheat is simply too large for πR = 0 to be enforceable. In terms of
Figure 9.2, only rule inflation rates in the interval [π∗R, πD] are enforceable. The opti-
mal enforceable rule inflation rate is of course the lowest possible enforceable inflation
rate π∗R (point E). This is because for all rule inflation rates there are no inflation
surprises (otherwise a punishment would occur) so that there are only costs associ-
ated with inflation and no benefits (through higher than full-employment output).
Consequently, the lowest enforceable inflation rate minimizes these costs. Just as
in the repeated prisoner’s dilemma game analysed inter alia by Axelrod (1984), the
enforcement mechanism in the form of loss of reputation ensures that the economy
does not get stuck in the worst equilibrium with discretionary monetary policy.

The optimal enforceable rule inflation rate π∗R can be calculated by equating
P(πR) and T(πR) given in equations (9.29) and (9.32), respectively. After some ma-
nipulation we obtain:

π∗R ≡
(

α [y∗ − ȳ]
β

)
· 1− ζ

1 + ζ
, ζ ≡ α2 + β

β(1 + r)
. (9.35)

Hence, the optimal enforceable rule inflation rate is a weighted average of the unen-
forceable zero-inflation rule and the enforceable but suboptimal discretionary infla-
tion rate πD, which equals the term in round brackets (Barro and Gordon, 1983b, p.
113).5

As a final application of this model, consider what happens if the real interest
rate r rises. In terms of Figure 9.2, nothing happens to the temptation line T(πR),
but the punishment line P(πR) rotates in a counter-clockwise fashion around the
discretionary point. As a result, the enforceable region shrinks, and the optimal
enforceable rule inflation rate rises. This is intuitive. Due to the fact that punishment
occurs one period after the offence, higher discounting of the future implies a smaller
punishment ceteris paribus. This result is confirmed by the expression in (9.35).

9.2 The voting approach to optimal inflation

In a seminal paper, Rogoff (1985) asks himself the question why it is the case that
central bankers are often selected from the conservative ranks of society. It turns
out, once again, that the answer relies on the benefits of a commitment mechanism
(like Ulysses’ mast). In order to make the point as simply as possible, we utilize
the model of section 9.1.2 with some minor modifications. Following Alesina and
Grilli (1992), we use a median voter model to determine which person is elected to
head the central bank and conduct monetary policy. Assume that person i has the
following cost function:

Ωi ≡ 1
2 [y− y∗]2 + βi

2 π2, (9.36)

where the only difference with (9.2) is that the degree of inflation aversion differs
from person to person. The Lucas supply curve is still given by (9.1), so that if person

5We assume that the interest rate is not too low (i.e. r > α2/β) so that 0 < ζ < 1 and the optimal
enforceable inflation rate is strictly positive. See also Figure 9.2.
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Figure 9.3: The frequency distribution of the inflation aversion parameter

i were elected to head the central bank, he would choose the discretionary inflation
rate and associated output level (denoted by πi

D and yi
D, respectively). In view of

(9.10)–(9.11), these would amount to:

πi
D =

α

βi
[y∗ − ȳ]− α

α2 + βi
ε, (9.37)

yi
D = ȳ +

βi
α2 + βi

ε. (9.38)

The preferences regarding inflation are diverse, and are summarized by the fre-
quency distribution of βi’s as given in Figure 9.3. Agents with a very low value of
βi are called “left wing” in that they do not worry much about inflation but a great
deal about output and employment stabilization. At the other end of the political
spectrum, “right-wing” agents with a very high βi have a strong aversion against
inflation and worry very little about output stabilization.

We assume that the agents choose from among themselves the agent who is going
to head the central bank. Voting is on a pairwise basis and by majority rule. The
agent that is chosen has an inflation aversion parameter β. For this agent there exists
no other agent i such that βi is preferred by a majority of the people over β. Since
there is a single issue (namely the choice of β) and preferences of the agents are
single-peaked in β, the median voter theorem holds (see Mueller, 1989, pp. 65–66).
In words this theorem says that the median voter determines the choice of β. The
median voter has an inflation aversion parameter βM that is illustrated in Figure 9.3.
Exactly 50% of the population is more left wing than this voter and 50% is more right
wing than the median voter.

But the median voter knows exactly what an agent with inflation aversion pa-
rameter β would choose, since that is given by (9.37)–(9.38) by setting βi = β. By
substituting (9.37)–(9.38) into the median voter’s cost function, we obtain:

ΩM ≡ 1
2 E
((

yi
D − y∗

)2
+ βM

(
πi

D

)2
)
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= 1
2 E

((
ȳ− y∗ +

β

α2 + β
ε

)2
+ βM

(
α

β
(y∗ − ȳ)− α

α2 + β
ε

)2
)

= 1
2

[
1 + βM

(
α

β

)2
]
(ȳ− y∗)2 + 1

2
β2 + βMα2

(α2 + β)2 σ2, (9.39)

where we have used E(ε) = 0, E(ε2) = σ2. The median voter minimizes his expected
cost level by choice of β. The median voter cannot observe ε but knows exactly how
agent β reacts to supply shocks in general. Hence, the median voter can determine
which agent would (if chosen to head the central bank) minimize the expected value
of his welfare costs. The first-order condition is given by:

dΩM
dβ

= − 1
2 2βM

α2

β3 (ȳ− y∗)2

+ 1
2

2(α2 + β)2β− 2(β2 + βMα2)(α2 + β)

(α2 + β)4 σ2 = 0 ⇒

dΩM
dβ

= − βM
β

(
α

β

)2

(ȳ− y∗)2 +
(β− βM)α2

(α2 + β)3 σ2 = 0. (9.40)

Equation (9.40) implicitly defines the optimal β as a function of the parameters of the
model and the median voter’s inflation aversion parameter βM. It is straightforward
to show that the median voter chooses someone more conservative than himself, i.e.
β > βM. To see why this is the case, we rewrite (9.40) somewhat to get:

β− βM =
βM(α2 + β)3(ȳ− y∗)2

β3σ2 > 0. (9.41)

Hence, the median voter delegates the conduct of monetary policy to someone more
inflation averse than himself, and in this manner commits himself to a lower inflation
rate.

Furthermore, it is also possible to derive the following comparative static results
with respect to the variance of the shocks (σ2), the degree of inflation aversion of the
median voter (βM), and the ambitiousness of monetary policy (y∗ − ȳ):

∂β

∂σ2 ≡ −
β3 (α2 + β

)
(β− βM)

Ξ0
< 0, (9.42)

∂β

∂βM
≡

(α2 + β)
[
(α2 + β)3(y∗ − ȳ)2 + σ2β3]

Ξ0
> 0, (9.43)

∂β

∂(y∗ − ȳ)
≡ 2βM(α2 + β)4(y∗ − ȳ)

Ξ0
> 0, (9.44)

where Ξ0 ≡ β2σ2 [3α2 (β− βM) + β
(
α2 + β

)]
is a positive constant.6 In words, more

uncertainty (a higher σ2) and a more left-wing population (a lower βM) both lead
to the appointment of a more left-wing central banker (a lower β). Higher output
ambition, however, leads to the appointment of a more conservative central banker.

6To derive these results, we first rewrite the first-order condition (9.40) as:

Φ
(

β, βM , σ2, y∗ − ȳ
)
≡ − βM (y∗ − ȳ)2 +

(β− βM)β3

(α2 + β)3 σ2 = 0.

It is easy to show that Φβ is positive:

Φβ ≡
β2σ2 [3α2 (β− βM) + β

(
α2 + β

)]
(α2 + β)4 > 0.
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9.3 Dynamic consistency and capital taxation

Up to this point the economic policy applications of the notion of dynamic incon-
sistency have all been in the area of monetary policy. This is not to say that this is
the only area where this phenomenon is encountered.7 Indeed, the purpose of this
section is to demonstrate that exactly the same issues are relevant for fiscal policy
as well. We demonstrate this with the aid of a simple model of optimal taxation
and public goods adapted from Fischer (1980a). As in Chapter 6, time is split into
two periods, with period 1 representing the present and period 2 the future. The
representative household has the following utility function:

U ≡
C1−1/εC

1
1− 1/εC

+
1

1 + ρ

[
C2 + α

(1− N2)
1−1/εN

1− 1/εN
+ β

G1−1/εG
2

1− 1/εG

]
, (9.45)

where Ct is goods consumption in period t (= 1, 2), ρ is the pure rate of time prefer-
ence (ρ > 0), N2 is labour supply in the future, and G2 is the level of public goods
provision in the future. Notice that for simplicity, labour supply and public goods
provision are zero in the present period. Nothing of substance is affected by these
simplifications. At the beginning of period 1, there is an existing capital stock built
up in the past, equal to K1. Capital does not depreciate and the constant marginal
product of capital is equal to b (see below). The resource constraint in the current
period is:

C1 + [K2 − K1] = bK1. (9.46)

In words, (9.46) says that consumption plus investment in the present period must
equal production (and capital income). In the second period, total demand for goods
equals C2 +G2, which must equal production F(N2, K2) plus the capital stock (which
can be consumed during period 2. Think of capital as “corn”). Assuming a linear
production function, the resource constraint in the second period is given by:

C2 + G2 = F(N2, K2) + K2 = aN2 + (1 + b)K2, (9.47)

where a is the constant marginal product of labour.8 By combining (9.46)–(9.47) and
eliminating K2, we obtain the consolidated resource constraint:

C1 +
C2 + G2

1 + b
= (1 + b)K1 +

aN2

1 + b
. (9.48)

9.3.1 The first-best optimum

Let us first study the so-called command optimum. Suppose that there is a benevolent
social planner who must decide on the optimal allocation by maximizing the utility

By using the implicit function theorem, we find that ∂Φ/∂σ2 = −Φσ2 /Φβ, where Φσ2 is given by:

Φσ2 ≡
β3 (β− βM)

(α2 + β)3 .

Combining results we obtain (9.42). The other comparative static effects are obtained in a similar fashion.
7Indeed, we came across dynamic inconsistency in Chapter 7 where we analysed the interaction be-

tween wage setting by the union and capital investment by the firm. There we showed that the future
wage offer of the union is dynamically inconsistent and thus not credible.

8Assuming a linear production function simplifies the exposition substantially. Technically, a linear
production function is obtained by imposing an infinite elasticity of substitution between capital and
labour, i.e. σKN → ∞ (see Chapter 4). It also means that the demands for labour and capital are infinitely
elastic, and that both factors are inessential, in the sense that output can be produced with only one of the
two production factors.
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of the representative household subject to the consolidated resource constraint (9.48).
The Lagrangian for this optimal social plan is:

L ≡
C1−1/εC

1
1− 1/εC

+
1

1 + ρ

[
C2 + α

(1− N2)
1−1/εN

1− 1/εN
+ β

G1−1/εG
2

1− 1/εG

]

+ λ ·
[
(1 + b)K1 +

aN2

1 + b
− C1 −

C2 + G2

1 + b

]
, (9.49)

which yields the first-order conditions:

∂L
∂C1

= C−1/εC
1 − λ = 0, (9.50)

∂L
∂C2

=
1

1 + ρ
− λ

1 + b
= 0, (9.51)

∂L
∂G2

=
βG−1/εG

2
1 + ρ

− λ

1 + b
= 0, (9.52)

∂L
∂N2

= −α(1− N2)
−1/εN

1 + ρ
+

aλ

1 + b
= 0. (9.53)

Equation (9.51) implies that the marginal utility of income (given by λ) is constant:
λ = (1 + b)/(1 + ρ). By substituting this value of λ into (9.50) and (9.52)–(9.53), the
optimal values for C1, N2, and G2 are obtained.

C1 =

(
1 + b
1 + ρ

)−εC

. (9.54)

1− N2 =
( a

α

)−εN
, (9.55)

G2 = βεG . (9.56)

Finally, by using (9.54)–(9.56) in the consolidated resource constraint, the level of
consumption in the second period can be calculated:

C2 = (1 + b)2K1 + a− (1 + b)C1 − G2 − a(1− N2)

= a + (1 + b)2K1 − (1 + ρ)εC (1 + b)1−εC − αεN a1−εN − βεG , (9.57)

where we assume that the non-negativity restriction on consumption in the second
period is non-binding (i.e. C2 > 0). The command optimum is the best possible
outcome for the representative household, given the availability of resources and
the state of technology.

In practice, the policy maker may have direct control over the level of public
goods provision G2, but he/she is not likely to have direct control over the variables
chosen by the representative household such as C1, C2, and N2 (even in the former
centrally planned Eastern bloc countries this proved to be difficult). This does not in
and of itself imply that the first-best optimum cannot be attained in a decentralized
economy. Indeed, if the government chooses G2 optimally and has lump-sum taxes
at its disposal, the first-best plan as given in (9.54)–(9.57) can be decentralized.

In the decentralized economy, households own the capital stock which they rent
out to firms at an interest rate r. Households furthermore sell their labour to these
firms, for which they receive a real wage w2 (recall that they do not work in period
1). The budget restriction of the representative household in the first period is:

C1 + [K2 − K1] = r1K1, (9.58)
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where r1 is the interest rate in period 1, so that r1K1 is the interest income received by
the household. This income is spent either on consumption goods or by purchasing
additional investment goods. In the second period, the budget restriction is:

C2 = w2N2 + (1 + r2)K2 − Z2, (9.59)

where Z2 is lump-sum taxes and r2 is the real interest rate, both in period 2. The
household does not invest in period 2 since the model world ends at the end of that
period.

The representative firm produces output by hiring capital and/or labour from
the representative household. Profit in period t is equal to:

πt ≡ F(Kt, Nt)− wtNt − rtKt, (9.60)

so that profit-maximizing behaviour implies that rt = FK = b and wt = FN = a.
In period 1 there is no labour supply and only capital is used, and in period 2 both
labour and capital are used in production. Hence, for the linear production function
we have:

r1 = r2 = b, w2 = a. (9.61)

The real interest rate is constant and equal to b and the real wage in the second period
is also constant and equal to a. Since both factors of production are paid exactly their
respective marginal product, and the production function features constant returns
to scale, the representative firm makes no profit.

The government purchases goods in period 2 and pays for these goods by lump-
sum taxes levied on the representative household. Hence, the government budget
restriction is:

G2 = Z2. (9.62)

By substituting (9.61)–(9.62) into (9.58)–(9.59) and consolidating, we obtain:

C1 +
C2 + G2

1 + b
=

aN2

1 + b
+ (1 + b)K1. (9.63)

The representative household maximizes its utility (9.45) by choice of C1, C2, and
N2, taking G2 and its consolidated budget restriction (9.63) as given. Provided the
government sets G2 appropriately (i.e. at the level given in (9.56)) the thus chosen
values of C1, C2, and N2 coincide with the first-best optimum values given in (9.54)–
(9.55) and (9.57). Hence, the social optimum can be decentralized if the government
has access to lump-sum taxes.

9.3.2 The second-best problem

In practice the policy maker does not have (non-distorting) lump-sum taxes at its
disposal. Instead, it must finance its spending by means of taxes on the different
income categories. Suppose that tL is the tax on labour income and tK is the tax on
capital income in the second period.9 The household’s budget restrictions become:

C1 + [K2 − K1] = bK1, (9.64)
C2 = a(1− tL)N2 + [1 + b(1− tK)]K2, (9.65)

9A tax on capital income in the first period is abstracted from as it would amount to a lump-sum tax.
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where we have already imposed the expressions in (9.61). By consolidating (9.64)–
(9.65) we obtain:

C1 +
C2

1 + b(1− tK)
=

a(1− tL)N2

1 + b(1− tK)
+ (1 + b)K1, (9.66)

which is the counterpart to (9.63). The representative household maximizes its utility
(9.45) by choice of C1, C2, and N2, taking G2 and its budget restriction (9.66) as given.
The Lagrangian for this problem is:

L ≡
C1−1/εC

1
1− 1/εC

+
1

1 + ρ

[
C2 + α

(1− N2)
1−1/εN

1− 1/εN
+ β

G1−1/εG
2

1− 1/εG

]

+ λ

[
(1 + b)K1 − C1 −

C2 − a(1− tL)N2

1 + b(1− tK)

]
, (9.67)

which yields the first-order conditions:

∂L
∂C1

= C−1/εC
1 − λ = 0, (9.68)

∂L
∂C2

=
1

1 + ρ
− λ

1 + b(1− tK)
= 0, (9.69)

∂L
∂N2

= −α(1− N2)
−1/εN

1 + ρ
+

a(1− tL)λ

1 + b(1− tK)
= 0, (9.70)

which can be solved for C1, C2, and N2:

C1 =

(
1 + b(1− tK)

1 + ρ

)−εC

, (9.71)

C2 = a(1− tL) + (1 + b) [1 + b(1− tK)]K1 (9.72)

− (1 + ρ)εC [1 + b(1− tK)]
1−εC − αεN [a(1− tL)]

1−εN ,

1− N2 =

(
a(1− tL)

α

)−εN

. (9.73)

Finally, by substituting these optimal solutions back into the utility function, the
indirect utility function is obtained:

V ≡ 1
εC − 1

(
1 + b(1− tK)

1 + ρ

)1−εC

+
IF

1 + ρ

+
α

1 + ρ

1
εN − 1

(
a(1− tL)

α

)1−εN

+
β

1 + ρ

G1−1/εG
2

1− 1/εG
, (9.74)

where IF is full income of the representative household, which is defined as:

IF ≡ a(1− tL) + [1 + b(1− tK)] (1 + b)K1, (9.75)

Full income represents the maximum amount of income the household could have in
period 2, i.e. by not consuming anything in period 1 and by supplying the maximum
amount of labour in period 2.

The government budget restriction in the absence of lump-sum taxes is:

G2 = tKbK2 + tLaN2. (9.76)
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Government spending on public goods must be financed by the revenue from the
capital and labour taxes. The policy maker maximizes indirect utility of the repre-
sentative household (given in (9.74)) subject to the government budget restriction
(9.76). The Lagrangian for the policy maker’s problem is:

P ≡ V(G2, tL, tK) + µ
[
tKbK2 + tLaN2 − G2

]
, (9.77)

where µ is the Lagrange multiplier associated with the government budget restric-
tion (9.76). The first-order conditions for the policy maker’s problem are the con-
straint (9.76) and:

∂P
∂G2

=
∂V
∂G2
− µ = 0, (9.78)

∂P
∂tL

=
∂V
∂tL

+ µa
[

N2 + tL
∂N2

∂tL

]
= 0, (9.79)

∂P
∂tK

=
∂V
∂tK

+ µb
[

K2 + tK
∂K2

∂tK

]
= 0. (9.80)

In Intermezzo 9.1 it is shown that the first-order conditions can be rewritten in the
following, more intuitive, form:

βG−1/εG
2 = η, (9.81)

η =
1

1− tL
1−tL

ξL
, (9.82)

η =
1

1− tK
1−tK

ξK
, (9.83)

where ξL is the uncompensated wage elasticity of labour supply (ξL >0), ξK is the
uncompensated interest elasticity of gross saving (ξK > 0), and η ≡ µ/(∂V/∂IF) is
the marginal cost of public funds (MCPF). Intuitively, the MCPF measures how much
it “costs” to raise a euro of public revenue. If there are non-distorting taxes it costs
exactly one euro to raise a euro, and the MCPF is unity. On the other hand, if taxes
distort real decisions by the private sector, it costs more than one euro to raise one
euro of public revenue and the MCPF exceeds unity.

Equation (9.81) is the modified Samuelson rule for the optimal provision of public
goods (see Atkinson and Stern, 1974). In words, (9.81) says that the marginal benefits
of public goods (the left-hand side of (9.81)) should be equated to the marginal cost of
financing these public goods, i.e. the MCPF. If there are non-distorting taxes, η = 1,
and society can afford the first-best optimum level of public consumption. With
distorting taxes, η > 1, and fewer public goods are provided. Equations (9.82)–(9.83)
determine the optimal mix of taxes. Indeed, by rewriting (9.82)–(9.83) we obtain:

tL
1− tL

=

(
1− 1

η

)
1
ξL

, (9.84)

tK
1− tK

=

(
1− 1

η

)
1

ξK
, (9.85)

Equations (9.84)–(9.85) are expressions for the so-called Ramsey taxes on capital and
labour (named after the British economist Frank Ramsey). Intuitively, these taxes
raise a given amount of government revenue in the least distorting fashion. In order
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to facilitate the interpretation of (9.84)–(9.85), suppose that labour supply is perfectly
inelastic (i.e. ξL = 0). Then we know that a tax on labour income works exactly like
a (non-distorting) lump-sum tax. Equation (9.82) says that in that case the MCPF
is unity, so that (9.85) says that capital should not be taxed at all, and the entire
revenue should be raised by means of the labour tax. The reverse case holds if the
savings function is very interest inelastic and the labour supply is very wage elastic.
In that case capital should be taxed heavily and labour should be taxed lightly. In
the general case, however, equations (9.84)–(9.85) say that both tax rates should be
set at some positive level.

Intermezzo 9.1

Deriving the optimal spending and taxation rules. Equation (9.82) is
derived as follows. First, we calculate ∂V/∂tL from the indirect utility
function given in (9.74):

∂V
∂tL

= − a
1 + ρ

+
a

1 + ρ

(
a(1− tL)

α

)−εN

= − a
1 + ρ

N2, (a)

where we have used (9.73) in the final step. By substituting (a) into (9.79)
we obtain:

− a
1 + ρ

N2 + µaN2

[
1 +

tL
N2

∂N2

∂tL

]
= 0⇒

η

[
1−

(
tL

1− tL

)
ξL

]
= 1, (b)

where η ≡ µ(1 + ρ) is the marginal cost of public funds, and ξL is the
uncompensated wage elasticity of labour supply:

ξL ≡
∂N2

∂a(1− tL)

a(1− tL)

N2
= −1− tL

tL

∂N2

∂tL

tL
N2

= ωHεN > 0, (c)

where ωH ≡ (1 − N2)/N2 is the leisure/work ratio. By rewriting (b),
equation (9.82) is obtained.

Equation (9.83) is obtained in a similar fashion. First, we calculate
∂V/∂tK from the indirect utility function given in (9.74).

∂V
∂tK

= − b
1 + ρ

(1 + b)K1 +
b

1 + ρ

(
1 + b(1− tK)

1 + ρ

)−εC

=
b

1 + ρ
[C1 − (1 + b)K1] = −

b
1 + ρ

K2, (d)

where we have used (9.71) and the definition of K2 in the two final steps.
By substituting (d) into (9.80) we obtain:

− b
1 + ρ

K2 + µbK2

[
1 +

tK
K2

∂K2

∂tK

]
= 0⇒

η

[
1−

(
tK

1− tK

)
ξK

]
= 1, (e)
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where ξK is the uncompensated interest elasticity of gross saving:

ξK ≡
∂K2

∂b(1− tK)

b(1− tK)

K2
= −1− tK

tK

∂K2

∂tK

tK
K2

= ωCεC > 0, (f)

where ωC is defined as:

ωC ≡
b(1− tK)C1

[1 + b(1− tK)]K2
. (g)

By rewriting (e), equation (9.83) is obtained.

****

9.3.3 Dynamic inconsistency of the optimal tax plan

The problem with the optimal tax plan calculated in the previous section is that it is
dynamically inconsistent. In the first period the policy maker announces that it will
tax both labour income and capital income in the second period. But it turns out that
once the second period has commenced it is no longer optimal for the policy maker
to stick to its plan. This can easily be demonstrated with the aid of the model. At the
beginning of the second period, the representative household has a capital stock of
K2 and chooses C2 and N2 to maximize remaining lifetime utility,

U2 ≡ C2 + α
(1− N2)

1−1/εN

1− 1/εN
+ β

G1−1/εG
2

1− 1/εG
, (9.86)

subject to the budget restriction:

C2 = a(1− tL)N2 + [1 + b(1− tK)]K2. (9.87)

Following the usual steps, the solutions for C2 and N2 are obtained:

C2 = a(1− tL) + [1 + b(1− tK)]K2 − αεN [a(1− tL)]
1−εN , (9.88)

1− N2 =

(
a(1− tL)

α

)−εN

. (9.89)

By substituting (9.88)–(9.89) into (9.86) the indirect utility function for period 2 is
obtained:

V2 ≡
[
a(1− tL) + [1 + b(1− tK)]K2

]
+

α

εN − 1

(
a(1− tL)

α

)1−εN

+ β
G1−1/εG

2
1− 1/εG

. (9.90)

Clearly, the expressions for future labour supply, as given in (9.73) and (9.89), coin-
cide provided the same tax rate features in these expressions. Similarly, by noting
that K2 = (1 + b)K1 − C1 and using (9.71) it is easy to show that (9.88) coincides
with (9.72), again provided the policy maker keeps his word and produces the tax
rates as given in (9.84)–(9.85).
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The problem is that, from the perspective of period 2, the policy maker will set
different tax rates. Intuitively, the reason is that once the capital stock K2 is in place,
taxing capital income is non-distorting (since the capital income is like a “sitting
duck”) and the optimal Ramsey tax solution is to set tL = 0 (since the labour tax
is distorting) and tK > 0.10 As a result of this, the optimal tax rates as given in
(9.84)–(9.85) are not believed by the public.

Of course, there is a consistent solution to the problem. This solution is obtained
by working backwards in time, starting in period 2. The public knows that the gov-
ernment will set tL = 0 in period 2 and raise its revenue by means of the tax on
capital income only. The public also knows that G2 will be set according to the level
given in (9.56) because the policy maker has a non-distorting tax at its disposal in
period 2. As a result of the higher level of public spending and the higher capital
tax, the public will save less in period 1.

9.4 Are consumers dynamically inconsistent?

Up to this point all examples giving rise to dynamic inconsistency concern cases
where different actors engage in strategic interactions with each other. In the infla-
tion example the interaction is between the monetary policy maker and the public,
whereas in the optimal capital taxation case the interaction is between the tax office
and the owners of the capital stock.

In this section we show that dynamic inconsistency can also arise in individual
behaviour. As was shown in the classic paper by Strotz (1956), rational utility max-
imizing individuals endowed with perfect foresight may very well formulate plans
over their lifetime that are dynamically inconsistent. Such an agent plans at time t
do something at some later time t + τ but knows already that when time t + τ comes
around he will not execute the plan made at time t. It must be stressed that Strotz’s
dynamic inconsistency result does not derive from the fact that the economic cir-
cumstances have changed unexpectedly between t and t + τ, but rather because the
individual’s objective function itself gives rise to dynamically inconsistent choices.

To demonstrate the main argument the remainder of this section develops an
elaborate example in which an individual must choose the optimal consumption
plan over the life cycle. To keep things as simple as possible we assume that the
individual does not work but owns a given amount of resources (say a ‘cake’) at
the start of youth, denoted by E. The cake does not yield any interest but does
not go off either. The individual lives and consumes for three periods, say youth
(superscript y), middle-age (superscript m), and old-age (superscript o). In the first
subsection we start by studying the decisions of a “regular” dynamically consistent
individual. Once that case is fully understood we move in the second subsection to
the discussion of a dynamically inconsistent consumer.

10Formally, the policy maker chooses G2, tL, and tK in order to maximize (9.90) subject to the govern-
ment budget restriction (9.76). By following the same steps as before it can be shown that these results
follow. Notice also that the government’s plan regarding public goods provision is also dynamically in-
consistent. Provided enough revenue can be raised from the capital income tax, the policy maker will set
G2 at the first-best optimum level as given in (9.56). This is a higher level than was announced in the first
period.
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9.4.1 A dynamically consistent consumer

Consider an individual who has a lifetime utility function during youth of the type
used in Chapter 6:

Λy ≡ U(Cy
y) +

1
1 + ρ

U(Cm
y ) +

(
1

1 + ρ

)2
U(Co

y), (9.91)

where Λy is lifetime utility of somebody who is young in period 1, Ci
j is consumption

during life phase i as chosen in life phase j, ρ is the pure rate of time preference
(ρ > 0), and U(x) is the felicity function (featuring U′(x) > 0, U′′(x) < 0, and
limx→0 U′(x) = +∞). Consumption levels over the life cycle as chosen during youth
are denoted by Cy

y , Cm
y , and Co

y. We call a person with this type of lifetime utility
function an exponential discounter.11 We complete the characterization of preferences
by noting that the felicity function is logarithmic:

U(x) ≡ ln x. (9.92)

There are two questions concerning the individual’s life-cycle choices. First, what is
the optimal way to consume the cake over the three periods of life? Second, are the
choices made dynamically consistent? To answer these questions we note that the
budget constraints are given by:

Am
y = E− Cy

y , (9.93)

Ao
y = Am

y − Cm
y , (9.94)

Ad
y = Ao

y − Co
y, (9.95)

where Ad
y stands for the size of the cake when the individual is dead (superscript d).

In addition the size of the cake must be non-negative at all times:

Ai
j ≥ 0. (9.96)

We first consider the choices made during youth. The individual chooses Cy
y , Cm

y , Co
y,

Am
y , Ao

y, and Ad
y in order to maximize (9.91) subject to the constraints (9.93)–(9.96).

The Lagrangian for this optimization problem is:

Ly ≡ U(Cy
y) +

1
1 + ρ

U(Cm
y ) +

(
1

1 + ρ

)2
U(Co

y)

+ λ1

[
E− Cy

y − Am
y

]
+ λ2

[
Am

y − Cm
y − Ao

y

]
+ λ3

[
Ao

y − Co
y − Ad

y

]
.

The first-order necessary conditions for consumption over the life cycle are ∂Ly/∂Cy
y =

∂Ly/∂Cm
y = ∂Ly/∂Co

y = 0 and give rise to:

U′(Cy
y) = λ1, (9.97)

1
1 + ρ

U′(Cm
y ) = λ2, (9.98)

11Note that (1 + ρ)−t = e−t ln(1+ρ) which explains why the discounting scheme is called exponential.
In the continuous-time setting employed by Strotz (1956) we use the result that ln(1 + ρ) ≈ ρ (for small
ρ) so that the discount factors are given by e−ρt.
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(
1

1 + ρ

)2
U′(Co

y) = λ3. (9.99)

The first-order necessary conditions for the cake size over time are slightly more
complicated because the non-negativity constraints on At necessitates the use of
Kuhn-Tucker conditions:

∂Ly

∂Am
y

= λ2 − λ1 ≤ 0, Am
y ≥ 0, Am

y
∂Ly

∂Am
y

= 0, (9.100)

∂Ly

∂Ao
y
= λ3 − λ2 ≤ 0, Ao

y ≥ 0, Ao
y

∂Ly

∂Ao
y
= 0, (9.101)

∂Ly

∂Ad
y
= −λ3 ≤ 0, Ad

y ≥ 0, Ad
y

∂Ly

∂Ad
y
= 0. (9.102)

The assumption made above (that limx→0 U′(x) = +∞) ensures that the consumer
plans a positive amount of cake consumption in each period. But this, in turn, im-
plies that Am

y and Ao
y are both strictly positive so that (by complementary slackness)

it follows from (9.100)–(9.101) that λ1 = λ2 = λ3 and thus from (9.97)–(9.99) that:

U′(Cy
y)

U′(Cm
y )

=
1

1 + ρ
,

U′(Cm
y )

U′(Co
y)

=
1

1 + ρ
. (9.103)

Finally, since λ3 is strictly positive it follows from (9.102) by complementary slack-
ness that Ad

y = 0, i.e. no cake is left uneaten.
For the logarithmic felicity function (9.92) we find that the expressions in (9.103)

simplify to Cm
y /Cy

y = Co
y/Cm

y = 1/(1 + ρ). Since the lifetime budget constraint is
given by E = Cy

y + Cm
y + Co

y we thus get the following solutions for the optimal
life-cycle consumption choices made during youth:

Cy
y =

(1 + ρ)2

2 + ρ + (1 + ρ)2 E, (9.104)

Cm
y =

1 + ρ

2 + ρ + (1 + ρ)2 E, (9.105)

Co
y = Ao

y =
1

2 + ρ + (1 + ρ)2 E, (9.106)

Am
y =

2 + ρ

2 + ρ + (1 + ρ)2 E. (9.107)

Because the individual is impatient (as ρ > 0), and the felicity function is logarithmic,
cake consumption declines proportionally over the life cycle.

Are these choices dynamically consistent? Does the individual with a cake of
size Am

y (as given in (9.107)) choose the same consumption levels Cm
y and Co

y (as
given in (9.105)–(9.106)) when in middle-age? The answer is a resounding ‘yes!’. To
demonstrate this result note that the lifetime utility function in middle-age is given
by:

Λm ≡ U(Cm
m) +

1
1 + ρ

U(Co
m), (9.108)

whilst the constraints in middle-age are:

Ao
m = Am

y − Cm
m , Ad

m = Ao
m − Co

m. (9.109)
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The middle-aged individual chooses Cm
m , Co

m, Ao
m, and Ad

m in order to maximize
(9.108) subject to (9.109), (9.96), and taking Am

y as given. The optimality conditions
are given by:

U′(Cm
m)

U′(Co
m)

=
1

1 + ρ
, Co

m = Ao
m, Cm

m + Ao
m = Am

y , (9.110)

which for the logarithmic felicity function (9.92) yield the following solutions:

Cm
m =

1 + ρ

2 + ρ
Am

y =
1 + ρ

2 + ρ + (1 + ρ)2 E, (9.111)

Co
m = Ao

m =
1

2 + ρ
Am

y =
1

2 + ρ + (1 + ρ)2 E, (9.112)

where we have used the expression for Am
y from (9.107) to get from the first to

the second expression in each case. The comparison between (9.111)–(9.112) and
(9.105)–(9.106) reveals that the choices made in middle-age are the same as they were
planned to be during youth (Cm

y = Cm
m , Co

y = Co
m, and Ad

y = Ad
m = 0). Exponential

discounters are dynamically consistent individuals!

9.4.2 A dynamically inconsistent consumer

The exponential discounter has a very particular discounting scheme in the sense
that immediate felicity gets weight unity, felicity one period later gets weight 1/(1+
ρ), and felicity two periods later gets weight 1/(1 + ρ)2. Psychological researchers
have devoted a huge amount of research time to actually measure the way real peo-
ple discount delayed rewards. They found strong evidence for the hypothesis that
discounting is not exponential but hyperbolic, i.e. rewards that are τ periods away
from the present are discounted with weight (1 + ατ)−γ/α with α > 0 and γ > 0.
The key feature of this discounting scheme is that discounting is much heavier for
rewards that are close in time than is suggested by an exponential scheme.12 Fur-
thermore, as is pointed out by Harris and Laibson:

In the short run, the hyperbolic discount rate is γ and in the long run
the discount rate converges to zero. This reflects the robust experimen-
tal finding that people are very impatient in the short run (e.g., when
postponing a reward from today to tomorrow) and very patient when
thinking about long-run trade-offs (postponing rewards from 100 to 101
days) (2003, p. 261)

In a path-breaking paper Laibson (1997) uses the modelling insights from Phelps and
Pollak (1968) and captures the salient features of hyperbolic discounting by postu-
lating what he calls a quasi-hyperbolic discounting scheme. In the context of our toy

12Note that:

lim
τ→∞

(1 + ατ)−γ/(ατ) = e−γ.

It follows from this result that:

(1 + ατ)−γ/α ≈ e−γτ for large τ.

Hence, for distant-in-time events discounting is approximately exponential under the hyperbolic scheme.
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model the lifetime utility functions during youth, middle-age, and old age are given
by:

Λy ≡ U(Cy
y) +

δ

1 + ρ
U(Cm

y ) + δ

(
1

1 + ρ

)2
U(Co

y), (9.113)

Λm ≡ U(Cm
m) +

δ

1 + ρ
U(Co

m), (9.114)

Λo ≡ U(Co
o), (9.115)

with 0 < δ < 1. Preferences of this form capture the gist of hyperbolic discounting
in the sense that discounting between a current and a near-in-time reward is much
heavier than discounting between two distant-in-time rewards. For this reason some
authors prefer to use the term present-biased preferences to describe the discounting
scheme adopted here —see O’Donoghue and Rabin (1999). Following-convention,
however, from here on we will call a person with the type of lifetime utility function
as stated in (9.113)–(9.115) a hyperbolic discounter.

As is pointed out by Laibson (1997, p. 451) there is a strong reason to believe that
hyperbolic preferences lead to dynamically inconsistent choices. Indeed, preferences
during youth are inconsistent with preferences during middle-age. During youth the
marginal rate of substitution (MRS) between Cm

y and Co
y is:

∂Λy/∂Cm
y

∂Λy/∂Co
y
=

(1 + ρ)U′(Cm
y )

U′(Co
y)

,

whilst during middle-age the MRS between Cm
y and Co

y is quite different:

∂Λm/∂Cm
m

∂Λm/∂Co
m

=
(1 + ρ)U′(Cm

m)

δU′(Co
m)

.

This – of course – means that the middle-aged individual will not execute the plans
chosen in youth.

Let us now return to our three-period model and compute what happens over the
life cycle of the hyperbolic discounter. We start by considering the optimal choices
made during youth (ignoring the suspected dynamic inconsistency of these choices).
The individual chooses Cy

y , Cm
y , Co

y, Am
y , Ao

y, and Ad
y in order to maximize (9.113)

subject to the constraints (9.93)–(9.96). Following the same steps as before we find
that the optimal choices are characterized by:

U′(Cy
y)

U′(Cm
y )

=
δ

1 + ρ
,

U′(Cm
y )

U′(Co
y)

=
1

1 + ρ
, E = Cy

y + Cm
y + Co

y. (9.116)

For the logarithmic felicity function (9.92) we obtain the following closed-form solu-
tions:

Cy
y =

(1 + ρ)2

δ(2 + ρ) + (1 + ρ)2 E, (9.117)

Cm
y =

δ(1 + ρ)

δ(2 + ρ) + (1 + ρ)2 E, (9.118)

Co
y = Ao

y =
δ

δ(2 + ρ) + (1 + ρ)2 E, (9.119)
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Am
y =

δ(2 + ρ)

δ(2 + ρ) + (1 + ρ)2 E. (9.120)

Not surprisingly, during youth the hyperbolic discounter consumes more and leaves
a smaller cake for middle-age than a consumer with regular preferences (an expo-
nential discounter)—compare (9.117) and (9.104). More importantly, it is easy to
demonstrate that the choices for Cm

y and Co
y as stated in (9.118)–(9.119) will not be

executed!
The lifetime utility function in middle-age is given by (9.114) and the constraints

are given by Ao
m = Am

y − Cm
m and Ad

m = Ao
m − Co

m. The optimality conditions charac-
terizing the optimal choices made during middle-age are:

U′(Cm
m)

U′(Co
m)

=
δ

1 + ρ
, Cm

m + Co
m = Am

y . (9.121)

For the logarithmic felicity function (9.92) we find the following closed-form expres-
sions:

Cm
m =

1 + ρ

1 + δ + ρ
Am

y =
1 + ρ

1 + δ + ρ

δ(2 + ρ)

δ(2 + ρ) + (1 + ρ)2 E, (9.122)

Co
m = Ao

m =
δ

1 + δ + ρ
Am

y =
δ

1 + δ + ρ

δ(2 + ρ)

δ(2 + ρ) + (1 + ρ)2 E, (9.123)

where we have used the expression for Am
y from (9.120) to get from the first to the

second expression in each case. The comparison between (9.118) and (9.122) reveals
that the hyperbolic discounter over-eats during middle-age and thus saves too little
for old age, i.e. Cm

m > Cm
y and Ao

m < Ao
y (this result follows readily from the fact that

(2 + ρ)/(1 + δ + ρ) > 1).
Unless the young individual can somehow commit himself to the plans made

during youth, these plans will not be executed in the future. The question then arises,
what does the hyperbolic discounter do in the absence of a commitment device? Two
hypotheses are discussed in turn.

9.4.2.1 A naive hyperbolic discounter

Strotz (1956) introduces the term “naive” for the person who does not worry about
the dynamic inconsistency of his plans and just executes the plan chosen in each pe-
riod. In our toy model this means that youth consumption Cy

y will be set as in (9.117),
middle-age consumption Cm

m will be set as in (9.122), and old-age consumption Co
o as

in (9.123).

9.4.2.2 A sophisticated hyperbolic discounter

A sophisticated planner realizes that he will not carry out the plans made during
youth. Such a person – in a sense – splits himself up in current and future selves.
From the perspective of youth there is the present self, the middle-aged self, and the
old-age self. From the perspective of middle-age there is the middle-age self and the
old-age self. In each life phase the current self plays a strategic game against future
selves. The equilibrium concept that is used in the hyperbolic discounting literature
is that of the subgame perfect Nash equilibrium (SPNE). This sounds like a very
complicated concept but in our toy model it is easy to show how we can compute
the SPNE for a hyperbolic discounter.
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The key thing to note is that SPNE requires the choices that are made to be an
equilibrium of every subgame of the original game. The solution is computed back-
wards in time. The old self has no future self and thus has no game to play. The
middle-aged self plays a game against the old self. The young self plays a game
against the middle-aged and old selves.

We work directly with the logarithmic felicity function to keep things simple.
First consider the choice made during old age: utility is Λo ≡ ln Co

o and the budget
constraint is Ao

m = Co
o + Ad

o . It follows that, when old, the person will choose Co
o =

Ao
m and Ad

o = 0 and attain a utility level equal to:

Λo = ln Ao
m. (9.124)

Next consider the middle-aged self. The budget constraint is Am
y = Cm

m + Ao
m and

utility is:

Λm ≡ ln Cm
m +

δ

1 + ρ
ln Ao

m,

= ln Cm
m +

δ

1 + ρ
ln(Am

y − Cm
m), (9.125)

where we have substituted the constraint faced by the middle-aged self to get from
the first to the second line. The first-order necessary condition for utility maximiza-
tion is:

1
Cm

m
=

δ

1 + ρ

1
Am

y − Cm
m

, (9.126)

from which we obtain the closed-form solutions:

Cm
m =

1 + ρ

1 + δ + ρ
Am

y , (9.127)

Ao
m =

δ

1 + δ + ρ
Am

y . (9.128)

Finally consider the young self. The budget constraint is E = Cy
y + Am

y and the utility
function can be written as:

Λy ≡ ln Cy
y +

δ

1 + ρ
ln
[

1 + ρ

1 + δ + ρ
(E− Cy

y)

]
+ δ

(
1

1 + ρ

)2
ln
[

δ

1 + δ + ρ
(E− Cy

y)

]
. (9.129)

Note that (9.129) is obtained by substituting (9.127)–(9.128) into (9.113) and noting
the logarithmic felicity function (9.92). The first-order necessary condition character-
izing the optimal choice of youth consumption (and thus of Am

y ) is:

1
Cy

y
=

[
1

1 + ρ
+

(
1

1 + ρ

)2
]

δ

E− Cy
y

, (9.130)

from which we readily obtain the closed-form solutions:

Cy
y =

(1 + ρ)2

δ(2 + ρ) + (1 + ρ)2 E, (9.131)
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Am
y =

δ(2 + ρ)

δ(2 + ρ) + (1 + ρ)2 E. (9.132)

Future selves will choose such that:

Cm
m =

1 + ρ

1 + δ + ρ

δ(2 + ρ)

δ(2 + ρ) + (1 + ρ)2 E, (9.133)

Co
o =

δ

1 + δ + ρ

δ(2 + ρ)

δ(2 + ρ) + (1 + ρ)2 E. (9.134)

To summarize, the sophisticated hyperbolic discounter formulates a dynamically
consistent life-cycle consumption profile that is given in (9.131)–(9.134).

The comparison between the consistent and optimal solution reveals that the for-
mer is suboptimal from the perspective of youth. Indeed, even though youth consump-
tion is the same for both solutions (compare (9.131) and (9.117)), the middle-aged self
over-eats and undersaves in the consistent solution. Hence, lifetime utility is higher
for the optimal-but-inconsistent solution than for the time-consistent solution.13

In closing we note that in our toy model there exists a very simple to implement
commitment device that the young self could employ. All he has to do is to give part
of the cake (the amount Ao

y as given in (9.119)) to a friend who locks it up in a fridge,
goes on holidays to a far-off destination during period 2 taking the key to the fridge,
and returns the cake to its owner (the old-age self) in period 3. The middle-aged self
will thus obtain less cake from the young self and will optimally choose to consume
it all. Of course, in reality perfect commitment devices are hard or even impossible
to come by. Laibson (1997) and co-authors mention and analyse several real world
imperfect commitment strategies such as illiquid assets and the like.

9.5 Punchlines

The discussion in this chapter focuses on the phenomenon of dynamic inconsistency.
The classic example of dynamic inconsistency and its potential resolution can be
traced to the ancient Greek author Homer. In this chapter, however, we study ex-
amples of dynamic inconsistency in governmental economic policy. We study three
examples, two of which deal with monetary policy and one with fiscal policy.

To prepare for the first two examples of dynamic inconsistency we develop a
simple model in which the policy maker faces a (stochastic) Lucas supply curve and
attempts to steer output towards a higher than full employment level by setting the
inflation rate (using monetary policy instruments to do so). The cost function of the
policy maker depends positively on the deviation of output from its target level and
on the inflation rate. A simple parameter measures the relative aversion of the policy
maker against inflation. The higher this parameter the more “right wing” we shall
call the policy maker. There is informational asymmetry in the model because the
policy maker can observe the realization of the stochastic supply shock in the Lucas

13The astute reader will have noticed that the naive and sophisticated solutions are identical. This is
due to the fact that the felicity function is logarithmic, i.e. the intertemporal substitution elasticity is equal
to unity (σ = 1). With an iso-elastic felicity function of the form:

U(x) ≡ x1−1/σ − 1
1− 1/σ

, σ 6= 1,

the naive and sophisticated solutions are different. The reader is asked to verify this in the Exercise and
Solutions Manual.
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supply curve but the public cannot. As a result of this asymmetry, monetary policy is
effective at influencing output despite the fact that private agents formulate rational
expectations.

We can distinguish three different solutions to the policy maker’s optimization
problem. Under the discretionary solution, the policy maker chooses inflation (and
thus output) in each period. Since private agents know the structure of the model
they can compute the rational expectations solution under discretion which then
feeds back into the Lucas supply curve. The rational expectations solution for the
discretionary policy has two features. First, the chosen inflation rate depends posi-
tively on the output ambition of the policy maker (the gap between target and full
employment output) and negatively on the supply shock. Second, the degree of
accommodation of supply shocks by monetary policy depends in an intuitive fash-
ion on the political orientation of the policy maker. Indeed, a left-wing (right-wing)
policy maker cares little (strongly) about inflation and cares strongly (little) about
deviations in output from full employment.

The discretionary solution is suboptimal, however, in that the policy maker can
steer closer to its bliss point under an alternative rule-based solution. The rule-based
solution is as follows. The policy maker announces to the public that it will follow
a monetary policy rule which produces zero inflation in every period. If the public
believed that the policy maker would stick to its promise the expected inflation rate
would also be zero and no output stabilization would take place.

The problem with the rule-based solution is, however, that it is dynamically in-
consistent. A policy maker has a strong incentive to exploit the Lucas supply curve
based on zero expected inflation and to accommodate supply shocks by producing
surprise inflation. This is the so-called cheating solution which derives its name
from the fact that the policy maker does not stick to its promises of no inflation.
The cheating solution is closest to the policy maker’s bliss point but it violates the
rational expectations assumption.

The upshot of the discussion so far is that the only policy which is both believed
by private agents (i.e. is said to be credible) and is consistent with rational expecta-
tions is the discretionary policy. Of all policies considered however, the discretionary
policy yields the policy maker the lowest level of welfare (i.e. the highest level of
social cost). It would seem that the economy gets stuck with the worst possible out-
come.

In an ingenious paper, Barro and Gordon (1983b) have shown that the reputa-
tion of the policy maker can act as an enforcement device, making it possible that
the superior rule-based equilibrium is credibly selected in equilibrium. These au-
thors proxy the policy maker’s reputation as follows. If the policy maker has kept
its promise (whatever it was) in the previous period then the public will believe the
policy maker’s announcement that it will follow the monetary rule in the present pe-
riod. In contrast, if the policy maker did not keep its promise in the previous period,
the public discounts the policy maker’s reputation and expects that the discretionary
solution will be selected in the present period. This is an example of a “tit-for-tat”
strategy adopted by the private agents in their repeated prisoner’s dilemma game
with the policy maker. The approach implies that a rule-based solution may be en-
forceable which features a positive inflation rate.

In the remainder of this chapter we give three more examples of dynamic incon-
sistency (and its possible resolution). In the first of these we show that in a voting
model, the median voter will elect somebody to act as the central banker who is
more conservative (and has a higher aversion against inflation) than he is himself. In
doing so, the median voter commits himself to a lower inflation rate than he would
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have chosen had he himself been the monetary policy maker.
In the second example we develop a simple toy model of optimal taxation of

labour and capital income when lump-sum taxes are not available. Two key results
are derived. First, abstracting from issues of dynamic inconsistency, the optimal
tax rates on both labour and capital are non-zero and these rates depend on the
elasticities of the respective tax bases. Second, the optimal taxes are dynamically
inconsistent. Once the future capital stock is in place, the tax base for capital income
tax is inelastic and the policy maker can raise public revenue in a non-distorting
fashion by not taxing labour income and taxing capital income as much as possible.

In the final example we show that dynamic inconsistency can also arise in indi-
vidual behaviour. We develop a simple toy model in which a rational utility maxi-
mizing individual (endowed with perfect foresight) optimally consumes a cake over
three periods. If the lifetime utility function is of the standard type (and exhibits
exponential felicity discounting) then the consumer’s plans are dynamically consis-
tent. What is planned in youth will be executed in middle-age and old-age. If, on the
other hand, the consumer has hyperbolic (or present-biased) preferences then con-
sumption plans are dynamically inconsistent. Unless the consumer can somehow
commit himself, plans made during youth will not be executed in later periods and
the actual life choices will be suboptimal. In the toy model the consumer over-eats
during middle-age and leaves too little of the cake for old-age.

Further reading

The key references to the reputational model of inflation are Barro and Gordon
(1983a, 1983b), and Backus and Driffill (1985). See also Cukierman and Meltzer
(1986) and Cukierman (1992). Klein (2008) presents a compact discussion of the time
consistency literature and economic policy. Persson and Tabellini (1994a) present a
collection of the most important articles. A number of monographs on the political
economy approach to economic policy exist—see Persson and Tabellini (1989), Dixit
(1996), Persson and Tabellini (2000), and Drazen (2000). For a review of the last two
books, see Saint-Paul (2000). Readers interested in the optimal taxation literature are
referred to Atkinson and Stiglitz (1980). Persson and Tabellini (1994b) study capital
taxation in a model of a representative democracy. Van der Ploeg (1995) studies the
political economy of monetary and fiscal policy in a dynamic macroeconomic model.

Early contributions to the dynamic inconsistency literature are Strotz (1956), Phe-
lps and Pollak (1968), Pollak (1968), and Peleg and Yaari (1973). Tractable models
of (quasi-)hyperbolic discounting were developed by Laibson and co-authors—see
Laibson (1997), Harris and Laibson (2001, 2003, 2013), Angeletos et al. (2001), and
Laibson et al. (2003). See also O’Donoghue and Rabin (1999) on present-biased pref-
erences, and Lipman and Pesendorfer (2013) on temptation in general. For a review
of the literature on time preference and discounting, see Frederick et al. (2002).
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Chapter 10

Money

The purpose of this chapter is to discuss the following issues:

1. What are the principal functions of money in advanced economies?

2. How can the role of money be captured in simple models?

3. What is the socially optimal quantity of money?

4. How does money affect the government budget constraint (nominal money
growth as an inflation tax)?

10.1 Functions of money

When asked the question “What is money?”, it will be answered with full confi-
dence by any man or woman in the street. Indeed, the typical response one may
expect from such a question would probably consist of the person in question tak-
ing out his/her wallet and showing a colourful piece of paper with some numbers
printed on it and possibly the portrait of some past or present monarch or president.
If the question had been asked a few centuries ago, the object produced from the
wallet would probably have been made of some precious metal rather than (hard to
counterfeit) paper but the intended answer would have been the same: money is the
stuff which sits in one’s wallet and can be used to purchase goods and services.1

Economists will show considerably less confidence if confronted with the same
question and instead of formulating a straight answer will propose a number of func-
tions performed by this elusive thing called “money”. In other words, instead of
designating what money “is” , economists describe what money “does”, or more
precisely what something must do in order for it to be called money. In broad terms
three major functions of money can be distinguished: (1) money as a medium of
exchange, (2) money as a medium of account, and (3) money as a store of value
(McCallum, 1989a, pp. 16–18).

The various aspects of money can be illustrated with the aid of Figure 10.1. Sup-
pose there are four agents (labelled 1 through 4) in the economy who each produce a
unique commodity but like to consume not just their own product but also all other

1An exhaustive and highly readable historical treatment of the emergence of money in different soci-
eties is found in Einzig (1949). See also Davies (1994), Jevons (1875), Menger (1892), Fisher (1913), Wicksell
(1935), and Jones (1976).
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Figure 10.1: The barter economy

products in the economy. In a barter economy all agents formulate their supply of
the own good and demands for the other goods, and meet at a central market place
(which is located, say, at point A in Figure 10.1) in which the equilibrium relative
prices are determined. Since there are four goods in our example, there are in total
six relative prices which are determined.2 Exchange takes place without the use of
money, namely good 1 is directly exchanged (“bartered”) for good 2, etc. Aside from
obvious complications relating to indivisibilities of goods etc., a centralized market
place would function perfectly well without money. Intuitively, without some kind
of “friction” money is not likely to be a very useful thing to have.

In reality, of course, not all transactions take place in a centralized full-information
setting and the process of trading becomes more complicated. Assume that the cen-
tral market place in Figure 10.1 exists, but that the agent does not know beforehand
which other trader he is going to meet there at any particular time. Suppose that at
most two traders meet randomly at this market in each period. Then agents are con-
fronted with a major problem due to the need for a double coincidence of wants. For
example, agent 1 may find himself paired with agent 2 who may or may not want to
trade with him. In fact, in the absence of money, an exchange of goods will only take
place if agent 1 meets an agent who wants to have his good and who himself has a
good which agent 1 is looking for. Hence, in such a setting it may take a lot of effort

2These are the rates at which the goods are exchanged pair-wise. Denoting pij as the relative price of
good i in terms of good j, we have the following relative prices: p12, p13, p14, p23, p24, and p34. Obviously,
we have that pij ≡ 1/pji .
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and a long time before agent 1 can actually trade.
Even if agents are perfectly informed about the location of trading partners, the

problem may still persist. Cass and Yaari (1966) present a case in which the double
coincidence of wants always fails. Assume that agents only wish to consume their
own good and the good produced by the agent located closest (in a clockwise direc-
tion), i.e. agent 1 would like to consume the bundle (1,2), agent 2 (2,3), agent 3 (3,4),
and agent 4 (4,1). Assume that the goods are non-storable and that each agent can at
most travel halfway towards his adjacent neighbours. This means that agent 1, for
example, can attempt to trade with agents 4 and 2, agent 2 with 1 and 3, etc. It is
easy to see, however, that no trading will actually take place. Agent 1, for example,
cannot trade with 2 because the latter is not interested in good 1 at any price. Simi-
larly, agent 1 will not trade with agent 4 for the same reason. The double coincidence
of wants fails, all agents consume only their own good, and a situation of autarky
persists.

Now assume there is a durable “thing” which is storable and can be transferred
across agents at zero cost, and call this thing money. Then agents will actually be
able to trade with each other by using this money rather than bartering. Agent 1, for
example, sells his good to agent 4, and receives money for it with which he purchases
good 2 from agent 2. Since the other agents do the same with their neighbours, an
equilibrium can be attained in which all agents are better off (in welfare terms) as a
result of the existence of a medium of exchange called money.

Of course, the circle model is a highly stylized account of the trading process
but it is nevertheless useful because it motivates the following medium-of-exchange
“test”. Something serves the role of medium of exchange if its existence ensures that
agents can attain a higher level of welfare.3 In the “random-encounters” model and
in the “circle” model money serves as a medium of exchange in the sense of this
proposed definition. Indeed, in the former model the trading friction is reduced (but
not totally eliminated)4 by the existence of a medium of exchange, whereas in the
latter the friction is completely eliminated.

There is nothing in the theory which suggests that the medium of exchange must
be an intrinsically valuable commodity such as gold or silver (or rare shells) which
enhance people’s utility or can be put to productive uses. Indeed, an intrinsically
low-valued good (such as paper) can also serve as a medium of exchange provided
it is generally accepted in exchange. To the extent that gold and silver are better
used for productive purposes, it is actually preferable for society to use intrinsically
low-valued material as a medium of exchange (McCallum, 1989a, p. 17).

The second major function of money is that of medium of account. As was ex-
plained above, an economy with four distinct goods exhibits six distinct relative
prices. For an economy with N different goods the number of distinct relative prices
amounts to N(N − 1)/2, which is a rather large number even for a modestly large
N. If all goods are expressed in terms of money, and money is thus the medium
of account, then only N different (absolute) prices for the different goods need be
recorded. Denoting these absolute prices by pi (i = 1, · · · , N) the relative prices are
then implied, e.g. pij ≡ pi/pj.

3This test is similar to (but more general than) the one suggested by McCallum (1983b). His require-
ment is more strict in that it requires the medium of exchange to expand production possibilities. Indeed,
he calls this the “traditional presumption” (1983, p. 24).

4Agent 1 may meet an agent from whom he does not want to buy anything but who does want to buy
good 1. The transaction takes place against money, which agent 1 can use at some later encounter. If agent
1 instead meets an agent who does not want good 1 and whose good agent 1 does not want, then no trade
takes place. Hence, some frictions remain in the random-encounters model.
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The third function of money is that of store of value. In a monetary economy
money can be used to buy goods and vice versa, not only today but (more than likely)
also tomorrow. Hence, a stock of money represents “future purchasing power”. In
the future the money can be exchanged for goods which can be consumed or used
in the production process. Money is thus capable of being used as a store of value,
but there are other assets (bonds, company shares, real estate, etc.) which typically
outperform it in this role because they yield a positive rate of return whereas money
(typically) does not.

Of the three major roles played by money, only the medium-of-exchange role
is the distinguishing feature of money. Any commodity can serve as a medium of
account (without at the same time serving as a medium of exchange) and there are
various non-money assets which can serve as a store of value.

10.2 Modelling money as a medium of exchange

In Chapter 1 we discussed the Baumol (1952)-Tobin (1956) inventory-theoretic mo-
del of money demand–see Intermezzo 1.3. The basic idea behind that model is that
money is held through the period between income receipts, despite the fact that it
does not yield any interest, because it is needed to make purchases. The baker will
sell you a loaf of bread in exchange for money but not for bonds. At a more general
level the model suggests that money facilitates transactions. Of course, the Baumol-
Tobin model is rather restrictive in its scope and is partial equilibrium in nature. The
task of this section is to study how money as a medium of exchange can be cast in a
general equilibrium framework. In what follows the Baumol-Tobin model is shown
to be a special case of a more general framework in which money helps to “grease
the wheels” of the economy by minimizing liquidity costs.

10.2.1 Setting the stage

Suppose an individual agent lives for two periods, “now” (period 1) and “in the fu-
ture” (period 2), and possesses stocks of bonds (B0) and money (M0) that were accu-
mulated in the past. The agent has fixed real endowment income in the two periods
(Y1 and Y2, respectively) and consumes in the two periods (C1 and C2, respectively).
The price of the good in the two periods is denoted by P1 and P2, respectively. The
periodic budget identities are then given by:

P1Y1 + M0 + (1 + R0)B0 = P1C1 + M1 + B1, (10.1)
P2Y2 + M1 + (1 + R1)B1 = P2C2 + M2 + B2, (10.2)

where Ri is the nominal interest rate on bonds in period i. The left-hand side in
these expressions represents the total resources available to the household whereas
the right-hand side represents what these resources can be spent on.

Since the agent will not be around in period 3 and there is no bequest motive (see
Section 6.1.4), he will not wish to die with positive stocks of money and/or bonds
(i.e. M2 ≤ 0 and B2 ≤ 0). The financial sector will not allow him to die indebted
(B2 ≥ 0) and the agent cannot create money (M2 ≥ 0). Hence, combining all these
requirements yields M2 = B2 = 0, so that (10.1)–(10.2) can be combined into the
following consolidated budget constraint:

[A ≡] Y1 +
Y2

1 + r1
+

P0

P1
m0 + (1 + r0)b0 = C1 +

C2

1 + r1
+

R1m1

1 + R1
, (10.3)
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where mt ≡ Mt/Pt is real money balances, bt ≡ Bt/Pt is real bonds (or real debt if bt
is negative), and rt is the real rate of interest which is defined as:

rt =
Pt(1 + Rt)

Pt+1
− 1. (10.4)

If the price level is stable (rising, falling), the real interest rate equals (falls short of,
exceeds) the nominal interest rate.

The agent has the usual lifetime utility function which depends on consumption
in the two periods in a time-separable manner:

V = U(C1) +
1

1 + ρ
U(C2), (10.5)

where ρ > 0 is the pure rate of time preference and U(·) has the usual properties
(see Section 6.1.1). The household chooses consumption in the two periods (C1 and
C2) and its desired money holding (m1) in order to maximize (10.5) subject to (10.3)
and the non-negativity condition on money holdings (m1 ≥ 0), and given the prede-
termined stocks of money and bonds (m0 and b0). The Lagrangian associated with
this problem is:

L ≡ U(C1) +
1

1 + ρ
U(C2) + λ

[
A− C1 −

C2

1 + r1
− R1m1

1 + R1

]
, (10.6)

where λ is the Lagrangian multiplier. The first-order conditions consist of the con-
solidated budget constraint and:

∂L
∂C1

= U′(C1)− λ = 0, (10.7)

∂L
∂C2

=
1

1 + ρ
U′(C2)−

λ

1 + r1
= 0, (10.8)

∂L
∂m1

≡ λ ·
[
−R1

1 + R1

]
≤ 0, m1 ≥ 0, m1

∂L
∂m1

= 0. (10.9)

Equations (10.7)–(10.8) are exactly the same as in a model without money and in
combination yield the usual Euler equation relating the optimal time profile of con-
sumption to the divergence between the real interest rate and the rate of time prefer-
ence. The existence of money does not affect this aspect of the intertemporal model.
Equation (10.9) is new and warrants some further discussion. First consider the nor-
mal case with a strictly positive rate of interest (R1 > 0) so that the term in square
brackets in (10.9) is strictly negative and the complementary slackness condition sug-
gests that no money is held by the agent:

m1 = 0 if R1 > 0. (10.10)

The intuition behind this result is that the opportunity cost of holding money con-
sists of foregone interest, which is positive. Since money is not “doing” anything
useful in the model developed thus far, the rational agent refrains from using money
altogether.

The second, at first view rather pathological, case describes the situation in which
the nominal interest rate is negative (R1 < 0), so that the term in square brackets
in (10.9) is positive. Now the agent wishes to hold as much money as possible. By
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simply holding these money balances they appreciate in value (relative to goods). To
put it differently, money has a positive yield if the interest rate is negative.

m1 → ∞ if R1 < 0. (10.11)

Of course, negative nominal interest rates do not represent a particularly realistic
phenomenon. We shall nevertheless have a need to return to this case in section
10.4.2 below where we discuss the optimal quantity of money argument. In the
remainder of this section, however, we restrict attention to the normal case, i.e. we
assume that the nominal interest rate is strictly positive. The challenge is then to
modify the basic model in such a way that money will play a non-trivial role for the
agent (and thus for the economy as a whole).

10.2.2 Shopping costs

In section 10.1 it was argued that money as a medium of exchange reduces the trans-
actions costs associated with the trading process between agents. A particularly sim-
ple and elegant way to capture this aspect of money was suggested by McCallum
(1983c, 1989a). He assumes that households value leisure time and that part of their
time endowment is spent on “shopping around” for goods. Money is useful in the
sense that it makes shopping easier, i.e. by using money the agent can save leisure
time otherwise spent on shopping. We now modify our basic model to incorporate
shopping costs.

Suppose that the household has a time endowment of unity, works a fixed amount
of time units, N̄, and spends St units of time on shopping. Then the agent enjoys
1− N̄ − St units of leisure in period t. The utility function is modified to take into
account that the agent likes leisure time:5

V = U(C1, 1− N̄ − S1) +
1

1 + ρ
U(C2, 1− N̄ − S2), ρ > 0. (10.12)

The intertemporal budget constraint is still given by (10.3), with endowment income
now representing real labour income, Yt ≡ (Wt/Pt)N̄, where Wt is the nominal wage
rate in period t. The shopping technology is assumed to take the following form:

1− N̄ − St = ψ(mt−1, Ct), (10.13)

where the ψ(·) function is assumed to have the following properties. First, for a
given level of goods consumption, raising the level of real money balances results in
a finite reduction of time spent shopping and thus an increase in available leisure,
i.e. ψm(·) > 0. Second, the reduction in shopping cost due to a given increase in
money balances decreases as more money balances are used, i.e. ψmm(·) < 0 or,
in words, the shopping technology features diminishing marginal productivity of
money balances. Third, increasing consumption requires more shopping costs but
at a diminishing rate, i.e. ψC(·) < 0 and ψCC(·) > 0. Finally, the shopping costs are
bounded, i.e. 0 < ψ(mt−1, ∞) < ψ(mt−1, 0) < 1− N̄.

The household chooses Ct, St (for t = 1, 2), and m1 (m0 being predetermined) in
order to maximize (10.12) subject to (10.3), (10.13), and the non-negativity constraint
on money balances (m1 ≥ 0). The Lagrangian expression is:

L ≡ U(C1, 1− N̄ − S1) +
1

1 + ρ
U(C2, 1− N̄ − S2) (10.14)

5Some people actually enjoy shopping. For them it is not lost leisure. They simply find it relaxing to
visit book shops and shoe stores. We abstract from such people in this book.
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+ λ

[
A− C1 −

C2

1 + r1
− R1m1

1 + R1

]
+

2

∑
t=1

λt [ψ(mt−1, Ct)− (1− N̄ − St)] ,

where λt are the Lagrangian multipliers associated with the shopping technology in
the two periods. The first-order conditions consist of the constraints and:

∂L
∂C1

= UC(C1, 1− N̄ − S1)− λ + λ1ψC(m0, C1) = 0, (10.15)

∂L
∂C2

=
1

1 + ρ
UC(C2, 1− N̄ − S2)−

λ

1 + r1
+ λ2ψC(m1, C2) = 0, (10.16)

∂L
∂S1

= −UL(C1, 1− N̄ − S1) + λ1 = 0, (10.17)

∂L
∂S2

= − 1
1 + ρ

UL(C2, 1− N̄ − S2) + λ2 = 0, (10.18)

∂L
∂m1

≡ −λ
R1

1 + R1
+ λ2ψm(m1, C2) ≤ 0, m1 ≥ 0, m1

∂L
∂m1

= 0, (10.19)

where UC(·) and UL(·) denote the marginal utility of consumption and leisure, re-
spectively.

The first thing to note about these expressions concerns equation (10.19), which
is the first-order condition for optimal money balances. Comparing this expression
to its counterpart in the basic model (i.e. equation (10.9)) reveals that the existence of
shopping costs indeed gives rise to an additional positive term in the first expression
of (10.19), UL(C2, 1− N̄ − S2)ψm(m1, C2)/(1 + ρ) (we have used (10.18) to eliminate
λ2). This term represents the marginal utility of money balances. It must be stressed,
however, that this does not in and of itself ensure that the agent will choose to hold
positive money balances. Indeed, given the assumptions made so far, it is quite
possible that m1 = 0 is the best available option for the household. Specifically if the
marginal utility of leisure and/or the marginal productivity of money balances are
low, the first expression in (10.19) will be strictly negative so that the complementary
slackness condition ensures that m1 = 0 is optimal, as in the basic model. Intuitively,
no money is held in that case because the agent does not really mind shopping (UL
low) and/or because money does not reduce shopping costs by much (ψm low).

In the remainder of this section we assume that ψm and/or UL are high enough
to ensure that a strictly positive amount of money is held by the agent. The first
expression in (10.19) holds with equality and the Lagrange multipliers (λ1 and λ2)
can be eliminated by substituting (10.17) into (10.15) and (10.18) into (10.16) and
(10.19). We find the following optimality conditions:

λ = UC(C1, 1− N̄ − S1) + UL(C1, 1− N̄ − S1)ψC(m0, C1)

=
1 + r1

1 + ρ
·
[
UC(C2, 1− N̄ − S2) + UL(C2, 1− N̄ − S2)ψC(m1, C2)

]
=

UL(C2, 1− N̄ − S2)ψm(m1, C2)(1 + R1)

(1 + ρ)R1
, (10.20)

where λ represents the marginal utility of wealth (see Section 6.1.1). In planning
his optimal consumption levels, the agent equates the marginal utility of wealth to
the net marginal utility of consumption, which consists of the direct marginal utility
of consumption (UC(·) in the first and second lines of (10.20)) minus the disutility
(since ψC < 0) caused by the additional shopping costs which must be incurred
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(the UL(·)ψC(·) terms). For consumption taking place in the future the expression is
augmented by a net discounting factor (see the second line of (10.20)). The third line
in (10.20) shows that the marginal utility of money balances (UL(·)ψm(·)) must be
equated to the opportunity costs associated with holding these balances expressed
in utility terms (i.e. λ).

10.2.3 Money in the utility function

Inspection of equations (10.12)–(10.13) of the shopping-cost model reveals that this
approach in effect amounts to putting money directly into the utility function, i.e.
by substituting (10.13) into the felicity function U(Ct, 1− N̄ − St) we obtain an indi-
rect felicity function, Ũ(Ct, mt−1) ≡ U(Ct, ψ(mt−1, Ct)), which only depends on con-
sumption and money balances. Hence, the shopping cost approach can be used to
rationalize the conventional practice in macroeconomic modelling of putting money
directly into the utility function.

Feenstra (1986) has provided further justifications for this practice by demon-
strating that there exists a functional equivalence between, on the one hand, models
with money entered as an argument into the utility function and, on the other hand,
models in which money does not enter utility but instead affects “liquidity costs”
which in turn show up in the budget restriction. Since the Baumol-Tobin model
gives rise to such liquidity costs, Feenstra (1986) has demonstrated that, in a general
equilibrium setting, it too is equivalent to a model with money in the utility function.

In a classic paper on the micro-foundations of monetary theory, Clower (1967)
complained that (at least in models such as developed up to this point) money is not
allowed to play a distinctive role in the economy. Indeed, by looking at the budget
identities (10.1)–(10.2), it is clear that money enters these expressions in exactly the
same way that goods and bonds do. Implicitly, this suggests that any item (be it
goods, money, or bonds) can be directly exchanged for any other item, i.e. goods
for bonds, bonds for money, etc. This makes Clower complain that: “. . . an econ-
omy that admits of this possibility clearly constitutes what any Classical economist
would regard as a barter rather than a money economy. The fact that fiat money
is included among the set of tradeable commodities is utterly irrelevant; the role of
money in economic activity is analytically indistinguishable from that of any other
commodity” (Clower, 1967, p. 3). In a pure monetary economy, Clower argues, there
is a single good, “money”, which is used in all transactions, and “money buys goods
and goods buy money; but goods do not buy goods” (1967, p. 5).

In the context of our basic model of section 10.2.1, Clower’s idea can be formal-
ized by requiring that spending on consumption goods cannot exceed cash balances
carried over from the previous period.6 The so-called Clower or cash-in-advance con-
straint thus amounts to:

PtCt ≤ Mt−1 ⇔ Ct ≤
Pt−1

Pt
mt−1. (10.21)

The basic model, augmented with the Clower constraint (10.21), can be solved as
follows. To keep things simple, we assume that the Clower constraint holds with
equality in the first period. Since m0 is predetermined, the same then holds for con-
sumption in the first period, i.e. C1 = P0m0/P1. The household chooses C2 and m1
in order to maximize (10.5), subject to (10.3) and (10.21). The Lagrangian is:

L ≡ U
(

P0

P1
m0

)
+

1
1 + ρ

U(C2) + λ

[
A− P0

P1
m0 −

C2

1 + r1
− R1m1

1 + R1

]
6For simplicity we assume that the cash-in-advance constraint does not affect purchases of bonds.
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+ λ2

[
P1

P2
m1 − C2

]
, (10.22)

where λ2 is the Lagrangian multiplier associated with the Clower constraint. The
first-order conditions consist of the budget constraint (10.3) and:

∂L
∂C2
≡ 1

1 + ρ
U′(C2)−

λ

1 + r1
− λ2 ≤ 0, C2 ≥ 0, C2

∂L
∂C2

= 0, (10.23)

∂L
∂m1

≡ −λ
R1

1 + R1
+ λ2

P1

P2
≤ 0, m1 ≥ 0, m1

∂L
∂m1

= 0, (10.24)

∂L
∂λ2
≡ P1

P2
m1 − C2 ≥ 0, λ2 ≥ 0, λ2

∂L
∂λ2

= 0. (10.25)

The marginal utility of wealth is strictly positive, i.e. λ > 0, so that (by (10.23)) the
marginal utility of consumption is bounded. Since limCt→∞ U′(Ct) = 0 by assump-
tion, this implies that the consumer chooses a strictly positive consumption level in
period 2, i.e. C2 > 0 and (by the first inequality in (10.25)) m1 > 0. Hence, the cash-
in-advance constraint does indeed deliver the “goods” desired by Clower. Money is
essential, not because it is valued intrinsically, but rather because households wish
to consume in the second period. It can also be shown that the household will not
hold excess cash balances. Since m1 > 0, the first expression in (10.24) holds with
equality, which ensures that the shadow price of cash balances is strictly positive:

λ2 = λ
P2

P1

R1

1 + R1
> 0. (10.26)

This implies that the first expression in (10.25) holds with an equality, i.e. the house-
hold will hold just enough cash to be able to finance their optimal consumption plan
in the future. This result is not specific to our simple two-period model and easily
generalizes to a multi-period setting.

As is the case for the shopping model and the Baumol-Tobin model, the cash-
in-advance approach can also be shown to be equivalent to a utility-of-money ap-
proach. Indeed, as the Clower constraint always holds with equality (Ct = (Pt−1/Pt)
mt−1), the same results are obtained if the indirect felicity function Ũ(Ct, mt−1) ≡
min[Ct, mt−1] is maximized subject to the budget constraint only (see Feenstra, 1986,
p. 285). An important aspect of this indirect felicity function is that the substitution
elasticity between consumption and money balances is zero. In this aspect the cash-
in-advance formulation differentiates itself from both the shopping model and the
Baumol-Tobin model.

10.3 Money as a store of value

In the basic model of section 10.2.1 above, both bonds and money can be used by the
individual agent to transfer resources across time and both assets are thus capable of
serving as a store of value, although the former does so in a superior fashion to the
latter as it yields a higher rate of return. For that reason, money is not generally held
in the basic model. It thus does not actually serve as a store of value even though it
is technically capable of doing so.

Bewley (1980) presents a model in which money is used as a store of value. His
approach can be illustrated with the aid of our basic model. The key assumption he
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makes is that money is the only asset available to the agent, i.e. B0 = B1 = B2 = 0 in
the budget equations (10.1)–(10.2). These can then be expressed in real terms as:

Y1 +
m0

1 + π0
= C1 + m1, Y2 +

m1

1 + π1
= C2, m1 ≥ 0, (10.27)

where πt ≡ Pt+1/Pt − 1 is the inflation rate.7 The agent chooses consumption in the
two periods and money holdings (C1, C2, m1) in order to maximize lifetime utility
(10.5) subject to (10.27). The Lagrangian for this problem is given by:

L ≡ U(C1) +
1

1 + ρ
U(C2) + λ1

[
Y1 +

m0

1 + π0
− C1 −m1

]
+ λ2

[
Y2 +

m1

1 + π1
− C2

]
, (10.28)

where λ1 and λ2 are the Lagrangian multipliers associated with the two budget re-
strictions. The first-order conditions are the two budget constraints and:

∂L
∂C1

= U′(C1)− λ1 = 0, (10.29)

∂L
∂C2

=
1

1 + ρ
U′(C2)− λ2 = 0, (10.30)

∂L
∂m1

≡ −λ1 +
λ2

1 + π1
≤ 0, m1 ≥ 0, m1

∂L
∂m1

= 0. (10.31)

By substituting equations (10.29) and (10.30) into (10.31), the following expression is
obtained:

∂L
∂m1

≡ U′(C2)

1 + ρ
·
[

1
1 + π1

− (1 + ρ)U′(C1)

U′(C2)

]
≤ 0, (10.32)

m1 ≥ 0, m1
∂L
∂m1

= 0.

The intuition behind (10.32) can be illustrated with the aid of Figure 10.2. The con-
solidated budget equation (see footnote 7) is drawn as the straight line segment AB
with slope dC2/dC1 = −1/(1 + π1). The indifference curve, V0, has a slope of
dC2/dC1 = −(1+ ρ)U′(C1)/U′(C2) and has a tangency with the budget line at point
EC. This is the privately optimal consumption point ignoring the non-negativity con-
straint on money holdings. If the income endowment point lies north-west of point
EC, say at EY

0 , money is of no use as a store of value to the agent. In economic terms,
the agent would like to be a net supplier of money in order to attain the consumption
point EC but this is impossible. Graphically, the indifference curve through EY

0 (the
dashed curve) is steeper than the budget line, the choice set is only AEY

0 D, and the
best the agent can do is to consume his endowments in the two periods. In mathe-
matical terms, the slope configuration implies that ∂L/∂m1 < 0 (lifetime utility rises
by supplying money) and complementary slackness results in m1 = 0.

7If m1 is strictly positive, the first two expressions in (10.27) can be consolidated:

A ≡ Y1 + (1 + π1)Y2 +
m0

1 + π0
= C1 + (1 + π1)C2,

which shows that the “implicit interest rate” on money satisfies 1+ rM
t ≡ 1/(1+ πt), i.e. rM

t ≡ −πt/(1+
πt) ≈ −πt.
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In the alternative case, for which the income endowment point lies south-east
of the consumption point (say at EY

1 ) the agent saves in the first period by holding
money and the first expression in (10.32) holds with equality so that the Euler equa-
tion becomes:

U′(C2)

U′(C1)
=

1 + ρ

1 + rM
1

= (1 + ρ)(1 + π1), (10.33)

where rM
1 ≡ 1/ (1 + π1)− 1 is the implicit interest rate on money (see footnote 7).

The upshot of the discussion so far is that money will be held under certain circum-
stances because it provides a means by which intertemporal consumption smoothing
can be achieved.

Of course, the Bewley approach is rather specific and somewhat unrealistic in
that interest-bearing financial instrument are widely available in modern market
economies. This fact does not, in and of itself invalidate the argument, however,
as the following example, inspired by Sargent and Wallace (1982) reveals. Suppose
that there are poor agents (with low income endowments) and rich agents (with high
income endowments) in the economy, and assume that both types of agents wish to
save in the first period. Suppose furthermore that interest-bearing bonds exist but
that they come in minimum denominations, say due to legal restrictions or other-
wise, and assume there are no savings banks. In this setting the poor agents save too
small an amount to be able to purchase even a single bond and they are thus forced
to save by holding money. On the other hand, the rich agents will hold all (or part) of
their saving in higher-yielding bonds. Aggregating over all agents in the economy,
the indivisibility of bonds results in a positive demand for money to be held as a
store of value.

Figure 10.2: Money as a store of value

10.3.1 Overlapping-generations model of money

In the model of the previous section, money is used as a store of value by an indi-
vidual agent provided there is some friction which prevents him from using higher-
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yielding assets for this task. The argument is based on a partial equilibrium inves-
tigation, and the first task of this section is to embed the notion of money as a store
of value in a general equilibrium economy-wide model. Instead of using the legal
restrictions argument of Sargent and Wallace (1982), we introduce an intergenera-
tional friction, of the type first emphasized by Samuelson (1958), in order to moti-
vate a meaningful role for money. This allows us to introduce and discuss the so-
called overlapping-generations model of money, which has been extremely influential
in modern monetary theory.

At time t the population consists of N/2 young agents and N/2 old agents and
we normalize N to unity to simplify the notation. All agents live for two periods, so
the young have two periods to live and the old only one. Agents receive an endow-
ment, Y, when young, but do not have any endowment income when they are old.
The output Y is potentially storable and for each unit stored in period t, 1/(1 + δ)
units of output will be left over in period t + 1, where δ > −1. This storage technol-
ogy nests several special cases. Particularly, if δ → ∞, goods spoil immediately and
are thus non-storable. If δ = 0, goods keep indefinitely, and if −1 < δ < 0 goods
reproduce without supervision by the storage process.8

The (representative) young agent can either consume his output in youth (CY
t ,

where the superscript denotes “young”), store it (Kt of which Kt/(1 + δ) is available
in period t + 1), or trade it for fiat money. Since the money price of output is Pt, the
last option yields the agent real money balances at the end of period t (mt ≡ Mt/Pt).
The budget identity facing a young agent in his youth is thus:

Y = CY
t + Kt + mt. (10.34)

Now consider the budget identity of an old agent in period t. This agent stored
output in youth (Kt−1) as well as nominal money balances (Mt−1) with which he can
purchase goods, facing the period-t price level (Pt). In addition, the agent receives a
real transfer from the government (Tt), the amount of which he takes as given. The
budget identity of an old agent is thus:

CO
t =

Kt−1

1 + δ
+ Tt +

Pt−1

Pt
mt−1, (10.35)

where the superscript denotes “old”. But the agent who is young in period t will
himself be old in period t + 1, and will thus face a constraint similar to (10.35) but
dated one period later in the last period of his life:

CO
t+1 =

Kt

1 + δ
+ Tt+1 +

Pt

Pt+1
mt. (10.36)

The lifetime utility function of the young agent in period t is given by:

VY
t = U(CY

t ) +
1

1 + ρ
U(CO

t+1), ρ > 0, (10.37)

and the agent chooses CY
t , CO

t+1, Kt, and mt in order to maximize (10.37) subject
to (10.34) and (10.36) as well as non-negativity conditions on money holdings and
stored output (Mt ≥ 0 and Kt ≥ 0, respectively). The Lagrangian is:

L ≡ U(CY
t ) +

1
1 + ρ

U(CO
t+1) + λ1,t

[
Y− CY

t − Kt −mt

]
8Samuelson gives the examples of rabbits and yeast for this case. In a more serious vein, a negative

value for δ captures the notion of net productivity in the economy (1958, p. 468).
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Figure 10.3: Choice set with storage and money

+ λ2,t

[
Kt

1 + δ
+ Tt+1 +

Pt

Pt+1
mt − CO

t+1

]
, (10.38)

where λ1,t and λ2,t are the Lagrangian multipliers of the budget identities in youth
and old age respectively. The first-order conditions consist of the budget identities
(10.34) and (10.36) and:

∂L
∂CY

t
= U′(CY

t )− λ1,t = 0, (10.39)

∂L
∂CO

t+1
=

1
1 + ρ

U′(CO
t+1)− λ2,t = 0, (10.40)

∂L
∂mt
≡ −λ1,t +

λ2,t

1 + πt
≤ 0, mt ≥ 0, mt

∂L
∂mt

= 0, (10.41)

∂L
∂Kt
≡ −λ1,t +

λ2,t

1 + δ
≤ 0, Kt ≥ 0, Kt

∂L
∂Kt

= 0, (10.42)

where πt ≡ (Pt+1 − Pt) /Pt = Pt+1/Pt − 1 is the inflation rate. In view of our as-
sumptions regarding the utility function, agents wish to consume in both periods of
their lives so that λ1,t > 0 and λ2,t > 0. Equations (10.41)–(10.42) imply that, pro-
vided πt 6= δ, the young agent will choose a single type of asset to serve as a store
of value, depending on which one has the highest yield. Particularly, if inflation is
relatively low (πt < δ) then only money will be held (Kt = 0 and mt > 0), and if it is
relatively high (πt > δ) then only goods will be stored (Kt > 0 and mt = 0). In terms
of Figure 10.3, in the first case the storage technology is not productive enough and
yields a budget line AB which lies below the budget line associated with holding
money as a store of value (the line AC). The line configuration is switched in the
second case with high inflation (πt > δ).

The behaviour of the old in period t is quite straightforward. Although they
entered life (in period t− 1) possessing a utility function analogous to (10.37) (and
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designated by VY
t−1), their behaviour in period t− 1 (their youth) constitutes “water

under the bridge” in the sense that it cannot be undone in period t (it is irreversible
or “sunk” in economic terms). All that remains for them is to maximize remaining
lifetime utility, U(CO

t ) subject to the budget identity (10.35). They simply consume
their entire budget.

Following Wallace (1980) we assume that the government pursues a simple money
supply rule:

Mt = (1 + µ)Mt−1 ⇔ Mt −Mt−1

Mt−1
= µ, (10.43)

with µ > −1 representing the constant rate of nominal money growth. The addi-
tional money is used to finance the transfer to the old, i.e. the government budget
restriction is Mt −Mt−1 = PtTt which implies that the transfer in period t + 1 is:

Tt+1 =
Mt+1 −Mt

Pt+1
=

µMt

Pt

Pt

Pt+1
=

µmt

1 + πt
. (10.44)

Equilibrium in the model requires both money and goods markets to be in equilib-
rium in all periods. By Walras’s Law,9 however, the goods market is in equilibrium
provided the money market is, i.e. provided demand and supply are equated in the
money market:

m(Tt+1, πt) =
Mt

Pt
, (10.45)

where m(·) is a function, representing the demand for money by the young in pe-
riod t, which is implied by the first-order conditions (10.39)–(10.42). For example, if
the felicity function in (10.37) is logarithmic, U(x) ≡ ln x, then this money demand
function has the following form:

mt =

 m(Tt+1, πt) =
Y− (1 + ρ)(1 + πt)Tt+1

2 + ρ
if πt < δ

0 if πt > δ.
(10.46)

The model consists of (10.44) and (10.45) and we are looking for a sequence of
price levels (Pt, Pt+1, etc.) such that the equilibrium condition (10.45) holds for all
periods given the postulated money supply process (10.44). For the logarithmic fe-
licity function the solution is quite simple and can be obtained by substituting (10.44)
into the first line of (10.46), noting (10.45), and solving for the equilibrium level of
real money balances:

mt =
Y

2 + ρ + µ(1 + ρ)
⇔ Pt =

2 + ρ + µ(1 + ρ)

Y
·Mt. (10.47)

This expression, which is only valid if πt < δ, shows that real money balances are
constant so that the price level is proportional to the nominal money supply. Since
ρ, µ, and Y are all constant, it follows that the inflation rate is equal to the rate of
growth of the money supply (πt = µ):

πt ≡
Pt+1 − Pt

Pt
=

2+ρ+µ(1+ρ)
Y (Mt+1 −Mt)
2+ρ+µ(1+ρ)

Y Mt
=

Mt+1 −Mt

Mt
≡ µ. (10.48)

9Walras’s Law states that in an economy with n markets, if n− 1 of these markets are in equilibrium
then the n-th market must also be in equilibrium. Another way to put it, the sum of the excess demand
functions over all n market must sum to zero. See Patinkin (1987) for a further discussion.
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So we reach the conclusion that, provided the money growth rate µ is less than the
depreciation rate δ, intrinsically useless fiat money will be held by agents in a general
equilibrium setting. Intuitively, money is the best available financial instrument to
serve as a store of value as it outperforms the storage technology in that case. Of
course, if the storage technology yields net productivity (δ < 0) then the monetary
equilibrium will only obtain if the money growth rate is negative (µ < δ < 0), i.e.
if there is a constant rate of deflation of the price level. In contrast, if goods are
perishable (δ → ∞) then the monetary equilibrium will always hold since money
represents the only store of value in that case.

The existence of a monetary equilibrium is quite tenuous in the overlapping-
generations model. Indeed, if µ > δ then the storage technology outperforms money
as a store of value and consequently the demand for real money balances will be zero
(see the second line in (10.46)). Despite the fact that fiat money exists (Mt > 0) and
is distributed to agents in the economy, it is not used by these agents as a store of
value. This implies that money is valueless and the nominal price level is infinite,
i.e. 1/Pt = 0 for all t.

10.3.2 Uncertainty and the demand for money

In the basic model discussed in section 10.2.1 above, the respective yields on money
and bonds are known by the agent who consequently only has to compare these
yields in order to decide upon the optimal instrument to use as a store of value. In
the basic model the yield on bonds is higher than that on money so that only the
former are used as a store of value. In this section we introduce a friction into the
basic model by assuming that the yield on bonds (though higher on average than
that on money) is not known with certainty by the agent when making his decisions
regarding consumption and saving in the first period. Sandmo (1970, p. 353) refers
to this situation as one in which there exists capital risk; the investor is uncertain as
to the yield on his investment. We assume that endowment income in both periods
is known with certainty (there is no income risk). Furthermore, the yield on money is
known with certainty so that money constitutes a “safe” asset from the point of view
of the investor. To simplify the notation somewhat we define the yield on money
as 1 + rM

t ≡ 1/(1 + πt). The periodic budget identities (10.1)–(10.2) can then be
expressed in real terms as:

Y∗1 +
(

1 + rM
0

)
m0 + (1 + r0)b0 = C1 + m1 + b1, (10.49)

(1 + rM
1 )m1 + (1 + r̃1)b1 = C̃2, (10.50)

where we have already incorporated the fact that m2 = b2 = 0 and we use a slightly
different definition for m1 ≡ M1/P1 + Y2/

(
1 + rM

1
)
. (We continue to refer to m1 as

money.) Note that Y∗1 represents the present value of present and future endowment
income, capitalized at the risk-free rate, i.e. Y∗1 ≡ Y1 + Y2/(1 + rM

1 ). The tilde above
r1 denotes that the yield on bonds is a stochastic variable, the realization of which
(r1) will only be known to the agent at the end of the first period, i.e. after consump-
tion and savings plans have been made (C1, m1, b1).10 This means (by (10.50)) that
consumption in the second period is also a stochastic variable, i.e. C̃2 appears in
(10.50). In the terminology of Drèze and Modigliani (1972, p. 309) the model implies

10Of course, r0 is not stochastic as it is a realization of r̃0 which is known at the beginning of the first
period.
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that investing in bonds represents a temporal uncertain prospect, i.e. time must elapse
before the uncertainty is removed.

Below it will turn out to be useful to write the budget identities (10.49)–(10.50) in
a slightly different manner:

Y∗1 + A1 = C1 +
Ã2

(1 + rM
1 )ω1 + (1 + r̃1)(1−ω1)

, (10.51)

Ã2 = C̃2, (10.52)

where At ≡ (1 + rM
t−1)mt−1 + (1 + rt−1)bt−1 represents total assets inclusive of in-

terest receipts available at the beginning of period t and where ω1 ≡ m1/(m1 + b1)
represents the portfolio share of money in the second period. In the first period the
agent chooses consumption C1 and the portfolio share ω1, not knowing how high
the value of his assets will be at the beginning of the second period because the yield
on the risky investment is uncertain.

Since r̃1 (and thus C̃2 and Ã2) is stochastic, the agent must somehow evaluate
the utility value of the uncertain prospect C̃2. The theory of expected utility, which
was developed by von Neumann and Morgenstern (1944), postulates (as indeed its
name suggests) that the agent will evaluate the expected utility in order to make his
optimal decision, i.e. instead of using V in (10.5) as the welfare indicator the agent
uses the expected value of V, denoted by E(V).11 We assume that the agent bases his
decisions on a subjective assessment of the probability distribution of the yield on his
investment, the density function of which is given by f (r̃1). We furthermore assume
that r̃1 is restricted to lie in the interval [−1, ∞), with the lower bound representing
“losing your entire investment principal and all” and the upper bound denoting
“striking it lucky by hitting the jackpot”. Finally, we assume that the parameters
of the model and the stochastic process for r̃1 are such that we can ignore the non-
negativity constraint for money holdings. Since there is no sign restriction on bond
holdings, this means that we only need to study an internal optimum.

The expected utility of the agent can now be written as follows:

E(V) ≡
∫ ∞

−1

[
U(C1) +

1
1 + ρ

U(C̃2)

]
f (r̃1)dr̃1

= U(C1) +
1

1 + ρ
·
∫ ∞

−1
U
(

S1

[
(1 + rM

1 )ω1 + (1 + r̃1)(1−ω1)
] )

f (r̃1)dr̃1,

(10.53)

where S1 ≡ A1 + Y∗1 − C1. The agent chooses C1 (and thus S1) and ω1 in order to
maximize his expected utility, E(V). Straightforward computation yields the follow-
ing first-order conditions for ω1:

0 =
∫ ∞

−1
U′(C̃2)(A1 + Y∗1 − C1)(rM

1 − r̃1) f (r̃1)dr̃1 ⇔

0 = E
(

U′(C̃2)(A1 + Y∗1 − C1)(rM
1 − r̃1)

)
, (10.54)

and for C1:

U′(C1) =
1

1 + ρ
·
∫ ∞

−1
U′(C̃2)

[
(1 + rM

1 )ω1 + (1 + r̃1)(1−ω1)
]

f (r̃1)dr̃1 ⇔

11The expected utility theory is discussed in more detail by Hirshleifer and Riley (1992).
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U′(C1) =
1

1 + ρ
· E
(

U′(C̃2)
[
(1 + rM

1 )ω1 + (1 + r̃1)(1−ω1)
])

. (10.55)

Technically, (10.54) is the expression determining the optimal composition of the in-
vestment portfolio in terms of money (which has a certain yield rM

1 ) and bonds (car-
rying a stochastic yield r̃1). Intuitively (10.54) says that the expected marginal utility
per euro invested should be equated for the two assets (see Sandmo, 1969, pp. 588,
590). Equation (10.55) is the Euler equation, determining the optimal time profile of
consumption, generalized for the existence of capital uncertainty.

In order to simplify the discussion, we now assume that the agent has a felicity
function, U(Ct), which takes the following, iso-elastic form:

U(Ct) =

{
(1/γ)

[
Cγ

t − 1
]

if γ 6= 0
ln Ct if γ = 0, (10.56)

where γ < 1 represents the degree of risk aversion exhibited by the agent (see below).
(The function is called iso-elastic because the marginal utility function, U′ (C1) ≡
Cγ−1

t , features a constant elasticity, which we define as θ (Ct) ≡ −U′′(Ct)Ct
U′(Ct)

= 1− γ.)
The first-order condition for ω1 (given in (10.54)) collapses to:

0 = E
[
C̃γ−1

2 (A1 + Y∗1 − C1)(rM
1 − r̃1)

]
= E

[
(A1 + Y∗1 − C1)

γ
[
(1 + rM

1 )ω1 + (1 + r̃1)(1−ω1)
]γ−1

(rM
1 − r̃1)

]
= E

[[
(1 + rM

1 )ω1 + (1 + r̃1)(1−ω1)
]γ−1

(rM
1 − r̃1)

]
. (10.57)

In going from the first to the second line we have substituted the expression for C̃2
from (10.50), and in the final step we have made use of the fact that A1, C1, and Y∗1 are
non-stochastic variables. Equation (10.57) implicitly determines the optimal portfo-
lio share, ω∗1 , as a function of rM

1 , γ, and parameters characterizing the probability
distribution of r̃1. The important thing to note is that ω∗1 maximizes the subjective
mean return on the portfolio, r∗, which is defined (implicitly) as:

(1 + r∗)γ ≡ max
ω1

E
[
(1 + rM

1 )ω1 + (1 + r̃1)(1−ω1)
]γ

= E
([

(1 + rM
1 )ω∗1 + (1 + r̃1)(1−ω∗1 )

]γ)
. (10.58)

For the iso-elastic felicity function (10.56), the first-order condition for C1 (given in
(10.55)) collapses to:

Cγ−1
1 = (1 + ρ)−1E

(
C̃γ−1

2

[
(1 + rM

1 )ω1 + (1 + r̃1)(1−ω1)
])

= (1 + ρ)−1(A1 + Y∗1 − C1)
γ−1E

[
(1 + rM

1 )ω1 + (1 + r̃1)(1−ω1)
]γ

= (1 + ρ)−1(A1 + Y∗1 − C1)
γ−1(1 + r∗)γ

⇒ C1 = c [A1 + Y∗1 ] , (10.59)

where c is the marginal propensity to consume out of total wealth:

c ≡ (1 + r∗)γ/(γ−1)

(1 + ρ)1/(γ−1) + (1 + r∗)γ/(γ−1)
. (10.60)
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In going from the second to the third line in (10.59) we have made use of the ex-
pression for r∗ in (10.58). The striking thing to note about (10.59)–(10.60) is that
the optimal consumption plan for the first period looks very much like the solution
that would be obtained under certainty. Indeed, in the absence of uncertainty about
the bond yield, maximization of lifetime utility would give rise to the expression in
(10.59)–(10.60) but with r∗ replaced by max[r̄1, rM

1 ], where r̄1 is the certain return on
bonds. All is invested in the asset with the highest return in that case. Furthermore,
in the case of a logarithmic felicity function (γ = 0), r∗ drops out of (10.59)–(10.60)
altogether and the capital risk does not affect present consumption at all (see Blan-
chard and Fischer (1989, p. 285) on this point).

With iso-elastic felicity functions, there thus exists a “separability property” be-
tween the savings problem (choosing when to consume) and the portfolio problem
(choosing what to use as a savings instrument).12 Since (as we shall see in subse-
quent chapters) modern macroeconomics makes almost exclusive use of such felicity
functions, it is instructive to turn to a more detailed discussion of the pure portfolio
problem. In doing so, we are not only able to characterize more precisely the fac-
tors influencing the choice of money versus bonds but it also allows us to introduce
the liquidity preference theory of money that was developed by Tobin (1958). This
so-called portfolio approach to money played a major role in macroeconomics in the
1960s and 1970s.

10.3.2.1 The portfolio decision

An important implication of the theory discussed above is that for a certain class
of felicity functions, the expected-utility-maximizing household wishes to consume
a fraction c of total wealth whilst saving the remaining fraction 1− c. Designating
the amount to be invested by S1 = (1 − c)[A1 + Y∗1 ], the budget equation for the
portfolio problem is S1 = m1 + b1 and the household wishes to choose m1 and b1
such as to maximize expected utility of end-of-period wealth (to be consumed in the
future), E(U(Ã2)), where Ã2 ≡ S1[(1 + rM

1 )ω1 + (1 + r̃1)(1−ω1)].
Stepping back somewhat from the specifics of our two-period model, the general

form of the portfolio problem as analysed by Tobin (1958) and Arrow (1965) takes
exactly this form. The investor chooses the portfolio share of money ω in order to
maximize expected utility:

E(U(Z̃)), Z̃ ≡ S
[
(1 + rM)ω + (1 + r̃)(1−ω)

]
, (10.61)

where Z̃ is end-of-period wealth, S is the amount to be invested, and rM is the risk-
free rate (S and rM are both exogenously given parameters). The first-order condition
for this problem is:

E(U′(Z̃) · (rM − r̃)) = 0. (10.62)

Apart from a slight change of notation, equation (10.62) coincides with the first-order
condition for ω1 in the two-period model (see (10.54) above).

In order to further develop some intuition behind the first-order condition (10.62)
we now turn to the mean-variance model, which can be seen as an approximation to

12This was first demonstrated by Samuelson (1969a, pp. 243–245) in a multi-period discrete-time setting
and generalized to continuous time for a more general class of felicity functions by Merton (1971). See also
the discussion by Drèze and Modigliani (1972, pp. 317–323) on the separability property in the context of
a two-period model with both capital and income risk.
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(or special case of) the model discussed so far.13 The first step in the argument is to
expand the utility function, U(Z̃), by means of a Taylor approximation around the
expected value (or mean) of Z̃, denoted by E(Z̃):

U(Z̃) ≈ U(E(Z̃)) + U′(E(Z̃))
[
Z̃− E(Z̃)

]
+ 1

2 U′′(E(Z̃))
[
Z̃− E(Z̃)

]2
+ 1

6 U′′′(E(Z̃))
[
Z̃− E(Z̃)

]3
+ · · · . (10.63)

Taking expectations on both sides of (10.63) yields the (approximate) expression for
expected utility:

E(U(Z̃)) ≈ E(U(E(Z̃))) + E(U′(E(Z̃)) · [Z̃− E(Z̃)])

+ 1
2 E(U′′(E(Z̃)) · [Z̃− E(Z̃)]2) + · · ·

= U(E(Z̃)) + 1
2 U′′(E(Z̃)) · E([Z̃− E(Z̃)]2) + · · · . (10.64)

In going from the first to the second line in (10.64) we use the fact that the expected
value of a constant is that constant itself. The expected utility associated with end-
of-period wealth can thus be approximated by the utility of expected wealth (first
term on the right-hand side in the second line), a term involving the variance of
end-of-period wealth (second term), plus higher-order terms subsumed in the dots.

The second step in the argument amounts to ignoring all higher-order terms in
(10.64) so that preferences of the investor are (assumed to be) fully described by only
the mean and the variance of end-of-period wealth; hence the name of the mean-
variance approach. In summary, we write expected utility as:

E(U(Z̃)) = U(E(Z̃))− ηE([Z̃− E(Z̃)]2), (10.65)

where η ≡ − 1
2 U′′(E(Z̃)). The sign of η fully characterizes the investor’s attitude

towards risk. Indeed, if η = 0, the variance term drops out of (10.65) altogether and
the investor is only interested in the expected value of end-of-period wealth. Such an
investor, who totally disregards the variance of end-of-period wealth, is called risk
neutral. In the remainder of this section we focus attention on the portfolio behaviour
of risk-averse investors, the case described by η > 0.

Intermezzo 10.1

Attitude to risk. The shape of the felicity function affects the investor’s
attitude to risk. For a risk neutral investor, the underlying utility func-
tion, U(Z̃), is simply a straight line from the origin (U′(Z̃) > 0 and
U′′(Z̃) = 0 in this case)–see Figure A.

In real life, most people do care whether the return they receive is cer-
tain (has a zero variance) or is subject to fluctuations and can be much
higher or lower than expected (has a positive variance). Risk-averse in-
vestors are therefore characterized by a positive value of η. In terms of
Figure A, a risk-averse investor has an underlying utility function which
is concave (U′(Z̃) > 0 and U′′(Z̃) < 0). In order to take on additional
risk (a “bad” rather than a good) a risk-averse agent must be compen-
sated in the form of a higher expected return, i.e. he must receive a risk

13See Hirshleifer and Riley (1992, pp. 69–73) for a further discussion.
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premium. In formal terms the risk-premium, πR, is such that the agent is
indifferent between the risky prospect Z̃ and the certain prospect E(Z̃)
(see Pratt, 1964):

U(E(Z̃)− πR) = E(U(Z̃)). (a)

In general πR depends on the distribution of Z̃ but a simple example can
be used to illustrate what is going on. Suppose that the distribution of
Z̃ is such that Z̃ = Z0 − h (point A) or Z̃ = Z0 + h (point B) with equal
probability 1

2 so that E(Z̃) = Z0. The risk premium associated with this
distribution is found by applying equation (a).

Figure A: Attitude towards risk and the felicity function

In terms of Figure A, the right-hand side of equation (a) is represented
by point D which lies halfway along the straight line connecting points
A and B. Concavity of the utility function ensures that the utility of the
expected outcome, U(E(Z̃)) = U(Z0), is higher than expected utility,
E(U(Z̃)), i.e. point C lies above point D. To find the risk premium we
must determine the certain prospect (Z0 − πR) such that equation (a)
holds. In Figure A this is done by going to point E, which lies directly
to the left of point D. The horizontal distance between points D and E
represents the risk premium πR. In order to feel indifferent between, on
the one hand, receiving Z0−πR for sure and, on the other hand, receiving
Z0 − h or Z0 + h with equal probability, the risk-averse investor must
receive a risk premium equal to πR.

The third type of agent is also described by (10.65) but with a neg-
ative value for η inserted. Such an agent is called a risk-lover because
he prefers an uncertain over a certain outcome when both have equal
expected value. He thus enjoys the thrill of a gamble and, in view of
equation (a), is willing to pay (rather than receive) a risk premium. In
terms of Figure A, a risk-lover has a convex underlying utility function
(U′(Z̃) > 0 and U′′(Z̃) > 0).

****
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Up to this point, we have described the agent’s expected utility in terms of the
variable Z̃ which is stochastic only because the return on the risky asset, r̃, is. Hence,
the next step in our exposition of the mean-variance approach consists of postulat-
ing a particular probability distribution for r̃. A particularly simple and convenient
distribution to choose in this context is the normal distribution:

r̃ ∼ N(r̄, σ2
R), (10.66)

where “∼” means “is distributed as”, “N” stands for “normal or Gaussian distri-
bution”, r̄ is the mean of the distribution, and σ2

R its variance. The advantage of
working with the normal distribution lies in the fact that it is fully characterized
by only two parameters, r̄ and σ2

R. All higher-order uneven terms, such as E(r̃− r̄)i

(for i = 3, 5, 7, · · · ) are equal to zero as the distribution is symmetric around its mean.
Furthermore, the higher-order even terms, such as E(r̃− r̄)i (for i = 4, 6, 8, · · · ) can be
expressed in terms of r̄ and σ2

R (Hirshleifer and Riley, 1992, p. 72). This implies that
(10.64) can always be written as in (10.65) even without ignoring the higher-order
terms, i.e. preferences are fully described by only two parameters. Another advan-
tage of using the normal distribution is that it enables us to conduct simple com-
parative static experiments pertaining to r̄ and σ2

R and the optimal portfolio choice
below.

Armed with the distributional assumption in (10.66), the probability distribu-
tion of end-of-period wealth can be determined by noting the definition of Z̃ in
(10.61). After some manipulation we derive that Z̃ is distributed normally (i.e. Z̃ ∼
N(Z̄, σ2

Z)) with parameters depending on the portfolio fraction of money ω:

Z̄ ≡ E(Z̃) = S
[
(1 + rM)ω + (1 + r̄)(1−ω)

]
,

σ2
Z ≡ E([Z̃− E(Z̃)]2) = S2(1−ω)2σ2

R.
(10.67)

By manipulating the portfolio share of money, the investor can influence both the
expected value of, and the risk associated with, end-of-period wealth. For example,
if only money is held in the portfolio (ω = 1), end-of-period wealth equals S(1+ rM)
for sure (σZ = 0). This determines point A in Figure 10.4. The top panel of that
figure plots combinations of expected return (vertical axis) and risk (horizontal axis),
whilst the lower panel plots the relationship between risk and the portfolio share of
money.14 At the other extreme, if no money is held at all (ω = 0), expected end-of-
period wealth equals S(1 + r̄) and the standard deviation is σZ = SσR (see point B).
In order to have any non-trivial solution at all, the mean return on the risky asset
must exceed that on money, otherwise a risk-averse agent would never hold any
risky assets. Hence, r̄ > rM must be assumed to hold. This in turn ensures that point
B lies north-east of point A in the top panel of Figure 10.4. By connecting points A
and B in the top panel we obtain the upward-sloping constraint representing feasible
trade-off opportunities between average return and risk. In the lower panel, σZ and
ω are related by the second definition in (10.67) which can be rewritten as 1− ω =
σZ/(σRS).

The final step in our exposition of the mean-variance model consists of intro-
ducing the appropriate indifference curve. According to (10.65), expected utility de-
pends on both r̄ and σ2

R and the indifference curve satisfies dE(U(Z̃)) = U′(Z̄)dZ̄−
2ησZdσZ = 0 from which we derive:

dZ̄
dσZ

=
2ησZ

U′(Z̄)
> 0,

d2Z̄
dσ2

Z
= 2η

[
U′(Z̄)− σZU′′(Z̄) (dZ̄/dσZ)

[U′(Z̄)]2

]
> 0. (10.68)

14It is convenient to work with the standard deviation of Z̃ (rather than its variance) because it is in the
same units as the mean of Z̃ which facilitates the economic interpretation to follow.
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Figure 10.4: Portfolio choice
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Hence, the typical indifference curve of a risk-averse agent is upward sloping and
convex (U′(Z̄) > 0 > U′′(Z̄)); see for example the curve labelled EU0 in the top
panel in Figure 10.4. Since expected return is a “good” and risk is a “bad” for such
an agent, expected utility increases if the indifference curve shifts in a north-westerly
direction.

It is clear from the slope configuration in Figure 10.4 that a risk-averse investor
will typically choose a diversified portfolio.15 Rather than choosing the safe haven of
only money (point A) it is optimal for him to “trade risk for return”, i.e. to accept
some risk by holding a proportion of his portfolio in the form of the risky asset. In
exchange the investor receives a higher expected yield on his portfolio. In Figure
10.4 the optimum occurs at point E0 where the indifference curve is tangential to the
budget line.16 In technical terms we have:(

dZ̄
dσZ

)
IC
≡ 2ησZ

U′(Z̄)
=

r̄− rM

σR
≡
(

dZ̄
dσZ

)
BL

. (10.69)

The left-hand side of (10.69) represents the slope of the indifference curve (subscript
“IC”) whereas the right-hand side is the slope of the budget line (subscript “BL”).

Although (10.69) looks different from (10.62), it is not difficult to show that the
former is merely a special case of the latter. Implicitly we work with a second-order
expansion of utility, i.e. all cubic, quartic, and higher-order terms are ignored in
(10.63) and we employ the utility function:

U(Z̃) ≈ U(Z̄) + U′(Z̄)[Z̃− Z̄]− η[Z̃− Z̄]2, (10.70)

so that marginal utility can be written as U′(Z̃) ≡ dU(Z̃)/dZ̃ = U′(Z̄)− 2η[Z̃− Z̄]
(recall that Z̄, U(Z̄), and U′(Z̄) are constants). Equation (10.62) can thus be rewritten
as:

0 = E(U′(Z̃) · (rM − r̃))

= E
(
[U′(Z̄)− 2η(Z̃− Z̄)] ·

[(
rM − r̄

)
− (r̃− r̄)

] )
= U′(Z̄)

(
rM − r̄

)
−U′(Z̄)E(r̃− r̄)− 2η

(
rM − r̄

)
E(Z̃− Z̄)

+ 2ηE((Z̃− Z̄) (r̃− r̄))

= U′(Z̄)
(

rM − r̄
)
+ 2η cov(Z̃, r̃), (10.71)

where we have used E(Z̃) = Z̄ and E(r̃) = r̄ in going from the third to the fourth
line and where cov(Z̃, r̃) is the covariance between Z̃ and r̃. In view of the definition
of Z̃ in (10.62) we find that cov(Z̃, r̃) = S(1− ω)σ2

R = σZσR. By using this result in
(10.71) we find that (10.71) (and thus (10.62)) coincides with (10.69).

Returning now to Figure 10.4, it is clear that a risk-averse agent will hold money
even if its return is zero (rM = 0) because it represents a riskless means of investing
(at least, under the present set of assumptions). By going to the lower panel of Figure
10.4, the optimal portfolio share of money, ω∗, can be found which implies that the
demand for money equals ω∗S. Although S is given, ω∗ (and hence money demand)
depends on all the parameters of the model such as the yield on money, the mean
and variance of the yield on bonds, and the preference parameter(s):

ω∗ = ω∗(rM, r̄, σ2
R, η). (10.72)

15For a discussion of possible corner solutions, see Tobin (1958, pp. 77–78).
16The budget line is given by Z̄ = S · [1 + r̄ + ω(rM − r̄)] which can be written in terms of σZ by noting

that 1−ω = σZ/(σRS).
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The conventional method of comparative statics can now be used to determine the
partial derivatives of the ω∗(·) function.

The easiest way to derive these comparative static effects is to write the portfolio
choice directly in terms of ω. The expected utility function is given by:

E(U(Z̃)) = U(Z̄)− ηE([Z̃− Z̄]2),

= U
(

S
[
(1 + rM)ω + (1 + r̄)(1−ω)

] )
− ηS2(1−ω)2σ2

R, (10.73)

where we have used (10.67) to arrive at the final expression. The first- and second-
order conditions for the optimal portfolio decision are:

dE(U(Z̃))
dω

= −U′(Z̄)S
(

r̄− rM
)
+ 2ηS2(1−ω)σ2

R = 0, (10.74)

d2E(U(Z̃))
dω2 = −2ηS2

[(
r̄− rM

)2
+ σ2

R

]
< 0, (10.75)

where we have used the fact that U′′(Z̄) = −2η. We write the first-order condition
(10.74)—defining the optimal ω∗—as:

Φ
(

ω∗, rM, r̄, σ2
R, η
)
≡ −U′

(
S
[
(1 + rM)ω∗ + (1 + r̄)(1−ω∗)

] )
S
(

r̄− rM
)

+ 2ηS2(1−ω∗)σ2
R = 0, (10.76)

and note (from (10.75)) that ∂Φ/∂ω∗ < 0. Equation (10.76) can now be used to
compute the comparative static effects.

First consider the effects of an increase in the yield on money rM (i.e. a reduction
in the inflation rate). By using the implicit function theorem we obtain from (10.76):

∂ω∗

∂rM = − ∂Φ/∂rM

∂Φ/∂ω∗
=

SU′(Z̄) + 2ηω∗S2 (r̄− rM)
2ηS2

[
(r̄− rM)

2
+ σ2

R

] > 0. (10.77)

In terms of Figure 10.4, the budget line shifts up and becomes flatter; see the line
A′B in the top panel. We get the result, familiar from conventional microeconomic
demand theory, that the ultimate effect on the portfolio share of money (and thus
money demand) can be decomposed into income and pure substitution effects. On
the one hand, an increase in rM narrows the yield gap between money and the risky
asset which induces the investor to substitute towards the safe asset and to hold
a higher portfolio share of money. This is the pure substitution effect represented
in Figure 10.4 by the move from E0 to E′. On the other hand, an increase in rM

also increases expected wealth and the resulting income (or wealth) effect also leads
to an upward shift in ω. Hence, both income and substitution effects work in the
same direction and the new optimum lies at point E1, where the move from E′ to E1
represents the income effect.

In formal terms, the total effect on ω∗ of an increase in rM can be expressed in the
form of a conventional Slutsky equation:17

∂ω∗

∂rM =

(
∂ω∗

∂rM

)
dE(U)=0

+ ω∗S · ∂ω∗

∂Z̄
> 0, (10.78)

17Sandmo (1977) derives comparative static effects for the more general case with one safe asset and
many risky assets.
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where the first term on the right-hand side represents the pure substitution or “com-
pensated” effect and the second term is the income effect. These terms take the fol-
lowing form:18

(
∂ω∗

∂rM

)
dE(U)=0

≡
(1−ω∗)σ2

R
(r̄− rM)

[
(rM − r̄)2 + σ2

R
] > 0, (10.79)

∂ω∗

∂Z̄
≡ r̄− rM

S
[
σ2

R + (rM − r̄)2
] > 0. (10.80)

The second, much more interesting, comparative static experiment concerns the
effect on the money portfolio share of an increase in the expected yield on the risky
asset. Throughout this book we have made use of money demand functions which
are downward sloping in “the” interest rate, i.e. in terms of our model we have im-
plicitly assumed that ∂ω∗/∂r̄ is negative. The question is now whether this result is
actually necessarily true in our model. In terms of Figure 10.5, an increase in r̄ causes
the budget line to rotate in a counter-clockwise fashion around point A. In contrast to
the previous case, income and substitution effects now operate in opposite directions
and the Slutsky equation becomes:

∂ω∗

∂r̄
=

(
∂ω∗

∂r̄

)
dE(U)=0

+ (1−ω∗)S · ∂ω∗

∂Z̄
≷ 0, (10.81)

where (∂ω∗/∂r̄)dE(U)=0 = −(∂ω∗/∂rM)dE(U)=0 < 0 and where ∂ω∗/∂Z̄ > 0 (see
(10.80)). In terms of Figure 10.5, the pure substitution effect is the move from E0 to E′

and the income effect is the move from E′ to E1
1 if the substitution effect dominates

or E2
1 if the income effect dominates. It is thus quite possible that money demand

depends positively on the expected yield on the risky asset in the portfolio model of
Tobin (1958). Under the usual assumption of a dominant substitution effect (which
we have employed time and again throughout this book), however, the portfolio
approach does indeed deliver a downward-sloping money demand function as pos-
tulated by Keynes and his followers.

The third and final comparative static experiment concerns the effect on money
demand of the degree of risk associated with the risky asset as measured by the
standard deviation of the yield, σR. In terms of Figure 10.6, a number of things
happen if σR rises. First, in the top panel the budget line becomes flatter and rotates
in a clockwise fashion around point A. In order to get the same expected return, the
investor must be willing to hold a riskier portfolio, i.e. to accept a higher value of σZ.

18These expressions are obtained as follows. First, we use (10.74) to rewrite the uncompensated effect
(10.77) as:

∂ω∗

∂rM =
(1−ω∗) σ2

R + ω∗
(
r̄− rM)2

(r̄− rM)
[
(r̄− rM)

2 + σ2
R

] . (A)

Next we note that the income effect on ω∗ can be determined by writing (10.76) as:

Φ
(

ω∗, rM , r̄, σ2
R, η
)
≡ −U′(Z̄)S

(
r̄− rM

)
+ 2ηS2(1−ω∗)σ2

R = 0,

from which we derive:

∂ω∗

∂Z̄
= − ∂Φ/∂Z̄

∂Φ/∂ω∗
=

r̄− rM

S
[
(r̄− rM)

2 + σ2
R

] . (B)

Using (A) and (B) in (10.77) we obtain (10.79).
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Figure 10.5: Portfolio choice and a change in the expected yield on the risky asset
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Figure 10.6: Portfolio choice and an increase in the volatility of the risky asset

In the bottom panel, the line relating the standard deviation of the portfolio to the
portfolio share of money becomes flatter and rotates in a counter-clockwise fashion
around point A. The Slutsky equation associated with the change in σR is:

∂ω∗

∂σR
=

(
∂ω∗

∂σR

)
dE(U)=0

− (1−ω∗)S · r̄− rM

σR
· ∂ω∗

∂Z̄
> 0, (10.82)

where ∂ω∗/∂Z̄ is given in (10.80) and the pure substitution effect is given by:(
∂ω∗

∂σR

)
dEU=0

≡
(1−ω∗)

[
2σ2

R + (rM − r̄)2]
σR
[
σ2

R + (rM − r̄)2
] > 0. (10.83)

The substitution effect dominates the income effect and money demand rises if the
return on the risky asset becomes more volatile.
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10.4 The optimal quantity of money

In the previous two sections we have reviewed the main models of money which
have been proposed in the postwar literature. We now change course somewhat by
taking for granted that money exists and plays a significant role in the economic pro-
cess and by posing the question concerning the socially optimal quantity of money. If
fiat money is useful to economic agents then how much of it should the policy maker
bring into circulation? This question received an unambiguous answer from Fried-
man (1969). Social optimality requires marginal social benefits and costs of money
to be equated. Since the production of fiat money (intrinsically useless tokens) im-
poses little or no costs on society, the money supply should be expanded up to the
point where the marginal benefit of money is (close to) zero and agents are flooded
with liquidity (money balances). This is the famous full liquidity result proposed by
Friedman (1969) and others.19

Intuitively, people should not economize on resources which are not scarce from
a social point of view (like fiat money). Since the opportunity cost of holding money
is the nominal rate of interest on bonds, the strong form of the Friedman proposition
requires the policy maker to manipulate the rate of money growth, µt, (and hence
the inflation rate, πt) such as to drive the nominal interest rate, Rt, to zero (Wood-
ford, 1990, p. 1071). The nominal interest is itself the sum of the real rate of interest
(rt, which is largely determined by real factors according to Friedman) and the ex-
pected rate of inflation (πe

t ), i.e. Rt = rt + πe
t . Hence, in the steady state (rt = r and

πt = µt) and with fulfilled expectations (πe
t = πt) the Friedman proposition requires

a constant rate of decline in the money supply equal to the (constant) real rate of
interest, i.e. Rt = 0⇔ µt = πt = −r.

The remainder of this section is dedicated to the following two issues. First, we
demonstrate (a version of) the Friedman result with the aid of a simple two-period
general equilibrium model. Second, we review the main objections which have been
raised against the Friedman argument in the literature.

10.4.1 A basic general equilibrium model

In section 2 above we discussed several justifications for putting real money balances
into the felicity function of households. We now postulate that the lifetime utility
function of the representative agent can be written as follows:

V = U(C1, m1) +
1

1 + ρ
U(C2, m2), (10.84)

where mt denotes real money balances held at the end of period t.20 Abstracting from
bonds, endogenous production, and economic growth, the budget identities in the
two periods are given by:

P1Y + M0 + P1T1 = P1C1 + M1, (10.85)
P2Y + M1 + P2T2 = P2C2 + M2, (10.86)

where M0 is given and PtTt represents lump-sum cash transfers received from the
government. The representative agent takes these transfers as parametrically given

19Other important contributors to the debate are Bailey (1956) and Samuelson (1968b, 1969a). An excel-
lent survey of this vast literature is Woodford (1990).

20We thus change the timing of the utility-yielding effect of money in comparison to the arguments in
section 2. We do so in order to simplify the argument and to retain consistency with Brock’s (1975) model
of which our model is a special case.
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in making his optimal plans, but in general equilibrium they are endogenously de-
termined.

We postulate a simple money supply process according to which the rate of nom-
inal money growth is constant:

Mt −Mt−1

Mt−1
= µ, (10.87)

where µ is a policy instrument of the government. The increase in the nominal
money supply is disbursed to the representative agent in the form of lump-sum
transfers:

PtTt = ∆Mt, (10.88)

where ∆Mt ≡ Mt−Mt−1. The household chooses Ct and Mt (for t = 1, 2) in order to
maximize (10.84) subject to (10.85)–(10.86). Employing the usual Lagrange multiplier
method, and assuming an interior solution, the first-order conditions consist of the
constraints (10.85)–(10.86) and:

UC(C1, m1)

P1
=

Um(C1, m1)

P1
+

1
1 + ρ

UC(C2, m2)

P2
, (10.89)

UC(C2, m2) = Um(C2, m2), (10.90)

where UC(·) ≡ ∂U(·)/∂Ct and Um(·) ≡ ∂U(·)/∂mt. Equation (10.89) says that the
marginal utility of spending one euro on consumption (the left-hand side) must be
equated to the marginal utility obtained by holding one euro in the form of money
balances (the right-hand side). The latter is itself equal to the marginal utility due to
reduced transaction costs (first term) plus that due to the store-of-value function of
money (second term). In the final (second) period, money is not used as a store of
value so only the transactions demand for money motive is operative. This is what
the expression in (10.90) says.

In the absence of goods consumption by the government, and public and pri-
vate investment, the product market clearing condition says that endowment income
equals private consumption in both periods:

Y = C1 = C2. (10.91)

By multiplying the expression in (10.89) by M1 and using (10.87), (10.90), and (10.91),
the perfect foresight equilibrium for the economy can be written as:

[UC(Y, m1)−Um(Y, m1)] ·m1 = m2 ·
UC(Y, m2)

(1 + ρ)(1 + µ)
, (10.92)

UC(Y, m2) = Um(Y, m2). (10.93)

These two equations recursively determine the equilibrium values for the real money
supply. The trick is to work backwards in time. First, equation (10.93) is solved for
m2. Second, by using this optimal value, say m∗2 , in the right-hand side of (10.92), an
equation determining m∗1 is obtained. Since the path of the nominal money supply is
determined by the policy maker, the nominal price level associated with the solution
is given by P∗t ≡ Mt/m∗t .

In our simple two-period model the solution method is quite simple, but the bulk
of the literature on the optimal money supply is based on the notion of an infinitely
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lived representative agent for which a general solution is much harder to obtain.
Indeed, in that literature the discussion is often based on simple special cases. In
order to facilitate comparison with that literature and to simplify the exposition of
our model, we now assume that the felicity function is additively separable:

U(Ct, mt) ≡ u(Ct) + v(mt), (10.94)

with u′(Ct) > 0, u′′(Ct) < 0, v′(mt) = 0 for mt = m∗t (a finite value), and v′′(mt) <
0. Marginal utility of consumption is positive throughout. Satiation with money
balances is possible provided the real money supply is sufficiently high, i.e. the
v′ (mt) becomes negative for mt > m∗t .

By using (10.94) in (10.92)–(10.93) we obtain:

[
u′(Y)− v′(m1)

]
·m1 = m2 ·

u′(Y)
(1 + ρ)(1 + µ)

(10.95)

u′(Y) = v′(m2). (10.96)

In Figure 10.7 these two equilibrium conditions have been drawn. Equation (10.96) is
represented by the horizontal line TC, where “TC” stands for “terminal condition”.
Equation (10.95) is an Euler-like equation and is drawn in the figure as the upward-
sloping EE line.21 The equilibrium is at point E0. Before going on to the issue of
social optimality of the perfect foresight equilibrium at E0, it is instructive to conduct
some comparative dynamic experiments. An increase in the money growth rate, for
example, leads to an upward shift in the EE line, say to EE1 in Figure 10.7. The equi-
librium shifts to E1 and real money balances in the first period fall, i.e. dm∗1/dµ < 0.
Hence, even though only the level of future nominal money balances is affected (M1
stays the same and M2 rises), the rational representative agent endowed with perfect
foresight foresees the consequences of higher money growth and as a result ends up
bidding up the nominal price level not only in the future but also in the present. A
similar effect is obtained if the rate of pure time preference is increased.

10.4.2 The satiation result

We have seen that, in our simple two-period model, the privately optimal real money
balances in the two periods are determined recursively by the expressions in (10.92)–
(10.93) and can thus be expressed as implicit functions of taste and endowment
parameters and the money growth rate, i.e. we can write m∗1 = m∗1(ρ, Y, µ) and
m∗2 = m∗2(ρ, Y, µ). For the separable case of (10.94) these implicit functions feature
the following partial derivatives with respect to the money growth rate: ∂m∗1/∂µ < 0
and ∂m∗2/∂µ = 0. Since the rate of money growth is a policy variable it follows that
the policy maker has the instrument needed to influence the equilibrium of money
balances, at least in the first period. By substituting m∗t (·) and (10.91) into the utility
function of the representative agent (10.94) we obtain:

V = u(Y) + v (m∗1(ρ, Y, µ)) +
1

1 + ρ
[u(Y) + v (m∗2(ρ, Y))] . (10.97)

21The slope of the EE line is:

dm2

dm1
=

(1 + ρ)(1 + µ) [u′(Y)− v′(m1)−m1v′′(m1)]

u′(Y)
> 0.
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Figure 10.7: Monetary equilibrium in a perfect foresight model

A utilitarian policy maker can pursue a socially optimal monetary policy by choosing
the money growth rate for which the welfare of the representative agent is at its
highest level. By maximizing (10.97) by choice of µ we obtain (a variant of) the
Friedman satiation result:

dV
dµ

= v′ (m∗1(ρ, Y, µ∗)) ·
dm∗1
dµ

= 0 ⇒ v′ (m∗1(ρ, Y, µ∗)) = 0, (10.98)

where µ∗ is the optimal money growth rate. This optimal growth rate of the money
supply induces the representative household to satiate itself with real money bal-
ances, i.e. to choose m∗1 such that the marginal utility of these balances is zero (and
thus equal to the social cost of producing these balances). In terms of Figure 10.7,
the social optimum is at point ESO and corresponds to a higher level of real money
balances and a lower money growth rate than at point E0.

The satiation result does not hold in the final period, of course, as the terminal
condition pins down a positive marginal utility of money balances needed for trans-
action purposes (see (10.93)). It is straightforward to generalize the Friedman result
to a setting with an infinitely lived representative agent.22 In that case terms like
(1 + ρ)t−1U(Ct, mt) are added to the utility function in (10.84) and budget equations
like PtY + Mt−1 + PtTt = PtCt + Mt are added to (10.85) (both for t = 3, 4, 5, · · · , ∞).
Equation (10.95) is then generalized to:[

u′(Y)− v′(mt)
]
·mt = mt+1 ·

u′(Y)
(1 + ρ)(1 + µ)

, (t = 1, 2, 3, · · · , ∞). (10.99)

The thing to note about (10.99) as compared to (10.95)–(10.96) is that the terminal
condition is no longer relevant. Brock (1975, pp. 138–141) shows that the equilibrium

22Much of modern macroeconomic theory makes use of such a fictional agent. See Chapters 13–14 and
18–19.
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solution to (10.99) will in fact be the steady-state solution for which mt = mt+1 = m∗:

v′(m∗) =
[

1− 1
(1 + ρ)(1 + µ)

]
u′(Y) ⇒ (10.100)

dm∗

dµ
=

u′(Y)
(1 + ρ)(1 + µ)2v′′(m∗)

< 0. (10.101)

Since both the endowment and real money balances are constant over time, lifetime
utility of the infinite lived representative agent is equal to:

V =
∞

∑
t=1

(
1

1 + ρ

)t−1
· [u(Y) + v (m∗(µ))]

= [u(Y) + v (m∗(µ))] · 1
1− 1

1+ρ

=
1 + ρ

ρ
· [u(Y) + v (m∗(µ))] . (10.102)

Maximizing (10.102) by choice of µ yields the infinite-horizon generalization of equa-
tion (10.98):

dV
dµ

=
1 + ρ

ρ
· v′ (m∗(µ∗)) · dm∗ (µ)

dµ
= 0. (10.103)

Since dm∗/dµ < 0, we find that the optimal money supply is such as to ensure that
v′(m∗) = 0 for all periods. In view of (10.100), this is achieved if the money supply
is shrunk at the rate at which the representative household discounts future utility:

µ∗ = − ρ

1 + ρ
. (10.104)

Although there are no interest-bearing assets in our model, equation (10.104) can
nevertheless be interpreted as a zero-nominal-interest-rate result (see Turnovsky and
Brock, 1980). Indeed, the pure rate of time preference represents the psychological
costs associated with waiting and ρ/(1 + ρ) (≈ ρ) can be interpreted as the real rate
of interest. Furthermore, since real money balances are constant, the money growth
rate µ∗ also represents the rate of price inflation. The nominal rate of interest in the
optimum is thus R ≡ ρ/(1 + ρ) + π = ρ/(1 + ρ) + µ∗ = 0.

10.4.3 Critiques of the full liquidity rule

The Friedman satiation rule, according to which the policy maker should use its
money growth instrument in order to drive the marginal utility of real money bal-
ances to zero, has come under severe criticism in the literature. We now wish to
demonstrate the two most important mechanisms by which the full liquidity result
is invalidated. In order to do so we return to the two-period setting but we enrich the
basic model of section 10.4.1 above by moving from an endowment to a production
economy and by introducing (potentially) distorting taxes.

10.4.3.1 Introducing endogenous production

We assume that the representative household derives utility not only from consump-
tion of goods and real money balances but also from leisure. Hence, equation (10.84)



CHAPTER 10: MONEY 361

is replaced by:

V = U(C1, 1− L1, m1) +
1

1 + ρ
U(C2, 1− L2, m2), (10.105)

where the time endowment is unity, Lt is labour supply, and 1 − Lt is leisure in
period t (= 1, 2). The household budget identities in the two periods are:

W1(1− τ1)L1 + M0 + P1T1 = P1C1 + M1, (10.106)
W2(1− τ2)L2 + M1 + P2T2 = P2C2 + M2, (10.107)

where M0 is given, PtTt represents lump-sum cash transfers received from the gov-
ernment, Wt is the nominal wage rate, and τt is the tax rate on labour. The house-
hold chooses Ct, Lt, and Mt in order to maximize (10.105) subject to (10.106)–(10.107).
Writing the Lagrangian as:

L ≡
2

∑
t=1

(
1

1 + ρ

)t−1
U(Ct, 1− Lt, mt)

+
2

∑
t=1

λt · [Wt(1− τt)Lt + Mt−1 + PtTt − PtCt −Mt] , (10.108)

we easily find the (main) first-order conditions (for t = 1, 2):(
1

1 + ρ

)t−1
UC(Ct, 1− Lt, mt) = λtPt, (10.109)(

1
1 + ρ

)t−1
U1−L(Ct, 1− Lt, mt) = λtWt (1− τt) , (10.110)

Um(C1, 1− L1, m1)

P1
= λ1 − λ2, (10.111)

1
1 + ρ

Um(C2, 1− L2, m2)

P2
= λ2. (10.112)

To keep things simple we assume that production is subject to constant returns to
scale and that the production function is given by Yt = Lt. Perfectly competitive
producers set price equal to marginal cost which implies that Pt = Wt, i.e. the real
producer wage is equal to unity. As before, the government does not consume any
goods so that the goods market clearing condition requires consumption by house-
holds to equal production in both periods. In summary, we have that:

Ct = Yt = Lt, Wt = Pt. (10.113)

By using (10.109)–(10.113) we can write the first-order conditions characterizing the
optimum as follows:

U1−L(xt)

UC(xt)
= 1− τt, t = 1, 2, (10.114)

[UC(x1)−Um(x1)] ·m1 = m2 ·
UC(x2)

(1 + ρ)(1 + µ)
, (10.115)

UC(x2) = Um(x2), (10.116)



362 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

where xt ≡ (Ct, 1 − Ct, mt). The expressions in (10.114) are obtained by dividing
(10.110) by (10.109) and noting (10.113) for each period. Equation (10.115) follows
from (10.111)–(10.112) and (10.109) (for period t = 1). We have also used the defini-
tion of the money growth rate (given in (10.87)) to obtain an expression in terms of
real money balances. Finally, (10.116) is obtained by combining (10.112) and (10.109)
(for period t = 2).

Equation (10.114) shows that the household equates the marginal rate of substi-
tution between leisure and consumption (left-hand side) to the real after-tax wage
(right-hand side) in both periods. Equations (10.115)–(10.116) generalize (10.92)–
(10.93) by accounting for an endogenous labour supply (and thus production) choice.
Armed with this minor modification to our original model, the robustness of the full
liquidity result can be examined.

10.4.3.2 Non-separability

The model is solved recursively by working backward in time, just as in section
10.4.1 above. We assume that both tax rates are constant. Equations (10.114) (for
t = 2) and (10.116) then pin down optimal levels of consumption (and labour supply)
and money balances for the final period (C∗2 and m∗2 , respectively) which are constant
and independent of the rate of money growth µ. Given these values for C∗2 and m∗2 ,
equations (10.114) (for period t = 1) and (10.115) together constitute a system of
implicit equations expressing C∗1 and m∗1 in terms of the rate of money growth µ (as
well as ρ, τ1, and τ2, but these are held constant):

U1−L(C1, 1− C1, m1) = (1− τ1)UC(C1, 1− C1, m1), (10.117)

[UC(C1, 1− C1, m1)−Um(C1, 1− C1, m1)] · (1 + µ) ·m1 =
m∗2UC(x∗2)

1 + ρ
, (10.118)

where we note that the right-hand side of (10.118) is constant. Denoting these im-
plicit functions by C∗1 (µ) and m∗1(µ), we obtain the following derivatives by means
of standard techniques:

dC∗1
dµ

=
m∗2UC(x∗2) [U1−L,m − (1− τ1)UCm]

(1 + ρ)(1 + µ)2 |∆| , (10.119)

dm∗1
dµ

= −m∗2UC(x∗2) [U1−L,C −U1−L,1−L − (1− τ1) (UCC −UC,1−L)]

(1 + ρ)(1 + µ)2 |∆| , (10.120)

where |∆| is the (negative) Jacobian of the system and where the partial derivatives
UCC, UCm, UC,1−L, U1−L,1−L, and U1−L,m are all evaluated in the optimum point
(C∗1 , 1− C∗1 , m∗1).

The expression in (10.120) shows that the sign of dm∗1/dµ is ambiguous in the
generalized model. The existence of diminishing marginal utility of leisure and
consumption ensures that U1−L,1−L and UCC are both negative, but the cross-term,
U1−L,C ≡ UC,1−L, can have either sign. Turnovsky and Brock (1980, p. 197) argue
that it is reasonable to assume on economic grounds that UC,1−L is positive, i.e. the
marginal utility of consumption rises with leisure. With that additional assump-
tion it is clear that optimal money holdings in the current period fall as the money
growth rate is increased, i.e. dm∗1/dµ < 0. This conclusion generalizes our earlier
result obtained for the basic model of section 10.4.1 above (see (10.101)).

As the expression in (10.119) shows, the sign of dC∗1 /dµ is also ambiguous in
general as it depends on the cross-partial derivatives U1−L,m and UCm which can
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have either sign and about which economic theory does not suggest strong priors.
In economic terms the ambiguity arises because it is not a priori clear how (or even
whether) the rate of money growth affects the marginal rate of substitution between
consumption and leisure, i.e. how µ influences the consumption-leisure trade-off.

The issue can be investigated more formally by writing the marginal rate of sub-
stitution between leisure and consumption (for period t = 1) in a general functional
form as g(C1, m1):

g(C1, m1) ≡
U1−L(C1, 1− C1, m1)

UC(C1, 1− C1, m1)
. (10.121)

By partially differentiating g(·) with respect to m1 we obtain the following result:

gm(C1, m1) =
UCU1−L,m −U1−LUCm

[UC]
2

=
U1−L,m − g(C1, m1)UCm

UC

=
U1−L,m − (1− τ1)UCm

UC
, (10.122)

where we have used (10.114) in the final step). The expression in (10.122) shows the
intimate link which exists between gm(C1, m1) and the sign of dC∗1 /dµ in (10.119): if
the marginal rate of substitution between leisure and consumption rises (falls) with
real money balances, gm(C1, m1) > 0 (< 0), then an increase in the money growth
rate leads to an increase (decrease) in goods consumption, i.e. dC∗1 /dµ > 0 (< 0).

The upshot of the discussion so far is that C∗2 and m∗2 do not depend on the rate
of money growth and that C∗1 and m∗1 do so but in an ambiguous fashion. By plug-
ging C∗1 (µ) and m∗1(µ) into the utility function (10.105) we obtain an expression for
household utility in terms of the policy variable µ:

V ≡ U (C∗1 (µ), 1− C∗1 (µ), m∗1(µ)) +
1

1 + ρ
U(C∗2 , 1− C∗2 , m∗2). (10.123)

The policy maker selects the socially optimal money growth rate µ∗ in order to max-
imize V, a problem which yields the following first-order condition:

dV
dµ

= τ1UC ·
dC∗1
dµ

+ Um ·
dm∗1
dµ

= 0, (10.124)

where we have used equation (10.114) to simplify (10.124). Armed with this expres-
sion we can re-examine the validity of the Friedman full-liquidity result according
to which µ∗ should be set such as to drive the marginal utility of money balances to
zero. Equation (10.124) shows the various cases under which this result continues
to hold in our extended model. First, if there is no initial tax on labour in the first
period (τ1 = 0) then the leisure-consumption choice is undistorted (U1−L/UC = 1 in
that case) so that a change in the money growth rate does not create a first-order wel-
fare effect even if it does affect consumption in the first period. In terms of (10.114),
for τ1 = 0 the sign (or magnitude) of dC∗1 /dµ does not matter. The first term on the
right-hand side of (10.124) drops out and, provided dm∗1/dµ 6= 0, the optimal money
growth rate entails driving Um to zero.

The second case for which the satiation result obtains is one for which the tax is
strictly positive (τ1 > 0) but consumption is independent of the money growth rate
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(dC∗1 /dµ = 0). This case was emphasized by Turnovsky and Brock (1980). In terms
of (10.119) and (10.122) this holds if the marginal rate of substitution between leisure
and consumption does not depend on µ. If that result obtains, the felicity function
U(·) is said to be weakly separable in (Ct, 1− Lt) on the one hand and mt on the other.
It can then be written as:

U(Ct, 1− Lt, mt) = U (Z(Ct, 1− Lt), mt) , (10.125)

where Z(·) is some sub-felicity function. Note that (10.125) implies that the marginal
rate of substitution between leisure and consumption only depends on the properties
of Z(·), as U1−L/UC = UZZ1−L/(UZZC) = Z1−L/ZC and thus does not depend on
mt.

In summary, the Friedman satiation result holds in our model if (i) there is no
initial tax on labour income (τ1 = 0), and (ii) if τ1 is positive but preferences display
the weak separability property. In general, however, (10.123) implicitly defines the
optimal money growth rate and Um will not be driven to zero. Turnovsky and Brock
refer to (10.124) as a “distorted” Friedman liquidity rule (1980, p. 197).

10.4.3.3 The government budget restriction

The second major argument against the validity of the Friedman result is based on
the notion that steady-state inflation (caused by nominal money growth) can be seen
as a tax on money balances and thus has repercussions for the government bud-
get constraint especially in a “second-best” world in which lump-sum taxes are not
available to the policy maker. In such a world, Phelps (1973) argues, government
revenue must be raised by means of various distorting taxes, of which the “infla-
tion tax” is only one. The literature initiated by Phelps is often called the “public
finance” approach to inflation and optimal money growth. Briefly put, the Phelps
approach is an application to monetary economics of the optimal taxation literature
in the tradition of Ramsey (1927).23

10.5 Punchlines

Money performs three major functions in the economy: it is a medium of exchange,
it serves as a store of value, and it performs the role of a medium of account. Of these
three functions, the first is the most distinguishing function of money. Despite the
fact that every layman knows what money is (and what it can do) it has turned out
to be difficult to come up with a convincing model of money. In the first part of this
chapter we discuss some of the more influential models that have been proposed in
the literature.

The medium of exchange role of money has been modelled by assuming that
money reduces the transactions costs associated with the trading process between
agents. In this view, the existence of money reduces the time needed for shopping.
Since leisure is valued by the agents, the same holds for money. This so-called shop-
ping cost approach is one way to rationalize the conventional practice in macro-
economic modelling of putting money balances directly into the household’s utility
function. The cash-in-advance approach is another possible rationalization for this
practice.

23We briefly discussed Ramsey taxation in the context of Section 9.3 above.
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The role of money as a store of value has been modelled in two major ways.
In the first model, intrinsically useless money may be held if it allows agents to
engage in intertemporal consumption smoothing and either (i) there are no other
financial assets available for this purpose at all, or (ii) such assets exist but carry an
inferior rate of return. The second model of money as a store of value is based on
the notion that assets carrying a higher yield than money may also be more risky. In
the simplest possible application of this idea, the yield on money is assumed to be
certain and equal to zero (no price inflation) whilst the yield on a risky financial asset
is stochastic. The risky asset carries a positive expected yield. The actual (realized)
rate of return on such an asset is, however, uncertain and may well be negative.
In such a setting the risk-averse household typically chooses a diversified portfolio,
consisting of both money and the risky asset, which represents the optimal trade-off
between risk and return.

In the second part of this chapter we take for granted that money exists and
plays a useful role in the economic process and study the socially optimal quan-
tity of money. If fiat money is useful to economic agents then how large should the
money supply be? Friedman proposes a simple answer to this question: since fiat
money is very cheap to produce, the money supply should be expanded up to the
point where the marginal social benefit of money is (close to) zero. This is the famous
full liquidity or satiation result. We first demonstrate the validity of the satiation result
in a very simple two-period model of an endowment economy with money entering
the utility function of the households. Next we extend the model by endogenizing
the labour supply decision of households and demonstrate the various reasons why
full liquidity may not be socially optimal.

Further reading

Good textbooks on monetary economics are Niehans (1978), McCallum (1989a), and
Walsh (2010). Diamond (1984a), Kiyotaki and Wright (1993), and Trejos and Wright
(1995) use the search-theoretic approach to model money. The demand for money by
firms is studied by Miller and Orr (1966) and Fischer (1974). D. Romer (1986, 1987)
embeds the Baumol-Tobin model in a general equilibrium model. Saving (1971)
presents a model of money based on transactions costs. McCallum and Goodfriend
(1987) give an overview of money demand theories. Fischer (1979) studies monetary
neutrality in a monetary growth model. See also Chapter 14.

On the public finance approach to inflation, see Chamley (1985), Turnovsky and
Brock (1980), Mankiw (1987), Gahvari (1988), Chari et al. (1996), Batina and Ihori
(2000, ch.10), and Ljungqvist and Sargent (2012, ch. 26). On the unpleasant mon-
etarist arithmetic argument, see Drazen and Helpman (1990), Sargent and Wallace
(1993), and Liviatan (1984).





Chapter 11

New Keynesian economics

The purpose of this chapter is to discuss the following issues:

1. Can we provide microeconomic foundations behind the “Keynesian” multi-
plier?

2. What are the welfare-theoretic aspects of the monopolistic competition model?
What is the link between the output multiplier of government consumption
and the marginal cost of public funds (MCPF)?

3. Does monetary neutrality still hold when there exist costs of adjusting prices?

4. What do we mean by nominal and real rigidity and how do the two types of
rigidity interact?

11.1 Reconstructing the “Keynesian” multiplier

The challenge posed by a number of authors in the 1980s is to provide microeco-
nomic foundations for Keynesian multipliers by assuming that the goods market is
characterized by monopolistic competition. This is, of course, not the first time such
micro-foundations are proposed, a prominent predecessor being the fixed-price dis-
equilibrium approach of the early 1970s (see Bénassy (1993b) for a survey of that
literature). The problem with that older literature is that prices are simply assumed
to be fixed, which makes these models resemble Shakespeare’s Hamlet without the
Prince, in that the essential market coordination mechanism is left out. Specifically,
fixed (disequilibrium) prices imply the existence of unexploited gains from trade be-
tween restricted and unrestricted market parties. There are AC100 bills lying on the
footpath, and this begs the question why this would ever be an equilibrium situation.

Of course some reasons exist for price stickiness, and these will be reviewed here,
but a particularly simple way out of the fixity of prices is to assume price-setting
behaviour by monopolistically competitive agents.1 This incidentally also solves
Arrow’s (1959) famous critical remarks about the absence of an auctioneer in the
perfectly competitive framework.

1See the recent surveys by Bénassy (1993b), Silvestre (1993), Matsuyama (1995), and the collection of
papers in Dixon and Rankin (1995).
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11.1.1 A static model with monopolistic competition

In this subsection we construct a simple model with monopolistic competition in the
goods market. There are three types of agents in the economy: households, firms,
and the government. The representative household derives utility from consuming
goods and leisure and has a Cobb-Douglas utility function:

U ≡ Cα(1− L)1−α, 0 < α < 1, (11.1)

where U is utility, L is labour supply, and C is (composite) consumption. The house-
hold has an endowment of one unit of time and all time not spent working is con-
sumed in the form of leisure, 1− L. The composite consumption good consists of
a bundle of closely related product “varieties” which are close but imperfect substi-
tutes for each other (e.g. red, blue, green, and yellow ties). Following the crucial
insights of Spence (1976) and Dixit and Stiglitz (1977), a convenient formulation is
as follows:

C ≡ Nη

[
N−1

N

∑
j=1

Cj
(θ−1)/θ

]θ/(θ−1)

, θ > 1, η ≥ 1, (11.2)

where N is the number of different varieties that exist, Cj is a consumption good of
variety j, and θ and η are parameters. This specification, though simple, incorporates
two economically meaningful and separate aspects of product differentiation. First,
the parameter θ regulates the ease with which any two varieties (Ci and Cj) can be
substituted for each other. In formal terms, θ represents the Allen-Uzawa cross-partial
elasticity of substitution (see Chung, 1994, ch. 5). Intuitively, the higher is θ, the better
substitutes the varieties are for each other. In the limiting case (as θ → ∞), the
varieties are perfect substitutes, i.e. they are identical goods from the perspective of
the representative household.

The second parameter appearing in (11.2), η, regulates “preference for diversity”
(PFD, or “taste for variety” as it is often called alternatively). Intuitively, diver-
sity preference represents the utility gain that is obtained from spreading a certain
amount of production over N varieties rather than concentrating it on a single vari-
ety (Bénassy, 1996b, p. 42). In formal terms average PFD can be computed by compar-
ing the value of composite consumption (C) obtained if N varieties and X/N units
per variety are chosen with the value of C if X units of a single variety are chosen
(N = 1):

average PFD ≡ C(X/N, X/N, . . . , X/N)

C(X, 0, . . . , 0)
= Nη−1 ≡ φ (N) . (11.3)

The elasticity of this function with respect to the number of varieties (i.e. Nφ′ (N)
/φ (N)) represents the marginal taste for additional variety2 which plays an impor-
tant role in the monopolistic competition model. By using (11.3) we obtain the ex-
pression for the marginal preference for diversity (MPFD):

MPFD = η − 1. (11.4)

It is now clear how and to what extent η regulates the MPFD: if η exceeds unity
MPFD is strictly positive and the representative agent exhibits a love of variety. The
agent does not enjoy diversity if η = 1 and MPFD = 0 in that case.

2As is often the case in economics, the marginal rather than the average concept is most relevant.
Bénassy presents a clear discussion of average and marginal preference for diversity (1996b, p. 42).
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The household faces the following budget constraint:

N

∑
j=1

PjCj = WL + Π− T, (11.5)

where Pj is the price of variety j, W is the nominal wage rate (labour is used as the
numeraire later on in this section), Π is the total profit income that the household
receives from the monopolistically competitive firms, and T is a lump-sum tax paid
to the government. The household chooses its labour supply and consumption levels
for each available product variety (L and Cj, j = 1, . . . , N) in order to maximize utility
(11.1), given the definition of composite consumption in (11.2), the budget constraint
(11.5), and taking as given all prices (Pj, j = 1, . . . , N ), the nominal wage rate, profit
income, and the lump-sum tax.

By using the convenient trick of two-stage budgeting (see Intermezzo 11.1 below),
the solutions for composite consumption, consumption of variety j, and labour sup-
ply are obtained:

PC = α [W + Π− T] , (11.6)

Cj

C
= N−(θ+η)+ηθ

(Pj

P

)−θ

, j = 1, . . . , N, (11.7)

W (1− L) = (1− α) [W + Π− T] , (11.8)

where P is the so-called true price index of the composite consumption good C. Intu-
itively, P represents the price of one unit of C given that the quantities of all varieties
are chosen in an optimal (utility-maximizing) fashion by the household. It is defined
as follows:

P ≡ N−η

[
N−θ

N

∑
j=1

Pj
1−θ

]1/(1−θ)

. (11.9)

Intermezzo 11.1

Two-stage budgeting and Dixit-Stiglitz preferences. As indeed its name
strongly suggests, the technique of two-stage budgeting (or more gen-
erally, multi-stage budgeting) solves a relatively complex maximization
problem by breaking it up into two (or more) much less complex sub-
problems (or “stages”). An exhaustive treatment of two-stage budgeting
is far beyond the scope of this book. Interested readers are referred to
Deaton and Muellbauer (1980, pp. 123–137) which contains a more ad-
vanced discussion plus references to key publications in the area.

We illustrate the technique of two-stage budgeting with the aid of the
maximization problem discussed in the text. Since C and 1− L appear in
the utility function (11.1) and only Cj (j = 1, ..., N) appear in the definition
of C in (11.2) it is natural to subdivide the problem into two stages. In
stage 1 the choice is made (at the “top level” of the problem) between
composite consumption and leisure, and in stage 2 (at the “bottom” level)
the different varieties are chosen optimally, conditional upon the level of
C chosen in the first stage.
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Stage 1. We postulate the existence of a price index for composite con-
sumption and denote it by P. By definition total spending on differenti-
ated goods is then equal to ∑j PjCj = PC so that (11.5) can be re-written
as:

PC + W(1− L) = W + Π− T ≡ IF, (a)

which says that spending on consumption goods plus leisure (the left-
hand side) must equal full income (IF on the right-hand side). The top-
level maximization problem is now to maximize (11.1) subject to (a) by
choice of C and 1− L. The first-order conditions for this problem are the
budget constraint (a) and:

U1−L
UC

=
W
P
⇒ W

P
=

1− α

α

C
1− L

. (b)

The marginal rate of substitution between leisure and composite con-
sumption must be equated to the real wage rate which is computed by
deflating the nominal wage rate with the price index of composite con-
sumption (and not just the price of an individual product variety!). By
substituting the right-hand expression of (b) into the budget identity (a),
we obtain the optimal choices of C and 1− L in terms of full income:

PC = αIF, W(1− L) = (1− α)IF. (c)

Finally, by substituting these expressions into the (direct) utility function
(11.1) we obtain the indirect utility function expressing utility in terms of
full income and a cost-of-living index:

V ≡ IF
PV

, (d)

where PV is the true price index for utility, i.e. it is the cost of purchasing
one unit of utility (a “util”):

PV ≡
(

P
α

)α ( W
1− α

)1−α

. (e)

Stage 2. In the second stage the agent chooses varieties, Cj (j =
1, 2, ..., N), in order to “construct” composite consumption in an optimal,
cost-minimizing, fashion. The formal problem is:

max
{Cj}

Nη

[
N−1

N

∑
j=1

C(θ−1)/θ
j

]θ/(θ−1)

subject to
N

∑
j=1

PjCj = PC, (f)

for which the first-order conditions are the constraint in (f) and:

∂C/∂Cj

∂C/∂Ck
=

Pj

Pk
⇒
(

Ck
Cj

)1/θ

=
Pj

Pk
, for j, k = 1, 2, . . . , N. (g)

The marginal rate of substitution between any two product varieties
must be equated to the relative price of these two varieties. By repeatedly
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substituting the first-order condition (g) into the definition of C (given in
(11.2)), we obtain the following expression for Cj:

Cj =
N−ηCP−θ

j[
∑N

k=1 N−1Pk
1−θ
]−θ/(1−θ)

. (h)

By substituting (h) into the constraint given in (f) the expression for the
price index P is obtained:

N

∑
j=1

PjCj =
Nθ/(θ−1)−ηC

[
∑N

j=1 P1−θ
j

]
[
∑N

j=1 Pj
1−θ
]−θ/(1−θ)

= PC ⇒

P ≡ N−η

[
N−θ

N

∑
j=1

P1−θ
j

]1/(1−θ)

. (i)

By using this price index we can re-express the demand for variety j of
the consumption good (given in (h)) in a more compact form as:

Cj

C
= N−(θ+η)+ηθ

(Pj

P

)−θ

, j = 1, . . . , N, (j)

which is the expression used in the text (namely equation (11.7)).
It must be pointed out that we could have solved the choice prob-

lem facing the consumer in one single (and rather large) maximization
problem, instead of by means of two-stage budgeting, and we would, of
course, have obtained the same solutions. The advantages of two-stage
budgeting are twofold: (i) it makes the computations more straightfor-
ward and mistakes easier to avoid, and (ii) it automatically yields useful
definitions for true price indexes as by-products.

Finally, although we did not explicitly use the terminology, the ob-
servant reader will have noted that we have already used the method of
two-stage budgeting before in Chapter 2. There we discussed the Arm-
ington approach to modelling international trade flows and assumed that
a domestic composite good consists of a domestically produced good and
a good produced abroad.

****

The firm sector is characterized by monopolistic competition, i.e. there are very
many small firms each producing a variety of the differentiated good and each en-
joying market power in its own output market. The individual firm j uses labour to
produce variety j and faces the following production function:

Yj =

 0 if Lj ≤ F
Lj − F

k
if Lj ≥ F,

(11.10)

where Yj is the marketable output of firm j, Lj is labour used by the firm, F is fixed
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cost in terms of units of labour, and k is the (constant) marginal labour requirement.
The formulation captures the notion that the firm must expend a minimum amount
of labour (“overhead labour”) before it can produce any output at all (see Mankiw,
1988, p. 9). As a result, there are increasing returns to scale at firm level as average cost
declines with output.

The profit of firm j is denoted by Πj and equals revenue minus total costs:

Πj ≡ PjYj −W
[
kYj + F

]
, (11.11)

which incorporates the assumption that labour is perfectly mobile across firms, so
that all firms are forced to pay a common wage (W does not feature an index j).
The firm chooses output in order to maximize its profits (11.11) subject to its price-
elastic demand curve. We assume that it acts as a Cournot competitor in that firm j
takes other firms’ output levels as given, i.e. there is no strategic interaction between
producers of different product varieties.

In formal terms, the choice problem takes the following form:

max
{Yj}

Πj = Pj(Yj)Yj −W
[
kYj + F

]
, (11.12)

where the notation Pj(Yj) is used to indicate that the choice of output affects the
price which firm j will fetch (downward-sloping demand implies ∂Pj/∂Yj < 0). The
first-order condition yields the pricing rule familiar from first-year microeconomic
texts:

dΠj

dYj
= Pj + Yj ·

∂Pj

∂Yj
−Wk = 0⇒

Pj = µjWk, (11.13)

where µj is the markup of price over marginal cost (i.e. MCj = Wk) and ε j is the
(absolute value of the) price elasticity of demand facing firm j:

µj ≡
ε j

ε j − 1
, ε j ≡ −

∂Yj

∂Pj

Pj

Yj
. (11.14)

The higher is the elasticity of demand, the smaller is the markup and the closer is the
solution to the perfectly competitive one (which sets Pj = MCj). Clearly, the pricing
rule in (11.13) is only sensible if µj is positive, i.e. demand must be elastic and ε j
must exceed unity.

The government does three things in this model: it consumes a composite good
(G, given below), it levies lump-sum taxes on the representative household (T), and
it employs civil servants (LG). To keep things simple we assume that G is defined
analogously to C in (11.2):

G ≡ Nη

[
N−1

N

∑
j=1

Gj
(θ−1)/θ

]θ/(θ−1)

, (11.15)

where Gj is the government’s demand for variety j. It is assumed that the govern-
ment is efficient in the sense that it chooses varieties Gj (j = 1, ..., N) in an optimal,
cost-minimizing, fashion, taking a certain level of composite public consumption (G)
as given. This implies that the government’s demand for variety j is:

Gj

G
= N−(θ+η)+ηθ

(Pj

P

)−θ

, j = 1, . . . , N, (11.16)
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where the similarity to (11.7) should be apparent to all and sundry. Since C and G
feature the same functional form, the price index for the public good is given by P in
(11.9).

The total demand facing each firm j equals Yj ≡ Cj + Gj, which in view of (11.7)
and (11.16) shows that the demand elasticity facing firm j equals ε j = θ so that the
markup is constant and equal to µj = µ = θ/(θ − 1). In this simplest case, the
composition of demand does not matter. The model is completely symmetric: all
firms face the same production costs and use the same pricing rule and thus set the
same price, i.e. Pj = P̄ = µWk. As a result they all produce the same amount, i.e.
Yj = Ȳ, for j = 1, . . . , N. A useful quantity index for real aggregate output can then
be defined as:

Y ≡
∑N

j=1 PjYj

P
, (11.17)

so that the aggregate goods market equilibrium condition can be written as in (T1.1)
in Table 11.1 (we note that PY = ∑N

j=1 Pj
[
Cj + Gj

]
= P [C + G]).

Table 11.1. A simple macro model with monopolistic competition

Y = C + G (T1.1)
PC = αIF, IF ≡ [W + Π− T] (T1.2)

Π ≡
N

∑
j=1

Πj =
1
θ

PY−WNF (T1.3)

T = PG + WLG (T1.4)

P = N1−η P̄ = N1−ηµWk (T1.5)
W(1− L) = (1− α)IF (T1.6)

V =
IF
PV

, PV =

(
P
α

)α ( W
1− α

)1−α

(T1.7)

For convenience, we summarize the model in aggregate terms in Table 11.1.
Equation (T1.1) is the aggregate goods market clearing condition and (T1.2) is house-
hold demand for the composite consumption good (see (11.6)). Equation (T1.3) re-
lates aggregate profit income (Π) to aggregate spending (PY) and firms’ outlays on
overhead labour (WNF). This expression is obtained by aggregating (11.11) over all
active firms:

Π ≡
N

∑
j=1

PjYj −
N

∑
j=1

WkYj −WNF

=
N

∑
j=1

PjYj −
N

∑
j=1

PjYj

µ
−WNF

=
1
θ

PY−WNF,

where we have used the rewritten pricing rule (Wk = Pj/µ) to get from the first to
the second line, and 1− 1/µ = 1/θ to arrive at the final expression. The government



374 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

budget restriction (T1.4) says that government spending on goods (PG) plus wage
payments to civil servants (WLG) must equal the lump-sum tax (T). By using the
symmetric pricing rule in the definition of the price index (11.9) expression (T1.5)
is obtained. Labour supply is given by (T1.6). Finally, (T1.7) contains some welfare
indicators to be used and explained below in section 1.4.

Equilibrium in the labour market implies that the supply of labour (L) must equal
the number of civil servants employed by the government (LG) plus the number of
workers employed in the monopolistically competitive sector:

L = LG +
N

∑
j=1

Lj. (11.18)

Walras’s Law ensures that the labour market is in equilibrium, i.e. (T1.1)–(T1.6) to-
gether imply that (11.18) holds.

There is no money in the model so nominal prices and wages are indeterminate.
It is convenient to use leisure as the numeraire, i.e. W is fixed and everything is
measured in wage units. The model can be analysed for two polar cases. In the first
case, the number of firms is constant and fluctuations in profits emerge. This version
of the model is deemed to be relevant for the short run and gives rise to short-run
multipliers (Mankiw, 1988). In the second case, the number of firms is variable and
exit/entry of firms ensures that profits return to zero following a shock. Following
Startz (1989) this can be seen as the long-run version of the model.

11.1.2 The short-run balanced-budget multiplier

In the (very) short run, Mankiw (1988) argued, the number of firms is fixed (say
N = N0) and the model in Table 11.1 exhibits a positive balanced-budget multiplier.
This can be demonstrated as follows. By substituting (T1.3) and (T1.4) into (T1.2),
the aggregate consumption function can be written in terms of aggregate output and
constants:

C = c0 +
α

θ
Y− αG, (11.19)

where c0 ≡ α [1− N0F− LG]w and w ≡ W/P is the real wage. It follows from
(T1.5) that w = Nη−1/ (µk), i.e. the real wage rate is constant in the short run.3

The consumption function looks rather Keynesian and has a slope between zero and
unity since 0 < α < 1 and θ > 1. Additional output boosts real profit income to the
household which spends a fraction of the extra income on consumption goods (and
the rest on leisure). The consumption function has been drawn in Figure 11.1 for an
initial level of government spending, G0. By vertically adding G0 to C, aggregate
demand is obtained. The initial equilibrium is at point E0 where aggregate demand
equals production, and equilibrium consumption and output are, respectively, C0
and Y0.

Now consider what happens if the government boosts its consumption, say from
G0 to G1, and finances this additional spending by an increase in the lump-sum tax,
T. Such a balanced-budget policy has two effects in the short run. First, it exerts a
negative effect on the aggregate consumption function (see (11.19)) because house-
holds have to pay higher taxes, i.e. the consumption function shifts down by αdG in
Figure 11.1. Second, the spending shock also boosts aggregate demand one-for-one

3The number of product varieties (N) is fixed as are (by assumption) the markup (µ) and the marginal
labour requirement (k).
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Figure 11.1: Government spending multipliers

because the government purchases additional goods. Since the marginal propen-
sity to consume out of full income, α, is less than unity, this direct spending effect
dominates the private consumption decline and aggregate demand increases (by
(1 − α)dG), as is illustrated in Figure 11.1. The equilibrium shifts from E0 to E1,
output increases from (Y0 to Y1), but consumption falls (C0 to C1). Formally, the
short-run income and profit multipliers are:(

dY
dG

)SR

T
=

(
θdΠ
PdG

)SR

T
= (1− α)

[
1 +

∞

∑
i=1

(α/θ)i

]
=

1− α

1− α/θ
> 1− α, (11.20)

where the subscript indicates that an increase in the lump-sum tax is used to bal-
ance the government budget (d (T/P) = dG). As the term involving the infinite
summation shows, the output effect can be seen as resulting from a “multiplier-like”
process. An increase in government spending increases aggregate demand on im-
pact by (1 − α)dG and causes additional real profits to the tune of θ−1(1 − α)dG.
Although aggregate household consumption declines at impact by αdG, the rise in
profit income mitigates this reduction somewhat. This furnishes a second round in
the multiplier process, which ultimately converges to the expression given in (11.20).
Under perfect competition, there is no profit effect and hence the ultimate effect of a
change in government consumption coincides with the impact effect, 1− α.

Although (11.20) looks like a Keynesian multiplier (and certainly was sold as one
by the initial authors),4 some features are distinctly un-Keynesian. For one, house-
hold consumption falls as a result of the increase in government consumption:

−α <

(
dC
dG

)SR

T
=

(
dY
dG

)SR

T
− 1 = − θ − 1

θ − α
α < 0, (11.21)

which is at odds with the usual Haavelmo balanced-budget multiplier (see Haavelmo,
1945). Furthermore, it turns out that the same reason that makes households cut back
consumption (i.e. the higher tax burden, which lowers full income) also makes them

4With the notable exception of Dixon (1987) who argued that the multiplier was more Walrasian than
Keynesian.
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cut back on leisure consumption (since leisure is a normal good, see (11.8)) and in-
crease labour supply. By dividing (T1.6) by the first expression in (T1.2) we find that
w (1− L) = (1− α)C/α. The aggregate employment effect is thus given by:

0 < w ·
(

dL
dG

)SR

T
= −1− α

α
·
(

dC
dG

)SR

T
=

θ − 1
θ − α

(1− α) < 1− α. (11.22)

Hence, the Keynesian multiplier is really explained by the fact that households sup-
ply more labour because they feel poorer. This is a mechanism more usually associ-
ated with the new classical school to be discussed below in Chapters 13 and 19.

11.1.3 The short-run multiplier in isolation

Mankiw (1988) uses an ingenious argument to mimic the effect of bond financing in
a static model (like the one in Table 11.1). Suppose that the additional government
consumption is not financed by additional taxes (as in the previous subsection) but
instead is paid for by firing civil servants. As in the case of bond financing,5 the
representative household’s budget constraint is unaffected by the spending shock,
and the consumption function (11.19) is replaced by:

C = α [1− N0F]w +
α

θ
Y− α

T
P

, (11.23)

where the real tax bill (T/P) is constant. The various multipliers are now:(
dY
dG

)SR

LG

=

(
θdΠ
PdG

)SR

LG

=

[
1 +

∞

∑
i=1

(α/θ)i

]
=

1
1− α/θ

> 1, (11.24)

(
dC
dG

)SR

LG

=
α

θ − α
> 0, w

(
dL
dG

)SR

LG

= −1− α

θ − α
< 0, (11.25)

where the subscript indicates that a reduction in the civil service wage bill is used
to balance the government budget (−wdLG = dG). The output multiplier exceeds
unity (as in the traditional Keynesian cross-model). As the representative household
is wealthier because of the additional profit income, consumption rises and labour
supply (and hence employment) falls. The additional units of labour that are needed
to produce the additional output are released from the public sector. The intersec-
toral re-allocation of labour (from the public to the private sector) dominates the
reduction in labour supply so that aggregate output can expand.

11.1.4 The “long-run” multiplier

Startz (1989) suggested that the multiplier stories that were told in the previous two
subsections are incomplete because they implicitly assume that there are AC100 bills
lying around on the footpath. Not all trading opportunities are exhausted in the
short-run equilibrium that emerges following a public spending shock. Indeed, as
both (11.20) and (11.24) demonstrate, additional profits emerge as a result of the
increase in government spending. In the absence of barriers to entry, one would
expect new firms to commence operations as long as super-normal profits persist.

5And with disconnected generations so that Ricardian equivalence does not hold; see section 6.1.4.
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Following Heijdra and van der Ploeg (1996, p. 1291) we capture this idea with the
following simple specification:

Ṅ = γN
Π
P

= γN ·
[

Y
θ
− wNF

]
, γN > 0, (11.26)

where Ṅ ≡ dN/dt is the rate of change in the number of firms over time and γN is
finite so that exit/entry occurs gradually over time.

To keep the discussion as simple as possible, it is assumed in the remainder of
this section that the government employs no civil servants (i.e. LG = 0) so that the
government budget constraint reduces to T = PG. The goods market equilibrium
(GME) condition is obtained by substituting (T1.2)–(T1.4) into (T1.1):

Y = α [1− NF]w +
α

θ
Y + (1− α)G

=

[
α(1− NF)

µk(1− α/θ)

]
Nη−1 +

[
1− α

1− α/θ

]
G, (GME), (11.27)

where we have solved for output and used the pricing rule (given in (T1.5) above) to
relate the real wage to the number of firms in the second line of (11.27). For future
reference we rewrite this pricing rule as follows:

w =
Nη−1

µk
. (11.28)

Finally, the zero-profit condition, ZP, which is obtained by setting Π = 0 in (T1.3),
collapses to Y = θwNF which can be re-expressed with the aid of the pricing rule
(11.28) in terms of the number of firms:

Y =
θFNη

µk
, (ZP). (11.29)

The intuition behind the short-run, transitional, and long-run effects of a tax-financed
increase in public consumption can now be explained with the aid of Figure 11.2. In
the top panel ZP represents combinations of output and the number of firms for
which profits are zero. In view of (11.29) the ZP line goes through the origin and is
upward sloping:(

dY
dN

)
ZP

= η
Y
N

> 0. (11.30)

Furthermore, (11.26) shows that profits are positive (negative) for points to the left
(right) of the ZP line so that the entry dynamics is as indicated by horizontal arrows.
Still in the top panel, GME0 represents the initial goods market equilibrium locus as
defined in equation (11.27). In order to study the properties of the GME-locus we
differentiate the first expression in (11.27) around an initial zero-profit equilibrium:[

1− α

θ

] dY
Y

=
αw
Y

[1− NF]
dw
w
− αwNF

Y
dN
N

+ (1− α)
dG
Y

= [1− (1− α)ωG]
dw
w
− α

θ

[
dw
w

+
dN
N

]
+ (1− α)

dG
Y

= (η − 1) [α + (1− α)ωC]
dN
N
− αη

θ

dN
N

+ (1− α)
dG
Y

, (11.31)
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where we have used the zero-profit condition (in levels) in going from the first to
the second line and the pricing rule in going from the second to the third line. The
initial output shares of private and public consumption are given, respectively, by
ωC ≡ C/Y and ωG ≡ 1−ωC = G/Y.

Equation (11.31) shows that, for a given number of firms, an increase in govern-
ment consumption leads to an upward shift of the GME-locus. Note furthermore
that the output-related profit effect appears on the left-hand side of (11.31). There
are two distinct mechanisms by which a change in the number of firms affects the
GME-locus, namely the diversity effect and the fixed-cost effect. The first term on the
right-hand side of (11.31) represents the positive effect on aggregate demand of an
increase in the real wage which occurs as a result of an increase in the number of
firms provided the agents exhibit love of variety (η > 1). This is the diversity effect.
The second term is potentially offsetting and represents the negative effect on aggre-
gate demand of fixed costs: as the number of firms increases, total overhead costs
rise and profits fall. This is the fixed-cost effect.

The overall effect of N on Y along the GME-locus is thus theoretically ambiguous
because the diversity and fixed-cost effects work in opposite directions. Our usual
ploy to be used in the face of ambiguity, the Samuelsonian correspondence principle
(see Chapter 3), does not help to resolve this issue because the model is stable for
all parameter values. Indeed, in view of (11.26) the stability condition (∂Ṅ/∂N < 0)
amounts to requiring that the ZP line is steeper than the GME line. We can derive
the following condition:(

∂Y
∂N

)
GME

≡
[
(η − 1) [α + (1− α)ωC]− αη/θ

1− α/θ

]
Y
N

< η
Y
N
≡
(

∂Y
∂N

)
ZP

⇔ (η − 1) [α + (1− α)ωC]−
αη

θ
< η − αη

θ

⇔ η − 1
η

[α + (1− α)ωC] < 1, (11.32)

where the latter inequality holds as both terms on the left-hand side are strictly be-
tween zero and unity.6

Two often-used approaches lead to a resolution of the ambiguity regarding the
slope of the GME-locus. In the first approach the ambiguity is resolved by ignoring
the conceptual distinction between the price elasticity of demand (θ) and the prefer-
ence for diversity (η) and imposing a single utility parameter to regulate these two
effects. Technically, the standard Dixit and Stiglitz (1977, p. 298) formulation is used
for composite consumption by setting η = µ ≡ θ/(θ − 1) in (11.2). Since θ > 1 is
required to guarantee a meaningful monopolistically competitive equilibrium (i.e.
to ensure that µ > 1), diversity preference is operative (η > 1) and strong enough to
render the slope of the GME-locus positive:(

∂Y
∂N

)η=µ

GME
≡ (1− α)ωC

(θ − 1) [1− α/θ]

Y
N

> 0. (11.33)

This is the case drawn in Figure 11.2. An increase in government consumption shifts
the GME locus from GME0 to GME1. At impact the number of firms is predeter-
mined (at N = N0) and output rises as the economy jumps from E0 to E1. This is

6For a more general utility function than (11.1), the stability condition does furnish additional informa-
tion that is useful for comparative static purposes. See Heijdra and van der Ploeg (1996, p. 1291), Heijdra
and Ligthart (1997, p. 817), and Heijdra et al. (1998, p. 86) for different examples.
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Figure 11.2: Multipliers and firm entry
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the short-run multiplier given in (11.20). At point E1 there are super-normal prof-
its to be had and entry of new firms occurs. Gradually, the economy moves along
GME1 from E1 to E2 and both output and the number of firms increase towards their
new equilibrium values. Furthermore, as the lower panel of Figure 11.2 shows, the
real wage rate also increases during transition. So, even though the model may not
be vintage Keynesian in its basic mechanism, it does have some Keynesian features
since the real wage and aggregate output move pro-cyclically.

Whereas in the first approach the long-run output multiplier exceeds the short-
run multiplier, this conclusion is reversed in the second approach. Startz (1989, p.
741) implicitly resolves the ambiguity concerning the slope of the GME locus by
eliminating preference for diversity altogether, i.e. by setting η = 1 in (11.2). The
GME locus is downward sloping in that case as entry of firms only does bad things to
the economy (such as using up additional resources in the form of overhead labour):(

∂Y
∂N

)η=1

GME
≡ − α/θ

1− α/θ

Y
N

< 0. (11.34)

Furthermore, the pricing rule (11.28) implies a constant real wage in that case (recall
that w = Nη−1/ (µk)). In a diagram like Figure 11.2, the GME curve is downward
sloping in the top panel and the wage curve is horizontal in the bottom panel. At
impact the multiplier is as in (11.20) but during transition the increase in the number
of firms leads to a reduction in aggregate output. The long-run effect on output is
equal merely to the first round of the multiplier process in (11.20) (i.e. the impact
effect of the shock):

0 <

(
dY
dG

)LR,η=1

T
= (1− α) <

1− α

1− α/θ
≡
(

dY
dG

)SR

T
. (11.35)

This prompts Startz (1989, p. 747) to conclude that “. . . in the long run the short-run
multiplier is eliminated by free entry”.

In the most general version of the model, with η unrestricted, the long-run mul-
tiplier can be computed by using the zero profit condition (11.29) to derive dY/Y =
ηdN/N and by using this result in (11.31):(

dY
dG

)LR

T
= ηw

(
dL
dG

)LR

T
=

1− α

1− η − 1
η

[α + (1− α)ωC]
> 1− α, (11.36)

where the inequality follows from the fact that the denominator is strictly between
zero and unity if η > 1 (see (11.32)). Hence, whereas fluctuations in profit income
explain the multiplication of the impact effect in the short run, it is the preference for
diversity effect which plays this role in the long run.

Although Startz (1989, p. 751 fn. 13) justifies the elimination of diversity pref-
erence by appealing to computational advantages, it is not an innocuous assump-
tion at all, as the discussion above reveals. In essence, if the diversity parameter
(η) is greater than unity there are economy-wide increasing returns to scale that
help explain the “long-run” multiplier under free exit/entry of firms. Indeed, in
the long run profits are zero and Y = θwNF = wL. The second equality implies
that N = L/ (θF) which can be substituted into (11.29) to obtain the macroeconomic
“production function”:

Y =
(θF)1−η

µk
Lη . (11.37)
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Changes in the aggregate supply of the production factor(s) (labour in this case) are
magnified more than proportionally. The importance of increasing returns to scale
for Keynesian economics has been stressed time and again by seasoned warriors like
Weitzman (1982, 1984, 1994) and Solow (1986, 1998), and allowing for preference for
diversity is one particularly simple way to introduce scale economies.7

11.1.5 Welfare effects

In a famous passage in the General Theory, Keynes argued that seemingly useless
government consumption could actually improve welfare for the agents in the econ-
omy:

If the Treasury were to fill old bottles with bank-notes, bury them at suit-
able depths in disused coal-mines which are then filled up to the surface
with town rubbish, and leave it to private enterprise on well-tried princi-
ples of laissez-faire to dig the notes up again (. . .), there need be no more
unemployment and, with the help of the repercussions, the real income
of the community, and its capital wealth also, would probably become a
good deal greater than it actually is. (1936, p. 129)

In the jargon of modern economics, Keynes suggests in this quotation that the mar-
ginal cost of public funds (MCPF, see Chapter 9) is zero or even negative: useless
spending turns out to be useful after all! To conclude this section we now investi-
gate the link between fiscal policy multipliers and the welfare of the representative
agent. It turns out that the monopolistic competition model has some Keynesian as-
pects in this regard although they are not quite as extreme as the quotation suggests.

One of the major advantages of macroeconomic models based on explicit microe-
conomic foundations is that they provide an explicit link between macroeconomic
concepts (such as aggregate output, employment, etc.) and the level of welfare ex-
perienced by the representative household. To conduct the welfare analysis for the
monopolistic competition model it is convenient to use the so-called indirect utility
function, rather than the direct utility function given in (11.1). The indirect utility
function is obtained by substituting the optimal plans of the representative house-
hold (namely (11.6) and (11.8)) into the direct utility function (11.1) (see Intermezzo
11.1 above for details):

V ≡ IF
PV
≡ w + Π/P− T/P

PV/P
,

PV
P
≡ w1−α

αα(1− α)1−α
. (11.38)

Armed with this expression we can evaluate the welfare effects of expansionary fiscal
policy. In the interest of brevity, we only analyse the short-run multipliers discussed
above in subsections 1.2. and 1.3.

First consider the case in which the increase in government consumption is fi-
nanced by means of a lump-sum tax increase. By substituting the expression for
real aggregate profit income (T1.3) and the government budget constraint (T1.4) in
(11.38) we obtain the following expression:

V ≡ [1− NF− LG]w + (1/θ)Y− G
PV/P

. (11.39)

7In the model developed here (and in most models in the literature) all scale economies are external to
the firm in the long run. With a constant markup the zero profit condition in combination with markup
pricing implies a unique (constant) optimal long-run firm size: Ȳ ≡ F/[(µ − 1)k]. Hence, aggregate
output expansion is solely due to increases in the number of firms in the long run.
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Since N and thus also w, P, and PV are constant in the short run, the welfare effect of
a tax-financed fiscal expansion is simply the derivative of V with respect to G:(

dV
dG

)SR

T
=

P
PV

[
1
θ

(
dY
dG

)SR

T
− 1

]
= − P

PV
· θ − 1

θ − α
< 0, (11.40)

where we have substituted the output multiplier (given in (11.20)) to simplify the
expression. Under monopolistic competition, there is an intimate link between the
multiplier and the welfare effect of public spending which is absent under perfect
competition. The intuition is that under monopolistic competition there is a distor-
tion in the goods market and the economy is “too small” from a societal point of
view. By raising government spending output rises and that in itself constitutes a
move in the right, welfare-enhancing, direction. Of course government consump-
tion must also be financed somehow (here by means of lump-sum taxes) so that the
expansion is not costless. Indeed, (11.40) shows that the overall effect of a lump-sum
financed fiscal expansion is negative.

So unless there are other reasons (such as public goods aspects due to govern-
ment spending discussed by Heijdra and van der Ploeg, 1996) the government does
not increase welfare as a result of its increased spending and Keynes’ insight does
not hold. This un-Keynesian element of the monopolistic competition model is ex-
plained by two of its key properties: (1) the real wage is flexible and clears the labour
market, and (2) every unit of labour contributes to production in the economy.

The importance of the second property of the model can be demonstrated by
studying the case (discussed in detail in subsection 1.3) in which the spending shock
is financed by reducing the number of (unproductive) civil servants (i.e. dG =
−wdLG). In that case the lump-sum tax is constant and the relevant expression for
indirect utility is:

V ≡ [1− NF]w + (1/θ)Y− T/P
PV/P

, (11.41)

from which we obtain the welfare effect:(
dV
dG

)SR

LG

=
P

PV

1
θ

(
dY
dG

)SR

LG

=
P

PV
· 1

θ − α
> 0. (11.42)

In this case only the beneficial effect of government-induced output expansion is
operative and welfare rises. The intuition is the same as in Keynes’ story: units of
labour are shifted from socially unproductive to productive activities. The monop-
olistically competitive sector absorbs the former civil servants without prompting a
change in the real wage.

Intermezzo 11.2

Multipliers and the marginal cost of public funds. There exists a sim-
ple relationship between the macroeconomic concept of the output mul-
tiplier and the public finance concept of marginal cost of public funds
(MCPF). This link is particularly useful to study issues of optimal public
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spending and taxation. As was pointed out in Chapter 9, the MCPF mea-
sures how much it costs to raise a euro of public revenue. In the context
of the monopolistic competition model, the MCPF is defined as follows:

MCPF ≡ − 1
UC

dV
dG

, (a)

where UC is the marginal utility of composite consumption. Intuitively,
the minus sign appears on the right-hand side to convert benefits into
costs (a negative benefit is equivalent to a positive cost!) and the division
by UC occurs in order to compare “likes with likes” and to render the
MCPF dimensionless.

It is not difficult to show that UC equals P/PV . Recall that the repre-
sentative household maximizes utility, U(C, 1− L), subject to the budget
constraint, IF = PC + W(1− L). The first-order conditions for this prob-
lem are UC = λP and U1−L = λW, where λ is the Lagrange multiplier of
the budget constraint representing the marginal utility of (full) income,
i.e. λ = dU/dIF (see Intriligator, 1971, ch. 3). The indirect utility func-
tion (11.38) shows that dV/dIF = 1/PV = dU/dIF. By combining these
results we derive that UC = P/PV so that (11.40) and (11.42) can be re-
expressed in terms of the MCPF:

0 < MCPFSR
T ≡ −

1
UC

(
dV
dG

)SR

T
=

θ − 1
θ − α

< 1, (b)

MCPFSR
LG
≡ − 1

UC

(
dV
dG

)SR

LG

= − 1
θ − α

< 0. (c)

Hence, it costs (more than zero but) less than one euro to raise a euro
of revenue if lump-sum taxes are used (expression (b)) and the MCPF is
even negative if useless civil servants can be made socially productive
(expression (c)). Heijdra and van der Ploeg (1996) develop a more gen-
eral monopolistic competition model and use the concept of the MCPF to
derive the conditions under which optimal public spending is counter-
cyclical.

****

11.2 Monopolistic competition and money

In the monopolistic competition model used throughout the previous section (and
summarized in Table 11.1) money is abstracted from, and as a result nominal prices
and the nominal wage are indeterminate although, of course, relative prices are de-
termined within the model. The objective of this section is to introduce money into
the model and study its properties. Although there are several ways to ensure that
money plays a role in the model (see Chapter 10), we focus attention on the simplest
of these and postulate that real money balances yield utility to the representative
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household. The utility function (11.1) is changed to:

U ≡
[
Cα(1− L)1−α

]β
(

M
P

)1−β

, 0 < α, β < 1, (11.43)

where M is nominal money balances. The household has an initial endowment of
money, M0, and the budget constraint (11.5) is changed to:

PC + W(1− L) + M = M0 + W + Π− T, (11.44)

which says that the sum of spending on consumption, leisure, and money balances
(the left-hand side) must equal total wealth (the right-hand side of (11.44)).

The household chooses composite consumption (C), labour supply (L), and money
balances (M) in order to maximize (11.43) subject to (11.44). The solutions are:8

PC = αβIF, IF ≡ M0 + W + Π− T, (11.45)
W(1− L) = β(1− α)IF, (11.46)

M = (1− β)IF. (11.47)

The first two expressions are qualitatively the same as before (see (11.6) and (11.8)),
although IF now includes initial money balances. Furthermore, equation (11.47)
shows that money demand is proportional to full income. For future reference we
substitute the solutions (11.45)–(11.47) back into the direct utility function (11.43) to
obtain the indirect utility function–see equation (T2.8) in Table 11.2 below.

Assuming a constant money supply (M0), the money market equilibrium condi-
tion is:

M = M0. (11.48)

The rest of the model is unchanged and we summarize the main equations of the
monetary monopolistic competition model in Table 11.2.

It is tempting (though wrong) to conclude from the form of the indirect utility
function (T2.8) that the government could increase the welfare of the representative
household by simply bringing more money into circulation (and boosting full in-
come, IF, in the process), for example by engineering a helicopter drop of money
(dM0 > 0). The reason why such a ploy would not work is that money is neu-
tral in this model and the classical dichotomy holds (see Chapter 1). This can be
demonstrated formally by noting that the equilibrium conditions (in Table 11.2) are
homogeneous of degree zero in W, P, T, Π, IF, and M0 (see Dixon, 1987, p. 141). By
substituting ζW, ζP, ζT, ζΠ , ζ IF, and ζM0 (ζ > 0) into Table 11.2 the real equilibrium
is unaffected. All that happens if the money supply is multiplied by ζ is that all nom-
inal variables are increased equiproportionally and all real variables are unchanged.
Hence, a helicopter drop of money does not succeed in raising household welfare
because both IF and PV go up by the same proportional amount thus keeping V in
(T2.8) unchanged. The upshot of this discussion is that monopolistic competition in
and of itself does not introduce monetary non-neutrality. Put differently, if money is
neutral in a model-economy without monopolistic competition then it is also neutral
if monopolistic competition is introduced into the model (Silvestre, 1993, p. 122).

The model can be summarized with two equations. The goods market equilib-
rium (GME) locus is obtained by using (T2.2)–(T2.4) and (T2.7) in (T2.1). The money

8The demand for variety j of the composite consumption good is still given by (11.7).
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Table 11.2. A simple monetary monopolistic competition model

Y = C + G (T2.1)

C = αβ
IF
P

,
IF
P
≡ M0

P
+

W
P

+
Π
P
− T

P
(T2.2)

Π
P
≡ 1

θ
Y− W

P
NF (T2.3)

T
P

= G +
W
P

LG (T2.4)

P
W

= µkN1−η , P̄ = µkW (T2.5)

W
P
(1− L) = β(1− α)

IF
P

(T2.6)

M0

P
= (1− β)

IF
P

(T2.7)

V =
IF
PV

, PV =

(
P

αβ

)αβ ( W
β(1− α)

)β(1−α) ( P
1− β

)1−β

(T2.8)

market equilibrium (MME) locus is obtained by using the second expression of (T2.2)
as well as (T2.3)–(T2.4) in (T2.7):

Y =
α [1− NF− LG]w + (1− α)G

1− α/θ
, (GME), (11.49)

M0

P
=

1− β

β

[
[1− NF− LG]w +

1
θ

Y− G
]
, (MME). (11.50)

The two loci provide a clear demonstration of the classical dichotomy. In the short
run, N and thus w are fixed and GME determines equilibrium output. Since the
money supply does not appear in (11.49), monetary policy cannot affect equilibrium
output. According to (11.50), an increase in the money supply leads to an equipro-
portional increase in the price level.

The GME and MME loci can also be used to compute the short-run effects of a tax-
financed increase in public consumption. An increase in G leads to a boost in output
Y but a reduction in the demand for real money balances (as real full income falls).
Since nominal money balances M0 are constant, the price P rises to bring demand
and supply of real money balances back into equilibrium. The nominal wage and
prices of different varieties also rise equi-proportionally. In summary:

0 <

(
dY
dG

)SR

T
=

1− α

1− α/θ
< 1,

(
dW
W

)SR

T
=

(
dP
P

)SR

T
=

(
dP̄
P̄

)SR

T
, (11.51)(

dM0/P
dG

)SR

T
= −M0

P2

(
dP
dG

)SR

T
= − (1− β)(θ − 1)

β(θ − α)
< 0.

As far as its monetary properties are concerned, the model is more classical than
Keynesian if prices and wages are flexible.
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11.3 Sticky prices and the non-neutrality of money

In the previous section it was demonstrated that the presence of monopolistically
competitive agents in the economy does not in and of itself render money non-
neutral. This is not to say that the introduction of price-setting agents in a macroeco-
nomic model is merely a theoretical nicety yielding no novel insights or additional
predictions. Indeed, in the first section of this chapter it was shown how the mo-
nopolistic competition model with flexible prices and wages generates results that
are quite different from the standard competitive model. An additional advantage
of assuming monopolistic, rather than perfect, competition is that one can do away
with the fictional notion of the Walrasian auctioneer.

By modelling price-setting agents explicitly, it is also possible to study quite pre-
cisely the conditions under which such an agent would change his price (or keep it
unchanged) following a shock in some nominal variable such as the money supply
or the nominal wage rate (Rotemberg, 1987, p. 71). The key ingredient of the New
Keynesian approach is to postulate that it costs the firm real resources in order to
change its price. As a result, prices may not be adjusted after some nominal shock
and money may be non-neutral. In the remainder of this section a number of the
main macroeconomic price-adjustment models will be discussed. The key feature
distinguishing these models lies in the nature of the price adjustment costs that are
postulated.

As is pointed out by Rotemberg (1982, p. 522) there are two main reasons why
prices may be costly to change. First, there may be administrative costs having to do
with informing dealers, reprinting price lists, etc. Such costs tend to have the nature
of a fixed cost per price change, independent of the magnitude of the change: it
costs the same to reprint your restaurant menu card when you double or triple your
prices. Such price adjustment costs are often referred to as menu costs in the new
Keynesian literature. The second reason why prices may be costly to change is that
there may be an implicit cost due to an adverse reaction of customers to large price
changes. According to this view customers may prefer frequent small price changes
over infrequent but large price adjustments. It is conventional to assume that such
costs are increasing and convex in the price change.9

We now turn to a discussion of some of the most popular models of price set-
ting. In the first model only menu costs play a role (subsection 11.3.1) whilst in the
second we assume that price adjustment costs are quadratic (subsection 11.3.2). In
subsection 11.3.3 we discuss an alternative setting in which price adjustment costs
are random and are either infinite or zero in any particular period. The models in
subsections 11.3.2–11.3.3 both give rise to a new Keynesian Phillips curve which is
similar in form (though not in interpretation) to the expectations-augmented Phillips
curve of Friedman and Phelps (see Roberts, 1995, pp. 979–980).

11.3.1 Menu costs

In this subsection we develop a simple monetary monopolistic competition model in
which price-setting firms face small menu costs if they wish to changes their prices.
The model is a simplified version of Blanchard and Kiyotaki (1987) in that the labour
market is assumed to be competitive and populated by wage-taking agents (firms
and the representative household). Hence, the nominal wage is flexible and labour

9Such costs are reminiscent of the adjustment costs often postulated in the theory of firm investment.
See the discussion of Tobin’s q-theory of investment in Chapters 3 and 4.
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demand and supply are equated. The main advantage of assuming a competitive
labour market is that it facilitates the exposition of the main results and identifies in
a straightforward fashion some of the empirical problems the menu-cost argument
runs into.

As in Blanchard and Kiyotaki (1987, p. 649) the representative household has
a utility function which is additively separable in composite consumption and real
money, on the one hand, and labour hours on the other:

U(C, M/P, L) ≡ U1(C, M/P)−U2(L)

= Cα

(
M
P

)1−α

− γL
L1+1/σ

1 + 1/σ
, 0 < α < 1, σ > 0, (11.52)

where γL > 0 is a simple scaling factor (to be used in the computer simulations
below) and σ regulates the slope of the labour supply function (see below). The
budget restriction is given by:

PC + M = WL + M0 + Π− T (≡ I), (11.53)

where I represents total wealth of the household (including labour income). Com-
posite consumption is defined by (11.2), and it is assumed that the diversity effect
is absent (i.e. we set η = 1). This is a useful and innocuous simplification as it is
assumed that the number of firms is constant. The household chooses consump-
tion, money balances, and labour supply in order to maximize (11.52) subject to
(11.53). Again a simple two-stage procedure can be used to find the solutions. In the
first stage the household chooses C and M/P to maximize the sub-utility function
U1(C, M/P) subject to the budget restriction PC + M = I. This yields the following
expressions:

PC = αI, (11.54)
M = (1− α)I, (11.55)

V1(I/P) = αα(1− α)1−α I
P

, (11.56)

where V1(I/P) is the indirect sub-utility function associated with U1(C, M/P).10 In
the second stage, the household chooses L and thus I in order to maximize V1(I/P)−
U2(L) subject to the definition of I (given on the right-hand side of (11.53)). This
yields the expressions for labour supply and real household wealth including labour
income:

L =

(
αα(1− α)1−α

γL

)σ (W
P

)σ

, (11.57)

I
P
=

(
αα(1− α)1−α

γL

)σ (W
P

)1+σ

+
M0 + Π− T

P
. (11.58)

By using the utility specification (11.52), there is no income effect in labour supply
and only the substitution effect survives. The advantage of this specification is that
it enables us to demonstrate the crucial role played by the elasticity of labour supply
with respect to the real wage. If σ is very high, labour supply is highly elastic and

10It is obtained by substituting the optimal values for C and M/P into the direct sub-utility function
U1(·).
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large labour supply changes result from only a small increase in the real wage. Con-
versely, if σ is low, labour supply is relatively inelastic and a large change in the real
wage is needed to produce a given increase of labour supply.

Each firm in the monopolistically competitive sector faces a demand for its prod-
uct from the private sector (see (11.7)) and from the government (see (11.16)). Since
we abstract from diversity effects (η = 1), total demand facing firm j can be written
as:

Yj(Pj, P, Y) =
(Pj

P

)−θ Y
N

, (11.59)

where Y is aggregate demand:

Y = C + G =
α

1− α

M
P

+ G, (11.60)

and where we have used (11.54)–(11.55) to relate private consumption to real money
balances.

For reasons that will become clear below, we use a slightly more general descrip-
tion of technology than before. Instead of (11.10) we use the following production
function:

Yj =


0 if Lj ≤ F[ Lj − F

k

]γ

if Lj ≥ F,
(11.61)

with 0 < γ ≤ 1. If γ is strictly less than unity, the marginal product of labour
declines with output and the average cost curve of the firm is U-shaped (see Dixon
and Lawler, 1996, p. 223). Of course, if γ = 1 (11.61) and (11.10) coincide.

Firm j chooses its price, Pj, in order to maximize its profit:11

Πj(Pj, P, Y) ≡ Pj ·Yj(Pj, P, Y)−W
[
k ·
[
Yj(Pj, P, Y)

]1/γ
+ F

]
. (11.62)

The optimal price of firm j must satisfy the following first-order condition:

dΠj(Pj, P, Y)
dPj

=
(

Pj −MCj
)
·

∂Yj(Pj, P, Y)
∂Pj

+ Yj(Pj, P, Y)

= Yj(Pj, P, Y) ·
(

1 +
Pj −MCj

Pj
·

Pj

Yj(·)
∂Yj(·)

∂Pj

)

= Yj(Pj, P, Y) ·
[

1− θ ·
Pj −MCj

Pj

]
= 0, (11.63)

where MCj ≡ (Wk/γ)Yj(Pj, P, Y)(1−γ)/γ is marginal costs of firm j and where we
have substituted the price elasticity of demand (θ) in going from the second to the
third line. An active firm is one which produces a positive amount of goods (Yj(·) >
0) and sets it price such that the term in square brackets on the right-hand side of
(11.63) is equal to zero:

Pj = µMCj ⇒ Pj =
µk
γ

WY(1−γ)/γ
j , µ ≡ θ

θ − 1
> 1. (11.64)

11The reason why we introduce the rather elaborate notation for demand Yj(Pj, P, Y) and profit
Πj(Pj, P, Y) will be made apparent below.
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This pricing rule generalizes the one derived in section 11.1 (i.e. equation (11.13))
by allowing for an upward-sloping marginal cost curve (if γ < 1). Apart from this
generalization, another important thing to note is that in section 1 it was assumed
that the firm sets its output level in a profit-maximizing fashion taking other produc-
ers’ output levels as given (the Cournot assumption). In contrast, in this section the
firm sets its price in an optimal (profit-maximizing) fashion, taking other producers’
prices as given (the Bertrand assumption). In the absence of menu costs the two as-
sumptions yield the same pricing rule. As is shown below, however, this equivalence
does not necessarily hold in the presence of menu costs.

We now have all the ingredients of the model, though still abstracting from menu
costs. The main equations have been collected in Table 11.3. Equation (T3.2) ex-
presses consumption (and equilibrium real money balances) as a function of factors
influencing real wealth. It is obtained by using (11.54)–(11.55) and (11.58), and sub-
stituting the government budget constraint G = T/P (we again abstract from civil
servants and set LG = 0 in (T2.4)). Equation (T3.3) is the expression for aggregate
profit income. It is obtained by substituting (11.64) into the definition of profit in-
come (11.62) and simplifying by using the definition of Y in (11.17). Finally, (T3.4) is
the price-setting rule in the symmetric equilibrium, and (T3.5) is the labour supply
function.

Before turning to the implications of menu costs, we first study the properties of
the model under perfect price flexibility. By studying the flex-price version of the
models first, it is easier to understand the implications of menu costs later on. It is
clear that money is neutral: multiplying W, P, and M0 by ζ > 0 does not change
anything real and just changes all nominal variables (such as nominal wealth, I, and
nominal profit, Π) equi-proportionally. As far as their monetary properties are con-
cerned, the models of Tables 11.2 and 11.3 are thus similar in that they both exhibit
monetary neutrality when prices and wages are flexible. There is an important differ-
ence between the two models, however, in the area of fiscal policy. Indeed, because
there is no income effect in labour supply (see (T3.5)), fiscal policy is completely in-
effective in the model of this section. Using the expressions in Table 11.3 it is easy to
show that a tax-financed increase in public consumption leads to one-for-one crowd-
ing out of private consumption, no effect on output, real profits, employment, and
real wages, and an increase in the price level. In that sense the model used here is
even more classical than the one used in the previous section. In the next subsection
we study if and to what extent the notion of menu costs can give this hyper-classical
model a more Keynesian flavour.

11.3.1.1 The basic menu-cost insight

Sometimes the answer to an apparently simple question can be quite surprising. A
beautiful example of this phenomenon is provided by Akerlof and Yellen’s (1985a)
question whether “small deviations from rationality make significant differences to
equilibria”. Alternatively, the question could be rephrased in terms of transaction
costs: can small costs of changing one’s actions have large effects on the economic
equilibrium and social welfare? Nine out of ten people would probably answer this
question with an unequivocal “no”. The thought experiment would probably lead
them to reject the notion that a small “impulse” can produce a “large effect”. In terms
of Matsuyama’s (1995) terminology, most people are unfamiliar with the notion of
macroeconomic complementarities and cumulative processes. It turns out, however,
that the answer to Akerlof and Yellen’s question can be quite a bit more complex.

In the context of our model, the task at hand is to investigate whether, following
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Table 11.3. A simplified Blanchard-Kiyotaki model (no menu costs)

Y = C + G (T3.1)

C =
α

1− α

M0
P

=


α

[
ω−σ

(
W
P

)1+σ

+
M0
P

+
Π
P
− G

]
(if σ < ∞)

α

[
W
P

L +
M0
P

+
Π
P
− G

]
(if σ→ ∞)

(T3.2)

Π
P
≡ µ− γ

µ
Y− W

P
NF (T3.3)

P
W

=
µk
γ

(
Y
N

)(1−γ)/γ

(T3.4)

W
P

=

{
ωL1/σ (if œ < ∞)
ω (if œ→ ∞)

(T3.5)

Notes: ω ≡ γL[α
α(1− α)1−α]−1 > 0 and µ ≡ θ/(θ − 1).

a shock in aggregate demand, price stickiness can (a) be privately efficient and (b)
exist in general equilibrium, whilst (c) the effect on social welfare can be large. If
both parts (a) and (b) are demonstrated, Akerlof and Yellen’s question is answered
in the affirmative. Part (a) can be easily demonstrated to hold in our model and relies
on a simple application of the envelope theorem. The proof of part (b) is more complex
as it relies on the general equilibrium implications of price stickiness. Once (a) and
(b) have been demonstrated, part (c) follows readily.

Intermezzo 11.3

The envelope theorem. The envelope theorem is extremely useful in
economic theory. Broadly speaking the theorem says that the change in
the objective function due to a change in an exogenous parameter is the
same whether or not the decision variable is adjusted as a result of the
change in the parameter. In more colloquial terms, the theorem says that
objective functions are flat at the top (Rotemberg, 1987, p. 76).

Consider the formal demonstration by Varian (1992, pp. 490–491).
Suppose that f (x, z) is the objective function, x is the decision variable,
and z is the (vector of) exogenous variables and parameters. The first-
order condition for an optimum of f (x, z) by choice of x is:

∂ f (x, z)
∂x

= 0. (a)

But (a) can itself be interpreted as an implicit function relating the opti-
mal choice for the decision variable (x∗) to the particular values of z, say
x∗ = x∗(z). By plugging x∗ back into the objective function we obtain
the so-called optimal value function:

V(z) ≡ max
{x}

f (x, z) = f (x∗(z), z). (b)
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It is useful to note that we have in fact encountered many such optimal
value functions throughout the book. For example, in this chapter the
indirect utility function (11.38) is an example of a maximum value func-
tion: it expresses maximum attainable utility (the objective) in terms of
full income and a true price index (the parameters that are exogenous to
the household). Similarly, the true price index for the composite differen-
tiated good (11.9) is an example of a minimum value function.

Using the optimal value function (b) we can determine by how much
the objective function changes if (an element of) z changes by a small
amount. By totally differentiating (b) we obtain:

dV(z)
dz

=

(
∂ f (x, z)

∂x

)
x=x∗(z)

· dx∗(z)
dz

+
∂ f (x∗(z), z)

∂z
. (c)

The second term on the right-hand side of (c) is the direct effect on the
objective function of the change in z keeping the decision variable un-
changed. The first term on the right-hand side is the indirect effect on the
objective function that is induced by the change in x∗ itself. The point to
note, however, is that in the optimum the objective function is flat (i.e. (a)
shows that ∂ f (·)/∂x = 0 for x = x∗) so that the indirect effect is zero.
Hence, equation (c) is reduced to:

dV(z)
dz

=
∂ f (x∗(z), z)

∂z
≡ ∂V(z)

∂z
. (d)

This is the simplest statement of the envelope theorem. The total and par-
tial derivatives are the same, i.e. at the margin the change in the objective
function is the same whether or not the decision variable is changed.

We close with an anecdote from times past. As is argued by Silberberg
(1987), the discovery of the envelope theorem is due in part to a dispute
between the famous economist Jacob Viner and his draftsman Dr Y. K.
Wong. Viner was working on his famous paper about the relationship
between short-run (ACSR) and long-run average cost (ACLR) curves (see
Viner, 1931). He instructed Dr Wong to draw ACLR in such a way that it
was never above any portion of any ACSR curve and that it would pass
through the minimum points of all ACSR curves. Dr Wong, being a math-
ematician, refused to do so and pointed out to Viner that his instructions
were actually inconsistent. Unfortunately, Viner, not being a mathemati-
cian, could not understand Dr Wong’s point and ended up drawing ACLR
through all the minima of the ACSR curves (see his chart IV and footnote
16). Samuelson (1947), being both an economist and mathematician, ul-
timately solved the puzzle by pointing out that ACLR is the envelope of
all ACSR curves. Wong was right after all! If this anecdote has any lesson
at all, it must be that economists should also be reasonably good mathe-
maticians to avoid falling into puzzles that cannot be solved by graphical
means alone.

****

What happens to the optimal price of firm j if aggregate demand changes by a
small amount? The answer is provided by the envelope theorem (see Intermezzo
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11.3). In particular, (11.59) and (11.64) together yield an expression for the optimal
price in terms of the parameters that are exogenous to firm j, i.e. P∗j = Pj(P, Y, W):

P∗j
P

=

[
µk
γ
· W

P
·
(

Y
N

)(1−γ)/γ
]γ/[γ+θ(1−γ)]

. (11.65)

By substituting P∗j (·) into (11.62) we obtain the maximum profit function of firm j:

Π∗j (P, Y, W) ≡ P∗j (·) ·Yj(P∗j (·), P, Y)−W
[
k ·
[
Yj(P∗j (·), P, Y)

]1/γ
+ F

]
. (11.66)

By differentiating this expression with respect to aggregate demand we obtain the
result that it doesn’t really matter to the profit of firm j whether or not it changes its
price following a shock in aggregate demand:

dΠ∗j (·)
dY

=

[P∗j (·)−MC∗j (·)
] (∂Yj(Pj, P, Y)

∂Pj

)
Pj=P∗j

+ Yj(P∗j (·), P, Y)

 dP∗j (·)
dY

+
[

P∗j (·)−MC∗j (·)
] ∂Yj(P∗j (·), P, Y)

∂Y

=

[
∂Πj(·)

∂Pj

]
Pj=P∗j

dP∗j (·)
dY

+
[

P∗j (·)−MC∗j (·)
] ∂Yj(P∗j (·), P, Y)

∂Y

=
[

P∗j (·)−MC∗j (·)
] ∂Yj(P∗j (·), P, Y)

∂Y
≡

∂Πj(·)
∂Y

, (11.67)

where MC∗j (·) is short-hand notation for the marginal cost of firm j evaluated at the
optimum. Hence, to a first-order of magnitude, the effect on the profit of firm j of
a change in aggregate demand is the same whether or not firm j changes its price
optimally following the aggregate demand shock.

The envelope result can be illustrated with the aid of a diagram originally sug-
gested by Akerlof and Yellen (1985a, p. 710). In Figure 11.3 firm j’s price and profit
level are put on the horizontal and vertical axes respectively. Initially aggregate de-
mand is Y0 and the optimal price is at the top of the “profit hill” at point A. The
optimal price-profit combination is denoted by (P∗j (P, Y0, W0), Π∗j (P, Y0, W0)). Now
consider what happens if aggregate demand expands, say from Y0 to Y1 (> Y0).
Ceteris paribus the nominal wage rate (W0) and the price index for the composite
consumption good (P),12 the level of profit rises for all values of Pj and the entire
profit function shifts up, say from Πj(Pj, P, Y0, W0) to Πj(Pj, P, Y1, W0).13 The output
expansion leads to an increase in marginal costs (provided γ < 1) and thus to an
increase in the optimal price of firm j (see (11.64)–(11.65)). Hence, the top of the new
profit hill (point B) lies north-east of the top of the old profit hill (point A).14

12We hold constant the prices charged by all other firms and conclude that this renders the price index,
P, constant. In doing so, we ignore the fact that firm j’s price also features in the price index P. This
is allowed because there are many firms and each individual firm is extremely small and its price thus
carries a small weight in the price index.

13Formally, (11.62) implies that ∂Πj(·)/∂Y = [Pj−MCj]∂Yj/∂Y. A necessary condition for firm j to have
positive profits (as drawn in Figure 11.3) is that its price must cover at least marginal cost, i.e. Pj > MCj.
Furthermore, (11.59) implies that firm j’s demand expands if aggregate demand increases, i.e. ∂Yj/∂Y > 0.
Combining these results yields ∂Πj(·)/∂Y > 0. Firms like aggregate demand expansions because it raises
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Figure 11.3: Menu costs

But this is not the end of the story. Following the shock to aggregate demand,
firm j experiences a boost in the demand for its product and increases its production
level accordingly. But this means that it needs to employ more workers. Since all
firms are in exactly the same position as firm j they will also want to employ more
workers so that aggregate demand for labour will rise. This is where the labour
market comes in. Clearly, if the labour supply elasticity is very large (σ → ∞), firm
j (and all other firms) can obtain the additional units of labour at the initial nominal
wage rate (W0). In that case the real wage is rigid (see (T3.5)) and thus, if the price
index P does not change neither will the nominal wage rate W. So all we need to
show now is why the price index would be rigid.

Assuming for the time being that labour supply is infinitely elastic (σ → ∞) it
is possible to demonstrate the menu-cost insight graphically with the aid of Figure
11.3. For given values of P and W, the aggregate demand shock would increase the
profits of firm j from Π∗j (P, Y0, W0) to Π∗j (P, Y1, W0) if it adjusted its price optimally
(which is the move from A to B). If instead firm j keeps its price unchanged, the profit
increase would be the vertical distance between points C and A, and the envelope
theorem suggests that the profit loss due to non-adjustment of the price is of second
order, i.e. the vertical distance DC in Figure 11.3 is very small. But that suggests
that small menu costs can make non-adjustment of the price a profitable option for
firm j. Indeed, provided the menu costs (Z) are larger than the vertical distance DC,
keeping Pj unchanged is the optimal choice for firm j, i.e. Pj will be set equal to its

their profits.
14In contrast, if the marginal product of labour is constant (γ = 1), point B lies directly above point A.

This strong result follows from the pricing rule (11.64) in combination with the fact that the demand elas-
ticity (θ) and thus the gross markup (µ) of firm j are both constant. The optimal price is then proportional
to the given nominal wage. As a result, for a given nominal wage there is no need for firm j to change its
price and the envelope result (11.67) holds exactly.
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old optimal level (P∗j (P, Y0, W0)) if the following condition is satisfied:

Πj(P∗j (P, Y0, W0), P, Y1, W0) > Π∗j (P, Y1, W0)− Z, (11.68)

where the left-hand side of (11.68) is the profit level of firm j when it charges the old
price and faces the higher aggregate demand, Y1. The right-hand side of (11.68) is
the net profit of firm j if it changes its price in the face of higher demand and incurs
the menu cost. Since by assumption all firms are in exactly the same position as firm
j, they also do not change their price if (11.68) holds and the maintained assumption
that P is constant is thereby confirmed. Hence, for the infinitely elastic labour supply
case (σ → ∞) a menu-cost equilibrium exists for which an aggregate demand shock
has no effect on prices and the nominal (and real) wage rate.

The effects of fiscal and monetary policy in a menu-cost equilibrium can be com-
puted as follows. The model consists of equations (T3.1) and the second expres-
sion in (T3.2). Since aggregate profit income equals revenue minus the wage bill
(Π ≡ PY−WL) we can write the system as:

Y = C + G, (11.69)

C =
α

1− α

M0

P
= α

[
Y +

M0

P
− G

]
. (11.70)

Fiscal policy is highly effective in the menu-cost equilibrium:(
dY
dG

)MCE

T
= 1,

(
dC
dG

)MCE

T
=

(
d(M0/P)

dG

)MCE

T
= 0, (11.71)

where the superscript “MCE” stands for menu-cost equilibrium. The tax-financed
increase in government consumption raises aggregate demand and thus each indi-
vidual firm’s demand and profit level. Due to the menu costs all firms keep their
price unchanged, and because of the horizontal labour supply curve (σ → ∞) the
nominal wage does not change either. The firms can hire all the additional units of
labour they need at the old real wage rate. The representative household receives the
additional firm revenue in the form of additional wage payments and profit income.
The additional income exactly covers the higher taxes levied by the government so
that private consumption is unchanged and the output effect is simply the effect
due to public consumption as in the original Haavelmo (1945) story. In view of the
production function (11.61) the employment expansion can be written as:

w ·
(

dL
dG

)MCE

T
=

1
µ

(
dY
dG

)MCE

T
=

θ − 1
θ

> 0, (11.72)

where w ≡ W/P and we have used symmetry (Lj = L/N for j = 1, ..., N) plus
the fact that firms have set their prices as a markup over marginal cost in the initial
(pre-shock) equilibrium.

Monetary policy, consisting of a helicopter drop of nominal money balances (dM0
> 0), stimulates output, employment, and consumption, and the existence of menu
costs thus destroys monetary neutrality:

P
(

dY
dM0

)MCE
= P

(
dC

dM0

)MCE
= µW

(
dL

dM0

)MCE
=

α

1− α
> 0. (11.73)

The increase in money balances leads to an increase in consumption spending and
further multiplier effects via the expanded income of the representative household,
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i.e. after n rounds of the multiplier process spending has increased by PdY = PdC =
[α+ α2 + ...+ αn]dM0 and the demand for money has increased by dM = (1− α)[1+
α + α2 + ... + αn]dM0. Since the marginal propensity to consume is less than unity,
the multiplier process converges to the last expression in (11.73).

In summary, we have succeeded in demonstrating that with a very high labour
supply elasticity (σ→ ∞, so that the labour supply curve is horizontal), small menu
costs can lead to nominal price and wage inflexibility, which in turn drastically alters
the qualitative properties of the model. Indeed, as was shown in the previous sub-
section, the flex-price version of the model possesses extremely classical properties
in that money is neutral and fiscal policy only affects the price level. In contrast, in
a menu cost equilibrium, both fiscal and monetary policy affect output and employ-
ment thus giving the model a much more Keynesian flavour. Below we demonstrate
that both the nominal rigidity (price stickiness due to menu costs in price adjustment)
and the real rigidity (constant real wage due to a horizontal labour supply curve) are
of crucial importance in this result. Before doing so, however, we must demonstrate
part (c) of our menu-cost investigation (see page 390 above) by demonstrating that
there are first-order welfare effects associated with the aggregate demand effects that
we have found.

As before, we use the indirect utility function to compute the welfare effects of
aggregate demand shocks in a menu-cost equilibrium. By using (11.69)–(11.70) in
(11.52) (with σ → ∞ imposed) we find a number of alternative expressions for indi-
rect utility:

V = αα(1− α)1−α

[
Y +

M0

P
− G

]
− γLL

= αα(1− α)1−α

[
M0 + Π

P
− G

]
+

[
αα(1− α)1−α W

P
− γL

]
L

= αα(1− α)1−α

[
M0 + Π

P
− G

]
. (11.74)

In going from the first to the second expression we have used the definition for ag-
gregate profit income (Π ≡ PY −WL), and in going from the second to the third
expression we have used the labour supply equation (T3.5). Fiscal policy clearly has
first-order welfare effects. Using the first line of (11.74) and noting (11.69) we derive:(

dV
dG

)MCE

T
= αα(1− α)1−α

(
dC
dG

)MCE

T
− γL

(
dL
dG

)MCE

T

= −γL
µ

P
W

= −αα(1− α)1−α

µ
< 0, (11.75)

where we have used the (11.71) and (11.72) to get from the first to the second line.
The increase in government consumption raises output one-for-one but does not
come for free (as in Keynes’ story in section 11.1.5 above) as the representative house-
hold has to supply more hours of work. Since the labour market is competitive, the
household derives no surplus from supplying labour; the additional wage income
exactly compensates the household for having to work harder (Blanchard and Kiy-
otaki, 1987, p. 654). Hence, only the additional profit income mitigates the welfare
loss due to additional government spending somewhat. Indeed, the welfare effect
(11.75) can be restated in terms of MCPF as:

0 < MCPFMCE
T ≡ − 1

UC
·
(

dV
dG

)MCE

T
=

1
µ
=

θ − 1
θ

< 1, (11.76)
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where we have used the fact that the marginal utility of consumption equals UC =
αα(1− α)1−α. The existence of market power in the goods market mitigates but does
not obliterate the social costs associated with a public spending shock.

Monetary policy also has first-order welfare effects in the menu-cost equilibrium.
Indeed, using the final expression in (11.74) we derive:(

dV
dM0

)MCE
= αα(1− α)1−α

[
1
P
+

(
d(Π/P)

dM0

)MCE
]

=
αα(1− α)1−α

P

[
1 + P

(
dY

dM0

)MCE
−W

(
dL

dM0

)MCE
]

=
αα(1− α)1−α

P

[
1 +

1
θ

α

1− α

]
> 0. (11.77)

The term outside the brackets on the right-hand side of (11.77) represents the mar-
ginal utility of nominal income. Inside the square brackets on the right-hand side
of (11.77) there are two effects which may be labelled, respectively, the liquidity effect
and the profit effect. As is pointed out by Blanchard and Kiyotaki, the liquidity effect
exists because even the competitive equilibrium (for which 1/θ = 0) is suboptimal if
real money enters utility (1987, p. 654 fn. 13). As is explained in Chapter 10, the inef-
ficiency results from the fact that people economize on a resource (fiat money) which
is not scarce from a societal point of view. For that reason, ceteris paribus consump-
tion, an increase in real money balances constitutes a welfare gain because it lowers
the marginal utility of real money balances and brings the economy closer to Fried-
man’s satiation point. This effect operates regardless of the nature of competition in
the goods market.

In contrast to the liquidity effect, the profit effect in (11.77) is only operative under
monopolistic competition (i.e. if 1/θ is finite). This works via the profit income
of households. An increase in the money stock boosts output and profit income,
and this causes an additional welfare gain to the representative household over and
above the liquidity effect. Since both effects work in the same direction, the total
welfare effect of an increase in nominal money balances in a menu-cost equilibrium
is unambiguously positive and first order.

11.3.1.2 Some simulations

In the previous subsection it was demonstrated (for the case with a horizontal labour
supply curve, i.e. σ → ∞), that with small menu costs both monetary and fiscal
policy can have first-order effects on welfare. We have thus confirmed the basic
menu-cost insight of Akerlof and Yellen (1985a, 1985b). In Tables 11.4 and 11.5 we
present some numerical simulations with a more general version of the menu-cost
model. In particular, we investigate the robustness of the menu-cost insight with
respect to changes in key parameters such as the labour supply elasticity (σ), the
markup (µ), and the elasticity of the marginal cost function (σY ≡ (1− γ)/γ).

In order to perform the simulations, numerical values must be chosen for all the
parameters that appear in Table 11.3. The following so-called calibration approach is
adopted. We set up the model such that the parameters of special interest (σ, σY,
and µ) can be varied freely. We adopt a number of quantities/shares that are held
constant (at economically reasonable values) throughout the simulations. In par-
ticular, the number of firms is N0 = 1000 (large), the steady-state revenue share of
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overhead labour cost is ωF ≡WNF/PY = 0.05, the output share of government con-
sumption is ωG ≡ G/Y = 0.1, and the velocity of money is vM ≡ M0/(PY)0 = 6.
We assume that the initial money supply is M0 = 1 and that initial output and
employment are normalized at unity, Y0 = L0 = 1. For a given configuration of
(σ, σY, µ) it is possible to compute the initial steady state for the endogenous vari-
ables (Y, C, P, W/P, L, Π/P) by using the calibration parameters (α, γL, F, k) appro-
priately, i.e. in such a way that the steady state is consistent with the share and
parameter information we have imposed above.

Since this way of calibrating a theoretical model may not be familiar to all read-
ers, we show in detail how we can retrieve the remaining variables and parame-
ters. We denote the initial steady-state value with a subscript “0”. It follows from
(T3.1) that C0 = (1 − ωG)Y0 = 0.9 and G0 = ωGY0 = 0.1. By rewriting the
money velocity definition we find P0 = M0/(vMY0) = 1/6. From (T3.2) we derive
ωC ≡ C/Y = αvM/(1− α) which can be solved for α = ωC/(ωC + vM) ≈ 0.13.
By defining the pure profit share as 1 − εL ≡ [Π/(PY)]0, it follows from (T3.3)
and the definition of ωF that εL = γ/µ + ωF (where γ ≡ 1/(1 + σY)). By defi-
nition εL ≡ [WL/ (PY)]0 from which we derive an expression for the initial real
wage (W/P)0 = εL. We can make this expression for the real wage consistent with
(T3.5) by setting γL = (W/P)0 αα(1− α)1−α. In view of the definition of ωF we find
that F = (Y/N)0/ (W/P)0 = (N0εL)

−1. The value for k is retrieved from (T3.4)—

k = γ
[
εLµ(Y/N)σY

0
]−1—and Π0 is obtained from (T3.3). To give an example, for

the case with µ = 1.25, σY = 0.1, and σ = 106, the calibration approach yields the
following results for the variables and parameters.

Y0 = 1 C0 = 0.9 G0 = 0.1 L0 = 1
N0 = 1000 (W/P)0 = 0.777 P0 = 0.167 Π0 = 0.0371
α = 0.130 γL = 0.528 k = 1.867 F = 6.433× 10−5

(11.78)

In order to numerically investigate the menu cost insight, we follow Blanchard
and Kiyotaki (1987, p. 658) by administering a non-trivial monetary shock, taking
the form of a 5% increase in the money supply. We study the economy under two
pure scenarios. In the full-adjustment case, all firms pay the menu cost and adjust
the price of their product in the light of the higher level of aggregate demand. In
contrast, in the no-adjustment case, all firms keep their price unchanged and expand
output to meet the aggregate demand expansion.

Assuming that the menu cost takes the form of overhead labour (e.g. workers
are employed to change price tags), under full adjustment, the model consists of
equations (T3.1)–(T3.2) and (T3.4)–(T3.5) plus the augmented profit function:

ΠFA =
µ− γ

µ
PY−WN (F + Z) , (11.79)

where the superscript “FA” stands for full adjustment. For a given value of Z, this
system can be solved numerically for the endogenous variables ΠFA, Y, L, P, C, and
W.

In contrast, in the no-adjustment case all firms keep their price unchanged (P =
P0) and the system consists of equations (T3.1)–(T3.2), (T3.5), and the profit function
under no adjustment (superscript “NA”):

ΠNA = P0Y−W
[
kY1/γN1−1/γ + NF

]
. (11.80)

This system of equations can be solved numerically for the endogenous variables
ΠNA, Y, L, C, and W.
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In the final step, we compare profit levels under the two scenarios and find the
lowest value of menu costs, ZMIN, for which non adjustment of prices is an equilib-
rium, i.e. for which ΠFA just falls short of ΠNA. In Tables 11.4 and 11.5 we report
a number of indicators for different parameter combinations. In Table 11.4 we con-
sider four different values for the markup (µ ∈ {1.1, 1.25, 1.5, 2}) and six different
values for the labour supply elasticity (σ ∈ {0.2, 0.5, 1, 2.5, 5, 106}). In each case the
entry labelled “menu costs” reports the revenue share of menu costs for which non-
adjustment is an equilibrium for all firms, i.e. the entry equals:

menu costs = 100×
[

N0 (W)NA ZMIN

P0YNA

]
, (11.81)

where (W)NA and YNA are, respectively, the nominal wage and output when the
price is not adjusted. So, for example, if µ = 1.1, σY = 0.1, and σ = 106, the results in
Table 11.4 show that menu costs amounting to no more than 0.20% of revenue will
make non-adjustment of prices an equilibrium in the sense that ΠNA > ΠFA. The
entry labelled “welfare gain” measures the gain in welfare (expressed in terms of an
output share) which results from the monetary shock when there is no adjustment
in prices:

welfare gain = 100×
[

VNA −V0

UCYNA

]
, (11.82)

where UC ≡ αα(1− α)1−α is the marginal utility of income, V0 is initial welfare, and
VNA is welfare following the shock but in the absence of price adjustment. So, if
µ = 1.1, σY = 0.1, and σ = 106, the monetary shock gives rise to a huge 29.1%
rise in welfare. Finally, the entry labelled “ratio” is the ratio of the welfare gain and
the macroeconomic menu costs. For the particular case considered here, the ratio is
146.12, so that a small menu cost gives rise to very large welfare effects.

In Table 11.4 we hold the elasticity of marginal cost constant (at σY = 0.1) and
consider various combinations of the markup (µ) and the substitution elasticity of
labour supply (σ). Just like Blanchard and Kiyotaki (1987, p. 658) we find a num-
ber of key features in these simulations. First, the welfare measure does not vary a
lot with the different parameter combinations. Second, for a given value of σ, the
markup does not affect menu costs and the ratio very much. Third, for a given value
of µ, menu costs are strongly dependent on the value of the labour elasticity. Take,
for example, the empirically reasonable case for which the net markup is 25%, i.e.
µ = 1.25. If labour supply is infinitely elastic (σ→ ∞), menu costs of 0.2% of revenue
suffice to make non-adjustment of prices optimal and the ratio is 145.73. This ratio
drops very rapidly for lower, empirically more reasonable, values of σ. For example,
if σ = 1 then only unreasonably high menu costs (amounting to 3.51% of revenue)
can stop the firm from finding price adjustment advantageous. Intuitively, if labour
supply is not very elastic, the output expansion under non-adjustment drives up
wages (and thus production costs) very rapidly and thus makes it more likely that
price adjustment is profitable.

In Table 11.5 we hold the markup constant (at µ = 1.25) and consider various
combinations of the elasticity of marginal cost (σY) and the labour supply elasticity
(σ). Essentially the same picture emerges from this table as from the previous one:
the welfare gain is rather insensitive to (σ, σY)-combinations, the value of σY does not
affect menu costs and the ratio very much, and the labour supply elasticity exerts a
major effect on menu costs and the ratio.
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Table 11.4: Menu costs and the markup

µ = 1.10 µ = 1.25
∆M = 0.05 menu welfare ratio menu welfare ratio
σY = 0.1 costs gain costs gain
σ = 0.2 20.44 28.6 1.40 18.10 29.1 1.61
σ = 0.5 7.85 28.9 3.68 6.96 29.4 4.22
σ = 1 3.95 29.0 7.35 3.51 29.5 8.40
σ = 2.5 1.69 29.1 17.18 1.51 29.5 19.49
σ = 5 0.94 29.1 30.80 0.86 29.6 34.37
σ = 106 0.20 29.1 146.12 0.20 29.6 145.73

µ = 1.50 µ = 2
σ = 0.2 15.23 29.8 1.96 11.53 30.6 2.65
σ = 0.5 5.87 30.0 5.11 4.55 30.8 6.76
σ = 1 2.99 30.1 10.06 2.35 30.8 13.12
σ = 2.5 1.32 30.1 22.80 1.06 30.8 29.12
σ = 5 0.76 30.1 39.56 0.63 30.9 48.68
σ = 106 0.21 30.1 144.67 0.21 30.9 144.95

Table 11.5: Menu costs and the elasticity of marginal cost

σY = 0 σY = 0.05
∆M = 0.05 menu welfare ratio menu welfare ratio
µ = 1.25 costs gain costs gain
σ = 0.2 17.44 29.2 1.67 17.72 29.2 1.65
σ = 0.5 6.61 29.4 4.45 6.76 29.4 4.35
σ = 1 3.17 29.5 9.31 3.34 29.5 8.84
σ = 2.5 1.19 29.5 24.73 1.36 29.5 21.69
σ = 5 0.52 29.6 56.72 0.70 29.6 42.23
σ = 106 →0 29.6 → ∞ 0.04 29.6 672.74

σY = 0.1 σY = 0.2
σ = 0.2 18.10 29.1 1.61 18.54 29.1 1.57
σ = 0.5 6.96 29.4 4.22 7.34 29.4 4.00
σ = 1 3.51 29.5 8.40 3.84 29.5 7.67
σ = 2.5 1.51 29.5 19.49 1.83 29.5 16.16
σ = 5 0.86 29.6 34.37 1.15 29.5 25.60
σ = 106 0.20 29.6 145.73 0.49 29.6 60.60
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11.3.1.3 Evaluation

The simulation results graphically illustrate that the standard menu-cost model runs
into trouble because non-adjustment of prices after a monetary shock is only an equi-
librium if labour supply is highly elastic (Blanchard and Kiyotaki, 1987, p. 663).
For an empirically reasonable value of the labour supply elasticity, there are very
strong incentives to adjust prices and nominal frictions produce only small non-
neutralities.15 Ball and Romer (1990) argue that the menu-cost argument can be
rescued if the economy has both real and nominal rigidities. By real rigidity they
mean the phenomenon that “real wages or prices are unresponsive to changes in
economic activity” (Ball and Romer, 1990, p. 183). Nominal rigidity can either take
the form of small menu costs or departures from full rationality (as in Akerlof and
Yellen, 1985a, 1985b). Taken in isolation, real rigidity does not imply price inflexibil-
ity. But in combination with nominal rigidity, a high degree of real rigidity translates
into substantial effects of monetary shocks. In the model considered in the previous
subsection, a high labour supply elasticity leads to substantial real rigidity. Indeed,
for σ → ∞, the real wage is constant (see equation (T3.5)) and thus completely in-
sensitive to economic activity. Ball and Romer (1990) discuss a number of alternative
models leading to real rigidities, such as the efficiency-wage model of the labour
market and the imperfect-information customer-market model of the goods market.

Rotemberg (1987, pp. 80–81) has identified a number of problematic aspects of
the menu-cost insight. First, the menu-cost equilibrium may not be unique. In the
context of our model, his argument runs as follows. Recall that ZMIN represents the
minimum amount of menu costs for which it is profitable for an individual firm j
not to adjust its price given that all other firms also keep their prices unchanged! But if
one firm changes its price when Z = ZMIN, it generally becomes profitable for all
other firms to change their prices also, so we have two equilibria: the firms either
all adjust their prices or they all keep them unchanged. Let us now define Z∗MIN as
the minimum amount of menu costs for which an individual firm j keeps its price
unchanged even if all other firms would change their prices. Clearly, Z∗MIN exceeds ZMIN.
Furthermore, if Z ≥ Z∗MIN the menu cost equilibrium is unique. For the interme-
diate case, however, with Z ∈ (ZMIN, Z∗MIN) there are three equilibria: one with no
firm adjusting, another with all firms adjusting, and an intermediate case in which a
fraction φ of the firms adjusts (0 < φ < 1). Rotemberg (1987, p. 90) argues that the
multiplicity of equilibria is a weakness for any economic model. Essentially, with
multiple equilibria it is impossible to predict the economy’s reaction to particular
policy shocks.

A second problem with the menu-cost insight is that it could equally well be ap-
plied to quantities instead of prices. Indeed, if there are costs of adjusting quantities
(e.g. because capital has to be installed in advance of the price-setting decision, as in
Shapiro, 1989, pp. 350–351) it may well be optimal for the firm to adjust its price and
leave output unchanged (Rotemberg, 1987, p. 77).

Finally, as is argued by Rotemberg (1987, pp. 85–91) and Blanchard (1990, p. 822)
an important practical disadvantage of the menu-cost approach to price adjustment
is that it does not generalize easily to a dynamic setting.16 For that reason we now
turn to two approaches which do not have this disadvantage.

15As we show in Chapter 19, the competitive real business cycle (RBC) model runs into the same prob-
lem because it can only generate large output movements following real shocks if the (intertemporal)
labour supply elasticity is very large.

16See Danziger (1999) for an example of a dynamic general equilibrium model with menu costs.
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11.3.2 Quadratic price adjustment costs

In an influential article, Rotemberg (1982) has formulated a rather attractive dynamic
model of price adjustment in which adjustment costs are assumed to be quadratic
(just as in the investment literature surveyed in Chapters 3 and 4 above). Intuitively,
his model solves the problem of dynamic price adjustments in two (conceptual)
steps. In the first step, a path of “equilibrium” prices is determined consisting of
the solution that firm j would choose if there were no costs of adjusting prices. Nor-
malizing the current (planning) period by t = 0, this equilibrium path for firm j is
denoted by the sequence {P∗j,τ}∞

τ=0. In the second step, Rotemberg takes a quadratic
approximation of the firm’s profit function around this equilibrium path and incor-
porates adjustment costs. He shows that the dynamic objective function of the firm
can then be written as follows:

Ω0 =
∞

∑
τ=0

(
1

1 + ρ

)τ [(
pj,τ − p∗j,τ

)2
+ c

(
pj,τ − pj,τ−1

)2
]

, (11.83)

where (1 + ρ)−1 is the firm’s discount factor, c is a constant, pj,τ ≡ ln Pj,τ , and
p∗j,τ ≡ ln P∗j,τ . In the presence of price adjustment costs, the firm chooses a sequence
of actual prices, {Pj,τ}∞

τ=0, in order to minimize the costs of deviating from the opti-
mum that it would choose in the hypothetical case without price adjustment costs.
Equation (11.83) shows that these “deviation costs” are composed of two terms. The
first quadratic term on the right-hand side of (11.83) represents the intratemporal cost
of setting the price at a “suboptimal” level, i.e. at a level different from P∗j,τ . The sec-
ond quadratic term on the right-hand side of (11.83) parameterizes the intertemporal
costs to the firm that are due to price adjustment costs. The higher is c, the more
severe are the price adjustment costs.

The first-order condition for the optimal price in period τ is readily obtained by
using (11.83) and setting ∂Ω0/∂pj,τ = 0:

∂Ω0

∂pj,τ
=

(
1

1 + ρ

)τ [
2
(

pj,τ − p∗j,τ
)
+ 2c

(
pj,τ − pj,τ−1

)]
−
(

1
1 + ρ

)τ+1 [
2c
(

pj,τ+1 − pj,τ
)]

= 0. (11.84)

After some straightforward manipulation we find that (11.84) can be simplified to:

pj,τ+1 −
[

1 + (1 + ρ)
1 + c

c

]
pj,τ + (1 + ρ)pj,τ−1 = −1 + ρ

c
p∗j,τ (11.85)

Equation (11.85) is a second-order difference equation in pj,τ with constant coeffi-
cients and a potentially time-varying forcing term p∗j,τ . In order to solve this equation
we need two boundary conditions. The first is an initial condition which results from
the fact that when the firm decides on its price pj,τ , the price it charged in the previ-
ous period (pj,τ−1) is predetermined. The second boundary condition is a terminal
condition saying that the firm expects to charge a price close to p∗t,τ in the distant
future (see Rotemberg (1982, pp. 523–524) for details):

lim
τ→∞

[(
pj,τ − p∗j,τ

)
+ c

(
pj,τ − pj,τ−1

)]
= 0. (11.86)
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It is shown by Kennan (1979, p. 1443) and Rotemberg (1987, p. 92) that the solution
for the price in the planning period, pj,0, can be written as:

pj,0 = λ1 pj,−1 + (1− λ1)

[
λ2 − 1

λ2

∞

∑
τ=0

(
1

λ2

)τ

p∗j,τ

]
, (11.87)

where 0 < λ1 < 1 and λ2 > 1.17 The economic intuition behind the pricing-setting
rule (11.87) is as follows. In the presence of price adjustment costs, the firm finds
it optimal to adjust its price gradually over time. As a result, the optimal price in
any period is the weighted average of the last period’s price pj,−1 and the long-
run “target” price given in square brackets on the right-hand side of (11.87). This
target price itself depends on the present and future equilibrium prices (p∗j,τ , for τ =

0, 1, ...). In the special case where the equilibrium price is (expected to be) constant
indefinitely, we have p∗j,τ = p∗j and it follows that the target price is equal to p∗j .
In the general case, however, the firm knows that it chases a moving (rather than
a stationary) target because it recognizes future variability in the equilibrium price
(say due to anticipated policy shocks).

11.3.3 Staggered price contracts

In a number of papers, Calvo has proposed an alternative approach to modelling
sluggish aggregate prices (see e.g. Calvo, 1982, 1983, 1987 and Calvo and Végh,
1994). His basic idea, which derives from the early papers by Phelps (1978) and Tay-
lor (1980), makes use of the notion that price contracts are staggered. Calvo (1987,
p. 144) adopts the following price-setting technology. Each period of time “nature”
draws a signal to the firm which may be a “green light” or a “red light” with proba-
bilities π and 1− π, respectively. These probabilities are the same for all firms in the
economy. A firm which has just received a green light can change its price optimally
in that period but must maintain that price until the next green light is received.

In order to solve the pricing problem of a firm which has just received a green
light we can follow the same approach as in the previous subsection. In the absence
of the pricing friction firm j would always want to set its price equal to its equilib-
rium price P∗j . But with the pricing friction the firm aims to minimize the deviation
cost, Ω0, given in equation (11.83) but with c = 0 (there are no price adjustment
costs). By substituting the assumptions about the pricing technology into the objec-
tive function (11.83) we obtain:

Ω0 =
(

pj,0 − p∗j,0
)2

+
1

1 + ρ

[
π
(

pj,1 − p∗j,1
)2

+ (1− π)
(

pj,0 − p∗j,1
)2
]

+

(
1

1 + ρ

)2 [
π2
(

pj,2 − p∗j,2
)2

+ π(1− π)
(

pj,1 − p∗j,2
)2

+ (1− π)2
(

pj,0 − p∗j,2
)2 ]

+ higher-order terms. (11.88)

The interpretation of this expression is as follows. In the current period (τ = 0) the
firm has a green light so it can set its price. The first term on the right-hand side of
(11.88) gives the cost of deviating from p∗j,0 in the current period. In the next period
(τ = 1) the firm may or may not get a green light again. If it does (with probability π)

17Readers of the Mathematical Appendix will recognize that λ1 and λ2 are, respectively, the stable and
unstable characteristic roots of the difference equation in (11.85).
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it will again be able to set its price, taking into account the then relevant equilibrium
price p∗j,1. If it gets a red light, however, it will have to keep its price unchanged (at
pj,0) and face the deviation costs associated with this choice made in the previous
period. In period τ = 2 there are three different possibilities depending on when the
firm last received a green signal.

Since the pattern should be clear by now and we are only interested in the price
to be set by the firm in the planning period, we can rewrite (11.88) by gathering all
terms involving pj,0:

Ω0 =
(

pj,0 − p∗j,0
)2

+
1− π

1 + ρ

(
pj,0 − p∗j,1

)2
+

(
1− π

1 + ρ

)2 (
pj,0 − p∗j,2

)2
+ ...

=
∞

∑
τ=0

(
1− π

1 + ρ

)τ (
pj,0 − p∗j,τ

)2
+ ..., (11.89)

where the remaining terms do not involve pj,0. The pricing friction thus shows up
in the discounting factor employed by the firm. The higher is the probability of a
green light in any period, the less severe is the friction, and the lower is the weight
attached to future equilibrium prices.

The firm chooses pj,0 in order to minimize Ω0. The first-order condition is given
by ∂Ω0/∂pj,0 = 0 which can be written as:

pj,0

∞

∑
τ=0

(
1− π

1 + ρ

)τ

=
∞

∑
τ=0

(
1− π

1 + ρ

)τ

p∗j,τ . (11.90)

Since the infinite sum on the left-hand side of (11.90) converges to (1 + ρ)/(π + ρ)
we can rewrite (11.90) as follows:

pn
0 =

π + ρ

1 + ρ

∞

∑
τ=0

(
1− π

1 + ρ

)τ

p∗τ , (11.91)

where pn
0 denotes the common “new” price set in period 0 by all firms facing a green

light in that period. Note that we have assumed that all firms are identical so that the
firm index no longer features in (11.91). The firms facing a red light in the planning
period (τ = 0) keep their prices as set in some past period using a rule like (11.91),
i.e.:

pn
−s =

π + ρ

1 + ρ

∞

∑
τ=0

(
1− π

1 + ρ

)τ

p∗τ−s, (11.92)

for s = 1, 2, ...∞. Since π(1− π)s is the fraction of firms which last adjusted prices
s periods before the planning period, we can define the aggregate price level in the
planning period as follows:

p0 = πpn
0 + π(1− π)pn

−1 + π(1− π)2 pn
−2 + π(1− π)3 pn

−3 + ...

= π
∞

∑
s=0

(1− π)s pn
−s

= πpn
0 + (1− π)p−1, (11.93)

where p−1 ≡ π
[
pn
−1 + (1− π) pn

−2 + (1− π)2 pn
−2 + · · ·

]
. The actual aggregate price

level in the planning period (p0) is thus the weighted average of the aggregate price
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in the previous period (p−1) and the newly set price (pn
0 ). By substituting (11.91) in

(11.93) we get the following expression for p0:

p0 = (1− π)p−1 + π

[
π + ρ

1 + ρ

∞

∑
τ=0

(
1− π

1 + ρ

)τ

p∗τ

]
(11.94)

As is pointed out by Rotemberg (1987, p. 93), the pricing rule that results from the
Calvo friction (given in (11.94)) is indistinguishable from the aggregate version of
the pricing rule under adjustment costs (given in (11.87)). The nice thing about both
pricing rules is that they can be readily estimated using time series data for actual
economies. Rotemberg (1987, p. 93), for example, cites evidence that 8% of all prices
are adjusted every quarter in the US, implying a mean time between price adjust-
ments of about three years.18

11.4 Punchlines

We started this chapter by constructing a small general equilibrium model with mo-
nopolistic competition in the goods market. On the supply side of the goods market
there are many small firms who each produce a slightly unique product variety and
thus possess a small amount of market power. Each firm sets its price to optimally
exploit its market power.

The model provides microeconomic foundations for the multiplier. In the short
run the number of firms is fixed and a tax-financed increase in government con-
sumption boosts output, though by less than one-for-one. The tax increase makes
households poorer which prompts them to decrease consumption and leisure (and
thus to increase labour supply). The increase in output raises profit income which
partially mitigates the fall in consumption. In the long run the short-run increase in
profits prompts entry of new firms which continues until all firms exactly break even
(the Chamberlinian tangency solution). If households like product diversity then the
increase in the number of product varieties causes an increase in the real consumer
wage. The multiplier is not very Keynesian as the output expansion relies critically
on the labour supply response (a new classical feature).

Under monopolistic competition, there exists an intimate link between the mul-
tiplier and the welfare effect of public spending which is absent under perfect com-
petition. Under monopolistic competition there is a distortion in the goods market
and the economy is “too small” from a societal point of view. By raising govern-
ment spending output rises and that in itself constitutes a move in the right, welfare-
enhancing, direction.

Next we introduce money into the model by assuming that households derive
utility from real money balances. (This money-in-the-utility-function approach is
discussed in detail in Chapter 10 and constitutes the simplest way to ensure that fiat
money is held by economic agents.) Monopolistic competition in and of itself does
not invalidate the classical dichotomy. Indeed, a helicopter drop of money balances

18The expected time of price fixity (ETPF) is:

ETPF = π × 1 + π(1− π)× 2 + ... + π(1− π)n−1n + ...

= π
∞

∑
s=0

(1− π)(1 + s) = 1/π.

See King and Wolman (1996, p. 10).
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simply inflates all nominal variables equi-proportionally and leaves all real variables
unchanged.

Money ceases to be a mere veil if prices are sticky. Here the assumption of mo-
nopolistic competition is essential because it explicitly recognizes that it is the indi-
vidual firms (and not some anonymous auctioneer) who are responsible for setting
prices in the economy. We study three major approaches under which price sticki-
ness emerges as an equilibrium phenomenon. The menu-cost approach postulates
the existence of small costs associated with changing prices. Since profit functions
are flat at the top, it may be optimal for an individual firm not to increase its price
in the wake of an expansionary (monetary or fiscal) shock and instead to expand its
output. Provided labour supply is sufficiently elastic (and there is thus a sufficient
degree of real rigidity) small menu costs (a source of nominal rigidity) can rationalize
the fixity of both wages and prices in general equilibrium. In the menu-cost equilib-
rium, both fiscal and monetary policy are highly effective and money is not neutral.
The Achilles heel of the menu-cost model is that it hinges on a highly elastic labour
supply equation, a feature which is not supported by the empirical evidence.

A more pragmatic approach to price stickiness assumes that there are convex
costs associated with changing prices. In this approach, the individual firm tries
to steer the actual sequence of its price as close as possible to its “ideal” price path
which would be attained in the absence of adjustment costs. The presence of adjust-
ment costs ensures that the firm sets its actual price as a weighted average of last
period’s price and some long-run target price which is explicitly forward looking.
At a macroeconomic level, the adjustment cost approach thus provides a microeco-
nomic foundation for the expectations-augmented Phillips curve of Friedman and
Phelps.

In the third approach to aggregate price stickiness, the pricing friction is stochas-
tic. Each period of time “nature” draws a signal to the firm which may be a “green
light” or a “red light” with given probabilities. These probabilities are the same for
all firms in the economy. A firm which has just received a green light can change
its price optimally (without adjustment costs) in that period but must maintain that
price until the next green light is received. Although this theory differs substantially
from the adjustment-cost approach at the microeconomic level, the two approaches
give rise to an observationally equivalent macroeconomic pricing equation.



406 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

Further reading

Mankiw and Romer (1991) is a collection of key articles on new Keynesian eco-
nomics. Also see Gordon (1990) and Benassi et al. (1994) for overviews of new
Keynesian economics. On monopolistic competition as a foundation for the multi-
plier, see Ng (1982), Hart (1982), Solow (1986), Blanchard and Kiyotaki (1987), Dixon
(1987), Mankiw (1988), and Startz (1989). Further contributions include Molana and
Moutos (1992), Dixon and Lawler (1996), Heijdra and Ligthart (1997), and Heijdra et
al. (1998). On the welfare properties of the monopolitically competitive equilibrium,
see Mankiw and Whinston (1986). Bénassy (1991a, 1991b, 1993a), Silvestre (1993),
and Matsuyama (1995) give excellent surveys of the early literature.

On price adjustment costs, see Mankiw (1985), Poterba et al. (1986), Parkin (1986),
Sheshinski and Weiss (1993), Dixon and Hansen (1999), and Danziger (1999). Levy
et al. (1997) present empirical evidence on the size of menu costs in supermarket
chains. For the envelope theorem, see Dixit (1990). On the new Keynesian Phillips
curve, see Ball et al. (1988) and Roberts (1995). The Calvo approach to price stickiness
is widely used in monetary economics. See, for example, King and Wolman (1996,
1999), Clarida et al. (1999), Goodfriend and King (1997), Rotemberg and Woodford
(1999), and Yun (1996). See also Chapter 19.

Kiyotaki (1988) and Bénassy (1993a) show that under monopolistic competition it
may not be optimal for households to have rational expectations. There is a large lit-
erature on multiple equilibria and coordination failures. See Diamond (1982a, 1984a,
1984b), Howitt (1985), Shleifer (1986), Diamond and Fudenberg (1989, 1991), Cooper
and John (1988), Weil (1989a), and Benhabib and Farmer (1994). An excellent sur-
vey of some of this literature is presented by Cooper (1999). The classic source on
multiple equilibria and animal spirits is Keynes (1937).



Chapter 12

Exogenous economic
growth—Solow-Swan

In this chapter we commence our study of macroeconomic growth processes. What
mechanisms exist by which aggregate output that is produced in an economy grows
over time? In order to prepare for things to come we start in this chapter with a very
simple model in which the savings rate is exogenous. The specific purpose of this
chapter is to discuss the following issues:

1. What are some of the most important stylized facts of economic growth?

2. How well does the Solow-Swan model explain these stylized facts?

3. What are the key implications of adding human capital to the Solow-Swan
model?

4. How do fiscal policy and Ricardian equivalence work in the Solow-Swan mo-
del?

5. What does the growth mechanism look like in a two-sector model?

12.1 Stylized facts of economic growth

According to Kaldor (1961, pp. 178–179), a satisfactory theory of economic growth
should be able to explain the following six “stylized facts” by which we mean results
that are broadly observable in most capitalist countries.

Stylized Fact (SF1): ∗Output per worker shows continuing growth “with
no tendency for a falling rate of growth of productivity.”

Stylized Fact (SF2): Capital per worker shows continuing growth.

Stylized Fact (SF3): The rate of return on capital is constant.

Stylized Fact (SF4): ∗The capital-output ratio is constant.

Stylized Fact (SF5): ∗The production factors labour and capital receive
constant shares of total income.

Stylized Fact (SF6): ∗There are wide differences in the rate of productiv-
ity growth across countries.
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Note that not all these stylized facts are independent: (SF1) and (SF4) are easily seen
to imply (SF2). In a similar fashion, (SF4) and (SF5) imply (SF3). Hence, the starred
facts are fundamental. Paul Romer (1989, p. 55) argues that there is evidence which
leads him to disbelieve (SF5), but the remaining facts can be considered stylized even
four decades after Kaldor’s original claims.

Paul Romer (1989, p. 55) suggests five more stylized facts that growth theorists
should be able to explain:

Stylized Fact (SF7): In cross-section, the mean growth rate shows no vari-
ation with the level of per capita income.

Stylized Fact (SF8): The rate of growth of factor inputs is not large enough
to explain the rate of growth of output; that is, growth accounting always
finds a residual.

Stylized Fact (SF9): Growth in the volume of trade is positively corre-
lated with growth in output.

Stylized Fact (SF10): Population growth rates are negatively correlated
with the level of income.

Stylized Fact (SF11): Both skilled and unskilled workers tend to migrate
towards high-income countries.

Although we shall have very little to say about the last three stylized facts, the other
stylized facts will be referred to regularly.

12.2 The Solow-Swan model

The neoclassical growth model was developed independently by Solow (1956) and
Swan (1956). The central element of their theory is the notion of an aggregate pro-
duction function (which has already been used in earlier chapters). It can be written
in a very general form as:

Y(t) = F (K(t), L(t), t) , (12.1)

where Y is aggregate output, K is the aggregate capital stock, L is aggregate employ-
ment, and t is the time index which appears separately in the production function
to indicate that the technology itself may not be constant over time. We retain the
assumption of perfectly competitive behaviour of firms which implies that the pro-
duction function must obey constant returns to scale. We label this first property of
technology (P1):1

F (λK(t), λL(t), t) = λF (K(t), L(t), t) , for λ > 0. (P1)

It is assumed that the household sector as a whole (or the representative household)
consumes a constant fraction of output and saves the rest. Aggregate saving in the
economy is then:

S(t) = sY(t), 0 < s < 1, (12.2)

1See Intermezzo 4.3 on production theory in Chapter 4 above.
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where s is the constant propensity to save which is assumed to be exogenously given.
In a closed economy, output is exhausted by household consumption C(t) and in-
vestment I(t):

Y(t) = C(t) + I(t), (12.3)

where we have assumed that government consumption is zero for now. Aggregate
gross investment is the sum of replacement investment, δK(t) (where δ is the con-
stant depreciation rate), and the net addition to the capital stock, K̇(t) ≡ dK(t)/dt:

I(t) = δK(t) + K̇(t). (12.4)

We assume that labour supply is exogenous but that the population grows as a whole
at a constant exponential rate nL:

L̇(t)
L(t)

= nL ⇔ L(t) = L(t0)enL(t−t0), (12.5)

where L̇(t) ≡ dL(t)/dt, and L (t0) is the population level in some past base year (of
course, we can set t0 = 0 and normalize L(0) = 1).

12.2.1 No technological progress

We first look at the case for which technology itself is time-invariant, so that the
production function (12.1) has no separate time index:

Y(t) = F (K(t), L(t)) . (12.6)

In addition to linear homogeneity (property (P1)), we adopt the conventional as-
sumption that the production function features positive but diminishing marginal
products to both factors:

FK, FL > 0, FKK, FLL < 0, FKL > 0. (P2)

Recall from Intermezzo 4.3 that with constant returns to scale capital and labour
must be cooperative factors of production, i.e. FKL > 0. A more controversial as-
sumption, but one we will make nevertheless, is that F(·) obeys the so-called In-
ada conditions (after Inada (1963)) which ensure that it has nice curvature properties
around the origin (with K or L equal to zero) and in the limit (with K or L approach-
ing infinity):2

lim
K→0

FK = lim
L→0

FL = +∞, lim
K→∞

FK = lim
L→∞

FL = 0. (P3)

As we shall demonstrate below (in Chapter 14), these conditions are far from innocu-
ous and actually preclude a number of interesting non-standard cases.

The model consists of equations (12.2)–(12.5) plus the savings-investment iden-
tity, S(t) ≡ I(t). Because the labour force grows, it is impossible to attain a steady
state in levels of output, capital, etc., but this problem is easily remedied by mea-
suring all variables in per capita or intensive form, i.e. we define y(t) ≡ Y(t)/L(t),

2Ironically these are the two points about which we humans know the least. The question “Where
do we come from and what are we heading for?” is perhaps better dealt with by theologians than by
macroeconomists. The Inada conditions obviate the need for a deep study of theology.
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k(t) ≡ K(t)/L(t), etc. The model can then be condensed into a single differential
equation in the per capita capital stock (see Intermezzo 12.1):

k̇(t) = s f (k(t))− (δ + nL)k(t), (12.7)

where f (k(t)) is the intensive form of the production function:3

f (k(t)) ≡ F (K(t)/L(t), 1) . (12.8)

For example, in the Cobb-Douglas case we have F(K, L) ≡ Z0KαL1−α from which
we obtain f (k) ≡ Z0kα. We can obtain insight into the properties of the model by
working with a phase diagram for k(t)—see Figure 12.1. In that figure, the straight
line (δ + nL)k(t) represents the amount of investment required to replace worn-out
capital and to endow each existing worker with the same amount of capital. Since
the work force grows, the line features the growth rate of the labour force, nL.

Since the savings rate, s, is constant by assumption, the per capita saving curve
has the same shape as the intensive-form production function. To draw this curve
we need to know what happens for k(t) = 0 and k(t)→ ∞. We obtain from (12.8):

f ′(k(t)) ≡ FK (k(t), 1) , f ′′(k(t)) ≡ FKK (k(t), 1) , (12.9)

about which the Inada conditions (P3) say all we need to know: f (k(t)) is vertical
at the origin, is concave, and flattens out as more and more capital per worker is
accumulated. Hence f (k(t)) and s f (k(t)) are as drawn in Figure 12.1.4

Intermezzo 12.1

Deriving the fundamental differential equation for the Solow-Swan
model. We know that in the absence of a government and for a closed
economy, output satisfies:

Y(t) = C(t) + I(t) = C(t) + S(t), (a)

so that we obtain from the second equality:

S(t) = I(t). (b)

Substituting (12.2) and (12.6) on the left-hand side of (b) and (12.4) on the
right-hand side we obtain:

s · F (K(t), L(t)) = δK(t) + K̇(t). (c)

Dividing both sides by the population size we get:

s · F (K(t), L(t))
L(t)

= δk(t) +
K̇(t)
L(t)

, (d)

where k(t) ≡ K(t)/L(t). The production function features constant re-
turns to scale and can thus be written as:

F (K(t), L(t)) = L(t) · F (K(t)/L(t), 1) = L(t) · f (k(t)) , (e)

3Because (12.6) satisfies property (P1), we can write λY = F (λK, λL). By choosing λ = 1/L we thus
find that Y/L = F (K/L, 1).

4Barro and Sala-i-Martin (1995, p. 52) show that both inputs are essential if the properties (P1)–(P3) are
satisfied. Hence, F(0, L) = F(K, 0) = f (0) = 0.
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where we have used (12.8) in the final step. It remains to find a handsome
expression for K̇(t)/L(t). From the definition of k(t) we find:

k̇(t) ≡ 1
L(t)

· K̇(t)− K(t)
L(t)2 · L̇(t)

=
K̇(t)
L(t)

− nLk(t), (f)

where we have used (12.5) to arrive at the final result. Using (e) and (f)
in (d) we thus obtain:

s · f (k(t)) = δk(t) + k̇(t) + nLk (t) . (g)

Rearranging this expression somewhat we obtain the fundamental dif-
ferential equation for the capital stock per worker as given in (12.7).

****

It follows in a straightforward fashion from the diagram that the model is stable.
From any initial position k(t) will converge to the unique equilibrium at point E0. In
the steady state capital per worker is constant and equal to k(t) = k∗. This implies
that along the balanced growth path (BGP) the capital stock itself must grow at the
same rate as the work force, i.e. (K̇(t)/K(t))∗ = L̇(t)/L(t) = nL. The intensive-form
production function says that steady-state output per worker, y∗, satisfies y∗ = f (k∗)
and is thus also constant. Hence, output itself also grows at the same rate as the work
force along the BGP, i.e. (Ẏ(t)/Y(t))∗ = nL, and since the savings rate is constant,
the same holds for the levels of saving and investment. In the balanced growth path
we thus have:(

Ẏ(t)
Y(t)

)∗
=

(
K̇(t)
K(t)

)∗
=

(
İ(t)
I(t)

)∗
=

(
Ṡ(t)
S(t)

)∗
=

L̇(t)
L(t)

= nL. (12.10)

Since the rate of population growth is exogenous, the long-run growth rate of the
economy is exogenously determined and thus cannot be influenced by government
policy or household behaviour. For example, an increase in the savings rate rotates
the savings function counter-clockwise and gives rise to a higher steady-state capital-
labour ratio but it does not affect the rate of economic growth along the balanced
growth path. Note furthermore, that output per worker is constant in the balanced
growth path, i.e. stylized fact (SF1) is not accounted for in this version of the Solow-
Swan model.

Before turning to a detailed examination of the properties of the Solow-Swan
model we first expand the model by re-introducing technological change into the
production function.

12.2.2 Technological progress

Technical change can be embodied or disembodied (see Burmeister and Dobell, 1970,
ch. 3). Embodied technical change is only relevant to newly acquired and installed
equipment or workers and therefore does not affect the productivity of existing
production factors. Disembodied technical progress takes place if, independent of
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Figure 12.1: The Solow-Swan model

changes in the production factors, isoquants of the production function shift inwards
as time progresses (Burmeister and Dobell, 1970, p. 66). Reasons for this inward shift
may be improvements in techniques or organization which increase the productiv-
ity of new and old factors alike. Throughout this and the next two chapters we will
restrict attention to cases of disembodied technical progress.

We can represent different cases of factor-augmenting disembodied technical chan-
ge by writing the production function (12.1) in the following form:

Y(t) = F (ZK(t)K(t), ZL(t)L(t)) , (12.11)

where ZK(t) and ZL(t) only depend on time, and ZK(t)K(t) and ZL(t)L(t) are “effec-
tive capital” and “effective labour” respectively. Technical progress is purely labour
augmenting if ŻK(t) ≡ 0 and ŻL(t) > 0, purely capital augmenting if ŻL(t) ≡ 0 and
ŻK(t) > 0, and equally capital and labour augmenting if ŻK(t) ≡ ŻL(t) > 0.

Three different concepts of neutrality in the process of technical advance exist in
the literature (Burmeister and Dobell, 1970, p. 75; Barro and Sala-i-Martin, 1995, p.
33). Technological change is (a) Harrod neutral if the relative input share FKK/(FLL) is
constant over time for a given capital-output ratio, K/Y, (b) Hicks neutral if this share
is constant over time for a given capital-labour ratio, K/L, and (c) Solow neutral if this
share is constant over time for a given labour-output ratio, L/Y. In terms of equation
(12.11), the three cases correspond to, respectively, ZK(t) ≡ 1, ZK(t) ≡ ZL(t), and
ZL(t) ≡ 1.

Of course, for the Cobb-Douglas production function the three concepts of neu-
trality are indistinguishable, since (by redefining terms) we can write:

Y(t) = [ZK(t)K(t)]
α L(t)1−α ⇔

Y(t) = K(t)α [ZL(t)L(t)]1−α for ZL(t) ≡ ZK(t)α/(1−α) ⇔
Y(t) = Z(t)K(t)αL(t)1−α for Z(t) = ZK(t)α.

(12.12)

For non-Cobb-Douglas cases, however, the different neutrality concepts have dif-
ferent implications for balanced growth. Barro and Sala-i-Martin (1995, pp. 54–55)
show, for example, that technical progress must be Harrod neutral (labour augment-
ing) for the model to have a steady state with a constant growth rate. In a steady state
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we must have a constant capital-output ratio and it can be shown that for forms
of technological progress that are not Harrod neutral, one of the factor shares ap-
proaches zero if the capital-output ratio is to be constant. So if we wish to have bal-
anced growth and be able to consider a non-unitary substitution elasticity between
capital and labour, we must assume Harrod-neutral technical progress. The remain-
der of the discussion in this section will thus assume that Harrod neutrality holds.

The production function is written as:

Y(t) = F (K(t), N(t)) , (12.13)

where N(t) measures the effective amount of labour (N(t) ≡ Z(t)L(t)) and we as-
sume that technical progress occurs at a constant exponential rate:

Ż(t)
Z(t)

= nZ, Z(t) = Z(0)enZt. (12.14)

Since the labour force itself grows exponentially at a constant rate nL (see (12.5)), the
effective labour force grows at a constant exponential rate nL + nZ, i.e.:

Ṅ(t)
N(t)

≡ Ż (t)
Z(t)

+
L̇(t)
L (t)

= nZ + nL. (12.15)

By measuring output and capital per unit of effective labour, i.e. y(t) ≡ Y(t)/N(t)
and k(t) ≡ K(t)/N(t), and following the standard solution procedure explained
above (in Intermezzo 12.1), the fundamental differential equation for k(t) is obtained:

k̇(t) = s f (k(t))− (δ + nL + nZ)k(t). (12.16)

In the steady state, k∗ = sy∗/(δ+ nL + nZ), so that output and the capital stock grow
at the same rate as the effective labour input. Hence, equation (12.10) is changed to:

(
Ẏ(t)
Y(t)

)∗
=

(
K̇(t)
K(t)

)∗
=

(
İ(t)
I(t)

)∗
=

(
Ṡ(t)
S(t)

)∗
=

Ṅ(t)
N(t)

=
L̇(t)
L(t)

+
Ż(t)
Z(t)

= nL + nZ.

(12.17)

Hence, exactly the same qualitative conclusions are obtained as in the model without
technological advance. Long-term balanced growth merely depends on the exoge-
nous factors nL and nZ. Note that stylized fact (SF1) is accounted for as output per
worker grows at an exponential rate nZ along the balanced growth path.

12.3 Properties of the Solow-Swan model

In this section we study the most important properties of the Solow-Swan model.
In particular, we look at (a) the golden rule and the issue of over-saving, (b) the
transitional dynamics implied by the model as well as the concept of absolute versus
conditional convergence, and (c) the speed of dynamic adjustment.

12.3.1 The golden rule of capital accumulation

One of the implications of the model developed thus far is that, even though long-
term balanced growth is exogenous (and equal to n ≡ nL + nZ), the levels of output,
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capital, and consumption are critically affected by the level of the savings rate. In
other words, even though s does not affect long-term growth it does affect the path
along which the economy grows. This prompts the issue concerning the relative wel-
fare ranking for these different paths. To the extent that the policy maker can affect
s, he can also select the path on which the economy finds itself. We first consider
steady-state paths and, to keep things simple, we assume that there is no technical
progress (i.e. nZ = 0 and n = nL).

In the steady state, equation (12.7) implies a unique implicit relationship between
the savings rate and the equilibrium capital-labour ratio which can be written as
s f (k∗) = (δ + n)k∗. By using the implicit function theorem we thus find that k∗

depends on s:

k∗ = k∗(s), (12.18)

with dk∗/ds = y∗/[δ + n− s f ′(k∗)] > 0. Suppose that the policy maker is interested
in steady-state per capita consumption which can be written as a function of the
savings rate:

c∗(s) = (1− s) f (k∗(s)) = f (k∗(s))− (δ + n)k∗(s). (12.19)

In terms of Figure 12.1, c∗ (s) represents the vertical distance between the production
function and the required-replacement line in the steady state. In Figure 12.2 we plot
c∗(s) for different savings rates. Any output not needed to replace the existing capital
stock per worker in the steady state can be consumed. Per capita consumption is at
its maximum if the savings rate satisfies dc∗(s)/ds = 0, or:

dc∗(s)
ds

=
[

f ′ (k∗(s))− (δ + n)
]
· dk∗(s)

ds
= 0. (12.20)

In terms of Figure 12.1, per capita consumption is at its maximum at point A where
the slope of the production function equals the slope of the required-replacement
function. In view of (12.20), the golden rule savings rate, sGR, satisfies:

f ′
(

k∗(sGR)
)
= δ + n. (12.21)

The golden rule savings rate is associated with point E1 in Figure 12.2. Burmeister
and Dobell (1970, pp. 52–53) provide the economic intuition behind the result in
(12.21). The produced asset (the physical capital stock) yields an own-rate of return
equal to f ′ − δ, whereas the non-produced primary good (labour) can be interpreted
as yielding an own-rate of return nL = n. Intuitively, the efficient outcome occurs if
the rates of return on the two assets are equalized, i.e. if the equality in (12.21) holds.

Since sGR f (k∗(sGR)) = (δ + n) k∗(sGR) we can rewrite the expression in (12.21)
as:

sGR =
k∗(sGR) · f ′(k∗(sGR))

f (k∗(sGR))
. (12.22)

Equation (12.22) shows that the golden rule savings rate is equal to the share of cap-
ital income in national income (which itself in general depends on the golden rule
savings rate). In the Cobb-Douglas case, with f (·) = k(t)α, α represents the capital
income share so that the golden rule savings rate equals sGR = α.

We are now in a position to discuss the concept of dynamic inefficiency. We call an
economy dynamically inefficient if it is possible to make everybody at least as well
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Figure 12.2: Per capita consumption and the savings rate

off (and some strictly better off) by reducing the capital stock. Consider the situation
in Figure 12.2, and assume that the actual steady-state savings rate is s0 so that the
economy is at point E0. Since this savings rate exceeds the golden rule savings rate
(s0 > sGR), per capita consumption is lower than under the golden rule. It is not
difficult to show that point E0 is dynamically inefficient in the sense that higher per
capita consumption can be attained by reducing the savings rate. Figure 12.2 shows
that a reduction in the savings rate from s0 to sGR would move the steady state from
E0 to E1 and lead to higher per capita steady-state consumption. With the aid of
Figure 12.3 we can figure out what happens to per capita consumption during the
transitional phase. The economy is initially at point E0 and the initial steady-state
capital-labour ratio is k∗0. A reduction in the savings rate (from s0 to sGR) rotates the
per capita consumption schedule in a counter-clockwise fashion and the economy
jumps from E0 to A at impact. Since the transition towards the golden-rule capital-
labour ratio kGR is stable, the economy moves from A to the new steady-state point
E1 as k(t) falls towards kGR during transition. Hence, as a result of the decrease in the
savings rate, consumption is higher than it would have been, both during transition
and in the new steady state. It follows that the reduction in s is Pareto improving,
and we can conclude that savings rates exceeding sGR are dynamically inefficient.

The same conclusion does not hold if the savings rate falls short of sGR as the
Pareto-optimality property cannot be demonstrated unambiguously. Consider an
economy in which the savings rate falls short of its golden rule level, i.e. s1 < sGR.
In terms of Figures 12.2 and 12.3, the economy is initially at point E2. An increase
in the savings rate from s1 to sGR still leads to an increase in steady-state per capita
consumption. During transition, however, per capita consumption will have to fall
before it can settle at its higher steady-state level prescribed by the golden rule. In
terms of Figure 12.3, at impact the economy jumps from E2 to B as the savings rate
is increased. During part of the transition, consumption is lower than it would have
been in the absence of the shock. Since we have no welfare function to evaluate the
uneven path of per capita consumption, we cannot determine whether the increase
in s is Pareto improving in this case.
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Figure 12.3: Per capita consumption during transition to its golden rule level

12.3.2 Transitional dynamics and convergence

Up to now attention has been focused on steady-state issues. We now return to the
model with exogenous technical change, the fundamental equation of which is given
in (12.16). By defining the growth rate of k(t) as γk(t) ≡ k̇(t)/k(t), we derive from
(12.16):

γk(t) ≡ s · f (k(t))
k(t)

− (δ + n), (12.23)

where n ≡ nL + nZ. In Figure 12.4 this growth rate is represented by the vertical
difference between the two lines.5 An immediate implication of (12.23), or Figure
12.4 for that matter, is that countries with little capital and low output (in efficiency
units) grow faster than countries with a lot of capital and high output. The further
away a country is from the steady state, the higher will be its growth rate. In other
words, poor and rich countries should converge!

This suggests that there is a simple empirical test of the Solow-Swan model which
is based on the convergence property of output in a cross-section of different coun-
tries. We take a group of closed economies (since the Solow-Swan model refers to the
closed economy) and assume that they are similar in the sense that they possess the
same structural parameters, s, n, and δ, and the same production function, so that
in theory they have the same steady state. The so-called absolute convergence hypoth-
esis (ACH) then suggests that poor countries should grow faster than rich countries.
Barro and Sala-i-Martin (1995, p. 27), using a sample of 118 countries, regress the
growth rate in per capita GDP during the period 1960–1985 on the logarithm of per
capita GDP in the base year 1960. The results of their regression are dismal: instead
of finding a negative effect as predicted by the ACH, they find a slight positive effect,
i.e. countries that were rich in the base year ended up growing faster than poor coun-
tries did. Absolute convergence does not seem to hold and (Paul Romer’s) stylized
fact (SF7) is verified by the data.

5The Inada conditions ensure that limk→0 s f (k)/k = ∞ (vertical at the origin) and limk→∞ s f (k)/k = 0
(approaches horizontal axis asymptotically).
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Figure 12.4: Growth convergence

This rejection of the ACH does not necessarily mean that the Solow-Swan model
is refuted because one of the identifying assumptions underlying the regression re-
sults could be false. For example, if a rich country has a higher savings rate than a
poor country, it could actually be further from its (higher) steady state than the poor
country is from its steady state. The Solow-Swan model then predicts that the rich
country will be growing faster than the poor country, as indeed the empirical results
of Barro and Sala-i-Martin (1995) suggest. We demonstrate this result in Figure 12.5
where sP and sR are the savings rates of the poor and the rich country, respectively,
and (k∗)P and (k∗)R are the corresponding steady states. If the poor country is ini-
tially at kP(0) and the rich country at kR(0), the former will grow slower than the
latter (the vertical distance CD is larger than AB).

A refined test of the Solow-Swan model makes use of the conditional convergence
hypothesis (CCH) according to which truly similar countries should converge. Barro
and Sala-i-Martin (1995, pp. 27–28) show that convergence does appear to take place
for the twenty original OECD countries and a fortiori for the different states in the
US. This suggests that the CCH is not grossly at odds with the data, which is good
news for the Solow-Swan model (and bad news for some of the endogenous growth
models discussed in Chapter 14 below).

12.3.3 The speed of adjustment

The convergence property is not the only testable implication of the Solow-Swan
model. Apart from testing whether economies converge, another issue concerns how
fast they converge. In order to study this issue further we follow Burmeister and Do-
bell (1970, pp. 53–56) and Barro and Sala-i-Martin (1995, pp. 37–39, 53) by focusing
on the Cobb-Douglas case for which f (·) = k(t)α, and the fundamental differential
equation (12.16) becomes:

k̇(t) = sk(t)α − (δ + n)k(t). (12.24)
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Figure 12.5: Conditional growth convergence

An exact analytical solution to this differential equation is not available because k(t)
enters non-linearly on the right-hand side of (12.24) (as 0 < α < 1). By using a first-
order Taylor approximation around the steady-state capital intensity, k∗, we obtain:

sk(t)α ≈ s (k∗)α + sα (k∗)α−1 [k(t)− k∗]
= (δ + n) k∗ + α (δ + n) [k(t)− k∗] , (12.25)

where we have used the fact that s (k∗)α = (δ + n) k∗ in getting from the first to
the second expression. Using (12.25) in (12.24) we obtain the linearized differential
equation for k(t):

k̇(t) = −β [k(t)− k∗] , β ≡ (1− α)(δ + n) > 0. (12.26)

Denoting the capital intensity in the base period by k (0), the solution to (12.26) can
be obtained by standard methods:

k(t) = k∗ + [k(0)− k∗] e−βt, (12.27)

where k∗ is the steady-state capital intensity to which the economy converges in the
long run, and where β measures the speed of convergence.

It is not difficult to deduce the speed of adjustment in the growth rate of output
for the Cobb-Douglas case.6 Indeed, dividing both sides of (12.26) by k(t), noting
that k̇(t)/k(t) = d ln k(t)/dt, d ln y(t)/dt = αd ln k(t)/dt, and using the approxima-
tion ln (k(t)/k∗) = 1− k∗/k(t), we find:

d ln y(t)
dt

= −β [ln y(t)− ln y∗] , (12.28)

6The more general case is covered by Barro and Sala-i-Martin (1995, p. 24).
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which implies that:

ln y(t) = ln y∗ + [ln y(0)− ln y∗] e−βt. (12.29)

Hence, β is the common (approximate) adjustment speed for k (t), ln k(t), y(t), and
ln y (t) toward their respective steady-states.

The intuitive interpretation of β is as follows: ζ × 100% of the gap between k(t)
and k∗ is eliminated after a time interval of tζ :

tζ ≡ −
ln(1− ζ)

β
. (12.30)

Hence, the half-life of the adjustment (ζ = 1
2 ) equals t1/2 = ln 2/β = 0.693/β.7 Some

back-of-the-envelope computations based on representative values of nL = 0.01 (per
annum), nZ = 0.02, δ = 0.05, and α = 1/3 yield the value of β = 0.0533 (5.33% per
annum) and an estimated half-life of t1/2 = 13 years. Transition is thus relatively
fast, at least from a growth perspective.8 As Barro and Sala-i-Martin (1995, p. 38)
indicate, however, this estimate is far too high to accord with empirical evidence.
They suggest that β is more likely to be in the range of 2% per annum (instead of
5.33%). So here is a real problem confronting the Solow-Swan model. In order for it
to generate a realistic convergence rate of 2%, for given values of δ and n, the capital
share must be unrealistically high (a value of α = 3

4 actually yields an estimate of
β = 0.02)! One way to get the Solow-Swan model in line with reality is to assume a
broad measure of capital to include human as well as physical capital. This is indeed
the approach taken by Mankiw, Romer, and Weil (1992).

12.3.4 Human capital to the rescue

Mankiw, Romer, and Weil (1992, p. 415) start their analysis by using real world data
to estimate the textbook Solow model. They show that, though the model appears to
fit the data quite well, some of the parameter estimates are not entirely satisfactory.
For example, the estimated capital coefficient is much larger than the actual capital
share of about one third. So either their Cobb-Douglas technology assumption is
inappropriate or there is a serious mis-measurement of the capital input. They adopt
the latter stance and suggest that the convergence conundrum of the Solow-Swan
model disappears if the production function is modified to include human capital:

Y(t) = K(t)αK H(t)αH [Z(t)L(t)]1−αK−αH , (12.31)

where H(t) is the stock of human capital and αK and αH are the efficiency parameters
of the two types of capital (0 < αK, αH , αK + αH < 1). In close accordance with
the Solow-Swan model, productivity and population growth are both exponential
(Ż(t)/Z(t) = nZ and L̇(t)/L(t) = nL) and the accumulation equations for the two
types of capital and the production function can be written in effective labour units
as:

k̇(t) = sKy(t)− (δK + n)k(t), (12.32)

7See also Chapter 7 where we compute the convergence speed of the unemployment rate in a discrete-
time setting.

8Note that Sato (1963) actually complains about the startlingly low transition speed implied by the
Solow-Swan model. His object of study is fiscal policy and business cycle phenomena. In this context
convergence of 5% per annum is slow. Hence the different conclusion.
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ḣ(t) = sHy(t)− (δH + n)h(t), (12.33)
y(t) = k(t)αK h(t)αH , (12.34)

where k(t) ≡ K(t)/[Z(t)L(t)], h(t) ≡ H(t)/[Z(t)L(t)], y(t) ≡ Y(t)/[Z(t)L(t)],
n ≡ nZ + nL, and sK and sH represent the propensities to accumulate physical and
human capital, respectively. The depreciation rates of physical and human capital
are denoted by, respectively, δK and δH .9 The production functions of the two types
of capital are assumed to be equal.

12.3.4.1 Stability

In order to study the stability properties of the model, we must first derive its phase
diagram. The k̇(t) = 0 line is obtained by substituting (12.34) into (12.32) and rear-
ranging terms somewhat:

h(t) =
(

δK + n
sK

)1/αH

· k(t)(1−αK)/αH , (12.35)

where we note that the exponent for k(t) exceeds unity ((1− αK) /αH > 1). In terms
of Figure 12.6, the k̇(t) = 0 line passes through the origin and is convex. For points
to the right (left) of the line, the physical capital stock falls (rises) over time. This
has been indicated with horizontal arrows in Figure 12.6. In a similar fashion, the
ḣ(t) = 0 line is obtain by using (12.34) in (12.33):

h(t) =
(

sH
δH + n

)1/(1−αH)

· k(t)αK/(1−αH), (12.36)

where we observe that the exponent for k(t) falls short of unity (αK/ (1− αH) < 1).
The ḣ (t) = 0 line passes through the origin and is concave. For points above (below)
the line, the human capital stock falls (rises) over time—see the vertical arrows in Fig-
ure 12.6. Since there are decreasing returns to the two types of capital in combination
(αK + αH < 1) the model possesses a unique steady state for which k̇(t) = ḣ(t) = 0,
k(t) = k∗, and h(t) = h∗. By using (12.35)–(12.36) we obtain:

k∗ =

((
sK

δK + n

)1−αH
(

sH
δH + n

)αH
)1/(1−αK−αH)

, (12.37)

h∗ =

((
sK

δK + n

)αK
(

sH
δH + n

)1−αK
)1/(1−αK−αH)

. (12.38)

The configuration of arrows in Figure 12.6 confirms that the model is stable. Along
the balanced growth path, Y(t), K (t), H(t), and C(t) all grow at the same exponen-
tial growth rate, n, just as in the standard Solow-Swan model discussed above.

12.3.4.2 Empirical performance

By substituting k∗ and h∗ into the (logarithm of the) production function (12.34) we
obtain an estimable expression for per capita output along the balanced growth path:

ln
(

Y(t)
L(t)

)∗
= ln Z(0) + nZt− αK ln(δK + nZ + nL) + αH ln (δH + nZ + nL)

1− αK − αH

9We use a slightly more general version of the Mankiw-Romer-Weil model by allowing δK to differ
from δH . This model was also studied by Solow (1999, pp. 653–655).
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Figure 12.6: Augmented Solow-Swan model

+
αK

1− αK − αH
ln sK +

αH
1− αK − αH

ln sH , (12.39)

where we recall that ln y(t) ≡ ln (Y (t) /L(t))− ln Z(t) and we have used the second
expression in (12.14) to write ln Z(t) = ln Z(0) + nZt. Mankiw, Romer, and Weil
(1992, p. 417) suggest approximate guesses for αK = 1

3 and αH between 1
3 and 4

9 .
The latter guess is based on the observation that in the US manufacturing sector the
minimum wage is between a third and a half of the average wage. By interpreting
the minimum wage as the return to labour without any human capital (so-called
“raw” labour), this means that between half and two thirds of the total payment to
labour represents the return to human capital. Since an income share of (1 − αK)
is left after payments to owners of physical capital are taken care of, this implies
1
2 (1− αK) < αH < 2

3 (1− αK) or 1
3 < αH < 4

9 .10

As a result of the inclusion of human capital, the model is much better equipped
to explain large cross-country income differences for relatively small differences be-
tween, for example, savings rates (sK and sH) and population growth rates (nL). This
is apparent from equation (12.39). An increase in sK, for example, induces higher
income in efficiency units just as in the standard Solow-Swan model (see (12.32))
but also raises the stock of human wealth in efficiency units. By adding human
capital to the model, the elasticity of sK in (12.39) is of the order of unity rather
than one half which is predicted by the standard Solow-Swan model. A similar
conclusion holds for a change in nL. An increase in nL reduces income because
both physical and human capital are spread out over more souls and the elastic-
ity ∂ ln (Y/L)∗ /∂nL = − (αK + αH) / (1− αK − αH) is not− 1

2 , as in the Solow-Swan

10Ingenious as it is, this approach to estimating the income share of human capital is not without dan-
gers, especially in Europe where the minimum wage is policy manipulated rather than market deter-
mined.
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model, but (for αH = 1
3 ) a staggering −2! See Romer (2012) for a further numerical

example.
Not surprisingly, the inclusion of a human capital variable works pretty well

empirically; the estimated coefficient for αH is highly significant and lies between
0.28 and 0.37 (Mankiw, Romer, and Weil, 1992, p. 420). The convergence property
of the augmented Solow-Swan model is also much better. Indeed, for the special
case with δK = δH = δ, the convergence speed is given by β ≡ (1− αK − αH)(n +
δ) which can be made in accordance with the observed empirical estimate of β̂ =
0.02 without too much trouble. Hence, by this very simple and intuitively plausible
adjustment the Solow-Swan model can be salvaged from the dustbin of history. The
speed of convergence it implies can be made to fit the real world.

12.4 Macroeconomic applications of the Solow-Swan
model

The Solow-Swan model can also be used to study traditional macroeconomic issues
such as the effect of fiscal policy and the issue of debt versus tax financing and Ricar-
dian equivalence. In order to keep things simple, we return to the standard Solow-
Swan model in which there is only physical capital.

12.4.1 Fiscal policy in the Solow model

Suppose that the government consumes G(t) units of output so that aggregate de-
mand in the goods market is:

Y(t) = C(t) + I(t) + G(t). (12.40)

Aggregate saving is proportional to after-tax income, so that (12.2) is modified to:

S(t) = s [Y(t)− T(t)] , (12.41)

where T(t) is the lump-sum tax. Since S(t) ≡ Y(t)− C(t)− T(t) any primary gov-
ernment deficit must be compensated for by an excess of private saving over invest-
ment, i.e. G(t)− T(t) = S(t)− I(t). The government budget identity is given by:

Ḃ(t) = r(t)B(t) + G(t)− T(t), (12.42)

where B(t) is government debt and r(t) is the real interest rate which, under the
competitive conditions assumed in the Solow-Swan model, equals the net marginal
productivity of capital:11

r(t) = f ′(k(t))− δ. (12.43)

By writing all variables in terms of effective labour units, the model can be con-
densed to the following two equations:

k̇(t) = f (k(t))− (δ + n)k(t)− c(t)− g(t)
= s f (k(t))− (δ + n)k(t) + (1− s)τ(t)− g(t), (12.44)

ḃ(t) =
[

f ′(k(t))− δ− n
]

b(t) + g(t)− τ(t), (12.45)

11This result is demonstrated more formally below. See section 13.1.2.
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where τ(t) ≡ T(t)/N(t), g(t) ≡ G(t)/N(t), and b(t) ≡ B(t)/N(t). In the remainder
of this subsection we assume that (i) government consumption per efficiency unit of
labour is time-invariant, i.e. g(t) = g, and (ii) the economy is dynamically efficient,
i.e. the initial capital stock, k∗0, falls short of its golden-rule level so that the net
interest rate is positive, r∗0 − n ≡ f ′(k∗0)− δ− n > 0.

12.4.1.1 Tax-financed increase in government consumption

Under pure tax financing and in the absence of initial government debt (ḃ(t) = b(t) =
0), the government budget identity reduces to τ(t) ≡ g, i.e. the tax is also time-
invariant. By substituting this expression into (12.44) we obtain:

k̇(t) = s [ f (k(t))− g]− (δ + n)k(t). (12.46)

The economy can be analysed with the aid of (12.46) alone—see Figure 12.7. In the
absence of government consumption (g = 0), the unique (and stable) steady-state
equilibrium is at point E0. An increase in government consumption shifts the sav-
ings line down which results in multiple equilibria (or even no equilibria). Of these
equilibria, the one at point A is unstable and that at E1 is stable. Restricting attention
to the stable equilibrium, we find that fiscal policy crowds out the physical capital
stock in the long run, from k∗0 to k∗1. At impact, the capital stock is predetermined
(k (0) = k∗0), private consumption and net investment (in efficiency units of labour)
both fall (dc(0)/dg = − (1− s) < 0 and dk̇(0)/dg = −s < 0) but output is un-
changed (dy(0)/dg = 0). Over time, as the capital stock gradually falls towards its
new steady-state value, output and private consumption per effective labour unit
fall. The long-run effects are given by:

dy(∞)

dg
=

f ′ (k∗0) dk(∞)

dg
= −

s f ′ (k∗0)
δ + n− s f ′

(
k∗0
) < 0, (12.47)

dc(∞)

dg
= (r∗0 − n)

dk(∞)

dg
− 1 < −1, (12.48)

where the sign in (12.47) follows readily from the fact that the required investment
line is steeper than the savings line at the steady-state point E0, i.e. δ + n > s f ′ (k∗0),
as can indeed be seen in Figure 12.7. Private consumption is crowded out more than
one-for-one by public consumption in the long run.

12.4.1.2 Bond-financed tax cut

Next we consider the issue of bond financing. If the government increases its con-
sumption without at the same time raising τ(t) by the same amount, a primary
deficit will be opened up which, according to (12.45), will lead to an ever-increasing
explosive process for government debt (since r > n by assumption in (12.45)). In
order to avoid this economically rather uninteresting result, we postulate a debt sta-
bilization rule, a variation of which was suggested by Buiter (1988, p. 288):

τ(t) = τ0 + ξb(t), ξ > r− n. (12.49)
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Figure 12.7: Fiscal policy in the Solow-Swan model

The tax thus depends positively on the outstanding stock of government debt. By
substituting (12.49) into (12.45) we obtain a stable debt process:12

ḃ(t) =
[

f ′(k(t))− δ− n− ξ
]

b(t) + g− τ0. (12.50)

The dynamic properties of the economy can be illustrated with the aid of a phase di-
agram in (b, k) space—see Figure 12.8. By combining (12.44) and (12.49) and setting
g(t) = g we obtain the following expression:

k̇(t) = s f (k(t))− (δ + n)k(t) + (1− s) [τ0 + ξb(t)]− g. (12.51)

The slope of the k̇ = 0 line (evaluated at the steady state (k∗0, b∗0)) is obtained from
(12.51) in the usual fashion:(

db(t)
dk(t)

)
k̇(t)=0

=
δ + n− s f ′ (k∗0)

(1− s)ξ
> 0. (12.52)

The k̇ = 0 line is upward sloping, and points above (below) this line are associated
with positive (negative) net investment, i.e. k̇ > 0 (< 0). Ceteris paribus the capital
stock, an increase in the level of debt raises tax receipts (by (12.49)), reduces con-
sumption, and renders net investment positive. As a result, the new capital stock
equilibrium features a higher capital stock. The dynamic forces are indicated by
horizontal arrows in Figure 12.8.

The ḃ = 0 line is obtained from (12.50). It is horizontal if debt is zero in the initial
steady state. In contrast, with a positive initial debt level, it is downward sloping
because of the diminishing marginal productivity of capital:(

db(t)
dk(t)

)
ḃ(t)=0

=
b∗0 f ′′ (k∗0)

ξ − (r∗0 − n)
< 0. (12.53)

12Equation (12.50) is stable because the coefficient for b(t) on the right-hand side is equal to (r− n)− ξ,
which is negative. Recall that r depends negatively on k, so ξ > r− n cannot hold for all values of k if ξ
is finite (as intended). We intend the inequality ξ > r− n to hold in a sufficiently large region around the
initial steady state.
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For points above (below) the ḃ = 0 line there is a government surplus (deficit) so
that debt falls (rises). This is indicated with vertical arrows in Figure 12.8. The
Buiter rule thus ensures that the economy follows a stable (and possibly cyclical)
adjustment pattern, as can be verified by graphical means. Local stability can also
be investigated more formally by linearizing the model given by (12.50) and (12.51)
around the steady-state, (k∗0, b∗0). After some manipulation we obtain the following
system of first-order differential equations:13[

ḃ(t)
k̇(t)

]
=

[
r∗0 − n− ξ b∗0 f ′′(k∗0)
(1− s)ξ s f ′(k∗)− (δ + n)

] [
b(t)− b∗0
k(t)− k∗0

]
. (12.54)

The Jacobian matrix on the right-hand side of (12.54) is denoted by ∆, its typical
elements are given by δij, and λ1 and λ2 are its characteristic roots. For any square
matrix, the trace and determinant equal, respectively, the sum and the product of
the characteristic roots. Especially for two-by-two matrices this result is often quite
useful to figure out the signs of the roots without actually computing them explicitly.
To see that this is indeed the case, note that δ11 < 0 and δ22 < 0 so that tr(∆) ≡
λ1 + λ2 = δ11 + δ22 < 0 implying that the sum of the roots is negative. Furthermore,
since δ12 < 0 (for b∗0 > 0) and δ21 > 0 it follows that |∆| ≡ λ1λ2 = δ11δ22− δ12δ21 > 0,
so that the model is stable, i.e. λ1 and λ2 are both negative.

Now consider the typical Ricardian equivalence experiment, consisting of a post-
ponement of taxation. In the model this amounts to a reduction in τ0. This creates a
primary deficit at impact (g > τ0) so that government debt starts to rise. In terms of
Figure 12.8, both the k̇ = 0 line and the ḃ = 0 line shift up, the latter by more than
the former. The new long-run equilibrium is at E1, and government debt, the capital
stock, and output (all measured in efficiency units of labour) rise as a result of the
tax cut:

dy(∞)

dτ0
=

f ′ (k∗0) dk(∞)

dτ0
= −

(1− s)(r∗0 − n) f ′ (k∗0)
|∆| < 0, (12.55)

db(∞)

dτ0
=

s f ′ (k∗0)− (δ + n) + (1− s)b∗0 f ′′ (k∗0)
|∆| < 0. (12.56)

Clearly, Ricardian equivalence does not hold in the Solow-Swan model. At impact,
a temporary tax cut boosts consumption and depresses investment (dk̇ (0) /dτ0 =
−dc (0) /dτ0 = 1− s > 0) and thus has real effects.

12.5 Two-sector model

Up to this point we have assumed that output is homogeneous and can be used for
consumption by households and the government and also for investment by firms.

13We write the non-linear system in general functional form as ḃ(t) = Φ(b(t), k(t)) and k̇(t) =
Ψ(b(t), k(t)). A first-order Taylor approximation around (b∗0 , k∗0) yields:

ḃ(t) ≈ Φ(b∗0 , k∗0) + Φb(b∗0 , k∗0) [b(t)− b∗0 ] + Φk(b∗0 , k∗0) [k(t)− k∗0 ] ,

k̇(t) ≈ Ψ(b∗0 , k∗0) + Ψb(b∗0 , k∗0) [b(t)− b∗0 ] + Ψk(b∗0 , k∗0) [k(t)− k∗0 ] .

At the steady-state we have Φ(b∗0 , k∗0) = Ψ(b∗0 , k∗0) = 0 so the first terms on the right-hand side drop out
and the system can be written in matrix notation as:[

ḃ(t)
k̇(t)

]
=

[
Φb(b∗0 , k∗0) Φk(b∗0 , k∗0)
Ψb(b∗0 , k∗0) Ψk(b∗0 , k∗0)

] [
b(t)− b∗0
k(t)− k∗0

]
.
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Figure 12.8: Ricardian non-equivalence in the Solow-Swan model

This is a rather unrealistic feature of the Solow-Swan model. Indeed, in reality con-
sumption goods (apples, oranges, bread) are quite different from investment goods
(machines, buildings, PCs). In this section we relax the single-good assumption and
instead study (a version of) the two-sector growth model that was first proposed—
almost simultaneously—by Meade (1961) and Uzawa (1961b, 1963). The Meade-
Uzawa model recognizes two separate production sectors, namely a consumption
good sector (with industry index i = C) and an investment good sector (with index
i = I). In both sectors capital and labour are used to produce output. We abstract
from technological progress to keep things simple. The technology in sector i is given
by:

Yi(t) = Fi(Ki(t), Li(t)), (12.57)

where Yi is output, Ki is the capital input, and Li is the labour input in sector i ∈
{C, I}. The production functions possess the usual properties, i.e. they exhibit con-
stant returns to scale, positive but diminishing marginal products (Fi

K ≡
∂Fi

∂Ki
> 0,

Fi
L ≡

∂Fi

∂Li
> 0, Fi

KK ≡
∂2Fi

∂K2
i
< 0, Fi

LL ≡
∂2Fi

∂L2
i
< 0), and cooperative factors of production

(Fi
KL ≡

∂2Fi

∂Ki∂Li
> 0). In addition we assume that the relevant Inada conditions are

satisfied. The intensive-form production functions are written as:

yi(t) = fi(ki(t)), (12.58)

where yi ≡ Yi/Li and ki ≡ Ki/Li. The marginal products of capital and labour can
then be written as:14

Fi
K(Ki(t), Li(t)) ≡ f ′i (ki(t)), (12.59)

14We use Fi = Fi
KKi + Fi

L Li , which follows from Euler’s theorem, and Fi
K = f ′i to derive the second

expression.
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Fi
L(Ki(t), Li(t)) ≡ fi(ki(t))− ki(t) f ′i (ki(t)). (12.60)

Capital and labour are perfectly mobile between sector ensuring that the wage rate,
W, and the rental rate on capital, RK, are the same in both sectors. Profit of the
representative firm in sector i is given by:

Πi(t) = Pi(t)Fi(Ki(t), Li(t))−W(t)Li(t)− RK(t)Ki(t), (12.61)

where Pi is the price of one unit of output produced in sector i. The firm is perfectly
competitive and hires factors of production such that the value of the marginal prod-
uct of each factor equals its rental rate:

Pi(t)Fi
K(Ki(t), Li(t)) = RK(t), (12.62)

Pi(t)Fi
L(Ki(t), Li(t)) = W(t). (12.63)

Because there are constant returns to scale, (12.62)–(12.63) imply that profit is zero in
each sector, i.e. Πi(t) = 0. Note that the first-order conditions can be combined to
obtain:

ω(t) =
Fi

L(Ki, Li)

Fi
K(Ki, Li)

, (12.64)

where ω(t) ≡ W(t)
RK(t) is the relative price of labour which we refer to as the wage-rental

ratio.
The equilibrium conditions on the markets for existing capital and labour can be

written as:

K(t) = KC(t) + KI(t), (12.65)
L(t) = LC(t) + LI(t). (12.66)

At each moment in time the aggregate factor supplies (K(t) and L(t)) are prede-
termined but the location of each factor’s usage can be changed instantaneously in
response to exogenous shocks.

Just as in the Solow-Swan model, aggregate saving is assumed to be proportional
to aggregate output. Since the latter equals aggregate factor payments we thus have:

S(t) = s
[

RK(t)K(t) + W(t)L(t)
]

, 0 < s < 1, (12.67)

where s is the exogenously given propensity to save. Of necessity, saving can only
be used by buying investment goods, i.e.:

S(t) = PI(t)YI(t). (12.68)

At each moment in time, the savings decisions by households thus determine aggre-
gate revenue in the investment goods sector.

The output of the investment goods sector augments the stock of capital accord-
ing to:

K̇(t) = YI(t)− δK(t), (12.69)

where δ is the constant depreciation rate. The growth rate in the aggregate labour
force is still given by (12.5) above.
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Finally, aggregate output measured in terms of consumption goods is defined as
follows:

Y(t) = YC(t) +
PI(t)
PC(t)

YI(t). (12.70)

The full model is given in Table 12.1 for convenience. Since the derivation of
these expressions is far from straightforward, Intermezzo 12.2 presents the details.
The endogenous variables are aggregate per capita output, y ≡ Y/L, the capital
intensities in the two sectors, kI and kC, the wage-rental ratio, ω, the macroeconomic
capital intensity, k ≡ K/L, and the proportion of the work force that is employed in
the investment goods sector, lI ≡ LI/L.

Table 12.1. The Meade-Uzawa growth model

y(t) = (1− lI(t)) fC(kC(t)) +
f ′C(kC(t))
f ′I(kI(t))

lI(t) f I(kI(t)) (T1.1)

ω(t) =
fC(kC(t))
f ′C(kC(t))

− kC(t) (T1.2)

ω(t) =
f I(kI(t))
f ′I(kI(t))

− kI(t) (T1.3)

k(t) = (1− lI(t))kC(t) + lI(t)kI(t) (T1.4)

lI(t)
f I(kI(t))
f ′I(kI(t))

= s [k(t) + ω(t)] (T1.5)

k̇(t) = lI(t) f (kI(t))− (δ + nL)k(t) (T1.6)

Notes: y(t) is aggregate per capita output measured in terms of consumption goods, ki(t) is
the capital intensity in sector i, k(t) is the economy-wide capital-labour ratio, ω(t) is the wage-
rental ratio, and lI(t) is the fraction of the work force employed in the investment goods sector.
Capital depreciates at a constant rate δ and the population grows exponentially with rate nL.

Along the balanced growth path the endogenous variables are all constant over
time, i.e. y(t) = y∗, ki(t) = k∗i , ω(t) = ω∗, li(t) = l∗i , and k(t) = k∗. Since the labour
force grows at the exponential rate nL, it thus follows that all level variables grow at
that rate also:(

Ẏ(t)
Y(t)

)∗
=

(
K̇i(t)
Ki(t)

)∗
=

(
L̇i(t)
Li(t)

)∗
=

(
K̇(t)
K(t)

)∗
= nL. (12.71)

Of course, the steady state equilibrium solution is only of interest if we can demon-
strate that it is stable. Whilst the stability proof is rather complicated for the most
general case, it turns out to be quite straightforward for the special case with Cobb-
Douglas technologies.

We assume from here on that the intensive-form production functions take the
following form:

yi(t) = Ziki(t)αi , 0 < αi < 1, (12.72)
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where Zi is a sector-specific constant and αi is the sector-specific efficiency parameter
for capital. We assume that αI 6= αC so the technologies are distinct. The fundamen-
tal differential equation is derived as follows. First, by using (12.72) in (T1.2)–(T1.3)
we find the capital intensities in the two sectors conditional on the wage-rental ratio:

ki(t) =
αi

1− αi
ω(t). (12.73)

For a given wage-rental ratio, the sector with the highest efficiency parameter of
capital features the highest capital intensity.

Second, by using (12.72) and (12.73) in (T1.4)–(T1.5) we obtain:

k(t)
ω(t)

= (1− lI(t))
αC

1− αC
+ lI(t)

αI
1− αI

, (12.74)

lI(t)
1− αI

= s
[

k(t)
ω(t)

+ 1
]

. (12.75)

Solving for lI(t) and k(t)/ω(t) we obtain:

lI(t) =
s(1− αI)

s(1− αI) + (1− s)(1− αC)
≡ l∗I , (12.76)

k(t)
ω(t)

= (1− l∗I )
αC

1− αC
+ l∗I

αI
1− αI

≡ κ∗. (12.77)

Clearly, 0 < l∗I < 1 and κ∗ > 0. Since the savings rate and the efficiency parameters
of the production functions are constant, it follows from these expressions that lI(t)
and ω(t)/k(t) are both constant over time for the Cobb-Douglas case.

Third, by using (12.72)–(12.73) and (12.76) in (T1.1) we obtain a simple expression
for per capita aggregate output:

y(t) =
[

1− l∗I +
1− αC
1− αI

l∗I

]
ZCkC(t)αC . (12.78)

Per capita output is thus proportional to the intensive-form production function in
the consumption goods sector. But this expression can be simplified even further by
using (12.73) for i = C and by noting (12.77):

y(t) =
[

1− l∗I +
1− αC
1− αI

l∗I

]
ZC

[
αC

1− αC
ω(t)

]αC

=

[
1− l∗I +

1− αC
1− αI

l∗I

]
ZC

[
αC

1− αC

k(t)
κ∗

]αC

. (12.79)

Finally, by using (12.73) and (12.76)–(12.77) in (T1.6) we find that the economy-
wide capital-labour ratio evolves according to:

k̇(t) = l∗I ZI

[
αI

1− αI
ω(t)

]αI

− (δ + nL)k(t)

= l∗I ZI

[
αI

1− αI

k(t)
κ∗

]αI

− (δ + nL)k(t). (12.80)

This is the fundamental differential equation characterizing the transitional dynam-
ics of (the Cobb-Douglas version of) the Meade-Uzawa model. It is the two-sector
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counterpart to equation (12.24) and its main properties are easily established. First,
the model is stable and features a uniques economically interesting steady-state macro-
economic capital intensity, k∗. Steady-state per capita output, y∗, follows readily
from (12.79). Second, the approximate speed of adjustment equals β ≡ (1− αI)(δ +
nL) so it is the capital share parameter in the investment goods sector that is the cru-
cial determinant of transition speed. So if this sector is highly capital intensive (and
features a high value of αI) then the Meade-Uzawa model may not be grossly at
odds with the empirical convergence speed of two percent per annum mentioned in
Section 12.3.3 above.

Perhaps the most important conclusion from the two-sector model is the follow-
ing. Apart from details, the two-sector model provides a very similar description of
the growth process as the much simpler one-sector model first suggested by Solow
and Swan. This may explain why the Solow-Swan model has proven to be such a
durable model. At the macroeconomic level it “explains a lot with very little”, i.e. it
gives a lot of bang for one’s bucks.

Intermezzo 12.2

Some tedious derivations for the Meade-Uzawa model. The derivation
of the expressions in Table 12.1 proceeds as follows. First we note that
it follows from (12.62) and (12.59) that the relative price of investment
goods is equal to:

PI(t)
PC(t)

=
f ′C(kC(t))
f ′I(kI(t))

. (a)

By using (12.58), (12.70), and (a) we obtain equation (T1.1):

y(t) ≡ Y(t)
L(t)

=
LC(t)
L(t)

YC(t)
LC(t)

+
PI(t)
PC(t)

LI(t)
L(t)

YI(t)
LI(t)

= (1− lI(t)) fC(kC(t)) +
f ′C(kC(t))
f ′I(kI(t))

lI(t) f I(kI(t)), (b)

where lI ≡ LI/L is the proportion of the labour force employed in the
investment goods sector (with the remainder, 1 − lI , employed in the
consumption goods sector). Equations (T1.2) and (T1.3) are obtained by
dividing (12.63) by (12.62) and noting (12.59)–(12.60). To obtain equation
(T1.4) we divide (12.65) by (12.66):

k(t) ≡ K(t)
L(t)

=
KC(t)

LC(t) + LI(t)
+

KI(t)
LC(t) + LI(t)

=
LC(t)

LC(t) + LI(t)
KC(t)
LC(t)

+
LI(t)

LC(t) + LI(t)
KI(t)
LI(t)

= (1− lI(t))kC(t) + lI(t)kI(t). (c)

To get equation (T1.5) we first combine (12.67) and (12.68) to get:

PI(t)YI(t) = s[RK(t)K(t) + W(t)L(t)]. (d)
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Dividing both sides by RK L gives:

PI(t)YI(t)
RK(t)L(t)

= s[k(t) + ω(t)]. (e)

The left-hand side of (e) can be simplified as follows:

PI(t)YI(t)
RK(t)L(t)

=
LI(t)
L(t)

PI(t)yI(t)
RK(t)

= lI(t)
PI(t) f I(kI(t))
PI(t) f ′I(kI(t))

= lI(t)
f I(kI(t))
f ′I(kI(t))

, (f)

where we have used (12.62) for i = I to arrive at the final expression.
Substituting (f) into (e) yields equation (T1.5). Finally, equation (T1.6)
follows from (12.69), (12.58), and (12.5) in the following fashion:

K̇(t)
L(t)

=
LI(t)
L(t)

YI(t)
LI(t)

− δ
K(t)
L(t)

⇔

k̇(t) + nLk(t) = lI(t) f I(kI(t))− δk(t). (g)

By rearranging (g) somewhat we obtain (T1.6).

****

12.6 Punchlines

We start this chapter by presenting some of the most important stylized facts about
growth as they were presented over five decades ago by Kaldor. These are: (i) out-
put per worker shows continuous growth, (ii) the capital-output ratio is constant,
(iii) labour and capital receive constant shares of total income, and (iv) the rate of
productivity growth differs across countries. Together these stylized facts also ex-
plain that (v) capital per worker grows continuously and that (vi) the rate of return
on capital is steady.

Next we present the neoclassical growth model as it was developed by Solow and
Swan in the mid 1950s. The key elements of this model are the neoclassical produc-
tion function, featuring substitutability between capital and labour, and the “Key-
nesian” savings function according to which households save a constant fraction of
their income. Although the Solow-Swan model is able to explain all of Kaldor’s styl-
ized facts, some economists are disturbed by its prediction that long-run growth is
determined entirely by exogenous factors, such as the rate of population growth and
the rate of labour-augmenting technological progress. For this reason the Solow-
Swan model is often referred to as an “exogenous” growth model. The model does
not feature Ricardian equivalence, i.e. public debt is not neutral. Further important
features of the model are that it allows for the possibility of oversaving (dynamic
inefficiency) and that it is consistent with the conditional convergence hypothesis
according to which similar countries converge. The standard Solow-Swan model
predicts too high a convergence speed, but this counterfactual prediction is easily
fixed by incorporating human capital into the model.

In the final section of this chapter we study a two-sector growth model first pro-
posed by Meade and Uzawa. This model assumes that consumption and investment
goods are produced in different sectors featuring different technologies. Interest-
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ingly, at the macroeconomic level the Meade-Uzawa model looks very similar to the
Solow-Swan model, at least for the case in which production functions are of the
Cobb-Douglas type.

Further reading

The theory of exogenous economic growth is well surveyed by Burmeister and Do-
bell (1970), Wan (1971), Hamberg (1971), Hacche (1979), Barro and Sala-i-Martin
(1995), and Acemoglu (2009).

On the two-sector model, see Meade (1961), Uzawa (1961, 1963), Solow (1961),
and Inada (1964). See Drandakis (1963) for existence (causality) conditions. For a
very good textbook treatment of the two-sector model, see Burmeister and Dobell
(1970, chs. 4–5).



Chapter 13

Exogenous economic growth—
Ramsey-Cass-Koopmans

The purpose of this chapter is to discuss the following issues:

1. How can we provide a microeconomic foundation for the savings decision by
households?

2. What are the most important features of the growth model based on dynami-
cally optimizing consumers?

3. How do fiscal policy and Ricardian equivalence work in the basic micro-founded
growth model?

4. How do dynamically optimizing households choose their labour supply over
time?

5. How do search frictions in the labour market lead to a positive equilibrium rate
of unemployment in a world with hyper-rational consumers and firms?

6. What do we mean by monetary (super)neutrality?

13.1 The Ramsey-Cass-Koopmans model

In the previous chapter we employed an ad hoc savings function according to which
aggregate saving is a constant fraction of income (see equations (12.2), (12.41), and
(12.67)). Whilst the underlying consumption function works rather well empirically
(in the sense that output and consumption are highly correlated), there are serious
theoretical objections that can be raised against it. In Chapter 6, for example, it was
shown that a forward-looking “representative” agent would condition consumption
not on some measure of disposable income but rather on lifetime wealth, comprising
the sum of financial and human wealth (see, for example, the expressions in (6.16)).
In this chapter we investigate the implications for growth of the intertemporal utility
maximization theory.

The intertemporal utility maximizing approach to consumption was pioneered
by Frank Ramsey in the 1920s with some help from John Maynard Keynes—see Ram-
sey (1928). Ramsey’s basic insights were embedded in a macroeconomic growth mo-
del in the 1960s by key contributers David Cass (1965) and Tjalling Koopmans (1965,
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1967). The literature often refers to the model as the Ramsey model although a much
more appropriate name would be the Ramsey-Cass-Koopmans (or RCK) model.

13.1.1 The representative household

Assume that the representative household has L(t) members at time t, is infinitely
lived,1 and blessed with perfect foresight. The household experiences instantaneous
utility (or “felicity”) which depends on the consumption flow c(t) per member of the
household. The felicity function, U(c(t)), exhibits positive but diminishing marginal
utility and thus satisfies U′(c(t)) > 0 and U′′(c(t)) < 0. In addition the following
Inada-style conditions are imposed:

lim
c(t)→0

U′(c(t)) = +∞, lim
c(t)→∞

U′(c(t)) = 0. (13.1)

The household derives no felicity from the consumption of leisure and is assumed
to inelastically supply L(t) units of labour to a competitive labour market, i.e. all
household members work full time. (In Sections 13.5 and 13.6 this rather restrictive
assumption is abandoned.) As before, labour supply grows over time at a constant
exponential rate (i.e. L̇(t)/L(t) = n).2 The household’s utility functional is defined
as the discounted integral of present and future felicity. Normalizing the present by
t = 0 (“today”) we obtain:

Λ(0) ≡
∫ ∞

0
U(c(t))e−ρtdt, ρ > 0, (13.2)

where Λ(0) is lifetime utility and ρ is the pure rate of time preference. At time t, the
household holds financial assets totalling A(t) and yielding a rate of return of r(t).
The budget identity is thus given by:

C(t) + Ȧ(t) ≡ r(t)A(t) + w(t)L(t), (13.3)

where w(t) is the real wage, w(t)L(t) is household wage income, and C(t) ≡ c(t)L(t)
is aggregate household consumption. Equation (13.3) says that the sum of income
from financial assets and labour (the right-hand side) is equal to the sum of con-
sumption and saving (the left-hand side). By rewriting (13.3) in per capita form we
obtain:

ȧ(t) ≡ [r(t)− n] a(t) + w(t)− c(t), (13.4)

where a(t) ≡ A(t)/L(t). As it stands, (13.4) is still no more than an identity, i.e.
without further restrictions it is rather meaningless. Indeed, if the household can
borrow all it likes at the going interest rate r(t) it will simply accumulate debt indef-
initely and thus be able to finance any arbitrary high consumption path. To avoid
this economically nonsensical outcome, we need to impose a solvency condition:

lim
t→∞

a(t) exp
[
−
∫ t

0
[r(τ)− n] dτ

]
= 0. (13.5)

1Alternatively, one might assume a representative family dynasty, the finitely-lived members of which
are linked across time via operative bequests. See Barro and Sala-i-Martin (1995, p. 60) and Chapter 6 for
this interpretation.

2New, infinitely-lived family members are born into the household at each moment in time, leading to
an exponential increase in total household labour supply.
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Intuitively, equation (13.5) says that the household does not plan to “expire” with
positive assets and is not allowed by the capital market to die hopelessly indebted.3

By integrating (13.4) over the (infinite) lifetime of the household and taking into
account the solvency condition (13.5), we obtain the household lifetime budget con-
straint (see Intermezzo 13.1):∫ ∞

0
c(t)e−[R(t)−nt]dt = a(0) + h(0), (13.6)

where a(0) is the initial level of financial assets, h(0) is the initial level of human
wealth,

h(0) ≡
∫ ∞

0
w(t)e−[R(t)−nt]dt, (13.7)

and R(t) is a discounting factor:

R(t) ≡
∫ t

0
r(τ)dτ. (13.8)

Equation (13.7) shows that human wealth is the present value of the real wage, i.e.
the market value of each household member’s (unit) time endowment. From the
viewpoint of the household, the right-hand side of (13.6) is given and acts as a re-
striction on the time paths for consumption that are feasible.

Intermezzo 13.1

The household’s lifetime budget constraint under perfect foresight.
The household’s lifetime budget constraint (13.6) is derived as follows.
First we premultiply (13.4) by e−[R(t)−nt] to obtain:

[ȧ(t)− [r(t)− n] a(t)] e−[R(t)−nt] = [w(t)− c(t)] e−[R(t)−nt] ⇔
d
dt

[
a(t)e−[R(t)−nt]

]
= [w(t)− c(t)] e−[R(t)−nt], (a)

where we have used the fact that dR(t)/dt = r(t) (Leibnitz’s rule; see the
Mathematical Appendix) in going from the first to the second line. By
integrating both sides of (a) over the interval [0, ∞) we obtain:∫ ∞

0
da(t)e−[R(t)−nt] =

∫ ∞

0
[w(t)− c(t)] e−[R(t)−nt]dt

lim
t→∞

e−[R(t)−nt]a(t)− a(0) = h(0)−
∫ ∞

0
c(t)e−[R(t)−nt]dt, (b)

where we have used (13.7) and have noted that e−[R(0)−0n] = 1. The
solvency condition (13.5) ensures that the first term on the left-hand side
of (b) is equal to zero, i.e. equation (b) coincides with (13.6).

****

3Compare the discussion in Barro and Sala-i-Martin (1995, pp. 62–66). Strictly speaking (13.5) in
equality form is an outcome of household maximizing behaviour rather than an a priori restriction. See
also Intermezzo 13.2 for further details. By using (13.5) we avoid getting bogged down in technical issues.
See also Section 6.1.1 for an intuitive discussion of the solvency condition in macroeconomics.
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The consumer chooses a time path for c(t) in order to attain a maximum lifetime
utility level Λ(0) (given in (13.2)), subject to the lifetime budget restriction (13.6).
The Lagrangian for this optimization problem is given by:

L ≡
∫ ∞

0
U(c(t))e−ρtdt + λ ·

[
a(0) + h(0)−

∫ ∞

0
c(t)e−[R(t)−nt]dt

]
, (13.9)

where λ is the Lagrange multiplier associated with the lifetime budget restriction
(13.6). The optimized value of λ represents the marginal lifetime utility of wealth.
The first-order conditions are (13.6) and:4

U′(c(t))e−ρt = λe−[R(t)−nt], t ∈ [0, ∞). (13.10)

The left-hand side of (13.10) represents the marginal contribution to lifetime utility
(evaluated from the perspective of “today”, i.e. t = 0) of consumption in period t.
The right-hand side of (13.10) is the lifetime marginal utility cost of consuming c(t)
rather than saving it. The marginal unit of c(t) costs e−[R(t)−nt] from the perspective
of today. This cost is translated into utility terms by multiplying it by the marginal
utility of wealth.5

Since the marginal utility of wealth, λ, is constant (i.e. it does not depend on
t), differentiation of (13.10) yields an expression for the optimal time profile of con-
sumption:

d
dt

U′(c(t)) = −λe−[R(t)−nt−ρt] ·
[

dR(t)
dt
− n− ρ

]
⇔

U′′(c(t)) · dc(t)
dt

= −U′(c(t)) · [r(t)− n− ρ] ⇔

θ(c(t)) · 1
c(t)

dc(t)
dt

= r(t)− n− ρ, (13.11)

where we have used the fact that dR(t)/dt = r(t) (see (13.8)) and where θ(·) is the
elasticity of marginal utility with respect to consumption, which is positive for all
positive consumption levels because of the strict concavity of U(·):

θ(c(t)) ≡ −U′′(c(t))c(t)
U′(c(t))

. (13.12)

The intertemporal substitution elasticity, σ(·), is the inverse of θ(·). By using this rela-
tionship, the expression in (13.11) can be rewritten to yield the consumption Euler
equation:

1
c(t)

dc(t)
dt

= σ(c(t)) ·
[
r(t)− n− ρ

]
. (13.13)

Intuitively, if σ(·) is low, a large interest gap (r(t)− n− ρ) is needed to induce the
household to adopt an upward-sloping time profile for consumption. In that case the
willingness to substitute consumption across time is low, the elasticity of marginal
utility is high, and the marginal utility function has a lot of curvature. The opposite
holds if σ(·) is high. Then, the marginal utility function is almost linear so that a
small interest gap can explain a large slope of the consumption profile.

4In deriving (13.10) we have applied Leibnitz’s rule for differentiating under the integral sign to (13.9)
to obtain ∂L/∂c(t) = U′(c(t))e−ρt − λe−[R(t)−nt]. In the optimum, ∂L/∂c(t) = 0 for all c(t).

5See Dixit (1990, ch. 10) for intuitive discussions of apparently intractable first-order conditions.
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Intermezzo 13.2

Deriving the Euler equation with the method of optimal control. In
the main text we solve the household’s optimization problem by using
the Lagrangian method. We use this method because it gives rise to eas-
ily interpretable first-order conditions as given in (13.10). Of course the
problem can also be solved by using the method of optimal control (see
the Mathematical Appendix). The current-value Hamiltonian is:

HC ≡ U(c(t)) + µ(t) ·
[
[r(t)− n] a(t) + w(t)− c(t)

]
, (a)

where c(t) is the control variable, a(t) is the state variable, and µ(t) is the
co-state variable. The household’s asset holdings cannot become nega-
tive in the limit, so we write the terminal condition as:

lim
t→∞

a(t) ≥ 0. (b)

The first-order conditions are given by:

∂HC
∂c(t)

= 0, (c1)

ȧ(t) =
∂HC
∂µ(t)

, (c2)

µ̇(t)− ρµ(t) = − ∂HC
∂a(t)

, (c3)

lim
t→∞

e−ρtµ(t) ≥ 0, lim
t→∞

e−ρtµ(t) · a(t) = 0. (c4)

Equation (c2) just gives us back the household budget identity (13.4).
Equations (c1) and (c3) can be rewritten as:

U′(c(t)) = µ(t), (d1)

− µ̇(t)
µ(t)

= r(t)− n− ρ. (d2)

Differentiating (d1) with respect to time we find µ̇(t) = U′′(c(t))ċ(t).
Using this expression as well as (d1) itself in (d2) we find:[

− µ̇(t)
µ(t)

=

]
− U′′(c(t))ċ(t)

U′(c(t))
= r(t)− n− ρ. (e)

Rearranging this expression somewhat (using (13.12)) we find the Euler
equation (13.13).

To derive the solvency condition (13.5) we proceed as follows. First,
we use (d2) to solve for µ(t):

µ(t) = µ(0) · e−[R(t)−(n+ρ)t], (f)

where R(t) ≡
∫ t

0 r(τ)dτ. Using (f) in the first expression of (c4) we find:

lim
t→∞

e−ρtµ(0)e−[R(t)−(n+ρ)t] = U′(c(0)) · lim
t→∞

e−[R(t)−nt] ≥ 0, (g1)



438 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

where we have used the fact that µ(0) = U′(c(0)) to arrive at the final ex-
pression. Since U′(c(0)) is strictly positive for a finite c(0) and e−[R(t)−nt]

is non-negative, condition (g1) is easily satisfied.
Using (f) in the second expression of (c4) we find:

lim
t→∞

e−ρtµ(0) · e−[R(t)−(n+ρ)t] · a(t) = U′(c(0)) · lim
t→∞

a(t)e−[R(t)−nt]

= 0. (g2)

Since U′(c(0)) > 0, condition (g2) is seen to be equivalent to the solvency
condition (13.5).

Finally, it is easy to deduce the relationship between the initial value
of the co-state variable, µ(0), and the Lagrange multiplier used in the
text, λ. From (d1) we observe that µ(0) = U′(c(0)), whilst from (13.10)
we find that λ = U′(c(0)). Since the same value for c(0) features in both
expressions, we find that λ = µ(0).

****

As it stands, (13.13) is of little use to us because σ(c(t)) still depends on consump-
tion, rendering (13.13) difficult to work with and the derivation of a closed-form so-
lution for consumption impossible. For this reason an explicit form for U(c(t)) is
chosen. There are two useful functional forms, i.e. the exponential utility function:

U(c(t)) ≡ −αe−(1/α)c(t), α > 0, (13.14)

and the iso-elastic utility function:6

U(c(t)) ≡

 c(t)1−1/σ − 1
1− 1/σ

for σ > 0, σ 6= 1,

ln c(t) for σ = 1.
(13.15)

It is not difficult to verify that the intertemporal substitution elasticities correspond-
ing with these two functional forms are, respectively, σ(c(t)) = α/c(t) and σ(c(t)) =
σ, so that the respective Euler equations are:

dc(t)
dt

= α [r(t)− n− ρ] , (exponential felicity), (13.16)

1
c(t)

dc(t)
dt

= σ [r(t)− n− ρ] , (iso-elastic felicity). (13.17)

So both these utility functions lead to very simple expressions for the Euler equation.
But what about the closed-form solution for consumption itself?

We focus on the iso-elastic case, leaving the exponential case as an exercise for the
reader. First we note that (13.17) can be integrated (between 0 and t) to yield future

6The second line in (13.15) is obtained from the first line by letting 1/σ approach unity. The trick is to
use l’Hôpital’s rule for calculating limits of the 0÷ 0 type:

lim
(1/σ)→1

[
c1−1/σ − 1

1− 1/σ

]
=
− lim(1/σ)→1 c1−1/σ ln c

−1
= ln c.
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consumption c(t) in terms of current consumption c(0):

c(t) = c(0)eσ[R(t)−nt−ρt]. (13.18)

By substituting this expression into the household budget constraint (13.6) we obtain
in a few steps:∫ ∞

0
c(0)eσ[R(t)−nt−ρt]e−[R(t)−nt]dt = a(0) + h(0) ⇔

c(0)
∫ ∞

0
e(σ−1)[R(t)−nt]−σρtdt = a(0) + h(0) ⇔

c(0) ≡ 1
∆(0)

· [a(0) + h(0)] , (13.19)

where ∆(0)−1 is the propensity to consume out of total wealth, and ∆(0) is defined
as:

∆(0) ≡
∫ ∞

0
e(σ−1)[R(t)−nt]−σρtdt. (13.20)

According to (13.19), consumption in the planning period is proportional to total
wealth. Some special cases merit attention. If σ = 1 (so that U(c(t)) in (13.15) is log-
arithmic), ∆(0)−1 = ρ and, regardless of the anticipated path of future interest rates,
the household consumes a constant fraction, ρ, of total wealth in the current period.
Income and substitution effects of a change in the anticipated path for interest rates
exactly cancel in this case (see also Section 6.1.1). Another special case is often used
in the international context. If a country is small in world financial markets and thus
faces a constant world interest rate r̄ it follows from (13.8) that R(t) = r̄t and from
(13.20) that ∆(0)−1 = σρ + (1− σ)(r̄− n). (Of course restrictions on the parameters
must ensure that ∆(0) remains positive.)

13.1.2 The representative firm

Perfectly competitive firms produce a homogeneous good by using capital and labour.
Since there are constant returns to scale to the production factors taken together (see
(P1) in Chapter 12) there is no need to distinguish individual firms and we can em-
brace the notion of a representative firm, which makes use of technology as summa-
rized by the production function in (12.6). (We abstract from technical progress to
keep things simple.)

The stockmarket value of the firm is given by the discounted value of its cash
flows:

V(0) =
∫ ∞

0

[
F (K(t), L(t))− w(t)L(t)− (1− sI) I(t)

]
e−R(t)dt, (13.21)

where R(t) is the discounting factor given in (13.8), I(t) is gross investment by the
firm (see equation (12.4)), and sI is an investment subsidy to be used below (in this
section we assume sI = 0). The firm maximizes its stockmarket value (13.21) subject
to the capital accumulation constraint (12.4). Implicit in the formulation of the firm’s
choice set is the notion that it can vary its desired capital stock at will, i.e. there are
no adjustment costs on investment (see Chapter 4 and below for a discussion of such
costs). Indeed, by substituting (12.4) into (13.21) and integrating we find that the
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objective function for the firm can be written as:7

V(0) = K(0−) +
∫ ∞

0

[
F (K(t), L(t))− (r(t) + δ)K(t)−w(t)L(t)

]
e−R(t)dt, (13.22)

where K(0−) is the initial capital stock measured one second before the firm decides
about K(t) for t ∈ [0, ∞). Equation (13.22) shows that the firm’s decision about factor
inputs is essentially a static one. Maximization of V(0) by choice of L(t) and K(t)
yields the familiar marginal productivity conditions for labour and capital:

FL (K(t), L(t)) = w(t), FK (K(t), L(t)) = r(t) + δ. (13.23)

By substituting the marginal productivity conditions (13.23) into (13.22) and noting
the linear homogeneity property of the production function we find that V(0) =
K(0−). In the absence of adjustment costs on investment the value of the firm equals
the (replacement) value of its capital stock, and Tobin’s q is unity.

By writing the production function in the intensive form (see (12.8)) we can rewrite
the marginal products of capital and labour as follows:

FK (K(t), L(t)) = f ′(k(t)), FL (K(t), L(t)) = f (k(t))− k(t) f ′(k(t)). (13.24)

We now have all the ingredients of the model and we summarize them for the sake of
convenience in Table 13.1. Equation (T1.1) is the rewritten Euler equation associated
with an iso-elastic felicity function (see the expression in (13.17)). Equation (T1.2)
combines equations (12.3)–(12.5) and is written in the intensive form. Finally, equa-
tion (T1.3) is obtained by combining the relevant conditions in (13.23) and (13.24).

Table 13.1. The Ramsey-Cass-Koopmans growth model

ċ(t) = σ [r(t)− n− ρ] c(t), (T1.1)

k̇(t) = f (k(t))− c(t)− (δ + n)k(t), (T1.2)

r(t) = f ′(k(t))− δ. (T1.3)

Notes: c(t) is per capita consumption, k(t) is the capital-labour ratio, and r(t) is the interest
rate. Capital depreciates at a constant rate δ and the population grows exponentially with rate
n.

13.1.3 The phase diagram

The model in Table 13.1 can be analysed to a large extent by means of its associated
phase portrait which is given in Figure 13.1. The construction of this diagram war-
rants some additional comment. The k̇(t) = 0 line represents points in (c(t), k(t))
space for which the per capita capital stock is in equilibrium. The Inada conditions

7In deriving (13.22) the key thing to note is:∫ ∞

0

[
K̇(t)− r(t)K(t)

]
e−R(t)dt =

∫ ∞

0
d
[
K(t)e−R(t)

]
= −K(0−),

where we have used the fact that limt→∞ K(t)e−R(t) = 0 in the final step.
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Figure 13.1: Phase diagram of the Ramsey-Cass-Koopmans model

ensure that it passes through the origin and is vertical there (see point A1). Golden
rule consumption occurs at point A2 where the k̇(t) = 0 line reaches its maximum:(

dc(t)
dk(t)

)
k̇(t)=0

= 0 : f ′(kGR) = δ + n. (13.25)

The maximum attainable capital-labour ratio, kMAX, occurs at point A3, where per
capita consumption is zero and total output is needed for replacement investment:

f
(
kMAX)

kMAX = δ + n. (13.26)

Finally, the capital dynamics can be most easily deduced by varying per capita con-
sumption:

∂k̇(t)
∂c(t)

= −1 < 0. (13.27)

The capital stock per worker rises (falls) for points below (above) the k̇(t) = 0 line.
This has been indicated by horizontal arrows in Figure 13.1.

The ċ(t) = 0 line represents points for which the time profile of per capita con-
sumption is flat. In view of (T1.1) this occurs at the point for which the interest
rate equals the rate of time preference plus the rate of population growth, rKR ≡
ρ + n, where the superscript “KR” refers to “Keynes-Ramsey”, who were the first to
discover this result. The Keynes-Ramsey interest rate is associated with a unique
capital-labour ratio (see (T1.3)). Hence, rKR = f ′(kKR)− δ and kKR thus satisfies:

f ′(kKR) = δ + n + ρ. (13.28)

The comparison of (13.25) and (13.28) reveals that f ′(kKR) exceeds f ′(kGR), i.e. kKR

lies to the left of kGR. Finally, we note that the expression determining the Keynes-
Ramsey capital-labour ratio (namely (13.28)) is often referred to in the literature as
the modified golden rule.
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Consumption dynamics is obtained by substituting (T1.3) into (T1.1) and taking
the derivative with respect to the capital intensity:

∂ċ(t)
∂k(t)

= σc(t) f ′′(k(t)) < 0. (13.29)

Per capita consumption rises (falls) for points to the left (right) of the ċ(t) = 0 line.
This has been indicated by vertical arrows in Figure 13.1.

The graphical representation of the model allows us to draw two important con-
clusions. First, the configuration of arrows suggests that the model is saddle-point
stable, with c(t) acting as the jumping variable and k(t) as the predetermined (sticky)
variable. Second, the economy features a unique steady state, with c(t) = c∗ and
k(t) = k∗ = kKR. It follows that along the balanced growth path, output, capital,
consumption, etcetera all grow at the rate of population growth, n, just as in the
standard Solow-Swan model.

13.2 Properties of the Ramsey-Cass-Koopmans model

In this section we study the most important properties of the Ramsey-Cass-Koop-
mans model. In particular, we revisit the issue of over-saving, and study the model’s
transitional dynamics.

13.2.1 Efficiency

Perhaps the most important property of the Ramsey-Cass-Koopmans model is that it
precludes the possibility of dynamic inefficiency and oversaving, phenomena which
are possible in the Solow-Swan model. Intuitively, this result is perhaps not that
surprising because there are no missing markets, distortions, and external effects in
the model so there is no reason to suspect violation of the fundamental theorems of
welfare economics.

The efficiency property of the Ramsey-Cass-Koopmans model can be demon-
strated by proving the equivalence of the market outcome (discussed in the pre-
vious section) and the solution chosen by a benevolent social planner. Such a social
planner would maximize lifetime utility of the representative agent (Λ(0) given in
(13.2)) subject to the production function (12.6) and the capital accumulation con-
straint (12.4).8 We solve the planning problem using the method of optimal control
(see Intermezzo 13.2 or the Mathematical Appendix).

The curent-value Hamiltonian associated with the command optimum is given
by:

HC(t) ≡ U(c(t)) + µ(t) · [ f (k(t))− c(t)− (n + δ)k(t)] , (13.30)

where c(t) is the control variable, k(t) is the state variable, and µ(t) is the co-state
variable. The first-order necessary conditions characterizing the social optimum are:

∂HC(t)
∂c(t)

= 0: U′(cSO(t)) = µ(t), (13.31)

8As well as an initial condition for the capital stock, non-negativity constraints for consumption and
capital, and a transversality condition. See Blanchard and Fischer (1989, pp. 38–43) and Intriligator (1971,
pp. 405–416).
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−∂HC(t)
∂k(t)

= µ̇(t)− ρµ(t): − µ̇(t)
µ(t)

= f ′(kSO(t))− (ρ + n + δ), (13.32)

where the superscript “SO” denotes socially optimal values. The socially optimal
interest rate can be defined as rSO(t) ≡ f ′(kSO(t))− δ, so that (13.31)–(13.32) can be
combined to yield an easily interpretable expression for the optimal time profile of
consumption:

1
cSO(t)

dcSO(t)
dt

= σ(cSO(t)) ·
[
rSO(t)− n− ρ

]
, t ∈ [0, ∞). (13.33)

Equation (13.33) has exactly the same form as (13.13) so that the planning solution
and market outcome coincide.9 Hence, by removing the ad hoc saving function from
the Solow-Swan model there is no possibility of oversaving any more.

13.2.2 Transitional dynamics and convergence

As was demonstrated graphically with the aid of Figure 13.1, the Ramsey-Cass-
Koopmans model is saddle-point stable. An exact solution for the saddle path can in
general not be obtained, however, rendering the study of the convergence properties
of the model slightly more complicated than was the case for the Solow-Swan model.
By linearizing the model around the initial steady state, E0, however, the approximate
transitional dynamics can be studied in a relatively straightforward manner.

After linearizing the model in Table 13.1 around the Keynes-Ramsey steady-state,
(c∗, k∗) = (cKR, kKR), we obtain the following system of first-order differential equa-
tions:[

ċ(t)
k̇(t)

]
=

[
0 σc∗ f ′′(k∗)
−1 ρ

] [
c(t)− c∗

k(t)− k∗

]
. (13.34)

The Jacobian matrix on the right-hand side of (13.34) is denoted by ∆, and λ1 and
λ2 are its characteristic roots. Since tr(∆) ≡ λ1 + λ2 = ρ > 0 and |∆| ≡ λ1λ2 =
σc∗ f ′′(k∗) < 0, it follows that the model is saddle-point stable, i.e. λ1 and λ2 have
opposite signs. The absolute value of the stable (negative) characteristic root de-
termines the approximate convergence speed of the economic system. After some
manipulation we obtain the following expression:

β ≡ ρ

2
·
[√

1− 4σc∗ f ′′(k∗)
ρ2 − 1

]

=
ρ

2
·
[√

1 +
4
ρ2 ·

σ

σKL
· c∗

k∗
· (r∗ + δ) · (1−ωK)− 1

]
, (13.35)

where β is the convergence speed, r∗ = rKR = ρ + n is the Keynes-Ramsey inter-
est rate, σKL ≡ (1 − ωK) f ′(k∗)/(−k∗ f ′′(k∗)) is the substitution elasticity between
capital and labour in the production function, and ωK ≡ k∗ f ′(k∗)/ f (k∗) is the cap-
ital share in national income (all evaluated at the initial steady state). Recall that
the Solow-Swan model predicts a convergence speed which exceeds the empirically

9We have also used the fact that the initial condition and the capital accumulation constraint are the
same for the market and planning solutions. This implies that the levels of the interest rate, capital, and
consumption also coincide for the two solutions.



444 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

Table 13.2. Convergence speed in the Ramsey-Cass-Koopmans model

σ/σKL
0.2 0.5 1 2

ωK = 1
3 4.23 7.38 10.97 16.08

ωK = 1
2 2.41 4.39 6.70 10.00

ωK = 2
3 1.25 2.44 3.88 5.96

relevant estimate of about 2% per annum by quite a margin (see section 12.3.3). Al-
though it is not immediately apparent from the formula in (13.35) it turns out that
the Ramsey-Cass-Koopmans model also predicts too high a rate of convergence for
realistic values of the parameters. This can be demonstrated by means of the numer-
ical simulations in Table 13.2. We choose the parameters that characterize the steady
state of a fictional economy as follows. We set the rate of pure time preference at 3%
per annum (ρ = 0.03), the rate of population growth at 2% (n = 0.02), and the depre-
ciation rate of capital at 5% (δ = 0.05). The steady state implies r∗ = ρ + n = 0.05,
(k/y)∗ = ωK/(r∗ + δ) = 10ωK, and (c/y)∗ = 1− (δ + n)ωK/(r∗ + δ) = 1− 0.7ωK.

By varying the capital share (ωK) and the ratio of elasticities of the felicity func-
tion and the production function (σ/σKL) we obtain a number of estimates for the
convergence speed β. As is clear from the results in Table 13.2, the Ramsey-Cass-
Koopmans model predicts even faster convergence than the Solow model! For ex-
ample, if both the felicity function and the production function feature a unitary sub-
stitution elasticity (so that σ/σKL = 1) then for the realistic capital share of ωK = 1

3 ,
the convergence speed is a staggering 10.97% per annum. Only if the capital share
is unrealistically high and the felicity function is relatively inelastic (so that σ/σKL
is low) does the model come anywhere near to matching the empirically observed
speed of convergence.

13.3 Macroeconomic applications of the Ramsey-Cass-
Koopmans model

In this section we use the Ramsey-Cass-Koopmans model to study traditional macro-
economic issues such as (a) the effects of fiscal policy, and (b) the issue of debt versus
tax financing and the validity of the Ricardian equivalence theorem.

13.3.1 Fiscal policy in the Ramsey-Cass-Koopmans model

In this section we investigate the effects of government consumption at impact, dur-
ing transition, and in the long run. To keep things simple we assume that govern-
ment consumption has no productivity-enhancing effects and, to the extent that it
affects the welfare of the representative agent, does so in a weakly separable man-
ner.10 The only change that is made to the Ramsey-Cass-Koopmans model relates to

10See Turnovsky and Fisher (1995) for the more general cases. With weak separability we mean that the
marginal utility of private consumption does not depend on the level of government consumption.
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Figure 13.2: Fiscal policy in the Ramsey-Cass-Koopmans model

equation (T1.2) which is replaced by:

k̇(t) = f (k(t))− c(t)− g(t)− (δ + n)k(t), (13.36)

where g(t) ≡ G(t)/L(t) is per capita government consumption. Government con-
sumption withdraws resources which are no longer available for private consump-
tion or replacement of the capital stock. As a result, for a given level of per capita
public consumption, g(t) = g, the k̇(t) = 0 line can be drawn as in Figure 13.2; see
(k̇(t) = 0)0. Several conclusions can be drawn already. First, the existence of positive
government consumption does not reinstate the possibility of dynamic inefficiency
in the Ramsey-Cass-Koopmans model. The golden-rule capital stock per worker is
not affected by g, although of course the golden-rule per capita consumption level
is. Second, the issue of multiple equilibria also does not arise in the Ramsey-Cass-
Koopmans model with government consumption. In contrast to the situation in the
Solow model, provided an equilibrium exists in the Ramsey-Cass-Koopmans model
it is unique and saddle-point stable.

An unanticipated and permanent increase in the level of government consumption
per worker shifts the k̇(t) = 0 line down, say from (k̇(t) = 0)0 to (k̇(t) = 0)1.
Since the shock comes as a complete surprise to the representative household, it
reacts to the increased level of taxes (needed to finance the additional government
consumption) by cutting back private consumption. The representative household
feels poorer as a result of the shock and, as consumption is a normal good, reduces
it one-for-one:

dc(t)
dg

= −1,
dy(t)

dg
=

dk(t)
dg

= 0, (13.37)

for all t ∈ [0, ∞). There is no transitional dynamics because the shock itself has no
long-run effect on the capital stock and there are no anticipation effects. In terms of
Figure 13.2 the economy jumps from E0 to E1.

With a temporary increase in g there are non-trivial transition effects. The repre-
sentative household anticipates the temporarily higher taxes but spreads the neg-
ative effect on human wealth out over the entire lifetime consumption path. As a
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result, the impact effect on private consumption is still negative but less than one-
for-one:

−1 <
dc(0)

dg
< 0. (13.38)

In terms of Figure 13.2 the economy jumps from E0 to point A. Immediately after
the shock the household starts to dissave so that the capital stock falls, the interest
rate rises, and (by (T1.1)) the consumption path rises over time. The economy moves
from A to B which is reached at the time government consumption is cut back to its
initial level again. This cut in g (and the associated taxes) releases resources which
allow the capital stock to return to its constant steady-state level. As a result of
the temporary boost in government consumption, the policy maker has managed to
engineer a temporary decline in output per worker.

With an anticipated and permanent increase in g, the opposite effect occurs during
transition. Consumption falls by less than one-for-one (as in (13.38)), but since the
government consumption has not risen yet it leads to additional saving and a grad-
ual increase in the capital stock, a reduction in the interest rate, and a downward-
sloping consumption profile. At impact the economy jumps from E0 to A′, after
which it gradually moves from A′ to B′ during transition. Point B′ is reached at
precisely the time the policy is enacted. As g is increased, net saving turns into net
dissaving and the capital stock starts to fall. The economy moves from point B′ to
E1.

13.3.2 Ricardian equivalence once again

Ricardian equivalence (see Chapter 6) clearly holds in the Ramsey-Cass-Koopmans
model as can be demonstrated quite easily. The government budget identity (in per
capita form) is given by:

ḃ(t) = [r(t)− n] b(t) + g(t)− τ(t). (13.39)

Like the representative household, the government must also remain solvent so that
it faces an intertemporal solvency condition of the following form:

lim
t→∞

b(t)e−[R(t)−nt] = 0, (13.40)

where R(t) is given in (13.8) above. By combining (13.39) and (13.40), we obtain the
government budget restriction:11

b(0) =
∫ ∞

0
[τ(t)− g(t)] e−[R(t)−nt]dt. (13.41)

To the extent that there is a pre-existing government debt (b(0) > 0), solvency re-
quires that this debt must be equal to the present value of future primary surpluses.
In principle, there are infinitely many paths for τ(t) and g(t) (and hence for the pri-
mary deficit), for which (13.41) holds.

11By integrating (13.39) we obtain:

lim
t→∞

b(t)e−[R(t)−nt] − b(0) =
∫ ∞

0
[g(t)− τ(t)] e−[R(t)−nt]dt,

where we have also used (13.8). The first term on the left-hand side is equal to zero provided the govern-
ment solvency condition holds. By imposing this condition the government budget restriction (13.41) is
obtained.
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The budget identity of the representative agent is given in (13.4). It is modified
to take into account that lump-sum taxes are levied on the agent:

ȧ(t) ≡ [r(t)− n] a(t) + w(t)− τ(t)− c(t). (13.42)

By using (13.42) in combination with the household solvency condition (13.5), the
household budget restriction is obtained as in (13.6), but with a tax-modified defini-
tion of human wealth:

h(0) ≡
∫ ∞

0
[w(t)− τ(t)] e−[R(t)−nt]dt. (13.43)

By substituting the government budget restriction (13.41) into (13.43), the expression
for human wealth can be rewritten as:

h(0) =
∫ ∞

0
[w(t)− g(t)] e−[R(t)−nt]dt− b(0). (13.44)

The path of lump-sum taxes completely vanishes from the expression for human
wealth. Since b(0) and the path for g(t) are given, the particular path for the (non-
distorting) lump-sum taxes does not affect the total amount of resources available
to the representative agent. As a result, the agent’s real consumption plans are not
affected either.

By using (13.44) in (13.6), the household budget restriction can be written as:∫ ∞

0
c(t)e−[R(t)−nt]dt = [a(0)− b(0)] +

∫ ∞

0
[w(t)− g(t)] e−[R(t)−nt]dt. (13.45)

This expression shows clearly why Barro (1974) chose the title “Are government
bonds net wealth?” for his path-breaking article. Under Ricardian equivalence, gov-
ernment debt should not be seen as household wealth, i.e. b(0) must be deducted
from total financial wealth in order to reveal the household’s true financial asset po-
sition, as is in fact done in (13.45).

13.4 An open-economy RCK model

13.4.1 Some model complications

Up to this point we have focused attention on the traditional closed-economy rep-
resentation of the Ramsey-Cass-Koopmans (RCK) model. In a closed economy, the
domestic interest rate clears the domestic rental market for physical capital and thus
bears a close relationship with the capital-labour ratio; see equation (T1.3) in Table
13.1. In contrast, in an open economy which is small in world financial markets, the
interest rate is determined abroad and is thus exogenous to the agents populating
the tiny country in question. It is clear that the marginal productivity condition for
capital (equation (T1.3)) can only hold for a small open economy if the physical cap-
ital stock is perfectly mobile across countries! Indeed, a small increase in the world
interest rate must be accompanied by an immediate and instantaneous outflow of
physical capital in order to restore equality between the domestic marginal product
of capital and the world interest rate.

Apart from the fact that perfect mobility of physical capital is extremely unre-
alistic, it also has a very unfortunate implication in that it renders the convergence
speed of the economy infinitely large! In technical terms, capital is changed from
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a slow-moving (predetermined) variable to a jumping variable. The traditional so-
lution to this problem is to assume that physical capital is firm specific and thus
cannot move costlessly and instantaneously. Financial capital, such as bonds and
ownership claims of domestic assets, is of course perfectly mobile in this context so
that yields on domestic and foreign assets are equalized. Formally, imperfect mobil-
ity of physical capital is modelled by assuming that the firm must incur installation
costs associated with the investment process.

The small open economy assumption also causes a complication on the consump-
tion side of the Ramsey-Cass-Koopmans model. Indeed, as was shown above, the
representative household chooses its optimal consumption profile according to the
Euler equation (T1.1). But if the rate of interest is exogenous (i.e. r(t) = r̄, where
r̄ is the world interest rate) then consumption can only ever attain a steady state
(ċ(t) = 0) if the world interest rate happens to be equal to the exogenous population
growth plus the rate of time preference, i.e. r̄ = ρ + n must be satisfied. In any other
case, the country either follows an ever-decreasing path of per capita consumption if
its citizens are impatient (ρ + n > r̄) or the country saves so much that it eventually
ceases being small in world financial markets (with very patient citizens, ρ + n < r̄).
In order to avoid these difficulties we assume that the following “knife-edge” condi-
tion holds:

ρ + n = r̄. (13.46)

An immediate consequence of (13.46) in combination with (T1.1) is that per capita
consumption of the representative household is completely smoothed over time, i.e.
ċ(t)/c(t) = 0 for all time periods.

We now consider the behaviour of the representative (domestic) firm facing ad-
justment costs for investment. The stockmarket value of the firm is still given by
(13.21) but net and gross investment are now related according to a concave installa-
tion function:

K̇(t) =
[

Φ
(

I(t)
K(t)

)
− δ

]
K(t), (13.47)

where Φ(·) captures the presence of installation costs associated with investment.
We assume that the installation function satisfies the usual properties: Φ(0) = 0,
Φ′(·) > 0, and Φ′′(·) < 0.12

The firm chooses time paths for investment, labour demand, and the capital stock
in order to maximize V(0) (given in (13.21) above) subject to the capital accumulation
identity (13.47), an initial condition for the capital stock, and a terminal condition
requiring the capital stock to remain non-negative:

lim
t→∞

K(t) ≥ 0. (13.48)

The current-value Hamiltonian for this problem is:

HC ≡ F (K(t), L(t))− w(t)L(t)− (1− sI) I(t) + q(t) ·
[

Φ
(

I(t)
K(t)

)
− δ

]
· K(t),

where sI is the investment subsidy, L(t) and I (t) are control variables, K(t) is the
state variable, and q(t) is the co-state variable. The first-order necessary conditions

12See Chapters 3 and 4 for an extensive discussion of the theory of investment based on adjustment
costs. The installation function is just an alternative way to model adjustment costs. See Hayashi (1982)
on this.
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are the constraint (13.47) and:

w(t) = FL (K(t), L(t)) , (13.49)

q(t)Φ′
(

I(t)
K(t)

)
= 1− sI , (13.50)

q̇(t) =
[

r(t) + δ−Φ
(

I(t)
K(t)

)]
q(t)

− FK (K(t), L(t)) + (1− sI)
I(t)
K(t)

, (13.51)

lim
t→∞

e−R(t)q(t) ≥ 0, lim
t→∞

e−R(t)q(t)K(t) = 0. (13.52)

where q(t) is Tobin’s q (its current value, q(0), measures the marginal (and average)
value of installed capital, K(0), i.e. V(0) = q(0)K(0)).

As was demonstrated in Chapter 2, gross domestic product in an open economy
can be written as follows:

Y(t) ≡ C(t) + I(t) + X(t), (13.53)

where X(t) is net exports (i.e. the trade balance), and gross investment (inclusive of
installation costs) appears in the national income identity. Note furthermore that we
abstract from government consumption for convenience. Designating AF(t) as the
stock of net foreign assets in the hands of domestic agents, gross national product is
equal to gross domestic product plus interest earnings on net foreign assets, r̄AF(t).
The current account of the balance of payments is equal to net exports plus interest
earnings on net foreign assets. The dynamic equation for the stock of net foreign
assets is thus:

ȦF(t) = r̄AF(t) + X(t) = r̄AF(t) + Y(t)− C(t)− I(t), (13.54)

which can be written in per capita form as:

ȧF(t) = ρaF(t) + y(t)− c(t)− i(t), (13.55)

where we have used the fact that ρ = r̄− n (see (13.46)). Although the country can
freely borrow from (or lend to) the rest of the world, it must obey an intertemporal
solvency condition of the form:

lim
t→∞

aF(t)e−ρt = 0. (13.56)

Equations (13.55) and (13.56) in combination imply that there is a relationship be-
tween the initial level of net foreign assets per capita, aF0, and the present value of
future trade balances:

aF0 =
∫ ∞

0
[c(t) + i(t)− y(t)] e−ρtdt. (13.57)

To the extent that the country possesses positive net foreign assets (aF0 > 0), it can
afford to run present and future trade balance deficits. All that nation-wide solvency
requires is that the present value of these trade balance deficits (the right-hand side
of (13.57)) add up to the initial level of net foreign assets (left-hand side of (13.57)).

We now possess all the ingredients of the open-economy Ramsey-Cass-Koopmans
model and we restate its key equations for the sake of convenience in Table 13.3.
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Table 13.3. The Ramsey-Cass-Koopmans model for the open economy

ċ(t)
c(t)

= 0 (T3.1)

q(t)Φ′
(

i(t)
k(t)

)
= 1− sI (T3.2)

q̇(t) =
[

ρ + n + δ−Φ
(

i(t)
k(t)

)]
q(t)− f ′(k(t)) + (1− sI)

i(t)
k(t)

(T3.3)

k̇(t) =
[

Φ
(

i(t)
k(t)

)
− n− δ

]
k(t) (T3.4)

ȧF(t) = ρaF(t) + f (k(t))− c(t)− i(t) (T3.5)

Notes: c(t) is per capita consumption, k(t) is the capital-labour ratio, q(t) is Tobin’s q, i(t) is
gross investment per worker, sI is an investment subsidy, and aF(t) is net foreign assets per
worker.

Equation (T3.1) shows that per capita consumption is completely smoothed over
time. As was pointed out above, this result is a direct consequence of the assumption
expressed in (13.46). Equation (T3.2) implicitly determines the optimal investment-
capital ratio as a function of (subsidy-adjusted) Tobin’s q. Equation (T3.3) gives the
dynamic evolution of Tobin’s q and (T3.4) does the same for the capital stock per
worker. Finally, (T3.5) is the current account equation which is obtained by substi-
tuting the intensive-form production function, f (k(t)), into (13.55).

13.4.2 Model solution and convergence speed

The model is quite unlike the growth models that were studied up to this point be-
cause it contains a zero root (originating from the consumption Euler equation (T3.1))
and thus displays hysteretic properties in the sense that the steady state depends on
the initial conditions.13 Technically, the model solution proceeds as follows. First,
we note that equations (T3.2)–(T3.4) form an autonomous subsystem determining
the dynamics of i(t), q(t), and k(t). Second, once the solutions for investment and
capital are known, they can be substituted into the nation-wide solvency condition
(13.57) which can then be solved for per capita consumption.

Since the model is non-linear, it can only be solved analytically by first linearizing
it around the steady state. We start with the investment system consisting of (T3.2)–
(T3.4). To keep the model as simple as possible we postulate a convenient specific
functional form for the installation function:

Φ
(

i(t)
k(t)

)
≡ 1

1− σI

(
i(t)
k(t)

)1−σI

, (13.58)

with 0 < σI < 1. The parameter σI regulates the curvature of the installation func-
tion. The lower is σI , the closer Φ(·) resembles a straight line, and the higher is the

13See Turnovsky (1995, ch. 12), Sen and Turnovsky (1990), and Giavazzi and Wyplosz (1985) for a
further discussion. See also Section 3.5 above for an example of a hysteretic model in discrete time.
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international mobility of physical capital–see Bovenberg (1994, p. 122). The invest-
ment demand implied by (T3.2) in combination with (13.58) is also iso-elastic:

i(t)
k(t)

= g(q(t), sI) ≡
(

q(t)
1− sI

)1/σI

. (13.59)

By inserting (13.59) into (T3.3)–(T3.4) and linearizing, we obtain a simple matrix ex-
pression for the investment system:[

k̇(t)
q̇(t)

]
=

[
0 i∗(1− sI)

2/
[
(q∗)2σI

]
− f ′′(k∗) ρ

] [
k(t)− k∗

q(t)− q∗

]
, (13.60)

where q∗ and k∗ are steady-state values for, respectively, Tobin’s q and the capi-
tal intensity. The Jacobian matrix on the right-hand side of (13.60) is denoted by
∆I and its typical element by δij. The investment system is saddle-point stable
because ∆I has a positive trace (equal to ρ) and a negative determinant (equal to
(1− sI)

2i∗ f ′′(k∗)/[(q∗)2 σI ]). This implies that the characteristic roots of ∆I are real,
distinct, and opposite in sign. Denoting the stable and unstable roots by, respectively,
−λ1 < 0 and λ2 > 0, it follows from (13.60) that:

λ2 − λ1 = tr(∆I) = ρ ⇔ λ2 = ρ + λ1 > ρ, (13.61)

i.e. the unstable root equals the pure rate of time preference (ρ) plus the transition
speed in the economy (represented by λ1). Note that the adjustment speed of the in-
vestment system (λ1) is finite due to the existence of installation costs of investment
and the associated short-run immobility of capital.

Intermezzo 13.3

The method of undetermined coefficients in a perfect foresight model.
Here we show how the expressions in (13.62)–(13.63) are derived. In the
first step we postulate a trial solution for the capital intensity and Tobin’s
q: [

k(t)− k∗

q(t)− q∗

]
=

[
πk1
πq1

]
e−λ1t +

[
πk2
πq2

]
eλ2t, (a)

where πki and πqi (i = 1, 2) are coefficients to be determined, and where
−λ1 < 0 and λ2 > 0 are, respectively, the stable (negative) and unstable
(positive) characteristic roots of ∆I . To eliminate the effects of the unsta-
ble root we must set:[

πk2
πq2

]
=

[
0
0

]
. (b)

By differentiating (a) with respect to time and noting (b) we obtain:[
k̇(t)
q̇(t)

]
= −λ1

[
πk1
πq1

]
e−λ1t, (c)

where we have also used the fact that k̇∗ = q̇∗ = 0 (constant steady state).
By substituting (a)–(c) into (13.60) we obtain:[

−(λ1 + δ11) −δ12
−δ21 −(λ1 + δ22)

] [
πk1
πq1

]
=

[
0
0

]
, (d)
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where δij represents element (i, j) of the Jacobian matrix ∆I . Since −λ1
is an eigenvalue of ∆I , the matrix on the left-hand side of (d) is singular,
and either row of (d) can be used to solve πq1 in terms of πk1. Noting that
δ11 = 0 we obtain from the first row:

πq1 = − λ1

δ12
πk1. (e)

Next we exploit the fact that the capital stock is predetermined, i.e. its
value at time t = 0, denoted by k0, is given. Substituting this initial
condition in the first equation of (a) and noting (b) we obtain:

k(0)− k∗ = k0 − k∗ = πk1. (f)

The second equation of (a) in combination with (b) and (e)–(f) yields the
solution for Tobin’s q on the saddle path:

q(0)− q∗ = πq1 = − λ1

δ12
[k0 − k∗] . (g)

By substituting (b), (f)–(g) into (a) the expressions in (13.62)–(13.63) are
obtained.

The solution method used here is valid provided the forcing term of
the dynamical system is time invariant. This covers both the transition
path of an economy which starts outside the steady state and the ad-
justment path following an unanticipated and permanent shock to the
investment subsidy (both are discussed in the text). In the Mathematical
Appendix we present a solution method which can handle more general
shock patterns.

****

If the initial capital intensity is denoted by k0, then the system converges to the
steady state provided it is on the saddle path. Leaving the technical details of the
derivation to Intermezzo 13.3 we find that the solution to (13.60) is:[

k(t)− k∗

q(t)− q∗

]
=

[
k0 − k∗

q(0)− q∗

]
e−λ1t, (13.62)

where the initial value of Tobin’s q is given by:

q(0) = q∗ − λ1

δ12
[k0 − k∗] . (13.63)

The solution path is illustrated in Figure 13.3. For the initial capital stock, k0, Tobin’s
q is above its equilibrium level and the economy moves gradually from point A
towards the steady-state equilibrium at E0. The expression for the saddle path can
be obtained by substituting (13.63) into (13.62):

q(t)− q∗ = − λ1

δ12
[k (t)− k∗] . (13.64)



CHAPTER 13: EXOGENOUS ECONOMIC GROWTH—RAMSEY-CASS-KOOPMANS 453

Figure 13.3: Investment in the open economy

Now that we know the dynamic paths for the capital stock and Tobin’s q (and thus,
by (13.59), the implied path for investment) we can work out the restriction implied
by national solvency. First, we linearize the production function, y(t) = f (k(t)), and
the investment function (13.59) around the steady state:[

y(t)− y∗

i(t)− i∗

]
=

[
f ′(k∗) 0

g∗ k∗g∗q

] [
k(t)− k∗

q(t)− q∗

]
, (13.65)

where g∗ ≡ g(q∗, sI) and g∗q ≡ gq(q∗, sI). By using (13.62) and (13.64) in (13.65) we
find the (approximate) path for i(t)− y(t):

i(t)− y(t) = i∗ − y∗ + k∗g∗q [q(t)− q∗] +
[
g∗ − f ′(k∗)

]
[k(t)− k∗]

= i∗ − y∗ −Ω [k0 − k∗] e−λ1t, (13.66)

where Ω ≡ f ′(k∗) − g∗ + λ1k∗g∗q /δ12 > 0. Equation (T3.1) shows that per capita
consumption stays constant during the transition, i.e. c(t) = c∗. By using this result
as well as equation (13.66) in the nation-wide solvency condition (13.57) we obtain
the following expression:

aF0 =
c∗

ρ
+
∫ ∞

0
[i(t)− y(t)] e−ρtdt

=
c∗ + i∗ − y∗

ρ
−Ω [k0 − k∗]

∫ ∞

0
e−(ρ+λ1)tdt

=
c∗ + i∗ − y∗

ρ
− Ω [k0 − k∗]

λ2
, (13.67)

where we have used the fact that λ2 = ρ + λ1 (see (13.61)) in the final step. It follows
from the steady-state version of (13.55) that ρa∗F = c∗ + i∗ − y∗ (since ȧ∗F = 0) so that
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(13.67) can be rewritten as follows:

aF0 +
Ω
λ2

k0 = a∗F +
Ω
λ2

k∗. (13.68)

As Sen and Turnovsky (1990, p. 287) point out, the left-hand side of (13.68) repre-
sents the initial value of total resources available to the economy and can thus be
interpreted as national wealth. National wealth consists of initial non-human wealth,
aF0 + k0, plus the present value of resources generated by capital accumulation start-
ing from the initial capital stock, k0.

The striking feature of the open-economy Ramsey-Cass-Koopmans model is that
its steady state depends on the initial stock of assets, aF0 and k0. This is the hysteretic
property alluded to above. In the steady state we have that ċ(t) = q̇(t) = k̇(t) =
ȧF(t) = 0 and the model consists of equation (13.68) as well as:

q∗Φ′
(

i∗

k∗

)
= 1− sI , (13.69)

f ′(k∗) = ρq∗ + (1− sI)
i∗

k∗
, (13.70)

Φ
(

i∗

k∗

)
= n + δ, (13.71)

ρa∗F + f (k∗) = c∗ + i∗, (13.72)

which jointly determine the steady-state values q∗, i∗, k∗, c∗, and a∗F. Given the struc-
ture of the model, only consumption and the net stock of foreign assets display hys-
teresis and are thus a function of the initial conditions.14

13.4.3 Effects of an investment subsidy

We are now in the position to use the model to study the effects of an investment
subsidy on the macroeconomy. To keep things simple we restrict attention to the
case of an unanticipated and permanent increase in the investment subsidy. It is
most convenient to determine the long-run effect first. Equation (13.71) shows that
i∗/k∗ is constant, so that it follows from (13.69) that q∗ is proportional to (1− sI).
Hence, if sI is increased, Tobin’s q falls in the long run:

dq∗

dsI
= − 1

Φ′(i∗/k∗)
= − q∗

1− sI
< 0. (13.73)

Equation (13.70) can be used to derive the long-run effect on the stock of capital per
worker:

dk∗

dsI
=

k∗

i∗
di∗

dsI
=

1
f ′′(k∗)

[
ρ

dq∗

dsI
− i∗

k∗

]
= − f ′(k∗)

(1− sI) f ′′(k∗)
> 0. (13.74)

Hence, investment and the capital stock (both measured per worker) rise equipro-
portionally in the long run. The national wealth constraint (13.68) shows that the

14In particular, (13.71) determines i∗/k∗ as a function of n + δ, (13.69) then determines q∗, and (13.70)
determines k∗ (and thus i∗). The only variables remaining to be determined by (13.68) and (13.72) are c∗
and a∗F ; only these variables depend on initial conditions, aF0 and k0. Sen and Turnovsky (1990) show that
if labour supply is endogenous, the hysteretic property extends to investment and the capital stock also.
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composition of wealth changes also, i.e. the increase in the domestic capital stock
leads to a reduction in the long-run stock of net foreign assets:

da∗F
dsI

= −Ω
λ2

dk∗

dsI
< 0. (13.75)

The net effect on consumption is ambiguous.
The transitional effects of the policy shock can be studied with the aid of Figure

13.4. In that figure, k0 is the initial capital stock per worker, and the economy is
at point A and heading towards the steady state at E0 (where the steady-state cap-
ital stock per worker is k∗0). Now consider what happens as a result of the subsidy
increase. Clearly, the old equilibrium adjustment path from A to E0 is no longer
relevant. What does the new adjustment path look like? The long-run effect on the
capital stock is positive (see (13.74)) and saddle-point stability requires that the econ-
omy must be on the stable arm of the saddle path. By using the expression for the
saddle path (given in (13.64)) we obtain the impact effect for Tobin’s q:15

dq(0)
dsI

=
dq∗

dsI
+

λ1

δ12

dk∗

dsI

= − q∗

1− sI
− λ1

δ12 f ′′(k∗)
f ′(k∗)
1− sI

= − q∗

1− sI
+

1
ρ + λ1

f ′(k∗)
1− sI

S 0. (13.76)

The impact effect on Tobin’s q is ambiguous because the first term on the right-hand
side is negative whilst the second term is positive. Technically, the ambiguity arises
from the fact that both the k̇(t) = 0 line and the q̇(t) = 0 lines shift as a result of
the increase in the investment subsidy. Recall that the k̇(t) = 0 line represents points
for which the (i/k) ratio is constant. Since an increase in sI leads to a higher desired
(i/k) ratio (see (13.59)), Tobin’s q must fall to restore capital stock equilibrium, i.e.
the k̇(t) = 0 line shifts down. At the same time, the boost in sI leads to an upward
shift in the q̇(t) = 0 line.

In Figure 13.4 the new steady-state equilibrium is at E1 and the saddle path is
drawn under the assumption that the capital stock effect is dominated by the effect
on Tobin’s q (given in (13.76)), so that dq(0)/dsI < 0. At impact the economy jumps
from point A to point B, after which gradual adjustment takes place towards the new
steady-state equilibrium E1.

What is the economic intuition behind the ambiguity of the impact effect on To-
bin’s q? Equation (13.76) shows that the ambiguity arises because dq(0)/dsI depends
among other things on the adjustment speed in the economy, λ1. If adjustment costs
on investment are relatively low (σI ≈ 0), then λ1 is relatively high, physical capital
is highly mobile, and installed and new capital goods are close substitutes. The in-
vestment subsidy reduces the price of new capital goods and thus also the value of
the installed capital stock in that case (Bovenberg, 1993, p. 13). The opposite holds if
adjustment costs are severe (σI ≈ 1). As the diagram shows, however, regardless of
the sign of dq(0)/dsI , net capital accumulation takes place (as B lies above the new
k̇(t) = 0 line) and the economy moves from B to E1 over time.

15We have used equations (13.73) and (13.74) in going from the first to the second line. In going from
the second to the third line we have used some results for the characteristic roots, i.e. λ1λ2 = − f ′′(k∗)δ12
and λ2 = ρ + λ1.
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Figure 13.4: An investment subsidy with high mobility of physical capital

13.5 The RCK model with endogenous labour supply

In this section we extend the Ramsey-Cass-Koopmans model by endogenizing the
labour supply decision of households. In the model a representative household
makes optimal decisions regarding present and future consumption, labour supply,
and saving. The representative firm hires the factors of production from the house-
hold sector and produces output. The government levies taxes and consumes goods.
All agents in the economy operate under perfect foresight. The model can be used
to study how the economy reacts to shocks in government spending. In the remain-
der of this chapter we (a) abstract from population growth and normalize the size of
the population to unity, (b) ignore labour-augmenting technological change, and (c)
restrict attention to the closed-economy case.16

13.5.1 Model elements

The representative agent makes a dynamically optimal decision regarding consump-
tion of goods and leisure both for the present and for the indefinite future. The agent
has a time endowment of unity which is allocated over labour, L(t), and leisure,
1 − L(t). The agent is infinitely lived and lifetime utility in the planning period,
Λ(0), is given by the discounted integral of present and future instantaneous utility:

Λ(0) ≡
∫ ∞

0
U(C(t), 1− L(t))e−ρtdt, (13.77)

where ρ is the pure rate of time preference (ρ > 0), C(t) is consumption, and U(C(t),
1− L(t)) is instantaneous utility (or felicity) in period t. We assume that the felicity

16The reader purely interested in the theory of economic growth can skip this section and the next and
proceed to Chapter 14. In an exercise to this chapter the model is solved in the presence of population
growth and labour-augmenting technological change.
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function takes the following form:

U(C(t), 1− L(t)) ≡ ln
[
C(t)ε [1− L(t)]1−ε

]
, 0 < ε < 1. (13.78)

Several things are worth noting. First, consumption and leisure both enter felicity
in a logarithmic fashion ensuring that preferences are separable in the sense that the
marginal felicity of consumption, UC(C(t), 1 − L(t)) = ε/C(t), is independent of
leisure and the marginal felicity of leisure, U1−L(C(t), 1− L(t)) = (1− ε)/[1− L(t)],
is independent of consumption. Second, the felicity function can be seen as a nested
function, i.e. U(C(t), 1 − L(t)) = ln u(t) with u(t) ≡ C(t)ε [1− L(t)]1−ε. Hence,
the “top-level” felicity function is logarithmic, ensuring that the intertemporal sub-
stitution elasticity equals unity, whilst the “bottom-level” sub-felicity function is of
the Cobb-Douglas type, ensuring that the intratemporal substitution elasticity also
equals unity.

The agent’s dynamic budget identity is:

Ȧ(t) ≡ r(t)A(t) + w(t)L(t)− T(t)− C(t), (13.79)

where r(t) is the real rate of interest, A(t) is real financial assets, w(t) is the real wage
rate, and T(t) is real lump-sum taxes.

The household chooses paths for consumption, labour supply, and assets in order
to maximize lifetime utility (13.77) subject to the budget identity (13.79), an asymp-
totic terminal condition of the form limt→∞ A(t) ≥ 0, and taking as given the initial
level of assets, A (0). The interesting first-order necessary conditions are (see Inter-
mezzo 13.2 or the Mathematical Appendix):

ε

C(t)
= µ(t), (13.80)

1− ε

1− L(t)
= µ(t)w(t), (13.81)

µ̇(t)
µ(t)

= ρ− r(t), (13.82)

lim
t→∞

e−ρtµ(t) ≥ 0, lim
t→∞

e−ρtµ(t)A(t) = 0, (13.83)

where µ(t) is the co-state variable. By using (13.80) in (13.81)–(13.82) we can elimi-
nate µ(t) and µ̇(t) and write the main first-order conditions as follows:

C(t)
1− L(t)

1− ε

ε
= w(t), (13.84)

Ċ(t)
C(t)

= r(t)− ρ. (13.85)

Equation (13.84) requires the marginal rate of substitution between leisure and con-
sumption to be equated to the wage rate in each period. This is essentially a static
decision which is made in each period. According to (13.84) labour supply depends
negatively on consumption and positively on the real wage. The dynamic part of the
solution is contained in (13.85) which is the consumption Euler equation. If the real
interest rate exceeds (falls short of) the pure rate of time preference, the household
chooses an upward (downward) sloping consumption profile over time (see Section
13.1 for further details).
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The production function used by the representative firm features the following
Cobb-Douglas form:

Y(t) = F(K(t), L(t)) ≡ Z0K(t)αL(t)1−α, (13.86)

where Z0 is an index of general productivity, Y(t) is aggregate output, and K(t)
and L(t) are, respectively, the amounts of capital and labour used in production. In
the absence of adjustment costs on investment, the familiar marginal conditions for
labour and capital hold (see also equation (13.23) above):

FL(K(t), L(t)) = w(t), FK(K(t), L(t)) = r(t) + δ. (13.87)

In view of the fact that both factors are paid their respective marginal products, and
the production function exhibits constant returns to scale, excess profits are zero.

Output can be used for private consumption, public consumption, or for invest-
ment purposes. Hence, the condition for goods market equilibrium in a closed econ-
omy is:

Y(t) = C(t) + I(t) + G(t), (13.88)

where I(t) is gross investment,

I(t) = K̇(t) + δK(t), (13.89)

and G(t) is government consumption. Finally, the model is completed by the gov-
ernment budget restriction which simply states that public consumption is paid for
by lump-sum taxes levied on the representative household:

G(t) = T(t). (13.90)

For convenience, the complete model has been summarized in Table 13.4. Equations
(T4.1), (T4.3), and (T4.7) restate, respectively, equations (13.85), (13.90), and (13.86).
Equation (T4.2) is obtained by substituting (13.89) into (13.88). Equation (T4.6) is
obtained by slightly rewriting (13.84). Finally, (T4.4)–(T4.5) are obtained by using
(13.86) in (13.87). For lack of a better term we refer to the model as the unit-elastic
(RCK) model because there are three elasticities that are equal to unity. The felic-
ity function incorporates unitary intertemporal and intratemporal substitution elas-
ticities. And the production function features a unitary intratemporal substitution
elasticity between capital and labour.

13.5.2 The phase diagram

The model given in Table 13.4 can be condensed into a non-linear system of dif-
ferential equations in consumption and the capital stock. To derive this system we
first use (T4.4) and (T4.6)–(T4.7) to obtain the relationship describing labour market
equilibrium:

(1− α)Z0

(
K(t)
L(t)

)α

=
1− ε

ε

C(t)
1− L(t)

. (13.91)

The left-hand side of this expression is the labour demand function whilst the right-
hand side in the labour supply function. Equation (13.91) defines an implicit function
expressing equilibrium employment in terms of consumption and the capital stock:

L(t) ≡ Ψ (C(t), K(t)) . (13.92)
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Table 13.4. The unit-elastic RCK model

Ċ(t)
C(t)

= r(t)− ρ, (T4.1)

K̇(t) = Y(t)− C(t)− G(t)− δK(t), (T4.2)
G(t) = T(t), (T4.3)

w(t) = (1− α)
Y(t)
L(t)

, (T4.4)

r(t) + δ = α
Y(t)
K(t)

, (T4.5)

L(t) = 1− 1− ε

ε

C(t)
w(t)

, (T4.6)

Y(t) = Z0K(t)αL(t)1−α, (T4.7)

Definitions: Y(t) is output, C(t) is private consumption, L(t) is employment, K(t) is the
capital stock, G(t) is public consumption, w(t) is the real wage rate, r(t) is the real interest
rate, T(t) is the lump-sum tax, ε is a taste parameter for consumption, ρ is the pure rate of
time preference, δ is the depreciation rate of capital, Z0 is a constant, and α is the efficiency
parameter of capital. The population is constant and normalized to unity.

The partial elasticities of equilibrium employment with respect to consumption and
the capital stock – evaluated around any point (L0, C0, K0) satisfying (13.91) – are
given by:

∂L
∂C

C
L
≡ C0ΨC (C0, K0)

Ψ (C0, K0)
= − ωLL

1 + αωLL
< 0, (13.93)

∂L
∂K

K
L
≡ K0ΨK (C0, K0)

Ψ (C0, K0)
=

αωLL
1 + αωLL

> 0, (13.94)

where ωLL represents the Frisch elasticity of labour supply at employment level L0:

ωLL ≡
1− L0

L0
> 0. (13.95)

In the second step we use (T4.1)–(T4.2), (T4.5), (T4.7), and (13.92) to obtain the system
of differential equations describing the dynamic evolution of the economy:

Ċ(t)
C(t)

= αZ0

(
Ψ (C(t), K(t))

K(t)

)1−α

− (ρ + δ) , (13.96)

K̇(t) = Z0K(t)αΨ (C(t), K(t))1−α − C(t)− G(t)− δK(t). (13.97)

In the appendix to this chapter we present the full derivation of the phase diagram
for the unit-elastic RCK model. The derivation proceeds under the assumption that
government consumption is held constant, i.e. G(t) = G0. The phase diagram is
presented graphically in Figure 13.5. The K̇(t) = 0 line represents combinations in
(C(t), K(t)) space for which net investment is zero. For each (C(t), K(t)) combina-
tion there exists a unique equilibrium employment level. The golden-rule capital
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Figure 13.5: Phase diagram of the unit-elastic model

stock is KGR and the associated consumption level is CGR (see point A). For points
above (below) the K̇(t) = 0 line, consumption is too high (low) and net investment
is negative (positive). These dynamic effects have been illustrated with horizontal
arrows in Figure 13.5.

The Ċ(t) = 0 line represents (C(t), K(t)) combinations for which consumption
is constant over time, i.e. for which the interest rate equals the rate of time prefer-
ence. Since the interest rate depends on the marginal product of capital, and produc-
tion features constant returns to scale, consumption equilibrium pins down a unique
capital-labour ratio and thus a unique output-capital ratio and real wage rate. It fol-
lows (from (T4.6)) that the ratio between consumption and labour supply is constant
also. The Ċ(t) = 0 line is linear and slopes downward. Ceteris paribus the capital
stock, an increase (decrease) in consumption decreases (increases) labour supply and
equilibrium employment, and decreases (increases) the output-capital ratio and the
rate of interest. Hence, consumption falls (rises) at points above (below) the Ċ(t) = 0
line. This has been indicated with vertical arrows in Figure 13.5.

Since KC < KK (see appendix), it follows from Figure 13.5 that the two equilib-
rium loci intersect only once, at point E0. The steady-state levels of consumption and
the capital stock are, respectively, C∗ and K∗. The arrow configuration shows that E0
is saddle-point stable. The saddle path associated with the steady-state equilibrium
E0, denoted by SP0, is upward sloping. More formally, local saddle-point stability of
the model can be ascertained by linearizing the system around the steady-state point
(C∗, K∗). After some manipulation we obtain:[

Ċ(t)
K̇(t)

]
= ∆

[
C(t)− C∗

K(t)− K∗

]
, (13.98)
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where the Jacobian matrix ∆ (with typical element δij) is given by:

∆ ≡


−
(1− α)ω∗LL
1 + αω∗LL

(ρ + δ) − 1− α

1 + αω∗LL
(ρ + δ)

C∗

K∗

−
(

C∗

Y∗
+

(1− α)ω∗LL
1 + αω∗LL

)
Y∗

C∗

(
C∗ + G0

Y∗
− 1− α

1 + αω∗LL

)
Y∗

K∗

 , (13.99)

where ω∗LL is obtained from (13.95) by setting L0 = L∗ = Ψ (C∗, K∗). In an exercise
to this chapter the reader is asked to verify that the determinant and trace of the
Jacobean are given by:

|∆| = − (1− α)(ρ + δ)

1 + αω∗LL

(1 + ω∗LL)C
∗ + ω∗LLG0

K∗
< 0, tr(∆) = ρ > 0. (13.100)

Since |∆| is equal to the product of the characteristic roots, there is one negative
(stable) root and one positive (unstable) root implying saddle-point stability.

13.5.3 Permanent fiscal policy

In this subsection and the next we demonstrate some illustrative properties of the
unit-elastic model. Here we start with the easy stuff and study the impact, transi-
tional, and long-run effects of a permanent and unanticipated increase in govern-
ment consumption.17 In the next subsection we study how the economy reacts to a
temporary fiscal shock. Throughout both subsections we assume that the economy
is initially in the steady state and that the government finances its consumption by
means of lump-sum taxes—see equation (T4.3).

Although the model in Table 13.4 may look rather complex, it was demonstrated
by Baxter and King (1993) that the long-run effects of the policy shock can be de-
termined in a relatively straightforward fashion. For that reason we first study the
long-run effects, before investigating the somewhat more demanding short-run and
transitional effects of fiscal policy.

13.5.3.1 Long-run multipliers

Computation of the long-run “new classical multiplier” is a back-of-the-envelope
exercise due to the fact that the economy is structurally characterized by a number
of great ratios that are independent of public consumption (see Baxter and King, 1993,
p. 319). In our model this can be demonstrated as follows. In the steady state, both
consumption and the capital stock are constant, i.e. Ċ(t) = K̇(t) = 0. Equation
(T4.1) and (T4.2) in Table 13.4 then imply, respectively, that the real rate of interest
and the investment-capital ratio are constant, i.e. r∗ = ρ and (I/K)∗ = δ. The
marginal productivity condition for capital, (T4.5), then pins down the equilibrium
capital-output ratio, κ∗ ≡ (K/Y)∗, as a function of structural parameters only (κ∗ ≡
α/(ρ + δ)). But, since the production function, (T4.7), features constant returns to
scale, the equilibrium capital-output also determines a unique capital-labour ratio,
k∗ ≡ (K/L)∗ = (Z0κ∗)1/(1−α). This, in turn, pins down the real wage and thus (by
(T4.6)) the ratio between goods and leisure consumption, (C/(1− L))∗.

17A large body of literature studies the effects of fiscal policy in an optimizing equilibrium framework.
Pioneering contributions to this branch of the literature were made by Hall (1971, 1980), Barro (1981),
Aschauer (1988), and Baxter and King (1993).
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The long-run constancy of the various ratios can be exploited to find the long-
run effect of an increase in public consumption. By totally differentiating the goods
market clearing condition (13.88) around the initial steady state and recalling that
government consumption equals G0, we obtain:

dY(∞)

Y∗
= ω∗C

dC(∞)

C∗
+ ω∗I

dI(∞)

I∗
+ ω∗G

dG
G0

, (13.101)

where ω∗I ≡ (I/Y)∗ = δ (K/Y)∗ = δκ∗, ω∗C ≡ (C/Y)∗, ω∗G ≡ G0/Y∗, and ω∗C +
ω∗I + ω∗G ≡ 1. Here dY(∞) represents the ultimate change in output resulting from
the fiscal shock, i.e. the difference between the new and the old steady-state output
level. Following the shock to public spending, eventually the various ratios will be
restored. This implies the following long-run relationships:

dY(∞)

Y∗
=

dK(∞)

K∗
=

dI(∞)

I∗
=

dL(∞)

L∗
= −ω∗LL

dC (∞)

C∗
, (13.102)

where ω∗LL ≡ [1 − L∗]/L∗. By substituting the relevant results from (13.102) into
(13.101) we find an expression for dY(∞)/Y∗ which can be rewritten in a multiplier
format:

dY(∞)

dG
=

1
1−ω∗I + ω∗C/ω∗LL

> 0. (13.103)

In a similar fashion the long-run multipliers for consumption, investment, and the
capital stock can be derived:

−1 <
dC(∞)

dG
= −

ω∗C/ω∗LL
1−ω∗I + ω∗C/ω∗LL

< 0, (13.104)

dK(∞)

dG
=

1
δ

dI(∞)

dG
=

ω∗I /δ

1−ω∗I + ω∗C/ω∗LL
> 0. (13.105)

The endogeneity of the labour supply decision plays a crucial role for the new clas-
sical multiplier stated in (13.103). Indeed, the higher is the Frisch elasticity of labour
supply (ω∗LL), the larger are the long-run effects on output, capital, and investment,
and the smaller is the crowding-out effect on consumption.18

13.5.3.2 Short-run multipliers

The impact and transitional effects of the fiscal shock can be studied graphically with
the aid of Figure 13.6. In this figure, CE0 is the initial consumption equilibrium line,
CSE0 is the initial capital stock equilibrium line, and E0 is the initial steady state.
As a result of the shock, the CSE line changes to CSE1. Since lump-sum taxes are
used to balance the budget, the position of the CE line is unaffected and the long-
run equilibrium shifts from E0 to E1 (see (13.103)–(13.105)). At impact, the economy
jumps from E0 to point A on the new saddle path SP1. Agents cut back consumption
of both goods and leisure because they are faced with a higher lifetime tax bill and
thus feel poorer. The boost in employment causes an expansion in aggregate output

18Note that a version of the standard RCK model of Section 13.1 is obtained from the unit-elastic model
by setting ε = 1 so that agents derive no felicity from leisure and set L = 1 so that ω∗LL = 0. In that case
equation (13.102) gives the immediate result that output, investment, and the capital stock are unchanged.
Equation (13.104) shows that there is one-for-one crowding out of private by public consumption in that
case.
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Figure 13.6: Effects of fiscal policy

and an increase in the marginal product of capital, and hence the interest rate, despite
the fact that the capital stock is fixed in the short run. The increase in the real interest
rate not only results in an upward-sloping time profile for consumption but also
creates a boom in saving-investment by the representative household, so that both
consumption and the capital stock start to rise over time. This is represented in
Figure 13.6 by the gradual movement along the saddle path SP1 from A to the new
equilibrium at E1. The long-run effect on the capital stock is positive (see (13.105))
and consumption falls. Since the representative agent reacts to the fiscal shock by
accumulating a larger capital stock and supplying more labour, steady-state output
rises and private consumption crowding out is less than full (see (13.104)).

Though we can get a good feel for the qualitative properties of the model by
graphical means, such methods are useless to obtain quantitative results. For ex-
ample, it is clear from Figure 13.6 that consumption overshoots its long-run effect at
impact and is crowded out (dC(0)/dG < dC(∞)/dG < 0). It is impossible, however,
to deduce how large the overshooting and crowding-out effects are. In order to com-
pute the impact and transitional effects on the economy, the standard practice in the
macroeconomic literature is to linearize the model around the initial steady state so
that it can be analysed more easily.19 Of course this is exactly the approach we took
to prove local stability of the unit-elastic model.

Following a step-wise increase in government consumption from G0 to G0 + dG
occurring at time t = 0, the linearized dynamical system for consumption and capital
can be written as:[

Ċ(t)
K̇(t)

]
= ∆

[
C(t)− C∗

K(t)− K∗

]
−
[

0
dG

]
, (13.106)

where ∆ is the Jacobian matrix given in (13.99). We have already demonstrated that

19In this chapter we make use of the method of comparative dynamics. This method linearizes the non-
linear model and tackles the issue of dynamics in the (much easier to analyse) linear world. Intuitively,
it is appropriate and gives relatively accurate answers, provided the changes in the forcing terms (the
exogenous variables) are not “too large” and the model is not “too non-linear”. See also Dotsey and Mao
(1992).
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Figure 13.7: Phase diagram of the linearized model

|∆| is negative. Denoting the stable root by −λ1 (< 0) and the unstable root by λ2
(> 0) we thus have |∆| = −λ1λ2 . When written in this way, λ1 also represents the
adjustment speed of the economic system (see Section 13.2.2 for details). Further-
more, since tr(∆) = λ2 − λ1 = ρ, we easily find that λ2 = ρ + λ1.

The linearized model has been illustrated in Figure 13.7. The linearized isocline
for consumption is denoted by CE0 and takes the following form.

C(t) = C∗ − δ12

δ11
[K(t)− K∗] , CE0, (13.107)

where the δij coefficients are the typical elements of ∆ given in (13.99). The initial
and post-shock linearized isoclines for the capital stock are denoted by, respectively,
CSE0 and CSE1:

C(t) = C∗ − δ22

δ21
[K(t)− K∗] ,+

1
δ21

dG, CSE0, (13.108)

C(t) = C∗ − δ22

δ21
[K(t)− K∗] +

1
δ21

dG, CSE1. (13.109)

Note that δ11 < 0, δ12 < 0, δ21 < 0, and δ22 = ρ− δ11 > 0 so that CE0 is downward
sloping whilst CSE0 and CSE1 are upward sloping (and parallel to each other).

We now return to the fiscal policy experiment. In an exercise to this chapter the
reader is asked to verify that as a result of the spending shock the solution paths for
consumption and the capital stock take the following form:[

C(t)
K(t)

]
=

[
C(0)
K∗

]
e−λ1t +

[
C(∞)
K(∞)

] (
1− e−λ1t

)
, t ≥ 0, (13.110)

where C(0), C(∞), and K(∞) are given by:

C(0)− C∗ =
λ2 − δ11

δ21

dG
λ2

< 0, (13.111)
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C(∞)− C∗ =
δ12

λ1λ2
dG < 0, (13.112)

K(∞)− K∗ = − δ11

λ1λ2
dG > 0. (13.113)

In terms of Figure 13.7 the impact jump in consumption (13.111) is represented by
the vertical move from point E0 to point A directly below it. The transition paths
for C(t) and K(t) stated in (13.110) describe all points on the saddle path from A to
E1. Equations (13.110)–(13.113) represent the so-called impulse-response functions for
consumption and the capital stock with respect to a permanent and unanticipated
shock in government consumption which occurs at time t = 0. Equation (13.110)
shows that the effect of the shock as of time t can be written as the weighted average
of the impact effect and the long-run effect with respective time-varying weights
e−λ1t and 1− e−λ1t.

Once the transition paths for consumption and the capital stock are known, the
impulse response function for the remaining variables of the model (i.e. L(t), Y(t),
w(t), and r(t)) can be obtained by employing the following quasi-reduced form ex-
pressions:

L(t)− L∗

L∗
=

ω∗LL
1 + αω∗LL

[
α

K(t)− K∗

K∗
− C(t)− C∗

C∗

]
, (13.114)

Y(t)−Y∗

Y∗
=

1
1 + αω∗LL

[
α(1 + ω∗LL)

K(t)− K∗

K∗
− (1− α)ω∗LL

C(t)− C∗

C∗

]
,

(13.115)

w(t)− w∗

w∗
=

α

1 + αω∗LL

[
K(t)− K∗

K∗
+ ω∗LL

C(t)− C∗

C∗

]
, (13.116)

r(t)− ρ = − (ρ + δ)(1− α)

1 + αω∗LL

[
K(t)− K∗

K∗
+ ω∗LL

C(t)− C∗

C∗

]
. (13.117)

Since the capital stock is predetermined at the time of the shock (K(0) = K∗), the
impact effects for employment, output, the wage, and the interest rate are all pro-
portional to C(0). The decrease in consumption thus causes employment, output,
and the interest rate to increase and the wage rate to fall.

13.5.3.2.1 Quantitative evidence Now that the qualitative effects of the fiscal shock
have been fully characterized analytically, the next question concerns the quantitative
size of the various effects. In order to cast some light on this issue we must now cal-
ibrate the model by using information that is more or less plausible for a typical ad-
vanced market economy. The calibrated model is then used to compute the various
impact, transitional, and long-run effects.

Essentially calibration amounts to choosing the parameters of the theoretical mo-
del in such a way that the model replicates certain outcomes about which sufficiently
robust information is available. Take, for example, the unit-elastic model given in Ta-
ble 13.4. The structural parameters appearing in that model are the pure rate of time
preference ρ, the rate of depreciation of the capital stock δ, the efficiency parameter of
capital α, the preference parameter for consumption ε, and the general productivity
parameter Z0.

Some of these parameters are not hard to guess. For example, under the main-
tained hypothesis that the economy is at a steady state, it follows from (T4.1) that
the real rate of interest must be equal to the rate of pure time preference, i.e. r∗ = ρ.
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King and Rebelo (1999, p. 953) suggest that the average real rate of return to cap-
ital in the US has been 6.5% per annum over the period 1948-1986. On a quarterly
basis this would give us the estimate r∗ = ρ = (1.065)1/4 − 1 = 0.0159 (1.59%
on a quarterly basis). The annual rate of depreciation of the capital stock is set at
10% per annum by King and Rebelo, i.e. δ = (1.1)1/4 − 1 = 0.0241. Of course,
for buildings this figure is far too high (most buildings last longer than ten years)
but for machines (e.g. personal computers) it may be far too low. As an average
guess, however, it may not be too widely off the mark. With Cobb-Douglas tech-
nology 1 − α equals the share of labour income in output (see (T4.4)) which King
and Rebelo set equal to two-thirds, i.e. α = 1/3 (1999, p. 954). But now that we
know ρ and α, we can infer the implied estimate for the equilibrium capital-output
ratio from (T4.5), i.e. (K/Y)∗ = α/(ρ + δ) = 1

3 / [0.0159 + 0.0241] = 8.33. By im-
posing the steady state in (13.89) we obtain the implied investment share of output,
i.e. ω∗I ≡ (I/Y)∗ = δ(K/Y)∗ = 0.0241 · 8.33 = 0.201. Baxter and King (1993, p.
320) suggest that the average postwar share of government consumption in output
was 20% in the US, i.e. ω∗G = 0.2. We now have estimates for almost all parame-
ters of interest. By using (T4.6) we observe that the consumption share in output is
ω∗C ≡ (C/Y)∗ = 1−ω∗I −ω∗G = 0.599. By combining (T4.4) and (T4.6) we derive:

ω∗LL ≡
(

1− L
L

)∗
=

ω∗C
1− α

1− ε

ε
, (13.118)

so choosing ε implies choosing L∗ (and thus ω∗LL) and vice versa. King and Rebelo
suggest that 20% of total available time has been dedicated to working in the postwar
period in the US, i.e. L∗ = 0.2 and ω∗LL = 4, so that it follows from (13.118) and the
other estimates that ε = ω∗C/[ω∗C + (1− α)ω∗LL] = 0.183. Finally, we observe that
Z0 is a “free parameter” in the sense that it merely fixes the scale of the economy.
For numerical convenience, we normalize Z0 such that output is unity in the initial
steady state, i.e. we set Z0 = (L∗)−(1−α) (K∗)−α = 1.442.

In summary, we have now calibrated the model using the following values for
the structural parameters:

ρ = 0.0159 δ = 0.0241 α = 1/3
ε = 0.183 Z0 = 1.442 ωG = 0.2. (13.119)

The resulting initial steady state is given by:

Y∗ = 1 C∗ = 0.599 I∗ = 0.201 T = G0 = 0.2
r∗ = 0.0159 L∗ = 0.2 K∗ = 8.337 w∗ = 3.333. (13.120)

Using these calibration values in (13.99) we obtain the implied guess for the Jacobian
matrix:20

∆ ≡
[
−0.04569 −0.00082
−2.90806 0.06156

]
, (13.121)

The characteristic roots of ∆ are, respectively, −λ1 = −0.0646 and λ2 = 0.0805.
What do these figures mean? Recall that λ1 represents the adjustment speed in the
economy–see (13.110). Using the reasoning explained in Section 12.3.3, the half-life
of the adjustment process in the economy is t1/2 ≡ (1/λ1) ln 2 = 10.7. Since we

20We present the actual numbers here not to test the reader’s patience but rather to enable replication
and to give a ‘feel’ for the magnitudes and dimensions involved.
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Table 13.5. Government consumption multipliers and elasticities

Variable Impact effect Long-run effect
dY
dG 1.029 1.054
dC
dG −0.539 −0.158
dI
dG 0.568 0.212
dK
K∗ / dG

G 0 0.211
dL
L∗ / dG

G 0.309 0.211
dr
r∗ / dG

G 0.518 0
dW
W∗ / dG

G −0.103 0

have calibrated on quarterly observations for the interest rate and the depreciation
rate on capital, this figure means, for example, that half of the adjustment in the
non-jumping variable (the capital stock) is completed almost eleven quarters after
the shock occurred.

Using the information from (13.121) in the various analytical expressions (13.110)–
(13.117) we obtain the numerical estimates for the impact and long-run effects on the
different variables. These results have been summarized in Table 13.5. There is se-
vere crowding out of private by public consumption at impact. For every AC1 of extra
government consumption private consumption falls by AC0.54 at impact. Because the
representative agent cuts back on leisure consumption—by supplying more hours to
the labour market—household labour income rises. The additional (saving equals)
investment at impact is AC0.57 out of every AC1 of extra government consumption so
that the output multiplier exceeds unity at impact. Let us look at some of the other
magnitudes involved. At impact a 1% increase in government spending gives rise
to a 0.3% increase in employment and a 0.1% fall in the wage rate. The interest rate
rises proportionally by 0.5%, i.e. in absolute terms the interest rate rises by 0.0082
percentage points from 1.587% to 1.595% on a quarterly basis.

In the long run the interest rate, the wage rate, and the capital-labour ratio all
return to their respective initial equilibrium values. For a 1% increase in government
consumption the capital stock increases by 0.211%. In the long-run net investment
ceases as the initial investment-capital ratio is restored. Consumption crowding out
remains but is less severe than at impact and the output multiplier is a little higher
than at impact.

In summary, the results in this subsection show that large output multipliers
due to permanent government consumption are quite possible in the representative-
agent model. The mechanism behind the multiplier is, however, quite classical and
originates from the dynamic interaction of the supply of labour and capital (Baxter
and King, 1993, pp. 323–324). The additional lump-sum taxes make people poorer
which leads them to increase labour supply both at impact and in the long run. In
the long run the capital-labour ratio is restored so that the capital stock rises also.
In the short run the strong savings response by households explains why the public
consumption shock is accompanied by an investment boom.
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13.5.4 Temporary fiscal policy

One of the recurrent themes in the study of fiscal policy is the difference between the
effects of temporary and permanent policy. Baxter and King, for example, employ
numerical methods to study to what extent the impact multiplier for output depends
on the duration for which the fiscal policy impulse is in operation (1993, p. 315). In
this subsection we show how a temporary (but unanticipated) fiscal spending shock
affects the economy. To keep things simple we assume that the government raises
its consumption level unexpectedly at some time t = 0 and then gradually lets it fall
back to the initial level:

G(t)− G0 =

 e−ξGtdG for t ≥ 0

0 for t < 0.
(13.122)

where ξG > 0 is the exponential rate at which government consumption returns to
its initial level. Clearly, according to (13.122), we have that G (0)− G0 = dG > 0 and
limt→∞ G(t) = G0 so the spending shock is temporary.

The CE line is still as given in (13.107) because lump-sum taxes continue to be
used in this experiment. The CSE line (13.109) is changed to:

C(t) = C∗ − δ22

δ21
[K(t)− K∗] +

1
δ21

e−ξGtdG, CSE1(ξGt). (13.123)

Note that the position of the CSE line depends both on post-shock time t and the
persistence parameter (ξG). At impact the shock is the same as before but eventually
the shock vanishes. Since agents in the economy are assumed to know the path of
government consumption (13.122) they will condition their behaviour accordingly
and will formulate their plans optimally. Note that ξG parameterizes the persistence
of the shock. For example, if ξG ≈ 0 then the shock is highly persistent and G(t) falls
only very slowly towards G0. In contrast, if ξG is large, then G(t) drops off rapidly
as time goes by and the shock is very transitory. The time path for G(t) is illustrated
in Figure 13.8(a) for three values of ξG, namely ξG = 0 (permanent shock), ξG = 0.02
(temporary but highly persistent shock), and ξG = 0.10 (very transitory shock).

Using the Laplace transform methods explained in the Mathematical Appendix,
the perfect foresight solution of the model is obtained:[

C(t)
K(t)

]
=

[
C(0)
K∗

]
e−λ1t +

[
C∗

K∗

] (
1− e−λ1t

)
+

dG
λ1(λ2 + ξG)

[
δ12

−(δ11 + ξG)

]
T(ξG, λ1, t), (13.124)

where the impact effect on consumption, C(0), is:

C(0)− C∗ =
λ2 − δ11

δ21

dG
λ2 + ξG

< 0, (13.125)

and where T(ξG, λ1, t) is a transition term which is defined as follows:

T(ξG, λ1, t) ≡


λ1

e−ξGt − e−λ1t

λ1 − ξG
for ξG 6= λ1

λ1te−λ1t for ξG = λ1.

(13.126)
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Figure 13.8: Temporary fiscal policy

(a) Shock: G(t)− G0 (b) Output: Y(t)−Y∗
dG

(c) Consumption: C(t)−C∗
dG (d) Investment: I(t)−I∗

dG
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Figure 13.8, continued

(e) Capital: G0
K∗

K(t)−K∗
dG (f) Employment: G0

L∗
L(t)−L∗

dG

(g) Wage: G0
w∗

w(t)−w∗
dG (h) Interest rate: G0

r∗
r(t)−r∗

dG
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Figure 13.9: The transition function for temporary and permanent shocks

Before developing the economic interpretation of the solutions for consumption and
the capital stock, as given in (13.124)–(13.125), it is useful to first look at the shape
of the temporary transition term T(ξG, λ1, t). In Figure 13.9 we illustrate the shape
of this term for a range of values of ξG. In this figure, the adjustment speed of the
economy is set at the value implied by the calibration, i.e. λ1 = 0.0646 (see the text
below equation (13.121)).

We observe from Figure 13.9 that, provided ξG is strictly positive, the transition
term is a non-negative bell-shaped function of time. Furthermore, this term is zero
both at the time of the shock (t = 0) and in the long run (t → ∞) and features
0 < T(ξG, λ1, t) < 1 for t ∈ (0, ∞). The lower is the value of ξG, the later is the time
at which the transition terms reaches its peak and the slower is the decline towards
zero as time goes on. In the limiting case, with ξG = 0, the shock is permanent and
the transition term is equal to an adjustment term of the form A(λ1, t) ≡ 1− e−λ1t.
Hence, for ξG = 0 the transition function is not bell-shaped–see the solid line in
Figure 13.9.

We are now in a position to study the intuition behind the macroeconomic effects
of a temporary public spending shock. In Figure 13.8 we illustrate the transition
paths for output, consumption, and investment in a multiplier format. For the re-
maining variables the effects are plotted in an elasticity format. The aim is to firmly
establish the link between the impulse-response diagrams contained in Figure 13.8
and the analytical results given in (13.124)–(13.125). This task is facilitated by con-
sidering the phase diagram presented in Figure 13.10.

In Figure 13.10, CSE0 and CE0 are, respectively, the initial capital stock equilib-
rium and consumption equilibrium curves, and E0 is the initial equilibrium. The
effect of a permanent shock, which was also studied in Figure 13.7, is to shift the
CSE curve to CSEps. The economy adjusts by jumping from E0 to Aps at impact and
by moving gradually along the saddle path, SPps, from Aps to Eps.

Next we consider what the adjustment path looks like when the shock is tempo-
rary. It follows from the comparison of (13.111) and (13.125) that the impact reduc-
tion in consumption is larger for a permanent than for a temporary shock. In Figure
13.10 this means that for a temporary shock the economy jumps somewhere along
the vertical dashed line through points E0 and Aps. In order to study the qualitative
effects of shock persistence, we consider two particular values for ξG, say ξ1

G and ξ2
G,
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Figure 13.10: Phase diagram for a temporary shock

and we assume that ξ1
G < ξ2

G, i.e. the shock is relatively more persistent for ξ1
G. The

consumption jumps associated with the two ξG values are illustrated in Figure 13.10
by, respectively, points A1 and A2.

Consumption falls regardless of the degree of shock persistence. The additional
lump-sum taxes make the representative agent poorer as a result of which he cuts
back on goods consumption and leisure. This negative human wealth effect is larger
the more persistent is the shock. Next we consider whether the agents react to the
shock by accumulating or decumulating assets. The diagram in and of itself does
not provide an unambiguous answer because it is not a priori clear which region the
economy jumps to. This is where the analytical results can provide further guidance.

It follows from the second expression in (13.124) that the impact effect on net
investment is given by:21

K̇(0) = − δ11 + ξG
λ2 + ξG

dG =
[
(ρ + δ)ηYC − ξG

]
· dG

λ2 + ξG
, (13.127)

where ηYC is the (absolute value of the) partial elasticity of output with respect to
consumption (obtained from (13.115) above):

ηYC ≡
∣∣∣∣ ∂Y(t)
∂C(t)

C(t)
Y(t)

∣∣∣∣ ≡ (1− α)ω∗LL
1 + αω∗LL

. (13.128)

The impact effect on net investment depends on the interplay of two mechanisms
working in opposite directions, namely the labour supply mechanism (parameter-
ized by ω∗LL) and the shock persistence mechanism (parameterized by ξG). If the
shock is relatively persistent (ξ1

G < (ρ + δ)ηYC), the labour supply mechanism dom-
inates, the term in square brackets on the right-hand side of (13.127) is positive, and
net investment rises at impact (K̇(0) > 0). Intuitively, since consumption falls and
output increases strongly (because of the large boost in labour supply), the increase

21This expression is obtained by differentiating the second expression in (13.124) with respect to time
and noting that dT (ξG , λ1, t) /dt = λ1 for t = 0.
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in government consumption does not cause any crowding out of private investment.
Hence, for ξ1

G < (ρ + δ)ηYC, the transition path at impact is upward sloping–see the
dashed line from point A1 in Figure 13.10. The phase diagram can now be used to
characterize the transition path. Over time, the capital stock equilibrium locus starts
to shift back towards CSE0. During the early part of the transition the equilibrium
trajectory runs in a north-easterly direction, say from A1 to B1 in Figure 13.10. By
the time the equilibrium trajectory catches up with the then relevant capital stock
equilibrium locus (CSE1(ξ

1
Gt1)), net capital accumulation ceases, i.e. the trajectory

is vertical at point B1. After that time, the economy returns to the old equilibrium
along the trajectory from B1 to E0.

If the shock is relatively transient (ξ2
G > (ρ + δ)ηYC), then the persistence mech-

anism dominates, the term in square brackets on the right-hand side of (13.127) is
negative, and net investment falls at impact (K̇(0) < 0). In that case, the economy
jumps at impact from E0 to A2, after which it moves gradually from A2 via B2 to
the initial equilibrium E0. The transition paths for the capital stock and consump-
tion have been illustrated in the time domain and for a range of ξG values in Figure
13.8(c) and (e). As is evident from both the phase diagram (Figure 13.10) and the
time domain picture (Figure 13.8(c)) the adjustment of consumption is monotonic.

The adjustment paths for employment, wages, output, and the interest rate are
obtained by substituting the solutions for consumption and the capital stock, given
in (13.124)–(13.125), into the quasi-reduced form expressions (13.114)–(13.117). In a
similar fashion, the adjustment path for gross private investment is obtained by us-
ing (13.88) and noting (13.122). In panels (b)–(h) of Figure 13.8 we illustrate the paths
for output, consumption, gross private investment, the capital stock, employment,
wages, and the real interest rate. The dashed and dotted lines represent adjustment
paths for temporary shocks. Output jumps up at impact and thereafter monoton-
ically drops back to its initial level. The more transient the shock, the faster is the
transition in output. Gross investment jumps up (down) when the shock persistence
is high (low) and thereafter returns monotonically to its initial level.

We conclude this section by briefly touching on what has been labelled by Baxter
and King (1993) as one of the four classic questions regarding fiscal policy, namely
the relationship between policy persistence and the magnitude of impact effects.
By using (13.115) and (13.125) and noting that capital is predetermined at impact
(K(0) = K∗), we find that there exists a simple relationship between the output mul-
tiplier for permanent and temporary increases in government consumption in the
impact period:[

dY(0)
dG

]
ξG>0

=
ρ + λ1

ρ + λ1 + ξG
·
[

dY(0)
dG

]
ξG=0

> 0. (13.129)

It follows from (13.129) that the impact multiplier is smaller the less persistent is the
shock to government spending, i.e. the higher is ξG. We thus confirm analytically the
conclusion reached on the basis of numerical simulations by Baxter and King (1993,
p. 326).22 Note also that the closer is the impact effect of a temporary shock to that
of a permanent shock, the faster is the inherent speed of adjustment in the economy,
i.e. the higher is λ1.

22In the classic analyses of Hall (1980) and Barro (1981), exactly the oppostite result holds, i.e. temporary
spending shocks have larger effects than permanent ones. The reason for this discrepancy is that these
papers do not allow for capital accumulation. See Baxter and King (1993, p. 326).
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13.6 The RCK model with search unemployment

Up to this point we have abstracted from one of the key features characterizing ad-
vanced economies, namely the existence of unemployment. Indeed, as we showed
in Chapter 7 economies such as the United Kingdom and the United States have ex-
perienced a long-run unemployment rate of about six percent over the last century
or more. In this section we develop a version of the RCK model in which there is
a positive equilibrium unemployment rate. More specifically we develop a macro-
economic version of the search and matching model, a simple version of which was
studied in Chapter 8 above.23

Under the strict (microeconomic) interpretation of the search and matching mo-
del, the behaviour of individual workers and single-job firms is analysed. Such in-
dividual agents face an inherently stochastic problem, i.e. the worker is either fully
employed or seeking a job. Similarly, the firm either has a vacancy or has managed
to find a suitable worker. In order to analyse the model at the microeconomic level, it
is necessary to solve the stochastic decision making problems faced by workers and
firms, using stochastic dynamic programming techniques that are discussed in Part
III of this book.

The early macroeconomic literature circumvents many of these complications by
embedding individual agents in large groups of similar agents, and studying the be-
haviour of each group rather than that of the group’s individuals. For example, in-
stead of analysing individual workers, it is postulated that the representative house-
hold consists of (infinitely) many family members that are each working full time
or searching for a job. The family is assumed to pool its income. Because the num-
ber of family members is very large, family-wide employment, unemployment, and
income are deterministic, so that standard deterministic optimal control techniques
can be used to solve the household model. Similarly, by making the large-firm as-
sumption (as in Pissarides, 2000, pp. 68–70), aggregate employment and vacancy
flows are rendered deterministic. The discussion presented here is loosely based on
Shi and Wen (1997, 1999) and Heijdra and Ligthart (2002).

13.6.1 Model elements

The representative household consists of a large number, N, of identical family mem-
bers. To cut down on notation, we normalize N to unity. Family members care only
about lifetime utility of the household and individual labour income risk is fully in-
sured within the household. Thus, household income is non-stochastic.24 From the
perspective of the planning period t = 0, expected lifetime utility of the representa-
tive household is given by:

Λ (0) ≡
∫ ∞

0
U(C(t), M (t))e−ρtdt, (13.130)

where ρ is the pure rate of time preference (ρ > 0), C (t) is household consumption,
and M(t) is household leisure. The household has a time endowment of unity so
that leisure is equal to:

M(t) ≡ 1− S(t)− L(t), (13.131)

23The reader purely interested in the theory of economic growth can skip this section and the next and
proceed to Chapter 14.

24This assumption is quite standard in the macroeconomic literature. See, for example, Andolfatto
(1996), Merz (1995), Galı́ (1996), DenHaan et al. (2000), and Shi and Wen (1997, 1999).
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where S(t) is the amount of time the family as a whole spends on searching for jobs at
time t (unemployment), and L(t) is the amount of time the family spends working at
time t. Just as in the previous section we assume that the felicity function is loglinear
in consumption and leisure time:

U(C(t), 1− S(t)− L(t)) ≡ ln
[
C(t)ε [1− S(t)− L(t)]1−ε

]
, 0 < ε < 1. (13.132)

At each instant of time some unemployed household members find a job but some
employed members lose their job as idiosyncratic shocks destroy a constant pro-
portion of the pre-existing matches between firms and workers. As a result, the
household’s stock of employment evolves according to:

L̇(t) ≡ f (t)S(t)− δmL(t), (13.133)

where L̇(t) ≡ dL(t)/dt, f (t) is the job-finding rate (to be determined below), and δm
is the exogenous job destruction rate (see also Chapter 8). The household’s budget
identity is:

Ȧ(t) ≡ r(t)A(t) + w (t) L(t) + sU(t)S(t)− T(t)− C(t), (13.134)

where Ȧ(t) ≡ dA(t)/dt, A(t) is the stock of real tangible assets, r(t) is the interest
rate, w(t) is the wage rate, sU(t) is the unemployment benefit (a subsidy on job
searching), and T(t) is a lump-sum tax.

The household chooses time paths for consumption, searching time, and tangible
assets in order to maximize lifetime utility (13.130) subject to the accumulation iden-
tities (13.133)–(13.134) and the definition (13.132). It takes as given its initial stocks
of financial assets and employment, A(0) and L(0). The current-value Hamiltonian
for the household’s optimization problem is:

HH
C (t) ≡ U(C(t), 1− S(t)− L(t)) + ξA(t)

[
r(t)A(t) + w (t) L(t)

+ sU(t)S(t)− T(t)− C(t)
]
+ ξL(t) [ f (t)S(t)− δmL(t)] ,

where A(t) and L(t) are the state variables, ξA(t) and ξL(t) are the corresponding
co-state variables, and C(t) and S (t) are the control variables. The interesting first-
order conditions are:

ε

C(t)
= ξA(t), (13.135)

1− ε

1− S(t)− L(t)
= sU(t)ξA(t) + f (t)ξL(t), (13.136)

ξ̇A(t)
ξA(t)

= ρ− r(t), (13.137)

ξ̇L(t) =
1− ε

1− S(t)− L(t)
− w(t)ξA(t) + (ρ + δm)ξL(t), (13.138)

lim
t→∞

ξA(t)A(t)e−ρt = lim
t→∞

ξL(t)L(t)e−ρt = 0. (13.139)

The first-order conditions can be simplified substantially. First, by using (13.135) and
its time derivative in (13.137) we obtain the consumption Euler equation determining
the optimal time profile of consumption:

Ċ(t)
C(t)

= r(t)− ρ. (13.140)
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Next we can define the relative (shadow) value of a job by ηL(t) ≡ ξL(t)/ξA(t) and
rewrite (13.136) and (13.138) as follows:

1− ε

ε

C(t)
1− S(t)− L(t)

= sU(t) + f (t)ηL(t) [≡ wR(t)] , (13.141)

η̇L(t) = (r(t) + δm) ηL(t) +
1− ε

ε

C(t)
1− S(t)− L(t)

− w(t).

(13.142)

Equation (13.141) shows that in determining the optimum amount of job search the
household ensures that the marginal rate of substitution between consumption and
leisure is equated to the reservation wage, wR(t). The reservation wage itself de-
pends on several factors. By participating in the labour market, rather than enjoying
leisure, the household not only receives the unemployment benefit, sU(t), but also
has a non-zero probability, f (t), of locating a job with a pecuniary value of ηL(t). Fi-
nally, equation (13.142) shows the dynamic path for ηL(t), the relative shadow value
of a job to the household. Note that by using (13.141), this expression can be rewrit-
ten as:

η̇L(t) = (r(t) + δm + f (t)) ηL(t)− [w(t)− sU(t)] . (13.143)

By integrating (13.143) and (13.142) we obtain two equivalent expressions for the
value of a job in the planning period, ξL(0):

ηL(0) ≡
∫ ∞

0
[w(t)− sU(t)] e−

∫ t
0 [r(τ)+ f (τ)+δm ]dτdt (13.144)

=
∫ ∞

0
[w(t)− wR(t)] e−

∫ t
0 [r(τ)+δm ]dτdt. (13.145)

Expression (13.144) shows that the value of an additional job at time t = 0 equals
the present value of the “dividend” earned on the job (equalling the excess of the
wage over the unemployment benefit) using r(τ) + f (τ) + δm as the instantaneous
discount rate in time period τ. An equivalent expression involving the reservation
wage is given in (13.145).

Following Pissarides (2000, pp. 68–70) we assume that there is a single very large
representative firm which faces certain flows into and out of its labour force. The
representative firm is perfectly competitive and uses capital (K(t)) and labour (L(t))
to produce units of the homogeneous good (Y(t)):

Y(t) = F (K(t), L(t)) , (13.146)

where the production function features constant returns to scale. As a result of the
matching friction, the firm faces linear costs of adjusting its stock of labour. In order
to augment its work force it must post vacancies (V(t)) in order to find a worker. The
firm’s labour force thus changes according to:

L̇(t) = q(t)V(t)− δmL(t), (13.147)

where q(t) is the instantaneous probability of the firm finding a worker with whom
it concludes a deal. In addition to finding new workers at each instant, the firm
also loses a given proportion of its work force due to idiosyncratic shocks (see also
(13.133) above).
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The objective function of the firm is the present value of its cash flow, FV(0):

FV(0) =
∫ ∞

0

[
Y(t)− cV(t)− w(t)L(t)− I(t)

]
e−
∫ t

0 r(τ)dτdt, (13.148)

where c is the flow cost per vacancy (modelled in terms of lost output), and I(t) is
firm investment. The capital stock accumulation identity is given by:

K̇(t) = I(t)− δkK(t), (13.149)

where δk is the depreciation rate. The firm chooses time paths for output, vacan-
cies, investment, the capital stock, and employment in order to maximize (13.148)
subject to the production function (13.146) and the accumulation identities for work-
ers (13.147) and capital (13.149), taking as given its initial stocks of labour and capital
(L(0) and K (0)). The current-value Hamiltonian for the firm’s optimization problem
is:

HF
C(t) ≡ F (K(t), L(t))− cV(t)− w(t)L (t)− I(t)

+ µL(t) [q(t)V(t)− δmL(t)] + µK(t) [I (t)− δkK(t)] ,

where L(t) and K(t) are the state variable, µL(t) and µK(t) are the co-state variables,
and V(t) and I(t) are the control variables. The interesting first-order conditions can
be written as:

µL(t)q(t) = c, (13.150)
µK(t) = 1, (13.151)
µ̇L(t) = − [FL (K(t), L(t))− w(t)] + (r(t) + δm)µL(t),

(13.152)

µ̇K(t) = −FK (K(t), L (t)) + (r(t) + δk)µK(t), (13.153)

lim
t→∞

µL(t)L(t)e−
∫ t

0 r(s)ds = lim
t→∞

µK(t)K(t)e−
∫ t

0 r(s)ds = 0. (13.154)

By simplifying these expressions somewhat we find the most important first-order
conditions:

µL(t) =
c

q(t)
, (13.155)

FK (K(t), L(t)) = r(t) + δk, (13.156)
µ̇L(t) = (r(t) + δm) µL(t)− [FL (K(t), L(t))− w(t)] . (13.157)

According to (13.155) the firm sets its vacancies such that the expected cost of re-
cruitment per worker (right-hand side) equals the value to the firm of that worker
(left-hand side). Equation (13.156) is the usual expression, calling for an equalization
between the marginal product of capital (left-hand side) and the rental rate on capital
(right-hand side). Equation (13.157) shows the dynamic path for µL(t), representing
the pecuniary value of an additional job to the firm at time t. By integrating (13.157)
forward and imposing the terminal condition we obtain:

µL(0) =
∫ ∞

0
[FL (K(t), L (t))− w(t)] e−

∫ t
0 (r(τ)+δm)dτdt. (13.158)

The value of an occupied job to the firm is equal to the present value of the “divi-
dend” it earns on that job, using r(τ)+ δm as the instantaneous discount rate for time
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period τ. The dividend consists of the excess of labour productivity over the wage
(that is, FL − w).

When a job-seeking worker and a firm with a vacancy meet, a pure economic
rent is created equal to ηi

L + µi
L, where the superscript i refers to a particular worker-

firm pairing. As in Chapter 8, we assume that this rent is shared across the two
parties according to the generalized Nash wage-bargaining solution. The wage in
the planning period, wi (0), is set in such a way that Ωi (0) is maximized, i.e.:

max
wi(0)

Ω (0) ≡ ηi
L(0)

βµi
L(0)

1−β, 0 < β < 1, (13.159)

where β and 1− β are the bargaining weights of, respectively, the worker and the
firm, and where ηi

L(0) and µi
L(0) are obtained from, respectively, (13.145) and (13.158)

by substituting w (0) = wi (0). The first-order condition for this maximization prob-
lem is given by βµi

L (0) = (1− β) ηi
L (0). Once a match has been formed wages are

continuously renegotiated. Hence, as long as the match persists the wage resulting
from this bargaining process can be written in two equivalent ways:25

w(t) = βFL (K(t), L(t)) + (1− β)wR(t) (13.160)
= β[FL (K(t), L(t)) + cθ(t)] + (1− β)sU(t). (13.161)

Since all worker-firm pairings are identical and wages are renegotiated at each in-
stant, the model is symmetric and the wage does not feature a pairing index i. Ac-
cording to (13.160), the wage equals the weighted average of the marginal product
of labour (FL) and the reservation wage (wR). Equation (13.161) shows that the wage
can also be expressed as a weighted average of the firm’s “surplus” (FL + cθ) and
the unemployment benefit. The former consists of not only the marginal product of
labour but also includes the search costs that are foregone if the deal is struck (cθ).

For convenience, the complete model has been summarized in Table 13.6. Equa-
tions (T6.1), (T6.3), and (T6.6)–(T6.9) restate, respectively, equations (13.140), (13.133),
(13.156), (13.141), (13.142) and (13.155). Equation (T6.2) follows from the goods
market clearing condition, and (T6.4) is the government budget constraint. Equa-
tion (T6.5) is obtained by substituting (13.141) into (13.160). Equation (T6.10) fol-
lows from wage bargaining. The expressions in (T6.11)–(T6.12) follow from the
Cobb-Douglas matching function, X(t) = ZmV(t)φS(t)1−φ, and noting that q(t) ≡
X(t)/V(t) and f (t) ≡ X(t)/S(t). Finally, (T6.13) shows that the production func-
tion is of the Cobb-Douglas type. The exogenous policy variables are the search
subsidy sU(t) and government consumption G(t). The endogenous variables are
output Y(t), consumption C(t), the capital stock K(t), employment L(t), lump-sum
taxes T(t), the wage rate w(t), the interest rate r(t), search time S(t), vacancies V(t),
the job finding rate f (t), the vacancy filling rate q(t), the worker’s job value ηL(t),
and the firm’s job value µL(t). Of the fundamental dynamic variables, K(t) and L(t)
are predetermined (sticky) variables whilst C(t) and ηL(t) are non-predetermined
(jumping) variables.

25By differentiating the first-order condition with respect to time we find βµ̇i
L(t) = (1− β) η̇i

L(t). It
follows from (13.142) and (13.157) that for this worker-firm pairing we have:

η̇i
L(t) = (r(t) + δm) ηi

L(t)−
[
wi(t)− wR(t)

]
,

µ̇i
L(t) = (r(t) + δm) µi

L(t)−
[

FL (K(t), L (t))− wi(t)
]

.

Using these results we find (13.160). Equation (13.161) is obtained by noting that wR = sU + f ηL, βµL =
(1− β) ηL, µL = c/q, and f /q = θ.
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Table 13.6. The RCK model with search unemployment

Ċ(t)
C(t)

= r(t)− ρ, (T6.1)

K̇(t) = Y(t)− C(t)− G(t)− cV(t)− δkK(t), (T6.2)

L̇(t) = f (t)S(t)− δmL(t), (T6.3)
T(t) = sUS(t) + G(t), (T6.4)

w(t) = (1− α)β
Y(t)
L(t)

+ (1− β)
1− ε

ε

C(t)
1− S(t)− L(t)

, (T6.5)

r(t) + δk = α
Y(t)
K(t)

, (T6.6)

1− ε

ε

C(t)
1− S(t)− L(t)

= sU + f (t) ηL(t), (T6.7)

η̇L(t) = (r(t) + δm) ηL(t) +
1− ε

ε

C(t)
1− S(t)− L(t)

− w(t),

(T6.8)

µL(t) =
c

q(t)
, (T6.9)

βµL(t) = (1− β)ηL(t), (T6.10)

f (t) = Zm

(
V(t)
S(t)

)φ

, (T6.11)

q(t) = Zm

(
V(t)
S(t)

)φ−1

, (T6.12)

Y(t) = ZyK(t)αL(t)1−α. (T6.13)

Definitions: Y(t) is output, C(t) is private consumption, L(t) is employment, K(t) is the
capital stock, G(t) is public consumption, w(t) is the real wage rate, r(t) is the real interest
rate, S(t) is search hours, V(t) is the number of vacancies, µL(t) is the value of a filled job to
the firm, ηL(t) is the value of a job to the household, T(t) is a lump-sum tax, sU is the search
subsidy, T(t) is the lump-sum tax, f (t) is the job finding rate, q(t) is the vacancy filling rate, c
is the cost of maintaining a vacancy, ρ is the pure rate of time preference, δk is the depreciation
rate of capital, δm is the job destruction rate, φ is the matching function parameter, ε is the
taste parameter for consumption, and α is the efficiency parameter of capital. Zy and Zm are
constants. The population is constant and normalized to unity.
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In the steady state, the policy variables are time-invariant (sU(t) = sU0 and
G(t) = G0) and we have Ċ(t) = K̇(t) = L̇(t) = η̇L(t) = 0. The steady-state equilib-
rium can be compactly characterized by the following equations:

Zy (k∗)
α−1 = ρ + δk, (13.162)

w∗ =
β(ρ + δm + f ∗)(1− α)Zy (k∗)

α + (1− β)(ρ + δm)sU0

ρ + δm + β f ∗
,

(13.163)

cθ∗

f ∗
=

(1− α)Zy (k∗)
α − w∗

ρ + δm
, (13.164)

f ∗ = Zm (θ∗)φ , (13.165)

L∗
[
Zy (k∗)

α − δkk∗
]
= C∗ + G0 + θ∗S∗, (13.166)

1− ε

ε

C∗

1− S∗ − L∗
=

β f ∗(1− α)Zy (k∗)
α + (ρ + δm)sU

ρ + δm + β f ∗
, (13.167)

f ∗S∗ = δmL∗. (13.168)

The endogenous variables are the capital-labour ratio k∗ ≡ (K/L)∗, employment L∗,
consumption C∗, search time S∗, the labour market tightness indicator θ∗ ≡ (V/S)∗,
and the wage rate w∗. As usual stars denote steady-state values. The model is block-
recursive. Equation (13.162) determines k∗, (13.163)–(13.165) determine (w∗, θ∗, f ∗),
and (13.166)–(13.168) determine (C∗, L∗, S∗). The unemployment rate follows from
(13.171):

u∗ ≡ S∗

S∗ + L∗
=

δm

δm + f ∗
. (13.169)

13.6.2 Is unemployment efficient?

Before considering the dynamic properties of the model we first investigate the effi-
ciency properties of the decentralized market equilibrium. This task is accomplished
as follows. First we compute the social optimum, i.e. the allocation than a benev-
olent social planner would choose. Next we compare the first-order conditions for
the social optimum to those that hold in the decentralized market equilibrium de-
veloped above. At time t = 0 the social planner chooses paths for private and
public consumption, employment, unemployment, investment, vacancies, and the
capital stock in order to maximize lifetime utility (13.130), subject to the following
constraints:

F (K(t), L(t)) = C(t) + G(t) + I(t) + cV(t), (13.170)

K̇(t) = I(t)− δkK(t), (13.171)

L̇(t) = Zm

(
V(t)
S (t)

)φ−1

V(t)− δmL(t), (13.172)

and taking as given the initial stocks of capital and occupied jobs, K (0) and L (0).
Equation (13.170) is the economy-wide resource constraint, stating that total avail-
able output (left-hand side) is equal to the sum of privare and public consumption,
investment, and recruiting costs (right-hand side). Equation (13.171) is the just the
accumulation identity for capital. Finally, equation (13.172) is the accumulation iden-
tity for occupied jobs. Like private firms, the planner faces a search friction and
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must open vacancies in order to augment the stock of filled jobs. Unlike, private
firms, however, the social planner takes into account that the probability of filling
a vacancy depends on the relative number of vacancies, as measured by the labour
market tightness indicator θ(t) ≡ V(t)/S(t).

The current-value Hamiltonian for the social planner’s optimization problem is:

HS
C(t) ≡ U(C(t), 1− S(t)− L(t))

+ λL(t)

[
Zm

(
V (t)
S(t)

)φ−1
V(t)− δmL(t)

]
+ λK(t)

[
F (K(t), L (t))− C(t)− G(t)− cV(t)− δkK(t)

]
,

where L(t) and K(t) are the state variables, λL(t) and λK(t) are the co-state variables,
and C(t), G(t), S(t), and V(t) are the control variables. The first-order conditions can
be written as:

λK(t) =
ε

C(t)
, (13.173)

(1− φ)λL(t)Zm

(
V(t)
S(t)

)φ

=
1− ε

1− S(t)− L(t)
, (13.174)

φλL(t)Zm

(
V(t)
S(t)

)φ−1

= cλK(t), (13.175)

and:

λ̇L(t) =
1− ε

1− S(t)− L(t)
+ (ρ + δm)λL(t)− λK(t)FL (K(t), L(t)) , (13.176)

λ̇K(t) = [ρ + δk − FK (K(t), L(t))] λK (t) , (13.177)

lim
t→∞

λL(t)L(t)e−ρt = lim
t→∞

λK(t)K(t)e−ρt = 0. (13.178)

Furthermore, since public consumption is costly but yields no utility, the planner op-
timally sets Gs(t) = 0 where the superscript ‘s’ denotes the socially optimal value. By
defining ηL(t) ≡ λL(t)/λK(t) and simplifying the expressions in (13.173)–(13.178)
somewhat, we find the most important first-order conditions for the first-best social
optimum:

1− ε

ε

Cs(t)
1− Ss(t)− Ls(t)

= (1− φ) f (θs(t))ηs
L(t), (13.179)

c
q(θs(t))

= φηs
L(t), (13.180)

Ċs(t)
Cs(t)

= rs(t)− ρ, (13.181)

η̇s
L(t) = (rs(t) + δm) ηs

L(t) +
1− ε

ε

Cs(t)
1− Ss(t)− Ls(t)

− FL (ks(t), 1) , (13.182)
rs(t) = FK (ks(t), 1)− δk, (13.183)

K̇s(t) = Ls(t) [FK (ks(t), 1)− δkks(t)]− Cs(t)− cθs(t)Ss(t),
(13.184)

L̇s(t) = f (θs(t))Ss(t)− δmLs(t), (13.185)
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where we have used the fact that f (θ(t)) ≡ θ(t)q (θ(t)) = Zmθ(t)φ to simplify these
expressions.

The market equilibrium is efficient if and only if its first-order conditions exactly
match up with the ones for the social optimum as given in (13.179)–(13.185). The
corresponding conditions satisfying the market equilibrium are:

1− ε

ε

C(t)
1− S(t)− L(t)

= sU(t) + f (θ(t)) ηL(t), (13.186)

c
q (θ(t))

=
1− β

β
ηL(t), (13.187)

Ċ(t)
C(t)

= r(t)− ρ, (13.188)

η̇L(t) = (r(t) + δm) ηL(t) + β
1− ε

ε

C(t)
1− S(t)− L(t)

− βFL (k(t), 1) , (13.189)
r(t) = FK (k(t), 1)− δk, (13.190)

K̇(t) = L(t) [FK (k(t), 1)− δkk(t)]− C(t)− G(t)− cθ(t)S(t),
(13.191)

L̇(t) = f (θ(t))S(t)− δmL(t). (13.192)

Comparing the sets of conditions (13.179)–(13.185) and (13.186)–(13.192), we find
that they exactly match and the market equilibrium is efficient if and only if the
following conditions hold:26

sU(t) = G(t) = 0, 1− φ = β. (13.193)

The first conditions in (13.193) state that the government should not subsidize labour
market search or waste output in the form of public consumption. Intuitively, a sub-
sidy of search distorts the labour supply decision in that it artificially raises the reser-
vation wage in the decentralized economy. The second condition (13.193) is called
the Hosios condition (after Hosios, 1990). It requires the elasticity of the matching
function with respect to unemployment (η (θ) ≡ ∂X

∂S
S
X = 1− φ) to be equal to the

bargaining weight of workers (β). With a Cobb-Douglas matching function this elas-
ticity is a constant so that the Hosios condition only holds in the knife-edge case
where φ happens to be equal to the bargaining weight of firms. In all other cases the
decentralized equilibrium in an unmanaged economy (featuring sU(t) = G(t) = 0)
is inefficient and the unemployment rate may be too low or too high from a social
welfare perspective.

13.6.3 Transitional dynamics

In order to study its dynamic properties it is convenient to condense the model into
the following system of non-linear differential equations:

Ċ(t)
C(t)

= αZy

(
K(t)
L(t)

)−(1−α)

− (ρ + δk), (13.194)

26First we postulate that θs(t) = θ(t) and compare (13.179) and (13.186). The marginal rate of subsi-
tution is the same for both equilibria provided sU(t) = 0 and ηs

L(t) = ηL(t)/(1− φ). Next, we compare
(13.180) and (13.187). These expressions coincide provided φ/(1− φ) = (1− β)/β. The remaining equiv-
alences follow readily.
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K̇(t) = ZyK(t)αL(t)1−α − C(t)− cθ(t)S(t)− G(t)− δkK(t), (13.195)

L̇(t) = Zmθ(t)φS(t)− δmL(t), (13.196)

η̇L(t) =

[
αZy

(
K(t)
L(t)

)−(1−α)

+ βZmθ(t)φ − δk + δm

]
ηL(t)

+ β

[
sU(t)− (1− α)Zy

(
K(t)
L(t)

)α]
, (13.197)

where θ(t) and S(t) are given by:

θ(t) =
(
(1− β)ZmηL(t)

βc

)1/(1−φ)

, (13.198)

S(t) = 1− L(t)− 1− ε

ε

C(t)
sU(t) + Zmθ(t)φηL(t)

. (13.199)

In principle it is possible to linearize the model around the steady state and proceed
from there. But because there are four dynamic state variables, the dimension is too
high for this approach to be analytically tractable. In practice, therefore, a numerical
approach is the only avenue left. In the remainder of this subsection we show how
the model can be calibrated and simulated with the aid of a simple Matlab program.

Without claiming to parameterize an actual economy we chose the values of the
structural parameters as follows. First, in order to facilitate the comparison with
the unit-elastic model studied above we use the same values for α, ρ, and δk (see
(13.119) above). The labour market parameters are taken from Shi and Wen (1999, p.
471) who use the matching function X = ZmVφS1−φ, and set Zm = 1, φ = 0.6, and
β = 0.4 (the Hosios condition is thus assumed to be satisfied). The job destruction
rate is set at five percent per quarter, i.e. δm = 0.05. The remainder of the parameters
are chosen as follows.

• First, for the given values of ρ, α, and δk we compute κ∗ ≡ (K/Y)∗.

• Second, we set the targets Y∗ = 1, L∗ = 0.2, and u∗ ≡ (S/(S + L))∗ = 0.06
(a six percent long-run unemployment rate). This gives us K∗, k∗, FK (k∗, 1),
FL (k∗, 1), f ∗, Zy, and S∗:

K∗ = κ∗, k∗ =
K∗

L∗
S∗ =

u∗L∗

1− u∗
, f ∗ =

δmL∗

S∗
, Zy = (K∗)−α(L∗)α−1.

• Third, we solve (T6.5), (T6.7) and (T6.8) in steady state for w∗, MRS∗, and η∗L:

w∗ =
β(ρ + δm + f ∗)
ρ + δm + β f ∗

FL (k∗, 1) +
(1− β)(ρ + δm)

ρ + δm + β f ∗
sU ,

MRS∗ =
β f ∗

ρ + δm + β f ∗
FL (k∗, 1) +

ρ + δm

ρ + δm + β f ∗
sU ,

η∗L =
β

ρ + δm + β f ∗
[FL (k∗, 1)− sU ] ,

where MRS∗ is the steady-state marginal rate of substitution between leisure
and consumption (the left-hand side of (T6.7)).

• Fourth, by anchoring the initial search subsidy to the marginal product of
labour, say sU = ζFL (k∗, 1) and choosing (somewhat arbitrarily)ζ = 0.4, we
obtain values for w∗, MRS∗, and η∗L. Using (T6.10) we find µ∗L.
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• Fifth, since q∗ = f ∗/θ∗ we find from (T6.9) that cθ∗ = f ∗µ∗L. Furthermore,
since θ∗ = ( f ∗)1/φ we can also compute the value for c. By setting G0 = 0.2 (as
in (13.120) above) we compute steady-state consumption:

C∗ = 1− G0 − cθ∗S∗ − δkK∗,

and solve for ε such that:

1− ε

ε

C∗

1− S∗ − L∗
= MRS∗.

In summary, the structural parameters are given by:

ρ = 0.0159 δk = 0.0241 α = 1/3 δm = 0.05 β = 0.4
ε = 0.1944 Zy = 1.4420 Zm = 1 φ = 0.6 c = 3.7240. (13.200)

whilst the resulting initial steady-state is characterized by:

Y∗ = 1 C∗ = 0.5673 S∗ = 0.0128 w∗ = 3.1249 η∗L = 2.1097
r∗ = 0.0159 L∗ = 0.2 K∗ = 8.3371 θ∗ = 0.6656 u∗ = 0.06
T = G0 = 0.2 sU = 1.3333 µ∗L = 3.1645 f ∗ = 0.7833.

(13.201)

The parameterized model can be solved by employing the Matlab boundary value
problem solver bvp4c which is documented extensively in Shampine et al. (2000)
where a number of examples are also found. The mathematical details of this method
need not concern us here. But intuitively, bvp4c can solve nonlinear systems of dif-
ferential equations in the presence of initial and end-point conditions. In the search
model employed here the capital stock and employment are predetermined vari-
ables for which initial conditions must be specified. In contrast, consumption and
the worker’s job value are jumping variables for which end-point conditions are rel-
evant. Table 13.7 lists the Matlab program that solves the unemployment model.
This program calls two Matlab functions that are listed in Tables 13.8 and 13.9.

Referring to the top-level file Program13 01.m in Table 13.7 the model is solved
in the following fashion. First, the structural parameters are packed into a Matlab
structure called PAR. A Matlab structure is a data construct with named fields, e.g.
PAR.alpha contains the value of α and we can refer to PAR.alpha if we need α in
computations. Two further structures are defined, namely EXO for the exogenous
variables and VAR for the endogenous variables. In the second step the steady-state
model is solved. Initial guesses are specified and the Matlab routine fsolve is used
to solve the system of equations characterizing the steady state. Note that fsolve
calls the Matlab function Function13 01 SS.m that is listed in Table 13.8. By passing
PAR and EXO to this function the values of the structural parameters and exogenous
variables are “known” to the function. The solutions that are found by fsolve are
packed into the VAR structure.

In the third step the transition path is computed using bvp4c. The example con-
siders an economy that is initially in the steady-state equilibrium but is hit by a
five-percent reduction in its capital stock. The initial condition is thus 0.95 · K∗ for
capital and L∗ for labour. These values are loaded into VAR.Keq0 and VAR.Leq0 re-
spectively. Since we have a strong suspicion that the model is saddle-point stable,
we postulate that the long-run equilibrium will be at K∗ and L∗ and we pack these
values into VAR.Keq1 and VAR.Leq1 respectively. Consumption will also returns to
its initial steady-state value C∗ so we set this value in VAR.Ceq1; an endpoint con-
dition. Now we are ready to rock and roll. The transition paths for consumption,
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capital, employment, and job value are computed by calling the Matlab function
Function13 01 TP.m that is listed in Table 13.9.

Referring to Table 13.9 bvp4c proceeds as follows. First, we need to code a Mat-
lab function, called capck(x,y)which evaluates the auxiliary equations (13.198)–
(13.199) and the differential equations (13.194)–(13.197). See the second page of Table
13.9. Next, we must specify the residual in the boundary conditions. This is done
in the Matlab function bcfun(ya,yb)where we impose that capital starts in Keq0

and ends in Keq1, labour starts in Leq0, and consumption ends in Ceq1. Note that
capck(x,y)is coded in such a way that y(1) is consumption, y(2) is labour, etcetera.
The initial guess to be used by bvp4c is put in a structure called solinit which must
contain the fields x and y, where solinit.x is a guess for the mesh points (in time)
and solinit.y is a guess for the solution at these mesh points. The helper func-
tion bvpinit sets up solinit using linspace(0,400) for x and a row vector con-
taining guesses for consumption, capital, employment, and job value for y. Finally,
the solution is obtained with the instruction sol=bvp4c(@capck, @bcfun,solinit);.
This returns the ultimate mesh as sol.x and the solution as sol.y. The command
deval(sol,time); evaluates the solution sol at the time points in the vector time.

In Figure 13.11 we plot the transition paths for a number of variables. Several
things are worth noting. First, as we guessed before, the model is saddle-point sta-
ble and all variables return smoothly to their steady-state values. Second, despite
the fact that the capital stock and employment are both sluggish variables, transi-
tion in output is extremely fast. Third, at the time of the shock search time jumps
up causing the unemployment rate to increase dramatically. The feverish search ac-
tivity leads to a rapid increase in employment, and over time both search time and
the unemployment rate fall gradually. Similarly, consumption monotonically rises
toward its pre-shock steady-state level. Fourth, at impact the number of vacancies
increases sharply. However, because search time rises even more, the labour market
tightness indicator falls so it is easy for firms to locate a worker at that time. Finally,
note that transition path for θ(t) (and thus also for the worker’s job value, ηL(t)) is
non-monotonic.

13.7 A monetary RCK model

The effects of money on economic growth was studied by inter alia Tobin (1955,
1965), Sidrauski (1967), and Fischer (1979). In this section we present a monetary
version of the RCK model. We adopt the money-in-the-utility-function (MIU) ap-
proach discussed in Chapter 10 above.

13.7.1 Model elements

The representative household has the following lifetime utility function:

Λ (0) ≡
∫ ∞

0
U (C(t), 1− L(t), m(t)) e−ρtdt, (13.202)

where ρ is the pure rate of time preference, C(t) is goods consumption, L(t) is labour
supply, and m(t) stands for real money balances defined as m(t) ≡ M(t)/P(t) where
M(t) is the nominal money supply and P(t) is the aggregate price level. The felicity
function has the usual properties, i.e. marginal felicity is positive but at a diminish-
ing rate: Ui > 0 and Uij < 0 for i, j ∈ {C, 1− L, m}. Furthermore it is concave (so
that indifference curves bulge toward the origin).
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Table 13.7. A Matlab file for the Ramsey-Cass-Koopmans model

% Ramsey -Cass -Koopmans growth model with search unemployment

%

% Matlab top file: Program13_01.m

% Matlab functions called: Function13_01_SS.m (steady -state)

% Function13_01_TP.m (transition path)

%

% Parameters as set in equation (13.200)

clear

clf

clc

close all

% Structural parameters

PAR.alpha = 0.33333;

PAR.epsilon = 0.19442;

PAR.delta_k = 0.02411;

PAR.delta_m = 0.05000;

PAR.rho = 0.01586;

PAR.phi = 0.60000;

PAR.beta = 0.40000;

PAR.Z_y = 1.44203;

PAR.Z_m = 1.00000;

PAR.c = 3.72403;

% Exogenous variables

EXO.G = 0.20;

EXO.s_U = 1.33334;

EXO.time = linspace (0 ,200 ,2001); % Post -shock time (for plotting)

% Guesses for equilibrium values of the endogenous varables in base case

C0 = 0.567;

S0 = 0.013;

L0 = 0.200;

K0 = 8.337;

eta_L0 = 2.110;

mu_L0 = 3.165;

theta0 = 0.666;

R0 = 0.016;

% Compute the steady -state equilibrium

x = zeros (8,1);

[x(:,1),fval ,exitflag ,output] = fsolve(@Function13_01_SS ,...

[C0 ,S0,L0,K0 ,eta_L0 ,mu_L0 ,theta0 ,R0]’,...

optimset(’MaxFunEvals ’,1e6,’MaxIter ’ ,1000,’TolX’ ,1.0e-8,’TolFun ’ ,...

1.0e-8),PAR ,EXO);

fval;

output;

x;

VAR.Cbase = x(1,1);

VAR.Sbase = x(2,1);

VAR.Lbase = x(3,1);

VAR.Kbase = x(4,1);

VAR.eta_Lbase = x(5,1);

VAR.mu_Lbase = x(6 ,1);

VAR.thetabase = x(7,1);

VAR.Rbase = x(8,1);
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Table 13.7, continued

VAR.Ybase = PAR.Z_y * VAR.Kbase^PAR.alpha * VAR.Lbase^(1-PAR.alpha);

VAR.Wbase = PAR.beta *(1-PAR.alpha) * VAR.Ybase / VAR.Lbase ...

+(1-PAR.beta) * ((1-PAR.epsilon )/PAR.epsilon) * VAR.Cbase ...

/ (1 - VAR.Sbase - VAR.Lbase) ;

VAR.ubase = 100* VAR.Sbase / (VAR.Sbase+VAR.Lbase);

PAR.om_LLbase = (1 - VAR.Sbase - VAR.Lbase) / (VAR.Sbase+VAR.Lbase) ;

VAR.fbase = PAR.delta_m * VAR.Lbase/VAR.Sbase;

% Solve the transition path of the model in continuous time using BVP4C

%

% Example: Convergence to the steady state following a five percent

% reduction in the initial capital stock caused by steel -eating mice

VAR.Keq0 = 0.95 * VAR.Kbase;

VAR.Leq0 = VAR.Lbase ;

VAR.Keq1 = VAR.Kbase ;

VAR.Leq1 = VAR.Lbase ;

VAR.Ceq1 = VAR.Cbase ;

[time ,Cpath ,Kpath ,Lpath ,etaLpath] = Function13_01_TP(PAR ,EXO ,VAR) ;

Ypath = PAR.Z_y * Kpath .^(PAR.alpha) .* Lpath .^(1-PAR.alpha) ;

thetapath = ((1-PAR.beta) * PAR.Z_m * etaLpath / (PAR.beta * PAR.c) ...

).^(1/(1 - PAR.phi)) ;

Spath = 1 - Lpath - ((1-PAR.epsilon )/PAR.epsilon) * Cpath ...

./ (EXO.s_U + PAR.Z_m * thetapath .^PAR.phi .* etaLpath) ;

Vpath = thetapath .* Spath ;

Rpath = PAR.alpha * (Ypath ./ Kpath) - PAR.delta_k ;

Ipath = Ypath - Cpath - PAR.c * thetapath .* Spath - EXO.G ;

Wpath = PAR.beta * (1-PAR.alpha) * Ypath ./Lpath ...

+ ((1-PAR.beta )*(1-PAR.epsilon )/PAR.epsilon) * Cpath ./ ...

(1 - Spath - Lpath) ;

upath = Spath ./ (Spath + Lpath );

% Plot some figures , for ezample capital and labour:

figure (1)

hold on

box off

xlim ([0 ,120])

xlabel(’post -shock time (quarters)’)

ylabel(’capital ’)

plot(time ,Kpath ,’k’,’LineWidth ’ ,3);

hold off

pause (1)

figure (2)

hold on

box off

xlim ([0 ,120])

xlabel(’post -shock time (quarters)’)

ylabel(’employment ’)

plot(time ,Lpath ,’k’,’LineWidth ’ ,3);

hold off

pause (1)
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Table 13.8. Matlab function to compute the steady state

function Result = Function13_01_SS(x,PAR ,EXO)

% This function computes the steady -state equilibrium

%

% x(1) is C

% x(2) is S

% x(3) is L

% x(4) is K

% x(5) is eta_L

% x(6) is mu_L

% x(7) is theta

% x(8) is r

% Parameter values:

alpha = PAR.alpha;

epsilon = PAR.epsilon;

delta_k = PAR.delta_k;

delta_m = PAR.delta_m;

rho = PAR.rho;

phi = PAR.phi;

beta = PAR.beta;

Z_y = PAR.Z_y;

Z_m = PAR.Z_m;

c = PAR.c;

% Exogenous variables:

G = EXO.G;

time = EXO.time;

s_U = EXO.s_U;

Result = zeros(size(x));

Result (1) = (x(8)- rho) * x(1) ;

Result (2) = Z_y * x(4)^( alpha) * x(3)^(1 - alpha) - x(1) - G ...

- c * x(7) * x(2) - delta_k * x(4) ;

Result (3) = Z_m * x(7)^ phi * x(2) - delta_m * x(3) ;

Result (4) = (x(8) + delta_m) * x(5) + beta ...

*(s_U + Z_m * x(7)^ phi * x(5) - (1-alpha) * Z_y ...

* x(4)^( alpha) * x(3)^(- alpha) ) ;

Result (5) = (x(8) + delta_m) * x(6) + (1-beta) ...

*(s_U + Z_m * x(7)^ phi * x(5) - (1-alpha) * Z_y ...

* x(4)^( alpha) * x(3)^(- alpha) ) ;

Result (6) = x(6) - c * x(7)^(1 - phi) / Z_m ;

Result (7) = ((1- epsilon )/ epsilon) * x(1) ...

-(s_U + Z_m * x(7)^ phi * x(5)) * (1 - x(2) - x(3)) ;

Result (8) = x(8) - alpha * Z_y * x(4)^( alpha -1) * x(3)^(1 - alpha) ...

+ delta_k ;

end
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Table 13.9. Matlab function to compute the transition path

function [time ,Cpath ,Kpath ,Lpath ,etaLpath ]= Function13_01_TP(PAR ,EXO ,VAR)

% Parameter values:

alpha = PAR.alpha;

epsilon = PAR.epsilon;

delta_k = PAR.delta_k;

delta_m = PAR.delta_m;

rho = PAR.rho;

phi = PAR.phi;

beta = PAR.beta;

Z_y = PAR.Z_y;

Z_m = PAR.Z_m;

c = PAR.c;

% Exogenous variables:

G = EXO.G;

time = EXO.time;

s_U = EXO.s_U;

% Capital and employment

Keq0 = VAR.Keq0;

Keq1 = VAR.Keq1;

Leq0 = VAR.Leq0;

Leq1 = VAR.Lbase;

Ceq1 = VAR.Ceq1;

% Initial consumption and eta_L

Ceq0 = VAR.Cbase;

etaL0 = VAR.eta_Lbase;

solinit = bvpinit(linspace (0,400),[ Ceq0 Keq0 Leq0 etaL0 ]);

sol = bvp4c(@capck ,@bcfun ,solinit );

y = deval(sol ,time);

Cpath = y(1,:);

Kpath = y(2,:);

Lpath = y(3,:);

etaLpath = y(4,:);
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Table 13.9, continued

% Dynamics of C, K, L, and eta_L

function dydx = capck(x,y)

theta = ((1-beta) * Z_m * y(4) / (beta * c))^(1/(1 - phi)) ;

S = 1 - y(3) - ((1- epsilon )/ epsilon) * y(1) ...

/ (s_U + Z_m * theta^phi * y(4)) ;

dydx (1,1) = (alpha * Z_0 * y(2)^( alpha -1) * y(3)^(1 - alpha) ...

- delta_k - rho) * y(1) ;

dydx (2,1) = Z_0 * y(2)^( alpha) * y(3)^(1 - alpha) - y(1) - G ...

- c * theta * S - delta_k * y(2) ;

dydx (3,1) = Z_m * theta^phi * S - delta_m * y(3) ;

dydx (4,1) = (alpha * Z_0 * y(2)^( alpha -1) * y(3)^(1 - alpha) - ...

delta_k + delta_m) * y(4) + beta ...

*(s_U + Z_m * theta^phi * y(4) ...

- (1-alpha) * Z_0 * y(2)^( alpha) * y(3)^( - alpha) );

end

% Boundary conditions

function res = bcfun(ya ,yb)

res = [ya(2) - Keq0

yb(2) - Keq1

ya(3) - Leq0

yb(1) - Ceq1];

end

end
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Figure 13.11: Transitional dynamics in the RCK unemployment model

(a) Capital stock: K(t) (b) Employment: L(t)

(c) Output: Y(t) (d) Search time: S(t)
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Figure 13.11, continued

(e) Unemployment rate: u(t) (f) Consumption: C(t)

(g) Vacancies: V(t) (h) Tightness: θ(t)
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Abstracting from bonds there are two financial assets, namely nominal claims on
the capital stock (Vn(t) = P(t)K(t)) giving an instantaneous nominal yield equal to
R(t) and nominal money balances (M(t)) providing a zero nominal yield. Nominal
assets, An(t) ≡ M(t) + Vn(t), evolve according to:

Ȧn(t) = P(t) [R(t)K(t) + w(t)L(t) + Z(t)− C(t)] , (13.203)

where w(t) is the real wage rate and Z(t) is real transfers from the government.
Accumulation of real financial assets is thus given by:

Ȧ(t) = [R(t)− π(t)] A(t) + w(t)L(t) + Z(t)− C(t)− R(t)m(t), (13.204)

where A(t) ≡ m(t) + K(t) and π(t) ≡ Ṗ(t)/P(t) is the rate of price inflation. We
observe that the real asset (capital) attracts a real rate of interest r(t) ≡ R(t)− π(t).
In contrast, because the nominal asset (money) does not pay any interest, R(t)m(t)
represents the opportunity cost of holding real money balances.

The household chooses paths for A(t), C(t), L(t), and m(t) in order to maximize
lifetime utility (13.202) subject to asset accumulation equation (13.204), taking the
initial stock of real assets, A (0), and all goods and factor prices as well as transfers
as given. The current-value Hamiltonian for this problem is:

HC ≡ U (C(t), 1− L(t), m(t))
+ λ(t) [r(t)A(t) + w(t)L(t) + Z(t)− C(t)− R(t)m(t)] ,

where C(t), L(t), and m(t) are control variables, A(t) is the state variable, and λ(t) is
the co-state variable. In addition to the transversality condition, limt→∞ λ(t)A(t)e−ρt =
0, the first-order conditions are as stated in equations (T10.2) and (T10.4)–(T10.6) in
Table 13.10.

Firm behaviour is standard. The objective function is given by:

V (0) =
∫ ∞

0
CF(t)e−

∫ t
0 r(s)dsdt, (13.205)

where CF(t) is the firm’s real net cash flow:

CF(t) ≡ F (K(t), L(t))− w(t)L(t)− I(t), (13.206)

I(t) ≡ K̇(t) + δK(t) is gross investment, and F (K(t), L(t)) is a neoclassical produc-
tion (featuring constant returns to scale and positive but diminishing marginal prod-
ucts). In the absence of adjustment costs, value maximization of the firm gives rise
to the first-order conditions for capital and labour as reported in equations (T10.7)–
(T10.8) in Table 13.10. In addition it is easy to show that the maximized value of the
firm equals the capital stock (V (0) = K (0)).

In the absence of bonds and taxes, the government budget identity is given in
nominal terms by Ṁ(t) = P(t) [Z(t) + G0] and in real terms by:

ṁ(t) + π(t)m(t) = Z(t) + G0, (13.207)

where G0 is government consumption. The lump-sum transfer ensures that the gov-
ernment budget identity holds at all times. The central bank follows a nominal
money growth rule of the form Ṁ(t) = µM(t), where µ is the money growth rate
(a policy parameter). In real terms we thus obtain equation (T10.3) in Table 13.10.
Finally, in this closed economy the goods market equilibrium condition is given by
Y(t) = C(t) + I(t) + G0 which can be combined with the production function and
the definition of gross investment to yield equation (T10.1) in Table 13.10.
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13.7.2 Equilibrium

The full macroeconomic model is stated in Table 13.10. The endogenous variables
are K(t), C(t), L(t), m(t), λ(t), w(t), r(t), and π(t). The exogenous government
policy variables are G0 and µ. The economic growth properties of the monetary RCK
model are quite standard. Provided the model is stable it will converge to a steady
state featuring a constant exogenous growth rate equal to zero (as the population is
constant here).27

Table 13.10. The monetary RCK model

K̇(t) = F(K(t), L(t))− C(t)− δK(t)− G0 (T10.1)

λ̇(t)
λ(t)

= ρ− r(t) (T10.2)

ṁ(t) = [µ− π(t)]m(t) (T10.3)
UC (C(t), 1− L(t), m(t)) = λ(t) (T10.4)

U1−L (C(t), 1− L(t), m(t)) = λ(t)w(t) (T10.5)
Um (C(t), 1− L(t), m(t)) = λ(t) [r(t) + π(t)] (T10.6)

FK (K(t), L(t)) = r(t) + δ (T10.7)
FL (K(t), L(t)) = w(t) (T10.8)

Definitions: C(t) is private consumption, L(t) is employment, m(t) is real money balances,
K(t) is the capital stock, G0 is public consumption, w(t) is the real wage rate, r(t) is the real
interest rate, π(t) is the rate of price inflation, λ(t) is the marginal utility of wealth, ρ is the
pure rate of time preference, δ is the depreciation rate of capital, and µ is the growth rate of
the nominal money supply. The population is constant and normalized to unity.

13.7.3 Monetary neutrality?

What about the effects of money on this economy? Money is clearly neutral in the
sense that a discrete and unanticipated increase in the stock of money has no effect on
any real variables. Indeed, such a “helicopter drop” of money balances would leave
all endogenous variables unchanged and would merely cause an equiproportional
increase in the price level. The additional euro bills would be immediately collected
by households who would instantaneously bid up the nominal price level (in their
desire to maintain the pre-drop level of real money balances). To destroy neutrality
of this kind some kind of nominal price- and/or wage stickiness is required (see
Chapter 19).

An alternative neutrality concept asks a different question altogether. Does a
change in the money growth rate µ affect real variables other than the level of real
money balances? This is the concept of monetary superneutrality. The weak version
of superneutrality holds if the variables in question are unaffected in the steady state.

27The model can be condensed into a fundamental system of differential equations in K(t), λ(t), and
m(t). This system contains one predetermined variable (K(t)) and two non-predetermined“jumping”
variables (λ(t), and m(t)). Conditional on the policy-induced path of the money supply, the price path is
obtained by noting that P(t) ≡ M(t)/m(t).
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The strong version holds if µ has no influence on these variables during transition
also—see Fischer (1979) and Asako (1983).

13.7.3.1 Long-run superneutrality

Denoting steady-state value with star superscripts and asserting stability, the long-
run equilibrium is fully characterized by the following set of equations:

FK (κ∗, 1) = ρ + δ, (13.208)
L∗F(κ∗, 1) = C∗ + δκ∗L∗ + G0, (13.209)

U1−L (C∗, 1− L∗, m∗)
UC (C∗, 1− L∗, m∗)

= FL (κ
∗, 1) , (13.210)

UC (C∗, 1− L∗, m∗) = λ∗, (13.211)
Um (C∗, 1− L∗, m∗) = λ∗ (ρ + µ) , (13.212)

where κ∗ ≡ K∗/L∗ is the steady-state capital intensity. In the steady-state equilib-
rium, K̇(t) = λ̇(t) = ṁ(t) = 0, the inflation rate equals π∗ = µ, and the real interest
rate is r∗ = ρ. It follows from (13.208) that the capital intensity does not depend on
the money growth rate µ. This leaves a subsystem of four equations (viz. (13.209)–
(13.212)) in four endogenous variables (L∗, C∗, λ∗, and m∗). Long-run superneutral-
ity thus holds provided we can prove that:

dC∗

dµ
=

dL∗

dµ
=

dλ∗

dµ
= 0. (13.213)

Without further restrictions on the properties of the felicity function we conclude
that the subsystem is fully simultaneous (“everything depends on everything”) and
the results stated in (13.213) do not hold. The money growth rate affects steady-state
consumption, employment, and the capital stock.

In a special case, with a felicity function that is weakly separable in, on the one
hand, consumption and leisure and, on the other hand, money balances, there is
long-run superneutrality in the monetary RCK model. Technically weak separabil-
ity implies that UCm = U1−L,m = 0 so that the subsystem for L∗, C∗, λ∗, and m∗

simplifies to:

L∗F(κ∗, 1) = C∗ + δκ∗L∗ + G0, (13.214)
U1−L (C∗, 1− L∗)
UC (C∗, 1− L∗)

= FL (κ
∗, 1) , (13.215)

UC (C∗, 1− L∗) = λ∗, (13.216)
Um (m∗) = λ∗ (ρ + µ) . (13.217)

The subsystem is recursive: (13.214)–(13.215) jointly determine C∗ and L∗ indepen-
dently from µ. For these values of C∗ and L∗ equation (13.215) determines λ∗ (also
independently from µ). Finally, equation (13.217) determines m∗ as a function of µ.

13.7.3.2 Transitional superneutrality

The monetary RCK model exhibits transitional superneutrality if we can prove that:

dC(t)
dµ

=
dK(t)

dµ
=

dL(t)
dµ

=
dλ(t)

dµ
= 0 (for all t). (13.218)
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It is clear from Table 13.10 that this property does not hold unless further restrictions
are imposed on the model. Two special cases for which transitional superneutrality
holds can be mentioned.

Case 1 (once again) assumes that preferences are weakly separable in (C(t), 1−
L(t)) and m(t) so that the subsystem for C(t), K(t), L(t), and λ(t) can be written as:

K̇(t) = F(K(t), L(t))− C(t)− δK(t)− G0, (13.219)

λ̇(t)
λ(t)

= ρ + δ− FK(K(t), L(t)), (13.220)

λ(t) = UC (C(t), 1− L(t)) , (13.221)

U1−L (C(t), 1− L(t))
UC (C(t), 1− L(t))

= FL(K(t), L(t)). (13.222)

Since µ and m(t) do not feature in these expressions transitional superneutrality is
obvious. Note that for given paths of λ(t) and FK(K(t), L(t)), the subsystem for m(t)
and π(t) consists of:

ṁ(t) = [µ− π(t)]m(t), (13.223)
Um (m(t)) = λ(t) [FK(K(t), L(t))− δ + π(t)] . (13.224)

Case 2 was suggested by Asako (1983, p. 1594, fn. 3). Transitional superneutral-
ity holds with non-separable preferences if (a) transfers are—in part—made propor-
tional to real money holdings, Z(t) = µm(t) + Z̄(t), and (b) households understand
this (and thus view µ as an “interest rate” on money balances). In this setting the
household budget identity (13.204) changes to:

Ȧ(t) = r(t)A(t) + w(t)L(t) + Z̄(t)− C(t)− [R(t)− µ]m(t),

and the first-order condition for m(t) (given in (T10.6)) is changed to:

Um (C(t), 1− L(t), m(t)) = λ(t) [r(t) + π (t)− µ] = λ(t)
[

r(t)− ṁ(t)
m(t)

]
,

where we have used the money growth rule to get from the first to the second expres-
sion. Note that the government budget constraint (13.207) is changed to Z̄(t) = −G0.

With these modifications the macroeconomic system is completely independent
from the monetary growth rate µ:

K̇(t) = F(K(t), L(t))− C(t)− δK(t)− G0, (13.225)

λ̇(t)
λ(t)

= ρ + δ− FK(K(t), L(t)), (13.226)

ṁ(t)
m(t)

= FK(K(t), L(t))− δ− Um (C(t), 1− L(t), m(t))
UC (C(t), 1− L(t), m(t))

,

(13.227)

λ(t) = UC (C(t), 1− L(t), m(t)) , (13.228)

U1−L (C(t), 1− L(t), m(t))
UC (C(t), 1− L(t), m(t))

= FL(K(t), L(t)). (13.229)

13.8 Punchlines

In this chapter we augment the Solow-Swan model by getting rid of the Keynesian
savings function that many modern macroeconomists find unsatisfactory and ad hoc
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because it is not based on any microeconomic foundations. The savings decision is
endogenized by introducing infinitely-lived dynamically optimizing consumers into
the model. This intertemporal optimization approach was pioneered by Frank Ram-
sey more than eight decades ago and introduced into the macroeconomic growth
literature by David Cass and Tjalling Koopmans in the mid 1960s. Optimizing con-
sumers condition their current consumption not on current income, as the Keynesian
approach implies, but on a measure of total wealth consisting of the sum of financial
and human wealth. The latter is a forward-looking wealth component as it com-
prises the present value of current and future after-tax wage income, i.e. the value of
the consumer’s time endowment.

Interestingly, although it takes a radically different approach to the consumption-
savings decision the growth properties of the Ramsey-Cass-Koopmans (RCK) model
are very similar to those of the Solow-Swan model. Indeed, the long-run growth rate
is exogenous and convergence is way too fast for realistic values of the structural
parameters. There are some differences between the two models too. In the RCK
model there is no oversaving and Ricardian equivalence holds. Furthermore the
effects of fiscal policy are quite different as optimizing consumers react not only to
current taxes but to the entire rationally expected profile of future taxes.

Because the RCK model has become such a pivotal model in modern macroeco-
nomics we discuss several minor and major extensions to it. In the first extension we
build and discuss an RCK model for the small open economy facing an exogenous
world interest rate. This model is built on the knife-edge assumption that the impa-
tience parameter of domestic consumers is exactly equal to the world interest rate.
This introduces a hysteresis effect in consumption. Furthermore, to limit the degree
of international mobility of physical capital, adjustment costs of investment must
be postulated for the model to make any sense at all. It turns out that the severity
of these adjustment costs (and not aspects of the consumer’s willingness to substi-
tute consumption across time) determines the speed of adjustment in the small open
economy.

The next three extensions are again based on the closed economy assumption.
Since their growth properties are the same as those of the standard RCK model the
reader purely interested in economic growth may skip these extensions at first read-
ing. In the first extension we show how the infinitely-lived agent chooses optimal
time paths for both consumption and labour supply. To keep the model as simple as
possible we assume that the three principal substitution elasticities are all equal to
unity. The unit-elastic RCK model is only marginally more complicated than the ba-
sic RCK model but it gives some radically different answers to certain questions. For
example, in the long run a lump-sum tax-financed increase in useless government
consumption leads to an increase in the capital stock (crowding in), equilibrium em-
ployment, and output. Consumption is crowded out but by less than one-for-one.
For realistic values of the structural parameters the output multiplier even exceeds
unity, a result reminiscent of the Haavelmoo multiplier. For the same type of shock
the basic RCK model predicts one-for-one crowding out of private by public con-
sumption and no effects on the capital stock and output.

In the penultimate extension to the RCK model we introduce matching frictions
in the labour market which give rise to a positive and endogenously determined un-
employment rate (as in Chapter 8). Consumer-workers search for jobs and producers
post vacancies. Once a match occurs the resulting surplus is divided by the two par-
ties by means of generalized Nash bargaining. The unemployment rate that emerges
in the unmanaged economy is typically inefficient because there exist two types of
market failure, namely a search externality and a problem of rent-appropriability.
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Only if the Hosios condition holds will the market economy produce the efficient
unemployment rate.

The final extension deals briefly with the monetary version of the RCK model
pioneered by Sidrauski (1967) and developed further by Fischer (1979) and many
others. Real money balances are assumed to yield felicity to the household for rea-
sons explained in Chapter 10. Money is neutral in the sense that a once-off change in
the money supply merely affects the paths of the price level and the nominal wage
rate. The price inflation rate and all real variables are completely unaffected by this
monetary impulse. The alternative concept of monetary superneutrality relates to
the real effects of the growth rate of the money supply. In the most general version of
the model superneutrality fails. If, however, household preferences are weakly sep-
arable in consumption-leisure and money then transitional (strong) superneutrality
holds. Whilst not very interesting from an economic growth perspective, the mon-
etary RCK model nevertheless forms an important input for the dynamic stochastic
general equilibrium (DSGE) approach that is discussed in detail in Chapter 19 below.

The chapter also demonstrates that the analytical analysis of continuous-time
models is in some cases quite straightforward but in others completely intractable. In
the latter case the use of numerical methods is unavoidable. For the unit-elastic RCK
model, for example, analytical results are easy to obtain and a numerical quantifica-
tion is only needed to get a feel for the magnitude of the different effects. In contrast,
in the RCK model with search unemployment, the dimension of the dynamical sys-
tem is simply too high and the numerical road is the only one available. We develop
a simple Matlab program that computes the impulse-response functions for a shock
in which part of the capital stock is destroyed. Despite the fact that both the capital
stock and employment are sluggish variables, aggregate output rapidly converges
to its pre-shock level. As far as the impulse-response functions for the main macro-
economic variables are concerned, matching frictions are not that important because
adjustment in the labour market is fast (relative to capital stock adjustment) for real-
istic parameter values.

Further reading

Key contributions to the optimal growth literature are Ramsey (1928), Cass (1965),
and Koopmans (1965, 1967). Spear and Young (2014) provide a fascinating account
of the roles played by Cass and Koopmans in the development of what we now call
the RCK model. They suggest that the name of Malinvaud should be added to the
list in view of his crucial contributions.

For advanced textbook treatments of the optimal growth model, see Takayama
(1974, pp. 444–485), Barro and Sala-i-Martin (1995), and Acemoglu (2009). For dis-
cussions of the RCK model with endogenous labour supply, see King et al. (1988a)
and Baxter and King (1993). Heijdra et al. (2015) study a version of the RCK model
with leisure and environmental quality as complements in the felicity function. For
the RCK model with search unemployment, see Shi and Wen (1997, 1999), Merz
(1995, 1997, 1999), and Andolfatto (1996).

For advanced mathematical discussions of boundary value problems, see Boyce
and DiPrima (2005), and Grass et al. (2008).



CHAPTER 13: EXOGENOUS ECONOMIC GROWTH—RAMSEY-CASS-KOOPMANS 499

Appendix: Phase diagram for the unit-elastic RCK model

In this appendix we derive the phase diagram for the unit-elastic RCK model. We
drop the superfluous time index where no confusion can arise and hold government
consumption constant, i.e. G(t) ≡ G0 > 0.

Employment as a function of the state variables

By using labour demand (T4.4), labour supply (T4.6), and the production function
(T4.7), we obtain an expression relating equilibrium employment to consumption
and the capital stock (“LME” designates labour market equilibrium).

LME: χ(L) ≡ (1− L)L−α =
1− ε

ε(1− α)Z0
CK−α, (A13.1)

with χ′(L) < 0 and χ′′(L) > 0 in the economically meaningful interval L ∈ [0, 1].
Hence, χ(L) is as drawn in Figure A13.1. Since χ(L) is invertible the implicit function
Ψ(C, K) mentioned in (13.92) in the text exists:

LME: L = Ψ(C, K), (A13.2)

with ΨC(C, K) < 0 and ΨK(C, K) > 0.

Capital stock equilibrium

Using (T4.7) in (T4.2) we observe that K̇ = 0 holds if and only if δK + G0 = F(K, L)−
C. By using (T4.4) and (T4.6), the capital stock equilibrium (CSE) locus (K̇ = 0) can
be written as:

δK + G0 =

[
1− ε(1− α)

1− ε

1− L
L

]
F(K, L). (A13.3)

We are clearly only interested in positive values of output and capital so that the
term in square brackets on the right-hand side of (A13.3) must be non-negative. This
furnishes a lower bound for employment:

1 > L ≥ LMIN ≡
ε(1− α)

1− αε
. (A13.4)

By using LMIN and (T4.7) we can rewrite (A13.3):

CSE: φ(K, G0) ≡ [δK + G0]K−α = Γ0[L− LMIN]L−α ≡ ξ(L), (A13.5)

where Γ0 ≡ Z0
1−αε
1−ε is a constant. The functions φ(K, G0) and ξ(L) are illustrated

in Figure A13.2 using the structural parameters as given in (13.119). The φ(K, G0)
features a minimum at Kcrit = αG0/((1− α)δ). Associated with Kcrit we find Lcrit >
LMIN such that φ(Kcrit, G0) = ξ(Lcrit). For L = 1 we find ξ(1) = Z0 so there ex-
ist a minimum and a maximum value of the capital stock, such that φ(KMIN, G0) =
φ(KMAX, G0) = Z0. We now have two zeros for the CSE line, i.e. both (K, L) =
(KMIN, 1) and (K, L) = (KMAX, 1) solve equation (A13.3). By using (A13.1) we find
the corresponding values for C, i.e. (C, K, L) = (0, KMIN, 1) and (C, K, L) = (0, KMAX,
1) are both zeros for the CSE line. See Figure A13.1. Note that in Figure 13.5 these
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Figure A13.1: The χ(L) function characterizing labour market equilibrium

Figure A13.2: Constructing the capital isocline

(a) The φ(K, G) function (b) The ξ(L) function
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points have been drawn in (C, K) space. Graphically the K isocline can be con-
structed as follows. By considering all values K ∈ [KMIN, KMAX] we find the as-
sociated φ(K, G0) values in panel (a) of Figure A13.2 and the corresponding L values
in panel (b) of that figure.

Equation (A13.5) represents an implicit function, L = γ(K), over the interval
K ∈ [KMIN, KMAX] relating L and K. In order to compute the slope of this implicit
function we totally differentiate (A13.5):

γ′(K) =
φK(K, G0)

ξL(L)
=

K−(1+α) [(1− α)δK− αG0]

Γ0γ(K)−(1+α) [(1− α)γ(K) + αLMIN]
. (A13.6)

Since L ≥ LMIN > 0 the numerator is strictly positive. It follows that γ′(K) < 0 for
KMIN ≤ K < Kcrit, γ′(K) = 0 for K = Kcrit, and γ′(K) > 0 for Kcrit < K < KMAX.

The slope of the CSE line is computed as follows. We note that for K ∈ [KMIN, KMAX]
the CSE line can be written as:

C = Z0Kαγ(K)1−α − δK− G0, (A13.7)

where L = γ(K) is the implicit function defined by (A13.5). By taking the derivative
of (A13.7) we obtain in a few steps:(

dC
dK

)
K̇=0

= Z0 [α + (1− α)ηγ(K)]
(

γ(K)
K

)1−α

− δ, (A13.8)

where ηγ(K) is the elasticity of the γ(K) function:

ηγ(K) ≡
Kγ′(K)
γ(K)

=

(
γ(K)

K

)α [(1− α)δK− αG0]

Γ0 [(1− α)γ(K) + αLMIN]
. (A13.9)

It follows from (A13.8) and (A13.9) that for K = KMIN we have:

ηγ(KMIN) =
1− ε

1− α

[
−α +

δ

Z0
K1−α

MIN

]
, (A13.10)(

dC
dK

)
K̇=0

= ε
[
αZ0Kα−1

MIN − δ
]
> 0. (A13.11)

It follows that the CSE line is upward sloping at that point (see Figure 13.5).
The golden-rule point (for which consumption is at its maximum value) is obtained

by setting dC/dK = 0 in (A13.8):[
1− (1− α)

[
1− ηγ(KGR)

] ]YGR

KGR = δ, (A13.12)

where YGR is given by:

YGR ≡ Z0

[
KGR

]α [
γ(KGR)

](1−α)
, (A13.13)

and ηγ(K) is given in (A13.9). The golden rule occurs at point A in Figure 13.5. For
points to the right (left) of the golden-rule point, the CSE line is downward (upward)
sloping.

The capital stock dynamics follows from (T4.2) in combination with (T4.7) and
using the implicit function L = γ(K):

K̇ = Z0Kαγ(K)1−α − δK− C− G0, (A13.14)

from which we derive ∂K̇/∂C < 0. See the horizontal arrows in Figure 13.5.
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Consumption equilibrium

The consumption equilibrium (CE) line describes combinations of C and K for which
Ċ = 0. By using (T4.1) (in steady-state format), (T4.5), and (T4.7), we can write the
CE line as follows:

CE: κ∗ ≡
(

K
Y

)∗
=

1
Z0

(k∗)1−α =
α

ρ + δ
, (A13.15)

where k∗ ≡ (K/L)∗ is the steady-state capital intensity and κ∗ ≡ (K/Y)∗ is the
steady-state capital-output ratio for which the rate of interest equals the rate of time
preference (r∗ = ρ). It follows from (A13.15) that consumption equilibrium pins
down a unique capital-labour ratio, k∗ ≡ (αZ0/(ρ + δ))1/(1−α). Hence, along the CE
locus L = (1/k∗)K. By substituting this result into (A13.1) we obtain the expression
for the CE line in the (C, K) plane:

C =
ε(1− α)Z0

1− ε
(k∗)α [1− L]

=
ε(1− α)Z0

1− ε
(k∗)α [1− 1

k∗
K]

= (ρ + δ)
ε(1− α)

α(1− ε)

[(
αZ0

ρ + δ

)1/(1−α)

− K

]
. (A13.16)

It follows from (A13.16) that the CE line is linear in K and passes through the coor-
dinates (C, K) = (0, KC) and (C, K) = (CC, 0) in Figure 13.5:

KC ≡
(

αZ0

ρ + δ

)1/(1−α)

, CC ≡ (ρ + δ)
ε(1− α)

α(1− ε)
KC. (A13.17)

Define γ0 ≡ G0/KMAX. Provided γ0 < [ρ + δ(1− α)]/α, the CE line crosses the K-
axis to the left of the K-intercept of the CSE line. To show this result, we note that KC
can be related to KMAX (defined in the text below (A13.5)):(

KC
KMAX

)1−α

= α
γ0 + δ

ρ + δ
. (A13.18)

Provided the condition on γ0 is satisfied we find that KC < KMAX.
The consumption dynamics can be deduced by noting that (T4.1) can be rewritten

in the following fashion:

Ċ
C

= αZ0

(
Ψ(C, K)

K

)1−α

− (ρ + δ). (A13.19)

where Ψ(C, K) is defined in (A13.2). It follows readily that:

∂

∂C

(
Ċ
C

)
= α(1− α)Z0

(
Ψ(C, K)

K

)−α ΨC(C, K)
K

< 0, (A13.20)

since ΨC(C, K) < 0. This has been indicated with vertical arrows in Figure 13.5.
Note that Figure 13.5 in the main text is a stylized representation of the phase

diagram. Using the structural parameter values given in (13.119) we can compute
the corresponding isoclines. See Figure A13.3. In that figure KMIN = 0.0027, KGR =
70.479, CGR = 0.8869 and KMAX = 449.95. The calibrated market equilibrium is thus
very far from the golden-rule point.
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Figure A13.3: Phase diagram of the calibrated unit-elastic model





Chapter 14

Endogenous economic growth

The purpose of this chapter is to discuss the following issues:

1. Under which conditions can long-run endogenous growth emerge?

2. What do we mean by “capital fundamentalism” and what is the role of external
effects in this context?

3. How does the purposeful accumulation of human and physical capital con-
tribute to economic growth in the short run and in the long run?

4. What are the effects of research and development and endogenous technical
change on economic growth?

14.1 Introduction

The previous two chapters have dealt with the main theories of exogenous economic
growth in some detail. As the name already suggests, in exogenous growth mod-
els the long-run economic growth rate depends solely on exogenous features of the
economy, such as the rates of growth in the population or in labour-augmenting
technological change. The objective of this chapter is to move from exogenous to
endogenous growth. A model is said to give rise to endogenous growth if it predicts
a long-run growth rate which depends on additional features (such as tax or subsidy
rates, public infrastructure spending, or private educational decisions) which may
be affected by the government or the private sector. The literature on endogenous
growth has taken flight during the last two decades and is consequently rather exten-
sive. In this chapter we provide a selective overview of the three main approaches
to endogenous growth. The first two approaches reserve a central role to capital
accumulation (broadly interpreted) whilst the third approach places research and
development (R&D hereafter) activities by firms at the core of the economic growth
process. Throughout the chapter we investigate the effects of various government
policy instruments on the rate of economic growth. These instruments form the lit-
mus test for the “endogeneity” of the growth rate.



506 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

14.2 “Capital-fundamentalist” models

In the previous two chapters we worked exclusively with a production structure
satisfying the Inada conditions (See (P2) and (P3) in Chapter 12 for the properties).
Although these conditions facilitate the construction of the phase diagrams they are
not innocuous (in an economic-theoretic sense) because they imply that economic
growth eventually settles down to a particular, exogenously given constant, regard-
less of household savings plans. In terms of Figure 12.4, the steady-state capital
intensity is constant and growth equals the sum of exogenously given population
growth and technological progress (see equation (12.17)).

As was already pointed out in Chapter 12, the Inada conditions have no obvious
intrinsic appeal and are certainly difficult to test empirically since they deal with the
curvature of the production function for very low and very high levels of capital. For
this reason alone, an investigation of the consequences of abandoning (some of) the
Inada conditions seems a worthwhile endeavour. As it turns out, this already takes
us into the realm of endogenous growth models.

The key aspect of traditional growth models which ensures that the growth rate
is reduced as more and more capital is accumulated is the existence of diminishing
returns to capital. Indeed, as k(t) rises, the average product of capital falls:

d [ f (k(t))/k(t)]
dk(t)

= − [ f (k(t))− k(t) f ′(k(t))]
k(t)2 < 0, (14.1)

where the term in square brackets denotes the marginal product of labour, which is
positive (see (13.24)). It must be stressed that the result stated in (14.1) is not suffi-
ciently strong to ensure the existence of a constant steady-state capital intensity. In-
deed, the existence of a steady-state capital intensity requires a much stronger result,
namely the equality between sy(t)/k(t) and (δ + n) in the Solow model. The Inada
conditions ensure that this happens. Provided (P2) and (P3) hold, we can derive by
l’Hôpital’s rule that:

lim
k(t)→0

f (k(t))
k(t)

= lim
k(t)→0

f ′(k(t))
1

= ∞, (14.2)

lim
k(t)→∞

f (k(t))
k(t)

= lim
k(t)→∞

f ′(k(t))
1

= 0. (14.3)

Equations (14.2)–(14.3) show that sy(t)/k(t) goes to zero (infinity) as the capital in-
tensity becomes very large (small). This ensures the existence of a constant steady-
state capital-labour ratio and thus a balanced growth path—see Figure 12.4.

14.2.1 Factor substitutability

As was already well known in the 1960s,1 there are perfectly legitimate production
functions which violate the results in (14.2)–(14.3). Consider, for example, the con-
stant elasticity of substitution (CES) production function which takes the following
form:

F(K(t), N(t)) ≡ Z ·
[
αK(t)(σKL−1)/σKL + (1− α)L(t)(σKL−1)/σKL

]σKL/(σKL−1)
⇔

f (k(t)) ≡ Z ·
[
1− α + αk(t)(σKL−1)/σKL

]σKL/(σKL−1)
, (14.4)

1See e.g. Burmeister and Dobell (1970, pp. 30–36), and indeed Solow (1956).
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where Z (> 0) is a constant, representing general productivity, and σKL (> 0) repre-
sents the substitution elasticity between capital and labour. The average product of
capital equals:

f (k(t))
k(t)

= Z ·
[
(1− α)k(t)(1−σKL)/σKL + α

]σKL/(σKL−1)
. (14.5)

It is clear from this expression that two separate cases must be distinguished, de-
pending on the ease with which capital and labour can be substituted in production
(relative to the Cobb-Douglas case).

14.2.1.1 Difficult substitution

If substitution is relatively difficult (in the sense that 0 < σKL < 1) then the average
product of capital satisfies:

lim
k(t)→0

f (k(t))
k(t)

= Z · ασKL/(σKL−1) > 0, (14.6)

lim
k(t)→∞

f (k(t))
k(t)

= lim
k(t)→∞

Z ·
[
(1− α)k(t)(1−σKL)/σKL

]−σKL/(1−σKL)
= 0. (14.7)

The average product of capital goes to zero as more and more capital is added but
near the origin it attains a finite value, i.e. while (14.3) is still satisfied (14.2) no longer
holds. This case has been illustrated in Figure 14.1 for two different savings rates, s1
and s2 (with s2 > s1). For the high savings rate, s2, the model behaves like a standard
Solow-Swan model despite failure of one of the Inada conditions. The intercept with
the vertical axis is large enough, s2ZασKL/(σKL−1) > δ + n, thus ensuring that there
exists a unique steady state at point E0 to which convergence is guaranteed. This is
not the case for all values of the savings rate. Indeed, for the low savings rate, s1,
the model does not have a steady-state equilibrium at all! The vertical intercept is
too small to support net capital accumulation, i.e. s1ZασKL/(σKL−1) < δ + n. An econ-
omy characterized with such a low savings rate is unable to accumulate any capital
nor would it be able to produce any output (as both product factors are essential in
production). Alternatively, consider the case of an economy with a savings rate s2
that is situated at point B in Figure 14.1. Now suppose that the savings rate drops
from s2 to s1 so that the economy shifts from point B to point A in Figure 14.1. The
new savings rate is too low to ever catch up with required investment and the capital
intensity gradually falls to zero.

14.2.1.2 Easy substitution

Matters are radically different if capital can be relatively easily substituted for labour,
i.e. if σKL exceeds unity. In that case, the average product of capital satisfies:

lim
k(t)→0

f (k(t))
k(t)

= lim
k(t)→0

Z ·
[
(1− α)k(t)−(σKL−1)/σKL

]σKL/(σKL−1)
= ∞, (14.8)

lim
k(t)→∞

f (k(t))
k(t)

= Z · ασKL/(σKL−1) > 0. (14.9)

The average product of capital starts out very high (as the Inada conditions require)
but it approaches a positive limit as more and more capital is added, i.e. (14.3) no
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Figure 14.1: Difficult substitution between labour and capital

longer holds. This case has been illustrated in Figure 14.2, again for two values of
the savings rate. For the relatively low savings rate, s1, the model features a unique
steady-state capital intensity so that growth is exogenous. In contrast, for the rel-
atively high savings rate, s2, per capita saving levels out at a rate which is higher
than required investment, s2ZασKL/(σKL−1) > δ + n. Starting from an initial value
k (0), the capital intensity grows without bounds. Despite the fact that there are di-
minishing returns to capital, in the long run the production factors are very much
alike and substitute well in production (σKL > 1). This means that if capital grows
indefinitely the constant growth rate of labour never becomes a binding constraint.
Relatively scarce labour is simply substituted for capital indefinitely. The long-run
“endogenous” growth rate of the capital-labour ratio and the output-labour ratio is:

γ∗k ≡
(

k̇(t)
k (t)

)∗
= s2ZασKL/(σKL−1) − (δ + n) > 0. (14.10)

This growth rate is called “endogenous” because it is affected not only by exogenous
parameters (α, δ, σKL, Z, and n) but also by the savings rate (s2), a result which is in
stark contrast to the predictions of the standard Solow-Swan model discussed in the
previous chapter.

It is not difficult to understand that with this kind of labour-substituting endoge-
nous growth, labour becomes less and less important so that, eventually, the income
share of capital goes to unity and that of labour goes to zero. This is why this endoge-
nous growth model is an example of the “capital-fundamentalist” class of models
(King and Levine, 1994). With σKL > 1, labour is not essential in production, and in
the limit it is possible to produce output with (almost) only capital. This prediction
is, of course, at odds with the stylized facts (SF3) and (SF5), mentioned in Chapter
12.
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Figure 14.2: Easy substitution between labour and capital

14.2.2 AK models

An even more radical example of a capital-fundamentalist model is the so-called
“AK” model proposed by Paul Romer (1986), Barro (1990), Rebelo (1991), and others.
In its most rudimentary form, the AK model simply assumes constant returns to scale
to (a broad measure of) capital. Hence, the macroeconomic production function is
given by:

Y(t) = ZK(t), (14.11)

where Z denotes general productivity. Equation (14.11) of course clearly violates the
Inada conditions.2 One might be tempted to dismiss this specification out of hand
for being blatantly unrealistic, for example, because labour input does not feature in
the specification. But such a conclusion would be unwarranted. There are at least
two credible microeconomic explanations giving rise to a macroeconomic produc-
tion function of the form as stated in (14.11). Both explanations acknowledge the
existence of diminishing returns to capital at the microeconomic (firm) level, but in-
voke the existence of external effects which result in constant returns to capital at the
macroeconomic level. In the remainder of this section, we assume that the aggregate
population (and thus labour supply) is constant and equal to L0.

14.2.2.1 External effects between firms

Our first AK model relies on external effects operating between private firms in the
economy. There is a large number of identical, perfectly competitive firms. The

2The AK model derives its name from the usual convention in the literature to denote general pro-
ductivity by A. Since A denotes financial assets throughout this book, we use the symbol Z for general
productivity, but continue to use the generic name, AK model.
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technology available to firm i is given by:

Yi(t) = F(Ki(t), Li(t)) ≡ Z(t)Ki(t)αLi(t)1−α, 0 < α < 1, (14.12)

where Yi, Ki, and Li, stand for, respectively, output, capital input, and labour input
of firm i (= 1, · · ·, N0), and N0 is the number of firms (which we assume to be fixed).
Z represents the general level of factor productivity which is taken as given by the
individual firm. The key thing to note is that the technology (i) features diminishing
returns to scale to both factors of production, including capital, and (ii) features con-
stant returns to scale to the production factors jointly. The discounted value of the
firm’s cash flows is given by:

Vi(0) =
∫ ∞

0

[
F(Ki(t), Li(t))− w(t)Li(t)− [1− sI(t)] Ii(t)

]
e−R(t)dt, (14.13)

where R(t) ≡
∫ t

0 r(τ)dτ is the cumulative discount factor, and sI(t) is the invest-
ment subsidy. Mirroring the analysis in section 13.1.2, we assume that firm i chooses
its output and investment plans in order to maximize Vi (0), taking as given the pro-
duction function (14.12) and the capital accumulation identity, K̇i(t) = Ii(t)− δKi (t).
After some manipulation we find the following marginal productivity conditions for
labour and capital:

w(t) = FL(Ki(t), Li(t)) = (1− α) Z(t)ki(t)α, (14.14)

RK(t) = FK(Ki(t), Li(t)) = αZ(t)ki(t)α−1, (14.15)

where FL(Ki(t), Li(t)) ≡ ∂Yi(t)/∂Li(t), FK(Ki(t), Li(t)) ≡ ∂Yi(t)/∂Ki(t), ki(t) ≡
Ki(t)/Li(t) is the capital intensity, and RK(t) is the rental rate of capital:

RK(t) ≡ (r(t) + δ) [1− sI(t)] + ṡI(t). (14.16)

The rental rate on each factor is the same for all firms, i.e. they all choose the same
capital intensity and ki(t) = k (t) for all i = 1, · · ·, N0. This is a very useful property
of the model because it enables us to aggregate the microeconomic relations to the
macroeconomic level (see below).

Following Saint-Paul (1992, p. 1247) and Paul Romer (1989), we assume that the
inter-firm externality takes the following form:

Z(t) = z0K(t)1−α, (14.17)

where z0 is a positive constant and K(t) ≡ ∑i Ki(t) is the aggregate capital stock.
According to (14.17), total factor productivity depends positively on the aggregate
capital stock, i.e. if an individual firm i raises its capital stock, then all firms in the
economy benefit somewhat as a result because the general productivity indicator
rises for all of them. Using (14.17), equations (14.12) and (14.14)–(14.15) can now be
rewritten in aggregate terms:

Y(t) = Z0K(t), (14.18)
w(t)L0 = (1− α)Y(t), (14.19)

RK(t) = αZ0, (14.20)
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where Y(t) ≡ ∑i Yi(t) is aggregate output and Z0 ≡ z0L1−α
0 is a positive constant.3

As was asserted above, the national income share of labour is positive and there are
constant returns to capital at the macroeconomic level. Technically the latter result
follows from the fact that the exponents for Ki in (14.12) and for K in (14.17) precisely
add up to unity.

To complete the model, we postulate the existence of an infinitely-lived represen-
tative household, which maximizes lifetime utility,

Λ(0) =
∫ ∞

0

[
C(t)1−1/σ − 1

1− 1/σ

]
e−ρtdt, (14.21)

subject to a standard asset accumulation identity:

Ȧ(t) = r(t)A(t) + w(t)L0 − [1 + tC(t)]C(t)− T(t), (14.22)

where σ is the constant intertemporal substitution elasticity (see Chapter 13), tC is
a consumption tax, T(t) is a lump-sum tax (or transfer if it is negative), A(t) repre-
sents financial assets, and r(t) is the rate of interest. Using the analytical methods
discussed in section 13.1.1, the representative household’s Euler equation can be de-
rived:

Ċ(t)
C(t)

= σ

[
r(t)− ρ− ṫC(t)

1 + tC(t)

]
. (14.23)

The model deals with a closed economy and there is no government debt, so the
only financial asset which can be accumulated consists of company shares. Since the
replacement value of capital equals 1− sI , we thus find that A(t) = [1− sI(t)]K(t).
The key equations of the basic AK growth model have been summarized in Table
14.1.

Table 14.1. An AK growth model with inter-firm external effects

Ċ(t) = σ

[
r(t)− ρ− ṫC(t)

1 + tC(t)

]
C(t) (T1.1)

K̇(t) = [(1− g) Z0 − δ]K(t)− C(t) (T1.2)

r(t) =
αZ0

1− sI(t)
− ṡI(t)

1− sI(t)
− δ (T1.3)

Notes: C(t) is consumption, K(t) is the capital stock, r(t) is the interest rate, tC(t) is the con-
sumption tax, sI(t) is an investment subsidy, g is the national income share of government
consumption, α is the efficiency parameter of capital in the microeconomic production func-
tion, ρ is the pure rate of time preference, σ is the intertemporal substitution elasticity, and δ

is the depreciation rate of capital.

3All firms use the same capital intensity (ki(t) = k (t)), so that Yi(t) = Li(t)Z (t) k(t)α and Y(t) ≡
∑i Yi(t) = L0Z(t)k(t)α, where L0 ≡ ∑i Li(t) is the labour market clearing condition. Since Ki(t) =

k(t)Li(t), we also find that Z(t) = z0L1−α
0 k(t)1−α and K(t) ≡ ∑i Ki(t) = L0k(t) or k (t) = K(t)/L0.

Combining results we find (14.18). For the wage we find w(t) = (1− α) Z (t) k(t)α = (1− α) z0L1−α
0 k(t) =

(1− α) z0L−α
0 K(t), which can be rewritten to get (14.19). Finally, for the rental rate on capital we find

RK (t) = αZ(t)k(t)α−1 = αz0L1−α
0 = αZ0.
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Equation (T1.1) just restates (14.23). Equation (T1.2) is the dynamic equation for
the capital stock. It is obtained by using the macroeconomic production function
(14.18) and noting that K̇(t) = I(t)− δK(t) (aggregate capital accumulation identity),
Y(t) = C(t) + G (t) + I(t) (national income identity), and G (t) = gY(t), where g is
the policy controlled output share of public consumption. Finally, (T1.3) is obtained
by substituting (14.20) into (14.16). It is now straightforward to demonstrate the
existence of perpetual “endogenous” growth in the model. We focus attention on the
case for which both the consumption tax and the investment subsidy are (expected
by agents to be) constant over time, i.e. ṫC(t) = ṡI(t) = 0.4 In that case the interest
rate is constant and the growth rate of consumption is fully determined by (T1.1)
and (T1.3):

γ∗ =
Ċ(t)
C(t)

= σ

[
αZ0

1− sI
− δ− ρ

]
> 0, (14.24)

where we assume that households are relatively patient, i.e. the interest rate exceeds
the rate of pure time preference and the growth rate is positive.

With the aid of Figure 14.3 it is possible to prove that the household will maintain
a constant ratio between consumption and the capital stock. By defining θ(t) ≡
C(t)/K(t) (so that θ̇(t)

θ(t) =
Ċ(t)
C(t) −

K̇(t)
K(t) ) and using (T1.1)–(T1.3) we find:

θ̇(t)
θ(t)

= θ (t)− θ∗, (14.25)

where θ∗ is defined as:

θ∗ ≡ (1− g) Z0 − δ + σ (ρ + δ)− ασZ0

1− sI
> 0. (14.26)

Equation (14.25) is an unstable differential equation for which the only economically
feasible solution is the steady-state, i.e. θ (t) = θ∗. But if θ(t) is constant then it
follows that the capital stock, investment, and output, must feature the same growth
rate as consumption, i.e. γ∗ = Ẏ(t)/Y(t) = K̇(t)/K(t) = İ(t)/I(t). The level of
the different variables can be determined by using the initial condition regarding the
capital stock and noting that C (0) = θ∗K (0). In the absence of shocks in the interval
(0, t), we thus find that K(t) = K (0) eγ∗t, C(t) = θ∗K(t), Y(t) = Z0K(t), etcetera.

The striking conclusion is that the growth rate of the economy can be perma-
nently affected by the investment subsidy, a result which is impossible in the tra-
ditional exogenous growth models discussed in the previous chapter. Intuitively,
a higher investment subsidy leads to a higher interest rate, a steeper intertemporal
consumption profile, and thus a higher rate of capital accumulation in the econ-
omy. What happens to the consumption-capital ratio can be gleaned from Figure
14.3. The initial equilibrium is at point E0, and it follows from (14.26) that ∂θ∗/∂sI =

−ασZ0/ (1− sI)
2 < 0, i.e. the θ̇(t)/θ(t) line shifts to the left, from AA to BB, and the

equilibrium consumption-capital ratio falls from θ∗0 to θ∗1 . The increase in the invest-
ment subsidy necessitates an increase in the lump-sum tax which makes households
poorer.

It follows readily from equation (14.24) that taste parameters also exert a per-
manent effect on the growth rate of the economy. Hence, an economy populated by

4The key point to note in Table 14.1 is that the level of a time-invariant consumption tax does not
influence the growth rate as such a tax does not distort the intertemporal consumption decision.



CHAPTER 14: ENDOGENOUS ECONOMIC GROWTH 513

Figure 14.3: Consumption-capital ratio

patient households (a low ρ) or households with a high willingness to substitute con-
sumption intertemporally (a high σ), tends to have a high rate of economic growth.
Fiscal policy, consisting of an increase in the share of public consumption, does not
affect growth and simply leads to a reduction in the consumption-capital ratio, i.e.
∂θ∗/∂g = −Z0 < 0.

A number of further properties of the basic AK model must be pointed out. First,
the model will exhibit transitional dynamics if the consumption tax or the invest-
ment subsidy are time-varying, since in that case the real interest rate will vary over
time and the agents will react to this. Second, the equilibrium in the basic AK model
is generally not Pareto-efficient in that the market outcome and the central planning
solution do not coincide. Intuitively this result holds because, unlike the central
planner, private firms fail to take into account the external effect of their own capi-
tal accumulation decision on the general level of productivity facing all firms in the
economy. It is left as an exercise to the reader to determine how a subsidy scheme
could be used to internalize the externality.

14.2.2.2 External effects between firms and the government

A second version of the AK model was first suggested by Barro (1990). In this model
the stock of public infrastructure affects productivity of private firms and thus has
an effect on the economic growth rate. In this subsection we discuss a generalized
version of Barro’s model. The technology facing individual firms is still as given in
(14.12) above. The objective function of firm i is given by:

Vi(0) =
∫ ∞

0

[
(1− tY) F(Ki(t), Li(t))− w(t)Li(t)− Ii(t)

]
e−R(t)dt, (14.27)

where tY is a time-invariant output tax (0 < tY < 1 and ṫY = 0). The capital ac-
cumulation equation is given by K̇i(t) = Ii(t) − δkKi(t), where δk stands for the
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depreciation rate of private capital. As in the previous subsection, firm i chooses
paths for capital, employment, and investment which maximize Vi (0) subject to the
constraints. After some manipulation we find the following marginal productivity
conditions for labour and capital:

w(t) = (1− tY) FL(Ki(t), Li(t)) = (1− α) (1− tY) Z(t)ki(t)α, (14.28)

r(t) + δk = (1− tY) FK(Ki(t), Li(t)) = α (1− tY) Z(t)ki(t)α−1, (14.29)

where ki(t) ≡ Ki(t)/Li (t) is the capital intensity.
In the spirit of Barro (1990), we assume that (14.17) is replaced by:

Z(t) = z0KG(t)1−α, (14.30)

where KG(t) is the stock of public capital, consisting of infrastructural objects like
roads, airports, bridges, and the like.5 The key idea is that productive public spend-
ing affects all producers equally, these services are provided free of charge, and there
is no congestion effect. By using (14.30) in (14.12) and (14.28)–(14.29) and aggregat-
ing over all firms we obtain the following macroeconomic relationships:

Y(t) = Z0K(t)αKG(t)1−α, (14.31)
w(t)L0 = (1− α) (1− tY)Y(t), (14.32)

r(t) + δk = α (1− tY) Z0

(
KG(t)
K(t)

)1−α

. (14.33)

Several things are worth noting. First, for a constant stock of public capital, the
macroeconomic production function (14.31) features diminishing returns to the pri-
vate capital stock, K(t), because α is less than unity. However, if somehow the gov-
ernment succeeds in maintaining a constant ratio between the public and private
stocks of capital, then the model ends up looking very much like a standard AK mo-
del and thus will display endogenous growth. Again, what makes this model tick
is the fact that the exponents for K in (14.12) and for KG in (14.30) precisely add up
to unity. Second, holding constant the ratio between the two types of capital, the
output tax affects the interest rate and thus the rate of growth in the economy.

It remains to flesh out the details of government behaviour. The accumulation
identity for the public capital stock is given by:

K̇G(t) = IG(t)− δgKG (t) , (14.34)

where IG(t) is the flow of public investment, the rate of which is set by the govern-
ment, and δg is the depreciation rate of public capital. In the absence of lump-sum
taxes, the static government budget constraint is:

tYY(t) = IG(t) + gY(t), (14.35)

where g is the exogenously given national income share of (useless) government
consumption (g < tY). For given values of tY and g, it follows from (14.35) that the
rate of public investment is proportional to output, i.e. IG(t) = (tY − g)Y(t).

For convenience, the key equations of the model have been summarized in Ta-
ble 14.2. Since nothing is changed on the household side of the model, the Euler

5Note that Barro (1990, p. S106), somewhat unrealistically, assumes that the flow of public services,
rather than the public capital stock itself, enters the production function. We follow Arrow and Kurz
(1970) by modelling infrastructure as a stock variable.
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Table 14.2. An AK growth model with public capital

Ċ(t)
C(t)

= σ [r(t)− ρ] (T2.1)

K̇(t)
K(t)

= (1− tY) Z0

(
K(t)

KG(t)

)α−1

− C(t)
K (t)

− δk (T2.2)

K̇G(t)
KG(t)

= (tY − g) Z0

(
K(t)

KG(t)

)α

− δg (T2.3)

r(t) = α (1− tY) Z0

(
K(t)

KG (t)

)α−1

− δk (T2.4)

Notes: C(t) is consumption, K(t) and KG(t) are, respectively, the private and public capital
stock (featuring respective depreciation rates δK and δG), r(t) is the interest rate, tY is the
output tax, g is the national income share of (unproductive) government consumption (tY >

g), α is the efficiency parameter of private capital in the microeconomic production function,
ρ is the pure rate of time preference, and σ is the intertemporal substitution elasticity.

equation is still of the form given in (14.23) (with ṫC(t) = 0 imposed)—see (T2.1).
Equation (T2.2) is obtained by using (14.31), (14.35), the aggregate private capital
accumulation expression (K̇(t) = I(t) − δkK (t)), and the national income identity
(Y(t) = C (t) + I(t) + gY(t) + IG(t)). Ceteris paribus, the output tax exerts a neg-
ative influence of the growth rate of private capital in (T2.2). As can be seen from
(14.35), the national income share of total government spending is equal to tY. It fol-
lows that only a fraction of total output, (1− tY)Y, is available for private consump-
tion and capital accumulation. Next, equation (T2.3) is obtained by using (14.31)
and (14.34)–(14.35). The “productive” part of government revenue, (tY − g)Y, is
dedicated to public investment which boosts the growth rate of public capital stock.
Finally, equation (T2.4) just restates (14.33).

It can be shown that, given initial conditions for the two capital stocks (K (0) and
KG (0)), the model is stable and converges to a balanced growth path. Along this
balanced growth path, the interest rate is constant and all macro variables grow at
the same endogenous growth rate, γ∗. In the remainder of this subsection we first
compute and discuss the asymptotic growth rate. In closing we briefly characterize
the nontrivial transitional dynamics of the model.

14.2.2.2.1 Steady-state growth By definition of the balanced growth path, we find
that [Ċ(t) /C(t)]∗ = [K̇(t)/K(t)]∗ = [K̇G(t)/KG(t)]∗ = γ∗, and r∗(t) = r∗. Using
these results in Table 14.2 we find:

γ∗ = σ [r∗ − ρ] , (14.36)

γ∗ = (1− tY) Z0 (κ
∗)α−1 − θ∗ − δk, (14.37)

γ∗ = (tY − g) Z0 (κ
∗)α − δg, (14.38)

r∗ = α (1− tY) Z0 (κ
∗)α−1 − δk, (14.39)

where θ∗ ≡ [C(t)/K(t)]∗ is the private consumption-capital ratio, and κ∗ ≡ [K(t)/
KG(t)]∗ is the ratio between the private and public capital stocks, both measured
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along the balanced growth path. The model can be analysed graphically with the aid
of Figure 14.4. In the top panel, the EE line depicts the steady-state Euler equation
(14.36). The GCA line stands for the government capital accumulation line. It is
obtained by solving (14.39) for κ∗ and substituting the result into (14.38):

γ∗ = (ααZ0)
1/(1−α) (tY − g)

(
1− tY
r∗ + δk

)α/(1−α)

− δg, GCA. (14.40)

The GCA line is a convex, downward sloping function, relating the steady-state
growth rate to the steady-state interest rate and the exogenous policy parameters,
tY and g. Finally, in the bottom panel of Figure 14.4, the PCA locus represents the
private capital accumulation line. It is obtained by using (14.36) and (14.39) in (14.37)
and solving for θ∗:

θ∗ = σρ +
(1− α) δk

α
+

(1− ασ) r∗

α
, PCA. (14.41)

The PCA line has been drawn under the highly plausible assumption that ασ < 1.
The initial steady state is at point E0, where the GCA0 line intersects the EE line

in the top panel. The initial growth rate is γ∗0 whilst the initial interest rate is r∗0 . As is
evident from the diagram, the interest rate exceeds the pure rate of time preference
(r∗0 > ρ) so that the growth rate is strictly positive (γ∗0 > 0). The steady-state pri-
vate consumption-capital ratio is θ∗0 as is depicted in the bottom panel. The striking
conclusion is that endogenous growth emerges despite the existence of diminishing
returns to private capital! Intuitively, by continually increasing the stock of public
capital, the government manages to negate the effect of diminishing returns to pri-
vate capital that would otherwise result from continuing capital accumulation. It is
able to do so without ever-increasing (and thus ultimately infeasible) tax rates be-
cause the tax base (gross output) grows at the same rate as the private capital stock
does.

Now consider the growth effects of various government policies. First, a decrease
in the share of unproductive government spending, g, rotates the GCA locus (14.40)
in a clockwise fashion, say from GCA0 to GCA1 in Figure 14.4. The new steady-
state equilibrium shifts to E1, and the interest rate, the growth rate, and the private
consumption-capital ratio all rise, i.e. dγ∗/dg < 0, dr∗/dg < 0, and dθ∗/dg < 0. In-
tuitively, the shock redirects government revenues from unproductive to productive
purposes and boosts the rate of growth in the economy.

The effects of an increase in the output tax are more complex because there are
offsetting mechanisms at work–see equation (14.40). On the one hand, an increase
in tY boosts government revenue, increases government capital accumulation, and
thus increases growth (upward shift in the GCA curve). On the other hand, however,
an increase in tY distorts the economic decisions of private agents which leads to a
reduction of the tax base (output) and a decrease in public capital accumulation and
growth (downward shift in the GCA curve). By differentiating (14.40) with respect
to the output tax we find the net effect on the GCA curve:(

tY − g
γ∗ + δg

· ∂γ∗

∂tY

)
GCA

= 1− α

1− α

tY − g
1− tY

R 0 for tY S 1− α (1− g) . (14.42)

For low initial tax rates, the revenue effect dominates the tax-base effect and the
growth rate increases if the output tax is raised, and vice versa for high tax rates.
The growth-maximizing tax rate can be computed by maximizing γ∗ with respect to
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Figure 14.4: Steady-state growth due to public infrastructure
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Figure 14.5: Productive government spending and growth

tY. It follows readily from (14.36) and (14.42) that dγ∗/dtY = (∂γ∗/∂tY)GCA = 0 for
tY = 1− α (1− g). Indeed, by solving (14.36) for r∗ and substituting the result into
(14.40) we obtain the implicit equation for γ∗:

γ∗ + δg = (ααZ0)
1/(1−α) (tY − g)

(
σ (1− tY)

γ∗ + σ (ρ + δk)

)α/(1−α)

. (14.43)

This expression has been plotted in Figure 14.5. Differentiation with respect to γ∗

and tY yields the slope of the growth line:

tY − g
γ∗ + δg

· dγ∗

dtY
=

1− α
1−α

tY−g
1−tY

1 + α
1−α

γ∗+δg
γ∗+σ(ρ+δk)

. (14.44)

In Figure 14.5, the maximum growth rate is at point C, whereas points A and B
represent the two values for tY for which the growth rate equals zero.

14.2.2.2.2 Transitional dynamics In contrast to our first AK model, the public in-
frastructure model gives rise to non-trivial transitional dynamics because we model
public infrastructure as a stock variable and because the rate of public investment
is bounded by the available tax revenue (see (14.35) above). As is clear from Ta-
ble 14.2, the model is fully characterized by two fractions only, namely the private
consumption-capital ratio, θ(t) ≡ C (t) /K(t), and the ratio between the private and
public capital stock, κ(t) ≡ K(t)/KG (t). In order to study the dynamic properties of
the model, we loglinearize it around the steady-state point (θ∗, κ∗) to obtain: d ln θ(t)

dt
d ln κ(t)

dt

 = ∆ ·
[

ln θ(t)− ln θ∗

ln κ(t)− ln κ∗

]
, (14.45)
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where ∆ is the Jacobian matrix:

∆ ≡

 θ∗
(1− α) (1− ασ) (r∗ + δk)

α

−θ∗ −
(1− α) (r∗ + δk) + α2 (γ∗ + δg

)
α

 . (14.46)

The determinant of ∆ is given by:

|∆| ≡ −θ∗
[
(1− α) σ (r∗ + δk) + α

(
γ∗ + δg

) ]
< 0, (14.47)

so it follows that the product of the characteristic roots of ∆ is negative, i.e. there is
one negative (stable root),−λ1 < 0, and one positive (unstable) root, λ2 > 0, and the
model is saddle-path stable. Recall that both capital stocks are predetermined (non-
jumping) variables whilst private consumption is a jumping variable. It follows that
θ(t) is a jumping variable (because C(t) is) whilst κ(t) is predetermined (because
K (t) and KG(t) are). Given initial values K (0) and KG (0) (and thus for κ (0) ≡
K (0) /KG (0)), the model converges along the saddle path toward the steady-state
equilibrium. The transition speed is equal to the absolute value of the stable root, λ1.

Intermezzo 14.1

Loglinearization of an endogenous growth model. Strangely enough,
loglinearization of a non-linear dynamic model often confuses students.
For that reason we show in detail how we loglinearize the model in Table
14.2. Campbell (1994) and Uhlig (1999) provide further examples. First
we note that, by deducting (T2.2) from (T2.1) and (T2.3) from (T2.2), we
can rewrite the model as:

d ln θ(t)
dt

= σ [r(t)− ρ]− (1− tY) Z0κ(t)α−1 + θ(t) + δk, (a)

d ln κ(t)
dt

= (1− tY) Z0κ(t)α−1 − (tY − g) Z0κ (t)α

− θ(t) + δg − δk, (b)

r(t) = α (1− tY) Z0κ(t)α−1 − δk, (c)

where we have used the fact that d ln x(t)/dt ≡ ẋ(t)/x(t). Next, we
define the auxiliary variable x̃(t):

ax̃(t) ≡ ln
(

x(t)
x∗

)a
⇔

(
x(t)
x∗

)a
≡ eax̃(t), (d)

where x∗ is the steady-state value for x(t) and a is some scalar. Provided
x(t) is near its steady-state value (x(t)/x∗ ≈ 1 and x̃(t) ≈ 0) we have
eax̃(t) ≈ 1 + ax̃(t) so that it follows from (d) that:(

x(t)
x∗

)a
≈ 1 + ax̃(t) ⇔ ax̃(t) =

(
x(t)
x∗

)a
− 1. (e)

We now apply these intermediate results to the model. We start with
equation (a). In the steady-state, d ln θ(t)/dt = 0 so:

0 = σ [r∗ − ρ]− (1− tY) Z0 (κ
∗)α−1 + θ∗ + δk. (f)
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Deducting (f) from (a) yields:

d ln θ(t)
dt

= σ [r(t)− r∗]− (1− tY) Z0

[
κ(t)α−1 − (κ∗)α−1

]
+ θ (t)− θ∗

= σr∗
[

r(t)
r∗
− 1
]
− (1− tY) Z0 (κ

∗)α−1

[(
κ(t)
κ∗

)α−1

− 1

]

+ θ∗
[

θ(t)
θ∗
− 1
]

= σr∗ r̃(t)− (α− 1)
(

r∗ + δk
α

)
κ̃(t) + θ∗ θ̃(t), (g)

where we have used (e) (twice for a = 1 and once for a = α − 1) and
noted that it follows from (c) that (1− tY) Z0 (κ

∗)α−1 = (r∗ + δk) /α in
the final step. But, in view of the definition of x̃(t), we can write (g) as:

d ln θ(t)
dt

= σr∗ ln
(

r(t)
r∗

)
+ (1− α)

r∗ + δk
α

ln
(

κ(t)
κ∗

)
+ θ∗ ln

(
θ(t)
θ∗

)
. (h)

Following the same approach for equation (b) we find:

d ln κ(t)
dt

= (1− tY) Z0 (κ
∗)α−1

[(
κ (t)
κ∗

)α−1
− 1

]

− (tY − g) Z0 (κ
∗)α
[(

κ(t)
κ∗

)α

− 1
]
− θ∗

[
θ(t)
θ∗
− 1
]

= −
[
(1− α)

r∗ + δk
α

+ α
(
γ∗ + δg

)]
ln
(

κ(t)
κ∗

)
− θ∗ ln

(
θ(t)
θ∗

)
, (i)

where we have used the steady-state relationships (1− tY) Z0 (κ
∗)α−1 =

(r∗ + δk) /α and (tY − g) Z0κ∗ = γ∗ + δg to simplify the expression in the
final step. Equation (i) is the second row in (14.45).

Finally, for equation (c) we find:

r∗
[

r(t)
r∗
− 1
]
= α (1− tY) Z0 (κ

∗)α−1

[(
κ(t)
κ∗

)α−1

− 1

]

r∗ ln
(

r(t)
r∗

)
= (r∗ + δk) (α− 1) ln

(
κ(t)
κ∗

)
. (j)

By substituting (j) into (g) we obtain the first row in (14.45).

****
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14.3 Human capital formation

In a path-breaking early contribution to the literature, Uzawa (1965) argued that
(labour-augmenting) technological progress should not be seen as some kind of “man-
na from heaven” but instead should be regarded as the outcome of the intentional
actions by economic agents employing scarce resources in order to advance the state
of technological knowledge. Uzawa (1965) formalized his notions by assuming that
all technological knowledge is labour augmenting, i.e. in terms of the aggregate pro-
duction function (12.11) he sets ZK(t) = 1 for all t and proposes a theory which
endogenizes ZL(t) (and thus its growth rate, nZ). Uzawa postulates the existence
of a broadly defined educational sector which uses labour, LE(t), in order to aug-
ment the state of knowledge in the economy according to the following knowledge
production function:

ŻL(t)
ZL(t)

= Ψ
(

LE(t)
L(t)

)
, (14.48)

where L(t) = LE(t) + LP(t) is the total labour force, LP(t) is labour employed in the
production of goods, and Ψ(x) satisfies Ψ′(x) > 0 > Ψ′′(x) for 0 < x < 1. The key
thing to note in (14.48) is that ŻL(t) is linear in ZL(t), i.e. in the production of new
knowledge there are constant returns to existing knowledge. It is clear that there are
now two stocks that can be accumulated in this economy, namely the stock of phys-
ical capital goods (K(t)) and the stock of knowledge (ZL(t)). Uzawa shows how a
benevolent social planner would optimally choose these stocks for the special case
of a linear felicity function (incorporating an infinite intertemporal substitution elas-
ticity), U(c(t)) = c(t). One of the trade-offs which the planner faces is of course the
optimal assignment of labour to the production and educational sectors. By raising
the proportion of workers in the educational sector the growth of knowledge will
increase but production of goods (and thus the rate of investment) will decrease.

Uzawa’s ideas lay dormant for two decades until they were taken up again and
extended by Paul Romer (1986), Lucas (1988, 1990b), and Rebelo (1991). The aim
of this section is to discuss (a simplified version of) the Lucas model in order to
demonstrate that human capital accumulation can serve as the engine of (endoge-
nous) growth.

Lucas (1988) modifies and extends Uzawa’s analysis in various directions. First,
whereas Uzawa interprets ZL(t) very broadly as consisting of activities like edu-
cation, health, construction and maintenance of public goods (1965, p. 18), Lucas
adopts a more specific interpretation by interpreting ZL(t) as human capital. Sec-
ond, Lucas cites Rosen (1976) whose findings suggests that the empirical evidence
on individual earnings is consistent with a knowledge production function that is
linear in the stock of knowledge (as in (14.48)).6 In addition, Lucas assumes that
the marginal productivity of labour in the human capital production function is con-
stant, i.e. Ψ (x) = ZEx, where ZE > 0 is a constant index of educational productivity.
On the basis of the above considerations, Lucas adopts a specification for the human

6Despite the fact that in reality people tend to accumulate human capital mainly early on in life, this
does not necessarily imply that there are diminishing returns to knowledge accumulation, but it may
rather be due to the fact that agents’ lives are finite (Lucas, 1988, p. 19). It simply makes no sense for
an octogenarian to go to school because the time during which he can cash in on his additional skills
is too short for the investment to be worthwhile. Linearity can still hold at the dynastic level provided
members of the dynastic family are linked also in terms of their human capital. In Chapter 16 below we
discuss a model in which (i) finite-lived agents enjoy full-time education at the start of life, and (ii) there
are intergenerational external effects in human capital.
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capital accumulation function which we generalize slightly to allow for depreciation:

Ḣ(t)
H(t)

= ZE ·
LE(t)
L(t)

− δh, (14.49)

where δh is the depreciation rate of human capital (δh > 0). The third modification
that Lucas makes is to assume a curved (rather than linear) felicity function. The
lifetime utility function for the representative infinitely lived household is thus given
by (14.21). The remainder of the model is fairly standard. To keep things simple we
abstract from population growth, i.e. L(t) = L0 (a constant). This means that the
time constraint can be written as:

LE(t) + LP(t) = L0. (14.50)

Following Lucas we assume that the aggregate production function for goods is of
the Cobb-Douglas form:

Y(t) = F(K(t), NP(t)) = ZY NP(t)1−αK(t)α, (14.51)

where ZY is an index of general productivity and NP(t) is effective labour used in
goods production, i.e. skill-weighted man-hours:7

NP(t) ≡ H(t)LP(t). (14.52)

We are now in a position to solve the model and to demonstrate that it contains a
mechanism for endogenous growth. The institutional setting is as follows. Perfectly
competitive firms hire capital and labour from the household sector. Households
receive rental payments on the two production factors and decide on the optimal
accumulation of physical and human capital and the optimal time profile for con-
sumption.

Since technology is linearly homogeneous and competition is perfect it is appro-
priate to postulate the existence of a representative firm. This firm hires units of
labour and capital from the household in order to maximize profit, Π(t) ≡ Y(t)−
w(t)LP(t)− RK(t)K(t), subject to the technology (14.51) and the definition of effec-
tive labour (14.52). This yields the familiar expressions for the rental rate on capital
RK(t) and the wage rate w(t):

RK(t) = FK(K(t), NP(t)) = αZYk(t)α−1, (14.53)
w(t) = H(t)FN(K(t), NP(t)) = (1− α)ZY H(t)k(t)α, (14.54)

where k(t) ≡ K(t)/NP(t) is the macroeconomic capital intensity of production.8

Equation (14.53) is the standard condition equating the marginal product of capital to
the rental rate. The key thing to note about (14.54) is that, for a given capital intensity,
k(t), the wage rate increases as the skill level increases. This gives the household a
clear incentive to accumulate human capital. Another important thing to note is that,
from the viewpoint of the individual agent described here, the marginal product of
effective labour (FN) is taken as given as it depends on the aggregate ratio between
physical capital and effective labour.

7In adopting (14.50)–(14.52) we have simplified the Lucas model by assuming that the population is
constant and that there is no external effect of human capital. See Lucas (1988, p. 18) for the latter effect.

8Since capital and effective labour receive their respective marginal products, it follows that profit is
zero (Π(t) = 0).
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The representative household chooses sequences for consumption and the stocks
of physical and human capital in order to maximize lifetime utility (14.21) subject
to (i) the time constraint (14.50), (ii) the accumulation identity for physical capital,
K̇(t) = I(t)− δkK(t), where I(t) is gross investment in physical capital and δk is its
depreciation rate, (iii) the accumulation expression for human capital (14.49), and
(iv) the budget identity:

I(t) + C(t) + T(t) = w(t)LP(t) + RK(t)K(t) + sEw(t)LE(t), (14.55)

where T(t) is a lump-sum tax and sE is a time-invariant education subsidy received
from the government (ṡE = 0).

The current-value Hamiltonian associated with the representative household’s
decision problem is given by:

HC(t) =
C(t)1−1/σ − 1

1− 1/σ
+ µH(t)

[
ZE

LE(t)
L0
− δh

]
H(t)

+ µK(t)
[(

RK(t)− δk

)
K(t) + H(t)FN(k(t))(L0 − LE(t))

+ sEH(t)FN(k(t))LE(t)− C(t)− T(t)
]
, (14.56)

where µK(t) and µH(t) are the co-state variables for, respectively, K(t) and H(t). The
first-order necessary conditions are:9

C(t)−1/σ = µK(t), (14.57)

µH(t)
ZE
L0

= µK(t) (1− sE) FN(k (t)), (14.58)

µ̇K(t)
µK(t)

= ρ + δk − FK (k(t)) , (14.59)

µ̇H(t)
µH(t)

= ρ + δh − ZE
LE(t)

L0
− µK(t)

µH(t)
[L0 − (1− sE) LE(t)] FN (k(t)) , (14.60)

0 = lim
t→∞

µK(t)K(t)e−ρt = lim
t→∞

µH(t)H(t)e−ρt, (14.61)

where we have used (14.53) to simplify (14.59). Note that (14.61) are the transversal-
ity conditions, explained in detail by e.g. Benhabib and Perli (1994, p. 117) and Bond
et al. (1996, p. 154). The intuition behind the remaining expressions is as follows.
First, according to (14.57) goods must on the margin be equally valuable in their two
uses, namely consumption and physical capital accumulation. Similarly, (14.58) says
that time must be equally valuable in its two uses, namely the accumulation of phys-
ical and human capital (Lucas, 1988, p. 21). The intuition behind (14.59)–(14.60) is
best understood by rewriting them slightly and appealing to the fundamental prin-
ciple of valuation according to which the rate of return on different assets with the
same riskiness must be equalized (cf. Miller and Modigliani, 1961, p. 412). For each
asset the rate of return can be computed as the sum of dividends plus capital gains
divided by the price of the asset. By using (14.59)–(14.60) we find that the rates of
return on the two types of assets are given by:

ρ =
µ̇K(t) + DK(t)

µK(t)
=

µ̇H(t) + DH(t)
µH(t)

, (14.62)

9The first-order conditions are ∂HC/∂x = 0 for the control variables (x ∈ {C, LE}) and −∂HC/∂x =
µ̇x − ρµx for the state variables (x ∈ {K, H}). The household treats FN and FK as given.



524 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

where DK(t) and DH(t) are “dividend payments” on physical and human capital,
respectively:

DK(t) ≡ µK(t) [FK (k(t))− δk] , (14.63)

DH(t) ≡ µH(t)
[

ZE
1− sE

− δh

]
, (14.64)

where we have used (14.58) to obtain the expression in (14.64). Recall that µK(t)
and µH(t) are the imputed shadow prices of the two assets owned by the household.
Not surprisingly, as is shown in equation (14.63), DK(t) represents the imputed value
of the net marginal product of physical capital. In (14.64) the “dividend” on human
capital, DH(t), is equal to the subsidy-corrected marginal productivity of educational
activities, net of depreciation. The educational subsidy rate features in the expres-
sion because an increase in human capital raises the household’s wage rate and thus
increases the total amount of educational subsidies it receives.

We now have all the ingredients of the model. For convenience we gather the key
expressions in Table 14.3. By defining p(t) ≡ µH(t)/µK(t) as the relative shadow
price of human capital and using (T3.7), we find that (14.62)–(14.64) can be written
as in (T3.1). Equation (T3.2) is the standard Euler equation for consumption. It is
obtained by differentiating (14.57) with respect to time, using (14.59), and defining
the interest rate as in (T3.7). Equation (T3.3) is the standard expression for net physi-
cal capital accumulation, where g represents the exogenous national income share of
government consumption. Equation (T3.4) in obtained by using (14.49) and (14.50)
and noting that lE (t) ≡ LE(t)/L0 is the share of time spent on educational activities.
Finally, equation (T3.5) is a slightly rewritten version of (14.58), and (T3.6) provides
a definition for the capital intensity.

Given initial conditions for the stocks of physical and human capital (K (0) and
H (0)), the model is saddle-point stable and converges gradually to a balanced growth
path, i.e. the model features nontrivial transitional dynamics. Along the balanced
growth path, the interest rate is constant and all macro variables grow at the same
endogenous growth rate, γ∗.

14.3.1 Steady-state growth

The first task at hand is to compute and characterize the balanced growth path of the
human capital model. We define the consumption-capital ratio as θ(t) ≡ C (t) /K(t)
and the ratio of physical to human capital as κ(t) ≡ K(t)/H(t). Along the balanced
growth path, consumption and the stocks of physical and human capital all grow at
the same exponential growth rate, γ∗, so that θ(t) = θ∗ and κ(t) = κ∗. Furthermore,
the relative price of human capital and the fraction of labour used in education are
both constant, i.e. p (t) = p∗ and lE(t) = l∗E. It follows that the capital intensity and
the interest rate are also constant, i.e. k(t) = k∗ and r(t) = r∗. Using these results in
the model of Table 14.3, we find that the steady state can be solved recursively.

1. Equation (T3.1) fixes the steady-state interest rate:

r∗ =
ZE

1− sE
− δh. (14.65)

2. Given r∗, equations (T3.2) and (T3.7) determine, respectively, the growth rate
and the capital intensity of production:

γ∗ = σ [r∗ − ρ] , (14.66)
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Table 14.3. The Lucas-Uzawa model of growth and human capital accumulation

ṗ(t)
p(t)

= r(t) + δh −
ZE

1− sE
(T3.1)

Ċ(t)
C(t)

= σ [r(t)− ρ] (T3.2)

K̇(t)
K(t)

= (1− g) ZYk(t)α−1 − C(t)
K(t)

− δk (T3.3)

Ḣ(t)
H(t)

= ZElE(t)− δh (T3.4)

p(t) = (1− sE) (1− α)
ZY L0

ZE
k(t)α (T3.5)

k(t) ≡ K(t)
[1− lE (t)] L0H(t)

(T3.6)

r(t) ≡ αZYk(t)α−1 − δk (T3.7)

Notes: C(t) is consumption, K(t) and H(t) are, respectively, the physical and human capital
stock (featuring respective depreciation rates δk and δh), r(t) is the interest rate, p(t) is the
relative shadow price of human capital, lE(t) is the fraction of time spent on education, L0
is the time endowment, sE is the educational subsidy, g is the national income share of (un-
productive) government consumption, α is the efficiency parameter of physical capital in the
production function, ρ is the pure rate of time preference, and σ is the intertemporal substitu-
tion elasticity.
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k∗ =
(

αZY
r∗ + δk

)1/(1−α)

. (14.67)

3. Given γ∗ and k∗ we find from (T3.3)–(T3.5):

θ∗ =
1− g

α
(r∗ + δk)− γ∗ − δk, (14.68)

l∗E =
γ∗ + δh

ZE
, (14.69)

p∗ = (1− sE) (1− α)
ZY L0

ZE
(k∗)α . (14.70)

4. Next, given k∗ and l∗E we obtain from (T3.6):

κ∗ = k∗ [1− l∗E] L0. (14.71)

5. Finally, it remains to be checked that the (common) growth rate given in (14.66)
is actually feasible. In view of (T3.4), the maximum growth rate of human cap-
ital is equal to ZE − δh (this rate is attained if the entire labour stock is devoted
to educational activities, i.e. lE = 1). Hence, the growth rate in (14.66) is fea-
sible if and only if γ∗ < ZE − δh. The feasibility requirement thus places an
upper limit on the allowable intertemporal substitution elasticity:

σ <
ZE − δh

ZE/ (1− sE)− (ρ + δh)
. (14.72)

Several features of the steady-state solution are worth emphasizing. First, it follows
in a straightforward fashion from (14.65) and (14.66) that the steady-state growth rate
depends positively on the education subsidy. Intuitively, an increase in sI leads to an
increase in the fraction of time spent on educational activities which boosts economic
growth. Indeed, it is not difficult to verify that dr∗/dsE > 0, dγ∗/dsE > 0, dl∗E/dsE >

0, dk∗/dsE < 0, dκ∗/dsE < 0, dp∗/dsE < 0, and αdθ∗/dsE = [1− g− ασ] dr∗/dsE R
0. Second, useless government consumption only affects the consumption-capital
ratio, i.e. dr∗/dg = dγ∗/dg = dl∗E/dg = dk∗/dg = dκ∗/dg = dp∗/dg = 0 and
dθ∗/dg = − (r∗ + δk) /α < 0.

14.3.2 Transitional dynamics

We study the dynamic properties of the model by following the approach of Bond
et al. (1996). As is clear from Table 14.3, the model is fully characterized by three
key variables only, namely the relative shadow price of human capital, p(t), the
consumption-capital ratio, θ(t) ≡ C(t) /K(t), and the ratio between the physical
and human capital stock, κ(t) ≡ K(t)/H (t). To understand why this is the case, it
is useful to note some quasi-reduced-form relationships. First, it follows from (T3.5)
that k(t) is an increasing function of both p(t) and sE:

k(t) =
(

ZE p(t)
(1− α) ZY L0 (1− sE)

)1/α

≡ Ψ[p (t)
+

, sE
+
]. (14.73)

Second, we find from (T3.6) that lE(t) depends negatively on κ(t) and positively on
k(t) (and thus, via (14.73), on p(t) and sE):

lE(t) = 1− κ(t)
L0Ψ[p(t), sE]

. (14.74)
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Hence, it follows from (14.73) and (14.74) that k (t) and lE(t) are uniquely determined
by the fundamental state variables, p(t) and κ(t).

In order to study the dynamic properties of the model, we loglinearize it around
the steady-state point (θ∗, κ∗) to obtain:

d ln p(t)
dt

d ln θ(t)
dt

d ln κ(t)
dt

 = ∆ ·


ln p(t)− ln p∗

ln θ(t)− ln θ∗

ln κ(t)− ln κ∗

 , (14.75)

where ∆ is the Jacobian matrix:

∆ ≡


− (1− α) (r∗ + δk)

α
0 0

− (1− α) σ (r∗ + δk) + ZE (1− l∗E)
α

0 ZE (1− l∗E)

− (1− α) (1− g) (r∗ + δk) + αZE (1− l∗E)
α2 −θ∗ ZE (1− l∗E)

 . (14.76)

The determinant of ∆ is given by:

|∆| ≡ −
(1− α) (r∗ + δk) ZE (1− l∗E) θ∗

α
< 0, (14.77)

so it follows that the product of the characteristic roots of ∆ is negative, i.e. there is
an odd number of negative roots. To prove saddle-point stability we must prove that
there is only one stable root. A little bit of detective work shows that this is indeed
the case. Denoting the elements of ∆ by δij, we find that the characteristic equation
of ∆ can be written as:

Φ (s) ≡ |sI− ∆| = (s− δ11)
[
s2 − δ33s− δ23δ32

]
= 0. (14.78)

It follows that δ11 is a root of Φ (s). We denote this negative (stable) root by −λ1 =

− (1−α)(r∗+δk)
α . The quadratic expression on the right-hand side of (14.78) can be writ-

ten as (s− λ2) (s− λ3) = s2 − (λ2 + λ3) s + λ2λ3 so that λ2 + λ3 = δ33 > 0 and
λ2λ3 = −δ23δ32 > 0, i.e. λ2 > 0 and λ3 > 0. The model is saddle-point stable
and features two jumping variables (p(t) and θ(t)) and one predetermined (sticky)
variable (κ(t)). The adjustment speed in the economy is given by λ1. Given initial
values for K (0) and H (0) (and thus for κ (0) ≡ K (0) /H (0)), the model converges
along the saddle path toward the steady-state equilibrium.

14.3.3 Concluding remarks

We have thus demonstrated that endogenous growth can result from the purposeful
accumulation of human capital by maximizing agents. No “manna from heaven”
assumption is needed to generate this result. The model studied by Lucas (1988) is
more complex than the one studied here because he introduces (exogenous) popula-
tion growth nL and, more importantly, because he argues that knowledge may have
a positive external effect on productivity. Instead of (14.51) he uses the production
function Y(t) = NP(t)1−αK(t)αH̄(t)β, where H̄(t) is the average skill level in society
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and β > 0. Intuitively, his formulation attempts to capture the notion that the for-
mation of human capital is, in part, a social activity. Since individual households are
infinitesimally small (relative to the economy) they will not recognize the link be-
tween their own human capital choice and the resulting level of average economy-
wide human capital. As a result, the market economy will not be efficient. Lucas
(1990b) uses this extended model to explain why there can be persistent differences
in the marginal product of capital across countries even if there are no barriers to
international capital flows.

14.4 Endogenous technology

In the previous section we showed that the purposeful accumulation of human capi-
tal (“skills”) forms the key ingredient of the Lucas-Uzawa theory of economic growth.
In this section we briefly review a branch of the (huge) literature in which the pur-
poseful conduct of research and development (R&D) activities forms the key source
of growth.10 In order to demonstrate the key mechanism by which R&D affects eco-
nomic growth we follow Grossman and Helpman (1991a, chs. 3–4) and Bénassy
(1998) by abstracting from physical and human capital altogether. In such a setting
all saving by households is directed towards the creation of new technology. We
study two types of R&D model. The first model is the expanding input variety (EIV)
model. In this model, R&D leads to the creation of additional intermediate inputs
that are used by final goods producers. R&D leads to expansion in the “horizontal”
direction. The second model is the rising input quality (RIQ) model, in which R&D
leads to the development of better-quality versions of already existing productive
inputs. Here expansion takes place in the “vertical” direction.

14.4.1 R&D and expanding input variety

The EIV model assumes that there are three production sectors in the economy. The
final goods sector produces a homogeneous good using varieties of a differentiated
intermediate good as productive inputs. Production is subject to constant returns
to scale (in these inputs) and perfect competition prevails. The R&D sector is also
perfectly competitive. In this sector units of labour are used to produce blueprints
of new varieties of the differentiated input. Finally, the intermediate goods sector is
populated by a large number of small firms, each producing a single variety of the
differentiated input, who engage in Chamberlinian monopolistic competition (see
Chapter 11 for a detailed account of this market structure).

14.4.1.1 Production in the final goods sector

The production function in the final goods sector is given by the following (general-
ized) Dixit-Stiglitz (1977) form:

Y(t) ≡ N(t)η

[
N(t)−1

N(t)

∑
i=1

Xi(t)
1/µ

]µ

, µ > 1, 1 ≤ η ≤ 2, (14.79)

10Pioneering contributions to this literature are Paul Romer (1987, 1990), Aghion and Howitt (1992),
Segerstrom et al. (1990), Grossman and Helpman (1991a), and Kortum (1997).
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where N(t) is the number of different varieties that exist at time t, Xi(t) is input
variety i, and µ and η are parameters.11 Note that, holding constant the number
of varieties, doubling all inputs Xi leads to a doubling of output Y in (14.79), i.e.
constant returns to scale prevail. The specification in (14.79) implies that, provided
η > 1, there are returns to specialization of the form emphasized by Ethier (1982).
This can be demonstrated as follows. Suppose that the same amount is used of all
inputs (as will indeed be the case in the symmetric equilibrium discussed below),
i.e. Xi(t) = X̄(t) for i = 1, · · ·, N(t). Then total output in the final goods sector will
be Y(t) = N(t)η−1ZX LX(t), where LX(t) ≡ ∑

N(t)
i Li(t) = N(t)X̄(t)/ZX represents

the total amount of labour used up in the intermediate goods sector and ZX is an
exogenous productivity index. Ceteris paribus LX(t), output in the final goods sector
rises with the number of intermediate inputs provided η exceeds unity. By having
a larger number of varieties, producers in the final goods sector can adopt a more
“round-about” method of production and thus produce more (with the same amount
of labour being used indirectly). (Note that the assumption about the upper bound
for η is adopted primarily to simplify the exposition in various places.)

The representative producer in the final goods sector minimizes its costs and sets
the price of the final good equal to the marginal (equals average) cost of production:

PY(t) ≡ N(t)−η

[
N(t)µ/(1−µ)

N(t)

∑
i=1

Pi(t)
1/(1−µ)

]1−µ

, (14.80)

where Pi(t) is the price of input variety i. The cost-minimizing derived demand for
input i is given by:

Xi(t)
Y(t)

= N(t)(η−µ)/(µ−1)
(

Pi(t)
PY(t)

)µ/(1−µ)

, i = 1, · · ·, N(t), (14.81)

where µ/(1 − µ) thus represents the (constant) price elasticity of the demand for
variety i.

14.4.1.2 Production in the intermediate goods sector

In the intermediate goods sector there are many monopolistically competitive firms
which each hold a blueprint telling them how to produce their own, slightly unique,
variety Xi(t). The operating profit of firm i is defined as follows:

Πi(t) ≡ Pi(t)Xi(t)−W(t)Li(t), (14.82)

where W(t) is the wage rate (common to all firms in the economy as labour is per-
fectly mobile) and Li(t) is the amount of labour used by firm i. Firm i chooses its
output level, Xi(t), given the demand for its output (14.81), the production function
Xi(t) = ZX Li(t), and taking the actions of all other producers in the intermediate
goods sector as given. As is familiar from the detailed discussion in Chapter 11,

11A mathematically correct (but somewhat unintuitive) formulation writes (14.79) as:

Y(t) ≡ N(t)η

[
N(t)−1

∫ N(t)

0
X j(t)

1/µdj
]µ

, µ > 1, 1 ≤ η ≤ 2,

where N(t) now represents the “measure” of products invented before time t. See Paul Romer (1987) and
Grossman and Helpman (1991a, p. 45) for details.
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the optimal choice of the firm is to set its prices according to a fixed markup over
marginal production cost:

Pi(t) = µ
W(t)
ZX

, (14.83)

where µ thus represents the constant markup.12 Since all active firms in the interme-
diate sector possess the same technology and face the same input price and markup,
they all choose the same amount of output and charge the same price. Hence, from
here on we can suppress the firm subscript, as Xi(t) = X̄(t), Pi(t) = P̄(t), and
Πi(t) = Π̄(t) for i = 1, · · ·, N(t), and let the barred variables denote the choices of
the representative firm in the intermediate sector. By substituting (14.83) into (14.82)
and invoking the symmetry results we obtain the following expression for the profit
of a representative firm in the intermediate goods sector:

Π̄(t) =
[

P̄(t)− W(t)
ZX

]
X̄(t) =

µ− 1
µ

P̄(t)X̄(t). (14.84)

14.4.1.3 Production in the R&D sector

In the R&D sector competitive firms use labour (researchers) to produce new blueprints.
Since N(t) is the stock of existing blueprints (one blueprint per existing variety), its
time rate of change, Ṅ(t), represents the production of new blueprints (and vari-
eties). It is assumed, following Bénassy (1998) that the production function for new
blueprints is given by:

Ṅ(t) = ZRN(t)LR(t), (14.85)

where LR(t) is the amount of labour employed in the R&D sector and ZR is a produc-
tivity parameter. By employing more labour in the R&D sector, more new blueprints
are produced per unit of time. Furthermore, equation (14.85) incorporates the as-
sumption, due to Paul Romer (1990), that the stock of existing blueprints positively
affects the productivity of researchers. R&D researchers are, in a sense, “standing on
the shoulders of giants”. As Romer puts it, “[t]he engineer working today is more
productive because he can take advantage of all the additional knowledge accumu-
lated as design problems were solved during the last 100 years” (1990, pp. S83–84).

Since the R&D sector is competitive, the price of a new blueprint, PN(t), is equal
to the marginal cost of producing it:

PN(t) =
(1− sR)W(t)

N(t)ZR
, (14.86)

where sR is a time-invariant wage subsidy received from the government (ṡR = 0).
Of course, profits in the R&D sector are zero, i.e. PN(t)Ṅ(t) = (1− sR)W (t) LR(t).

12It is important to distinguish η and µ. The first parameter regulates the strength of the external effect
due to specialization, whereas the second parameter measures the degree of substitutability between
inputs. Interestingly, in an earlier (February 1975) draft of their classic paper, Dixit and Stiglitz (2004a,
pp. 103–107) explicitly consider the case of diversity as a public good, i.e. they distinguish η and µ as in
(14.79). In the published version of their paper, however, η = µ is imposed. See Brakman and Heijdra
(2004).
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14.4.1.4 Household behaviour

It remains to describe the optimal behaviour of the representative, infinitely-lived,
household. This household has a utility function as in (14.21) and faces the following
budget identity:

PY(t)C(t) + PN(t)Ṅ(t) = W(t)L0 − T(t) + N(t)Π̄(t), (14.87)

where L0 is the exogenous supply of labour of the household and T(t) is the lump-
sum tax. Total spending on consumption goods plus investment in new blueprints
(left-hand side) equals total after-tax labour income plus the total profits the house-
hold receives from firms in the differentiated sector (right-hand side). By using the
price of final output as the numeraire (PY(t) = 1), we obtain the household budget
identity in real terms, C(t) + PN(t)Ṅ(t) = W(t)L0 − T (t) + N(t)Π̄(t).

The current-value Hamiltonian associated with the representative household’s
decision problem is given by:

HC(t) =
C(t)1−1/σ − 1

1− 1/σ
+ µN(t)

[
W(t)L0 + N(t)Π̄(t)− T(t)− C(t)

PN(t)

]
, (14.88)

where µN(t) is the co-state variable for N(t). The first-order necessary conditions
are:

C(t)−1/σ =
µN(t)
PN(t)

, (14.89)

µ̇N(t)
µN(t)

= ρ− Π̄(t)
PN(t)

. (14.90)

By combining these two expressions we obtain the conventional consumption Euler
equation:

Ċ(t)
C(t)

= σ [r(t)− ρ] , (14.91)

where r(t) is the rate of return on blueprints:

r(t) =
Π̄(t) + ṖN(t)

PN(t)
. (14.92)

The return on blueprints is the dividend plus the capital gain expressed in terms of
the purchase price of the blueprint.

14.4.1.5 Model closure

The model is closed by two market clearing conditions. The final goods market clears
provided output equals consumption:

Y(t) = C(t) + G(t), (14.93)

where G(t) ≡ gY(t) is useless government consumption, and the national income
share of government consumption is time invariant (ġ = 0). The government budget
constraint is given by T(t) = G(t) + sRW(t)LR(t). The labour market equilibrium
condition requires the total supply of labour to equal the sum of labour demand
in the intermediate and R&D sectors, i.e. LX(t) + LR(t) = L0. Since ZX LX(t) =
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N(t)X̄(t) and ZRLR(t) = Ṅ(t)/N(t) we can rewrite this labour market equilibrium
condition as:

Ṅ(t)
N(t)

= ZR

[
L0 −

N(t)X̄(t)
ZX

]
, (14.94)

where we implicitly assume that the intermediate goods sector is not too large and
thus does not absorb all available labour (i.e. the term in square brackets on the
right-hand side is strictly positive).

14.4.1.6 Growth

We are now in a position to determine the growth rate in the economy. We follow
the solution approach of Bénassy (1998). In the first step, we note a number of inter-
mediate results:

Π̄(t)
PN(t)

= (µ− 1)
ZR

1− sR
LX (t) , (14.95)

ṖN(t)
PN(t)

= (η − 2)
Ṅ(t)
N(t)

, (14.96)

C(t) = (1− g) N(t)η−1ZX LX(t), (14.97)

where we have used the fact that LX(t) = N(t)X̄(t)/ZX in various places. Equa-
tion (14.95) expresses the real dividend rate on blueprints in terms of the monopoly
markup (µ) and the total amount of labour absorbed by the final goods sector. It
is obtained by using (14.86) and (14.83) in (14.84) and imposing the symmetry re-
sults. Equation (14.96) shows that the capital gains rate on blueprints is proportional
to the growth rate of varieties, i.e. the rate of innovation. It is obtained by using
(14.83) and (14.80) in (14.86), setting PY(t) = 1 and imposing symmetry. This yields
PN(t) = [(1− sR) ZX/(µZR)]N(t)η−2 which can be differentiated with respect to
time to obtain (14.96). Finally, (14.97) is the goods market clearing condition in the
symmetric equilibrium.

In the second step we write the dynamics of the model as follows:

γC(t) = σ

[
(µ− 1)

ZR
1− sR

LX(t) + (η − 2)γN(t)− ρ

]
, (14.98)

γC(t) = (η − 1)γN(t) +
L̇X(t)
LX (t)

, (14.99)

γN(t) = ZR [L0 − LX(t)] , (14.100)

where we use the conventional notation for growth rates, i.e. γx ≡ ẋ(t)/x(t). Equa-
tion (14.98) is the consumption Euler equation. It is obtained by combining (14.91)–
(14.92) and (14.95)–(14.96). Equation (14.99) is the logarithmic time derivative of
(14.97), noting that ġ = ŻX = 0. Finally, equation (14.100) is just a rewritten version
of (14.94).

In the third step we eliminate γN(t) and γC(t) from (14.99) by using (14.98)–
(14.100) and obtain a single differential equation for LX(t):

L̇X(t)
LX(t)

= ZR ·
[

σ (µ− 1)
1− sR

+ η − 1 + σ(2− η)

]
(LX(t)− L∗X) , (14.101)
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where L∗X is defined as:

L∗X =
[η − 1 + σ(2− η)] L0 + σρ/ZR

σ (µ− 1) / (1− sR) + η − 1 + σ(2− η)
. (14.102)

The crucial thing to note about this expression is that the coefficient for LX(t) on the
right-hand side is positive, i.e. (14.101) is an unstable differential equation (because
µ > 1 and 1 ≤ η ≤ 2). This, of course, means that the only economically sensible
solution is such that LX(t) jumps immediately to its steady-state value, i.e. LX(t) =
L∗X for all t.

Since there is no transitional dynamics in LX(t) (and thus L̇X(t) = 0 for all t)
the same holds for the growth rates of the number of varieties and consumption, i.e.
γN(t) = γ∗N and γC(t) = γ∗C. Indeed, by using (14.102) in (14.99) and (14.100) we
obtain:

γ∗N =

µ− 1
1− sR

ZRL0 − ρ

µ− 1
1− sR

+
η − 1

σ
+ (2− η)

> 0, γ∗C = γ∗Y = (η − 1)γ∗N , (14.103)

where the sign follows from our assumption made in the text below equation (14.94).
This expression generalizes the results of Grossman and Helpman (1991a, p. 59),
Bénassy (1998, p. 66), and de Groot and Nahuis (1998, p. 293) by incorporating a
non-unitary elasticity of intertemporal substitution and by including an R&D sub-
sidy. Like these authors, we find that the rate of innovation increases with the
monopoly markup (dγ∗N/dµ > 0) and the size of the labour force (dγ∗N/dL0 > 0)
and decreases with the rate of time preference (dγ∗N/dρ < 0). Provided the returns
to specialization are operative (so that η > 1), an increase in the willingness of the
representative household to substitute consumption across time raises the rate of in-
novation (dγ∗N/dσ > 0). Clearly, of the two government policy instruments, only the
investment subsidy affects growth, i.e. dγ∗N/dsR > 0 and dγ∗N/dg = 0. Finally, as is
evident from (14.103), the growth rate in consumption and output depends critically
on whether or not the technology in the final goods sector is characterized by returns
from specialization.

14.4.1.7 Efficiency

One of the classic questions in economics concerns the welfare properties of the de-
centralized market equilibrium. In the context of the R&D model we wish to know
whether the market rate of innovation is too high or too low. To study this problem
we follow the usual procedure by computing the social optimum and comparing it
to the decentralized market equilibrium (with g = 0 imposed upfront).

As is pointed out by Bénassy (1998, p. 66), computation of the social optimum is
quite a lot easier than that of the market solution because we can impose symmetry
upfront and work in terms of aggregates like consumption, the number of firms, and
labour used in the intermediate sector. The social planner is assumed to maximize
lifetime utility of the representative agent (14.21), subject to the constraints (14.94)
and (14.97). By using LX(t) = N(t)X̄(t)/ZX in the various expressions we find that
the current-value Hamiltonian for the social welfare programme is given by:

HC(t) =
[
N(t)η−1ZX LX(t)

]1−1/σ − 1
1− 1/σ

+ µN(t)N(t)ZR [L0 − LX(t)] , (14.104)
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where µN(t) is the co-state variable for N(t). The first-order necessary conditions
are given by, respectively, ∂HC/∂LX = 0 and −∂HC/∂N = µ̇N − ρµN :

ZRµN(t) =
ZX N(t)η−2[

N(t)η−1ZX LX(t)
]1/σ

, (14.105)

µ̇N(t) = ρµN(t)−
(η − 1)ZX LX(t)N(t)η−2[

N(t)η−1ZX LX(t)
]1/σ

− µN(t)ZR [L0 − LX(t)] .

(14.106)

By combining these two expressions we obtain (after a number of tedious but straight-
forward steps) a differential equation in LX(t):

L̇X(t)
LX(t)

= (η − 1) ZRLX(t)− (η − 1)(1− σ)ZRL0 − σρ. (14.107)

Provided there are returns to specialization (η > 1), the coefficient for LX(t) on the
right-hand side of (14.107) is positive so that the differential equation is unstable and
the socially optimal solution is to jump immediately to the steady state (L̇X(t) = 0):

LSO
X = (1− σ)L0 +

σρ

(η − 1) ZR
, (14.108)

where the superscript “SO” denotes the socially optimal value and we assume im-
plicitly that LSO

X is feasible (0 < LSO
X < L0). The socially optimal rate of innovation

associated with (14.108) is:

γSO
N ≡ ZR

[
L0 − LSO

X

]
= σZRL0−

σρ

η − 1
> 0, γSO

C = γSO
Y = (η− 1)γSO

N . (14.109)

The striking conclusion that can be drawn from (14.109) is that the socially optimal
rate of innovation does not depend on the markup (µ) at all but rather on the pa-
rameter regulating the returns to specialization (η). This result is obvious when you
think of it–in the symmetric equilibrium (14.79) collapses to Y(t) = N(t)η−1ZX LX(t)
from which we see that the social return to R&D depends critically on η− 1 (Bénassy,
1998, p. 67).

We can now compare the socially optimal and market rate of innovation (given,
respectively, in (14.103) and (14.109)) and answer our question regarding the welfare
properties of the decentralized market equilibrium. To keep things simple we set
σ = 1 (logarithmic felicity) for which case γ∗N (sR) and γSO

N are:

γ∗N (sR) ≡
(µ− 1)ZRL0 − ρ (1− sR)

µ− sR
, (14.110)

γSO
N =

(η − 1)ZRL0 − ρ

η − 1
. (14.111)

We consider two cases in turn. In case one, we assume that sR = 0 and use the
expressions for γ∗N (0) and γSO

N to see how the laissez-faire market rate of innovation
compares to the socially optimal rate. After some straightforward manipulations we
find:

µ
[
γSO

N − γ∗N (0)
]
= ZRL0 − ρ

[
µ− (η − 1)

η − 1

]
. (14.112)
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No general conclusion can be drawn from (14.112), and both γ∗N (0) < γSO
N (underin-

vestment in R&D) and γ∗N (0) > γSO
N (overinvestment in R&D) are distinct possibili-

ties as is the knife-edge case for which the parameters are such that the market yields
the correct amount of investment in R&D (γ∗N (0) = γSO

N ).13 The literature tends to
stress the underinvestment case but that result is not robust as it is based on the
implicit assumption that the markup equals the returns to specialization parameter.
Indeed, for that special case, η = µ, and (14.112) reduces to:

µ
[
γSO

N − γ∗N (0)
]
= ZRL0 −

ρ

η − 1
≡ γSO

N > 0. (14.113)

Hence, if η = µ and γSO
N is positive, the “traditional” result obtains and the market

yields too little R&D, and the innovation growth rate is too low (Bénassy, 1998, p. 68;
de Groot and Nahuis, 1998, p. 294).14

The expressions in (14.110)–(14.111) can also be used to answer a second kind of
question, namely for which value of sR does the market produce the optimal rate of
innovation? We return to the general case by allowing η and µ to differ. By equating
γ∗N (sR) and γSO

N and solving for sR we find after some tedious but straightforward
manipulations:

s∗R
1− s∗R

=
(η − 1) ZRL0 − ρ [µ− (η − 1)]

ρ (µ− 1)
=

µ (η − 1)
ρ (µ− 1)

·
[
γSO

N − γ∗N (0)
]

, (14.114)

where s∗R stands for the optimal R&D subsidy and we have used (14.112) to get to the
second expression. Not surprisingly, it is optimal to subsidize (tax) R&D labour if the
laissez-faire economy innovates too slowly (quickly) relative to the social optimum.

14.4.1.8 Scale effect

The R&D growth model discussed above predicts that the scale of an economy (as
parameterized by the size of its labour force, L0) is an important determinant of that
economy’s balanced growth rate. This so-called scale effect is in fact a common feature
of many important R&D growth models such as Grossman and Helpman (1991a)
and Aghion and Howitt (1992). In an influential paper, Jones (1995) has argued that
the prediction of scale effects is easily falsified empirically. In the US, for example,
the amount of labour employed in R&D activities grew from 160,000 in 1950 to about
1,000,000 in 1988 whereas total factor productivity growth stayed the same (or even
declined somewhat) during that period (Jones, 1995, p. 762). Similar data can be
quoted for other industrialized countries such as France, West Germany, and Japan.
On the basis of the empirical evidence, Jones concludes that “the assumption em-
bedded in the R&D equation that the growth rate of the economy is proportional to
the level of resources devoted to R&D is obviously false” (1995, p. 762).

Jones suggests that, since the R&D equation is clearly the cause of the empirical
refutation, it should be replaced by the following specification:

Ṅ(t) = ZRLR(t)N(t)φ1 [L̄R(t)]
φ2−1 , 0 < φ1, φ2 ≤ 1, (14.115)

13Recall that for µ > 1 and 1 < η ≤ 2, the term in squares brackets on the right-hand side of (14.112) is
positive.

14The example in this paragraph serves to demonstrate that, even though the standard Dixit-Stiglitz
preferences (for which η = µ) are convenient to work with, they are restrictive and may impose too much
structure. Ethier (1982) stresses the need to distinguish η and µ. Weitzman (1994) provides some micro-
foundations for assuming η and µ to be different. Broer and Heijdra (2001) study diversity and markup
effects in a traditional exogenous growth model with capital accumulation.
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where L̄R(t) captures an external effect due to unintended duplication of work in
the R&D sector. In the symmetric equilibrium L̄R(t) = LR(t), and the production
of new designs features diminishing returns to labour provided φ2 < 1. Individual
R&D firms, however, take L̄R(t) as given and operate under the assumption that
the R&D production function is linear in LR(t). Apart from a duplication externality,
equation (14.115) also features a more general specification of the knowledge external-
ity which operates across time via the stock of invented product varieties. Indeed,
whereas N(t) enters linearly in the standard R&D equation (14.85), it features in the
augmented R&D equation with an exponent φ1 which may or may not equal unity.
An attractive feature of the generalized R&D equation (14.115) is that it contains the
standard R&D equation (14.85) as a special case. Indeed, if φ1 = φ2 = 1 the du-
plication externality is absent and the R&D equation is linear in N(t), and the two
expressions coincide.

We now demonstrate the implications for economic growth of adopting the more
general specification of the R&D function. We generalize our simple R&D model
slightly by assuming non-zero population growth. The key ingredients of the model
are as follows. The production function for final output is as given in (14.79) except
that we follow convention by assuming that the specialization parameter equals the
markup (η = µ):

Y(t) ≡
[

N(t)

∑
i=1

Xi(t)
1/µ

]µ

, µ > 1. (14.116)

The simplifications that result from assuming η = µ are easily incorporated in equa-
tions (14.80)–(14.81). Equations (14.82)–(14.84) are unchanged, (14.85) is replaced by
(14.115), and (14.86) is replaced by:

PN(t) =
(1− sR)w(t)

ZRN(t)φ1
[L̄R(t)]

1−φ2 . (14.117)

The price of a new design is equal to the private marginal cost of producing it. As
in our first R&D model, labour is used in both the intermediate goods sector and
in the R&D sector. In contrast to what was assumed in that model, the stock of
labour is now postulated to grow at a constant exponential rate, i.e. L̇(t)/L(t) = nL.
The representative household is assumed to care about its per capita consumption,
c(t) ≡ C(t)/L(t), and has the following lifetime utility function:

Λ(0) =
∫ ∞

0

[
c(t)1−1/σ − 1

1− 1/σ

]
e−ρtdt. (14.118)

Finally, since the number of family members of the household grows, the budget
identity for the household is changed from (14.87) to:

L(t)c(t) + PN(t)Ṅ(t) = w(t)L(t)− T(t) + N(t)Π̄(t), (14.119)

where we once again assume that final output is the numeraire commodity (so that
PY(t) = 1). The representative household chooses the optimal per capita consump-
tion path in order to maximize (14.118) subject to (14.119) (plus a solvency condition).
The consumption Euler equation that results from this choice problem is given by:

ċ(t)
c(t)

= σ [r(t)−−(ρ + nL)] , (14.120)
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where the rate of interest (r(t), representing the yield on blueprints) is given by
(14.92). The remaining equations of the model are the final goods market clearing
condition (14.93) and the labour market condition:

L(t) = LX(t) + LR(t) = LX(t) +
[

Z−1
R N(t)1−φ1

Ṅ(t)
N(t)

]1/φ2

, (14.121)

where the second equality uses (14.115) and incorporates the fact that L̄R(t) = LR(t)
in equilibrium.

Although we could, in principle, retrace the steps leading from the simplified
model to the expression in (14.103), we skip the details of dynamic adjustment here
and simply compute the steady-state growth rates implied by the augmented model.
We are looking for a balanced growth path in which (a) the proportions of labour
going into the intermediate and R&D sectors (LX/L and LR/L) are both constant,
and (b) the proportional rates of growth in N(t), c(t), and y(t) ≡ Y(t)/L(t) are all
constant. The steady-state innovation rate is easily found by rewriting (14.115) in
steady-state format and substituting L̄R = LR:

[γ∗N ≡]
(

Ṅ (t)
N(t)

)∗
= ZR [N∗ (t)]φ1−1 [L∗R(t)]

φ2 . (14.122)

The left-hand side of (14.122) is constant (as γ∗N is constant). By differentiating the
right-hand side of (14.122) with respect to time and noting that [L̇R(t)/LR(t)]∗ = nL
we obtain 0 = (φ1 − 1)γ∗N + φ2nL which can be solved for γ∗N :

γ∗N =
φ2nL

1− φ1
. (14.123)

By using the steady-state version of (14.116) (and imposing symmetry) we find Y =
NµX̄ which can be rewritten as Y/L = ZX Nµ−1LX/L (where LX = NX̄/ZX). From
this last expression we find:

γ∗y = γ∗Y − nL = (µ− 1)γ∗N . (14.124)

Finally, from the final goods market clearing condition (14.93) we find the growth
rate for (per capita) consumption:

γ∗c = γ∗C − nL = γ∗y . (14.125)

We reach a rather striking conclusion. By using the R&D equation suggested by
Jones (namely equation (14.115)) instead of the standard one (equation (14.85)) we
have managed to eliminate the scale effect altogether (compare (14.103) and (14.123)).
And it does not stop there: sR, ρ, σ, and µ (= η) also no longer have any effect on
the rate of innovation! The economy still grows and innovation continues to take
place in the modified model but growth is exogenous, i.e. it is explained by the rate
of population growth just as in the good old Solow model! With a stable population
(nL = 0) innovation ceases in the long run because as N(t) rises over time, more and
more labour has to be devoted to the R&D sector to sustain a given rate of innovation.

14.4.2 R&D and rising input quality

In our second R&D model, technical progress takes the form of increased quality.
The original “quality ladder” approach of Grossman and Helpman (1991b) focuses
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attention on the case for which the quality of existing consumer goods is improved
by means of R&D activities. In this version of the model, quality of a good enters
the felicity function of households who will always wish to consume units of the
state-of-the-art version of any consumption good.

In order to facilitate the comparison with the EIV model of the previous sub-
section, we follow an alternative approach by assuming that existing productive in-
puts are improved by R&D activities, as in Grossman and Helpman (1991a, p. 116;
1991b, p. 50). The rising input quality (RIQ) model describes an economy with three
broadly defined sectors, namely (i) a final goods sector producing a homogeneous
product under perfect competition, (ii) an intermediate sector producing inputs un-
der imperfect competition (Bertrand price competition), and (iii) a perfectly compet-
itive R&D sector in which individual entrepreneurs seek to improve input qualities.

14.4.2.1 Production in the final goods sector

We base the discussion of the final goods sector on the behaviour of a single, per-
fectly competitive, representative firm. The technology in the final goods sector is
represented by a Cobb-Douglas production function:

Y(t) ≡ ZY

N0

∏
i=1

Xi(t)
α, α ≡ 1

N0
, (14.126)

where Y(t) is output, ZY is an exogenous index of technology, and Xi(t) is the quan-
tity of input i used in production. There is a large (but fixed) number of inputs,
which we denote by N0, so i = 1, 2, · · ·, N0. Since α ≡ 1/N0, it follows that produc-
tion features constant returns to scale in the inputs.

Input Xi can in principle be produced in different qualities. To capture this notion
we define Xi(t) as follows:

Xi(t)≡
mi(t)

∑
j=0

QijXij (t) , (14.127)

where Qij denotes the quality of input Xij, and j is the indicator for quality, with
j = 0, 1, · · ·, mi(t). The most basic version of input Xij is denoted by Xi0 and we
normalize its quality to unity, i.e. Qi0 = 1. At the other end of the spectrum, the
state-of-the-art version of input Xi at time t is given by Ximi(t), where the value of
mi(t) depends on past R&D innovations. The notion of quality ladders can be illus-
trated with the aid of Figure 14.6, which depicts the situation in industries i = 1 to
i = 7. Each ladder is drawn as a dashed vertical line, and large solid dots denote the
state-of-the-art version, e.g. for industry i = 1 we find that at time t there have been 6
successful innovations and m1(t) = 6. In contrast, in industry i = 6 there have been
no innovations at all and only the basic quality is available at time t, i.e. m6(t) = 0. In
principle the ladders grow into the sky, so that there is no maximum attainable qual-
ity in any industry. In the simplest version of the quality ladder model, successful
innovations increase the quality of an input proportionally, i.e. Qi,j+1 = (1 + ξ) Qij
from which we derive that:

Qij ≡ (1 + ξ)j Qi0 = (1 + ξ)j , (14.128)

where ξ is the exogenous quality increment following a successful innovation and
we have used the fact that Qi0 = 1 to get to the second expression. By taking loga-
rithms we thus find that ln Qij/ ln (1 + ξ) = j. See the vertical axis in Figure 14.6.
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Figure 14.6: Quality ladders

The representative firm minimizes its unit cost of production. It does so by mak-
ing two choices, namely (a) which quality to purchase of each particular input it
wants to use, and (b) which input mix to adopt. We use a two-stage procedure to
compute the firm’s unit cost function. Since the cost minimization decision is en-
tirely static we drop the time index for now.

14.4.2.1.1 Input quality In choosing the optimal (cost minimizing) quality, the
firm solves the following program for each input i:

min
{Xij}

mi

∑
j=0

PijXij subject to: Xi =
mi

∑
j=0

(1 + ξ)j Xij, Xij ≥ 0, (14.129)

taking as given the value for Xi and the range of available qualities (mi). Denoting
the Lagrange multiplier of the constraint by µX , we find that the first-order Kuhn-
Tucker conditions are given by:

Pij − µX (1 + ξ)j ≥ 0, Xij ≥ 0, Xij ·
[

Pij − µX (1 + ξ)j
]
= 0. (14.130)

The firm would be equally happy with the different qualities if the quality-corrected
price is the same for all qualities, i.e. if Pij/ (1 + ξ)j = Pik/ (1 + ξ)k for all j and k.
Intuitively, for each industry i, quality-weighted inputs are perfect substitutes. How-
ever, as we shall see below, the marginal cost of producing inputs Xij is independent
of quality, so that ultimately only the state-of-the-art quality will be produced–all
other input producers are driven out of the market because their profits will be neg-
ative. These “followers” simply cannot compete with the quality “leader”. In short,
we find that the price of input Xi is equal to the price charged by the state-of-the-
art input producer and only that producer’s inputs will be used, i.e. Pi = Pimi ,
Xi = (1 + ξ)mi Ximi , Ximi > 0, and Xij = 0 for j = 0, · · ·, mi − 1.

14.4.2.1.2 Input mix In the second step of the minimization problem, the firm
minimizes total cost, ∑N0

i=1 PiXimi , subject to the production function (14.126). After
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Figure 14.7: Effective demand facing the quality leader

some straightforward manipulations we obtain the total cost function, TCY ≡ UCYY,
where UCY is unit cost. But since the firm is perfectly competitive, the sales price of
the homogenous good, PY, equals unit cost and profits are zero. Reintroducing the
time index for future use we find:

PY(t) = UCY(t) ≡
N0

ZY

N0

∏
i=1

(
Pi(t)

Qimi(t)

)α

. (14.131)

The derived demand for input Ximi is thus given by:15

Xij(t) ≡
αPY(t)Y(t)

Pi(t)
, for i = 1, · · ·, N0, j = mi(t). (14.132)

Because the production function (14.126) is of the Cobb-Douglas form, we obtain the
familiar result that cost shares are constant across industries. This is a very conve-
nient assumption which considerably simplifies the analysis to follow (see (14.136)).
For future reference, the derived demand for Xij is illustrated—for a given level of
aggregate spending (PYY)—in Figure 14.7. See the downward sloping curve labelled
XD

ij .

14.4.2.2 Production in the intermediate goods sector

Next we consider the input producing sector. As was pointed out above, there are
N0 different inputs and for each input there exists a unique firm which has the ability
to produce the state-of-the-art quality. This firm is referred to as the “leader”. The
production function facing (potential) producers of Xij is given by:

Xij(t) = ZX Lij(t), (14.133)

15Shephard’s lemma says that the derived demand for input i is given by the partial derivative of the
total cost function with respect to the price of input i, i.e. Ximi = Y∂UCY/∂Pi .
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where ZX is an exogenous productivity index and Lij is the amount of labour used
in the production of Xij. The crucial thing to note is that production costs do not
depend on the quality of the input that is being produced, i.e. high and low quality
producers face the same cost structure. Labour is perfectly mobile across sectors
of the economy and fetches a wage rate W(t), i.e. total cost of firm ij is equal to
W(t)Xij(t)/ZX and profit is defined as follows:

Πij(t) ≡
[

Pij(t)−
W (t)

ZX

]
Xij(t). (14.134)

The optimal pricing decision of the quality leader in industry i can be studied with
the aid of Figure 14.7. It is sufficient to look at the leading firm (for which j = mi(t))
and its immediate predecessor as quality leader (the “follower”, whose j = mi(t)−
1). Note that we do not have to consider lower quality producers than the follower
because they are even less competitive than the follower. The leader engages in
Bertrand price competition with the follower and in the optimum will set its price such
that the follower is driven out of the market altogether.16 To see why this is the case,
we note that the lowest price the follower can set without incurring losses is given
by the marginal cost of production, i.e. PF

i = W/ZX , Xi,mi−1 = XF
ij, and ΠF

i = 0.
But the quality leader produces a better version of input Xij and, as we saw above,
the purchasers of this input will prefer to buy the higher quality input provided
PL

i ≡ Pimi ≤ (1 + ξ) Pi,mi−1 ≡ (1 + ξ) PF
i . Hence, the effective demand facing the

quality leader is the solid line passing through points E, B, A, and F. It makes no
sense for the leader to charge a price in excess of (1 + ξ)W/ZX because it would
lose all its customers to the follower. Similarly, it also makes no sense to charge less
than (1 + ξ)W/ZX because it would leave profit opportunities unused. Using the
tie-breaking rule that buyers’ indifference between j = mi and j = mi − 1 results
in purchases only from the market leader, it follows that the price set by the quality
leader equals:

Pi(t) = (1 + ξ)
W(t)
ZX

. (14.135)

At that price, the quality leader will earn a positive profit equal to:

Πi(t) =
[

1− W(t)
Pi (t) ZX

]
Pi(t)Xi(t)

=
ξ

1 + ξ

PY(t)Y(t)
N0

≡ ΠL(t), (14.136)

where we have used equation (14.132) and note that α = 1/N0 to arrive at the second
expression. The leader produces a smaller amount of the input than the follower
would have done, and thus drives up its price. In Figure 14.7, profit is equal to the
shaded area ABCD. The crucial thing to note about (14.136) is that the profit attained
by a quality leader is the same no matter which industry the leader is operating
in! Similarly, equations (14.132)–(14.133), and (14.135) imply a number of symmetry
results:

Pi(t) = P̄(t) = (1 + ξ)
W(t)
ZX

, (14.137)

16In Figure 14.6, we denote the quality leader in an industry with a solid dot (•) and the follower with
a small dot in a box (�). In colloquial terms, the quality leader captures and incarcerates the follower (a
former leader) and in the process cuts him/her to size (zero).
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Ximi (t) = X̄(t) = ZX L̄ (t) =
αPY(t)Y(t)

P̄ (t)
, (14.138)

N0

∑
i=1

Pi(t)Ximi (t) = N0P̄(t)X̄(t) = PY(t)Y (t) . (14.139)

All quality leaders set the same price, produce the same quantity, and employ the
same number of workers. Of course, because mi(t) will typically not be the same for
all industries, it follows from (14.127) that the effective inputs, Xi(t) ≡ (1 + ξ)mi(t)

X̄(t), will not equalize across industries. As Grossman and Helpman put it, progress
in each industry i is lumpy and stochastic (1991a, p. 97). However, because there
are very many industries (N0 is large), progress at the aggregate level is smooth
and deterministic due to the law of large numbers. We use this result below–see
equations (14.152)–(14.154).

14.4.2.3 Production in the R&D sector

The final element of the model concerns the behaviour of innovators in the R&D sec-
tor. A successful innovator earns an infinitely-lived patent to produce his particular
quality of the input. There is no patent licensing, so the owner of the state-of-the art
design is also the unique producer of that particular quality of the input. Of course,
the patent becomes valueless once a better-quality version of the same input is de-
veloped. Since the current leader does not know when he will be deposed as quality
leader, R&D is an inherently risky activity on that account. Furthermore, it is also
risky because a given amount of R&D effort may not end up in the development of
a new blueprint.

Formally, the R&D activity of innovators looks a lot like the behaviour of a firm
(with or without a job vacancy) in a labour market with search frictions that we
studied in Chapter 8. We can therefore use the same tools as in Chapter 8 and char-
acterize the risky process of R&D by making use of arbitrage-like equations. We
denote the value to the entrepreneur of being a leader in any industry by VL (t) and
of being a follower by VF(t). An R&D entrepreneur who is not currently a leader in
any industry uses LR (t) units of labour to conduct R&D research. The instantaneous
probability of successful innovation is denoted by π(t):

π(t) = ZRLR(t), (14.140)

where ZR is an exogenous R&D productivity index. The right-hand side of this ex-
pression represents the search intensity. The more labour is employed in R&D, the
more intensive is the search, and the higher is the probability that an innovation will
actually takes place. The arbitrage equation for a follower can now be written as:

r(t)VF(t) = V̇F(t)− (1− sR)W(t)LR(t) + π(t)
[
VL(t)−VF(t)

]
, (14.141)

where sR is the R&D subsidy (assumed to be time-invariant, i.e. ṡR = 0). Intuitively,
the asset value of being a follower (left-hand side) is equal to the return from the
asset (right-hand side). The return consists of capital gains due to revaluation (V̇L(t))
minus the (after-subsidy) wage costs of R&D plus the expected capital gain due to
change of status induced by own R&D success (π(t)

[
VL(t)−VF(t)

]
). Under free

entry/exit into the R&D activity, the value of being a follower will be driven to zero
(VF(t) = 0), so that (14.141) is reduced to π(t)

[
VL(t)− (1− sR)W(t)/ZR

]
= 0,

where we have used (14.140) to simplify the expression. Provided the R&D intensity
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is strictly positive (π(t) > 0), it follows that the value of being a quality leader is
equal to:

VL(t) =
(1− sR)W(t)

ZR
. (14.142)

Next we look at the arbitrage equation of a current quality leader:

r(t)VL(t) = ΠL(t) + V̇L(t)− π̄(t)
[
VL(t)−VF(t)

]
, (14.143)

where π̄(t) stands for the aggregate R&D intensity in the economy. The asset value
of being a quality leader (left-hand side) is equal to the return on the asset, consist-
ing of profit receipts plus capital gains due to revaluation (ΠL(t) + V̇L (t)) minus
the expected capital loss due to status change as a result of R&D successes of others
(π̄(t)

[
VL(t)−VF(t)

]
). In the symmetric equilibrium we assume that the R&D in-

tensity is the same in all industries, i.e. π̄(t) = π(t).17 By also using (14.142) (and its
time derivative), and noting that VF(t) = 0 we can simplify (14.143) to obtain:

r(t) + π(t) =
ZRΠL(t)

(1− sR)W(t)
+

Ẇ(t)
W(t)

. (14.144)

14.4.2.4 Consumption and further model details

The representative household has an iso-elastic lifetime utility function as given in
(14.21), and the asset accumulation equation is given by:

Ȧ(t) = r(t)A(t) + W(t)L0 − PY(t)C(t)− T(t), (14.145)

where L0 is exogenous labour supply, PY(t) is the price of the consumption good
(defined in (14.131)), and T (t) is a lump-sum tax.18 The household maximizes (14.21)
subject to (14.145), an initial condition for assets, A (0), and a solvency condition. The
household’s Euler equation can be written as:

Ė(t)
E(t)

= σ [r (t)− ρ] + (1− σ)
ṖY (t)
PY(t)

, (14.146)

where E(t) is total expenditure on the consumption good:

E(t) ≡ PY(t)C(t). (14.147)

The equilibrium condition on the market for final goods is given by Y (t) = C(t) +
G(t), where G(t) ≡ gY(t) is government consumption. It follows that:

(1− g) PY(t)Y(t) = E(t). (14.148)

The static government budget constraint is given by:

T(t) = gPY(t)Y(t) + sRN0W (t) LR(t), (14.149)
17To be more precise, there is a large number, M0, of identical potential innovators (households) who

each use lR units of labour and face a probability of success equal to π = ZR lR. The expected total number
of innovations is thus equal to πM0 = ZR M0lR = ZR LR. By normalizing M0 to unity there is no need
to separately distinguish lR and LR. Note finally that quality leaders do not innovate because there is no
incentive for them to do so—see Grossman and Helpman (1991b, p. 47).

18Equation (14.145) is obtained as follows. First, we note that A(t) ≡ N0VL(t) and PY (t)C(t) + T(t) =
N0
[
W(t)L̄(t) + sRW(t)LR(t) + ΠL(t)

]
. Next, we find that Ȧ(t) ≡ N0V̇L(t). By using these results as well

as (14.140), (14.142), and (14.143) we obtain (14.145).
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and the labour market equilibrium condition is:

L0 = N0 [L̄(t) + LR(t)] , (14.150)

where L0 is labour supply and L̄(t) is the amount of labour used in each industry i
(see (14.138) above).

14.4.2.5 Growth

We now possess all the ingredients of the model. Following the approach of Gross-
man and Helpman (1991b, pp. 48–49), we condense the model to two equations in
total spending, E(t), and the R&D intensity, LR(t). Because the steps are non-trivial,
we provide some of the details of the derivation. In the first step, we note that equa-
tion (14.144), in combination with (14.140), (14.136), and (14.148), can be used to
obtain a useful expression for the interest rate:

r(t) =
αξZR
1 + ξ

E(t)
(1− sR) (1− g)W(t)

+
Ẇ(t)
W(t)

− ZRLR(t), (14.151)

where we note that N0 = 1/α. In the second step, we use (14.128) and (14.137) in
(14.131) to find an expression for ln PY(t):

ln PY(t) = ln
(

N0

ZY

)
+ ln P̄(t) + ln

N0

∏
i=1

(1 + ξ)−αmi(t)

= ln
(
(1 + ξ) N0

ZYZX

)
+ ln W(t)− α ln (1 + ξ) ·

N0

∑
i=1

mi(t). (14.152)

By taking the time derivative of (14.152) we thus obtain:

ṖY(t)
PY(t)

≡ d ln PY(t)
dt

=
Ẇ(t)
W(t)

− [α ln (1 + ξ)] · d
dt

N0

∑
i

mi(t). (14.153)

Recall that each mi(t) is a stochastic variable, which may feature an upward jump as
a result of R&D activities. The instantaneous probability of such a jump occurring
is the same for all mi (t) and depends on the R&D intensity as stated in (14.140).
Since N0 is assumed to be very large, probabilities and frequencies coincide, so that
∑N0

i mi(t) changes smoothly over time according to:

d
dt

N0

∑
i

mi(t) = N0π(t) = N0ZRLR(t). (14.154)

In the third and final step we choose labour as the numeraire and thus set W(t) = 1
and Ẇ(t) = 0. The model can now be expressed in a very compact format as:

Ė(t)
E(t)

=
ασξZR
1 + ξ

E(t)
(1− sR) (1− g)

− σρ− σφZRLR(t), (14.155)

L0 =
E(t)

(1 + ξ) (1− g)
+

1
α

LR(t), (14.156)

where φ ≡ 1 + (1/σ− 1) ln (1 + ξ) is a composite parameter which we assume to be
positive.19 Equation (14.155) is obtained by (14.151) and (14.153)–(14.154) in (14.146).

19This is a very mild assumption. For a logarithmic felicity function (σ = 1) we find that φ = 1. For
plausible values of the intertemporal substitution elasticity, 0 < σ < 1, it follows that φ > 1.
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Figure 14.8: Equilibrium in the rising input quality model

Equation (14.156) is the labour market clearing condition (14.150), rewritten by using
(14.137)–(14.138) and (14.147)–(14.148).

The dynamic properties of the model can be illustrated with the aid of Figure
14.8. In that figure, LME0 represents the initial labour market equilibrium condition
(14.156). The initial Ė(t) = 0 line (labelled [Ė(t) = 0]0) is obtained from (14.155):

αξZR
1 + ξ

E(t)
(1− sR) (1− g)

= ρ + φZRLR(t). (14.157)

Since φ is assumed to be positive, the [Ė(t) = 0]0 is upward sloping and intersects
the LME0 line at point E0. It follows from (14.155) that Ė(t) > 0 (< 0) for points
above (below) the [Ė(t) = 0]0 line. This has been indicated with arrows along the
LME0 line. The equilibrium at E0 is clearly unstable, so the only economically feasi-
ble solution is for E(t) to jump to its steady-state value, i.e. there is no transitional
dynamics, E(t) = E∗, and LR(t) = L∗R. Solving (14.156)–(14.157) we find:

E∗

1− g
= (1 + ξ)

φL0 + ρN0/ZR
ξ/ (1− sR) + φ

, (14.158)

L∗R =
ξL0/ [(1− sR) N0]− ρ/ZR

ξ/ (1− sR) + φ
, (14.159)

where we have also used the fact that α = 1/N0 to simplify the expressions.
How does government policy affect the economy in the RIQ model? Clearly, an

increase in the share of government consumption simply leads to crowding out of
private consumption but has no effect on the R&D intensity–see (14.158)–(14.159).
In terms of Figure 14.8, the Ė(t) = 0 locus rotates in a clockwise direction, from
[Ė(t) = 0]0 to [Ė(t) = 0]1, and the LME curve rotates counterclockwise from LME0
to LME1. The new equilibrium is at E1, which lies vertically below point E0. It thus
follows that dL∗R/dg = 0 and dE∗/dg = −E∗0 / (1− g) < 0. An increase in the wage
subsidy to R&D workers does have a positive effect on the R&D intensity. In terms
of Figure 14.8, an increase in sR rotates the Ė(t) = 0 locus in a clockwise direction,
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from [Ė(t) = 0]0 to [Ė(t) = 0]1, but leaves the LME curve unchanged. The new
equilibrium is at point E2, and we find from (14.158)–(14.159) that dL∗R/dsR > 0 and
dE∗/dsR < 0.

In order to deduce the economic growth properties of the model, we note that
Xi(t) = X̄(t) (1 + ξ)mi(t) and use (14.126) to write the logarithm of output as:

ln Y(t) = ln ZY + ln X̄(t) + ln

[
N0

∏
i=1

(1 + ξ)αmi(t)

]

= ln
(

αZYZX
1 + ξ

)
+ ln

(
E∗

1− g

)
+ [α ln (1 + ξ)] ·

N0

∑
i

mi(t), (14.160)

where we have used (14.137)–(14.138) and (14.148), and noted that E(t) = E∗, to get
from the first to the second expression. By taking the time derivative we find the
growth rate in aggregate output:

γ∗Y ≡
Ẏ(t)
Y(t)

≡ d ln Y(t)
dt

= [α ln (1 + ξ)] · d
dt

N0

∑
i

mi(t)

= [ZR ln (1 + ξ)] · L∗R, (14.161)

where we have used (14.154) and noted that LR(t) = L∗R to get to the final expression.
Obviously, consumption grows at the same rate as output, γ∗C = γ∗Y, and the final
output price falls exponentially, γ∗PY

= −γ∗Y. Defining the real wage rate by w(t) ≡
W(t)/PY(t) we furthermore find that γ∗w = γ∗Y.

The comparative static effects on the economic growth rate can be deduced from
(14.161) in combination with (14.159). Obviously, government consumption has no
effect on growth (dγ∗Y/dg = 0) but the R&D subsidy positively affects the growth
rate (dγ∗Y/dsR = [ZR ln (1 + ξ)] · dL∗R/dsR > 0). Growth depends negatively on the
rate of time preference and positively on the intertemporal substitution elasticity
(dγ∗Y/dρ < 0 and dγ∗Y/dσ > 0, with the latter operating via its effect on the compos-
ite parameter φ). Just as in the standard EIV model discussed in the previous subsec-
tion, there is a scale effect in the RIQ model (dγ∗Y/dL0 = [ZR ln (1 + ξ)] · dL∗R/dL0 >
0). Technically, this scale effect is a direct result from the assumption underlying
quality change. Indeed, using (14.128) we find that a successful innovation leads to a
constant percentage increase in quality as ∆Qi,j+1/Qi,j = ξ. The instantaneous prob-
ability of achieving R&D success itself depends (via (14.140)) on the size of R&D em-
ployment. As a result, an increase in the total labour force boosts economic growth
because it allows for higher R&D employment. Just as for the EIV model, several
authors have suggested ways in which the scale effect can be removed from RIQ-
style R&D model—see inter alia Segerstrom (1998), Young (1998), and Jones (1999).
Finally, as was already noted by Grossman and Helpman (1991a, p. 98), the RIQ
model is isomorphic to the EIV model, in the sense that they give rise to virtually
identical qualitative predictions.

14.5 Punchlines

This chapter deals with the recent literature on so-called “endogenous” growth.
Three major approaches can be distinguished in this literature. The so-called “capital-
fundamentalist” models generate perpetual growth by abandoning one of the key
elements of the Solow-Swan model (studied in Chapter 12), namely the assumption
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that the average product of capital goes to zero as the capital stock gets very large. If
it is easy to substitute capital for labour then the average product of capital reaches a
finite limiting value. It is possible to produce without any labour at all, and long-run
growth depends, among other things, on the savings rate. Similar results are ob-
tained for the AK-model in which labour plays no role at all and production features
constant returns to a broad measure of capital.

The second major approach in the endogenous growth literature emphasizes the
purposeful accumulation of human capital as the engine of growth. This approach
was pioneered by Uzawa in the mid 1960s and further developed by Lucas. The
model features infinitely lived households, and technology exhibits constant returns
to scale in capital and effective labour. The rate of growth in human capital depends
on the fraction of time households spend on educational purposes. Even without
population growth, consumption, human and physical capital, and output all grow
at the same exponential rate.

The third group of studies in the field of endogenous growth is based on the no-
tion that research and development (R&D) activities by firms constitute the engine of
growth in the economy. Studies in this vein abandon the assumption of perfect com-
petition and instead analyse monopolistically competitive firms in the intermediate
goods sector. We first study a very simple model of horizontal input differentiation (to
keep things simple, we abstract from physical and human capital). In this model
the R&D sector produces blueprints for new differentiated inputs. In the intermedi-
ate goods sector there are many monopolistically competitive firms which each hold
a blueprint telling them how to produce their own, slightly unique, input variety.
The market for final goods is competitive, but there exists an external effect due to
returns to specialization, i.e. a broader range of differentiated inputs raises produc-
tivity of final goods producers because a more round-about production process can
be adopted. The model features a constant rate of innovation which depends posi-
tively on the monopoly markup and the scale of the economy. The scale effect is a
problematic feature of many R&D based models because it is easily falsified empir-
ically. Elimination of the scale effect is possible but renders the rate of innovation
proportional to the rate of population growth, just as in the standard Solow-Swan
model.

The second R&D model is one in which the quality of existing inputs is improved
by means of R&D activities, i.e. it describes vertical input differentiation. Interestingly,
the predictions yielded by the vertical differentiation model are virtually identical in
a qualitative sense to those of the horizontal differentiation model.

Further reading

Warsh (2006) presents a highly readable account of the development of the endoge-
nous growth literature. See also the symposium on new growth theory in the Winter
1994 issue of the Journal of Economic Perspectives. Important early papers on endoge-
nous growth are by Arrow (1962), Uzawa (1965), Sheshinski (1967), Shell (1967), and
Conlisk (1969).

Recent textbooks on economic growth include Barro and Sala-i-Martin (1995),
Aghion and Howitt (1998), Gylfason (1999), Jones (2002), Helpman (2004), Weil

(2005), and Acemoglu (2009). Key references to the R&D literature are Grossman
and Helpman (1991a) and Aghion and Howitt (1998). The classic source on the idea
of creative destruction is Schumpeter (1934).

On the human capital approach, see Lucas (1988), Stokey and Rebelo (1995),



548 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

Ladrón-de-Guevera et al. (1997, 1999), and Ortigueira and Santos (2002). Lucas
(1990a) studies capital taxation in a growth model. Temple (1999) presents a survey
of the recent empirical growth literature. See also the articles in Aghion and Durlauf
(2005a, 2005b). On the issue of transitional dynamics, see King and Rebelo (1993),
Mulligan and Sala-i-Martin (1993), Xie (1994), Benhabib and Perli (1994), and Bond
et al. (1996).

For money and endogenous growth, see, for example, Ireland (1994). Key contri-
butions to the literature on public investment include Barro (1981, 1990), Aschauer
and Greenwood (1985), Uzawa (1988), Aschauer (1988, 1989), Baxter and King (1993),
Glomm and Ravikumar (1994), Turnovsky (1996), Turnovsky and Fisher (1995), and
Fisher and Turnovsky (1998). On the scale effect, see Young (1998) and Segerstrom
(1998). On R&D and education, see Griliches (2000). Rivera-Batiz and Romer (1991)
study the growth effects of economic integration.

In recent years, economists have started to develop growth models in which in-
novations and technical change are drastic and pervasive (rather than incremental).
Key references to this general purpose technology (GPT) literature are Bresnehan and
Trajtenberg (1995), Helpman and Trajtenberg (1998a, 1998b), and the collection of
papers in Helpman (1998).

On directed technological change, see the classic paper by Drandakis and Phelps
(1965), and the recent papers by Acemoglu (2002, 2003a, 2003b, 2007), Acemoglu et
al. (2006), and Vandenbussche et al. (2006).



Chapter 15

Overlapping generations in
continuous time

The purpose of this chapter is to achieve the following goals:

1. To introduce a popular continuous-time overlapping-generations (OLG) model
and to show its main theoretical properties.

2. To apply this workhorse model to study fiscal policy, the role of debt, dynamic
efficiency, and economic growth.

3. To demonstrate that the model features a plausible type of equilibrium in the
context of a small open economy.

4. To extend the continuous-time OLG model to the case of endogenous labour
supply, and to conduct a comparative dynamic tax policy experiment; both
analytically and numerically.

15.1 Introduction

In this chapter we study one of the “workhorse” models of modern macroeconomics,
namely the Blanchard (1985)-Yaari (1965) model of overlapping generations. This
model has proved to be quite versatile because it is very flexible and contains the
Ramsey-Cass-Koopmans (RCK) model as a special case. The main difference be-
tween the Blanchard-Yaari model and the RCK model is that the former distinguishes
agents by their date of birth whereas the latter assumes a single representative agent.
By incorporating some smart modelling devices, the Blanchard-Yaari model can be
solved and analysed at the aggregate macroeconomic level, despite the fact that in-
dividual households are heterogeneous.

15.2 Individual behaviour under lifetime uncertainty

15.2.1 Yaari’s lessons

One of the great certainties in life–apart from taxes–is death. After that things get
fuzzy because nobody knows exactly when the Grim Reaper will make his one and
only call. In all consumption models discussed so far in this book, lifetime uncertainty
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has been ignored, however. Indeed, in Chapter 6 we introduced the basic two-period
consumption-saving model to illustrate the various reasons for the breakdown of
the Ricardian equivalence theorem. But in that model each agent knows exactly
that he will only live for two periods. Similarly, in Chapter 13 we explained the
Ramsey model in which an infinitely lived representative consumer makes optimal
consumption and saving decisions. Again there is no lifetime uncertainty because
the agent lives forever in this model.

In a seminal article, Yaari (1965) confronted the issue of lifetime uncertainty in
the context of a dynamic consumption-saving model. In doing so, he provided one
of the key building blocks of the Blanchard (1985) overlapping-generations model
which has become one of the workhorse models of dynamic macroeconomics. Yaari
(1965, pp. 139–140) clearly identified the two complications arising in a model with
lifetime uncertainty. First, if the agent’s time of death, D, is random then so is that
agent’s lifetime utility function. As a result the agent’s decision problem is inherently
stochastic, and maximizing lifetime utility makes no sense. Rather, the expected
utility hypothesis must be used, and expected lifetime utility should be the objective
function. Second, the non-negativity constraint on the agent’s wealth at the time
of death is similarly stochastic as it also depends on the random time of death. In
symbols, if A(t) is real assets at time t, then A(D) is stochastic and the solution
procedure should ensure that A(D) ≥ 0 holds with certainty.

Fortunately, Yaari (1965) also proposed appropriate solutions to these two com-
plications. First, though D is a random variable all we need to do to render the
expected utility hypothesis operational is to postulate a probability density function
for D. Indeed, demographic data can be used to obtain quite detailed estimates of
the distribution function for D (see also below). Obviously, no one has a negative
expected lifetime and there also seems to be a finite upper limit, D̄, beyond which
nobody lives. So the density function for D is denoted by φ(D) and it satisfies:

φ(D) ≥ 0 (for all D ≥ 0); Φ (D̄) =
∫ D̄

0
φ(D)dD = 1. (15.1)

The first property is a general requirement for densities and the second one says that
the random variable D lies in the interval [0, D̄] with probability 1 (i.e. Pr{0 ≤ D ≤
D̄} = 1). The cumulative distribution function, Φ (x), of the random variable D is
defined as Φ (x) = Pr {D ≤ x} =

∫ x
0 φ (D) dD from which it follows that dΦ (x) =

φ (x) dx, that is, the density function is the derivative of the cumulative distribution
function (i.e., dΦ (x) /dx = φ (x)). In the absence of mass points, Φ (x) is continuous.
Figure 15.1 provides an illustration of a stylized cumulative distribution function.
In that figure, Φ (D0) represents the probability that the agent will expire before or
at age D0. In Figure 15.2 the density function (right axis) as well as the survival
probability (left axis) have been illustrated.

The consumer’s lifetime utility is given by:

Λ(D) ≡
∫ D

0
U(C(t))e−ρtdt, (15.2)

where U(C(t)) is instantaneous utility (or “felicity”) at time t, C(t) is private con-
sumption,1 and ρ is the pure rate of time preference. To keep matters simple, we

1Labour supply is taken to be inelastically supplied. Hence, the consumption-leisure decision is not
part of the consumer’s optimization problem. Below this assumption is relaxed.
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Figure 15.1: Cumulative distribution function

Figure 15.2: Density function and survival probability
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assume that the felicity function is iso-elastic:

U(C(t)) ≡

 C(t)1−1/σ − 1
1− 1/σ

for σ > 0, σ 6= 1,

ln C(t) for σ = 1.
, (15.3)

where σ is the intertemporal substitution elasticity. Using (15.1) and (15.2), expected
lifetime utility can be written as:2

E(Λ(D)) ≡
∫ D̄

0
φ(D)Λ(D)dD

=
∫ D̄

0

[∫ D̄

t
φ(D)dD

]
U(C(t))e−ρtdt

=
∫ D̄

0
[1−Φ(t)]U(C(t))e−ρtdt, (15.4)

where 1−Φ(t) is the probability that the consumer will still be alive at time t:

1−Φ(t) ≡
∫ D̄

t
φ(D)dD. (15.5)

The crucial thing to note about (15.4) is that the consumer’s objective function is now
in a rather standard format. Apart from containing some additional elements (D̄ and
Φ(t)) resulting from lifetime uncertainty, the expression in (15.4) is very similar to the
utility function of the representative consumer (namely equation (13.2) in Chapter
13).

The second complication identified by Yaari (1965) and discussed above can also
be easily dealt with. Assume that the household budget identity can be written as
follows:

Ȧ(t) = r(t)A(t) + w(t)− C(t), (15.6)

where Ȧ(t) ≡ dA(t)/dt, r(t) is the rate of interest, and w(t) is non-interest income,
all expressed in real terms (i.e., units of output). Both r(t) and w(t) are known to
the consumer as lifetime uncertainty is (by assumption) the only stochastic element
in the model. Yaari (1965, pp. 142–143) explains that the time-of-death wealth con-
straint, Pr{A(D) ≥ 0} = 1, is then equivalent to:

A(D̄) = 0; C(t) ≤ w(t) whenever A(t) = 0. (15.7)

The intuition behind this result is as follows. We know for sure that the constraint
A(t) ≥ 0 must hold with equality for t = D̄, i.e. A(D̄) = 0. For other values of t it
follows that A(t) ≥ 0 is equivalent to Ȧ(t) = w(t)− C(t) ≥ 0 if A(t) = 0, i.e. no
dissaving is allowed if no wealth remains. A consumer who owns financial assets
A (0) in the planning period (t = 0) faces the following lifetime budget constraint
(see Intermezzo 13.1 for a detailed derivation):∫ D̄

0
C(t)e−R(0,t)dt = A (0) +

∫ D̄

0
w(t)e−R(0,t)dt, (15.8)

where R(0, t) ≡
∫ t

0 r(s)ds is a cumulative interest factor involving the market rate of
interest, and we have used the fact that A (D̄) = 0. Intuitively, the condition says

2In going from the first to the second line in (15.4) we have changed the order of integration. See
Intermezzo 15.1 for details.
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that the present value of the consumption stream must be equal to the sum of initial
financial assets plus the present value of current and future non-interest income (i.e.
“human wealth”), using the market rate of interest for discounting.

The consumer maximizes expected lifetime utility (E(Λ(D)) in (15.4)) subject to
(15.6), (15.7), and the non-negativity constraint on consumption (C(t) ≥ 0), and
given the initial wealth level (A(0)). The interior solution for this optimization prob-
lem is summarized by:

[1−Φ(t)]U′(C(t)) = λ(t), (15.9)

λ̇(t)
λ(t)

= ρ− r(t), (15.10)

where λ(t)—the co-state variable associated with (15.6)—represents the expected
marginal utility of wealth. Intuitively, (15.9) says that in the interior solution the
consumer equates the expected marginal utility of consumption to the expected mar-
ginal utility of wealth. Equation (15.10) is the standard expression summarizing the
optimal dynamics of the marginal utility of wealth.

By combining (15.9) and (15.10) and noting (15.3) we obtain the household’s con-
sumption Euler equation in the presence of lifetime uncertainty:

Ċ(t)
C(t)

= σ
[
r(t)− ρ− µ(t)

]
, (15.11)

where µ(t) ≡ φ(t)/ [1−Φ(t)] > 0 is the so-called “hazard rate” or instantaneous
probability of death at time t. Compared to the case of an infinitely lived consumer, the
hazard rate is the additional term appearing in the Euler equation.3 This is the first
lesson from Yaari (1965, p. 143): the uncertainty of survival leads the household to
discount the future more heavily, i.e. the subjective discount rate in the presence of
lifetime uncertainty is ρ + µ(t) rather than just ρ. This makes intuitive sense. If there
is a positive probability that you will not live long enough to enjoy a given planned
future consumption path, then you tend to discount the utility stream resulting from
it more heavily. In Figure 15.2, the hazard rate for x = D0 is represented by the ra-
tio φ (D0) /[1− Φ (D0)], whilst for x = D1 the hazard rate is φ (D1) /[1− Φ (D1)].
Clearly, since φ (D1) > φ (D0) and 1 − Φ (D1) < 1 − Φ (D0), the hazard rate in-
creases with the agent’s age.

Up to this point we have studied the consumer’s optimal decisions when no in-
surance possibilities are available. But in reality various forms of life insurance exist,
so a relevant question is how this institutional feature would change the consumer’s
behaviour. Yaari (1965, pp. 140-141) suggests a particular kind of life insurance
based on actuarial notes issued by the insurance company. An actuarial note can be
bought or sold by the consumer and is cancelled upon the consumer’s death. The
instantaneous rate of interest on such notes is denoted by rA(t), and non-zero trade
in such notes only occurs if rA(t) exceeds r(t). A consumer who buys an actuarial
note in fact buys an annuity which stipulates payments to the consumer during life
at a rate higher than the rate of interest. Upon the consumer’s death the insurance
company has no further obligations to the consumer’s estate. Reversely, a consumer
who sells an actuarial note is getting a life-insured loan. During the consumer’s life
he must pay a higher interest rate on the loan than the market rate of interest but
upon death the consumer’s estate is held free of any obligations, i.e. the principal
does not have to be paid back to the insurance company.

3In the standard Ramsey model no lifetime uncertainty exists. See e.g. Chapters 13–14.
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In order to determine the rate of return on actuarial notes, Yaari makes the (sim-
plest possible) assumption of actuarial fairness. To derive the expression for rA(t)
implied by this assumption, consider the case where one euro’s worth of actuar-
ial notes is bought at time t. These notes are either redeemed with interest at time
t+ dt (if the consumer survives) or are cancelled (if the consumer dies between t and
t + dt). Actuarial fairness then implies:[

1 + rA(t)dt
]
·
(

1−Φ(t + dt)
1−Φ(t)

)
= 1 + r(t)dt, (15.12)

where the equality holds as dt→ 0. The right-hand side of (15.12) shows the yield if
the euro is invested in regular market instruments whereas the left-hand side shows
the yield on the actuarial note purchase. The term in round brackets is less than unity
and corrects for the fact that the consumer may pass away between t and t+ dt. Next,
we note that (15.12) can be rewritten as:

rA(t) =
1−Φ(t)

1−Φ(t + dt)
· r(t) +

Φ(t + dt)−Φ(t)
dt

1−Φ(t + dt)
. (15.13)

By letting dt → 0, the first term on the right-hand side goes to r(t) and the second
approaches µ(t) ≡ φ(t)/ [1−Φ(t)]. Hence, we are left with a rather intuitive no-
arbitrage equation between the two kinds of financial instruments:

rA(t) = r(t) + µ(t). (15.14)

Up to this point we have been deliberately vague about the age of the individual
consumer whose behaviour we are studying. If the consumer is born at time t = 0
then t is not only the time index but also stands for the consumer’s age. If, on the
other hand, the consumer was born at some earlier time v < 0 then t is the time
index but u ≡ t − v is the age index. In this more general setting the no-arbitrage
equation takes the following form:

rA(u) = r(t) + µ(u). (15.15)

In words, at time t an individual of age u receives a yield on actuarial notes equal to
the time-dependent interest rate on regular assets plus the age-dependent instanta-
neous mortality rate. As we demonstrate below, a realistic mortality process implies
that the instantaneous mortality rate rises with age, i.e. dµ (u) /du > 0. It follows
from (15.15) that, holding constant the market interest rate r (t), the annuity rate fac-
ing a consumer rises with that consumer’s age, i.e. an eighty-year-old person (an
octogenarian) faces a much higher annuity rate than a twenty-year-old person (a vice-
genarian) does. The closer the consumer gets to the maximum possible age D̄, the
higher will be the instantaneous probability of death and thus the higher will be the
required excess yield on actuarial notes.

Let us now return to the consumer’s choice problem. To economize on notation
we assume that the consumer is born at time t = v = 0 so we are studying the be-
havious of an “economic newborn”. As Yaari (1965, p. 145) points out, the consumer
will always hold his financial assets in the form of actuarial notes, i.e. he will fully
insure against the loss of life and the budget identity will be:

Ȧ(t) = rA(t)A(t) + w(t)− C(t). (15.16)
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Hence the restriction on the terminal asset position is trivially met as all actuarial
notes are automatically cancelled when the consumer dies. The intuition behind this
full-insurance result is best understood by looking at the two possible cases. If the
consumer has positive net assets at any time then they will be held in the form of
actuarial notes because these yield the highest return (which is all the consumer is
interested in in the absence of a bequest motive). Conversely, if the consumer had
negative outstanding net assets in any form other than actuarial notes, he would be
violating the constraint on terminal assets mentioned above (i.e. the requirement
that Pr{A(D) ≥ 0} = 1).

We are not out of the forest of complications yet as we also need to ensure that the
consumer is unable to beat the system by engaging in unlimited borrowing (sales of
actuarial notes) and covering the ever increasing interest payments with yet further
borrowings. This prompts the consumer’s solvency condition, limt→D̄ A(t)e−RA(0,t)

= 0, which can be combined with (15.16) to yield the lifetime budget constraint:

∫ D̄

0
C(t)e−RA(0,t)dt = A(0) +

∫ D̄

0
w(t)e−RA(0,t)dt, (15.17)

where RA(0, t) ≡
∫ t

0 rA(s)ds is a cumulative interest factor involving the annuity
rate of interest. The key difference between the lifetime budget constraints (15.8)
and (15.17) lies in the fact that the market rate of interest is used for discounting in
the former whereas the rate on actuarial notes is used for discounting in the latter.

The consumer maximizes expected lifetime utility (E(Λ(D)) in (15.4)) subject to
the lifetime budget constraint (15.17) and the non-negativity constraint on consump-
tion (C(t) ≥ 0). The interior solution to this problem is characterized by the follow-
ing Euler equation:

Ċ(t)
C(t)

= σ
[
rA(t)− ρ− µ(t)

]
= σ

[
r(t)− ρ

]
, (15.18)

where we have used (15.14) in going from the first to the second expression. The
striking thing to note about (15.18)–and thus Yaari’s second lesson–is the fact that the
Euler equation with fully insured lifetime uncertainty is identical to the Euler equa-
tion when no lifetime uncertainty exists! It should be observed, however, that the
consumption levels will differ between the two scenarios as the lifetime consump-
tion possibility frontier will differ between the two cases.

Intermezzo 15.1

Technical results for the Yaari model. In this intermezzo we gather some
of the more complicated derivations for the Yaari model. The cumulative
distribution function for the random variable D is defined as:

Φ (x) ≡
∫ x

0
φ (D) dD, 0 ≤ x ≤ D̄, (a)

so we find from (15.1) that Φ (0) = 0, Φ (D̄) = 1, and dΦ (x) = φ (x) dx.
Intuitively, Φ (D0) is the unconditional probability that the agent is no
longer alive at age D0. Its complement, 1− Φ (D0), thus represents the



556 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

unconditional probability that the agent is still alive at age D0. The prob-
abilities are called unconditional because they are taken from the perspec-
tive of the beginning of life.

What is the life expectancy of an agent who is still alive at age D0 > 0?
The conditional probability density function (Ross, 1993, p. 88) is defined as:

φ (D|D ≥ D0) ≡
φ (D)

1−Φ (D0)
, (for D0 ≤ D ≤ D̄), (b)

where the scaling factor in the denominator corrects for the fact that only
values for D exceeding D0 receive non-zero weight. Clearly we find from

(b) that
∫ D̄

D0
φ (D|D ≥ D0) dD = 1. The expected remaining lifetime (ERL)

of an agent of age D0 is thus given by:

ERL (D0) ≡
∫ D̄

D0

φ (D|D ≥ D0) [D− D0] dD

=
∫ D̄

D0

φ (D)

1−Φ (D0)
[D− D0] dD

=
1

1−Φ (D0)
·
[∫ D̄

D0

φ (D) DdD− D0

∫ D̄

D0

φ (D) dD
]

. (c)

The first integral on the right-hand side of (c) can be simplified by noting
that φ (D) dD = dΦ (D) so that integration by parts gives:

∫ D̄

D0

φ (D) DdD =
∫ D̄

D0

DdΦ (D) = DΦ (D)

∣∣∣∣D̄
D0

−
∫ D̄

D0

Φ (D) dD

= D̄Φ (D̄)− D0Φ (D0)−
∫ D̄

D0

Φ (D) dD. (d)

The second integral on the right-hand side of (c) is:

D0

∫ D̄

D0

φ (D) dD = D0

∫ D̄

D0

dΦ (D) = D0 [1−Φ (D0)] . (e)

By using (d)–(e) in (c) and recalling that Φ (D̄) = 1 we thus find that life
expectancy is given by:

ERL (D0) =
D̄− D0Φ (D0)−

∫ D̄
D0

Φ (D) dD− D0 [1−Φ (D0)]

1−Φ (D0)

=
1

1−Φ (D0)
·
∫ D̄

D0

[1−Φ (D)] dD. (f)

In the text we often work directly with the instantaneous mortality rate,
µ (u), of an agent with age u (with 0 ≤ u ≤ D̄). We know from the
text below equation (15.11) that µ (u) ≡ φ (u) / [1−Φ (u)]. Hence, since
Φ′ (u) = φ (u), we can write:

µ (u) = − d
du

ln [1−Φ (u)] . (g)
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It thus follows that:

−
∫ u0

0
µ (u) du =

∫ u0

0
d ln [1−Φ (u)] ⇒

−M (u0) = ln [1−Φ (u0)]− ln [1−Φ (0)] ⇒
e−M(u0) = 1−Φ (u0) , (h)

where we have used the definition for the integrated hazard function,
M (u0) ≡

∫ u0
0 µ (u) du, and noted that Φ (0) = 0 (so that ln [1−Φ (0)] =

0.
The final result to be demonstrated concerns the change in the order

of integration that we use in getting from the first to the second line in
equation (15.4). By defining the auxiliary function, g (t) ≡ U(C(t))e−ρt,
we can write:

E(Λ (D)) =
∫ D̄

0
φ (D)

[∫ D

0
g(t)dt

]
dD

=
∫ D̄

0

[∫ D

0
φ (D) g (t) dt

]
dD. (i)

The original region of integration is visualized in Figure A. The inner
integral in (i) take all values of t between 0 and D (horizontal shading)
whilst the outer integral in (i) takes all values of D between 0 and D̄
(vertical shading). It follows that the integration gives rise to the pattern
of shading as in Figure A.

Figure A Figure B

Changing the order of integration in (i) we get:

E(Λ (D)) =
∫ ?

?

[∫ ?

?
φ (D) dD

]
g(t)dt (j)

and we need to establish the appropriate region of integration. It is easy
to see that the equivalent pattern of shading is obtained in Figure B by
ensuring that the inner integral in (j) takes all values of D between t and
D̄ (vertical shading), and the outer integral in (j) takes all values of t be-
tween 0 and D̄ (horizontal shading). Using the results in (j) we thus get:

E(Λ (D)) =
∫ D̄

0

[∫ D̄

t
φ (D) dD

]
g(t)dt. (k)



558 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

By using the definition for g(t) and noting that
∫ D̄

t φ (D) dD = 1−Φ(t)
we obtain (15.4) in the text.

****

15.2.2 Realistic mortality profile

In this section we visualize the Yaari model with the aid of a realistic mortality pro-
cess. For expository purposes, and in order to stay as close as possible to the original
Yaari setup, we use a demographic parameterization which implies a finite max-
imum age. Indeed, following Boucekkine et al. (2002), we write the cumulative
distribution function as:

Φ (u) ≡ eη1u − 1
η0 − 1

, for 0 ≤ u ≤ D̄ ≡ ln η0

η1
, (15.19)

where u is the agent’s economic age, η0 > 1 and η1 > 0, and D̄ is obtained by noting
that Φ (D̄) = 1 (so that eη1D̄ = η0). Heijdra and Mierau (2012, p. 884) use mortality
data from biological age 18 onward for the cohort born in 1960 in the Netherlands to
estimate the parameters of this function. They find the following estimates (with
t-statistics in brackets) η̂0 = 122.643 (11.14) and η̂1 = 0.0680 (48.51), implying an
estimated maximum economic age of D̄ = 70.75 years and a life expectancy at birth
of 56.62 economic years. In biological years these numbers translate to 88.75 and
74.62. In Figure 15.3 we illustrate the actual and fitted survival fraction.4 Up to
about biological age 85 the fitted curve tracks the data rather well. For ages beyond
85, however, the fit is less impressive because there are some rather sturdy individ-
uals whose mortality process is not captured by the functional form given in (15.19)
above.

Using (15.19), we easily find the expressions for the density function and the
instantaneous mortality rate:

φ (u) ≡ dΦ (u)
du

=
η1eη1u

η0 − 1
, µ (u) ≡ φ (u)

1−Φ (u)
=

η1eη1u

η0 − eη1u , (15.20)

where it must again be noted that these expressions are defined only for 0 < u < D̄.
In Figure 15.4(a) we illustrate the instantaneous mortality rate, ln µ (u), using the
parameters mentioned above. Not surprisingly, in view of Figure 15.2, the mortality
rate increases with age. For low values of u, however, µ (u) is virtually horizontal,
but as u approaches D̄, the mortality rate shoots up, becoming infinite at D̄ (i.e.
limu→D̄ µ (u) = ∞).

Figure 15.4(b) depicts the expected remaining lifetime of agents (see Intermezzo
15.1), again using the parameters mentioned above. Whereas life expectancy at birth
is 74.62, a surviving 48-year old has an expectancy of 29.6 years, and a surviving
78-year old can expect to live for another 6.7 years. As one gets older, the planning
horizon shortens but the expected total length of life increases.

In order to compute individual consumption and asset profiles, we develop a
simple numerical version of the Yaari model. We assume that agents start life with-
out any financial assets, A (0) = 0, and that they receive a constant wage income

4The Matlab program used to compute these estimates and to produce the figures can be found on the
website for this book, www.heijdra.org/fomm3.

www.heijdra.org/fomm3
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Figure 15.3: Actual and fitted survival fraction for the Dutch cohort born in 1960

during their entire life, w = 1. The interest rate is set at five percent per annum,
r = 0.05, and the pure rate of time preference is set at ρ = 0.04, implying that the
agent is relatively patient and will save early on in life. For simplicity, we assume
that the felicity function is logarithmic, i.e. we set σ = 1 in (15.3).

15.2.2.1 Actuarially fair annuities

In the presence of actuarially fair (or perfect) annuities, it follows from (15.15) that for
an agent of age u, the annuity rate of interest equals r + µ (u) and (from equation
(15.18)) that consumption growth over the life cycle equals Ċ (u) /C (u) = r− ρ > 0.
By using the expressions found in Heijdra and Romp (2008, p. 98), we can write the
paths for consumption and assets as:

C (u)
w

=
∆ (0, r)
∆ (0, ρ)

e(r−ρ)u, (15.21)

A (u)
w

= e(r−ρ)u ∆ (0, r)
∆ (0, ρ)

∆ (u, ρ)− ∆ (u, r) , (15.22)

where ∆ (u, ψ) is a demographic discount function, the definition and theoretical prop-
erties of which can be found in Heijdra and Romp (2008, p. 95). For the demography
used here, ∆ (u, ψ) takes the following form (for 0 ≤ u ≤ D̄):

∆ (u, ψ) ≡ eψu

η0 − eη1u ·
[

η0 ·
e−ψu − e−ψD̄

ψ
+

e(η1−ψ)u − e(η1−ψ)D̄

η1 − ψ

]
, (15.23)

where ψ is a parameter of the function. It is useful to note that ∆ (u, ψ) is positive,
and decreasing in both u and ψ.
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Figure 15.4: Features of a realistic mortality profile

(a) Instantaneous mortality rate: µ(u)

(b) Expected remaining lifetime: ∆(u, 0)
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In Figure 15.5(a) the solid line plots the path of consumption with perfect annu-
ities. Not surprisingly, consumption grows monotonically because agents are pa-
tient by assumption (ρ < r). Early on in life, consumption falls short of wage income
(w = 1), and agents accumulate financial assets. As a result, in Figure 15.5(b), as-
sets rise initially—see the solid line. Since agents annuitize completely, and thus
face the annuity rate, r + µ (u), it follows from (15.15)–(15.16) that assets rise quite
rapidly. Asset holdings peak at about biological age 60, after which they are slowly
decumulated. Intuitively, the agent’s planning horizon contracts, which leads him
to increase the fraction of total wealth that is used for consumption expenditure.
Despite the fact that financial assets are run down, the annuity rate of interest in-
creases (ultimately at an increasing rate) thus enabling the agent to finance an ever
increasing consumption level (see Heijdra and Romp, 2008, p. 106). Whereas con-
sumption grows monotonically, the profile of financial assets features the classical
hump-shaped life-cycle pattern stressed by Modigliani and co-workers.

15.2.2.2 No annuities

In the absence of annuities, agents face the regular interest rate, r, on their savings.
Let us first (rather unwisely, as it turns out) ignore the time-of-death wealth con-
straint (15.7). It follows from (15.11) that agents would choose their consumption
growth to satisfy the following Euler equation:

Ċ (u)
C (u)

= r− ρ− µ (u) . (15.24)

In view of the fact that r exceeds ρ and µ (u) is low early on in life (see Figure
15.4(a)), the consumption profile is initially upward sloping. In Figure 15.5(a) the
consumption path is shown as the dash-dotted line. As the agent gets older, µ (u)
increases and he effectively becomes more impatient, i.e. consumption growth starts
to slow down. Consumption peaks at about economic age ū = 40.54, at which point
r − ρ = µ (ū), and declines thereafter. Since we ignore the time-of-death wealth
constraint, consumption falls to zero (at age u = D̄) and financial assets become neg-
ative before rising back to zero at age D̄—see the dash-dotted line in Figure 15.5(b).
Since the unrestricted solution violates the time-of-death wealth constraint, it is not
the correct optimal consumption-saving plan.

The correct solution to the optimization problem recognizes the fact that—provi-
ded he stays alive—the agent must run out of financial assets at some age u∗, which
is strictly less than the maximum possible age D̄. Once the time-of-death wealth
constraint becomes binding, it stays binding, so A (u) = 0 and C (u) = w for u ≥ u∗.
It is not difficult to show that u∗ is the positive root of:∫ u∗

0

1−Φ (u)
1−Φ (u∗)

eρ(u∗−u)du =
eru∗ − 1

r
, (15.25)

whereas, for 0 ≤ u ≤ u∗, consumption and assets are given by:

C (0)
w

=
e−(r−ρ)u∗

1−Φ (u∗)
, (15.26)

C (u)
w

=
1−Φ (u)
1−Φ (u∗)

e(r−ρ)(u−u∗), (15.27)

A (u)
w

=
eru − 1

r
− C (0)

w
eru
∫ u

0
[1−Φ (s)] e−ρsds. (15.28)
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Figure 15.5: Life-cycle profiles

(a) Consumption: C(u)

(b) Financial assets: A(u)
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For the demography used here, u∗ = 55.3, which is quite late in life, given that the
life expectancy at birth is 56.6. The optimal consumption and asset profiles are illus-
trated with dashed lines in Figures 15.5(a) and 15.5(b), respectively. Interestingly, for
0 ≤ u ≤ u∗ the consumption paths with and without the time-of-death constraint
are very similar, i.e. the dash-dotted line lies virtually on top of the dashed line in
Figure 15.5(a). The same does not hold for assets, as is evident from Figure 15.5(b).

15.2.2.3 Lessons

Comparing the case with perfect annuities to that without annuities altogether, sev-
eral things are worth noting. First, in the absence of annuities both consumption
and financial assets display a prominent life-cycle pattern. Second, in the absence of
annuities, the time-of-death wealth constraint plays a vital role and ensures that the
luck agent runs out of financial assets before the age of certain death. Since assets are
positive before hitting the constraint, the model implies the existence of “accidental
bequests,” i.e. an unplanned inheritance. Third, with actuarially fair annuities con-
sumption grows monotonically but financial assets display a life-cycle pattern as a
result of an ever increasing annuity rate of interest. The agent holds positive assets
throughout life, but plans to possess zero financial assets at the age of certain death,
D̄. By design of the annuities, there cannot be any accidental bequests.

15.3 Macroeconomic consequences of lifetime
uncertainty

Yaari’s crucial insights were more or less ignored for twenty years until Blanchard
(1985) made them the core elements of his continuous-time overlapping-generations
model. Blanchard simplified the Yaari setup substantially by assuming that (i) the
maximum attainable age is infinite (D̄ → ∞) and (ii) the probability density function
for the consumer’s time of death is exponential, i.e. φ(D) in (15.1) is specified as:

φ(D) =

{
µe−µD for D ≥ 0
0 for D < 0

, (15.29)

so that 1−Φ(t) ≡
∫ ∞

t φ(D)dD = φ(t)/µ and µ(t) ≡ φ(t)/ [1−Φ(t)] = µ. Hence,
instead of assuming an age-dependent instantaneous death probability—as Yaari
did—Blanchard assumes that the hazard rate is constant and independent of the
consumer’s age; it is as if agents enjoy a life of perpetual youth. This approach has
several advantages. First and foremost, it leads to optimal consumption rules that
are easy to aggregate across households. We are thus able to maintain a high level
of aggregation in the model despite the fact that the underlying population of con-
sumers is heterogeneous by age. Second, it follows from (15.29) that the expected
remaining lifetime of any agent is equal to 1/µ. By setting µ = 0, the Blanchard model
thus coincides with the representative-agent model studied extensively in Chapters
13–14.5

5Of course, the modelling simplification comes with a price tag. The main disadvantage of assum-
ing a constant instantaneous death probability is that it leads to a consumption model that—like the
representative-agent model—is at odds with the typical life-cycle consumption pattern observed in em-
pirical studies.
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15.3.1 Individual households

The first task at hand is to derive the expressions for consumption and savings for an
individual household at an arbitrary time during its life. Assume that the expected
utility function at time t of a consumer born at time v < t is given by E(Λ(v, t)):

E(Λ(v, t)) ≡
∫ ∞

t
[1−Φ(τ − t)] ln C(v, τ)e−ρ(τ−t)dτ

=
∫ ∞

t
ln C(v, τ)e−(ρ+µ)(τ−t)dτ, (15.30)

where we have used the (property of the) exponential distribution in (15.29) to de-
duce that 1− Φ(τ − t) = e−µ(τ−t). Furthermore, in going from (15.4) to (15.30) we
have assumed a logarithmic felicity function (featuring a unit intertemporal substi-
tution elasticity), and we have added indexes for the agent’s date of birth (v) and
the time to which the decision problem refers (t). Consequently, C(v, τ) stands for
planned consumption at time τ by an agent born at time v. The agent’s budget iden-
tity is:

Ȧ(v, τ) = [r(τ) + µ] A(v, τ) + w(τ)− T(τ)− C(v, τ), (15.31)

where r(τ) is the interest rate, w(τ) is the wage rate, T(τ) is the lump-sum tax levied
by the government, and A(v, τ) are real financial assets. Equation (15.31) incorpo-
rates the Yaari notion of actuarially fair life-insurance contracts and is a straight-
forward generalization of (15.16) with (15.15) substituted in. Specifically, during
life agents receive µA(v, τ) from the life-insurance company but at the time of the
agent’s death the entire estate A(v, τ) reverts to that company. To avoid the agent
from running a Ponzi game against the life-insurance company, the following sol-
vency condition must be obeyed (see also (15.17) above):

lim
τ→∞

e−RA(t,τ)A(v, τ) = 0, RA(t, τ) ≡
∫ τ

t
[r(s) + µ] ds. (15.32)

By combining (15.31) and (15.32) the household’s lifetime budget restriction is ob-
tained:

A(v, t) + H(t) =
∫ ∞

t
C(v, τ)e−RA(t,τ)dτ, (15.33)

where H(t) is the human wealth of the agent consisting of the present value of life-
time after-tax wage income using the annuity factor, RA(t, τ), for discounting:

H(t) ≡
∫ ∞

t
[w(τ)− T(τ)] e−RA(t,τ)dτ. (15.34)

Equation (15.33) is the counterpart to (15.17) above. Intuitively, it says that the
present value of the household’s consumption plan must be equal to the sum of
financial and human wealth.

The consumer maximizes expected lifetime utility (15.30) subject to its lifetime
budget restriction (15.33). The Lagrangian for this optimization problem is given by:

L ≡
∫ ∞

t
ln C(v, τ)e(ρ+µ)(t−τ)dτ +λ(t) ·

[
A(v, t) + H(t) −

∫ ∞

t
C(v, τ)e−RA(t,τ)dτ

]
,

(15.35)
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where λ(t) is the Lagrange multiplier associated with the lifetime budget restriction.
The first-order conditions are (15.33) and (for τ ≥ t):

1
C(v, τ)

e−(ρ+µ)(τ−t) = λ(t)e−RA(t,τ), (15.36)

where the optimized value for λ(t) represents the marginal expected lifetime utility
of wealth. Intuitively, the optimality condition (15.36) instructs the consumer to plan
consumption at each time to be such that the appropriately discounted marginal
utility of consumption (left-hand side) and wealth (right-hand side) are equated.6

For future reference we note that differentiation of (15.36) with respect to τ yields
the household’s Euler equation:

Ċ(v, τ)

C(v, τ)
= r(τ)− ρ. (15.37)

Just as in (15.18) above, the growth rate of individual consumption depends only
on the gap between the interest rate and the rate of time preference. The mortal-
ity rate does not affect individual consumption growth because of the existence of
actuarially fair annuities.

As it turns out, in the macroeconomic OLG model we also need to solve for the
consumption level in the planning period. By using (15.36) for the planning period
(τ = t) we see that 1/C(v, t) = λ(t). Using this result in (15.36), rearranging, and
integrating we can express C(v, t) in terms of total wealth:∫ ∞

t
C(v, t)e−(ρ+µ)(τ−t)dτ =

∫ ∞

t
C(v, τ)e−RA(t,τ)dτ

C(v, t)
ρ + µ

·
[
−e−(ρ+µ)(τ−t)

]∞

t
= A(v, t) + H(t) ⇔

C(v, t) = (ρ + µ) [A(v, t) + H(t)] , (15.38)

where we have used (15.33) in going from the first to the second line. Optimal con-
sumption in the planning period (τ = t) is proportional to total wealth. The marginal
propensity to consume out of total wealth is constant and equal to the “effective” rate
of time preference, ρ + µ.

15.3.2 Aggregate households

Now that we know what the consumption decisions for individual households look
like, the next task at hand is to describe the demographic structure of the Blanchard
model. To keep things simple, Blanchard assumes that at each instant in time a large
cohort of new agents is born. The size of this cohort of newborns is P(τ, τ) = βP(τ),
where P(τ) stands for the aggregate population size at time τ and β is the (crude)
birth rate. These newborn agents start their lives without any financial assets as they
are unlinked to any existing agents and thus receive no bequests, i.e. A(τ, τ) = 0.
Also to keep things simple, Blanchard assumes that the birth rate is equal to the
mortality rate, i.e. β = µ. Of course, at each instant in time a fraction of the existing
population dies. Since each individual agent faces an instantaneous probability of
death equal to µ and the number of agents P(τ) is large, by the law of large numbers

6See also the discussion following equation (13.10) and Intermezzo 13.3 above. We could have used
the method of optimal control to solve the household’s optimization problem.
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frequencies and probabilities coincide and the number of deaths at each instant will
be equal to µP(τ). Since births and deaths exactly match, the size of the population
is constant and can be normalized to unity (P(τ) = 1).7

Another very useful consequence of the large-cohort assumption is that we can
exactly trace the size of any particular cohort over time. For example, a cohort born
at time v will be of size µe−µ(t−v) at time t ≥ v, because µ[1− e−µ(t−v)] of the cohort
members will have died in the time interval [v, t]. Since we know the size of each
cohort it is possible to work with aggregate variables. For example, by aggregating
the consumption levels of all existing agents in the economy we obtain the following
expression for aggregate consumption at time t:

C(t) ≡ µ
∫ t

−∞
e−µ(t−v)C(v, t)dv. (15.39)

Of course, (15.39) is simply a definition and is not of much use in and of itself. But
because the optimal consumption rule (15.38) features a propensity to consume out
of total wealth which is independent of the generations index v, equation (15.39)
gives rise to a very simple aggregate consumption rule:

C(t) ≡ µ
∫ t

−∞
e−µ(t−v)(ρ + µ) [A(v, t) + H(t)] dv

= (ρ + µ)

[
µ
∫ t

−∞
e−µ(t−v)A(v, t)dv + µ

∫ t

−∞
e−µ(t−v)H(t)dv

]
= (ρ + µ) [A(t) + H(t)] , (15.40)

where aggregate financial wealth is defined analogously to aggregate consumption
(given in (15.39)). It cannot be overemphasized that the aggregation property follows
from the assumption that each agent faces a constant instantaneous death probability
(see the text below (15.29)). If instead the hazard rate varies with age—as in the Yaari
(1965) model—then the optimal household consumption rule no longer features a
generation-independent marginal propensity to consume out of total wealth, and
exact aggregation is impossible.

What does the aggregate asset accumulation identity look like? By definition we
have that A(t) ≡ µ

∫ t
−∞ e−µ(t−v)A(v, t)dv from which we derive (by application of

Leibnitz’s rule; see the Mathematical Appendix):

Ȧ(t) = µA(t, t)− µA(t) + µ
∫ t

−∞
Ȧ(v, t)e−µ(t−v)dv, (15.41)

where the first term on the right-hand side represents assets of newborns (A(t, t) =
0), the second term is the wealth of agents who die, and the third term is the change
in assets of existing agents. By substituting (15.31) into (15.41) and simplifying we
obtain the aggregate asset accumulation identity:

Ȧ(t) = −µA(t) + µ
∫ t

−∞

[
[r(t) + µ] A(v, t) + w(t)− T(t)− C(v, t)

]
e−µ(t−v)dv

= −µA(t) + [r(t) + µ] A(t) + w(t)− T(t)− C(t)
= r(t)A(t) + w(t)− T(t)− C(t). (15.42)

7Net population change can easily be incorporated in the Blanchard model by allowing the birth and
death rates to differ—see Buiter (1988) and the exercises to this chapter.
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Whereas (fully annuitized) individual wealth attracts the actuarial interest rate, r(t)+
µ, for agents that stay alive (see (15.31)), equation (15.42) shows that aggregate wealth
accumulates at the rate of interest, r(t). The amount µA(t) does not represent aggre-
gate wealth accumulation but is a transfer—via the life-insurance companies—from
those who die to those who remain alive.

In the formal analysis of the model it is useful to have an expression for the “ag-
gregate Euler equation”. It follows from (15.39) that:

Ċ(t) = µC(t, t)− µC(t) + µ
∫ t

−∞
Ċ(v, t)e−µ(t−v)dv. (15.43)

According to (15.38) newborn agents consume a fraction of their human wealth
at birth, i.e. C(t, t) = (ρ + µ)H(t). Equation (15.40) shows that aggregate con-
sumption is proportional to total (human and financial) wealth, i.e. C(t) = (ρ +
µ) [A(t) + H(t)]. Finally, as is shown in (15.37), individual households’ consump-
tion growth satisfies Ċ(v, τ)/C(v, τ) = r(τ)− ρ. By using all these results in (15.43)
and noting (15.39) we obtain the aggregate Euler equation modified for the existence
of overlapping generations of finitely lived agents:

Ċ(t)
C(t)

= r(t)− ρ− µ(ρ + µ)
A(t)
C(t)

(15.44)

=
Ċ(v, t)
C(v, t)

− µ · C(t)− C(t, t)
C(t)

. (15.45)

Equation (15.44) has the same form as the Euler equation for individual households
except for the correction term due to the distributional effects caused by the turnover
of generations. Optimal consumption growth is the same for all generations (since
they face the same interest rate) but older generations have a higher consumption
level than younger generations (since the former generations are wealthier). Since
existing generations are continually being replaced by newborns who hold no finan-
cial wealth, aggregate consumption growth falls short of individual consumption
growth. The correction term appearing on the right-hand side of (15.44) thus rep-
resents the difference in average consumption and consumption by newborns, i.e.
(15.44) can be re-expressed as in (15.45).

15.3.3 Firms

The production sector is characterized by a large number of firms that produce an
identical good under perfect competition. Output, Y(t), is produced according to
a linearly homogeneous technology with labour, L(t), and physical capital, K(t), as
homogeneous factor inputs which are rented from households:

Y(t) = F (K(t), L(t)) , (15.46)

where F(·) satisfies the usual Inada conditions (see Chapter 12). The stockmarket
value of the representative firm is:

V(t) =
∫ ∞

t
[Y(τ)− w(τ)L(τ)− I(τ)] e−R(t,τ)dτ, R(t, τ) ≡

∫ τ

t
r(s)ds, (15.47)

where I(t) denotes gross investment. The firm chooses labour and capital in order
to maximize (15.47) subject to the production function (15.46) and the capital accu-
mulation constraint:

K̇(t) = I(t)− δK(t), (15.48)
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Table 15.1. The Blanchard-Yaari model

Ċ(t) = [r(t)− ρ]C(t)− µ(ρ + µ) [K(t) + B(t)] (T1.1)

K̇(t) = Y(t)− C(t)− G(t)− δK(t) (T1.2)

Ḃ(t) = r(t)B(t) + G(t)− T(t) (T1.3)
r(t) + δ = FK (K(t), L(t)) (T1.4)

w(t) = FL (K(t), L(t)) (T1.5)
L(t) = 1 (T1.6)
Y(t) = F (K(t), L(t)) (T1.7)

Notes: C(t) is private consumption, G(t) is public consumption, Y(t) is output, K(t) is the
capital stock, L(t) is employment, B(t) is government debt, w(t) is the wage rate, T(t) is
lump-sum taxes, and r(t) is the interest rate. Capital depreciates at a constant rate δ, µ is the
death rate (assumed to equal the birth rate), and ρ is the pure rate of time preference.

where δ is the constant rate of depreciation of capital. There are no adjustment costs
associated with investment. The first-order conditions imply that the marginal pro-
ductivity of labour and capital equal the producer costs of these factors–see, respec-
tively, equations (T1.4) and (T1.5) in Table 15.1. Finally, we recall from Chapter 13
that the market value of the firm is equal to the replacement value of its capital stock,
i.e. V(t) = K(t).

15.3.4 Government and market equilibrium

The government budget identity is given in (T1.3) in Table 15.1. The government
consumes G(t) units of the good and levies lump-sum taxes on households T(t).
Government debt is B(t) so that r(t)B(t) is interest payments on outstanding debt.
Like the private sector, the government must remain solvent and obey a no-Ponzi-
game condition:

lim
τ→∞

e−R(t,τ)B(τ) = 0. (15.49)

By using (T1.3) and (15.49) the government budget restriction is obtained:

B(t) =
∫ ∞

t
[T(τ)− G(τ)] e−R(t,τ)dτ. (15.50)

Intuitively, government solvency means that if there is pre-existing government debt
(positive left-hand side) it must be covered in present-value terms by present and
future primary surpluses (positive right-hand side).

At each instant in time, factor and goods markets clear instantaneously. In this
closed economy households can only accumulate domestic assets so that, as a result,
financial market equilibrium requires that A(t) = K(t) + B(t). Wage flexibility en-
sures that the aggregate supply of labour (L(t) = 1) by households matches labour
demand by firms. Goods market equilibrium in this closed economy is obtained
when the supply of goods equals aggregate demand, which consists of private and
public consumption plus investment: Y(t) = C(t) + I(t) + G(t). The key equations
of the model have been gathered in Table 15.1.
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Figure 15.6: Phase diagram of the Blanchard-Yaari model

15.3.5 Phase diagram

In order to illustrate some of the key properties of the model we now derive the
phase diagram in Figure 15.6. We assume for simplicity that lump-sum taxes, gov-
ernment consumption, and public debt are all zero in the initial situation (T(t) =
G(t) = B(t) = 0). The K̇(t) = 0 line represents points in (C, K)-space for which
the capital stock is in equilibrium. The Inada conditions (see Chapter 12) ensure
that it passes through the origin and is vertical there (see point A1 in Figure 15.6).
Golden-rule (GR) consumption occurs at point A2 where the K̇(t) = 0 line reaches
its maximum:(

dC(t)
dK(t)

)
K̇(t)=0

= 0: rGR ≡ FK(KGR, 1)− δ = 0. (15.51)

The maximum attainable capital stock, KMAX , occurs at point A3, where consump-
tion is zero and total output is used for replacement investment (F

(
KMAX , 1

)
=

δKMAX). For points above (below) the K̇(t) = 0 line consumption is too high (too
low) to be consistent with a capital stock equilibrium and consequently net invest-
ment is negative (positive). This has been indicated by horizontal arrows in Figure
15.6.

The derivation of the Ċ(t) = 0 line is a little more complex because its position
and slope depend on the interplay between effects due to capital scarcity and those
attributable to intergenerational-distribution effects. By using (15.44), and setting
Ċ(t) = 0 and A(t) = K(t) (as B(t) = 0) we find the mathematical expression for the
Ċ(t) = 0 line:

C(t) =
µ(ρ + µ)K(t)

r(t)− ρ
. (15.52)

Recall from Chapter 13 that the “Keynes-Ramsey” (KR) capital stock, KKR, is such
that the rate of interest equals the exogenously given rate of time preference, i.e.
rKR ≡ FK(KKR, 1)− δ = ρ. Since KGR is associated with a zero interest rate and there
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are diminishing returns to capital (FKK < 0), KKR lies to the left of the golden-rule
point as is indicated in Figure 15.6. Furthermore, for points to the left (right) of the
dashed line, capital is relatively scarce (abundant), and the interest rate exceeds (falls
short of) the pure rate of time preference.

When agents have finite lives (µ > 0) the Ċ = 0 line is upward sloping because of
the turnover of generations. Its slope can be explained by appealing directly to equa-
tions (15.44) (with A = K as we set B = 0), (15.45), and Figure 15.6. Suppose that the
economy is initially on the Ċ = 0 curve, say at point E0. Now consider a lower level
of consumption, say at point B. With the same capital stock, both points feature the
same rate of interest. Accordingly, individual consumption growth, Ċ(v, t)/C(v, t)
[= r− ρ], coincides at the two points.

Expression (15.45) indicates, however, that aggregate consumption growth de-
pends not only on individual growth but also the proportional difference between
average consumption and consumption by a newly born generation, i.e. [C(t) −
C(t, t)]/C(t). Since newly born generations start without any financial capital, the
absolute difference between average consumption and consumption of a newly born
household depends on the average capital stock and is thus the same at the two
points. Since the level of aggregate consumption is lower at B (than it is at E0),
this point features a larger proportional difference between average and newly born
consumption, thereby decreasing aggregate consumption growth (i.e. Ċ(t) < 0). In
order to restore zero growth of aggregate consumption, the capital stock must fall (to
point C). The smaller capital stock not only raises individual consumption growth
by increasing the rate of interest but also lowers the drag on aggregate consumption
growth due to the turnover of generations because a smaller capital stock narrows
the gap between average wealth (i.e. the wealth of the generations that pass away)
and wealth of the newly born. In summary, for points above (below) the Ċ(t) = 0
line, the capital-scarcity effect dominates (is dominated by) the intergenerational-
redistribution effect, and consumption rises (falls) over time.8 This is indicated with
vertical arrows in Figure 15.6.

In terms of Figure 15.7, steady-state equilibrium is attained at the intersection of
the K̇(t) = 0 and Ċ(t) = 0 lines at point E0. Given the configuration of arrows, it
is clear that this equilibrium is saddle-point stable, and that the saddle path, SP, is
upward sloping and lies between the two equilibrium loci.

15.4 Basic model properties

15.4.1 Fiscal policy

As a first application of the Blanchard-Yaari model we now consider the effects
of a typical fiscal policy experiment, consisting of an unanticipated and perma-
nent increase in government consumption. We abstract from debt policy by assum-
ing that the government balances its budget by means of lump-sum taxes only, i.e.
Ḃ(t) = B(t) = 0 and G(t) = T(t) in equation (T1.3). We also assume that the econ-
omy is initially in a steady state and that the time of the shock is normalized to t = 0.

In terms of Figure 15.7, the K̇(t) = 0 line is shifted downward by the amount
of the shock dG. In the short run the capital stock is predetermined and the econ-
omy jumps from point E0 to A on the new saddle path SP1. Over time the economy

8Since the economy features positive initial assets (as K > 0), the Ċ = 0 line lies to the left of the dashed
line representing KKR and approaches this line asymptotically as C gets large (and the intergenerational-
redistribution effect gets small). If there is very little capital, the rate of interest is very high and the Ċ = 0
line is horizontal.
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Figure 15.7: Fiscal policy in the Blanchard-Yaari model

gradually moves from A to the new steady-state equilibrium at E1. As is clear from
the figure, there is less than one-for-one crowding out of private by public consump-
tion in the impact period, i.e. −1 < dC(0)/dG < 0. In contrast, there is more than
one-for-one crowding out in the long run, i.e. dC(∞)/dG < −1.

The reason for these crowding-out results is that the change in the lump-sum tax
induces an intergenerational redistribution of resources away from future towards
present generations (Bovenberg and Heijdra, 2002). At impact, all households cut
back on private consumption because the higher lump-sum tax reduces the value
of their human capital. Since households discount present and future tax liabilities
at the annuity rate (r(τ) + µ, see (15.34)) rather than at the interest rate, existing
households at the time of the shock do not feel the full burden of the additional taxes
and therefore do not cut back their consumption by a sufficient amount. As a result,
private investment is crowded out at impact (K̇(t) < 0 at point A) and the capital
stock starts to fall. This in turn puts downward pressure on before-tax wages and
upward pressure on the interest rate so that human capital falls over time. So, future
generations are poorer than newborn generations at the time of the shock because
they have less capital to work with and thus receive lower wages (since FLK > 0).

If the birth rate is zero (µ = 0) there is a single infinitely-lived representative con-
sumer and intergenerational redistribution is absent, and the Ċ(t) = 0 line is vertical
at KKR (where rKR ≡ FK(KKR, 1)− δ = ρ). Crowding out of consumption is one-for-
one, there is no effect on the capital stock, and thus there is no transitional dynamics.
In terms of Figure 15.7, the only effect on the economy consists of a downward jump
in consumption from point B to point C.
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15.4.2 Non-neutrality of government debt

The previous subsection has demonstrated that lump-sum taxes cause intergenera-
tional redistribution of resources in the Blanchard-Yaari model. This suggests that
Ricardian equivalence does not hold in this model, i.e. the timing of taxes is not
intergenerationally neutral and debt has real effects. Ricardian non-equivalence can
be demonstrated by means of some simple “bookkeeping” exercises (see also Section
13.7.3 above). The result that must be proved is that, ceteris paribus the time path of
government consumption (G(τ) for τ ≥ t), aggregate consumption (C(t)) depends
on pre-existing debt (B(t)) and the time path of taxes (T(τ) for τ ≥ t) (Buiter, 1988,
p. 285).

Total consumption is proportional to total wealth (see (15.40)) which can be writ-
ten as follows:

A(t) + H(t) ≡ K(t) + B(t) + H(t)

= K(t) + B(t) +
∫ ∞

t
[w(τ)− T(τ)] e−RA(t,τ)dτ

= K(t) +
∫ ∞

t
[w(τ)− G(τ)] e−RA(t,τ)dτ + Ω(t), (15.53)

where Ω(t) is defined as:

Ω(t) ≡
∫ ∞

t
[T(τ)− G(τ)] e−R(t,τ)dτ −

∫ ∞

t
[T(τ)− G(τ)] e−RA(t,τ)dτ. (15.54)

Note that in deriving (15.53), we have used the definition of human wealth (15.34) to
go from the first to the second line and the government budget restriction (15.50) to
get from the second to the third line. In view of (15.54) it follows that Ω(t) vanishes
if and only if the birth rate is zero and RA(t, τ) = R(t, τ). If the birth rate is positive,
Ω(t) is non-zero and Ricardian equivalence does not hold.

Recall that in the Blanchard-Yaari model the birth rate of new generations is equal
to the instantaneous death probability facing existing generations. As a result it is
not a priori clear which aspect of the model is responsible for the failure of Ricar-
dian equivalence. The analysis of Weil (1989b) provides the strong hint that it is the
arrival rate of new generations which destroys Ricardian equivalence (see Section
13.7.3 above). This suggestion was formally demonstrated by Buiter (1988) who in-
tegrates and extends the Blanchard-Yaari-Weil models by allowing for differential
birth and death rates (β and µ) and labour-augmenting technical change. In his mo-
del the population grows at an exponential rate n ≡ β − µ. Buiter (1988, p. 285)
demonstrates that a zero birth rate (β = 0) is indeed necessary and sufficient for
Ricardian equivalence to hold.

15.4.3 Economic growth

The standard Blanchard-Yaari model is an example of an exogenous growth model,
i.e. the capital stock per worker attains a unique steady-state value and, because the
population is constant, the steady-state growth rate is equal to zero. It is, however,
not difficult to formulate an endogenous growth version of the Blanchard-Yaari mo-
del (see Saint-Paul, 1992). Consider for example the case (studied in Section 14.2.2.1
above) in which microeconomic external effects between firms ensure that the macro-
economic production function is linear in the aggregate capital stock. In terms of Ta-
ble 15.1, equation (T1.7) is replaced by Y(t) = Z0K(t), (T1.4) becomes r(t) + δ = αZ0,
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and (T1.5) is changed to w(t) = (1− α)Y(t), where α is the efficiency parameter of
capital in the microeconomic production function and Z0 is a constant technology
index.

In the absence of government bonds, the AK-version of the Blanchard-Yaari mo-
del thus takes the following form:

Ċ(t)
C(t)

= r(t)− ρ− µ (ρ + µ)
K(t)
C(t)

, (15.55)

K̇(t)
K(t)

= (1− g) Z0 −
C(t)
K(t)

− δ, (15.56)

r(t) = αZ0 − δ, (15.57)

where we assume that G(t) = gY(t), with g representing a time-invariant fiscal
policy parameter (0 < g < 1). By defining the aggregate consumption-capital ratio,
θ(t) ≡ C(t)/K(t), we can use (15.55)–(15.57) to derive:

θ̇(t)
θ(t)

= − [(1− α− g) Z0 + ρ] + θ(t)− µ (ρ + µ)

θ(t)
. (15.58)

Equation (15.58) is an unstable differential equation in θ(t), and the only economi-
cally sensible solution is for θ(t) to coincide with its steady-state value at all times,
i.e. θ(t) = θ∗ for all t. The macroeconomic consumption-capital ratio is constant
because it is constant at the individual level also.

In Figure 15.8 we characterize the steady-state consumption-capital ratio and the
macroeconomic growth rate. The curve labelled EEBY expresses the growth rate of
consumption γC(t) ≡ Ċ(t)/C(t) as a function of θ(t). The growth expression is
obtained by substituting (15.57) into (15.55). Clearly, the EEBY curve features a ver-
tical asymptote for θ (t) → 0 and a horizontal asymptote for θ (t) → ∞. Because µ
is positive in the Blanchard-Yaari model, EEBY lies below the consumption growth
equation for the representative-agent model, EERA. The EERA curve itself is horizon-
tal because it does not feature a generational turnover term.

The curve labelled CA0 is the (initial) capital accumulation locus, expressing
γK(t) ≡ K̇(t)/ K(t) as a downward sloping function of θ(t). The initial equilib-
rium for the Blanchard-Yaari model is at point E0, the consumption-capital ratio is
θ∗0 , and the growth rate is γ∗0 . In contrast, in the representative-agent model, the
equilibrium is at E′, a point which features a lower consumption-capital ratio and
a higher growth rate. We thus find immediately that the existence of overlapping
generations slows down economic growth.

The comparative static effects are also easy to deduce with the aid of Figure
15.8. An increase in the government consumption share, g, moves the capital ac-
cumulation locus to the left, from CA0 to CA1, and shifts the equilibrium to E1 in
the Blanchard-Yaari model. The increase in taxes prompts agents to reduce their
consumption-capital ratios and the growth rate falls. Of course, in the representative-
agent model nothing happens to economic growth at all. We leave as an exercise to
the reader to show that increases in ρ and µ both lead to a reduction in the rate of
growth.

15.4.4 Dynamic efficiency

As is clear from Figure 15.6, the steady-state capital stock in the standard Blanchard-
Yaari model is strictly less than the golden rule stock, i.e. KBY < KGR, no oversaving
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Figure 15.8: Endogenous growth in the Blanchard-Yaari model

takes place, and the Blanchard-Yaari model thus yields a dynamically efficient equi-
librium. In its basic form, the model assumes that agents face the same wage income
during their entire life, i.e. there is no reason to save early on in life to compensate
for low (or absent) wage income during old age.

In this section we augment the Blanchard-Yaari model somewhat by assuming
that agents face a downward sloping path of wage income due to the fact that their
labour productivity falls with age. In doing so, we introduce a strong motive to save
for low income later on in life. Recall that in the standard Blanchard-Yaari model
labour supply is exogenous and workers of all ages have the same productivity, i.e.
a 60-year old worker produces the same amount of output in a unit of time as his
25-year old colleague does. We now consider what happens if worker productivity
is age-dependent. To keep things simple, we assume that agents supply one unit of
“raw” labour throughout their lives but that the productivity of their labour declines
exponentially with age.

With age-dependent productivity, the aggregate production function (15.46) is
replaced by:

Y(t) = F(K(t), N(t)), (15.59)

where N(t) is the aggregate labour input in efficiency units:

N(t) ≡
∫ t

−∞
N(v, t)dv =

∫ t

−∞
E(t− v)L(v, t)dv. (15.60)

In this equation, E(t− v) represents the efficiency of a worker of generation v at time
t (whose age at time t is thus t− v), and L(v, t) is the total number of raw labour units
supplied by generation-v workers at time t. Since all workers supply one unit of raw
labour during life, and generations die at a proportional rate µ, it follows that:

L(v, t) = e−µ(t−v)L(v, v) = µe−µ(t−v). (15.61)
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We assume that efficiency falls exponentially with the age of the worker:

E(t− v) ≡ δe + µ

µ
e−δe(t−v), (15.62)

where δe > 0 is the proportional rate at which worker productivity declines with
age (note that the first term on the right-hand side represents a convenient normal-
ization). According to (15.62), a 20-year old worker is e10δe times as productive as a
30-year old worker. By substituting (15.61)–(15.62) into (15.60) and integrating we
derive that the aggregate supply of labour in efficiency units equals unity:

N(t) =
∫ t

−∞

δe + µ

µ
e−δe(t−v)µe−µ(t−v)dv = 1. (15.63)

The objective function of the representative firm is changed from (15.47) to:

V(t) =
∫ ∞

t

[
F(K(τ), N(τ))−

∫ τ

−∞
w(v, τ)L(v, τ)dv− I(τ)

]
e−R(t,τ)dτ, (15.64)

where N(τ) ≡
∫ t
−∞ E(τ − v)L(v, τ)dv and the capital accumulation constraint is

given in (15.48). The firm hires raw units of labour from all age groups in the
economy (L(v, τ)) but pays an age-dependent wage (w(v, τ)) because it knows that
labour productivity depends on age. The first-order conditions for an optimum are:

r(τ) + δ = FK(K(τ), N(τ)), (15.65)

w(τ) =
w(v, τ)

E(τ − v)
= FN(K(τ), N(τ)). (15.66)

Ceteris paribus the aggregate capital-effective-labour ratio (K(τ)/N(τ)), the wage
rate declines with the age of the worker—see equation (15.66). Hence, even in the
steady state, households will face a downward-sloping profile of wage income over
their lives. Since households want to consume both when they are young and when
they are old, they formulate their savings decisions during youth, taking into ac-
count that they will have little or no labour income later on in life. As Blanchard
(1985, p. 235) points out, a declining path of labour income loosely captures the
notion of “saving for retirement”.

To keep things simple, we assume that the household has a logarithmic felicity
function and maximizes lifetime utility (given in (15.30) above) subject to the budget
identity (15.31) (with w(τ) replaced by w(v, τ)) and the solvency condition (15.32).
Abstracting from government taxes and transfers, private consumption in the plan-
ning period is:

C(v, t) = (ρ + µ) [A(v, t) + H(v, t)] , (15.67)

where human wealth, H(v, t) (for v ≤ t), is now age-dependent:9

H(v, t) ≡
∫ ∞

t
w(v, τ)e−RA(t,τ)dτ

9In going from the first to the second line we make use of the fact that w(v, τ) can be rewritten as:

w(v, τ) =
δe + µ

µ
e−δe(τ−v)w(τ),

where w(τ) = FN(·, ·) is the rental rate on efficiency units of labour. To get from the third to the fourth
line we have used the definition of RA(t, τ) as given in (15.32).
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=
δe + µ

µ
·
∫ ∞

t
e−δe(τ−v)w(τ)e−RA(t,τ)dτ

=
δe + µ

µ
·
∫ ∞

t
e−δe(t−v)w(τ)e−RA(t,τ)−δe(τ−t)dτ

≡ e−δe(t−v)H(t, t), (15.68)

where H(t, t) is the human wealth of a newborn at time t:

H(t, t) ≡ δe + µ

µ
·
∫ ∞

t
w(τ)e−

∫ τ
t [r(s)+µ+δe ]dsdτ. (15.69)

Equation (15.68) shows that the human wealth falls with age. For a very old agent,
t− v is large, e−δe(t−v) is small, and thus H(v, t) is small also. Equation (15.69) shows
that the human wealth of a newborn is the (scaled) present value of wages, using the
annuity interest rate plus the rate of decline in wages for discounting, i.e. r (s) + µ +
δe features in the discounting factor on the right-hand side. Note finally that, for the
case with δe = 0, the expressions in (15.68)–(15.69) reduce to (15.34) (with T(τ) = 0
imposed).

Aggregate human wealth in the economy is given by:

H(t) ≡ µ
∫ t

−∞
eµ(v−t)H(v, t)dv = H(t, t)

∫ t

−∞
µe(δe+µ)(v−t)dv

=
µ

δe + µ
H(t, t)

=
∫ ∞

t
w(τ)e−

∫ τ
t [r(s)+δe+µ]dsdτ, (15.70)

where we have used (15.69) to arrive at the final expression. The important lesson
to be drawn from (15.70) is that the decline in the labour income of individual gen-
erations results in a higher discounting of future aggregate labour income in the
definition of aggregate human wealth. Not only do current generations face a risk of
dying but they also get a smaller share of aggregate wage income as they get older.

In summary, the aggregate household model developed in this subsection is given
by:

C(t) = (ρ + µ) [A(t) + H(t)] , (15.71)

Ȧ(t) = r(t)A(t) + w(t)− C(t), (15.72)

Ḣ(t) = [r(t) + δe + µ] H(t)− w(t). (15.73)

By differentiating (15.71) with respect to t and substituting (15.72)–(15.73) as well as
(15.71) itself to eliminate H(t) we obtain the Euler equation for aggregate consump-
tion:

Ċ(t)
C(t)

= [r(t) + δe − ρ]− (δe + µ)(ρ + µ)
A(t)
C(t)

. (15.74)

This expression reduces to the Euler equation for the standard Blanchard-Yaari mo-
del (given in equation (15.44)) if productivity is constant throughout life and δe = 0.

The dynamical system characterizing the economy is:

Ċ(t) =
[
FK(K(t), 1) + δe − (ρ + δ)

]
C(t)− (δe + µ)(ρ + µ)K(t) (15.75)

K̇(t) = F(K(t), 1)− C(t)− δK(t), (15.76)
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Figure 15.9: Dynamic inefficiency and declining productivity

where we assume that government debt and consumption are both zero (B(t) =
G(t) = 0). Equation (15.75) is obtained by substituting A(t) = K(t), (15.63), and
(15.65) into the aggregate Euler equation (15.74). Equation (15.76) is simply the stan-
dard expression for capital accumulation in the absence of government consump-
tion.

Figure 15.9 shows the phase diagram for the model given in (15.75)–(15.76). We
make the usual Inada-style assumptions regarding the production function. In Fig-
ure 15.9, the K̇(t) = 0 line and the dashed [Ċ(t) = 0]C line reproduce the equilibrium
loci for the standard Blanchard-Yaari model illustrated in Figure 15.6. Point A is the
standard Blanchard-Yaari (BY) equilibrium for which the steady-state capital stock
is KBY. The golden-rule capital stock (KGR, for which consumption is at its maxi-
mum) is defined in (15.51). Since KBY < KGR the standard Blanchard-Yaari model
is dynamically efficient. Now consider the effects of declining productivity. It is clear
from (15.76) that the K̇(t) = 0 line is not affected by δe. It follows from (15.75), how-
ever, that the Ċ(t) = 0 line rotates in a clockwise fashion around the origin as δe is
increased. If δe is not very large then the relevant Ċ(t) = 0 line will intersect the
K̇(t) = 0 line along the line segment AB and the equilibrium will still be dynam-
ically efficient. There is nothing, however, preventing the occurrence of dynamic
inefficiency as depicted in Figure 15.9,10 where the solid [Ċ(t) = 0]D line intersects
the K̇(t) = 0 line at point C. The equilibrium at that point is saddle-point stable but
there is overaccumulation of capital. Intuitively, because labour income is high early
on in life, but falls rapidly with age, agents save a lot during youth as a result of
which the aggregate capital stock can become too large.

10In Figure 15.9, K1 is such that r1 ≡ FK(K1, 1) − δ = ρ − δe so a necessary condition for dynamic
inefficiency to occur is δe > ρ (so that r1 < 0). Abel et al. (1989) show how to test empirically for dynamic
inefficiency. Their results suggest that the US economy is dynamically efficient.
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15.4.5 Small open economy

As a final application we now consider how the Blanchard-Yaari approach can be
used to model the open economy. In the interest of space we restrict attention to
the case of a small open economy in a single-product world in which financial cap-
ital is perfectly mobile. Domestic agents can lend to (or borrow from) the rest of
the world at an exogenous (and constant) world interest rate, r̄. The open economy
Blanchard-Yaari model features a well-defined (and non-hysteretic) steady-state be-
cause of the existence of the generational turnover effect. Depending on parameter
settings, we can distinguish between creditor nations (inhabited by relatively patient
consumers) and debtor nations (with impatient consumers). In the knife-edge case,
with the interest rate equalling the pure rate of time preference (r̄ = ρ), the model
is still saddle-point stable. This is in stark contrast with the open economy Ramsey
model (see Chapter 13), for which r̄ = ρ is not only a necessary existence condition,
but also provides the steady state with hysteretic features. Hence, the main conclu-
sion from this section is that the overlapping generations model provides a richer
framework to study small open economies.

Just as in the open economy Ramsey-Cass-Koopmans model, adjustment costs on
investment are needed to limit the international mobility of physical capital. In order
to focus on the key mechanisms, however, we follow Blanchard (1985, pp. 230–231)
and abstract from physical capital altogether. The production function is thus given
by:

Y(t) = Z(t)L(t), (15.77)

where Z(t) is an exogenous (but potentially time-varying) index of technological
change. Perfectly competitive firms equate the marginal product of labour to the
wage rate, so we find immediately that w(t) = Z(t). Aggregate labour supply is
exogenous (L(t) = 1) so Z(t) also stands for aggregate output in the economy. In
the absence of domestic financial assets (such as government bonds and domestic
shares), domestic households can only accumulate foreign assets, the stock of which
we denote by AF (t). The aggregate economy is characterized by the following two
equations:

Ċ(t) = (r̄− ρ)C(t)− µ(ρ + µ)AF(t), (15.78)

ȦF(t) = r̄AF(t) + Z(t)− C(t), (15.79)

where (15.78) is the aggregate consumption Euler equation and (15.79) is the current
account.

In order to study the stability issue, we write the model in a single matrix expres-
sion as:[

Ċ(t)
ȦF(t)

]
=

[
r̄− ρ −µ(ρ + µ)
−1 r̄

] [
C(t)

AF(t)

]
+

[
0

Z(t)

]
. (15.80)

Denoting the Jacobian matrix on the right-hand side by ∆, we easily find that its
determinant is equal to:

|∆| = r̄(r̄− ρ)− µ(ρ + µ). (15.81)

For the case with µ > 0, it is easy to demonstrate that, provided a feasible steady state
exists, it must be saddle-point stable. Indeed, Ċ(t) = 0 implies that C = µ(ρ +
µ)AF/(r̄− ρ) whereas ȦF(t) = 0 implies that C− r̄AF = Z0 (where Z0 is the given
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level of Z(t)). Using both results in (15.81) we find that |∆| = −µ(ρ + µ)Z0/C <
0. Since |∆| is the product of the characteristic roots, we thus find that these roots
must be of opposite sign, i.e. one is negative (stable) and the other one is positive
(unstable). The key thing to note is that we have not assumed anything yet about the
sign of r̄− ρ!

We can now look at several special cases of the model: (a) the creditor nation
(r̄ > ρ), (b) the debtor nation (r̄ < ρ), (c) the non-saving nation (r̄ = ρ), and (d) the
representative-agent knife-edge case (r̄ = ρ and µ = 0). In each case we study the
effects of (permanent or temporary) productivity shocks.

15.4.5.1 Creditor nation (r̄ > ρ)

The phase diagram for the case of patient domestic agents (r̄ > ρ) is given in Figure
15.10. It follows from (15.78) that the Ċ(t) = 0 line is an upward sloping line from
the origin:

C(t) =
µ(ρ + µ)

r̄− ρ
AF(t). (15.82)

For points above (below) the line, the generational turnover effect is relatively weak
(strong) so that consumption rises (falls) over time—see the vertical arrows in Figure
15.10. Similarly, by using (15.79) we find that the ȦF(t) = 0 line is also upward
sloping:

C(t) = r̄AF(t) + Z0, (15.83)

where Z0 is the initial level of Z(t). For points above (below) the line, consumption
is relatively high (low), saving is relatively low (high), and the stock of foreign assets
falls (rises) over time—see the horizontal arrows in Figure 15.10. If the ȦF (t) = 0
line were steeper than the Ċ(t) = 0 line, no feasible steady-state equilibrium would
exist (the lines would intersect in the third quadrant and consumption would be neg-
ative, which is impossible). Hence, the stability condition of the model requires the
ȦF (t) = 0 line to be flatter than the Ċ(t) = 0 line, i.e. r̄ < µ (ρ + µ) / (r̄− ρ) which
is—of course—the result that guarantees saddle-path stability. In terms of Figure
15.10, the steady state is at point E0, consumption is C0, and domestic residents have
a net claim on the rest of the world, AF0 > 0.

The effects of an unanticipated and permanent productivity shock are studied in
Figure 15.11. At time t = 0, Z(t) jumps from Z0 to Z1, and the current account locus
shifts from (ȦF(t) = 0)0 to (ȦF(t) = 0)1. At impact, the stock of net foreign assets is
predetermined and the economy jumps from E0 to point A on the new saddle path,
SP1. During transition, the economy gradually moves from A to the new steady-
state equilibrium at E1. Both consumption and net foreign assets increase in the long
run.

What is the economic intuition behind the transitional dynamic effects? The im-
pact effect is easy to understand: all pre-shock agents (v ≤ 0) experience an equal
increase in the level of their human wealth, H (0), which is given by:

H (0) ≡
∫ ∞

0
Z(τ)e−(r̄+µ)τdτ. (15.84)

It is easy to verify that, since dZ(τ) = dZ for τ ≥ 0, the impact change in human
wealth equals dH (0) = dZ ·

∫ ∞
0 e−(r̄+µ)τdτ = dZ/ (r̄ + µ). We thus find that:

dC (v, 0)
dZ

= (ρ + µ)
dH (0)

dZ
=

ρ + µ

r̄ + µ
> 0, (15.85)
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Figure 15.10: A patient small open economy

dȦF (v, 0)
dZ

= 1− ρ + µ

r̄ + µ
=

r̄− ρ

r̄ + µ
> 0, (15.86)

where we have used (15.31) (with A = AF, w = Z, and T = 0 imposed), (15.84),
(15.38), and (15.40). Pre-shock agents react to the increase in human wealth by
increasing both their consumption and their savings rate. During transition, new
(wealthier) generations are born who choose higher consumption and saving levels
than pre-shock agents did at birth. In fact, it is easy to verify that dC (t, t) /dZ =
dC (v, 0) /dZ and dȦF (t, t) /dZ = dȦF (v, 0) /dZ so pre-shock and post-shock gen-
erations react in the same way. As a result, both aggregate consumption and net
foreign assets rise. Finally, in the new steady-state only post-shock generations re-
main, which explains why transition is completed at that point.

15.4.5.2 Debtor nation (r̄ < ρ)

The phase diagram for the debtor nation is given in Figure 15.12. In this case the
Ċ(t) = 0 line is a downward sloping line from the origin because r̄ < ρ—see
equation (15.82). Because net foreign assets are negative in the second quadrant
(AF (t) < 0), the generational turnover term operates in the opposite direction. Ag-
gregate consumption growth exceeds individual consumption growth because new-
borns consume more than older agents in this case. It follows from (15.78) that ag-
gregate consumption rises (falls) over time for points below (above) the Ċ(t) = 0
locus—see the vertical arrows in Figure 15.12. The model features a unique, saddle-
path stable steady state at point E0. The reader is asked to verify that an unantici-
pated and permanent productivity increase would move the steady state in a north-
westerly direction, say to point E1. At impact, consumption overshoots its long-run
effect.
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Figure 15.11: A productivity shock

Figure 15.12: An impatient small open economy
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Figure 15.13: A temporary productivity shock in a non-saving nation

15.4.5.3 Non-saving nation (r̄ = ρ)

The phase diagram for the non-saving nation is given in Figure 15.13. In this case we
find from (15.78) that:

Ċ(t) = −µ (ρ + µ) AF, (15.87)

so the Ċ(t) = 0 line coincides with the vertical axis. Consumption rises (falls) over
time for points to the left (right) of the vertical axis. Of course, as we demonstrated
formally above, the model still features a unique steady state (at point E0) that is
saddle-point stable. Both aggregate and individual net foreign assets are zero in the
steady state (AF (v, 0) = AF (0) = 0). Because r̄ = ρ, all agents maintain a time-
invariant consumption pattern (Ċ (v, t) = 0). Facing a constant wage income, they
neither save nor dissave.

As is clear from (15.85)–(15.86), an unanticipated and permanent productivity
increase induces all pre-shock agents to increase their consumption on a one-for-one
basis (dC (v, 0) /dZ = 1) but has no effect on saving (dȦF (v, 0) /dZ = 0). All post-
shock agents are identical to pre-shock agents, so there is no transitional dynamic
effect at all. The equilibrium jumps at impact from E0 to E1 directly above it.

Next we consider an unanticipated and temporary increase in productivity, i.e.
dZ(t) = dZ for 0 ≤ t ≤ tE and dZ(t) = 0 for t > tE. Using the heuristic solution
principle (see also Section 4.1.2 above) we deduce that the adjustment path has the
following features:

• At time t = 0, the current account locus shifts from (ȦF(t) = 0)0 to (ȦF(t) =
0)1. The arrows denote the dynamics implied by point E1. The stock of net
foreign assets is predetermined, but there is an jump in aggregate consumption
which moves the economy from E0 to A.

• During the time interval 0 ≤ t ≤ tE there is a gradual move from A to B. Ag-
gregate consumption falls but net foreign assets increase. The nation is saving
temporarily.
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• At time t = tE, productivity returns to its former level and the current account
locus shifts back to (ȦF(t) = 0)0, as does the associated saddle path SP0.

• For t > tE, the economy moves gradually from B to E0. Both consumption and
foreign assets fall during transition. There is no long-run effect of the tempo-
rary productivity shock.

The economic intuition behind the adjustment path is easy to deduce. Pre-shock
agents (v ≤ 0) hold no financial assets and change their consumption and savings
according to:

dC (v, 0)
dZ

= (ρ + µ)
dH (0)

dZ
> 0,

dȦF (v, 0)
dZ

=
dZ (0)

dZ
− dC (v, 0)

dZ
. (15.88)

In contrast, post-shock newborns (v = t > 0) change their plans according to:

dC (t, t)
dZ

= (ρ + µ)
dH (t)

dZ
,

dȦF (t, t)
dZ

=
dZ(t)

dZ
− dC (t, t)

dZ
. (15.89)

Given the form of the shock we find that dZ(τ)/dZ = 1 for 0 ≤ τ ≤ tE and
dZ(τ)/dZ = 0 for τ > tE. Hence, the human wealth change is given by:11

dH(t)
dZ

=

 1− e(ρ+µ)(t−tE)

ρ + µ
for 0 ≤ t ≤ tE

0 for t > tE.
(15.90)

Armed with these expressions we see that pre-shock generations benefit the most
from the shock, and consequently increase their consumption by the largest amount,
i.e. dC (v, 0) /dZ = 1− e−(ρ+µ)tE > 0 and dȦF (v, 0) /dZ = e−(ρ+µ)tE > 0. These
generations accumulate net foreign assets because they know that their income is
only temporarily higher than before and they want to maintain a time-invariant con-
sumption profile. The assets allow them to do so.

Post-shock generations born in the interval 0 ≤ t ≤ tE also increase their con-
sumption and savings, though by less than pre-shockers because they face a shorter
period of high income, i.e. dC (t, t) /dZ = 1− e(ρ+µ)(t−tE) > 0 and dȦF (t, t) /dZ =

e(ρ+µ)(t−tE) > 0. This explains why aggregate consumption falls during the transi-
tion from A to B. Consumption of newborns is lower than the average consumption
in the economy.

Finally, post-shock generations born at time tE face exactly the same conditions as
in the initial steady state, i.e. for them dC (t, t) /dZ = dȦF (t, t) /dZ = 0. Since both
pre-shock generations and post-shock generations born in the interval 0 ≤ t ≤ tE
start to decumulate their financial assets after time tE, transition from B to E0 fea-
tures falling aggregate consumption and financial assets. In the new steady state,
the temporary savers have all died off and the economy returns to the initial equilib-
rium at point E0.

11Human wealth at time t is defined as:

H(t) ≡
∫ ∞

t
Z(τ)e(r̄+µ)(t−τ)dτ.

For the temporary shock we have dZ(τ) = dZ for 0 ≤ τ ≤ tE and dZ(τ) = 0 otherwise. Hence, for
0 ≤ t < tE we find that dH(t) is equal to:

dH(t) ≡ dZ ·
∫ tE

t
e(r̄+µ)(t−τ)dτ =

dZ
r∗ + µ

·
[
1− e(r̄+µ)(t−tE)

]
.

Fot t ≥ tE, the shock has already passed and dH(t) = 0.
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15.4.5.4 Representative-agent model (r̄ = ρ and µ = 0)

As a final case we consider the open economy Ramsey model, for which µ = 0
(no new generations and no mortality) and r̄ = ρ (knife-edge condition). It follows
from (15.78) that the aggregate (and individual) Euler equation is given by Ċ(t) = 0.
In view of (15.80)–(15.81) we find that the model features one positive root (λ2 =
r̄ = ρ) and one zero root (λ1 = 0). Clearly we cannot employ our usual graphical
apparatus because we are lacking an informative Ċ(t) = 0 locus in this case. In terms
of Figure 15.14, we only have an expression for ȦF(t) = 0 and all we know is that
the equilibrium will be somewhere along that locus.

In order to deduce the properties of the model, we first note that the national
solvency condition (coinciding in the absence of a government with the household
lifetime budget constraint) says:

AF0 =
∫ ∞

0
[C(t)− Z(t)] e−ρtdt, (15.91)

where AF0 is the initial level of net foreign assets which may or may not be equal to
zero. The magnitude of AF0 is based on decisions that were made in the past! But
the representative agent wishes to maintain a flat consumption profile (Ċ(t) = 0 and
C (t) is time-invariant), so (15.91) can be solved for C (0):

C(0) = ρ

[
AF0 +

∫ ∞

0
Z(t)e−ρtdt

]
. (15.92)

An unanticipated and permanent productivity increase raises consumption on a one-
for-one basis, dC (0) /dZ = 1. In Figure 15.14 the current account locus shifts from
(ȦF(t) = 0)0 to (ȦF(t) = 0)1. If the initial equilibrium happens to be at E0, where
AF0 = 0, the equilibrium shifts from E0 to E1 at impact. (If AF0 is non-zero, the
initial equilibrium would be located somewhere else along the (ȦF(t) = 0)0 curve
but the effect on consumption would be exactly the same.) Following the jump in
consumption, there is no further transitional dynamics at all.

It follows from (15.92) that an unanticipated and temporary productivity shock
of the form studied above changes consumption and savings at impact according to:

dC (0)
dZ

= 1− e−ρtE > 0,
dȦF (0)

dZ
= e−ρtE > 0. (15.93)

In terms of Figure 15.14, the economy jumps from E0 to A at impact. Since A lies to
the right of the (ȦF(t) = 0)1 line, net foreign assets increase because output exceeds
consumption, and net exports take place. In the interval 0 ≤ t ≤ tE, ȦF(t) is there-
fore positive but Ċ (t) = 0 so the economy moves in a horizontal direction from A to
B, where it arrives at time tE. After time tE, productivity and human wealth are back
to their initial levels but consumption is permanently higher despite the fact that the
shock was temporary. The higher consumption level can be sustained by the repre-
sentative agent because he has accumulated net foreign assets, the interest earnings
on which can be consumed. The final (hysteretic) steady state is thus at point B.12

15.5 Endogenous labour supply

As we have seen throughout the book, an endogenous labour supply response often
plays a vital role in various macroeconomic theories. In Chapter 13, for example, it

12The effects of an unanticipated and permanent shock are obtained from (15.93) by setting tE → ∞.



CHAPTER 15: OVERLAPPING GENERATIONS IN CONTINUOUS TIME 585

Figure 15.14: A temporary productivity shock in the RA model

was demonstrated that the intertemporal substitutability of household leisure forms
one of the key mechanisms determining the impact and long-run effects of fiscal
policy. The aim of this section is therefore to extend the basic Blanchard-Yaari model
by allowing for an endogenous labour supply decision of the households. We fol-
low Heijdra and Ligthart (2000) by introducing various taxes and assuming simple
functional forms for preferences and technology in order to keep the discussion as
simple as possible. We analyse the effects of a consumption tax in order to demon-
strate some of the key properties of the model.

15.5.1 Model elements

Assume that the (expected-remaining-lifetime) utility function used so far (see (15.30))
is replaced by:

E(Λ(v, t)) ≡
∫ ∞

t
ln
(

C(v, τ)ε [1− L(v, τ)]1−ε
)

e(ρ+µ)(t−τ)dτ, (15.94)

with 0 < ε ≤ 1. Leisure is defined as the consumer’s time endowment (which is
normalized to unity) minus labour supply, L(v, τ). Note that (15.30) is obtained as a
special case of (15.94) by setting ε = 1. Since labour supply is now endogenous and
we include various taxes, the agent’s budget identity (15.31) is replaced by:

Ȧ(v, τ) = [r(τ) + µ] A(v, τ) + w(τ)(1− tL) + TR(τ)− X(v, τ), (15.95)
X(v, τ) ≡ (1 + tC)C(v, τ) + w(τ)(1− tL) [1− L(v, τ)] , (15.96)

where X(v, τ) represents full consumption, i.e. the sum of spending on goods con-
sumption and leisure, tC is a proportional tax on private consumption, tL is a pro-
portional tax on labour income, and TR(τ) are age-independent transfers received
from the government. The household’s solvency condition is still given by (15.32).

Following Marini and van der Ploeg (1988) we solve the household’s optimiza-
tion problem by using two-stage budgeting. We have encountered this technique sev-
eral times before in this book, albeit in the context of static models—see for example
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Chapters 2 and 11. The procedure is, however, essentially the same in dynamic mod-
els. Intuitively the procedure works as follows. In the first stage we determine how
the consumer chooses an optimal mix of consumption and leisure conditional upon
a given level of full consumption (X(v, τ)). Then, in the second stage, we determine
the optimal time path for full consumption itself. The procedure is valid provided
the utility function is intertemporally separable.13

In stage 1 the consumer chooses C(v, τ) and 1 − L(v, τ) in order to maximize
instantaneous felicity, ln

[
C(v, τ)ε[1− L(v, τ)]1−ε

]
, given the restriction (15.96) and

conditional upon the level of X(v, τ). This optimization problem yields the familiar
first-order condition calling for the equalization of the marginal rate of substitution
between leisure and consumption and the relative price of leisure and consumption:

C(v, τ)

1− L(v, τ)

1− ε

ε
= w(τ)

1− tL
1 + tC

. (15.97)

By substituting (15.97) into (15.96), we obtain expressions for consumption and leisure
in terms of full consumption:

(1 + tC)C(v, τ) = εX(v, τ), (15.98)
w(τ)(1− tL) [1− L(v, τ)] = (1− ε)X(v, τ). (15.99)

Since sub-felicity—the term in round brackets in (15.94)—is Cobb-Douglas and thus
features a unit substitution elasticity, spending shares on consumption and leisure
are constant. To prepare for the second stage we substitute (15.98)–(15.99) into the
lifetime utility functional (15.94) to obtain the following expression:

E(Λ(v, t)) ≡
∫ ∞

t
[ln X(v, τ)− ln PΩ(τ)] e(ρ+µ)(t−τ)dτ, (15.100)

where PΩ(τ) is a true cost-of-living index relating sub-felicity to full consumption:

PΩ(τ) ≡
(

1 + tC
ε

)ε (w(τ)(1− tL)

1− ε

)1−ε

. (15.101)

In stage 2, the consumer chooses the path of full consumption in order to maxi-
mize (15.100) subject to the dynamic budget identity (15.95) and the solvency con-
dition (15.32). This problem is essentially the same as the one that was solved in
section 15.3.1 above so it should therefore not surprise the reader that the solution
takes the following form:

X(v, t) = (ρ + µ) [A(v, t) + H(t)] , (15.102)

Ẋ(v, τ)

X(v, τ)
= r(τ)− ρ, (for τ ≥ t), (15.103)

H(t) ≡
∫ ∞

t
[w(τ)(1− tL) + TR(τ)] e−RA(t,τ)dτ, (15.104)

where RA(t, τ) is defined in (15.32) above. Equation (15.102) says that full consump-
tion is proportional to total wealth (the sum of financial and human wealth) whereas
(15.103) shows that optimal full consumption growth depends on the difference be-
tween the interest rate and the pure rate of time preference. Finally, equation (15.104)

13Preferences are intertemporally separable if the marginal utility of consumption and leisure at time τ
only depends on time τ dated variables. Intertemporal separability is commonly assumed in the macro
literature and indeed holds for (15.94). See also Deaton and Muellbauer (1980, p. 124).
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is the definition of human wealth. It differs from (15.34) because labour income is
taxed (at a proportional rate) and because the household receives lump-sum trans-
fers.

By aggregating (15.102) and (15.103) across surviving generations and making
use of (15.98)–(15.99), expressions for aggregate consumption growth and labour
supply are obtained—see equations (T2.1) and (T2.6) in Table 15.2. Compared to
the basic Blanchard-Yaari model we have introduced the following simplifications.
First, we abstract from government spending and debt (G(t) = B(t) = Ḃ(t) = 0) and
assume that all tax revenues are rebated to households in a lump-sum fashion. As
a result, the government budget identity is static—see (T2.3) in Table 15.2. Second,
we have simplified the production structure of the extended model somewhat by
assuming a Cobb-Douglas technology—see (T2.7). Using this specification in (T1.4)
and (T1.5) yields the expressions (T2.4) and (T2.5), respectively.

Table 15.2. The extended Blanchard-Yaari model

Ċ(t)
C(t)

= r(t)− ρ− εµ(ρ + µ) · K(t)
(1 + tC)C(t)

, (T2.1)

K̇(t) = Y(t)− C(t)− δK(t) (T2.2)
TR(t) = tLw(t)L(t) + tCC(t) (T2.3)

r(t) + δ = α
Y(t)
K(t)

(T2.4)

w(t) = (1− α)
Y(t)
L(t)

(T2.5)

w(t) [1− L(t)] =
1− ε

ε

1 + tC
1− tL

C(t), 0 < ε ≤ 1. (T2.6)

Y(t) = Z0K(t)αL(t)1−α, 0 < α < 1 (T2.7)

Notes: C(t) is consumption, K(t) is the capital stock, L(t) is labour supply, Y(t) is aggregate
output, w(t) is the wage rate, TR(t) are lump-sum transfers, and r(t) is the interest rate. There
are proportional taxes on consumption (tC) and on wage income (tL). Capital depreciates at a
constant rate δ, ε is a taste parameter for consumption, ρ is the pure rate of time preference, Z0
is a constant, α is the efficiency parameter of capital, and µ is the mortality rate (equals birth
rate).

15.5.2 Phase diagram

The phase diagram of the model is drawn in Figure 15.15. The endogeneity of the
labour supply decision considerably complicates the derivation of the phase dia-
gram. For that reason we report the details of this derivation in a mathematical
appendix to this chapter and focus here on a graphical and intuitive discussion.

The capital stock equilibrium locus (CSE) represents the (C, K) combinations for
which net investment is zero (K̇(t) = 0). Apart from the fact that the model now
includes various tax rates and government consumption is set equal to zero, the CSE
line is identical to the one discussed in detail in Section 13.3 above. The CSE line is
concave and for points above (below) this line consumption is too high (low) and net
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Figure 15.15: Phase diagram for the extended Blanchard-Yaari model

investment is negative (positive).14

The consumption equilibrium (CE) locus represents the (C, K) combinations for
which aggregate consumption is constant (Ċ(t) = 0). In the representative-agent mo-
del of Chapter 13, aggregate and individual consumption coincide, CE is simply the
locus of points for which the interest rate equals the rate of time preference (r = ρ),
and the output-capital ratio is constant (see Chapter 13 for details). For convenience,
the CE line for the representative-agent model is included in Figure 15.15—see the
dashed line connecting points A3 and A4.

In contrast, in the overlapping-generations model, individual and aggregate con-
sumption do not coincide and, as a result, the position and slope of the CE curve
are affected by two conceptually distinct mechanisms, namely the factor scarcity effect
(FS, which explains the slope of the CE curve for the representative-agent model) and
the generational turnover effect (GT). The interplay between these two effects ensures
that CE has the shape of a rather prominent nose. Along the lower branch, A1A2,
consumption is low, equilibrium employment is close to unity (L ≈ 1), and CE is
upward sloping. In contrast, along the upper branch, A2A3, consumption is high,
equilibrium employment is low (L ≈ 0), and CE slopes downward. The dynamic
forces at work can be studied by writing (T2.1) as follows:

Ċ(t)
C(t)

= r(t)− ρ− µ · C(t)− C(t, t)
C(t)

= r(C(t), K(t))− ρ− µε(ρ + µ)

1 + tC
· K(t)

C(t)
, (15.105)

where r(C, K) is short-hand notation for the dependence of the real interest rate on
consumption and the capital stock. Simple intuitive arguments can be used to mo-
tivate the signs of the partial derivatives of the r(C, K) function, which are denoted

14We have only drawn the upward-sloping part of the CSE line. Recall from Chapter 13 that CSE reaches
a maximum for the “golden-rule” capital stock, KGR, and then becomes downward sloping.
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Figure 15.16: Factor markets

by rC and rK, respectively. Some simple graphs can clarify matters.
Consider Figure 15.16 which depicts the situation in the rental market for cap-

ital and the labour market. In panel (a), the supply of capital is predetermined in
the short run—say at K0. The demand for capital is downward sloping—due to
diminishing returns to capital—and depends positively on the employment level—
because the two factors are cooperative in production. Panel (b) depicts the situation
in the labour market. There are diminishing returns to labour—so labour demand
slopes downwards—and additional capital boosts labour demand. The labour sup-
ply curve follows from the optimal leisure-consumption choice (T2.6). It slopes up-
wards because (T2.6) isolates the pure substitution effect of labour supply.15

Let us now use Figure 15.16 to deduce the signs of rC and rK. Ceteris paribus the
capital stock, an increase in consumption shifts labour supply to the left so that the
wage rises and employment falls. The reduction in employment shifts the demand
for capital to the left so that—for a given inelastic supply of capital—the real interest
rate must fall to equilibrate the rental market for capital, i.e. rC < 0. The thought
experiment compares points E0 and A in the two panels.

An increase in capital supply—ceteris paribus consumption—has a direct effect,
which pushes the interest rate down (a movement along the initial capital demand
schedule, KD(r, L0) from E0 to B′), and an induced effect operating via the labour
market. The boost in K shifts the labour demand curve to the right, leading to an
increase in wages and employment and thus (in panel (a)) to an outward shift in
the capital demand curve. Although this induced effect pushes the interest rate up
somewhat, the direct effect dominates and rK < 0.16 The comparison is between
points E0 and B in the two panels of Figure 15.16.

We can now study the dynamic forces acting on aggregate consumption along

15Normally, in static models of labour supply, the income and substitution effects work in opposite
directions thus rendering the slope of the labour supply curve ambiguous. Here we do not have this
“problem” because the income effect is incorporated in C. Technically speaking, (T2.6) is a so-called
Frisch demand curve for leisure. See also Judd (1987b).

16This assertion follows directly from the factor price frontier (FPF) which is obtained by substituting
(T2.4) and (T2.5) into (T2.7):

1 =

(
r + δ

α

)α ( w
1− α

)1−α

.

The FPF is an inverse relationship between r and w, so if the wage increases then the return to capital
must decrease.
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the two branches of the CE curve in Figure 15.15. First consider a point on the lower
branch of this curve (for which L ≈ 1). Holding capital constant, an increase in
aggregate consumption leads to a small decrease in labour supply17 and thus a small
decrease in the interest rate. At the same time, however, the capital-consumption
ratio falls so that aggregate consumption growth increases, i.e. Ċ/C > 0 for points
above the lower branch of CE:

Ċ
C︸︷︷︸
↑

= r(C, K)︸ ︷︷ ︸
↓

− ρ− µε(ρ + µ)

1 + tC
· K

C︸︷︷︸
↓↓

. (lower branch of CE)

Now consider a point on the upper branch of the CE curve (for which L ≈ 0). Ceteris
paribus K, a given increase in C has a strong negative effect on labour supply and
thus causes a large reduction in the interest rate which offsets the effect operating
via the capital-consumption ratio, i.e. Ċ/C < 0 for points above the upper branch of
CE:

Ċ
C︸︷︷︸
↓

= r(C, K)︸ ︷︷ ︸
↓↓

− ρ− µε(ρ + µ)

1 + tC
· K

C︸︷︷︸
↓

. (upper branch of CE)

These dynamic effects have been illustrated with vertical arrows in Figure 15.15.
In summary, the CE curve is very similar to the one for the standard Blanchard

model with exogenous labour supply (see Figure 15.6) for values of L close to unity
(the lower branch in Figure 15.15). At the same time, it is very similar to the CE curve
for the representative-agent model with endogenous labour supply for values of L
close to zero (compare the upper branch of CE in Figure 15.15 with the dashed line).
Put differently, on the lower branch of the CE curve the generational turnover effect
dominates whereas on the upper branch the factor scarcity effect dominates.

It follows from the configuration of arrows that the unique equilibrium E0 in
Figure 15.15 is saddle-point stable. Although we have drawn Figure 15.15 such that
the equilibrium occurs on the downward-sloping part of the CE curve (for which the
factor scarcity effect dominates the generational turnover effect), there is nothing to
prevent the opposite occurring, i.e. it is quite possible that the structural parameters
are such that E0 lies on the lower branch of CE.

15.5.3 Raising the consumption tax

We now illustrate how the model can be used for policy analysis. We focus attention
on the effects of an unanticipated and permanent increase in the consumption tax,
tC. Using the methods explained in detail in Chapter 13, the model can be linearized
along an initial steady state (such as E0 in Figure 15.15). The resulting expressions
are collected in Table 15.3. For convenience, the following notational conventions are
used in the table and the remainder of this section. First, for x ∈ {C, K, Y, w, r, L} we

17Holding constant the tax rates we can use (T2.6) to derive:

dL
L

=
1− L

L
·
[

dw
w
− dC

C

]
.

Hence, for L ≈ 1 (L ≈ 0) the labour supply curve in Figure 15.16 is relatively steep (flat) and a given
change in consumption shifts the curve by a little (a lot). This explains why the parameter ω∗LL ≡ (1−
L∗)/L∗ plays a vital role in the analysis of the loglinearized model below. See also Section 13.5 on this.
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define:

x̃(t) ≡ x(t)− x∗

x∗
, ˙̃x(t) ≡ ẋ(t)

x∗
,

where starred variables denote the initial steady-state values. Second, for the con-
sumption tax and the lump-sum transfers we use a slightly different notation:

t̃C ≡
tC − tC0

1 + tC0
, T̃R(t) ≡ TR(t)− TR∗

Y∗
,

where tC0 is the initial consumption tax.

Table 15.3. The linearized extended BY model

˙̃C(t) = r∗ r̃(t) + (r∗ − ρ)
[
C̃(t) + t̃C − K̃(t)

]
(T3.1)

˙̃K(t) = (δ/ω∗I )
[
Ỹ(t)−ω∗CC̃(t)−ω∗I K̃(t)

]
(T3.2)

T̃R(t) = (1 + tC0)ω
∗
C

[
t̃C +

tC0

1 + tC0
C̃(t)

]
+ (1− α)tLỸ(t) (T3.3)

r∗ r̃(t) = (r∗ + δ)
[
Ỹ(t)− K̃(t)

]
(T3.4)

w̃(t) = Ỹ(t)− L̃(t) (T3.5)

L̃(t) = ω∗LL
[
w̃(t)− t̃C − C̃(t)

]
(T3.6)

Ỹ(t) = (1− α)L̃(t) + αK̃(t) (T3.7)

Definitions: ω∗C ≡ C∗/Y∗: output share of private consumption; ω∗I ≡ I∗/Y∗: output share
of investment, ω∗C + ω∗I = 1, δ/ω∗I = Y∗/K∗ ≡ (r∗ + δ)/α; and ω∗LL ≡ (1− L∗)/L∗: ratio
between leisure and labour.

Solving the linearized model is child’s play and proceeds along much the same
lines as in Chapter 13. First we use (T3.5)–(T3.7) to compute the “quasi-reduced-
form” expression for output:

Ỹ(t) = αξK̃(t)− (ξ − 1)
[
C̃(t) + t̃C

]
, (15.106)

where ξ summarizes the intertemporal labour supply effects:

1 ≤ ξ ≡
1 + ω∗LL

1 + αω∗LL
<

1
α

. (15.107)

Second, we use (15.106) in (T3.2) and impose ˙̃K(t) = 0 to get the linearized CSE line:

C̃(t) =
αξ −ω∗I

ω∗C + ξ − 1
K̃(t)− ξ − 1

ω∗C + ξ − 1
t̃C. (15.108)

The CSE curve is upward sloping (since r∗K∗/Y∗ = α− ωI > 0 and ξ ≥ 1) and an
increase in the consumption tax shifts the curve down—see the shift from CSE0 to
CSE1 in Figures 15.17 and 15.18. For a given capital stock, an increase in tC reduces
labour supply, and thus employment and output. To restore capital stock equilib-
rium, employment and output must return to their former levels, i.e. consumption
must fall.
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Figure 15.17: Consumption taxation with a dominant GT effect

Finally, we obtain the linearized CE line by substituting (15.106) and (T3.4) into
(T3.1) and setting ˙̃C(t) = 0:

C̃(t) = − (r∗ + δ) [1− αξ] + r∗ − ρ

(ξ − 1)(r∗ + δ)− (r∗ − ρ)
K̃(t)− t̃C. (15.109)

As was apparent from our discussion concerning Figure 15.15 above, the slope of
the CE line around the initial steady state is ambiguous and depends on the relative
strength of the factor scarcity and generational turnover effects. These two effects
show up in the denominator of the coefficient for K̃(t) on the right-hand side as, re-
spectively, (ξ− 1)(r∗+ δ) (for the FS effect) and (r∗− ρ) (for the GT effect). There are
thus two cases of interest. First, if (r∗ − ρ) exceeds (ξ − 1)(r∗ + δ) then the GT effect
dominates the FS effect, and the linearized CE line is upward sloping as in Figure
15.17. Second, if the reverse holds and (ξ − 1)(r∗ + δ) is larger than (r∗ − ρ) then
the FS effect dominates the GT effect so that the linearized CE curve is downward
sloping as in Figure 15.18.

It turns out that the effect of the consumption tax on the long-run capital stock de-
pends critically on the relative strength of the GT and FS effects. Indeed, by solving
(15.108) and (15.109) for t → ∞ we obtain the following expression for the steady-
state effect on capital of the consumption tax change:

K̃(∞) = ω∗C
(r∗ − ρ)− (ξ − 1)(r∗ + δ)

ξ(1− α)
[
(r∗ + δ)ω∗C + r∗ − ρ

] t̃C. (15.110)

If the GT effect is stronger (weaker) than the FS effect, an increase in the consumption
tax leads to an increase (decrease) in the long-run capital stock. The intuition behind
these results can be explained with the aid of Figures 15.17 and 15.18.

In Figure 15.17 the GT effect is dominant (r∗ − ρ > (ξ − 1)(r∗ + δ)), the CSE
curve shifts down by less than the CE curve does, and the steady state shifts from
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Figure 15.18: Consumption taxation with a dominant FS effect

E0 to E1. At impact the tax shock causes a redistribution from old to young existing
generations. The old generations are wealthy and thus have a high consumption
level, whereas the young generations consume very little and thus face only a small
increase in their tax bill. Since the additional tax revenue is recycled to all gener-
ations in an age-independent lump-sum fashion, older generations are hit harder
by the tax shock than younger generations are and the proportional difference in
consumption between the old and young agents falls. In terms of (15.105), r(t)
changes hardly at all (because the FS effect is weak) but the generational turnover
term, [C(t)− C(t, t)]/C(t), falls so that aggregate consumption growth increases at
impact, i.e. C̃(0) < 0 and ˙̃C(0) > 0 at point A. The reduction in aggregate consump-
tion outweighs the fall in production (which is slight because labour supply changes
by very little), net investment takes place ( ˙̃K(0) > 0 at point A), and the economy
gradually moves from point A to the new steady state in E1.

Matters are quite different if the FS effect dominates the GT effect, a situation
which is depicted in Figure 15.18. Now the downward shift in CE dominates the
downward shift in CSE, and the new steady state, E1, is associated with a lower
capital stock. This long-run effect is best understood by noting that with a domi-
nant FS effect, the long-run capital-labour ratio is more or less unchanged. Since the
consumption tax reduces labour supply this can only occur if the capital stock falls
also.18 In the impact period the reduction in consumption is dominated by the fall
in output, and net investment is negative. At the same time, the reduction in labour
supply reduces the capital-labour ratio at impact so that the interest rate falls and
the aggregate consumption profile becomes downward sloping. In summary, it fol-
lows that both ˙̃K(0) < 0 and ˙̃C(0) < 0 at point A. Over time, the economy gradually
moves from point A to the new steady state at E1.

18If the GT effect is absent altogether (µ = 0), the steady-state interest rate equals the rate of time
preference (r = ρ) and the capital-labour ratio does not change at all. See the discussion surrounding the
great ratios in Section 13.5 above.
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15.5.4 Quantitative evidence

We have demonstrated that the qualitative effects of a consumption tax in the ex-
tended BY model depend critically on the relative importance of the GT and FS ef-
fects. A simple (rough and ready) calibration exercise suggests that the empirically
relevant case is likely to be such that the FS effect is dominant. Consider for this pur-
pose the parameters used to calibrate the unit-elastic RCK model discussed in Chap-
ter 13. In that chapter we used r∗ = 0.0159 per quarter (6.5% annual rate of interest),
δ = 0.0241 (10% per annum), and α = 1/3 so that κ∗ ≡ (K/Y)∗ = α/(r∗ + δ) = 8.33
and ω∗I = (I/Y)∗ = δκ∗ = 0.201. Since we abstract from government consump-
tion, the steady-state output share of consumption is ω∗C = 1 − ω∗I = 0.799. Just
as in Chapter 13, we assume that 20% of available time is used for working, so that
ω∗LL ≡ (1− L∗)/L∗ = 4. Using the calibration values of α and ω∗LL in the definition
of ξ (given in (15.107) above) we get ξ = 2.143 and:

(ξ − 1)(r∗ + δ) = 0.0457 (Calibrated FS effect)

It remains to find a plausible value for (r∗ − ρ) in the overlapping generations mo-
del. This is where we need more detailed information on the variables affecting the
household sector. We assume that the initial tax rates are tC0 = 0.1 and tL0 = 0.3. By
using (T2.5)–(T2.6) we get the implied value for ε:

ε =

[
1 +

(1− α)ω∗LL
ω∗C

1− tL0

1 + tC0

]−1

= 0.320. (15.111)

From the steady-state version of (T2.1) we can then derive:

r∗ − ρ = µ(ρ + µ)
ε

1 + tC

κ∗

ω∗C
= µ(ρ + µ)× 3.037. (15.112)

This expression still contains two parameters, namely the pure rate of time prefer-
ence (ρ) and the birth rate (µ), neither of which is directly observable.19 Recall, how-
ever, that in the Blanchard setting 1/µ represents the expected remaining lifetime of
all agents. As a result, we do not expect µ to be very high. Suppose that agents have
a planning horizon of 200 quarters, so that the implied birth/death rate is µ = 0.005.
Plugging this value into (15.112) and recalling that r∗ = 0.0159 we obtain the implied
value for the pure rate of time preference, ρ = 0.0156, so that:

r∗ − ρ = 0.000312. (Calibrated GT effect)

Hence, for this value of µ the FS effect is much stronger than the GT effect. In Table
15.4 we compute the GT effect for a number of alternative values of µ. The results
indicate that the FS effect continues to dominate even for quite high (and unrealistic)
values for the birth rate. For example, even if µ = 0.04 so that a household’s expected
remaining lifetime is only 25 quarters, the FS effect still dominates the GT effect. We
conclude that for reasonable parameters the GT effect is quite weak and is dominated
by the FS effect.20

19Of course the actual birth and mortality rates in an economy can be observed. It is not possible to
directly link actual demographic data to the Blanchard-Yaari model, because in reality (1) the birth and
mortality rates are typically not equal, (2) the death hazard is not age-independent, and (3) immigration
typically explains part of the population increase.

20The fact that the GT effect is of negligible order for plausible birth rates suggests that the extended
Blanchard-Yaari model has all the properties of a real business cycle (RBC) model (see Chapter 18). Rı́os-
Rull (1994) confirms this result using a much more complicated OLG model which is plausibly calibrated
for the US economy.
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Table 15.4. The birth rate and the GT effect

µ 1/µ ρ GT effect FS effect

0.005 200 0.0156 0.000312 0.0457

0.01 100 0.0151 0.000762 0.0457

0.02 50 0.0138 0.002054 0.0457

0.04 25 0.0098 0.006051 0.0457

0.07229 13.83 0 0.015868 0.0457

Despite the plausible empirical dominance of the FS effect over the GT effect,
there are settings in which the overlapping generations feature matters a lot quan-
titatively. For example, Heijdra and Ligthart (2007) use the OLG model discussed
in this section and extend it by incorporating monopolistic competition in the goods
market. They use their model to study the dynamic effects of fiscal policy under
various government financing scenarios. For a realistic birth-mortality rate, a lump-
sum tax financed increase in government consumption increases output, both in the
short run and in the long run. The quantitative results are very similar to those
obtained for the RA model. The quantitative equivalence between the two mod-
els breaks down, however, when bond financing is employed by the government.
Indeed, a temporary bond-financed increase in government consumption ends up
having quantitatively significant long-run effects in the OLG model and no effect
at all in the RA model (see Heijdra and Ligthart, 2007, p. 351). Hence, the failure
of Ricardian equivalence that is implied by the OLG model does have quantitative
repercussions.

We close this subsection by returning to the issue of consumption taxation in the
extended BY model. For small changes in tax rates the qualitative analysis based
on the linearized version of the model is adequate and insightful. But what if a
government decides to implement a large change in, say, the consumption tax? In
such a setting a numerical investigation of the nonlinear model becomes essential.
Fortunately, now that the values for the structural parameters have been set, such a
simulation exercise is straightforward to conduct using the Matlab boundary value
solver bvp4c that was discussed in Chapter 13 above. In Figure 15.19 the transitional
dynamic effects of a large consumption tax increase (from tC0 = 0.1 to tC1 = 0.2)
are illustrated. It is assumed (a) that the system is initially in the steady-state equi-
librium (indicated by dashed lines) and (b) that the tax hike is unanticipated and
permanent.21 Just as predicted by the linearized model, the capital stock gradually
falls (panel (a)) whilst consumption features a downward jump at impact followed
by a further gradual decline (panel d)). Since employment jumps down at impact
(panel (b)) the tax hike leads to an immediate and substantial reduction in output
(panel (c)). In the long-run there is a small increase (decrease) in the wage (interest)
rate.

21The Matlab program used to solve the transition paths is available from the website of the book,
www.heijdra.org/fomm3.

www.heijdra.org/fomm3
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Figure 15.19: Transitional dynamics in the extended BY model

(a) Capital stock: K(t) (b) Employment: L(t)

(c) Output: Y(t) (d) Consumption: C(t)
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Table 15.19, continued

(e) Wage rate: w(t) (f) Interest rate: r(t)

(g) Transfers: TR(t) (h) Investment: I(t)
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15.6 Punchlines

In this chapter we study one of the key models of modern macroeconomics, namely
the continuous-time overlapping-generations (OLG) model of Blanchard and Yaari.
This model is important not only because it has proved to be quite flexible and easy
to work with, but also because it nests the Ramsey-Cass-Koopmans (RCK) model as
a special case.

We start the chapter by studying the seminal insights of Yaari who studied opti-
mal consumption behaviour in the presence of lifetime uncertainty. When an agent’s
lifetime (and thus his planning horizon) is uncertain two complications arise. First,
the agent’s decision problem becomes inherently stochastic and the expected utility
hypothesis must be employed. Second, the non-negativity constraint on the agent’s
wealth position at the time of death is also stochastic and should be ensured to hold
with certainty. Yaari showed that the key implication of uncertain lifetimes is that the
instantaneous probability of death (the so-called “death hazard rate”) enters the con-
sumption Euler equation of the expected-utility maximizing agent. Intuitively, the
uncertainty of survival leads the rational agent to discount the future more heavily.

Yaari makes the analysis of terminal wealth more tractable by postulating the ex-
istence of a kind of life insurance based on actuarial notes. Such a note can be bought
or sold by the consumer and is cancelled upon the consumer’s death. A consumer
who buys an actuarial note in fact buys an annuity which stipulates payments to the
consumer during life at a rate higher than the rate of interest. Upon the consumer’s
death the insurance company has no further obligations to the consumer’s estate.
Reversely, a consumer who sells an actuarial note is getting a life-insured loan. Dur-
ing the consumer’s life he must pay a higher interest rate on the loan than the market
rate of interest but upon death the consumer’s estate is held free of any obligations,
i.e. the principal does not have to be paid back to the insurance company. Under
actuarial fairness the rate of return on actuarial notes equals the rate of interest plus
the death hazard. Yaari shows that households have the incentive to fully insure
against the loss of life. He thus reaches the striking result that, with actuarially fair
life insurance, the death hazard drops out of the consumption Euler equation alto-
gether.

Yaari’s insights lay dormant for two decades before Blanchard embedded them
in his dynamic general equilibrium model with overlapping generations. In order
to allow for an aggregate treatment, Blanchard made two modelling choices. First,
he assumed that the death hazard is age-independent. This ensures that the optimal
decision rules are “linear in the generations index” and can thus be aggregated. Sec-
ond, he assumed the arrival of large cohorts of newborn agents at each instant. This
ensures that frequencies and probabilities coincide. (To ensure a constant population
the birth and death rates are assumed to be equal.)

The Blanchard-Yaari (BY) model has a number of important properties. First,
the standard RCK model (based on the notion of an infinitely lived representative
household) is obtained as a special case of the Blanchard-Yaari model by setting the
birth rate equal to zero. Second, the steady-state capital stock is smaller in the BY
model than in the RCK model. Due to the turnover of generations, aggregate con-
sumption growth falls short of individual consumption growth. This means that in
the steady state the interest rate exceeds the rate of time preference. It also means
that the equilibrium is dynamically efficient. Third, fiscal policy, taking the form of
a permanent and unanticipated lump-sum tax financed increase in government con-
sumption, causes less (more) than one-for-one crowding out of private consumption
in the short (long) run. In the short run, households do not feel the full burden of
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the additional taxes because they discount present and future tax liabilities at the
annuity rather than the market rate of interest. As a result they do not cut back con-
sumption by enough so that private investment is crowded out. In the long run the
capital stock and output are smaller, wages are lower, and the interest rate is higher.
Intuitively, the shock redistributes resources away from future generations towards
present generations. Fourth, Ricardian equivalence does not hold in the BY model.
It is the positive birth rate (and not the agents’ finite planning horizon) which causes
the rejection of Ricardian equivalence. Finally, the BY model provides a richer frame-
work for the study of open economies. We formulate a small open economy version
of the model and study the effects on the macroeconomy of a (permanent or tem-
porary) productivity shock. An attractive feature of the open-economy BY model is
that it can be used to study both creditor nations (populated by patient citizens) and
debtor countries (inhabited by impatient households). (Recall from Section 13.4.1
that in the corresponding RCK model, the steady-state equilibrium only exists for a
knife-edge case in which the world interest rate equals the rate of time preference of
residents.) As icing on the cake we also formulate and study an endogenous-growth
version of the closed-economy BY model.

In the second half of the chapter we show an extension to the BY model in which
we endogenize the household’s labour supply decision. We use the model to study
the effects of an increase in the consumption tax. In the RCK version of the extended
model, the tax increase unambiguously leads to a decrease in the long-run capital
stock because the household cuts back labour supply. With finite lives, however, the
tax redistributes resources from present to future generations which tends to increase
the capital stock in the long run. The net effect of the tax shock thus depends on the
relative strength of the generational turnover effect vis-à-vis the factor scarcity effect.

Further reading

The Blanchard-Yaari model has been applied in a large number of areas. Open econ-
omy models are presented by inter alia Blanchard (1983, 1984), Frenkel and Razin
(1986), Buiter (1987), Matsuyama (1987), Giovannini (1988), Heijdra and van der
Horst (2000), and Heijdra and Ligthart (2010). The closely related Weil (1989b) mo-
del is used for the analysis of tax policy by Bovenberg (1993, 1994) and Nielsen and
Sørenson (1991) and for the study of current account dynamics by Obstfeld and Ro-
goff (1995, pp. 1759–1764).

Alogoskoufis and van der Ploeg (1990) and Saint-Paul (1992) introduce endoge-
nous growth into the model. Weil (1991) and Marini and van der Ploeg (1988) study
monetary neutrality. Aschauer (1990) introduces endogenous labour supply in the
Blanchard-Yaari model. On public infrastructure, see Heijdra and Meijdam (2002).
Marini and Scaramozzino (1995) and Bovenberg and Heijdra (1998, 2002) study en-
vironmental issues. Nielsen (1994) and Bettendorf and Heijdra (2006) introduce so-
cial security into the model. Gertler (1999) generalizes the model by assuming that
workers move into retirement according to a stochastic Poisson process. The Inter-
national Monetary Fund’s MULTIMOD model includes insights from the Blanchard-
Yaari framework–see Laxton et al. (1998).

Optimal consumption with and without annuities is studied by Yaari (1965),
Barro and Friedman (1977), Levhari and Mirman (1977), Davies (1981), Hurd (1989,
1990), Bütler (2001), and Hansen and Imrohoroglu (2008).

Models with a realistic mortality process include Boucekkine et al. (2002), de la
Croix and Licandro (1999), Heijdra and Romp (2008, 2009a, 2009b), d’Albis (2007),
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and Heijdra and Mierau (2012). On human capital accumulation, see Bils and Klenow
(2000), Kalemli-Ozcan et al. (2000), and Heijdra and Reijnders (2016). On annuities,
see Sheshinski (2008) for the theory, and Cannon and Tonks (2006) for the practical
experience in the UK. Accidental bequests are studied by Kotlikoff and Summers
(1981). Kotlikoff and Spivak (1981) show that the family can act as a substitute for
missing annuity markets. For adverse selection in annuity markets, see Heijdra and
Reijnders (2013).
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Appendix: Derivation of the phase diagram

In this appendix we derive the phase diagram for the extended Blanchard-Yaari mo-
del with endogenous labour supply and various tax rates (Figure 15.15). In doing
so, we follow the general approach discussed in detail in the appendix of Chapter
13. To keep things simple we assume that government consumption is zero. Since
the overlapping-generations structure does not affect the functional form for the K-
isocline we focus attention to the derivation of the C-isocline. For ease of reference
we state a number of useful relationships. First, labour market equilibrium implies:

LME: χ(L) ≡ (1− L)L−α =
(1− ε)(1 + tC)

ε(1− α)(1− tL)Z0
CK−α. (A15.1)

Note that this expression can be written alternatively as:

1− L
L

=
(1− ε)(1 + tC)

ε(1− α)(1− tL)

C
Y

. (A15.2)

Second, the capital stock equilibrium condition implies:

K1−α =
ε(1− α)(1− tL)

δ(1− ε)(1 + tC)

(
L− LMIN

LMIN

)
Z0L−α, (A15.3)

where LMIN is given by:

L ≥ LMIN ≡
ε(1− α)(1− tL)

ε(1− α)(1− tL) + (1− ε)(1 + tC)
, 0 < LMIN < 1. (A15.4)

Consumption flow equilibrium

The consumption equilibrium (CE) locus represents points in (C, K)-space for which
the aggregate flow of consumption is in equilibrium (Ċ = 0). By using (T2.1) in
steady state, (T2.4), (T2.7), and (A15.2) we can write the CE locus as follows:

µ(ρ + µ) =
α(1− α)(1− tL)

1− ε

1− L
L

y [y− y∗] , (A15.5)

y = Z0

(
L
K

)1−α

, (A15.6)

where y ≡ Y/K is the output-capital ratio and y∗ ≡ (ρ + δ)/α. Equations (A15.5)–
(A15.6) define consumption flow equilibrium in (K, L)-space.

In the representative-agent model (with µ = 0) the CE locus represents points for
which y = y∗. By using this in (A15.6) and (A15.1) we get after a few steps:

C =
ε(1− α)(1− tL)Z0

(1− ε)(1 + tC)

(
K
L

)α

(1− L)

=
ε(1− α)(1− tL)Z0

(1− ε)(1 + tC)

(
y∗

Z0

)−α/(1−α)
[

1−
(

y∗

Z0

)1/(1−α)

K

]

=
(ρ + δ)ε(1− α)(1− tL)

α(1− ε)(1 + tC)

[(
αZ0

ρ + δ

)1/(1−α)

− K

]
. (A15.7)
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Hence, the CE curve for the RA model (CERA) is linear and downward sloping—see
the dashed line from A3 to A4 in Figure 15.15.

For the overlapping-generations model the CE line can only be described parametri-
cally, i.e. by varying L in the feasible interval [0, 1]. We first write (A15.5) in a more
convenient format:

ζ0

[
≡ µ(ρ + µ)(1− ε)

α(1− α)(1− tL)

]
=

1− L
L

y [y− y∗] , (A15.8)

where ζ0 > 0. Solving (A15.8) for the positive (economically sensible) root yields the
equilibrium output-capital ratio for the overlapping-generations (OLG) model as a
function of L:

y
y∗

=
1
2
+

√
1
4
+

ζ0

(y∗)2

(
L

1− L

)
≥ 1. (A15.9)

Using (A15.9) in (A15.6) yields an expression for the capital-labour ratio:

K
L
=

(
Z0

y

)1/(1−α)

=

(
Z0

y∗

)1/(1−α)
[

1
2
+

√
1
4
+

ζ0

(y∗)2

(
L

1− L

)]−1/(1−α)

, (A15.10)

from which we derive the following limiting results:

lim
L→0

(
K
L

)
=

(
Z0

y∗

)1/(1−α)

, lim
L→1

(
K
L

)
= 0. (A15.11)

The labour market equilibrium condition (A15.1) yields an expression for consump-
tion:

C =
ε(1− α)(1− tL)Z0

(1− ε)(1 + tC)

(
K
L

)α

(1− L), (A15.12)

from which we derive the following limiting results:

lim
L→0

C =
ε(1− α)(1− tL)Z0

(1− ε)(1 + tC)
lim
L→0

(
K
L

)α

=
ε(1− α)(1− tL)Z0

(1− ε)(1 + tC)

(
Z0

y∗

)α/(1−α)

, (A15.13)

lim
L→1

C = 0. (A15.14)

Hence, the CE line for the OLG model has the same vertical intercept as CERA as
L→ 0 and goes through the origin as L→ 1.

It is straightforward—though somewhat tedious—to prove that CEOLG is hori-
zontal near the origin (where L ≈ 1) and downward sloping and steeper than CERA

near the vertical intercept (where L ≈ 0). Note that the CEOLG is described paramet-
rically by equations (A15.10) and (A15.12). For a given value of L, the first expression
yields the corresponding value for K whilst the second expression yields the corre-
sponding value for C.

Figure 15.15 in the text is a stylized representation of the phase diagram. Using
the calibration values discussed in section 15.5.4 we obtain the phase diagram for
the calibrated model in Figure A15.1. This diagram also shows why the generational
turnover effect is as tiny as it is reported to be in Table 15.4.
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Figure A15.1: Phase diagram of the calibrated extended BY model

Uniqueness

The uniqueness of the equilibrium can be established most easily in the (K, L) plane.
First we rewrite (A15.10) as:

K1−α =
h(L)
y∗

, h(L) ≡ L1−α

[
1
2
+

√
1
4
+

ζ0

(y∗)2

(
L

1− L

)]−1

. (A15.15)

It is not difficult to show that h(0) = limL→1 h(L) = 0, limL→0 h′(L) = +∞, and
limL→1 h′(L) = −∞. These properties ensure that the CSE curve (equation (A15.3))
and the CE curve (equation (A15.15)) cross only once, thus determining unique equi-
librium values (K∗, L∗). Equilibrium consumption, C∗, then follows from (A15.1),
and equilibrium output, Y∗, follows from the production function (T2.7). All other
variables are determined uniquely also.





Chapter 16

Overlapping generations in
discrete time

The purpose of this chapter is to achieve the following goals:

1. To introduce and study a popular discrete-time overlapping-generations (OLG)
model and to show its main theoretical properties.

2. To apply the discrete-time model to study (funded or unfunded) public pen-
sion systems; the macroeconomic effects of ageing; and the costs and benefits
of annuitization.

3. To extend the model to account for (private versus public) human capital accu-
mulation and public investment.

4. To demonstrate how the model can be used to endogenize the fertility choice
made by dynastic households and to re-examine the validity of Ricardian equiv-
alence.

16.1 The Diamond-Samuelson model

As the previous chapter has demonstrated, the continuous-time Blanchard-Yaari
framework is quite flexible and convenient and therefore fully deserves its current
workhorse status. It yields useful and intuitive macroeconomic results and does so
in a simple fashion. This is not to say that the framework has no shortcomings. In-
deed, as Blanchard himself points out, the main drawback of the perpetual youth
approach is that, though it captures the finite-horizon aspect of life, it fails to ac-
count for life-cycle aspects of consumption (1985, p. 224). Indeed, in the standard
Blanchard model, a household’s age affects the level and composition of its wealth
(first aspect) but not its propensity to consume out of wealth (life-cycle aspect). In
the absence of a bequest motive and with truly finite lives, one would expect an
old agent to have a much higher propensity to consume out of wealth than a young
agent, simply because the old agent has a shorter planning horizon (a higher death
hazard) than the young agent has (see also Section 16.2.2 above).

A simple model which captures both the finite-horizon and life-cycle aspects of
household behaviour was formulated by Diamond (1965) using the earlier insights
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of Samuelson (1958).1 The Diamond-Samuelson model is formulated in discrete time
and has been the workhorse model in various fields of economics for more than half
a century. Weil (2008) is a celebratory essay written to commemorate its fiftieth birth-
day. There are not many models in macroeconomics with that degree of durability.
In the remainder of this section we describe (a simplified version of) the Diamond
(1965) model in detail.

16.1.1 Households

Individual agents live for two periods. During the first period (their “youth”) they
work and in their second period (their “old age”) they are retired from the labour
force. Since they want to consume in both periods, agents save during youth and
dissave during old age. We abstract from bequests and assume that the population
grows at a constant rate n.

A representative young agent at time t has the following lifetime utility function:

ΛY
t ≡ U(CY

t ) +
1

1 + ρ
U(CO

t+1), (16.1)

where the subscript identifies the time period and the superscript the phase of life the
agent is in, with “Y” and “O” standing for, respectively, youth and old age. Hence,
CY

t and CO
t+1 denote consumption by an agent born in period t during youth and old

age, respectively, and ΛY
t is lifetime utility of a young agent from the perspective of

his birth. As usual, ρ > 0 captures the notion of pure time preference and we assume
that the felicity function, U(x), satisfies Inada-style conditions (U′ (x) > 0 > U′′ (x),
limx→0 U′(x) = +∞, and limx→∞ U′(x) = 0).

During the first period the agent inelastically supplies one unit of labour and re-
ceives a wage wt which is spent on consumption, CY

t , and savings, St. In the second
period, the agent does not work but receives interest income on his savings, rt+1St.
Principal plus interest are spent on consumption during old age, CO

t+1. The house-
hold thus faces the following budget identities:

CY
t + St = wt, (16.2)

CO
t+1 = (1 + rt+1)St. (16.3)

Since the agents wants to consume in both periods the non-negativity constraint
on saving is satisfied (St ≥ 0) and we obtain the consolidated (or lifetime) budget
constraint by substituting (16.3) into (16.2):

wt = CY
t +

CO
t+1

1 + rt+1
. (16.4)

The young agent chooses CY
t and CO

t+1 to maximize (16.1) subject to (16.4). The first-
order conditions for consumption in the two periods can be combined after which
we obtain the familiar consumption Euler equation:

U′(CO
t+1)

U′(CY
t )

=
1 + ρ

1 + rt+1
. (16.5)

1An even earlier overlapping-generations model was developed by Allais (1947). Unfortunately, due
to the non-trivial language barrier, it was not assimilated into the Anglo-Saxon literature.
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Together, (16.4)–(16.5) determine implicit functions relating CY
t and CO

t+1 (and thus
St) to the variables that are exogenously given to the agents, i.e. wt and rt+1. The key
expression is the savings equation:

St = S(wt, rt+1), (16.6)

which has the following partial derivatives:

0 < Sw ≡
∂S
∂wt

=
θ(CY

t )/CY
t

θ(CO
t+1)/St + θ(CY

t )/CY
t
< 1, (16.7)

Sr ≡
∂S

∂rt+1
=

1− θ(CO
t+1)

(1 + rt+1)
[
θ(CO

t+1)/St + θ(CY
t )/CY

t
] Q 0, (16.8)

where the function, θ(x) ≡ −xU′′(x)/U′(x), represents the elasticity of marginal
utility evaluated at x. Of course, θ(x) is positive, given the assumption made re-
garding U(x) above. Recall from Chapter 13 that the inverse of θ(x) is the in-
tertemporal substitution elasticity, denoted by σ(x) ≡ 1/θ(x). According to (16.7),
an increase in the wage rate increases savings. It follows from (16.2) and (16.3)
that both consumption goods are normal, i.e. ∂CY

t /∂wt = 1 − ∂S/∂wt > 0 and
∂CO

t+1/∂wt = (1 + rt+1)∂St/∂wt > 0. The response of savings with respect to the
interest rate is ambiguous as the income and substitution effects work in opposite
directions (see Intermezzo 6.1 above). On the one hand an increase in rt+1 reduces
the relative price of future goods which prompts the agent to substitute future for
present consumption and to increase savings. On the other hand, the increase in rt+1
expands the budget available for present and future consumption which prompts
the agent to increase both present and future consumption and to decrease savings.
Equation (16.8) shows that, on balance, if the intertemporal substitution elasticity
exceeds (falls short of) unity then the substitution (income) effect dominates and
savings depend positively (negatively) on the interest rate:

Sr R 0 ⇐⇒ θ(CO
t+1) Q 1 ⇐⇒ σ(CO

t+1) ≡
1

θ(CO
t+1)

R 1. (16.9)

16.1.2 Firms

The perfectly competitive firm sector produces output, Yt, by hiring capital, Kt, from
the currently old agents, and labour, Lt, from the currently young agents. The pro-
duction function,

Yt = F(Kt, Lt), (16.10)

is linearly homogeneous, and profit maximization ensures that the production fac-
tors receive their respective marginal physical products (and that pure profits are
zero):

wt = FL(Kt, Lt), (16.11)
rt + δ = FK(Kt, Lt), (16.12)
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where 0 ≤ δ ≤ 1 is the depreciation rate of capital.2 The crucial thing to note about
(16.12) is its timing: capital that was accumulated by the currently old, Kt, commands
the rental rate rt + δ. It follows that the rate of interest upon which the currently
young agents base their savings decisions (i.e. rt+1 in (16.3)–(16.6)) depends on the
future capital stock and labour force:

rt+1 + δ = FK(Kt+1, Lt+1). (16.13)

In what follows, we assume that agents are blessed with perfect foresight, i.e. the
subjective expectation and actual realisation of rt+1 coincide.

Since the labour force grows at a constant rate and we ultimately wish to study
an economy which possesses a well-defined steady-state equilibrium, it is useful to
rewrite (16.10)–(16.11) and (16.13) in the intensive (per worker) form (see Section
13.1.2 for details):

yt = f (kt), (16.14)

wt = f (kt)− kt f ′(kt), (16.15)

rt+1 + δ = f ′(kt+1), (16.16)

where yt ≡ Yt/Lt, kt ≡ Kt/Lt, and f (kt) ≡ F(kt, 1).

16.1.3 Market equilibrium

The resource constraint for the economy as a whole can be written as follows:

Yt + (1− δ)Kt = Ct + Kt+1, (16.17)

where Ct represents aggregate consumption in period t. Equation (16.17) says that
output plus the undepreciated part of the capital stock (left-hand side) can be either
consumed or carried over to the next period in the form of capital (right-hand side).
Alternatively, (16.17) can be written in a more familiar format as Yt = Ct + It with
It ≡ ∆Kt+1 + δKt representing gross investment.

Aggregate consumption is the sum of consumption by the young and the old
agents in period t:

Ct ≡ Lt−1CO
t + LtCY

t . (16.18)

Since the old, as a group, own the capital stock, their total consumption in period t
is the sum of the undepreciated part of the capital stock plus the rental payments
received from the firms, i.e. Lt−1CO

t = (rt + δ)Kt + (1 − δ)Kt. For each young
agent, consumption satisfies (16.2) so that total consumption by the young amounts
to: LtCY

t = wtLt − StLt. By substituting these two results into (16.18), we obtain:

Ct = (rt + δ)Kt + (1− δ)Kt + wtLt − StLt

= Yt + (1− δ)Kt − StLt, (16.19)

2Most authors follow Diamond (1965, p. 1127) by assuming that capital does not depreciate at all
(δ = 0). However, since the model divides human life into two periods, each period is quite long (in
historical time) and it is thus defensible to assume that capital fully depreciates within the period (δ = 1).
Blanchard and Fischer (1989, p. 93) circumvent the choice of δ by assuming that (16.10) is a net production
function, with depreciation already deducted. In their formulation, δ vanishes from the capital demand
equation (16.12).
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where we have used the fact that Yt = (rt + δ)Kt + wtLt in going from the first to the
second line. Output is fully exhausted by factor payments and pure profits are zero.

Finally, by combining (16.17) and (16.19) we obtain the expression linking this
period’s savings decisions by the young to next period’s capital stock:

StLt = Kt+1. (16.20)

Cohorts (and thus the aggregate population) are assumed to grow at a constant rate,

Lt = L0(1 + n)t, n > −1, (16.21)

so that (16.20), in combination with (16.6), can be rewritten in the intensive form as:

S(wt, rt+1) = (1 + n)kt+1, (16.22)

where kt ≡ Kt/Lt is the capital stock per worker. The capital market is represented
by the demand for capital by entrepreneurs (equation (16.16)) and the supply of
capital by households (equation (16.22)).

16.1.4 Dynamics and stability

The dynamical behaviour of the economy can be studied by substituting the expres-
sions for wt and rt+1 (given in, respectively, (16.15) and (16.16)) into the capital sup-
ply equation (16.22):

(1 + n)kt+1 = S
(

f (kt)− kt f ′(kt), f ′(kt+1)− δ
)
. (16.23)

Equation (16.23) is the fundamental difference equation for the capital stock per worker.
This expression relates the future to the present capital stock per worker and is thus
suitable to study the stability of the model. By totally differentiating (16.23) and
gathering terms we obtain:

dkt+1

dkt
=

−Swkt f ′′(kt)

1 + n− Sr f ′′(kt+1)
, (16.24)

where Sw and Sr are given, respectively, in (16.7) and (16.8). We recall from Chapter
3 that local stability requires that the deviations from a steady state must be damp-
ened (and not amplified) over time. Mathematically this means that a steady state is
locally stable if |dkt+1/dkt| < 1. It is clear from (16.24) that we are not going to obtain
clearcut results on the basis of the most general version of our model. Although we
know that the numerator of (16.24) is positive (because Sw > 0 and f ′′ < 0), the sign
of the denominator is indeterminate (because Sr is ambiguous).

Referring the interested reader to Galor and Ryder (1989) and de la Croix and
Michel (2002) for a rigorous analysis of the general case, we take the practical way
out by illustrating the existence and stability issues with the unit-elastic model. Specif-
ically, we assume that technology is Cobb-Douglas (Yt = Z0Lα

t L1−α
t ), so that yt =

Z0kα
t , and that the felicity function is logarithmic, so that U(x) = ln x and the in-

tertemporal substitution elasticity is equal to σ(x) = 1/θ(x) = 1. With these simpli-
fications imposed the savings function collapses to St = wt/(2 + ρ), the wage rate is
wt = (1− α)Z0kα

t , and (16.23) becomes:

kt+1 = g(kt) ≡
(1− α)Z0

(1 + n)(2 + ρ)
kα

t . (16.25)
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Figure 16.1: The unit-elastic Diamond-Samuelson model

Equation (16.25) has been drawn in Figure 16.1. Since limk→0 g′(k) = ∞ and limk→∞
g′(k) = 0, the steady state (for which kt+1 = kt = k∗ so that k∗ = g(k∗)) is unique
and stable. The diagram illustrates the unique stable trajectory from k0. The tangent
of g(kt) passing through the steady-state equilibrium point E0 is the dashed line AB.
It follows from the diagram (and indeed from (16.25)) that the unit-elastic Diamond-
Samuelson model satisfies the stability condition with a positive slope for g(kt), i.e.
0 < g′(k∗) < 1.

16.1.5 Efficiency

It is clear from the discussion surrounding Figure 16.1 that there is a perfectly reason-
able setting in which the Diamond-Samuelson model possesses a stable and unique
steady-state equilibrium. We now assume for convenience that our most general
model also has this property and proceed to study its welfare properties. To keep
things simple, and to prepare for the discussion of social security issues below, we
restrict attention to a steady-state analysis. Indeed, following Diamond (1965) we
compare the market solution to the so-called optimal golden-age path.

A golden-age path is such that the capital-labour ratio is constant over time, i.e.
kt+1 = kt = k. Such a path is called optimal if (i) each individual agent has the
highest possible utility, and (ii) all agents have the same utility level (Diamond, 1965,
p. 1128). Formally, the optimal golden-age path maximizes the lifetime utility of a
“representative” individual,

ΛY ≡ U(CY) +
1

1 + ρ
U(CO), (16.26)
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subject to the economy-wide steady-state resource constraint:3

f (k)− (n + δ)k = CY +
CO

1 + n
. (16.27)

Note that we have dropped the time subscripts in (16.26)–(16.27) in order to stress
the fact that we are looking at a steady-state situation only. An important thing to
note about this formulation is the following. In equation (16.26), CY and CO refer,
respectively, to consumption during youth and retirement of a particular individual.
In contrast, in equation (16.27) CY and CO refer to consumption levels of young and
old agents, respectively, at a particular moment in time. This does, of course, not mean
that we are comparing apples and oranges—for the purposes of selecting an optimal
golden-age path we can ignore these differences because all individuals are treated
symmetrically.

The first-order conditions for the optimal golden-age path consist of the steady-
state resource constraint and:

U′(CO)

U′(CY)
=

1 + ρ

1 + n
, (16.28)

f ′(k) = n + δ. (16.29)

Samuelson (1968a) calls these conditions, respectively, the biological-interest-rate
consumption golden rule and the production golden rule. Comparing (16.28)–(16.29)
with their respective market counterparts (16.5) and (16.16) reveals that they coincide
if the market rate of interest equals the rate of population growth:

r = f ′(k)− δ = n (golden rule)

As is stressed by Samuelson (1968a, p. 87) the two conditions (16.28)–(16.29) are an-
alytically independent: even if k is held constant at some suboptimal level, so that
production is inefficient as f ′(k) 6= n + δ, the optimum consumption pattern must
still satisfy (16.28). Similarly, if the division of output among generations is subopti-
mal (e.g. due to a badly designed pension system), condition (16.28) no longer holds
but the optimal k still follows from the production golden rule (16.29).

If the steady-state interest rate is less than the rate of population growth (r < n)
then there is overaccumulation of capital, k is too high, and the economy is dynam-
ically inefficient. A quick inspection of our unit-elastic model reveals that such a
situation is quite possible for reasonable parameter values. Indeed, by computing
the steady-state capital-labour ratio from (16.25) and using the result in (16.16) we
find that the steady-state interest rate for the unit-elastic model is:

r =
α(2 + ρ)(1 + n)

1− α
− δ. (16.30)

Blanchard and Fischer (1989, p. 147) suggest the following numbers. Each period
of life is 30 years and the capital share is α = 1/4. Population grows at 1% per
annum so n = 1.0130 − 1 = 0.348. Capital depreciates at 5% per annum so δ =
1− (0.95)30 = 0.785. With relatively impatient agents, the pure discount rate is 3%
percent per annum, so ρ = (1.03)30 − 1 = 1.427 and (16.30) shows that r = 0.754
which exceeds n by quite a margin. With more patient agents, whose pure discount
rate is 1% percent per annum, ρ = (1.01)30 − 1 = 0.348 and r = 0.269 which is less
than n.

3The steady-state resource constraint (16.27) is obtained as follows. First, (16.18) is substituted in
(16.17) and the resulting expression is divided by Lt. Then (16.14) is inserted, the steady state is imposed
(kt+1 = kt = k), and all time indexes are dropped.
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16.2 Social security and the macroeconomy

In this section we show how the standard Diamond-Samuelson model can be used
to study the macroeconomic and welfare effects of old-age pensions. A system of
social security was introduced in Germany during the 1880s by Otto von Bismarck,
purportedly to stop the increasingly radical working class from overthrowing his
conservative regime. It did not help poor Otto—he was forced to resign from of-
fice in 1890—but the system he helped create stayed. Especially following the Sec-
ond World War, most developed countries have similarly adopted social security
systems. Typically such a system provides benefit payments to the elderly which
continue until the recipient dies.

In the first subsection we show how the method of financing old-age pensions
critically determines the effects of such pensions on resource allocation and welfare.
In the second subsection we study the effect of the pension system on the retirement
decision of households. Finally, in the third subsection we study the effects of a
demographic shock, such as an ageing population, on an economy incorporating a
non-funded pension system.

16.2.1 Pensions

In order to study the effects of public pensions we must introduce the government
into the Diamond-Samuelson model. Assume that, at time t, the government pro-
vides lump-sum transfers, Zt, to old agents and levies lump-sum taxes, Tt, on the
young. It follows that the budget identities of a young household at time t are
changed from (16.2)–(16.3) to:

CY
t + St = wt − Tt, (16.31)

CO
t+1 = (1 + rt+1)St + Zt+1, (16.32)

so that the consolidated lifetime budget constraint of such an agent is now:

wt − Tt +
Zt+1

1 + rt+1
= CY

t +
CO

t+1
1 + rt+1

. (16.33)

The left-hand side of (16.33) shows that lifetime wealth consists of after-tax wages
during youth plus the present value of pension receipts during old age.

Depending on the way in which the government finances its transfer scheme, we
can distinguish two prototypical social security schemes. In a fully funded system the
government invests the contributions of the young and returns them with interest in
the next period in the form of transfers to the then old agents. In such a system we
have:

Zt+1 = (1 + rt+1)Tt. (16.34)

In contrast, in an unfunded or pay-as-you-go (PAYG) system, the transfers to the old
are covered by the taxes of the young in the same period. Since, at time t, there are
Lt−1 old agents (each receiving Zt in transfers) and Lt young agents (each paying Tt
in taxes) a PAYG system satisfies Lt−1Zt = LtTt which can be rewritten by noting
(16.21) to:

Zt = (1 + n)Tt. (16.35)
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Figure 16.2: Individual effect of a fully-funded pension system

16.2.1.1 Fully funded pensions

A striking property of a fully funded social security system is its neutrality. With
this we mean that an economy with a fully funded system is identical in all relevant
aspects to an economy without such a system. This important neutrality result can
be demonstrated as follows.

First, we note that, by substituting (16.34) into (16.33), the fiscal variables, Tt and
Zt+1, disappear from the lifetime budget constraint of the household. Consequently,
these variables also do not affect the household’s optimal life-cycle consumption
plan, i.e. CY

t and CO
t+1 are exactly as in the pensionless economy described in sec-

tion 16.1.1 above. It follows, by a comparison of (16.2) and (16.31), that with a fully
funded pension system saving plus tax payments are set according to:

St + Tt = S(wt, rt+1), (16.36)

where S(wt, rt+1) is the same function as the one appearing in (16.6). Matters can
be explained further with the aid of Figure 16.2. In the absence of a pension system,
the endowment point is at B and the optimal consumption point is at E0, where
there is a tangency between the lifetime budget constraint and an indifference curve.
The funded pension system shifts the endowment point to C but leaves the lifetime
budget constraint unchanged. Hence, optimal consumption still occurs at E0.

As a second preliminary step we must derive an expression linking savings of the
young to next period’s stock of productive capital. The key aspect of a fully funded
system is that the government puts the tax receipts from the young to productive use
by renting them out in the form of capital goods to firms. Hence, the economy-wide
capital stock, Kt, is:

Kt = KH
t + KG

t , (16.37)

where KH
t and KG

t ≡ Lt−1Tt−1 denote capital owned by households and the govern-
ment, respectively. The economy-wide resource constraint is still as given in (16.17)
but the expression for total consumption is changed from (16.19) to (see Intermezzo
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16.1):

Ct = Yt + (1− δ)Kt − Lt(St + Tt). (16.38)

Finally, by using (16.17), (16.38), and (16.36) we find that the capital market equilib-
rium condition is identical to (16.22). Since the factor prices, (16.15)–(16.16), are also
unaffected by the existence of the social security system, economies with and with-
out such a system are essentially the same. Intuitively, with a fully funded system
the household knows that its contributions, Tt, attract the same rate of return as its
own private savings, St. As a result, the household only worries about its total sav-
ing, St + Tt, and does not care that some of this saving is actually carried out on its
behalf by the government.

In closing we note that the neutrality result holds provided the social security
system is not too severe, i.e. it should not force the household to save more than it
would in the absence of social security. In terms of the model we must have that
Tt ≤ (1 + n)kt+1 (see Blanchard and Fischer, 1989, p. 111). In terms of Figure 16.2
this means that point C must lie to the right of the optimal consumption point E0.

Intermezzo 16.1

Some tedious but important derivations for the Diamond-Samuelson
model. Even though it is only a bookkeeping exercise, the reader may not
immediately see how equation (16.38) is derived. Here goes. Consump-
tion by the old agents is Lt−1CO

t = (rt + δ)KH
t + (1− δ)KH

t + Lt−1Zt. For
young agents we have LtCY

t = Lt [wt − St − Tt] so that aggregate con-
sumption is:

Ct = (rt + δ)KH
t + (1− δ)KH

t + Lt−1Zt + Lt [wt − St − Tt]

= Yt + (1− δ)KH
t − (rt + δ)KG

t + Lt−1Zt − Lt(St + Tt)

= Yt + (1− δ)Kt − Lt(St + Tt) +
[

Lt−1Zt − (1 + rt)KG
t

]
.

This final expression collapses to (16.38) because the term in square
brackets on the right-hand side vanishes, i.e. Lt−1Zt − (1 + rt)KG

t =
Lt−1 [Zt − (1 + rt)Tt−1] = 0.

Details concerning equation (16.41): Consumption by the old agents
is Lt−1CO

t = (rt + δ)Kt + (1− δ)Kt + Lt−1Zt. For young agents we have
LtCY

t = Lt [wt − St − Tt] so that aggregate consumption is:

Ct = (rt + δ)Kt + (1− δ)Kt + Lt−1Zt + Lt [wt − St − Tt]

= Yt + (1− δ)Kt + [Lt−1Zt − LtTt]− LtSt.

This final expression collapses to (16.19) because the term in square
brackets on the right-hand side vanishes under the PAYG scheme. Com-
bining (16.17) and (16.19) yields (16.20).

Details concerning Figure 16.4: The fundamental difference equation
is obtained by substituting (16.40) into (16.41):

(1 + n)kt+1 =
w(kt)− T

2 + ρ
− 1 + ρ

2 + ρ

(1 + n)T
1 + r(kt+1)

.
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The second term on the right-hand side vanishes as kt+1 → 0 (since
r(kt+1) → +∞ in that case). Hence, w(kMIN) = T. For kt < kMIN the
wage rate is too low (w(kt) < T) and the PAYG scheme is not feasible. By
differentiating the fundamental difference equation we obtain:

dkt+1

dkt
=

w′(kt)

(1 + n) [2 + ρ + (1 + ρ)Tψ(kt+1)]
≥ 0, ψ(kt+1) ≡

−r′(kt+1)

[1 + r(kt+1)]
2 .

It is straightforward to show that ψ(kt+1)→ +∞ for kt+1 → 0, ψ(kt+1)→
0 for kt+1 → ∞, w′(kt) → 0 for kt → ∞, and w′(kMIN) > 0. It follows
that g(kt, T) is horizontal in kt = kMIN (not drawn), is upward sloping for
larger values of kt, and becomes horizontal as kt gets very large. Provided
T is not too large there exist two intersections with the kt+1 = kt line.

Details concerning equation (16.62): Consumption by old agents is
Lt−1CO

t = (rt + δ)Kt + (1− δ)Kt + (1+ rt)Bt + Lt−1Zt. For young agents
we have LtCY

t = Lt [wt − Tt − St] so that aggregate consumption is:

Ct = (rt + δ)Kt + (1− δ)Kt + (1 + rt)Bt + Lt−1Zt + Lt [wt − Tt − St]

= Yt + (1− δ)Kt + [(1 + rt)Bt + Lt−1Zt − LtTt]− LtSt

= Yt + (1− δ)Kt + Bt+1 − LtSt.

By combining the final expression with the resource constraint (16.17) we
obtain (16.62).

****

16.2.1.2 Pay-as-you-go pensions

Under a PAYG system there is a transfer from young to old in each period according
to (16.35). Assuming that the contribution rate per person is held constant over time
(so that Tt+1 = Tt = T), equation (16.35) implies that Zt+1 = (1 + n)T so that
consolidation of (16.31)–(16.32) yields the following lifetime budget constraint of a
young household:

ŵt ≡ wt −
rt+1 − n
1 + rt+1

· T = CY
t +

CO
t+1

1 + rt+1
. (16.39)

This expression is useful because it shows that, ceteris paribus the factor prices, the
existence of a PAYG system contracts (expands) the consumption possibility frontier
for young agents if the interest rate exceeds (falls short of) the growth rate of the
population. Put differently, if rt+1 > n (rt+1 < n) the contribution rate is experienced
by the young household as a lump-sum tax (subsidy).

In Figure 16.3 we illustrate the case for which rt+1 > n. In the absence of the
PAYG pension, the lifetime budget constraint is given by the line AB, and the optimal
consumption point is at E0. The PAYG pension moves the endowment point to D
which lies vertically below the endowment point for a funded pension (i.e. point C)
because the interest rate exceeds the rate of population growth. Hence, the budget
constraint under the PAYG system is parallel to but lies below the line AB. Point E0
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Figure 16.3: Individual effect of a PAYG pension system

is no longer feasible. With homothetic preferences (see Intermezzo 6.1), the optimal
consumption point shifts to E1.

The household maximizes lifetime utility (16.1) subject to its lifetime budget con-
straint (16.39). Since the rate of return on household saving is rt+1, the consumption
Euler equation is still given by (16.5). To keep matters as simple as possible we
now restrict attention to the unit-elastic model for which utility is logarithmic (and
technology is Cobb-Douglas). In that case, the optimal consumption plan satisfies
CY

t = (1 + ρ)ŵt/(2 + ρ) and CO
t+1 = (1 + rt+1)ŵt/(2 + ρ) and the savings function

is:

St = wt − T − CY
t

= wt − T − 1 + ρ

2 + ρ

[
wt −

rt+1 − n
1 + rt+1

· T
]

=
wt

2 + ρ
−
[

1− 1 + ρ

2 + ρ

rt+1 − n
1 + rt+1

]
· T ≡ S(wt, rt+1, T). (16.40)

It is easy to verify that the partial derivatives of the savings function satisfy 0 < Sw <
1, Sr > 0, −1 < ST < 0 (if rt+1 > n), and ST < −1 (if rt+1 < n).

Since the PAYG pension is a pure transfer from young to co-existing old gener-
ations it does not itself lead to the formation of capital in the economy. Since only
private saving augments the capital stock, equation (16.20) is still relevant (see Inter-
mezzo 16.1). By combining (16.20) with (16.40) we obtain the expression linking the
future capital stock to current saving plans:

S(wt, rt+1, T) = (1 + n)kt+1. (16.41)

With a Cobb-Douglas technology (yt ≡ Z0kα
t ) equations (16.15) and (16.16) reduce

to, respectively, wt ≡ w(kt) = (1− α)Z0kα
t and rt+1 ≡ r(kt+1) = αZ0kα−1

t+1 − δ. By
using these expressions in (16.41) we obtain the fundamental difference equation (in
implicit form) characterizing the economy under a PAYG system, kt+1 = g(kt, T).
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Figure 16.4: PAYG pensions in the unit-elastic model

The partial derivatives of this function are:

gk ≡
∂g
∂kt

=
Sww′(kt)

1 + n− Srr′(kt+1)
> 0, (16.42)

gT ≡
∂g
∂T

=
ST

1 + n− Srr′(kt+1)
< 0, (16.43)

where Sw and Sr are obtained from (16.40). We illustrate the fundamental difference
equation in Figure 16.4 (see Intermezzo 16.1).

In Figure 16.4, the dashed line, labelled “kt+1 = g(kt, 0)” characterizes the stan-
dard unit-elastic Diamond-Samuelson model without social security, i.e. it repro-
duces Figure 16.1 and point B is the steady state to which the economy converges in
the absence of social security. Suppose now that the PAYG system is introduced at
time t = 0 when the economy has an initial (non-steady-state) capital-labour ratio of
k0. Members of the old generation at time t = 0 cannot believe their luck. They have
not contributed anything to the PAYG system but nevertheless receive a pension of
Z = (1 + n)T (see equation (16.35)). Since the old do not save, this windfall gain is
spent entirely on additional consumption. Consumption by each old household at
time t = 0 is now:

CO
0 = (1 + n)

[
(1 + r(k0))k0 + T

]
, (16.44)

and, since k0 is predetermined, so is the interest rate and dCO
0 /dT = 1 + n > 0.

In contrast, members of the young generation at time t = 0 are affected by the
introduction of the PAYG system in a number of different ways. On the one hand,
they must pay T in the current period in exchange for which they receive a pension
(1 + n)T in the next period. Since the wage rate at time t = 0, w(k0), is prede-
termined, the net effect of these two transactions is to change the value of lifetime
resources (ŵ0 defined in (16.39)) according to:

∂ŵ0

∂T
= − r(k1)− n

1 + r(k1)
Q 0, (16.45)
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where the sign is ambiguous because r(k1) may exceed or fall short of the population
growth rate n. Furthermore, (16.45) is only a partial effect because the interest rate
depends on the capital stock in the next period (k1), which is itself determined by the
savings behaviour of the young in period t = 0. It follows from (16.41) and (16.43),
however, that the total effect of the introduction of the PAYG system is to reduce
saving by the young and thus to reduce next period’s capital stock, i.e. dk1/dT =
gT < 0. This adverse effect on the capital stock is represented in Figure 16.4 by the
vertical difference between points A and C.

As a result of the policy shock, the economy now follows the convergent path
from C to the ultimate steady state E0. It follows from Figure 16.4 that kt is less than
it would have been without the PAYG pension, both during transition and in the
new steady state (i.e. the path from C to E0 lies below the path from A to B). Hence,
since w′(k) > 0 and r′(k) < 0, the steady-state wage is lower and the interest rate
is higher than it would have been. The long-run effect on the capital-labour ratio is
obtained by using (16.41) and imposing the steady state (kt+1 = kt):

dk
dT

=
gT

1− gk
< 0, (16.46)

where 0 < gk < 1 follows from the stability condition.
The upshot of the discussion so far is that, unlike a fully funded pension system,

a PAYG system is not neutral but leads to crowding out of capital, a lower wage rate,
and a higher interest rate in the long run. Is that good or bad for households? To
answer that question we now study the welfare effect on a steady-state generation of a
change in the contribution rate, T. As in our discussion of dynamic efficiency above
we thus continue to ignore transitional dynamics for the time being by only looking
at the steady state.

To conduct the welfare analysis we need to utilize two helpful tools, namely the
indirect utility function and the factor price frontier. The indirect utility function is
defined in formal terms by:

Λ̄Y(w, r, T) ≡ max
{CY ,CO}

ΛY(CY, CO) subject to ŵ = CY +
CO

1 + r
, (16.47)

where ΛY(CY, CO) is the direct utility function (i.e. equation (16.1)). The lack of sub-
scripts indicates steady-state values and ŵ represents lifetime household resources
under the PAYG system:

ŵ = w− r− n
1 + r

T. (16.48)

For example, for the logarithmic felicity function (employed regularly in this chap-
ter) the indirect utility function takes the following form:

Λ̄Y = ω0 +
2 + ρ

1 + ρ
ln ŵ +

1
1 + ρ

ln(1 + r), (16.49)

where ω0 is a constant.4

4The explicit functional form of the indirect utility is obtained by plugging the optimal consumption
levels, as chosen by the household, back into the direct utility function (16.1). The reader should verify
the properties stated in (16.50)–(16.52).
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The indirect utility function (16.47) has a number of properties which will prove
to be very useful below:

∂Λ̄Y

∂w
=

∂ΛY

∂CY > 0, (16.50)

∂Λ̄Y

∂r
=

S
1 + r

∂ΛY

∂CY > 0, (16.51)

∂Λ̄Y

∂T
= − r− n

1 + r
∂ΛY

∂CY R 0. (16.52)

These properties are derived as follows. We start with the identity:

Λ̄Y(w, r, T) ≡ ΛY
[
CY(w, r, T), CO(w, r, T)

]
, (16.53)

where Ci(w, r, T) are the optimal consumption levels during the two periods of life.
By using this identity, differentiating (16.53) with respect to w, and noting that ∂ΛY

/∂CO = (∂ΛY/∂CO)/ (1 + r) we obtain:

∂Λ̄Y

∂w
=

∂ΛY

∂CY

[
∂CY

∂w
+

1
1 + r

∂CO

∂w

]
. (16.54)

It follows from the constraint in (16.47) that the term in square brackets is equal to
unity. Using the same steps we obtain for ∂Λ̄Y/∂r:

∂Λ̄Y

∂r
=

∂ΛY

∂CY

[
∂CY

∂r
+

1
1 + r

∂CO

∂r

]
=

∂ΛY

∂CY

[
CO − (1 + n)T

(1 + r)2

]
. (16.55)

Using CO − (1 + n)T = (1 + r)S we obtain (16.51). Finally, we obtain for ∂Λ̄Y/∂T:

∂Λ̄Y

∂T
=

∂ΛY

∂CY

[
∂CY

∂T
+

1
1 + r

∂CO

∂T

]
= − r− n

1 + r
∂ΛY

∂CY , (16.56)

where the final result follows from the constraint in (16.47).
According to (16.50)–(16.51), steady-state welfare depends positively on both the

wage rate and the interest rate. Since we saw above that the wage falls (dw/dT =
w′(k)dk/dT < 0) but the interest rate rises (dr/dT = r′(k)dk/dT > 0) in the long
run, the effects of factor prices on welfare work in opposite directions even in the
absence of a PAYG system (if T = 0).

But both w and r depend on the capital-labour ratio (as in the standard neo-
classical model) and are thus not independent of each other. By exploiting this de-
pendency we obtain the factor price frontier, wt = φ(rt), which has a very useful
property:

wt = φ(rt),
dwt

drt
≡ φ′(rt) = −kt. (16.57)

The slope of the factor price frontier is obtained as follows. In general, by differen-
tiating (16.15) and (16.16) (for rt) we get drt = f ′′(kt)dkt and dwt = −kt f ′′(kt)dkt so
that dwt/drt = −kt. From this it follows that d2wt/dr2

t = −dkt/drt = −1/ f ′′(kt).5

5The factor price frontier for the Cobb-Douglas technology is given by:

w = (1− α)Z1/(1−α)
0

(
α

r + δ

)α/(1−α)

,

where the reader should verify the property stated in (16.57).
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We now have all the necessary ingredients to perform our welfare analysis. By
differentiating the indirect utility function (16.47) with respect to T we obtain in a
few steps:

dΛ̄Y

dT
=

∂Λ̄Y

∂w
dw
dT

+
∂Λ̄Y

∂r
dr
dT

+
∂Λ̄Y

∂T

=
∂ΛY

∂CY ·
(

dw
dT

+
S

1 + r
· dr

dT
− r− n

1 + r

)
= − r− n

1 + r
∂ΛY

∂CY ·
[

1 + k · dr
dT

]
T 0 for r S n, (16.58)

where we have used (16.48) and (16.50)–(16.52) in going from the first to the second
line and (16.57) as well as S = (1 + n)k in going from the second to the third line.
The term in square brackets on the right-hand side of (16.58) shows the two channels
by which the PAYG pension affects welfare. The first term is the partial equilibrium
effect of T on lifetime resources and the second term captures the general equilibrium
effects that operate via factor prices.

The expression in (16.58) is important because it illustrates in a transparent fash-
ion the intimate link that exists between, on the one hand, the steady-state welfare
effect of a PAYG pension and, on the other hand, the dynamic (in)efficiency of the
initial steady-state equilibrium. If the economy happens to be in the golden-rule
equilibrium (so that r = n) then it follows from (16.58) that a marginal change in the
PAYG contribution rate has no effect on steady-state welfare (i.e. dΛ̄Y/dT = 0 in that
case). Since the yield on private saving and the PAYG pension are the same in that
case, a small change in T does not produce a first-order welfare effect on steady-state
generations despite the fact that it causes crowding out of capital (see (16.46)) and
thus an increase in the interest rate (since r′(k) < 0).

Matters are different if the economy is initially not in the golden-rule equilibrium
(so that r 6= n) because the capital crowding out does produce a first-order welfare
effect in that case. For example, if the economy is initially dynamically inefficient
(r < n), then an increase in the PAYG contribution rate actually raises steady-state
welfare! The intuition behind this result, which was first demonstrated in the pen-
sions context and with a partial equilibrium model by Aaron (1966), is as follows. In
a dynamically inefficient economy there is oversaving by the young generations as
a result of which the market rate of interest is low. By raising T the young partially
substitute private saving for saving via the PAYG pension. The latter has a higher
yield than the former because the biological interest rate, n, exceeds the market inter-
est rate, r. The reduction in the capital stock lowers the wage but this adverse effect
on welfare is offset by the increase in the interest rate in a dynamically inefficient
economy. To put it bluntly, capital crowding out is beneficial in such an economy.

16.2.1.3 Equivalence PAYG and deficit financing government debt

As was shown by Auerbach and Kotlikoff, a PAYG social security scheme can also
be reinterpreted as a particular kind of government debt policy (1987, pp. 149–150).
In order to demonstrate this equivalency result, we now introduce government debt
into the model. This model extension also allows us to further clarify the link be-
tween the pension insights of Aaron (1966) and the macroeconomic effects of debt as
set out by Diamond (1965).

Assume that the government taxes the young generations, provides transfers to
the old generations, and issues one-period (indexed) debt which yields the same rate
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of interest as capital. Ignoring government consumption, the government budget
identity is now:

Bt+1 − Bt = rtBt + Lt−1Zt − LtTt, (16.59)

where Bt is the stock of public debt at the beginning of period t. Interest payments
on existing debt (rtBt) plus transfers to the old are covered by the revenues from the
tax on the young and/or additional debt issues (Bt+1 − Bt).

Because government debt and private capital attract the same rate of return, the
household is indifferent about the composition of its savings over these two assets.
Consequently, the young choose consumption in the two periods and total saving in
order to maximize lifetime utility (16.1) subject to the budget identities (16.31) and
(16.32). The savings function that results takes the following form:

St = S(ŵt, rt+1), (16.60)

where ŵt is given by the left-hand side of (16.33) which is reproduced here for con-
venience:

ŵt = wt − Tt +
Zt+1

1 + rt+1
. (16.61)

It remains to derive the expression linking private savings plans and aggregate cap-
ital formation. There are Lt young agents who each save St so that aggregate saving
is StLt. Saving can be in the form of private capital or public debt. Hence the capital
market equilibrium condition is now (see Intermezzo 16.1):

LtSt = Bt+1 + Kt+1. (16.62)

We are now in the position to present an important equivalence result which was
proved inter alia by Wallace (1981), Sargent (1987a), and Calvo and Obstfeld (1988).
Buiter and Kletzer state the equivalence result as follows: “...any equilibrium with
government debt and deficits can be replicated by an economy in which the govern-
ment budget is balanced period-by-period (and the stock of debt is zero) by appro-
priate age-specific lump-sum taxes and transfers” (1992, pp. 27–28). A corollary of
the result is that if the policy maker has access to unrestricted age-specific taxes and
transfers then public debt is redundant in the sense that it does not permit additional
equilibria to be supported (1992, p. 28).

The model developed in this subsection is fully characterized (for t ≥ 0) by the
following equations:

CO
t = (1 + r(kt))(1 + n)(kt + bt) + Zt, (16.63)

U′(CY
t ) =

1 + r(kt+1)

1 + ρ
U′(CO

t+1), (16.64)

w(kt)− Tt − CY
t = (1 + n) [kt+1 + bt+1] , (16.65)

(1 + n)bt+1 = (1 + r(kt))bt +
Zt

1 + n
− Tt, (16.66)

where bt ≡ Bt/Lt is government debt per worker and where k0 and b0 are both given.
Equation (16.63) is consumption of an old household, (16.64) is the consumption
Euler equation for a young household (see also (16.5)), (16.65) is (16.31) combined
with (16.62), and (16.66) is the government budget identity (16.59) expressed in per-
worker form. Finally, we have substituted the rental expressions wt = w(kt) and
rt = r(kt) in the various equations (see equations (16.15) and (16.16) above).
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The first thing we note is that the fiscal variables only show up in two places in
the dynamical system. In (16.63) there is a resource transfer from the government to
each old household (ΓGO

t ) consisting of debt service and transfers:

ΓGO
t ≡ (1 + r(kt))(1 + n)bt + Zt. (government to old)

Similarly, in (16.65) there is a resource transfer from each young household to the
government (ΓYG

t ) in the form of purchases of government debt plus taxes:

ΓYG
t ≡ (1 + n)bt+1 + Tt. (young to government)

Since there are Lt−1 old and Lt young households, the net resource transfer to the
government is LtΓYG

t − Lt−1ΓGO
t = 0, where the equality follows from the govern-

ment budget constraint (16.66). Hence, in the absence of government consumption,
what the government takes from the young it must give to the old. Put differently,
once you know ΓYG

t you also know ΓGO
t ≡ (1 + n)ΓYG

t and the individual compo-
nents appearing in the government budget identity (such as bt+1, bt, Zt, and Tt) are
irrelevant for the determination of the paths of consumption and the capital stock
(Buiter and Kletzer, 1992, p. 17).

The equivalence result is demonstrated by considering two paths of the econ-
omy which, though associated with different paths for bonds, taxes, and transfers,
nevertheless give rise to the same paths for the real variables, namely the capi-
tal stock and consumption by the young and the old. For the reference path, the
sequence {b̂t, Ẑt, T̂t}∞

t=0 gives rise to a sequence for the real variables denoted by
{ĈY

t , ĈO
t , k̂t}∞

t=0 given k0 and b0. We can then show that for any other debt sequence
{b̌t}∞

t=1 we can always find sequences for taxes and transfers {Žt, Ťt}∞
t=0 such that

the resulting sequences for the real variables are the same as in the reference path,
i.e. {ĈY

t }∞
t=0 = {ČY

t }∞
t=0, {ĈO

t }∞
t=0 = {ČO

t }∞
t=0, and {k̂t}∞

t=0 = {ǩt}∞
t=0.

The key ingredient of the proof is to construct the alternative path such that the
resource transfers from the young to the government (ΓYG

t ) and from the government
to the old (ΓGO

t ) are the same for the two paths. These requirements give rise to the
following expressions:

Ẑt − Žt = (1 + n)
[
(1 + r(ǩt))b̌t − (1 + r(k̂t))b̂t

]
, (16.67)

b̌t+1 − b̂t+1 =
1

1 + n
[
T̂t − Ťt

]
. (16.68)

By using (16.67) in (16.63) and (16.68) in (16.65) we find that these equations solve for
the same real variables. As a result, the Euler equation (16.64) is the same for both
paths. Obviously the government budget identity still holds. Finally, if the reference
path satisfies the government solvency condition (see Intermezzo 16.2) then so will
the alternative path.

As a special case of the equivalence result we can take as the reference path the
PAYG system (studied above), which has b̂t = 0, T̂t = T, and Ẑt = (1 + n)T for all
t. One (of many) alternative paths is the deficit path in which there are only taxes on
the young generations, i.e. Žt = 0, b̌t = (1 + n)T/(1 + rt), and Ťt = T − (1 + n)b̌t+1
for all t.

16.2.1.4 From PAYG to a funded system

In the previous subsection we have established the equivalence between traditional
deficit financing and a PAYG social security system. As a by-product of the analysis



CHAPTER 16: OVERLAPPING GENERATIONS IN DISCRETE TIME 623

there we showed how public debt affects the equilibrium path of the economy. In
this section we continue our analysis of the welfare effects of a PAYG system, first
without and then with bond policy.

Up to this point we have only unearthed the welfare effect of a PAYG system
on steady-state generations (see (16.58)) and we have ignored the initial conditions
facing the economy, i.e. we have not yet taken into account the costs associated with
the transition from the initial growth path to the golden-rule path. As both Diamond
(1965, pp. 1128–1129) and Samuelson (1975b, p. 543) stress, ignoring transitional
welfare effects is not a very good idea.

As we argued above, the introduction of a PAYG system (or the expansion of a
pre-existing one) affects different generations differently. The welfare of old genera-
tions at the time of the shock unambiguously rises because of the windfall gain the
shock confers on them. From the perspective of their last period of life, they gain
utility to the tune of U′(CO

1 )dCO
0 /dT = (1 + n)U′(CO

1 ) > 0 (see (16.44)). The welfare
effect on generations born in the new steady state is ambiguous as it depends on
whether or not the economy is dynamically efficient (see (16.58)). In a dynamically
inefficient economy, r < n, all generations, including those born in the new steady
state, gain from the pension shock. Intuitively, the PAYG system acts like a “chain
letter” system which ensures that each new generation passes resources to the gen-
eration immediately preceding it. In such a situation a PAYG system which moves
the economy in the direction of the golden-rule growth path is surely “desirable” for
society as a whole.

Intermezzo 16.2

Government solvency condition under perfect foresight. The govern-
ment budget identity (16.59) can be written in per-worker format as:

bt =
bt+1 + pst

1 + r̄t
, (a)

where 1 + r̄t ≡ (1 + rt) / (1 + n) is the net interest factor and pst ≡
[Tt − Zt/ (1 + n)] / (1 + n) is the primary surplus. Of course, (a) can also
be used for future periods. For example, for bt+1 and bt+2 we obtain:

bt+1 =
bt+2 + pst+1

1 + r̄t+1
, bt+2 =

bt+3 + pst+2
1 + r̄t+2

. (b)

By repeated substitution of bt+1, bt+2, etcetera into (a) we obtain after
T − 1 (≥ 2) such substitutions:

bt = bt+T ·
[

1
1 + r̄t

1
1 + r̄t+1

· · · 1
1 + r̄t+T−1

]
+

pst
1 + r̄t

+
pst+1

(1 + r̄t) (1 + r̄t+1)

+ · · ·+
pst+T−1

(1 + r̄t) (1 + r̄t+1) · · · (1 + r̄t+T−1)
. (c)

The term in square brackets on the right-hand side is the cumulative dis-
count factor applied to bt+T . Equation (c) can be written in short-hand
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notation as:

bt = bt+T ·
[

T−1

∏
i=0

1
1 + r̄t+i

]
+

T−1

∑
τ=0

pst+τ ·
[

τ

∏
i=0

1
1 + r̄t+i

]
. (d)

The government solvency condition is:

lim
T→∞

bt+T ·
[

T−1

∏
i=0

1
1 + r̄t+i

]
= 0. (e)

Imposing (e) in (d) we obtain the government budget constraint:

bt =
∞

∑
τ=0

pst+τ ·
[

τ

∏
i=0

1
1 + r̄t+i

]
. (f)

To the extent that there is a positive government debt at time t, it must be
covered in present-value terms by primary surpluses.

****

As Abel et al. (1989) suggest, however, actual economies are not likely to be
dynamically inefficient. If the economy is dynamically efficient, so that r > n, then it
follows from, respectively, (16.44) and (16.58) that whilst an increase in T still makes
the old initial generation better off, it leaves steady-state generations worse off than
they would have been in the absence of the shock. Since some generations gain
and other lose out, it is no longer obvious whether a pension-induced move in the
direction of the golden-rule growth path is “socially desirable” at all.

There are two ways in which the concept of social desirability, which we have de-
liberately kept vague up to now, can be made operational. The first approach, which
was pioneered by Bergson (1938) and Samuelson (1947), makes use of a so-called so-
cial welfare function. In this approach, a functional form is typically postulated which
relates an indicator for social welfare (SW) to the welfare levels experienced by the
different generations. Using our notation, an example of a social welfare function
would be:

SWt = Ω(ΛY
t−1, ΛY

t , ...., ΛY
∞). (16.69)

Once a particular form for the social welfare function is adopted, the social desir-
ability of different policies can be ranked. If policy A is such that it yields a higher
indicator of social welfare than policy B, then it follows that policy A is socially pre-
ferred to policy B (i.e. SWA

t > SWB
t ). Note that, depending on the form of the social

welfare function Ω(·), it may very well be the case that some generations are worse
off under policy A than under policy B despite the fact that A is socially preferred
to B. What the social welfare function does is establish marginal rates of substitution
between lifetime utility levels of different generations (i.e. (∂Ω/∂ΛY

t−1)/(∂Ω/∂ΛY
t ),

etc.).6

The second approach to putting into operation the concept of social desirability
makes use of the concept of Pareto-efficiency. Recall that an allocation of resources in

6Applications of the social welfare function approach are given in Sections 16.4.1 and 16.4.2 below.
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the economy is called Pareto-optimal (or Pareto-efficient) if there is no other feasible
allocation which (i) makes no individual in the economy worse off and (ii) makes at
least one individual strictly better off than he or she was. Similarly, a policy is called
Pareto-improving vis-à-vis the initial situation if it improves welfare for at least one
agent and leaves all other agents equally well off as in the status quo.

Recently, a number of authors have applied the Pareto-criterion to the question
of pension reform. Specifically, Breyer (1989) and Verbon (1989) ask themselves the
question whether it is possible to abolish a pre-existing PAYG system (in favour of a
fully funded system) in a Pareto-improving fashion in a dynamically efficient econ-
omy. This is a relevant question because in such an economy, steady-state genera-
tions gain if the PAYG system is abolished or reduced (since r exceeds n, it follows
from equation (16.58) that dΛY/dT < 0 in that case) but the old generation at the
time of the policy shock loses out (see (16.44)). This generation paid into the PAYG
system when it was young in the expectation that it would receive back 1 + n times
its contribution during old age. Taken in isolation, the policy shock is clearly not
Pareto-improving.

Of course, bond policy constitutes a mechanism by which the welfare gains and
losses of the different generations can be redistributed. This is the case because it
breaks the link between the contributions of the young (LtTt) and the pension re-
ceipts by the old in the same period (Lt−1Zt)—compare (16.35) and (16.59). The key
issue is thus whether it is possible to find a bond path such that the reduction in
the PAYG contribution is Pareto-improving. As it turns out, no such path can be
found. It is thus not possible to compensate the old generation at the time of the
shock without making at least one future generation worse off (Breyer, 1989, p. 655).

16.2.2 PAYG pensions and endogenous retirement

In a very influential article, Feldstein (1974) argued that a PAYG system not only
affects a household’s savings decisions (as is the case in the model studied up to
this point) but also its decision to retire from the labour force. We now augment
the model in order to demonstrate the implications for allocation and welfare of
endogenous retirement. Following the literature, we capture the notion of retirement
by assuming that labour supply during the first period of life is endogenous. To
keep the model as simple as possible, we continue to assume that households do not
work at all during the second period of life. To bring the model closer to reality, we
assume furthermore that the contribution to the PAYG system is levied in the form
of a proportional tax on labour income and that the pension is intragenerationally fair,
i.e. in principle an agent who would work a lot during youth would get a higher
pension during old age than an agent who would be lazy during youth. Agents are
assumed to be identical, however, so we can focus from the outset on the symmetric
equilibrium in which members of the same cohort all behave in the same way. Within
the augmented model it is possible that the PAYG system distorts the labour supply
decisions by households.

16.2.2.1 Households

The lifetime utility function of a (representative) young agent who is born at time t
is given in general form by:

ΛY
t ≡ ΛY(CY

t , CO
t+1, 1− Nt), (16.70)
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where Nt is labour supply (1−Nt is leisure) and ΛY(·) satisfies the usual Inada-style
conditions. The agent faces the following budget identities:

CY
t + St = wtNt − Tt, (16.71)

CO
t+1 = (1 + rt+1)St + Zt+1, (16.72)

where Tt and Zt+1 are defined as follows:

Tt = tLwtNt, (16.73)

Zt+1 =
[
tLwt+1NLt+1

]
· Nt

NLt
, (16.74)

where tL is the labour income tax (0 < tL < 1) and NLt stands for aggregate labour
supply in period t. According to (16.73), the individual agent’s contribution to the
PAYG system is equal to a proportion of his labour income, where the proportional
tax, tL, is assumed to be the same for all individuals and constant over time. Equation
(16.74) shows that the pension is intragenerationally fair (as in Breyer and Straub,
1993, p. 81). The term in square brackets on the right-hand side of (16.74) is the total
tax revenue that is available for pension payments in the next period. Each agent
gets a share of this revenue that depends on his relative labour supply effort during
youth (given by Nt/NLt ).

Each household is fully aware of the features of the pension system (as formalized
in (16.73)–(16.74)) so that the consolidated lifetime budget constraint, upon which
the household bases its decisions, is given by:

CY
t +

CO
t+1

1 + rt+1
= wtNt − tL ·

[
1− wt+1NLt+1

wt(1 + rt+1)NLt

]
wtNt

≡ (1− tEt)wtNt, (16.75)

where tEt is the (potentially time-varying) effective tax rate on labour:

tEt ≡ tL ·
[

1− wt+1

wt

NLt+1

NLt

1
1 + rt+1

]
. (16.76)

The key thing to note about (16.75) is that in the current setting the household’s pen-
sion depends not only on future wages but also on the aggregate supply of labour
by future young agents. To solve its optimization problem, the household must thus
form expectations regarding these variables, and, as usual, by suppressing the ex-
pectations operator we have implicitly assumed in (16.75) that the agent is blessed
with perfect foresight.

Assuming an interior optimum, the first-order conditions for consumption dur-
ing the two periods and labour supply are:

∂ΛY

∂CO
t+1

=
1

1 + rt+1

∂ΛY

∂CY
t

, (16.77)

∂ΛY

∂(1− Nt)
= (1− tEt)wt

∂ΛY

∂CY
t

. (16.78)

Equation (16.77) is the familiar consumption Euler equation in general functional
form. The optimal labour supply decision is characterized by (16.78) in combination
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with (16.76). Equation (16.78) is the usual condition calling for an equalization of the
after-effective-tax wage rate and the marginal rate of substitution between leisure
and consumption during youth. Equation (16.76) shows to what extent the PAYG
system has the potential to distort the labour supply decision. It is not the statutory
tax rate, tL, which determines whether or not the labour supply decision is distorted
but rather the effective tax rate, tEt. By paying the PAYG premium during youth one
obtains the right to a pension. Ceteris paribus labour supply, the effective tax rate
may actually be negative, i.e. it may in fact be an employment subsidy (Breyer and
Straub, 1993, p. 82).

Since all agents of a particular generation are identical in all aspects we can now
simplify the model by inposing symmetry. In the symmetric equilibrium we have
NLt = NtLt, and NLt+1 = Nt+1Lt+1. With a constant growth rate of the population
(Lt+1 = (1 + n)Lt) equation (16.76) thus simplifies to:

tEt ≡ tL ·
[

1− wt+1

wt

Nt+1

Nt

1 + n
1 + rt+1

]
=

tL
1 + rt+1

·
[

rt+1 −
∆WIt+1

WIt

]
, (16.79)

where WIt ≡ wtNtLt is total wage income in period t and ∆WIt+1 ≡ WIt+1 −WIt.
We find that the pension system acts like an employment subsidy (and tEt < 0) if the
so-called Aaron condition holds, i.e. if the growth of total wage income exceeds the
rate of interest (Aaron, 1966).

In the symmetric equilibrium, equations (16.75)–(16.78) define the optimal values
of CY

t , CO
t+1, and Nt as a function of the variables that are exogenous to the repre-

sentative agent (wt, rt+1, and tEt). We write these solutions as CY
t = CY(wN

t , rt+1),
CO

t+1 = CO(wN
t , rt+1), and Nt = N(wN

t , rt+1), where wN
t ≡ wt(1− tEt). The (partial-

equilibrium) effect of a change in the statutory tax rate, tL, on the household’s labour
supply decision can thus be written in elasticity format as:

tL
N

∂N
∂tL

= −εN
wN ·

tEt
1− tEt

, εN
wN ≡

wN
t

N
∂N

∂wN
t

, (16.80)

where εN
wN is the uncompensated elasticity of labour supply. It follows from (16.80)

that the effect of the contribution rate on labour supply is ambiguous for two reasons.
First, it depends on whether the Aaron-condition is satisfied (tEt < 0) or violated
(tEt > 0). Second, it also depends on the sign of εN

wN . We recall that εN
wN > 0 (< 0)

if the substitution effect in labour supply dominates (is dominated by) the income
effect. If the labour supply is upward sloping and the Aaron condition is satisfied
then, for given factor prices, an increase in the statutory tax rate increases labour
supply.

16.2.2.2 The macroeconomy

We must now complete the description of the model and derive the fundamental
difference equation for the economic system. We follow the approach of Ihori (1996,
pp. 36–37). With endogenous labour supply, the number of young agents (Lt) no
longer coincides with the amount of labour used in production (LtNt). By redefining
the capital-labour ratio as kt ≡ Kt/(LtNt), however, the expressions for the wage
and the interest rate are still as in (16.15)–(16.16) and the factor price frontier is still
as given in (16.57). Current savings leads to the formation of capital in the next
period, i.e. LtSt = Kt+1. In terms of the redefined capital-labour ratio we get:

St = (1 + n)Nt+1kt+1. (16.81)
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To characterize this fundamental difference equation we note that the labour supply
and savings equations can be written in general functional form as:

Nt = N(wt(1− tEt), rt+1), (16.82)

St =
CO(wt(1− tEt), rt+1)− (1 + n)tLwt+1Nt+1

1 + rt+1
(16.83)

≡ S
(
wt(1− tEt), rt+1, tLwt+1Nt+1

)
. (16.84)

By using these expressions in (16.81) we obtain the following expression:

S
(
wt(1− tEt), rt+1, tLwt+1Nt+1

)
= (1 + n)N

(
wt+1(1− tEt+1), rt+2

)
kt+1. (16.85)

Clearly, since wt = w(kt) and rt = r(kt), this expression contains the terms kt, kt+1,
and kt+2 so one is tempted to conclude that it is a second-order difference equation
in the capital stock. As Breyer and Straub (1993, p. 82) point out, however, the
presence of future pensions introduces an infinite regress into the model, i.e. since
tEt depends on Nt+1 (see (16.79)), it follows that tEt+1 depends on Nt+2 which itself
depends on kt+2, kt+3, and tEt+2. As a result, (16.85) depends on the entire sequence
of present and future capital stocks, {kt+τ}∞

τ=0, so that, even though we assume
perfect foresight, the model has a continuum of equilibria.7 Since we assume that
the population growth rate is constant, however, we can skip over the indeterminacy
issue by first studying the steady state.

16.2.2.3 The steady state

We study two pertinent aspects of the steady state. First, we show how the endo-
geneity of labour supply affects the welfare effect of the PAYG pension. Second, we
show that in the unit-elastic model the pension crowds out capital in the long run.
As before, the long-run welfare analysis makes use of the indirect utility function
which is now defined as follows:

Λ̄Y(w, r, tL) ≡ max
{CY ,CO ,N}

ΛY(CY, CO, 1− N)

subject to: wN
[

1− tL
r− n
1 + r

]
= CY +

CO

1 + r
. (16.86)

(The constraint is obtained from (16.75) and (16.76) by noting that in the steady state
we have wt = w, Nt = N, rt+1 = r, and NLt+1 = (1 + n)NLt.) Retracing our earlier
derivation we can deduce the following properties of the indirect utility function:

∂Λ̄Y

∂w
= N

∂ΛY

∂CY

[
1− tL

r− n
1 + r

]
, (16.87)

∂Λ̄Y

∂r
=

S
1 + r

∂ΛY

∂CY , (16.88)

∂Λ̄Y

∂tL
= − r− n

1 + r
wN

∂ΛY

∂CY . (16.89)

7Indeterminacy and multiple equilibria are quite common phenomena in overlapping-generations
models of the Diamond-Samuelson type. Azariadis (1993) gives a general discussion. Reichlin (1986)
and Nourry (2001) deal specifically with the case of endogenous labour supply. See also Woodford (1984).
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The total effect of a marginal change in the statutory tax rate on steady-state welfare
is now easily computed:

dΛ̄Y

dtL
=

∂Λ̄Y

∂w
dw
dtL

+
∂Λ̄Y

∂r
dr
dtL

+
∂Λ̄Y

∂tL

=
∂ΛY

∂CY ·
(

N
(

1− tL
r− n
1 + r

)
dw
dtL

+
S

1 + r
dr
dtL
− r− n

1 + r
wN

)
= −N · r− n

1 + r
· ∂ΛY

∂CY ·
[

w + (1− tL)k ·
dr
dtL

]
, (16.90)

where we have used (16.87)–(16.89) in going from the first to the second line and
(16.57) and (16.81) in going from the second to the third line. There are two note-
worthy conclusions that can be drawn on the basis of (16.90). First, if the economy
is initially in the golden-rule equilibrium (r = n), then a marginal change in tL does
not produce a first-order welfare effect on steady-state generations. Intuitively, the
labour supply decision is not distorted because the effective tax on labour is zero in
that case (tE = tL(r− n)/(1 + r) = 0). Second, if the economy is not in the golden-
rule equilibrium (r 6= n), then the sign of the welfare effect is determined by the sign
of the term in square brackets on the right-hand side of (16.90). Just as for the case
with lump-sum contributions (see (16.58)), the PAYG pension affects welfare through
lifetime resources (the first term within the square brackets) and via factor prices (the
second composite term). It turns out, however, that with endogenous labour supply
the sign of dr/dtL (and thus the sign of dΛ̄Y/dtL) is ambiguous (Ihori, 1996, p. 237).

Matters are simplified quite a lot if Cobb-Douglas preferences are assumed, i.e. if
(16.70) is specialized to:

ΛY
t ≡ ln CY

t + λC ln(1− Nt) +
1

1 + ρ
ln CO

t , (16.91)

where ρ is the rate of time preference and λC (≥ 0) regulates the strength of the
labour supply effect. The following solutions for the decision variables are then ob-
tained by maximizing (16.91) subject to (16.75):

CY
t =

1 + ρ

2 + ρ + λC(1 + ρ)
wN

t , (16.92)

CO
t+1 =

1 + rt+1

2 + ρ + λC(1 + ρ)
wN

t , (16.93)

Nt =
2 + ρ

2 + ρ + λC(1 + ρ)
, (16.94)

where wN
t ≡ wt(1− tEt) is the effective after-tax wage. In the unit-elastic model, con-

sumption during youth and old age are both normal goods (i.e. depend positively
on wN

t ) and labour supply is constant because income and substitution effects cancel
out. Since the current workers know that future workers will also supply a fixed
amount of labour (Nt+1 = Nt = N), the expression for the after-tax wage simplifies
to:

wN
t ≡ wt(1− tEt) ≡ wt

[
1− tL

(
1− wt+1

wt

1 + n
1 + rt+1

)]
. (16.95)

Note furthermore that in (16.92) the presence of pension payments during old age
ensures that consumption during youth depends negatively on the interest rate—via
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the effective tax rate—despite the fact that logarithmic preferences are used. Accord-
ing to (16.93) old-age consumption depends positively on the interest rate and neg-
atively (positively) on the tax rate if the Aaron condition tEt > 0 is violated (holds;
tEt < 0). Finally, in (16.94) the standard model is recovered by setting λC = 0, in
which case labour supply is exogenous and equal to unity.

We can now determine the extent to which capital is crowded out by the PAYG
system. In view of (16.93) and (16.95), the fundamental difference equation for the
model (16.85) can be written as follows:

(1 + n)kt+1 = (1− tL)
wt

2 + ρ
− tL (1 + n)

1 + ρ

2 + ρ

wt+1

1 + rt+1
. (16.96)

Since wt = w(kt) and rt = r(kt), equation (16.96) constitutes a first-order difference
equation in the capital-labour ratio. Hence, in the unit-elastic model the indetermi-
nacy of the transition path (that was mentioned in the text below equation (16.85))
disappears because the uncompensated labour supply elasticity is zero.

The stability condition and the long-run effect of the PAYG system on the capital-
labour ratio are derived in the usual manner by finding the partial derivatives of the
implicit function, kt+1 = g(kt, tL), around the steady state (in which kt+1 = kt = k).
After some manipulation we obtain:

gk ≡
∂kt+1

∂kt
=

(1− tL)w′ (k)

(1 + n)(2 + ρ)
[
1 + tL

1+ρ
2+ρ

(1+r)w′(k)−wr′(k)
(1+r)2

] > 0, (16.97)

gt ≡
∂kt+1

∂tL
= − w [1 + r + (1 + ρ)(1 + n)]

(1 + r)(1 + n)(2 + ρ)
[
1 + tL

1+ρ
2+ρ

(1+r)w′(k)−wr′(k)
(1+r)2

] < 0. (16.98)

Since gk is positive (as w′ (k) > 0 > r′ (k)), stability requires it to be less than unity
(0 < gk < 1). As a result, the long-run effect on the capital-labour ratio is unambigu-
ously negative in the unit-elastic model:

dk
dtL

=
gt

1− gk
< 0. (16.99)

16.2.2.4 Welfare effects

We are now in the position to compare and contrast the key results of this subsection
to those that hold when labour supply is exogenous and the pension contribution is
levied in a lump-sum fashion (see subsection 16.2.1.2). At first view, the assumption
of a distorting pension contribution does not seem to change the principal conclu-
sions very much—at least in the unit-elastic model. In both cases, the PAYG contri-
bution leads to long-run crowding out of the capital-labour ratio (compare (16.46)
and (16.99)) and a reduction (increase) in steady-state welfare for a dynamically ef-
ficient (inefficient) economy (compare (16.58) and (16.90)). Intuitively, this similarity
is only moderately surprising in view of the fact that in the unit-elastic model (opti-
mally chosen) labour supply is constant (see (16.94)).

There is a very important difference between the two cases, however, because
the pension contribution, tL, itself causes a distortion of the labour supply decision
of households which is absent if the contribution is levied in a lump-sum fashion.
The resulting loss to the economy of using a distorting rather than a non-distorting
tax is often referred to as the deadweight loss (or burden) of the distorting tax (Dia-
mond and McFadden, 1974, p. 5). Following Diamond and McFadden we define
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Figure 16.5: Deadweight loss of taxation

the deadweight loss (DWL) associated with tL as the difference between, on the one
hand, the income one must give a young household to restore it to its pre-tax utility
level and, on the other hand, the tax revenue collected from it (1974, p. 5).

In Figure 16.5 we illustrate the DWL of the pension contribution for a steady-state
generation in the unit-elastic model. We hold factor prices (w and r) constant and
assume that the economy is dynamically efficient (r > n). We follow the approach
of Belan and Pestieau (1999) by solving the model in two stages. In the first stage we
define lifetime income as:

X ≡ wN
[

1− tL
r− n
1 + r

]
≡ wN(1− tE), (16.100)

and let the household choose current and future consumption in order to maximize:

ln CY +
1

1 + ρ
ln CO, (16.101)

subject to the constraint CY +CO/(1+ r) = X. This yields the following expressions:

CY =
1 + ρ

2 + ρ
X, CO =

1 + r
2 + ρ

X. (16.102)

In the right-hand panel of Figure 16.5 the line EE relates old-age consumption to life-
time income. In that panel the value of consumption during youth can be deduced
from the fact that it is proportional to lifetime income.

By substituting the expressions (16.102) into the utility function (16.91) we obtain:

ΛY ≡ 2 + ρ

1 + ρ
ln X + λC ln(1− N) + ln

[
1 + ρ

2 + ρ

(
1 + r
2 + ρ

)1/(1+ρ)
]

, (16.103)

In the second stage, the household chooses its labour supply and lifetime income
in order to maximize (16.103) subject to (16.100). The solution to this second-stage
problem is, of course, that N takes the value indicated in (16.94) and X follows from
the constraint. The second-stage optimization problem is shown in the left-hand
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panel of Figure 16.5. In that panel, TE represents the budget line (16.100) in the
absence of taxation (tE = 0). The indifference curve which is tangent to the pre-tax
budget line is given by IC and the initial equilibrium is at E0. In the right-hand panel
E0 on the EE line gives the corresponding optimal value for old-age consumption.

Now consider what happens if a positive effective tax is levied (tE > 0). Nothing
happens in the right-hand panel but in the left-hand panel the budget line rotates in
a counter-clockwise fashion. The new budget line is given by the dashed line from
the origin. We know that in the unit-elastic model income and substitution effects in
labour supply cancel out so that labour supply does not change (see (16.94)). Hence,
the new equilibrium is at E1 in the two panels. By shifting the new budget line in a
parallel fashion and finding a tangency along the pre-tax indifference curve we find
that the pure substitution effect of the tax change is given by the shift from E0 to
E2 (the income effect is thus the shift from E2 to E1). Hence, the vertical distance 0B
represents the income one would have to give the household to restore it to its pre-tax
indifference curve. We call this hypothetical transfer TR0. What is the tax revenue
which is collected from the agent? To answer that question we draw a line that is
parallel to the pre-tax budget line, through the compensated point E2. This line has
an intercept with the vertical axis at point A. We now have two expressions for lines
that both pass through the compensated point E2, namely X = w(1− tE)N + TR0
and X = wN + TR0 − T, where T is the vertical distance AB in Figure 16.5. By
deducting the two lines we find that T = tEwN so that AB represents the tax revenue
collected from the agent. Since the required transfer is 0B the DWL of the tax is given
by the distance 0A.

16.2.2.5 Reform

As a number of authors have pointed out, the distorting nature of the pension system
has important implications for the possibility of designing Pareto-improving reform
(see e.g. Homburg, 1990, Breyer and Straub, 1993, and the references to more recent
literature in Belan and Pestieau, 1999). Recall from the discussion at the end of sec-
tion 16.2.1.4 that a Pareto-improving transition from PAYG to a fully funded system
is not possible in the standard model because the resources cannot be found to com-
pensate the old generations at the time of the reform without making some future
generation worse off. Matters are different if the PAYG system represents a distorting
system. In that case, as Breyer and Straub (1993) point out, provided lump-sum (non-
distorting) contributions can be used during the transition phase, a gradual move from a
PAYG to a fully funded system can be achieved in a Pareto-improving manner. In-
tuitively, by moving from a distortionary to a non-distortionary scheme, additional
resources are freed up which can be used to compensate the various generations (Be-
lan and Pestieau, 1999).8 Of course, this type of argument has only limited practical
relevance. Indeed, it begs the question why, if non-distortionary taxes are available,
the government used the distortionary tax in the first place.

8The distortive nature of the PAYG scheme does not have to result from endogenous labour supply.
Demmel and Keuschnigg (2000), for example, assume that union wage-setting causes unemployment
which is exacerbated by the pension contribution. Efficiency gains then materialize because pension re-
form reduces unemployment. In a similar vein, Belan et al. (1998) use a Paul Romer-style (1986, 1989)
endogenous growth model and show that reform may be Pareto-improving because it helps to internalize
a positive externality in production. See also Corneo and Marquardt (2000).
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Table 16.1. Age composition of the population

1950 1990 2025
World
0–19 44.1 41.7 32.8
20–65 50.8 52.1 57.5
65+ 5.1 6.2 9.7

OECD
0–19 35.0 27.2 24.8
20–64 56.7 59.9 56.6
65+ 8.3 12.8 18.6

US
0–19 33.9 28.9 26.8
20–65 57.9 58.9 56.0
65+ 8.1 12.2 17.2

16.2.3 The macroeconomic effects of ageing

Up to this point we have assumed that the rate of population growth is constant
and equal to n (see equation (16.21) above). This simplifying assumption of course
means that the age composition of the population is constant also. A useful mea-
sure to characterize the economic impact of demography is the so-called (old-age)
dependency ratio, which is defined as the number of retired people divided by the
working-age population. In our highly stylized two-period overlapping-generations
model the number of old and young people at time t are, respectively, Lt−1 and
Lt = (1 + n)Lt−1 so that the dependency ratio is 1/(1 + n).

Of course, as all members of the baby-boom generation will surely know, the
assumption of a constant population composition, though convenient, is not a par-
ticularly realistic one. Table 16.1, which is taken from Weil (1997, p. 970), shows that
significant demographic changes have taken place between 1950 and 1990 and are
expected to take place between 1990 and 2025.

The figures in Table 16.1 graphically illustrate that throughout the world, and
particularly in the group of OECD countries and in the US, the proportion of young
people (0–19 years of age) is on the decline whilst the fraction of old people (65 and
over) steadily increases. Both of these phenomena are tell-tale signs of an ageing
population.

In this subsection we show how the macroeconomic effects of demographic com-
position changes can be analysed with the aid of a simple overlapping-generations
model. We only stress some of the key results, especially those relating to the inter-
action between demography and the public pension system. The interested reader
is referred to Weil (1997) for an excellent survey of the literature on the economics of
ageing.

In the absence of immigration from abroad (or emigration out of the country),
population ageing can result from two distinct sources, namely a decrease in fertility
and a decrease in mortality. In the two-period overlapping-generations model used
so far the length of life is exogenously fixed but we can nevertheless capture the
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notion of ageing by reducing the rate of population growth, n.9 In order to study the
effects on allocation and welfare of such a demographic shock we first reformulate
the model of subsection 16.2.1.2 in terms of a variable growth rate of the population,
nt. Hence, instead of (16.21) we use:

Lt = (1 + nt)Lt−1. (16.104)

Assuming a constant contribution rate per person (Tt = T), the pension at time t
equals Zt = (1 + nt)T. Redoing the derivations presented in subsection 16.2.1.2
yields the following fundamental difference equation of the model:

S(wt, rt+1, nt+1, T) = (1 + nt+1)kt+1, (16.105)

where the savings function is the same as in (16.40) but with nt+1 replacing n. Ce-
teris paribus, saving by the young depends negatively on the (expected) rate of pop-
ulation growth, nt+1, because the pension they receive when old depends on it (as
Zt+1 = (1 + nt+1)T). An anticipated reduction in fertility reduces the expected pen-
sion and lifetime income, and causes the agent to cut back on both present and future
consumption and to increase saving. Hence, Sn ≡ ∂S/∂nt+1 < 0. The right-hand
side of (16.105) shows that a decrease in the population growth rate makes it possi-
ble to support a higher capital-labour ratio for a given amount of per capita saving.

Following the solution method discussed in subsection 16.2.1.2, we can derive
that (16.105) defines an implicit function, kt+1 = g(kt, nt+1), with partial derivatives
0 < gk < 1 (see equation (16.42)) and gn < 0:

gn ≡
∂g

∂nt+1
=

Sn − kt+1

1 + nt+1 − Srr′(kt+1)
< 0. (16.106)

It follows that a permanent reduction in the population growth rate, say from n0 to
n1, gives rise to an increase in the long-run capital stock, i.e. dk/dn = gn/(1− gk) <
0, where k = kt+1 = kt. The transition path of the economy to the steady state is
illustrated in Figure 16.6. In that figure, the dashed line labelled “kt+1 = g(kt, n0)”
reproduces the initial transition path with social security in Figure 16.4. The reduc-
tion in fertility boosts saving at impact so that, if the economy starts out with a capital
stock k0, the new transition path is the dotted line from B to the new equilibrium at
E1. During transition the wage rate gradually rises and the interest rate falls. The
intuition behind the long-run increase in the capital-labour ratio is straightforward.
As a result of the demographic shock there are fewer young households, who own
no assets, and more old households, who own a lot of assets which they need to
provide income for their retirement years (Auerbach and Kotlikoff, 1987, p. 163).

The effect of a permanent reduction in fertility on steady-state welfare can be
computed by differentiating the indirect utility function (16.47) with respect to n,
using (16.50)–(16.51) and (16.57), and noting that ∂Λ̄Y/∂n = T

(
∂Λ̄Y/∂CY) /(1 + r):

dΛ̄Y

dn
=

∂Λ̄Y

∂w
dw
dn

+
∂Λ̄Y

∂r
dr
dn

+
∂Λ̄Y

∂n

=
∂ΛY

∂CY ·
(

dw
dn

+
S

1 + r
dr
dn

+
T

1 + r

)
=

∂ΛY

∂CY ·
[
−k

r− n
1 + r

· dr
dn

+
T

1 + r

]
Q 0. (16.107)

9The length of life can be made stochastic, as in Chapter 15, by assuming that the probability of sur-
viving into the second phase of life is between zero and one. See Section 16.3 below for such a model.
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Figure 16.6: The effects of ageing

In a dynamically efficient economy (for which r > n holds) there are two effects
which operate in opposite directions. The first term in square brackets on the right-
hand side of (16.107) represents the effect of fertility on the long-run interest rate.
Since dr/dn = r′(k)dk/dn > 0, a fall in fertility raises long-run welfare on that
account. The second term in square brackets on the right-hand side of (16.107) is the
PAYG-yield effect. If fertility falls so does the rate of return on the PAYG contribution.
Since the yield effect works in the opposite direction to the interest rate effect, the
overall effect of a fertility change is ambiguous. If the PAYG contribution is very
small (T ≈ 0) and the economy is not close to the golden-rule point (r � n), then a
drop in fertility raises long-run welfare.

Although our results are based on a highly stylized (and perhaps oversimplified)
model, they nevertheless seem to bear some relationship to reality. Indeed, Auerbach
and Kotlikoff (1987, ch. 11) simulate a highly detailed computable general equilib-
rium model for the US economy and find qualitatively very similar results: wages
rise, the interest rate falls, and long-run welfare increases strongly (see their Table
11.3). In their model, households live for 75 years, labour supply is endogenous, pro-
ductivity is age-dependent, households’ retirement behaviour is endogenous, taxes
are distorting, and demography is extremely detailed.

16.3 The tragedy of annuitization

In Chapter 15 we studied the microeconomic and macroeconomic effects of lifetime
uncertainty in the context of a continuous-time model. One of the lessons from Yaari
(1965) turned out to be the private desirability of annuitization. Intuitively, an indi-
vidual who faces lifetime uncertainty and has no voluntary bequest motives wants
to fully annuitize his wealth (if positive) or take out life-insured loans (if he wants to
borrow funds). The availability of such insurance instruments leads to an expansion
of the choice set available to the consumer and thus to an increase in utility.

In this section we investigate the private and social desirability of annuitization
in the context of a simple Diamond-Samuelson model. As it turns out, opening up
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a perfect annuity market offering actuarially fair rates may lead to a decrease in the
welfare level of future generations. Heijdra et al. (2014) label this “a tragedy of
annuitization”.

To keep things simple we structure the exposition on a simplified version of the
model discussed in Heijdra et al. (2014). Expected lifetime utility of a young agent
at time t is given by:

EtΛY
t = ln CY

t +
1− π

1 + ρ
ln CO

t+1, (16.108)

where Et is the expectations operator and π is the probability of dying after the first
period. The felicity function is logarithmic implying a unitary intertemporal sub-
stitution elasticity. In the absence of annuity markets the agent faces the following
budget identities:

CY
t + St = wt + Zt, (16.109)

CO
t+1 = (1 + rt+1)St, (16.110)

where Zt are transfers received from the government during youth. The consoli-
dated lifetime budget constraint is obtained by eliminating St from (16.109)–(16.110):

wt + Zt = CY
t +

CO
t+1

1 + rt+1
. (16.111)

The present value of consumption equals the sum of wage income plus lump-sum
transfers.

The optimal choices made during youth are given by:

CY
t =

1 + ρ

2 + ρ− π
[wt + Zt] , (16.112)

CO
t+1

1 + rt+1
= St =

1− π

2 + ρ− π
[wt + Zt] . (16.113)

Several things are worth noting. First, the individual consumes a constant fraction of
income during its youth and saves the rest. Second, the optimal amount of savings
is independent of the interest rate. This is a direct consequence of the fact that the
felicity function is logarithmic and there is no second period non-asset income—see
Intermezzo 6.1.

The link between saving by the young and the future capital intensity is still
given by (1+ n)kt+1 = St. Furthermore, factor prices are determined as in equations
(16.15)–(16.16) above. To keep the model simple we assume a Cobb-Douglas pro-
duction function, yt = Z0kα

t . Finally, the assets of those who die after the first period
of life are not wasted but are collected by the government and disbursed among the
young. Hence the fact that there are accidental bequests explains why transfers to the
young are positive in a world without annuitization opportunities:

π(1 + rt)Kt = LtZt. (16.114)

At time t the old generation owns the interest-rate inclusive capital stock, (1 + rt)Kt.
A fraction π of the old generation has died, however, so the left-hand side represents
the total amount of accidental bequests.
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Figure 16.7: Impact and long-run effect of opening an annuity market

The fundamental difference equation for the capital intensity in the absence of
longevity risk insurance and with transfers accruing to the young is given by:

(1 + n)kt+1 =
1− π

2 + ρ− π

[
(1− α(1− π))Z0kα

t + π(1− δ)kt

]
. (16.115)

It is easy to show that this difference equation is stable and features a unique steady-
state capital intensity, k∗0. As a result the steady-state wage and interest rate are
given by w∗0 = (1 − α)Z0(k∗0)

α and r∗0 = αZ0(k∗0)
α−1 − δ whilst transfers amount

to Z∗0 = π(1 + r∗0)k
∗
0. In terms of Figure 16.7 the individual optimum is at point

E0 where there is a tangency between an indifference curve (not drawn to avoid
cluttering the diagram) and the budget constraint.

Next we ask ourselves the following question. What happens if a perfect annuity
market is opened up at time t, i.e. one offering actuarially fair annuities? Clearly the
old at that time no longer save (and cannot borrow because there is no third period
of life). So they have no need for annuities. The shock-time young, however, will
fully annuitize. To see why this is so note that the actuarially fair annuity rate is:

1 + rA
t+1 =

1 + rt+1

1− π
, (16.116)

from which it follows that rA
t+1 > rt+1. Savings will attract a higher yield when fully

annuitized.
The consolidated lifetime budget constraint for the young at time t is thus:

wt + Zt = CY
t +

1− π

1 + rt+1
CO

t+1, (16.117)

where it must be noted that they still get the accidental bequests and obtain a higher
rate of interest on their assets. Optimal youth consumption CY

t and St are unaffected
but old-age consumption changes to:

CO
t+1

1 + rt+1
=

1
2 + ρ− π

[wt + Zt] . (16.118)
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In terms of Figure 16.7 the optimal consumption choice of a shock-time young indi-
vidual moves from point E0 to point A. At shock time the wage rate and transfers are
both predetermined but the choice set is nevertheless expanded as the budget line
rotates in a clockwise fashion. The shock-time young are clearly benefiting from the
opening up of a perfect annuity market!

But now things start to unravel. Because the shock-time young fully annuitize
they do not leave accidental bequests if they die after the first period as their assets
accrue to the life-insurance companies in that unfortunate case. Hence the young
from time t + 1 onward no longer get bequests so the budget line starts to shift in,
i.e. Zt+τ = 0 for τ = 1, 2, 3, . . .. But that is not all that happens over time. If the
young no longer receive transfers then this will affect their savings plans and this
will give rise to general equilibrium effects on the capital intensity causing factor
prices to change.

Figure 16.8: Introducing a perfect annuity market

(a) Capital intensity: kt+τ (b) Expected lifetime utility: ΛY
t+τ

(c) Youth consumption: CY
t+τ (d) Old-age consumption: CO

t+τ

Notes: The Matlab program used to produce these figures, Program16 01.m, is available on
the website www.heijdra.org/fomm3. Each period represents forty years. The parameters are
π = α = 0.3, δ = 0.9158 (6% annual), ρ = 4.1517 (4.14% annual), n = 0.4889 (1% annual), and
Z0 = 2.2854. The pre-shock steady state features y∗0 = 1, k∗0 = 0.0636, and r∗0 = 3.8010 (4%
annual).

The capital intensity evolves as follows. First, the shock-time young do not

www.heijdra.org/fomm3
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change their savings plans, so kt+1 = k∗0. Second, the fundamental difference equa-
tion under annuitization for τ = 2, 3, . . . is:

(1 + n)kt+τ =
1− π

2 + ρ− π
(1− α)Z0kα

t+τ−1. (16.119)

The transitional effects of the introduction of a perfect annuity market have been il-
lustrated in Figure 16.8. The capital intensity falls monotonically from t + 2 onward
to reach a permanently lower steady-state level after about five periods. Youth con-
sumption falls from t+ 1 onward as this is the first young cohort confronted with the
loss of transfers. Old-age consumption overshoots due to the old-age consumption
binge of the shock-time young who—in a sense—get to have their cake (transfers via
unintended bequests) and eat it (annuitize). The most interesting piece of informa-
tion is found in Figure 16.8(b). In terms of expected lifetime utility, the shock-time
old are unaffected, the shock-time young benefit, but all future young generations
are worse off as a result of the annuitization opportunities. This is what Heijdra et
al. (2014) call the tragedy of annuitization. The addition of a previously unavailable
insurance market makes future generations worse off. The microeconomic choices
made in the new steady state can be explained with the aid of Figure 16.7. There the
new steady-state wage rate is w∗1 and the annuity rate of interest is (1 + r∗1)/(1− π).
The budget line is steeper than before the shock but the pre-shock optimal point E0
is no longer feasible.

The intuition behind the tragedy of annuitization is straightforward. Private
annuities recycle assets of unlucky (deceased) individuals to the lucky (surviving)
members of their own cohort who just consume the extra resources. This is an in-
tragenerational transfer. In contrast, unintended bequests that are channelled to the
young via transfers amount to an intergeneral transfer from dissavers to savers. Note
that the paradoxical result is obtained despite the fact that the economy is dynami-
cally efficient (and rt > n holds throughout the transition).

16.4 Further applications of the DS model

16.4.1 Human capital accumulation

16.4.1.1 Human capital and growth

Following the early contributions by Arrow (1962) and Uzawa (1965), a number of
authors have drawn attention to the importance of human capital accumulation for
the theory of economic growth. The key papers that prompted the renewed interest
in human capital in the 1980s are Paul Romer (1986) and Lucas (1988). In this sub-
section we show how the Diamond-Samuelson overlapping-generations model can
be extended by including the purposeful accumulation of human capital by house-
holds. We show how this overlapping-generations version of the celebrated Lucas
(1988) model can give rise to endogenous growth in the economy (see also Section
14.3 above).

As in the standard model, we continue to assume that households live for two
periods, but we deviate from the standard model by assuming that the household
works full-time during the second period of life and divides its time between work-
ing and training during youth. Following Lucas (1988) human capital is equated
to the worker’s level of skill at producing goods. We denote the human capital of
worker i at time t by Hi

t and assume that producers can observe each worker’s skill
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level and will thus pay a skill-dependent wage (just as in the continuous-time model
discussed in Chapter 14 above).

The lifetime utility function of a young agent who is born at time t is given in
general terms by:

ΛY,i
t ≡ ΛY

(
CY,i

t , CO,i
t+1

)
. (16.120)

This expression incorporates the notion that the household does not value leisure
and attaches no utility value to training per se. The household is thus only interested
in improving its skills because it will improve its income later on in life. The budget
identities facing the agent are:

CY,i
t + Si

t = wtHi
t Ni

t , (16.121)

CO,i
t+1 = (1 + rt+1)Si

t + wt+1Hi
t+1, (16.122)

where wt denotes the going wage rate for an efficiency unit of labour at time t, and
Ni

t is the amount of time spent working (rather than training) during youth. Since
the agent has one unit of time available in each period we have by assumption that
Ni

t+1 = 1 (there is no third period of life so there is no point in training during the
second period). The amount of training during youth is denoted by Ei

t and equals:

Ei
t = 1− Ni

t ≥ 0. (16.123)

To complete the description of the young household’s decision problem we must
specify how training augments the agent’s skills. As a first example of a training
technology we consider the following specification:

Hi
t+1 = G(Ei

t)Hi
t, (16.124)

where G′ > 0 ≥ G′′ and G(0) = 1. This specification captures the notion that
there are positive but non-increasing returns to training in the production of human
capital and that zero training means that the agent keeps his initial skill level. Just as
in the Lucas (1988) model, the training function is linear in human capital.

The household chooses CY,i
t , CO,i

t+1, Si
t, Ni

t , and Ei
t in order to maximize lifetime

utility ΛY,i
t (given in (16.120)) subject to the constraints (16.121)–(16.123), and given

the training technology (16.124), the expected path of wages wt, and its own initial
skill level Hi

t. The optimization problem can be solved in two steps. In the first step
the household chooses its training level, Ei

t, in order to maximize its lifetime income,
LIi

t, i.e. the present value of wage income:

LIi
t(Ei

t) ≡ Hi
t ·
[

wt(1− Ei
t) +

wt+1G(Ei
t)

1 + rt+1

]
. (16.125)

The first-order condition for this optimal human capital investment problem, taking
account of the inequality constraint (16.123) explicitly, is:

dLIi
t

dEi
t
= Hi

t ·
[
−wt +

wt+1G′(Ei
t)

1 + rt+1

]
≤ 0, Ei

t ≥ 0, Ei
t ·

dLIi
t

dEi
t
= 0. (16.126)

This expression shows that it may very well be in the best interest of the agent not
to pursue any training at all during youth. Indeed, this no-training solution will
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hold if the first inequality in (16.126) is strict. Since there are non-increasing returns
to training (so that G′(0) ≥ G′(Ei

t) for Ei
t ≥ 0) we derive the following implication

from (16.126):

G′(0) <
wt(1 + rt+1)

wt+1
⇒ Ei

t = 0. (16.127)

If the training technology is not very productive to start with (G′(0) low), then the
corner solution will be selected.

An internal solution with a strictly positive level of training is such that dLIi
t/dEi

t =
0. After some rewriting we obtain the investment equation in arbitrage format:

Ei
t > 0⇒ rt+1 =

wt+1G′(Ei
t)− wt

wt
. (16.128)

This expression shows that in the interior optimum the agent accumulates physical
and human capital such that their respective yields are equalized. By investing in
physical capital during youth the agent receives a net yield of rt+1 during old age
(left-hand side of (16.128)). By working a little less and training a little more during
youth, the agent gives up wt but upgrades his human capital and gains wt+1G′(Ei

t)
during old age. Expressed in terms of the initial investment (foregone wages in the
first period) we get the net yield on human capital (right-hand side of (16.128)).

In the second step of the optimization problem the household chooses consump-
tion for the two periods and its level of savings in order to maximize lifetime utility
(16.120) subject to its lifetime budget constraint:

CY,i
t +

CO,i
t+1

1 + rt+1
= LIi

t, (16.129)

where LIi
t is now maximized lifetime income. The savings function which results

from this stage of the optimization problem can be written in general form as:

Si
t = S

(
rt+1, (1− Ei

t)wtHi
t, wt+1Hi

t+1
)
. (16.130)

In order to complete the description of the decision problem of household i we must
specify its initial level of human capital at birth, i.e. Hi

t in the training technology
(16.124). Following Azariadis and Drazen (1990, p. 510) we assume that each house-
hold born in period t “inherits” (is born with) the average stock of currently available
knowledge at that time, i.e. Hi

t = Ht on the right-hand side of (16.124). From this
final assumption it follows that all individuals in the model face the same interest
rate and learning technology so that they will choose the same consumption, saving,
and investment plans. We can thus drop the individual index i from here on and
study the symmetric equilibrium.

We assume that there is no population growth and normalize the size of the
young and old population cohorts to unity (Lt−1 = Lt = 1). Total labour supply
in efficiency units is defined as the sum of efficiency units supplied by the young
and the old, i.e. Nt = (1 − Et)Ht + Ht. For convenience we summarize the key
expressions of the (simplified) Azariadis-Drazen model in Table 16.2.

Equation (T2.1) relates saving by the representative young household to next pe-
riod’s stock of physical capital. Note that the capital-labour ratio is defined in terms
of efficiency units of labour, i.e. kt ≡ Kt/Nt. With this definition, the expressions for
the wage rate and the interest rate are, respectively (T2.2) and (T2.3). Equation (T2.4)
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Table 16.2. Growth, human capital, and overlapping generations

Nt+1kt+1 = S(rt+1, (1− Et)wtHt, wt+1Ht+1) (T2.1)

rt+1 + δ = f ′(kt+1) (T2.2)

wt = f (kt)− kt f ′(kt) (T2.3)
Nt = (2− Et)Ht (T2.4)

1 + rt+1 =
wt+1

wt
G′(Et) (T2.5)

Ht+1 = G(Et)Ht, (T2.6)

Notes: Nt is efficiency units of labour, kt is the physical capital intensity in production, rt is
the interest rate, Et is time spent on training, wt is the wage rate, Ht is the stock of human
capital, δ is the depreciation rate of physical capital, and G(Et) is the training function.

is labour supply in efficiency units, (T2.5) is the investment equation for human cap-
ital (assuming an internal solution), and (T2.6) is the accumulation for aggregate
human capital in the symmetric equilibrium.

It is not difficult to show that the model allows for endogenous growth in the
steady state. On the steady-state growth path the capital-labour ratio, the wage rate,
the interest rate, and the proportion of time spent training during youth, are all con-
stant over time (i.e. kt = k, wt = w, rt = r, and Et = E). The remaining variables
grow at a common growth rate γ ≡ G(E)− 1, i.e. ∆H/H = ∆K/K = ∆N/N = γ.
Referring the reader for a general proof to Azariadis (1993, p. 231), we demonstrate
the existence of a unique steady-state growth path for the unit-elastic model for
which technology is Cobb-Douglas (yt = Z0kα

t ) and the utility function (16.120) is
loglinear (ΛY

t = ln CY
t + (1/(1 + ρ)) ln CO

t+1). For the unit-elastic case the savings
function can be written as:

St =

[
1

2 + ρ
(1− Et)wt −

1 + ρ

2 + ρ

wt+1G(Et)

1 + rt+1

]
Ht. (16.131)

By using (16.131), (T2.4), and (T2.6) in (T2.1) and imposing the steady state we get
an implicit relationship between E and k for which savings equals investment:

(2 + ρ)
k

w(k)
=

1
2− E

[
1− E
G(E)

− 1 + ρ

1 + r(k)

]
, (16.132)

where r (k) ≡ αZ0kα−1 − δ and w (k) ≡ (1− α)Z0kα. Similarly, by using (T2.2) and
(T2.4) in the steady-state we get a second expression, again relating E and k, for
which the rates of return on human and physical capital are equalized:

G′(E) = 1 + r(k). (16.133)

The joint determination of E and k in the steady-state growth path is illustrated in
the upper panel of Figure 16.9. The portfolio-balance (PB) line (16.133) is upward
sloping because both the production technology and the training technology exhibit
diminishing returns (r′ (k) = f ′′(k) < 0 and G′′(E) < 0). The savings-investment
(SI) line (16.132) is downward sloping with a Cobb-Douglas technology. The right-
hand side of (16.132) is downward sloping in both k and E. With Cobb-Douglas
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technology we have that k/w(k) = k1−α/((1 − α)Z0) which ensures that the left-
hand side of (16.132) is increasing in k. Together these results imply that SI slopes
down. In the upper panel the steady state is at E0. In the bottom panel we relate the
equilibrium growth rate to the level of training.

The engine of growth in the Azariadis-Drazen model is clearly the training tech-
nology (T2.6) which ensures that a given steady-state level of training allows for a
steady-state rate of growth in the stock of human capital. Knowledge and technical
skills are disembodied, i.e. they do not die with the individual agents but rather they
are passed on in an automatic fashion to the newborns. The newborns can then add
to the stock of knowledge by engaging in training. It should be clear that endoge-
nous growth would disappear from the model if skills were embodied in the agents
themselves. In that case young agents would have to start all over again and “re-
invent the wheel” the moment they are born.

16.4.1.2 Human capital and education

Whilst it is undoubtedly true that informal social interactions can give rise to the
transmission of knowledge and skills (as in the Azariadis-Drazen (1990) model)
most developed countries have had formal educational systems for a number of cen-
turies. A striking aspect of these systems is that they are compulsory, i.e. children
up to a certain age are forced by law to undergo a certain period of basic training.
This prompts the question why the adoption of compulsory education has been so
widespread, even in countries which otherwise strongly value their citizens’ right to
choose.

Eckstein and Zilcha (1994) have recently provided an ingenious answer to this
question which stresses the role of parents in the transmission of human capital to
their offspring. They use an extended version of the Azariadis-Drazen model and
show that compulsory education may well be welfare-enhancing to the children if
the parents do not value the education of their offspring to a sufficient extent. The
key insight of Eckstein and Zilcha (1994) is thus that there may exist a significant
intra-family external effect which causes parents to underinvest in their children’s
human capital. Note that such an effect is not present in the Azariadis-Drazen model
because in that model the agent himself bears the cost of training during youth and
reaps the benefits during old age.

We now develop a simplified version of the Eckstein-Zilcha model to demon-
strate their important underinvestment result. We assume that all agents are iden-
tical. The representative parent consumes goods during youth and old age (CY

t and
CO

t+1, respectively), enjoys leisure during youth (Mt), is retired during old age, and
has 1 + n children during the first period of life. Fertility is exogenous so that the
number of children is exogenously given (n ≥ 0). There are Lt young agents at time
t. The lifetime utility function of the young agent at time t is given in general form
as:

ΛY
t ≡ ΛY(CY

t , CO
t+1, Mt, Ot+1), (16.134)

where Ot+1 ≡ (1 + n)Ht+1 represents the total human capital of the agent’s off-
spring. Since the agent has 1+ n kids, each child gets Ht+1 in human capital (knowl-
edge) from its parent. There is no formal schooling system so the parent cannot
purchase education services for its offspring in the market. Instead, the parent must
spend (part of its) leisure time during youth to educate its children and the training
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Figure 16.9: Endogenous growth due to human capital formation
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function is given by:

Ht+1 = G(Et)Hβ
t , (16.135)

where Et is the educational effort per child, G(·) is the training curve (satisfying
0 < G(0) ≤ 1, G(1) > 1, and G′ > 0 ≥ G′′), and 0 < β ≤ 1. Equation (16.135) is
similar in format to (T2.6) but its interpretation is different. In (T2.6) Ht+1 and Et are
chosen by and affect the same agent. In contrast, in (16.135) the parent chooses Ht+1
and Et and the consequences of this choice are felt by both the parent and his/her
offspring.

The agent has two units of time available during youth, one of which is supplied
inelastically to the labour market (Eckstein and Zilcha, 1994, p. 343), and the other
of which is spent on leisure and educational activities:

Mt + (1 + n)Et = 1. (16.136)

The household’s consolidated budget constraint is of a standard form:

CY
t +

CO
t+1

1 + rt+1
= wtHt, (16.137)

where the left-hand side represents the present value of consumption and the right-
hand side is labour income. Competitive firms hire capital, Kt, and efficiency units
of labour, Nt ≡ LtHt, from the households, and the aggregate production function is
Yt = F(Kt, Nt). The wage and interest rate then satisfy, respectively, wt = FN(Kt, Nt)
and rt + δ = FK(Kt, Nt).

The representative parent chooses CY
t , CO

t+1, Mt, Et, and Ht+1 in order to maxi-
mize lifetime utility (16.134) subject to the training technology (16.135), the time con-
straint (16.136), and the consolidated budget constraint (16.137). By substituting the
constraints into the objective function and optimizing with respect to the remaining
choice variables (CY

t , CO
t+1, and Et) we obtain the following first-order conditions:

∂ΛY/∂CY
t

∂ΛY/∂CO
t+1

= 1 + rt+1 (16.138)

∂ΛY

∂Ot
G′(Et)Hβ

t −
∂ΛY

∂Mt
< 0 =⇒ Et = 0, (16.139)

∂ΛY

∂Ot
G′(Et)Hβ

t −
∂ΛY

∂Mt
= 0 ⇐= Et > 0. (16.140)

Equation (16.138) is the standard consumption Euler equation, which we encoun-
tered time and again, and (16.139)–(16.140) characterizes the optimal educational ac-
tivities of the parent. The left-hand side appearing in (16.139)–(16.140) represents the
net marginal benefit of child education. If the (marginal) costs outweigh the benefits
this term is negative and the parent chooses not to engage in educational activities
at all (see (16.139)). Conversely, a strictly positive (interior) choice of Et implies that
the net marginal benefit of child education is zero. In the remainder we assume that
conditions are such that Et > 0 is chosen by the representative parent.

A notable feature of the parent’s optimal child education rule (16.140) is that it
only contains the costs and benefits as they accrue to the parent. But if a child re-
ceives a higher level of human capital from its parents, then it will have a higher
labour income and will thus be richer and enjoy a higher level of welfare. By as-
sumption, however, the parent only cares about the level of education it passes on
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to its children and therefore disregards any welfare effects that operate directly on
its offspring. This is the first hint of the under-investment problem. Loosely put, by
disregarding some of the positive welfare effects its own educational activities have
on its children, the parent does not provide “enough” education.

As was explained above, in our discussion regarding pension reform, there are
several ways in which we can tackle the efficiency issue of under-investment in a
more formal manner. One way would be to look for Pareto-improving policy in-
terventions. For example, in the present context one could investigate whether a
system of financial transfers to parents could be devised which (a) would induce
parents to raise their child-educational activities and (b) would make no present or
future generation worse off and at least one strictly better off. If such a transfer sys-
tem can be found we can conclude that the status quo is inefficient and that there is
underinvestment.

An alternative approach, one which we pursue here, makes use of a social welfare
function. Following Eckstein and Zilcha (1994, pp. 344–345) we postulate a specific
form for the social welfare function (16.69) which is linear in the lifetime utilities of
present and future agents:

SW0 ≡
∞

∑
t=0

λtΛY
t =

∞

∑
t=0

λtΛY(CY
t , CO

t+1, Mt, Ot+1), (16.141)

where SW0 is social welfare in the planning period (t = 0), and {λt}∞
t=0 is a positive

monotonically decreasing sequence of weights attached to the different generations,
which satisfies ∑∞

t=0 λt < ∞.10 In the social optimum, the social planner chooses se-
quences for consumption ({CY

t }∞
t=0 and {CO

t+1}∞
t=0), the stocks of human and physi-

cal capital ({Kt+1}∞
t=0 and {Ht+1}∞

t=0), and the educational effort ({Et}∞
t=0) in order

to maximize (16.141) subject to the training technology (16.135), the time constraint
(16.136), and the following resource constraint:

CY
t +

CO
t

1 + n
+ (1 + n)kt+1 = F(kt, Ht) + (1− δ)kt, (16.142)

where kt ≡ Kt/Lt is capital per worker.
The Lagrangian associated with the social optimization problem is given by:

L0 ≡
∞

∑
t=0

λtΛY(CY
t , CO

t+1, Mt, (1 + n)Ht+1)

+
∞

∑
t=0

µR
t

[
F(kt, Ht) + (1− δ)kt − CY

t −
CO

t
1 + n

− (1 + n)kt+1

]

+
∞

∑
t=0

µT
t [1−Mt − (1 + n)Et] +

∞

∑
t=0

µH
t

[
G(Et)Hβ

t − Ht+1

]
, (16.143)

where µR
t , µT

t , and µH
t are the Lagrange multipliers associated with, respectively, the

resource constraint, the time constraint, and the training technology.
After some manipulation we find the following first-order conditions for the so-

cial optimum for t = 0, ..., ∞:

∂L0

∂CY
t
= λt

∂ΛY

∂CY
t
− µR

t = 0, (16.144)

10An often used weighting scheme sets λt ≡ (1 + λ)−t with λ > 0 representing the constant rate at
which the social planner discounts lifetime utility of future generations. Obviously, for this scheme we
find that ∑∞

t=0 λt = (1 + λ) /λ.
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∂L0

∂CO
t+1

= λt
∂ΛY

∂CO
t+1
−

µR
t+1

1 + n
= 0, (16.145)

∂L0

∂Mt
= λt

∂ΛY

∂Mt
− µT

t = 0, (16.146)

∂L0

∂Et
= −(1 + n)µT

t + µH
t G′(Et)Hβ

t = 0, (16.147)

∂L0

∂Ht+1
= (1 + n)λt

∂ΛY

∂Ot
+ µR

t+1FN(kt+1, Ht+1)

− µH
t + βµH

t+1G(Et+1)Hβ−1
t+1 = 0, (16.148)

∂L0

∂kt+1
= −(1 + n)µR

t + µR
t+1 [FK(kt+1, Ht+1) + 1− δ] = 0. (16.149)

By combining (16.144)–(16.145) and (16.149) we obtain the socially optimal consump-
tion Euler equation:

(1+ n)
µR

t
µR

t+1
=

∂ΛY(x̂t)/∂CY
t

∂ΛY(x̂t)/∂CO
t+1

= FK(k̂t+1, Ĥt+1) + 1− δ [≡ 1 + r̂t+1] , (16.150)

where xt ≡ (CY
t , CO

t+1, Mt, Ot+1) and hats (“ˆ”) denote socially optimal values, e.g.
r̂t+1 represents the socially optimal interest rate. Similarly, by using (16.144) for pe-
riod t + 1 and (16.145) we obtain an expression determining the socially optimal
division of consumption between old and young agents living at the same time:

λt+1

λt
= (1 + n)

∂ΛY(x̂t)/∂CO
t+1

∂ΛY(x̂t+1)/∂CY
t+1

. (16.151)

This expression shows that, by adopting a particular sequence of generational weights
{λt}∞

t=0, the social planner in fact chooses the generational consumption profile be-
tween the young and the old (see Calvo and Obstfeld, 1988, p. 417).

Finally, by using (16.145)–(16.147), and (16.151) in (16.148) we can derive the fol-
lowing expression:

∂ΛY(x̂t)

∂Mt
= G′(Êt)Ĥβ

t ·
∂ΛY(x̂t)

∂Ot

+ G′(Êt)Ĥβ
t ·

∂ΛY(x̂t)

∂CO
t+1

· FN(k̂t+1, Ĥt+1)

+ G′(Êt)Ĥβ
t ·

β(1 + n)Ĥt+2

G′(Êt+1)Ĥ1+β
t+1

·
∂ΛY(x̂t)/∂CO

t+1

∂ΛY(x̂t+1)/∂CY
t+1
· ∂ΛY(x̂t+1)

∂Mt+1
.

(16.152)

In the social optimum the marginal social cost of educational activities (left-hand
side of (16.152)) should be equated to the marginal social benefits of these activities
(right-hand side of (16.152)). The marginal social costs are just the value of leisure
time of the parent, but the marginal social benefits consist of three terms. All three
terms on the right-hand side of (16.152) (written on separate lines to facilitate in-
terpretation) contain the expression G′(Êt)Ĥβ

t , which represents the marginal prod-
uct of time spent on educational activities in the production of human capital (see
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(16.135)). The first line on the right-hand side of (16.152) is the “own” effect of educa-
tional activities on the parent’s utility. This term also features in the first-order con-
dition for the privately optimal (internal) child-education decision, namely (16.140).
The second and third lines show the additional effects that the social planner takes
into account in determining the optimal level of child education. The second line
represents the effect of the parent’s decision on the children’s earnings: by endow-
ing each child with more human capital they will have a higher skill level and will
thus command a higher wage. The third line represents the impact of the parent’s
investment on the children’s incentives to provide education for their own children
(i.e. the parent’s grandchildren).

Eckstein and Zilcha are able to prove that (a) the competitive allocation is sub-
optimal, and (b) that under certain reasonable assumptions regarding the lifetime
utility function there is underinvestment of human capital. Intuitively, this result
obtains because the parents ignore some of the benefits of educating their children
(1994, pp. 345–346). To internalize the externality in the human capital investment
process, the policy maker would need to construct a rule such that the parent’s de-
cision regarding educational activities would take account of the effect on the chil-
dren’s wages and education efforts. As Eckstein and Zilcha argue, it is not likely
that such a complex rule can actually be instituted in the real world. For that reason,
the institution of compulsory education, which is practicable, may well achieve a
welfare improvement over the competitive allocation because it imposes a minimal
level of educational activities on parents (1994, pp. 341, 346).

Intermezzo 16.3

Dynamic consistency of the social planner. There are some subtle is-
sues that must be confronted when using a social welfare function like
(16.141). If we are to attach any importance to the social planning ex-
ercise we must assume that either one of the following two situations
holds:

Commitment the policy maker only performs the social planning exer-
cise once and can credibly commit never to re-optimize. Economic
policy is a one-shot event and no further restrictions on the genera-
tional weights are needed.

Consistency the policy maker can re-optimize at any time but the gen-
erational weights are such that the socially optimal plan is dynami-
cally consistent, i.e. the mere evolution of time itself does not make
the planner change his mind.

This intermezzo shows how dynamic consistency can be guaranteed in
the absence of credible commitment. We study dynamic consistency in
the context of the standard Diamond-Samuelson model. The social wel-
fare function in the planning period 0 is given in general terms by:

SW0 ≡ λ0,−1ΛY(CY
−1, CO

0 ) +
∞

∑
τ=0

λ0,τΛY(CY
τ , CO

τ+1), (a)

where λ0,τ is the weight that the planner in time 0 attaches to the lifetime
utility of the generation born in period τ (for τ = −1, 0, 1, 2, ...). The
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social planner chooses sequences for consumption during youth and old
age ({CY

τ }∞
τ=0 and {CO

τ }∞
τ=0) and the capital stock ({kτ+1}∞

τ=0) in order to
maximize social welfare (a) subject to the resource constraint:

CY
τ +

CO
τ

1 + n
+ (1 + n)kτ+1 = f (kτ+1) + (1− δ)kτ , (b)

and taking the initial capital stock, k0, as given. Obviously, since the
past cannot be undone, consumption during youth of the initially old
generation (CY

−1) is also taken as given. After some straightforward com-
putations we find the following first-order conditions characterizing the
social optimum:

∂ΛY(x̂τ)/∂CY
τ

∂ΛY(x̂τ)/∂CO
τ+1

= f ′(k̂τ+1) + 1− δ, (c)

∂ΛY(x̂τ)/∂CY
τ

∂ΛY(x̂τ−1)/∂CO
τ

=
(1 + n)λ0,τ−1

λ0,τ
, τ = 0, 1, 2, . . . . (d)

where xτ ≡ (CY
τ , CO

τ+1) and hats denote socially optimal values.
Now consider a planner who performs the social planning exercise at

some later planning period t > 0. The social welfare function in planning
period t is:

SWt ≡ λt,t−1ΛY(CY
t−1, CO

t ) +
∞

∑
τ=t

λt,τΛY(CY
τ , CO

τ+1), (e)

where λt,τ is the weight that the planner in time t attaches to the lifetime
utility of the generation born in period τ (for τ = t− 1, t, t + 1, t + 2, ...).
The social planner chooses sequences for consumption during youth and
old age ({CY

τ }∞
τ=t and {CO

τ }∞
τ=t) and the capital stock ({kτ+1}∞

τ=t) in order
to maximize social welfare (e) subject to the resource constraint (b). The
(interesting) first-order conditions consist of (c) and:

∂ΛY(x̂τ)/∂CY
τ

∂ΛY(x̂τ−1)/∂CO
τ

=
(1 + n)λt,τ−1

λt,τ
, τ = t, t + 1, t + 2, ... (f)

The crucial thing to note is that conditions (d) and (f) overlap for the
time interval τ = t, t + 1, t + 2, .... The sequences {CY

τ }t−1
τ=0, {CO

τ }t−1
τ=0, and

{kτ+1}t−1
τ=0 are chosen by the planner at time 0 but taken as given (“water

under the bridge”) by the planner at time t. But the sequences {CY
τ }∞

τ=t,
{CO

τ }∞
τ=t, and {kτ+1}∞

τ=t are chosen by both planners. Unless the planner
at time 0 can commit to his plan (and thus can stop any future plan-
ner from re-optimizing the then relevant social welfare function), the se-
quences chosen by the planners at time 0 and at time t will not necessarily
be the same. If they are not the same we call the social plan dynamically
inconsistent (see Chapter 9).

Following the insights of Strotz (1956), Burness (1976) has derived
conditions on the admissible pattern of generational weights, λt,τ , that
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ensure that the optimal social plan is dynamically consistent. Compar-
ing (d) and (f) reveals that dynamic consistency requires the following
condition to hold for any planning period t:

λt,τ−1

λt,τ
=

λ0,τ−1

λ0,τ
, τ = t, t + 1, t + 2, ... (g)

Condition (g) means that λt,τ must be multiplicatively separable in time
(τ) and the planning date (t), i.e. it must be possible to write λt,τ =
g(t)λτ , where g is some function of t. A simple example of such a multi-
plicatively separable function is:

λt,τ =

(
1

1 + λ

)τ−t
, (h)

where λ > 0 is the planner’s constant discount rate. By using (h) we
normalize the weight attached to the young in the planning period to
unity (λt,t = 1). It follows necessarily, that in order to preserve dy-
namic consistency, there must be reverse discounting applied to the old
generation in the planning period. Indeed, the dynamic consistency re-
quirement (g) combined with (h) implies λt,τ−1/λt,τ = 1 + λ so that
λt,t−1 = (1 + λ)λt,t = 1 + λ. Calvo and Obstfeld (1988) apply this no-
tion of reverse discounting in the context of the Blanchard-Yaari model
of overlapping generations.

****

16.4.2 Public investment

At least since the seminal work by Arrow and Kurz (1970), macroeconomists have
known that the stock of public infrastructure is an important factor determining the
productive capacity of an economy. In this subsection we show how productive pub-
lic capital can be introduced into the Diamond-Samuelson model. We show how the
dynamic behaviour of the economy is affected if the government adopts a constant
infrastructural investment policy. Finally, we study how the socially optimal capi-
tal stock can be determined. To keep things simple we assume that labour supply
is exogenous, and that the government has access to lump-sum taxes. We base our
discussion in part on Azariadis (1993, pp. 336–340).

Prototypical examples of government capital are objects like roads, bridges, air-
ports, hospitals, etc., which all have the stock dimension. Just as with the private
capital stock, the public capital stock is gradually built up by means of infrastructural
investment and gradually wears down because depreciation takes place. Denoting
the stock of government capital by Gt we have:

Gt+1 − Gt = IG
t − δgGt, (16.153)

where IG
t is infrastructural investment and 0 < δg < 1 is the depreciation rate of

public capital. Assuming that the population grows at a constant rate (as implied by
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(16.21)), the stock of public capital per worker evolves according to:

(1 + n)gt+1 = iG
t + (1− δg)gt, (16.154)

where gt ≡ Gt/Lt and iG
t ≡ It/Lt.

We assume that public capital enters the production function of the private sector,
i.e. instead of (16.10) we have:

Yt = F(Kt, Lt, gt), (16.155)

where we assume that F(·) is linearly homogeneous in the private production factors,
Kt and Lt. This means that we can express output per worker (yt ≡ Yt/Lt) as follows:

yt = f (kt, gt), (16.156)

where kt ≡ Kt/Lt and f (kt, gt) ≡ F(Kt/Lt, 1, gt). We make the following set of
assumptions regarding technology:

fk ≡
∂ f
∂kt

> 0, fg ≡
∂ f
∂gt

> 0, (P1)

fkk ≡
∂2 f
∂k2

t
< 0, fgg ≡

∂2 f
∂g2

t
< 0, (P2)

f (0, gt) = f (kt, 0) = 0, (P3)

fkg ≡
∂2 f

∂kt∂gt
> 0, (P4)

fg − k fkg > 0. (P5)

Private and public capital both feature positive (property (P1)) but diminishing mar-
ginal productivity (property (P2)). Both types of capital are essential in production,
i.e. output is zero if either input is zero (property (P3)). Finally, properties (P4)–(P5)
ensure that public capital is complementary with both private capital and labour.
This last implication can be seen by noting that perfectly competitive firms hire cap-
ital and labour according to the usual rental expressions rt + δk = FK(Kt, Lt, gt) and
wt = FL(Kt, Lt, gt). These can be expressed in the intensive (per-worker) form as:

rt = r(kt, gt) ≡ fk(kt, gt)− δk, (16.157)
wt = w(kt, gt) ≡ f (kt, gt)− kt fk(kt, gt), (16.158)

where 0 < δk < 1 is the depreciation rate of the private capital stock. We can deduce
from properties (P1)–(P5) that rk ≡ ∂r/∂kt < 0 and wk ≡ ∂w/∂kt > 0 (as in the stan-
dard model) and rg ≡ ∂r/∂gt > 0 and wg ≡ ∂w/∂gt > 0 (public capital positively
affects both the interest rate and the wage rate). To illustrate the key properties of
the model we shall employ a simple Cobb-Douglas production function below of the
form Yt = Z0Kα

t L1−α
t gη

t , with 0 < η < 1− α < 1. This function satisfies properties
(P1)–(P5) and implies w(kt, gt) = (1− α)Z0kα

t gη
t and r(kt, gt) = αZ0kα−1

t gη
t − δk.

To keep things simple, we assume that the representative young agent has the
following lifetime utility function:

ΛY
t = ln CY

t +
1

1 + ρ
ln CO

t+1. (16.159)
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The budget identities facing the household are:

CY
t + St = wt − TY

t , (16.160)

CO
t+1 = (1 + rt+1)St − TO

t+1, (16.161)

where TY
t and TO

t+1 are lump-sum taxes paid by the agent during youth and old age
respectively. The consolidated budget constraint is:

ŵt ≡ wt − TY
t −

TO
t+1

1 + rt+1
= CY

t +
CO

t+1
1 + rt+1

, (16.162)

where ŵt is after-tax non-interest lifetime income. The optimal household choices
are CY

t = cŵt and CO
t+1/(1 + rt+1) = (1 − c)ŵt, where c ≡ (1 + ρ)/(2 + ρ) is a

constant. The savings function can then be written as follows:

St ≡ S(wt, rt+1, TY
t , TO

t+1) = (1− c)
(

wt − TY
t

)
+

cTO
t+1

1 + rt+1
. (16.163)

It follows that, ceteris paribus, lump-sum taxes during youth reduce private saving
whilst taxes during old age increase saving. As before, private saving by the young
is next period’s stock of private capital, i.e. LtSt = Kt+1. In the intensive form we
have:

St = (1 + n)kt+1. (16.164)

The government budget constraint is very simple and states that government infras-
tructural investment (IG

t ) is financed by tax receipts from the young and the old, i.e.
IG
t = LtTY

t + Lt−1TO
t which can be written in per capita form as:

iG
t = TY

t +
TO

t
1 + n

. (16.165)

We now have a complete description of the economy. The key expressions are the
accumulation identity for the public capital stock (16.154), the government budget
constraint (16.165), and the accumulation expression for private capital (16.164). The
latter can be written in the following format by using (16.157), (16.158), and (16.163)
in (16.164):

(1 + n)kt+1 = (1− c)
[
w(kt, gt)− TY

t

]
+

cTO
t+1

1 + r(kt+1, gt+1)
. (16.166)

Once a path for public investment and a particular financing method are chosen,
(16.154) and (16.166) describe the dynamical evolution of, respectively, the pub-
lic and private capital stocks. We derive the phase diagram for the case of Cobb-
Douglas technology and a constant public investment policy (so that iG

t = iG for all
t) financed by taxes on only the young generations (so that TY

t = iG and TO
t = 0 for

all t). The consequences of alternative assumptions regarding financing are left as an
exercise for the reader.

The phase diagram has been drawn in Figure 16.10. The GE line is the graphical
representation of (16.154) for the constant public investment policy iG

t = iG, i.e. along
the line we have gt+1 = gt. The GE line is horizontal and defines a unique steady-
state equilibrium value for the stock of public capital equal to g = iG/(n + δg). The
dynamic path for public capital is derived from the rewritten version of (16.154):

gt+1 − gt =
iG − (n + δg)gt

1 + n
= −

n + δg

1 + n
[gt − g] , (16.167)
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Figure 16.10: Public and private capital

from which we conclude that for points above (below) the GE line, gt > g (< g) and
the public capital stock falls (rises) over time, gt+1 < gt (> gt) . This (stable) dynamic
pattern has been illustrated with vertical arrows in Figure 16.10.

The KE line in Figure 16.10 is the graphical representation of (16.166), with the
constant investment policy and the financing assumption both substituted in and
imposing the steady state, kt+1 = kt. For the Cobb-Douglas technology, the KE line
has the following form:

gη
t =

(1 + n)
(1− α)(1− c)Z0

[
k1−α

t + iG 1− c
1 + n

k−α
t

]
, (16.168)

from which we derive that limkt→0 gη
t = limkt→∞ gη

t = ∞ and that gt reaches its
minimum value along the KE curve at point B where kt = k∗:

k∗ ≡ iG 1− c
1 + n

α

1− α
. (16.169)

Hence, the KE line is as drawn in Figure 16.10. There are two steady-state equilibria
(at A and E0, respectively). The dynamic path of the private capital stock is obtained
by rewriting (16.166) as:

kt+1 − kt =
1− c
1 + n

[
(1− α)Z0kα

t gη
t − iG

]
− kt, (16.170)

and noting that ∂[kt+1 − kt]/∂gt > 0. Since the wage rate increases with public
capital and future consumption is a normal good, private saving increases with gt.
Hence, the capital stock is increasing (decreasing) over time for points above (below)
the KE line. These dynamic forces have been illustrated with horizontal arrows in
Figure 16.10.

It follows from the configuration of arrows (and from a formal local stability anal-
ysis of the linearized model) that the low-private-capital equilibrium at A is a saddle
point whereas the high-private-capital equilibrium at E0 is a stable node. For the
latter equilibrium it holds that, regardless of the initial stocks of private and public
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capital, provided the economy is close enough to E0 it will automatically return to
E0.

What about the steady-state equilibrium at A? Is it stable or unstable? In the typi-
cal encounters that we have had throughout this book with two-dimensional saddle-
point equilibria, we called such equilibria stable because there always was one pre-
determined and one non-predetermined variable. By letting the non-predetermined
variable jump onto the saddle path, stability was ensured. For example, in Chapter
4 we studied Tobin’s q theory of private investment and showed that K and q are,
respectively, the predetermined and jumping variables. In the present application,
however, both K and G are predetermined variables so neither can jump. Only if
the initial stocks of private and public capital by pure coincidence happen to lie on
the saddle path (SP in Figure 16.10), will the equilibrium at A eventually be reached
given the constant investment policy employed by the government. Appealing to
the Samuelsonian correspondence principle we focus attention in the remainder of
this subsection on the truly stable equilibrium at E0.

Now consider what happens if the government increases its public investment.
It follows from, respectively (16.167) and (16.168), that both the GE and KE lines shift
up. Clearly, the higher public investment level will lead to a higher long-run stock
of public capital, i.e. dg/diG = 1/(n + δg) > 0. The long-run effect on the private
capital stock is ambiguous and depends on the relative scarcity of public capital. By
imposing the steady state in (16.170) and differentiating we obtain:[

1− 1− c
1 + n

wk

]
dk
diG =

1− c
1 + n

[
wg

dg
diG − 1

]
, (16.171)

where the term in square brackets on the left-hand side is positive because the model
is outright stable around the initial steady-state equilibrium E0.11 The first term
in the square brackets on the right-hand side represents the positive effect of the
investment increase on the pre-tax wage of the young households whilst the second
term is the negative tax effect. Since wg = ηw/g, w = (1− α)y, and g = iG/(n + δg),
it follows from (16.171) that the steady-state private capital stock rises (falls) as a
result of the shock if iG/y < η(1− α) (> η(1− α)), i.e. if public capital is initially
relatively scarce (abundant).

16.4.2.1 Modified golden rules

Now that we have established the macroeconomic effects of public capital, we can
confront the equally important question regarding the socially optimal amount of
public infrastructure. Just as in the previous subsection on education, we study this
issue by computing the public investment plan that a social planner would choose.
Following Calvo and Obstfeld (1988, p. 414) and Diamond (1973, p. 219) we assume

11Recall that for a constant level of public capital, the model is stable provided the following stability
condition is satisfied around the initial steady state, E0:

0 <
∂kt+1

∂kt
≡ 1− c

1 + n
wk < 1.



CHAPTER 16: OVERLAPPING GENERATIONS IN DISCRETE TIME 655

that the social welfare function takes the following Benthamite form:12

SW0 ≡
(

1 + n
1 + ρsp

)−1
ΛY(CY

−1, CO
0 ) +

∞

∑
t=0

(
1 + n

1 + ρsp

)t
ΛY(CY

t , CO
t+1), (16.172)

where we assume that ρsp > n to ensure that the infinite sum appearing on the
right-hand side of (16.172) converges. Equation (16.172) is a special case of the ex-
pression used in Intermezzo 16.3 with the generational weight set equal to λ0,t ≡[
(1 + n)/(1 + ρsp)

]t. This means that the social planner discounts the lifetime util-
ity of generations at a constant rate ρsp which may or may not be equal to the rate
employed by the agents to discount their own periodic utility (namely ρ). The so-
cial planner chooses sequences for consumption for young and old agents ({CY

t }∞
t=0

and {CO
t }∞

t=0), and the per capita stocks of public and private capital ({gt+1}∞
t=0 and

{kt+1}∞
t=0), in order to maximize (16.172) subject to the following resource constraint:

CY
t +

CO
t

1 + n
+ (1 + n) [kt+1 + gt+1] = f (kt, gt) + (1− δk)kt + (1− δg)gt, (16.173)

and taking as given k0 and g0. The Lagrangian associated with the social optimiza-
tion problem is given by:

L0 ≡
(

1 + n
1 + ρsp

)−1
ΛY(CY

−1, CO
0 ) +

∞

∑
t=0

(
1 + n

1 + ρsp

)t
ΛY(CY

t , CO
t+1)

+
∞

∑
t=0

µR
t

[
f (kt, gt) + (1− δk)kt + (1− δg)gt

− CY
t −

CO
t

1 + n
− (1 + n) [kt+1 + gt+1]

]
, (16.174)

where µR
t is the Lagrange multiplier associated with the resource constraint.

After some manipulation we find the following first-order conditions for the so-
cial optimum for t = 0, ..., ∞:

∂L0

∂CY
t
=

(
1 + n

1 + ρsp

)t ∂ΛY(xt)

∂CY
t
− µR

t = 0, (16.175)

∂L0

∂CO
t

=

(
1 + n

1 + ρsp

)t−1 ∂ΛY(xt−1)

∂CO
t

− µR
t

1 + n
= 0, (16.176)

∂L0

∂gt+1
= −(1 + n)µR

t + µR
t+1
[

fg(kt+1, gt+1) + 1− δg
]
= 0, (16.177)

∂L0

∂kt+1
= −(1 + n)µR

t + µR
t+1 [ fk(kt+1, gt+1) + 1− δk] = 0, (16.178)

where xt ≡ (CY
t , CO

t+1). By combining (16.175)–(16.178) to eliminate the Lagrange
multipliers we find some intuitive expressions characterizing the social optimum:

∂ΛY(x̂t)/∂CY
t

∂ΛY(x̂t)/∂CO
t+1

= fk(k̂t+1, ĝt+1) + 1− δk = fg(k̂t+1, ĝt+1) + 1− δg, (16.179)

12This name for the social welfare function derives from the classical economist Jeremy Bentham (1748–
1832) who argued that “it is the greatest happiness of the greatest number that is the measure of right
and wrong” (quoted by Harrison, 1987, p. 226). This explains why the rate of population growth enters
(16.172).
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∂ΛY(x̂t)/∂CY
t

∂ΛY(x̂t−1)/∂CO
t

= 1 + ρsp, (16.180)

where hatted variables once again denote socially optimal values. The first equality
in (16.179) is the socially optimal consumption Euler equation calling for an equal-
ization of, on the one hand, the marginal rate of substitution between present and
future consumption and, on the other hand, the socially optimal gross interest fac-
tor, 1 + r̂t+1, where r̂t+1 ≡ fk(k̂t+1, ĝt+1)− δk. The second equality in (16.179) says
that the socially optimal stock of public capital per worker should be such that
the yields on private and public capital are equalized, i.e. ĝt+1 should be set in
such a way that r̂G

t+1 = r̂t+1, where r̂G
t+1 ≡ fg(k̂t+1, ĝt+1) − δg. Finally, equation

(16.180) determines the socially optimal intratemporal division of consumption. Its
intuitive meaning, and especially the interplay between the agent’s and the plan-
ner’s discount rate, can best be understood by considering intertemporally sepa-
rable preferences (which have been used throughout this chapter). By postulating
ΛY

t (xt) ≡ U(CY
t ) + (1 + ρ)−1U(CO

t+1) we can rewrite (16.180) in terms of the agent’s
felicity function (U(·)) and the pure rate of time preference (ρ):

U′(ĈY
t )

U′(ĈO
t )

=
1 + ρsp

1 + ρ
. (16.181)

It follows from (16.181) that if the planner’s discount rate exceeds (falls short of) the
agent’s rate of time preference, ρsp > ρ (< ρ), then the social planner ensures that
U′(ĈY

t ) exceeds (falls short of) U′(ĈO
t ), and thus (since U′′ < 0) that ĈY

t falls short of
(exceeds) ĈO

t . If ρsp = ρ, the planner chooses the egalitarian solution (ĈO
t = ĈY

t ).

Intermezzo 16.4

Calvo-Obstfeld two-step procedure. Calvo and Obstfeld (1988) have
shown that with intertemporally separable preferences, the social plan-
ning problem can be solved in two stages. In the first stage, the planner
solves a static problem and in the second stage a dynamic problem is
solved. Their procedure works as follows. Aggregate consumption at
time τ, expressed per worker, is defined as:

Cτ ≡ CY
τ +

1
1 + n

CO
τ . (a)

With intertemporally separable preferences (and ignoring a constant like
U(CY

t−1)) the social welfare function in period t can be rewritten as:

SWt ≡
1 + ρsp

(1 + n)(1 + ρ)
U
(

CO
t

)
+

∞

∑
τ=t

(
1 + n

1 + ρsp

)τ−t
·
(

U
(

CY
τ

)
+

1
1 + ρ

U
(

CO
τ+1

))
=

∞

∑
τ=t

(
1 + n

1 + ρsp

)τ−t
·
[

U
(

CY
τ

)
+

1 + ρsp

(1 + n)(1 + ρ)
U
(

CO
τ

)]
,

(b)
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where the term in square brackets in (b) now contains the weighted fe-
licity levels of old and young agents living in the same time period. The
special treatment of period-t felicity of the old is to preserve dynamic
consistency (see the Intermezzo above). We can now demonstrate the
two-step procedure.

In the first step, the social planner solves the static problem of divid-
ing a given level of aggregate consumption, Cτ , over the generations that
are alive at that time:

Ū(Cτ) ≡ max
{CY

τ ,CO
τ }

[
U
(

CY
τ

)
+

1 + ρsp

(1 + n)(1 + ρ)
U
(

CO
τ

)]
, s.t. (a), (c)

where Ū(Cτ) is the (indirect) social felicity function. The first-order con-
dition associated with this optimization problem is:

U′(CY
τ )

U′(CO
τ )

=
1 + ρsp

1 + ρ
, (d)

which is the same as (16.181). Furthermore, by differentiating (c) and
using (a) and (d) we find the familiar envelope property:

Ū′(Cτ) ≡
dŪ(Cτ)

dCτ
= U′(CY

τ ). (e)

For the special case of logarithmic preferences, for example, individual
felicity is U(x) ≡ ln x and the social felicity function would take the fol-
lowing form:

Ū(Cτ) = ln
[

(1 + n)(1 + ρ)Cτ

(1 + n)(1 + ρ) + 1 + ρsp

]
+

1 + ρsp

(1 + n)(1 + ρ)
ln
[

(1 + n)(1 + ρsp)Cτ

(1 + n)(1 + ρ) + 1 + ρsp

]
≡ ω0 +

(1 + n)(1 + ρ) + 1 + ρsp

(1 + n)(1 + ρ)
ln Cτ . (f)

In the second step the social planner chooses sequences of aggregate con-
sumption and the two types of capital in order to maximize social wel-
fare:

SWt =
∞

∑
τ=t

(
1 + n

1 + ρsp

)τ−t
Ū(Cτ), (g)

subject to the initial conditions (kt and gt given) and the resource con-
straint:

Cτ + (1 + n) [kτ+1 + gτ+1] = f (kτ , gτ) + (1− δk)kτ + (1− δg)gτ , (h)

where we have used (a) in (16.173) to get (h). Letting µR
τ denote the La-

grange multiplier for the resource constraint in period τ we obtain the
following first-order conditions:

(1 + n)µR
τ

µR
τ+1

= fk(kt+1, gt+1) + 1− δk = fg(kt+1, gt+1) + 1− δg, (i)
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µR
τ =

(
1 + n

1 + ρsp

)τ−t
Ū′(Cτ). (j)

By using (j) for period τ + 1 and noting (d) and (e) we find that (i) coin-
cides with (16.179).

****

We now return to the general first-order conditions (16.179)–(16.180) and study
the steady state. In the steady state we have CY

t = CY, CO
t = CO, kt = k, gt = g, and

x̂t = x̂ for all t so that (16.179)–(16.180) simplify to:

∂ΛY(x̂)/∂CY
t

∂ΛY(x̂)/∂CO
t

= 1 + ρsp, (16.182)

[r̂ ≡] fk(k, g)− δk = ρsp = fg(k, g)− δg [≡ r̂G] . (16.183)

Equation (16.182) calls for an optimal division of consumption over the young and
the old. The first equality in (16.183) is the modified golden rule (MGR) equating the
steady-state yield on the private capital stock (the steady-state rate of interest) to the
rate of time preference of the social planner. There is an important difference be-
tween this version of the MGR and the one encountered in Chapter 13 in the context
of the Ramsey representative-agent model. In the OLG setting, the planner’s rate of
time preference features in the MGR whereas in the Ramsey model the representa-
tive agent’s own rate of time preference is relevant (compare (16.183) with (13.28)).

The second equality in (16.183) is a modified golden rule for public capital that
was initially derived by Pestieau (1974). It calls for an equalization of the public rate
of return and the planner’s rate of time preference. The two equalities in (16.183)
together determine the optimal per worker stocks of public and private capital. For
example, for Cobb-Douglas technology we have yt = Z0kα

t gη
t (with η < 1− α) so that

k/y = α/(ρsp + δk), g/y = η/(ρsp + δg). It follows from these results that output per
worker is:

y =

[
Z0

(
k
y

)α ( g
y

)η]1/(1−α−η)

=

[
Z0

(
α

ρsp + δk

)α ( η

ρsp + δg

)η]1/(1−α−η)

(16.184)

Now that we have characterized the necessary conditions for the steady-state so-
cial optimum, a relevant question concerns the decentralization of this optimum. Can
the policy maker devise a set of policy tools in such a way that the private sector
choices concerning consumption and private capital accumulation coincide exactly
with their respective values in the social optimum? The answer is affirmative pro-
vided the policy maker has access to the right kind of policy instruments. In the
present context, for example, the first-best social optimum can be mimicked in the
market place if (i) the level of public investment (and thus the public capital stock) is
chosen to be consistent with (16.183), and (ii) there are age-specific lump-sum taxes
available (see Pestieau, 1974 and Ihori, 1996, p. 114). The latter instrument is needed
to ensure that the market replicates the socially optimal mix of consumption by the
young and the old (cf. (16.182)).
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16.4.3 Endogenous fertility

Up to this point in the book we have assumed that the rate of population growth is
exogenous. This does not mean, of course, that economists have not proposed any
theories endogenizing the growth rate of the population. Following the pioneering
contributions by Becker (1960, 1991), Becker and Barro (1988), and Barro and Becker
(1989), a huge literature has emerged on the economic theory of fertility. The objec-
tive of this subsection is to provide a brief introduction to this literature, focussing
on those aspects most relevant to macroeconomics, namely the determination of the
population growth rate and the failure of Ricardian equivalence. Our discussion is
based on a simplified version of Lapan and Enders (1990).

At each moment in time there exists a large number of dynastic families. Mem-
bers of each family live for two period, namely youth and adulthood. During youth,
an agent makes no economic decisions, i.e. he is fully dependent on the parent. Dur-
ing adulthood, an agent (a) inherits wealth from its parent, (b) inelastically supplies
a unit of labour and receives a wage income, (c) decides on consumption, (d) de-
cides on the number of children, and (e) decides on the bequest to be granted to
each child. As Barro and Becker (1989, p. 482) point out, this population structure
simplifies matters substantially because it ignores the life-cycle aspects of individual
behaviour. Each child is treated symmetrically and we ignore the integer constraint
on the number of children. Procreation is sexless, i.e. “. . . [N]ot wishing to model the
actual mechanics of the fertility process, we assume that each single individual, like
an amoeba, can have children” (Lapan and Enders, 1990, p. 228). Children are born
at the beginning of their parents’ adult period.

16.4.3.1 Individual adults

At time t there are Lt adults, that can each be seen as the head of a dynasty. Lifetime
utility, Λi

t, of adult i is given by:

Λi
t ≡ U(ci

t, ni
t) + ξΛi

t+1, 0 < ξ < 1, (16.185)

where ξ is the altruism parameter (see also Section 6.1.4 above), ci
t is consumption by

the adult, ni
t is the number of children, and Λi

t+1 is the (maximized) utility enjoyed
by a representative child. The agent’s budget constraint is given by:

(1 + rt) ai
t + wt = ci

t + taxi
t + ni

t

[
c̄ + ai

t+1

]
, (16.186)

where rt is the real interest rate, ai
t is the bequest received at the beginning of adult-

hood, wt is the wage rate, taxi
t is the lump-sum tax, c̄ is the cost of raising a child,

and ai
t+1 is the bequest granted to each child at the end of life.

Provided bequests remain operative (ai
t+τ > 0, for all τ = 1, 2, · · · ), all members

of this dynasty are effectively linked to each other. As a result, the model can be
solved “as if” the adult in period t is an infinitely lived agent. Indeed, by iterating
(16.185) forward in time, we obtain an alternative expression for lifetime utility of
the adult:

Λi
t ≡

∞

∑
τ=0

ξτU(ci
t+τ , ni

t+τ). (16.187)

Dynastic utility is thus given by the infinite sum of felicities enjoyed by the current
and all future adults, using the altruism parameter, ξ, for discounting. The adult in
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period t chooses paths for ci
t+τ , ni

t+τ , and ai
t+τ+1 (for τ = 0, 1, 2, · · · ) in order to maxi-

mize (16.187) subject to a sequence of periodic budget constraints like (16.186), taking
as given factor prices, taxes, and the initial bequest received, ai

t. The Lagrangian for
this problem is given by:

Li
t ≡

∞

∑
τ=0

ξτU(ci
t+τ , ni

t+τ) +
∞

∑
τ=0

ξτλi
t+τ

[
(1 + rt+τ) ai

t+τ + wt+τ

− ci
t+τ − taxi

t+τ − ni
t+τ

[
c̄ + ai

t+τ+1

] ]
, (16.188)

where λi
t+τ is the Lagrange multiplier for the budget constraint in period t+ τ, in the

optimum representing the marginal utility of wealth in that period. The first-order
conditions for an interior solution are:

∂Lt

∂ci
t+τ

= 0: Uc(ci
t+τ , ni

t+τ) = λi
t+τ , (16.189)

∂Lt

∂ni
t+τ

= 0: Un(ci
t+τ , ni

t+τ) = λi
t+τ

[
c̄ + ai

t+τ+1

]
, (16.190)

∂Lt

∂ai
t+τ+1

= 0: ξλi
t+τ+1 (1 + rt+τ+1) = λi

t+τni
t+τ , (16.191)

∂Lt

∂λi
t+τ

= 0: (1 + rt+τ) ai
t+τ + wt = ci

t+τ + taxi
t+τ

+ ni
t+τ

[
c̄ + ai

t+τ+1

]
, (16.192)

where Uc and Un denote the marginal utility of, respectively, consumption and off-
spring. Equation (16.189) shows that in each period the marginal utility of consump-
tion is equated to the marginal utility of wealth. Similarly, equation (16.190) shows
that in each period the marginal utility of children is equated to the marginal util-
ity cost of producing these children. The total pecuniary cost per child is given by
the direct cost of raising it, c̄, plus the bequest to be granted to each child, ai

t+τ+1.
Equation (16.191) shows that the optimal bequest is set such that the marginal util-
ity of making the bequest (left-hand side) is equal to its marginal cost (right-hand
side), both from the perspective of the parent (the donor). Finally, equation (16.192)
is simply the budget constraint for period t + τ.

By using (16.189) in (16.191) and (16.190), respectively, we obtain:

Uc(ci
t+τ+1, ni

t+τ+1)

Uc(ci
t+τ , ni

t+τ)
=

ni
t+τ

ξ [1 + rt+τ+1]
, (16.193)

Un(ci
t+τ , ni

t+τ)

Uc(ci
t+τ , ni

t+τ)
= c̄ + ai

t+τ+1. (16.194)

Equation (16.193) is dynamic and shows that the optimal profile of marginal utility of
consumption in adjacent periods is dictated by a term involving the interest rate on
productive assets, rt+τ+1, the biological interest rate (chosen by the agent), ni

t+τ , and
the altruism parameter, ξ. Equation (16.194) is static, and shows that the marginal
rate of substitution between children and consumption (left-hand side) is equated to
the total cost per child (right-hand side).

Finally, we note that there are two financial assets in this (closed) economy, namely
claims on the capital stock and government bonds. Since these assets are perfect sub-
stitutes they attract the same rate of return. Financial wealth of person i can thus be
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written as:

ai
t+τ = ki

t+τ + bi
t+τ , (16.195)

where ki
t+τ and bi

t+τ denote, respectively, capital and bonds owned by person i at
time t + τ.

16.4.3.2 Aggregate behaviour

Since there are Lt adults in period t, the number of adults one period later will equal
Lt+1 ≡ ∑Lt

i=1 ni
t = n̄tLt, where n̄t ≡ ∑Lt

i=1 ni
t/Lt is the average number of children

born in period t. Population growth between periods t and t + 1 will thus be equal
to ∆Lt+1/Lt = n̄t − 1.

The government issues one-period debt which yields the same rate of interest as
the physical capital stock. The government budget identity in aggregate terms in
given by:

Bt+1 = (1 + rt) Bt + Gt − TAXt, (16.196)

where Bt ≡ ∑Lt
i=1 bi

t is the aggregate stock of debt at the beginning of period t, Gt

is aggregate government consumption, and TAXt ≡ ∑Lt
i=1 taxi

t is aggregate tax rev-
enue. By dividing both sides of this expression by Lt, we obtain an expression for
the evolution of government debt per adult:

n̄tbt+1 = (1 + rt) bt + gt − taxt, (16.197)

where bt ≡ Bt/Lt, gt ≡ Gt/Lt, taxt ≡ TAXt/Lt, and we note that Lt+1/Lt = n̄t.
At time t the total capital stock available for production purposes is given by

Kt ≡ ∑Lt
i=1 ki

t, and there are Lt working-age (adult) persons. Output is given by
Yt = F (Kt, Lt), where the production function has the usual features (see (16.10)
above). With perfectly competitive producers, factor prices satisfy wt = FL (Kt, Lt)
and rt + δ = FK (Kt, Lt). In the intensive form, therefore, the expressions (16.14)–
(16.16) are still valid:

yt = f (kt), (16.198)

wt = f (kt)− kt f ′(kt), (16.199)

rt+1 + δ = f ′(kt+1), (16.200)

where yt ≡ Yt/Lt, kt ≡ Kt/Lt, and f (kt) ≡ F(kt, 1).

16.4.3.3 Ricardian equivalence revisited

Before analysing the general form of the model, we briefly revisit the issue of Ri-
cardian equivalence. As was pointed out by Lapan and Enders (1990, p. 231), the
Ricardian equivalence theorem is valid in a very special case of the model, namely one
in which the following conditions are all satisfied:

(a) The chain of bequests is unbroken, i.e. ai
t+τ > 0 for all τ and i. This ensures

that each dynasty is effectively infinitely lived.

(b) Fertility is not a choice variable but is exogenously given, i.e. ni
t+τ = n0, where

n0 is exogenous (and assumed to be constant for notational convenience).
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(c) The government does not engage in redistribution between dynasties, i.e. taxi
t+τ

= taxt+τ for all i and τ, so that the government solvency condition implies (at
the individual and per capita level) that:

bi
t = bt =

∞

∑
τ=0

nτ
0 Rt−1,τ [taxt+τ − gt+τ ] , Rt−1,τ ≡

τ

∏
s=0

1
1 + rt+s

, (16.201)

where Rt−1,τ is a cumulative discount factor involving the market rate of in-
terest. In the aggregate—per capita—form, government solvency requires the
present value of primary surpluses to be equal to the pre-existing debt at time
t. With a symmetric fiscal treatment of dynasties, per capita and individual
debt coincide.

As a consequence of condition (b), equation (16.194) is no longer relevant. Individual
behaviour is fully characterized by the following equations:

Uc(ci
t+τ+1, n0)

Uc(ci
t+τ , n0)

=
n0

ξ [1 + rt+τ+1]
, (16.202)

(1 + rt+τ) ai
t+τ + wt+τ = ci

t+τ + taxt+τ + n0

[
c̄ + ai

t+τ+1

]
, (16.203)

n0bi
t+τ+1 = (1 + rt+τ) bi

t+τ + gt+τ − taxt+τ , (16.204)

where factor prices obey (16.199) and (16.200). These expressions are obtained from,
respectively, (16.193), (16.192), and (16.197). By noting (16.195), however, equations
(16.203)–(16.204) can be combined into a single expression:

(1 + rt+τ) ki
t+τ + wt+τ = ci

t+τ + gt+τ + n0

[
c̄ + ki

t+τ+1

]
. (16.205)

The particular time path of taxes is completely irrelevant to agent i. Of course, the
time path of government consumption does affect real plans of the agent but that
path is held constant in the Ricardian tax cut experiment.

With endogenous fertility condition (b) is not satisfied and consequently debt will
no longer be neutral. In technical terms, behaviour at the individual level in period
t is characterized by:

Uc(ci
t+1, ni

t+1)

Uc(ci
t, ni

t)
=

ni
t

ξ [1 + rt+1]
, (16.206)

Un(ci
t, ni

t)

Uc(ci
t, ni

t)
= c̄ + ki

t+1 + bt+1, (16.207)

(1 + rt+τ) ki
t + wt = ci

t + gt +
(

ni
t − n̄t

)
bt+1 + ni

t

[
c̄ + ki

t+1

]
. (16.208)

The first two expressions are obtained in a straightforward way from, respectively
(16.193)–(16.194) and (16.195). The third is obtained by substituting the per capita
debt path (16.197) into the individual budget constraint (16.203) and noting (16.195)
and (16.201). Future debt appears in two places in these first-order conditions. First,
it features on the right-hand side of (16.207) and thus affects the relative price of
children. Second, it appears on the right-hand side in the budget constraint (16.208).
As Lapan and Enders (1990, p. 231–232) point out, there exists a kind of “fiscal
external effect” in the sense that an increase in economy-wide average fertility, n̄t,
reduces the tax burden of individual agents (who treat n̄t parametrically). Free riding
on child production by others thus explains that children will be underproduced
(and fertility will be too low) in the presence of public debt.
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16.4.3.4 Steady-state equilibrium

In the symmetric equilibrium we assume that all agents are alike to that we can
dispense with the index i. In the steady state, we also have that kt+1 = kt = k,
bt+1 = bt = b, ct+1 = ct = c, and nt+1 = nt = n. The macroeconomic steady-state
equilibrium is thus described by the following set of equations:

n = ξ
[
1 + f ′(k)− δ

]
, (16.209)

Un(c, n)
Uc(c, n)

= c̄ + k + b, (16.210)

f (k) + (1− δ) k = c + g + n [c̄ + k] , (16.211)

where we have used the fact that f (k) = (r + δ) k + w in (16.211). It is possible to
derive the comparative static effects for n, k, and c with respect to c̄, b, and ξ, using
a homothetic utility function featuring a non-zero substitution elasticity, σ. Here we
simplify matters, however, and visualize the comparative static effects in the unit-
elastic version of the model, i.e. we assume that the production function is Cobb-
Douglas, yt = Z0kα

t (with 0 < α < 1), and we postulate a loglinear felicity function,
U (ct, nt) = ε ln ct + (1− ε) ln nt (with 0 < ε < 1). The unit-elastic model is given by:

n = ξ
[
1− δ + αZ0kα−1

]
, (16.212)

c =
ε

1− ε
n [c̄ + k + b] , (16.213)

c = Z0kα + (1− δ) k− n [c̄ + k]− g. (16.214)

Figure 16.11 depicts the steady-state equilibrium in (n, k)-space. In the figure, the EC
line represents the efficiency condition (16.212). It is downward sloping and features
a horizontal asymptote at n0 ≡ ξ (1− δ) > 0. The upward sloping line labelled BC
represents the budget constraint. It is obtained by substituting (16.213) into (16.214):

Z0kα + (1− δ) k =
n

1− ε
[c̄ + k + εb] + g. (16.215)

For k = 0, n reaches its minimum value, nMIN ≡ − (1− ε) g/ (c̄ + εb) < 0 and n = 0
for k = k0, where k0 is implicitly defined by g = Z0kα

0 +(1− δ) k0. Finally, BC reaches
a horizontal asymptote at n1 ≡ (1− ε) (1− δ). Provided n1 exceeds n0 (1− ε > ξ),
there is a unique equilibrium at point E0, where BC and EC intersect, k = k∗, and
n = n∗.

An increase in c̄ or b rotates the BC line in a clockwise fashion around point A
and shifts the equilibrium to point E1. Hence, dn/dc̄ < 0, dn/db < 0, dk/dc̄ > 0,
and dk/db > 0. These effects are intuitively obvious. An increase in the rearing
cost per child reduces the demand for children. Similarly, an increase in debt results
in a higher tax rate which leads to a reduction in fertility. An increase in (useless)
government consumption leads to a downward shift in the BC curve and again shifts
the equilibrium to point E1, i.e. dn/dg < 0 and dk/dg > 0. The agent substitutes
capital for kids because of the increased tax.

16.5 Punchlines

In this chapter we study the discrete-time overlapping-generations model that was
developed by Diamond and Samuelson. Just as in the Blanchard-Yaari model (stud-
ied in the previous chapter), the demographic structure of the population plays a
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Figure 16.11: Steady-state fertility rate and capital intensity

central role in the Diamond-Samuelson model. One of the attractive features of the
model is its ability to capture the life-cycle aspects of economic behaviour in an an-
alytically tractable fashion. Because of its flexibility and simplicity, the model has
played a central role during the last four decades in such diverse fields as macroeco-
nomics, monetary theory, public finance, international economics, and environmen-
tal economics.

We start this chapter by formulating a simplified version of the Diamond-Samuel-
son model featuring time-separable preferences. In this model households live for
two periods, called “youth” and “old age” respectively. They consume during both
periods of life but they work only during youth, when they inelastically supply one
unit of labour. Young households save part of their labour income in order to fi-
nance their consumption during old age (life-cycle saving). In the basic model there
is no public debt and household saving takes the form of capital formation. This
means that saving by the young in one period equals the capital stock available for
production in the next period. Perfectly competitive firms use capital and labour
to produce the homogeneous good. The model has a well-defined steady state pro-
vided the relevant stability condition is satisfied. There is a distinct possibility of
oversaving occurring. Indeed, if the households are relatively patient, and thus have
a low rate of time preference, they may well save too much for retirement and thus
accumulate too much capital and render the steady state dynamically inefficient.

We next apply the basic model to study the macroeconomic and welfare effects
of old-age pensions. Two prototypical pension systems are distinguished, namely
the fully funded system and the pay-as-you-go (PAYG) system. In a fully funded sys-
tem the government taxes the young, invests the tax receipts in the capital market,
and returns principal plus interest to the old in the form of a pension in the next
period. The fully funded system is neutral and does not affect consumption, capital,
factor prices, or welfare. Intuitively, the household knows that its pension contribu-
tions during youth attract the same rate of return as its own private savings. The
household therefore does not care that some of its saving is actually carried out on
its behalf by the government.
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Matters are different under a PAYG system. In such a system the taxes levied on
the young are used to finance the pension payments to the old living in the same
period. The yield that the household earns on its pension contributions is not the
market rate of interest (as in the fully funded system) but rather the rate of popu-
lation growth. The PAYG system is not neutral. Indeed, the introduction of such a
system (or the expansion of an existing one) crowds out capital, lowers the wage rate,
and increases the interest rate. Steady-state welfare decreases (increases) if the econ-
omy is dynamically efficient (inefficient), i.e. if the interest rate exceeds (falls short
of) the rate of population growth. Intuitively, in a dynamically efficient (inefficient)
economy, crowding out of capital reduces (increases) the welfare of the generations
born in the new steady-state.

Two further aspects of the PAYG system are discussed. First, a PAYG system can
be reinterpreted as a particular kind of debt policy. Second, in a dynamically efficient
economy it is impossible to abolish a pre-existing PAYG system (in favour of a fully
funded system) in a Pareto-improving fashion. Intuitively, it is not possible in the
standard model to compensate the old generation at the time of the policy initiative
without making at least one other (present or future) generation worse off. (Pareto-
improving reform may be possible, however, if the reform reduces a pre-existing
distortion in the economy. We consider the particular example where labour supply
is endogenous and the pension contribution is distorting.)

The basic model can also be used to study the macroeconomic effects of popula-
tion ageing. A useful measure to characterize the economic impact of demography
is the dependency ratio, which is defined as the number of retired people divided by
the working-age population. A reduction in the growth rate of the population leads
to an increase in the dependency ratio. Under a PAYG system an anticipated reduc-
tion in fertility reduces expected pensions and lifetime income, and causes house-
holds to increase saving. As a result, the long-run capital-labour ratio rises.

Next we welcome the reader deeper into to the weird and wonderful world of
overlapping generations economics by discussing the so-called tragedy of annuitiza-
tion. To quote Weil (2008, p. 115): “. . . all is not well in the best of market economies:
with overlapping generations, even absent the usual suspects such as distortions
and market failures, a competitive equilibrium need not be Pareto efficient.” In a
world with uninsured longevity risk insurance people leave unintended bequests
upon their death. If these bequests are recycled to the young (who will end up sav-
ing part of these extra resources), then opening up a perfect annuity market offering
actuarially fair rates will benefit the shock-time young but may lead to a decrease
in the welfare level of all future generations. This paradoxical result follows not
from a pre-existing dynamic inefficiency but rather from the fact that annuities are
intragenerational transfers between dissavers whilst unintended bequests are inter-
generational transfers from dissavers to saver.

In the second half of the chapter we consider a number of further applications of
the Diamond-Samuelson model. In the first extension we introduce human capital
into the model and study the implications for economic growth. Young agents are
born with the average stock of currently available knowledge and can spend time
during youth engaged in training. Provided the training technology is sufficiently
productive, the young choose to accumulate human capital. In the aggregate this
mechanism provides the engine of growth for the economy.

Next we augment the human capital model by assuming that the parent must
choose the level of training of its offspring. If the parent derives utility from the hu-
man capital of its offspring then it is quite possible that the parent will not devote the
socially optimal amount of time on training its children. Intuitively, the underinvest-
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ment result follows from the fact that the parent fails to take into account all welfare
effects (on its children and grandchildren) of its training efforts. In such a situation
it may well be socially optimal to have a system of mandatory public education.

In the second extension we show how public infrastructure can be introduced
into the overlapping generations model. We show how public investment affects
the macroeconomy and derive simple modified-golden-rule expressions calling for
an equalization of the rate of return on public and private capital and the social
planner’s rate of time preference.

Finally, in the third extension we show how the fertility decision of dynastic fam-
ilies can be endogenized. Ricardian equivalence does not hold in this model. There
exists a fiscal external effect which enables each dynastic family to free-ride on child
production by other families. As a result, from a societal point of view, fertility will
be too low in the presence of public debt.

Further reading

A highly readable introduction to the literature on the Diamond-Samuelson model
is Weil (2008). For very advanced surveys of the overlapping generations model, see
Geanakoplos (2008b) and Geanakoplos and Polemarchakis (1991). Classic papers
on pensions are Samuelson (1975a, 1975b) and Feldstein (1974, 1976, 1985, 1987). In
recent years a large literature has been developed on the issue of pension system re-
form. See Diamond (1997, 1999), Feldstein (1997, 1998), and Sinn (2000). For surveys
on the economic effects of ageing, see Bosworth and Burtless (1998) and Lee (2016).

The Diamond-Samuelson model has been generalized in a number of directions.
Barro (1974) studies intergenerational linkages. Jones and Manuelli (1992) consider
the growth effects of finite lives. Tirole (1985) and O’Connell and Zeldes (1988)
consider the possibility of asset bubbles. Grandmont (1985) presents a model ex-
hibiting endogenous business cycles. Michel and de la Croix (2000) study the mo-
del properties under both myopic foresight and perfect foresight. Bierwag et al.
(1969) show that a full set of age-specific taxes renders debt policy redundant. Abel
(1986) and Zilcha (1990, 1991) introduce uncertainty into the model. On intergener-
ational risk sharing, see Gordon and Varian (1988). Barro and Becker (1989) present
a model of endogenous fertility. For applications of endogenous fertility models,
see Wildasin (1990), Zhang (1995), Robinson and Srinivasan (1997), and Nerlove
and Raut (1997). Galor (1992) and Nourry (2001) study a two-sector version of the
Diamond-Samuelson model.

On endogenous fertility models, see Becker and Lewis (1973), Razin and Ben-
Zion (1975), Eckstein and Wolpin (1985), Becker and Barro (1988), Barro and Becker
(1989), Becker et al. (1990), Wildasin (1990), Lapan and Enders (1990), and Zhang
(2003, 2006). There is also the survey by Nerlove and Raut (1997).

The Diamond-Samuelson model has been applied in a large number of fields. For
public finance applications, see Auerbach (1979a), Kotlikoff and Summers (1979),
and Ihori (1996). On the economics of education, see Loury (1981), Glomm and
Ravikumar (1992), Zhang (1996), Buiter and Kletzer (1993), and Kaganovich and
Zilcha (1999). Environmental policy applications include Howarth (1991, 1998), How-
arth and Norgaard (1990, 1992), John and Pecchenino (1994), John et al. (1995), and
Mourmouras (1993).

On accidental bequests, see Abel (1985), Kotlikoff and Summers (1981), Kotlikoff
and Spivak (1981), Eckstein et al. (1985a, 1985b), and Sheshinski and Weiss (1981).
On endogenous labour supply, see Reichlin (1986), Nourry (2001), Cazzavillan and
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Pintus (2004), Nourry and Venditti (2006), and Nishimura and Venditti (2007). A
general survey of the literature is de la Croix and Michel (2002) For the human cap-
ital and development literature, see the survey by Galor (2005) in the Handbook of
Economic Growth. For adverse selection and the benefits of mandatory annuitization,
see Heijdra and Reijnders (2012) and the references therein. On pensions and in-
tergenerational risk sharing, see Gordon and Varian (1988), Bohn (2009), Demange
(2002), Ball and Mankiw (2007), and Bovenberg and Uhlig (2008).
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Stochastic general equilibrium
macroeconomics





Chapter 17

Decision making in a stochastic
environment

The purpose of this chapter is to achieve the following goals:

1. Explain the nature of sequential decision problems facing individuals or the
social planner.

2. Introduce the method of dynamic programming and to illustrate this method
using simple deterministic and stochastic toy models featuring either finite or
infinite planning horizons.

3. Explain the concept of complete contingent-claim markets (Arrow-Debreu se-
curities).

4. Explain how under complete markets it is possible to aggregate heterogeneous
agents in such a way that it looks as if the economy is populated by the “rep-
resentative consumer”.

17.1 Introduction

Throughout the book we have studied how individuals and firms make decisions in
a forward-looking fashion. For example, in the Ramsey-Cass-Koopmans (RCK) mo-
del individuals decide on current and future consumption and asset holdings, taking
as given (a) the expected path of factor prices and government taxes and transfers,
and (b) the initial stock of assets in their possession in the planning period. As time
evolves the consumer continuously makes such dynamic decisions. Up to this point
we have ignored stochastic shocks that may affect economic decision makers. The
aim of this chapter is to study sequential decision making in a stochastic environ-
ment. In doing so we pave the way for the final two chapters of the book dealing,
respectively, with real and monetary business cycle models. From here on attention
is restricted to discrete-time models.

17.2 Dynamic programming in a deterministic world

In this section we introduce the method of dynamic programming in a deterministic
setting. Rather than jumping in at the deep end attention is focused on a number of
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simple consumption-savings examples. Once these examples are well understood,
the nontrivial step from a deterministic to a stochastic world (in the next section)
becomes a lot easier.

17.2.1 Finite planning horizon

Consider an individual who lives for three periods and has the following lifetime
utility function:

Λ1 ≡ U(C1) + βU(C2) + β2U(C3), (17.1)

where Ct is consumption in period t, β ≡ 1/(1 + ρ) is the discount factor due to
impatience (ρ is the rate of time preference, ρ > 0), and U(x) is a felicity function
satisfying U′(x) > 0, U′′(x) < 0, and the usual Inada style condition limx→0 U′(x) =
+∞. To keep the discussion as simple as possible we assume that the felicity function
is logarithmic:

U(Ct) = ln Ct, (17.2)

so that the intertemporal substitution elasticity is equal to unity.
Financial asset accumulation proceeds according to:

At+1 = (1 + rt)At + wt − Ct, (17.3)

where rt and wt denote, respectively, the interest rate and wage in period t, and At
is assets at the start of period t. The consumer owns an initial stock of financial
assets A1 at time t = 1 (savings from the past). The agent chooses Ct and At+1 for
t ∈ {1, 2, 3} taking as given (a) initial assets A1 and (b) the paths of factor prices rt
and wt. Since the world ends for this consumer at the end of period t = 3 there is a
terminal constraint of the form:

At+4 ≥ 0. (17.4)

17.2.1.1 Traditional solution method

The traditional approach solves the consumer’s problem by postulating the Lagrangi-
an:

L1 ≡ U(C1) + βU(C2) + β2U(C3)

+ λ1 [(1 + r1)A1 + w1 − C1 − A2]

+ λ2 [(1 + r2)A2 + w2 − C2 − A3]

+ λ3 [(1 + r3)A3 + w3 − C2 − A4] ,

where λt is the Lagrange multiplier, and deriving the first-order necessary conditions
for consumption:

∂L1

∂C1
= U′(C1)− λ1 = 0, (17.5)

∂L1

∂C2
= βU′(C2)− λ2 = 0, (17.6)

∂L1

∂C3
= β2U′(C3)− λ3 = 0, (17.7)
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and for assets:

∂L1

∂A2
= −λ1 + (1 + r2)λ2 = 0, (17.8)

∂L1

∂A3
= −λ2 + (1 + r3)λ3 = 0, (17.9)

∂L1

∂A4
= −λ3 ≤ 0, A4 ≥ 0, A4

∂L1

∂A4
= 0, (17.10)

where we must use the Kuhn-Tucker conditions for final assets—see also Section
6.1.4.

Since the Lagrange multipliers are strictly positive, λt > 0, we immediately find
from (17.10) that the consumer will exhaust all his financial assets during the last
period of life:

A∗4 = 0, (17.11)

where the star designates the optimum choice for A4. The consolidated lifetime budget
constraint is thus given by:

(1 + r1)A1 + H1 = C1 +
C2

1 + r2
+

C3

(1 + r2)(1 + r3)
, (17.12)

where H1 is human wealth:

H1 ≡ w1 +
w2

1 + r2
+

w3

(1 + r2)(1 + r3)
. (17.13)

The present value of lifetime consumption (right-hand side of (17.12)) is equal to the
total amount of wealth that the consumer has at time t = 1 (left-hand side of (17.12)).

To derive the optimal consumption plans we first derive the consumption Euler
equations by eliminating the Lagrange multipliers, i.e. by substituting (17.8)–(17.9)
in (17.5)–(17.7):

U′(C∗1 ) = β(1 + r2)U′(C∗2 ), (17.14)

U′(C∗2 ) = β(1 + r3)U′(C∗3 ). (17.15)

For the logarithmic felicity function (17.2) these conditions simplify to C∗t+1 = β(1 +
rt+1)C∗t (for t ∈ {1, 2}). By using these expressions in the lifetime budget constraint
(17.12) we obtain the optimal consumption levels:

C∗1 =
(1 + r1)A1 + H1

1 + β + β2 , (17.16)

C∗2
1 + r2

= β
(1 + r1)A1 + H1

1 + β + β2 , (17.17)

C∗3
(1 + r2)(1 + r3)

= β2 (1 + r1)A1 + H1

1 + β + β2 . (17.18)

The optimal asset levels follow readily:

A∗2 = (1 + r1)A1 + w1 − C∗1 , (17.19)
A∗3 = (1 + r2)A2 + w2 − C∗2 , (17.20)
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A∗4 = 0. (17.21)

Of course these expressions are not very surprising. Indeed, as we have seen time
and again throughout the book, for a logarithmic felicity function spending shares
are constant which is exactly what (17.16)–(17.18) show.

For future reference we present some numerical results for a parameterized ver-
sion of the three-period model in Table 17.1. The parameters are chosen as follows.
We assume that each period is 25 years, and that the individual starts life without
any financial assets, i.e. A1 = 0. The wage rate and interest rate are both constant
over time, i.e. rt = r and wt = w. Output per worker is normalized to unity so that
with a capital share of α = 0.3 the wage rate is equal to w = 0.7. Under the assump-
tion that the annual interest rate is 4 percent and the annual rate of time preference
is 3 percent we find r = 1.6658 and β = 0.4776. Panel (a) of Table 17.1 shows that the
consumer is a strong saver in the first two periods and a dissaver in the final period.

There is an alternative way of writing down the solutions which gives us a first
glance at policy functions. Consider the consumer who has a in assets in period t = 1.
What does he choose for current consumption and next period’s assets? To answer
this question there is no need to redo the optimization problem because we already
know the solutions. Indeed, by substituting a for A1 in (17.16) and (17.19) we find:

Ĉ1 = C1(a; r1, r2, r2, w1, w2, w3)

≡ 1
1 + β + β2

[
(1 + r1)a + w1 +

w2

1 + r2
+

w3

(1 + r2)(1 + r3)

]
, (17.22)

and:

Â2 = (1 + r1)a + w1 − Ĉ1

= A+
1 (a; r1, r2, r3, w1, w2, w3)

≡ β(1 + β)

1 + β + β2 [(1 + r1)a + w1]−
1

1 + β + β2

[
w2

1 + r2
+

w3

(1 + r2)(1 + r3)

]
,

(17.23)

where the hats designate conditionally optimal choices. In words, the policy function
C1(a; ·) in (17.22) gives the choice for current consumption in period 1 (hence the
subscript) if he has a in assets at the start of that period. Hence, if a = A1 then it
follows readily that C∗1 = C1(A1; ·). If a < A1 the conditionally optimal solution is
feasible but suboptimal and if a > A1 the conditionally optimal solution is infeasible
as the consumer does not possess that much in financial assets.

In a similar fashion, the policy function A+
1 (a; ·) in (17.23) represents the condi-

tionally optimal choice that the agents makes in period 1 (hence the subscript) about
the level of assets he want to carry over to the next period (hence the superscript ‘+
’). It should now be obvious to the reader that A∗2 = A+

1 (a; ·) for a = A1 only.1

Now consider the consumer with a in assets in period t = 2. What does he choose
for C2 and A3? The answer is obtained by maximizing ln C2 + β ln C3 subject to:

(1 + r2)a + w2 +
w3

1 + r3
= C2 +

C3

1 + r3
,

1The literature often uses a slightly different notation to indicate future values, e.g. if a denotes current
assets then a′ represents future assets—see for example Stokey and Lucas (1989, ch. 9) and Adda and
Cooper (2003). Like Cai and Judd (2010) we prefer to use the plus superscript notation in which a+
denotes future assets. We have used prime accents throughout the book to denote derivatives.
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Table 17.1. Some numerical examples

(a) Deterministic choices:

Consumption: C∗1 0.6221
C∗2 0.7920
C∗3 1.0084

Assets: A∗2 0.0779
A∗3 0.1157
A∗4 0.0000

(b) Sequential stochastic choices:

Choices made in period 1:
Consumption: C∗1 0.6165
Assets: A∗2 0.0835

Choices made in period 2:
Consumption: C∗2 (e1) 0.6591

C∗2 (e2) 0.7982
C∗2 (e3) 0.9411

Assets: A∗3(e1) 0.0884
A∗3(e2) 0.1243
A∗3(e3) 0.1564

Choices made in period 3:
Consumption: C∗3 (e1, e1) 0.7607

C∗3 (e1, e2) 0.9357
C∗3 (e2, e1) 0.8564
C∗3 (e2, e2) 1.0314
C∗3 (e2, e3) 1.2064
C∗3 (e3, e2) 1.1171
C∗3 (e3, e3) 1.2921

Assets: A∗4(ei, ej) 0.0000

Notes: Initial financial assets are A1 = 0, initial human wealth is H1 = 1.0611, the
wage rate is wt = w = 0.7, the interest rate is rt = r = 1.6658, and the discount factor
is β = 0.4776. The Matlab program Program17 01.m is available from the website
of the book, http://www.heijdra.org/fomm3. In the table C∗2 (ei) stands for optimal
consumption in period 2 when η2 = ei. Similarly, C∗3 (ei, ej) is consumption in period
3 when (η2, η3) = (ei, ej). The Markov process for labour productivity is visualized
in Figure 17.2. It features three states: e1 = 0.75, e2 = 1.00, and e3 = 1.25.

http://www.heijdra.org/fomm3


676 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

which gives the policy functions:

Ĉ2 = C2(a; r2, r3, w2, w3)

≡ 1
1 + β

[
(1 + r2)a + w2 +

w3

1 + r3

]
, (17.24)

and:

Â3 = (1 + r2)a + w2 − Ĉ1

= A+
2 (a; r2, r3, w2, w3)

≡ β

1 + β
[(1 + r2)a + w2]−

1
1 + β

w3

1 + r3
. (17.25)

Obviously, Ĉ2 = C∗2 and Â3 = A∗3 if and only if a = A∗2 , i.e. C∗2 = C2(A∗2 ; ·) and
A∗3 = A+

2 (A∗2 ; ·).
Finally, consider the consumer who has a in assets in period t = 3. What does

he choose for C3 and A4? The answer is obtained by maximizing ln C3 subject to
(1 + r3)A3 + w3 = C3 + A4 and A4 ≥ 0. We easily find that:

Ĉ3 = C3(a; r3, w3) ≡ (1 + r3)a + w3 (17.26)

Â4 = A+
3 (a; r3, w3) ≡ 0. (17.27)

Just as before, Ĉ3 = C∗3 if and only if a = A∗3 , i.e. so that C∗3 = C3(A∗3 ; ·). Unlike
what we found before, however, Â4 = A∗4 = 0 regardless of a, i.e. the consumer will
always deplete resources completely in the final period of life.

The sceptical reader may feel that this way of looking at the consumer’s deci-
sions over time is unnecessarily complicated. Indeed, it is easy to find the optimal
consumption and asset holdings in one go as we saw in the derivation of (17.16)–
(17.21). And for this particular example the sceptical reader is absolutely right. For
other, more complicated cases the “brute-force” direct method may, however, be un-
practical or far too complex. One thing we note in our example is that the decision in
the final period is rather simple. This simplicity of this sub-problem—deciding about
C3 and A4 conditional on something—is what the method of dynamic programming
exploits.

17.2.1.2 Dynamic programming

PRINCIPLE OF OPTIMALITY. An optimal policy has the property that
whatever the initial state and decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the
first decision. (Bellman, 1957, p. 83)

Intuitively, the method of dynamic programming solves a complex multi-stage prob-
lem by breaking it up into a number of smaller subproblems. In particular the
method computes a number of value functions which depend on the state variable at
each time. To demonstrate how Bellman’s method works we return to the decision
problem of the consumer who lives for three periods.

We start at the end of life and work back to the first period. The last decision is
made at the start of period t = 3. As we already saw in the previous subsection, the
consumer who has a in assets at the start of the period will choose Ĉ3 = C3(a; r3, w3)
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and Â4 = A+
3 (a; r3, w3) ≡ 0. By substituting the consumption choice into the felicity

function we obtain the value function for period t = 3 in terms of a:

V3(a) ≡ U(C3(a; r3, w3)) = ln [(1 + r3)a + w3] . (17.28)

For future reference we note that this value function is differentiable and features the
following derivative:

V′3(a) = (1 + r3)U′(C3(a; r3, w3)) =
1 + r3

C3(a; r3, w3)
, (17.29)

where we have used (17.26).
Now let us see what the individual decides in period t = 2. The objective is to

maximize remaining lifetime utility, V2 ≡ U(C2) + βU(C3), subject to the budget
constraint, A3 = (1 + r2)A2 + w2 − C2. In period 2 the consumer decides on current
consumption and the amount of assets to carry over into the third period, which we
denote by c and a+. But we know from the first step that the choice of a+ will ensure
that the value function in period 3 is equal to V3(a+). Hence, the choice problem in
period 2 can be stated as follows:

V2(a) = max
c,a+

U(c) + βV3(a+)

subject to: a+ = (1 + r2)a + w2 − c. (17.30)

Equation (17.30) is usually referred to as the Bellman equation, after its inventor. It
is a recursive relationship relating value functions across time. In words, the value
function in period 2 is equal to the felicity level given by the optimal consumption
choice plus the discounted continuation value of the level of assets induced by that
consumption choice. Since we know that V3(·) is differentiable the maximization
problem on the right-hand side of (17.30) is easily seen to feature the following first-
order condition:

U′(c) = βV′3((1 + r2)a + w2 − c). (17.31)

This is an implicit relationship between c and a, the solution of which gives the pol-
icy function C2(a, r2, w2). The policy function for a+ follows from the constraint,
A+

2 (a, r2, w2) = (1 + r2)a + w2 − C2(a, r2, w2).
For the logarithmic felicity function (17.2) equation (17.31) simplifies to:

1
c
=

β(1 + r3)

(1 + r3)[(1 + r2)a + w2 − c] + w3
. (17.32)

By solving for c = C2(a; ·) we find:

C2(a; ·) ≡ 1
1 + β

[
(1 + r2)a + w2 +

w3

1 + r3

]
, (17.33)

and:

A+
2 (a; ·) = (1 + r2)a + w2 − C2(a; ·)

≡ β

1 + β
[(1 + r2)a + w2]−

1
1 + β

w3

1 + r3
, (17.34)

where we use the notational convenience to write C2(a; r2, w2, r3, w3) as C2(a; ·) and
A+

2 (a; r2, w2, r3, w3) as A+
2 (a; ·). But once we know these policy functions, we also
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know the value function for period 2! Indeed, by substituting (17.33) and (17.34) into
(17.30) we find:

V2(a) ≡ U(C2(a; ·)) + βV3(A+
2 (a; ·)), (17.35)

which simplifies for the logarithmic felicity function to:

V2(a) = ln
(

ββ

(1 + β)1+β

)
+ β ln(1 + r3) + (1 + β) ln

[
(1 + r2)a + w2 +

w3

1 + r3

]
.

(17.36)

In equation (17.29) above we found that there is an intimate relationship between
the derivative of the value function, V′3(a), and marginal utility, U′(C3(a; ·)). This
is not a coincidental result. In fact it results from the envelope theorem and is often
referred to as the Benveniste-Scheinkman theorem (after its inventors in a dynamic
programming setting)—see Benveniste and Scheinkman (1979). To show the result
for the second period we use (17.35) to find:

V′2(a) ≡ U′(C2(a; ·))dC2(a; ·)
da

+ βV′3(A
+
2 (a; ·))

[
(1 + r2)−

dC2(a; ·)
da

]
=
[
U′(C2(a; ·))− βV′3(A

+
2 (a; ·))

] dC2(a; ·)
da

+ β(1 + r2)V′3(A
+
2 (a; ·))

= (1 + r2)U′(C2(a; ·)), (17.37)

where we have used the first-order condition (17.31) to simplify the expression.
In period t = 1 the choice problem can be stated as follows:

V1(a) = max
c,a+

U(c) + βV2(a+)

subject to: a+ = (1 + r1)a + w1 − c. (17.38)

The first-order condition for the maximization problem is given by:

U′(c) = βV′2((1 + r1)a + w1 − c), (17.39)

which simplifies for the logarithmic felicity function to:

1
c
=

β(1 + β)

(1 + r1)a + w1 +
w2

1+r2
+ w3

(1+r2)(1+r3)

, (17.40)

where we have used (17.36) to compute V′2(a+). By solving (17.40) for c = C2(a, r2, w2)
we find:

C1(a; ·) ≡ 1
1 + β + β2

[
(1 + r1)a + w1 +

w2

1 + r2
+

w3

(1 + r2)(1 + r3)

]
, (17.41)

and:

A+
1 (a; ·) = (1 + r1)a + w1 − C1(a, ·)

=
β(1 + β)

1 + β + β2 [(1 + r1)a + w1]−
1

1 + β + β2

[
w2

1 + r2
+

w3

(1 + r2)(1 + r3)

]
,

(17.42)
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where the dot in C1(a; ·) and A+
1 (a; ·) is short-hand for the entire sequence of interest

rates and wages (r1, r2, r3, w1, w2, w3). By substituting the policy functions into the
first-period Bellman equation (17.38) we obtain:

V1(a) = U(C1(a; ·)) + βV2(A+
1 (a; ·)), (17.43)

which simplifies for the logarithmic felicity function to:

V1(a) = −(1 + β + β2) ln(1 + β + β2) + β(1 + 2β) ln β

+ (1 + β(1 + β)) ln
[
(1 + r1)a + w1 +

w2

1 + r2
+

w3

(1 + r2)(1 + r3)

]
+ β(1 + β) ln(1 + r2) + β2 ln(1 + r3). (17.44)

Before delivering the coup de grace it may be useful to summarize what we have
achieved up to this point. We have computed the policy functions for consumption,
Ct(a; ·), for future assets, A+

t (a; ·), and the value functions, Vt(a), all in terms of a.
In words, the expression for the value function in the initial period, V1(a), states the
lifetime utility level that the individual attains if he has financial assets a in the first
period. Since we in fact assume that the agent has A1 in assets, we thus find the
actual level of lifetime utility by substituting a = A1 into equation (17.44). Note
that V1(A1) is the maximum attainable utility level, i.e. it is based on optimal plans
during life. But once we know the “initial condition” for this individual —namely
that a = A1 in the first period—we also know that optimal consumption in the first
period will be C∗1 = C1(A1; ·), whilst optimal assets at the start of the second period
will be A∗2 = A+

1 (A1; ·). Obviously, in the second period we find that C∗2 = C2(A∗2 ; ·)
and A∗3 = A+

2 (A∗2 ; ·), whilst in the third period we find C∗3 = C3(A∗3 ; ·) and A∗4 =

A+
3 (A∗3 ; ·) = 0.

For convenience we visualize the value functions Vt(a) as well as the policy func-
tions for consumption Ct(a) and next-period’s financial assets A+

t (a) in Figure 17.1.
As is to be expected the value functions are increasing in the asset level a. Note that
V1(0) represents the lifetime utility level attained by the consumer as the initial con-
dition is such that a = A1 = 0. The optimal consumption choice in period 1 is on
the solid policy function in panel (b) for the point where a = 0, i.e. C∗1 = C1(0). In a
similar fashion we find A∗2 = A+

1 (0) which lies on the solid policy function in panel
(c). By setting a = A∗2 in the policy functions C2(a) and A+

1 (0) we find C∗2 and A∗3 .
These points are located on the dashed policy functions in panels (b) and (c).

Schematically the method of dynamic programming in a T-period finite horizon
setting thus proceeds as follows:

• Compute the value function for the final period, VT(a), as well as the policy
functions, CT(a) and A+

T (a).

• Use the Bellman equation to compute VT−1(a) and the policy functions CT−1(a)
and A+

T−1(a). Continue this step until V1(a), C1(a) and A+
1 (a) are obtained.

• Impose the initial condition, a = A1 and iterate forward in time to compute the
optimal choices, C∗1 = C1(A1), A∗2 = A+

1 (A1), C∗2 = C2(A∗2), A∗3 = A+
2 (A∗2),

. . . , C∗T = CT(A∗T), A∗T+1 = A+
T (A∗T) = 0.

17.2.2 Infinite planning horizon

As we have seen throughout the book, a large part of modern macroeconomics is
based on the notion of an infinitely-lived representative consumer. How can we use
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Figure 17.1: Value functions and policy functions: Deterministic case

(a) Value functions: Vt(a)

(b) Policy function for consumption: Ct(a)

(c) Policy function for next period’s assets: A+
t (a)
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the method of dynamic programming when there is no finite horizon, and there is
no final-period value function that can be computed? Just as in the previous section
we demonstrate the dynamic programming method by using a simple consumption
savings example. This example is also discussed in a slightly different form by Sar-
gent (1987a, p. 22).

The infinitely-lived consumer has a lifetime utility of the form:

Λ1 ≡
∞

∑
t=1

βt−1U(Ct), (17.45)

where the felicity function is given in (17.2) above. Financial assets accumulate ac-
cording to:

At+1 = (1 + rt)At + wt − Ct, (17.46)

where At denotes assets at the start of period t. By defining the primary surplus
St ≡ wt − Ct and iterating the asset accumulation equation for T period we find:

AT
(1 + r2) · · · (1 + rT−1)

= (1+ r1)A1 + S1 +
S2

1 + r2
+ · · ·+ ST−1

(1 + r2) · · · (1 + rT−1)
.

(17.47)

By imposing the solvency condition,

lim
T→∞

AT
(1 + r2) · · · (1 + rT−1)

= 0, (17.48)

we obtain the lifetime budget constraint for the infinitely-lived consumer:

∞

∑
t=1

R0,t−1Ct = (1 + r1)A1 +
∞

∑
t=1

R0,t−1wt, (17.49)

where R0,t−1 is a cumulative discount factor:

R0,t−1 ≡
{

1 for t = 1
∏t−1

s=1
1

1+rs+1
for t = 2, 3, . . . . (17.50)

Rather than going through the straightforward but tedious Lagrangian approach we
use the method of dynamic programming right from the start to solve this prob-
lem. Obviously, since there is no final period, we cannot start by computing VT(a).
Instead we postulate the Bellman equation for period t as:

Vt(a) = max
c,a+

U(c) + βVt+1(a+)

subject to: a+ = (1 + rt)a + wt − c. (17.51)

The first-order condition for c is:

U′(c) = βV′t+1((1 + rt)a + wt − c). (17.52)

In principle we could solve (17.52) for c = Ct(a), A+
t (a) = (1 + rt)a + wt − Ct(a),

and find:

Vt(a) = U(Ct(a)) + βVt+1(A+
t (a)). (17.53)
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But we do not know the functional form of V′t+1(a+) so this seems to be a dead end.
Recall, however, that the Benveniste-Scheinkman theorem furnishes a link between
the derivative of the value function and marginal utility. Indeed, by differentiating
(17.53) with respect to a we find:

V′t (a) = U′(Ct(a))
dCt(a)

da
+ βV′t+1(A

+
t (a))

[
(1 + rt)−

dCt(a)
da

]
=
[
U′(Ct(a))− βV′t+1(A

+
t (a))

] dCt(a)
da

+ β(1 + rt)V′t+1(A
+
t (a))

= (1 + rt)U′(Ct(a)), (17.54)

where we have used the first-order condition (17.52) to simplify the expression. By
induction we thus find that V′t+1(a+) = (1 + rt+1)U′(c+) where c+ = Ct+1(a+), so
that the expression in (17.52) can be rewritten as U′(c) = β(1 + rt+1)U′(c+). Put
differently, consumption in adjacent periods will be related according to the usual
Euler equation:

U′(Ct) = β(1 + rt+1)U′(Ct+1), (17.55)

which simplifies for the logarithmic felicity function to:

Ct+1

Ct
= β(1 + rt+1). (17.56)

The Euler equation is a vital piece of information which allows us to compute the
optimal solutions for current and future consumption without any further need for
value functions or policy functions.

Note that future consumption can be expressed conditional on current consump-
tion as:

Ct = βt−1(1 + r2)(1 + r3) · · · (1 + rt)C1, (17.57)

which allows us to compute:
∞

∑
t=1

R0,t−1Ct = C1 + βC1 + β2C1 + · · · =
C1

1− β
. (17.58)

By substituting (17.58) into the lifetime budget constraint (17.49) we obtain the ex-
pression for optimal consumption in the first period and assets in the second period:

C∗1 = (1− β)

[
(1 + r1)A1 +

∞

∑
t=1

R0,t−1wt

]
, (17.59)

A∗2 = (1 + r1)A1 + w1 − C∗1 . (17.60)

The solutions for C∗t and A∗t+1 for t = 2, 3, . . . are obtained by using (17.57) and
iterating the asset accumulation equation (17.60) forward in time. Expressed in terms
of policy functions, it is not hard to derive that:

Ct(a) ≡ (1− β) [(1 + rt)a + Ht] , (17.61)

A+
t (a) ≡ (1 + rt)a + wt − Ct(a), (17.62)

where Ht is human wealth at time t:

Ht ≡ wt +
wt+1

1 + rt+1
+

wt+2

(1 + rt+1)(1 + rt+2)
+ · · · (17.63)

With logarithmic utility the agent consumes a constant fraction of total wealth, con-
sisting of the sum of interest-inclusive financial wealth plus human wealth.
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17.3 Dynamic programming in a stochastic world

Whereas the traditional and dynamic programming methods are both feasible in a
deterministic world the same does not hold in a stochastic setting. Indeed, the true
power of the dynamic programming method becomes apparent when confronting
optimal sequential choices under risk and uncertainty. In many cases the dynamic
programming method turns out to be “the only game in town”. We again build up
this section by means of a sequence of simple example problems.

17.3.1 Finite planning horizon

We return to the three-period consumption-savings model but postulate that the
agent faces idiosyncratic labour productivity risk. Since future income is risky, the
consumer’s objective function is expected utility at birth which we write as:

E1[Λ1] = U(C1) + βE1[U(C2)] + β2E1[U(C3)], (17.64)

where the felicity function is given in (17.2) above, and E1 [·] is the expectation oper-
ator conditional on information available at time t = 1.

We assume that labour income is stochastic and postulate that financial assets
accumulate according to:

At+1 = (1 + rt)At + ηtwt − Ct, (17.65)

where ηt is a stochastic variable representing labour productivity risk. Both rt and wt
are taken as given and ηt is a random variable for which nature draws realizations
over time. Since the world ends for this consumer at the end of period t = 3 there is
a terminal constraint of the form:

At+4 ≥ 0. (17.66)

To keep things simple we make the following assumptions regarding the stochastic
process for ηt:

1. At birth the agent has an average productivity level, η1 = e2 = 1.

2. For later periods, ηt follows a three state stationary Markov scheme, i.e. ηt ∈
{e1, e2, e3}.

3. The transition probabilities are defined as:

pij = Prob(ηt+1 = ej|ηt = ei). (17.67)

In words, pij is the probability that the productivity state will be ej in the next
period given that it is ei in the current period. For obvious reasons it must be
the case that ∑3

j=1 pij = 1.

4. The transition matrix is defined as:

P ≡

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 . (17.68)

We assume that 0 < pij < 1 so there are no absorbing states (states that one
cannot escape from anymore). Since p13 and p31 are both positive, spectacular
reversals of fortune in both directions are possible.
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We visualize the labour productivity process in Figure 17.2. The three possible states
are depicted as boxes labelled “good” (ηt = e3), “average” (ηt = e2), and “bad”
(ηt = e1) whilst the dashed arrows indicate the possible flows between states over
time. The probabilities next to the dashed arrows are the transition probabilities.

Since we assume that the agent starts in the average state, η1 = e2, we immedi-
ately find that the initial unconditional probability distribution of η1 is trivial:

π1 ≡

 π11
π12
π13

 =

 0
1
0

 . (17.69)

In words this expression says that the consumer experiences η1 = e2 for sure because
π12 = 1.

To obtain the next period’s unconditional probability distribution of η2 we use
the result that π′2 = π′1P, where P is given in (17.68) above. We thus find:

π2 ≡

 π21
π22
π23

 =

 p21
p22

1− p21 − p22

 . (17.70)

From the perspective of period t = 1 (‘unconditionally’) the consumer assigns prob-
ability π2j to being in state j in period t = 2.

Finally, the unconditional probability distribution of η3 is determined by π′3 =
π′2P:

π3 ≡

 π31
π32
π33

 =

 p21(p11 + p22) + p23 p31
p12 p21 + p2

22 + p23 p32
p13 p21 + p23 (p22 + p33)

 . (17.71)

Again the interpretation of π3j is that in period t = 1 the consumer assigns probabil-
ity π3j to being in state j in period t = 3.

17.3.1.1 Traditional solution method

What is the optimal consumption level in the first period? Under the assumption that
the consumer understands the features of the stochastic process for ηt and has perfect
foresight concerning the interest rates and wage rates (no aggregate uncertainty), the
decision maker will know that expected utility can be written in terms of asset levels:

E1[Λ1] = U((1 + r1)A1 + e2w1 − A2)

+ β
[
π21U((1 + r2)A2 + e1w2 − A3) + π22U((1 + r2)A2 + e2w2 − A3)

+ π23U((1 + r2)A2 + e3w2 − A3)
]

+ β2
[
π31U((1 + r3)A3 + e1w3 − A4) + π32U((1 + r3)A3 + e2w3 − A4)

+ π33U((1 + r3)A3 + e3w3 − A4)
]
. (17.72)

Note that (17.72) is obtained by using (17.65) to eliminate Ct (for t ∈ {1, 2, 3}, and by
using the unconditional probabilities π2j and π3j stated in (17.70) and (17.71).

Since A1 and the paths of rt and wt are given, and nature draws realizations for
η2 and η3, the only choice variables are A2, A3, and A4. We can make short shrift
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Figure 17.2: Markov process for labour productivity
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Figure 17.3: Labour productivity over the life cycle

concerning the optimal choice of A4, since the Kuhn-Tucker conditions amount to:

∂E1[Λ1]

∂A4
= −β2

[
π31U′((1 + r3)A3 + e1w3 − A4)

+ π32U′((1 + r3)A3 + e2w3 − A4)

+ π33U′((1 + r3)A3 + e3w3 − A4)
]
< 0,

A4 ≥ 0, A4
∂E1[Λ1]

∂A4
= 0. (17.73)

Since ∂E1[Λ1]/∂A4 is strictly negative, it is never (under no state of the world) opti-
mal to end up with unused financial resources. Hence, A∗4 = 0 just as in the deter-
ministic case.

This leaves the more interesting first-order conditions for A2 and A3. For the
former we find:

∂E1[Λ1]

∂A2
= −U′((1 + r1)A1 + w1 − A2)

+ β(1 + r2)
[
π21U′((1 + r2)A2 + e1w2 − A3)

+ π22U′((1 + r2)A2 + e2w2 − A3)

+ π23U′((1 + r2)A2 + e3w2 − A3)
]
= 0, (17.74)

whilst for the latter we obtain:

∂E1[Λ1]

∂A3
= −β

[
π21U′((1 + r2)A2 + e1w2 − A3) + π22U′((1 + r2)A2 + e2w2 − A3)

+ π23U′((1 + r2)A2 + e3w2 − A3)
]
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+ β2(1 + r3)
[
π31U′((1 + r3)A3 + e1w3) + π32U′((1 + r3)A3 + e2w3)

+ π33U′((1 + r3)A3 + e3w3)
]
= 0. (17.75)

Two things are worth noting. First, equations (17.74)–(17.75) represent two equations
in two unknowns which can in principle be solved for A∗2 and A∗3 in terms of the
parameters of the problem (i.e., r2, r3, w2, w3, ej, and pij). Second, even for the very
simple logarithmic felicity function (17.2) no analytical solutions can be obtained.
Numerically it is easy to solve (17.74)–(17.75) for A∗2 and A∗3 . This gives us two
points on the policy functions:

A∗2 = A+
1 (A1, e2), (17.76)

C∗1 = C1(A1, e2) = (1 + r1)A1 + e2w1 −A+
1 (A1, e2), (17.77)

where we have already substituted the initial conditions, namely that initial assets
are given by A1 and initial labour productivity is η1 = e2.

In period t = 2, the consumer has A∗2 = A+
1 (A1, e2) in financial assets for sure

but he enters the risky part of life as nature reveals the realization of η2. If the agent
gets η2 = ei then expected utility from the perspective of period t = 2 is given by:

E2[Λ2(A∗2 , ei)] = U((1+ r2)A∗2 + eiw2− A3)+ β
3

∑
j=1

pijU((1+ r3)A3 + ejw3), (17.78)

where we have already incorporated the fact that A∗4 = 0. The only choice variable
is A3 for which we find the following first-order condition:

dE2[Λ2(A∗2 , ei)]

dA3
= −U′((1 + r2)A∗2 + eiw2 − A3)

+ β(1 + r3)
3

∑
j=1

pijU′((1 + r3)A3 + ejw3) = 0. (17.79)

Numerically, equation (17.79) can easily be solved for A∗3 . This gives us the points
on the policy functions if the state is (A∗2 , ei):

A∗3 = A+
2 (A∗2 , ei), (17.80)

C∗2 = C2(A∗2 , ei) = (1 + r2)A2 + eiw2 −A+
2 (A2, ei). (17.81)

Finally, in period t = 3, the consumer has A∗3 = A+
2 (A2, ei) in financial assets and

the value of η3 = ej is revealed. The optimal choices are trivial:

C∗3 = C3(A∗3 , ej) = (1 + r3)A∗3 + ejw3, (17.82)

A∗4 = A+
3 (A∗3 , ej) = 0. (17.83)

The upshot of this discussion is twofold. First, it is feasible though tedious to com-
pute the optimal choices in the traditional manner by repeatedly solving a maxi-
mization problem involving expected remaining lifetime utility. Second, it is clear
that with idiosyncratic labour productivity risk of the Markov form, the state vector
in a particular period consists of assets at the start of the period as well as the pro-
ductivity indicator for that period. Armed with this knowledge we can proceed to
solve the model with the method of dynamic programming.
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17.3.1.2 Dynamic programming

Just as in the deterministic case we start at the end of life and work back to the first
period. The last decision is made at the start of period t = 3. The consumer who has
a in assets and labour productivity η will choose c and a+ in order to maximize U(c)
subject to a+ = (1 + r3)a + ηw3 − c. This results in the following policy functions:

C3(a, η; r3, w3) ≡ (1 + r3)a + ηw3, (17.84)

A+
3 (a, η; r3, w3) = 0, (17.85)

and the value function for period t = 3:

V3(a, η) ≡ U(C3(a, η; r3, w3)) = ln [(1 + r3)a + ηw3] , (17.86)

where we have used (17.2) in getting to the final expression. For future reference we
note that:

V′3(a, η) ≡ (1 + r3)U′(C3(a, η; ·)) = 1 + r3

(1 + r3)a + ηw3
. (17.87)

It must be stressed that, since η has three possible realizations, there are three each of
the V3(a, η) and V′3(a, η) functions that must be computed (see more on this below).

For period t = 2 we write the Bellman equation as:

V2(a, η) = max
c,a+

U(c) + βEη+ |η
[
V3(a+, η+)

]
subject to: a+ = (1 + r2)a + ηw2 − c, (17.88)

where Eη+ |η [·] stands for the conditional expectations operator so that Eη+ |η
[
V3(a+,

η+)
]

stands for:

Eη+ |η
[
V3(a+, η+)

]
=

3

∑
j=1

pijV3(a+, ηj), (17.89)

where we let η = ei and η+ = ej. Since the expectations operator is a linear
operator—it is just a weighted average of V3(a+, ηj) functions—it is easy to see that
the first-order condition for c is given by:

U′(c) = βEη+ |η
[
V′3(a+, η+)

]
= β

3

∑
j=1

pijV′3(a+, ηj). (17.90)

In principle we can solve (17.90) for the policy function c = C2(a, η; ·) but it is clear
that a closed-form analytical solution cannot be obtained even for the logarithmic
felicity function (17.2). Indeed, by setting η = ei and η+ = ej we easily find that
(17.90) reduces to:

1
c
= β(1 + r3)

3

∑
j=1

pij

(1 + r3)a+ + ejw3

= β
3

∑
j=1

pij

(1 + r2)a + eiw2 − c + ej
w3

1+r3

, (17.91)
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where we have used (17.87) and the definition of a+ to obtain the final expres-
sion. The only way to compute c = C2(a, η; ·) and A+

2 (a, η; ·) ≡ (1 + r2)a + ηw2 −
C2(a, η; ·) is thus by employing numerical means.

The value function in the second period is given by:

V2(a, η) = U(C2(a, η; ·)) + βEη+ |η [V3(A+
2 (a, η; ·), η+)], (17.92)

which can be differentiated with respect to a to obtain the Benveniste-Scheinkman
result in a stochastic setting:

V′2(a, η) ≡ U′(C2(a, η; ·))dC2(a, η; ·)
da

+ βEη+ |η

[
V′3(A

+
2 (a, η; ·), η+)

(
(1 + r2)−

dC2(a, η; ·)
da

)]
= (1 + r2)U′(C2(a, η; ·)), (17.93)

where we have used the first-order condition (17.90) to simplify the expression.
Finally, for period t = 1 we write the Bellman equation as:

V1(a, η) = max
c,a+

U(c) + βEη+ |η
[
V2(a+, η+)

]
subject to: a+ = (1 + r1)a + ηw1 − c, (17.94)

which gives the first-order condition:

U′(c) = βEη+ |η
[
V′2(a+, η+)

]
, (17.95)

the policy functions C1(a, η; ·) and A+
1 (a, η; ·), and the value function:

V1(a, η) = U(C1(a, η; ·)) + βEη+ |η
[
V2(A+

2 (a, η; ·), η+)
]

. (17.96)

As we saw in Section 17.2, in the deterministic consumption-savings model the con-
sumption Euler equation plays an important role—see for example the discussion
surrounding equation (17.55) above. It is not difficult to see that in a stochastic set-
ting some version of the Euler equation should be operative on the background.
Indeed, by combining (17.87) and (17.90) we find that:

U′(C2(a, η; ·)) = β(1 + r3)Eη+ |η
[
U′(C3(a+, η+; ·))

]
, (17.97)

whilst (17.93) and (17.95) give:

U′(C1(a, η; ·)) = β(1 + r2)Eη+ |η
[
U′(C2(a+, η+; ·))

]
. (17.98)

Equations (17.97) and (17.98) are examples of stochastic consumption Euler equations.
In each period the consumer chooses current consumption in such a way that its
marginal utility is equated to the conditional expectation of next period’s marginal
utility of consumption times a term correcting for impatience and the relative in-
tertemporal price of future consumption.2

Unfortunately the stochastic Euler equations are not quite as useful here as they
are in a deterministic setting. Indeed, to solve the consumer’s choice problem we
must compute the policy functions and value functions numerically. In Figure 17.4
we plot the value functions that are computed using the parameters mentioned in
Table 17.1. A selection of policy functions are depicted in Figure 17.5. In schematic
terms the Matlab program that is used to compute these value and policy functions
proceeds as follows.

2For example, in period t = 1 the price of current consumption C1 is unity and the intertemporal price
of future consumption C2 is 1/(1 + r2). Hence, the relative price of current consumption equals 1 + r2.
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Figure 17.4: Value functions: Stochastic case

(a) Value functions for period t = 1: V1(a, e2)

(b) Value functions for period t = 2: V2(a, η)

(c) Value functions for period t = 3: V3(a, η)
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Figure 17.5: Policy functions: Stochastic case

(a) Assets : A+
1 (a, e2) (b) Consumption: C2(a, η)

(c) Assets: A+
2 (a, η) (d) Consumption: C3(a, η)
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• Step 1. In the mathematical derivations a is a continuous variable but the com-
puter cannot work with these directly. For this reason we set up a grid of dis-
crete values for a (labelled ak) that is sufficiently wide and has a large (but not
too large) number of points in it. From the deterministic model we know that
assets vary within the interval [0, 0.20] so we set avals =linspace(0,0.20,

201);. Hence, a1 = 0, a2 = 0.001,. . . , a201 = 0.20 (the step size is 0.001 and
there are 201 grid points).

• Step 2. For each ak compute the value functions for the final period using the
expression in equation (17.86). This gives us three vectors with “data points”,
V3(ak, ej) = (1 + r)ak + ejw. These value functions have been plotted in Figure
17.4(c).

• Step 3. For each possible ei use equation (17.91) to solve for the policy function
for consumption. For each ak value and case ei the Matlab routine fsolve can
be used to solve a nonlinear equation of the form:

1
cik

= β
3

∑
j=1

pij

(1 + r2)ak + eiw− cik + ej
w

1+r
.

This gives us the policy functions cik = C2(ak, ei) and A+
2 (ak, ei) = (1 + r)ak +

eiw− C2(ak, ei).

• Step 4. Use these policy functions in (17.92) to obtain the value functions:

V2(ak, ei) = ln C2(ak, ei) + β
3

∑
j=1

pij log
[
(1 + r)A+

2 (ak, ei) + ejw
]

.

These functions have been plotted in Figure 17.4(b).

• Step 5. Observe from the figure that the V2(ak, ei) are very smooth, i.e. they do
not feature sharp kinks or veer off to infinity. This implies that for each ei we
can create a function V̄2(a, ei) by interpolating the observations on V2(ak, ei).
The crux is that in the interpolated function a can vary continuously. We use
the Matlab routine interp1 with the option ’spline’ to compute the V̄2(a, ei)
functions.

• Step 6. Since the agent starts with η1 = e2 for sure, we note from (17.96) that we
only need to compute V1(ak, e2). For each ak value we get Matlab to compute
the corresponding c2k value which minimizes the following function:

Φ(c2k, ak) ≡ − log(c2k)− β
3

∑
j=1

p2jV̄2((1 + r)ak + e2w− c2k, ej).

(The minus sign is used on the right-hand side to turn a maximization prob-
lem into a minimization problem.) We use the Matlab minimization routine
fminsearch to find the policy functions c2k = C1(ak, e2) and A+

1 (ak, e2) =
(1 + r)ak + e2w− C1(ak, e2). The latter is depicted in Figure 17.5(a). The mini-
mization routine also gives the value of the objective function at the optimum
so we easily obtain V1(ak, e2) = −Φ(c2k, ak). The value function has been plot-
ted in Figure 17.4(a).
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Armed with Figures 17.4 and 17.5 as well as Table 17.1 we can now explain how
the agent makes sequential choices over his life. The consumer starts for sure with
the average productivity level e2 in the first period, η1 = e2, and has no financial
assets initially, A1 = 0. From Figure 17.5(a) we find that the optimal amount of
assets at the start of period 2 is given by A∗2 = A+

1 (0, e2) = 0.0835 where the nu-
merical result is taken from Table 17.1. From period t = 2 onward, nature places the
agent on a sequence of value and policy functions. Figure 17.5(b) shows the optimal
second-period consumption choices for the three possible productivity states, e1, e2,
and e3. From the perspective of period t = 1 the agent assigns probabilities p21, p22,
and p23 of getting, respectively, productivity levels e1, e2, and e3 in the second pe-
riod. This gives the three optimal consumption points A, B, and C. In Table 17.1(b)
the three consumption values are stated as C∗2 (e1) = 0.6591, C∗2 (e2) = 0.7982, and
C∗2 (e2) = 0.9411. Obviously, if the agent is lucky (and jumps to a higher than aver-
age productivity level) he will be wealthier and part of the extra resources will be
consumed immediately. The remaining part will be saved. This explains the differ-
ent values for A∗3(ei) in Table 17.1. Note that in Figure 17.5(c) the choices for A∗3(ei)
are obtained by evaluating the policy functions for a = A∗2 . This gives points A to C
in the figure.

At the start of period t = 3 the realization for η3 is revealed. Since there are
three possible asset levels at the start of that period, there are seven possible optimal
consumption points. These have been marked from A to G in Figure 17.5(d). In
Table 17.1 the optimal consumption levels have been stated in short-hand notation
as C∗3 (ei, ej). So depending on the luck of the draw, there is a wide range of optimal
consumption levels that the consumer can end up enjoying in the third period of life.
For this reason the “uninsured idiosyncratic risk model” developed here can easily
be used to explain why consumption and wealth holdings are so unequal at later
ages even if all consumers are identical at birth.3

17.3.2 Infinite planning horizon

We defer the treatment of the infinite-horizon stochastic consumption-saving prob-
lem to the Manual. Instead we illustrate some features of decision making in an
infinite-horizon stochastic environment by looking at the stochastic version of the
Ramsey-Cass-Koopmans model (the deterministic version of which was covered in
a continuous-time setting in Chapter 13). Starting with the seminal contribution by
Brock and Mirman (1972) the optimal stochastic growth model has been extensively
studied in the literature. It also forms the backbone of the material in Chapters 18
and 19.

Here we focus on the social planning solution. There is a large population of
identical consumers. The population size is constant and normalized to unity. The
benevolent social planner maximizes the utility function of the representative con-
sumer. The objective function is thus:

Ω0 ≡ E0

[
∞

∑
t=0

βtU(Ct)

]
, (17.99)

where Ct is consumption and β is the discount factor due to impatience (0 < β <
1). The felicity function has the usual properties, i.e. U′(x) > 0, U′′(x) < 0, and

3Even though (expected) human wealth is the same with and without income risk, first-period saving
is higher in the risky case—compare the entries for A∗2 in Table 17.1. This is an example of precautionary
saving. See Carroll and Kimball (1996, 2001) and Kimball and Weil (2009) on this.
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limx→0 U′(x) = +∞. The macroeconomic resource constraint is given by:

Ct + Kt+1 = ZtF(Kt, 1) + (1− δ)Kt, (17.100)

where F(Kt, 1) is the production function, Kt is the capital stock at the start of period
t, and δ is the depreciation rate of capital (0 < δ < 1). The random technology shock
is given by Zt. We define the history of all technology shocks that have occurred at
or before time t by ht:

ht ≡ (Z0, Z1, . . . , Zt). (17.101)

In the most general case the optimal plans that the social planner formulates at time
t will depend on the entire vector ht. If we assume that the stochastic process has
the Markov property, however, then Zt is all the planner needs to know to make
optimal plans at time t. Finally, we note that there are two constraints, namely (a)
consumption must be non-negative Ct ≥ 0 and (b) at time t = 0 the existing capital
stock is given (K0 is fixed) and Z0 is known.

17.3.2.1 Traditional approach

The traditional approach to solve the social planning problem exploits the Markov
assumption for the technology shocks and writes the Lagrangian at time t = 0 as:

L0 = U(Z0F(K0, 1) + (1− δ)K0 − K1)

+ βEZ1|Z0
[U(Z1F(K1, 1) + (1− δ)K1 − K2)]

+ β2EZ2|Z0
[U(Z2F(K2, 1) + (1− δ)K2 − K3)] + . . . ,

where the expectation operator EZt+1|Zt [φ(Zt+1)] stands for the conditional expec-
tation of φ(Zt+1) given Zt. Note that we have substituted the expressions for con-
sumption in periods 0, 1, and 2. Since K0 is predetermined, the only choice that
is made and executed at time t = 0 is the one about K1. The first-order necessary
condition is given by:

∂L0

∂K1
= −U′(Z0F(K0, 1) + (1− δ)K0 − K1)

+ βEZ1|Z0

[
U′(Z1F(K1, 1) + (1− δ)K1 − K2) ·

(
Z1FK(K1, 1) + 1− δ

)]
= 0,

where FK(K1, 1) is the marginal product of capital when the stock equals K1. Substi-
tuting back the expressions for C0 and C1 we find that the optimal plan concerning
K1 is characterized by:

U′(C0) = βEZ1|Z0

[
U′(C1) ·

(
Z1FK(K1, 1) + 1− δ

)]
. (17.102)

Here is the intuition: by slightly increasing K1 the planner foregoes some felicity at
time t = 0 (left-hand side) but expects to gain future felicity (discounted for impa-
tience) as a result of the investment (right-hand side). In the optimum the costs and
expected benefits of investing are equalized. Note that for any arbitrary period t the
social optimum is characterized by the corresponding stochastic Euler equation:

U′(Ct) = βEZt+1|Zt

[
U′(Ct+1) ·

(
Zt+1FK(Kt+1, 1) + 1− δ

)]
. (17.103)

How would one derive this expression with dynamic programming?
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17.3.2.2 Dynamic programming

Because of the Markov assumption regarding the technology shocks we can solve
the social planning exercise with the aid of dynamic programming. At time t the
control variable is consumption for that time period, Ct, whilst the state variables
are the capital stock and the technology indicator, Kt and Zt. Many writers express
the Bellman equation as:

V(Kt, Zt) = max
Ct ,Kt+1

U(Ct) + βEZt+1|Zt [V(Kt+1, Zt+1)]

subject to Kt+1 = ZtF(Kt, 1) + (1− δ)Kt − Ct.

Note that the value function does not depend on time itself because the horizon is
infinite and the problem is recursive—see for example Sydsæter et al. (2008, pp.
458–464) on this. Using the notation employed in this chapter, however, we prefer to
write the Bellman equation as follows:

V(K, Z) = max
C,K+

U(C) + βEZ+ |Z
[
V(K+, Z+)

]
subject to K+ = Z F(K, 1) + (1− δ)K− C. (17.104)

The first-order necessary condition for the maximization problem on the right-hand
side is:

U′(C) = βEZ+ |Z

[
∂V(K+, Z+)

∂K+

]
. (17.105)

Using the Benveniste-Scheinkman theorem results in:

∂V(K, Z)
∂K

= βEZ+ |Z

[
∂V(K+, Z+)

∂K+
·
(

Z FK(K, 1) + 1− δ
)]

=
(

Z FK(K, 1) + 1− δ
)
· U′(C), (17.106)

where we have used (17.105) to get from the first to the second line. Leading (17.106)
by one period gives:

∂V(K+, Z+)

∂K+
=
(

Z+FK(K+, 1) + 1− δ
)
·U′(C+). (17.107)

Finally, by combining (17.105) and (17.107) we obtain the stochastic Euler equation:

U′(C) = βEZ+ |Z

[(
Z+FK(K+, 1) + 1− δ

)
·U′(C+)

]
. (17.108)

Apart from the difference in notation, (17.108) and (17.103) are identical. Much of
Chapters 18 and 19 will make use of (17.108) in some form or another. There it
will also be shown how models containing a stochastic Euler equation can be solved
(approximately) to obtain the policy functions C(K, Z) and K+(K, Z).

17.4 Complete markets and Arrow-Debreu securities

Up to this point attention has been focused largely on the study of individual be-
haviour under risk. In this section we take the next step and study the way in which
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a tractable aggregate model can be constructed in a situation where individuals are
faced with (and need to make decisions in) an inherently stochastic world. The
key concept that is introduced here is that of complete markets in dated contingent
claims—so-called Arrow-Debreu securities. To explain matters further we develop
a simple example of a multi-period endowment economy inhabited by a large num-
ber of individuals. The example is a simplified version of the model formulated by
Ljungqvist and Sargent (2012, ch. 8).

17.4.1 Model

Consider a dynamic endowment economy featuring a time horizon denoted by T
(which may or may not be infinite). There are I agents indexed by i = 1, . . . , I,
and in each period t = 0, 1, . . . , T there is a realization of a some stochastic event
st ∈ S . We assume that any trading among individuals occurs after s0 is revealed,
i.e. the initial state is a certainty. We define the history of stochastic events up to and
including period t by the vector ht ∈ Ht:

ht ≡ (s0, s1, . . . , st). (17.109)

It easily follows from (17.109) that ht = (ht−1, st). We assume that ht is publicly
and perfectly observable by all agents. We denote the unconditional probability of
observing ht by πt(ht). Probabilities add to unity, i.e. ∑ht∈Ht πt(ht) = 1. Under the
Markov assumption we find furthermore that:

πt(ht) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0),

πt(ht|hτ) = π(st|st−1)π(st−1|st−2) . . . π(sτ+1|sτ).

Before continuing it is useful to note thatHt, denoting the set of all possible histories
at time t, typically becomes very large as time evolves. For example, even with a low-
dimensional three-state Markov process (such that st ∈ (sa, sb, sc))Ht gets large very
rapidly, i.e. H0 = {s0}, H1 = {(s0, sa), (s0, sb), (s0, sc)), H2 = {(s0, sa, sa), (s0, sa, sb),
(s0, sa, sc), (s0, sb, sa), (s0, sb, sb), (s0, sb, sc), (s0, sc, sa), (s0, sc, sb), (s0, sc, sc))}, etcetera.4

The endowment of the non-storable commodity for agent i depends on st and is
denoted by yi(st). Consumption of agent i at time t under history ht is denoted by
ci

t(h
t). At time t = 0 each agent i chooses a life-time consumption plan denoted by

ci =
{

ci
t(h

t)
}∞

t=0. The (expected) utility function of agent i is given by:

Λ(ci) ≡ E0

[
βtU(ci

t)
]
=

T

∑
t=0

∑
ht∈Ht

βtU(ci
t(h

t))πt(ht), (17.110)

where β is the discount rate due to impatience (such that 0 < β < 1). Note that
(17.110) implies that individuals have the same degree of impatience, feature the
same felicity function U(x), and assign the same probabilities to future histories.
As usual we assume that felicity satisfies Inada style conditions, i.e. U′(x) > 0,
U′′(x) < 0, and limx→∞ U′(x) = +∞.

As the commodity is non storable by assumption, the economy-wide resource
constraint (for all t = 0, 1, . . . , T and ht ∈ Ht) is given by:

I

∑
i=1

ci
t(h

t) =
I

∑
i=1

yi
t(h

t). (17.111)

4Of course s0 must itself assume one of the three possible values.
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Depending on the size of the aggregate endowment (right-hand side) individuals
can attempt to trade among each other and thus react optimally to the fact that they
live in a stochastic environment.

17.4.2 Pareto optimal allocation

In this subsection we study how a social planner would allocate risk in the endow-
ment economy introduced above. In particular we compute the set of Pareto optimal
allocations by using the approach pioneered by Negishi (1960).

The objective function of the social planner is given by:

Ω0 ≡
I

∑
i=1

λiΛ(ci), (17.112)

where λi is the time-invariant Pareto weight that the planner assigns to agent i. Ob-
viously every agent matters to the planner (λi > 0) and by normalization one can
always ensure that the weights add up to unity (∑I

i=1 λi = 1).
The social planner chooses ci =

{
ci

t(h
t)
}∞

t=0 for all i in order to maximize Ω0 sub-
ject to the resource constraints (17.111). The Lagrangian for this planning problem
is:

L0 ≡
T

∑
t=0

∑
ht∈Ht

[
I

∑
i=1

λiβ
tU(ci

t(h
t))πt(ht) + µt(ht)

I

∑
i=1

(
yi

t(h
t)− ci

t(h
t)
)]

,

where µt(ht) is the Lagrange multiplier for the resource constraint at time t and
history ht. The first-order necessary condition for ci

t(h
t) can be written as:

βtU′(ci
t(h

t))πt(ht) =
µt(ht)

λi
. (17.113)

Note that (17.113) must hold for each t, ht, and i. Comparing a benchmark individual—
say agent 1—with any other agent i we easily obtain from (17.113) that for given t
and ht:

U′(ci
t(h

t))

U′(c1
t (ht))

=
λ1

λi
. (17.114)

This expression is alternately referred to as the Borch (1962) condition—after one of
its earliest expositors—or the efficient risk sharing condition.

Recall that the felicity function satisfies U′′(x) < 0 so that the marginal felicity
function can be inverted. Hence it is possible to express ci

t(h
t) in terms of c1

t (h
t) and

λ1/λi. Indeed, by using (17.114), taking U′(c1
t (h

t)) to the other side, and inverting
the marginal felicity function of person i we find:

ci
t(h

t) = U′−1(λ1U′(c1
t (h

t))/λi). (17.115)

By substituting (17.115) into the resource constraint (17.111) we obtain:

I

∑
i=1

U′−1(λ1U′(c1
t (h

t))/λi) =
I

∑
i=1

yi
t(h

t). (17.116)

The key thing to note is that (17.116) is an implicit equation determining c1
t (h

t) as a
function of the aggregate realized endowment at time t (right-hand side). To further
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clarify this point consider the example with two agents (I = 2) and a logarithmic
felicity function (U(x) = ln x). It is easy to show that for a such an endowment
economy efficient risk sharing results in:

c1
t (h

t) = λ1

I

∑
i=1

yi
t(h

t), c2
t (h

t) = (1− λ1)
I

∑
i=1

yi
t(h

t). (17.117)

17.4.3 Decentralization with Arrow-Debreu securities

In the previous subsection we characterized the set of Pareto optimal risk-sharing
allocations in the endowment economy. In this subsection we study how the Pareto
optimal allocation can be decentralized, i.e. replicated in a competitive market equi-
librium. The crucial insight into this nontrivial question was provided by Arrow
(1953) and Debreu (1959): the Pareto optimal equilibrium can be decentralized pro-
vided the securities market is complete, i.e. individuals are able to trade a (poten-
tially huge) set of claims on period t consumption contingent on history ht with each
other.5

With the aid of our simple endowment economy the Arrow-Debreu approach can
be easily demonstrated. The structure of the contingent claims market is as follows.
At time t = 0 agents trade claims to consumption at all times t > 0 contingent on all
possible histories ht. Trading occurs at all nodes ht ∈ Ht because the agents do not
know which histories will actually materialize. After time t = 0 no further trades
occur.6 We let q0

t (h
t) denote the price of claims on period t consumption contingent

on history ht.
In the presence of contingent claims, individual i’s lifetime budget constraint can

be written as:
T

∑
t=0

∑
ht∈Ht

q0
t (h

t)ci
t(h

t) =
T

∑
t=0

∑
ht∈Ht

q0
t (h

t)yi
t(h

t). (17.118)

Intuitively, total spending on consumption goods (left-hand side) must equal the to-
tal value of the endowment for each person i. Individual i chooses ci ≡

{
ci

t(h
t)
}∞

t=0
in order to maximize (17.110) subject to (17.118). The Lagrangian for this maximiza-
tion problem is:

Li
0 ≡

T

∑
t=0

∑
ht∈Ht

[
βtU(ci

t(h
t))πt(ht) + ζiq0

t (h
t)
(

yi
t(h

t)− ci
t(h

t)
)]

,

where ζi is the Lagrange multiplier for the lifetime budget constraint faced by agent
i. The first-order necessary condition for ci

t(h
t) is:

βtU′(ci
t(h

t))πt(ht) = ζiq0
t (h

t). (17.119)

To characterize the decentralized equilibrium a bit further we first note that for agent
1 and any other agent i we obtain from (17.119) that:

U′(ci
t(h

t))

U′(c1
t (ht))

=
ζi
ζ1

. (17.120)

5As is noted by Wilson (2008), the assumption of market completeness “. . . strains the credibility of the
model by requiring an unrealistic number of goods to be simultaneously exchanged” . When there are
not enough Arrow-Debreu securities the setting is one of incomplete markets.

6Ljungqvist and Sargent (2012, ch. 8) also study the sequential model in which only one-period ahead
state-contingent claims are available. This model supports the same equilibrium allocations.
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The ratio of marginal utilities for any two individuals is constant for all t and ht. We
can thus express ci

t(h
t) in terms of c1

t (h
t) and ζi/ζ1 by inverting the marginal felicity

function of person i:

ci
t(h

t) = U′−1(ζiU′(c1
t (h

t))/ζ1). (17.121)

Substituting (17.121) into the resource constraint gives:

I

∑
i=1

U′−1(ζiU′(c1
t (h

t))/ζ1) =
I

∑
i=1

yi
t(h

t). (17.122)

Just as in the planning optimum, c1
t (h

t) depends only on the aggregate realized en-
dowment at time t (right-hand side). Put differently, individual consumption is per-
fectly correlated with the aggregate endowment (Ljungqvist and Sargent, 2012, p.
261). For the two-person logarithmic felicity case we find that (17.122) implies:

c1
t (h

t) =
ζ2

ζ1 + ζ2

I

∑
i=1

yi
t(h

t), c2
t (h

t) =
ζ1

ζ1 + ζ2

I

∑
i=1

yi
t(h

t), (17.123)

Intuitively, a “lucky individual” is somebody who at time t = 0 expects the economy
to evolve in such a way that the value of the lifetime endowment is high (Mother
Nature has stacked the deck in favour of such a person). For such an individual the
marginal utility of endowment income (ζi) is relatively low. Hence, if person 1 is the
lucky individual then it follows that ζ2 > ζ1 and that c1

t (h
t) > c2

t (h
t).

Going back to the general case we are now in the position to demonstrate the
full force of the Negishi (1960) insight. Indeed, by comparing (17.115)–(17.116) and
(17.121)–(17.122) we find that the competitive risk-sharing equilibrium allocation is
Pareto optimal with weights such that λi = 1/ζi. In other words, as Negishi puts it:

. . . a competitive equilibrium is a maximum point of a social welfare func-
tion which is a linear combination of utility functions of consumers, with
the weights in the combination in inverse proportion to the marginal util-
ities of income. (1960, p. 92)

Note that, in view of the inverse relationship between λi and ζi, a “lucky individual”
(as defined above) gets a larger weight in the social welfare function than a less lucky
person gets.

Negishi’s equivalence result can be exploited further. Indeed by setting λi =
1/ζi in (17.113) and comparing the resulting expression with (17.119) we find that
the shadow prices of the social planning problem equals the contingent price, i.e.
µt(ht) = q0

t (h
t).

Finally, we note that for a given process generating the stochastic events and the
endowment incomes depending on them, the competitive risk-sharing equilibrium
can be computed by using the so-called Negishi algorithm—see Ljungqvist and Sar-
gent (2012, p. 260). In the context of our model it works as follows. The task at hand
is to find ζi/ζ1 for i = 1, 2, . . . , I. This is done iteratively in a number of steps:

1 Keep ζ1 fixed and postulate guesses for the other ζi parameters. Solve (17.121)
and (17.122) for candidate allocations, ci for i = 1, 2, . . . , I.

2 Compute q0
t (h

t) by using (17.119) for any household i (does not matter which
one).



700 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

3 For all i = 1, 2, . . . , I check the budget constraint (17.118) and:

– for all i who are overspending their endowment, raise the guess for ζi;

– for all i who are underspending their endowment, lower the guess for ζi.

4 Iterate over steps 1–3 until convergence is obtained.

17.4.3.1 Some two-person examples

We close the section on the competitive risk-sharing equilibrium with two prototyp-
ical examples. Both examples are very specific in the sense that there are only two
individuals in the endowment economy under consideration (I = 2).

Special Case #1 abstracts from aggregate risk and thus zooms in on idiosyncratic
risk. In particular we follow Ljungqvist and Sargent (2012, p. 262) and assume that
the stochastic events are such that st ∈ [0, 1] and that the endowments are given by:

y1
t (h

t) = st, y2
t (h

t) = 1− st.

There is no aggregate risk because total endowment income is constant for each t
and ht, i.e. ∑2

i=1 yi
t(h

t) = 1.
What are the features of the competitive risk-sharing equilibrium? We first note

that (17.122) simplifies to:

2

∑
i=1

U′−1(ζ2U′(c1
t (h

t))/ζ1) = 1, (17.124)

which implies that c1
t (h

t) = c̄1 and thus c2
t (h

t) = c̄2 (both constant over time and
across histories). By using the first-order condition (17.119) and exploiting the con-
stancy of c̄i we find:

q0
t (h

t) =
βtU′(c̄i)πt(ht)

ζi
. (17.125)

By substituting (17.125) into the budget identity of person i (given in (17.118) above)
we obtain:

0 =
U′(c̄i)

ζi

T

∑
t=0

∑
ht∈Ht

βtπt(ht)
[
c̄i − yi

t(h
t)
]

,

or (since U′(c̄i)/ζi > 0 and probabilities add up to unity):

c̄i = (1− β)
T

∑
t=0

∑
ht∈Ht

βtπt(ht)yi
t(h

t). (17.126)

There is perfect consumption smoothing over time and across histories. Even though
individual endowment incomes fluctuate randomly each individual can completely
insure against this idiosyncratic risk.

Special Case #2 abstracts from idiosyncratic risk and zooms in on aggregate risk.
Following Altug and Labadie (2008, pp. 137–138) we assume that endowment in-
comes are given by:

y1
t (h

t) = αst, y2
t (h

t) = (1− α)st,
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with 0 < α < 1. There is no idiosyncratic risk: if st is low (high) then endowment
income is low (high) for both individuals. Of course, there is aggregate risk because
∑2

i=1 yi
t(h

t) = st and st fluctuates randomly over time.
Intuitively one expects that aggregate risk cannot be insured, and that is what

the competitive risk-sharing model says. Indeed, by using (17.121)–(17.122) we find
that:

c2
t (h

t) = U′−1(ζ2U′(c1
t (h

t))/ζ1), (17.127)

c1
t (h

t) + c2
t (h

t) = st. (17.128)

Both consumption levels are stochastic. Efficient risk sharing results in shifting the
risk to those who can best bear it. Note finally that for a logarithmic felicity function
we get (17.123) again.

17.5 Constructing the representative agent

In the previous section we discovered that, under complete contingent-claim mar-
kets, risk sharing is efficient and there is full insurance. This property of the Arrow-
Debreu model provides a rationale for the “representative-agent” assumption. In-
deed, as is shown inter alia by Obstfeld and Rogoff (1996, pp. 292–293), under quite
general conditions regarding preferences one can construct a fictional “representa-
tive agent” and ignore the underlying heterogeneity of individuals when interested
in macroeconomic issues.

This convenient feature of the complete-markets approach can be demonstrated
with the aid of our simple endowment model. In what follows we set q0

0(h
0) =

q0
0(s0) = 1 as the numeraire. This means that the price system is expressed in units

of period 0 goods. To keep things simple we assume a logarithmic felicity function,
U(x) = ln x. It follows from (17.119) that:

ζi =
1

ci
0(s0)

=
βtπt(ht)

q0
t (ht)ci

t(ht)
, (17.129)

where we have used the fact that πt(h0) = πt(s0) = 1 and ci
0(h

0) = ci
0(s0) to obtain

the first equality. The individual Euler equation is thus:

ci
t(h

t)

ci
0(s0)

=
βtπt(ht)

q0
t (ht)

. (17.130)

The right-hand side of this expression is the same for all i = 1, 2, . . . , I. Hence, the
aggregate Euler equation can be written as:

Ct(ht)

C0(s0)
=

βtπt(ht)

q0
t (ht)

, (17.131)

where aggregate consumption, Ct(ht), is defined as:

Ct(ht) ≡
I

∑
i=1

ci
t(h

t). (17.132)
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Next we consider the “representative agent” who has a utility function which de-
pends on aggregate consumption and takes the following form:

Λ(C) ≡ E0
[
βtU(Ct)

]
=

T

∑
t=0

∑
ht∈Ht

βt ln Ct(ht)πt(ht). (17.133)

The economy-wide budget constraint facing the representative agent is obtained by
summing (17.118) over all individuals i = 1, 2, . . . , I:

T

∑
t=0

∑
ht∈Ht

q0
t (h

t)Ct(ht) =
T

∑
t=0

∑
ht∈Ht

q0
t (h

t)Yt(ht), (17.134)

where Yt(ht) is the aggregate endowment:

Yt(ht) ≡
I

∑
i=1

yi
t(h

t). (17.135)

The fictional representative agent chooses Ct(ht) in order to maximize (17.133) sub-
ject to (17.134). The Lagrangian for this optimization problem is:

L ≡
T

∑
t=0

∑
ht∈Ht

[
βt ln Ct(ht)πt(ht) + ζq0

t (h
t)
(

Yt(ht)− Ct(ht)
)]

,

where ζ is the Lagrange multiplier for the aggregate budget constraint. The first-
order necessary condition for Ct(ht) is:

βt πt(ht)

Ct(ht)
= ζq0

t (h
t). (17.136)

It is easy to see that (17.136) implies (17.131). Hence, we obtain exactly the same
solution for Ct(ht) as before by letting the fictional agent do the utility maximization.
In words, the economy’s aggregate consumption Ct(ht) behaves as if chosen by a
representative consumer with a logarithmic felicity function defined over aggregate
consumption, Ct(ht), who owns the economy’s total endowment Yt(ht).

17.6 Punchlines

This chapter introduces a number of methods and concepts that will be used in the
next two chapters. We start by looking at a simple deterministic utility maximization
problem in which an individual has to decide about consumption and saving in a
three-period setting. We first solve this problem with the traditional (Lagrangian)
method and subsequently show that it can also be solved in a sequential fashion
by making use of the method of dynamic programming (DP hereafter). Intuitively,
the DP method solves a complex multi-period (or multi-stage) problem by breaking
it up into a number of smaller subproblems. Crucial objects appearing in the DP
method are the value function, the Bellman equation, and policy functions. The
deterministic three-period consumption model is simple enough to provide explicit
closed-form expressions for value- and policy functions so that they are less abstract
to the novice reader.

Next we generalize the deterministic consumption-saving problem somewhat by
assuming that the planning horizon is infinite. Although this problem can still be
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solved with traditional methods we directly proceed to the DP approach to find the
key first-order condition—the consumption Euler equation—and to characterize the
solution.

The true power of the DP method lies in its use for analysing and solving stochas-
tic decision problems. In such a setting the traditional approach is either clumsy or
infeasible. In many cases the DP method turns out to be “the only game in town”.
We again proceed by means of a sequence of simple toy problems. In the first of
these, we return to the three-period utility maximization problem but augment it
by assuming that labour income is stochastic—say due to idiosyncratic productivity
shocks. To keep the analysis simple we assume that the productivity shocks are gen-
erated by a Markov process. We explain such processes in some detail and show how
the expected-utility maximization problem can be solved with traditional (clumsy)
means and with the method of DP. To aid in the interpretation of the results we show
some simple simulations. Depending on the luck of the draw, there is a wide range
of optimal consumption levels that the consumer can end up enjoying in the third
period of life. For this reason the “uninsured idiosyncratic risk model” developed
here can easily be used to explain why consumption and wealth holdings are so
unequal at later ages even if all consumers are identical at birth.

In the final application of sequential decision making tools we introduce and
analyse a stochastic version of the Ramsey-Cass-Koopmans model. To prepare for
the next two chapters we restrict attention to the social planning solution. If produc-
tivity shocks follow a Markov process then both the Lagrangian method and the DP
method can be used to derive the key first-order condition—the stochastic consump-
tion Euler equation.

In the penultimate section of this chapter we study an endowment economy fea-
turing a full set of dated contingent claims—the so-called Arrow-Debreu securities.
We demonstrate a result first discovered by Borch (1962), namely that in a complete-
markets setting risk sharing is efficient. By using the methods suggested by Negishi
(1960) it is shown that the competitive risk-sharing equilibrium is Pareto efficient and
is identical to the social planning solution that can be obtained by using a Negishi-
type social welfare function. In such a social welfare function utility of person i is
weighted by the inverse of the marginal utility of endowment income for that per-
son.

In the final section of the chapter we show that there exists an important aggrega-
tion result in complete-markets economies. Indeed, under quite general conditions
regarding preferences one can construct a fictional “representative agent” and ig-
nore the underlying heterogeneity of individuals when interested in macroeconomic
issues.

Further reading

On the theory of dynamic programming every serious student should read the Pref-
ace of Bellman (1957) at least once in order to get a very clear introduction about what
this method is all about. An early economic application of dynamic programming
is found in Samuelson (1969a). Rust (2008) gives an accessible overview covering
the modern literature on dynamic programming. Textbook treatments of various
degrees of complexity are Ross (1983), Dixit (1990, ch. 11), Sydsæter et al. (2008),
Stachurski (2009), Adda and Cooper (2003), Wälde (2011), Ljungqvist and Sargent

(2012), and Miao (2014). Very good textbooks on the economics of risk and uncer-
tainty are Gollier (2001) and Bikhchandani et al. (2013).
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Most dynamic programming applications can only be solved numerically and a
large literature in computational economics has emerged over the last decades. A
very gentle and accessible introduction to dynamic programming (using Matlab im-
plementations) is provided by Femminis (2016). The novice computer programmer
will learn enough from this ‘how-to’ manual to be able to access the more advanced
sources. Excellent survey articles and books are Judd (1998), Miranda and Fack-
ler (2002), Judd et al. (2003), Heer and Maussner (2009), and Cai and Judd (2010).
Sargent and Stachurski (2015) discuss dynamic programming applications and im-
plement these using the Python computer language. Fehr and Kindermann (2017) is
highly recommended as it provides a nice and accessible introduction to various pro-
gramming problems (including dynamic programming). It also explains and sup-
plies sample Fortran programs.

On Arrow-Debreu securities, see Arrow (1953, 1964, 1970) and Debreu (1959, ch.
7). The interested reader may also wish to read Düppe and Weintraub (2014) on the
genesis of the Arrow-Debreu model (and the forgotten contribution by McKenzie),
and Geanakoplos (2008a) for a compact survey. Kehoe (1990) is quite instructive
and includes overlapping-generations models. Kirman (1992) is very critical of the
concept of the representative agent. See Majumdar and Radner (2008) on uncertainty
and sequential general equilibrium. On incomplete markets, good places to start
reading are Wilson (2008) and Magill and Quinzii (2008).

Macroeconomic implementations of the idiosyncratic risk model in the closed
economy are plentiful. The classic contributions are Aiyagari (1994), Bewley (1977),
and Huggett (1993, 1997). A good survey article is Heathcote et al. (2009). A recent
application of the idiosyncratic risk model to study loan system reform is Heijdra et
al. (2017).



Chapter 18

Dynamic Stochastic General
Equilibrium—New Classical
models

The purpose of this chapter is to achieve the following goals:

1. To turn the Ramsey-Cass-Koopmans model with endogenous labour supply
(studied in Chapter 13) into a prototypical real business cycle (RBC) model by
reformulating it in discrete time and by assuming that the economy is hit by
stochastic technology shocks.

2. To analyse the theoretical properties of the RBC model by means of its impulse-
response functions.

3. To study the quantitative performance of the RBC model by showing how well
it can be made to fit real world data.

4. To briefly discuss some of the extensions that have been proposed in recent
years to improve the model’s empirical performance.

18.1 The Lucas research programme

One of the lasting contributions of the rational expectations revolution of the 1970s
(see Chapter 5) has been a methodological one. Throughout the 1950s and 1960s
macroeconomists engaged in a huge model construction programme in which the in-
sights of the IS-LM model and its refinements were estimated by econometric means.
These macroeconometric models were quite popular in both public and private sec-
tors because they could be used for prediction and simulation purposes. Two devel-
opments occurred in the early 1970s which led to a drastic reduction in the popular-
ity of these models. First, a lot of the macroeconometric models then in use included
a relatively poorly specified supply side and consequently were ill equipped to pre-
dict the effects of the various oil price shocks that occurred at the time. Of course,
this criticism is not deadly per se as macroeconometric models can be (and indeed,
have been) re-specified to better deal with shocks affecting the supply side of the
economy.
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A second—potentially much more lethal—criticism was raised by Lucas (1976).
The so-called Lucas critique was briefly discussed above—see Chapter 5. Loosely
put, it states that macroeconometric models that are not based on a consistent set of
optimizing foundations are non-structural and cannot be used for policy evaluation.
The reason is that the estimated parameters of the model’s equations are mixtures
of structural and policy parameters and are therefore not invariant across different
policy regimes (see Chapter 5 for a simple example of this point). To avoid the cri-
tique that now carries his name, Lucas (1980, 1987) argued forcefully and eloquently
that macroeconomists should build structural models, i.e. models that are based on
optimizing behaviour of the various agents in the economy. In doing so he proposed
what Christiano, Eichenbaum, and Evans (1999) have labelled the Lucas (research)
programme.

As Lucas (1980, p. 696–697) argues, well-articulated structural models are of ne-
cessity unrealistic and artificial. They should be tested “as useful imitations of reality
by subjecting them to shocks for which we are fairly certain how actual economies
. . . would react. The more dimensions on which the model mimics the answers ac-
tual economies give to simple questions, the more we trust its answers to harder
questions.” He goes on to argue that:

On this general view of the nature of economic theory then, a “theory”
is not a collection of assertions about the behavior of the actual economy
but rather an explicit set of instructions for building a parallel or ana-
logue system—a mechanical, imitation economy. A “good” model, from
this point of view, will not be exactly more “real” than a poor one, but
will provide better imitations. (1980, p. 697)

In a seminal paper, Kydland and Prescott (1982) accepted the challenge posed by
Lucas and his co-workers by building a full-scale structural model with maximizing
agents doing as well as they can in a world in which technology is subject to stochas-
tic shocks. Their model can be seen as the starting point of the real business cycle
(RBC) research programme (see also Long and Plosser (1983) and Prescott (1986)).
As their testing procedure they ask themselves the following question: can shocks to
productivity explain fluctuations in actual economies using a model that is plausi-
bly calibrated, i.e. that uses parameter estimates that are not inconsistent with micro
observations (Kydland and Prescott, 1982, p. 1359)? The performance of the model
is not gleaned by estimating its equations econometrically and testing its implied re-
strictions. Indeed, as Kydland and Prescott (1982, p. 1360) suggest, the model would
undoubtedly have been rejected statistically both because of measurement problems
and because of its abstract nature. Instead, the model is tested by comparing model-
generated and actual statistics characterizing fluctuations in the economy. “Failure of
the theory to mimic the behavior of the post-war US economy with respect to these
stable statistics . . . would be ground for its rejection.”

The aim of this chapter is to illustrate to what extent RBC models have been
successful in passing the tests proposed by Kydland and Prescott (1982). Since the
Kydland-Prescott model is rather complex, we start our assessment with a much
simpler RBC model based on Prescott (1986). It is shown that even this relatively
simple model does surprisingly well in mimicking the fluctuations in the US econ-
omy. At the end of the chapter we show some deficiencies of the simple model as
well as some of the possible extensions that can potentially fix them.1

1Of necessity, our discussion of the RBC methodology is far from complete. The interested reader is
referred to Plosser (1989), Danthine and Donaldson (1993), Stadler (1994), Cooley (1995), King and Rebelo
(1999), Rebelo (2005), and especially McCandless (2008) for much more extensive surveys of the literature.
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18.2 Building the unit-elastic RBC model

The model constructed in section 13.5 can be viewed as a deterministic version of an
RBC model. To turn that model into a conventional RBC model we must reformulate
it in discrete time, introduce a stochastic technology shock, and derive the rational
expectations solution for the loglinearized version of the model.

In much of the early RBC literature attention was restricted to competitive models
without distortions (like tax rates, useless government consumption, etc.) or exter-
nalities (like congestion, pollution, etc.). As Prescott (1986, p. 271) argues, the advan-
tage of working with such models is that the competitive equilibrium is Pareto opti-
mal and unique. The solution algorithm can then exploit this equivalence between
the decentralized market outcome and the social planning problem by solving the
latter (easy) problem rather than the former (more difficult) problem. Here we do
not pursue this approach because we wish to emphasize the link with the theoreti-
cal framework used throughout the book. As a result of this, we need to spell out
the decentralized economy. (An additional advantage of doing so is that distortions,
such as taxes, are easily introduced in, and analysed with, the model.) The approach
adopted here is loosely based on Brock and Turnovsky (1981) and its discrete-time
counterpart due to Altug and Labadie (2008, ch. 10).

18.2.1 Households

There is a large number of identical households. Each individual household is in-
finitely small and is a price taker on all markets in which it operates. By normalizing
the population size to unity we can develop the argument on the basis of a single
representative agent. The representative household is infinitely lived and has an ob-
jective function based on expected lifetime utility. Denoting the planning period by
t, expected lifetime utility, EtΛt, is given by:

EtΛt ≡ Et

∞

∑
τ=t

U(Cτ , 1− Lτ)

(
1

1 + ρ

)τ−t
, (18.1)

where Et is the (conditional) expectations operator, U(Cτ , 1− Lτ) is the felicity func-
tion, Cτ and 1 − Lτ are, respectively, consumption and leisure in period τ, and
1/(1 + ρ) is the discounting factor due to time preference. To keep things simple we
assume that the felicity function is loglinear, implying that both the intratemporal
and intertemporal substitution elasticities are equal to unity:

U(Cτ , 1− Lτ) ≡ ε ln Cτ + (1− ε) ln[1− Lτ ]. (18.2)

Equations (18.1) and (18.2) are the discrete-time analogues to, respectively, (13.77)
and (13.78) modified for the existence of uncertainty. The notation for the expectation
operator, Et, indicates that the household bases its decisions on information available
at time t.

The household receives wage, interest, and dividend payments from the firm
sector, pays lump-sum taxes to the government, and uses its after-tax income for
consumption and savings purposes. The budget identity is given in discrete time
(for τ = t, t + 1, t + 2, ...) by:

Cτ + pτSτ+1 + Bτ+1 = wτ Lτ + (1 + rc
τ−1)Bτ + Sτ(pτ + Dτ)− Tτ , (18.3)

where wτ is the wage rate, Tτ is the lump-sum tax, and Sτ and Bτ denote, respec-
tively, the number of shares and single-period corporate bonds owned at the start
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of period τ. Corporate bonds pay a risk-free interest rate rc
τ−1 (whose value is de-

termined in period τ − 1), dividends are given by Dτ , and the stock market price of
shares at time τ is pτ .

The household chooses sequences for consumption, labour supply, share hold-
ings and corporate bonds {Cτ , Lτ , Sτ+1, Bτ+1}∞

t in order to maximize expected util-
ity (18.1) subject to (18.3), taking as given its initial share and bond holdings (St and
Bt). In addition, the household treats as given the paths of prices (wτ and pτ), the
corporate bond rate (rc

τ), and dividends (Dτ).
For the planning period t the first-order conditions for this optimization problem

can be written in general terms as (see Intermezzo 18.1):

UC(Ct, 1− Lt) =
1

wt
U1−L(Ct, 1− Lt), (18.4)

UC(Ct, 1− Lt) = Et

[
1 + rc

t
1 + ρ

UC(Ct+1, 1− Lt+1)

]
, (18.5)

UC(Ct, 1− Lt) = Et

[
1 + re

t+1
1 + ρ

UC(Ct+1, 1− Lt+1)

]
, (18.6)

where UC(·) and U1−L(·) denote the marginal felicity of, respectively, consumption
and leisure, and re

t+1 is the net yield on equity shares which is defined as:

re
t+1 ≡

pt+1 − pt + Dt+1

pt
. (18.7)

The expression in (18.4) implies that the household chooses consumption and leisure
in such a way that the marginal rate of substitution between the two is equated to the
wage rate. Note that the expectations operator does not feature in this expression.
As Mankiw et al. (1985, p. 231) explain, this is the case because (18.4) is a purely
static condition as the household knows the wage rate at time t and simply chooses
the optimal mix of consumption and leisure appropriately.

Equations (18.5)–(18.6) characterize the optimal portfolio investment decisions by
the household. Intuitively, these expressions says that it is optimal for the household
to equalize its marginal felicity in the planning period to the expected marginal utility
in the next period discounted for impatience. Since the corporate bond rate is risk
free (as rc

t is known in period t), equation (18.5) can be rewritten as follows:

1 = (1 + rc
t )Et [Rt,t+1] , (18.8)

whereRt,s is the stochastic discount factor which is defined in general terms as:

Rt,s ≡
(

1
1 + ρ

)s−t UC(Cs, 1− Ls)

UC(Ct, 1− Lt)
, for s ≥ t. (18.9)

Equation (18.6) is a little more complicated because the net yield on equity shares is
a random variable (re

t+1 is not known in period t). By owning one share which costs
pt, the household is entitled to next period’s dividend plus next period’s share price.
But the future payoff pt+1 + Dt+1 is stochastic (as a result of technology shocks).
Rewriting (18.6) by using (18.7) and (18.9) gives the first-order condition for equity
shares in the form of an asset pricing condition (Cochrane, 2005, ch. 1):

pt = Et [(pt+1 + Dt+1)Rt,t+1] . (18.10)
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When viewed in this form, it is clear that the current price of shares equals the ex-
pected gross payoff weighted by the stochastic discount factor. Since all households
are identical the stochastic discount factor is the same for everybody and we can
solve the expectational difference equation (18.10) to obtain:

pt = Et

[
∞

∑
i=1

Dt+iRt,t+i

]
, (18.11)

where we assume that limi→∞ Et [pt+iRt,t+i] = 0 (see Intermezzo 18.2 for the deriva-
tion). The current price of equity shares equals the expected present value of divi-
dend payments using the relevant stochastic discount factor for discounting.

Intermezzo 18.1

Optimal household and firm decisions under uncertainty. The easiest
way to find the first-order conditions for the household’s decision prob-
lem makes use of the Lagrangian methods used throughout much of this
book (see also Chow (1997)). The Lagrangian expression is:

LH
t ≡ Et

∞

∑
τ=t

(
1

1 + ρ

)τ−t [
U(Cτ , 1− Lτ) + λτ

[
wτ Lτ + (1 + rc

τ−1)Bτ

+ Sτ(pτ + Dτ)− Tτ − Cτ − pτSτ+1 − Bτ+1
]]

,

where λτ is the Lagrange multiplier for the budget identity in period τ.
Assuming an interior solution the first-order conditions for this problem
(for τ = t, t + 1, t + 2, ...) are:

∂LH
t

∂Cτ
=

(
1

1 + ρ

)τ−t
Et [UC(Cτ , 1− Lτ)− λτ ] = 0, (a)

∂LH
t

∂Lτ
=

(
1

1 + ρ

)τ−t
Et [−U1−L(Cτ , 1− Lτ) + λτwτ ] = 0, (b)

∂LH
t

∂Bτ+1
=

(
1

1 + ρ

)τ−t
Et

[
−λτ +

λτ+1

1 + ρ
(1 + rc

τ)

]
= 0, (c)

∂LH
t

∂Sτ+1
=

(
1

1 + ρ

)τ−t
Et

[
−λτ pτ +

λτ+1

1 + ρ
(pτ+1 + Dτ+1)

]
= 0. (d)

For the planning period, the expression in (a) implies that λt =
UC(Ct, 1− Lt). But when period t + 1 comes around the household will
set λt+1 = UC(Ct+1, 1− Lt+1). Using this result in (c)–(d) and noting the
definition of the yield on equity (18.7) we find the expressions in (18.5)–
(18.6).

To derive the same first-order condition with the method of dynamic
programming requires a bit more work. In the planning period Bt and
St are given state variables. By defining the artificial control variable,
Xt ≡ St+1, we have two transition equations:

Bt+1 = wtLt + (1 + rc
t−1)Bt + St(pt + Dt)− Ct − ptXt − Tτ , (e)
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St+1 = Xt. (f)

The value function for the household is:

VH
t (Bt, St) ≡ max

{Ct ,Lt ,Xt}
U(Ct, 1− Lt) + βEt

[
VH

t+1(Bt+1, St+1)
]

subject to (e) and (f). (g)

Performing the maximization on the right-hand side gives the first-order
conditions:

UC(Ct, 1− Lt) = βEt

[
∂VH

t+1(Bt+1, St+1)

∂Bt+1

]
, (h)

U1−L(Ct, 1− Lt) = βwtEt

[
∂VH

t+1(Bt+1, St+1)

∂Bt+1

]
, (i)

βptEt

[
∂VH

t+1(Bt+1, St+1)

∂Bt+1

]
= βEt

[
∂VH

t+1(Bt+1, St+1)

∂St+1

]
. (j)

Differentiating the value function (g) with respect to Bt and St gives:

∂VH
t (Bt, St)

∂Bt
= βEt

[
∂VH

t+1(Bt+1, St+1)

∂Bt+1
(1 + rc

t−1)

]
= (1 + rc

t−1)UC(Ct, 1− Lt), (k)

∂VH
t (Bt, St)

∂St
≡ βEt

[
∂VH

t+1(Bt+1, St+1)

∂Bt+1
(pt + Dt)

]
= (pt + Dt)UC(Ct, 1− Lt), (l)

where we have used (h) to get from the first to the second expression
in both cases. Using (k)–(l) for period t + 1 and substituting the resulting
expressions in (h) and (j) gives the first-order conditions that are reported
in the text (viz. (18.5)–(18.6)).

The value function for the firm is:

VF
t (Kt) ≡ max

{Lt ,It}
F(Kt, Lt, Zt)− wtLt − It + Et

[
VF

t+1(Kt+1)Rt,t+1

]
subject to Kt+1 = It + (1− δ)Kt. (m)

The first-order conditions for the maximization on the right-hand side
are:

FL(Kt, Lt, Zt) = wt, (n)

1 = Et

[
∂VF

t+1(Kt+1)

∂Kt+1
Rt,t+1

]
. (o)

The envelope result gives:

∂VF
t (Kt)

∂Kt
= FK(Kt, Lt, Zt) + (1− δ)Et

[
∂VF

t+1(Kt+1)

∂Kt+1
Rt,t+1

]
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= FK(Kt, Lt, Zt) + 1− δ, (p)

where we have used (o) to get to the final expression. Using (p) for period
t + 1 and substituting the resulting expressions in (o) gives us (18.17) in
the text. Note finally that (n) is the same as (18.16).

****

18.2.2 Firms

The representative firm is perfectly competitive and produces homogeneous output,
Yτ , by using its capital stock, Kτ , and by renting labour, Lτ , from the household
sector. The production function is linearly homogeneous in capital and labour and
features a unit elasticity of substitution:

Yτ = F(Zτ , Kτ , Lτ) ≡ Ω0ZτKα
τ L1−α

τ , 0 < α < 1, (18.12)

where Zτ is the state of general technology at time τ and Ω0 is a scaling constant
used in the numerical computations.

Given the household portfolio investment behaviour (as characterized by (18.8)
and (18.10)), the objective function of the firm in the planning period t takes the
following form (see Intermezzo 18.2 for the nontrivial derivation of this expression):

Vt = CFt + Et

[
∞

∑
τ=t+1

CFτRt,τ

]
, (18.13)

where Rt,τ is the stochastic discount factor (defined in (18.9) above) and CFτ is the
net cash flow:

CFτ ≡ F(Kτ , Lτ , Zτ)− wτ Lτ − Iτ . (18.14)

As usual, Iτ is gross investment which affects next period’s capital stock according
to:

Kτ+1 = Iτ + (1− δ)Kτ , (18.15)

where δ is the depreciation rate (such that 0 < δ < 1). At time t the firm chooses
sequences for investment and labour demand {Iτ , Lτ}∞

t in order to maximize the
value of the firm (18.13) subject to (18.15), taking as given its initial capital stock (Kt).
In addition, the firm treats as given the paths of wages and the stochastic discount
factor (wτ and Rt,τ). For the planning period (τ = t) the first-order conditions can
be summarized by (see Intermezzo 18.1):

wt = FL(Zt, Kt, Lt), (18.16)

1 = Et

[(
FK(Zt+1, Kt+1, Lt+1) + 1− δ

)
Rt,t+1

]
. (18.17)

Competitive labour demand is such that the wage rate is equalized to the marginal
product of labour. By defining the real interest rate, rτ ≡ FK(Zτ , Kτ , Lτ)− δ, noting



712 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

the definition of Rt,t+1 and incorporating the felicity function (18.2) we can rewrite
(18.17) to obtain the discrete-time consumption Euler equation:

ε

Ct
= Et

[
1 + rt+1

1 + ρ

ε

Ct+1

]
. (18.18)

Intuitively (18.18) says that along the optimal path the representative household can-
not change his/her expected lifetime utility by consuming a little less and investing
a little more in period t, and consuming the additional resources thus obtained in
period t + 1. The left-hand and right-hand sides of (18.18) represent, respectively,
the (marginal) utility cost of giving up present consumption and the expected utility
gain of future consumption (Mankiw et al., 1985, p. 231).

Intermezzo 18.2

Deriving the firm’s objective function. The firm’s objective function as
stated in (18.13) is derived as follows. The exposition here closely follows
Altug and Labadie (2008, pp. 264–265). The firm’s net cash flow is given
by:

CFt = F(Kt, Lt, Zt)− wtLt − It. (a)

The firm can finance its investment spending in three ways, namely by
issuing bonds, emitting new shares, or by means of retained earnings.
This gives:

It = Bt+1 + pt(St+1 − St) + REt. (b)

Retained earnings equal gross operating surplus (F(Kt, Lt, Zt) − wtLt)
minus the sum of dividend payments plus interest payments on exist-
ing corporate debt:

REt = F(Kt, Lt, Zt)− wtLt − StDt − (1 + rc
t−1)Bt. (c)

By using (b)–(c) in (a) we get:

CFt = StDt + (1 + rc
t−1)Bt + pt(St − St+1)− Bt+1. (d)

The ex-dividend value of the firm is defined as:

Vg
t = Bt+1 + ptSt+1, (e)

whilst the value of the firm at the start of period t is given by:

Vt = CFt + Vg
t . (f)

Using the household’s first-order conditions for corporate bonds and eq-
uity shares (given in (18.8) and (18.10)) to write:

Bt+1 = Et [(1 + rc
t )Bt+1Rt,t+1] , (g)

ptSt+1 = Et [(pt+1 + Dt+1)St+1Rt,t+1] . (h)
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By using (g)–(h) in (e) we obtain the following expression for the ex-
dividend value of the firm:

Vg
t = Et

[(
(1 + rc

t )Bt+1 + (pt+1 + Dt+1)St+1

)
Rt,t+1

]
. (i)

By adding and subtracting pt+1St+2 and Bt+2 from the right-hand side
and noting (d)–(e) we find the fundamental expectational difference
equation for Vg

t :

Vg
t = Et

[(
CFt+1 + Vg

t+1

)
Rt,t+1

]
. (j)

By solving this equation forward in time we obtain:

Vg
t = Et

[
∞

∑
i=1

CFt+iRt,t+i

]
, (k)

where we have used the fact that the stochastic discount factor satisfies
∏i

j=1Rt+j−1,t+j = Rt,t+i and we assume that limi→∞ Et

[
Vg

t+iRt,t+i

]
= 0.

By substituting (k) into (f) we obtain the firm’s objective function (18.13).
Equation (18.11) is obtained by solving (18.10) forward in time (not-

ing the property of the stochastic discount factor mentioned above) and
assuming that limi→∞ Et [pt+iRt,t+i] = 0.

****

The remainder of the model is quite standard. For future reference we state the
basic RBC model in Table 18.1. The government is assumed to finance its consump-
tion with lump-sum taxes—see equation (T1.8). The model features Ricardian equiv-
alence so the introduction of government debt is not very interesting. Finally, the
goods market clearing condition is given in each period by equation (T1.5).

18.3 Model analysis

Comparing the discrete-time model of Table 18.1 to the continuous-time model (stated
in Table 13.4) reveals the close connection between the two models. Apart from the
fluctuating technology term appearing in the discrete-time model, the only signifi-
cant difference between the two models lies in the consumption Euler equation. In
the continuous time model agents are blessed with perfect foresight and thus ac-
tual consumption growth (Ċ(t)/C(t)) appears in the Euler equation—see equation
(13.85). In contrast, in the discrete-time model the representative household does
not know the future interest rate (rt+1) because future general technology (Zt+1) is
stochastic. As a result, the expectations operator features in the Euler equation (T1.2).

18.3.1 Loglinearized model

We follow Campbell (1994) by looking for analytical solutions to the loglinearized
model. The advantage of this approach is that it allows us to study the economic
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Table 18.1. The basic RBC model

Kt+1 = It + (1− δ)Kt (T1.1)
ε

Ct
= Et

[
1 + rt+1

1 + ρ

ε

Ct+1

]
(T1.2)

wt = (1− α)
Yt

Lt
(T1.3)

rt + δ = α
Yt

Kt
(T1.4)

Yt = Ct + It + Gt (T1.5)

Lt = 1− 1− ε

ε

Ct

wt
(T1.6)

Yt = Ω0ZtKα
t L1−α

t (T1.7)
Tt = Gt (T1.8)

Definitions: Yt is output, Ct is private consumption, Lt is employment, Kt is the capital stock,
Gt is public consumption, wt is the real wage rate, rt is the real interest rate, Tt is the lump-
sum tax, ε is a taste parameter for consumption, ρ is the pure rate of time preference, δ is the
depreciation rate of capital, Zt is a stochastic technology index, Ω0 is a scaling constant, and α

is the efficiency parameter of capital. The population is constant and normalized to unity.

mechanisms behind our simulation results in a straightforward fashion. The loglin-
earized model is reported in Table 18.2. We loglinearize the model around the steady
state featuring a constant level of government consumption G0 and use the notation
x̃t ≡ ln [xt/x∗], where x∗ is the steady-state value of xt. Intermezzo 18.3 provides
some details of the loglinearization for those in need.

Intermezzo 18.3

Linearization of nonlinear stochastic systems. The model of Table 18.1
is loglinearized around an initial steady state featuring a constant public
consumption level G0. We first define the variable x̃t:

x̃t ≡ ln
( xt

x∗
)
⇔ xt

x∗
≡ ex̃t , (a)

where x∗ is the steady-state value for xt. Provided xt is near its steady-
state value (xt/x∗ ≈ 1 and x̃t ≈ 0) we have ex̃t ≈ 1 + x̃t so that it follows
from (a) that:

xt

x∗
≈ 1 + x̃t. (b)

We now apply these intermediate results to the unit-elastic model. In the
RBC model there are three “basic types” of equations, namely dynamic
equations (like (T1.1) and (T1.2)), equations that need no approximation
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Table 18.2. The loglinearized model

K̃t+1 − K̃t = δ
[
Ĩt − K̃t

]
(T2.1)

EtC̃t+1 − C̃t =
ρ

1 + ρ
Et r̃t+1 (T2.2)

w̃t = Ỹt − L̃t (T2.3)

ρr̃t = (ρ + δ)
[
Ỹt − K̃t

]
(T2.4)

Ỹt = ω∗CC̃t + ω∗I Ĩt + ω∗GG̃t (T2.5)

L̃t = ω∗LL
[
w̃t − C̃t

]
(T2.6)

Ỹt = Z̃t + αK̃t + (1− α)L̃t (T2.7)

T̃t = G̃t (T2.8)

Definitions: ω∗G ≡ G0/Y∗: output share of public consumption; ω∗C ≡ (C/Y)∗: output share
of private consumption; ω∗I ≡ (I/Y)∗: output share of investment, ω∗C + ω∗I + ω∗G = 1,
δ/ω∗I = (Y/K)∗ ≡ (ρ + δ)/α. ω∗LL ≡ (1 − L∗)/L∗: ratio between leisure and labour.
x̃(t) ≡ ln[x(t)/x∗]. Stars designate steady-state values.

because they are multiplicative and thus loglinear (like (T1.3), (T1.4), and
(T1.7)), and linear equations (like (T1.5)).

Consider first a dynamic equation like (T1.1). We obtain in a few
steps:

Kt+1

K∗
=

(
I
K

)∗ It

I∗
+ (1− δ)

Kt

K∗

1 + K̃t+1 ≈ δ
[
1 + Ĩt

]
+ (1− δ)

[
1 + K̃t

]
K̃t+1 − K̃t ≈ δ

[
Ĩt − K̃t

]
,

where we have used (b) (plus the steady-state relation I∗ = δK∗) in going
from the first to the second line.

Next we consider an equation like (T1.7). By taking logarithms on
both sides we get:

ln Yt = ln Ω0 + ln Zt + α ln Kt + (1− α) ln Lt. (c)

In the steady state we have:

ln Y∗ = ln Ω0 + ln Z∗ + α ln K∗ + (1− α) ln L∗. (d)

Deducting (d) from (c) and noting the definitions of Ỹt, K̃t, and L̃t we
obtain the desired expression:

Ỹt = Z̃t + αK̃(t) + (1− α)L̃(t).

Third, we consider a linear equation like (T1.5). We derive in a few
steps:

Yt

Y∗
=

(
C
Y

)∗ Ct

C∗
+

(
I
Y

)∗ It

I∗
+

(
G0

Y∗

)
Gt

G0
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1 + Ỹt ≈
(

C
Y

)∗ [
1 + C̃t

]
+

(
I
Y

)∗ [
1 + Ĩt

]
+

(
G0

Y∗

) [
1 + G̃t

]
Ỹt ≈ ω∗CC̃t + ω∗I Ĩt + ω∗GG̃t.

We have used (b) in going from the first to the second line. In going from
the second to the third line, we use the definitions for ω∗C, ω∗I , and ω∗G
(stated in Table 18.2).

Finally, consider an equation like (T1.6) which is loglinear in con-
sumption, the wage rate, and leisure (but not in labour). Of course, we

obtain in a straightforward fashion that w̃t + [1̃− Lt] = C̃t. But in the rest

of the model we work with L̃t. Using (b) we can relate L̃t and [1̃− Lt]:

1̃− Lt ≡ ln
(

1− Lt

1− L∗

)
≈ [1− Lt]− [1− L∗]

1− L∗
= − Lt − L∗

1− L∗

L̃t ≡ ln
(

Lt

L∗

)
≈ Lt − L∗

L∗
,

from which it follows that [1̃− Lt] = − [1/ω∗LL] L̃t, where ω∗LL is defined
in Table 18.2.

****

The derivation of the loglinearized Euler equation (T2.2) from its level counter-
part (T1.2) is not straightforward and warrants some further comment. First we note
that (T1.2) can be rewritten as:

1 = Et

[
1 + rt+1

1 + ρ

Ct

Ct+1

]
. (18.19)

By definition we have that (1 + rt+1)/(1 + ρ) = exp[ ˜1 + rt+1], Ct/C∗ = eC̃t and
Ct+1/C∗ = eC̃t+1 so we can rewrite (18.19) in a number of steps:

1 = Et

[
e(1̃+rt+1)+C̃t−C̃t+1

]
= Et

[
1 + ( ˜1 + rt+1) + 1 + C̃t − 1− C̃t+1

]
,

0 = Et

[
ρ

1 + ρ
r̃t+1 + C̃t − C̃t+1

]
. (18.20)

In going from the first to the second line we have used the approximation ex̃t ≈
1 + x̃t, and in going from the second to the third line we relate ˜1 + rt+1 to r̃t+1.2

2An alternative derivation, mentioned by Campbell (1994, p. 469) and Uhlig (1999, p. 33), is due
to Hansen and Singleton (1983, p. 253). (See also Attanasio, 1999, p. 768.) Under the assumption
that Ct+1/Ct and 1 + rt+1 are jointly distributed lognormally with a constant variance-covariance ma-
trix, (18.19) can be rewritten as:

Et ln(1 + rt+1) = Et ln [Ct+1/Ct] + ln(1 + ρ)− σ2

2
,

where σ2 is the (constant) variance of ln [(Ct/Ct+1)(1 + rt+1)]. The σ2 term is subsequently ignored by
Campbell (1994) and Uhlig (1999).
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As was the case for the deterministic continuous-time model of section 13.5, the
stochastic discrete-time model of Table 18.2 can best be solved by first condensing it.
This procedure yields a system of stochastic difference equations in the key dynamic
variables K̃t and C̃t, of which the former is a predetermined variable and the latter is
a jumping variable.

By using labour demand (T2.3), labour supply (T2.6), and the production func-
tion (T2.7), we solve for the equilibrium levels of employment L̃t, wages w̃t, and
output Ỹt, conditional upon K̃t, C̃t, and the existing state of general productivity Z̃t:

(1− α)L̃t = (φ− 1)
[
Z̃t + αK̃t − C̃t

]
, (18.21)

(1− α)w̃t = (1− αφ)
[
Z̃t + αK̃t

]
+ (φ− 1)αC̃t, (18.22)

Ỹt = φ
[
Z̃t + αK̃t

]
− (φ− 1)C̃t, (18.23)

where φ is defined as:

φ ≡
1 + ω∗LL

1 + αω∗LL
. (18.24)

Since ω∗LL > 0 we easily find that 1 < φ < 1/α and thus that α < αφ < 1. Ce-
teris paribus consumption and capital, a higher than average level of general pro-
ductivity (Z̃t > 0) implies that labour demand is higher than average. As a result,
employment, wages, and output are also higher than average.

By using (18.23) in (T2.5) and (T2.4), respectively, we obtain the relevant expres-
sions for investment Ĩt and the interest rate r̃t:

ω∗I Ĩt = αφK̃t − (ω∗C + φ− 1)C̃t + φZ̃t −ω∗GG̃t, (18.25)
ρ

ρ + δ
r̃t = −(1− αφ)K̃t − (φ− 1)C̃t + φZ̃t. (18.26)

General productivity affects investment and the interest rate positively because, ce-
teris paribus, output and capital productivity are both higher than average if Z̃t > 0.
By leading (18.26) by one period and taking expectations we obtain the following
expression:

ρ

ρ + δ
Et r̃t+1 = −(1− αφ)K̃t+1 − (φ− 1)EtC̃t+1 + φEtZ̃t+1. (18.27)

Since investment is known in period t, the household knows exactly what next pe-
riod’s capital stock will be. Hence, the actual future capital stock (K̃t+1) features in
(18.27). Furthermore, the household must form expectations regarding next period’s
general productivity level (EtZ̃t+1) and labour supply. The latter effect explains why
EtC̃t+1 enters in (18.27).

Finally, by using (18.25) in (T2.1) and (18.27) in (T2.2) we obtain the following
expression for the (condensed) dynamic system of stochastic difference equations:[

K̃t+1 − K̃t
EtC̃t+1 − C̃t

]
= ∆

[
K̃t
C̃t

]
+

[
γK

t
γC

t

]
, (18.28)

where ∆ ≡ Θ−1∆∗ is the Jacobian matrix, and ∆∗ and Θ are defined, respectively, as:

∆∗ ≡
[

y∗ (αφ−ω∗I ) −y∗(ω∗C + φ− 1)
−ζ(1− αφ) −ζ(φ− 1)

]
, Θ ≡

[
1 0
−δ∗21 1

]
. (18.29)
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Here δ∗ij is the typical element of ∆∗ and ζ is given by:

0 < ζ ≡ ρ + δ

1− δ + φ(ρ + δ)
< 1. (18.30)

In equation (18.28) the time-varying shock terms are given by γK
t and γC

t :[
γK

t
γC

t

]
≡ Θ−1

[
y∗
(
φZ̃t −ω∗GG̃t

)
φζEtZ̃t+1

]
=

[
y∗
(
φZ̃t −ω∗GG̃t

)
δ∗21y∗

(
φZ̃t −ω∗GG̃t

)
+ φζEtZ̃t+1

]
.

(18.31)

A number of things should be noted about the dynamical system defined in (18.28).
First, the determinants of ∆ and ∆∗ are identical.3 It is straightforward to verify that
|∆| equals:

|∆| = |∆∗| = −ζy∗ [ω∗G(φ− 1) + φω∗C(1− α)] < 0. (18.32)

Second, since the determinant is the product of the characteristic roots it follows from
(18.32) that the system in (18.28) possesses one negative characteristic root, denoted
by −λ1 < 0, and one positive characteristic root which we denote by λ2 > 0. If,
in addition, the parameters of the problem are such that λ1 < 1 it follows that the
system is saddle-point stable.4

Checking saddle-point stability is thus more involved in a discrete-time setting
than in a continuous-time context. With continuous time, the only thing that must
be checked is the sign of the characteristic roots. In contrast, with discrete time, the
magnitude of the roots matters, i.e. one must check whether they are inside or outside
the unit circle. Note that (18.28) is conventionally written as:[

K̃t+1
EtC̃t+1

]
= ∆̄

[
K̃t
C̃t

]
+

[
γK

t
γC

t

]
, (18.33)

where ∆̄ ≡ I + ∆ has characteristic roots λ̄1 ≡ 1− λ1 and λ̄2 ≡ 1 + λ2. A stable (un-
stable) root satisfies

∣∣λ̄i
∣∣ < 1 (

∣∣λ̄i
∣∣ > 1). Saddle-point stability thus obtains provided

|1− λ1| < 1 and |1 + λ2| > 1. Since λ2 > 0 the second condition is satisfied so there
is one unstable root. To verify the first condition we write the determinant of

∣∣∆̄∣∣ as:∣∣∆̄∣∣ = (1 + δ∗11)(1 + δ∗22) = λ̄1λ̄2 > 0,

where the sign follows from the fact that δ∗11 and δ∗22 can be rewritten in terms of
structural parameters as:

δ∗11 = αy∗
(

φ− δ

ρ + δ

)
> 0, 1 + δ∗22 =

1 + ρ

1− δ + φ(ρ + δ)
> 0.

Hence λ̄1 and λ̄2 are both positive, i.e. 0 < λ1 < 1 and λ2 > 1.

3Denoting the typical elements of ∆ and ∆∗ by, respectively, δij and δ∗ij we find:

∆ ≡ Θ−1∆∗ =
[

δ∗11 δ∗12
δ∗21(1 + δ∗11) δ∗22 + δ∗12δ∗21

]
.

From matrix algebra we know that the subtraction of a multiple of any row from another row leaves the
determinant unchanged, so it follows that |∆| = |∆∗|. See Section A.2.4 of the Mathematical Appendix.

4See Azariadis (1993, pp. 39 and 62–67) for a very thorough discussion of stability issues in the discrete-
time case.
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18.3.2 The shock process

Our description of the unit-elastic RBC model is completed once particular specifi-
cations are adopted for the exogenous variables, Z̃t and G̃t. To keep things simple,
we assume that government consumption is constant, so that G̃t = 0 for all t, and
that the technology shock takes the following first-order autoregressive form:

ln Zt = αZ + ξZ ln Zt−1 + ηt, 0 ≤ ξZ < 1, (18.34)

where αZ is a constant, ξZ is the autoregressive parameter, and ηt is a stochastic “in-
novation” term. The parameter ξZ parameterizes the persistence in the productivity
term—the closer ξZ is to unity, the higher is the degree of persistence. It is assumed
that the innovation term, ηt, is identically and independently distributed with mean
zero and variance σ2

η . In the absence of stochastic shocks, technology would settle
in a steady state for which (1− ξZ) ln Z∗ = αZ. Since, by definition, we have that
Z̃t ≡ ln [Zt/Z∗], equation (18.34) can be rewritten as follows:

Z̃t = ξZZ̃t−1 + ηt. (18.35)

Recall that agents must form an expectation at time t about technology in the next
period (EtZ̃t+1) in order to forecast the interest rate featuring in their Euler equa-
tion (Et r̃t+1, see (18.27)). Since agents are aware of the shock process for technology
(given in (18.35)) they will use this information to compute their forecast, i.e. they
will base their decisions on the forecast EtZ̃t+1 = ξZZ̃t (since Etηt+1 = 0 this is the
best they can do).

The model is now fully specified and consists of (18.28), (18.31), and (18.35).
There exist several methods that can be used to solve for the rational expectations
solution of the model. Campbell (1994, pp. 470–472), for example, uses the method
of undetermined coefficients. Intuitively, this method works as follows. First, we
guess a solution for consumption in terms of the state variables (K̃t, Z̃t) and un-
known parameters (πck, πcz) of the form C̃t = πckK̃t + πczZ̃t. Next, we use all the
structural information contained in the model plus the assumption of rational expec-
tations in order to relate the unknown coefficients to the structural parameters of the
model. Another method is due to Blanchard and Kahn (1980)—see Uhlig (1999, pp.
54–56) for an example.

18.3.3 Impulse-response functions

In the appendix to this chapter we work out the general rational expectations solu-
tion of the model in terms of its state variables, following the approach suggested
by Campbell (1994). Here, we focus directly on the impulse-response functions for
the different variables. The advantage of doing so is twofold. First, it facilitates
the comparison with the analytical discussion in section 13.5 above. Second, the
impulse-response functions nicely visualize the key properties of our prototypical
RBC model, especially those related to the degree of persistence of the shock.

We compute the impulse-response functions as follows. We normalize the time
of the shock at t = 0, and assume that η0 > 0 and ηt = 0 for t = 1, 2, . . .. Assuming
that technology was at its steady-state level in the previous period (Z̃−1 = 0) we can
use (18.35) to solve for the implied path of Z̃t that results from the innovation at time
t = 0:

Z̃t = ξt
Z · η0. (18.36)
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By using (18.36) in (18.31) (and recalling that G̃t = 0 and EtZ̃t+1 = ξZZ̃t) we find that
the shock term affecting the dynamical system takes the following, time-varying,
form:[

γK
t

γC
t

]
≡ φΓ−1

[
y∗Z̃t
ζξZZ̃t

]
= φ

[
y∗

ζ
[
ξZ − y∗ [1− αφ]

] ] η0ξt
Z. (18.37)

It follows from (18.37) that the productivity shock directly affects the dynamics of
both the capital stock and consumption. For 0 ≤ ξZ < 1, the shock eventually dies
out as time goes by, i.e. γK∞ = γC∞ = 0. The innovation therefore does not have
a long-run effect in that case but the impact and transition results are non-zero. In
the appendix to this chapter we derive the impulse-response function for the capital
stock and consumption:[

K̃t
C̃t

]
=

[
0
C̃0

]
(1− λ1)

t +

[
y∗
[
(1− ξZ)(1− ζ(φ− 1)) + ξZζω∗C

]
ζξZ [1− ξZ + (1−ωI)y∗]

]
× φη0

λ2 + 1− ξZ
Tt(ξZ, 1− λ1), (18.38)

where the impact jump in consumption is given by:

C̃0 =
λ2 + ζ

[
(1− ξZ)(φ− 1)− ξZω∗C

]
ω∗C + φ− 1

φη0

λ2 + 1− ξZ
, (18.39)

and Tt(α1, α2) is a non-negative bell-shaped term (defined for for t = 0, 1, 2, · · · ):

Tt(α1, α2) ≡


αt

1 − αt
2

α1 − α2
for α1 6= α2

tαt−1
1 for α1 = α2.

(18.40)

Although these expressions look rather forbidding, it turns out that quite a lot can
be understood about them by first focusing on some special cases that have received
a lot of attention in the literature. In doing so we are able to demonstrate the crucial
role of shock persistence in the unit-elastic RBC model.

18.3.3.1 A purely temporary shock (ξZ = 0)

We follow King and Rebelo (1999, pp. 964–967) by first considering the effects of a
purely transitory productivity shock. In terms of our model this means that the shock
displays no serial correlation at all (i.e. ξZ = 0 in (18.35)) and we study the response
of the system to a technology shock of the form Z̃0 = η0 and Z̃t = 0 for t = 1, 2, . . ..
Clearly, such a shock has no long-run effect on the macroeconomy as technology
only deviates in the impact period from its steady-state level. The impact effect on
consumption, and thus on the other variables, is, however, non-zero. Indeed, by
setting ξZ = 0 in (18.39) we obtain the expression for the consumption jump with a
purely transitory shock:

C̃0 =
φ [λ2 + ζ(φ− 1)] η0

(1 + λ2)
[
ω∗C + φ− 1

] > 0. (18.41)

Intuitively, consumption rises in the impact period because the technology shock,
brief though it may be, makes the agent a tiny bit richer. Since leisure, like consump-
tion, is a normal good, the shock also causes a small wealth effect in labour supply. In
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Figure 18.1: A shock to technology and the labour market

terms of Figure 18.1 the labour supply curve shifts up and to the left (from the solid
to the dashed line). At the same time, however, the shock raises labour productivity
and thus labour demand. Hence, even though the capital stock is predetermined in
the impact period, the labour demand curve shifts up and to the right. As is clear
from the diagram, the impact effect on the wage rate is unambiguously positive,
but the impact effect on employment appears to be ambiguous as it depends on the
relative magnitudes of the labour supply and demand effects.

By using (18.41) and Z̃0 = η0 in (18.21)–(18.23) we obtain the following analytical
expressions for L̃0, w̃0, and Ỹ0:

L̃0 =
φ− 1
1− α

[
1− φ [λ2 + ζ(φ− 1)]

(1 + λ2)
[
ω∗C + φ− 1

]] η0, (18.42)

w̃0 =
1− αφ

1− α
η0 +

(φ− 1)α
1− α

C̃0 > 0, (18.43)

Ỹ0 =
(1 + λ2)ω

∗
C + (φ− 1) [1− ζ(φ− 1)]

(1 + λ2)
[
ω∗C + φ− 1

] φη0 > 0. (18.44)

For realistic calibrations of the model the labour-demand effect dominates the labour-
supply effect, so that employment increases in the impact period as illustrated in Fig-
ure 18.1. The wage rate increases at impact regardless of the parameter values as the
labour-demand and supply effects work in the same direction. Finally, despite the
fact that the employment effect is ambiguous in general, the output effect is unam-
biguously positive.5 Since output rises and capital is predetermined at impact, the
immediate effect on the interest rate is positive (see e.g. (T2.4)). Finally, the impact
effect on investment is obtained by using (18.41) and setting Z̃0 = η0 and G̃t = 0 in

5The sign of the output effect follows in a straightforward fashion from the fact that ζ, defined in
(18.30), satisfies 0 < ζ(φ− 1) < 1.This can be seen by noting that ζ > 0, φ > 1, and:

1− ζ(φ− 1) =
1 + ρ

1− δ + φ(ρ + δ)
> 0.
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(18.25). After some manipulation we obtain:

Ĩ0 =
1− ζ(φ− 1)
ω∗I (1 + λ2)

φη0 > 0, (18.45)

where the sign follows from the fact that 0 < ζ(φ− 1) < 1 (see footnote 5).
By substituting ξZ = 0 into (18.38) and (18.40) (and noting (18.45)) we find the

transition paths for the capital stock and consumption:[
K̃t
C̃t

]
=

 δ

1− λ1
Ĩ0

C̃0

 (1− λ1)
t , for t = 1, 2, 3, ... (18.46)

In Figure 18.2 we plot the impulse-response functions for the purely transitory shock,
using the calibration values discussed above (see (13.119) above). There is no long-
run effect on productivity, so there is no long-run effect on the other variables either.
Productivity is higher only in the impact period, t = 0. One period after the shock
has occurred, technology is back to its steady-state level (as Z̃t = 0 for t = 1, 2, ...).

The intuition behind the impact effects is as follows. As a result of the shock
(Z̃0 = 0.01; a 1% increase), agents are a tiny little bit wealthier and thus increase
consumption somewhat, i.e. C̃0 > 0 (an increase close to 0.14%). The agents wish
to smooth consumption, however, so they also increase their saving-investment at
impact, i.e. Ĩ0 > 0 (close to a 10% increase). There is a strong incentive to work
hard when productivity is high, so the tiny income effect is dominated by the large
substitution effect and labour supply increases sharply at impact, i.e. L̃0 > 0 (almost
1.5% increase). Together with the impact shock in productivity, the labour supply
expansion produces a large increase in output, Ỹ0 > 0 (about a 2% increase). Be-
cause employment is high, capital is relatively scarce and the real interest rate rises
sharply.6

It follows from (18.46) that the economy has a slightly higher capital stock in
period 1 (since K̃1 = δ Ĩ0 > 0) which is gradually run down over time. Consumption
also gradually returns to its initial steady-state value. As the simulations confirm,
investment and employment fall below their respective steady-state levels during
transition ( Ĩt < 0 and L̃t < 0 for t = 1, 2, . . .). The real interest rate also falls below its
steady-state level in period t = 1 after which it gradually returns to this level. Since
r̃t < 0 for t = 1, 2, . . ., it is optimal for the household to choose a downward-sloping
consumption profile.

In summary, for a purely temporary shock the following key features stand out.
First, the substitution effect in labour supply is dominant and produces a large em-
ployment effect in the impact period. Second, the transitional effects on consumption
and the capital stock are small because the shock itself is only small from a lifetime
perspective. Third, apart from scaling, the output response looks virtually identical
to the impulse. In colloquial terms, the model itself does not seem to “do very much
to the shock”. This disappointing feature of the model is called its lack of propagation
(see below).

18.3.3.2 A permanent shock (ξZ = 1)

The second special case that can be distinguished assumes that the technology shocks
are permanent, i.e. the technology process (18.35) features a unit root (ξZ = 1). The

6King and Rebelo (1999, pp. 966–967) incorrectly argue that the interest rate falls in the impact period.
Since output rises and the capital stock is unchanged at impact, it must be the case that the interest rate
rises at impact also.
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Figure 18.2: Purely transitory productivity shock
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Figure 18.2, continued
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impact effect on consumption is obtained from (18.39):

C̃0 =
φ
[
λ2 − ζω∗C

]
η0

λ2
[
ω∗C + φ− 1

] > 0. (18.47)

Consumption rises at impact because the permanent technology shock makes the
representative agent wealthier. By substituting (18.47) into (18.21)–(18.23) we obtain
the impact effects for employment, the wage, and output:

L̃0 =
φ− 1
1− α

[
1−

φ
[
λ2 − ζω∗C

]
λ2
[
ω∗C + φ− 1

]] η0, (18.48)

w̃0 =
1− αφ

1− α
η0 +

(φ− 1)α
1− α

C̃0 > 0, (18.49)

Ỹ0 =
λ2 + ζ(φ− 1)

λ2
[
ω∗C + φ− 1

] φω∗Cη0 > 0. (18.50)

As for the purely temporary shock, the employment effect is ambiguous in general
but positive for realistic calibrations. The wage rate rises unambiguously as does
output. Finally, the impact effect on investment is obtained by using (18.47) and
setting Z̃0 = η0 and G̃t = 0 in (18.25):

Ĩ0 =
ζφω∗Cη0

ω∗I λ2
> 0. (18.51)

By setting ξZ = 1 in (18.38) and (18.40) we obtain analytical expressions for the
transition paths of the capital stock and consumption:[

K̃t
C̃t

]
=

[
0
C̃0

]
(1− λ1)

t +

[
K̃∞
C̃∞

] [
1− (1− λ1)

t
]

, (18.52)

where C̃0 is given in (18.47) above, and K̃∞ and C̃∞ are given by:

K̃∞ =
ω∗C

1−ω∗I
C̃∞ =

φω∗Cη0

ω∗G(φ− 1) + φω∗C(1− α)
> 0. (18.53)

As equation (18.52) shows, K̃t and C̃t (and thus all other variables also) can be writ-
ten as the weighted average of the relevant impact and long-run effects. The tran-
sition speed of the economy, (1− λ1), determines the time-varying weights. With
a permanent productivity shock both consumption and the capital stock increase in
the long run—see (18.53). The intuition behind this result follows readily from the
steady-state constancy of the great ratios (see also above). Imposing the steady state
in equations (T2.1)–(T2.2) (and ignoring the expectations operator) we find Ĩ∞ = K̃∞
and r̃∞ = 0. But this implies, by (T2.4), that Ỹ∞ = K̃∞, and by (T2.3) and (T2.7)
that K̃∞ − L̃∞ = w̃∞ = (1/(1− α))Z̃∞, where Z̃∞ = η0. With constant government
spending (G̃t = 0), the steady-state versions of (T2.5) and (18.23) can be solved for
C̃∞ and Ỹ∞:

Ỹ∞ =
ω∗C

ω∗C + ω∗G
C̃∞ =

φω∗CZ̃∞

ω∗G(φ− 1) + φω∗C(1− α)
> 0, (18.54)

and (T2.6) can be solved for L̃∞:

L̃∞ =
Ỹ∞ − C̃∞

1 + ω∗LL
= −

ω∗G
ω∗C + ω∗G

C̃∞

1 + ω∗LL
≤ 0. (18.55)
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In the long run a permanent productivity improvement makes the representa-
tive agent wealthier which prompts him to increase consumption. The investment-
capital ratio and the output-capital ratio are unchanged but the capital-labour ratio
rises as does the real wage. In the absence of government consumption (ω∗G = 0) the
income and substitution effects in labour supply exactly cancel out and employment
is unchanged (see (18.55)). With positive government consumption the income effect
dominates the substitution effect and labour supply goes down (i.e. the household
consumes more leisure).

In Figure 18.3 we present the impulse-response functions for the permanent shock,
again using the calibration values discussed above (see (13.119) above). Following
their initial jumps, consumption and the wage both gradually increase further dur-
ing transition. Investment and employment both overshoot their respective long-run
levels. Though the impact effect on employment is positive, employment falls in the
long run because the calibration is based on a positive share of government con-
sumption (see (18.55)). The real interest jumps up at impact and gradually returns to
its initial level. This explains why the time profile of consumption is upward sloping.

In summary, for a purely permanent shock the following key features stand out.
First, there is a long-run effect on productivity and thus also on most macroeconomic
variables. The great ratios explain why output, consumption, the capital stock, and
investment increase in the long run and employment falls (provided ω∗G > 0). Sec-
ond, the substitution effect in labour supply is countered by a large income effect so
the transitional effects on employment are small. Third, the effects on consumption
and the capital stock are large because the shock itself is substantial from a lifetime
perspective. Fourth, just as for the purely temporary shock, the output response
looks virtually identical to the impulse (lack of propagation again).

18.3.3.3 A realistic shock

Now that we have discussed the impulse-response functions for purely transitory
and permanent technology shocks, we can proceed and study the reaction of the
economy to realistic productivity shocks. The seminal work by Solow (1957) has
been used by RBC proponents to estimate the nature of technological change. Solow
(1957) tried to determine how much of economic growth can be accounted for by
fluctuations in the production factors capital and labour. He found that the unex-
plained part of output growth (later termed the Solow residual in his honour) ac-
counted for approximately half of the growth of output in the US since the 1870s
(Stadler, 1994, p. 1753). It was shown by Prescott (1986) that data on the Solow resid-
ual can be used to recover an estimate for the persistence parameter (ξZ) and the
standard deviation of the innovation term (denoted by ση). King and Rebelo (1999,
pp. 952–953) explain in detail how this can be done.7 They use quarterly data for
the US and obtain the following estimates for these parameters: ξZ = 0.979 and

7In the context of our (simple) model the procedure would work as follows. First, we take logarithms
of (18.12) to derive the estimate for the Solow residual:

ln SRt ≡ ln Yt − ln Ω0 − (1− α) ln Lt − α ln Kt = ln Zt.

Hence, in our model the Solow residual is equal to the general productivity index Zt. By using this result
in (18.34) one obtains an equation which can be estimated empirically:

ln SRt = αZ + ξZ ln SRt−1 + ηt.

The procedure of King and Rebelo (1999) is a little more complicated because they also allow for labour-
augmenting technological change.
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Figure 18.3: Permanent productivity shock
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Figure 18.3, continued
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Figure 18.4: Temporary productivity shock

ση = 0.0072. The key thing to note is that the technology shock displays a very high
degree of persistence, i.e. ξZ is very close to unity!

In Figure 18.4 we present impulse-response functions for all macroeconomic vari-
ables using the calibration values discussed above (see (13.119) above). Instead of
focusing on one particular estimate for the persistence parameter, we show these
impulse-response functions for a range of values of ξZ which includes both King
and Rebelo’s estimate and the unit-root case (i.e. 0.5 ≤ ξZ ≤ 1 in these figures).

As King and Rebelo (1999, p. 969) point out, the shape of each impulse-response
function is very sensitive to ξZ for the high-persistence case (i.e. if ξZ is near unity).
Hence, impulse responses associated with, respectively, ξZ = 0.979 and ξZ = 1, are
very different in shape. In contrast, for relatively transient shocks this non-linearity
does not show up in Figure 18.4, i.e. impulse responses for ξZ = 0.5 and ξZ = 0.7
look very much alike. Intuitively, the non-linearity in the high-persistence case is due
to the fact that permanent shocks cause non-zero long-run effects whilst transitory
shocks (no matter how persistent they are) do not.

18.3.3.4 Lack of propagation

Perhaps the most important (and somewhat disappointing) feature of the unit-elastic
RBC model is its lack of internal propagation, a point first made in a more general set-
ting by Cogley and Nason (1995). For example, as is clear from Figure 18.2, the
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Figure 18.4, continued
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Table 18.3. The unit-elastic RBC model

(a) US economy (b) Model economy I (c) Model economy II
xt: std(xt) cor(xt, Yt) std(xt) cor(xt, Yt) std(xt) cor(xt, Yt)
Yt 1.76 1.35 1.76
Ct 1.29 0.85 0.42 0.89 0.51 0.87
It 8.60 0.92 4.24 0.99 5.71 0.99
Kt 0.63 0.04 0.36 0.06 0.47 0.05
Lt 1.66 0.76 0.70 0.98 1.35 0.98
Yt/Lt 1.18 0.42 0.68 0.98 0.50 0.87

impulse-response function of output looks virtually identical to the exogenous pro-
ductivity shock itself. Although it is impossible to see in the figure, there is some
transitional dynamics in output after period t = 1 but it is of a very small magni-
tude. Exactly the same result is found in Figures 18.3 (which deals with permanent
shocks) and 18.4 (which illustrates temporary shocks). For this reason, research has
focused in recent years on ways to improve the internal propagation mechanism of
the model. Some of this literature will be discussed briefly below.

18.3.4 Correlations

As was pointed out in the introduction to this section, most RBC modellers follow
the suggestion by Kydland and Prescott (1982) and evaluate the usefulness of their
model by judging how well the model-generated data match the data for an actual
economy. The typical approach is to compute actual and model-generated moments
for a number of key variables (King and Rebelo, 1999, p. 956). Usually the mo-
ments of interest are the variances (or standard deviations) of output, consumption,
investment, capital, labour, and productivity. Often the contemporaneous correla-
tions between output and the other variables are also compared.8

In Table 18.3 we show the results that were computed by Hansen (1985) for the
US economy. In this table, std(xt) and cor(xt, Yt) are, respectively, the (asymptotic)
standard deviation of xt and the contemporaneous correlation between xt and Yt.
In panel (a) of Table 18.3 the indicators for the US economy are reported. The fol-
lowing regularities can be distinguished (Stadler, 1994, pp. 1751–1752). First, in-
vestment is much more volatile than output, i.e. the standard deviation of invest-
ment is std(It) = 8.60 which far exceeds the standard deviation of output which
equals std(Yt) = 1.76. Second, consumption is somewhat less volatile than out-
put (std(Ct) = 1.29). Third, the capital stock is much less volatile than both con-
sumption and output (std(Kt) = 0.63). Fourth, employment is approximately as
volatile as output (std(Lt) = 1.66). Fifth, productivity is less volatile than output
(std(Yt/Lt) = 1.18). Sixth, all variables are positively correlated with output, al-
though the correlation is rather weak for the capital stock.

In panel (b) of Table 18.3 the model-generated standard deviations and corre-
lations are reported. Hansen (1985, pp. 319–320) uses the unit-elastic model to
generate these results and employs the following calibration parameters: ω∗G = 0,
α = 0.36, ρ = 0.01, δ = 0.025, and ε = 1/3. These parameters imply: y∗ =
(ρ + δ)/α = 0.097, ω∗I = δ/y∗ = 0.257, ω∗C = 1− ω∗I = 0.743, and (by (13.118))

8In the appendix to this chapter we show how these various indicators can be computed for the theo-
retical model without having to use statistical simulation methods.



732 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

ω∗LL = 2.321. The persistence parameter and standard deviation of the technology
shock (ηt in (18.35)) are set at, respectively, ξZ = 0.95 and ση = 0.00712.

A comparison of panels (a) and (b) reveals that the model captures the facts that
consumption is less and investment is more volatile than aggregate output. It also
matches the output correlations of consumption, investment, capital, and employ-
ment quite well but it overpredicts the correlation between output and productivity.
Given the extremely simple structure of the unit-elastic model, the match between
actual and model-generated moments is quite impressive. As we shall document in
Section 18.4 below, however, a number of empirical facts are not well captured by
the unit-elastic RBC model.

18.3.5 A detour: Dynare comes to the rescue

Up to this point we have used a rather analytical approach to investigate the prop-
erties of the unit-elastic RBC model. Whilst this approach has the advantage of al-
lowing a close inspection of the key mechanisms present in the model, it has a dis-
advantage in that it is very time-consuming. Indeed, under the analytical approach
the researcher needs to take the following steps:

• Loglinearize the model around a steady state.

• Investigate (local) stability of the loglinearized model.

• Solve the linear system of difference equations under rational expectations.

• Study the effects productivity shocks.

• Compute theoretical moments for the different variables.

In addition to being time-consuming the analytical approach quickly becomes in-
feasible for more complicated RBC models. For this reason most economists restrict
attention to purely numerical implementations of their preferred RBC model. As
was pointed out in Section 5.4.2 above, Dynare is a very useful (and free-of-charge)
software package that can do all the hard and tedious work for you at lightning
speed.

In Table 18.4 we give an example of a Dynare model file that can handle the basic
unit-elastic RBC model. The model file is called Program18 01.mod as is indicated in
the commented line at the top. As was explained in Section 5.4.2 above, the model
file contains several blocks of statements. Block 1 defines the endogenous and ex-
ogenous variables whilst Block 2 provides the values for the structural parameters
(α, δ, Ω0, ε, ρ, ση , and ξZ). Note that we use the same parameter values for α, δ, Ω0,
ε, and ρ as were used in Chapter 13 (see (13.119)). In Block 3 we formulate the model
in a format that Dynare can work with. The key thing to remember is that Dynare
must be ”told” that the capital stock is a predetermined variable by representing Kt
in the program by k(-1). This means, of course, that k in the program represents
Kt+1.

In Block 4 the actual computations are done. The Dynare command steady com-
putes the deterministic steady state, using the starting values stated between the
commands initval and end. Because the model is nonlinear Dynare must be pro-
vided with starting values for the endogenous variables, i.e. the model will not run
without values for K0, C0, L0, etcetera. Furthermore, the command check com-
putes the characteristic roots of the Jacobian matrix (ξ1 and ξ2). In between the com-
mands shocks and end we specify the stochastic process for the shock term (ηt). The
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statement var eta = sigma eta^2; means that we set the standard deviation of ηt
equal to ση . The last command in Block 4 is stoch simul(order = 1). As the name
suggests it solves the stochastic rational expectations model using a first-order lin-
earization technique. The interested reader is invited to run Program18 01.mod and
to observe the huge amount of results that are computed in a few seconds.

Table 18.4. A Dynare model file for the basic RBC model

% Basic RBC model

%

% Dynare model file: Program18_01.mod

%

%----------------------------------------------------------------

% 0. Housekeeping

%----------------------------------------------------------------

close all;

%----------------------------------------------------------------

% 1. Defining variables

%----------------------------------------------------------------

var Y C K I L W R Z;

varexo G eta;

parameters Omega_0 alpha epsilon delta xi_Z rho sigma_eta;

%----------------------------------------------------------------

% 2. Calibration

%----------------------------------------------------------------

alpha = 0.333333333333333;

delta = 0.024113689084445;

Omega_0 = 1.442032886235652;

epsilon = 0.183413993147403;

rho = 0.015868284782784;

sigma_eta = 0.0015;

xi_Z = 0.95;

% Guess for the initial steady state

Y0 = 1;

K0 = 8.337;

C0 = 0.599;

I0 = 0.201;

L0 = 0.200;

W0 = 3.333;

R0 = rho;

18.4 Extending the model

Despite its impressive performance in some dimensions, a number of empirical facts
are not well captured by the unit-elastic RBC model. Following Stadler (1994, pp.
1757–1761) we focus on some stylized facts about the labour market which the model
is unable to mimic. These are:
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Table 18.4, continued

%----------------------------------------------------------------

% 3. Model

%----------------------------------------------------------------

model;

K = I + (1 - delta)*K(-1);

(1/C) = ((1 + R(+1))/(1+ rho)) * (1/C(+1)) ;

W = (1 - alpha) * Y / L;

R = alpha * Y / K(-1) - delta;

Y = C + I + G ;

W * (1 - L) = ((1 - epsilon )/ epsilon) * C;

Y = Omega_0 * exp(Z) * K(-1)^( alpha) * L^(1-alpha );

Z = xi_Z * Z(-1) + eta;

end;

%----------------------------------------------------------------

% 4. Computation

%----------------------------------------------------------------

initval;

K = K0;

C = C0;

L = L0;

I = I0;

Y = Y0;

W = W0;

R = R0;

Z = 0;

eta = 0;

G = 0.2;

end;

shocks;

var eta = sigma_eta ^2;

end;

steady;

stoch_simul(order = 1);
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• Employment variability puzzle.

• Productivity puzzle.

• Absence of unemployment.

In the remainder of this section we first explain briefly what is meant by these trou-
blesome features of the RBC model. Next, we discuss how RBC modellers have
attempted to enrich the model in order to bring it in closer line with reality. Here
we focus attention on just some of the many ways in which RBC modellers have
responded to the various puzzles discussed above.9

18.4.1 Employment variability puzzle

As is clear from column (a) in Table 18.3, in the US employment and output are al-
most equally variable (std(Yt) = 1.76 which is close to std(Lt) = 1.66), and employ-
ment is strongly procyclical (cor(Lt, Yt) = 0.76). The basic model in column (b) pre-
dicts a much higher correlation between employment and output, i.e. cor(Lt, Yt) =
0.98 which substantially exceeds the observed correlation of 0.76. In contrast, the ba-
sic model underpredicts the variability of employment by quite a bit, std(Lt) = 0.70
which falls short of the observed value of 1.66 by quite a margin.

In Figure 18.5 we attempt to graphically visualize the contemporaneous corre-
lations implied by the basic RBC model.10 The top panel depicts the short-run
labour market whilst the bottom panel illustrates the short-run production function.
Steady-state schedules for labour demand, labour supply, and output are denoted
by, respectively, LD

n , LS
n, and Yn. The subscript n can be understood as denoting

“normal” productivity. If there is a positive productivity shock, at impact labour de-
mand shifts to LD

h (direct productivity effect), and labour supply shifts to LS
h (wealth

effect), where the subscript h denotes “higher than normal” productivity. Equilib-
rium employment increases as does the real wage. In the bottom panel, the short-run
production function shifts to Yh, and equilibrium output increases both because of
the direct effect and because of the induced employment expansion.

In a similar fashion, a negative productivity shock (lower than normal produc-
tivity, subscripted by l) shifts labour demand to LD

l , labour supply to LS
l , and the

short-run production function to Yl . Employment, the real wage, and output are
lower than normal in this situation. Connecting the three types of equilibria (low,
normal, and high), we find that CWL in the top panel visualizes the positive cor-
relation between the wage rate and employment, whilst CYL in the bottom panel
visualizes the correlation between employment and output.

Armed with Figure 18.5 we understand immediately why cor(wt, Lt), cor(Lt, Yt),
and std(wt) are high in the model, whilst std(Lt) is low. These results can be at-
tributed to a large extent by the steep slope of the labour supply curve.

How can the employment variability puzzle be resolved? Clearly, one would ob-
serve a more realistic correlation between real wages and employment if the labour
supply curve were relatively flat. There are several ways to get this. First, there may
be strong intertemporal substitution effects in labour supply, but this is rejected by
the econometric evidence to date (Card, 1994). Second, the dominant RBC solution

9Stadler (1994), Hansen and Wright (1994), King and Rebelo (1999), Rebelo (2005), and McCandless
(2008) discuss many other model extensions that have been proposed in the RBC literature over the past
three decades.

10This way to visualize correlations and variability is not rigorous. It ignores, for example, the fact that
there is transitional dynamics as a result of each innovation.
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Figure 18.5: Visualizing contemporaneous correlations
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to the employment variability puzzle is provided by Hansen (1985) who incorpo-
rated the insights of Rogerson (1988) into an RBC model. His argument makes use
of the fact that in reality about two thirds of the variation of total hours worked is
due to movements into and out of employment, whilst only one third is explained
by variation in the number of hours worked. Hansen (1985) assumes that the length
of the working week is constant: you either have a job and work for, say, 40 hours
per week, or you do not work at all. This non-convexity in the form of indivisible
labour (IL) ensures that workers wish to work as much as possible when wages are
high. Hansen shows that even if individual agents have a zero intertemporal labour
supply elasticity, the aggregate economy behaves as if the (average) “representative
agent” has an infinite intertemporal labour supply elasticity. Individual households
do not choose the number of working hours per period, but rather the probability
of working. Who actually works is determined by a lottery. There is a contract be-
tween the firm and a household that specifies that the household must work L̄ hours
with probability πt in period t. The firm provides complete insurance to the worker
and the lottery contract is traded, so that each household gets the same amount from
the firm, regardless of whether it works or not in any particular period. Actual per
capita employment in period t will be Lt = πt L̄, and each household gets paid as if
it worked Lt hours in period t.

The IL model is obtained by replacing (18.2) by a felicity function that is linear in
labour supply:

U(Cτ , Lτ) ≡ ε ln Cτ − (1− ε) Lτ . (18.56)

With this modification, the consumption Euler equation continues to be given by
(T1.2) but leisure drops out of equation (T1.6) which becomes:

wt

Ct
=

1− ε

ε
. (18.57)

In the IL model, consumption is proportional to the wage, i.e. the labour supply
equation is horizontal. In terms of the loglinearized model of Table 18.2, equation
(T2.6) is replaced by w̃t = C̃t. Hence, in formal terms, the IL model is a special case
of the model presented in Table 18.2 with ω∗LL → ∞.

In Figure 18.6 we visualize the contemporaneous correlations implied by the IL
model. Labour demand and the short-run production function are both unchanged
and we leave out labels to avoid cluttering the diagram unnecessarily. Labour supply
is horizontal but its position depends on the level of consumption—see equation
(18.57). Normal labour supply is given by LS

n. If productivity is high, consumption
is high (wealth effect) and the wage rate restoring labour market equilibrium is also
higher than normal though less so than in the basic RBC model. As a result, the
employment expansion is higher than in the basic RBC model. A similar pattern
occurs for lower than normal productivity.

By tracing the three types of equilibria (low, normal, high productivity) we find
CWL1 in the top panel and CYL1 in the bottom panel. Note that CWL0 and CYL0
depict the correlations for the basic model that we deduced in Figure 18.6. We find
immediately that compared to the basic model, the IL model predicts higher values
for std(Lt) and std(Yt) and lower values for cor(wt, Lt) and cor(Lt, Yt).

That our intuitive visualization approach captures the essence of what is going on
in the simulation model is confirmed by the results reported in Table 18.3. In panel
(c) of that table we show the results that were obtained by Hansen’s (1985) calibration
of the IL model. With the exception of ε (and thus ω∗LL) the calibration parameters are
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Figure 18.6: Lottery model and contemporaneous correlations
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the same as for panel (b). The parameter ε is chosen such that employed individuals
spend 53 percent of their time endowment on work, i.e. L̄ = 0.53 (Hansen, 1985, p.
320).11 This yields the value of ε = 0.381. It is clear from Table 18.3 that the IL model
provides a much better match between the model-generated and actual variability
of employment than the standard model does.12 By incorporating the assumption of
indivisible labour in the unit-elastic model, the model-generated standard deviation
of employment rises from std(Lt) = 0.70 (in panel (b)) to std(Lt) = 1.35 (in panel (c)),
a value that is close to the observed variability of 1.66%. Because it largely solves the
employment variability puzzle, Hansen’s approach has become standard practice in
the RBC literature.

18.4.2 Productivity puzzle

Column (a) in Table 18.3 shows that the correlation between labour productivity and
output is modest, i.e. cor(Yt/Lt, Yt) = 0.42. Both the basic model (column (b)) and
Hansen’s IL model (column (c)), however, predict much higher values for this cor-
relation (0.98 and 0.87, respectively). Although the IL model reduces the predicted
correlation somewhat, it does not do so to a sufficient extent. Since technology is
represented by a Cobb-Douglas production function in both RBC models, the real
wage is proportional to productivity (see (T2.3) above). It thus follows that both
models generate wage fluctuations that are much more procyclical than is consistent
with reality. In reality, wages are only mildly procyclical. In addition, the correlation
between the real wage and employment is virtually zero, i.e. cor(wt, Lt) ≈ 0.

One would be tempted to use efficiency wage theory to explain the low variabil-
ity of the real wage rate one observes in reality, but this does not seem to solve the
excessive fluctuations in wages in RBC models. Gomme (1999) develops an RBC mo-
del incorporating the shirking model of efficiency wages (see also Section 7.4 above).
In such a model, the real wage does not clear the labour market but rather is used
to induce high effort by the workers. He demonstrates that this model also predicts
a very high correlation between the real wage and output. Why is this so? A posi-
tive technology shock shifts labour demand to the right, just as in the standard RBC
model. In the efficiency-wage RBC model, such a shock also shifts the incentive-
compatibility (IC) constraint (the no-shirking condition) to the left as a result of an
income effect. Indeed, the IC constraint acts like a kind of labour supply curve and
the model performs more or less like a standard RBC model.

A potentially more fruitful approach to resolving the productivity puzzle is to
introduce additional stochastic shocks into the model. This is, for example, the ap-
proach pursued by Christiano and Eichenbaum (1992) who allow government con-
sumption shocks to influence the labour market via the labour supply curve. With-
out going into the details of their model, the essence of the two-shock approach can

11By manipulating (18.57) we find that the value of ε can be written as follows:

ε =

[
1 +

(1− α)

L̄ω∗C

]−1

.

Since ω∗C and α are known, the value of ε is readily obtained from this expression.
12Note that the actual and model-generated standard deviation of output are the same in panels (a) and

(c) of Table 18.3. This cannot be counted as a success for the unit-elastic model because it is a feature of
the calibration procedure. The standard deviation of the productivity shock (ση) is chosen such that the
variation in aggregate output is perfectly matched (Hansen, 1985, p. 320). In a model with divisible labour
(given in panel (b)) a larger standard deviation of the innovation term is needed to match the observed
standard deviation of output.
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be explained with the aid of Figure 18.6. Recall that CWL1 visualizes the contempo-
raneous correlation between the real wage and employment. Resolving the produc-
tivity puzzle means finding a way to flatten the CWL curve somehow. If shocks to
government consumption are such that the horizontal shifts of the supply curve are
dampened somewhat, then clearly a flatter CWL is obtained, the variability of the
real wage is reduced, and employment variability is increased.

RBC theorists have also proposed alternative mechanisms by which the (effec-
tive) labour supply shifts are dampened. Examples that are found in the literature
include the existence of nominal wage contracts, taste shocks, labour hoarding by
firms, and the existence of a non-market production sector that is also subject to
technology shocks (see Stadler, 1994, pp. 1759–1761). In home production models,
for example, households divide their labour over market and non-market activities.
If market productivity rises, agents not only intertemporally substitute labour, but
also shift labour intratemporally from the non-market to the market sector.

18.4.3 Unemployment

Since there is no unemployment in the unit-elastic model, all variation in employ-
ment is explained by fluctuations in the supply of labour by the representative house-
hold. In reality, however, about two thirds of the variation in hours is due to move-
ments into (and out of) employment and only one third is explained by variation in
the number of hours worked per employed worker (Stadler, 1994, p. 1758).

Over the last three decades, many authors have introduced equilibirum unem-
ployment into the RBC framework by making use of the search-theoretic approach
of Diamond, Mortensen, and Pissarides (see Chapters 8 and 13).13 In an early con-
tribution, Andolfatto (1996, p. 113) shows that the introduction of labour market
search into an RBC model leads to three major improvements. First, the model is
able to predict that labour hours fluctuate more than wages. Second, the model pre-
dicts a lower correlation between labour hours and productivity. Third, the model
predicts a more realistic impulse-response function for output. DenHaan et al. (2000)
generalize the RBC model with search unemployment by introducing endogenous
job destruction and costly capital mobility.

In recent years, however, a number of authors have argued that the search and
matching RBC model has its own set of empirical problems. Indeed, Shimer (2005,
2010) and Costain and Reiter (2008) have argued that the central variables in the
model—unemployment and vacancies—are much more volatile in reality than in
conventionally calibrated search and matching models with Nash-bargained wages.
In response to this criticism, however, Hagedorn and Manovskii (2008) show that the
search and matching model can be salvaged when a different calibration procedure is
used. No consensus has emerged to date. Interestingly, both Hall (2005) and Shimer
(2010) strongly argue in favour of introducing some kind of wage rigidity. And that
is, of course, what we called the Holy Grail of Macroeconomics in Chapter 7.

18.5 Punchlines

This chapter deals with the most important theme that has kept most new classi-
cal economists busy over the last three decades, namely the equilibrium approach to

13See, e.g. Andolfatto (1996), Merz (1995, 1997, 1999), and Cole and Rogerson (1999). Section 13.6
provides details of a deterministic dynamic search model that can easily be adapted to study productivity
shocks.
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real business cycles (RBC). The RBC methodology builds on and extends the insights
that were obtained as a result of the rational expectations revolution of the 1970s. In
order to discuss the equilibrium approach to business cycles, we start this chapter
by extending the deterministic Ramsey model with endogenous labour supply (that
was studied in detail in Chapter 13) in two directions. First, we incorporate the no-
tion that households and firms are living in an inherently stochastic world. Second,
we recast it in discrete time thus making it relatively straightforward to incorporate
uncertainty.

The chapter focuses on technology shocks but other shocks can easily be added to
the model. By introducing a stochastic process for general productivity, and impos-
ing the assumption of rational expectations we obtain a prototypical RBC model. We
study the properties of the so-called unit-elastic RBC model by computing the ana-
lytical impulse-response functions for the different macroeconomic variables. The
degree of persistence of the technology shock exerts a critical influence on the shape
of the impulse-response functions.

For a purely transitory technology shock, consumption, employment, invest-
ment, and output all rise in the impact period. The employment response is ex-
plained not so much by the wealth effect (which is rather weak) but rather by the
incentive to substitute labour supply across time. The technology shock makes it
attractive to work in the current period because the current wage is high relative to
future wages. After technology has returned to its initial level, capital and consump-
tion gradually fall back over time.

With a permanent productivity shock, consumption, capital, output, investment,
and the real wage all rise in the long run. In the absence of government consump-
tion (and the concomitant lump-sum taxes), employment stays the same because the
income and substitution effects of the wage change cancel out. With positive lump-
sum taxes the former dominates the latter effect and employment falls. The intuition
behind the long-run results is provided by the constancy of a number of great ratios.
Consumption jumps up at impact and thereafter increases further during transition.

Next we study the impulse-response functions for a “realistic” shock persistence
parameter. Most RBC modellers use the so-called Solow residual to obtain an esti-
mate for this persistence parameter. The typical finding is that productivity shocks
(thus measured) are very persistent, i.e. the persistence parameter is close to (but
strictly less than) unity.

An important, somewhat disappointing, feature of the unit-elastic RBC model
is its lack of internal propagation. For all cases considered, the impulse-response
function for output is virtually identical to the exogenous technology shock itself.
The lack of propagation plagues not just the unit-elastic model but many other RBC
models as well. For this reason, one of the currently active areas of research in the
RBC literature concerns the development of models with stronger and more realistic
internal propagation mechanisms.

It is standard practice to evaluate the quantitative performance of a given RBC
model in terms of the quality of the match it provides between model-generated
and actual data. Typically, the statistics of interest are the standard deviations (and
correlations with aggregate output) of some key macroeconomic variables. Despite
its simplicity, the unit-elastic model is able to capture quite a few features of the
real world data. For example, it correctly predicts that investment is more and con-
sumption is less volatile than aggregate output. It also matches the output correla-
tions of consumption, investment, capital, and employment quite closely. There are
also a number of empirical facts that are difficult or impossible to reconcile with the
unit-elastic model. For that reason a huge literature has emerged over the last three
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decades which aims to improve the empirical fit of RBC models.
Perhaps the most important contribution of the RBC approach is a methodolog-

ical one. Recall that in the traditional macroeconometric approach, weakly founded
relationships were typically estimated with the aid of time series data. RBC mod-
ellers have largely abandoned the macroeconometric approach and have instead
forged a link with micro-founded stochastic computable equilibrium models. At-
tention has shifted from estimation to simulation. The approach has proved to be
quite flexible. RBC models now exist which include alternative market structures
(on goods and labour markets), price and wage stickiness (see Chapter 19), open-
economy features, different types of stochastic shocks, and heterogeneous house-
holds. The broad range of applications indicates that the RBC methodology has
received widespread acceptance from classical and Keynesian economists alike.

Further reading

Pioneering contributions to the real business cycle (RBC) approach were made by
Kydland and Prescott (1982), Long and Plosser (1983), and Prescott (1986). Some
of the most important early articles on the RBC approach have been collected in
Miller (1994). For survey articles, see King et al. (1987, 1988a, 1988b), McCallum
(1989b), Plosser (1989), Eichenbaum (1991), Danthine and Donaldson (1993), Camp-
bell (1994), Stadler (1994), Cooley (1995), King and Rebelo (1999), and Rebelo (2005).
The Nobel Prize Lecture by Prescott (2006) is required reading for any student of the
RBC approach. Altug and Young (2015) summarizes a panel discussion marking the
30th anniversary of the RBC approach featuring its key contributors.

Early critics of the approach are Summers (1986) and Mankiw (1989). For a dis-
cussion on the method of calibration, see Kydland and Prescott (1996), Hansen and
Heckman (1996), Sims (1996), and Gomme and Rupert (2009). Watson (1993) sug-
gests measures-of-fit for calibrated models. Cogley and Nason (1995) and Rotemberg
and Woodford (1996) document the weak propagation mechanisms of a number of
standard RBC models.

There is a huge and growing literature on various labour market aspects. The
intertemporal substitution mechanism is studied in detail by Hall (1991, 1997) and
Mulligan (1999). On family labour supply, see Cho and Rogerson (1988) and Cho
and Cooley (1994). Nominal wage contracts are studied by Cho and Cooley (1995)
and Huang and Liu (2002).

On search unemployment, see among others Andolfatto (1996), Merz (1995, 1997,
1999), Cole and Rogerson (1999), DenHaan et al. (2000), Shimer (2005, 2010), Hall
(2005), Costain and Reiter (2008), Hagedorn and Manovskii (2008), and Christiano
et al. (2016). Gertler and Trigari (2009) introduce staggered wage setting. Naka-
jima (2012) allows for incomplete markets and self-insurance. Rogerson et al. (2005)
present an extensive literature survey of the search literature. Efficiency wage the-
ories are used by Danthine and Donaldson (1990), Kimball (1994), Georges (1995),
and Gomme (1999).

Early papers on the macroeconomic effects of government purchases, using a
deterministic approach, include Foley and Sidrauski (1971), Hall (1971), Miller and
Upton (1974), Barro (1981), and Aschauer (1988). More recent stochastic models in-
clude Cassou and Lansing (1998) (on public infrastructure), Christiano and Eichen-
baum (1992), McGrattan (1994), Braun (1994), Jonsson and Klein (1996), and Canton
(2001). Edelberg et al. (1999) study the empirical effects of a shock to government
purchases.
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Key articles on home production are Benhabib et al. (1991) and Greenwood
and Hercowitz (1991). Models with distorting taxes are presented by Greenwood
and Huffman (1991) and McGrattan (1994). Ljungqvist and Uhlig (2000) introduce
habit formation in household consumption. Studies focusing on firm investment
include Greenwood, Hercowitz, and Huffman (1988) and Gilchrist and Williams
(2000). Models including a monopolistically competitive goods market are formu-
lated by Bénassy (1996a), Hornstein (1993), Chatterjee and Cooper (2014), Rotemberg
and Woodford (1992, 1996), Devereux et al. (1996a, 1996b), Heijdra (1998), and Galı́
(1999). Rotemberg (2008) introduces imperfect competition on the goods market in
a model with search unemployment and allows for changes in market power.

RBC methods have also been used to explain the Great Depression of the 1930s—
see the collection of essays in Kehoe and Prescott (2007). This literature is not uncon-
troversial —see the critical book review of Kehoe and Prescott (2007) by the economic
historian Peter Temin (2008).

Galı́ and Rabanal (2004) argue that there is little evidence that technology shocks
are important determinants of the business cycle. Chari, Kehoe and McGrattan
(2007) strongly disagree. On changes in expectations (’news’) as determinants of
the business cycle, see Beaudry and Portier (2007), and Beaudry et al. (2011). An
insightful discussion on asset pricing is found in Blanchard and Fischer (1989, ch.
10). Also useful on asset pricing in a macroeconomic context are Jermann (1998),
and Altug and Labadie (2008).
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Appendix: On the unit-elastic RBC model

In this appendix we derive some technical results for the unit-elastic RBC model
used in this chapter.

A.1 Derivation of (18.38)–(18.39)

We compute the impulse-response function associated with the innovation η0 by
solving the following system:[

K̃t+1 − K̃t
C̃t+1 − C̃t

]
= ∆

[
K̃t
C̃t

]
+

[
γK

t
γC

t

]
, (A18.1)

where the shock vector is given in (18.37). The key thing to note is that (A18.1) is the
deterministic counterpart to (18.28). The expectations operator, Et, can be dropped
from (18.28) when we compute the impulse-response function because we have al-
ready incorporated the rational expectations assumption by substituting the path for
Z̃t that results from the innovation η0 into the shock term.

In the Mathematical Appendix we show how a system like (A18.1) can be solved
with the aid of the z-transform method. Assuming that ∆ possesses real characteris-
tic roots, −1 < −λ1 < 0 and λ2 > 0, the general solution of (A18.1) is:

[z− (1− λ1)]

[
Z{K̃t, z}
Z{C̃t, z}

]
=

[
Z{γK

t , z}
zC̃0 +Z{γC

t , z}

]
(A18.2)

+

adjΛ(λ2)

[
Z{γK

t , z} − z
1+λ2
Z{γK

t , 1 + λ2}
Z{γC

t , z} − z
1+λ2
Z{γC

t , 1 + λ2}

]
z− (1 + λ2)

,

where Λ(λ2) ≡ λ2 I−∆ and we have used the fact that capital cannot jump at impact
(i.e. K̃0 = 0). The impact jump in consumption (C̃0) is:

C̃0 = −Z{γ
C
t , 1 + λ2}
1 + λ2

− λ2 − δ22

δ12

[
Z{γK

t , 1 + λ2}
1 + λ2

]
(A18.3)

The shock term (18.37) can be written in general format as:[
γK

t
γC

t

]
=

[
γK
γC

]
ξt

Z,
[

γK
γC

]
≡ φ

[
y∗

ζ
[
ξZ − y∗ [1− αφ]

] ] η0. (A18.4)

The z-transform for γi
t can then be written as:

Z{γi
t, z} = γi z

z− ξZ
, i ∈ {K, C}. (A18.5)

Using (A18.5) in (A18.3) we obtain the following expression for C̃0:

C̃0 = − γC

λ2 + (1− ξZ)
− λ2 − δ22

δ12

γK

λ2 + (1− ξZ)
. (A18.6)

By substituting γC and γK in (A18.6) we obtain equation (18.39) in the text. We derive
from (A18.5) that:

Z{γi
t, z} − z

1+λ2
Z{γi

t, 1 + λ2}
z− (1 + λ2)

= − γi

1 + λ2 − ξZ

z
z− ξZ

, (A18.7)
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so that (A18.2) can be rewritten as:[
Z{K̃, z}
Z{C̃, z}

]
=

[
0
C̃0

]
z

z− (1− λ1)
+

[
δ22 + (1− ξZ) −δ12
−δ21 δ11 + (1− ξZ)

]
× 1

λ2 + (1− ξZ)

[
γK

γC

]
z

(z− ξZ)[z− (1− λ1)]
. (A18.8)

We recognize thatZ−1{z/(z− α)} = αt andZ−1{z/[(z− α1)(z− α2)]} = Tt(α1, α2),
where Tt(·) is a temporary bell-shaped transition term:

Tt(α1, α2) ≡


αt

1 − αt
2

α1 − α2
for α1 6= α2

tαt−1
1 for α1 = α2,

(A18.9)

with αi 6= 0 (see Ogata, 1995, p. 30). A result we use in the analysis of permanent
shocks is that Tt(1, α2) = (1− α2)

−1At(α2), where At(α2) ≡ 1− αt
2 is a discrete-time

adjustment term. For purely transitory shocks we have:

Tt(0, α2) ≡
{

0 for t = 0
αt−1

2 for t = 1, 2, . . . .
(A18.10)

(Note that in the text we combine (A18.9) and (A18.10) into (18.40).) By inverting
(A18.8) we find the solution in the time domain:[

K̃t
C̃t

]
=

[
0
C̃0

]
(1− λ1)

t +

[
δ22 + (1− ξZ) −δ12
−δ21 δ11 + (1− ξZ)

]
× 1

λ2 + (1− ξZ)

[
γK

γC

]
Tt(ξZ, 1− λ1). (A18.11)

By simplifying (A18.11) somewhat we find the equation (18.38) in the text.

A.2 Method of undetermined coefficients

In this subsection we show how the unit-elastic RBC model can be solved using
the method of undetermined coefficients. Following Campbell (1994, p. 470), we
conjecture the following trial solution:

C̃t = πckK̃t + πczZ̃t, (A18.12)

where πck and πcz are coefficients to be determined. By substituting (A18.12) in the
system (18.28) we obtain:[

1 0
θ21 1

] [
K̃t+1
πckK̃t+1 + ξZπczZ̃t

]
=

[
1 + δ∗11 δ∗12

0 1 + δ∗22

] [
K̃t
πckK̃t + πczZ̃t

]
+

[
y∗

ζξZ

]
φZ̃t, (A18.13)

where δ∗ij are the elements of ∆∗ (defined in (18.29)) and we have used the fact that
EtCt+1 = πckK̃t+1 +πczEtZ̃t+1 and EtZ̃t+1 = ξZZ̃t. The system in (A18.13) gives two
expressions for K̃t+1 in terms of K̃t and Z̃t which must hold for all (K̃t, Z̃t) combina-
tions. By eliminating K̃t+1 from (A18.13) we find:

0 =

[
1 + δ∗11 + δ∗12πck − (1 + δ∗22)

πck
θ21 + πck

]
K̃t (A18.14)
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+

[
δ∗12πcz + φy∗ − (1− ξZ + δ∗22)πcz + φζξZ

θ21 + πck

]
Z̃t.

We use πck to ensure that the term in square brackets in front of K̃t is zero. After
some manipulation we find the following quadratic function in πck:

δ12π2
ck + (δ11 − δ22)πck − δ21 = 0, (A18.15)

where δij are the elements of ∆ (δ11 = δ∗11, δ12 = δ∗12, δ21 = −θ21δ∗11 + δ∗21 = −θ21(1 +
δ∗11), and δ22 = −θ21δ∗12 + δ∗22). Given saddle path stability, we solve (A18.15) for the
positive root:14

πck =
−(δ11 − δ22)−

√
(δ11 − δ22)2 + 4δ12δ21

2δ12
> 0. (A18.16)

(Note also that δ12πck = δ22 − λ2.) For this value of πck, the term in square brackets
in front of Z̃t in (A18.14) can be put to zero by the appropriate choice of πcz:

πcz =
φ [ζξZ − (θ21 + πck)y∗]
δ12πck − δ22 − (1− ξZ)

> 0. (A18.17)

Once we know the coefficients πck and πcz, we obtain the solution for K̃t+1 by using
either row of (A18.13):

K̃t+1 = πkkK̃t + πkzZ̃t, (A18.18)

where πkk ≡ 1 + δ11 + δ12πck and πkz ≡ δ12πcz + φy∗. (Note also that πkk = 1− λ1.)

A.3 Computing correlations

In order to judge the empirical performance of the unit-elastic RBC model we can
compute various correlations that are implied by the theoretical model. We approach
the problem from an analytical viewpoint in order to stress the link with the rational
expectations literature discussed in Chapter 5. We start by computing the statistical
properties of the capital stock. We derive from (A18.18) that:

E
[
K̃t+1 − EK̃t+1

]2
= π2

kkE
[
K̃t − EK̃t

]2
+ π2

kzEZ̃2
t + 2πkkπkzE

[
K̃t − EK̃t

]
Z̃t ⇔

var(K̃t+1) = π2
kkvar(K̃t) + π2

kzvar(Z̃t) + 2πkkπkzcov(K̃t, Z̃t), (A18.19)

where we have used the fact that EZ̃t = 0. Since Z̃t is covariance stationary,15 the
same holds for K̃t (and all other endogenous variables). Hence, var(K̃t+1) = var(K̃t)
and equation (A18.19) can be simplified to:

(1− π2
kk)var(K̃t+1) = π2

kzvar(Z̃t) + 2πkkπkzcov(K̃t, Z̃t). (A18.20)

14The sign of πck follows from saddle-point stability. First, we note that the discriminant in (A18.16) can
be written as (δ11 − δ22)

2 + 4δ12δ21 = (δ11 + δ22)
2 − 4 |∆| > 0, where the sign follows from the fact that

|∆| < 0. Hence, the roots are real and distinct. Next we note that δ12δ21 = −θ21δ∗12(1 + δ∗11) > 0. Hence,
the discriminant is larger than (δ11 − δ22) so that (A18.15) has one positive and one negative root. The
positive root must be selected in order to ensure that the steady state is stable, i.e. that πkk in (A18.18) lies
between zero and one (see also Campbell, 1994, pp. 471–472).

15A stochastic process, {xt}, is covariance stationary if the mean is independent of time and the se-
quence of autocovariance matrices, E(xt+j − Ext+j)(xt − Ext)T depends only on j but not on t. See
Ljungqvist and Sargent (2012, p. 45) and Patterson (2000, ch. 3).
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It is straightforward to derive from (18.35) that:

var(Z̃t) ≡ EZ̃2
t = E

[
ξ2

ZZ̃2
t−1 + 2ξZZt−1ηt + η2

t

]
= ξ2

Zvar(Z̃t−1) + σ2
η ⇒

var(Z̃t) =
σ2

η

1− ξ2
Z

, (A18.21)

where σ2
η is the (constant) variance of the innovation term (i.e. σ2

η ≡ E(η2
t )) and we

have used covariance stationarity of the shock process (so that var(Z̃t) = var(Z̃t−1)).
Similarly, we find:

cov(Z̃t, Z̃t−j) ≡ EZ̃tZ̃t−j = ξ
j
Zvar(Z̃t). (A18.22)

Next we use (A18.18) to write K̃t in terms of Z̃t−j terms:

K̃t = lim
T→∞

πT
kkK̃t−T + πkz

[
Z̃t−1 + πkkZ̃t−2 + π2

kkZ̃t−3 + . . .
]

= πkz

∞

∑
j=1

π
j−1
kk Z̃t−j, (A18.23)

where we have used the fact that (A18.18) is a stable difference equation so that
πT

kkK̃t−T goes to zero as T becomes large. By using (A18.22) and (A18.23) we find the
expression for cov(K̃t, Z̃t):

cov(K̃t, Z̃t) ≡ E
[
K̃t − EK̃t

]
Z̃t = πkz

∞

∑
j=1

π
j−1
kk EZ̃tZ̃t−j

= πkz

∞

∑
j=1

π
j−1
kk ξ

j
Zvar(Z̃t) = ξZπkzvar(Z̃t)

∞

∑
j=1

(ξZπkk)
j−1

=
ξZπkz

1− ξZπkk
var(Z̃t). (A18.24)

By substituting (A18.22) and (A18.24) into (A18.20) we obtain the final expression
for the variance of the capital stock:

var(K̃t+1) =
1 + ξZπkk
1− ξZπkk

π2
kz

1− π2
kk

var(Z̃t). (A18.25)

It follows from (A18.18) that:

cov(K̃t+1, K̃t) ≡ E
[
K̃t+1 − E(K̃t+1)

] [
K̃t − E(K̃t)

]
= πkkvar(K̃t+1) + πkzcov(K̃t, Z̃t)

=
ξZ + πkk

1− ξZπkk

π2
kz

1− π2
kk

var(Z̃t). (A18.26)

Now that we have expressions for var(K̃t), var(Z̃t), and cov(K̃t, Z̃t), the variances
and covariances of all remaining variables are easily obtained. For consumption, for
example, we derive from (A18.12):

var(C̃t) = π2
ckvar(K̃t) + π2

czvar(Z̃t) + 2πckπczcov(K̃t, Z̃t), (A18.27)
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cov(C̃t, K̃t) = πckvar(K̃t) + πczcov(K̃t, Z̃t). (A18.28)

By using (A18.12) in (18.21)–(18.26) we can write employment, wages, output, in-
vestment, and the interest rate in terms K̃t and Z̃t and derive expressions similar to
(A18.27)–(A18.28) for these variables. For output, for example, we find the following
expression:

Ỹt = πykK̃t + πyzZ̃t, (A18.29)

where πyk ≡ αφ− (φ− 1)πck and πyz ≡ φ− (φ− 1)πcz. Equation (A18.29) is useful
to compute the covariances of the different variables with output. For example, it
follows from (A18.12) and (A18.29) that cov(C̃t, Ỹt) is:

cov(C̃t, Ỹt) = πckπykvar(K̃t) +
[
πckπyz + πczπyk

]
cov(K̃t, Z̃t)

+ πczπyzvar(Z̃t). (A18.30)

Similarly, we derive from (A18.29) that cov(K̃t, Ỹt) is:

cov(K̃t, Ỹt) = πykvar(K̃t) + πyzcov(K̃t, Z̃t). (A18.31)

Similar expressions for the other variables are easily found. Finally, note that in the
text we report correlation coefficients. These are defined as follows:

cor(xt, yt) =
cov(xt, yt)

[var(xt)var(yt)]
1/2 . (A18.32)



Chapter 19

Dynamic Stochastic General
Equilibrium—New Keynesian
models

The purpose of this chapter is to achieve the following goals:

1. To introduce monetary features into the dynamic stochastic general equilib-
rium (DSGE) model discussed in the previous chapter.

2. To incorporate a micro-based theory of monopolistic competition and price
stickiness into the model.

3. To study the key features of a special case—the canonical New Keynesian mo-
del which abstracts from capital accumulation.

4. To calibrate and simulate the general version of the New Keynesian DSGE mo-
del and to demonstrate its key properties with the aid of its impulse-response
functions.

5. To discuss some of the reasons why some Classical and Keynesian economists
dislike the current crop of models.

19.1 Introduction

When the narrator of this lengthy textbook was himself in graduate school during
the early 1980s Olivier Blanchard (1981) published a paper which can be seen as the
high watermark of the ad hoc IS-LM approach. The fixed-price version of this model
was studied in detail (and in a continuous-time setting) in Chapter 4 above. Re-
expressed in discrete time the sticky-price version of the model can be characterized
by the following set of equations:

yd
t = εqqt + εyyt−1, (19.1)

yt − yt−1 = φy

[
yd

t − yt−1

]
, (19.2)

qt =
dt + qt+1

1 + rt
, (19.3)



750 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

dt = α0 + αyyt, (19.4)

m0 − pt = yt − λRt, (19.5)
Rt = rt + pt+1 − pt, (19.6)

pt − pt−1 = φp

[
p f − pt−1

]
, (19.7)

where yd
t is goods demand, yt is output, qt is Tobin’s q, dt is dividends to share

holders, m0 is the exogenous nominal money supply, pt is the price level, Rt is the
nominal interest rate, and rt is the real interest rate. All variables except the inter-
est rates and Tobin’s q are measured natural logarithms. Equation (19.1) shows that
goods demand is positively affected by Tobin’s q via investment (εq > 0), and by
production (and thus income) in the previous period via consumption (0 < εy < 1).
Equation (19.2) shows that production is a sluggish variable in the sense that de-
mand increases are first met out of inventory decumulation and only lead to higher
production later on. Stability of the adjustment process is ensured by assuming that
the adjustment parameter satisfies 0 < φy < 1. Equation (19.3) is an arbitrage equa-
tion stating that the real rate of return on shares must equal the real rate of interest on
single-period bonds. According to (19.3) real dividend payments are an increasing
function of output (αy > 0). Equation (19.5) is a loglinear money demand equa-
tion which is downward sloping in the nominal interest rate (λ > 0) and features
a unitary income elasticity. The expression in (19.6) shows that the nominal interest
rate equals the real interest rate plus the anticipated inflation rate. Finally, in equa-
tion (19.7) p f denotes the hypothetical price level that would be attained for a given
money supply m0 if output is at its full employment level ȳ and the dynamic system
is in the steady state, i.e.:

q∗ =
(1− εy)ȳ

εq
, r∗ =

α0 + αyȳ
q∗

, p f = m0 − ȳ + λr∗, (19.8)

where stars denote steady-state values. Note that in (19.7) it is assumed that the
actual price level only gradually adjusts to the flex-price price level p f , i.e. the ad-
justment parameter φp satisfies 0 < φp < 1.

Blanchard uses the model to study inter alia the effects of stepwise changes in the
money supply under perfect foresight. The outcome of this exercise is not of premier
importance here. The real question is, why did economists abandon stylized models
such as the one formulated above? What is “wrong” with Blanchard’s model? New
Classical economists would point out that the model lacks microeconomic founda-
tions, that reality is better characterized by stochastic rational expectations models,
and that prices are perfectly flexible. New Keynesian economists largely agree with
the first two points but disagree with the third. Price- and/or wage stickiness is
a fact of life according to these economists and must be included in a micro-based
model of the monetary macro-economy. This chapter presents a brief introduction
to the New Keynesian DSGE model which can be seen as the natural successor to
Blanchard’s ad hoc dynamic IS-LM model.

19.2 Building an MBC model

In this section we construct a basic New Keynesian dynamic stochastic general equi-
librium (DSGE) model to be used (in various forms) throughout the remainder of this
chapter. The model can be seen as an RBC model (see Chapter 18) appended with



CHAPTER 19: DSGE—NEW KEYNESIAN MODELS 751

some monetary features and imperfect price adjustment. An alternative name for
the model constructed here could thus be the monetary business cycle (MBC) model
even though this terminology has not gained widespread currency in the literature.

Basic as it is, the MBC model developed here draws together a large number of
components that were discussed in earlier parts of the book. Some of these main
features are:

• Just as in Chapter 18 we postulate the existence of an infinitely-lived represen-
tative individual who makes decisions in a stochastic environment.

• Just as in Section 13.7 we assume that the household derives felicity from hold-
ing real money balances. The so-called money-in-the-utility-function approach
is adopted.

• Just as in Section 14.4 we assume that the final good is produced in a perfectly
competitive sector which uses differentiated inputs produced by monopolistic
competitors in the intermediate goods sector. To capture input differentiation
we utilize the Dixit-Stiglitz approach discussed in Chapters 11 and 14.

• Just as in Section 11.3.3 we capture the notion of price adjustment costs by
adopting the Calvo pricing model which assumes that a monopolistically com-
petitive firm can only change its price if it receives a “green light” from Mother
Nature. In case it gets a “red light” it must honour its previously determined
price level.

Armed with this long list of things to remember we can now start building the basic
DSGE model.

19.2.1 Firms

There are two production sectors in the economy. The final goods sector is perfectly
competitive and it uses inputs produced by monopolistically competitive producers
in the intermediate goods sector. The output of the final goods sector is consumed
by households or the government and is used to augment the physical capital stock.

19.2.1.1 Production in the final goods sector

The representative firm in the final goods sector produces a homogeneous good us-
ing varieties of a differentiated intermediate good as productive inputs. Production
is subject to constant returns to scale (in these inputs) and perfect competition pre-
vails. The number of inputs is constant (as there is no entry into or exit from the
input-producing sector). Using the continuum approach to product differentiation
(see Intermezzo 19.1) we write the aggregate production function as:

Yt =

[∫ 1

0
Yt (i)

1−1/θ di
]1/(1−1/θ)

, 1 < θ � ∞, (19.9)

where Yt is homogeneous output, Yt (i) is the quantity of input i used in production,
and θ is the substitution elasticity between any two inputs Yt (i) and Yt (j) (for i 6= j).
Since θ is close to but strictly greater than unity the inputs are close but imperfect
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substitutes for each other. Denoting the price of input i by Pt (i) we find that the
unit-cost function is:

UCt ≡
[∫ 1

0
Pt (i)

1−θ di
]1/(1−θ)

. (19.10)

In the absence of fixed costs, unit cost equals marginal cost. Perfect competition in
the final goods sector thus results in:

Pt = UCt. (19.11)

For future reference we note that the derived demand function for input variety i
can be written as:

Yt (i) = Yt

(
Pt (i)

Pt

)−θ

. (19.12)

Intermezzo 19.1

The continuum approach to product differentiation. Interestingly
enough the first discussion paper version of the famous Dixit-Stiglitz
model that appeared in 1974 used the continuum approach to product
differentiation—see Dixit and Stiglitz (2004a, p. 72). They dropped it
from the 1975 version (as well as the published one) because they had
found that it led to “unnecessary confusion” on the part of a lot of
readers—see Dixit and Stiglitz (2004b, p. 92). Presumably because the
profession had tooled up sufficiently by then, the continuum approach
was re-introduced into the literature in the late 1980s by inter alia Paul
Romer (1987) and Grossman and Helpman (1991a, p. 45). Since we em-
ploy the continuum approach throughout this chapter and we definitely
wish to avoid confusion it is useful to quickly review it.

Infinitesimally small firms in the differentiated sector are labelled by
the index i ∈ [0, 1]. Since all firms have the same size they all receive
the same weight in the CES aggregate function (19.9). The representative
firm in the final goods sector is a perfectly competitive cost minimizer.
Hence, given the input prices Pt(i), the factors of production Yt(i) are
chosen such that a given amount of Yt is produced at minimum cost.
More formally the cost function is defined as:

TC (Pt(i), Yt) ≡ min
{Yt(i)}

∫ 1

0
Pt(i)Yt(i)di subject to:

Yt =

[∫ 1

0
Yt (i)

1−1/θ di
]1/(1−1/θ)

. (a)

The Lagrangian for this minimization problem is:

L ≡
∫ 1

0
Pt(i)Yt(i)di + λt

[
Yt −

[∫ 1

0
Yt (i)

1−1/θ di
]1/(1−1/θ)

]
,
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and the first-order necessary conditions are (for all Yt(i) such that i ∈
[0, 1]):

∂L
∂Yt(i)

= Pt(i)− λt

[∫ 1

0
Yt (i)

1−1/θ di
]1/(1−1/θ)−1

Yt (i)
−1/θ = 0. (b)

We note from the definition of Yt that:[∫ 1

0
Yt (i)

1−1/θ di
]1/(1−1/θ)−1

=

[∫ 1

0
Yt (i)

1−1/θ di
]1/(θ−1)

= Y1/θ
t , (c)

so that the expressions in (b) can be written as Pt(i) = λt (Yt/Yt(i))
1/θ

or:

Yt(i) = Yt

(
λt

Pt(i)

)θ

. (d)

By substituting (d) into the production function (19.9) and solving for λt
we find in a number of steps:

Y1−1/θ
t =

∫ 1

0
Yt (i)

1−1/θ di

= Y1−1/θ
t λθ−1

t

∫ 1

0
Pt (i)

1−θ di ⇒

λt =

[∫ 1

0
Pt (i)

1−θ di
]1/(1−θ)

≡ UCt, (e)

where UCt is the unit cost function. By substituting (e) into (d) we obtain
the derived demand curve for input i:

Yt (i) = Yt

(
Pt (i)
UCt

)−θ

. (f)

Note that total cost is given by:

TC (Pt(i), Yt) =
∫ 1

0
Pt(i)Yt(i)di =

∫ 1

0
Pt(i)Yt

(
Pt (i)
UCt

)−θ

di

= Yt UCθ
t

∫ 1

0
Pt(i)1−θdi = UCt Yt. (g)

There are no fixed costs so unit cost equals marginal cost in the final
goods sector. With perfect competition prevailing in that sector we find
that Pt = UCt.

****
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19.2.1.2 Production in the intermediate goods sector

The intermediate goods sector is populated by a large number of small firms, each
producing a single variety of the differentiated input. Firms engage in Chamber-
linian monopolistic competition (see Chapter 11 for a detailed account of this market
structure). Since all firms in the sector are assumed to be identical we focus on the
decisions made by firm i.

Firm i believes that it is too small to affect the overall market outcome, i.e. in
setting its price Pt(i) it takes the prices charged by other firms (as well as aggregate
demand) as given. In formal terms it assumes that ∂Pt(j)/∂Pt(i) = 0 for j 6= i and
that ∂Yt/∂Pt(i) = 0. The firm rents capital and labour from the household and faces
a fixed cost in the form of “overhead labour” . The production function is given by:

Yt(i) = F(Kt(i), Zt (Lt(i)− L̄)) ≡ Kt(i)α [Zt (Lt(i)− L̄)]1−α , (19.13)

where Kt(i) and Lt(i) denote the amounts of capital and labour, respectively, L̄ is
overhead labour (so that Lt(i)− L̄ is the number of production workers), and Zt is a
labour-augmenting technological shock term (which is stochastic and common to all
firms in the sector). The second expression in (19.13) shows that the technology is of
the Cobb-Douglas type with the capital coefficient such that 0 < α < 1.

Firm i faces perfectly competitive input markets because capital and labour are
assumed to be perfectly mobile across firms. This ensures that at any time t there
exist common nominal rental rates, which we denote by RK

t for capital and Wt for
labour. At each moment in time the firm chooses its input mix in order to minimize
total factor cost, RK

t Kt(i) + WtLt(i), subject to the production function (19.13). This
results in:

TCt(i) = MCt Yt(i) + Wt L̄, (19.14)

MCt ≡
(

RK
t

α

)α ( Wt

(1− α)Zt

)1−α

, (19.15)

where TCt(i) is total cost, MCt is marginal cost, and Wt L̄ is fixed cost. To produce
anything at all the firm must hire L̄ overhead workers. Variable cost is given by
MCt Yt(i) and depends on the firm’s output. Note that marginal and fixed cost are
the same for all firms in the intermediate goods sector. The derived demands for the
two production factors are obtained by employing Shephard’s lemma:

Kt(i) =
∂TCt(i)

∂RK
t

=
α

RK
t

MCt Yt(i), (19.16)

Lt(i) =
∂TCt(i)

∂Wt
= L̄ +

1− α

Wt
MCt Yt(i). (19.17)

In order to prepare for things to come we first study the price-setting decision of
firm i in the hypothetical case where it faces no price adjustment costs at all. In this
flex-price scenario the choice facing the firm is static. Nominal profit of the firm is
defined as follows:

NPt(i) ≡ Pt(i)Yt(i)− TCt(i),

= [Pt(i)−MCt] Yt

(
Pt (i)

Pt

)−θ

−Wt L̄, (19.18)



CHAPTER 19: DSGE—NEW KEYNESIAN MODELS 755

where we have used the demand function (19.12) and the cost function (19.14) to
arrive at the second expression.

Firm i chooses its price Pt(i) in order to maximize nominal profit NPt(i), taking as
given the “macroeconomic variables” (Pt, Wt, MCt, and Yt). The first-order condition
for this problem is:

dNPt(i)
dPt(i)

= Yt

(
Pt (i)

Pt

)−θ [
1− θ

Pt(i)−MCt

Pt(i)

]
= 0.

By setting the term in square brackets equal to zero we obtain the usual result that the
firm sets its (flex-price) optimal price equal to a fixed gross markup times marginal
cost:

P f
t (i) =

θ

θ − 1
MCt. (19.19)

At that price the firm’s flex-price output level is Y f
t (i) = Yt (P f

t (i) /Pt)−θ whilst its
flex-price profit level is:

NP f
t (i) ≡ P f

t (i)Y
f

t (i)− TCt(i)

=
1

θ − 1
MCt Y f

t (i)−Wt L̄. (19.20)

Since θ is greater than unity it follows from (19.19) that the gross markup is greater
than one so that the firm more than covers its variable production cost. This explains
why nominal profit is increasing in the firm’s output level in (19.20).

In the presence of price adjustment costs the choice facing the firm is a dynamic
one. Following much of the New Keynesian literature Calvo pricing is used (see
Section 11.3.3 for a discussion of its basic principles). The main features of the pricing
approach are as follows. In each period a fraction 1− ζ of firms receive a green light
from nature and get to charge a new price, Pt (i) = Pn

t (i). The remaining fraction ζ
of firms receive a red light and must charge their old price.

To derive the firm’s pricing decision when it receives a green light we first write
nominal profit at some future time t + τ from the perspective of time t as follows:

NPt+τ(i) = [Pt(i)−MCt+τ ] Yt+τ

(
Pt (i)
Pt+τ

)−θ

−Wt+τ L̄

≡ Φ (Pt(i), Xt+τ) , (19.21)

where Xt+τ is the vector of macroeconomic variables (expressed in nominal terms)
that are taken as given by the firm:

Xt+τ ≡ (Pt+τ , Yt+τ , Wt+τ , MCt+τ). (19.22)

The nominal value of a firm that has just received a green light and decides on Pt (i)
is given by:

V0
t (i) ≡ Φ (Pt(i), Xt) + Et

[
∞

∑
τ=1

ζτNt,t+τΦ (Pt(i), Xt+τ) + . . .

]
, (19.23)

where Nt,s is the nominal stochastic discount factor used for discounting nominal
profits:

Nt,s ≡
(

1
1 + ρ

)s−t UC(Cs, 1− Ls, Ms+1/Ps)

UC(Ct, 1− Lt, Mt+1/Pt)

Pt

Ps
, s ≥ t. (19.24)
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In equation (19.24) UC(·) is the marginal felicity of consumption (see more on this
below). Note that in equation (19.23) we have only written out the terms involving
the choice variable of the green-light firm in period t (Pt(i)). Below we explain why
profits are discounted with the nominal stochastic discount factor.

The firms sets Pn
t (i) in order to maximize V0

t (i). We show in Intermezzo 19.2
that the solution for this problem is:

Pn
t (i) = Pn

t =
θ

θ − 1
Pθ

t YtMCt + Et
[
∑∞

τ=1 ζτNt,t+τ Pθ
t+τYt+τMCt+τ

]
Pθ

t Yt + Et
[
∑∞

τ=1 ζτNt,t+τ Pθ
t+τYt+τ

] . (19.25)

Several things are worth noting in this expression. First, since firms face the same
macroeconomic environment every green-light firm sets the same price! This sym-
metry property is convenient because it facilitates the computation of aggregates
later on. Second, if firms would get a green light in every period for sure (so that
ζ = 0) then equation (19.25) would reduce to Pn

t (i) = Pn
t = θ

θ−1 MCt which is—
of course—the flex-price solution stated in (19.19). Third, in the general case (with
0 < ζ < 1) the new price Pn

t (i) depends in a complicated way on the current and
expected future macroeconomic environment. The new price is explicitly forward
looking.

Intermezzo 19.2

Some derivations for the New Keynesian DSGE model. The price set by
a green-light firm (19.25) is derived as follows. The first-order necessary
condition for maximizing V0

t (i) by choice of Pt(i) is:

dV0
t (i)

dPt(i)
= Et

∞

∑
τ=0

ζτNt,t+τ
∂Φ (Pt(i), Xt+τ)

∂Pt(i)
= 0. (a)

We use (19.21) to deduce that:

∂Φ (Pt(i), Xt+τ)

∂Pt(i)
= Pt(i)−θ Pθ

t+τYt+τ

[
1− θ

Pt(i)−MCt+τ

Pt(i)

]
= (1− θ)Pt(i)−θ Pθ

t+τYt+τ

[
1− θ

θ − 1
MCt+τ

Pt(i)

]
.

(b)

By substituting (b) into (a) (and eliminating 1− θ) we obtain:

0 = Et

∞

∑
τ=0

ζτNt,t+τ Pt(i)−θ Pθ
t+τYt+τ

[
1− θ

θ − 1
MCt+τ

Pt(i)

]
. (c)

The expression in (c) can be written as:

ΞD Pt(i)−θ =
θ

θ − 1
ΞN Pt(i)−(1+θ), (d)

with:

ΞD ≡ Et

[
∞

∑
τ=0

ζτNt,t+τ Pθ
t+τYt+τ

]
, (e)
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ΞN ≡ Et

[
∞

∑
τ=0

ζτNt,t+τ Pθ
t+τYt+τMCt+τ

]
. (f)

Finally, by substituting (e)–(f) in (d) and simplifying we obtain the ex-
pression for Pn

t (i):

Pn
t (i) =

θ

θ − 1
Et
[
∑∞

τ=0 ζτNt,t+τ Pθ
t+τYt+τMCt+τ

]
Et
[
∑∞

τ=0 ζτNt,t+τ Pθ
t+τYt+τ

] . (g)

In (19.25) we have slightly rewritten (g) to facilitate its interpretation.
The relationship between the alternative output measure Ya

t and ag-
gregate factor supplies in (19.44) is derived as follows. Recall that for
each firm i we have:

Wt

RK
t
=

(1− α)MCt
Yt(i)

Lt(i)−L̄

αMCt
Yt(i)
Kt(i)

=
1− α

α

Kt(i)
Lt(i)− L̄

. (h)

Hence, at both firm and aggregate level we have:

Kt

Lt − L̄
=

Kt(i)
Lt(i)− L̄

= Γt

[
≡ α

1− α

Wt

RK
t

]
. (i)

The alternative quantity index for aggregate output can now be com-
puted as:

Ya
t ≡

∫ 1

0
Yt(i)di =

∫ 1

0
Kt(i)α [Zt (Lt(i)− L̄)]1−α di

= Z1−α
t

∫ 1

0
[Γt (Lt(i)− L̄)]α [Lt(i)− L̄)]1−α di

= Z1−α
t Γα

t

∫ 1

0
(Lt(i)− L̄)di = Z1−α

t Γα
t (Lt − L̄). (j)

By using the fact that Γt = Kt/(Lt − L̄) in (j) we obtain (19.44) in the
text. To derive (19.46) we substitute the demand for variety i (stated in
equation (19.12)) into the definition of Ya

t :

Ya
t ≡

∫ 1

0
Yt (i) di = YtPθ

t

∫ 1

0
Pt (i)

−θ di. (k)

By using the definition for Pa
t from (19.45) in (k) we find (19.46).

****
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19.2.1.3 The aggregate price level

It remains to derive an expression for the aggregate price level Pt. In view of (19.10)–
(19.11) we know that:

P1−θ
t ≡

∫ 1

0
Pt (i)

1−θ di. (19.26)

At time t a fraction 1− ζ of firms in the intermediate goods sector obtain a green light
and set the price according to equation (19.25). Hence, a component of Pt consists of
the prices newly set in period t:

P1−θ
t ≡ (1− ζ) (Pn

t )
1−θ +

∫ 1

1−ζ
Pt (i)

1−θ di. (19.27)

The second expression on the right-hand side represent the component of Pt result-
ing from prices set in the past (i.e., Pn

t−s for s = 1, 2, . . .). The law of large numbers
says that (1− ζ) ζs is the fraction of firms which determined its new price s periods
before period t. Hence, we know exactly the weights that should be given to prices
set in previous periods: ζ(1− ζ) is the weight for Pn

t−1, ζ2(1− ζ) is the weight for
Pn

t−2, etcetera. We thus obtain from (19.27) that:

P1−θ
t = (1− ζ)

[
(Pn

t )
1−θ + ζ

(
Pn

t−1
)1−θ

+ ζ2 (Pn
t−2
)1−θ

+ . . .
]
. (19.28)

It follows from (19.28) that the lagged price level can be written as:

ζP1−θ
t−1 = (1− ζ)

[
ζ
(

Pn
t−1
)1−θ

+ ζ2 (Pn
t−2
)1−θ

+ ζ3 (Pn
t−3
)1−θ

+ . . .
]
. (19.29)

Hence, P1−θ
t−1 shares all but one of the terms appearing in P1−θ

t . By using (19.29) in
(19.28) and taking the exponent to the other side we finally obtain a relationship for
the current aggregate price level:

Pt =
[
(1− ζ) (Pn

t )
1−θ + ζP1−θ

t−1

]1/(1−θ)
. (19.30)

The current price level is a CES aggregate of the price set by current green-light
firms and the lagged aggregate price level. As we saw in a much simpler context in
Section 11.3.3 the current price level contains both a backward-looking term (Pt−1)
and a forward-looking term (Pn

t ).

19.2.2 Households

Just as in the previous chapter, there is a large number of identical households. Each
individual household is infinitely small and is a price taker on all markets in which
it operates. By normalizing the population size to unity we can develop the argu-
ment on the basis of a single representative agent. The representative household
is infinitely lived and has an objective function based on expected lifetime utility.
Denoting the planning period by t, expected lifetime utility, EtΛt, is given by:

EtΛt ≡ Et

∞

∑
τ=t

U(Cτ , 1− Lτ , Mτ+1/Pτ)

(
1

1 + ρ

)τ−t
, (19.31)

where U(Cτ , 1− Lτ , Mτ+1/Pτ) is the felicity function, Cτ is consumption, 1− Lτ is
leisure, and 1/(1 + ρ) is the discounting factor due to time preference (with ρ > 0).
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We assume that real money balances provide utility to the household for reasons
explained in Section 13.7 above. As far as timing is concerned, Mτ denotes nomi-
nal money balances held at the start of period τ so we assume that end-of-period
real balances enter the felicity function. To keep things simple we assume that the
felicity function is loglinear, implying that both the intratemporal and intertemporal
substitution elasticities are equal to unity:

U(Cτ , 1− Lτ , Mτ+1/Pτ) ≡ εc ln Cτ + ε l ln (1− Lτ) + εm ln
(

Mτ+1

Pτ

)
, (19.32)

with 0 < εc, ε l , εm < 1 and εc + ε l + εm = 1. The felicity function is weakly separable
in consumption, leisure, and real money balances implying that money is superneu-
tral in a model with perfectly flexible prices and nominal wages (see Section 13.7).

In order to simplify the exposition somewhat we assume that households are the
direct owners of the capital stock and thus make the capital accumulation decision
and derive income from renting out their capital stock to firms in the intermedi-
ate goods sector. The household also engages in portfolio investments by purchas-
ing risk-free government bonds, by holding money balances, and by buying equity
shares in firms in the intermediate goods sector.

The household’s periodic budget identity (in nominal terms) is given by:

Pτ [Cτ + Iτ ] + Mτ+1 + Bτ+1 +
∞

∑
s=0

Qs
τSs

τ+1 = Wτ Lτ + RK
τ Kτ + (1 + Rτ−1) Bτ

+
∞

∑
s=0

Xs
τSs

τ + Mτ − PτTτ , (19.33)

where Pτ is the price level, Iτ is gross investment, Mτ is cash balances at the start
of period τ, Bτ is the nominal value of the stock of single-period bonds available at
the start of period τ, Rτ−1 is the (risk-free) nominal interest rate received on such
bonds, Qi

τ is the nominal price of share type i in period τ, Ss
τ is the number of shares

of type s held at the start of period τ, Xs
τ is the payoff from such shares (see below),

Wτ is the nominal wage rate, RK
τ is the nominal rental rate on capital, Kτ is the stock

of capital available at the start of period τ, and PτTτ is the nominal lump-sum tax.
Note that—in principle—there are infinitely many firm types, i.e. s = 0, 1, . . ., where
firm type s = 0 is a green-light firm in period t, s = 1 is a firm which had a green
light in period t− 1 (but a red light in period t), etcetera. The law of motion for the
capital stock is given by:

Kτ+1 = Iτ + (1− δ)Kτ , (19.34)

where δ is the depreciation rate of capital (0 < δ < 1).
The household chooses sequences for consumption, labour supply, investment,

single-period bonds, share purchases, money balances, and the capital stock {Cτ , Lτ ,
Iτ , Bτ+1, Ss

τ+1, Mτ+1, Kτ+1}∞
τ=t in order to maximize expected utility (19.31) subject

to (19.33)–(19.34) and taking its initial stocks, Bt, Ss
t , Mt, and Kt as given. In addition,

the household treats as given the paths of prices and rental rates (Pτ , Qs
τ , Wτ , and

RK
τ ), the bond rate (Rτ), payoffs (Xs

τ), and taxes (Tτ).
For the planning period t the key first-order conditions for this optimization

problem can be obtained by using the insights from Intermezzo 18.1. Just as in the
standard RBC model of Chapter 18 the optimal static choice regarding consump-
tion and leisure is such that the marginal rate of substitution between leisure and
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consumption is equated to the real wage rate:

U1−L(Ct, 1− Lt, Mt+1/Pt)

UC(Ct, 1− Lt, Mt+1/Pt)
=

Wt

Pt
. (19.35)

Furthermore, the first-order condition for optimal investment gives the consumption
Euler equation for the representative household:

1 = Et

[
rK

t+1 + 1− δ

1 + ρ

UC(Ct+1, 1− Lt+1, Mt+2/Pt+1)

UC(Ct, 1− Lt, Mt+1/Pt)

]
, (19.36)

where rK
t+1 ≡ RK

t+1/Pt+1 is the next period’s real rental rate on capital. Optimal
purchases of the risk-free nominal bond result in:

1 = Et [(1 + Rt)Nt,t+1] , (19.37)

whereNt,t+1 is the nominal stochastic discount factor defined in (19.24) above. Note
that the interest factor 1 + Rt can be taken out of the expectations operator because
its value is known to the investor at time t. We thus have the usual result that the
risk-free gross interest rate satisfies 1 + Rt = 1/Et [Nt,t+1] (Cochrane, 2005, p. 11).

The first-order condition for nominal money balances is given by:

1 =
UM/P(Ct, 1− Lt, Mt+1/Pt)

UC(Ct, 1− Lt, Mt+1/Pt)
+ Et [Nt,t+1] . (19.38)

As was pointed out in Section 10.4 above, money provides not only direct felicity
(captured by the first term on the right-hand side) but also acts as a store of value
(second term). By using the expression for the risk-free interest rate from (19.37) we
can rewrite (19.38) in a more intuitive form as:

UM/P(Ct, 1− Lt, Mt+1/Pt)

UC(Ct, 1− Lt, Mt+1/Pt)
=

Rt

1 + Rt
. (19.39)

Optimal demand for real money balances is such that the marginal rate of substi-
tution between such balances and consumption is equated to the nominal interest
factor on the right-hand side of (19.39).

The final (and most complicated) first-order condition is the one for optimal share
purchases:

Qs
t = Et

[
Nt,t+1Xs

t+1
]

, (19.40)

where Xs
t+1 is the one-period payoff to purchasing a share in firm type s in period

t. What is this payoff and why is it uncertain at time t? Assume that the investor
purchases a share in a period-t green-light firm, i.e. Q0

t = Et
[
Nt,t+1X0

t+1
]
. Whilst

the firm has a green light in period t there are two possible outcomes for the next
period. With probability 1 − ζ it will have a green light again in period t + 1 so
that the payoff to the investor will be Q0

t+1 + NP0
t+1, where Q0

t+1 is the share price
for green-light firms and NP0

t+1 is nominal profit of such a firm (both in period t +
1). With probability ζ, however, the firm gets a red light in period t + 1 so that
the payoff to the investor will be Q1

t+1 + NP1
t+1, where Q1

t+1 and NP1
t+1 denote the

share price and nominal profit level of type s = 1 firms in period t + 1. Since the
household is ultimately interested in what he or she can consume as a result of the
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payoff, the nominal stochastic discount factor is applied in the expression in (19.40).
To answer the question at the start of this paragraph, the payoff is stochastic both
because there are technology shocks affecting all firms and because the firm may
change type between periods t and t + 1. To summarize we note that for a firm of
type s in period t the share price satisfies:

Qs
t = Et

[
Nt,t+1

[
(1− ζ)(Q0

t+1 + NP0
t+1) + ζ(Qs+1

t+1 + NPs+1
t+1)

]]
. (19.41)

No matter how long a red-light firm has been in this sorry state there is always hope
in the form of a non-zero probability of switching to the green-light status in the next
period.

19.2.3 Macroeconomic equilibrium

In this section we tie up some loose ends and define the macroeconomic equilibrium
model using the functional forms for household preferences and the technology in
the intermediate goods sector (as stated in, respectively, (19.32) and (19.13)). For con-
venience the equations defining the macroeconomic equilibrium have been gathered
in Table 19.1.

Equation (T1.1) restates (19.34), and (T1.2) is the final goods market clearing con-
dition for a closed economy. Equations (T1.3)–(T1.6) are obtained from, respectively,
(19.37), (19.36), (19.39), and (19.35) by using the logarithmic felicity function (19.32)
and noting (19.24). Equations (T1.7)–(T1.8) are obtained by aggregating (19.16)–
(19.17) over all firms in the intermediate sector (using the definition of Ya

t ) and by
expressing the result in real terms. Equation (T1.9) is obtained from (19.25) by using
the definition of the nominal stochastic discount factor from (19.24). Finally, equation
(T1.10) just restates (19.30).

The remaining equations in Table 19.1 deal with the loose ends mentioned above.
Since primary factors are used in the intermediate goods sector only, the equilibrium
conditions in the rental markets for labour are given by:

Lt =
∫ 1

0
Lt(i)di, (19.42)

Kt =
∫ 1

0
Kt(i)di, (19.43)

where Lt is total employment and Kt is the capital stock. It turns out to be convenient
to define an alternative output measure which can be tied directly to the aggregate
factor supplies. The alternative output index is defined as:

Ya
t ≡

∫ 1

0
Yt(i)di = Kα

t [Zt (Lt − L̄)]1−α , (19.44)

where the final expression is derived in Intermezzo 19.2. Note that the expression in
(19.44) differs from the true aggregate production function (19.9) in that it treats any
two inputs Yt(i) and Yt(j) as if they are perfect substitutes whereas (19.9) says that
they are not. But by defining the alternative price index:

Pa
t ≡

[∫ 1

0
Pt (i)

−θ di
]−1/θ

, (19.45)



762 FOUNDATIONS OF MODERN MACROECONOMICS, THIRD EDITION

we nevertheless find that Yt and Ya
t are related to each other according to the follow-

ing expression:

Yt =

(
Pa

t
Pt

)θ

Ya
t . (19.46)

Note that (19.44) and (19.46) have been restated in (T1.11) and (T1.13) respectively.
The recursive relationship for Pa

t in (T1.12) is obtained by repeating the steps leading
to (19.30) above.

The nominal government budget identity is given by:

Bt+1 + Mt+1 = (1 + Rt−1) Bt + Mt + Pt(Gt − Tt). (19.47)

Together with an assumption regarding the money supply and a government sol-
vency condition the macroeconomic equilibrium is determined. We implicitly as-
sume that the lump-sum tax ensures government solvency. Since the model features
Ricardian equivalence the timing of taxation does not matter.

19.3 The canonical New Keynesian DSGE model

The model given in Table 19.1 is an example of a unit-elastic MBC model with sticky
prices. It shares all non-monetary features with the basic RBC model studied in
Chapter 18. Hence it is clear that both the labour supply elasticity and the capital
accumulation mechanism play a crucial role in the MBC model also. Interestingly
most of the New Keynesian DSGE literature has chosen to ignore the capital ac-
cumulation mechanism by focusing on a much simpler version of the MBC model
which abstracts from physical capital altogether—see for example Galı́ (2015, ch. 3).
We study such a simplified model in the section (but we return to the more general
model in Section 19.4 below).

The canonical New Keynesian DSGE model is obtained from Table 19.1 by adopt-
ing the following simplifying assumptions. First, there is no role for physical capital,
i.e. α = 0 and Kt = It = 0 for all t. Second, there is no government consumption, so
that output is equal to private consumption, Yt = Ct for all t. Third, there is no trend
in the nominal money supply and the deterministic steady state is characterized by
zero price inflation.

By imposing these simplifications the model of Table 19.2 is obtained. Several
things are worth noting in the comparison between this model and its more gen-
eral parent in Table 19.1. First, in the absence of physical capital real marginal cost
is equal to the productivity-weighted real wage rate. Second, since consumption
equals output both drop out of the pricing equation (T2.5). Third, since nominal gov-
ernment bonds are the only interest-yielding investment instruments to the house-
holds, the expected real interest rate on such bonds enters the Euler equation (T2.1).
Whereas the nominal interest rate on bonds is known at time t, the future price level
is not, so the real rate of interest is uncertain.

Despite all these simplifications the model is still rather complex! This is to a
large extent a result of the pricing friction that is incorporated. Indeed, with the
Calvo mechanism in place we need to keep track of three different prices (Pn

t , Pa
t ,

and Pt) and two different output measures (Ya
t and Yt). It is impossible to make any

analytical progress with the model expressed in levels. But as we saw in a related
context in the previous chapter, a more tractable model is obtained by linearizing the
equations appearing in Table 19.2 around a deterministic steady state assuming that
the unconditional mean of the technology shock is equal to unity (EZt = 1).
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Table 19.1. The basic MBC model

Kt+1 = It + (1− δ)Kt (T1.1)
Yt = Ct + It + Gt (T1.2)

εc

Ct
= Et

[
1 + Rt

1 + ρ

εc

Ct+1

Pt

Pt+1

]
(T1.3)

εc

Ct
= Et

[
1 + rK

t+1 − δ

1 + ρ

εc

Ct+1

]
(T1.4)

Mt+1

Pt
=

εm

εc
Ct

1 + Rt

Rt
(T1.5)

Lt = 1− ε l
εc

Ct

wt
(T1.6)

wt = (1− α)mct
Ya

t
Lt − L̄

(T1.7)

rK
t = α mct

Ya
t

Kt
(T1.8)

Pn
t =

θ

θ − 1

Et

[
∑∞

τ=0

(
ζ

1+ρ

)τ
C−1

t+τ Pθ
t+τYt+τmct+τ

]
Et

[
∑∞

τ=0

(
ζ

1+ρ

)τ
C−1

t+τ Pθ−1
t+τ Yt+τ

] (T1.9)

Pt =
[
(1− ζ) (Pn

t )
1−θ + ζP1−θ

t−1

]1/(1−θ)
(T1.10)

Ya
t = Kα

t [Zt(Lt − L̄)]1−α (T1.11)

Pa
t =

[
(1− ζ) (Pn

t )
−θ + ζ

(
Pa

t−1
)−θ
]−1/θ

(T1.12)

Yt =

(
Pa

t
Pt

)θ

Ya
t (T1.13)

Definitions: Yt is output, Ct is private consumption, Lt is employment, Kt is the capital stock,
wt ≡ Wt/Pt is the real wage rate, rK

t ≡ RK
t /Pt is the real rental rate on capital, mct ≡ MCt/Pt

is real marginal cost, Pt is the price level, Pn
t is the price set by green-light firms, Ya

t is an
alternative output measure, Pa

t is an alternative price index, Rt is the rate of interest on risk-
free bonds, and It is gross investment. The exogenous variables are the nominal money supply
Mt+1, government consumption Gt, and the technology shock Zt. The structural parameters
are εc, ε l , εm, ρ, δ, ζ, θ, L̄, and α.
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Table 19.2. A minimal New Keynesian DSGE model

1
Yt

=
1 + Rt

1 + ρ
Et

[
1

Yt+1

Pt

Pt+1

]
(T2.1)

Mt+1

Pt
=

εm

εc
Yt

1 + Rt

Rt
(T2.2)

Lt = 1− ε l
εc

Yt

wt
(T2.3)

mct =
wt

Zt
(T2.4)

Pn
t =

θ

θ − 1

Et

[
∑∞

τ=0

(
ζ

1+ρ

)τ
Pθ

t+τmct+τ

]
Et

[
∑∞

τ=0

(
ζ

1+ρ

)τ
Pθ−1

t+τ

] (T2.5)

Pt =
[
(1− ζ) (Pn

t )
1−θ + ζP1−θ

t−1

]1/(1−θ)
(T2.6)

Ya
t = Zt(Lt − L̄) (T2.7)

Pa
t =

[
(1− ζ) (Pn

t )
−θ + ζ

(
Pa

t−1
)−θ
]−1/θ

(T2.8)

Yt =

(
Pa

t
Pt

)θ

Ya
t (T2.9)

Definitions: Yt is output, Lt is employment, wt ≡Wt/Pt is the real wage rate, mct ≡ MCt/Pt is
real marginal cost, Pt is the price level, Pn

t is the price set by green-light firms, Ya
t is an alterna-

tive output measure, Pa
t is an alternative price index, and Rt is the rate of interest on risk-free

bonds. The exogenous variables are the nominal money supply Mt and the technology shock
Zt. The structural parameters are εc, ε l , εm, ρ, ζ, L̄, and θ.
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19.3.1 Preliminary steps (without apologies)

Since the linearization of the model is Table 19.2 is far from trivial we show some
details here. We adopt the following notation:

• Deterministic steady-state values are denoted with stars.

• For output, employment, prices, real wages, and the money supply we use the
following definition:

x̃t ≡
xt − x∗

x∗
. (19.48)

• For the interest rate we use a slightly alternative definition:

R̃t ≡
Rt − ρ

1 + ρ
. (19.49)

The deterministic steady state has the following features. First, it incorporates the
assumption that the unconditional mean of Zt equals EZt = Z∗ = 1. Second, there
is no real growth so Y∗t = Y∗, w∗t = w∗, etcetera. Third, there is zero money growth
so P∗t+1 = P∗t = P∗ and the deterministic steady-state inflation rate is zero, π∗ = 0.
Fourth, from the (deterministic) Euler equation we find that in this zero-inflation
world the nominal interest rate equals the pure rate of time preference:

εc

Y∗t
=

1 + R∗t
1 + ρ

εc

Y∗t+1

P∗t
P∗t+1

⇔ 1 =
1 + R∗t
1 + ρ

⇔ R∗t = ρ. (19.50)

Fifth, it follows from (T2.5)–(T2.6) and (T2.8) that P∗ = (Pa)∗ = (Pn)∗ and from
(T2.5) we thus get that the steady-state real wage is constant:

w∗ ≡ W∗

P∗
=

θ − 1
θ

. (19.51)

Finally, in the calibration exercise below it will prove useful to note a number of
steady-state relationships. From (T2.7) and (T2.9) we find that:

Y∗ = (Ya)∗ = L∗ − L̄, (19.52)

whilst from (T2.2)–(T2.3) we obtain:

M0

P∗
=

εm

εc
Y∗

1 + ρ

ρ
,

ε l
1− L∗

=
εc

Y∗
w∗, (19.53)

where M0 is the given level of the money supply.
Armed with this notation and these steady-state results we can linearize the mo-

del in Table 19.2 by performing first-order Taylor approximations on its defining
equations. Recall that R∗ = ρ and π∗ = 0. We drop the expectations operator from
(T2.1) and start with the (deterministic) Euler equation (in terms of output):

1
Yt

=
1 + Rt

1 + ρ

1
Yt+1

1
1 + πt+1

, (19.54)

where future inflation, πt+1, is defined as:

Pt+1

Pt
=

Pt + ∆Pt+1

Pt
= 1 + πt+1. (19.55)
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A first-order approximation of the left-hand side of (19.54) gives:

1
Yt
≈ 1

Y∗
−
(

1
Y∗

)2

[Yt −Y∗] =
1− Ỹt

Y∗
, (19.56)

whilst approximating the right-hand side yields:

1 + Rt

1 + ρ

1
Yt+1

1
1 + πt+1

≈ 1
Y∗
[
1 + R̃t − Ỹt+1 − πt+1

]
, (19.57)

where we have used the definition for Ỹt and Ỹt+1. Finally, by combining (19.56) and
(19.57), simplifying, and putting the expectations operator back in we obtain one of
the key equations underlying the New Keynesian DSGE model:

Ỹt = EtỸt+1 −
[
R̃t − Etπt+1

]
. (19.58)

Equation (19.58) is often referred to as the dynamic IS curve (DIS hereafter) although
its foundations are completely at odds with those underlying the “old-fashioned”
IS curve of the IS-LM model. In the canonical model the DIS curve says something
about saving (consuming in this period or the next one) but is silent about invest-
ment as capital is absent from the model.

Next we turn to the money demand equation (T2.2). For a given money stock
Mt = M0 the left-hand side can be approximated by:

Mt+1

Pt
≈ M0

P∗
[
1 + M̃t+1 − P̃t

]
,

whilst for the right-hand side we find:

εm

εc
Yt

1 + Rt

Rt
≈ εm

εc
Y∗

1 + ρ

ρ

[
1 + Ỹt −

R̃t

ρ

]
.

Combining these results and simplifying we obtain:

M̃t+1 − P̃t = Ỹt −
R̃t

ρ
. (19.59)

Continuing our linearization we observe that equations (T2.3)–(T2.4), (T2.7), and
(T2.9) do not pose very challenging tasks. By applying the rules of first-order lin-
earization we easily find:

L̃t =
1− L∗

L∗
[
w̃t − Ỹt

]
, (19.60)

m̃ct = w̃t − Z̃t, (19.61)

Ỹa
t =

L∗

L∗ − L̄
L̃t + Z̃t, (19.62)

Ỹt = Ỹa
t + θ

(
P̃a

t − P̃t
)

, (19.63)

Expressions like (T2.6) and (T2.8) are a little tricker. We start by rewriting (T2.6) as:

P1−θ
t = (1− ζ) (Pn

t )
1−θ + ζP1−θ

t−1 . (19.64)

Since P∗t = (Pn
t )
∗ = P∗t−1 = P∗ the left-hand side of (19.64) can be approximated by:

P1−θ
t ≈ (P∗)1−θ

[
1 + (1− θ)P̃t

]
,
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whilst the right-hand side gives:

(1− ζ) (Pn
t )

1−θ + ζP1−θ
t−1 ≈ (1− ζ)(P∗)1−θ

[
1 + (1− θ)P̃n

t
]

+ ζ(P∗)1−θ
[
1 + (1− θ)P̃t−1

]
.

Combining results yields the final expression:

P̃t = (1− ζ)P̃n
t + ζ P̃t−1. (19.65)

In a similar fashion we can find that the linearized version of (T2.8) is:

P̃a
t = (1− ζ)P̃n

t + ζ P̃a
t−1. (19.66)

Since (19.65) and (19.66) depend in the same way on P̃n
t and feature the same lag

structure we find that P̃t = P̃a
t for all t (and thus that Ỹt = Ỹa

t ).
As always we have saved the best for last. At least the hardest one! As it turns

out it is most convenient to rewrite (T2.5) in relative terms first by dividing both sides
by the current price level Pt:

pn
t =

θ

θ − 1

Et

[
∑∞

τ=0

(
ζ

1+ρ

)τ
pθ

t+τmct+τ

]
Et

[
∑∞

τ=0

(
ζ

1+ρ

)τ
pθ−1

t+τ

] , (19.67)

where pn
t ≡ Pn

t /Pt and pt+τ ≡ Pt+τ/Pt denote, respectively, the relative new price
and the relative price in period t + τ. Next, we drop the expectations operator Et
and write (19.67) as:

ΞD pn
t =

θ

θ − 1
ΞN , (19.68)

where ΞD and ΞN are defined as:

ΞD ≡
∞

∑
τ=0

(
ζ

1 + ρ

)τ

pθ−1
t+τ , ΞN ≡

∞

∑
τ=0

(
ζ

1 + ρ

)τ

pθ
t+τmct+τ . (19.69)

For future reference we note that (pn
t )
∗ = p∗t+τ = 1 so that:

Ξ∗D ≡
∞

∑
τ=0

(
ζ

1 + ρ

)τ

=
1 + ρ

1− ζ + ρ
, Ξ∗N ≡

∞

∑
τ=0

(
ζ

1 + ρ

)τ

mc∗ = Ξ∗D mc∗.

We reach our goal in four steps. In step 1 we linearize the left-hand side of (19.68) to
obtain:

ΞD pn
t ≈ Ξ∗D + Ξ∗D p̃n

t + (θ − 1)
∞

∑
τ=0

(
ζ

1 + ρ

)τ

p̃t+τ , (19.70)

whilst for the right-hand side we find:

ΞN ≈ Ξ∗N + θ mc∗
∞

∑
τ=0

(
ζ

1 + ρ

)τ

p̃t+τ + mc∗
∞

∑
τ=0

(
ζ

1 + ρ

)τ

m̃ct+τ . (19.71)

In step 2 we substitute (19.70)–(19.71) into (19.68), use the definitions for Ξ∗N and Ξ∗D,
and simplify to obtain:

p̃n
t =

1− ζ + ρ

1 + ρ

[
∞

∑
τ=0

(
ζ

1 + ρ

)τ

p̃t+τ +
∞

∑
τ=0

(
ζ

1 + ρ

)τ

m̃ct+τ

]
. (19.72)
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In step 3 we note that p̃n
t ≡ P̃n

t − P̃t, p̃t+τ ≡ P̃t+τ − P̃t, and put Et back in:

P̃n
t =

1− ζ + ρ

1 + ρ
Et

[
∞

∑
τ=0

(
ζ

1 + ρ

)τ [
P̃t+τ + m̃ct+τ

]]
. (19.73)

We note that (19.73) can be written recursively as:

P̃n
t =

1− ζ + ρ

1 + ρ

[
P̃t + m̃ct

]
+

ζ

1 + ρ
Et
[
P̃n

t+1
]

. (19.74)

In step 4 we use (19.65) to eliminate P̃n
t and P̃n

t+1 from (19.74):

P̃t − ζ P̃t−1

1− ζ
=

1− ζ + ρ

1 + ρ

[
P̃t + m̃ct

]
+

ζ

1 + ρ
Et

[
P̃t+1 − ζ P̃t

1− ζ

]
. (19.75)

By using the approximations πt = P̃t− P̃t−1 and πt+1 = P̃t+1− P̃t we easily find that
(19.75) can be rewritten as:

π̃t =
1− ζ

ζ

1− ζ + ρ

1 + ρ
m̃ct +

1
1 + ρ

Etπ̃t+1. (19.76)

Equation (19.76) is often referred to as the New Keynesian Phillips curve (NKPC
hereafter). Note that A.W. Phillips would certainly not recognize (19.76) as a rela-
tionship worthy of his name. Indeed, the traditional Phillips curve is an inverse
relationship between unemployment and inflation in an economy. And the model
developed here does not feature unemployment.

That expectations regarding prices affect the location of the Phillips curve is the
well-known lesson we learnt from Friedman and Phelps in the 1960s. Indeed, the
ad hoc expectations-augmented Phillips curve typically relates inflation to Okun’s
output gap (OOG), i.e. the difference between actual and potential output (named
after Arthur Okun). It turns out that in our micro-founded model we can relate mct to
an OOG-like measure. This measure is obtained by comparing equilibrium output in
the sticky-price economy under consideration to the hypothetical flex-price solution
for output. For our model this relationship is given by:

m̃ct =
1− L̄
1− L∗

[
Ỹt − Ỹ f

t

]
, (19.77)

where Ỹ f
t = Z̃t is the flex-price perturbation in output (equalling the perturbation

in the technology level). If output exceeds its potential level, Ỹt > Ỹ f
t , then real

marginal cost rises. Ceteris paribus expected inflation, it follows from (19.76) that
actual inflation rises.

The expression in (19.77) is derived as follows. In the hypothetical flex-price
economy (ζ = 0), all firms set the same price (Pn

t = Pt = Pa
t = θ

θ−1 MCt =
θ

θ−1
Wt
Zt

), the

real wage rate w f
t ≡ θ−1

θ Zt is lower than Zt, and flex-price output and employment
satisfy:

Y f
t = Zt

(
L f

t − L̄
)

,
ε l

1− L f
t

=
εc

Y f
t

w f
t ,

or:

Y f
t =

εc(1− L̄)
ε l

θ
θ−1 + εc

Zt, L f
t = L̄ +

εc(1− L̄)
ε l

θ
θ−1 + εc

. (19.78)
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Flex-price output is proportional to the technology indicator so that:

Ỹ f
t = Z̃t. (19.79)

With perfectly flexible prices output fluctuates one-for-one with the random tech-
nology shocks just as in the typical RBC model. This is, of course, not surprising in
view of the fact that the flex-price MBC model is an RBC model.

For an economy characterized by sticky-prices (0 < ζ < 1) it is not possible to
obtain analytical expressions for the equilibrium levels of output and employment
but we do know that in proportional rates of change perturbations in these variables
are related according to:

Ỹt = w̃t −
L∗

1− L∗
L̃t, (19.80)

Ỹt = Z̃t +
L∗

L∗ − L̄
L̃t. (19.81)

Note that (19.80) is the linearized labour supply equation and (19.81) is the linearized
production function. By solving for w̃t in terms of Z̃t and Ỹt we find:

w̃t = Ỹt +
L∗ − L̄
1− L∗

[
Ỹt − Z̃t

]
. (19.82)

By using (19.82) in (19.61) and noting (19.79) we find (19.77).

19.3.2 Stability

It was a lot of work but we got something worthwhile in return. By means of first-
order linearization the model of Table 19.2 has been condensed into three key equa-
tions plus a definition:

Ỹt = EtỸt+1 −
[
R̃t − Etπt+1

]
, (19.83)

πt = γ
[
Ỹt − Z̃t

]
+

1
1 + ρ

Etπt+1, (19.84)

M̃t+1 − P̃t = Ỹt −
R̃t

ρ
, (19.85)

πt ≡ P̃t − P̃t−1, (19.86)

where γ is a composite parameter:

γ ≡ 1− ζ

ζ

1− ζ + ρ

1 + ρ

1− L̄
1− L∗

> 0. (19.87)

Equations (19.83) and (19.85) just restate, respectively, (19.58) and (19.59) whilst the
expression in (19.86) links inflation with price levels. Equation (19.84) is obtained by
substituting (19.77) in (19.76) and noting (19.79).

Let us start by assuming that monetary policy is of the traditional type, i.e. the
Central Bank sets the nominal money supply and lets the nominal interest rate equi-
librate the money market. In such a setting the endogenous variables appearing in
(19.83)–(19.85) are output Ỹt, the nominal interest rate R̃t, inflation πt, and the cur-
rent price level P̃t. The exogenous variables are the money supply M̃t+1 and the
technology shock Z̃t. The predetermined variable is the lagged price level, P̃t−1.
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To investigate the stability properties of the model it is convenient to cast it in
the form suggested by Blanchard and Kahn (1980). In the Blanchard-Kahn (BK)
form the system is written in a particular way in terms of forward-looking and
backward-looking variables—see Intermezzo 19.3. In the context of our model we
know that πt ≡ P̃t − P̃t−1 and we must somehow impose that P̃t−1 is a predeter-
mined (backward-looking) variable. We do so by defining an auxiliary variable,
L̃Pt ≡ P̃t−1. Using this variable it follows that L̃Pt+1 = P̃t so that we can write
equation (19.86) as:

L̃Pt+1 = πt + L̃Pt. (19.88)

By solving (19.85) for R̃t, substituting the result in (19.83), and using (19.88) and
(19.84) we can write the system as:

Γ

 EtL̃Pt+1
EtỸt+1
Etπ̃t+1

 = ∆∗

 L̃Pt
Ỹt
π̃t

+

 0
−ρM̃t+1
γ (1 + ρ) Z̃t

 , (19.89)

where Γ, Γ−1, and ∆∗ are defined as:

Γ ≡

 1 0 0
−ρ 1 1
0 0 1

 , Γ−1 ≡

 1 0 0
ρ 1 −1
0 0 1

 , ∆∗ ≡

 1 0 1
0 1 + ρ 0
0 −γ (1 + ρ) 1 + ρ

 .

Hence (19.89) can be expressed in the BK form as: EtL̃Pt+1
EtỸt+1
Etπ̃t+1

 = ∆

 L̃Pt
Ỹt
π̃t

+

 0
−ρM̃t+1 − γ (1 + ρ) Z̃t
γ (1 + ρ) Z̃t

 , (19.90)

where ∆ ≡ Γ−1∆∗ is defined as:

∆ ≡

 1 0 1
ρ (1 + γ) (1 + ρ) −1
0 −γ (1 + ρ) 1 + ρ

 . (19.91)

Now that we have recast the system in the BK format we can apply Proposition 1
from Intermezzo 19.3 and conclude that the system features a unique solution for
output, inflation, and the price level if and only if the Jacobian matrix ∆ features two
roots outside the unit circle (because Ỹt and π̃t are jumping variables) and one root
inside the unit circle (because L̃Pt is a predetermined variable).

To check whether the root condition is satisfied we write the characteristic equa-
tion of ∆ as:

Ψ (s) ≡ |sI − ∆| = [s− (1 + ρ)] Φ (s) , (19.92)

where Φ (s) is given by:

Φ (s) ≡ (s− 1) (s− (1 + γ) (1 + ρ))− γ (1 + ρ)

= s2 − [1 + (1 + γ) (1 + ρ)] s + 1 + ρ. (19.93)

It follows from (19.92) that the system has one unstable root for sure, say:

λ3 = 1 + ρ > 0. (19.94)
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To check the remaining characteristic roots we note that Φ (s) can be written as:

Φ (s) = (s− λ1) (s− λ2)

= s2 − (λ1 + λ2) s + λ1λ2 (19.95)

so it follows (from the comparison of (19.93) and (19.95)) that:

λ1 + λ2 = 1 + (1 + γ) (1 + ρ) > 2, λ1λ2 = 1 + ρ > 1. (19.96)

The sum and product of the roots are both positive so we know that λ1 > 0 and
λ2 > 0 for sure. Using (19.95) and (19.96) to compute Φ (1) results in:

Φ (1) = (1− λ1) (1− λ2)

= 1− [1 + (1 + γ) (1 + ρ)] + 1 + ρ

= −γ (1 + ρ) < 0. (19.97)

Hence, λ1 and λ2 are not only both positive but they also lie on either side of unity,
say:

0 < λ1 < 1, λ2 > 1. (19.98)

The canonical model is saddle-path stable when the money supply acts as the policy
variable. The nominal interest rate is endogenous in that case and fluctuations in
it will guarantee stability. Matters may not be so straightforward if the monetary
policy maker wishes to set nominal interest rates.

Intermezzo 19.3

Blanchard-Kahn stability and existence conditions. To investigate sta-
bility of the rational expectations model the technique proposed by Blan-
chard and Kahn (1980) is particularly convenient. To illustrate their
method we write the dynamic system in general as:[

Bt+1
EtFt+1

]
= ∆

[
Bt
Ft

]
+ Ψ X t, (a)

where Bt is an (nb× 1) vector of predetermined (backward-looking) vari-
ables, Ft is an (n f × 1) vector of non-predetermined (forward-looking)
variables, X t is a (k × 1) vector of exogenous variables, ∆ is an (nb +
n f )× (nb + n f ) matrix of coefficients, and Ψ is an (nb + n f )× k matrix of
coefficients.

Blanchard and Kahn prove the following propositions:

• B-K Proposition 1: If the number of eigenvalues of ∆ outside the
unit circle (say n′f ) is equal to the number of non-predetermined
variables (n f ) then there exists a unique solution.

• B-K Proposition 2: If n′f exceeds n f there no solution.

• B-K Proposition 3: If n′f falls short of n f there is an infinity of solu-
tions (“indeterminacy”).
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Blanchard and Kahn also provide explicit expressions for the solution
paths in the case for which B-K Proposition 1 holds (i.e. if n′f = n f ) but
we do not use their expressions here.

****

19.3.3 Interest rate setting, instability, and Taylor rules

Up to this point we have adopted the traditional approach by assuming that mone-
tary policy is conducted by means of changes in the nominal money supply. In real-
ity, however, Central Banks typically set interest rates in order to achieve their policy
aims. In the context of our canonical model (given in equations (19.83)–(19.86) above)
this means that the interest rate R̃t becomes the policy variable whilst the nominal
money supply M̃t+1 is endogenously (and residually) determined by (19.85).

With the interest rate as the policy variable, the canonical model is fully charac-
terized by:

Ỹt = EtỸt+1 −
[
R̃t − Etπt+1

]
, (19.99)

πt = γ
[
Ỹt − Z̃t

]
+

1
1 + ρ

Etπt+1. (19.100)

The endogenous variables are output Ỹt and inflation πt. The exogenous variables
are the nominal interest rate R̃t and the technology shock Z̃t. There is no predeter-
mined variable in this system: given the lagged price P̃t−1 the current price follows
once πt is known (as πt ≡ P̃t − P̃t−1). Is the model still saddle-path stable under this
type of monetary policy?

Following similar steps as before we can deduce the BK format of the model.
First we use (19.99)–(19.100) to obtain:

Γ
[

EtỸt+1
Etπ̃t+1

]
= ∆∗

[
Ỹt
π̃t

]
+

[
R̃t
γ (1 + ρ) Z̃t

]
, (19.101)

where Γ, Γ−1, and ∆∗ are given by:

Γ ≡
[

1 1
0 1

]
, Γ−1 ≡

[
1 −1
0 1

]
, ∆∗ ≡

[
1 0

−γ (1 + ρ) 1 + ρ

]
. (19.102)

It follows that equation (19.101) can be expressed in the BK form as:[
EtỸt+1
Etπ̃t+1

]
= ∆

[
Ỹt
π̃t

]
+

[
R̃t − γ (1 + ρ) Z̃t
γ (1 + ρ) Z̃t

]
, (19.103)

where ∆ ≡ Γ−1∆∗ is defined as:

∆ ≡
[

1 + γ (1 + ρ) −(1 + ρ)
−γ (1 + ρ) 1 + ρ

]
. (19.104)

Since output and inflation are jumping variables, stability holds if and only if the
Jacobian matrix ∆ features two unstable roots, i.e. both λ1 and λ2 must lie outside
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the unit circle. Our usual trick can be used to establish the signs and magnitude of
the characteristic roots. The characteristic equation of ∆ is:

Φ (s) = s2 − [1 + (1 + γ) (1 + ρ)] s + 1 + ρ,

and it is easy to verify that:

λ1 + λ2 = 1 + (1 + γ) (1 + ρ) > 2, λ1λ2 = 1 + ρ > 1.

By computing Φ (1) we find:

Φ (1) = (1− λ1)(1− λ2)

= 1− [2 + ρ + γ (1 + ρ)] + 1 + ρ = −γ (1 + ρ) < 0,

which implies that both roots are positive and lie on either side of unity, say:

0 < λ1 < 1, λ2 > 1. (19.105)

The root condition is clearly not satisfied as there are two non-predetermined vari-
ables and only one root outside the unit circle. Proposition 3 from Intermezzo 19.3
implies that there exist infinitely many solutions—the model suffers from indetermi-
nacy. The economic lesson is that using the nominal interest rate as a policy variable
induces indeterminacy in an economy that is stable if the Central Bank would just
control the money supply. Loosely put, the intuition behind this result is as follows.
Assume that expected future inflation rises (Etπ̃t+1 ↑). Since R̃t does not react to
this change the real interest rate falls. This prompts an increase in output via the dy-
namic IS curve (19.99) (Ỹt ↑). But this output change in turn boosts current inflation
via the New Keynesian Phillips curve (19.100) and (π̃t ↑). A self-fulfilling increase in
inflation emerges: if the public thinks the inflation rate will rise then it will.

The indeterminacy problem arises because the interest rate set by the Central
Bank is independent of the state of the economy, i.e. we have implicitly assumed
that the Central Bank uses a passive policy rule (PPR hereafter) like:

R̃t = Ũt, PPR, (19.106)

where Ũt is an exogenously given stationary stochastic process. In reality policy
makers may not be that passive. To see if it could help eliminate indeterminacy
let us try a feed-back policy rule (FPR hereafter) that chokes off the inflation spiral
mentioned above:

R̃t = δππt + Ũt, δπ > 0, FPR1. (19.107)

There is some hope such a rule may do the job as an increase in inflation will result
in an increase in the nominal interest rate. To see whether this hunch works we write
the system consisting of (19.99)–(19.100) and (19.107) in the form of (19.103) and find
that element (1, 2) of ∆∗ in (19.102) changes from 0 to δπ and ∆ becomes:

∆ ≡
[

1 + γ (1 + ρ) δπ − (1 + ρ)
−γ (1 + ρ) 1 + ρ

]
. (19.108)

We easily find that the characteristic roots satisfy:

λ1 + λ2 = 2 + ρ + γ (1 + ρ) > 2, λ1λ2 = (1 + ρ) [1 + δπγ] > 1 + ρ,
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whilst the characteristic equation evaluated at s = 1 gives:

Φ (1) = (1− λ1)(1− λ2) = (δπ − 1) γ (1 + ρ) .

Provided the feedback coefficient exceeds unity (δπ > 1) we find that Φ(1) > 0 so
that both roots are larger than unity, i.e.:

λ1 > 1, λ2 > 1. (19.109)

The root condition is clearly satisfied because we have two non-predetermined vari-
ables and two characteristic roots outside the unit circle. Proposition 1 from Inter-
mezzo 19.3 implies that there exist unique solution paths for output and inflation.
The economic lesson is that a feed-back policy rule such as FPR1 eliminates indeter-
minacy provided δπ > 1. This is called the Taylor principle after John B. Taylor (1993)
who was one of the first economists to stress that the interest rate rule should react
more than one-for-one to inflation. Intuitively, under this rule an increase in inflation
prompts a change in the nominal interest rate large enough to cause an increase in
the real interest rate.

As the icing of the cake, let us try a more complicated feedback rule that responds
both to inflation and to output:

R̃t = δππt + δyỸt + Ũt, δπ , δy > 0, FPR2. (19.110)

This is an example of a Taylor rule, and empirically such a rule seems to have been
followed by many Central Banks in the world. To see how this policy rule works
we write the system consisting of (19.99)–(19.100) and (19.110) in the form of (19.103)
and find that element (1, 1) of ∆∗ in (19.102) changes from 1 to 1 + δy whilst (just as
before) element (1, 2) of that matrix changes from 0 to δπ . As a result ∆ becomes:

∆ ≡
[

1 + δy + γ (1 + ρ) δπ − (1 + ρ)
−γ (1 + ρ) 1 + ρ

]
. (19.111)

We easily find that:

λ1 + λ2 = 2+ δy + ρ + γ (1 + ρ) > 2, λ1λ2 = (1 + ρ)
[
1 + δy + δπγ

]
> 1+ ρ,

and that:

Φ (1) = (1− λ1)(1− λ2) = ρδy + (δπ − 1) γ (1 + ρ) . (19.112)

The stability condition is that Φ (1) > 0 so that (19.109) holds. In view of (19.112) we
conclude that, since δy > 0 we now have that δπ > 1 is no longer a necessary con-
dition for determinacy. Even if δπ falls short of unity, the model is still determinate
provided δy is large enough.

19.4 Back to the general case

The canonical New Keynesian DSGE model is quite useful in that its basic mecha-
nism are quite transparent and it allows us to analytically investigate stability issues
arising from the particular form of the monetary policy rules. Of course the canonical
model has severe limitations, the most important of which is the absence of capital
accumulation effects in response to economic shocks. And in Chapter 18 we saw
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that the capital accumulation mechanism is a very important component of DSGE
models of the New Classical type.

In this section we return to the general New Keynesian DSGE model given in Ta-
ble 19.1. Compared to the canonical model this model not only includes capital as a
productive factor but also allows government consumption to be non-zero. To solve
the model we could of course proceed along the lines of the previous section and
linearize the model around a deterministic steady state. Here, however, we follow
the numerical Dynare route that we also took in Chapter 18 for the New Classical
DSGE model.

19.4.1 Calibration

We postulate that the deterministic steady state has the following features:

• All prices are constant: P∗t = P∗t−1 = (Pa
t )
∗ =

(
Pa

t−1
)∗

= P∗.

• The output measures coincide: Y∗t = (Ya
t )
∗ = Y∗.

• Capital and consumption are constant over time: K∗t+1 = K∗t = K∗ and C∗t+1 =
C∗t = C∗.

• The money supply and government consumption are both constant: Mt+1 =
M0 and Gt = G0.

Imposing these features on the model in Table 19.1 gives the following representation
of the deterministic steady state:

I∗ = δK∗, (19.113)
Y∗ = C∗ + I∗ + G0, (19.114)
R∗ = ρ, (19.115)(

rK
)∗

= ρ + δ, (19.116)

M0

P∗
=

εm

εc
C∗

1 + R∗

R∗
, (19.117)

L∗ = 1− ε l
εc

C∗

w∗
, (19.118)

w∗ = (1− α)mc∗
Y∗

L∗ − L̄
, (19.119)(

rK
)∗

= α mc∗
Y∗

K∗
, (19.120)

mc∗ =
θ − 1

θ
, (19.121)

Y∗ = Ω0 (K∗)
α (L∗ − L̄)1−α, (19.122)

where Ω0 is a calibration parameter that we have included in order to obtain a con-
venient scaling of steady-state output (this constant is introduced by writing (19.13)
as Yt(i) = Ω0Kt(i)α [Zt(Lt(i)− L̄)]1−α).

The structural parameters affecting the deterministic steady state of the model
are δ, ρ, εc, ε l , εm, α, Ω0, L̄, and θ. We choose these parameters such that a plausible
steady state is obtained. (Though ζ is crucially important outside the steady state it
does not feature in (19.113)–(19.122).)
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We proceed with an example calibration. DSGE models are typically calibrated
in a quarterly fashion. Assume that the steady-state nominal (and real) interest rate
is four percent per annum, so 1 + Ra = 1.04. On a quarterly basis we would thus
get R∗ = (1 + Ra)1/4 − 1 = 0.00985. Since R∗ = ρ in this model we have pinned
down one of the structural parameters. The annual rate of depreciation of the capital
stock δa is set at ten per annum i.e. δ = (1− δa)1/4 − 1 = 0.0260. This pins down
the second structural parameter. Recall that θ

θ−1 is the steady-state markup of price
over marginal cost. A reasonable range of values for that markup is between 1.2 and
1.3 (implying some monopoly power but not an outrageous amount). Selecting the
highest value we get a value for θ = 13/3. In view of (19.121) this value of θ also
fixes the level of steady-state real marginal cost:

mc∗ =
1

1.3
= 0.7692.

Setting the efficiency parameter of capital equal to the conventional value, α = 1/3,
we find from (19.116) and (19.120) that:

K∗

Y∗
=

α mc∗

ρ + δ
= 7.1524.

We normalize output to unity by choice of Ω0, so Y∗ = 1, K∗ = 7.1524, and I∗ =
δK∗ = 0.1859. If the government consumption share of output is set at twenty per-
cent we find that G0 = 0.2 and (from (19.114)) C∗ = 0.6141.

Of the structural parameters mentioned above we still need to assign value to
the taste parameters (εc, ε l , and εm) and the returns-to-scale parameter (L̄). People
have 24 hours of time per day of which they typically work 8 hours (and consume
the rest in the form of active or passive leisure). We thus want to get a steady-state
such that (1− L∗) /L∗ = 2 or L∗ = 1

3 . Assume that a fraction φ of employment
consists of overhead labour (“useless managers”), i.e. L̄ = φL∗. We set φ = 0.1 so
overhead labour plays a modest role in the steady state.1 From (19.119) we find that
the steady-state real wage rate equals:

w∗ =
(1− α)mc∗

1− φ

Y∗

L∗
= 1.7094.

By using (19.118) we find that the target for steady-state employment is provided by
the relative taste coefficient for leisure, ε l/εc, which satisfies the following equality:

ηl ≡
ε l
εc

=
w∗[1− L∗]

C∗
= 1.8558.

To ensure consistency we set Ω0 equal to:

Ω0 = Y∗ (K∗)−α ((1− φ)L∗)α−1 = 1.1582.

We can normalize the nominal price such that P∗ = 1 and set M0 = 1. By using
money demand (19.117) we find that the relative taste coefficient for money balances,
εm/εc, must satisfy:

ηm ≡
εm

εc
=

R∗

1 + R∗
M0

P∗C∗
= 0.0159.

1Modest from the perspective of an academic economist working in the Dutch public university sys-
tem!
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Since the taste coefficients themselves add up to unity, 1 = εc + ε l + εm, we find that
the calibration is consistent provided:

εc =
1

1 + ηl + ηm
= 0.3482, ε l = ηlεc = 0.6462, εm = ηmεc = 0.0055.

Even though we do not need it to calibrate the steady-state, in the computations of
the transition paths a value for ζ is required. Following Bernanke et al. (1999) we
assume that the probability that a firm does not change its price in a given quarter
is 75 percent, i.e. our structural parameter is set at ζ = 0.75. The average period
between adjustments is thus four quarters.

19.4.2 Computation

Now that we have a plausible calibration for the deterministic steady state we can
once again ask Dynare to do all the difficult stuff for us, i.e. to compute the short-run
dynamic adjustments that occur in the stochastic version of the model.

Glancing at the structure of the model in Table 19.1, however, there seems to be
a rather complicated expression that Dynare may not be able to handle, namely the
equation for price set by green-light firms:

Pn
t =

θ

θ − 1

Et

[
∑∞

τ=0

(
ζ

1+ρ

)τ
C−1

t+τ Pθ
t+τYt+τmct+τ

]
Et

[
∑∞

τ=0

(
ζ

1+ρ

)τ
C−1

t+τ Pθ−1
t+τ Yt+τ

] . (19.123)

How on earth are we going to enter infinitely many leading terms (such as Ct+1,
Ct+2, etc.) into a Dynare model file of finite size? The answer is that we have no need
to do so because we can quite easily derive a recursive expression for (19.123). Note
that (19.123) can be written as:

Pn
t ≡

θ

θ − 1
ΞN,t

ΞD,t
, (19.124)

where ΞD,t and ΞN,t are defined as:

ΞD,t ≡ Et

[
∞

∑
τ=0

(
ζ

1 + ρ

)τ

C−1
t+τ Pθ−1

t+τ Yt+τ

]
, (19.125)

ΞN,t ≡ Et

[
∞

∑
τ=0

(
ζ

1 + ρ

)τ

C−1
t+τ Pθ

t+τYt+τmct+τ

]
. (19.126)

It is easy to see that ΞD,t can be written recursively as:

ΞD,t ≡ C−1
t Pθ−1

t Yt + Et

[
∞

∑
τ=1

(
ζ

1 + ρ

)τ

C−1
t+τ Pθ−1

t+τ Yt+τ

]

= C−1
t Pθ−1

t Yt +
ζ

1 + ρ
Et [ΞD,t+1] . (19.127)

Hence, ΞD,t consists of the current contribution made to it in period t (first term on
the right-hand side) plus the expected value of ΞD,t+1 discounted by the impatience-
weighted probability of getting a red light (ζ/(1 + ρ)). Similarly, the recursive rela-
tionship for ΞN,t is given by:

ΞN,t = C−1
t Pθ

t Ytmct +
ζ

1 + ρ
Et [ΞN,t+1] . (19.128)
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The key thing to note is that (19.127) and (19.128) are forward-looking expectational
difference equations expressed in a format that Dynare can handle.

In Table 19.3 we show an example Dynare model file implementing the general
MBC model of Table 19.1. The model file is called Program19 01.mod as is indicated
in the commented line at the top. As was explained in Section 18.3.5 above, the
model file contains several blocks of statements. Block 1 defines the endogenous
and exogenous variables, Block 2 provides the values for the structural parameters
and gives guesses for the steady-state equilibrium values, Block 3 states the model
in a format that Dynare can work with, and Block 4 performs the computations.
Note that the Dynare implementation considers the nominal money supply to be
exogenously fixed and assumes that the technology terms can be written as Zt = eZ̃t

where Z̃t follows an AR1 process:

Z̃t = ξZZ̃t−1 + ηt, 0 < ξZ < 1. (19.129)

In the Manual the reader is asked to verify that the Dynare program actually runs
correctly and that the model is saddle-path stable. In addition the reader is asked to
introduce a Taylor rule into the model and to investigate the stability properties of
the model.

19.4.3 Visualizing some shocks

In this subsection we visualize some of the properties of the general MBC model of
Table 19.1. Just as in Section 18.3.3 we do so by studying the theoretical impulse-
response functions. We consider three types of shocks, namely a productivity shock,
a money supply shock, and a public consumption shock.

19.4.3.1 Productivity shock

We compute the impulse-response functions as follows. Productivity proceeds ac-
cording to (19.129). We normalize the time of the shock at t = 0, and assume that
η0 > 0 and ηt = 0 for t = 1, 2, ... Assuming that technology was at its steady-state
level in the previous period (Z̃−1 = 0) we set η0 such that Z0 = 1.01 (a one-percent
impact jump in productivity). We assume that the shock displays a lot of persistence,
i.e. ξZ = 0.95. The time path for Z̃t is illustrated in panel (a) of Figure 19.1.

We compute the transition paths for the different variables by conducting a de-
terministic simulation with Dynare.2 For ease of comparison the response functions
in panels (b)–(h) are drawn for the sticky-price case (featuring ζ = 0.75 and marked
with solid dots) and the flexible-price case (with ζ = 0, marked with open dots).

The case with perfectly flexible prices is easy to understand. At impact (t = 0)
productivity increases by one percent (panel (a)) and labour demand shifts out. The
representative agent is a bit wealthier, increases both consumption (panel (e)) and
saving. Labour supply is reduced somewhat but in net terms both employment
(panel (c)) and the real wage rate (panel (f)) increase. Despite the fact that the cap-
ital stock is predetermined at impact, output increases (panel (d)). The additional
household saving results in an increase in the capital stock during the early phase of
transition (panel (b)). As a result of the technology shock the aggregate price levels
falls initially but is eventually restored to its old equilibrium level (see panel (g)).

2The programs used to compute the transition paths are available from the website for the book: www.
heijdra.org/fomm3.

www.heijdra.org/fomm3
www.heijdra.org/fomm3
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Table 19.3. A Dynare model file for the general MBC model

% Basic MBC model

%

% Dynare model file: Program19_01.mod

%

% Ben J. Heijdra

% Groningen , July 29, 2016

%----------------------------------------------------------------

% 0. Housekeeping

%----------------------------------------------------------------

close all;

%----------------------------------------------------------------

% 1. Defining variables

%----------------------------------------------------------------

var Y Ya K L C w rk R mc P Pa Pn XI_N XI_D Ztilde;

varexo G M_0 eta;

parameters alpha delta rho Omega_0 theta epsilon_c epsilon_l

epsilon_m zeta Lbar xi_Z sigma_eta;

%----------------------------------------------------------------

% 2. Calibration

%----------------------------------------------------------------

alpha = 0.333333333333333;

delta = 0.025996253574703;

rho = 0.009853406548969;

Omega_0 = 1.158161294323214;

theta = 4.333333333333333;

epsilon_c = 0.348223238919264;

epsilon_l = 0.646243623572566;

epsilon_m = 0.005533137508169;

zeta = 0.75;

Lbar = 0.033333333333333;

xi_Z = 0.95;

sigma_eta = 0.0015;

% Guess for the initial steady state

Y0 = 1.0000;

K0 = 7.1524;

L0 = 0.3333;

C0 = 0.6141;

w0 = 1.7094;

rk0 = 0.0358;

R0 = rho;

mc0 = 0.7692;

P0 = 1.0000;

XI_N0 = 4.8682;

XI_D0 = 6.3287;
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Table 19.3, continued

%----------------------------------------------------------------

% 3. Model

%----------------------------------------------------------------

model;

K = Y - C - G + (1 - delta) * K(-1);

(1/C) = ((1 + R)/(1+ rho)) * (P/P(+1)) * (1/C(+1)) ;

(1/C) = ((1 + rk(+1) - delta )/(1+ rho)) * (1/C(+1)) ;

M_0 / P = (epsilon_m/epsilon_c) * C * (1 + 1/R) ;

w * (1 - L) = (epsilon_l /epsilon_c) * C;

w = (1 - alpha) * mc * Ya / (L - Lbar) ;

rk = alpha * mc * Ya / K(-1) ;

Pn = (theta/(theta -1)) * XI_N / XI_D ;

XI_N = P^theta * Y * mc / C + (zeta /(1+ rho)) * XI_N (+1) ;

XI_D = P^(theta -1) * Y / C + (zeta /(1+ rho)) * XI_D (+1) ;

P^(1- theta) = (1-zeta) * Pn^(1-theta) + zeta * P(-1)^(1- theta) ;

Pa^(-theta) = (1-zeta) * Pn^(-theta) + zeta * P(-1)^(- theta) ;

Ya = Omega_0 * exp((1- alpha)*Z) * K( -1)^( alpha) * (L - Lbar )^(1- alpha);

Y = (Pa/P)^theta * Ya ;

Ztilde = xi_Z * Ztilde (-1) + eta;

end;

%----------------------------------------------------------------

% 4. Computation

%----------------------------------------------------------------

initval;

Y = Y0;

Ya = Y0;

K = K0;

L = L0;

C = C0;

w = w0;

R = R0;

mc = mc0;

P = P0;

Pn = P0;

Pa = P0;

XI_N = XI_N0;

XI_D = XI_D0;

Ztilde = 0;

eta = 0;

G = 0.2;

M_0 = 1.0;

end;

steady;

shocks;

var eta = sigma_eta ^2;

end;

stoch_simul(order = 2);
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Figure 19.1: Transitory productivity shock

(a) productivity (b) capital stock

(c) employment (d) output

In conclusion, the MBC model with perfectly flexible prices gives us the same con-
clusions that an RBC model would provide us with. The only additional feature of
the MBC model is that nominal values (such as Pt, Wt, and MCt) are determined
endogenously.

Matters are quite different for the sticky-price model, especially so at impact.
Indeed, at the time of the shock, consumption still increases (though by less than
with perfect price flexibility) so ceteris paribus real wages labour supply is reduced
on that account (wealth effect). In addition, however, seventy-five percent of firms
face a red light and are thus unable to lover the price for their product. The remaining
twenty-five percent indeed lower their price because they know labour productivity
is temporarily higher than normal. On balance, however, for the calibration used
here labour demand shifts to the left and both employment and the real wage rate fall
at impact (see panels (c) and (f)). The red-light firms face a large cut in the demand
for their product and cut production and their demand for labour accordingly. At
impact aggregate output falls by more than one percent (panel (d)).
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Figure 19.1 Continued

(e) consumption (f) real wage

(g) price level (h) real marginal cost
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19.4.3.2 Money supply shock

The next shock we consider is a change in the nominal money supply. Indeed, we
write Mt+1 = eM̃t+1 and assume that M̃t+1 follows an AR1 process:

M̃t+1 = ξM M̃t + ηt, 0 < ξM < 1,

where ξM is the persistence parameter and ηt is the innovation term featuring a zero
mean and a constant variance σ2

η . Just as for the productivity shock we normalize the
time at which the shock occurs to t = 0, assume that M̃0 = 0, and let η0 = 0.09531
and ηt = 0 for t = 1, 2, . . .. In the simulations we assume a lot of persistence by
setting ξM = 0.95. The resulting time path for Mt+1 is depicted in panel (a) of Figure
19.2. The impact jump in the level of the money supply is ten percent (as eη0 − 1 =
0.10).

Again the response functions are drawn for the sticky-price case (featuring ζ =
0.75 and marked with solid dots) and the flexible-price case (with ζ = 0 marked with
open dots). Not surprisingly, for the flexible-price case the monetary shock has no
effect on the capital stock, employment, output, real factor prices, and real marginal
cost. The price level is affected on a one-for-one basis as can be seen in panel (g) of
Figure 19.2. Money is neutral.

Just as for the productivity shock, matters are quite different for the sticky-price
model, especially in the impact period. Indeed, at the time of the shock both em-
ployment (panel (c)) and consumption (panel (e)) increase substantially. Despite the
fact that the capital stock is predetermined output rises by more than eight percent
at impact (panel (d)). Twenty-five percent of firms are able to set a new (and higher)
price but the red light firms must honour their old prices (set in the past). As a result
the aggregate price level increases but less than under full price flexibility (see panel
(g)). Since the nominal wage rate is perfectly flexible in our model, the real wage rate
increases by almost seven percent at impact (panel (f)).

In the impact period households also increase savings so that next period’s cap-
ital stock is higher by almost 1.2 percent. Over time this capital stock is run down
gradually as is illustrated in panel (b). As can be seen from panel (e) consumption
also returns gradually to its deterministic steady-state level. Interestingly there is al-
most no transitional dynamics in the remaining real variables. One period after the
shock output, employment, real factor prices, and real marginal cost all more or less
returns to their respective deterministic steady-state values.

In summary, just as in the ad hoc Blanchard model of Section 19.1 money is clearly
not neutral in the sticky-price model. A money supply shock causes huge employ-
ment and output effects at impact and relatively modest transitional effects on con-
sumption and the capital stock. It must be stressed that these results were obtained in
a model with a relatively high degree of price stickiness, i.e. only twenty-five percent
of firms are facing a green light in any period. Furthermore, just as in the canonical
New Keynesian DSGE model (of Table 19.2) traditional monetary policy (here taking
the form of an increase in the money supply) does not give rise to macroeconomic
instability.

19.4.3.3 Government consumption shock

The final shock we consider is a change in government consumption. As before we
write Gt = eG̃t and assume that G̃t follows an AR1 process:

G̃t = ξGG̃t−1 + ηt, 0 < ξG < 1,
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Figure 19.2: Transitory money supply shock

(a) money supply (b) capital stock

(c) employment (d) output
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Figure 19.2, continued

(e) consumption (f) real wage

(g) price level (h) real marginal cost
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where ξG is the persistence parameter and ηt is the innovation term featuring a zero
mean and a constant variance σ2

η . Just as for the previous two shocks we normalize
the time at which the shock occurs to t = 0, assume that G̃0 = 0, and let η0 = 0.09531
and ηt = 0 for t = 1, 2, . . .. In the simulations we assume a lot of persistence by
setting ξG = 0.95. The resulting time path for Gt is depicted in panel (a) of Figure
19.3. The impact jump in the level of government consumption is ten percent (as
eη0 − 1 = 0.10).

The response functions have been drawn in panels (b)–(h), again with solid dots
representing the sticky-price case (featuring ζ = 0.75) and open dots showing the
flexible-price case (with ζ = 0). The results for the flex-price model are familiar to
readers of the previous chapter. The temporary shock causes temporary increases
in employment, output, and the price level. Consumption falls at impact and is
gradually and monotonically restored to its deterministic steady-state level. The
adjustment path for the capital stock is non-monotonic.

Just as for the previous two shocks matters are quite different for the sticky-price
model, especially in the impact period. Indeed, at the time of the shock both employ-
ment (panel (c)) and output (panel (d)) increase substantially. Twenty-five percent
of firms are able to set a new (and higher) price but the red light firms must honour
their old prices (set in the past). As a result the aggregate price level increases but
less than under full price flexibility (see panel (g)). Since the nominal wage rate is
perfectly flexible in our model, the real wage rate increases by almost four-and-a-half
percent at impact (panel (f)).

In the impact period households also increase savings so that next period’s cap-
ital stock is higher by almost 0.8 percent. Over time this capital stock is run down
gradually as is illustrated in panel (b). As can be seen from panel (e) consump-
tion also returns gradually to its deterministic steady-state level. Interestingly there
is almost no transitional dynamics in the remaining real variables (relative to the
huge impact effects). One period after the shock output, employment, real factor
prices, and real marginal cost all more or less returns to their respective determinis-
tic steady-state values.

In summary, in the sticky-price model a fiscal policy shock causes huge employ-
ment and output effects at impact. Indeed, the output multiplier at impact is equal
to 3.53 whereas it is equal to 0.49 in the flex-price model.

19.5 Estimation rather than calibration

In the previous section we have analysed a relatively simple New Keynesian DSGE
model featuring sticky prices and flexible wages. The simulations were based on a
loosely calibrated version of the model. It must be stressed that nowadays a pure
calibration approach is no longer deemed appropriate. Indeed, the second wave of
MBC models try to directly estimate as many as possible of the structural coefficients
and only use calibration if estimation is not feasible.

The earliest and most famous examples of this estimation-cum-calibration ap-
proach are the contributions by Smets and Wouters (2003, 2007) and Christiano et
al. (2005). Since these papers are landmarks in the development of the New Key-
nesian DSGE approach the remainder of this section discusses the punchlines from
Christiano et al. (2005). They pose themselves the following question: “Can models
with moderate degrees of nominal rigidities generate inertial inflation and persistent
output movements in response to monetary policy shocks?” (Christiano et al., 2005,
p. 2). Not surprisingly, their answer is in the affirmative.
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Figure 19.3: Transitory government consumption shock

(a) government consumption (b) capital stock

(c) employment (d) output
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Figure 19.3, continued

(e) consumption (f) real wage

(g) price level (h) real marginal cost
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19.5.1 Model features

Compared to our general MBC model Christiano et al. (2005) need to change some
features and add others. In what follows we give a stylized account of the main
additional features not found in our general MBC model:

Additional Feature (AF1): Calvo-style pricing of labour.

Additional Feature (AF2): Habit formation in the agent’s preferences for
consumption.

Additional Feature (AF3): Adjustment costs of investment.

Additional Feature (AF4): Variable utilization rate of the capital stock.

Additional Feature (AF5): Firms borrow working capital to pay workers
upfront.

Additional Feature (AF6): The lagged inflation rate is used for indexa-
tion purposes by red-light firms and workers.

Let us now briefly look at some of these added features, using the notation adopted
in this chapter. On (AF1). Calvo pricing of labour is modelled in an analogous
fashion to stickiness of goods prices. It is assumed that each household supplies
a slightly unique variety of labour, Lt (j), which it sells at a nominal wage Wt (j). A
representative, perfectly competitive firm buys all types of labour and transforms it
into homogeneous (standardized) labour Lt according to a CES aggregation function:

Lt =

[∫ 1

0
Lt (j)1−1/θl dj

]1/(1−1/θl)

, 1 < θl � ∞, (19.130)

where θl measures the ease with which labour types can be substituted. Labour
types are employed such that the wage bill is minimized for a given amount of Lt.
This ensures that the aggregate wage rate (i.e., the unit cost of standardized labour)
is given by:

Wt ≡
[∫ 1

0
Wt (j)1−θl dj

]1/(1−θl)

, (19.131)

and the derived demand for labour of type j is:

Lt (j) = Lt

(
Wt (j)

Wt

)−θl

. (19.132)

Note that each labour supplier possesses a little bit of market power because θl is
assumed to be close to unity.

On (AF2), habit formation in preferences is included by assuming that the felicity
function takes the following form:

U (Ct, 1− Lt, mt) ≡ εc ln [Ct − βCt−1]− ε l L2
t + εm

m1−1/σ
t − 1
1− 1/σ

, (19.133)

with εc > 0, ε l > 0, and εm > 0. Several features are worth noting. First, it is
not Ct itself which provides the household with felicity in period t, but rather Ct in
reference to weighted consumption in period t− 1. For β > 0 there is habit formation
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in consumption preferences. Second, felicity is quadratic in the hours of time that are
supplied to the labour market. Third, felicity depends on current real cash balances,
i.e. mt ≡ Mt/Pt, so the stock of money held at the start of period t yields felicity.

On (AF3), adjustment costs of investment are incorporated in the model by pos-
tulating that the law of motion for the capital stock is given by:

Kt+1 =

[
1−Φ

(
It

It−1

)]
It + (1− δ)Kt, (19.134)

where the Φ(x) function captures the notion of installation costs. The key features of
this function are that Φ (1) = Φ′ (1) = 0 and Φ′′ (1) > 0. Note that (19.134) differs
from the usual adjustment cost specification in the sense that Φ(x) depends on the
relative investment rate (It/It−1) rather than the investment-capital ratio (It/Kt).

On (AF4), a variable utilization rate of the capital stock is modelled in the follow-
ing fashion. Capital services, Ks

t , are defined as:

Ks
t ≡ ut Kt, (19.135)

where ut is the utilization rate and Kt is the existing stock of capital. By adjusting ut
a given stock of capital can be utilized less or more intensively. Whereas the capital
stock is by its nature a predetermined variable, capital services are not. It is assumed
that a more intensive utilization rate increases costs. To capture the utilization rate
mechanism the household’s nominal budget identity is affected on both sides:

WtLt + RK
t utKt + . . . = Pt [Ct + It + Γ (ut)Kt] + . . . , (19.136)

where Γ (ut) represents the cost of setting the utilization rate ut. The Γ(x) function
is increasing and convex, i.e. Γ′(x) > 0, and Γ′′(x) > 0. On the left-hand side
of (19.136) the utilization rate appears because capital services (and not the capital
stock itself) yield rental payments. On the right-hand side of (19.136) the utilization
rate appears because it affects costs.

On (AF6), the lagged inflation rate is used for indexation purposes by red-light
firms and workers. Whereas we have abstracted from an underlying positive in-
flation rate throughout this chapter, New Keynesian DSGE researchers typically in-
clude a constant core inflation rate π∗ in their models. Christiano et al. (2005) aug-
ment this feature by assuming that the core inflation rate is not constant but time-
varying and equal to the lagged actual inflation rate. Indeed, it is assumed that the
typical red-light firm sets its price according to:

Pt(i) = (1 + πt−1) Pt−1(i), (19.137)

where Pt−1(i) is the price it charged last quarter. Similarly, a worker facing a red
light sets his wage rate according to:

Wt(j) = (1 + πt−1)Wt−1(j). (19.138)

19.5.2 Model calibration and estimation

Christiano et al. (2005, pp. 15–17) adopt the following 3-step approach to calibra-
tion cum estimation. They consider three groups of structural parameters. The first
group of structural parameters is calibrated in the standard way (conform the exam-
ple shown above).
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The second group of parameters characterize the form of the monetary policy
rule which they write as:

µt = µ + θ0εt + θ1εt−1 + θ2εt−2 + . . . , (19.139)

where where µt is the growth rate in the nominal money supply. To obtain estimates
for this policy rule they adopt a two-step procedure. In the first step they estimate
the impulse response functions of eight key macroeconomic variables to a monetary
policy shock using an identified VAR specification. In the second step they use the
estimated VAR coefficients to obtain estimates for the θi parameters.

The third group of parameters are estimated such that the distance between the
model-generated and empirical impulse-response functions is minimized.

19.5.3 Main findings

Referring the interested reader to the paper itself for details, the main findings re-
ported by Christiano et al. (2005) are as follows. First, the average period between
price adjustments is about two quarters whilst for wage adjustments it is three quar-
ters. This represents the ‘moderate degree of nominal rigidity’ they were looking
for in the first place. The model accounts quantitatively for the estimated response
functions to a policy shock.

Second, of the two nominal frictions contained in the model it is the sluggishness
of nominal wages which is the most important one. A model with only nominal
wage contracts does almost as well as the full model. In contrast, a model with
only price rigidities performs badly. This last feature was also noted by Chari et al.
(2000) who argued that staggered price setting alone cannot generate business cycle
fluctuations.

Third, the effects of nominal frictions depends a lot on how the real side of the
economy is modelled. If the additional features (AF2)–(AF5) are dropped from the
model then the estimated model implies very infrequent occurrences of green lights
in goods and labour markets. The model fails in the sense that the nominal rigidities
are no longer ‘moderate’ and thus must be considered implausible.

Fourth, additional feature (AF4)—capturing variable capital utilization—is im-
portant to get a good fit for the estimated model. Intuitively this feature dampens
fluctuations in the rental rate on capital and thus on marginal costs and prices.

Fifth, additional features (AF2)–(AF3)—capturing investment adjustment costs
and habit formation in consumption—are mainly important to account for the macro-
economic variables other than inflation and output.

Sixth, in the absence of the working capital assumption—additional feature (AF5)
—the average duration of price contracts becomes unrealistically large.

Seventh, the model contains a strong internal propagation mechanism. The lack
of propagation was an oft-heard criticism of New Classical DSGE models—see Chap-
ter 18 for examples.

19.6 Critics

The landmark contributions by Smets and Wouters (2003, 2007) and Christiano et al.
(2005) have given rise to a veritable tsunami of New Keynesian DSGE models. There
even exists an internet depository of models (coordinated and kept up to date by
Volker Wieland and co-workers) which contains links to software implementations
of a large number of New Keynesian DSGE models. See:

http://www.macromodelbase.com/.

http://www.macromodelbase.com/
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This is not to say that the New Keynesian DSGE models have met with universal
acceptance by macroeconomists. In the remainder of this section we discuss some
of the main critics. Interestingly, criticism is quite diverse and comes from New
Classical and New Keynesian economists alike.3 Even though New Classicals and
New Keynesians both dislike (features of) the New Keynesian DSGE approach, their
reasoning is quite different.

19.6.1 New Classical critics

In a provocatively titled contribution, Chari et al. (2009) (CKM hereafter) argue that
“New Keynesian models are not yet useful for policy analysis.” The use of the word
“yet” of course suggests that they think there is still hope that such models will
become useful in the future. Interestingly CKM aim their arrows of destruction not
so much at the Christiano et al. (2005) paper discussed in some detail above. Instead
they target their critique almost exclusively at Smets and Wouters (2007). The central
premise of CKM is as follows.

Macroeconomists have largely converged on methods, model design, reduced-
form shocks, and principles of policy advice. Our main disagreements
today are implementing the methodology. Some think New Keynesian
models are ready to be used for quarter-to-quarter quantitative policy
advice. We do not. (2009, p. 242)

So why are CKM so unhappy with the New Keynesian DSGE models? Like true ad-
herents of the Lucas research program they argue that serious policy analysis can
only be conducted with a microeconomically founded structural model “with prim-
itive, interpretable shocks that are invariant to the policy interventions being consid-
ered” (2009, p. 242). Furthermore, they argue that the aim of the policy analyst is “. . .
to keep a macro model simple, [and to] keep the number of its parameters small and
well motivated by micro facts . . . ” (2009, p. 243). Parsimony is thus more important
to CKM than a good fit with the macroeconomic data.

In their desire to fit the macro data closely, CKM argue, New Keynesian econo-
mists use too many “free parameters” and fail to subject their models to the “disci-
pline of microeconomic evidence” . Put differently, New Keyesian economists add
shocks that are what CKM call “dubiously structural”. As examples of such dubi-
ously structural shocks in the Smets and Wouters model, CKM mention shocks to
wage markups, to price markups, to exogenous government spending, and to risk
premia.

As examples of further dubious features of not only Smets and Wouters (2007) but
also Christiano et al. (2005), Chari et al. (2009, pp. 261–264) mention the backward
indexation of prices (as in (19.137) above) and the specification of the Taylor rule.

With non-structural—reduced-form—shocks multiple structural explanations can
be formulated that give rise to drastically different policy implications. For example,
a labour wedge (defined as the difference between the real wage and the MRS be-
tween leisure and consumption) constitutes a reduced-form shock. CKM discuss two
(what they call) structural explanations. The first assumes that government policy

3A more traditional Keynesian critique is provided by Nobel Laureate Paul Krugman (2009) in his Op-
Ed column in the New York Times Magazine entitled “How did economists get it so wrong?” This piece
has led to a polemical discussion between Krugman and Cochrane (2011). Also see Buiter (2009) for a
traditional Keynesian criticism of the DSGE approach. It is fair to say that both Krugman and Buiter
are dismissive of the DSGE approach in general. Cochrane sees Keynesian economics as a waste of two
decades or so. See also Paul Romer (forthcoming) on the trouble with macroeconomics.
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toward trade unions is the source of the labour wedge. The policy recommendation
in this case would be to bust the unions. The second structural explanation assumes
that the labour wedge results from stochastic taste-for-leisure shocks. In this case the
policy advice would be to adopt a laissez faire attitude.

19.6.2 New Keynesian critics

We started this chapter with an ad hoc IS-LM type model by Blanchard (1981) which
represented the state of the art in Keynesian macroeconomics in the early 1980s. It is
therefore particularly interesting to take notice of Blanchard’s views on New Keyne-
sian DSGE models. In a recent policy brief for the Peterson Institute for International
Economics, Blanchard asks himself the question “Do DSGE models have a future?”
(2016, p. 1). His answer is unambiguous: “I see the current DSGE models as seri-
ously flawed, but they are eminently improvable and central to the future of macro-
economics” (2016, p. 1). At first viewing, it seems that Blanchard agrees with CKM
on this point.

So what are the features of the New Keynesian DSGE models that Blanchard
finds objectionable? Again referring the interested readers to the paper itself for de-
tails, his main points of criticism are as follows. First, the models are based on unap-
pealing assumptions. For example, aggregate demand is just a rewritten version of
the stochastic consumption Euler equation which is strongly at odds with empirical
evidence. Furthermore, by introducing backward-looking indexation of prices and
wages (as in (19.137)–(19.138)) price and wage inflation become more sluggish than
it would otherwise be. But this is almost a one-liner. The modeller introduces an ad
hoc feature and lo and behold it helps to fit the data.

Second, Blanchard also does not like the standard methods of calibration-estima-
tion (as sketched above). As he points out, “In many cases, the choice to rely on a
standard set of parameters is simply a way of shifting blame for the choice of param-
eters to previous researchers” (2016, p. 2). To paraphrase: if he can get away with
it then so can I. As was pointed out much earlier by the Nobel Laureates Lars Pe-
ter Hansen and James Heckman (1996), the empirical foundations of the calibration
approach are much less robust than its practitioners want you to believe. See also
Browning et al. (1999) on this.

Third, even though the New Keynesian DSGE models are microeconomically
founded so that welfare effects can be computed, such effects are typically uncon-
vincing. The reason is that these welfare effects depend critically on the different
frictions that are introduced into the model. And these frictions (such as Calvo pric-
ing) are typically modelled in a way that is analytically tractable rather than econom-
ically plausible.

Fourth, Blanchard argues that DSGE models are bad communication devices. To
put it more bluntly, DSGE models tend to be black boxes and one cannot readily see
which feature of the complicated model is responsible for which model outcome.

In summary, Blanchard accepts the need for microeconomic foundations—“where
else to start from?” —but also argues that the DSGE approach should become less
imperialistic.

Models can also differ in their degree of simplicity. Not all models have
to be explicitly microfounded. While this will sound like a plaidoyer pro
domo, I strongly believe that ad hoc macro models, from various versions
of the IS-LM to the Mundell-Fleming model, have an important role to
play in relation to DSGE models. They can be useful upstream, before
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DSGE modelling, as a first cut to think about the effects of a particular
distortion or a particular policy. They can be useful downstream, after
DSGE modelling, to present the major insight of the model in a lighter
and pedagogical fashion. (2016, p. 3)

Blanchard is by no means the only Keynes-inspired critic of the DSGE approach. Kiy-
otaki (2011) criticizes the approach—as used by New Keynesians and New Classi-
cals alike—because financial frictions such as credit constraints are typically ignored.
Markets are assumed to be more perfect than they are in reality. Kiyotaki’s argument
runs as follows. First, in the prototypical DSGE framework firms and individuals
are heterogeneous but to render the quantitative analysis tractable it is assumed that
markets are complete. By this it is meant that “. . . there exists a complete set of Ar-
row Securities so that state-contingent claims to goods and factors of production for
every possible future state can be traded at the initial period” (2011, p. 196). With
complete markets heterogeneity of firms and individuals does not matter because
we can always study the aggregate economy with the constructs of the representa-
tive agent and the representative firm—See Chapter 17 on this. This is in fact what
we have done implicitly in Chapters 18 and 19.

Second, Kiyotaki argues, in such a complete markets economy (CME), credit is just
a frictionless exchange between future and present goods. It is always enforced by
an auctioneer who has the authority and ability to enforce all contracts costlessly. In
reality such an auctioneer is absent and we are forced to enter the realm of the in-
complete markets economy (IME): borrowers might default, creditors require collateral,
and agent heterogeneity becomes crucial again.

Of course there is an inherent problem with the incomplete market paradigm.
Whereas these is typically only one way to write down the conditions characterizing
a complete markets economy, there are many ways in which to formulate an incom-
plete markets economy, depending on which frictions one wishes to emphasize. In
a series of papers, Kiyotaki and Moore (2005, 2012) stress the importance of credit
constraints. They also argue that credit market imperfections exacerbate the effects
of shocks. Similar conclusions are reached by Bernanke et al. (1999) and Gertler and
Karadi (2011).

19.7 Punchlines

This chapter documents some of the developments in New Keynesian economics
over the last two decades or so. We start by introducing money into a dynamic
stochastic general equilibrium (DSGE) model. To keep things simple we adopt the
money-in-the-utility-function approach. In the presence of a nominal anchor (the
money supply) nominal goods and factor prices are determined within the model
and we can distinguish between nominal and real interest rates as price inflation
may be non-zero.

In the absence of frictions money is neutral. To render money non-neutral New
Keynesians incorporate a microeconomically founded theory of price (and wage)
stickiness into their models. In the chapter we use the parable of Calvo pricing to
capture price stickiness. In the Calvo approach monopolistically competitive firms
can only change their optimal (profit-maximizing) price if they receive a ‘green light’
from Mother Nature. If they receive a ‘red light’ they must continue to supply their
product at the price set in the past.

A special case of the New Keynesian DSGE model is obtained by abstracting from
capital accumulation and by assuming that government consumption is zero. This
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model can be linearized around the deterministic steady state after which we can
characterize the economy with only three equations. The first of these is a rewritten
version of the stochastic consumption Euler equation but is called the dynamic IS
(DIS) curve by the New Keynesians. The second equation is a rewritten version
of the aggregate price equation (a complicated weighted average of the newly set
price level by green-light firms and lagged past prices). New Keynesians call this
the New Keynesian Phillips curve (NKPC). The third equation is the money market
equilibrium condition (MME).

Under traditional monetary policy—with the Central Bank controlling the money
supply—the stochastic equilibrium process for output and inflation is stable. Follow-
ing stochastic shocks, with a given money supply the nominal interest rate maintains
equilbrium in the money market and inflation and output remain stochastically sta-
ble. In contrast, if the Central Bank controls the nominal interest rate (rather than
the monetary aggregate) without incorporating feed-back effects (a passive policy
rule) the economy is unstable. An active policy rule, such as the Taylor rule, restores
stochastic stability by ensuring that increases in inflation lead to a more than one-
for-one increase in the nominal interest rate and a reduction in the real interest rate
(thus choking off the instability that occurs under a passive interest rate setting rule).

Next we return to the general New Keynesian DSGE model with an endogenous
capital stock and show how it can be calibrated and then simulated with the aid of
Dynare. Price stickiness matters to the shape of the impulse-response functions for
productivity-, monetary-, and government-consumption shocks. Especially at im-
pact the fact that a significant fraction of firms face a red light makes a big difference
when comparing the sticky-price and flex-price solutions.

We finish the chapter by showing how the New Keynesian DSGE model can be
fleshed out by combining calibration and estimation techniques. In addition we re-
view the main points of criticism that have been aimed at the current crop of New
Keynesian DSGE models. Both New Classicals and New Keynesians dislike certain
features of these models. Some more traditional Keynesians go even further and
reject the DSGE approach in its entirety. The debate between New Classicals and
(New) Keynesians reminds this commentator of the age-old debate between Keyne-
sian and Classical economists! So in that sense nothing has changed over the last
fifty years or so.

Further reading

The “bible” of the New Keynesian DSGE approach is the monograph by Woodford
(2003). This book is certainly not easy to read but it contains a very thorough discus-
sion of the core of the DSGE approach. A more accessible treatment can be found in
the book by Galı́ (2015). See also Galı́ and Gertler (2007) and Galı́ (2015).

A textbook treatment of monetary economics is provided by Walsh (2010). This
book is best read after you have gained a basic understanding of the techniques and
issues that are relevant in the field. If you want an overview of recent micro-founded
work there is no better source than the brand new handbooks edited by Friedman
and Woodford. At first reading the key chapters are Gertler and Kiyotaki (2011), Galı́
(2011), and Woodford (2011). Surveys of the older literature on monetary economics
can be found in the handbooks edited by Friedman and Hahn (1990a, 1990b).

Our basic DSGE model makes use of insights from Yun (1996), Bernanke et al.
(1999), Ireland (2004a,b), and Christiano et al. (2011). For New Keynesian DSGE
models with unemployment, see Galı́ et al. (2012). On Taylor rules, see Taylor (1993),
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Orphanides (2008), and Davig and Leeper (2007). Altug and Labadie (2008) discuss
monetary issues with (in)complete markets. For optimal monetary policy under
price stickiness, see Schmitt-Grohé and Uribe (2004). The continuous-time approach
to monetary economics that was started by Brock (1975), has been making a come-
back in recent years, see Brunnermeier and Sannikov (2014),

For a comparison of different price adjustment cost models, see Ascari and Rossi
(2012). See also Dotsey et al. (1999) on Calvo pricing. For New Keynesian models
with capital accumulation, see Carlstrom and Fuerst (2005), Dupor (2001) in continu-
ous time, Huang and Meng (2007), Kurozumi and Van Zandweghe (2008), and Xiao
(2008).

For computational aspects, see McCandless (2008) and Schmidt and Wieland
(2013). For a collection of New Keynesian DSGE models and comparative model
analysis, see Wieland et al (2012a, 2012b).

In the wake of the financial crisis a large number of popular science books have
come on the market. The ones I like particularly are the following. John Quiggin’s
(2010) book on dead ideas that refuse to die (including the efficient markets hypoth-
esis). Paul Krugman’s (2012) passionate plea for old-fashioned Keynesian policies.
Justin Fox (2009) on the myth of the rational market. It contains a critical review of
the academic field of finance (on which micro-based monetary theory draws rather
heavily). I also like Cassidy (2010) on market failures in general.



Mathematical Appendix

A.1 Introduction

In this Mathematical Appendix we give a brief overview of the main techniques that
are used in this book. In order to preserve space, for most cases we simply state
the results and refer the interested reader to various sources—of differing levels of
sophistication—where the mathematical background for these results is explained in
more detail. The transform methods used in sections A.6.1 and A.7.2 are explained in
more detail because they are somewhat unfamiliar to most economists. Klein (1998),
Simon and Blume (1994), and Pemberton and Rau (2001) are all good single-volume
sources for the mathematical techniques employed in this book, both in terms of
coverage and the level of sophistication. Sydsæter et al. (2000) is a very convenient
reference book describing most of the tricks used by economists.

A.2 Matrix algebra

A.2.1 General

A matrix is a rectangular array of numbers aij where i = 1, 2, ..., m is the row index
and j = 1, 2, ..., n is the column index. A matrix of dimension m by n thus has m rows
and n columns:

A
m×n
≡


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 . (A.1)

If m = n = 1 then A is a scalar, if m = 1 and n > 1 it is row vector, and if n = 1
and m > 1 it is a column vector. If m = n then the matrix A is square and we call
the diagonal containing the elements a11, a22, ..., ann the principal diagonal. There are
a number of special matrices. The zero matrix contains only elements equal to zero
(aij = 0 for i = 1, 2, ..., m and j = 1, 2, ..., n). The identity matrix, In, is a square n by n
matrix with ones on the principal diagonal and zeros elsewhere.

A.2.2 Addition, subtraction, multiplication

Two matrices A and B can be added if and only if they have the same dimension. If
A has elements [aij] and B has elements [bij] then the matrix C ≡ A + B is obtained
by adding corresponding elements:

A + B = C, with cij = aij + bij, (A.2)
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for i = 1, 2, ..., m and j = 1, 2, ..., n. Subtracting matrices works the same way:

A− B = D, with dij = aij − bij, (A.3)

for i = 1, 2, ..., m and j = 1, 2, ..., n.
Matrices can be multiplied by a scalar, k, by multiplying all elements of the matrix

by that scalar, i.e. B ≡ kA then bij ≡ kaij for i = 1, 2, ..., m and j = 1, 2, ..., n. Some
rules and properties follow immediately (k and l are both scalars):

kA = Ak,
k(A + B) = kA + kB,
(k + l)A = kA + lA,

(kl)A = k(lA),
(−1)A = −A,

A + (−1)B = A− B.

(A.4)

Two matrices can be multiplied if they are conformable for that operation. The ma-
trix product AB is defined if the column dimension of the matrix on the left (matrix
A) is the same as the row dimension of the matrix on the right (the B matrix). If A is
m by r and B is r by n then by this rule AB is m by n and is defined as follows:

AB = C, cij =
r

∑
k=1

aikbkj, (A.5)

for i = 1, 2, ..., m and j = 1, 2, ..., n. Unless m = n the product BA is not defined. Even
if BA is defined it is not equal to AB in general. So premultiplying B by A (yielding
AB) does not give the same matrix in general as premultiplying A by B (an operation
yielding BA). Some properties of matrix multiplication are the following (A, B, and
C are conformable matrices, 0 is the zero matrix, and k is a scalar):

A(B + C) = AB + AC,
(A + B)C = AC + BC,

A(BC) = (AB)C,
k(AB) = A(kB),

A 0 = 0 A = 0,
A I = I A = A.

(A.6)

A.2.3 Transposition

The transpose of matrix A is denoted by AT (or sometimes by A′). It is obtained by
interchanging the rows and columns of matrix A. Hence, if A is m by n and B ≡ AT

then B is n by m and bij ≡ aji. Some properties of transposes are:

(AT)T = A,
(kA)T = kAT ,

(A + B)T = AT + BT ,
(AB)T = BT AT .

(A.7)

A.2.4 Square matrices

In this subsection we gather the key results pertaining to square matrices (for which
the row and column dimensions are the same). The trace of the n by n matrix A,
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denoted by tr(A), is the sum of the elements on its principal diagonal:

tr(A) ≡
n

∑
i=1

aii. (A.8)

The following properties can be derived:

tr(In) = n,
tr(0) = 0,

tr(AT) = tr(A),
tr(AAT) = tr(AT A) = ∑n

i=1 ∑n
j=1 a2

ij,
tr(kA) = ktr(A),
tr(AB) = tr(BA).

(A.9)

The determinant of a square matrix A, denoted by |A| (sometimes by det(A)) is a
unique scalar associated with that matrix. For a two-by-two matrix the determinant
is:

A ≡
[

a11 a12
a21 a22

]
, |A| ≡ a11a22 − a12a21. (A.10)

For a three-by-three matrix the determinant can be computed as follows:

|A| ≡

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣
= a11 [a22a33 − a23a32]− a12 [a21a33 − a23a31] + a13 [a21a32 − a22a31]

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.
(A.11)

We have computed |A| by going along the first row and seeking two-by-two deter-
minants associated with each element on that first row. For element a11 we find the
associated two-by-two determinant by deleting the row and column in which a11 is
located. The resulting two-by-two determinant is called the minor of element a11. In
a similar fashion, the minor of element a12 is found by deleting row 1 and column 2
from the original determinant, and the minor of a13 is obtained by deleting row 1 and
column 3 from the original determinant. Denoting the minor of element aij by

∣∣Mij
∣∣

we can define the cofactor of that element by
∣∣Cij
∣∣ = (−1)i+j

∣∣Mij
∣∣. A cofactor is a mi-

nor with a sign in front of it. The sign is determined as follows: if the sum of the row
and column indices (i+ j) is even, then the sign is positive and the cofactor is equal to
the minor. Conversely, if i + j is uneven, then the cofactor is minus the minor. Using
these definitions we can now see that the determinant of the three-by-three matrix
in (A.11) can be written as: |A| ≡ a11 |C11| + a12 |C12| + a13 |C13| = ∑3

j=1 a1j
∣∣C1j

∣∣.
Of course, we could have computed |A| by going along row 2 (|A| = ∑3

j=1 a2j
∣∣C2j

∣∣)
or row 3 (|A| = ∑3

j=1 a3j
∣∣C3j

∣∣) or by going along any of the columns of the original

determinant (|A| = ∑3
i=1 aij

∣∣Cij
∣∣ for j = 1, 2, 3). It is not difficult to verify that in each

case we would have found the same value for |A|.
The procedure we have just followed to compute |A| is called a Laplace expansion.

The Laplace expansion of an n by n matrix is given by:

|A| =
n

∑
i=1

aij
∣∣Cij
∣∣ , for j = 1, ..., n, (column expansion) (A.12)
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=
n

∑
j=1

aij
∣∣Cij
∣∣ , for i = 1, ..., n, (row expansion). (A.13)

The determinant has a number of useful properties (k is a scalar):

|I| = 1,
|0| = 0,
|A| =

∣∣AT
∣∣ ,

|A| = (−1)n |−A| = k−n |kA| ,
|AB| = |BA| .

(A.14)

• If any row (column) is a non-trivial linear combination of all the other rows
(columns) of A then |A| = 0.

• If B results from A by interchanging two rows (or columns) then |B| = − |A|.

• If B results from A by multiplying one row (or one column) by k then |B| =
k |A|.

• The addition (subtraction) of a multiple of any row to (from) another row
leaves |A| unchanged.

• The addition (subtraction) of a multiple of any column to (from) another col-
umn leaves |A| unchanged.

The adjoint matrix of matrix A is denoted by adjA. It is defined as the transposed
matrix of cofactors:

adjA ≡


|C11| |C12| · · · |C1n|
|C21| |C22| · · · |C2n|

...
...

. . .
...

|Cn1| |Cn2| · · · |Cnn|


T

. (A.15)

If |A| 6= 0 then the matrix A is non-singular and possesses a unique inverse, denoted
by A−1:

A−1 =
1
|A|adjA. (A.16)

If the matrix A has an inverse it follows that A−1 A = AA−1 = I.

Intermezzo A.1

Matrix inversion. For example, let A be:

A ≡
[

1 2
3 4

]
,

then we find by applying the rules that |A| = 4− 6 = −2 (non-singular
matrix) so that the inverse matrix exists and is equal to:

A−1 =
1
−2

[
4 −2
−3 1

]
=

[
−2 1

3
2 − 1

2

]
.
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To check that we have not made any mistakes we compute AA−1 and
A−1 A (both should equal the identity matrix).

AA−1 =

[
1 2
3 4

] [
−2 1

3
2 − 1

2

]
=

[
1 · −2 + 2 · 3

2 1 · 1 + 2 · − 1
2

3 · −2 + 4 · 3
2 3 · 1 + 4 · − 1

2

]
=

[
1 0
0 1

]
,

A−1 A =

[
−2 1

3
2 − 1

2

] [
1 2
3 4

]
=

[
−2 · 1 + 1 · 3 −2 · 2 + 1 · 4

3
2 · 1−

1
2 · 3

3
2 · 2−

1
2 · 4

]
=

[
1 0
0 1

]
.

****

Assuming that the indicated inverses exist (and the matrices A and B are thus
non-singular), we find the following properties:

I−1 = I,
(A−1)−1 = A,
(AT)−1 = (A−1)T ,
(AB)−1 = B−1 A−1,∣∣A−1

∣∣ = |A|−1 .

(A.17)

A.2.5 Cramer’s Rule

Suppose we have a linear system of n equations in n unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

... =
...,

an1x1 + an2x2 + · · ·+ annxn = bn,

(A.18)

where aij are the coefficients, bi are the exogenous variables, and xi are the endoge-
nous variables. We can write this system in the form of a single matrix equation
as:

Ax = b, (A.19)

where A is an n by n matrix, and x and b are n by 1 (column) vectors:

A ≡


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , x ≡


x1
x2
...

xn

 , b ≡


b1
b2
...

bn

 . (A.20)

Provided the coefficient matrix A is non-singular (so that |A| 6= 0) the solution of the
matrix equation is:

x = A−1b. (A.21)
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Instead of inverting the entire matrix A we can find the solutions for individual
variables by means of Cramer’s Rule (which only involves determinants):

xj =

∣∣Aj
∣∣

|A| , for j = 1, 2, ..., n, (A.22)

where
∣∣Aj
∣∣ is the determinant of the matrix Aj which is obtained by replacing column

j of A by the vector of exogenous variables, for example A1 is:

A1 ≡


b1 a12 a13 · · · a1n
b2 a22 a23 · · · a2n
...

...
...

. . .
...

bn an2 an3 · · · ann

 . (A.23)

If the vector b consists entirely of zeros we call the system homogeneous. If |A| 6= 0
then the unique solution to the matrix equation is the trivial one: x = A−1b = 0. The
only way to get a non-trivial solution to a homogeneous system is if the coefficient
matrix is singular, i.e. if |A| = 0. In that case Cramer’s Rule cannot be used. An
infinite number of solutions nevertheless exist (including the trivial one) in that case.
Take, for example, the following homogeneous system:[

1 2
2 4

] [
x1
x2

]
=

[
0
0

]
. (A.24)

Clearly, |A| = 4− 4 = 0 so the system is singular (row 2 is two times row 1). Never-
theless, both the trivial solution (x1 = x2 = 0) and an infinite number of non-trivial
solutions (any combination for which x1 + 2x2 = 0) exist. Intuitively, we have in-
finitely many solutions because we have a single equation but two unknowns.

A.2.6 Characteristic roots and vectors

A characteristic vector of an n by n matrix A is a non-zero vector x which, when
premultiplied by A yields a multiple of the same vector:

Ax = λx, (A.25)

where λ is called the characteristic root (or eigenvalue) of A. By rewriting equation
(A.25) we find:

(A− λI)x = 0, (A.26)

which constitutes a homogeneous system of equations which has non-trivial solu-
tions provided the determinant of its coefficient matrix, A− λI, is zero:

Φ (λ) ≡ |A− λI| = 0. (A.27)

Note that Φ (λ) is called the characteristic equation of A. For a 2 by 2 matrix the
characteristic equation can be written as:

Φ (λ) ≡ |A− λI| =
∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = (λ− a11) (λ− a22)− a12a21

= λ2 − (a11 + a22)λ + a11a22 − a12a21
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= λ2 − tr(A)λ + |A| = 0, (A.28)

where tr(A) and |A| are, respectively, the trace and the determinant of matrix A.
Hence, for such a matrix the characteristic equation is quadratic in λ and thus pos-
sesses two roots:

λ1,2 =
tr(A)±

√
[tr(A)]2 − 4 |A|

2
. (A.29)

These roots are distinct if the discriminant, [tr(A)]2 − 4 |A|, is non-zero. They are
real (rather than complex) if the discriminant is positive (this is certainly the case if
|A| < 0). For an n by n matrix the characteristic equation is an n-th order polynomial
with n roots, λ1, λ2, ..., λn, which may not all be distinct or real. Some properties of
characteristic roots are:

∑n
i=1 λi = tr(A),

∏n
i=1 λi = |A| . (A.30)

Associated with each characteristic root is a characteristic vector (or eigenvector), which
is unique up to a constant. The characteristic vector x(i) associated with λi solves
(A.26). If a matrix has distinct characteristic roots then it can be diagonalized as fol-
lows:

P−1 AP = Λ ⇔ A = PΛP−1, (A.31)

where P is the matrix with the characteristic vectors, x(i), as columns and Λ is the
diagonal matrix with characteristic roots, λi, on the principal diagonal. Diagonaliza-
tion is useful in the context of difference and differential equations—see Section 2.2
and below.

Intermezzo A.2

Eigenvalues, eigenvectors, and matrix diagonalization. Suppose that A
is defined as:

A =

[
6 10
−2 −3

]
.

The characteristic equation is λ2 − 3λ + 2 = (λ− 1)(λ− 2) = 0 so that
the characteristic roots are λ1 = 1 and λ2 = 2. The characteristic vector
associated with λ1 is obtained by noting from (A.26) that:

(λ1 I − A)x = 0([
1 0
0 1

]
−
[

6 10
−2 −3

]) [
x1
x2

]
=

[
0
0

]
[
−5 −10
2 4

] [
x1
x2

]
=

[
0
0

]
.

Any solution for which 2x1 + 4x2 = 0 will do. Hence, by setting x1 = c
(a non-zero constant) we find that x2 = −c/2 so that the characteristic
vector associated with λ1 is:

x(1) ≡
[

c
−c/2

]
.
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Similarly, for λ2 = 2 we find:

(λ2 I − A)x = 0([
2 0
0 2

]
−
[

6 10
−2 −3

]) [
x1
x2

]
=

[
0
0

]
[
−4 −10
2 5

] [
x1
x2

]
=

[
0
0

]
.

Any combination for which 2x1 + 5x2 = 0 will do. Hence, the character-
istic vector associated with λ2 is:

x(2) ≡
[

c
−2c/5

]
.

In the example matrix we have:

P ≡
[

c c
−c/2 −2c/5

]
and Λ ≡

[
1 0
0 2

]
,

from which we verify the result:

PΛP−1 =
10
c2

[
c c
−c/2 −2c/5

] [
1 0
0 2

] [
−2c/5 −c

c/2 c

]
= 10

[
1 1
−1/2 −2/5

] [
1 0
0 2

] [
−2/5 −1
1/2 1

]
= 10

[
1 2
−1/2 −4/5

] [
−2/5 −1
1/2 1

]
= 10

[
3/5 1
−1/5 −3/10

]
= A.

It works!

****

A.2.7 Literature

Basic: Klein (1998, chs. 4–5), Chiang (1984, chs. 4–5), Sydsæter and Hammond (1995,
chs. 12–14). Intermediate: Intriligator (1971, appendix B), Kreyszig (1999, chs. 6–7),
and Strang (1988). Advanced: Ayres (1974), Lancaster and Tismenetsky (1985), and
Ortega (1987).

A.3 Implicit function theorem

A.3.1 Single equation

Throughout the text we make extensive use of the implicit function trick. For ex-
ample, in Chapter 1 (equation (1.4)) we find that the short-run profit maximizing
demand for labour is such that the marginal product of labour is equal to the real
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wage rate:

FN(N, K̄) = w, (A.32)

where F (N, K̄) is a constant-returns-to-scale production function, FN(N, K̄) ≡ ∂F(N,
K̄)/ ∂N is the marginal product of labour, K̄ is the fixed capital stock, and w is the real
wage rate. Mathematically, equation (A.32) constitutes a relationship between N, K̄,
and w. All the equation says is that these three variables are related to each other.
An economist, however, typically wants to know, for example, how labour demand
N depends on w and K̄. The way to squeeze out the desired information (and the
key to the implicit function trick) is to totally differentiate (A.32) with respect to all
its arguments:

FNNdN + FNKdK̄ = dw. (A.33)

If we want to know how N depends on w we keep K̄ constant (dK̄ = 0) and rewrite
(A.33) as:

FNN∂N = ∂w ⇔ ∂N
∂w

=
1

FNN
, (A.34)

where we use ∂ instead of d because this is a partial effect of w on N (since K̄ is held
constant). Similarly, by holding w constant (and setting dw = 0) we can obtain the
partial effect of K̄ on N from (A.33):

FNN∂N = −FNK∂K̄ ⇔ ∂N
∂K̄

= − FNK
FNN

. (A.35)

This trick is great! What it tells us is that (A.32) apparently defines an implicit function
between N and (w, K̄) whose partial derivatives are given by, respectively (A.34) and
(A.35). Of course, (A.32) also implies an implicit function relating K̄ to (w, N) and
another one relating w to (K̄, N), and we can find the partial derivatives of these
implicit functions in the same way. But economically, the one we were looking for
was the implicit function relating labour demand to w and K̄. Let us now generalize
the trick somewhat.

Suppose we have the following equation relating the endogenous variable of in-
terest, y, to one or more exogenous variables, xi:

F(y, x1, x2, ..., xm) = 0. (A.36)

Assume that (a) F has continuous partial derivatives (denoted by Fy ≡ ∂F/∂y, Fj ≡
∂F/∂xj for j = 1, 2, ..., m) and (b) Fy 6= 0 around a point (y0, x0

j ) which satisfies
(A.36). Then according to the implicit function theorem, there exists an m-dimensional
neighbourhood of (x0

j ) in which y is an implicitly defined function of the exogenous
variables:

y = f (x1, x2, ..., xm). (A.37)

The implicit function is continuous and has continuous partial derivatives, denoted
by f j ≡ ∂ f /∂xj, which can be computed as follows:

∂y
∂xj

= f j = −
Fj

Fy
, for j = 1, 2, ..., m. (A.38)
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As an example, consider F(y, x) = y2 + x2 − 9. We find that Fy = 2y and Fx = 2x,
so that ∂y/∂x = −Fx/Fy = −x/y provided y 6= 0. Note that F (y, x) = 0 defines
a circle around the origin with a ray of length 3. Evaluated at a particular point on
the circle, say y0 = 1 and x0 = +

√
8, we know from the implicit function rule that

∂y/∂x = −Fx/Fy = −x0/y0 = −
√

8 at that point.

A.3.2 System of equations

Next we consider the system of n equations in n endogenous variables (y1, y2, ..., yn):

F1(y1, y2, ..., yn; x1, x2, ..., xm) = 0,
F2(y1, y2, ..., yn; x1, x2, ..., xm) = 0,

... =
...,

Fn(y1, y2, ..., yn; x1, x2, ..., xm) = 0.

(A.39)

We assume that (a) the functions Fi all have continuous partial derivatives with re-
spect to all yi and xj and (b) at a point (y0

i ; x0
j ) the following determinant (of the

Jacobian matrix) is non-zero:

|J| ≡

∣∣∣∣∣∣∣∣∣
∂F1/∂y1 ∂F1/∂y2 · · · ∂F1/∂yn
∂F2/∂y1 ∂F2/∂y2 · · · ∂F2/∂yn

...
...

. . .
...

∂Fn/∂y1 ∂Fn/∂y2 · · · ∂Fn/∂yn

∣∣∣∣∣∣∣∣∣ 6= 0. (A.40)

Then, according to the generalized implicit function theorem there exists an m-dimensional
neighbourhood of (x0

j ) in which the variables yi are implicitly defined functions of
the exogenous variables:

y1 = f 1(x1, x2, ..., xm),
y2 = f 2(x1, x2, ..., xm),
... =

...,
yn = f n(x1, x2, ..., xm).

(A.41)

These implicit functions are continuous and have continuous partial derivatives, de-
noted by f i

j ≡ ∂ f i/∂xj, which can be computed as follows:

∂yi
∂xj

= f i
j =

∣∣∣Ji
j

∣∣∣
|J| , for i = 1, 2, ..., n, (A.42)

where Ji
j is the matrix obtained by replacing column i of matrix J by the following

vector of partial derivatives:
−∂F1/∂xj
−∂F2/∂xj

...
−∂Fn/∂xj

 . (A.43)



MATHEMATICAL APPENDIX 807

Intermezzo A.3

Generalized implicit function theorem: a macroeconomic application.
As an example, consider the IS-LM model:

Y = C(Y− T(Y)) + I(R) + G0,
M0 = L(R, Y),

where Y is output, C is consumption, I is investment, R is the interest
rate, T is taxes. The endogenous variables are R and Y and the exogenous
variables are government consumption G0 and the money supply M0. By
differentiating with respect to G0 we get:[

1− CY−T(1− TY) −IR
LY LR

] [
∂Y/∂G0
∂R/∂G0

]
=

[
1
0

]
.

The Jacobian determinant is:

|J| ≡ LR [1− CY−T(1− TY)] + IRLY < 0,

where the sign follows from the fact that both money demand and in-
vestment depend negatively on the interest rate (LR < 0 and IR < 0), the
marginal propensity to consume and the marginal tax rate are between
zero and unity (so that 0 < CY−T(1− TY) < 1), and money demand de-
pends positively on output (LY > 0). By Cramer’s Rule we get the partial
derivatives:

∂Y
∂G0

=
1
|J|

∣∣∣∣ 1 −IR
0 LR

∣∣∣∣ = LR
LR [1− CY−T(1− TY)] + IRLY

> 0

∂R
∂G0

=
1
|J|

∣∣∣∣ 1− CY−T(1− TY) 1
LY 0

∣∣∣∣
=

−LY
LR [1− CY−T(1− TY)] + IRLY

> 0.

These expressions, of course, accord with intuition (see also Section 1.2.3
above).

****

A.3.3 Literature

Basic: Klein (1998, pp. 239–245), Chiang (1984, ch. 8), and Sydsæter and Hammond
(1995, pp. 591–593). Advanced: de la Fuente (2000, ch. 5).
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A.4 Static optimization

A.4.1 Unconstrained optimization

Suppose we wish to find an optimum (minimum or maximum) of the following
function:

y = f (x), (A.44)

where we assume that this function is continuous and possesses continuous deriva-
tives. The necessary condition for a (relative) extremum of the function at point
x = x0 is

f ′(x0) = 0. (A.45)

To test whether f (x) attains a relative maximum or a relative minimum at x = x0 we
compute the second derivative. The second-order sufficient condition is:

if f ′′(x0)

{
<
>

}
0, f (x0) is a relative

{
maximum
minimum

}
. (A.46)

Now suppose that the function depends on n arguments (choice variables):

y = f (x1, x2, ..., xn), (A.47)

where f (·) is continuous and possesses continuous derivatives. The first-order nec-
essary conditions for a relative extremum are:

fi = 0, i = 1, 2, ..., n, (A.48)

where fi ≡ ∂ f /∂xi are the partial derivatives of f (·) with respect to xi. To study
the second-order sufficient conditions we define the Hessian matrix of second-order
derivatives, H:

H
n×n
≡


f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fn1 fn2 · · · fnn

 , (A.49)

where fii ≡ ∂2 f /∂x2
i and fij ≡ ∂2 f /∂xi∂xj are second-order partial derivatives. By

Young’s theorem we know that fij = f ji so the Hessian matrix is symmetric. We
define the following set of leading principal minors of H, i.e. the sub-determinants
along the main diagonal:

|H1| ≡ f11, |H2| ≡
∣∣∣∣ f11 f12

f21 f22

∣∣∣∣ , ..., |Hn| ≡

∣∣∣∣∣∣∣∣∣
f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fn1 fn2 · · · fnn

∣∣∣∣∣∣∣∣∣ . (A.50)

Then, provided the first-order conditions hold at a point (x0
1, x0

2, .., x0
n), the second-

order sufficient condition for f (x0
i ) to be a relative maximum is:

|H1| < 0, |H2| > 0, ..., (−1)n |Hn| > 0, (A.51)

whilst for a relative minimum the second-order sufficient condition is:

|H1| , |H2| , ..., |Hn| > 0. (A.52)

See Chiang (1984, pp. 337–353) for the relation between concavity-convexity of f (·)
and the second-order conditions.
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A.4.2 Equality constraints

We focus on the case with multiple choice variables and a single equality constraint.
As in the unconstrained case, the objective function is given by (A.47). The constraint
is given by:

g(x1, x2, ..., xn) = c, (A.53)

where c is a constant. We assume that g(·) is continuous and possesses continuous
derivatives. The Lagrangian is defined as follows:

L ≡ f (x1, x2, ..., xn) + λ [c− g(x1, x2, ..., xn)] , (A.54)

where λ is the Lagrange multiplier. The first-order necessary conditions for an ex-
tremum are:

Li = 0, i = 1, 2, ..., n,
Lλ = 0, (A.55)

where Li ≡ ∂L/∂xi and Lλ ≡ ∂L/∂λ are the partial derivatives of the Lagrangian
with respect to xi and λ, respectively. To study the second-order conditions we for-
mulate a so-called bordered Hessian matrix, denoted by H̄:

H̄
(n+1)×(n+1)

≡


0 g1 g2 · · · gn
g1 f11 f12 · · · f1n
g2 f21 f22 · · · f2n
...

...
...

. . .
...

gn fn1 fn2 · · · fnn

 . (A.56)

The bordered Hessian consists of the ordinary Hessian but with the borders made
up of the derivatives of the constraint function (gi). We define the following set of
principal minors of H̄:

|H̄2| ≡

∣∣∣∣∣∣
0 g1 g2
g1 f11 f12
g2 f21 f22

∣∣∣∣∣∣ , ..., |Hn| ≡

∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 · · · gn
g1 f11 f12 · · · f1n
g2 f21 f22 · · · f2n
...

...
...

. . .
...

gn fn1 fn2 · · · fnn

∣∣∣∣∣∣∣∣∣∣∣
. (A.57)

Then provided the first-order conditions hold at a point (x0
1, x0

2, ..., x0
n) the second-

order sufficient conditions for f (x0
i ) to be a relative constrained maximum are:

(−1)k |H̄k| > 0, k = 2, ..., n, (A.58)

whilst the second-order conditions for a relative constrained minimum are:

|H̄k| < 0, k = 2, ..., n. (A.59)

If there are multiple constraints then additional Lagrange multipliers are added to
the Lagrangian (one per constraint) and the first-order condition for each Lagrange
multiplier, λj, takes the form Lλj ≡ ∂L/∂λj = 0. See Chiang (1984, pp. 385–386) for
the appropriately defined bordered Hessian for the multi-constraint case.
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A.4.2.1 Interpretation of the Lagrange multiplier

We now return to the single constraint case in order to demonstrate the interpretation
of the Lagrange multiplier in the optimum. Using the superscript “0” to denote
optimized values, we can write the optimized value of the Lagrangian as:

L0 ≡ f (x0
1, x0

2, ..., x0
n) + λ0

[
c− g(x0

1, x0
2, ..., x0

n)
]

. (A.60)

Next, we ask the question what happens if the constraint is changed marginally.
Obviously, both λ0 and x0

i are expected to change if c does. Differentiating (A.60) we
get:

dL0

dc
=

n

∑
i=1
Li ·

dx0
i

dc
+ Lλ ·

dλ0

dc
+ λ0 · dc

dc
= λ0, (A.61)

where we have used the necessary conditions for an optimum (Lλ = Li = 0 for
i = 1, 2, ..., n) to get from the first to the second equality. Recall that the constraint
holds with equality (c = g(·)) so that λ0 measures the effect of a small change in c
on the optimized value of the objective function f (·). For example, if the objective
function is utility and c is income, then λ0 is the marginal utility of income.

A.4.3 Inequality constraints

We now briefly study some key results from non-linear programming. We first look
at the simplest case with non-negativity constraints on the choice variables. Then
we take up the more challenging case of general inequalities. We focus on first-order
conditions and ignore some of the subtleties involved (like constraint qualifications
and second-order conditions).

A.4.3.1 Non-negativity constraints

Suppose that the issue is to maximize a function y = f (x) subject only to the non-
negativity constraint x ≥ 0. There are three situations which can arise. These have
been illustrated in Figure A.1 which is taken from Chiang (1984, p. 723).

Panel (a) shows the case we have studied in detail above—see section A.4.1. The
function attains a maximum for a strictly positive value of x. We call this an interior
solution because the solution lies entirely within the feasible region (and not on a
boundary). The constraint x ≥ 0 is non-binding and the first-order condition is as
before:

f ′(x0) = 0. (interior solution)

Panels (b) and (c) deal with two types of boundary solutions. In panel (b) the function
happens to attain a maximum for x = x0 = 0, i.e. exactly on the boundary of the
feasible region. In panel (b) we thus have:

f ′(x0) = 0 and x0 = 0. (boundary solution)

Finally, in panel (c) we also have a boundary solution but one for which the function
f (x) continues to rise for negative (infeasible) values of x. Hence, at that point we
have:

f ′(x0) < 0 and x0 = 0. (boundary solution)
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Figure A.1: Non-negativity constraints
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These three conditions, covering the interior solution and both types of boundary
solutions, can be combined in a single statement:

f ′(x0) ≤ 0, x0 ≥ 0, x0 f ′(x0) = 0. (A.62)

There are two key things to note about this statement. First, as is evident from Figure
A.1, we can safely exclude the case of f ′(x0) > 0 from consideration. If f ′(x0) > 0
even for x0 = 0 then this can never be a maximum as raising x by a little would also
raise the objective function (see point D in panel (a)). The second key result concerns
the third condition in (A.62), saying that at least one of x0 or f ′(x0) must be zero.

When there are n choice variables the problem becomes one of choosing xi (i =
1, 2, ..., n) in order to maximize f (x1, x2, ..., xn) subject to the non-negativity constraints
xi ≥ 0 (i = 1, 2, ..., n). The first-order conditions associated with this problem are
straightforward generalizations of (A.62):

fi ≤ 0, xi ≥ 0, xi f ′(xi) = 0, i = 1, 2, ..., n. (A.63)

A.4.3.2 General inequality constraints

Suppose that the objective function is given by (A.47), the non-negativety constraints
are xi ≥ 0, and the set of non-linear constraints is given by:

g1(x1, x2, ..., xn) ≤ c1,
g2(x1, x2, ..., xn) ≤ c2,

... ≤
...

gm(x1, x2, ..., xn) ≤ cm,

(A.64)

where cj are constants and the gj(·) functions are continuous and possess continuous
derivatives (j = 1, 2, ..., m). The Lagrangian associated with the problem is:

L ≡ f (x1, x2, ..., xn) +
m

∑
j=1

λj

[
cj − gj(x1, x2, ..., xn)

]
, (A.65)

where λj is the Lagrange multiplier associated with the inequality constraint cj ≥
gj(·). The first-order conditions for a constrained maximum are:

Li ≤ 0 xi ≥ 0 xiLi = 0 i = 1, 2, ..., n,
Lλj ≥ 0 λj ≥ 0 λjLλj = 0 j = 1, 2, ..., m, (A.66)

where Li ≡ ∂L/∂xi and Lλj ≡ ∂L/∂λj.
For a minimization problem, the Lagrangian is the same as before but the first-

order conditions are:

Li ≥ 0 xi ≥ 0 xiLi = 0 i = 1, 2, ..., n,
Lλj ≤ 0 λj ≥ 0 λjLλj = 0 j = 1, 2, ..., m. (A.67)

We refer the reader to Chiang (1984, pp. 731–755) for a detailed discussion of second-
order conditions and the restrictions that the constraint functions must satisfy (the
so-called constraint qualification proviso).

A.4.4 Literature

Basic: Klein (1998, chs. 9–11), Chiang (1984, chs. 9–12, 21), and Sydsæter and Ham-
mond (1995, chs. 17–18). Intermediate: Dixit (1990, chs. 2–8) and Intriligator (1971,
chs 2–4). Advanced: de la Fuente (2000, chs. 7–8).
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A.5 Single differential equations

In this section we show how to solve the most commonly encountered differential
equations. We follow standard procedure in the economics literature by using the
Newtonian ‘dot’ notation to indicate derivatives with respect to time, i.e. ẏ(t) ≡
dy(t)/dt and ÿ(t) ≡ d2y(t)/dt2 etc.

A.5.1 First-order (constant coefficients)

A.5.1.1 Homogeneous

Suppose we have the following differential equation in y(t):

ẏ(t) + ay(t) = 0, (A.68)

where a is a constant. This is called a homogeneous differential equation because the
constant on the right-hand side is zero. To solve this equation, we must find a path
for y(t), such that the exponential rate of growth in y(t) is constant, i.e. ẏ(t)/y(t) =
−a. Since growth must be exponential it is logical to try a solution of the exponential
type:

y(t) = Aeαt, (A.69)

where A 6= 0 and α are constants to be determined. Clearly the trial solution must
solve (A.68). This implies that:

αAeαt + aAeαt = 0

(α + a) Aeαt = 0 ⇒ α = −a, (A.70)

where the result follows from the fact that Aeαt 6= 0. Suppose we are also given
an initial value for y(t), say y(0) = y0 (a constant). Then it follows from our trial
solution, y(t) = Ae−at, that y(0) = A = y0 (since e−at = 1 for t = 0) so that the full
solution of the homogeneous differential equation is:

y(t) = y0e−at. (A.71)

A.5.1.2 Non-homogeneous

Now suppose that the differential equation is non-homogeneous:

ẏ(t) + ay(t) = b, y (t) 6= 0, (A.72)

where b 6= 0. We look for the solution in two steps. First we find the complementary
function, yC(t), which is the path for y(t) which solves the homogeneous part of
the differential equation. Next, we find the so-called particular solution, yP(t), to the
general equation. By adding the complementary function and the particular solution
we obtain the general solution. In case we want to impose an initial condition this
can be done after the general solution is found.

Since the complementary function solves the homogeneous part of the differen-
tial equation it makes sense to try yC(t) = Ae−at. The particular integral is found
by trial and error starting with the simplest possible case. Try yP(t) = k (a constant)
and substitute it in the differential equation:

ẏP(t) + ayP(t) = b
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0 + ak = b ⇒ k =
b
a

(for a 6= 0). (A.73)

Hence, provided a 6= 0, our simplest trial solution works and the general solution is
given by:

y(t) [= yC(t) + yP(t)] = Ae−at +
b
a

(for a 6= 0). (A.74)

If we have the initial condition y(0) = y0 (as before) then we find that A = y0 − b/a.
What if a = 0? In that case the complementary function is yC(t) = Ae−0t =

A, a constant, so it makes no sense to assume that the particular solution is also a
constant. Instead we guess that yP(t) = kt (a time trend). Substituting it in the
differential equation (A.68) (with a = 0 imposed) we obtain:

ẏP(t) + ayP(t) = b ⇒ k = b (for a = 0). (A.75)

Hence, the trial works and the general solution is:

y(t) = A + bt, (for a = 0). (A.76)

(Imposing the initial condition y(0) = y0 we obtain that A = y0.) The thing to
note about the general solution is that we could have obtained it by straightforward
integration. Indeed, by rewriting (A.72) and setting a = 0 we get dy(t) = bdt which
can be integrated:∫

dy(t) =
∫

bdt ⇒ y(t) = A + bt, (A.77)

where A is the constant of integration. Of course, equations (A.76) and (A.77) are the
same but in the derivation of the latter no inspired guessing is needed.

A.5.2 First-order (variable coefficients)

Assume that the differential equation has the following form:

ẏ(t) + a(t)y(t) = b(t), (A.78)

where a and b are now both functions of time. Though the expression does not have
constant coefficients it is nevertheless linear in the unknown function y(t) and its
time derivative ẏ(t). This linearity property makes the solution relatively straight-
forward. We first solve the homogeneous equation for which b(t) ≡ 0. Assuming
that a(t) is continuous and y (t) 6= 0 we can rewrite equation (A.78) as:

dy(t)/dt
y(t)

= −a(t), (A.79)

from which we conclude that:

ln |y(t)| = A−
∫

a(t)dt, (A.80)

where we have used the fact that
∫

dy(t)/y(t) = ln |y(t)| and where A is the constant
of integration. Assuming that y(t) > 0, as is often the case in economic applications,
we find that the general solution for y(t) is:

y(t) = Ae−
∫

a(t)dt. (A.81)
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The non-homogeneous equation (A.78) can also be solved readily because it pos-
sesses an integrating factor, eF(t), where F(t) is given by:

F(t) ≡
∫

a(t)dt. (A.82)

First we note the following result:

d
dt

[
eF(t)y(t)

]
= eF(t)ẏ(t) + y(t)eF(t) Ḟ(t) = eF(t) [ẏ(t) + a(t)y(t)] , (A.83)

where we have used the fact that Ḟ(t) = a(t). Next, by multiplying both sides of
(A.78) by the integrating factor eF(t) and using (A.83) we obtain:

d
dt

[
eF(t)y(t)

]
= b(t)eF(t). (A.84)

Finally, by integrating both sides of (A.84) we obtain:

eF(t)y(t) = A +
∫

b(t)eF(t)dt =⇒

y(t) = e−F(t)
[

A +
∫

b(t)eF(t)dt
]

, (A.85)

where A is again the constant of integration.

A.5.3 Leibnitz’s rule

In the text we occasionally make use of Leibnitz’s rule for differentiation under the
integral sign (Spiegel, 1974, p. 163). Suppose that the function f (x) is defined as
follows:

f (x) ≡
∫ u2(x)

u1(x)
g(t, x)dt, a ≤ x ≤ b. (A.86)

Then, if (i) g(t, x) and ∂g/∂x are continuous in both t and x (in some region including
u1 ≤ t ≤ u2 and a ≤ x ≤ b) and (ii) u1(x) and u2(x) are continuous and have
continuous derivatives (for a ≤ x ≤ b), then d f /dx is given by:

d f (x)
dx

=
∫ u2(x)

u1(x)

∂g(t, x)
∂x

dt + g(u2, x)
du2

dx
− g(u1, x)

du1

dx
. (A.87)

Often u1 and/or u2 are constants so that one or both of the last two terms on the
right-hand side of (A.87) vanish. See also Sydsæter and Hammond (1995, pp. 547–
549) for examples of Leibnitz’s rule.

A.5.4 Literature

Basic: Klein (1998, ch. 14), Chiang (1984, chs. 13–15), Sydsæter and Hammond (1995,
ch. 21). Intermediate: Apostol (1967, ch. 8), Kreyszig (1999, chs. 1–5), Boyce and
DiPrima (2005), and de la Fuente (2000, chs. 9–11).
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A.6 Systems of differential equations

The main purpose of this section is to demonstrate how useful Laplace transform
techniques can be to (macro) economists. Whilst the technique is not much more
difficult than the method of comparative statics—that most students are familiar
with—it enables one to study thoroughly (the properties of) low-dimensional1 dy-
namic models in an analytical fashion.

A.6.1 The Laplace transform

The Laplace transform is a tool used extensively in engineering contexts and a very
good source is the engineering mathematics textbook by Kreyszig (1999). The Laplace
transform is extremely useful for solving (systems of) differential equations. Intu-
itively, the method works in three steps: (i) the difficult problem is transformed into
a simple problem, (ii) we use (matrix) algebra to solve the simple problem, and (iii)
we invert (“transform back”) the solution obtained in step (ii) to obtain the ultimate
solution of our hard problem. Instead of having to work with difficult operations in
calculus we work with algebraic operations on transforms. This is why the Laplace
transform technique is called operational calculus.

The major advantage of the Laplace transform technique lies in the ease with
which time-varying shocks can be studied. In economic terms this makes it very easy
to identify the propagation mechanism that is contained in the economic model. As
we demonstrate in Chapter 18 this is important, for example, in models in the real
business cycle (RBC) tradition.

Suppose that f (t) is a function defined for t ≥ 0. Then we can define the Laplace
transform of that function as follows:2

L{ f , s} ≡
∫ ∞

0
e−st f (t)dt. (A.88)

In economic terms L{ f , s} is the discounted present value of the function f (t), from
present to the indefinite future, using s as the discount rate. Clearly, provided the
integral on the right-hand side of (A.88) exists, L{ f , s} is well-defined and can be
seen as a function of s.

Here are some simple examples. Suppose that f (t) = 1 for t ≥ 0. What is
L{ f , s}? We use the definition in (A.88) to get:

L{ f , s} = L{1, s} =
∫ ∞

0
1 · e−stdt = − 1

s
e−st

∣∣∣∣∞
0
=

1
s

,

for s > 0. We have found our first Laplace transform, i.e. L{1, s} = 1/s. Despite
the ease with which it was derived, the transform of unity, L{1, s}, is an extremely
useful one to remember. Let us now try to find a more challenging one. Suppose that
f (t) = eat for t ≥ 0. What is L{ f , s}? We once again use the definition in (A.88) and
get:

L{ f , s} = L{eat, s} =
∫ ∞

0
eate−stdt =

∫ ∞

0
e−(s−a)tdt

1By “low dimensional” we mean that the characteristic polynomial of the Jacobian matrix of the system
must be of order four or less. For such polynomials closed-form solutions for the roots are available. For
higher-order polynomials Abel’s theorem proves that finite algebraic formulae do not exist for the roots.
See the amusing historical overview of this issue in Turnbull (1988, pp. 114–115).

2Some authors prefer to use the notation F(s) for the Laplace transform of f (t). Yet others use notation
similar to ours but suppress the s argument and write L{ f } for the Laplace transform of f (t). We adopt
our elaborate notation since we shall need to evaluate the transforms for particular values of s below.
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Table A.1. Commonly used Laplace transforms

f (t) L{ f , s} valid for:

1 1
s s > 0

t 1
s2 s > 0

tn−1

(n−1)!
1
sn n = 1, 2, ...; s > 0

eat 1
s−a s > a

teat 1
(s−a)2 s > a

tn−1eat

(n−1)!
1

(s−a)n n = 1, 2, ...; s > a
eat−ebt

a−b
1

(s−a)(s−b) s > a, s > b, a 6= b
aeat−bebt

a−b
s

(s−a)(s−b) s > a, s > b, a 6= b

U (t− a) ≡
{

0 for 0 ≤ t < a
1 for t > a

e−as

s

= − 1
s− a

e−(s−a)t
∣∣∣∣∞
0
=

1
s− a

,

provided s > a (otherwise the integral does not exist and the Laplace transform is
not defined).

So now we have found our second Laplace transform and in fact we already
possess the two transforms used most often in economic contexts. Of course there are
very many functions for which the technical work has been done already by others
and the Laplace transforms are known. In Table A.1 we show a list of commonly
used transforms. Such a table is certainly quite valuable but even more useful are
the general properties of Laplace transforms which allow us to work with them in an
algebraic fashion. Let us look at some of the main properties.

Property 1 Linearity. The Laplace transform is a linear operator. Hence, if the Laplace
transforms of f (t) and g(t) both exist, then we have for any constants a and b that:

L{a f + bg, s} = aL{ f , s}+ bL{g, s}. (P1)

The proof is too obvious to worry about.

The usefulness of (P1) is easily demonstrated: it allows us to deduce more com-
plex transforms from simple transforms. Suppose that we are given a Laplace trans-
form and want to figure out the function in the time domain which is associated
with it. Assume that L{ f , s} = 1

(s−a)(s−b) , a 6= b. What is f (t)? We use the method
of partial fractions to split up the Laplace transform:

1
(s− a)(s− b)

=
1

a− b

[
1

s− a
− 1

s− b

]
. (A.89)

Now we apply (P1) to equation (A.89)—which is in a format we know—and derive:

L{ f , s} = 1
a− b

[
1

s− a
− 1

s− b

]
=

1
a− b

[
L{eat, s} − L{ebt, s}

]
, (A.90)
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Figure A.2: Piecewise continuous function

where we have used Table A.1 to get to the final expression. But (A.90) can now be
inverted to get our answer:

f (t) =
eat − ebt

a− b
. (A.91)

This entry is also found in Table A.1.
But we have now performed an operation (inverting a Laplace transform) for

which we have not yet established the formal validity. Clearly, going from (A.91) to
(A.90) is valid but is it also allowed to go from (A.90) to (A.91), i.e. is the Laplace
transform unique? The answer is “no” in general but “yes” for all cases of interest.
Kreyszig (1999, p. 256) states the following sufficient condition for existence.

Property 2 Existence. (P2) Let f (t) be a function that is piecewise continuous on every
finite interval in the range t ≥ 0 and satisfies:

| f (t)| ≤ Meγt,

for all t ≥ 0 and for some constants γ and M. Then the Laplace transform exists for all
s > γ.

With “piecewise continuous” we mean that, on a finite interval a ≤ t ≤ b,
f (t) is defined on that interval and is such that the interval can be subdivided into
finitely many sub-intervals in each of which f (t) is continuous and has finite lim-
its (Kreyszig, 1999, p. 255). Figure A.2 gives an example of a piecewise continuous
function. The requirement mentioned in the property statement is that f (t) is of ex-
ponential order γ as t→ ∞. Functions of exponential order cannot grow in absolute
value more rapidly than Meγt as t gets large. But since M and γ can be as large as
desired the requirement is not much of a restriction (Spiegel, 1965, p. 2).

Armed with these results we derive the next properties. The first one says that
discounting very heavily will wipe out the integral (and thus the Laplace transform)
of any function of exponential order. The second one settles the uniqueness issue.

Property 3 If L{ f , s} is the Laplace transform of f (t), then:

lim
s→∞
L{ f , s} = 0. (P3)
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Property 4 Unique inversion [Lerch’s theorem]. (P4) If we restrict ourselves to functions
f (t) which are piecewise continuous in every finite interval 0 ≤ t ≤ N and of exponential or-
der for t > N, then the inverse Laplace transform of L{ f , s}, denoted by L−1 {L{ f , s}} =
f (t), is unique.

Let us now push on and study one more property that will prove rather useful
later on.

Property 5 Transform of a derivative. If f (t) is continuous for 0 ≤ t ≤ N and of exponen-
tial order γ for t > N and f ′(t) is piecewise continuous for 0 ≤ t ≤ N then:

L{ ḟ , s} = sL{ f , s} − f (0), (P5)

for s > γ.

PROOF: Note that we state and prove the property for the simple case with f (t)
continuous for t ≥ 0. Then we have by definition:3

L{ ḟ , s} =
∫ ∞

0
e−st ḟ (t)dt

= e−st f (t)
∣∣∞
0 + s

∫ ∞

0
e−st f (t)dt

= lim
t→∞

e−st f (t)− f (0) + sL{ f , s}.

But for s > γ the discounting by s dominates the exponential order of f (t) so that
limt→∞ e−st f (t) = 0 and the result follows.

Of course, we can use (P5) repeatedly. For second- and third-order time deriva-
tives of f (t) we obtain:

Property 6

L{ f̈ , s} = sL{ ḟ , s} − ḟ (0) = s [sL{ f , s} − f (0)]− ḟ (0), (P6)

L{
...
f , s} = s3L{ f , s} − s2 f (0)− s ḟ (0)− f̈ (0).

We can now illustrate the usefulness of the properties deduced so far and introduce
the three-step procedure mentioned above (on page 816) by means of the following
prototypical example.

A.6.2 Simple applications

Suppose we have the following differential equation:

ÿ(t) + 4ẏ(t) + 3y(t) = 0, (A.92)

which must be solved subject to the initial conditions:

y(0) = 3, ẏ(0) = 1. (A.93)

Here goes the three-step procedure:
Step 1: Set up the subsidiary equation. By taking the Laplace transform of (A.92)

and noting (P6) we get:

L{ÿ, s}+ 4L{ẏ, s}+ 3L{y, s} = 0 ⇔
3We use integration by parts, i.e.

∫
udv = uv−

∫
vdu, and set u = e−st and v = f (t).
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s2L{y, s} − sy(0)− ẏ(0)

]
+ 4 [sL{y, s} − y(0)] + 3L{y, s} = 0 ⇔[

s2 + 4s + 3
]
L{y, s} = (s + 4)y(0) + ẏ(0). (A.94)

By substituting (A.93) in (A.94) we obtain the subsidiary equation of the differential
equation including its initial conditions.[

s2 + 4s + 3
]
L{y, s} = 3s + 13. (A.95)

Step 2: Solve the subsidiary equation. We now do the easy stuff of algebraically
manipulating the expression (A.95) in s-space. We notice that the quadratic on the
left-hand side of (A.95) can be written as s2 + 4s + 3 = (s + 1)(s + 3) so we can solve
for L{y, s} quite easily:4

L{y, s} = 3s + 13
(s + 1)(s + 3)

=
3(s + 1) + 10
(s + 1)(s + 3)

=
3

s + 3
+

10
(s + 1)(s + 3)

=
3

s + 3
+

10
3− 1

[
1

s + 1
− 1

s + 3

]
=

5
s + 1

− 2
s + 3

. (A.96)

Step 3: Invert the transform to get the solution of the given problem. We have
now written the (Laplace transform of the) solution in terms of known transforms.
Inversion of (A.96) is thus straightforward and results in:

y(t) = L−1 {L{y, s}} = 5L−1
{

1
s + 1

}
− 2L−1

{
1

s + 3

}
= 5e−t − 2e−3t. (A.97)

Of course we could have obtained this solution quite easily using the standard tech-
niques so for this simple example the Laplace transform technique is not that useful.
It has some value added but not a lot. The thing to note, however, is that the method
is essentially unchanged for much more complex problems. We now study two such
cases.

Assume that the differential equation (A.92) is replaced by:

ÿ(t) + 4ẏ(t) + 3y(t) = g(t), (A.98)

where g(t) is some (piecewise continuous) forcing function which is time-dependent
and has a unique Laplace transform L{g, s}. The initial conditions continue to be as
given in (A.93). Using the same procedure as before we derive the solution of the
subsidiary equation in terms of the Laplace transforms:

L{y, s}︸ ︷︷ ︸
output

=
3s + 13

(s + 1)(s + 3)︸ ︷︷ ︸
initial conditions

+
L{g, s}

(s + 1)(s + 3)︸ ︷︷ ︸
input

. (A.99)

4We show the trivial steps leading to the final result in order to demonstrate that the algebra involved
in s-space is indeed trivial. In general, the work involved in step 2 of the procedure is always easier than
tackling the problem directly in t-space.
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The first term on the right-hand side is the same as before (see (A.96)) and results
from the initial conditions of the problem. The second term on the right-hand side
represents the influence of the time-varying forcing term. Two further things must
be noted about equation (A.99). First, the expression is perfectly general. A whole
class of shock terms can be used in (A.99) to solve for y(t) after inversion. Second,
it should be noted that all of the model’s dynamic properties are contained in the
quadratic function appearing in the denominator. In fact, H(s) ≡ 1

(s+1)(s+3) is often
referred to as the transfer function in the engineering literature since it transfers the
shock (the “input”) to the variable of interest (the “output”)—see for example Boyce
and DiPrima (2005, p. 350). The inverse of H(s), denoted by h(t) ≡ L−1{H(s)}, is
called the impulse response function of the system.

A.6.3 Systems of differential equations

The transform method is equally valuable for systems of differential equations. Sup-
pose that the dynamic model is given in matrix form by:[

K̇(t)
Q̇(t)

]
= ∆

[
K(t)
Q(t)

]
+

[
gK(t)
gQ(t)

]
, (A.100)

where ∆ is the two-by-two Jacobian matrix with typical element δij, and gi(t) are
(potentially time-varying) shock terms. Note that a system like (A.100) occurs quite
regularly in analytical low-dimensional macro models.

By taking the Laplace transform of (A.100), and noting property (P5) we get:[
sL{K, s} − K(0)
sL{Q, s} −Q(0)

]
= ∆

[
L{K, s}
L{Q, s}

]
+

[
L{gK, s}
L{gQ, s}

]
⇔

Λ(s)
[
L{K, s}
L{Q, s}

]
=

[
K(0) + L{gK, s}
Q(0) + L{gQ, s}

]
, (A.101)

where Λ(s) ≡ sI − ∆ is a two-by-two matrix depending on s and the elements of ∆.
We know from matrix algebra that the inverse of this matrix, Λ(s)−1, can be written
as:

Λ(s)−1 =
1

|Λ(s)|adjΛ(s), (A.102)

where adjΛ(s) is the adjoint matrix (see above in section A.2.4) of Λ(s) and |Λ(s)| is
the determinant of Λ(s). For the simple two-by-two model adjΛ(s) and |Λ(s)| are:

adjΛ(s) ≡
[

s− δ22 δ12
δ21 s− δ11

]
, (A.103)

and:

|Λ(s)| = (s− δ11)(s− δ22)− δ12δ21

= s2 − (δ11 + δ22)s + δ11δ22 − δ12δ21

= s2 − s tr(∆) + |∆| , (A.104)

where tr(∆) and |∆| are, respectively, the trace and the determinant of the matrix ∆.
The quadratic equation in (A.104) can be factored as follows:

|Λ(s)| = (s− λ1)(s− λ2), (A.105)
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where λ1 and λ2 are the characteristic roots of the matrix ∆:

λ1,2 =
tr(∆)±

√
[tr(∆)]2 − 4 |∆|

2
. (A.106)

Before going on we note—by comparing (A.104) and (A.105)—that for the two-by-
two case we have:

tr(∆) = λ1 + λ2, |∆| = λ1λ2, (A.107)

i.e. the sum of the characteristic roots equals the trace of the Jacobian matrix ∆ and
the product of these roots equals the determinant of this matrix. This property is
often very useful for deducing the signs of these roots. It is not difficult to see
why this is so by looking at (A.106). We note that the roots are real (imaginary) if
[tr(∆)]2 > (<) 4|∆| and that they are distinct provided [tr(∆)]2 6= 4|∆|. Also, if
tr(∆) > 0 there must be at least one positive root. Finally, if |∆| < 0 there is exactly
one positive (unstable) and one negative (stable) real characteristic root.5

Let us now consider the two cases encountered most often in the economics liter-
ature for which the roots are real and distinct, i.e. [tr(∆)]2 > 4|∆|.

A.6.3.1 Both roots negative (λ1, λ2 < 0)

We can use (A.101), (A.102), and (A.105) to derive the following expression in Laplace
transforms:

[
L{K, s}
L{Q, s}

]
=

adjΛ(s)
[

K(0) + L{gK, s}
Q(0) + L{gQ, s}

]
(s− λ1)(s− λ2)

, (A.108)

which is in the same format as equation (A.99), with H(s) ≡ adjΛ(s)/[(s− λ1)(s−
λ2)] acting as the transfer function. To solve the model for particular shocks it is use-
ful to re-express the transfer function. We note that for the two-by-two case adjΛ(s)
has the following properties:

adjΛ(s) = adjΛ(λi) + (s− λi)I, (i = 1, 2), (A.109)

I =
adjΛ(λ1)− adjΛ(λ2)

λ1 − λ2
,

where the second result follows from the first. We can now perform a partial frac-
tions expansion of the transfer matrix:

adjΛ(s)
(s− λ1)(s− λ2)

=
adjΛ(s)
λ1 − λ2

[
1

s− λ1
− 1

s− λ2

]
=

1
λ1 − λ2

[
adjΛ(s)
s− λ1

− adjΛ(s)
s− λ2

]
=

1
λ1 − λ2

[
I +

adjΛ(λ1)

s− λ1
− I − adjΛ(λ2)

s− λ2

]
5These characteristic roots are going to show up in exponential functions, eλi t, in the solution of the

(system of) differential equation(s). If the root is positive (negative) eλi t → ∞ (→ 0) as t → ∞ so positive
(negative) roots are unstable (stable). The knife-edge case of a zero root is also stable as e0t = 1 for all t.
See section A.6.4 below.
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=
1

λ1 − λ2

[
adjΛ(λ1)

s− λ1
− adjΛ(λ2)

s− λ2

]
. (A.110)

By using (A.110) in (A.108) we obtain the following general expression in terms of
the Laplace transforms:[

L{K, s}
L{Q, s}

]
=

1
λ1 − λ2

[
adjΛ(λ1)

s− λ1
− adjΛ(λ2)

s− λ2

] [
K(0) + L{gK, s}
Q(0) + L{gQ, s}

]
. (A.111)

Suppose that the shocks are step functions and satisfy gi(t) = gi for i = K, Q and
t ≥ 0. The Laplace transform for such step functions is L{gi, s} = gi/s which can be
substituted in (A.111). After some manipulation we obtain the following result:[

L{K, s}
L{Q, s}

]
=

[
B

s− λ1
+

I − B
s− λ2

] [
K(0)
Q(0)

]
−
[

B
λ1
· −λ1

s(s− λ1)
+

I − B
λ2
· −λ2

s(s− λ2)

] [
gK
gQ

]
, (A.112)

where B ≡ adjΛ(λ1)/(λ1 − λ2) and I − B ≡ −adjΛ(λ2)/(λ1 − λ2) are weighting
matrices.6 The expression is now in terms of known Laplace transforms so that in-
version is child’s play:[

K(t)
Q(t)

]
=
[

Beλ1t + (I − B)eλ2t
] [ K(0)

Q(0)

]
−
[

B
λ1

(
1− eλ1t

)
+

I − B
λ2

(
1− eλ2t

)] [ gK
gQ

]
. (A.113)

Equation (A.113) constitutes the full solution of the problem. It yields impact, transi-
tion, and long-run results of the shock. To check that we have done things correctly
we verify that we can recover from (A.113) the initial conditions by setting t = 0
and the long-run steady state by letting t → ∞. The first result is obvious: for t = 0
we have that eλit = 1 so that K(t) = K(0) and Q(t) = Q(0). Similarly, for t → ∞,
eλit → 0 (since both roots are stable) and we get from (A.113):[

K(∞)
Q(∞)

]
= −

[
B
λ1

+
I − B

λ2

] [
gK
gQ

]
=
−adjΛ(0)
−λ1λ2

[
gK
gQ

]
=

adj∆
− |∆|

[
gK
gQ

]
= −∆−1

[
gK
gQ

]
, (A.114)

which is the same solution we would have obtained by substituting the permanent
shock in (A.100) and imposing the steady state. So at least the initial and ultimate
effects check out!

We could have checked our results also by working directly with the solution in
terms of Laplace transforms (i.e. (A.111) in general and (A.112) for the particular
shocks). We need the following two properties to do so.

6These weighting matrices also satisfy:

B
λ1

+
I − B

λ2
=

adjΛ(0)
−λ1λ2

=
adj∆
λ1λ2

= ∆−1.

These results are used below. Note that we have used the fact that adjΛ(0) = adj(−∆) = (−1)n−1adj∆,
where n is the order of ∆ (n = 2 here). See Lancaster and Tismenetsky (1985, p. 43).
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Property 7 If the indicated limits exist then the initial-value theorem says:

lim
t→0

f (t) = lim
s→∞

sL{ f , s}, (P7a)

and the final-value theorem says:

lim
t→∞

f (t) = lim
s→0

sL{ f , s}. (P7b)

PROOF: See Spiegel (1965, p. 20).
Applying Property (P7a) directly to (A.112) we obtain:

lim
s→∞

[
sL{K, s}
sL{Q, s}

]
=

B lim
s→∞

s
s− λ1︸ ︷︷ ︸
=1

+ (I − B) lim
s→∞

s
s− λ2︸ ︷︷ ︸
=1

 [ K(0)
Q(0)

]

−

 B
λ1

lim
s→∞

−λ1s
s(s− λ1)︸ ︷︷ ︸
=0

+
I − B

λ2
lim
s→∞

−λ2s
s(s− λ2)︸ ︷︷ ︸
=0


[

gK
gQ

]

= [B + I − B]
[

K(0)
Q(0)

]
=

[
K(0)
Q(0)

]
.

Similarly, applying Property (P7b) to (A.112) we get:

lim
s→0

[
sL{K, s}
sL{Q, s}

]
=

B lim
s→0

s
s− λ1︸ ︷︷ ︸
=0

+ (I − B) lim
s→0

s
s− λ2︸ ︷︷ ︸
=0

 [ K(0)
Q(0)

]

−

 B
λ1

lim
s→0

−λ1s
s(s− λ1)︸ ︷︷ ︸+

=1

I − B
λ2

lim
s→0

−λ2s
s(s− λ2)︸ ︷︷ ︸
=1


[

gK
gQ

]

= −
[

B
λ1

+
I − B

λ2

] [
gK
gQ

]
=

[
K(∞)
Q(∞)

]
.

A.6.3.2 Roots alternate in sign (λ1 < 0 < λ2)

A situation which occurs quite regularly in dynamic macro models is one in which
the Jacobian matrix ∆ in (A.100) has one negative (stable) root and one positive (un-
stable) root. The way to check for such saddle-point stability is either by means of
(A.106) or (A.107). From (A.106) we observe that if |∆| < 0 then we have distinct
and real roots for sure since

√
(tr∆)2 − 4|∆| > 0. Also, since |∆| = λ1λ2 < 0 it must

be the case that λ1 < 0 < λ2. Of course we also see this directly from (A.107).
The beauty of the Laplace transform technique is now that (A.108) is still appro-

priate and just needs to be solved differently. Let us motivate the alternative solution
method heuristically by writing (A.108) as follows:

(s− λ1)

[
L{K, s}
L{Q, s}

]
=

adjΛ(s)
[

K(0) + L{gK, s}
Q(0) + L{gQ, s}

]
s− λ2

. (A.115)
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In a two-by-two saddle-point stable system there is one predetermined and one non-
predetermined (or “jumping”) variable so we need to supply only one initial condi-
tion (and not two as before). Let us assume that K is the predetermined variable (the
value of which is determined in the past, e.g. a stock of human or physical capital,
assets, etc.) so that K(0) is given. But then Q is the non-predetermined variable (e.g.
a (shadow) price) so we must somehow figure out its initial condition.7 It is clear
from (A.115) how we should do this.

Note that the instability originates from the unstable root λ2. For s = λ2 we have
that the denominator on the right-hand side of (A.115) is zero. The only way we
can still obtain bounded (and thus economically sensible) solutions for L{K, s} and
L{Q, s} is if the numerator on the right-hand side of (A.115) is also zero for s = λ2,
i.e. if:

adjΛ(λ2)

[
K(0) + L{gK, λ2}
Q(0) + L{gQ, λ2}

]
=

[
0
0

]
. (A.116)

All except one of the variables appearing in (A.116) are determined so Q(0) must be
such that (A.116) holds. At first view it appears as if (A.116) represents two equations
in one unknown but that is not the case. A theorem from matrix algebra says that,
since Λ(λ2) is of rank 1 so is adjΛ(λ2).8 So, in fact, we can use either row of (A.116)
to compute Q(0):

[
0
0

]
=

[
λ2 − δ22 δ12

δ21 λ2 − δ11

] [
K(0) + L{gK, λ2}
Q(0) + L{gQ, λ2}

]
=⇒

Q(0) = −L{gQ, λ2} −
λ2 − δ22

δ12
· [K(0) + L{gK, λ2}] (A.117)

= −L{gQ, λ2} −
δ21

λ2 − δ11
· [K(0) + L{gK, λ2}] . (A.118)

We next use (A.109), (A.115), and (A.116) to get:

(s− λ1)

[
L{K, s}
L{Q, s}

]
=

adjΛ(λ2)

[
K(0) + L{gK, s}
Q(0) + L{gQ, s}

]
s− λ2

+

[
K(0) + L{gK, s}
Q(0) + L{gQ, s}

]
=

[
K(0) + L{gK, s}
Q(0) + L{gQ, s}

]
+ adjΛ(λ2)

[ L{gK ,s}−L{gK ,λ2}
s−λ2

L{gQ ,s}−L{gQ ,λ2}
s−λ2

]
,

(A.119)

where we have used (A.116) in the last step. Note that in (A.119) all effects of the
unstable root have been incorporated and only the stable dynamics remains (repre-
sented by the term involving s− λ1).

Suppose again that the shocks satisfy gi(t) = gi for i = K, Q and t ≥ 0 so that
L{gi, s} = gi/s and:

L{gi, s} − L{gi, λ2}
s− λ2

=

gi
s −

gi
λ2

s− λ2
= − gi

sλ2
.

7Of course, economic theory suggests which variables are predetermined and which ones are not.
8In general, if the n-square matrix ∆ has distinct eigenvalues its eigenvectors are linearly independent

and the rank of Λ(λi) ≡ λi I − ∆ is n− 1 (Ayres, 1974, p. 150). Furthermore, for any n-square matrix A of
rank n− 1 we have that adjA is of rank 1 (Ayres, 1974, p. 50).
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By using these results in (A.119) we obtain the full solution of the saddle-point stable
model:

(s− λ1)

[
L{K, s}
L{Q, s}

]
=

[
K(0)
Q(0)

]
− 1

λ2
[adjΛ(λ2)− λ2 I]

[
gK
gQ

]
1
s
⇐⇒[

L{K, s}
L{Q, s}

]
=

[
K(0)
Q(0)

]
1

s− λ1
− adjΛ(0)
−λ1λ2

[
gK
gQ

]
−λ1

s(s− λ1)

=

[
K(0)
Q(0)

]
1

s− λ1
+

[
K(∞)
Q(∞)

]
−λ1

s(s− λ1)
, (A.120)

where we have used (A.109) and the result in footnote 6, and where Q(0) is obtained
by substituting the shock terms in either (A.117) or (A.118). By inverting (A.120) we
obtain the solution in the time dimension.[

K(t)
Q(t)

]
=

[
K(0)
Q(0)

]
eλ1t +

[
K(∞)
Q(∞)

] (
1− eλ1t

)
. (A.121)

The key point to note is that the stable root determines the speed of transition be-
tween the respective impact and long-run results.

A.6.4 Hysteretic models

We now consider a special class of models that have the hysteresis property. With
hysteresis we mean a system whose steady state is not given, but can wander about
and depends on the past path of the economy. Mathematically, this property implies
that the Jacobian matrix of a continuous-time system has, apart from some “regu-
lar” (non-zero) eigenvalues, a zero eigenvalue.9 Hysteretic systems are important
in macroeconomics because they allow us to depart from the rigid framework of
equilibrium, ahistorical, economics. Put differently: history matters in such systems.

In the remainder of this section we show that the Laplace transform methods
studied above can easily be applied in low-dimensional hysteretic models also. We
restrict attention to the two cases encountered most frequently in the economics
literature, namely two-dimensional models with both roots non-positive and non-
negative, respectively.

A.6.4.1 Non-positive roots (λ1 < 0 = λ2)

Suppose that the matrix ∆ in (A.100) satisfies |∆| = λ1λ2 = 0 and tr(∆) = λ1 + λ2 <
0 so that the system has a zero root and is hysteretic, i.e. λ1 = tr(∆) < 0 and λ2 = 0.
Clearly, since |∆| = 0, the inverse matrix ∆−1 does not exist and we cannot compute
the long-run results of a shock by imposing the steady state in (A.100) and inverting
∆. However, the derivations leading from (A.108) to (A.111) are all still valid even
for λ2 = 0, i.e. the general solution in Laplace transforms is:[

L{K, s}
L{Q, s}

]
=

[
B

s− λ1
+

I − B
s

] [
K(0) + L{gK, s}
Q(0) + L{gQ, s}

]
, (A.122)

where B ≡ adjΛ(λ1)/λ1 and I − B ≡ −adjΛ(0)/λ1 are weighting matrices. Now
assume that there is a temporary shock, i.e. gi(t) = gie−ξit for i = K, Q, ξi > 0, and

9Note that in a discrete-time setting a model displays hysteresis if it contains a unit root. Amable et
al. (1994) argue that it is inappropriate to equate zero-root (or unit-root) dynamics with “true” hysteresis.
Strong hysteresis is a much more general concept in their view and they suggest that zero-root dynamics
at best captures some aspects of this concept.
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t ≥ 0. In a non-hysteretic model such a temporary shock has no effect in the long run
as the system will eventually just return to its initial steady state which is uniquely
determined by the long-run values of the shock terms.

In stark contrast, in a hysteretic model, a temporary shock does have permanent
effects. In order to demonstrate this result we first substitute L{gi, s} = gi/(s + ξi)
into (A.122):[

L{K, s}
L{Q, s}

]
=

[
B

s− λ1
+

I − B
s

] [
K(0) + gK/(s + ξK)
Q(0) + gQ/(s + ξQ)

]
. (A.123)

Equation (A.123) constitutes the full solution for K(t) and Q(t) once the (history-
determined) initial conditions are plugged in. Using the final-value theorem (P8) we
derive from (A.123):

lim
s→0

[
sL{K, s}
sL{Q, s}

]
=

B lim
s→0

s
s− λ1︸ ︷︷ ︸
=0

+ (I − B) lim
s→0

s
s︸ ︷︷ ︸

=1


 K(0) + lim

s→0

gK
s+ξK

Q(0) + lim
s→0

gQ
s+ξQ


=

adj∆
λ1

[
K(0) + gK/ξK
Q(0) + gQ/ξQ

]
=

[
K(∞)
Q(∞)

]
, (A.124)

where we have used the fact that adjΛ(0) = −adj∆ in going from the first to the
second line. Equation (A.124) shows that the hysteretic system does not return to
its initial state following the temporary shock. It is not unstable, however, because
it does settle down in a new “steady state” (for which K̇(∞) = Q̇(∞) = 0) but the
position of this new steady state depends on the entire path of the shock terms, i.e.
in our example on ξK and ξQ. The ultimate steady state is thus “path dependent”
which explains why another term for hysteresis is path dependency.

Intermezzo A.4

Pegging the nominal interest rate. Giavazzi and Wyplosz (1985, p. 355)
give a simple example of a hysteretic system. Consider the following
simple macroeconomic model:

m(t)− p(t) = ay(t)− bi0 (LM)
i0 = r(t) + ṗ(t) (Fisher)

y(t) = yD
0 (t)− ηr(t) (IS)

ẏ(t) = θ [ȳ0 − y(t)] , (AS)

where m, y, ȳ, and p are, respectively, the money supply, actual output,
full employment output, and the price level (all in logarithms), r and i
are the real and nominal interest rate, respectively, and yD

0 represents the
exogenous elements of aggregate demand. The monetary authority uses
monetary policy to peg the nominal interest rate (at i(t) = i0) so the LM
curve residually determines the money supply. By combining the Fisher
relation with the IS curve we obtain ṗ(t) = (1/η)[y(t)− yD

0 (t)] + i0. By
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differentiating this expression and the AS curve—keeping the other ex-
ogenous variables constant—we obtain the system in the required for-
mat: [

dṗ(t)
dẏ(t)

]
=

[
0 1/η
0 −θ

] [
dp(t)
dy(t)

]
+

[
−(1/η)dyD

0 (t)
0

]
,

where the Jacobian matrix has characteristic roots λ1 = −θ and λ2 = 0
and it is assumed that both p and y are predetermined variables (so that
dp(0) = dy(0) = 0). Now consider the effects of a temporary boost in
aggregate demand, i.e. dyD

0 (t) = e−ξDt for ξD > 0 and t ≥ 0. Using the
methods developed in this subsection we derive:[

L{dp, s}
L{dy, s}

]
=

[
−1/(ηξD)
0

] (
1
s
− 1

s + ξD

)
.

Despite the fact that the shock is purely transitory it has a permanent
effect on the price level.

****

A.6.4.2 Non-negative roots (λ1 = 0 < λ2)

We now assume that ∆ in (A.100) satisfies |∆| = λ1λ2 = 0 and tr(∆) = λ1 + λ2 > 0
so that λ1 = 0 and λ2 = tr(∆) > 0. For this hysteretic case the analysis in subsection
A.6.3.2 is relevant. The general solution in Laplace transforms is obtained by setting
λ1 = 0 in (A.119):

s
[
L{K, s}
L{Q, s}

]
=

[
K(0) + L{gK, s}
Q(0) + L{gQ, s}

]
+ adjΛ(λ2)

[ L{gK ,s}−L{gK ,λ2}
s−λ2

L{gQ ,s}−L{gQ ,λ2}
s−λ2

]
. (A.125)

Let us once again assume that the shock is temporary and has a Laplace transform
L{gi, s} = gi/(s + ξi) for i = K, Q so that:

L{gi, s} − L{gi, λ2}
s− λ2

=
−gi

(λ2 + ξi)(s + ξi)
. (A.126)

Equation (A.125) can then be rewritten as:

s
[
L{K, s}
L{Q, s}

]
=

[
K(0) + gK/(s + ξK)
Q(0) + gQ/(s + ξQ)

]
− adjΛ(λ2)

[ gK
(λ2+ξK)(s+ξK)gQ
(λ2+ξQ)(s+ξQ)

]
, (A.127)

where Q(0) follows from either (A.117) or (A.118). By using the final-value theorem
(P8) in (A.127) we derive the hysteretic result:10

lim
s→0

s
[
L{K, s}
L{Q, s}

]
=

[
K(0) + gK/ξK
Q(0) + gQ/ξQ

]
− adjΛ(λ2)

[ gK
ξK(λ2+ξK)gQ
ξQ(λ2+ξQ)

]
10In going from the first to the second line we use (A.116), note that (A.109) implies λ2 I = adjΛ(λ2)−

adjΛ(0), and recall that adjΛ(0) = −adj∆.
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=
adj∆

λ2

[
K(0) + gK/ξK
Q(0) + gQ/ξQ

]
=

[
K(∞)
Q(∞)

]
. (A.128)

As in the outright stable case (see (A.124)) parameters of the shock path determine
the ultimate long-run result.

Intermezzo A.5

Current account dynamics. Consider the simple representative-agent
model of a small open economy suggested by Blanchard (1985, p. 230).
There is no capital and labour supply is exogenously fixed (at unity) so
that output, Y, and the wage rate, W = Y, are exogenous. The model is:

Ċ(t) = [r(t)− α]C(t)

Ḟ(t) = r(t)F(t) + W(t)− C(t),

where F is net foreign assets, and C and r are, respectively, consumption
and the exogenous interest rate. As is well known, a steady state only
exists in this model if the steady-state interest rate equals the rate of time
preference, i.e. if r(t) = α. After loglinearizing the model around an
initial steady state we obtain:[

˙̃F(t)
˙̃C(t)

]
=

[
α −α(1 + ωF)
0 0

] [
F̃(t)
C̃(t)

]
+

[
ωF
1

]
αr̃(t),

where ωF ≡ αF/Y = C/Y− 1 is the initial share of foreign asset income
in national output, ˙̃F(t) ≡ αdḞ/Y, and F̃(t) ≡ αdF/Y. The Jacobian ma-
trix on the right-hand side has characteristic roots λ1 = 0 and λ2 = α and
it is assumed that F is the predetermined variable and C is the jumping
variable. Now consider a temporary change in the world interest rate,
r̃(t) = e−ξRt for ξR > 0 and t ≥ 0. By using (A.117) and making the
obvious substitutions we obtain the jump in consumption:

C̃(0) = − α

(α + ξR)(1 + ωF)
< 0.

In a similar fashion, the long-run results can be obtained by using (A.128):[
F̃(∞)
C̃(∞)

]
=

[
0 1 + ωF
0 1

] [
αωF/ξR
C̃(0) + α/ξR

]
=

[
1 + ωF

1

] (
α [α + ωF(α + ξR)]

ξR(α + ξR)(1 + ωF)

)
.

In the impact period the household cuts back consumption to boost its
savings. In the long run both consumption and net foreign assets are
higher than in the initial steady state (provided ωF > −α/(α + ξR) in the
initial steady state).

****
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A.6.5 Literature

The most accessible intermediate sources to the Laplace transform method are to be
found in the engineering literature. Kreyszig (1999, ch. 5) and Boyce and DiPrima
(2005, ch. 6) are particularly illuminating. An advanced and encyclopedic source on
Laplace transforms is Spiegel (1965). Judd (1982, 1985, 1987a, 1987b) was the first
to apply the method to saddle-point stable perfect foresight models, and to note the
close link with welfare evaluations along the transition path.

A.7 Difference equations

Although continuous-time models are quite convenient to work with, economists
often work with models formulated in discrete time. Most RBC models fall under
this category as does the class of overlapping-generations models in the Samuelson
(1958)-Diamond (1965) tradition. In this section we briefly introduce the z-transform
method. This method plays the same role in discrete-time models that the Laplace
transform method performs in continuous-time models. In order to avoid unnec-
essary duplication, only the basic elements of the z-transform are introduced. The
student should be able to “translate” the insights obtained above to the discrete-time
setting after reading this section. Extremely lucid expositions of the z-transform
method are Ogata (1995) and Elaydi (1996). Meijdam and Verhoeven (1998) apply
the techniques in an economic setting.

A.7.1 Basic methods

The basic first-order linear difference equation takes the following form:

yt+1 + ayt = b, (A.129)

where a and b are constant parameters. If b = 0 ( 6= 0) the equation is homogeneous
(non-homogeneous). Equation (A.129) can be seen as the discrete-time counterpart
to (A.68). Just as for the continuous case we can solve the difference equation in
two steps. In step 1 we solve the complementary function, yC

t , which solves the
homogeneous part of (A.129). In step 2 we then look for the particular solution, yP

t .
The general solution is then given by yt = yC

t + yP
t .

To solve the homogeneous part of the difference equation we are looking for a
function for which yt+1/yt = −a which suggests that a good trial solution is yC

t =
Aαt. Substituting this trial in (A.129) and setting b = 0 we obtain Aαt [α + a] = 0 or
α = −a. Hence, the complementary function is:

yC
t = A(−a)t. (A.130)

To find the particular solution we first try the simplest possible guess, yP
t = k (a

constant). Substituting this trial solution into (A.129) we find (1 + a)k = b which
can be solved for k provided a 6= −1: k = b/(1 + a). The general solution of the
difference equation is thus:

yt = A(−a)t +
b

1 + a
(for a 6= −1). (A.131)

This expression is the discrete time counterpart to (A.74).
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Whereas a zero coefficient necessitates a different trial for the particular solution
in the continuous time case, the same holds for the discrete-time case when the co-
efficient is minus unity. If a = −1 we use the trial solution yP

t = kt, after which we
find that k = b so that the general solution is:

yt = A + bt (for a = −1). (A.132)

Initial conditions can be imposed just as for the continuous-time case. Suppose that
y0 is some given constant. Then we obtain from (A.131) that A = y0 − b/(1 + a) and
from (A.132) that A = y0.

Just as in the continuous-time case, there exists a very convenient transforma-
tion method for solving difference equations. We now briefly explain how this z-
transform method works.

A.7.2 The z-transform

Suppose we have a discrete-time function, ft, which satisfies ft = 0 for t = −1,−2, ....
The (one-sided) z-transform of the function is then defined as follows:11

Z{ ft, z} ≡
∞

∑
t=0

ftz−t. (A.133)

Provided the sum on the right-hand side converges, Z{ ft, z} exists and can be seen
as a function of z. The region of convergence is determined as follows. Suppose that
ft satisfies:

lim
t→∞

∣∣∣∣ ft+1

ft

∣∣∣∣ = R. (A.134)

Then the infinite sum in (A.133) converges provided:

lim
t→∞

∣∣∣∣∣ ft+1z−(t+1)

ftz−t

∣∣∣∣∣ < 1, (A.135)

and diverges if the inequality is reversed. Together, (A.134) and (A.135) imply that
(A.133) converges—and Z{ ft, z} exists—in the region |z| > R (“heavy discount-
ing”). In the region |z| < R , on the other hand, discounting is “light” and Z{ ft, z}
does not exist. R is referred to as the radius of convergence of Z{ ft, z}.

Here are some examples. Suppose that ft = 1 for t = 0, 1, 2, ... (and ft = 0
otherwise). Then Z{ ft, z} is:

Z{ ft, z} ≡ Z{1, z} =
∞

∑
t=0

(
1× z−t) = 1 + (1/z) + (1/z)2 + ...

=
1

1− 1/z
=

z
z− 1

,

provided |z| > 1 (recall that ∑∞
t=0 at = 1/ (1− a) iff |a| < 1). Now a slightly harder

one: suppose that ft = at for t = 0, 1, 2, ... (and ft = 0 otherwise). Then Z{ ft, z} is:

Z{ ft, z} ≡ Z{at, z} =
∞

∑
t=0

atz−t = 1 + (a/z) + (a/z)2 + ...

11By comparing (A.88) and (A.133) we cannot help but notice the close relation that exists between the
Laplace transform and the z-transform. Indeed, assuming that f (t) in (A.88) is continuous we obtain by
discretizing L{ f , s} = ∑∞

t=0 e−st ft. By setting z = es we obtain (A.133). See also Elaydi (1996, p. 254).
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Table A.2. Commonly used z-transforms

ft Z{ f , z} valid for:

Dt ≡
{

1 for t = 0
0 for t = 1, 2, ... 1

1 z
z−1 |z| > 1

t z
(z−1)2 |z| > 1

at z
z−a |z| > |a|

at−1 1
z−a |z| > |a|

tat−1 z
(z−a)2 |z| > |a|

at−bt

a−b
z

(z−a)(z−b) |z| > |a| , |z| > |b| , a 6= b

=
1

1− a/z
=

z
z− a

,

provided |z| > |a|.
In Table A.2 we have gathered some often-used z-transforms. The student should

verify that both the form of each transform and its associated radius of convergence
are correct.

The z-transform has a number of properties which allow us to perform algebraic
calculations with them. The most important of these are the following. Notice that
in each case we assume that ft possesses a z-transform and that ft = 0 for t =
−1,−2, . . ..

Property 8 Multiplication by a constant. (P8) If Z{ f , s} is the z-transform of ft then
Z{a f , z} = aZ{ f , z}.

Property 9 If ft and gt both have a z-transform then we have for any constants a and b that:

Z{a f + bg, z} = aZ{ f , z}+ bZ{g, z}. (P9)

Property 10 Left-shifting.

Z{ ft+1, z} = zZ{ ft, z} − z f0, (P10)

Z{ ft+2, z} = zZ{ ft+1, z} − z f1 = z2Z{ ft, z} − z2 f0 − z f1 (P11)
...,

Z{ ft+k, z} = zkZ{ ft, z} −
k−1

∑
r=0

zk−r fr. (P12)

Property 11 Initial-value and final-value theorems:

lim
|z|→∞

Z{ ft, z} = f0, (P13)

lim
z→1

(z− 1)Z{ ft, z} = lim
t→∞

ft. (P14)

A.7.3 Simple application

Suppose we wish to solve the following difference equation:

xt+2 + 3xt+1 + 2xt = 0, x0 = 0, x1 = 1. (A.136)



MATHEMATICAL APPENDIX 833

By using properties (P10) and (P11) we obtain the subsidiary equation in a few steps:

0 =
[
z2Z{xt, z} − z2x0 − zx1

]
+ 3 [zZ{xt, z} − zx0] + 2Z{xt, z} ⇔(

z2 + 3z + 2
)
Z{xt, z} = z2x0 + zx1 + 3zx0 = z⇔

Z{xt, z} = z
(z + 1)(z + 2)

=
z

z + 1
− z

z + 2
. (A.137)

Inverting (A.137) yields the solution in the time domain:

xt = (−1)t − (−2)t, (A.138)

for t = 0, 1, 2, . . ..
This example is—of course—rather unexciting apart from the fact that it gives us

a hint as to the stability properties of difference equations. Asymptotic stability of (a
system of) difference equations is obtained if the roots lie inside the unit circle, i.e.
terms like z

z+a are (un) stable if |a| < 1 (|a| > 1).

A.7.4 The saddle-path model

We now consider the following system of difference equations (by analogy with
(A.100)):[

Kt+1 − Kt
Qt+1 −Qt

]
= ∆

[
Kt
Qt

]
+

[
gK,t
gQ,t

]
, (A.139)

where gK,t and gQ,t are shock terms (possessing a z-transform) and ∆ has typical
element δij. Taking the z-transform of (A.139) yields:

Λ(z− 1)
[
Z{Kt, z}
Z{Qt, z}

]
=

[
zK0 +Z{gK,t, z}
zQ0 +Z{gQ,t, z}

]
, (A.140)

where Λ(z − 1) ≡ (z − 1)I − ∆. We assume that the characteristic roots of ∆ are
both real and that −1 < λ1 < 0 and λ2 > 0.12 As before, Kt is deemed to be
predetermined (so that K0 is given) whilst Qt is a non-predetermined variable (so
that Q0 can jump). Since Λ(z− 1)−1 = adjΛ(z− 1)/[(z− (1− λ1))(z− (1 + λ2))]
we can rewrite (A.140) as:

[z− (1− λ1)]

[
Z{Kt, z}
Z{Qt, z}

]
=

adjΛ(z− 1)
[

zK0 +Z{gK,t, z}
zQ0 +Z{gQ,t, z}

]
z− (1 + λ2)

. (A.141)

To ensure saddle-point stability the denominator and numerator on the right-hand
side of (A.141) must both go to zero as z goes to 1+ λ2. This furnishes the expression
for Q0:

adjΛ(λ2)

[
(1 + λ2)K0 +Z{gK,t, 1 + λ2}
(1 + λ2)Q0 +Z{gK,t, 1 + λ2}

]
=

[
0
0

]
. (A.142)

12We write the system in a form which emphasizes the close analogy with (A.100). Of course, we can
also re-express (A.139) as:[

Kt+1
Qt+1

]
= ∆∗

[
Kt
Qt

]
+

[
gK,t
gQ,t

]
,

where ∆∗ ≡ I + ∆. The characteristic roots of ∆∗ and ∆ are related according to λ∗i = 1 + λi . Azariadis
(1993, p. 65) gives the conditions for saddle-point stability.
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By rewriting (A.142) we finally obtain:

Q0 = −
Z{gQ,t, 1 + λ2}

1 + λ2
−
(

λ2 − δ22

δ12

) [
K0 +

Z{gK,t, 1 + λ2}
1 + λ2

]
(A.143)

= −
Z{gQ,t, 1 + λ2}

1 + λ2
−
(

δ21

λ2 − δ11

) [
K0 +

Z{gK,t, 1 + λ2}
1 + λ2

]
. (A.144)

Similarly, the general expression for the solution can be written as:

[z− (1 + λ1)]

[
Z{Kt, z}
Z{Qt, z}

]
=

[
zK0 +Z{gK,t, z}
zQ0 +Z{gQ,t, z}

]

+

adjΛ(λ2)

 Z{gK,t, z} −
(

z
1+λ2

)
Z{gK,t, 1 + λ2}

Z{gQ,t, z} −
(

z
1+λ2

)
Z{gQ,t, 1 + λ2}


z− (1 + λ2)

, (A.145)

where the analogy with (A.119) should be obvious. In the Appendix to Chapter 18
equations (A.143)–(A.145) are used to solve the impulse-response functions for the
unit-elastic RBC model with technology shocks.

A.7.5 Literature

Basic: Klein (1998, ch. 13), Chiang (1984, chs. 16–17), Sydsæter and Hammond (1995,
ch. 20). Intermediate: de la Fuente (2000, chs. 9–11). Advanced: Azariadis (1993),
Elaydi (1996), and Ogata (1995).

A.8 Dynamic optimization in continuous time

In this section we present some of the key results from optimal control theory as
they are used in this book. We start by forging the link between the static Lagrangian
method and the dynamic Optimum Principle, using the insights of Intriligator (1971,
pp. 346–348) and Chiang (1992, pp. 177–181). We focus attention on maximization
problems in continuous time and ignore second-order conditions. (Of course, in all
applications discussed in the text, these glossed-over second-order conditions are
indeed fulfilled.) Discrete-time problems are solved in the text by making use of the
Lagrangian methods discussed above in this appendix.

A.8.1 From Lagrange to the Optimum Principle

We start with a very basic dynamic optimization problem, involving the optimal
consumption and saving plans of a finitely-lived agent. This agent has the following
objective function:

Λ (t0) ≡
∫ t1

t0

U (C (t)) · eρ(t0−t)dt, (A.146)

where Λ (t0) is (remaining-) lifetime utility, t0 is the planning period, t1 is the plan-
ning horizon (say, the agent’s time of death), U (·) is the felicity function, C (t) is the
flow of consumption at time t, and ρ is the pure rate of time preference. As usual, the
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felicity function features positive but diminishing marginal utility of consumption,
i.e. U′ (·) > 0 > U′′ (·).

Next we turn to the constraints faced by this agent. We assume that financial
assets, A (t), evolve over time according to the following budget identity:

Ȧ (t) = r (t) A (t) + W (t)− C (t) , (A.147)

where Ȧ (t) ≡ dA (t) /dt, r (t) is the interest rate, and W (t) is wage income. Both
r (t) and W (t) are taken as given by the agent but may vary over time. Simply put,
equation (A.147) says that any unconsumed income is added to financial assets (i.e.,
is saved). The second constraint faced by the agent is the terminal condition, which
says that the agent wants to end up with zero financial wealth at the time of death:

A (t1) = 0. (A.148)

Third, there is an initial condition which says that assets in the planning period are
equal to whatever the agent owns at that time (A0):

A (t0) = A0, (A.149)

where A0 is a predetermined variable at time t0 (the past cannot be undone). Finally,
there are no borrowing constraints, so A (t) may be negative for some t < t1.

The optimization problem is as follows. The agent must choose a time path for
C (t) and A (t) for t0 ≤ t ≤ t1 such that (A.146) is maximized subject to the con-
straints (A.148)–(A.149). Let us first try to solve this problem using the Lagrangian
method discussed above. In the first step we define the Lagrangian:

L (t0) ≡
∫ t1

t0

U (C (t)) · eρ(t0−t)dt+
∫ t1

t0

λ (t) ·
[
r (t) A (t) + W (t)− C (t)− Ȧ (t)

]
dt,

(A.150)

where λ (t) is the Lagrange multiplier for the budget identity at time t, and we
note that the term in square brackets is simply a rewritten version of the constraint
(A.147). We can rewrite (A.150) somewhat to obtain:

L (t0) ≡
∫ t1

t0

[
U (C (t)) · eρ(t0−t) + λ (t) · [r (t) A (t) + W (t)− C (t)]

]
dt

−
∫ t1

t0

λ (t) Ȧ (t) dt

=
∫ t1

t0

H (t, C (t) , A (t) , λ (t)) dt−
∫ t1

t0

λ (t) Ȧ (t) dt, (A.151)

where theH (·) function is defined as follows:

H (t, C (t) , A (t) , λ (t)) ≡ U (C (t)) · eρ(t0−t) + λ (t) · [r (t) A (t) + W (t)− C (t)] .
(A.152)

This still does not look like a standard (static) Lagrangian problem because Ȧ (t) still
features on the right-hand side of (A.152). Using integration by parts, however, we
can write:

−
∫ t1

t0

λ (t) Ȧ (t) dt = −λ (t) A (t)
∣∣∣∣t1

t0

+
∫ t1

t0

A (t) λ̇ (t) dt
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= λ (t0) A (t0)− λ (t1) A (t1) +
∫ t1

t0

A (t) λ̇ (t) dt. (A.153)

By substituting (A.153) into (A.151) we thus obtain the ultimate expression for the
Lagrangian which no longer involves Ȧ (t):

L (t0) ≡
∫ t1

t0

[
H (t, C (t) , A (t) , λ (t)) + A (t) λ̇ (t)

]
dt

+ λ (t0) A (t0)− λ (t1) A (t1) , (A.154)

where we recall that A (t1) = 0.
In the next step we consider the following variational experiment. Denote the

optimal, utility-maximizing, paths for C (t) and A (t) by, respectively, C̄ (t) and Ā (t).
Consider neighbouring solutions for C (t) and A (t) taking the following form:

C (t) = C̄ (t) + εz1 (t) , (A.155)
A (t) = Ā (t) + εz2 (t) , (A.156)

where z1 (t) ( 6= 0) is the perturbation path for C (t) and z2 (t) is the corresponding
perturbation path for A (t). Note that the latter perturbation path is induced by (a)
the perturbation path for C (t) and (b) the dynamic path for A (t) (stated in equation
(A.147) above). We can now rewrite (A.154) for the neighbouring solution as:

L (ε, t0) ≡
∫ t1

t0

[
H (t, C̄ (t) + εz1 (t) , Ā (t) + εz2 (t) , λ (t))

+ λ̇ (t) [Ā (t) + εz2 (t)]
]

dt + λ (t0) A (t0)− λ (t1) A (t1) , (A.157)

where we have already incorporated the fact that the perturbation path for A (t)
must be consistent with both (A.148) and (A.149), i.e. Ā (t0) = A (t0) so that z2 (t0) =
0 and Ā (t1) = A (t1) = 0 so that z2 (t1) = 0. Other than at time t0 and t1, we have
that z2 (t) 6= 0.

If, as we asserted, C̄ (t) and Ā (t) are indeed the optimal solution paths, then it
must be the case that dL (ε, t0) /dε = 0 for ε = 0. By taking the derivative, we find:

dL (ε, t0)

dε
=
∫ t1

t0

[
∂H (·)
∂C (t)

z1 (t) +
[

∂H (·)
∂A (t)

+ λ̇ (t)
]

z2 (t)
]

dt. (A.158)

It thus follows that dL (ε, t0) /dε = 0 if and only if all terms on the right-hand side of
(A.158) are equal to zero for all non-zero perturbation paths, i.e. it must be the case
that the optimal solutions satisfy:

∂H (t, C (t) , A (t) , λ (t))
∂C (t)

= 0, (A.159)

−∂H (t, C (t) , A (t) , λ (t))
∂A (t)

= λ̇ (t) , (A.160)

plus, of course, the original constraint (A.147) which we can write as:

∂H [t, C (t) , A (t) , λ (t)]
∂λ (t)

= Ȧ (t) . (A.161)

Congratulations! If you have followed us up to this point, you have now derived
the first-order necessary conditions associated with the method of optimal control! To
prepare for the discussion to follow, we now introduce some concepts and nomen-
clature from the optimal control literature:
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• The H (·) function defined in (A.152) above is called the Hamiltonian function
associated with the dynamic optimization problem.

• The variable whose path can be chosen freely at each moment in time is called
the control variable. In the problem studied here, C (t) is the control variable.

• The variable whose path results dynamically from the path of the control vari-
able is called the state variable. In the problem studied here, A (t) is the state
variable. The equation that postulates the time path for the state variable is
called the state equation. Here, equation (A.147) is the state equation. The best
way to recognize the state variable in particular applications is to look for the
state equation.

• The Lagrange multiplier that is attached to the state variable is called the co-
state variable. In the problem studied here, λ (t) is the co-state variable.

Now that we have had a first glance at the method of optimal control, the remainder
of this section discusses some of the key results used throughout the book. From here
on we focus on the case in which the planning horizon is infinite, i.e. t1 → ∞. We
first study the unconstrained case for which there are no restrictions on the control
variable(s). Next we briefly show how (in)equality constraints can be imposed on
the control variable(s).

A.8.2 Unconstrained

The proto-typical infinite-horizon optimal control problem encountered in economics
takes the following form. The objective function is defined as:

Ψ(t0) =
∫ ∞

t0

Φ(x(t), u(t), t) · eρ(t0−t)dt, (A.162)

where t0 is the planning period, x(t) is the state variable, u(t) is the control variable,
eρ(t0−t) is the discount factor, and t is time. The state and control variable are related
according to the following state equation:

ẋ(t) = f (x(t), u(t), t). (A.163)

The state equation thus describes the (equation of) motion of the state variable. The
initial condition for the state variable is given by:

x(0) = x0, (A.164)

where x0 is a given constant (e.g. the accumulated stock of some resource). In most
optimal control problems studied in the text, the terminal value of the state variable
can be freely chosen but is subject to a lower limit. For example, a household’s asset
holdings or a firm’s capital stock cannot become negative in the limit. We thus write
the terminal condition as:

lim
t→∞

x (t) ≥ xmin, (A.165)

where xmin is the exogenously given lower bound on the state variable (typically
xmin = 0). The objective is to find a time path for the control variable, u(t) for
t ∈ [t0, ∞), such that the objective function (A.162) is maximized given the state
equation (A.163), the initial condition (A.164), and the terminal condition (A.165).
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To solve this problem one formulates a Hamiltonian function which takes the fol-
lowing form:

H ≡ Φ(x(t), u(t), t)eρ(t0−t) + λ(t) · f (x(t), u(t), t), (A.166)

where λ(t) is the co-state variable which plays the role similar to the Lagrange mul-
tiplier encountered in static optimization problems. The Maximum Principle fur-
nishes the following conditions (for t ∈ [t0, ∞)):

∂H
∂u(t)

= 0, (A.167)

ẋ(t) =
∂H

∂λ(t)
, x(0) = x0, (A.168)

λ̇(t) = − ∂H
∂x(t)

, (A.169)

lim
t→∞

λ (t) ≥ 0, lim
t→∞

λ (t) · [x (t)− xmin] = 0. (A.170)

The first condition says that the control variable should be chosen such that the
Hamiltonian is maximized, the second condition gives the equation of motion for
the state variable, whilst the third equation gives the equation of motion for the
co-state variable. Finally, the expressions in (A.170) constitute the transversality con-
dition (Chiang, 1992, p. 241). It is very much like a complementary slackness con-
dition. Recall that λ (t) is the shadow value of the state variable x (t). If it turns
out that limt→∞ x (t) > xmin, then the second expression in (A.170) implies that
limt→∞ λ (t) = 0. Intuitively, if in the limit the state strictly exceeds its minimum al-
lowable level, then it must be the case that this final state variable is worthless. Vice
versa, if it turns out that limt→∞ λ (t) > 0, then it must be the case that limt→∞ x (t) =
xmin, i.e. it is not optimal to end up with more than the bare minimum of a valued
state variable.

An equivalent way of solving the same problem is to work with the current-value
Hamiltonian, which is defined as follows:

HC

[
≡ Heρ(t−t0)

]
= Φ(x(t), u(t), t) + µ(t) · f (x(t), u(t), t), (A.171)

where µ(t) ≡ λ(t)eρ(t−t0) is the redefined co-state variable. The first-order condi-
tions expressed in terms of the current-value Hamiltonian are:

∂HC
∂u(t)

= 0, (A.172)

ẋ(t) =
∂HC
∂µ(t)

, (A.173)

µ̇(t)− ρµ(t) = − ∂HC
∂x(t)

, (A.174)

lim
t→∞

eρ(t0−t)µ (t) ≥ 0, lim
t→∞

eρ(t0−t)µ (t) · [x (t)− xmin] = 0. (A.175)

In many applications of optimal control techniques (e.g. the firm’s investment deci-
sion), the discount term in (A.162) is not eρ(t0−t) but rather takes the form e−R(t0,t),
where R (t0, t) ≡

∫ t
t0

r (s) ds. In such a case we define HC ≡ HeR(t0,t), µ(t) ≡
λ(t)eR(t0,t), and change (A.174) to:

µ̇(t)− r (t) µ(t) = − ∂HC
∂x(t)

, (A.176)
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where we have used the fact that dR (t0, t) /dt = r (t). In (A.175) we use e−R(t0,t)

instead of eρ(t0−t).
If there are n state variables and m controls then the same methods carry over

except, of course, that x(t) ≡ (x1(t), ..., xn(t)) and u(t) ≡ (u1(t), ..., um(t)) must be
interpreted as vectors, and the set of conditions is suitably expanded:

∂HC
∂uj(t)

= 0, (A.177)

ẋi(t) =
∂HC

∂µi(t)
, (A.178)

µ̇i(t)− ρµi(t) = −
∂HC

∂xi(t)
, (A.179)

lim
t→∞

eρ(t0−t)µi (t) ≥ 0, lim
t→∞

eρ(t0−t)µi (t) · [xi (t)− xi,min] = 0, (A.180)

where µi(t) is the co-state variable corresponding to the state variable xi(t), j =
1, ..., m, and i = 1, ..., n.

A.8.3 (In)equality constraints

Suppose the problem is as in (A.162)–(A.165) but that there is an additional constraint
in the form of:

g(x(t), u(t), t) ≤ c, (A.181)

where c is some constant. Suppose furthermore that there is a non-negativity con-
straint on the control variable, i.e. u(t) ≥ 0 is required (for example, consumption or
leisure cannot become negative). The way to deal with these inequalities is to form
the following current-value Lagrangian:

LC = Φ(x(t), u(t), t) + µ(t) · f (x(t), u(t), t) + θ(t) ·
[
c− g(x(t), u(t), t)

]
, (A.182)

where θ(t) is the Lagrange multiplier associated with the inequality constraint (A.181).
The first-order conditions are now:

∂LC
∂u(t)

≤ 0, u(t) ≥ 0, u(t)
∂LC
∂u(t)

= 0, (A.183)

∂LC
∂θ(t)

≥ 0, θ(t) ≥ 0, θ(t)
∂LC
∂θ(t)

= 0, (A.184)

ẋ(t) =
∂LC

∂µ(t)
, (A.185)

µ̇(t)− ρµ(t) = − ∂LC
∂x(t)

. (A.186)

Equation (A.183) gives the Kuhn-Tucker conditions taking care of the non-negativity
constraint on the control variable. The second equation gives the Kuhn-Tucker con-
ditions for the inequality constraint (A.181). Finally, (A.185) and (A.186) give the
laws of motion of, respectively, the state variable and the co-state variable. The
transversality condition is again given by (A.175).

A.8.4 Second-order conditions

The second-order sufficient conditions are given by Chiang (1992, p. 290).
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A.8.5 Literature

Basic: Klein (1998, ch. 15) and Chiang (1992). Intermediate: Dixit (1990, chs 10–11),
Intriligator (1971, chs. 11–14), Léonard and Long (1992), and de la Fuente (2000, chs.
12–13). Advanced: Kamien and Schwartz (1991), Seierstad and Sydsæter (1987), and
Chow (1997).
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